
SELF-EMBEDDINGS OF TREES

MATTHIAS HAMANN

Abstract. We prove a fixed point theorem for monoids of self-embeddings of

trees. As a corollary, we obtain a result by Laflamme, Pouzet and Sauer that

a tree either contains a subdivided binary tree as a subtree or has a vertex, an
edge, an end or two ends fixed by all its self-embeddings.

1. Introduction

For a group acting on a graph there is always the following choice: either it fixes
a point or the group contains a free subgroup Z ∗ Z. More precisely the following
statements are true for a group Γ acting on a graph G.

• Every automorphism of G is either elliptic, hyperbolic, or parabolic;
• Γ fixes either a bounded subset of G or a unique limit point of Γ in its end space,
or G has precisely two limit points of Γ, or Γ contains two hyperbolic elements
that freely generate a free subgroup.

• there are either none, one, two or infinitely many limit points of Γ;
• there are either none, two or infinitely many hyperbolic limit points of Γ;
• if the limit set of Γ contains more than a single point, the hyperbolic limit set
of Γ is dense in the limit set of Γ;

• if the limit set of Γ is infinite, then it is a perfect set.

We refer to [4, 5, 6, 9, 10, 12, 13] for all these theorems.
All these results carry over almost verbatim to monoids of self-embeddings of

trees and in this paper, we will prove these analogues. As a corollary of our results,
we obtain a result by Laflamme et al. [7] that a tree either contains a subdivided
binary tree or has a vertex, an edge, or a set of at most two ends fixed by all
self-embeddings.

Laflamme et al. used their result to varify the tree alternative conjecture of
Bonato and Tardif [1] in various situations. We will discuss the connection of our
results with that conjecture in Section 5.2. We will also give an outlook on the
possible generalisation of the present results to general graphs in Section 5.1.

2. Main results

Let T be a tree. A self-embedding is an injective map of V (T ) into itself that
preserves the adjacency relation.

A ray is a one-way infinite path in T and two rays are equivalent if they have
for every v ∈ V (T ) tails, i. e. subrays, in the same component of T − v. This is
an equivalence relation whose classes are the ends of T . By Ω(T ) we denote the
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set of ends of T . If C ⊆ V (T ) induces a subtree of T , we denote by Ω(T,C) the
subset of Ω(T ) that consists of those ends that contain rays in C. A double ray is
a two-way infinite path.

Note that each self-embedding of T maps rays to rays and equivalent rays to
equivalent rays. Thus, it induces a map from Ω(T ) into itself.

By Emb(T) we denote the monoid of all self-embeddings of T . We call a self-
embedding g ∈ Emb(T)

• elliptic if it fixes a non-empty finite subtree of T ;
• hyperbolic if it is not elliptic and if it fixes precisely two ends;
• parabolic if it is not elliptic and if it fixes precisely one end.

Note that Halin [4, Lemma 2] proved that any automorphism of a finite tree fixes
either a vertex or an edge. It follows that a self-embedding is elliptic if and only if
it fixes either a vertex or an edge.

Let us discuss two examples of trees and their types of self-embeddings.

Example 2.1. (1) Let R be a ray. Every self-embedding of R must map it onto
one of its tails. Thus, they always fix the unique end of R. Since the identity
is the only self-embedding that fixes a non-empty finite subtree, Emb(R) has
a single elliptic element (the identity) and all other elements are parabolic. In
particular, it has no hyperbolic element.

(2) Let T be a tree with V (T ) = {xi | i ∈ Z} and E(T ) = {xixi+1 | i ∈ Z}. So T
is a double ray. It is easy to see that T has two ends: one contains the rays
xixi+1 . . . and the other contains the rays . . . xi−1xi. Any self-embedding of T
is an automorphism of T and is either a translation, i. e. a map that maps, for
some i ∈ Z, every xj to xj+i and that fixes both ends, or a reflection, i. e. a
map that maps a ray xixi+1 . . . to a ray xjxj−1 . . . and thus interchanges the
two ends of T . It is straight-forward to show that reflections fix either a vertex
or an edge and hence are elliptic as is the identity. All translations other than
the identity are hyperbolic. In particular, T has no parabolic self-embedding.

The fact that in the Example 2.1 all self-embeddings belonged to one of the
three types is no coincidence, as we shall see in Corollary 2.3. It follows from the
following theorem on self-embeddings by Halin.

Theorem 2.2. [4, Theorem 5] Let g be a self-embedding of a tree T . Then either g
fixes a vertex or an edge or there is a ray R with g(R) ⊊ R. This ray can be extended
to either a g-invariant double ray or a maximal ray R′ with g(R′) ⊊ R′. □

Note that any g ∈ Emb(T) that is not elliptic fixes at least one end due to
Halin’s theorem, namely that end that contains the ray R of Theorem 2.2. If R
can be extended to a g-invariant double ray R′, then both ends defined by R′ are
g-invariant. Furthermore, no other end ω can be fixed, since the unique ray with
precisely one vertex on R′ that lies in ω will be mapped to a disjoint ray. Since
disjoint rays lie in distinct ends of a tree, g is hyperbolic. A similar argument in
the case that R′ is a ray shows that g is parabolic. Thus, we obtain as a corollary
of Theorem 2.2 the following.

Corollary 2.3. Every self-embedding of a tree is either elliptic, hyperbolic, or
parabolic. □
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Note that for any non-elliptic self-embedding g all rays that are preserved by g
are equivalent, since otherwise the double ray between the two ends these non-
equivalent rays lie in had non-equivalent tails R1 and R2 with g(R1) ⊊ R1 and
g(R2) ⊊ R2, which is impossible. We call this end the direction g+ of g. If g is
hyperbolic, we denote by g− the unique g-invariant end other than g+.

Since we also talk about convergence to ends, we need a topology on trees with
their ends. For this we consider trees T as 1-complexes and define a base for the

topology of T̂ := T ∪ Ω(T ). The open sets of the 1-complex are also open in T̂ .
Additionally, for ends ω, the sets C∪Ω(T,C) are open if C is a component of T −x
for some vertex x such that ω ∈ Ω(T,C). These sets form a base of a topology

on T̂ .1 For x ∈ V (T ) and ω ∈ Ω(T ), we denote by C(T − x, ω) that component of
T − x that contains ω, that is, that component of T − x that contains a sequence
of vertices converging to ω.

Trees with their ends are projective: whenever (xi)i∈N and (yi)i∈N are sequences
such that the distances d(xi, yi) are bounded, then (xi)i∈N converges to an end ω
if and only if (yi)i∈N converges to ω, see [5, 13]. It follows that for any v ∈ V (T )
and any non-elliptic self-embedding, the sequence (gi(v))i∈N converges to g+.

The following lemma gives a condition under which a self-embedding is non-
elliptic.

Lemma 2.4. Let g be a self-embedding of a tree T . If there is an edge xy such that
y and g(x) separate x and g(y), then g is non-elliptic and xy lies on the maximal
(double) ray of T that is preserved by g.

Proof. If g is elliptic, then it fixes a subtree T ′ on either one or two vertices.
Since d(x, T ′) = d(g(x), T ′) and d(y, T ′) = d(g(y), T ′), we conclude that T ′ lies
in that component of T − {x, g(x)} that contains y and also in that component
of T − {y, g(y)} that contains g(x). But then we have d(y, T ′) < d(x, T ′) and
d(g(x), T ′) < d(g(y), T ′). This is a contradiction as self-embeddings preserve the
distance function.

So g is not elliptic and hence preserves a maximal (double) ray R by Theorem 2.2.
If xy lies not on R, then if d(x,R) < d(y,R), then also d(g(x), R) < d(g(y), R),
which is a contradiction to the assumption that y and g(x) separate x and g(y).
Similarly, we obtain a contradiction if d(x,R) > d(y,R). Thus, xy lies on R. □

Let M be a submonoid of Emb(T). The limit set L(M) of M is the set of
accumulation points of {g(v) | g ∈ M} in Ω(T ) for any v ∈ V (T ). Note that L(M)
is independent from the choice of v by projectivity. By D(M) we denote the set of
all directions of non-elliptic elements in M .

Theorem 2.5. Let T be a tree and M a submonoid of Emb(T).

(i) If |L(M)| ≥ 2, then D(M) is dense in L(M).
(ii) The set L(M) has either none, one, two, or infinitely many elements.
(iii) The set D(M) has either none, one, two, or infinitely many elements.

Proof. To prove (i), let ω ∈ L(M) and v ∈ V (T ). Then there is a sequence
(gi)i∈N in M such that (gi(v))i∈N converges to ω. If there are infinitely many non-
elliptic among the gi, then we may assume that all gi are non-elliptic. For i ∈ N,

1For a general approach to locally finite graphs with their ends seen as topological spaces, we
refer to Diestel [3, 2].
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let Ri be the unique maximal (double) ray of T that is preserved by gi, which
exists by Theorem 2.2. Then we have d(v,Ri) ≥ d(gi(v), Ri). Let u ∈ V (T ). If
infinitely many Ri have a tail in g+i that lies in C(T −u, ω), we conclude that their
directions g+i converge to ω. Let us suppose that only finitely many Ri have a tail
in C(T − u, ω). Since (gi(v))i∈N converges to ω, there are infinitely many i ∈ N
with d(gi(v), u) > d(u, v). For all of those we conclude

d(v,Ri) ≤ d(v, u) + d(u,Ri)
< d(gi(v), u) + d(u,Ri)
= d(gi(v), Ri).

This contradiction to d(v,Ri) ≥ d(gi(v), Ri) shows that ω lies in the closure of
D(M) if infinitely many gi are non-elliptic.

By considering an infinite subsequence of (gi)i∈N, we may assume that all gi are
elliptic. Similarly, let ω′ ∈ L(M) with ω′ ̸= ω and let (hi)i∈N be a sequence in M
such that (hi(v))i∈N converges to ω′. Let x ∈ V (T ) lie on the unique double ray
between ω and ω′ and let x′ be the neighbour of x that separates x from ω′.

If infinitely many hi are elliptic, we may assume, by looking at a subsequence,
that all of them are elliptic. Also by taking subsequences, we may assume that all
gi(x) lie in C(T − x, ω) and all hi(x) and higi(x) lie in C(T − x, ω′). We consider
the sequence (gihi)i∈N. Then x, gi(x), and gihi(x) separate x′ from gihi(x

′). By
Lemma 2.4, we obtain that gihi is not elliptic. We claim that (gihi(v))i∈N converges
to ω. To see this, let y ∈ V (T ). Then there is some n ∈ N such that for all i ≥ n
we have that gi(x) lies in C(T − y, ω). But as gi(x) separates x and gihi(x), also
gihi(x) lies in C(T − y, ω). Thus, (gihi(x))i∈N converges to ω.

So at most finitely many hi are elliptic. Again, we consider a subsequences
such that all hi are not elliptic and such that all gi(x) lie in C(T − x, ω) and all
hi(x) and higi(x) lie in C(T − x, ω′). Let Ri be the maximal (double) ray that is
preserved by hi First assume that gi(x

′) lies on Ri. As x, x′ separate gi(x
′) from

higi(x
′), we conclude that x and x′ lie on Ri as well and we have that higi(x

′) and
x′ separate higi(x) from x. We consider gihigi is this situation. Since gihigi(x

′)
and gi(x

′) separate gihigi(x) from gi(x), we conclude that fi := gihigi is not elliptic
by Lemma 2.4.

If gi(x
′) does not lie on Ri, but x lies on Ri, set fi := gihi. Then x′ and higi(x)

separate higi(x
′) from x. So gi(x

′) and gihigi(x) separate gi(x) from gihigi(x
′).

We conclude by Lemma 2.4 that fi is not elliptic.
If neither gi(x

′) nor x lie on Ri, set fi := gihi. Lemma 2.4 implies that there is
some double ray in T that contains hi(x), hi(x

′), x′, x, gi(x), gi(x
′), gihi(x

′), gihi(x)
in this particular order. This implies that fi is not elliptic.

So we obtain in all three cases that fi is not elliptic and that gi(x) separates x
from fi(x). If we prove that fi(x) converges to ω, we may replace (gi)i∈N by (fi)i∈N
and are done by our first case, where all gi were non-elliptic.

To prove that fi(x) converges to ω, let x1, x2, . . . be the ray that starts at x and
lies in ω. It suffices to show that C := C(T − xi, ω) contains all but finitely many
fi(x). But this is a direct consequence of the facts that C contains all but finitely
many gi(x) and that gi(x) separates x from fi(x) in all cases. Thus, the first case
proves (i).

To prove (ii), let us assume |L(M)| ≥ 3. Let f, g ∈ M be non-elliptic and such
that f+ is not fixed by g. These exist as every non-elliptic self-embedding fixes
at most two ends. Then all gi(f+) are distinct ends and all of them are distinct
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from g+ and g−. Then gjf i(v) → gj(f+). So all gj(f+) lie in L(M) and hence
L(M) contains infinitely many ends.

Finally, (iii) is a direct consequence of (i) and (ii). □

In the case of automorphisms2, the situation |L(M)| ≥ 2 implies the existence
of hyperbolic automorphisms, cp. [5, 13]. For self-embeddings this is no longer the
case, as we shall illustrate with the following example. But if we add the extra
assumption that some end of T is fixed by M , we obtain the existence of some
hyperbolic element of M in Proposition 2.8.

Example 2.6. Let T0 be the rooted binary tree, i. e. the tree where one vertex
has degree 2 and all others have degree 3. We add a new finite non-trivial path P
to T0 that stars at the vertex of degree 2 and obtain a tree T . We claim that the
monoid M of all self-embeddings of T contains no hyperbolic element. Seeking a
contradiction, let us suppose that f ∈ M is hyperbolic. Let R be the f -invariant
double ray. Then at all vertices x but one of R, say u, there is a binary tree with
root x that is otherwise disjoint from R. But as some vertex of R is mapped onto u,
also its binary tree must be mapped onto the tree hanging of R at u. But this is
impossible as the tree hanging off at u is a proper subtree of the rooted binary tree,
which has a vertex of degree 1. This shows that M has no hyperbolic element.

We note that for a hyperbolic g ∈ M it can happen that g− does not lie in L(M).
To see this, we modify Example 2.6 a bit.

Example 2.7. Let T0 be the rooted binary tree, i. e. the tree where one vertex has
degree 2 and all others have degree 3. We add a new ray R to T0 that starts at the
vertex of degree 2 and obtain a tree T . A similar argumentation as in Example 2.6
shows that all hyperbolic elements g of M fix the end ω that contains R and that
ω = g−. Note that there are hyperbolic elements in this situation.

Proposition 2.8. Let T be a tree and M a submonoid of Emb(T).

(i) If |L(M)| ≥ 2 and some end is fixed by M , then M contains a hyperbolic
self-embedding.

(ii) If |L(M)| = 2, then all non-elliptic elements of M are hyperbolic.

Proof. Let |L(M)| ≥ 2, and let η ∈ L(M) be fixed by M . Since D(M) is dense in
L(M) by Theorem 2.5 (i), we find some µ ∈ D(M) with µ ̸= η. Let g ∈ M with
g+ = µ. As g fixes η, it must leave the double ray between η and µ invariant. Thus,
g is hyperbolic.

Similarly, if |L(M)| = 2, then all non-elliptic self-embeddings in M must leave
the double ray between the two limit points invariant. Thus, they are hyperbolic
self-embeddings. □

Now we are able to prove our fixed point theorem for self-embeddings.

Theorem 2.9. Let T be a tree and M a submonoid of Emb(T). Then one of the
following holds.

(i) M fixes either a vertex or an edge of T ;
(ii) M fixes a unique element of L(M);
(iii) L(M) consists of precisely two elements;

2We refer to [5, 13] for the corresponding definitions in case of automorphisms instead of
self-embeddings.
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(iv) M contains two non-elliptic elements that do not fix the direction of the other.

Proof. Let us assume that neither a vertex nor an edge is fixed by M and that no
subset of L(M) of size at most 2 is fixed by M . In particular, L(M) and D(M)
are infinite by Theorem 2.5 and we find two non-elliptic self-embeddings in M with
distinct directions.

Let us suppose that (iv) does not hold. First, we show that there is a unique
η ∈ L(M) fixed by all non-elliptic self-embeddings in M . If M contains some
parabolic self-embedding g, then its direction must be fixed by all non-elliptic self-
embeddings since (iv) does not hold. As g fixes no other end, its direction is the
unique element of L(M) fixed by all non-elliptic self-embeddings.

If all non-elliptic elements ofM are hyperbolic, let f, g, h ∈ M such that g+, h+ /∈
{f+, f−} and g+ ̸= h+. These exist as D(M) is infinite. As (iv) does not hold, we
know that g and h fix f+ and hence h− = f+ = g−. But then g and h satisfy (iv)
as g fixes only g+ and f+ and h fixes only h+ and f+. This contradiction shows
that there is a unique η ∈ L(M) fixed by all non-elliptic self-embeddings.

Since D(M) is infinite, there are distinct directions µ, ν ∈ D(M) ∖ {η}. Let
f, g ∈ M be not elliptic such that the directions of f and g are µ and ν, respectively.
Since f fixes µ and η, it fixes not other end, in particular it does not fix ν. Similarly,
g does not fix µ. This contradiction to the assumption that (iv) does not hold shows
the assertion. □

We shall see in Theorem 3.2 that we may pick the non-elliptic elements in The-
orem 2.9 (iv) so that they generate a free submonoid of M freely.

3. Infinitely many directions

In this section, we take a closer look at Theorem 2.9 (iv). But before we do that,
we prove that self-embeddings that are not elliptic converge uniformly towards their
direction.

Lemma 3.1. Let T be a tree and g ∈ Emb(T) be not elliptic. Let U be a neighbour-
hood of g+ and, if g is hyperbolic, let V be a neighbourhood of g−. Then there exists
N ∈ N such that gn(T ) ⊆ U for all n ≥ N if g is parabolic and gn(T − V ) ⊆ U for
all n ≥ N if g is hyperbolic.

Proof. As U is a neighbourhood of g+, there is some vertex x on the maximal
(double) ray Rg with g(Rg) ⊆ Rg such that the component U ′ of T − x that
contains g+ lies in U . Similarly, if g is hyperbolic, there is a vertex y on Rg such
that the component V ′ of T −x that contain g− lies in V . If g is parabolic, let y be
the first vertex of the ray Rg and let V := ∅. As g is either hyperbolic or parabolic,
there is some N ∈ N such that gN (y) ∈ U ′. Then gn(y) ∈ U ′ for all n ≥ N . Let y′

be the neighbour of y on Rg such that y separates y′ and g+ and let v ∈ V (T ) be
any vertex outside of V ′. Then gn(v) lies in a component of T − gn(y) that does
not contain y′. Hence, we have gn(v) ∈ U ′ ⊆ U . □

Now we can investigate the situation of Theorem 2.9 (iv) in more detail.

Theorem 3.2. Let T be a tree and M a submonoid of Emb(T). If M contains
two non-elliptic g, h such that neither g fixes h+ nor h fixes g+, then there are
m,n ∈ N such that gm and hn generate a free submonoid of M freely. Furthermore,
T contains a subdivided 3-regular tree.
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Proof. Let Rg, Rh be the maximal (double) rays with g(Rg) ⊆ Rg and h(Rh) ⊆ Rh,
respectively. Let x ∈ Rg such that d(x,Rh) is minimum and, if x ∈ Rh, such that
the subray of Rh in h+ starting at x intersects Rg only in x. Let Ug, Uh be connected
neighbourhoods of g+ and of h+, respectively, such that Ug ∩ (Uh ∪ Rh) = ∅ and
Uh ∩ (Ug ∪ Rg) = ∅, such that x /∈ Ug ∪ Uh, and such that T − Ug and T − Uh

are connected, too. In particular, Ug does not contain h− and Uh does not contain
g− (if they exist), and they also avoid some neighbourhood around those ends. By
Lemma 3.1, there are m,n ∈ N such that gm({x}∪Uh) ∈ Ug and hn({x}∪Ug) ∈ Uh.
As Ug is connected and contains g+, we have gm(Ug) ⊆ Ug and, analogously,
hn(Uh) ⊆ Uh. We claim that a := gm and b := hn freely generate a free monoid.

Suppose they do not generate a free monoid freely. Then there are two distinct
words w1, w2 over {a, b} that represent the same self-embedding of T . We choose
them such that the length of w1 is minimum. Since a(Ug∪Uh) ⊆ Ug and b(Ug∪Uh) ⊆
Uh we conclude first that wi(Ug ∪ Uh) ⊆ Ug ∪ Uh for i = 1, 2 and second that the
first letters of w1 and w2 must coincide, that is, w1 = cw′

1 and w2 = cw′
2 for some

c ∈ {a, b} and words w′
1, w

′
2 over {a, b}. The choice of w1 being minimum implies

that w1 = w2 as words. This contradiction to the assumptions shows that a and b
freely generate a free monoid M ′.

Let us now construct a subtree of T that is a subdivision of the 3-regular tree.
Let u ∈ Rg ∩ Ug be closest to x and let v ∈ Rh ∩ Uh be closest to x. Let P be
the u-v path. Let Ta be the minimal subtree of T that contains u, a(u), a(v) and
let Tb be the minimal subtree of T that contains v, b(u), b(v). Then Ta and Tb are
subdivisions of K1,3. Set

T ′ := P ∪
⋃

w∈M ′

w(Ta) ∪
⋃

w∈M ′

w(Tb).

It is straight forward to check that T ′ is a subdivision of a 3-regular tree. □

As a corollary of Theorems 2.9 and 3.2, we obtain the following, which is a
theorem by Laflamme, Pouzet and Sauer [7].

Corollary 3.3. [7, Theorem 1.1] Let T be a tree that contains no subdivision of
the 3-regular tree. Then Emb(T) fixes either a vertex, an edge, or a set of at most
two ends of T . □

Let us discuss an example of a tree that satisfies Theorem 2.9 (iv).

Example 3.4. Let T be the rooted binary tree with root r. By Example 2.6, there
are no hyperbolic self-embeddings of T . Let g1, g2 be two self-embeddings of T
that map r onto distinct neighbours of r. For i = 1, 2, the set {gji (r)} defines a
ray Ri that lies in an end ωi that is fixed by gi. By Theorem 3.2, some powers of
the self-embeddings g1 and g2 generate a free submonoid of Emb(T) freely and T
contains a subdivided 3-regular tree. In fact, T itself is a subdivision of a 3-regular:
just subdivide an arbitrary edge; the new vertex is the root.

Our last result of this section deals with the topology on the set of directions.

Theorem 3.5. Let T be a tree and M a submonoid of Emb(T). If L(M) is infinite,
then it is perfect.

Proof. We have to show that L(M) contains no isolated points. Let us suppose that
η ∈ L(M) is isolated. As D(M) is dense in L(M) by Theorem 2.5 (i), we conclude
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that η lies in D(M). So there is some non-elliptic g ∈ M with g+ = η. As g fixes at
most two ends but D(M) is infinite by Theorem 2.5, there is some µ ∈ D(M) that
is not fixed by g. Then the sequence (gn(µ))n∈N converges to η. Note that every
gn(µ) lies in D(M): if hi(x) → µ for i → ∞, we have ghi(x) → g(µ) for i → ∞.
This contradicts our assumption. □

4. Fixing an end

A self-embedding g of T preserves an end ω forwards if g(R) ⊆ R for some ray
R ∈ ω and it preserves ω backwards if R ⊆ g(R). Note that any non-elliptic self-
embedding f preserves f+ forwards and if f is hyperbolic it additionally preserves
f− backwards. We say that M preserves ω forwards if every g ∈ M preserves ω
forwards and M preserves ω backwards if every g ∈ M preserves ω backwards.

Proposition 4.1. Let T be a tree and M a submonoid of Emb(T). If M preserves
some end of T backwards, then all non-elliptic elements of M are hyperbolic.

Proof. Let ω be an end that is preserved backwards and let g ∈ M be not elliptic.
Since g preserves ω backwards, we have g+ ̸= ω. Since g fixes g+ and ω, it is
hyperbolic. □

Answering a question of Pouzet [11] we construct a graph that has precisely
one fixed end, which is preserved backwards by all self-embeddings. We note that
Lehner [8] also constructed an example different from ours. Lehner’s example is
reproduced in [7, Example 6].

Example 4.2. Let T be the rooted binary tree and let x be its root. To obtain T ′,
we add a new ray R to T and join its first vertex with x. To all vertices that have
distance 1 modulo 3 to x we add 4 new neighbours and to all vertices of distance 2
modulo 3 to x we add 8 new neighbours. Let T ′′ be the resulting tree and let ω be
the end of T ′′ that contains R. It is straight forward to check that degree reasons
imply that every self-embedding fixes ω and that no self-embedding preserves ω
forwards but not backwards.

5. Outlook

In this section, we discuss open problems related to our main theorems. Whereas
the first one is a generalisation of the main theorems to graphs, the second one deals
with an application to the tree alternative conjecture.

5.1. Generalisation to graphs. Our investigations in this paper were focused on
a special class of graphs: on trees. Obviously, the following problem arises.

Problem 1. Generalise our main theorems to self-embeddings of graphs.

When one looks at this problem, one naturally brings up the question about the
behaviour of the ends: the self-embeddings are injective maps on the vertex sets,
but shall that extends to the ends as well? A priori, this does not seem clear. Let
us give a short example to show that ends of graphs may collapse if we do not make
further restriction on the self-embeddings.

Example 5.1. Let G be a complete graph with countably infinitely many vertices.
Let x ∈ V (G). We attach a new ray at x to obtain a new graph H. Then H has
two ends. However, there is a self-embedding g of H that maps G into a proper
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subgraph of G leaving infinitely many vertices of infinite degree outside of g(G) and
mapping the attached ray into G∖ g(G). Both ends of H are mapped by g to the
same end of H, the one originating from G.3

Because of this possible collapse of ends under self-embeddings, we may distin-
guish two cases for arbitrary graphs. We call a self-embedding of a graph strong
if it extends to an injective map on the ends and weak otherwise. So Problem 1
asks for a generalisation to weak self-embeddings of graphs. However, a main step
might be to consider the following subproblem.

Problem 2. Generalise our main theorems to strong self-embeddings of graphs.

5.2. Tree alternative conjecture. Let G and H be non-isomorphic graphs. We
call H a twin of G if there are embeddings G → H and H → G, i. e. injective maps
V (G) → V (H) and V (H) → V (G) that preserve the adjacency relation. Bonato
and Tardif [1] made the following conjecture.

Tree Alternative Conjecture. A tree has either none or infinitely many iso-
morphism classes of twins.

As, for twins G,H, the embeddings G → H and H → G can be composed to a
self-embedding G → G, there is a natural connection to the self-embeddings of G
and Bonato and Tardif [1] suggested that the structure of the monoid of self-em-
beddings may help solving their conjecture. Indeed, Laflamme et al. [7] used this
monoid to verify the conjecture for large classes of trees. In order to state their
result, we need some definitions.

Let R = x0x1 . . . be a ray in a tree T . Let Ti be the maximal subtree of T that
is rooted at xi and edge-disjoint from R. Let T := {Ti | i ∈ I} be a maximal
set of these trees such that for no pair Ti, Tj with i ̸= j we have embeddings
(Ti, xi) → (Tj , xj) and (Tj , xj) → (Ti, xi). If T is finite we call R regular. An end
is regular if it contains a regular ray. It is easy to see that every ray in a regular
end is regular.

A tree T is stable if one of the following holds.

(i) There is a vertex or an edge fixed by Emb(T);
(ii) two ends of T are fixed by Emb(T);
(iii) T has an end that is preserved forwards and backwards by every self-embed-

ding of T ;
(iv) T has a ray R with g(R) ⊆ R for all g ∈ Emb(T);
(v) T has a non-regular end preserved forwards by every self-embedding of T .

Theorem 5.2. [7, Theorem 1.9] The tree alternative conjecture holds for stable
trees. □

With the help of our analysis of the monoid of self-embeddings of trees, we are
able to give a precise description of the open cases of the tree alternative conjecture.

Corollary 5.3. The tree alternative conjecture holds for all trees T whose monoid
M of self-embeddings does not satisfy the following properties.

(1) There is a regular end ω of T fixed by M and all elements of M preserve ω
forwards.

3If we also require the self-embeddings to preserve non-adjacency we can modify the example
by subdividing every edge of the complete graph once. Then the self-embedding of Example 5.1 in-

duces a self-embedding of the new graph that preserves not only adjacency but also non-adjacency.



10 MATTHIAS HAMANN

(2) There is a free submonoid of M generated freely by two non-elliptic elements.

Proof. Let T be a tree and M be the monoid of its self-embeddings. By Theo-
rem 2.9, one of the following holds.

(i) M fixes either a vertex or an edge of T ;
(ii) M fixes a unique element of L(M);
(iii) L(M) consists of precisely two elements;
(iv) M contains two non-elliptic elements that do not fix the direction of the other.

While in cases (i) and (iii) Theorem 5.2 directly implies that the tree alternative
conjecture holds, case (iv) together with Theorem 3.2 implies (2). So the only case
that remains is if M fixes a unique element ω of L(M).

We continue by analysing D(M). If D(M) is empty, then we only have elliptic
elements in M . Let f ∈ M . As f is elliptic and fixes ω, it fixes a vertex and hence
the ray in ω starting at this vertex. So all elements of M preserve ω forwards and
backwards. By Theorem 5.2, the tree alternative conjecture holds for T .

If ω is the only direction, then all elements of M preserve ω forwards. If ω is
regular, then we have (1) and, if ω is not regular, then T is stable and the tree
alternative conjecture holds by Theorem 5.2.

If there are at least two directions distinct from ω, then Theorem 3.2 implies (2).
It remains to consider the case that there exists precisely one direction g+ distinct

from ω. Since |D(M)| = 2 and D(M) is dense in L(M) by Theorem 2.5 (i), we have
|L(M)| = 2. So we are in case (iii) and the tree alternative conjecture holds by
Theorem 5.2. □
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