Schriftzug: Fachbereich Mathematik 
  UHH > Fakultäten > MIN-Fakultät > Mathematik > Bereiche > Diskrete Mathematik   STiNE |  KUS-Portal |  Sitemap Suchen Hilfe there is no english version of this page  



Forschungsschwerpunkt Diskrete Mathematik

All Hamburg papers on structural graph theory
(click here for extremal/probabilistic papers)

Preprints:

  • Duality and tangles of set separations (R. Diestel, C. Elbracht, Joshua Erde & M. Teegen), preprint 2021; ArXiv
  • The Lovász-Cherkassky theorem for locally finite graphs with ends (R. Jacobs, A. Joó, P. Knappe, J. Kurkofka, and R. Melcher), preprint 2021; ArXiv
  • Cutting a cake for infinitely many guests (Zs. Jankó & A. Joó), preprint 2021; ArXiv
  • Agile Sets in Graphs (C. Elbracht, J. Kneip, and M. Teegen), preprint 2021; ArXiv
  • Large vertex-flames in uncountable digraphs (F. Gut & A. Joó), preprint 2021; ArXiv
  • Deciders for tangles of set separations (R. Diestel, C. Elbracht, and R. Jacobs), preprint 2021; ArXiv
  • The Structure of Submodular Separation Systems (C. Elbracht, J. Kneip and M. Teegen), preprint 2021; ArXiv
  • The Unravelling Problem (C. Elbracht, J. Kneip and M. Teegen), preprint 2021; ArXiv
  • Countably determined ends and graphs (Jan Kurkofka and Ruben Melcher), preprint 2021; ArXiv
  • Hamiltonicity in infinite tournaments (R. Melcher), preprint 2021; ArXiv
  • Ubiquity in graphs III: Ubiquity of locally finite graphs with extensive tree-decompositions (N. Bowler, C. Elbracht, J. Erde, P. Gollin, K. Heuer, M. Pitz, M. Teegen), preprint 2020; ArXiv
  • Edge-connectivity and tree-structure in finite and infinite graphs (C. Elbracht, J. Kurkofka and M. Teegen), preprint 2020; ArXiv
  • Forcing Hamiltonicity of locally finite graphs via forbidden induced subgraphs I: nets and bulls. (K. Heuer and D. Sarikaya), preprint 2020; ArXiv
  • Forcing Hamiltonicity of locally finite graphs via forbidden induced subgraphs II: paws (K. Heuer and D. Sarikaya), preprint 2020; ArXiv
  • A tree-of-tangles theorem for infinite-order tangles in graphs (A. Elm & J. Kurkofka), preprint 2020; ArXiv
  • Canonical trees of tree-decompositions (J. Carmesin, M. Hamann & B. Miraftab), preprint 2020; ArXiv
  • Quickly proving Diestel's normal spanning tree criterion (Max Pitz), preprint 2020; (ArXiv)
  • A new obstruction for normal spanning trees (Max Pitz), preprint 2020; (ArXiv)
  • Greedoids from flames (A. Joó), preprint 2020; ArXiv
  • Intersection of a partitional and a general infinite matroid (A. Joó), preprint 2020; ArXiv
  • On a linking property of infinite matroids (A. Joó), preprint 2020; ArXiv
  • Tangles: From Weak to Strong Clustering (C. Elbracht, D. Fioravanti, S. Klepper, J. Kneip, L. Rendsburg, M. Teegen and U. von Luxburg), preprint 2020; ArXiv
  • Halin's end degree conjecture (S. Geschke, J. Kurkofka, R. Melcher, M. Pitz), preprint 2020; ArXiv
  • Ends of digraphs III: normal arborescences (Carl Bürger, Ruben Melcher), preprint 2020; ArXiv
  • Ends of digraphs II: the topological point of view (Carl Bürger, Ruben Melcher), preprint 2020; ArXiv
  • Ends of digraphs I: basic theory (Carl Bürger, Ruben Melcher), preprint 2020; ArXiv
  • End-faithful spanning trees in graphs without normal spanning trees (C. Bürger & J. Kurkofka), preprint 2020; ArXiv
  • A note on minor antichains of uncountable graphs (Max Pitz), preprint 2020; (ArXiv)
  • Eulerian spaces (P. Gartside and M. Pitz), preprint 2019; ArXiv
  • Ends as tangles (J. Kneip), preprint 2019; PDF
  • Profinite tree sets (J. Kneip), preprint 2019; PDF
  • Splitting groups with cubic Cayley graphs of connectivity two (Babak Miraftab and Konstantinos Stavropoulos), preprint 2019; ArXiv
  • The Complete Lattice of Erdő-Menger Separations (A. Joó), preprint 2019; ArXiv
  • Ubiquity in graphs I: Topological ubiquity of trees (N. Bowler, C. Elbracht, J. Erde, P. Gollin, K. Heuer, M. Pitz, M. Teegen), preprint 2018; ArXiv
  • Ubiquity in graphs II: Ubiquity of graphs with nowhere-linear end structure (N. Bowler, C. Elbracht, J. Erde, P. Gollin, K. Heuer, M. Pitz, M. Teegen), preprint 2018; ArXiv
  • N-arc connected graphs (P. Gartside and A. Mamatelashvili and M. Pitz), preprint 2018; ArXiv
  • Cofinitary nearly finitary matroids are l-nearly finitary for some natural number l (A. Elm), preprint 2018; PDF
  • Characterising k-connected sets in infinite graphs (J.P. Gollin and K. Heuer), preprint(2018); ArXiv
  • A Stallings’ type theorem for quasi-transitive graphs (Matthias Hamann, Florian Lehner, Babak Miraftab and Tim Rühmann), preprint 2018; Arxiv
  • A zero-sum problem on graphs (D. Weißauer), preprint 2016; PDF
  • Countable connected-homogeneous digraphs (Matthias Hamann), preprint 2014; PDF
  • Brownian motion on graph-like spaces (A. Georgakopoulos and K. Kolesko), preprint 2013; PDF

2021:

  • Every infinitely edge-connected graph contains the Farey graph or T_{\aleph_0}*t as a minor (J. Kurkofka), to appear in Mathematische Annalen; ArXiv
  • On the intersection conjecture for infinite trees of matroids (N. Bowler and J. Carmesin), Journal of Combinatorial Theory, Series B, 151 (2021), 46-82; PDF
  • The Farey graph is uniquely determined by its connectivity (J. Kurkofka), Journal of Combinatorial Theory, Series B, 151 (2021), 223-234; ArXiv
  • Proof of Nash-Williams' Intersection Conjecture for countable matroids (A. Joó), Advances in Mathematics 380 (2021) p. 107608; open access
  • Enlarging vertex-flames in countable digraphs (J. Erde, J. P. Gollin, A. Joó), Journal of Combinatorial Theory, Series B, 151, (2021), 263-281; open access
  • Duality theorems for stars and combs I: Arbitrary stars and combs (C. Bürger & J. Kurkofka), Journal of Graph Theory (2021); ArXiv
  • Duality theorems for stars and combs II: Dominating stars and dominated combs (C. Bürger & J. Kurkofka), to appear in Journal of Graph Theory; ArXiv
  • Duality theorems for stars and combs III: Undominated combs (C. Bürger & J. Kurkofka), to appear in Journal of Graph Theory; ArXiv
  • Duality theorems for stars and combs IV: Undominating stars (C. Bürger & J. Kurkofka), to appear in Journal of Graph Theory; ArXiv
  • Greedoids from flames (A. Joó), Journal of graph theory, Volume 98, Issue 1, Pages 49-56, 2021; ArXiv
  • Trees of tangles in infinite separation systems (C. Elbracht, J. Kneip and M. Teegen), to appear in Mathematical Proceedings of the Cambridge Philosophical Society; ArXiv
  • A canonical tree-of-tangles theorem for structurally submodular separation systems (C. Elbracht and J. Kneip), to appear in Combinatorial Theory; ArXiv
  • Obtaining trees of tangles from tangle-tree duality (C. Elbracht, J. Kneip and M. Teegen), to appear in Journal of Combinatorics; ArXiv
  • On the infinite Lucchesi-Younger conjecture I (J.P. Gollin & K. Heuer), to appear in J. Graph Theory; ArXiv
  • Ubiquity and the Farey graph (J. Kurkofka), European J. Combin., 95 (2021), 103326; ArXiv
  • Trees of tangles in abstract separation systems (C. Elbracht, J. Kneip and M. Teegen), J. Combin. Theory (Series A), 180 (2021), 105425; ArXiv
  • On partitioning the edges of an infinite digraph into directed cycles (A. Joó), Advances in Combinatorics, 2021:2, 8 pp.; PDF
  • Approximating infinite graphs by normal trees (J. Kurkofka, R. Melcher and M. Pitz), J. Combin. Theory (Series B), 148 (2021), 173-183; ArXiv
  • Proof of Halin's normal spanning tree conjecture (Max Pitz), to appear in J. Israel Math; (ArXiv)
  • Base partition for mixed families of finitary and cofinitary matroids (J. Erde, P. Gollin, A. Joó, P. Knappe, M. Pitz), Combinatorica 41 (2021) 31-52; ArXiv
  • A Cantor-Bernstein-type theorem for spanning trees in infinite graphs (J. Erde, P. Gollin, A. Joó, P. Knappe, M. Pitz) J. Combin. Theory (Series B) 149 (2021) 16-22; ArXiv
  • Tangle-tree duality in abstract separation systems (R. Diestel and S. Oum), Adv. Math 377 (2021); PDF
  • Tangles and the Stone-Čech compactification of infinite graphs (J. Kurkofka and M. Pitz), J. Combin. Theory (Series B) 146 (2021), 34-60; Journal/ ArXiv
  • An analogue of Edmonds' Branching Theorem for infinite digraphs (J.P. Gollin & K. Heuer), Europ. J. Comb 92 (2021); ArXiv
  • Homological aspects of hypergraphs (R. Diestel); ArXiv

2020:

  • Circuits through prescribed edges (P. Knappe and M. Pitz),J. Graph Theory, 93(4) (2020) 470-482; Journal/ ArXiv
  • On the growth rate of dichromatic numbers of finite subdigraphs (A. Joó), Discrete Mathematics, Volume 343, Issue 3, 111735, 2020; open access
  • Uncountable dichromatic number without short directed cycles (A. Joó), Journal of Graph Theory, Volume 94, Issue 1, Pages 113-116, 2020; open access
  • Graph-like compacta: characterizations and eulerian loops (B. Espinoza, P. Gartside and M. Pitz),Journal of Graph Theory, Volume 95, Issue 2, (2020), 209-239; Journal/ ArXiv
  • Directed path-decompositions (J. Erde), SIAM Journal on Discrete Mathematics, Volume 34, Issue 1, 2020; Journal/ ArXiv
  • Reducing the dichromatic number via cycle reversions in infinite digraphs (P. Ellis, A. Joó, D. T. Soukup), European Journal of Combinatorics, Volume 90, Pages 103196, 2020 open access
  • Hamilton decompositions of one-ended Cayley graphs (Joshua Erde, Florian Lehner and Max Pitz), J. Combin. Theory (Series B), 140 (2020) 171-191; PDF
  • A unified existence theorem for normal spanning trees (Max Pitz), J. Combin. Theory (Series B), 145 (2020), 466-469; ArXiv
  • Representations of infinite tree sets (J.P. Gollin and J. Kneip), Order 38 (2020); ArXiv
  • Tangles are decided by weighted vertex sets (C. Elbracht, J. Kneip and M. Teegen), Advances in Combinatorics, 2020:9; ArXiv
  • Separations of sets (N. Bowler & J. Kneip), Order 37 (2020), 411-425; ArXiv
  • Profinite separation systems (R. Diestel and J. Kneip), Order 37 (2020), 179-205; short/ long version
  • Every planar graph with the Liouville property is amenable (J. Carmesin and A. Georgakopoulos), RSA 57 (2020), 706-729; PDF
  • Partitioning edge-coloured infinite complete bipartite graphs into monochromatic paths (C. Bürger, M. Pitz), Israel J. Math 238 (2020), 479-500; ArXiv

2019:

  • All graphs have tree-decompositions displaying their topological ends (J. Carmesin), Combinatorica 39 (2019), 545–596; PDF
  • Vertex-flames in countable rooted digraphs preserving an Erdős-Menger separation for each vertex (A. Joó), Combinatorica, V. 39, P. 1317-1333, 2019; ArXiv
  • The planar Cayley graphs are effectively enumerable (Agelos Georgakopoulos & Matthias Hamann), Combinatorica 39, (2019), 993-1019. Journal PDF
  • On the block number of graphs (D. Weißauer), SIAM J. Discret.Math. 33 (2019), 346-357.ArXiv
  • Tangle-tree duality: in graphs, matroids and beyond (R. Diestel and S. Oum), Combinatorica 39 (2019), 879-910; PDF.
  • Structural submodularity and tangles in abstract separation systems (R. Diestel, J. Erde and D. Weißauer), JCTA 167C (2019), 155-180; PDF
  • Profiles of separations: in graphs, matroids and beyond (R. Diestel, F. Hundertmark and S. Lemanczyk), Combinatorica 39 (2019), 37–75; PDF
  • Ends, tangles and critical vertex sets (J. Kurkofka and M. Pitz), Math. Nachrichten 292(9) (2019), 2072-2091; Journal / ArXiv
  • Peripheral circuits in infinite binary matroids (N. Bowler, R. Christian and R. B. Richter), JCTB 134 (2019), p285-308; PDF.
  • In absence of long chordless cycles, large tree-width becomes a local phenomenon (D. Weißauer), JCTB 139 (2019), 342-352; PDF
  • Algebraically grid-like graphs have large tree-width (D. Weißauer), Electronic J. Comb. 26 (2019), #P1.15; PDF
  • The colouring number of infinite graphs (N. Bowler, J. Carmesin, C. Reiher), Combinatorica 39 (2019), 1225–1235; PDF
  • Tangles in the social sciences (R. Diestel); ArXiv
  • Self-embeddings of trees (Matthias Hamann), Discrete Mathematics 342 (2019), 111586; PDF

2018:

  • Planar transitive graphs (Matthias Hamann), Combinatorica volume 38, pages 847–859 (2018) PDF
  • Two-ended quasi-transitive graphs (Babak Miraftab and Tim Rühmann); Arxiv
  • From cycles to circles in Cayley graphs (Babak Miraftab and Tim Rühmann), The Electronic Journal of Combinatorics, Volume 25, Issue 2 (2018) PDF
  • Accessibility in transitive graphs (Matthias Hamann), Combinatorica 38 (2018), 847–859; PDF
  • Planar transitive graphs (Matthias Hamann), Electonic J. COmbin. 25 (2018), #4.8; PDF
  • Hamilton circles in Cayley graphs (Babak Miraftab and Tim Rühmann), Electron. J. Combin. 25 (2018), #P2.5; PDF
  • Isoperimetry in integer lattices (Ben Barber and Joshua Erde), Discrete Analysis, Volume 7 (2018); PDF
  • Hamiltonicity in locally finite graphs: two extensions and a counterexample (K. Heuer), Electron. J. Comb. 25 (2018), #P3.13; PDF
  • Hamilton cycles in infinite cubic graphs (M. Pitz), Electron. J. Comb. 25 (2018), #P3.3 ArXiv
  • Minimal obstructions for normal spanning trees (N. Bowler, S. Geschke and M. Pitz), Fund. Math. 241 (2018), 245–263; PDF.
  • Connected tree-width (R. Diestel and M. Müller), Combinatorica 38 (2018), 381-398; PDF
  • On the intersection of infinite matroids (E. Aigner-Horev, J. Carmesin and J. Fröhlich), Discrete Mathematics 341 (2018), 1582-1596; PDF
  • An excluded minors method for infinite matroids (N. Bowler and J. Carmesin), Journal of Combinatorial Theory Series B 128 (2018), 104-113; PDF
  • Infinite graphic matroids, Part I (N. Bowler, J. Carmesin and R. Christian), Combinatorica 38 (2018), 305-339; ArXiV
  • Topological infinite gammoids and a new Menger-type theorem for infinite graphs (J. Carmesin), Electronic J. Comb. 25 (2018) #P3.38; PDF
  • Reconstructing infinite matroids from their 3-connected minors (N. Bowler, J. Carmesin and L. Postle), Europ. J. Comb 67 (2018), 126-144; PDF
  • A unified treatment of linked and lean tree-decompositions (J. Erde), JCTB 130 (2018), 114-143; ArXiv
  • Accessibility in transitive graphs (Matthias Hamann), Combinatorica 38 (2018), 847–859; PDF
  • Abstract separation systems (R. Diestel), Order 35 (2018), 157-170; PDF
  • Tree sets (R. Diestel), Order 35 (2018), 171-192; PDF
  • On the tree-likeness of hyperbolic spaces (Matthias Hamann), Math. Proc. Cambridge Philos. Soc. 164 (2018), 345-361; PDF
  • Countable Menger's Theorem with Finitary Matroid Constraints on the Ingoing Edges (A. Joó), Electronic J. Comb. 25 (2018), #P3.12; PDF
  • Gomory-Hu trees of infinite graphs with finite total weight (A. Joó), Journal of Graph Theory 95 (1) (2018), 222-231; PDF
  • Partitioning edge-coloured complete symmetric digraphs into monochromatic complete subgraphs (C. Bürger, L. DeBiasio, H. Guggiari, M. Pitz), Discrete Math. 341 (2018), 3134-3140; ArXiv
  • Infinite end-devouring sets of rays with prescribed start vertices (J.P. Gollin and K. Heuer), Discrete Math. 341 (2018), 2117–2120; ArXiv
  • Clique trees of infinite locally finite chordal graphs. (Christoph Hofer-Temmel & Florian Lehner), Electron. J. Combin. 25 (2018), #P2.9; PDF

2017:

  • Breaking graph symmetries by edge colourings (Florian Lehner), Journal of Combinatorial Theory, Series B 127, 205-214, 2017; PDF
  • The classification of finite and locally finite connected-homogeneous digraphs (Matthias Hamann), Combinatorica 37 (2017), 183-222; PDF
  • Duality theorems for blocks and tangles in graphs (R. Diestel, J. Erde and Ph. Eberenz), SIAM Journal on Discrete Mathematics 31 (2017), 1514-1528; PDF
  • Ends and tangles (R. Diestel), Abhandlungen Math. Sem. Univ. Hamburg 87 (2017), 223–244; PDF
  • Dual trees must share their ends (R. Diestel and J. Pott), J. Combin. Theory (Series B) 123 (2017) 32-53; PDF
  • A counterexample to the reconstruction conjecture for locally finite trees (N. Bowler, J. Erde, P. Heinig, F. Lehner, M. Pitz), Bulletin of the London Mathematical Society 49 (4) (2017) 630-648; PDF
  • Canonical tree-decompositions of a graph that display its k-blocks (J. Carmesin and P. Gollin), JCTB 122 (2017), 1-20; ArXiv
  • Topological cycle matroids of infinite graphs (J. Carmesin), European J. Combin. 60 (2017), 135–150; PDF
  • Group actions on metric spaces: fixed points and free subgroups (Matthias Hamann), Abh. Math. Semin. Univ. Hambg. 87 (2017), 245-263; PDF
  • The classification of finite and locally finite connected-homogeneous digraphs (Matthias Hamann), Combinatorica 37 (2017), 183-222; PDF
  • Refining a tree-decomposition which distinguishes tangles (J. Erde), SIAM Journal on Discrete Mathematics 31 (2017), 1529–1551; ArXiv
  • Algebraic flow theory of infinite graphs (Babak Miraftab and Mohamadjavad Moghadamzadeh), Europ. J. Combinatorics 62 (2017), 58-69.; PDF
  • A Liouville hyperbolic souvlaki (Johannes Carmesin, Bruno Frederici and Agelos Georgakopoulos), Electron. J. Probab. 22 (2017), paper no. 36, 19 pages; PDF
  • Packing countably many branchings with prescribed root-sets in infinite digraphs (A. Joó), Journal of Graph Theory, Volume 87, Number 1, Pages 96-107, 2017; PDF
  • Highly connected infinite digraphs without edge-disjoint back and forth paths between a certain vertex pair (A. Joó), Journal of Graph Theory, Volume 85, Number 1, Pages 51-55, 2017; PDF
  • Decomposing edge-coloured complete symmetric digraphs into monochromatic paths (C. Bürger, M. Pitz), manuscript 2017; ArXiv
  • Excluding a full grid minor (K. Heuer), Abhandlungen Math. Sem. Univ. Hamburg 87 (2017), Special volume in memory of Rudolf Halin, 265-274; PDF

2016:

  • Canonical tree-decompositions of finite graphs I. Existence and algorithms (J. Carmesin, R. Diestel, M. Hamann and F. Hundertmark), JCTB 116 (2016), 1–24; PDF
  • Canonical tree-decompositions of finite graphs II. Essential parts (J. Carmesin, R. Diestel, M. Hamann and F. Hundertmark), JCTB 118 (2016), 268–283; PDF
  • A short proof that every finite graph has a tree-decomposition displaying its tangles (J. Carmesin), European J. Combin. 58 (2016), 61–65; PDF
  • Extending cycles locally to Hamilton cycles (M. Hamann, F. Lehner, J. Pott), Electron. J. Combin. 23 (2016), #P1.49; PDF
  • A sufficient local degree condition for the hamiltonicity of locally finite claw-free graphs (K. Heuer), Europ. J. Comb. 55 (2016), 82-99; PDF
  • A simple existence criterion for normal spanning trees in infinite graphs (R. Diestel), Electronic J. Comb. 23 (2016), #P2.33; PDF
  • The structure of 2-separations of infinite matroids (E. Aigner-Horev, R. Diestel and L. Postle), JCTB 116 (2016), 25–56; PDF
  • Self-dual uniform matroids on infinite sets (N. Bowler and St. Geschke), Proceedings of the American Mathematical Society 144 (2016), 459-471; PDF
  • Spanning trees in hyperbolic graphs (Matthias Hamann), Combinatorica 36 (2016), 313–332; PDF
  • Bounding connected tree-width (M. Hamann & D. Weißauer), SIAM Journal on Discrete Mathematics 30 (2016), 1391-1400; PDF
  • Edmonds' branching theorem in digraphs without forward-infinite paths (A. Joó), Journal of Graph Theory 83 (3) (2016), 303-311; PDF
  • Inverse Limits and Topologies of Infinite Graphs (B. Miraftab); ArXiv
  • Tangles and the Mona Lisa (R. Diestel & G. Whittle); ArXiv

2015:

  • Edge-disjoint double rays in infinite graphs: a Halin type result (N. Bowler, J. Carmesin, J. Pott), JCTB 111 (2015), 1-16; ArXiv
  • Forcing finite minors in sparse infinite graphs by large-degree assumptions (R. Diestel), Electronic J. Combinatorics 22 (2015), #P1.43; PDF
  • A sufficient condition for Hamiltonicity in locally finite graphs (K. Heuer), Europ. J. Combinatorics 45 (2015), 97-114; PDF
  • Contractible edges in 2-connected locally finite graphs (Tsz Lung Chan), Electronic J. Comb 22 (2015) #P2.47; PDF
  • Thin sums matroids and duality (H. Afzali and N. Bowler), Adv. Math 271 (2015), 1-29; PDF
  • Matroid intersection, base packing and base covering for infinite matroids (N. Bowler and J. Carmesin), Combinatorica 35 (2015), 153–180; PDF
  • Infinite gammoids (H. Afzali, Hiu-Fai Law and M. Müller), Electronic J. Comb. 22 (2015), #P1.53; PDF
  • Forcing finite minors in sparse infinite graphs by large-degree assumptions (R. Diestel), Electron. J. Combin. 22 (2015), #P1.43; PDF

2014:

  • Infinite trees of matroids (N. Bowler and J. Carmesin); ArXiv
  • k-Blocks: a connectivity invariant for graphs (J. Carmesin, R. Diestel, M. Hamann and F. Hundertmark), SIDMA 28 (2014), 1876-1891; PDF
  • Connectivity and tree-structure in finite graphs (J. Carmesin, R. Diestel, F. Hundertmark and M. Stein), Combinatorica 34 (2014), 1–35; PDF
  • Orthogonality and minimality in the homology of locally finite graphs (R. Diestel and J. Pott), Electronic J. Comb. 21 (2014), #P3.36; PDF
  • On graph-like continua of finite length (A. Georgakopoulos), Topol. Appl. (2014), 188-208; PDF
  • Matroids with an infinite circuit-cocircuit intersection (N. Bowler and J. Carmesin), Journal of Combinatorial Theory Series B 107 (2014), 78-91; PDF
  • Even an infinite bureaucracy eventually makes a decision (J. Carmesin), preprint 2014; ArXiv
  • Matroid and Tutte-connectivity in infinite graphs (H. Bruhn), Electronic J. Comb. 21 (2014), #P2.14; PDF

2013:

  • The classification of connected-homogeneous digraphs with more than one end (Matthias Hamann & Fabian Hundertmark), Transactions AMS 365 (2013), 531-553; PDF
  • Homogeneous 2-partite digraphs (Matthias Hamann), Discrete Math 327 (2013), 36-39; PDF
  • Axioms for infinite matroids (H. Bruhn, R. Diestel, M. Kriesell, R. Pendavingh and P. Wollan), Adv. Math 239 (2013), 18-46; PDF
  • The ubiquity of Psi-matroids (N. Bowler and J. Carmesin); ArXiv
  • Infinite matroids and determinacy of games (N. Bowler and J. Carmesin); ArXiv
  • Classes of locally finite ubiquitous graphs (Th. Andreae), JCTB 103 (2013), 274-290; PDF

2012:

  • Transitivity conditions in infinite graphs (Matthias Hamann & Julian Pott), Combinatorica 32 (2012), 649-688; PDF
  • End-transitive graphs (Matthias Hamann), Israel Journal of Mathematics 189 (2012), 437-459; PDF
  • Generating the cycles space of planar graphs (Matthias Hamann), Electonic J. Combinatorics 22 (2012), #P2.34; PDF
  • On the excluded minor structure theorem for graphs of large tree-width (Reinhard Diestel, Ken-ichi Kawarabayashi, Theo Müller and Paul Wollan), J. Combin. Theory (Series B) 102 (2012), 1189-1210; PDF
  • Cycle decompositions: from graphs to continua (A. Georgakopoulos), Advances Math. 229 (2012), 935-967; ArXiv
  • The Erdös-Pósa property for clique minors in highly connected graphs (Reinhard Diestel, Ken-ichi Kawarabayashi and Paul Wollan), J. Combin. Theory (Series B) 102 (2012), 454-469; PDF
  • Finite connectivity in infinite matroids (H. Bruhn and P. Wollan), Europ. J. Comb 33 (2012), 1900-1912; PDF
  • A characterization of the locally finite networks admitting non-constant harmonic functions of finite energy (Johannes Carmesin), Potential Analysis 37 (2012), 229-245; PDF
  • On fixing boundary points of transitive hyperbolic graphs (Agelos Georgakopoulos & Matthias Hamann), Arch. Math. (Basel) 99 (2012), 91-99; PDF

2011:

  • Extremal infinite graph theory (survey) (M. Stein), Infinite Graph Theory special volume of Discrete Math. 311 (2011), 1472–1496; PDF
  • Bases and closures under infinite sums (H. Bruhn and A. Georgakopoulos), Linear Algebra and its Applications 435 (2011), 2007-2018; PDF
  • Eulerian edge sets in locally finite graphs (E. Berger and H. Bruhn), Combinatorica 31 (2011), 21-38; PDF
  • On the homology of locally compact spaces with ends (R. Diestel and P. Sprüssel), Topology and its Applications 158 (2011), 1626-1639;s PDF
  • The fundamental group of a locally finite graph with ends (R. Diestel and P. Sprüssel), Advances Math. 226 (2011), 2643-2675; abstract/ PDF
  • Graph topologies induced by edge lengths (A. Georgakopoulos), Discrete Math. 311 (special issue 2011), 1523-1542; PDF
  • Locally finite graphs with ends: a topological approach I–III (R. Diestel), Discrete Math 311–312 (2010–11); PDF of parts I–II
  • Linear connectivity forces large complete bipartite minors: An alternative approach (Jan-Oliver Fröhlich and Theo Müller), J. Combin. Theory (Series B), 101 (2011), 502–508; ArXiv
  • Infinite matroids in graphs (H. Bruhn & R. Diestel), in the Infinite Graph Theory special volume of Discrete Math 311 (2011), 1461-1471; PDF
  • The max-flow min-cut theorem for countable networks (Section 8) (R. Aharoni, E. Berger, Agelos Georgakopoulos, A. Perlstein and Philipp Sprüssel), J. Combin. Theory B 101 (2011), 1–17; PDF
  • Twins of rayless graphs (A. Bonato, H. Bruhn, R. Diestel and P. Sprüssel), J. Combin. Theory (Series B) 101 (2011), 60-65; PDF
  • Profiles. An algebraic approach to combinatorial connectivity (Fabian Hundertmark); ArXiv

2010:

  • Ends and vertices of small degree in infinite minimally k-(edge-)connected graphs (M. Stein), SIAM J. Discrete Math. 24 (2010), 1584–1596; PDF
  • The homology of locally finite graphs with ends (R. Diestel and P. Sprüssel), Combinatorica 30 (2010), 681-714; abstract/ journal version/ extended version
  • Uniqueness of electrical currents in a network of finite total resistance (Agelos Georgakopoulos), J. London Math. Soc. 82 (2010), 256–272; PDF
  • Every rayless graph has an unfriendly partition (H. Bruhn, R. Diestel, A. Georgakopoulos and P. Sprüssel), Combinatorica 30 (2010), 521-532; PDF

2009:

  • Infinite Hamilton cycles in squares of locally finite graphs (A. Georgakopoulos), Advances Math., 220 (2009), 670-705; PDF
  • Geodetic topological cycles in locally finite graphs (A. Georgakopoulos and P. Sprüssel), Electronic J. Comb. 16:#R144 (2009); PDF
  • Bicycles and left-right tours in locally finite graphs (H. Bruhn, S. Kosuch and M. Win Myint), Europ. J. Combinatorics 30 (2009), 356-371; PDF
  • Topological circles and Euler tours in locally finite graphs (A. Georgakopoulos), Electronic J. Comb. 16:#R40 (2009); PDF
  • Duality of ends (H. Bruhn & M. Stein), Combinatorics, Probability and Computing 12 (2009), 47-60; PDF

2008:

  • Hamilton cycles in planar locally finite graphs (H. Bruhn and X. Yu), SIAM. J. Discrete Math. 22 (2008), 1381-1392; PDF
  • End spaces of graphs are normal (P. Sprüssel), J. Combin. Theory (Series B) 98 (2008), 798-804; PDF
  • On self-immersions of infinite graphs (Th. Andreae), J. Graph Theory 58 (2008), 275–285; PS.GZ

2007:

  • Forcing highly connected subgraphs in locally finite graphs (M. Stein), J. Graph Theory 54 (2007), 331-349; PDF
  • On end degrees and infinite cycles in locally finite graphs (H. Bruhn and M. Stein), Combinatorica 27 (2007), 269-291; PDF
  • Connected but not path-connected subspaces of infinite graphs (A. Georgakopoulos), Combinatorica 27 No.6 (2007), 683-698; PDF
  • Orientations and partitions of the Rado graph (R. Diestel, I. Leader, A. Scott and St. Thomassé), Trans. Amer. Math. Soc 359 No.5 (2007), 2395-2405; PDF

2006:

  • Arboriticity and tree-packing in locally finite graphs (M. Stein), J. Combin. Theory (Series B) 96 (2006), 302-312; PDF.
  • MacLane's planarity criterion for locally finite graphs (H. Bruhn and M. Stein), J. Combin. Theory (Series B) 96 (2006), 225-239; PDF
  • Duality in infinite graphs (H. Bruhn and R. Diestel), Comb. Probab. Computing 15 (2006), 75-90; abstract/ PDF
  • End spaces and spanning trees (R. Diestel), J. Combin. Theory (Series B) 96 (2006), 846-854; abstract/ DVI/ PDF
  • A Cantor-Bernstein theorem for paths in graphs (R. Diestel and C. Thomassen), Amer. Math. Monthly 113 (2006), 161-166; PDF

2005:

  • Cycle-cocycle partitions and faithful cycle covers for locally finite graphs (H. Bruhn, R. Diestel and M. Stein), J. Graph Theory 50 (2005), 150-161; abstract/ PDF
  • The cycle space of an infinite graph (R. Diestel), Comb. Probab. Computing 14 (2005), 59-79; PDF
  • Reconstructing the number of blocks of an infinite graph (Th. Andreae), Discrete Math. 297 (2005), 144–151; PS.GZ
  • Graph minor hierarchies (R. Diestel and D. Kühn), Discrete Applied Mathematics 145 (2005), 167-182; PDF
  • Dense minors in graphs of large girth (R. Diestel and C. Rempel), Combinatorica 25 (2005), 111-116; PDF
  • Menger's theorem for infinite graphs with ends (Henning Bruhn, Reinhard Diestel and Maya Stein), J. Graph Theory 50 (2005), 199-211; PDF
  • The Erdös-Menger conjecture for source/sink sets with disjoint closures (R. Diestel), J. Comb. Theory (Series B) 93 (2005), 107-114; PDF

2004:

  • On infinite cycles I (R. Diestel and D. Kühn), Combinatorica 24 (2004), 68-89; abstract/ PDF
  • On infinite cycles II (R. Diestel and D. Kühn), Combinatorica 24 (2004), 91-116; abstract/ PDF
  • The cycle space of a 3-connected locally finite graph is generated by its finite and infinite peripheral circuits (H. Bruhn), JCTB 92 (2004), 235-256; PDF
  • Topological paths, cycles and spanning trees in infinite graphs (R. Diestel and D. Kühn), Europ. J. Combinatorics 25 (2004), 835-862; abstract/ PDF
  • A short proof of Halin's grid theorem (R. Diestel), Abh. Math. Sem. Univ. Hamburg 74 (2004), 137-242; PDF

2003:

  • Graph-theoretical versus topological ends of graphs (R. Diestel and D. Kühn), J. Combin. Theory (Series B) 87 (2003), 197-206; abstract/ PDF
  • The countable Erdös-Menger conjecture with ends (R. Diestel), J. Combin. Theory (Series B) 87 (2003), 145-161; PDF
  • On the cofinality of infinite partially ordered sets: factoring a poset into lean essential subsets (R. Diestel and O. Pikhurko), Order 20 (2003), 53--66; PDF
  • On immersions of uncountable graphs (Th. Andreae), JCTB 87 (2003), 130–137; PS.GZ

2002:

  • Two short proofs concerning tree-decompositions (R. Diestel and P. Bellenbaum), Combinatoric, Probability and Computing 11 (2002), 1-7; PDF

2001:

  • Relating subsets of a poset, and a partition theorem for WQOs (R. Diestel), Order 18 (2001), 275--279; PDF
  • Normal spanning trees, Aronszajn trees and excluded minors (R. Diestel & I. Leader), J. London Math. Soc. 63 (2001), 16-32; PDF

2000:

  • An accessibility theorem for infinite graph minors (R. Diestel), J. Graph Theory 35 (2000), 273-277; PDF

1999:

  • Highly connected sets and the excluded grid theorem (R. Diestel, K.Yu. Gorbunov, T.R. Jensen and C. Thomassen), J. Combin. Theory (Series B) 75 (1999), 61-73; DVI
  • A universal planar graph under the minor relation (R. Diestel and D. Kühn), J. Graph Theory 32 (1999), 191-206; PDF
  • Excluding a countable clique (R. Diestel and R. Thomas), J. Combin. Theory (Series B) 76 (1999), 41-67; PDF

Theses:

  • Distinguishing and witnessing dense structures in graphs and abstract separation systems (C. Elbracht), PhD dissertation, Hamburg 2021; PDF
  • Tangles, Trees of Tangles, and Submodularity (M. Teegen), PhD dissertation, Hamburg 2021; PDF
  • Tangles and where to find them (J. Kneip), PhD dissertation, Hamburg 2020; PDF
  • How to build a tree of tangles by local refinements (R. Jacobs), MSc dissertation, Hamburg 2020; PDF
  • Ends and tangles, stars and combs, minors and the Farey graph (J. Kurkofka), PhD dissertation, Hamburg 2020; PDF
  • Fundamental substructures of infinite graphs (C. Bürger), PhD dissertation, Hamburg 2020; PDF
  • Tree-structure in separation systems and infinitary combinatorics (J. Erde), Habilitationsschrift, Hamburg 2019; PDF
  • Eine topologische Erweiterung des Orientierungs-Theorems von Nash-Williams auf lokal endliche Graphen (L. Jannasch), BSc dissertation, Hamburg 2019; PDF
  • The Eulerian problem and further results in the theory of infinite graphs (M. Pitz), Habilitationsschrift, Hamburg 2019; PDF
  • On infinite graphs and infinite groups (B. Miraftab), PhD dissertation, Hamburg 2019; PDF
  • Connectivity and tree structure in infinite graphs (J.P. Gollin), PhD dissertation, Hamburg 2019; PDF
  • On Tangles and Trees (D. Weißauer), PhD dissertation, Hamburg 2018; PDF
  • Connectivity in directed and undirected infinite graphs (K. Heuer), PhD dissertation, Hamburg 2018; PDF
  • On the fundamental group of the Freudenthal compactification of CW complexes (R. Melcher), MSc dissertation, Hamburg 2017; PDF
  • Tangles determined by majority vote (C. Elbracht), MSc dissertation, Hamburg 2017; PDF
  • Abstract tangles as an inverse limit, and a tangle compactification for topological spaces (M. Teegen), MSc dissertation, Hamburg 2017); PDF
  • On the tangle compactification of infinite graphs (J. Kurkofka), MSc dissertation, Hamburg 2017; PDF, ArXiv
  • Embedding simply connected 2-complexes in 3-space..., (J. Carmesin), Habilitationsschrift, Hamburg 2017; PDF
  • Blocks and 2-Blocks of Graph-Like Spaces (H. Heine), MSc dissertation, Hamburg 2017; PDF
  • Embedding simply connected 2-complexes in 3-space, and further results on infinite graphs and matroids (J. Carmesin), Habilitationsschrift, Hamburg 2017; PDF
  • Decomposing edge-coloured infinite graphs into monochromatic paths and cycles (C. Bürger), MSc dissertation, Hamburg 2017; PDF
  • Infinite tree sets and their representations (J. Kneip), MSc dissertation, Hamburg 2016; PDF
  • Investigations in infinite matroid theory (A. Elm), MSc dissertation, Hamburg 2016; PDF
  • Characteristics of profiles (Ph. Eberenz), MSc dissertation, Hamburg 2015; PDF
  • Limit structures and ubiquity in finite and infinite graphs (J. Pott), PhD dissertation, Hamburg 2015; PDF
  • Tree-decomposition in finite and infinite graphs (J. Carmesin), PhD dissertation, Hamburg 2015; PDF
  • Polishing tree-decompositions to bring out the k-blocks (P. Gollin), MSc dissertation, Hamburg 2014; PDF
  • Edge length induces end topologies (T. Rühmann), MSc dissertation, Hamburg 2014; PDF
  • Linkages in Large Graphs and Matroid Union (J.O. Fröhlich), PhD dissertation, Hamburg 2014; PDF
  • The excluded minor structure theorem, and linkages in large graphs of bounded tree-width (T. Müller), PhD dissertation, Hamburg 2014; PDF
  • Connected Tree-width and Infinite Gammoids (M. Müller), PhD dissertation, Hamburg 2014; PDF
  • Linkages in Large Graphs and Matroid Union (H. Afzali), PhD dissertaion, Hamburg 2014; PDF<
  • Representability of infinite matroids and the structure of linkages in digraphs (H. Afzali), PhD dissertaion, Hamburg 2014; PDF
  • Infinite Matroids (N. Bowler), Habilitationsschrift, Hamburg 2014; PDF
  • Connected-homogeneous digraphs (M. Hamann), Habilitationsschrift, Hamburg 2014; PDF
  • Linkages in Large Graphs and Matroid Union (J.O. Fröhlich), PhD dissertation, Hamburg 2014; PDF
  • Connected Tree-width and Infinite Gammoids (M. Müller), PhD dissertation, Hamburg 2014; PDF
  • The excluded minor structure theorem, and linkages in large graphs of bounded tree-width (T. Müller), PhD dissertation, Hamburg 2014; PDF
  • Polishing tree-decompositions to bring out the k-blocks (P. Gollin), MSc dissertation, Hamburg 2014; PDF
  • Two sufficient conditions for hamiltonicity in locally finite graphs (K. Heuer), MSc dissertation, Hamburg 2013; PDF
  • The tree-like connectivity structure of finite graphs and matroids (F. Hundertmark), PhD dissertation, Hamburg 2013; PDF
  • The tree-like connectivity structure of finite graphs and matroids (F. Hundertmark), PhD dissertation, Hamburg 2013; PDF
  • The Planar Cubic Cayley Graphs (A. Georgakopoulos), Habilitationsschrift, Hamburg 2012, PDF
  • Infinite graphs with a tree-like structure, (M. Hamann) PhD dissertation, Hamburg 2011; PDF
  • The line graph of every locally finite 6-edge-connected graph with finitely many ends is hamiltonian, (F. Lehner), MSc dissertation, TU Graz 2011; PDF
  • Die Kirchoffsche Knotenregel gilt nicht bei Randpunkten unendlicher Graphen, (J. Carmesin), BSc dissertation, Hamburg 2010, PDF
  • T. Rühmann, Gruppenwertige Flüsse (T. Rühmann), BSc dissertation, Hamburg 2010, PDF
  • On the homology of infinite graphs with ends (P. Sprüssel) PhD dissertation, Hamburg 2010; PDF
  • Gruppenwertige Flüsse (T. Rühmann), BSc dissertation, Hamburg 2010; PDF
  • Bicycles and left-right tours in locally finite graphs (M. Win Myint), PhD dissertation, Hamburg 2009; PDF
  • Graphs and their circuits: from finite to infinite (H. Bruhn), Habilitationsschrift, Hamburg 2009; PDF
  • Extremal questions in graph theory (M. Stein), Habilitationsschrift, Hamburg 2009; PDF
  • Topological paths and cycles in infinite graphs (A. Georgakopoulos), PhD dissertation, Hamburg 2007; PDF
  • Ends of graphs (M. Stein), PhD dissertation, Hamburg 2005; PDF
  • Der Zyklenraum nicht lokal-endlicher Graphen (M. Schulz), Diplomarbeit, Hamburg 2005; PDF
  • Infinite highly connected planar graphs of large girth (A. Georgakopoulos), Diplomarbeit, Hamburg 2004; PDF
  • Erzwingung von Teilstrukturen in Graphen durch globale Parameter (C. Rempel), PhD dissertation, Hamburg 2001; PDF
  • Cycles, minors and trees (D. Kühn), PhD dissertaion, Hamburg 2001; PDF
  • Schlanke Baumzerlegungen von Graphen (P. Bellenbaum), Diplomarbeit, Hamburg 2000; PDF