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1. Introduction

This thesis concerns itself with abstract separation systems and their tangles, both
in general and in some concrete instances.

Background

Tangles were originate from graph minor theory, they were invented as a tool in the
monumental graph minors project of Robertson and Seymour [64]. In the original
sense, a tangle describes a well-connected or ‘dense’ region in a graph indirectly:
not by specifying a subset of vertices or edges, but by declaring, for each way of
cutting the graph into two parts along few vertices, which side the dense region
lies on. Formally, a separation of a graph 𝐺 is an ordered pair (𝐴,𝐵) of subsets of
𝑉 (𝐺) where 𝐴 ∪ 𝐵 = 𝑉 and no edge of 𝐺 runs between 𝐴 ⧵ 𝐵 and 𝐵 ⧵ 𝐴. The size
of the separator 𝐴 ∩ 𝐵 is order of that separation. A 𝑘-tangle 𝜏 in 𝐺 is a set that
contains for every separation (𝐴,𝐵) of 𝐺 of order less than 𝑘 exactly one of (𝐴,𝐵)
and (𝐵,𝐴) and fulfils the following consistency condition:

∀(𝐴1, 𝐵1), (𝐴2, 𝐵2), (𝐴3, 𝐵3) ∈ 𝜏 ∶ 𝐺[𝐴1] ∪ 𝐺[𝐴2] ∪ 𝐺[𝐴3] ≠ 𝐺. (T)

We think of a separation (𝐴,𝐵) in a tangle as pointing ‘away from 𝐴, towards 𝐵’.
This consistency condition (T) ensures that the directions that a tangle points in
are not contradictory to each other.

Tangles were used to study how tree-like the structure of a graph is in terms of
tree-decompositions and tree-width. Informally, the former is a way of building up
our graph from small subgraphs, glued to each other in the shape of a tree; the
latter measures with how small subgraphs we can achieve such a decomposition:
the lower the tree-width, the smaller the parts, and the more tree-like is our graph.
Tree-width is within a constant factor of branch-width, a measure based on another
kind of decomposition along a tree, and low branch-width is dual to the existence
of high order tangles: a graph has branch-width < 𝑘 if and only if it has no tangle
of order 𝑘. That statement is the tangle–tree-duality theorem of Robertson and
Seymour [64].

Accompanying the duality theorem as the second foundation of tangle-theory
is what we call the tree-of-tangles theorem – also by Robertson and Seymour [64]
– which (roughly speaking) says that multiple different tangles in a graph – even
across different orders 𝑘 – are arranged in relation to each other in a tree: there is a
tree-decomposition, such that each tangle points towards a different part.
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1. Introduction

Since the inception of tangles in [64], the general idea has been transferred to
various other concepts of clusters, width, and tree-like decompositions, for graphs
as well as other discrete structures – primarily matroids – see e.g. [22, 25–27,29, 33,
44,46,48,50,61].

As part of this expansion of the tangle concept, and in an effort to simplify
and axiomatize the theory, generalizing it to cover many of these varations, one
particular branch of tangle theory evolved: the theory of abstract separation systems.
These separation systems are a generalization established in the work of Diestel
and Oum [28] and of Diestel, Hundertmark, and Lemanczyk [26], and they proved
to be a very general and useful concept which generalizes the notion of a set of
separations. The vertex separations of a graph introduced above and separations of
matroids both are instances of this abstract framework.

Formally, a separation system (𝑆,⩽, ∗) is a partially ordered set whose elements are
called separations, together with an order-reversing involution ∗. The partial order ⩽
represents the specificity of a separation, for separations (𝐴,𝐵) and (𝐶,𝐷) of a graph
this means that (𝐴,𝐵) ⩽ (𝐶,𝐷) whenever 𝐴 ⊆ 𝐶 and 𝐵 ⊇ 𝐷. The involution ∗

‘inverts’ a separation, for graph separations it is the function (𝐴,𝐵) ↦ (𝐵,𝐴).

Tangles will then be orientations of such a separation system – chosing for each
separation it or its inverse – which satisfies some consistency condition. The various
notions of ‘tangle’ are expressed each by a set ℱ of subsets of a separation system 𝑆
that are to be avoided – like the triples of separations in property (T). Orienting all
separations in 𝑆 in a way that includes none of these forbidden subsets then defines
an ℱ-tangle of 𝑆 . We will make these definitions more precise in Chapter 2.

To allow an abstract representations of ‘𝑘-tangles’ across multiple values of 𝑘,
separation systems usually come with some more structure in the form of universes
of separations, separation system whose partial order forms a lattice, so any pair
of separations has a supremum and an infimum. The generalized expression of the
order of a separation is then a submodular order functions defined on a universe of
separations. The set of all separations of a graph form such a universe of separations
– one then considers tangles on the subsets of separations up to some order 𝑘.

For ℱ-tangles, with reasonable assumption of ℱ, Diestel and Oum proved the
abstract tangle–tree duality theorem [28]. Effectively, it still asserts that the absence
of a tangle is equivalent to the existence of a tree-like decomposition – but, in the
abstract setting, the concept of ‘tree-like decomposition’ hinges on which definitions
of ‘separation’ and ‘tangle’ are used.

For the tree-of-tangles theorem, a variety of different extensions and abstractions
of this theorem exist [10, 11, 13, 14, 25, 26]. Multiple variations of the tree-of-tangles
theorem exist for abstract separation systems. In fact, the term is used to describe
a collection of theorems, all of which state some variation of the following:

2



Let 𝒯 be a (sufficiently nice) set of distinguishable tangles, then there exists a nested
set of separations 𝑁(𝒯) that contains, for every pair of tangles in 𝒯, a separation

which distinguishes that pair of tangles.

The pairwise nestedness of separations means (up to technicalities) that they are
arranged in relation to each other like the edges of a tree. The tangles that they
distinguish then each point to a node of the eponymous tree. Depending on the
conditions on the given set of tangles 𝒯, the theorems guarantee additional properties
of the set 𝑁(𝒯): canonicity, meaning invariance under isomorphisms, and/or the
‘efficiency’ of the distinguishing separations. We will go into detail on those later;
in fact, Part II of this thesis will be dedicated entirely to tree-of-tangles theorems,
discussing their requirements and how to prove them.

If one now wants to have such theorems in a concrete setting, then one only
has to perform the translation between abstract separation systems and concrete
separations of the setting and check that the conditions of the theorems hold.
Examples of such applications can be found in [26–28].

Overview of this thesis

After a formal introduction to the terminology of abstract separation systems and
tangles in Chapter 2, we present our own results. The thesis is split into three
parts: Part I is about the structure that a single tangle can induce – in two concrete
instances, Part II is devoted to trees of tangles and tree-of-tangles theorems, and
Part III is concerned with a technical aspect of the separation systems we define our
tangles on: submodularity properties and how they affect the structure of abstract
separation systems.

Part I: Representing a single tangle indirectly

Part I is about the structure that a single tangle can induce. The most well-known
instance of such a phenomenon is the grid theorem of Robertson and Seymour [64,
(7.5)] which says that, for any integer 𝑘, every tangle 𝜏 of sufficiently high order
𝑁(𝑘) in a graph is witnessed by a (𝑘 × 𝑘)-grid minor. This grid minor, in turn,
induces a tangle 𝜏 ′ where, of every separation in the tangle, the side that the tangle
points to contains the majority of the minor’s branch sets. This tangle 𝜏 ′ is, in
fact, the restriction of 𝜏 to separations of order less than 𝑘. Picking one vertex from
every branch set thus gives a decider set for 𝜏 ′: a set 𝑋 of vertices so that for every
separation (𝐴,𝐵) ∈ 𝜏 ′ more vertices of 𝑋 are in 𝐵 than in 𝐴.

However, the large gap between 𝑁(𝑘) and 𝑘 means that we cannot obtain a
decider set for every tangle in this way. In [26] Diestel thus posed the following
question: does every tangle in a graph have a decider set? — In Chapter 3, we
show that a weighted version of this is true, i.e., that there is a non-negative weight
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1. Introduction

function defined on the vertices such that, for every separation (𝐴,𝐵) in the tangle,
the sum of the weights in 𝐵 is larger than the sum of the weights in 𝐴.

Theorem 1. p. 20 Let 𝐺 = (𝑉 ,𝐸) be a finite graph and 𝜏 a 𝑘-tangle in 𝐺. Then there
exists a function 𝑤∶ 𝑉 → ℕ such that a separation (𝐴,𝐵) of 𝐺 of order < 𝑘 lies in
𝜏 if and only if 𝑤(𝐴) < 𝑤(𝐵), where 𝑤(𝑈) ≔ ∑𝑢∈𝑈 𝑤(𝑢) for 𝑈 ⊆ 𝑉.

We prove the existence of such a function even in a more general case of profiles
of set separations with order function (𝐴,𝐵) ↦ |𝐴 ∩ 𝐵|, and we prove a variant of
this theorem also for edge tangles, a kind of tangles defined in terms of graph cuts
rather than the usual (vertex) separations.

Chapter 4 covers dual tangles in the setting of bipartite graphs. Given a bipartite
graph with partition classes 𝑋 and 𝑌, we introduce a measure of how connected
the sides of a separation of 𝑋 are in terms of the neighbourhoods of vertices in 𝑌.
Symmetrically, we can apply the same measure of connectivity to the separations
of 𝑌. This measure plays nicely with a natural way of separations of 𝑋 to induce
separations of 𝑌 and vice versa: the idea is that a separation (𝐴,𝐵) of 𝑋 induces a
separation of 𝑌 by asking for every vertex in 𝑌 whether it has the majority of its
neighbours in 𝐴 or in 𝐵 and separating the vertices in 𝑌 accordingly. Reasonable
definitions of tangles on 𝑋 and on 𝑌 then allow us to ‘shift’ tangles back-and-forth
between 𝑋 and 𝑌.

Concretely, we can then show that a tangle of order 4𝑘 on 𝑋 shifts to a tangle of
order 𝑘 on 𝑌 and that this operation stabilizes in the sense that the double-shift of
a tangle is a subset of the original.

Part II: Trees of tangles

Chapter 5 covers the ‘splinter lemmas’, a framework which allows us to prove in a
unified way the most relevant existing tree-of-tangles theorems. There are different
variations of splinter lemmas covering non-canonical and canonical, finite and infinite
settings. The underlying principle however is always the same: they all state in
some way that if we can, given any two non-nested separations each distinguishing
its own pair of tangles, resolve this non-nestedness locally by replacing one of the
two separations with one which serves the same role and is better nested. Then
applying these resolutions in the correct way globally to all pairs leads to a nested
set of separations. The base version of the splinter lemma reads as follows:

Lemma 13 (Splinter Lemma). p. 64 Let 𝑈 be a universe of separations and 𝔄 = (𝒜𝑖)𝑖⩽𝑛
a family of subsets of 𝑈. If 𝔄 splinters, then we can pick an element 𝑎𝑖 from each
𝒜𝑖 so that { 𝑎1,… , 𝑎𝑛 } is nested.

We use our splinter lemmas to re-prove many of the existing tree-of-tangles
theorems – with and without efficiency, canonical and non-canonical – but they also
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allow us to introduce some new tree-of-tangles theorems of our own; for example,
for profiles in sequences of separation systems:

Theorem 14.  p. 72If 𝒮 = (𝑆1,… , 𝑆𝑛) is a compatible sequence of structurally submodular
separation systems inside a universe 𝑈, and 𝒫 is a robust set of profiles in 𝒮, then
there is a nested set 𝑁 of separations in 𝑈 which efficiently distinguishes all the
distinguishable profiles in 𝒫.

Lemma 13 can be phrased in such a general way, that it can be applied in contexts
which do not fit the – already very general – framework of abstract separation
systems: as we will see in Section 5.6, Lemma 13 can be phrased in terms of a
relation. With a bit more effort than for separation systems, it can then be applied
in new settings and we present an instance of that in Section 5.7 where we consider
directed separations and tangles in directed graphs.

We extend the approach of the splinter lemmas to an infinite setting in Section 5.8
with the ‘thin splinter lemma’, Lemma 22. This lemma allows us in Section 5.9 to
give simplified proofs of two tree-of-tangles theorems for infinite graphs. The first is
by Carmesin [10]:

Theorem 5.20 ([10, Theorem 5.12]).  p. 97For any graph 𝐺, there is a nested set 𝑁 of
separations that distinguishes efficiently any two robust principal profiles (that are
not restrictions of one another).

The other theorem is by Carmesin, Hamann, and Miraftab [14] and a deal
more technical, introducing ‘trees of tree-decompositions’ to handle the problems
that come up when constructing tree-decompositions for infinite graphs. We use
Lemma 22 to establish a theorem which sits half-way between those two theorems,
and from which either can be deduced more easily:

Theorem 24.  p. 109Given a set of distinguishable robust regular profiles 𝒫 of a graph 𝐺
there exists a canonical nested set of separators efficiently distinguishing any pair of
profiles in 𝒫.

We present another application of Lemma 22 in Section 5.10. This is again an
application to infinite graphs, but this time we are not distinguishing tangles or
profiles but edge-blocks:

Theorem 25.  p. 118Every connected graph 𝐺 has a nested set of bonds that efficiently
distinguishes all the edge-blocks of 𝐺.

Here, an edge-block in 𝐺 is a subset of the vertices which, for some integer 𝑘, is
⊆-maximal with the property that it cannot be separated in 𝐺 by less than 𝑘 edges.
In order to prove Theorem 25 we apply Lemma 22 not to the traditional (vertex)
separations of 𝐺, but rather to the separation system of all the cuts of 𝐺.
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1. Introduction

Chapter 6 also is about proving tree-of-tangles theorems. The theorems themselves
are unspectacular, especially in light of Chapter 5. The extraordinary aspect is the
method by which we prove those theorems: by applying the tangle–tree duality
theorem. The tangle–tree duality theorem and the tree-of-tangles theorem are the
two fundamental pillars on which tangle theory stands. The tangle–tree duality
theorem says that if there is no tangle, then an 𝑆-tree, a tree with separations for
edges, witnessing this exists. So it is rather surprising that we can utilise this in a
context where many tangles do exist, the tree-of-tangles theorem. This is achieved
by applying the tangle–tree duality theorem to a very carefully chosen notion of
‘tangle’. In this way we push the limits of the tangle–tree duality theorem to make
it produce a tree of tangles.

Finally, Chapter 7 introduces a heuristic approach to computing tangles and trees of
tangles. If one wants to identify dense substructures in some large real-world dataset,
say, then one might try to apply the concept of tangles. While algorithms exist for
a large class of instances of tangles to compute tangles and a tree of tangles [51],
in practice the size of the dataset might make that computation infeasible. This
is essentially due to the fact that there are many ways to separate such a large
dataset, so a way around this is to consider only a small subset of separations which
are deemed ‘reasonably good’ according to some sampling heuristic. In Chapter 7
we explain how, with such imperfect knowledge of a separation system, one can
compute tangles of the subsystem – which serve as an approximation of the tangles
of the original system – and how one can combine this approach with the ideas from
Chapter 5, the splinter lemmas, to build trees of tangles.

Part III: Submodularity

Submodularity is a key technical concept in tangle theory that features throughout
virtually all proofs involving tangles. Originally, the theory of tangles in abstract
separation was concerned only with universes 𝑈 of separations which come with a
submodular order function | ⋅ | ∶ 𝑈 → ℕ. In this setting one considers the subsystems
𝑆 = 𝑆𝑘 ≔ {𝑠 ∈ 𝑈 ∶ |𝑠| < 𝑘 } ⊆ 𝑈 that are induced by the order function. [26,28]

This changed when it was discovered in [25] that, for most arguments, only a
structural consequence of the presence of such a submodular order function was used:
that of any two separations in the system 𝑆 either the supremum or the infimum
(taken in the surrounding universe 𝑈) lies again in 𝑆 . This structural condition on
𝑆 , called submodularity in 𝑈, is central to much of the work in Part II.

We dedicate Part III to studying this condition of submodularity in 𝑈, the stronger
condition of order-induced submodularity in 𝑈 from submodular order function, and
also to a weakened, structural, condition that any two elements of 𝑆 just have a
supremum or an infimum in the poset 𝑆 without any reference to a surrounding
universe of separations.
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Chapter 8 explores these three different submodularity conditions (order-induced
submodularity in 𝑈, submodularity in 𝑈, and submodularity) in relationship to each
other. We will go into further detail on these conditions and our results at the start
of Chapter 8 and give just a broad overview here.

On the one hand, we will establish a link between the weakened condition, mere
submodularity of 𝑆 , and the standard condition of submodularity in some universe
of separations 𝑈. We show that submodularity of a separation system 𝑆 on its own
implies submodularity in 𝑈 ⊇ 𝑆 for one specific universe 𝑈 that we can construct
around 𝑆 .

On the other hand we show that order-induced submodularity in 𝑈 is a proper
strengthening of submodularity in 𝑈, giving examples of separation systems which
are submodular in some 𝑈 but not order-induced submodular.

Further, we develop two decomposition theorems for submodular separation
systems and, along the way, prove a handful of other interesting small facts about
the different notions of submodularity.

Chapter 9 introduces one particular, fundamental question about submodular
separation systems: Given a submodular separation system, is there always a
separation that we can delete, so that the remainder is still submodular? A sequence
of separations that we can delete one after the other while maintaining submodularity
until we reach the empty set is an unravelling. We show the existence of unravellings
for the stronger and for the weaker concept of submodularity in Section 9.2 and
Section 9.4, respectively.

For the third concept, submodularity inside a fixed universe of separations, we
give a counterexample in Section 9.3. In this counterexample the universe of
separations is non-distributive, the distributive case remains and boils down to an
intriguing-but-hard combinatorial problem which we term ‘the unravelling problem’:

Problem 9.1 (Unravelling problem).  p. 189A finite set 𝒳 of finite sets is woven if, for all
𝑋,𝑌 ∈ 𝒳, at least one of 𝑋 ∪ 𝑌 and 𝑋 ∩ 𝑌 is in 𝒳. Let 𝒳 be a non-empty woven
set. Does there exist an 𝑋 ∈ 𝒳 for which 𝒳−𝑋 is again woven?

7





2. Basic Concepts

The graph-theoretic notation and terminology of this thesis follows the textbook of
Diestel [19] and we assume familiarity with the general concepts and fundamental
theorems of finite and infinite graph theory from there. Our terminology of tangle-
theory follows the principles of abstract separation systems that evolved over the
years [20,21,25–28]; the definitions below capture the current state of that language
as used throughout this thesis, including some slightly more specific terminology of
our own for subsystems and submodularity to make it precise enough to meet the
needs of Chapters 8 and 9 in particular.

The definitions below are also valid for infinite posets/separation systems/graphs
etc., however beyond this chapter – unless explicitly stated otherwise, as in Sec-
tions 5.8 to 5.10 – we shall assume our graphs/separation systems etc. to be finite.

2.1. Separation systems

A separation system (𝑆,⩽, ∗) consists of a partially ordered set (𝑆,⩽) together with
an involution ∗ on 𝑆 which is order-reversing.1 That ∗ is an involution on 𝑆 means
that it is a self-inverse function ∗ ∶ 𝑆 → 𝑆 , and that it is order-reversing means
that if 𝑠 ⩽ 𝑡 for 𝑠, 𝑡 ∈ 𝑆 , then 𝑠∗ ⩽ 𝑡∗. The elements of 𝑆 are called (oriented)
separations and the inverse 𝑠∗ of a separation 𝑠 ∈ 𝑆 is denoted by 𝑠.

Intuitively, we think of a separation as pointing towards one of two halves of some
structure, e.g., of a graph. We then understand the inverse of a separation to point
towards the other half. A separation being greater than another then means, that it
is more specific – pointing to a more restricted region than the other.

Given a separation 𝑠, the set 𝑠 ≔ { 𝑠, 𝑠 } of 𝑠 together with its inverse is called the
corresponding unoriented separation. For a separation system (𝑆,⩽, ∗) we denote
the set of corresponding unoriented separations as 𝑆. Conversely, given a set 𝑆 of
unoriented separations, we write 𝑆 for the set of their orientations.

When there is no risk of confusion we use notions defined for unoriented and
oriented separations interchangeably.

A subsystem 𝑆 ′ of a separation system 𝑆 is a subset 𝑆 ′ ⊆ 𝑆 which is closed under
involution, it inherits its partial order from 𝑆 .
1In the context of order theory separation systems are known under several different names, most
notably as involution posets [3] or i-posets for short. However, so-far there has been little overlap
between the aspects of separation systems that order theory is interested in and those that graph
theory is interested in.
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2. Basic Concepts

A map 𝜑∶ 𝑆 → 𝑆 ′ is a homomorphism of separation systems between separation
systems 𝑆 and 𝑆 ′ if it commutes with taking inverses and is order-preserving, i.e.,
whenever 𝑟 ⩽ 𝑠 for separations 𝑟, 𝑠 ∈ 𝑆 , then 𝜑(𝑟) ⩽ 𝜑(𝑠). An isomorphism of
separation systems, then, is a bijection which is a homomorphism of separation
systems and whose inverse is also a homomorphism of separation systems. An
embedding is an injective homomorphism which is an isomorphism when restricting
the range to the subsystem that is its image.

If for a separation 𝑠 we have 𝑠 ⩽ 𝑠, then we call 𝑠 small and 𝑠 co-small. A set of
separations which does not contain any co-small separations is called regular.

A separation 𝑠 in a separation system 𝑆 is called trivial in 𝑆 if 𝑠 < 𝑟 and 𝑠 < 𝑟 for
some 𝑟 ∈ 𝑆 , i.e., 𝑠 ⩽ 𝑟 and 𝑠 ⩽ 𝑟 for some 𝑟 ∈ 𝑆 ⧵ 𝑠. In this case we call 𝑟 a witness
of the triviality of 𝑠 and call 𝑠 co-trivial. Note that a trivial separation is always
small, but that the converse is not generally true, since for triviality the relation to
the other separations in the system is relevant. In particular, a separation which is
trivial in 𝑆 is not trivial in every subsystem of 𝑆 .

A separation 𝑠 where 𝑠 = 𝑠 is called degenerate.

2.2. Lattices and universes of separations

A lattice is a partially ordered set (𝐿,⩽) where every pair of elements 𝑎, 𝑏 ∈ 𝐿
has a supremum 𝑎 ∨ 𝑏, called join, and an infimum 𝑎 ∧ 𝑏, called meet. We usually
understand a lattice as an algebraic structure (𝐿,⩽, ∨, ∧), but note that the binary
operators ∨ and ∧ are completely determined by the partial order and, vice versa,
the partial order is completely determined by just one of these operators, for we
have

𝑎 ⩽ 𝑏 ⟺ 𝑎 ∨ 𝑏 = 𝑏 ⟺ 𝑎 ∧ 𝑏 = 𝑎.

A homomorphism between lattices is a function which commutes with ∨ and ∧ (and
thus is also order-preserving). Consequently, two lattices are isomorphic if and only
if they are isomorphic as posets. A sublattice of 𝐿 is a subset 𝐿′ ⊆ 𝐿 which is closed
under joins and meets. It inherits the partial order of 𝐿, and thus the join and meet
operations are simply the restrictions of ∨ and ∧ from 𝐿 to 𝐿′.

If a lattice has a greatest element it is called the top element, and we denote it as
⊤; a least element is called bottom, denoted ⊥. Note that every finite lattice has a
top and a bottom element. A lattice 𝐿 is called distributive if ∨ and ∧ are mutually
distributive:

𝑎 ∨ (𝑏 ∧ 𝑐) = (𝑎 ∨ 𝑏) ∧ (𝑎 ∨ 𝑐) and 𝑎 ∧ (𝑏 ∨ 𝑐) = (𝑎 ∧ 𝑏) ∨ (𝑎 ∧ 𝑐)

for all 𝑎, 𝑏, 𝑐 ∈ 𝐿.
The prototypical example of a distributive lattice is the subset lattice of some set

𝑉, which consists of the power set 2𝑉 ordered by inclusion ⊆. The join of any two
subsets of 𝑉 is their union, and their meet is their intersection.
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2.3. Submodularity

A universe of separations2 (𝑈,⩽, ∗, ∨, ∧) is a separation system which is also a
lattice. In a universe of separations DeMorgan’s laws

(𝑟 ∨ 𝑠)∗ = 𝑟 ∧ 𝑠 and (𝑟 ∧ 𝑠)∗ = 𝑟 ∨ 𝑠

hold. A function between universes of separations is a homomorphism of universes
of separations if it is a homomorphism of lattices as well as a homomorphism of
sepration systems.

For a pair of separations 𝑟 and 𝑠 in 𝑈 the separations 𝑟 ∨ 𝑠, 𝑟 ∨ 𝑠, 𝑟 ∨ 𝑠 and 𝑟 ∨ 𝑠
are the (outwards) corners of 𝑟 and 𝑠 in 𝑈.

2.3. Submodularity

A function 𝑓 ∶ 𝐿 → ℝ on a lattice 𝐿 is called submodular if it satisfies

𝑓(𝑎 ∨ 𝑏) + 𝑓(𝑎 ∧ 𝑏) ⩽ 𝑓(𝑎) + 𝑓(𝑏) for all 𝑎, 𝑏 ∈ 𝐿.

If the above holds with equality always, then 𝑓 is modular.
A function which is defined on a separation system is called symmetric if it is

invariant under taking inverses. A submodular order function on a universe 𝑈 then
is a symmetric, non-negative, submodular function on 𝑈. A universe together with
a submodular order function is called a submodular universe and the order function
is usually denoted | ⋅ |. The symmetry allows writing |𝑠| for |𝑠| where it is more
convenient.

Given a submodular universe (𝑈,⩽, ∗, ∨, ∧), and some number 𝑘 we usually
consider the subsystem

𝑆𝑘, | ⋅ | ≔ {𝑠 ∈ 𝑈 ∶ |𝑠| < 𝑘 }.

If the order function and universe are clear from context this is shortened to 𝑆𝑘 . For
any submodular function 𝑓 ∶ 𝐿 → ℝ on a lattice 𝐿 and elements 𝑎, 𝑏 ∈ 𝐿 we observe
that if 𝑓(𝑎 ∨ 𝑏) > max(𝑓(𝑎), 𝑓(𝑏)), then 𝑓(𝑎 ∧ 𝑏) < min(𝑓(𝑎), 𝑓(𝑏)); vice versa, if
we have 𝑓(𝑎 ∧ 𝑏) > max(𝑓(𝑎), 𝑓(𝑏)), then 𝑓(𝑎 ∨ 𝑏) < min(𝑓(𝑎), 𝑓(𝑏)). Hence, in the
context of a submodular universe, if we have separations 𝑟 and 𝑠 in some 𝑆𝑘 , then
at least one of 𝑟 ∨ 𝑠 and 𝑟 ∧ 𝑠 is also contained in that 𝑆𝑘 .

If, more generally, a subsystem 𝑆 of a universe of separations 𝑈 contains for all
𝑟, 𝑠 ∈ 𝑆 at least one of 𝑟 ∨ 𝑠 and 𝑟 ∧ 𝑠, then 𝑆 is called submodular in 𝑈.3 If,
moreover, there exists a submodular order function 𝑓 on 𝑈 and some 𝑘 such that
𝑆 = 𝑆𝑘, 𝑓 , then we say that the submodularity of 𝑆 in 𝑈 is order-induced or that 𝑆

2In this thesis, we often write universe for brevity, without any intention of laying universal claim to
the term.

3This property was originally called structural submodularity in [25], and the term is still common in
the literature, but the independence on 𝑈 in that term becomes carelessly imprecise in context of
our Theorem 29.
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is order-induced submodular in 𝑈. In this case we also say that 𝑓 and 𝑘 induce the
submodularity of 𝑆 in 𝑈.

A separation system 𝑆 on its own can also be submodular: we call 𝑆 submodular,
if any two separations 𝑠, 𝑡 ∈ 𝑆 have either a supremum in 𝑆 or an infimum in
𝑆 . Note that these suprema and infima ar taken in the partially ordered set 𝑆
itself, not in some universe – in general, such suprema and infima need not exist,
and submodularity asserts that one of them does. Every separation system that is
submodular in some universe is submodular in this sense. Note that this kind of
submodularity will only feature

2.4. Profiles and tangles

A set of oriented separations is called antisymmetric if it does not contain distinct
orientations of the same separation.4 An orientation of a separation system 𝑆 is an
antisymmetric subset of 𝑆 which contains an orientation of every separation in 𝑆.
In this context, an antisymmetric subset of 𝑆 is also called a partial orientation of
𝑆 . A (partial) orientation 𝑂 is consistent if there are no 𝑟, 𝑠 ∈ 𝑂 with 𝑟 ⩽ 𝑠, unless
𝑟 = 𝑠. In other words, 𝑂 is consistent if no distinct two separations in 𝑂 point away
from each other.

Given a separation system 𝑆 and a set ℱ ⊆ 2𝑆 of forbidden subsets, an ℱ-tangle of
𝑆 is a consistent orientation of 𝑆 which includes no element of ℱ as a subset. When
given a submodular universe and a set ℱ ⊆ 2𝑈, a ℱ-tangle 𝜏 in 𝑈 is a ℱ-tangle of
𝑆𝑘 for some 𝑘. We then say, that 𝜏 is of order 𝑘. For 𝑘 < ℓ, every ℱ-tangle 𝜏 of
𝑆ℓ is a superset of a ℱ-tangle 𝜏 ∩ 𝑆𝑘 of 𝑆𝑘 , which is called the truncation of 𝜏 to
order 𝑘. Those ℱ-tangles in 𝑈 which are not truncations of any other ℱ-tangle in
𝑈 are the maximal ℱ-tangles in 𝑈.

A consistent orientation 𝑃 of a separation system 𝑆 in a universe 𝑈 is called a
profile of 𝑆 if it satisfies the profile property:

∀𝑟, 𝑠 ∈ 𝑃 ∶ (𝑟 ∧ 𝑠) ∉ 𝑃 . (P)

If 𝑈 is a submodular universe, then a 𝑘-profile in 𝑈 is a profile of 𝑆𝑘 and a profile in
𝑈 is a 𝑘-profile in 𝑈 for some 𝑘. In this case 𝑃 is of order 𝑘. Note that the profiles
of a separation system 𝑆 in a universe 𝑈 are precisely its 𝒫-tangles where

𝒫= {{𝑟, 𝑠, 𝑟 ∧ 𝑠} ∶ 𝑟, 𝑠 ∈ 𝑈}.

One often considers regular profiles only, i.e., profiles which do not contain any
co-small separation. In the context of a submodular universe 𝑈, a profile 𝑃 in 𝑈 is
robust if the following holds:

∀𝑠 ∈ 𝑃 , 𝑟 ∈ 𝑈∶ (|𝑟 ∧ 𝑠| < |𝑟| and |𝑟 ∧ 𝑠| < |𝑟|) ⟹ (𝑟∨𝑠 ∈ 𝑃 or 𝑟 ∨𝑠 ∈ 𝑃). (R)
4That is, degenerate separations are allowed to be contained in an antisymmetric set, but for any
non-degenerate separation 𝑠 at most one of 𝑠 and 𝑠 is contained.
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2.5. Tree sets and 𝑆-trees

Two separations in a separation system are called nested if they have orientations
which are comparable, that is, separations 𝑠 and 𝑡 are nested if 𝑠 ⩽ 𝑡, 𝑡 ⩽ 𝑠, 𝑠 ⩽ 𝑡,
or 𝑡 ⩽ 𝑠. Separations which are not nested are said to cross. A nested set consists
of separations which are pairwise nested.

The following elementary observation about corner separations and nestedness,
the fish lemma, is used throughout many, if not most, proofs about tangles in
abstract separation systems:

Lemma 2.1 (‘Fish lemma’, [20, Lemma 3.2]). Let 𝑈 be a universe of separations
and 𝑟, 𝑠 ∈ 𝑈 be two crossing separations. Every separation 𝑡 ∈ 𝑈 that is nested with
both 𝑟 and 𝑠 is also nested with all four corner separations of 𝑟 and 𝑠.

If the separations in a nested set form a separation system which has no trivial
separations, then that separation system is called a tree set; and if it contains not
even a small/co-small separation, then it is a regular tree-set.

Given a tree 𝑇 every orientation 𝑒 = 𝑥𝑦 ∈ 𝐸(𝑇 ) of an edge of 𝑇 defines a natural
(𝐴,𝐵) bipartition of 𝑉 (𝑇 ) into the component 𝐴 of 𝑇 − 𝑒 which contains the tail 𝑥
and the component 𝐵 of 𝑇 − 𝑒 which contains the head 𝑦. The oriented edges of 𝑇
thus naturally define a separation system 𝐸(𝑇 ) ⊆ ℬ(𝑉 (𝑇 )) where we identify each
edge with the corresponding bipartition of 𝑉 (𝑇 ). This separation system is called
the edge tree set of 𝑇.

Given a separation system 𝑆 , an 𝑆-tree (𝑇 , 𝛼) is a tree 𝑇 together with a function
𝛼∶ 𝐸(𝑇 ) → 𝑆 which commutes with involution. The 𝑆-tree (𝑇 , 𝛼) is order-respecting
if 𝛼 is order-preserving, i.e., 𝛼(𝑒) ⩽ 𝛼(𝑓) whenever 𝑒 ⩽ 𝑓; this makes 𝑓 a homo-
morphism of separation systems.

Every edge tree set forms a tree set and every finite regular tree set is isomorphic
to the edge tree-set of a suitable tree (cf. [21] for a detailed exposition of finite tree
sets). For infinite tree sets Gollin and Kneip showed the following equivalence:

Theorem 2.2 ([49, Theorem 3.9(1)]). Let 𝐺 be any connected graph, and let 𝑆 be
any regular tree set. Then the following assertions are equivalent:

• there exists an 𝑆-tree (𝑇 , 𝛼) such that 𝛼∶ 𝐸(𝑇 ) → 𝑆 is an isomorphism between
separation systems;

• 𝑆 contains no chain of order-type 𝜔 + 1.

Here, the term chain of order-type 𝜔 + 1 is meant in the usual order-theoretic
sense: a set { 𝑠𝑖 ∶ 𝑖 ∈ ℕ ∪ {𝜔} } ⊆ 𝑆 such that 𝑠𝑖 < 𝑠𝑗 for all 𝑖, 𝑗 ∈ ℕ ∪ {𝜔} where
𝑖 < 𝑗.
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2.6. Important instances of separation systems and tangles

2.6.1. Set separations and vertex separations

Many important instances of separation systems consist of set separations of some
set 𝑉: ordered pairs (𝐴,𝐵) of subsets of 𝑉, such that 𝐴 ∪ 𝐵 = 𝑉. We denote by
𝑆(𝑉 ) the universe of all set separations of 𝑉, where the involution maps every
set separation (𝐴,𝐵) to (𝐵,𝐴), and where the partial order is defined by letting
(𝐴,𝐵) ⩽ (𝐶,𝐷) whenever 𝐴 ⊆ 𝐶 and 𝐵 ⊇ 𝐷. The join and meet of two separations
(𝐴,𝐵), (𝐶,𝐷) in such a universe are

(𝐴,𝐵) ∨ (𝐶,𝐷) = (𝐴 ∪ 𝐶,𝐵 ∩ 𝐷) and (𝐴,𝐵) ∧ (𝐶,𝐷) = (𝐴 ∩ 𝐶,𝐵 ∪ 𝐷).

The small separations are those of the form (𝑋, 𝑉 ) for some 𝑋 ⊆ 𝑉, and the only
degenerate separation is (𝑉 , 𝑉 ).

For the sake of conciseness – and for historical reasons – the unoriented separation
corresponding to a set separation (𝐴,𝐵) is usually represented by {𝐴,𝐵} rather
than { (𝐴,𝐵), (𝐵,𝐴) }.

Given a graph 𝐺, a vertex separation of 𝐺 is a set separation (𝐴,𝐵) of 𝑉 (𝐺)
where every edge of 𝐺 runs within either 𝐴 or 𝐵, i.e., no edge of 𝐺 runs between
𝐴 ⧵ 𝐵 and 𝐵 ⧵ 𝐴. The set 𝐴 ∩ 𝐵 is called the separator of such a separation, and
every connected component of 𝐺 − (𝐴 ∩ 𝐵) is contained fully in either 𝐴 ⧵ 𝐵 or
𝐵 ⧵ 𝐴.

The vertex separations of a graph 𝐺 whose separators are finite form a subuniverse
of 𝑆(𝑉 (𝐺)), the resulting submodular universe of all vertex separations of 𝐺 together
with the natural order function (𝐴,𝐵) ↦ |𝐴,𝐵| ≔ |𝐴 ∩ 𝐵|, measuring the size of
the separator 𝐴 ∩ 𝐵, is denoted by 𝑆(𝐺).

A tangle in a graph 𝐺 is an orientation 𝜏 of some 𝑆𝑘 ⊆ 𝑆(𝐺) which has the tangle
property:

∀ (𝐴1, 𝐵1), (𝐴2, 𝐵2), (𝐴3, 𝐵3) ∈ 𝑃 ∶ 𝐺[𝐴1] ∪ 𝐺[𝐴2] ∪ 𝐺[𝐴3] ≠ 𝐺. (T)

Thus, the tangles in graph 𝐺 are the 𝒯𝐺-tangles in 𝑆(𝐺) where

𝒯𝐺 ≔ {{(𝐴1, 𝐵1), (𝐴2, 𝐵2), (𝐴3, 𝐵3)} ∶ (𝐴1, 𝐵1), (𝐴2, 𝐵2), (𝐴3, 𝐵3) ∈ 𝑆(𝐺)
with 𝐺[𝐴1] ∪ 𝐺[𝐴2] ∪ 𝐺[𝐴3] = 𝐺}.

Tangles in graphs are robust regular profiles in 𝑆(𝐺). ([26])
For a graph 𝐺, order-respecting 𝑆(𝐺)-trees and tree sets are an alternative view

on another important object: a tree-decomposition (𝑇 , 𝒱) of a graph 𝐺 consists of a
tree 𝑇 and a family 𝒱 = (𝑉𝑡)𝑡∈𝑉 (𝑇) of bags or parts, subsets of 𝑉 (𝐺), so that

(T1) 𝑉 (𝐺) = ⋃𝑡∈𝑉 (𝑇) 𝑉𝑡;
(T2) for every edge 𝑣𝑤 ∈ 𝐸(𝐺) there is some 𝑡 ∈ 𝑉 (𝑇 ) so that 𝑥, 𝑦 ∈ 𝑉𝑡;

14



2.6. Important instances of separation systems and tangles

(T3) for any 𝑡1, 𝑡3 ∈ 𝑉 (𝑇 ) and 𝑡2 on the unique path between 𝑡1 and 𝑡3 we have
𝑉𝑡1 ∩ 𝑉𝑡3 ⊆ 𝑉𝑡2 .

The size of the largest bag minus one is the width of the tree-decomposition and the
smallest width among all tree-decomposition of 𝐺 is the tree-width of 𝐺.

The edges of a decomposition-tree 𝑇 induce vertex separations of 𝐺: for an edge
𝑡1𝑡2 of 𝑇 let 𝑇1 be the component of 𝑇 − 𝑡1𝑡2 which contains 𝑡1 and let 𝑇2 be the
component which contains 𝑡2, then ( ⋃𝑡∈𝑉 (𝑇1)

𝑉𝑡, ⋃𝑡∈𝑉 (𝑇2)
𝑉𝑡 ) is a vertex separation.

The tree 𝑇 of a tree-decomposition, together with its induced separations forms an
order-respecting 𝑆(𝐺)-tree. Vice versa, for a finite graphs 𝐺, every tree set in 𝑆(𝐺)
can also be turned into a tree-decomposition of 𝐺:

Lemma 2.3 ([26, Lemma 4.3]). Let 𝑇 be a tree set of separations of 𝐺. Then 𝐺
has a tree-decomposition (𝒯,𝒱) such that:

• 𝑇 is precisely the set of separations of 𝐺 associated with the edges of 𝒯;
• if 𝑇 is invariant under the automorphisms of 𝐺, then (𝒯,𝒱) is canonical.

2.6.2. Bipartitions of a set

Given a set 𝑉, the subuniverse of 𝑆(𝑉 ) consisting of only those set separations
(𝐴,𝐵) where 𝐴 and 𝐵 are disjoint is called the separation system of bipartitions
of 𝑉, we denote it by ℬ(𝑉 ). Note that the only small bipartition is (∅, 𝑉 ) and no
degenerate bipartitions exist unless 𝑉 is empty.

For separations of this type, throughout the literature, often only one of the
two sets, 𝐴 or 𝐵, is denoted. In fact, a considerable branch of tangle theory is
dedicated to tangles and branch-decompositions of connectivity systems, which have
their origin in matroid theory [46]. A connectivity system is a submodular function
𝜆∶ 2𝐸 → ℤ defined on the power set of some finite set 𝐸 which is invariant under
complementation, i.e., 𝜆(𝑋) = 𝜆(𝐸 ⧵ 𝑋) for all 𝑋 ⊆ 𝐸.

In the language of abstract separation systems, connectivity systems are (up
to adding a large constant to the connectivity fuction to make it non-negative)
universes of bipartitions equipped with a submodular order function. In this thesis
we will follow the set-separation notation for bipartitions.
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Part I.

Representing a single tangle indirectly
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3. Tangles are decided by weighted vertex sets

In this chapter we show, that every tangle in a graph is determined by
a weighting of the vertices. This is based on [36] and joint work with
Christian Elbracht and Jakob Kneip.

The tangles in a graph 𝐺 can be used to locate, and thereby capture the essence of,
highly connected substructures in 𝐺 in that every such substructure defines a tangle
in 𝐺 by orienting each low-order separation of 𝐺 towards the side containing most or
all of that substructure. If some tangle in 𝐺 contains the separation (𝐴,𝐵), we think
of 𝐴 and 𝐵 as the ‘small’ and the ‘big’ side of (𝐴,𝐵) in that tangle, respectively.
The main result of this chapter will make this intuition concrete.

As a concrete example, if 𝐺 contains an 𝑛 × 𝑛-grid for large 𝑛, then the vertex
set of that grid defines a tangle 𝜏 in 𝐺 as follows. Take note that no separation of
low order can divide the grid into two parts of roughly equal size: If the grid is
large enough then at least 90% of its vertices, say, will lie on the same side of such
a separation. Orienting towards that side all the separations of order < 𝑘 for some
fixed 𝑘 much smaller than 𝑛 then gives a tangle 𝜏. In this way, the vertex set of the
𝑛 × 𝑛-grid ‘determines 𝜏 by majority vote’.

In [26] Diestel raised the question whether all tangles in graphs arise in the above
fashion, that is, whether all graph tangles are decided by majority vote by some
subset of the vertices:

Problem 3.1. Given a 𝑘-tangle 𝜏 in a graph 𝐺, is there always a set 𝑋 of vertices
such that a separation (𝐴,𝐵) of order < 𝑘 lies in 𝜏 if and only if |𝐴 ∩ 𝑋| < |𝐵 ∩ 𝑋|?

A partial answer to this was given in [32], where Elbracht showed that such a set
𝑋 always exists if 𝐺 is (𝑘−1)-connected and has at least 4(𝑘−1) vertices. However,
Elbracht’s approach relies heavily on the (𝑘 − 1)-connectedness of the graph and
offers no line of attack for the general problem. Finding an answer for arbitrary
graphs appears to be hard.

If a tangle in 𝐺 is decided by some vertex set 𝑋 by majority vote, this set 𝑋 can
be used as an oracle for that tangle, allowing one to store complete information
about the complex structure of a tangle using a set of size at most |𝑉 |. On the other
hand, if there were tangles without such a decider set, this would mean that tangles
are a fundamentally more general concept than concrete highly cohesive subsets,
not just an indirect way of capturing them.

In this chapter, we consider a fractional version of Diestel’s question and answer
it affirmatively, making precise the notion that 𝐵 is the ‘big’ side of a separation
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3. Tangles are decided by weighted vertex sets

(𝐴,𝐵) ∈ 𝜏: given a 𝑘-tangle 𝜏 in 𝐺, rather than finding a vertex set 𝑋 which decides
𝜏 by majority vote, we find a weight function 𝑤∶ 𝑉 (𝐺) → ℕ on the vertices such
that for all separations (𝐴,𝐵) of order < 𝑘 we have (𝐴,𝐵) ∈ 𝜏 if and only if the
vertices in 𝐵 have higher total weight than those in 𝐴.

Thus, we show that every graph tangle is decided by some weighted set of vertices.
This weight function, or weighted set of vertices, can then serve as an oracle for
that tangle in the same way that a vertex set deciding the tangle by majority vote
would. For any tangle, the existence of such a weight function with values in { 0, 1 }
is equivalent to the existence of a vertex set 𝑋 deciding that tangle by majority
vote.

Geelen [45] pointed out that the analogue of Diestel’s question for tangles in
matroids is false: there are matroid tangles which cannot be decided by majority
vote, not even when considering a fractional version of the problem. Geelen’s
construction of such a matroid tangle is the matroid version of an example given in
Section 3.2, where we show that another variant of tangles may fail to admit such a
weight function as well.

In the next section we will formally define separations and tangles, and formulate
and prove our main theorem. Following that, we show that the same arguments are
also applicable to edge tangles of graphs, a relative of the tangles usually considered,
and prove our main result also for this type of tangle.

3.1. Weighted deciders

Recall that a separation of a graph 𝐺 = (𝑉 ,𝐸) is a pair (𝐴,𝐵) with 𝐴∪𝐵 = 𝑉 such
that 𝐺 contains no edge between 𝐴⧵𝐵 and 𝐵⧵𝐴, and the order of a separation (𝐴,𝐵)
is the size |𝐴 ∩ 𝐵| of its separator 𝐴 ∩ 𝐵. Furthermore, for an integer 𝑘, a 𝑘-tangle
in 𝐺 is a set consisting of exactly one of (𝐴,𝐵) and (𝐵,𝐴) for every separation
(𝐴,𝐵) of 𝐺 of order < 𝑘, with the additional property that no three ‘small’ sides of
separations in 𝜏 cover 𝐺, that is, that there are no (𝐴1, 𝐵1), (𝐴2, 𝐵2), (𝐴3, 𝐵3) ∈ 𝜏
for which 𝐺 = 𝐺[𝐴1] ∪ 𝐺[𝐴2] ∪ 𝐺[𝐴3].

Our main result is the following:

Theorem 1. Let 𝐺 = (𝑉 ,𝐸) be a finite graph and 𝜏 a 𝑘-tangle in 𝐺. Then there
exists a function 𝑤∶ 𝑉 → ℕ such that a separation (𝐴,𝐵) of 𝐺 of order < 𝑘 lies in
𝜏 if and only if 𝑤(𝐴) < 𝑤(𝐵), where 𝑤(𝑈) ≔ ∑𝑢∈𝑈 𝑤(𝑢) for 𝑈 ⊆ 𝑉.

We shall prove Theorem 1 in the remainder of this section. Our general strategy
will be as follows: we define a partial order on the separations of 𝐺 and consider the
set of those separations of the 𝑘-tangle 𝜏 that are maximal in this partial order. For
these separations we will be able to show that, on average, their separators divide
each other so that they lie more on the ‘big’ side of each other, where ‘big’ is the
big side according to 𝜏. This will enable us to use a result from linear programming
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3.1. Weighted deciders

to find a weight function assigning weights to the vertices of these separators so
that this weight function decides all these maximal separations of 𝜏 correctly. The
nature of the partial order will then ensure that this weight function in fact decides
all separations in 𝜏 correctly.

For a graph 𝐺 there is a partial order on the separations of 𝐺 given by letting
(𝐴,𝐵) ⩽ (𝐶,𝐷) if and only if 𝐴 ⊆ 𝐶 and 𝐵 ⊇ 𝐷. One of the main ingredients for
the proof of Theorem 1 is the following observation about those separations in a
tangle 𝜏 that are maximal in 𝜏 with respect to this partial order. It says, roughly,
that they divide each other’s separators so that, on average, those separators lie
more on the big side of the separation than on the small side, according to the
tangle.

Lemma 3.2. For every 𝑘-tangle 𝜏 in a graph 𝐺 and distinct maximal elements
(𝐴,𝐵), (𝐶,𝐷) of 𝜏 we have |𝐵 ∩ (𝐶 ∩ 𝐷)|+|𝐷 ∩ (𝐴 ∩ 𝐵)| > |𝐴 ∩ (𝐶 ∩ 𝐷)|+|𝐶 ∩ (𝐴 ∩ 𝐵)|.

Proof. Let 𝜏 be a 𝑘-tangle in 𝐺 = (𝑉 ,𝐸), and let (𝐴,𝐵) and (𝐶,𝐷) be distinct
maximal elements of 𝜏. Observe that (𝐴 ∪ 𝐶 , 𝐵 ∩ 𝐷) is a separation of 𝐺 as well.
In fact this separation is the supremum of (𝐴,𝐵) and (𝐶,𝐷) in the partial order.
Therefore, 𝜏 cannot contain (𝐴 ∪ 𝐶 , 𝐵 ∩ 𝐷) by the assumed maximality of (𝐴,𝐵)
and (𝐶,𝐷) in 𝜏. On the other hand 𝜏 cannot contain (𝐵 ∩ 𝐷 , 𝐴 ∪ 𝐶) either since
𝐴, 𝐶, and 𝐵 ∩ 𝐷 together cover 𝐺. Consequently, since 𝜏 is a 𝑘-tangle, we must
have |(𝐴 ∪ 𝐶) ∩ (𝐵 ∩ 𝐷)| ⩾ 𝑘.

Recall that |𝐴 ∩ 𝐵| < 𝑘 and |𝐶 ∩ 𝐷| < 𝑘, since 𝜏 is a 𝑘-tangle. Observe additionally
that the order of separations if modular, that is,

|𝐴 ∩ 𝐵| + |𝐶 ∩ 𝐷| = |(𝐴 ∪ 𝐶) ∩ (𝐵 ∩ 𝐷)| + |(𝐴 ∩ 𝐶) ∩ (𝐵 ∪ 𝐷)| .

The above inequalities thus imply that |(𝐴 ∩ 𝐶) ∩ (𝐵 ∪ 𝐷)| < 𝑘, and hence in par-
ticular that |(𝐴 ∩ 𝐶) ∩ (𝐵 ∪ 𝐷)| < |(𝐴 ∪ 𝐶) ∩ (𝐵 ∩ 𝐷)|. Adding |𝐴 ∩ 𝐵 ∩ 𝐶 ∩𝐷| to
both sides proves the claim.

Additionally, we shall use a result from linear programming: Tucker’s Theorem, a
close relative of the Farkas Lemma. For a vector 𝑥 ∈ ℝ𝑛 we use the usual shorthand
notation 𝑥 ⩾ 0 to indicate that all entries of 𝑥 are non-negative, and similarly write
𝑥 > 0 if all entries of 𝑥 are strictly greater than zero.

Lemma 3.3 (Tucker’s Theorem [67]). Let 𝐾 ∈ ℝ𝑛×𝑛 be a skew-symmetric matrix,
i.e., 𝐾𝑇 = −𝐾. Then there exists a vector 𝑥 ∈ ℝ𝑛 such that

𝐾𝑥 ⩾ 0 and 𝑥 ⩾ 0 and 𝑥 +𝐾𝑥 > 0.

We are now ready to prove Theorem 1.

Theorem 1. Let a finite graph 𝐺 = (𝑉 ,𝐸) and a 𝑘-tangle 𝜏 in 𝐺 be given. Since
𝐺 is finite it suffices to find a weight function 𝑤∶ 𝑉 → ℝ⩾0 such that a separation

21



3. Tangles are decided by weighted vertex sets

(𝐴,𝐵) of order < 𝑘 lies in 𝜏 precisely if 𝑤(𝐴) < 𝑤(𝐵); by the density of the rationals
in the reals, this 𝑤 can then be turned into such a weight function with values in ℕ.

For this it is enough to find a function 𝑤∶ 𝑉 → ℝ⩾0 such that 𝑤(𝐴) < 𝑤(𝐵) for
all maximal elements (𝐴,𝐵) of 𝜏: for if 𝑤(𝐴) < 𝑤(𝐵) and (𝐶,𝐷) ⩽ (𝐴,𝐵), then

𝑤(𝐶) ⩽ 𝑤(𝐴) < 𝑤(𝐵) ⩽ 𝑤(𝐷).

So let us show that such a weight function 𝑤 exists.
To this end let (𝐴1, 𝐵1),… , (𝐴𝑛, 𝐵𝑛) be the maximal elements of 𝜏 and set

𝑚𝑖𝑗 ≔ ∣𝐵𝑖 ∩ (𝐴𝑗 ∩ 𝐵𝑗)∣ − ∣𝐴𝑖 ∩ (𝐴𝑗 ∩ 𝐵𝑗)∣

for 𝑖, 𝑗 ⩽ 𝑛. Let 𝑀 be the matrix (𝑚𝑖𝑗)𝑖,𝑗⩽𝑛
. Observe that, by Lemma 3.2, we have

𝑚𝑖𝑗 + 𝑚𝑗𝑖 > 0 for all 𝑖 ≠ 𝑗, and hence the matrix 𝑀 + 𝑀𝑇 has positive entries
everywhere but on its diagonal (where it has zeros). We further define

𝐾′ ≔ 𝑀 +𝑀𝑇

2
and 𝐾 ≔ 𝑀 −𝐾′.

Then 𝐾 is skew-symmetric, that is, 𝐾𝑇 = −𝐾. Let 𝑥 = (𝑥1,… , 𝑥𝑛)𝑇 be the vector
obtained by applying Lemma 3.3 to 𝐾. We define a weight function 𝑤∶ 𝑉 → ℝ by

𝑤(𝑣) ≔ ∑
𝑖 ∶ 𝑣∈𝐴𝑖∩𝐵𝑖

𝑥𝑖 .

Note that 𝑤 has its image in ℝ⩾0, and observe further that, for 𝑌 ⊆ 𝑉, we have

𝑤(𝑌 ) = ∑
𝑦∈𝑌

𝑤(𝑦) =
𝑛
∑
𝑖=1

𝑥𝑖 ⋅ |𝑌 ∩ (𝐴𝑖 ∩ 𝐵𝑖)| .

With this, for 𝑖 ⩽ 𝑛, we have

𝑤(𝐵𝑖) − 𝑤(𝐴𝑖) =
𝑛
∑
𝑗=1

𝑥𝑗 ⋅ (∣𝐵𝑖 ∩ (𝐴𝑗 ∩ 𝐵𝑗)∣ − ∣𝐴𝑖 ∩ (𝐴𝑗 ∩ 𝐵𝑗)∣)

=
𝑛
∑
𝑗=1

𝑥𝑗 ⋅ 𝑚𝑖𝑗

= (𝑀𝑥)𝑖 ,

where (𝑀𝑥)𝑖 denotes the 𝑖-th coordinate of 𝑀𝑥. Thus 𝑤 is the desired weight
function if we can show that 𝑀𝑥 > 0, that is, if all entries of 𝑀𝑥 are positive.

From 𝑥 + 𝐾𝑥 > 0 we know that at least one entry of 𝑥 is positive. Let us first
consider the case that 𝑥 has two or more positive entries. Then 𝐾′𝑥 > 0 since 𝐾′

has positive values everywhere but on the diagonal, and hence

𝑀𝑥 = (𝐾 +𝐾′) 𝑥 > 0
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3.2. Edge tangles

since 𝐾𝑥 ⩾ 0. Therefore, in this case, 𝑤 is the desired weight function.
Consider now the case that exactly one entry of 𝑥, say 𝑥𝑖, is positive, and that 𝑥

is zero in all other coordinates. Then for 𝑗 ≠ 𝑖 we have (𝑀𝑥)𝑗 ⩾ (𝐾′𝑥)𝑗 > 0 and
thus 𝑤(𝐵𝑗) − 𝑤(𝐴𝑗) = (𝑀𝑥)𝑗 > 0. However (𝑀𝑥)𝑖 = 0 and thus 𝑤(𝐴𝑖) = 𝑤(𝐵𝑖),
so 𝑤 is not yet as claimed. To finish the proof it remains to modify 𝑤 so that
𝑤(𝐴𝑖) < 𝑤(𝐵𝑖) while ensuring that we still have 𝑤(𝐴𝑗) < 𝑤(𝐵𝑗) for 𝑗 ≠ 𝑖. This can
be achieved by picking a sufficiently small 𝜀 > 0 so that 𝑤(𝐴𝑗) + 𝜀 < 𝑤(𝐵𝑗) for all
𝑗 ≠ 𝑖, picking any 𝑣 ∈ 𝐵𝑖 ⧵ 𝐴𝑖, and increasing the value of 𝑤(𝑣) by 𝜀.

We conclude with the remark that Theorem 1 and its proof extend to tangles in
hypergraphs without any changes. Even more generally, the following more abstract
version of Theorem 1 can be established with exactly the same proof:

Theorem 2. Let 𝑈 be a universe of set separations of a finite ground-set 𝑉 with
order function |(𝐴,𝐵)| ≔ |𝐴 ∩ 𝐵|. Then for any regular 𝑘-profile 𝑃 in 𝑈 there exists
a function 𝑤∶ 𝑉 → ℕ such that a separation (𝐴,𝐵) of order < 𝑘 lies in 𝑃 if and
only if 𝑤(𝐴) < 𝑤(𝐵).

Observe that if 𝐺 = (𝑉 ,𝐸) is a (hyper-)graph then the set 𝑈 of all separations of
𝐺 is such a universe of set separations. Moreover, every 𝑘-tangle 𝜏 of 𝐺 is also a
regular 𝑘-profile of 𝑈. (See [26] for more on the relation between graph tangles and
profiles.) Therefore, Theorem 2 indeed applies to tangles in graphs and hypergraphs
as well.

Theorem 2 holds with the same proof as Theorem 1, since Lemma 3.2 holds in
this setting too: the only difference being that to see that (𝐵∩𝐷 , 𝐴∪𝐶) cannot lie
in the profile at hand one now has to use the definition of a regular 𝑘-profile rather
than the fact that 𝐴, 𝐶, and 𝐵 ∩𝐷 cover 𝐺.

3.2. Edge tangles

A related object of study (cf. [27,61]) to the (vertex) tangles discussed above are the
edge tangles of a graph. In this context one considers the edge-cuts of a (multi-)graph
𝐺 = (𝑉 ,𝐸), i.e., bipartitions (𝐴,𝐵) of 𝑉. The order of a cut (𝐴,𝐵) is the number
of edges in 𝐺 that are incident with vertices of both 𝐴 and 𝐵. In this context
one considers the edge-cuts of a (multi-)graph 𝐺 = (𝑉 ,𝐸), i.e., bipartitions (𝐴,𝐵)
of 𝑉. The order of a cut (𝐴,𝐵) is the number of edges in 𝐺 that are incident
with vertices of both 𝐴 and 𝐵. For an integer 𝑘, a 𝑘-edge-tangle of 𝐺 is a set 𝜏
consisting of exactly one (𝐴,𝐵) or (𝐵,𝐴) for every cut (𝐴,𝐵) of order < 𝑘, with
the additional properties that 𝜏 has no subset { (𝐴1, 𝐵1), (𝐴2, 𝐵2), (𝐴3, 𝐵3) } such
that 𝐵1 ∩ 𝐵2 ∩ 𝐵3 = ∅, and that 𝜏 contains no cut (𝐴,𝐵) for which 𝐵 is incident
with fewer than 𝑘 edges of 𝐺.

In very much the same way as above we can prove the following theorem:

23
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Theorem 3. Let 𝐺 = (𝑉 ,𝐸) be a finite (multi-)graph and 𝜏 a 𝑘-edge-tangle in 𝐺.
Then there exists a function 𝑤∶ 𝑉 → ℕ such that a cut (𝐴,𝐵) of 𝐺 of order < 𝑘
lies in 𝜏 if and only if 𝑤(𝐴) < 𝑤(𝐵).

We shall prove a more general version of this theorem where we allow 𝐺 to be a
graph with ℝ⩾0-weighted edges. We consider edges of weight 0 as indistinguishable
from non-edges. Consequently, rather than a graph with weighted edges, we will
just consider a pair (𝑉 , 𝑒) of a finite set 𝑉 together with a symmetric function
𝑒∶ 𝑉 2 → ℝ⩾0, which we shall call a edge weighting. The order of a bipartition (𝐴,𝐵)
we define as |(𝐴,𝐵)| ≔ ∑(𝑢,𝑣)∈𝐴×𝐵 𝑒(𝑢, 𝑣). Note that this function is submodular
in the sense that

|(𝐴,𝐵)| + |(𝐶,𝐷)| ⩾ |(𝐴 ∪ 𝐵,𝐶 ∩ 𝐷)| + |(𝐴 ∩ 𝐵,𝐶 ∪ 𝐷)|.

For any positive 𝑟 an 𝑟-profile in (𝑉 , 𝑒) is a set 𝜏 consisting of exactly one of
(𝐴,𝐵) or (𝐵,𝐴) for every bipartition (𝐴,𝐵) of 𝑉 of order < 𝑟, such that 𝜏 has no
subset of the form { (𝐴,𝐵), (𝐶,𝐷), (𝐵 ∩ 𝐷,𝐴 ∪ 𝐶) }. We shall prove the following
theorem, which directly implies Theorem 3:

Theorem 4. Let (𝑉 , 𝑒) be an edge weighting and 𝜏 an 𝑟-profile in (𝑉 , 𝑒). Then
there exists a function 𝑤∶ 𝑉 → ℕ such that a bipartition (𝐴,𝐵) of 𝑉 of order < 𝑟
lies in 𝜏 if and only if 𝑤(𝐴) < 𝑤(𝐵).

The main idea for proving this theorem is to first find an appropriate weighting
of the edges by the same principles as in Theorem 1 and to then transform it into a
weighted vertex decider. So let us first show an analogue of Lemma 3.2 for edge
weightings. For this, we define a partial order on the bipartitions of 𝑉 as in the
previous section: by letting (𝐴,𝐵) ⩽ (𝐶,𝐷) if and only if 𝐴 ⊆ 𝐶 (and thus 𝐵 ⊇ 𝐷).
Using this partial order we can prove the following analogue of Lemma 3.2:

Lemma 3.4. For every 𝑟-profile 𝜏 in a edge weighting (𝑉 , 𝑒) and distinct maximal
elements (𝐴,𝐵), (𝐶,𝐷) of 𝜏 we have

∑
(𝑢,𝑣)∈𝐵2 ∩ (𝐶×𝐷)

𝑒(𝑢, 𝑣) + ∑
(𝑢,𝑣)∈𝐷2 ∩ (𝐴×𝐵)

𝑒(𝑢, 𝑣) > ∑
(𝑢,𝑣)∈𝐴2 ∩ (𝐶×𝐷)

𝑒(𝑢, 𝑣) + ∑
(𝑢,𝑣)∈𝐶2 ∩ (𝐴×𝐵)

𝑒(𝑢, 𝑣) .

Proof. The bipartition (𝐴 ∪ 𝐶, 𝐵 ∩ 𝐷) of 𝑉 is strictly larger in the partial order
than the maximal elements (𝐴,𝐵) and (𝐶,𝐷) and hence cannot lie in 𝜏. However,
by the definition of an 𝑟-profile, 𝜏 cannot contain (𝐵 ∩ 𝐷, 𝐴 ∪ 𝐶) either. Thus,
we must have |(𝐴 ∪ 𝐶, 𝐵 ∩ 𝐷)| ⩾ 𝑟, from which it follows by submodularity that
|(𝐴 ∩ 𝐶, 𝐵 ∪ 𝐷)| < 𝑟. Combining these two inequalities, using the definition of
order and adding ∑𝑢∈𝐴∩𝐶 ∑𝑣∈𝐵∩𝐷 𝑒(𝑢, 𝑣) to both sides proves the claim.

We are now ready to prove Theorem 4:
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Proof of Theorem 4. As in the proof of Theorem 1, it suffices to find a suitable weight
function on pairs with values in ℝ⩾0. We will begin by finding a weight function
𝑤∶ 𝑉 2 → ℝ⩾0 such that we have 𝑤(𝐴) ⩽ 𝑤(𝐵) for all (𝐴,𝐵) ∈ 𝜏 and 𝑤(𝐴) < 𝑤(𝐵)
for all but possibly one maximal element of 𝜏, where 𝑤(𝐴) = ∑(𝑢,𝑣)∈𝐴2 𝑤(𝑢, 𝑣).
Subsequently we use this to construct a suitable function 𝑤∶ 𝑉 → ℝ⩾0.

Enumerate the maximal elements of 𝜏 as (𝐴1, 𝐵1),… , (𝐴𝑛, 𝐵𝑛). For every two
maximal elements (𝐴𝑖, 𝐵𝑖), (𝐴𝑗, 𝐵𝑗) let

𝑚𝑖𝑗 ≔ ∑
(𝑢,𝑣)∈𝐵2

𝑖 ∩ 𝐴𝑗×𝐵𝑗

𝑒(𝑢, 𝑣) − ∑
(𝑢,𝑣)∈𝐴2

𝑖 ∩𝐴𝑗×𝐵𝑗

𝑒(𝑢, 𝑣).

Let 𝑀 be the matrix (𝑚𝑖𝑗)𝑖,𝑗⩽𝑛
. Observe that, by Lemma 3.4, 𝑀 +𝑀𝑇 has positive

entries everywhere but on the diagonal, where it is zero. We are now in the same
situation as in the proof of Theorem 1 and can find some vector 𝑥 such that either
(𝑀𝑥)𝑖 > 0 on all 𝑖, or 𝑥 has exactly one non-zero entry, say 𝑥𝑖, and (𝑀𝑥)𝑗 > 0 for
all 𝑗 ≠ 𝑖.

In either case, given a pair of vertices (𝑢, 𝑣) let

𝑤(𝑢, 𝑣) = 𝑒(𝑢, 𝑣)⎛⎜
⎝

∑
𝑗∶ (𝑢,𝑣)∈𝐴𝑗×𝐵𝑗

𝑥𝑗 + ∑
𝑗∶ (𝑢,𝑣)∈𝐵𝑗×𝐴𝑗

𝑥𝑗
⎞⎟
⎠

= ∑
𝑗

(𝑢,𝑣)∈(𝐴𝑗×𝐵𝑗)∪(𝐵𝑗×𝐴𝑗)

𝑥𝑗 𝑒(𝑢, 𝑣).

Note that 𝑤 is symmetric. Define 𝑤 as 𝑤(𝑣) = ∑𝑢∈𝑉 𝑤(𝑣, 𝑢). We now have
𝑤(𝐵𝑖) − 𝑤(𝐴𝑖) = 2(𝑀𝑥)𝑖, for indeed

𝑤(𝐵𝑖) − 𝑤(𝐴𝑖)
= ∑

𝑢∈𝐵𝑖

∑
𝑣∈𝑉

𝑤(𝑢, 𝑣) − ∑
𝑢∈𝐴𝑖

∑
𝑣∈𝑉

𝑤(𝑢, 𝑣)

= ∑
(𝑢,𝑣)∈𝐵2

𝑖

𝑤(𝑢, 𝑣) − ∑
(𝑢,𝑣)∈𝐴2

𝑖

𝑤(𝑢, 𝑣)

= ∑
(𝑢,𝑣)∈𝐵2

𝑖

∑
𝑗

(𝑢,𝑣)∈(𝐴𝑗×𝐵𝑗)∪(𝐵𝑗×𝐴𝑗)

𝑥𝑗 𝑒(𝑢, 𝑣) − ∑
(𝑢,𝑣)∈𝐴2

𝑖

∑
𝑗

(𝑢,𝑣)∈(𝐴𝑗×𝐵𝑗)∪(𝐵𝑗×𝐴𝑗)

𝑥𝑗 𝑒(𝑢, 𝑣)

= 2∑
𝑗

⎛⎜
⎝

∑
(𝑢,𝑣)∈𝐵2

𝑖∩(𝐴𝑗×𝐵𝑗)

𝑥𝑗 𝑒(𝑢, 𝑣) − ∑
(𝑢,𝑣)∈𝐴2

𝑖∩(𝐴𝑗×𝐵𝑗)

𝑥𝑗 𝑒(𝑢, 𝑣) ⎞⎟
⎠

= 2(𝑀𝑥)𝑖.

Thus either 𝑤(𝐵𝑖) > 𝑤(𝐴𝑖) for all maximal elements of 𝜏, from which the claim
follows directly, or there is a single maximal element (𝐴𝑖, 𝐵𝑖) of 𝜏 such that 𝑤(𝐵𝑖) =
𝑤(𝐴𝑖) and 𝑤(𝐵𝑗) > 𝑤(𝐴𝑗) for all others. However, as in the proof of Theorem 1, in
the latter case we can pick an arbitrary vertex 𝑣 ∈ 𝐵𝑖 and increase 𝑤(𝑣) by some
small 𝜀 > 0 to achieve 𝑤(𝐵𝑖) > 𝑤(𝐴𝑖) while keeping 𝑤(𝐵𝑗) > 𝑤(𝐴𝑗) for all other
maximal elements of 𝜏.
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3. Tangles are decided by weighted vertex sets

Remarkably, and in contrast to Theorem 1, Theorem 3 does not in fact extend to
hypergraphs. To demonstrate this let us recall the relevant definitions.

A hypergraph 𝐻 = (𝑉 ,𝐸) consists of a vertex set 𝑉 together with a set 𝐸 ⊆ 2𝑉
of hyperedges. An (edge) cut of a hypergraph 𝐻 = (𝑉 ,𝐸) is a bipartition (𝐴,𝐵)
of 𝑉. The order of such an edge cut (𝐴,𝐵) is the number of hyperedges of 𝐻 that
are incident with vertices from both 𝐴 and 𝐵.

For an integer 𝑘, a 𝑘-edge-tangle of 𝐻 is a set 𝜏 consisting of exactly one (𝐴,𝐵) or
(𝐵,𝐴) for every cut (𝐴,𝐵) of order < 𝑘, with the additional properties that 𝜏 has
no subset { (𝐴1, 𝐵1), (𝐴2, 𝐵2), (𝐴3, 𝐵3) } such that 𝐵1 ∩ 𝐵2 ∩ 𝐵3 = ∅, and that 𝜏
contains no cut (𝐴,𝐵) for which 𝐵 is incident with fewer than 𝑘 hyperedges of 𝐻.

A weighted decider for some 𝑘-edge-tangle 𝜏 of a hypergraph 𝐻 = (𝑉 ,𝐸) is
a function 𝑤∶ 𝑉 → ℕ such that a cut (𝐴,𝐵) of 𝐻 of order < 𝑘 lies in 𝜏 if and
only if 𝑤(𝐴) < 𝑤(𝐵), where we use the shorthand notation 𝑤(𝑈) ≔ ∑𝑢∈𝑈 𝑤(𝑢)
for 𝑈 ⊆ 𝑉.

Theorem 3 then asserts that if 𝐻 is a simple graph, i.e., if every hyperedge in 𝐸
has size 2, then every 𝑘-edge-tangle of 𝐻 has such a weighted decider. We are now
going to construct an example demonstrating that this may fail for hypergraphs 𝐻
that are not simple graphs.

Example 3.5. For some natural number 𝑘 ⩾ 6 let ℓ be an integer with 3 ⩽ ℓ ⩽ 𝑘
2 .

Let 𝑉 be the set of all ℓ-element subsets of [𝑘] = { 1,… , 𝑘 }. Let the set 𝐸 of
hyperedges consist of, for each 𝑖 ∈ [𝑘], the set of all 𝑣 ∈ 𝑉 that contain 𝑖.

Note that each of these 𝑘 many hyperedges of 𝐻 has size (𝑘−1
ℓ−1), making 𝐻 a

uniform ℓ-regular hypergraph.

We now show that each hypergraph of this form has a tangle without a decider
set.

Theorem 3.6. Let 𝐻 be as in Example 3.5. Then 𝐻 has a 𝑘-edge-tangle with no
weighted decider.

Proof. Let 𝑆𝑘 denote the set of all cuts of 𝐻 of order < 𝑘. For a set 𝐴 ⊆ 𝑉 we
note that ⋃𝐴 is the set ⋃𝑣∈𝐴 𝑣, which is a subset of [𝑘]. Observe that for every cut
(𝐴,𝐵) of 𝐻 at most one of ⋃𝐴 and ⋃𝐵 can be a proper subset of [𝑘]. Note further
that a cut (𝐴,𝐵) of 𝐻 lies in 𝑆𝑘 if and only if at least one of the 𝑘 hyperedges of 𝐻
does not meet both 𝐴 and 𝐵, which is the case precisely if one of ⋃𝐴 and ⋃𝐵 is a
proper subset of [𝑘].

We can therefore define

𝜏 ≔ { (𝐴,𝐵) ∈ 𝑆𝑘 ∶ ⋃𝐴 ⊊ [𝑘] } .

Let us show that 𝜏 is a 𝑘-edge-tangle of 𝐻 with no weighted decider.
To see that 𝜏 is a 𝑘-edge-tangle we note that by the above observation 𝜏 con-

tains exactly one of (𝐴,𝐵) or (𝐵,𝐴) for every cut (𝐴,𝐵) ∈ 𝑆𝑘. Furthermore if
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3.2. Edge tangles

(𝐴1, 𝐵1), (𝐴2, 𝐵2), (𝐴3, 𝐵3) ∈ 𝜏 then any element of 𝑉 containing at least one point
each from [𝑘] ⧵ ⋃𝐴1, from [𝑘] ⧵ ⋃𝐴2, and from [𝑘] ⧵ ⋃𝐴3 lies in 𝐵1 ∩𝐵2 ∩𝐵3, which
is hence non-empty since such a 𝑣 ∈ 𝑉 exists by ℓ ⩾ 3. Finally for each (𝐴,𝐵) ∈ 𝜏
the set 𝐵 is incident with each hyperedge of 𝐻 since ⋃𝐵 = [𝑘]. Thus 𝜏 is indeed
a 𝑘-edge-tangle.

Finally, let us show that 𝜏 has no weighted decider. Suppose for a contradiction
that some weighted decider 𝑤∶ 𝑉 → ℕ for 𝜏 exists. For each 𝑖 ∈ [𝑘] consider the cut
(𝐴𝑖, 𝐵𝑖), where

𝐴𝑖 ≔ {𝑣 ∈ 𝑉 ∶ 𝑖 ∉ 𝑣 } and 𝐵𝑖 ≔ {𝑣 ∈ 𝑉 ∶ 𝑖 ∈ 𝑣 } ,

and note that (𝐴𝑖, 𝐵𝑖) ∈ 𝜏. Since 𝑤 is a weighted decider for 𝜏 we have 𝑤(𝐵𝑖) > 𝑤(𝐴𝑖)
for each 𝑖 ∈ [𝑘]. We therefore have

∑
𝑖∈[𝑘]

(𝑤(𝐵𝑖) − 𝑤(𝐴𝑖)) > 0 ,

since each term in the sum is positive. By counting the instances of 𝑤(𝑣) occurring
in the sum for each 𝑣 ∈ 𝑉 we find that

∑
𝑖∈[𝑘]

(𝑤(𝐵𝑖) − 𝑤(𝐴𝑖)) = ∑
𝑣∈𝑉

𝑤(𝑣) ⋅ (|{ 𝑖 ∈ [𝑘] ∶ 𝑖 ∈ 𝑣 }| − |{ 𝑖 ∈ [𝑘] ∶ 𝑖 ∉ 𝑣 }|) ,

since 𝑣 ∈ 𝐵𝑖 if and only if 𝑖 ∈ 𝑣, and otherwise 𝑣 ∈ 𝐴𝑖. The left-hand side of this
equation is positive. However, in contradiction to this, no term of the right-hand
sum is greater than zero since we have by ℓ ⩽ 𝑘

2 that

|{ 𝑖 ∈ [𝑘] ∶ 𝑖 ∈ 𝑣 }| − |{ 𝑖 ∈ [𝑘] ∶ 𝑖 ∉ 𝑣 }| = ℓ − (𝑘 − ℓ) ⩽ 0 .

Therefore there can be no weighted decider for 𝜏.

A construction analogous to Example 3.5 was found independently by Geelen [45]
in the setting of matroids, who used it to show that matroids, too, can have tangles
with no weighted decider.

Finally, let us remark that Example 3.5 can also be used to show that allowing
weighted deciders to take values in ℝ rather than ℕ does not suffice to guarantee
their existence for edge tangles of hypergraphs: for 𝑘 = 2ℓ the tangle described in
Theorem 3.6 has no weighted decider with real-valued and possibly negative weights
either, with the same proof.
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4. Dual tangles on a bipartite graph

In this chapter we present the dual separation systems and tangles that
naturally occur on a bipartite graph. This is based on part of [24] which
is still in the process of writing in collaboration with Christian Elbracht,
Reinhard Diestel, and Joshua Erde.

Many relations in our everyday lives can naturally be expressed in the form of a
bipartite graph. Consider, for example, in an online shop the containment-relation
between products and purchases, or for a collection of recipes the ‘is an ingredient’-
relation between recipes and items of produce. Given such a context, we usually
understand how ‘cohesive’ a subset of one class, 𝑋, is in terms of elements of the
other class, 𝑌, which bear a common relation to them. For example, flour, milk,
eggs, sugar, and baking powder obviously form a coherent group of ingredients, as
witnessed by them belonging to the recipes for various kinds of cake. The recipes
for cakes, in turn, form a coherent group of recipes as witnessed by those common
ingredients.

In this chapter we will present a way to formalize tangles on the sides of any given
bipartite graph which captures this concept of duality. It will turn out that the dual
nature of 𝑋 and 𝑌 will allow us to give quite a natural order function on arbitrary
set separations of 𝑋 or 𝑌, which we will prove is submodular. It is then natural to
study the tangle structure of the set of separations of 𝑋 or 𝑌 of order less than 𝑘 for
fixed 𝑘. We will show that a – quite natural – correspondence between separations
of 𝑋 and 𝑌 will extend to a correspondence between the low order tangles of the
separation of 𝑋 and 𝑌, allowing us to relate the tangle structure of 𝑋 with that of 𝑌.

4.1. Tangles on the sides of a bipartite graph

To make what we discussed above precise, let 𝐺 = (𝑉 ,𝐸) be a fixed bipartite
connected graph with partition classes 𝑋 and 𝑌; we will keep these fixed for the
entire chapter. Recall, that we denote by 𝑆(𝑋) the set of all set separations of 𝑋,
that is the set of all sets {𝐴,𝐵 } with 𝐴,𝐵 ⊆ 𝑋 such that 𝐴 ∪ 𝐵 = 𝑋. Similarly,
we denote by 𝑆(𝑌 ) the set of all set separations of 𝑌, and we denote by 𝑆(𝑋) and
𝑆(𝑌 ) the set of oriented separations from 𝑆(𝑋) or 𝑆(𝑌 ) respectively.

Then, the structure of the bipartite graph 𝐺 allow us to relate the separations in
𝑆(𝑋) to the separations in 𝑆(𝑌 ), i.e., we will obtain a dual separation to a given
separation in 𝑆(𝑋). One natural way to do so is as follows: given a separation
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4. Dual tangles on a bipartite graph

(𝐴,𝐵) of 𝑋 there will be some vertices in 𝑌 which are joined in 𝐺 to more vertices
in 𝐴 than in 𝐵, while other vertices in 𝑌 are joined to more vertices in 𝐵 than in
𝐴. This defines a way of partitioning the vertices in 𝑌. So, given (𝐴,𝐵) ∈ 𝑆(𝑋) we
define the separation (𝐴,𝐵)▷ ≔ (𝐴▷

𝐵, 𝐵
▷
𝐴) ∈ 𝑆(𝑌 ) by letting

𝐴▷
𝐵 ≔ {𝑦 ∈ 𝑌 ∶ |𝑁(𝑦) ∩ 𝐴| ⩾ |𝑁(𝑦) ∩ 𝐵| }

and
𝐵▷

𝐴 ≔ {𝑦 ∈ 𝑌 ∶ |𝑁(𝑦) ∩ 𝐴| ⩽ |𝑁(𝑦) ∩ 𝐵| }.

We call (𝐴,𝐵)▷ the shift of (𝐴,𝐵).
Similarly,1 a set separation (𝐶,𝐷) of 𝑌 gives rise to its shift (𝐶,𝐷)◁ ≔ (𝐶◁

𝐷, 𝐷◁
𝐶),

a set separation of 𝑋, via

𝐶◁
𝐷 ≔ {𝑥 ∈ 𝑋 ∶ |𝑁(𝑥) ∩ 𝐶| ⩾ |𝑁(𝑥) ∩ 𝐷| }

and
𝐷◁

𝐶 ≔ {𝑥 ∈ 𝑋 ∶ |𝑁(𝑥) ∩ 𝐶| ⩽ |𝑁(𝑥) ∩ 𝐷| }.

We note that both these shifting operations commute with the natural involutions
on 𝑆(𝑋) and 𝑆(𝑌 ). However, we also note that this operation is not necessarily
idempotent: there may exist (𝐴,𝐵) ∈ 𝑆(𝑋) such that ((𝐴,𝐵)▷)◁ ≠ (𝐴,𝐵).

The map (⋅)▷ ∶ 𝑆(𝑋)→ 𝑆(𝑌 ) induces an inverse ‘pull-back’ map ◁(⋅) ∶ 2𝑆(𝑌 ) →
2𝑆(𝑋), sending every 𝜏 ⊆ 𝑆(𝑌 ) to

◁𝜏 ≔ { (𝐴,𝐵) ∈ 𝑆(𝑋)∶ (𝐴,𝐵)▷ ∈ 𝜏 } ⊆ 𝑆(𝑋).

Similarly, the map (⋅)◁ ∶ 𝑆(𝑌 )→ 𝑆(𝑋) induces a map ▷(⋅) ∶ 2𝑆(𝑋)→ 2𝑆(𝑌 ) sending
every 𝜏 ⊆ 𝑆(𝑋) to

▷𝜏 ≔ { (𝐶,𝐷) ∈ 𝑆(𝑌 )∶ (𝐶,𝐷)◁ ∈ 𝜏 } ⊆ 𝑆(𝑌 ).

The question then arises, under which conditions on a tangle 𝜏 will the subset
▷𝜏 or ◁𝜏 also be a tangle? In order for there to be any interesting tangle structure
we will have to restrict to some subset of 𝑆(𝑋) or 𝑆(𝑌 ), and the most natural way
to do so will be to choose some order function and consider the separations 𝑆𝑘 (𝑋)
or 𝑆𝑘 (𝑌 ) of order less than 𝑘. However, then in order for the pull-back to have
any hope of being a tangle, it must orient every separation in 𝑆𝑘′ (𝑋) or 𝑆𝑘′ (𝑌 ) for
some 𝑘′. Hence, already for this question to make sense, we will need to choose
1Informally, we think of the vertex classes 𝑋,𝑌 of 𝐺 as being its ‘left’ and ‘right’ class, respectively.
Formally, however, {𝑋,𝑌 } is an unordered pair, so the operators (⋅)▷ and (⋅)◁ are formally the
same: they map their argument, an oriented separation of one of the sets 𝑋,𝑌, to an oriented
separation of the other set. It is important, that we never treat 𝑋 and 𝑌 differently: they are
disjoint, but indistinguishable.
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4.1. Tangles on the sides of a bipartite graph

an appropriate order function which behaves nicely with respect to the shifting
operation.

In fact, we will define order functions on 𝑆(𝑋) and 𝑆(𝑌 ) so that shifting a
separation never increases its order. This will guarantee that if 𝜏 orients all the
separations of order less than 𝑘 in 𝑆(𝑋), then ▷𝜏 orients all the separations of
order less than 𝑘 in 𝑆(𝑌 ). Indeed, if (𝐶,𝐷) ∈ 𝑆(𝑌 ) has order less than 𝑘, then
(𝐴,𝐵) ≔ (𝐶,𝐷)◁ ∈ 𝑆(𝑋) has order less than 𝑘 and so precisely one of (𝐴,𝐵) or
(𝐵,𝐴) is in 𝜏 by assumption. Since (𝐵,𝐴) = (𝐷,𝐶)◁ it follows that precisely one
of (𝐶,𝐷) or (𝐷,𝐶) is in ▷𝜏.

Furthermore, these order functions are defined in a particularly natural way,
determined only by the structure of 𝐺. Broadly, the order functions measure in
some way how evenly a separation of 𝑋 or 𝑌 splits the neighbourhood of each vertex
from the appropriate class. For example, in our online shop example, the order of a
separation (𝐴,𝐵) of 𝑉 will be determined by how evenly this separation splits the
set of items bought in each purchase. The more balanced the split, the larger the
contribution of this vertex to the order of the separation. In this way, separations
for which most vertices in the opposite partition class have a clear ‘preference’ of
one side or the other will have low order.

Explicitly, let us define the order function | ⋅ |𝑋 ∶ 𝑆(𝑋) → 1
2ℕ where

|𝐴,𝐵|𝑋 ≔ ∑
𝑦∈𝑌

(min{ |𝑁(𝑦) ∩ 𝐴| , |𝑁(𝑦) ∩ 𝐵| } − |𝑁(𝑦) ∩ 𝐴 ∩ 𝐵|
2

) .

Here the first term will be larger when 𝑁(𝑦) is more evenly split by (𝐴,𝐵). Similarly,
we define | ⋅ |𝑌 ∶ 𝑆(𝑌 ) → 1

2ℕ where

|𝐶,𝐷|𝑌 ≔ ∑
𝑥∈𝑋

(min{ |𝑁(𝑥) ∩ 𝐶| , |𝑁(𝑥) ∩ 𝐷| } − |𝑁(𝑥) ∩ 𝐶 ∩𝐷|
2

) .

Note that these functions are symmetric and non-negative, as required of an order
function for separation systems. Moreover, the function | ⋅ |𝑋 attains its maximum
value on the separation (𝑋,𝑋), and since orientations of all of 𝑆(𝑋) are not
enlightening, we will in the following assume implicitly that any 𝑆𝑘 (𝑋) we consider
does not contain the separation (𝑋,𝑋).

Less obviously, these order functions are submodular, so 𝑆(𝑋) and 𝑆(𝑌 ) equipped
with these functions are submodular universes. Submodularity is a fundamental
property for order functions at the heart of tangle theory, and so we include the
proof even though it is straightforward. However, the reader is invited to skip
the proofs of the next two lemmas at first reading, to remain with the flow of the
narrative.

Proposition 4.1. The order function | ⋅ |𝑋 is submodular.
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4. Dual tangles on a bipartite graph

Proof. We show that | ⋅ |𝑋 is a sum of submodular functions. For this consider, for
𝑦 ∈ 𝑌, the order function on 𝑆(𝑋) given by

|𝐴,𝐵|𝑦 ≔ min{ |𝑁(𝑦) ∩ 𝐴| , |𝑁(𝑦) ∩ 𝐵| } − |𝑁(𝑦) ∩ 𝐴 ∩ 𝐵|
2

and note that |𝐴,𝐵|𝑋 = ∑𝑦∈𝑌 |𝐴,𝐵|𝑦, thus it is enough to show that | ⋅ |𝑦 is
submodular for every 𝑦 ∈ 𝑌. Fix some 𝑦 in 𝑌. For 𝑍 ⊆ 𝑋 we denote 𝑁𝑍 ≔
|𝑁(𝑦) ∩ 𝑍|.

Let (𝐴1, 𝐵1) and (𝐴2, 𝐵2) be separations in 𝑆(𝑋), and suppose without loss of
generality that 𝑁𝐴𝑖

⩽ 𝑁𝐵𝑖
. Let 𝐴′

𝑖 ≔ 𝐴𝑖 ⧵ 𝐵𝑖, 𝐵′
𝑖 ≔ 𝐵𝑖 ⧵ 𝐴𝑖 and 𝑍𝑖 ≔ 𝐴𝑖 ∩ 𝐵𝑖.

Note that |𝐴𝑖, 𝐵𝑖|𝑦 = 𝑁𝐴′
𝑖
+𝑁𝑍𝑖

/2.
We observe that

|𝐴1 ∩ 𝐴2, 𝐵1 ∪ 𝐵2|𝑦 = 𝑁𝐴′
1∩𝐴′

2
+ 1

2
(𝑁𝑍1∩𝑍2

+𝑁𝑍1∩𝐴′
2
+𝑁𝐴′

1∩𝑍2
),

and

|𝐴1 ∪ 𝐴2, 𝐵1 ∩ 𝐵2|𝑦 = min{𝑁𝐴′
1∪𝐴′

2
, 𝑁𝐵′

1∩𝐵′
2
} + 1

2
(𝑁𝑍1∩𝑍2

+𝑁𝑍1∩𝐵′
2
+𝑁𝐵′

1∩𝑍2
).

Summing these two, we get

|𝐴1 ∩ 𝐴2, 𝐵1 ∪ 𝐵2|𝑦 + |𝐴1 ∪ 𝐴2, 𝐵1 ∩ 𝐵2|𝑦

= 𝑁𝐴′
1∩𝐴′

2
+ 1

2
(𝑁𝑍1∩𝑍2

+𝑁𝑍1∩𝐴′
2
+𝑁𝐴′

1∩𝑍2
)

+ min{𝑁𝐴′
1∪𝐴′

2
, 𝑁𝐵′

1∩𝐵′
2
} + 1

2
(𝑁𝑍1∩𝑍2

+𝑁𝑍1∩𝐵′
2
+𝑁𝐵′

1∩𝑍2
)

⩽ 𝑁𝐴′
1∩𝐴′

2
+𝑁𝐴′

1∪𝐴′
2

+ 1
2
(𝑁𝑍1∩𝑍2

+𝑁𝑍1∩𝐴′
2
+𝑁𝑍1∩𝐵′

2
+𝑁𝑍1∩𝑍2

+𝑁𝐴′
1∩𝑍2

+𝑁𝐵′
1∩𝑍2

)

= 𝑁𝐴′
1
+𝑁𝐴′

2
+ 1

2
(𝑁𝑍1

+𝑁𝑍2
)

= |𝐴1, 𝐵1|𝑦 + |𝐴2, 𝐵2|𝑦 .

Similarly,

|𝐴1 ∩ 𝐵2, 𝐵1 ∪ 𝐴2|𝑦 = min{𝑁𝐴′
1∩𝐵′

2
, 𝑁𝐵′

1∪𝐴′
2
} + 1

2
(𝑁𝑍1∩𝑍2

+𝑁𝑍1∩𝐵′
2
+𝑁𝐴′

1∩𝑍2
),

and

|𝐴1 ∪ 𝐵2, 𝐵1 ∩ 𝐴2|𝑦 = min{𝑁𝐴′
1∪𝐵′

2
, 𝑁𝐵′

1∩𝐴′
2
} + 1

2
(𝑁𝑍1∩𝑍2

+𝑁𝑍1∩𝐴′
2
+𝑁𝐵′

1∩𝑍2
).

Summing these two, we get

|𝐴1 ∩ 𝐵2, 𝐵1 ∪ 𝐴2|𝑦 + |𝐴1 ∪ 𝐵2, 𝐵1 ∩ 𝐴2|𝑦

= min{𝑁𝐴′
1∩𝐵′

2
, 𝑁𝐵′

1∪𝐴′
2
} + 1

2
(𝑁𝑍1∩𝑍2

+𝑁𝑍1∩𝐵′
2
+𝑁𝐴′

1∩𝑍2
)

+ min{𝑁𝐴′
1∪𝐵′

2
, 𝑁𝐵′

1∩𝐴′
2
} + 1

2
(𝑁𝑍1∩𝑍2

+𝑁𝑍1∩𝐴′
2
+𝑁𝐵′

1∩𝑍2
)
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4.1. Tangles on the sides of a bipartite graph

⩽ 𝑁𝐴′
1∩𝐵′

2
+𝑁𝐴′

2∩𝐵′
1

+ 1
2
(𝑁𝑍1∩𝑍2

+𝑁𝑍1∩𝐴′
2
+𝑁𝑍1∩𝐵′

2
+𝑁𝑍1∩𝑍2

+𝑁𝐴′
1∩𝑍2

+𝑁𝐵′
1∩𝑍2

)

⩽ 𝑁𝐴′
1
+𝑁𝐴′

2
+ 1

2
(𝑁𝑍1

+𝑁𝑍2
)

= |𝐴1, 𝐵1|𝑦 + |𝐴2, 𝐵2|𝑦 .

Thus | ⋅ |𝑦 is submodular, and so is | ⋅ |𝑋 = ∑𝑦∈𝑌 | ⋅ |𝑦.

Next, we show that the shifting operation does not increase the order of a
separation. For this we first show the following lemma, giving an alternative
representation of the order function:

Lemma 4.2. For all (𝐴,𝐵) ∈ 𝑆(𝑋) we have

|𝐴,𝐵|𝑋 = ∣𝐸(𝐴▷
𝐵, 𝐵)∣ + ∣𝐸(𝐵▷

𝐴, 𝐴)∣ − ∣𝐸(𝐴▷
𝐵 ∩ 𝐵▷

𝐴, 𝑋)∣ /2 − |𝐸(𝑌 ,𝐴 ∩ 𝐵)| /2.

Proof. This can be calculated by rearranging sums:

|𝐴,𝐵|𝑋

= ∑
𝑦∈𝑌

(min{ |𝑁(𝑦) ∩ 𝐴| , |𝑁(𝑦) ∩ 𝐵| } − |𝑁(𝑦) ∩ 𝐴 ∩ 𝐵|
2

)

= ∑
𝑦∈𝑌

|𝑁(𝑦)∩𝐴|⩾|𝑁(𝑦)∩𝐵|

|𝑁(𝑦) ∩ 𝐵| + ∑
𝑦∈𝑌

|𝑁(𝑦)∩𝐵|⩾|𝑁(𝑦)∩𝐴|

|𝑁(𝑦) ∩ 𝐴|

− ( ∑
𝑦∈𝑌

|𝑁(𝑦)∩𝐴|=|𝑁(𝑦)∩𝐵|

|𝑁(𝑦)|
2

+∑
𝑦∈𝑌

|𝑁(𝑦) ∩ 𝐴 ∩ 𝐵|
2

)

= ∣𝐸(𝐴▷
𝐵, 𝐵)∣ + ∣𝐸(𝐵▷

𝐴, 𝐴)∣ − ∣𝐸(𝐴▷
𝐵 ∩ 𝐵▷

𝐴, 𝑋)∣ /2 − |𝐸(𝑌 ,𝐴 ∩ 𝐵)| /2.

With this we can now prove that shifting a separation indeed cannot increase the
order of a separation:

Lemma 4.3. Let (𝐴,𝐵) be a separation of 𝑋, then |𝐴,𝐵|𝑋 ⩾ |𝐴▷
𝐵, 𝐵

▷
𝐴|𝑌. Similarly

if (𝐶,𝐷) is a separation of 𝑌, then |𝐶,𝐷|𝑌 ⩾ |𝐶◁
𝐷, 𝐷◁

𝐶 |𝑋.

Proof. This is true by the following calculation:

|𝐴▷
𝐵, 𝐵

▷
𝐴|𝑌

= ∑
𝑥∈𝑋

(min{ ∣𝑁(𝑥) ∩ 𝐴▷
𝐵∣ , ∣𝑁(𝑥) ∩ 𝐵▷

𝐴∣ } −
∣𝑁(𝑥) ∩ 𝐴▷

𝐵 ∩ 𝐵▷
𝐴∣

2
)

⩽ ∑
𝑎∈𝐴

∣𝑁(𝑎) ∩ 𝐵▷
𝐴∣ +∑

𝑏∈𝐵
∣𝑁(𝑏) ∩ 𝐴▷

𝐵∣ − ∑
𝑥∈𝐴∩𝐵

|𝑁(𝑥)|
2

− ∑
𝑦∈𝐴▷

𝐵∩𝐵▷
𝐴

|𝑁(𝑦)|
2
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4. Dual tangles on a bipartite graph

= ∑
𝑏∈𝐵▷

𝐴

|𝑁(𝑏) ∩ 𝐴| + ∑
𝑎∈𝐴▷

𝐵

|𝑁(𝑎) ∩ 𝐵| − ∑
𝑦∈𝐴▷

𝐵∩𝐵▷
𝐴

|𝑁(𝑦)|
2

− ∑
𝑥∈𝐴∩𝐵

|𝑁(𝑥)|
2

= 𝐸(𝐴▷
𝐵, 𝐵) + 𝐸(𝐵▷

𝐴, 𝐴) − 𝐸(𝐴▷
𝐵 ∩ 𝐵▷

𝐴, 𝑋)/2 − 𝐸(𝑌 ,𝐴 ∩ 𝐵)/2
= |𝐴,𝐵|𝑋.

Finally, in order to define the tangles of 𝑆(𝑋) and 𝑆(𝑌 ) we need to define the
notion of consistency2 that we require our orientations to satisfy. There are a few
natural choices that one could make here, however in most contexts it turns out that
these definitions are in some sense weakly equivalent, in that tangles under any one
definition tend to induce tangles of slightly lower order under the other definitions.

With that in mind, let us define a tangle of 𝑆𝑘 (𝑋) (in 𝐺) as an orientation 𝜏 of
𝑆𝑘 (𝑋) which satisfies the following property:

There are no (𝐴1, 𝐵1), (𝐴2, 𝐵2), (𝐴3, 𝐵3) ∈ 𝜏 with 𝐴1 ∪ 𝐴2 ∪ 𝐴3 = 𝑋. (†)

We define tangles of 𝑆𝑘 (𝑌 ) in 𝐺 accordingly. This is perhaps the simplest definition
to take, and is a direct analogue of the corresponding notion of ‘consistency’ used to
define tangles in matroids. We will discuss later in more detail the extent to which
our results hold for tangles defined in terms of other notions of ‘consistency’.

Let us introduce one more piece of shorthand notation:

▷
𝑘𝜏 ≔ ▷𝜏 ∩ 𝑆𝑘 (𝑌 ) and ◁

𝑘𝜏 ≔ ◁𝜏 ∩ 𝑆𝑘 (𝑋).

With that, we are ready to state the main results of this section, which, with the
aid of the order function and shifting operation, relate the tangles of 𝑆(𝑋) to those
of 𝑆(𝑌 ).

Theorem 5. Let 𝜏 be a tangle of 𝑆4𝑘 (𝑋), then 𝜏 ′ ≔ ▷
𝑘𝜏 is a tangle of 𝑆𝑘 (𝑌 ).

Proof. We first note that 𝜏 ′ is an orientation of 𝑆𝑘 (𝑌 ). Indeed, suppose that both
(𝐶,𝐷) and (𝐷,𝐶) are in 𝜏 ′. If we let

𝐴 = {𝑥 ∈ 𝑋 ∶ |𝑁(𝑥) ∩ 𝐶| ⩾ |𝑁(𝑥) ∩ 𝐷| }

and
𝐵 = {𝑥 ∈ 𝑋 ∶ |𝑁(𝑥) ∩ 𝐶| ⩽ |𝑁(𝑥) ∩ 𝐷| },

then (𝐶,𝐷)◁ = (𝐴,𝐵) and (𝐷,𝐶)◁ = (𝐵,𝐴) and by assumption both of these
separations are in 𝜏 contradicting the fact that 𝜏 is an orientation.

So, it remains to show that 𝜏 ′ satisfies (†). Let us suppose for contradiction that
there is some set { (𝐶1, 𝐷1), (𝐶2, 𝐷2), (𝐶3, 𝐷3) } ⊆ 𝜏 ′ such that 𝐶1 ∪ 𝐶2 ∪ 𝐶3 = 𝑌.
2‘Consistency’ here is meant not in the technical sense of no two separations pointing away from
each other, but in the broader sense of ‘a tangle-like property’.
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4.1. Tangles on the sides of a bipartite graph

Let (𝐴𝑖, 𝐵𝑖) = (𝐶𝑖, 𝐷𝑖)◁ for each 𝑖 = 1, 2, 3. Then, since (𝐴𝑖, 𝐵𝑖) ∈ 𝜏 for each
𝑖, and 𝜏 is a tangle, it follows that there is some non-empty set 𝑍 such that
𝑍 = 𝑋 ⧵ (𝐴1 ∪ 𝐴2 ∪ 𝐴3).

Since 𝑍 ⊆ 𝐵𝑖 for each 𝑖, |𝑁(𝑥) ∩ 𝐷𝑖| ⩾ |𝑁(𝑥) ∩ 𝐶𝑖| for all 𝑥 ∈ 𝑍 and 𝑖 = 1, 2, 3.
However, since 𝐶1 ∪ 𝐶2 ∪ 𝐶3 = 𝑌,

3
∑
𝑖=1

|𝐶𝑖, 𝐷𝑖|𝑌 =
3

∑
𝑖=1

∑
𝑥∈𝑋

(min{ |𝑁(𝑥) ∩ 𝐶𝑖| , |𝑁(𝑥) ∩ 𝐷𝑖| } −
|𝑁(𝑥) ∩ 𝐶𝑖 ∩𝐷𝑖|

2
)

⩾
3

∑
𝑖=1

∑
𝑥∈𝑍

(min{ |𝑁(𝑥) ∩ 𝐶𝑖| , |𝑁(𝑥) ∩ 𝐷𝑖| } −
|𝑁(𝑥) ∩ 𝐶𝑖 ∩𝐷𝑖|

2
)

⩾ ∑
𝑥∈𝑍

3
∑
𝑖=1

(|𝑁(𝑥) ∩ 𝐶𝑖| −
|𝑁(𝑥) ∩ 𝐶𝑖 ∩𝐷𝑖|

2
)

⩾ ∑
𝑧∈𝑍

𝑑(𝑧)
2

= |𝐸(𝑍, 𝑌 )|
2

.

Hence |𝐸(𝑍, 𝑌 )| < 6𝑘. Then,

|𝑍,𝑋|𝑋 = 𝐸(𝑍, 𝑌 )
2

⩽ 3𝑘.

Hence (𝑍,𝑋) ∈ 𝜏 by (†).
Finally, since |𝐴3, 𝐵3|𝑋 ⩽ |𝐶3, 𝐷3|𝑌 < 𝑘 and |𝐸(𝑍, 𝑌 )| ⩽ 6𝑘 we can conclude by

Proposition 4.1 that

|𝐴3 ∪ 𝑍,𝐵3 ∩𝑋|𝑋 ⩽ |𝐴3, 𝐵3|𝑋 + |𝑍,𝑋|𝑋 < 𝑘 + 3𝑘 = 4𝑘.

Hence, since (𝐴3, 𝐵3), (𝑍,𝑋) ∈ 𝜏 and |𝐴3 ∪𝑍,𝐵3|𝑋 < 4𝑘, it follows from (†) that
(𝐴3 ∪ 𝑍,𝐵3) ∈ 𝜏. However, then

{ (𝐴1, 𝐵1), (𝐴2, 𝐵2), (𝐴3 ∪ 𝑍,𝐵3) } ⊆ 𝜏

and 𝐴1 ∪ 𝐴2 ∪ (𝐴3 ∪ 𝑍) = 𝑋, contradicting (†).

By symmetry, we then obtain a similar conclusion as in Theorem 5 when we shift
a tangle of 𝑆4𝑘 (𝑌 ).

A natural question then to ask at this point, is, even if the shifting operations
themselves are not idempotent, whether the operation they induce on tangles is in
some way ‘idempotent’: if we shift a tangle twice, do we end up with the original
tangle? It turns out that, again up to a constant factor, this is indeed the case.

Theorem 6. Let 𝜏 be a tangle of 𝑆16𝑘 (𝑋), let 𝜏 ′ = ▷
4𝑘𝜏, and let 𝜏″ = ◁

𝑘𝜏′. Then
𝜏″ ⊆ 𝜏.
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4. Dual tangles on a bipartite graph

To prove this theorem, we first need to analyse how a separation of 𝑋 can behave
under shifting that separation from 𝑋 to 𝑌 and then back to 𝑋. It turns out that
behaviour of this ‘double shift’ depends on the relation between the order of the
separation and its shift. Our first lemma analyses the case that these two orders are
the same:

Lemma 4.4. If |𝐴,𝐵|𝑋 = |(𝐴,𝐵)▷|𝑌 then 𝐴 ⊆ (𝐴▷
𝐵)

◁
𝐵▷

𝐴
and 𝐵 ⊆ (𝐵▷

𝐴)
◁
𝐴▷

𝐵
.

Proof. By the proof of Lemma 4.3, we have that

|𝐴▷
𝐵, 𝐵

▷
𝐴|𝑌

= ∑
𝑥∈𝑋

(min{ ∣𝑁(𝑥) ∩ 𝐴▷
𝐵∣ , ∣𝑁(𝑥) ∩ 𝐵▷

𝐴∣ } −
∣𝑁(𝑥) ∩ 𝐴▷

𝐵 ∩ 𝐵▷
𝐴∣

2
)

⩽ ∑
𝑎∈𝐴

∣𝑁(𝑎) ∩ 𝐵▷
𝐴∣ +∑

𝑏∈𝐵
∣𝑁(𝑏) ∩ 𝐴▷

𝐵∣ − ∑
𝑥∈𝐴∩𝐵

|𝑁(𝑥)|
2

− ∑
𝑦∈𝐴▷

𝐵∩𝐵▷
𝐴

|𝑁(𝑦)|
2

= |𝐴,𝐵|𝑋.

Thus, if |𝐴,𝐵|𝑋 = |𝐴▷
𝐵, 𝐵

▷
𝐴|𝑌, then

∑
𝑥∈𝑋

min{ ∣𝑁(𝑥) ∩ 𝐴▷
𝐵∣ , ∣𝑁(𝑥) ∩ 𝐵▷

𝐴∣ }

= ∑
𝑎∈𝐴

∣𝑁(𝑎) ∩ 𝐵▷
𝐴∣ +∑

𝑏∈𝐵
∣𝑁(𝑏) ∩ 𝐴▷

𝐵∣ − ∑
𝑥∈𝐴∩𝐵

|𝑁(𝑥)|
2

.

In particular, for 𝑥 ∈ 𝐴 we have ∣𝑁(𝑥) ∩ 𝐵▷
𝐴∣ ⩽ ∣𝑁(𝑥) ∩ 𝐴▷

𝐵∣ and thus 𝑥 ∈ (𝐴▷
𝐵)

◁
𝐵▷

𝐴
.

Similarly, for 𝑥 ∈ 𝐵 we have ∣𝑁(𝑥) ∩ 𝐵▷
𝐴∣ ⩾ ∣𝑁(𝑥) ∩ 𝐴▷

𝐵∣ and thus 𝑥 ∈ (𝐵▷
𝐴)

◁
𝐴▷

𝐵
.

While the previous lemma analysed the case that the order of the shift equals the
order of the separation we started with, the next two lemmas allows us to obtain
additional information when this is not the case.

Lemma 4.5. For every 𝑥 ∈ 𝐴⧵𝐵 with ∣𝑁(𝑥) ∩ 𝐵▷
𝐴∣ > ∣𝑁(𝑥) ∩ 𝐴▷

𝐵∣ (equivalently: for
every 𝑥 ∈ (𝐵▷

𝐴)
◁
𝐴▷

𝐵
⧵𝐵) we have |𝐴+𝑥, 𝐵+𝑥|𝑋 ⩽ |𝐴,𝐵|𝑋 and |{𝑥},𝑋|𝑋 ⩽ |𝐴,𝐵|𝑋.

Symmetrically, the same is true for every 𝑥 ∈ 𝐵 ⧵ 𝐴 where ∣𝑁(𝑥) ∩ 𝐴▷
𝐵∣ >

∣𝑁(𝑥) ∩ 𝐵▷
𝐴∣, or equivalently, every 𝑥 ∈ (𝐴▷

𝐵)
◁
𝐵▷

𝐴
⧵ 𝐴.
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Proof. We have

|𝐴,𝐵 + 𝑥|𝑋

= ∑
𝑦∈𝑌

(min{ |𝑁(𝑦) ∩ 𝐴| , |𝑁(𝑦) ∩ (𝐵 ∪ {𝑥})| } − |𝑁(𝑦) ∩ 𝐴 ∩ (𝐵 + 𝑥)|
2

)

= ∑
𝑦∈𝑌

(min{ |𝑁(𝑦) ∩ 𝐴| , |𝑁(𝑦) ∩ 𝐵| } − |𝑁(𝑦) ∩ 𝐴 ∩ 𝐵|
2

)

+ 𝐸(𝐴▷
𝐵 ⧵ 𝐵▷

𝐴, {𝑥}) −
|𝑁(𝑥)|

2
< |𝐴,𝐵|𝑋.

Moreover |{𝑥},𝑋|𝑋 = |𝑁(𝑥)|
2 and for every 𝑦 ∈ 𝑁(𝑥) ∩ 𝐵▷

𝐴 we have that

min{ |𝑁(𝑦) ∩ 𝐴| , |𝑁(𝑦) ∩ 𝐵| } = |𝑁(𝑦) ∩ 𝐴|
⩾ 1 + |𝑁(𝑦) ∩ (𝐴 − 𝑥)| ⩾ 1 + |𝑁(𝑦) ∩ 𝐴 ∩ 𝐵| ,

thus min{ |𝑁(𝑦) ∩ 𝐴| , |𝑁(𝑦) ∩ 𝐵| } − |𝑁(𝑦)∩𝐴∩𝐵|
2 ⩾ 1, which gives

|𝐴,𝐵|𝑋 ⩾ ∑
𝑦∈𝑁(𝑥)∩𝐵▷

𝐴

(min{ |𝑁(𝑦) ∩ 𝐴| , |𝑁(𝑦) ∩ 𝐵| } − |𝑁(𝑦) ∩ 𝐴 ∩ 𝐵|
2

)

⩾ ∣𝑁(𝑥) ∩ 𝐵▷
𝐴∣ ⩾ |{𝑥},𝑋|𝑋.

Lemma 4.6. Let (𝐴,𝐵) ∈ 𝑆(𝑋) such that |𝐴,𝐵|𝑋 > |(𝐴,𝐵)▷|𝑌. Then there either
exists an 𝑥 ∈ (𝐴 ⧵ 𝐵) ∪ (𝐵 ⧵ 𝐴) with |{𝑥},𝑋|𝑋 ⩽ |𝐴,𝐵|𝑋 such that (𝐴′, 𝐵′) ≔
(𝐴 + 𝑥, 𝐵 + 𝑥) has order |𝐴′, 𝐵′|𝑋 < |𝐴,𝐵|𝑋, or there exists an 𝑥 ∈ 𝐴 ∩ 𝐵 with
|{𝑥},𝑋|𝑋 ⩽ |𝐴,𝐵|𝑋 such that either (𝐴′, 𝐵′) = (𝐴−𝑥,𝐵) or (𝐴′, 𝐵′) = (𝐴,𝐵 −𝑥)
has order |𝐴′, 𝐵′|𝑋 < |𝐴,𝐵|𝑋.

Proof. By the proof of Lemma 4.4, if |𝐴,𝐵|𝑋 > |𝐴▷
𝐵, 𝐵

▷
𝐴|𝑌, then

∑
𝑥∈𝑋

min{ ∣𝑁(𝑥) ∩ 𝐴▷
𝐵∣ , ∣𝑁(𝑥) ∩ 𝐵▷

𝐴∣ }

< ∑
𝑎∈𝐴

∣𝑁(𝑎) ∩ 𝐵▷
𝐴∣ +∑

𝑏∈𝐵
∣𝑁(𝑏) ∩ 𝐴▷

𝐵∣ − ∑
𝑥∈𝐴∩𝐵

|𝑁(𝑥)|
2

.

Thus, without loss of generality there needs to be an 𝑥 ∈ 𝐴 such that

∣𝑁(𝑥) ∩ 𝐵▷
𝐴∣ > ∣𝑁(𝑥) ∩ 𝐴▷

𝐵∣ .

Every such 𝑥 is suitable for the 𝑥 in the assumption by Lemma 4.5.
Now suppose that 𝑥 ∈ 𝐴 ∩ 𝐵 and ∣𝑁(𝑥) ∩ 𝐵▷

𝐴∣ > ∣𝑁(𝑥) ∩ 𝐴▷
𝐵∣. Then

|𝐴 ⧵ {𝑥},𝐵|𝑋

= ∑
𝑦∈𝑌

(min{ |𝑁(𝑦) ∩ (𝐴 ⧵ {𝑥})| , |𝑁(𝑦) ∩ 𝐵| } − |𝑁(𝑦) ∩ (𝐴 ∩ 𝐵) ⧵ {𝑥}|
2

)
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= ∑
𝑦∈𝑌

(min{ |𝑁(𝑦) ∩ 𝐴| , |𝑁(𝑦) ∩ 𝐵| } − |𝑁(𝑦) ∩ 𝐴 ∩ 𝐵|
2

)

− 𝐸(𝐵▷
𝐴, {𝑥}) +

|𝑁(𝑥)|
2

< |𝐴,𝐵|𝑋.

For every such 𝑥 ∈ 𝑋 we have, since 𝑥 ∈ 𝐴 ∩ 𝐵, that

min{ |𝑁(𝑦) ∩ 𝐴| , |𝑁(𝑦) ∩ 𝐵| } − |𝑁(𝑦) ∩ 𝐴 ∩ 𝐵|
2

⩾ |𝑁(𝑦) ∩ {𝑥}| − |𝑁(𝑦) ∩ {𝑥}|
2

= |𝑁(𝑦) ∩ {𝑥}|
2

.

Hence,

|{𝑥},𝑋|𝑋 = |𝑁(𝑥)|
2

= ∑
𝑦∈𝑌

|𝑁(𝑦) ∩ {𝑥}|
2

⩽ ∑
𝑦∈𝑌

(min{ |𝑁(𝑦) ∩ 𝐴| , |𝑁(𝑦) ∩ 𝐵| } − |𝑁(𝑦) ∩ 𝐴 ∩ 𝐵|
2

)

= |𝐴,𝐵|𝑋.

We are now ready to prove Theorem 6:

Proof of Theorem 6. Both 𝜏″ and 𝜏 ∩ 𝑆𝑘 (𝑋) are tangles of 𝑆𝑘 (𝑋), suppose that
they are distinct. Let (𝐴,𝐵) ∈ 𝜏 be a separation of minimal order with the property
that (𝐵,𝐴) ∈ 𝜏″ and let us assume further, that among all those separations (𝐴,𝐵)
is chosen so that 𝐴 ∩ 𝐵 is as large as possible.

Suppose first that |𝐴,𝐵| = ∣𝐴▷
𝐵, 𝐵

▷
𝐴∣ and let (𝐴′, 𝐵′) = ((𝐴,𝐵)▷)◁. Then, by

Lemma 4.4, we have that 𝐴 ⊆ 𝐴′ and 𝐵 ⊆ 𝐵′. Since (𝐵′, 𝐴′) ∈ 𝜏, it follows
that (𝐴′, 𝐵′) ≠ (𝐴,𝐵) and so we can pick 𝑥 ∈ (𝐴′ ⧵ 𝐴) ∪ (𝐵′ ⧵ 𝐵). Note that
|𝐴′ + 𝑥,𝐵′ + 𝑥| ⩽ |𝐴,𝐵| by Lemma 4.5. Thus, by the choice of (𝐴,𝐵), either
(𝐴′ +𝑥,𝐵′ +𝑥) ∈ 𝜏″ ∩ 𝜏 which implies that 𝑥 ∈ 𝐴′ ⧵ 𝐴 or (𝐵′ +𝑥,𝐴′ +𝑥) ∈ 𝜏″ ∩ 𝜏
which implies 𝑥 ∈ 𝐵′⧵𝐵. In any case, since |{𝑥},𝑋|𝑋 ⩽ |𝐴,𝐵| (again by Lemma 4.5)
and ({𝑥},𝑋) ∈ 𝜏″ ∩ 𝜏 this contradicts the fact that 𝜏″, respectively 𝜏 ∩ 𝑆𝑘 (𝑋) are
tangles.

If, on the other hand, |𝐴,𝐵| > ∣𝐴▷
𝐵, 𝐵

▷
𝐴∣ then, by Lemma 4.6 there either exists 𝑥 ∈

(𝐴⧵𝐵)∪(𝐵⧵𝐴) such that for (𝐴′, 𝐵′) = (𝐴+𝑥, 𝐵+𝑥) we have |𝐴′, 𝐵′|𝑋 < |𝐴,𝐵|𝑋
and |{𝑥},𝑋|𝑋 ⩽ |𝐴,𝐵|𝑋, or there exists 𝑥 ∈ 𝐴∩𝐵 such that for (𝐴′, 𝐵′) = (𝐴−𝑥,𝐵)
or (𝐴′, 𝐵′) = (𝐴,𝐵 − 𝑥) we have |𝐴′, 𝐵′|𝑋 < |𝐴,𝐵|𝑋 and |{𝑥},𝑋|𝑋 ⩽ |𝐴,𝐵|𝑋.

However, either of these cases again contradicts the fact that 𝜏″, respectively
𝜏 ∩ 𝑆𝑘 (𝑋), is a tangle as ({𝑥},𝑋) ∈ 𝜏 ∩ 𝜏″ and, by the choice of (𝐴,𝐵), either
(𝐴′, 𝐵′) ∈ 𝜏 ∩ 𝜏″ or (𝐵′, 𝐴′) ∈ 𝜏 ∩ 𝜏″, but the respective orientations of {𝐴,𝐵 },
{𝐴′, 𝐵′ }, and { {𝑥},𝑋 } together contradict (†).

38



4.2. Tangles on the edges

There is also a more exciting way to prove Theorem 5 and Theorem 6 indirectly,
albeit at the cost of a slight increase in the factors on 𝑘. This is to view the tangles
of the two partition classes as two different facets of tangles on the edge set of the
bipartite graph. We give these proofs in the next section.

4.2. Tangles on the edges

We will show that the tangles on the sides of a bipartite graph are related to a
special kind of tangles defined on the separations of the edges. So let us give the
notation required for these intermediate tangles of the edges.

Denote the set of all set separations of 𝐸, the edge set of our bipartite graph,
as 𝑆(𝐸), and the set of the corresponding unoriented separations as 𝑆(𝐸). The
following order function on the separations in 𝑆(𝐸) is a natural variation on our
previous order function for separations in 𝑆(𝑋):

|𝐶,𝐷|𝐸 ≔ ∑
𝑣∈𝑉

(min{ |𝐸(𝑣) ∩ 𝐶| , |𝐸(𝑣) ∩ 𝐷| } − |𝐸(𝑣) ∩ 𝐶 ∩ 𝐷|
2

) ,

where 𝐸(𝑣) denotes the set of incident edges of 𝑣. We will again assume that any
𝑆𝑘 (𝐸) we consider does not contain (𝐸,𝐸).

We say that an orientation 𝜏 of a subset 𝑆𝑘 (𝐸) of 𝑆(𝐸) is a tangle of 𝑆𝑘 (𝐸), if 𝜏
is an orientation of 𝑆𝑘 (𝐸) with the following property:

There are no (𝐶1, 𝐷1), (𝐶2, 𝐷2), (𝐶3, 𝐷3) ∈ 𝜏 with 𝐶1 ∪ 𝐶2 ∪ 𝐶3 = 𝐸. (†𝐸)

Given a separation in 𝑆(𝑋), it is pretty immediate how to obtain a separation in
𝑆(𝐸) which is ‘dual’ to this separation: A separation (𝐴,𝐵) of 𝑋 naturally defines
a separation (𝐴,𝐵)𝐸 ≔ (𝐸(𝐴),𝐸(𝐵)) of 𝐸, where 𝐸(𝐴) denotes the set of all edges
of 𝐺 which have an end vertex in 𝐴. Note that ((𝐴,𝐵)𝐸)∗ = (𝐵,𝐴)𝐸.

The other way around is less obvious, but it will be necessary to associate to each
separation in 𝑆(𝐸) a separation in 𝑆(𝑋) and 𝑆(𝑌 ). We will do so similarly to how
we associated to each separation in 𝑆(𝑌 ) a separation in 𝑆(𝑋). There we obtained,
given a separation (𝐴,𝐵) ∈ 𝑆(𝑌 ), a separation in 𝑆(𝑋) by asking for every vertex
in 𝑋 whether that vertex has more neighbours in 𝐴 or in 𝐵. Similarly, we will now
ask, given a separation (𝐶,𝐷) in 𝑆(𝐸), for each vertex in 𝑋, whether more of the
adjacent edges lie in 𝐶 or in 𝐷. Formally, given a separation (𝐶,𝐷) of 𝐸, we obtain
a separation (𝐶,𝐷)◀ ≔ (𝐶◀

𝐷, 𝐷◀
𝐶) of 𝑋 by defining

𝐶◀
𝐷 = {𝑥 ∈ 𝑋 ∶ |𝐸(𝑥) ∩ 𝐶| ⩾ |𝐸(𝑥) ∩ 𝐷| }

and
𝐷◀

𝐶 = {𝑥 ∈ 𝑋 ∶ |𝐸(𝑥) ∩ 𝐶| ⩽ |𝐸(𝑥) ∩ 𝐷| }.

This shifting operation preserves the partial order of separations in the following
sense:
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4. Dual tangles on a bipartite graph

Lemma 4.7. If (𝐶,𝐷) ⩽ (𝐶′, 𝐷′), then (𝐶,𝐷)◀ ⩽ (𝐶′, 𝐷′)◀

Proof. If (𝐶,𝐷) ⩽ (𝐶′, 𝐷′), then 𝐶 ⊆ 𝐶′ and 𝐷 ⊇ 𝐷′. Thus, for 𝑥 ∈ 𝑋, we have
that |𝐸(𝑥) ∩ 𝐶| ⩽ |𝐸(𝑥) ∩ 𝐶′| and |𝐸(𝑥) ∩ 𝐷| ⩾ |𝐸(𝑥) ∩ 𝐷′|.

Now if 𝑥 ∈ 𝐶◀
𝐷, then |𝐸(𝑥) ∩ 𝐶| ⩾ |𝐸(𝑥) ∩ 𝐷| and thus

|𝐸(𝑥) ∩ 𝐶′| ⩾ |𝐸(𝑥) ∩ 𝐶| ⩾ |𝐸(𝑥) ∩ 𝐷| ⩾ |𝐸(𝑥) ∩ 𝐷′| ,

hence 𝑥 ∈ 𝐶′◀
𝐷′ . Similarly, if 𝑥 ∈ 𝐷′◀

𝐶′ , then |𝐸(𝑥) ∩ 𝐷′| ⩾ |𝐸(𝑥) ∩ 𝐶′| and thus

|𝐸(𝑥) ∩ 𝐷| ⩾ |𝐸(𝑥) ∩ 𝐷′| ⩾ |𝐸(𝑥) ∩ 𝐶′| ⩾ |𝐸(𝑥) ∩ 𝐶| ,

hence 𝑥 ∈ 𝐶◀
𝐷. Thus 𝐶◀

𝐷 ⊆ 𝐶′◀
𝐷′ and 𝐷′◀

𝐶′ ⊆ 𝐷◀
𝐶 , i.e., (𝐶,𝐷)◀ ⩽ (𝐶′, 𝐷′)◀.

Symmetrically we can define a separation (𝐶,𝐷)▶ of 𝑌, but by the symmetry of
the situation we will only ever need to talk about the map (⋅)◀.

Unlike the shifting operations considered in the previous section, there is less of
a symmetry here: The separation (𝐴,𝐵)𝐸 fully determines the separation (𝐴,𝐵),
whereas the separation (𝐶,𝐷)◀ in some way ‘compresses’ the information in the
separation (𝐶,𝐷) into a rough estimate. Generally there are multiple different
separations (𝐶,𝐷) in 𝑆(𝐸) for which the (𝐶,𝐷)◀ coincide, and so the operation
(⋅)◀ is not injective.

As with (⋅)▷, this function induces a pull-back map: given a subset 𝜏 of 𝑆(𝑋),
we define

𝜏𝐸 ≔ { (𝐶,𝐷) ∶ (𝐶,𝐷)◀ ∈ 𝜏 }.

Note that, as (𝐸(𝐴),𝐸(𝐵))◀ = (𝐴,𝐵), the set of all the separations (𝐴,𝐵)𝐸 is a
subset of 𝜏𝐸.

For shifting in the other direction we take a slightly different notion. Given a
tangle 𝜏 of 𝑆(𝐸), let us define

𝜏𝑋 ≔ { (𝐶,𝐷)◀ ∶ (𝐶,𝐷) ∈ 𝜏 },

and let 𝜏𝑌 be defined analogously. Note that this is a genuinely different way to
move between tangles of 𝑆(𝐸) and 𝑆(𝑋); rather than ‘pulling back’ the tangle from
𝑆(𝑋) to 𝑆(𝐸) via the shift (⋅)𝐸, giving rise to a set of separations

𝑋𝜏 ≔ { (𝐴,𝐵) ∈ 𝑆(𝑋) ∶ (𝐴,𝐵)𝐸 ∈ 𝜏 },

we’re ‘pushing forward’ via the shift (⋅)◀.
We note that in this particular case, since, assuming the graph is connected,

it is clear that ((𝐴,𝐵)𝐸)◀ = (𝐴,𝐵), we have that 𝜏𝑋 ⊇ 𝑋𝜏 and so, since 𝑋𝜏 is
automatically a partial orientation of 𝑆(𝑋), if the restriction of 𝜏𝑋 to some lower
order is a tangle, then the restriction of 𝑋𝜏 to the same order will also satisfy (†).
In particular, working with this definition results in slightly stronger results than
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4.2. Tangles on the edges

working with 𝑋𝜏, however the main purpose of this change is that it will result in
slightly simpler proofs, see for example Corollary 4.14.

We will show that, for a given tangle 𝜏 of 𝑆4𝑘 (𝑋), the set

𝜏𝐸,𝑘 ≔ 𝜏𝐸,𝑘

actually is a tangle of 𝑆𝑘 (𝐸) and dually, that if 𝜏 is a tangle of 𝑆2𝑘 (𝐸), then

𝜏𝑋,𝑘 ≔ 𝜏𝑋,𝑘

is a tangle of 𝑆𝑘 (𝑋). We will then be able to use this to obtain proofs of Theorem 5
and Theorem 6 from the symmetry between 𝑋 and 𝑌.

Proposition 4.8. The order function | ⋅ |𝐸 is submodular.

Proof. As in the proof of Proposition 4.1, it is enough to show that, for every 𝑣 ∈ 𝑉,
the function

|𝐶,𝐷|𝑣 ≔ min{ |𝐸(𝑣) ∩ 𝐶| , |𝐸(𝑣) ∩ 𝐷| } − |𝐸(𝑣) ∩ 𝐶 ∩ 𝐷|
2

is submodular, as clearly |𝐶,𝐷|𝐸 = ∑𝑣∈𝑉 |𝐶,𝐷|𝑣. Now fix some 𝑣 in 𝑉. For 𝐹 ⊆ 𝐸
we denote 𝑁𝐹 ≔ |𝐸(𝑣) ∩ 𝐹 |.

Take separations (𝐶1, 𝐷1) and (𝐶2, 𝐷2) in 𝑆(𝐸) and suppose without loss of
generality that 𝑁𝐶𝑖

⩽ 𝑁𝐷𝑖
. Let 𝐶′

𝑖 ≔ 𝐶𝑖 ⧵ 𝐷𝑖, 𝐷′
𝑖 ≔ 𝐷𝑖 ⧵ 𝐶𝑖 and 𝐹𝑖 ≔ 𝐶𝑖 ∩ 𝐷𝑖.

Then

|𝐶1 ∩ 𝐶2, 𝐷1 ∪𝐷2|𝑣 = 𝑁𝐶′
1∩𝐶′

2
+ 1

2
(𝑁𝐹1∩𝐹2

+𝑁𝐹1∩𝐶′
2
+𝑁𝐶′

1∩𝐹2
),

and

|𝐶1 ∪ 𝐶2, 𝐷1 ∩𝐷2|𝑣 = min{𝑁𝐶′
1∪𝐶′

2
, 𝑁𝐷′

1∩𝐷′
2
} + 1

2
(𝑁𝐹1∩𝐹2

+𝑁𝐹1∩𝐷′
2
+𝑁𝐷′

1∩𝐹2
).

Summing these two, we get

|𝐶1 ∩ 𝐶2, 𝐷1 ∪𝐷2|𝑣 + |𝐶1 ∪ 𝐶2, 𝐷1 ∩𝐷2|𝑣

= 𝑁𝐶′
1∩𝐶′

2
+ 1

2
(𝑁𝐹1∩𝐹2

+𝑁𝐹1∩𝐶′
2
+𝑁𝐶′

1∩𝐹2
)

+ min{𝑁𝐶′
1∪𝐶′

2
, 𝑁𝐷′

1∩𝐷′
2
} + 1

2
(𝑁𝐹1∩𝐹2

+𝑁𝐹1∩𝐷′
2
+𝑁𝐷′

1∩𝐹2
)

⩽ 𝑁𝐶′
1∩𝐶′

2
+𝑁𝐶′

1∪𝐶′
2

+ 1
2
(𝑁𝐹1∩𝐹2

+𝑁𝐹1∩𝐶′
2
+𝑁𝐹1∩𝐷′

2
+𝑁𝐹1∩𝐹2

+𝑁𝐶′
1∩𝐹2

+𝑁𝐷′
1∩𝐹2

)

= 𝑁𝐶′
1
+𝑁𝐶′

2
+ 1

2
(𝑁𝐹1

+𝑁𝐹2
) = |𝐶1, 𝐷1|𝑣 + |𝐶2, 𝐷2|𝑣 .
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Similarly

|𝐶1 ∩𝐷2, 𝐷1 ∪ 𝐶2|𝑣 = min{𝑁𝐶′
1∩𝐷′

2
, 𝑁𝐷′

1∪𝐶′
2
} + 1

2
(𝑁𝐹1∩𝐹2

+𝑁𝐹1∩𝐷′
2
+𝑁𝐶′

1∩𝐹2
),

and

|𝐶1 ∪𝐷2, 𝐷1 ∩ 𝐶2|𝑣 = min{𝑁𝐶′
1∪𝐷′

2
, 𝑁𝐷′

1∩𝐶′
2
} + 1

2
(𝑁𝐹1∩𝐹2

+𝑁𝐹1∩𝐶′
2
+𝑁𝐷′

1∩𝐹2
).

Summing these two, we get

|𝐶1 ∩𝐷2, 𝐷1 ∪ 𝐶2|𝑣 + |𝐶1 ∪𝐷2, 𝐷1 ∩ 𝐶2|𝑣

= min{𝑁𝐶′
1∩𝐷′

2
, 𝑁𝐷′

1∪𝐶′
2
} + 1

2
(𝑁𝐹1∩𝐹2

+𝑁𝐹1∩𝐷′
2
+𝑁𝐶′

1∩𝐹2
)

+ min{𝑁𝐶′
1∪𝐷′

2
, 𝑁𝐷′

1∩𝐶′
2
} + 1

2
(𝑁𝐹1∩𝐹2

+𝑁𝐹1∩𝐶′
2
+𝑁𝐷′

1∩𝐹2
)

⩽ 𝑁𝐶′
1∩𝐷′

2
+𝑁𝐶′

2∩𝐷′
1

+ 1
2
(𝑁𝐹1∩𝐹2

+𝑁𝐹1∩𝐶′
2
+𝑁𝐹1∩𝐷′

2
+𝑁𝐹1∩𝐹2

+𝑁𝐶′
1∩𝐹2

+𝑁𝐷′
1∩𝐹2

)

⩽ 𝑁𝐶′
1
+𝑁𝐶′

2
+ 1

2
(𝑁𝐹1

+𝑁𝐹2
) |𝐶1, 𝐷1|𝑣 + |𝐶2, 𝐷2|𝑣 .

Thus | ⋅ |𝑣 is a submodular function, and so is | ⋅ |𝐸.

However, unlike for the correspondence between | ⋅ |𝑋 and | ⋅ |𝑌, we will no longer
be able to show that the order of the shift of a separation is non-increasing, instead
we will only be able to show that, when shifting from a separation of the vertices
to the corresponding separation of the edges, we can bound how much the order
increases. More precisely, simple calculations show that:

Proposition 4.9. Given a separation (𝐴,𝐵) of 𝑋, we have |𝐴,𝐵|𝑋 ⩽ |(𝐴,𝐵)𝐸|𝐸
and |(𝐴,𝐵)𝐸|𝐸 ⩽ 2|𝐴,𝐵|𝑋.

Proof. For the first statement we note that

|𝐴,𝐵|𝑋 = ∑
𝑦∈𝑌

(min{ |𝑁(𝑦) ∩ 𝐴| , |𝑁(𝑦) ∩ 𝐵| } − |𝑁(𝑦) ∩ 𝐴 ∩ 𝐵|
2

)

= ∑
𝑦∈𝑌

(min{ |𝐸(𝑦) ∩ 𝐸(𝐴)| , |𝐸(𝑦) ∩ 𝐸(𝐵)| } − |𝐸(𝑦) ∩ 𝐸(𝐴) ∩ 𝐸(𝐵)|
2

)

⩽ ∑
𝑣∈𝑉

(min{ |𝐸(𝑣) ∩ 𝐸(𝐴)| , |𝐸(𝑣) ∩ 𝐸(𝐵)| } − |𝐸(𝑣) ∩ 𝐸(𝐴) ∩ 𝐸(𝐵)|
2

)

= |𝐸(𝐴),𝐸(𝐵)|𝐸.

For the second statement we observe that, for 𝑥 ∈ 𝑋 we have that

min{ |𝐸(𝑥) ∩ 𝐸(𝐴)| , |𝐸(𝑥) ∩ 𝐸(𝐵)| } = |𝐸(𝑥) ∩ 𝐸(𝐴) ∩ 𝐸(𝐵)|
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and thus

∑
𝑥∈𝑋

(min{ |𝐸(𝑥) ∩ 𝐸(𝐴)| , |𝐸(𝑥) ∩ 𝐸(𝐵)| } − |𝐸(𝑥) ∩ 𝐸(𝐴) ∩ 𝐸(𝐵)|
2

)

= |𝐸(𝐴) ∩ 𝐸(𝐵)|
2

.

As clearly |𝐴,𝐵|𝑋 ⩾ |𝐸(𝐴)∩𝐸(𝐵)|
2 , it follows that

|𝐸(𝐴),𝐸(𝐵)|𝐸

= ∑
𝑣∈𝑉

(min{ |𝐸(𝑣) ∩ 𝐸(𝐴)| , |𝐸(𝑣) ∩ 𝐸(𝐵)| } − |𝐸(𝑣) ∩ 𝐸(𝐴) ∩ 𝐸(𝐵)|
2

)

= ∑
𝑥∈𝑋

(min{ |𝐸(𝑥) ∩ 𝐸(𝐴)| , |𝐸(𝑥) ∩ 𝐸(𝐵)| } − |𝐸(𝑥) ∩ 𝐸(𝐴) ∩ 𝐸(𝐵)|
2

)

+∑
𝑦∈𝑌

(min{ |𝐸(𝑦) ∩ 𝐸(𝐴)| , |𝐸(𝑦) ∩ 𝐸(𝐵)| } − |𝐸(𝑦) ∩ 𝐸(𝐴) ∩ 𝐸(𝐵)|
2

)

= |𝐸(𝐴) ∩ 𝐸(𝐵)|
2

+∑
𝑦∈𝑌

(min{ |𝑁(𝑦) ∩ 𝐴| , |𝑁(𝑦) ∩ 𝐵| } − |𝑁(𝑦) ∩ 𝐴 ∩ 𝐵|
2

)

⩽ 2|𝐴,𝐵|𝑋.

For (⋅)◀ on the other hand, we will be able to show that this is a non-increasing
operation:

Lemma 4.10. Let (𝐶,𝐷) be a separation of 𝐸, then |𝐶,𝐷|𝐸 ⩾ |𝐶◀
𝐷, 𝐷◀

𝐶 |𝑋.

For the proof of Lemma 4.10 we will need to carefully analyse how we can ‘locally’
change a separation in 𝑆(𝐸) without changing the shift. Recall that, given a
separation (𝐴,𝐵) in 𝑆(𝑋), there are other separations apart from (𝐴,𝐵)𝐸 in 𝑆(𝐸)
which still shift to (𝐴,𝐵). So, in order to prove Lemma 4.10 we will analyse what
these different separations of 𝐸 inducing the same separation (𝐴,𝐵) of 𝑋 look like.
For this, we will show which ’local’, i.e., single-edge, changes we can make to a given
separation (𝐶,𝐷) to bring it closer to one of the type (𝐴,𝐵)𝐸, without increasing
its order.

So, let us start analysing these ‘local’ changes. Firstly, in the next lemma we
show that we can move a single edge from 𝐶 to 𝐷 without increasing the order of
(𝐶,𝐷) or changing its shift (𝐶,𝐷)◀, if at the end vertex in 𝑋 of that edge there
are fewer incident edges in 𝐶 than in 𝐷.

Lemma 4.11. Let (𝐶,𝐷) be a separation of 𝐸 and let 𝑒 ∈ 𝐸 be incident with
𝐶◀

𝐷 ⧵ 𝐷◀
𝐶. Then |𝐶 + 𝑒,𝐷 − 𝑒|𝐸 ⩽ |𝐶,𝐷|𝐸 and (𝐶 + 𝑒,𝐷 − 𝑒)◀ = (𝐶,𝐷)◀.

Proof. Let 𝑒 = 𝑣𝑤. We observe that, since 𝑣 ∈ 𝐶◀
𝐷 ⧵ 𝐷◀

𝐶 , we have

min{ |𝐸(𝑣) ∩ 𝐶| , |𝐸(𝑣) ∩ 𝐷| } − |𝐸(𝑣) ∩ 𝐶 ∩ 𝐷|
2

= |𝐸(𝑣) ∩ 𝐷| − |𝐸(𝑣) ∩ 𝐶 ∩ 𝐷|
2
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⩾ |𝐸(𝑣) ∩ (𝐷 − 𝑒)| − |𝐸(𝑣) ∩ (𝐶 + 𝑒) ∩ (𝐷 − 𝑒)|
2

+ 1,

and

min{ |𝐸(𝑤) ∩ 𝐶| , |𝐸(𝑤) ∩ 𝐷| } − |𝐸(𝑤) ∩ 𝐶 ∩𝐷|
2

⩾ min{ |𝐸(𝑤) ∩ (𝐷 − 𝑒)| , |𝐸(𝑤) ∩ (𝐶 + 𝑒)| } − |𝐸(𝑤) ∩ (𝐶 + 𝑒) ∩ (𝐷 − 𝑒)|
2

− 1.

Thus, |𝐶 − 𝑒,𝐷 + 𝑒|𝐸 ⩽ |𝐶,𝐷|𝐸. Moreover, 𝑣 lies in 𝐶◀
𝐷 ⧵ 𝐷◀

𝐶 and therefore also in
(𝐶 + 𝑒)◀𝐷−𝑒 ⧵ (𝐷 − 𝑒)◀𝐶+𝑒, and thus (𝐶,𝐷)◀ = (𝐶 + 𝑒,𝐷 − 𝑒)◀.

Using this, we can show that from within the set of those separations of 𝐸 with
the same shift (𝐴,𝐵), we can always find some (𝐶,𝐷) of minimal order which is
‘close’ to (𝐴,𝐵)𝐸, in the sense that every edge incident with 𝐴 ⧵ 𝐵 is contained in
𝐶 ⧵ 𝐷 and every edge incident with 𝐵 ⧵ 𝐴 is contained in 𝐷 ⧵ 𝐶:

Lemma 4.12. Let (𝐶,𝐷) ∈ 𝑆(𝐸). Then there exists a separation (𝐶′, 𝐷′) of 𝐸
with |𝐶′, 𝐷′|𝐸 ⩽ |𝐶,𝐷|𝐸 and (𝐶′, 𝐷′)◀ = (𝐶,𝐷)◀ such that every edge 𝑒 incident
with 𝐶◀

𝐷 ⧵𝐷◀
𝐶 lies in 𝐶′ ⧵𝐷′ and every edge incident with 𝐷◀

𝐶 ⧵ 𝐶◀
𝐷 lies in 𝐷′ ⧵ 𝐶′.

Proof. Suppose (𝐶′, 𝐷′) is chosen so that |𝐶′, 𝐷′|𝐸 ⩽ |𝐶,𝐷|𝐸 and (𝐶′, 𝐷′)◀ =
(𝐶,𝐷)◀, and so that there are as few edges as possible incident with 𝐶◀

𝐷 ⧵𝐷◀
𝐶 which

do not lie in 𝐶′ ⧵ 𝐷′ and as few edges as possible incident with 𝐷◀
𝐶 ⧵ 𝐶◀

𝐷 which do
not lie in 𝐷′ ⧵ 𝐶′.

Suppose that there exists some such edge 𝑒 incident with 𝐶◀
𝐷 ⧵ 𝐷◀

𝐶 which does
not lie in 𝐶′ ⧵ 𝐷′ or some such edge 𝑒 incident with 𝐷◀

𝐶 ⧵ 𝐶◀
𝐷 which does not lie

in 𝐷′ ⧵ 𝐶′. Let us assume we are in the former case, as the argument in the latter
case is identical.

Since (𝐶′, 𝐷′)◀ = (𝐶,𝐷)◀, by Lemma 4.11 we could then consider the separa-
tion (𝐶′ + 𝑒,𝐷′ − 𝑒) which must then satisfy (𝐶′ + 𝑒,𝐷′ − 𝑒)◀ = (𝐶′, 𝐷′)◀ and
|𝐶′ + 𝑒,𝐷′ − 𝑒| ⩽ |𝐶′, 𝐷′| ⩽ |𝐶,𝐷|, contradicting the choice of (𝐶′, 𝐷′).

This observation enables us to perform the necessary calculations to prove
Lemma 4.10.

Proof of Lemma 4.10. By Lemma 4.12 we may suppose that every edge incident
with 𝐶◀

𝐷 ⧵ 𝐷◀
𝐶 lies in 𝐶 ⧵ 𝐷 and every edge incident with 𝐷◀

𝐶 ⧵ 𝐶◀
𝐷 lies in 𝐷 ⧵ 𝐶.

In this case, we can calculate |𝐶,𝐷|𝐸 as follows.

|𝐶,𝐷|𝐸

= ∑
𝑣∈𝑉

(min{ |𝐸(𝑣) ∩ 𝐶| , |𝐸(𝑣) ∩ 𝐷| } − |𝐸(𝑣) ∩ 𝐶 ∩ 𝐷|
2

)

= ∑
𝑣∈𝑌

(min{ |𝐸(𝑣) ∩ 𝐶| , |𝐸(𝑣) ∩ 𝐷| } − |𝐸(𝑣) ∩ 𝐶 ∩ 𝐷|
2

) + ∑
𝑣∈𝐶◀

𝐷∩𝐷◀
𝐶

1
2
|𝐸(𝑣)|
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⩾ ∑
𝑣∈𝑌

(min{ ∣𝑁(𝑣) ∩ 𝐶◀
𝐷∣ , ∣𝑁(𝑣) ∩ 𝐷◀

𝐶 ∣ } −
1
2
∣𝑁(𝑣) ∩ 𝐶◀

𝐷 ∩𝐷◀
𝐶 ∣)

− 1
2
∣𝐸(𝐶◀

𝐷) ∩ 𝐸(𝐷◀
𝐶)∣ + ∑

𝑣∈𝐶◀
𝐷∩𝐷◀

𝐶

1
2
|𝑁(𝑣)|

⩾ ∑
𝑣∈𝑌

(min{ ∣𝑁(𝑣) ∩ 𝐶◀
𝐷∣ , ∣𝑁(𝑣) ∩ 𝐷◀

𝐶 ∣ } −
∣𝑁(𝑣) ∩ 𝐶◀

𝐷 ∩𝐷◀
𝐶 ∣

2
)

=|𝐶◀
𝐷, 𝐷◀

𝐶 |𝑋

Analysing local changes will also play a crucial role in showing that, given a
tangle 𝜏 in 𝑆(𝐸), the restriction of 𝜏𝑋 to a lower order is actually an orientation.
For this we will need to make sure that separations obtained from one another by
local changes cannot be oriented differently in 𝜏𝐸. However, whereas Lemma 4.11
allows us to move certain edges from 𝐶 ⧵ 𝐷 to 𝐷 ⧵ 𝐶 without changing the shift or
increasing the order, for showing that the restriction of 𝜏𝑋 to a lower order actually
is an orientation we will need to analyse a different type of local change.

More precisely, the next lemma will allow us to move certain edges from 𝐷⧵𝐶 (or,
symmetrically, 𝐶 ⧵ 𝐷), to 𝐶 ∩𝐷 without increasing the order. Such an operation
might change the shift of a separation, but, by Lemma 4.7, it does so only in a
controlled way: moving an edge from 𝐷 ⧵ 𝐶 to 𝐷∩𝐶 will only result in a shift that
is larger, in the sense of the partial order on the separation system, than the shift
of the original (𝐶,𝐷). Moreover, such a local change does not change the way a
separation is oriented by a tangle.

Lemma 4.13. Let (𝐶,𝐷) be a separation of 𝐸 and let 𝑒 ∈ 𝐸 be incident with 𝐶◀
𝐷.

Then |𝐶 + 𝑒,𝐷|𝐸 ⩽ |𝐶,𝐷|𝐸 and (𝐶 + 𝑒,𝐷)◀ ⩾ (𝐶,𝐷)◀.

Proof. If 𝑒 ∈ 𝐶, then there is nothing to show, so suppose 𝑒 ∈ 𝐷 ⧵𝐶 and let 𝑒 = 𝑣𝑤.
We observe that, since 𝑣 ∈ 𝐶◀

𝐷, we have

min{ |𝐸(𝑣) ∩ 𝐶| , |𝐸(𝑣) ∩ 𝐷| } − |𝐸(𝑣) ∩ 𝐶 ∩ 𝐷|
2

= |𝐸(𝑣) ∩ 𝐷| − |𝐸(𝑣) ∩ 𝐶 ∩ 𝐷|
2

= |𝐸(𝑣) ∩ 𝐷| − |𝐸(𝑣) ∩ (𝐶 + 𝑒) ∩ 𝐷|
2

+ 1
2

and

min{ |𝐸(𝑤) ∩ 𝐶| , |𝐸(𝑤) ∩ 𝐷| } − |𝐸(𝑤) ∩ 𝐶 ∩𝐷|
2

⩾ min{ |𝐸(𝑤) ∩ (𝐶 + 𝑒)| , |𝐸(𝑤) ∩ 𝐷| } − |𝐸(𝑤) ∩ (𝐶 + 𝑒) ∩ 𝐷|
2

− 1
2
.

Thus, |𝐶 + 𝑒,𝐷|𝐸 ⩽ |𝐶,𝐷|𝐸. We have (𝐶,𝐷)◀ ⩽ (𝐶 + 𝑒,𝐷)◀ by Lemma 4.7.
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We now have all the ingredients at hand needed to show that the shift of a tangle,
restricted to an appropriate order, is still a tangle. Let us start by considering the
shift 𝜏𝑋 of a tangle 𝜏 in 𝑆(𝐸).

Theorem 7. If 𝜏 is a tangle of 𝑆2𝑘 (𝐸), then 𝜏𝑋,𝑘 is a tangle of 𝑆𝑘 (𝑋).

Proof. We first note that the set 𝜏𝑋,𝑘 contains at least one of (𝐴,𝐵) and (𝐵,𝐴) for
every separation (𝐴,𝐵) ∈ 𝑆𝑘 (𝑋). Indeed, by Proposition 4.9 |(𝐴,𝐵)𝐸|𝐸 ⩽ 2|𝐴,𝐵|𝑋,
and so since 𝜏 is a tangle of 𝑆2𝑘 (𝐸) either (𝐴,𝐵)𝐸 ∈ 𝜏 or (𝐵,𝐴)𝐸 ∈ 𝜏.

Let us now show that for no separation {𝐴,𝐵 } do we have both (𝐴,𝐵) and (𝐵,𝐴)
in 𝜏𝑋,𝑘. Suppose otherwise, then 𝜏 contains separations (𝐶1, 𝐷1) and (𝐶2, 𝐷2) such
that (𝐶1, 𝐷1)◀ = (𝐴,𝐵) and (𝐶2, 𝐷2)◀ = (𝐵,𝐴).

Note that, by Proposition 4.9, we have that |𝐸(𝐴),𝐸(𝐵)|𝐸 ⩽ 2|𝐴,𝐵|𝑋 < 2𝑘,
hence (𝐴,𝐵)𝐸 ∈ 𝜏 or (𝐵,𝐴)𝐸 ∈ 𝜏. As (𝐸(𝐴),𝐸(𝐵))◀ = (𝐴,𝐵), we may suppose
without loss of generality that either (𝐶1, 𝐷1) = (𝐴,𝐵)𝐸 or (𝐶2, 𝐷2) = (𝐵,𝐴)𝐸.
We suppose the former one, the latter case is similar.

Now pick a separation (𝐶,𝐷) ∈ 𝜏 so that (𝐶,𝐷)◀ ⩾ (𝐶2, 𝐷2)◀ = (𝐵,𝐴) and the
set (𝐷1 ∩𝐷) ⧵ (𝐶1 ∪𝐶) is as small as possible. Then, since 𝜏 satisfies (†𝐸), we have
𝐶1 ∪ 𝐶 ≠ 𝐸. Hence there exists some edge 𝑒 ∈ (𝐷1 ∩𝐷) ⧵ (𝐶1 ∪ 𝐶).

Let 𝑥 be the end vertex of 𝑒 in 𝑋. Note that 𝑒 ∈ 𝐸(𝐵) ⧵ 𝐸(𝐴) since 𝐸(𝐴) = 𝐶1
and 𝑒 ∉ 𝐶1. Thus, 𝑥 ∈ 𝐵 ⧵ 𝐴. Moreover, as 𝐵 = 𝐶2

◀
𝐷2

⊆ 𝐶◀
𝐷, we have that 𝑥 ∈ 𝐶◀

𝐷.
Thus, 𝑒 is incident with 𝐶◀

𝐷.
Consequently, we can apply Lemma 4.13 to get that |𝐶 + 𝑒,𝐷| ⩽ |𝐶,𝐷|. Thus, 𝜏

orients (𝐶 + 𝑒,𝐷) and therefore (𝐶 + 𝑒,𝐷) ∈ 𝜏, as (𝐷,𝐶 + 𝑒) ∈ 𝜏 would contradict
(†𝐸) because of (𝐶,𝐷) ∈ 𝜏 and 𝐷 ∪ 𝐶 = 𝐸.

But this implies that (𝐶+𝑒,𝐷) ∈ 𝜏 is a better choice for (𝐶,𝐷), since (𝐶+𝑒,𝐷)◀ ⩾
(𝐶,𝐷)◀ by Lemma 4.7, and

(𝐷1 ∩𝐷) ⧵ (𝐶1 ∪ 𝐶) ⊋ (𝐷1 ∩𝐷) ⧵ (𝐶1 ∪ (𝐶 + 𝑒)),

as 𝑒 ∈ (𝐷1 ∩𝐷) ⧵ (𝐶1 ∪ 𝐶).
Thus, 𝜏𝑋,𝑘 is an orientation of 𝑆𝑘 (𝑋). That 𝜏𝑋,𝑘 satisfies the tangle property (†)

now follows like this: if (𝐴1, 𝐵1), (𝐴2, 𝐵2), (𝐴3, 𝐵3) were a triple of separations in
𝜏𝑋,𝑘 contradicting the tangle property (†), then 𝜏 would need to orient (𝐴1, 𝐵1)𝐸,
(𝐴2, 𝐵2)𝐸 and (𝐴3, 𝐵3)𝐸 by Proposition 4.9. By the above observation, 𝜏 then
orients them as (𝐴1, 𝐵1)𝐸, (𝐴2, 𝐵2)𝐸 and (𝐴3, 𝐵3)𝐸, since 𝜏𝑋,𝑘 does not contain any
(((𝐴𝑖, 𝐵𝑖)𝐸)∗)◀ = (𝐵𝑖, 𝐴𝑖). However, the three separations (𝐴1, 𝐵1)𝐸, (𝐴2, 𝐵2)𝐸
and (𝐴3, 𝐵3)𝐸 in 𝜏 then contradict the tangle property (†𝐸), as every edge in 𝐸 is
incident with at least one of the sets 𝐴1, 𝐴2, and 𝐴3.

A similar conclusion holds for the shift 𝜏𝐸 of a tangle 𝜏 of 𝑆(𝑋).

Theorem 8. Given a tangle 𝜏 of 𝑆4𝑘 (𝑋), then 𝜏𝐸,𝑘 is a tangle of 𝑆𝑘 (𝐸).

46



4.2. Tangles on the edges

Proof. By Lemma 4.10, given some separation (𝐶,𝐷) ∈ 𝑆𝑘 (𝐸), we have that
|(𝐶,𝐷)◀|𝑋 ⩽ |𝐶,𝐷|𝐸, thus 𝜏 contains exactly one of (𝐶,𝐷)◀ and ((𝐶,𝐷)◀)∗ =
(𝐷,𝐶)◀, and consequently 𝜏𝐸,𝑘 contains exactly one of (𝐶,𝐷) and (𝐷,𝐶), i.e., 𝜏𝐸,𝑘
is an orientation of 𝑆𝑘 (𝐸).

So, it remains to show that 𝜏𝐸,𝑘 satisfies the tangle property (†𝐸). Let us suppose
for a contradiction that there is some set

{ (𝐶1, 𝐷1), (𝐶2, 𝐷2), (𝐶3, 𝐷3) } ⊆ 𝜏𝐸,𝑘

such that 𝐶1 ∪ 𝐶2 ∪ 𝐶3 = 𝐸.
Let (𝐴𝑖, 𝐵𝑖) = (𝐶𝑖, 𝐷𝑖)◀ for each 𝑖 = 1, 2, 3. Then, since (𝐴𝑖, 𝐵𝑖) ∈ 𝜏 for each 𝑖,

and 𝜏 is a tangle, it follows that the set 𝑍 = 𝑋 ⧵ (𝐴1 ∪ 𝐴2 ∪ 𝐴3) is non-empty.
Since 𝑍 ⊆ 𝐵𝑖 = 𝐷𝑖

◀
𝐶𝑖

for each 𝑖, we have that |𝐸(𝑧) ∩ 𝐷𝑖| ⩾ |𝐸(𝑧) ∩ 𝐶𝑖| for all
𝑧 ∈ 𝑍 and 𝑖 = 1, 2, 3. However, since 𝐶1 ∪ 𝐶2 ∪ 𝐶3 = 𝐸,

3
∑
𝑖=1

|𝐶𝑖, 𝐷𝑖|𝐸 =
3

∑
𝑖=1

∑
𝑣∈𝑉

(min{ |𝐸(𝑣) ∩ 𝐶𝑖| , |𝐸(𝑣) ∩ 𝐷𝑖| } −
1
2
|𝐸(𝑣) ∩ 𝐶𝑖 ∩𝐷𝑖|)

⩾
3

∑
𝑖=1

∑
𝑧∈𝑍

(min{ |𝐸(𝑧) ∩ 𝐶𝑖| , |𝐸(𝑧) ∩ 𝐷𝑖| } −
1
2
|𝐸(𝑧) ∩ 𝐶𝑖 ∩𝐷𝑖|)

= ∑
𝑧∈𝑍

3
∑
𝑖=1

(|𝐸(𝑧) ∩ 𝐶𝑖| −
1
2
|𝐸(𝑧) ∩ 𝐶𝑖 ∩𝐷𝑖|)

⩾ ∑
𝑧∈𝑍

𝑑(𝑧)/2 = |𝐸(𝑍, 𝑌 )|
2

.

As |𝐶𝑖, 𝐷𝑖|𝐸 < 𝑘 for every 𝑖 = 1, 2, 3, this gives us |𝐸(𝑍,𝑋)| < 6𝑘 and thus

|𝑍,𝑋|𝑋 = |𝐸(𝑍, 𝑌 )|
2

< 3𝑘.

Hence, 𝜏 needs to orient (𝑍,𝑋). As (𝑋,𝑍) ∈ 𝜏 would contradict (†), it follows that
(𝑍,𝑋) ∈ 𝜏.

Finally, since |𝐴3, 𝐵3|𝑋 ⩽ |𝐶3, 𝐷3|𝐸 < 𝑘 by Lemma 4.10, we can conclude by
submodularity, that

|𝐴3 ∪ 𝑍,𝐵3 ∩𝑋|𝑋 ⩽ |𝐴3, 𝐵3|𝑋 + |𝑍,𝑋| < 4𝑘.

Hence, it follows that 𝜏 needs to orient (𝐴3 ∪ 𝑍,𝐵3) and as (𝐴3, 𝐵3) ∈ 𝜏 it follows
from (†) that (𝐴3 ∪ 𝑍,𝐵3) ∈ 𝜏, as 𝐴3 ∪ 𝐵3 = 𝑋. However, then

{ (𝐴1, 𝐵1), (𝐴2, 𝐵2), (𝐴3 ∪ 𝑍,𝐵3) } ⊆ 𝜏

and 𝐴1 ∪ 𝐴2 ∪ (𝐴3 ∪ 𝑍) = 𝑋, contradicting (†).
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4. Dual tangles on a bipartite graph

Corollary 4.14. Let 𝜏 be a tangle of 𝑆8𝑘 (𝐸), then

𝜏″ ≔ (𝜏𝑋,4𝑘)𝐸,𝑘

is a subset of 𝜏. Similarly, let 𝜏 ′ be a tangle of 𝑆8𝑘 (𝑋), then

𝜏‴ ≔ (𝜏 ′𝐸,2𝑘)𝑋,𝑘

is a subset of 𝜏 ′.

Proof. By Theorem 7, 𝜏″ is a tangle of 𝑆𝑘 (𝐸). Now, given any separation (𝐶,𝐷) ∈
𝑆𝑘 (𝐸) ∩ 𝜏, we have that (𝐶,𝐷)◀ ∈ 𝜏𝑋,4𝑘 and thus (𝐶,𝐷) is in 𝜏″. As 𝜏″ is an
orientation of 𝑆𝑘 (𝐸), we then have that 𝜏″ ⊆ 𝜏.

For the second part we note that, by Theorem 8, 𝜏‴ is a tangle of 𝑆𝑘 (𝑋). Given
(𝐴,𝐵) ∈ 𝑆𝑘 (𝑋) ∩ 𝜏 ′ we have, since ((𝐴,𝐵)𝐸)◀ = (𝐴,𝐵), that (𝐴,𝐵)𝐸 is in 𝜏 ′𝐸,2𝑘
and thus (𝐴,𝐵) is in 𝜏‴. As 𝜏‴ is an orientation of 𝑆𝑘 (𝑋), we then have that
𝜏‴ ⊆ 𝜏 ′.

Putting these together, we obtain versions of Theorem 5 and Theorem 6, with
slightly worse factors:

Corollary 4.15. Let 𝜏 be a tangle of 𝑆8𝑘 (𝑋). Then 𝜏 ′ ≔ ▷
𝑘𝜏 is a tangle of 𝑆𝑘 (𝑌 ).

Proof. It is easy to see that 𝜏 ′ = (𝜏𝐸,2𝑘)𝑌 ,𝑘 which is a tangle by Theorem 8 and
Theorem 7.

Corollary 4.16. Let 𝜏 be a tangle of 𝑆64𝑘 (𝑋), let 𝜏 ′ = ▷
8𝑘𝜏, and let 𝜏″ = ◁

𝑘𝜏′, then
𝜏″ ⊆ 𝜏.

Proof. Consider 𝜏𝐸,16𝑘. By Corollary 4.15, we have that

𝜏 ′ = (𝜏𝐸,16𝑘)𝑌 ,8𝑘.

Moreover, again by Corollary 4.15 we have that

𝜏″ = (𝜏 ′𝐸,2𝑘)𝑋,𝑘.

But now, by Corollary 4.14, we note that

((𝜏𝐸,16𝑘)𝑌 ,8𝑘
)
𝐸,2𝑘

⊆ 𝜏𝐸,16𝑘

and thus,

𝜏″ = (((𝜏𝐸,16𝑘)𝑌 ,8𝑘
)
𝐸,2𝑘

)
𝑋,𝑘

⊆ (𝜏𝐸,16𝑘)𝑋,𝑘
.

Again by Corollary 4.14 we have that

(𝜏𝐸,16𝑘)𝑋,𝑘
⊆ 𝜏,

which shows the claim.
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4.3. Variations and generalizations

4.3. Variations and generalizations

A natural question to consider at this point is how much these results depend on
the very specific set up we have here.

For example, whilst we considered a very specific type of tangle, there are other
types of ‘tangle-like’ clusters which one might wish to consider. Perhaps the most
general condition one could consider here would be that of a regular profile. Recall
that, for systems of set separations, a profile is a consistent orientation of the
separation system which satisfies property (P), i.e., it does not contain any triple of
separations of the form

{ (𝐴1, 𝐵1), (𝐴2, 𝐵2), (𝐵1 ∩ 𝐵2, 𝐴1 ∪ 𝐴2) }.

A regular profile is one which does not contain any cosmall separations, that is, a
separation (𝑉 ,𝐵) where 𝑉 is the underlying set and 𝐵 ⊆ 𝑉. Tangles are regular
profiles, but regular profiles model a broader class of clusters.

Similar statements as in Theorem 5 and 6 can be shown via similar arguments for
regular profiles, with only slight adjustments to the proofs and reusing our lemmas:

Theorem 9. Let 𝑃 be a regular profile of 𝑆3𝑘 (𝑋), then 𝑃 ′ ≔ ▷
𝑘𝑃 is a regular profile

of 𝑆𝑘 (𝑌 ).

Proof. We first note that 𝑃 ′ is an orientation of 𝑆𝑘 (𝑌 ). To show that 𝑃 ′ is consistent,
suppose for the contrary that there are some separations (𝐶1, 𝐷1), (𝐶2, 𝐷2) ∈ 𝑃 ′

such that (𝐷1, 𝐶1) ⩽ (𝐶2, 𝐷2) and let (𝐶𝑖, 𝐷𝑖)◁ = (𝐴𝑖, 𝐵𝑖). Then, since 𝐷1 ⊆ 𝐶2
and 𝐷2 ⊆ 𝐶1 we have that (𝐵1, 𝐴1) ⩽ (𝐴2, 𝐵2) and thus (𝐴1, 𝐵1), (𝐴2, 𝐵2) ∈ 𝑃
contradicts the consistency of 𝑃.

So, it remains to show that 𝑃 ′ is a regular profile. Let us suppose for a con-
tradiction that there is some set { (𝐶1, 𝐷1), (𝐶2, 𝐷2), (𝐶3, 𝐷3) } ⊆ 𝑃 ′ such that
(𝐶1, 𝐷1) ∨ (𝐶2, 𝐷2) = (𝐷3, 𝐶3). Let (𝐴𝑖, 𝐵𝑖) = (𝐶𝑖, 𝐷𝑖)◁ for each 𝑖 = 1, 2, 3 and let
𝑍 = 𝐵1 ∩ 𝐵2 ∩ 𝐵3.

Since 𝑍 ⊆ 𝐵𝑖 for each 𝑖, we have that |𝑁(𝑥) ∩ 𝐷𝑖| ⩾ |𝑁(𝑥) ∩ 𝐶𝑖| for all 𝑥 ∈ 𝑍
and 𝑖 = 1, 2, 3. However, since 𝐶1 ∪ 𝐶2 ∪ 𝐶3 = 𝑌,

3
∑
𝑖=1

|𝐶𝑖, 𝐷𝑖|𝑌 =
3

∑
𝑖=1

∑
𝑥∈𝑋

(min{ |𝑁(𝑥) ∩ 𝐶𝑖| , |𝑁(𝑥) ∩ 𝐷𝑖| } −
|𝑁(𝑥) ∩ 𝐶𝑖 ∩𝐷𝑖|

2
)

⩾
3

∑
𝑖=1

∑
𝑥∈𝑍

(min{ |𝑁(𝑥) ∩ 𝐶𝑖| , |𝑁(𝑥) ∩ 𝐷𝑖| } −
|𝑁(𝑥) ∩ 𝐶𝑖 ∩𝐷𝑖|

2
)

⩾ ∑
𝑥∈𝑍

3
∑
𝑖=1

( |𝑁(𝑥) ∩ 𝐶𝑖| −
|𝑁(𝑥) ∩ 𝐶𝑖 ∩𝐷𝑖|

2
)

⩾ ∑
𝑧∈𝑍

𝑑(𝑧)/2 = |𝐸(𝑍, 𝑌 )|
2

.
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4. Dual tangles on a bipartite graph

Since |𝐶𝑖, 𝐷𝑖|𝑌 < 𝑘 for every 𝑖 = 1, 2, 3, we have |𝐸(𝑍, 𝑌 )| < 6𝑘 and thus

|𝑍,𝑋|𝑋 = 𝐸(𝑍, 𝑌 )/2 ⩽ 3𝑘.

Hence (𝑍,𝑋) ∈ 𝑃 since 𝑃 is a regular profile of 𝑆3𝑘 (𝑋).
Moreover, 𝑃 contains (𝐴1, 𝐵1) ∨ (𝐴2, 𝐵2) as by submodularity

|(𝐴1, 𝐵1) ∨ (𝐴2, 𝐵2)|𝑋 ⩽ |𝐴1, 𝐵1|𝑋 + |𝐴2, 𝐵2|𝑋 < 2𝑘.

Then also, (𝐴1, 𝐵1) ∨ (𝐴2, 𝐵2) ∨ (𝐴3, 𝐵3) ∈ 𝑃 as

|(𝐴1, 𝐵1) ∨ (𝐴2, 𝐵2) ∨ (𝐴3, 𝐵3)|𝑋 ⩽ |(𝐴1, 𝐵1) ∨ (𝐴2, 𝐵2)|𝑋 + |𝐴3, 𝐵3|𝑋 < 3𝑘.

However, (𝐴1, 𝐵1)∨(𝐴2, 𝐵2)∨(𝐴3, 𝐵3) = (𝐴1∪𝐴2∪𝐴3, 𝑍) and, since 𝑍 = 𝐵1∩𝐵2∩
𝐵3, we have that 𝐴1∪𝐴2∪𝐴3∪𝑍 = 𝑋 and thus (𝐴1∪𝐴2∪𝐴3, 𝑍)∨(𝑍,𝑋) = (𝑋,𝑍),
which contradicts the fact that 𝑃 is a profile.

The profile 𝑃 ′ is regular, since if (𝑌 , 𝐶) ∈ 𝑃 ′, then (𝑌 , 𝐶)▷ = (𝑋,𝐶▷
𝑌 ) is a

cosmall separation in 𝑃, which contradicts the regularity of 𝑃.

Theorem 10. Let 𝑃 be a regular profile of 𝑆9𝑘 (𝑋), let 𝑃 ′ = ▷
𝑘𝑃, and let 𝑃 ″ = ◁

𝑘𝑃 ′,
then 𝑃 ″ ⊆ 𝑃.

Proof. Both 𝑃 ″ and 𝑃 ∩ 𝑆𝑘 (𝑋) are regular profiles of 𝑆𝑘 (𝑋). Let us suppose that
they are distinct. Let (𝐴,𝐵) ∈ 𝑃 be a separation of minimal order with the property
that (𝐵,𝐴) ∈ 𝑃 ″ and let us assume further, that among all those separations (𝐴,𝐵)
is chosen so that 𝐴∩𝐵 is as large as possible. Suppose first that |𝐴,𝐵| = ∣𝐴▷

𝐵, 𝐵
▷
𝐴∣.

Let (𝐴′, 𝐵′) = ((𝐴,𝐵)▷)◁, by Lemma 4.4, we have that 𝐴 ⊆ 𝐴′ and 𝐵 ⊆ 𝐵′.
Since (𝐵′, 𝐴′) ∈ 𝑃, we have (𝐴′, 𝐵′) ≠ (𝐴,𝐵), and so we can pick 𝑥 ∈ (𝐴′ ⧵
𝐴) ∪ (𝐵′ ⧵ 𝐵). Note that |𝐴′ + 𝑥,𝐵′ + 𝑥| ⩽ |𝐴,𝐵| by Lemma 4.5. Thus, by the
choice of (𝐴,𝐵), either (𝐴′ + 𝑥,𝐵′ + 𝑥) ∈ 𝑃 ″ ∩ 𝑃 which implies that 𝑥 ∈ 𝐴′ ⧵ 𝐴
or (𝐵′ + 𝑥,𝐴′ + 𝑥) ∈ 𝑃 ″ ∩ 𝑃 which implies 𝑥 ∈ 𝐵′ ⧵ 𝐵. In any case, since
|{𝑥},𝑋|𝑋 ⩽ |𝐴,𝐵| (again by Lemma 4.5) and ({𝑥},𝑋) ∈ 𝑃 ″ ∩ 𝑃 this contradicts
the fact that 𝑃 ″ and, respectively, 𝑃 ∩ 𝑆𝑘 (𝑋) are profiles.

If on the other hand |𝐴,𝐵| > ∣𝐴▷
𝐵, 𝐵

▷
𝐴∣ then, by Lemma 4.6 there either exists 𝑥 ∈

(𝐴⧵𝐵)∪(𝐵⧵𝐴) such that for (𝐴′, 𝐵′) = (𝐴+𝑥, 𝐵+𝑥) we have |𝐴′, 𝐵′|𝑋 < |𝐴,𝐵|𝑋
and |{𝑥},𝑋|𝑋 ⩽ |𝐴,𝐵|𝑋, or there exists 𝑥 ∈ 𝐴∩𝐵 such that for (𝐴′, 𝐵′) = (𝐴−𝑥,𝐵)
or (𝐴′, 𝐵′) = (𝐴,𝐵 − 𝑥) we have |𝐴′, 𝐵′|𝑋 < |𝐴,𝐵|𝑋 and |{𝑥},𝑋|𝑋 ⩽ |𝐴,𝐵|𝑋.

However, either of these cases again contradicts the fact that 𝑃 ″ or, respectively,
𝑃 ∩ 𝑆𝑘 (𝑋), is a profile as ({𝑥},𝑋) ∈ 𝑃 ∩ 𝑃 ″ and, by the choice of (𝐴,𝐵), either
(𝐴′, 𝐵′) ∈ 𝑃 ∩𝑃 ″ or (𝐵′, 𝐴′) ∈ 𝑃 ∩𝑃 ″, and {𝐴,𝐵 }, {𝐴′, 𝐵′ }, { {𝑥},𝑋 } together
contradict the profile property.

We can also deduce statements analogue to Theorem 7 and Theorem 8 for profiles,
i.e., we can consider regular profiles on the set 𝑆(𝐸) of separations of the edges of
our bipartite graph and show the following:
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Theorem 11. If 𝑃 is a regular profile of 𝑆2𝑘 (𝐸), then 𝑃𝑋,𝑘 is a regular profile
of 𝑆𝑘 (𝑋).

Proof. If 𝑘 ⩽ 1
2 , then 𝑃𝑋 only orients separations (𝐴,𝐵) of order less than 1

2 , that
is, only separations where each vertex in 𝑌 has all its neighbours in either 𝐴 ⧵ 𝐵 or
𝐵 ⧵ 𝐴. It is then easy to see that 𝑃𝑋 is indeed a profile.

So, suppose that 𝑘 > 1
2 . We first note that the set 𝑃𝑋,𝑘 contains at least one of

(𝐴,𝐵) and (𝐵,𝐴) for every separation (𝐴,𝐵) ∈ 𝑆𝑘 (𝑋). Indeed, by Proposition 4.9
|(𝐴,𝐵)𝐸|𝐸 ⩽ 2|𝐴,𝐵|𝑋, and so since 𝑃 is an orientation of 𝑆2𝑘 (𝐸) either (𝐴,𝐵)𝐸 ∈ 𝑃
or (𝐵,𝐴)𝐸 ∈ 𝑃.

Let us now show that for no separation {𝐴,𝐵 } we have both (𝐴,𝐵) and (𝐵,𝐴)
in 𝑃𝑋,𝑘. Suppose otherwise, then 𝑃 contains separations (𝐶1, 𝐷1) and (𝐶2, 𝐷2) such
that (𝐶1, 𝐷1)◀ = (𝐴,𝐵) and (𝐶2, 𝐷2)◀ = (𝐵,𝐴).

Note that, by Proposition 4.9, we have |𝐸(𝐴),𝐸(𝐵)|𝐸 ⩽ 2|𝐴,𝐵|𝑋 < 2𝑘, and,
hence, (𝐴,𝐵)𝐸 ∈ 𝑃 or (𝐵,𝐴)𝐸 ∈ 𝑃. As (𝐸(𝐴),𝐸(𝐵))◀ = (𝐴,𝐵), we may suppose
without loss of generality that either (𝐶1, 𝐷1) = (𝐴,𝐵)𝐸 or (𝐶2, 𝐷2) = (𝐵,𝐴)𝐸.
We suppose the former one, the latter case is similar.

Now pick a separation (𝐶,𝐷) ∈ 𝑃 so that (𝐶,𝐷)◀ ⩾ (𝐶2, 𝐷2)◀ = (𝐵,𝐴) and the
set (𝐷1∩𝐷)⧵(𝐶1∪𝐶) is as small as possible. We claim that 𝐶1∪𝐶 ≠ 𝐸. So suppose
for a contradiction that 𝐶1 ∪𝐶 = 𝐸. Then (𝐶1, 𝐷1) ∨ (𝐶,𝐷) = (𝐶1 ∪𝐶,𝐷1 ∩𝐷) =
(𝐸,𝐷1 ∩ 𝐷). Since 𝐷1 ⊆ 𝐸(𝐵) and 𝐷 ⊆ 𝐸(𝐴) we have that 𝐷1 ∩ 𝐷 ⊆ 𝐸(𝐴 ∩ 𝐵).
We thus get

|𝐸,𝐷1 ∩𝐷|𝐸 ⩽ |𝐷1 ∩𝐷| ⩽ |𝐸(𝐴 ∩ 𝐵)| ⩽ 2|𝐴,𝐵|𝑋 < 2𝑘,

which gives a contradiction, since (𝐸,𝐷1 ∩ 𝐷) ∈ 𝑃 contradicts the fact that 𝑃 is
regular. Thus, 𝐶1 ∪ 𝐶 ≠ 𝐸 and there exists some edge 𝑒 ∈ (𝐷1 ∩𝐷) ⧵ (𝐶1 ∪ 𝐶).

Let 𝑥 be the end vertex of 𝑒 in 𝑋. Note that 𝑒 ∈ 𝐸(𝐵) ⧵ 𝐸(𝐴) since 𝐸(𝐴) = 𝐶1
and 𝑒 ∉ 𝐶1. Thus, 𝑥 ∈ 𝐵 ⧵ 𝐴. Moreover, as 𝐵 = 𝐶2

◀
𝐷2

⊆ 𝐶◀
𝐷, we have that 𝑥 ∈ 𝐶◀

𝐷.
Thus, 𝑒 is incident with 𝐶◀

𝐷.
Consequently, we can apply Lemma 4.13 to get that |𝐶 + 𝑒,𝐷| ⩽ |𝐶,𝐷|. Thus, 𝑃

orients (𝐶 + 𝑒,𝐷) and therefore (𝐶 + 𝑒,𝐷) ∈ 𝑃 as (𝐷,𝐶 + 𝑒) ∈ 𝑃 would contradict
the profile property, since (𝐶,𝐷) ∨ ({𝑒},𝐸) = (𝐶 + 𝑒,𝐷) and |{𝑒},𝐸|𝑋 ⩽ 1 and
consequently ({𝑒},𝐸) ∈ 𝑃, since 𝑃 is regular and 𝑘 > 1

2 .
But this implies that (𝐶+𝑒,𝐷) ∈ 𝑃 is a better choice for (𝐶,𝐷), as (𝐶+𝑒,𝐷)◀ ⩾

(𝐶,𝐷)◀ by Lemma 4.7 and (𝐷1 ∩ 𝐷) ⧵ (𝐶1 ∪ 𝐶) ⊋ (𝐷1 ∩ 𝐷) ⧵ (𝐶1 ∪ (𝐶 + 𝑒)) as
𝑒 ∈ (𝐷1 ∩𝐷) ⧵ (𝐶1 ∪ 𝐶).

Thus, 𝑃𝑋,𝑘 is indeed an orientation. It is also consistent, for if (𝐴1, 𝐵1) ⩽
(𝐴2, 𝐵2), then (𝐴1, 𝐵1)𝐸 ⩽ (𝐴2, 𝐵2)𝐸 and thus, if (𝐴2, 𝐵2) ∈ 𝑃𝑋 ∩ 𝑆𝑘 (𝑋) and
(𝐴1, 𝐵1) ∈ 𝑆𝑘 (𝑋) then (𝐴1, 𝐵1)𝐸 ∈ 𝑃 by Proposition 4.9 and thus (𝐴1, 𝐵1) ∈ 𝑃𝑋.
In particular, (𝐵1, 𝐴1) ∉ 𝑃𝑋,𝑘, as 𝑃𝑋,𝑘 is a orientation.

That 𝑃𝑋,𝑘 is a profile now follows like this: suppose that (𝐴1, 𝐵1), (𝐴2, 𝐵2),
(𝐵1 ∩ 𝐵2, 𝐴1 ∪ 𝐴2) is a triple in 𝑃𝑋,𝑘 contradicting the profile property, then 𝑃
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orients (𝐴1, 𝐵1)𝐸, (𝐴2, 𝐵2)𝐸 and (𝐵1 ∩ 𝐵2, 𝐴1 ∪ 𝐴2)𝐸 by Proposition 4.9. By the
above observation, 𝑃 orients them as (𝐴1, 𝐵1)𝐸,(𝐴2, 𝐵2)𝐸 and (𝐵1 ∩𝐵2, 𝐴1 ∪𝐴2)𝐸,
since 𝑃𝑋,𝑘 does not contain any (((𝐴𝑖, 𝐵𝑖)𝐸)∗)◀ = (𝐵𝑖, 𝐴𝑖). However, the three
separations (𝐴1, 𝐵1)𝐸, (𝐴2, 𝐵2)𝐸 and (𝐵1 ∩𝐵2, 𝐴1 ∪𝐴2)𝐸 = (𝐵1, 𝐴1)𝐸 ∧ (𝐵2, 𝐴2)𝐸
in 𝑃 then contradict the profile property.

The profile 𝑃𝑋,𝑘 is regular, since if (𝑋,𝐴) ∈ 𝑃𝑋,𝑘, then (𝐸(𝑋),𝐸(𝐴)) = (𝐸,𝐸(𝐴))
is a cosmall separation in 𝑃, which contradicts the regularity of 𝑃.

Theorem 12. If 𝑃 is a regular profile of 𝑆3𝑘 (𝑋), then 𝑃𝐸,𝑘 is a regular profile
of 𝑆𝑘 (𝐸).

Proof. By Lemma 4.10, given some separation (𝐶,𝐷) ∈ 𝑆𝑘 (𝐸) we have that
|(𝐶,𝐷)◀|𝑋 ⩽ |𝐶,𝐷|𝐸, thus 𝑃 contains exactly one of (𝐶,𝐷)◀ and ((𝐶,𝐷)◀)∗ =
(𝐷,𝐶)◀, and consequently 𝑃𝐸,𝑘 contains exactly one of (𝐶,𝐷) and (𝐷,𝐶), i.e.,
𝑃𝐸,𝑘 is an orientation of 𝑆𝑘 (𝐸). That the orientation 𝑃𝐸,𝑘 is consistent is then
immediate from Lemma 4.7.

So, it remains to show that 𝑃𝐸,𝑘 satisfies the profile property. Let us suppose for
a contradiction that there is some set

{ (𝐶1, 𝐷1), (𝐶2, 𝐷2), (𝐶3, 𝐷3) } ⊆ 𝑃𝐸,𝑘

such that (𝐶1, 𝐷1) ∨ (𝐶2, 𝐷2) = (𝐷3, 𝐶2). Let (𝐴𝑖, 𝐵𝑖) = (𝐶𝑖, 𝐷𝑖)◀ for each 𝑖 =
1, 2, 3 and let 𝑍 = 𝐵1 ∩ 𝐵2 ∩ 𝐵3.

Since 𝑍 ⊆ 𝐵𝑖 = 𝐷𝑖
◀
𝐶𝑖

for each 𝑖, we have that |𝐸(𝑧) ∩ 𝐷𝑖| ⩾ |𝐸(𝑧) ∩ 𝐶𝑖| for all
𝑧 ∈ 𝑍 and 𝑖 = 1, 2, 3. However, since 𝐶1 ∪ 𝐶2 ∪ 𝐶3 = 𝐸,

3
∑
𝑖=1

|𝐶𝑖, 𝐷𝑖|𝐸 =
3

∑
𝑖=1

∑
𝑣∈𝑉

(min{ |𝐸(𝑣) ∩ 𝐶𝑖| , |𝐸(𝑣) ∩ 𝐷𝑖| } −
1
2
|𝐸(𝑣) ∩ 𝐶𝑖 ∩𝐷𝑖|)

⩾
3

∑
𝑖=1

∑
𝑧∈𝑍

(min{ |𝐸(𝑧) ∩ 𝐶𝑖| , |𝐸(𝑧) ∩ 𝐷𝑖| } −
1
2
|𝐸(𝑧) ∩ 𝐶𝑖 ∩𝐷𝑖|)

= ∑
𝑧∈𝑍

3
∑
𝑖=1

(|𝐸(𝑧) ∩ 𝐶𝑖| −
1
2
|𝐸(𝑧) ∩ 𝐶𝑖 ∩𝐷𝑖|)

⩾ ∑
𝑧∈𝑍

𝑑(𝑧)/2 = |𝐸(𝑍, 𝑌 )|
2

.

As |𝐶𝑖, 𝐷𝑖|𝐸 < 𝑘 for every 𝑖 = 1, 2, 3, this gives us |𝐸(𝑍,𝑋)| < 6𝑘 and thus

|𝑍,𝑋|𝑋 = |𝐸(𝑍, 𝑌 )|
2

< 3𝑘.

Hence, 𝑃 needs to contain (𝑍,𝑋), as 𝑃 is a regular 3𝑘-profile.
Moreover, 𝑃 contains (𝐴1, 𝐵1) ∨ (𝐴2, 𝐵2) as by submodularity

|(𝐴1, 𝐵1) ∨ (𝐴2, 𝐵2)|𝑋 ⩽ |𝐴1, 𝐵1|𝑋 + |𝐴2, 𝐵2|𝑋 < 2𝑘.
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Then also (𝐴1, 𝐵1) ∨ (𝐴2, 𝐵2) ∨ (𝐴3, 𝐵3) ∈ 𝑃 as

|(𝐴1, 𝐵1) ∨ (𝐴2, 𝐵2) ∨ (𝐴3, 𝐵3)|𝑋 ⩽ |(𝐴1, 𝐵1) ∨ (𝐴2, 𝐵2)|𝑋 + |𝐴3, 𝐵3|𝑋 < 3𝑘.

But (𝐴1, 𝐵1) ∨ (𝐴2, 𝐵2) ∨ (𝐴3, 𝐵3) = (𝐴1 ∪ 𝐴2 ∪ 𝐴3, 𝑍) and, as 𝑍 = 𝐵1 ∩ 𝐵2 ∩ 𝐵3
we have that 𝐴1 ∪ 𝐴2 ∪ 𝐴3 ∪ 𝑍 = 𝑋 and thus (𝐴1 ∪ 𝐴2 ∪ 𝐴3, 𝑍) ∨ (𝑍,𝑋) = (𝑋,𝑍)
which contradicts the fact that 𝑃 is a profile.

The profile 𝑃𝐸,𝑘 is regular, since if (𝐸,𝐶) ∈ 𝑃𝐸,𝑘, then (𝐸,𝐶)▶ = (𝑋,𝐶▶
𝐸 ) is a

cosmall separation in 𝑃, which contradicts the regularity of 𝑃.

Another possible variation of the problem is to consider other ways to relate
tangles of the different systems to each other. Given our shifting operation between
the two separation systems 𝑆(𝑋) and 𝑆(𝑌 ) we defined a ‘pull-back’ type operation
that maps subsets of 𝑆(𝑋) to subsets of 𝑆(𝑌 ) and investigated its action on tangles.
However, as in the definition of 𝜏𝑋 there is another way to extend our shifting
operations from acting on single separations to acting on subsets via a ‘push-forward’
type action. It is perhaps equally natural to ask how the tangles of 𝑆𝑘 (𝑋) and
𝑆𝑘 (𝑌 ) behave under these operations.

Given a tangle 𝜏 of 𝑆𝑘 (𝑋) one may define the set

𝜏▷ ≔ { (𝐴,𝐵)▷ ∶ (𝐴,𝐵) ∈ 𝜏 } ⊆ 𝑆𝑘 (𝑌 ),

and similarly, if 𝜏 is a tangle of 𝑆𝑘 (𝑌 ), we may define

𝜏◁ ≔ { (𝐴,𝐵)◁ ∶ (𝐴,𝐵) ∈ 𝜏 } ⊆ 𝑆𝑘 (𝑋).

Note that 𝜏▷ and 𝜏◁, generally, are no more than subsets of 𝑆𝑘 (𝑌 ) or 𝑆𝑘 (𝑋),
respectively, they need not be an orientation, not even a partial orientation.

However, we can show that this push-forward 𝜏▷ is, when restricted appropriately,
contained in a corresponding pull-back ▷𝜏 and thus needs to be a partial orientation
satisfying (†).

Proposition 4.17. Let 𝜏 be a tangle of 𝑆16𝑘 (𝑋), then (𝜏 ∩ 𝑆𝑘 (𝑋))▷ ⊆ ▷𝜏.

Proof. The only way in which this may fail is that for some (𝐶,𝐷) ∈ ▷𝜏 we have
(𝐷,𝐶) ∈ (𝜏 ∩𝑆𝑘 (𝑋))▷. Let us say this happens because of some (𝐴,𝐵) ∈ 𝜏 ∩𝑆𝑘 (𝑋)
with (𝐴,𝐵)▷ = (𝐷,𝐶).

Then also (𝐴,𝐵) ∈ ◁

𝑘(
▷

4𝑘𝜏) by Theorem 6, and hence (𝐴,𝐵)◁ = (𝐷,𝐶) ∈ ▷
4𝑘𝜏,

contradicting the fact that ▷
4𝑘𝜏 is a tangle.

A third variation of this idea comes from applications. There we often wish to
work with systems of bipartitions, rather than more general set separations. Again
here much of the work in previous sections remains true in this setting, with slight
tweaks to the definitions and results.
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More explicitly, given as before a bipartite graph 𝐺 on bipartition classes 𝑋 and
𝑌 let ℬ(𝑋) and ℬ(𝑌 ) be the universe of all bipartition of 𝑋 and 𝑌 respectively.

Given a bipartition (𝐴,𝐵) of 𝑋, we can define, as before, the shift of (𝐴,𝐵) to
be the bipartition (𝐶,𝐷) of 𝑌 where 𝐶 is the set of all elements of 𝑌 with more
neighbours in 𝐴 than in 𝐵 and 𝐷 is the set of all elements of 𝑌 with more neighbours
in 𝐵 than in 𝐴. However, a small issue arises here as to what to do with those
vertices which have an equal number of neighbours in 𝐴 and 𝐵. Since we need the
shift of a bipartition to be a bipartition we need to break the symmetry in some
way here. We define our shifting operation not for unoriented, but for oriented
bipartitions, namely we define a bipartition (𝐴,𝐵)▷ ≔ (𝐶,𝐷) of 𝑌 by letting

𝐶 ≔ {𝑦 ∈ 𝑌 ∶ |𝑁(𝑦) ∩ 𝐴| ⩾ |𝑁(𝑦) ∩ 𝐵| }

and

𝐷 ≔ {𝑦 ∈ 𝑌 ∶ |𝑁(𝑦) ∩ 𝐴| < |𝑁(𝑦) ∩ 𝐵| }.

In particular, in general (𝐴,𝐵)▷ ≠ ((𝐵,𝐴)▷)∗.
There is again a natural order function for these bipartitions given by

|𝐴,𝐵|𝑋 ≔ ∑
𝑦∈𝑌

min{ |𝑁(𝑦) ∩ 𝐴| , |𝑁(𝑦) ∩ 𝐵| },

which can again be seen to be submodular,3 and for a suitable definition of a tangle
we can show that analogues of Theorem 5 and 6 hold for tangles of ℬ(𝑋) and ℬ(𝑌 ).
In particular the following is true:

Theorem 4.18. Let 𝜏 be a tangle of ℬ4𝑘 (𝑋), then 𝜏 ′ ≔ ▷
𝑘𝜏 is a tangle of ℬ𝑘 (𝑌 ).

Theorem 4.19. Let 𝜏 be a tangle of ℬ16𝑘 (𝑋), let 𝜏 ′ = ▷
4𝑘𝜏, and let 𝜏″ = ◁

𝑘𝜏′, then
𝜏″ ⊆ 𝜏.

Again, the arguments closely follow the proofs of Theorem 5 and 6, for details see
the extended version of the paper [24] upon which this chapter is based.

It would be nice if one could find a unified result implying these different variations.
Unfortunately, it seems that the nature of the result means that strengthening or
weakening the notion of tangle we consider does not make the statement stronger
or weaker, but rather incomparable. Indeed, since we wish to show that tangles
of 𝑆(𝑋) shift to tangles of 𝑆(𝑌 ), if we consider a stronger notion of tangle, then
fewer orientations are tangles, and so it is required to show that a stronger property
holds for the shifts, but under a stronger assumption on the original orientations.
Similarly, if we consider a weaker notion of tangles, then more orientations will be
tangles, and so while it is required to show that only the weaker property holds for
the shifts, we also only have weaker assumptions on the original orientations.

A similar problem arises if one wants to relate the statements for bipartitions to
the statements about set separations: In principle, every tangle of set separations
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4.3. Variations and generalizations

induces a tangle of bipartitions. Conversely, every tangle of bipartitions induces a
tangle of set separations of lower order, except that the ‘regularity’ conditions of
these two types of tangles are not compatible: For set separations we just require
that we do not contain any cosmall separations, whereas for bipartitions we want
more, namely that the big side of our bipartition of the edges meet both sides of the
graph in at least two vertices. Thus, the statements for these two types of tangles
are formally independent, although most of the proof strategy is very similar.
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Trees of tangles
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5. Trees of tangles and the splinter lemmas

In this chapter we will present a unified approach to proving tree-of-tangles
theorems. Sections 5.1 to 5.3 are based on [38], which is joint work with
Christian Elbracht and Jakob Kneip. Sections 5.6 and 5.7 is as-of-yet
unpublished collaboration with Christian Elbracht. The extension to
the infinite in Sections 5.8 and 5.9 is based on [41], which also is joint
work with Christian Elbracht and Jakob Kneip. The application to edge
blocks, Section 5.10, is based on the preprint [42] which is joint work with
Christian Elbracht and Jan Kurkofka.

5.1. Trees of tangles in abstract separation systems

The central theorem in the theory of tangles, which was established by Robertson
and Seymour together with the notion of tangles, is the following:

Theorem 5.1 ([64]). Every finite graph has a tree-decomposition displaying its
maximal tangles.

Theorem 5.1 roughly says that the highly cohesive regions in a graph are arranged
in a tree-like structure. The ‘maximal’ in Theorem 5.1 relates to the order of the
tangles: the tree-decomposition found by Theorem 5.1 displays the graph’s tangles
at every level of coarseness.

The original proof of Theorem 5.1 by Robertson and Seymour in [64] is fairly
involved and uses as tools multiple non-trivial results about separations in graphs,
for instance, the existence of certain ‘tie-breaker’ functions. Since then, the theory
of tangles has moved on considerably, and shorter and more elementary proofs
of Theorem 5.1 have been found. The shortest proof to date is due to Carmesin
[9, 19], who utilizes the fact that the separations needed for the tree-decomposition
in Theorem 5.1 behave well under joins and meets when taken to be of minimal
order.

Carmesin, Diestel, Hundertmark, and Stein established the following variant on
Theorem 5.1:

Theorem 5.2 ([13]). For every integer 𝑘 ⩾ 0, every finite graph has a canonical
tree-decomposition displaying its 𝑘-blocks.

While ‘𝑘-blocks’ are a significant sidestep from ‘maximal tangles’, the notable
part is the caonicity. Here, ‘canonical’ means that every automorphism of the graph
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acts on the decomposition tree. In other words, Theorem 5.2 uses only invariants of
the graph – in particular no tie-breaker – to find the desired tree-decomposition.

A careful analysis of the proof of Theorem 5.2, started in [11, 12] resulted in
another shift of paradigm in [26], similarly to the shift brought about by [64]. Much
in the same way as tangles made it possible indirectly to capture substructures in
graphs that were traditionally described more directly by sets of vertices or edges,
and to treat them in a unified framework, it turned out that tangles themselves
could be described, unlike in their definition given by Robertson and Seymour in
[64], without reference to vertices or edges. They prove:

Theorem 5.3 ([26]). Every finite graph has a canonical tree-decomposition displaying
its robust regular profiles.

Indeed, the only information needed about a graph’s tangles to prove Theorem 5.3
is how its separations relate to each other, that is, which separations are nested
or cross. This information, a partial order between the separations of the graph
together with an involution became the definition of an abstract separation system,
and all subsequent tools and theorems in [26] are then formulated for separation
systems. This new abstract representation of tangles yielded not only a cleaner
proof of Theorem 5.3 in [26], but also made the theory of tangles applicable to a
wider range of combinatorial structures.

However one condition not expressed in terms of relations between the separations
remained in use throughout the series of abstractions of Theorem 5.1 implemented
in [13] and [26]: all of these works assumed that the separation systems of interest
came with a submodular order function. Likewise, Carmesin’s short proof of
Theorem 5.1 in [9] also leverages the fact that the order of separations of graphs is
a submodular function.

This last non-structural aspect of tree-of-tangles theorems was disposed of in [25]:
in that paper Diestel, Erde, and Weißauer replaced the order function with a purely
structural notion of submodularity which can be expressed solely in terms of the
lattice structure of a universe of separation surrounding the separation system.
In doing so they established the most general and widely applicable variant of
Theorem 5.1 to date:

Theorem 5.4 ([25, Theorem 6]). Let 𝑆 be a submodular separation system in some
universe 𝑈 of separations and let 𝒫 a set of profiles of 𝑆. Then 𝑆 contains a nested
set that distinguishes 𝒫.

Since the relevant separation systems in graphs are all ‘structurally submodular’,
Theorem 5.4 still applies to tangles in graphs. On the other hand there are separation
systems that are structurally submodular but cannot be represented by graph
separations ([4]) or by a submodular order function (cf. Section 8.3). In particular,
Theorem 5.4 can also be applied to separation systems which, unlike separations in
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graphs, do not come with any order function, such as arbitrary bipartitions of sets.
This is a marked step forward from its predecessor Theorem 5.1, whose original
proof made heavy use of the order of particular separations.

However there is a trade-off involved in Theorem 5.4’s wider applicability: it
does not imply Theorem 5.1. Indeed, Theorem 5.4 applied to a graph produces a
tree-decomposition which displays just the graph’s 𝑘-tangles for arbitrary but fixed 𝑘.
This is a significant weakening of Theorem 5.1, which finds a decomposition displaying
the graph’s maximal tangles for all tangles orders simultaneously. Moreover, the tree-
decomposition found by Theorem 5.1 is efficient in the sense that for every pair of
tangles distinguished by the tree-decomposition, the separation in the decomposition
distinguishing that pair of tangles is of the lowest possible order. Since Theorem 5.4
makes only structural assumptions so as to be applicable to separation systems
without any order function, Theorem 5.4 cannot guarantee that the separations used
by the nested set to distinguish a particular pair of tangles are of minimal order.

In this chapter we bridge the gap between Theorem 5.1 and Theorem 5.4 by
establishing the following tree-of-tangles theorem which combines the upsides of both
Theorem 5.1 and Theorem 5.4, i.e., which is as widely applicable as Theorem 5.4
while still being as powerful and efficient as Theorem 5.1 when applied to tangles in
graphs:

Theorem 14.  p. 72If 𝒮 = (𝑆1,… , 𝑆𝑛) is a compatible sequence of structurally submodular
separation systems inside a universe 𝑈, and 𝒫 is a robust set of profiles in 𝒮, then
there is a nested set 𝑁 of separations in 𝑈 which efficiently distinguishes all the
distinguishable profiles in 𝒫.

Theorem 14 includes Theorem 5.4 by taking a sequence of just one separation
system, and it implies Theorem 5.1 by taking as separation systems 𝑆𝑘 the sets of
all separations of order < 𝑘 of the given graph; the resulting nested set is the set of
separations of the desired tree-decomposition.

The nested set 𝑁 found by Theorem 14 has to contain for every pair of profiles
in 𝒫 a separation from that pair’s ‘candidate set’ of all those separations which
(efficiently) distinguish that pair of profiles. Thus, to prove Theorem 14, it suffices
to show that one can pick an element from each of these ‘candidate sets’ in a nested
way.

As it turns out, there is a very simple and purely structural requirement of the way
these ‘candidate sets’ interact with each other which guarantees that it is possible
to pick such a nested set:

Lemma 13 (Splinter Lemma).  p. 64Let 𝑈 be a universe of separations and 𝔄 = (𝒜𝑖)𝑖⩽𝑛
a family of subsets of 𝑈. If 𝔄 splinters, then we can pick an element 𝑎𝑖 from each
𝒜𝑖 so that { 𝑎1,… , 𝑎𝑛 } is nested.
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Lemma 13, in a sense, represents yet another step of abstraction in the theory of
tangles: rather than working with the profiles themselves it works with the sets of
separations distinguishing a given pair of profiles.

Lemma 13 not only implies Theorem 14, but can also be used to prove Theorem 5.1
and Theorem 5.4 directly. In fact Lemma 13 has a remarkably short proof (as
we shall see in Section 5.2), making it the shortest available proof of Theorem 5.1
so far (see Section 5.3.1). Moreover, the premise in Lemma 13 is straightforward
to check, and Lemma 13 itself does not make reference to tangles or any specific
implementations of them. As a result Lemma 13 can be used in many different
settings, implying variations of Theorem 5.1 in a multitude of contexts. For example,
after deriving in Section 5.3 Theorem 5.1, Theorem 5.4, and Theorem 14 from
Lemma 13, we use Lemma 13 to establish a new tree-of-tangles theorem in the
setting of clique separations.

Since Lemma 13 does not yield a canonical set of separations, we cannot deduce
Theorem 5.3 from Lemma 13. We fix this in Section 5.4 by establishing a version
of Lemma 13 which does give a canonical nested set, albeit under slightly stronger
assumptions:

Lemma 16 (Canonical splinter lemma). p. 77 Let 𝑈 be a universe of separations and
let 𝔄 = (𝒜𝑖 ∶ 𝑖 ∈ 𝐼) be a collection of subsets of 𝑈 that splinters hierarchically with
respect to a partial order ≼ on 𝐼. Then there exists a nested set 𝑁 = 𝑁(𝔄) meeting
every 𝒜𝑖 in 𝔄.

Moreover, 𝑁(𝔄) is canonical: if 𝜑 is an isomorphism of separation systems between
⋃𝑖∈𝐼 𝒜𝑖 and a subset of some universe 𝑈 ′ such that the family 𝜑(𝔄) ≔ (𝜑(𝒜𝑖) ∶ 𝑖 ∈ 𝐼)
splinters hierarchically with respect to ≼, then 𝑁(𝜑(𝔄)) = 𝜑(𝑁(𝔄)).

We make use of Lemma 16 in Section 5.5 to obtain a new shortest proof of
Theorem 5.3 and to extend Theorem 5.3 to two natural types of separations whose
structural submodularity does not come from a submodular order function: clique
separations, and circle separations. Only very recently, a theorem was established
by Elbracht and Kneip which, so far, could not be shown using this method: a
canonical version of Theorem 5.4 [34]

We will later, in Section 5.6, uncover that in its essence Lemma 13 is just a lemma
about the nestedness relation and can be applied to any similarly behaved relation.
We will demonstrate how this can be applied to directed tangles in directed graphs.

Lemma 16 can be interpreted as a lemma about a relation in the same way, and
that is the approach we will take when establishing the ‘thin splinter lemma’ for
infinite settings in Section 5.8.

5.2. The Splinter Lemma

In this section we establish our first main result, Lemma 13, from which we shall
derive two previously known theorems as well as two new flavours of tree-of-tangles
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theorems in Section 5.3. A cornerstone of the proofs of both Lemma 13 as well as
of the two known results we shall derive from it is the so-called ‘fish lemma’:

Lemma 2.1 (‘Fish lemma’, [20, Lemma 3.2]).  p. 13Let 𝑈 be a universe of separations
and 𝑟, 𝑠 ∈ 𝑈 be two crossing separations. Every separation 𝑡 ∈ 𝑈 that is nested with
both 𝑟 and 𝑠 is also nested with all four corner separations of 𝑟 and 𝑠.

Typically, the proof of a tree-of-tangles theorem proceeds by starting with some
set 𝑁 of separations which distinguish some (or all) of the given tangles, and then
repeatedly replacing elements 𝑟 of 𝑁 which cross some other element 𝑠 of 𝑁 with an
appropriate corner separation of 𝑟 and 𝑠. Lemma 2.1 is then used to show that each
of these replacements makes 𝑁 ‘more nested’, and thus one eventually obtains a
nested set 𝑁 which distinguishes all the given tangles. (See for instance the proof of
Theorem 4 of [25].) Usually, in order to not reduce the set of tangles distinguished
by 𝑁, one has to take special care which corner separation of two crossing 𝑟 and 𝑠
in 𝑁 one uses for replacement; this depends on the specific properties of the tangles
at hand.

Our Lemma 13 seeks to eliminate this careful selection of corner separations for
replacement: we will show that for a family (𝒜𝑖)𝑖⩽𝑛 of subsets of some universe 𝑈
we can find a nested set 𝑁 meeting all the 𝒜𝑖, provided that these sets 𝒜𝑖 have
one straightforward-to-check property. This lemma will imply many of the existing
tree-of-tangles theorems by taking as sets 𝒜𝑖 the sets of separations which distinguish
the 𝑖-th pair of tangles, and checking that the one assumption needed for Lemma 13
is met. Notably, Lemma 13 will make no reference at all to tangles or their specific
properties. The proof of Lemma 13 will also utilize Lemma 2.1; however, the only
assumption we need about the sets 𝒜𝑖 is that for elements 𝑎𝑖 and 𝑎𝑗 of 𝒜𝑖 and
𝒜𝑗, respectively, one of their four corner separations lies in either 𝒜𝑖 or 𝒜𝑗. This
condition will be easy to verify if one wants to deduce other tree-of-tangles theorems
from Lemma 13. In fact, the verification of this condition, which just asks for the
existence of some corner separation of 𝑎𝑖 and 𝑎𝑗 in 𝒜𝑖 ∪𝒜𝑗, will usually be much
more straightforward than the hands-on arguments used in the original proofs of
those tree-of-tangles theorems, which for their replacement arguments often need to
prove the existence of a specific corner separation of 𝑎𝑖 and 𝑎𝑗. So let us define this
condition formally.

Let 𝑈 be a universe and 𝔄 = (𝒜𝑖)𝑖⩽𝑛 some family of non-empty subsets of 𝑈. We
say that 𝔄 splinters if, for every crossing pair of 𝑎𝑖 ∈ 𝒜𝑖 ⧵𝒜𝑗 and 𝑎𝑗 ∈ 𝒜𝑗 ⧵𝒜𝑖, one
of their four corner separations lies in 𝒜𝑖 ∪𝒜𝑗.

Observe that a family (𝒜𝑖)𝑖⩽𝑛 of non-empty sets splinters if and only if for every
pair 𝑎𝑖 ∈ 𝒜𝑖 and 𝑎𝑗 ∈ 𝒜𝑗 of separations, either some corner separation of 𝑎𝑖 and 𝑎𝑗
lies in 𝒜𝑖∪𝒜𝑗, or one of 𝑎𝑖 and 𝑎𝑗 lies in 𝒜𝑖∩𝒜𝑗. This is, because if two separations
𝑎𝑖 and 𝑎𝑗 are nested, then these separations themselves are corner separations of
the pair 𝑎𝑖 and 𝑎𝑗.
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5. Trees of tangles and the splinter lemmas

With this definition and Lemma 2.1 we are already able to state and prove our
first main result:

Lemma 13 (Splinter Lemma). Let 𝑈 be a universe of separations and 𝔄 = (𝒜𝑖)𝑖⩽𝑛
a family of subsets of 𝑈. If 𝔄 splinters, then we can pick an element 𝑎𝑖 from each
𝒜𝑖 so that { 𝑎1,… , 𝑎𝑛 } is nested.

Proof. We proceed by induction on 𝑛. The assertion clearly holds for 𝑛 = 1. So
suppose that 𝑛 > 1 and that the above assertion holds for all smaller values of 𝑛.

Suppose first that we can find some 𝑎𝑖 ∈ 𝒜𝑖 so that 𝑎𝑖 is nested with at least one
element of 𝒜𝑗 for each 𝑗 ≠ 𝑖. Then the assertion holds: for 𝑗 ≠ 𝑖 let 𝒜′

𝑗 be the set
of those elements of 𝒜𝑗 that are nested with 𝑎𝑖. Then (𝒜′

𝑗 ∶ 𝑗 ≠ 𝑖) is a family of
non-empty sets which splinters by Lemma 2.1. Thus by the induction hypothesis
we can pick a nested set { 𝑎𝑗 ∈ 𝒜′

𝑗 ∶ 𝑗 ≠ 𝑖 }, which together with 𝑎𝑖 is the desired
nested set.

To conclude the proof it thus suffices to find an 𝑎𝑖 as above. To this end, we
apply the induction hypothesis to 𝒜1,… ,𝒜𝑛−1 to obtain a nested set consisting
of some 𝑎1,… , 𝑎𝑛−1. Fix an arbitrary 𝑎𝑛 ∈ 𝒜𝑛. For all 𝑖 < 𝑛, if 𝑎𝑖 itself or one
of its corner separations with 𝑎𝑛 lies in 𝒜𝑛, this 𝑎𝑖 is the desired separation for
the above argument. Otherwise, for each 𝑖 < 𝑛, either 𝑎𝑛 itself or one of its corner
separations with 𝑎𝑖 lies in 𝒜𝑖, in which case 𝑎𝑛 is the desired separation for the
above argument.

We shall see in Section 5.3 that this innocuous-looking lemma is actually strong
enough to directly imply various existing tree-of-tangles theorems, including The-
orem 5.1.

Although Lemma 13 is already strong enough to imply various tree-of-tangles
theorems – as we will show in Section 5.3 – we can prove an even stronger version
of Lemma 13 with no additional assumptions:

Lemma 5.5. Let 𝑈 be a universe, 𝔄 = (𝒜𝑖)𝑖⩽𝑛 a family of subsets of 𝑈, and 𝑥𝑖
some fixed element of 𝒜𝑖 for each 𝑖 ⩽ 𝑛. If 𝔄 splinters then we can pick an element
𝑎𝑖 from each 𝒜𝑖 so that { 𝑎1,… , 𝑎𝑛 } is nested, with the additional property that
every 𝑠 ∈ 𝑈 which is nested with all 𝑥𝑖 is also nested with all 𝑎𝑖.

Proof. We proceed by induction on 𝑛. The assertion clearly holds for 𝑛 = 1 by
picking 𝑥1 as 𝑎1.

So suppose that 𝑛 > 1 and that the above assertion holds for 𝑛−1. Let 𝑥1,… , 𝑥𝑛
be fixed elements from 𝒜1,… ,𝒜𝑛 respectively. By applying the induction hypothesis
to 𝒜1,… ,𝒜𝑛−1 and 𝑥1,… , 𝑥𝑛−1, we can pick elements 𝑎𝑖 ∈ 𝒜𝑖 for 𝑖 < 𝑛 so that
{ 𝑎1,… , 𝑎𝑛−1 } is nested and every separation of 𝑈 which is nested with { 𝑥1,… , 𝑥𝑛−1 }
is also nested with { 𝑎1,… , 𝑎𝑛−1 }.

Among all separations in 𝒜𝑛 which are nested with each separation of 𝑈 that
is nested with all of { 𝑥1,… , 𝑥𝑛 }, pick a separation 𝑦𝑛 which crosses 𝑎𝑖 for as few
𝑖 < 𝑛 as possible. Note that 𝑥𝑛 is a candidate for this 𝑦𝑛.
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If 𝑦𝑛 is nested with { 𝑎1,… , 𝑎𝑛−1 }, we are done, as then { 𝑎1,… , 𝑎𝑛−1, 𝑦𝑛 } is as
desired. So suppose that, after re-arranging, 𝑦𝑛 crosses 𝑎1,… , 𝑎𝑘 for some 𝑘 < 𝑛
and is nested with 𝑎𝑘+1,… , 𝑎𝑛−1. Then, for each 𝑖 ⩽ 𝑘, neither 𝑎𝑖 itself nor any of
its corner separations with 𝑦𝑛 can lie in 𝒜𝑛: they would all have been better choices
for 𝑦𝑛 by Lemma 2.1. Therefore, for every 𝑖 ⩽ 𝑘, either 𝑦𝑛 itself or one of its corner
separations with 𝑎𝑖 lies in 𝒜𝑖. Let us write 𝑎′𝑖 for that separation.

Observe that 𝑦𝑛 is nested with { 𝑎′1,… , 𝑎′𝑘, 𝑎𝑘,… , 𝑎𝑛−1 }, and so is every separation
of 𝑈 that is nested with all of { 𝑥1,… , 𝑥𝑛 } by Lemma 2.1. We are not done yet,
however, since { 𝑎′1,… , 𝑎′𝑘 } might not be a nested set.

To finish the proof, we apply the induction hypothesis to 𝒜1,… ,𝒜𝑛−1 a second
time, this time using 𝑎′1,… , 𝑎′𝑘, 𝑎𝑘+1,… , 𝑎𝑛−1 as the fixed elements. In doing so we
obtain a choice of 𝑏𝑖 ∈ 𝒜𝑖 for every 𝑖 < 𝑛 so that { 𝑏1,… , 𝑏𝑛−1 } is a nested set that is
also nested with each separation of 𝑈 which is nested with { 𝑎′1 …, 𝑎′𝑘, 𝑎𝑘+1,… , 𝑎𝑛−1 }.
We claim that { 𝑏1 …, 𝑏𝑛−1, 𝑦𝑛 } is the desired set to finish the induction step.

The separation 𝑦𝑛 is nested with { 𝑏1,… , 𝑏𝑛−1 } since it is nested with the fixed ele-
ments 𝑎′1,… , 𝑎′𝑘, 𝑎𝑘+1,… , 𝑎𝑛−1. Furthermore, let 𝑠 ∈ 𝑈 be a separation that is nested
with 𝑥1,… , 𝑥𝑛. Then 𝑠 is nested with 𝑦𝑛 by choice of 𝑦𝑛 as well as with 𝑎1 …, 𝑎𝑛−1
by the induction hypothesis. Hence 𝑠 is nested with 𝑎′1,… , 𝑎′𝑘, 𝑎𝑘+1,… , 𝑎𝑛−1 by
Lemma 2.1, and therefore with { 𝑏1,… , 𝑏𝑛−1 }.
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5.3. Applications of the Splinter Lemma

5.3.1. A short proof of Theorem 5.1

As a first application of Lemma 13 let us give a short proof of Theorem 5.1:

Theorem 5.1 ([64]). p. 59 Every finite graph has a tree-decomposition displaying its
maximal tangles.

We say that a tree-decomposition (𝑇 , 𝒱) of a graph 𝐺 displays its maximal tangles
if the set of separations induced by (𝑇 , 𝒱) efficiently distinguishes the set of all
maximal tangles of 𝐺.

If 𝑁 is a nested set of separations of 𝐺 it is straightforward to find a tree-
decomposition of 𝐺 whose set of induced separations is precisely 𝑁 (see [21, 64]).
Therefore, in order to prove Theorem 5.1, it suffices to find a nested set 𝑁 of
separations of 𝐺 which efficiently distinguishes all maximal tangles of 𝐺.

For every pair 𝜏, 𝜏 ′ of distinct maximal tangles of 𝐺 let

𝒜𝜏,𝜏′ ≔ {{𝐴,𝐵} ∈ 𝑆(𝐺) ∶ {𝐴,𝐵} efficiently distinguishes 𝜏 and 𝜏 ′ }.

Since 𝑃 and 𝑃 ′ are not subsets of each other 𝒜𝜏,𝜏′ is a non-empty set.
Let 𝔄 be the family of all these sets 𝒜𝜏,𝜏′ . A nested set of separations of 𝐺

distinguishes all maximal tangles of 𝐺 efficiently if and only if it contains an element
of each 𝒜𝜏,𝜏′ . Therefore the existence of such a set, and hence Theorem 5.1, now
follows directly from Lemma 13 once we show that 𝔄 splinters:

Lemma 5.6. The family 𝔄 of all 𝒜𝜏,𝜏′ splinters.

Proof. Let 𝜏 ≠ 𝜏 ′ and 𝜎 ≠ 𝜎′ be two pairs of distinct maximal tangles of 𝐺 and
let {𝐴,𝐵 } ∈ 𝒜𝜏,𝜏′ and {𝐶,𝐷 } ∈ 𝒜𝜎,𝜎′ be two crossing separations. We need to
show that we have either {𝐴,𝐵 } ∈ 𝒜𝜎,𝜎′ or {𝐶,𝐷} ∈ 𝒜𝜏,𝜏′ , or that some corner
separation of {𝐴,𝐵 } and {𝐶,𝐷 } lies in 𝒜𝜏,𝜏′ ∪𝒜𝜎,𝜎′ . By switching their roles if
necessary we may assume that |(𝐴,𝐵)| ⩽ |(𝐶,𝐷)|.

Since 𝜎 and 𝜎′ both orient (𝐶,𝐷), and |(𝐴,𝐵)| ⩽ |(𝐶,𝐷)|, both tangles also
orient {𝐴,𝐵 }. If 𝜎 and 𝜎′ orient {𝐴,𝐵 } differently, then {𝐴,𝐵 } distinguishes
them efficiently and hence lies in 𝒜𝜎,𝜎′ . So suppose that 𝜎 and 𝜎′ contain the same
orientation of {𝐴,𝐵 }, say, (𝐴,𝐵).

By renaming them if necessary, we may assume that (𝐶,𝐷) ∈ 𝜎 and (𝐷,𝐶) ∈ 𝜎′.
For the corner separation (𝐴 ∪ 𝐶 , 𝐵 ∩ 𝐷), we first consider the case that

|(𝐴 ∪ 𝐶 , 𝐵 ∩ 𝐷)| ⩽ |(𝐶,𝐷)|. Then, by (𝐴,𝐵), (𝐶,𝐷) ∈ 𝜎 and the tangle prop-
erty (T), 𝑄 must contain (𝐴 ∪ 𝐶 , 𝐵 ∩ 𝐷). On the other hand 𝜎′ must contain its
inverse (𝐵∩𝐷 , 𝐴∪𝐶) since (𝐷,𝐶) ∈ 𝑄′. But then this corner separation efficiently
distinguishes 𝜎 and 𝜎′ and hence lies in 𝒜𝜎,𝜎′ .

Thus we may suppose that |(𝐴 ∪ 𝐶 , 𝐵 ∩ 𝐷)| ⩾ |(𝐶,𝐷)|. By a similar argument
we may further suppose that |(𝐴 ∪ 𝐷 , 𝐵 ∩ 𝐶)| ⩾ |(𝐶,𝐷)|. Submodularity then
yields |(𝐴 ∩ 𝐶 , 𝐵 ∪ 𝐷)| , |(𝐴 ∩ 𝐷 , 𝐵 ∪ 𝐶)| ⩽ |(𝐴,𝐵)|.
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By switching the roles of 𝜏 and 𝜏 ′ if necessary, we may assume that (𝐴,𝐵) ∈ 𝜏 and
(𝐵,𝐴) ∈ 𝜏 ′. Then, by the above inequality, 𝜏 must contain both (𝐴∩𝐶 , 𝐵∪𝐷) and
(𝐴∩𝐷 , 𝐵∪𝐶), since it cannot contain either of their inverses due to (𝐴,𝐵) ∈ 𝜏 and
the tangle property (T). However, due to (𝐵,𝐴) ∈ 𝜏 ′ and the tangle property (T),
𝜏 ′ cannot contain both of (𝐴 ∩ 𝐶 , 𝐵 ∪ 𝐷) and (𝐴 ∩ 𝐷 , 𝐵 ∪ 𝐶). In must therefore
contain the inverse of at least one of these corner separations, which then efficiently
distinguishes 𝜏 and 𝜏 ′ and hence lies in 𝒜𝜏,𝜏′ .

5.3.2. Profiles of structurally submodular separation systems

The most general, or most widely applicable, tree-of-tangles theorem published so
far, in the sense of having the weakest premise, is the following:

Theorem 5.4 ([25, Theorem 6]).  p. 60Let 𝑆 be a submodular separation system in some
universe 𝑈 of separations and let 𝒫 a set of profiles of 𝑆. Then 𝑆 contains a nested
set that distinguishes 𝒫.

The price to pay in Theorem 5.4 for having the mildest set of requirements is that
its assertion is also among the weakest of all tree-of-tangles theorems. For graphs,
Theorem 5.4 implies only that for any fixed 𝑘 every graph has a tree decomposition
displaying its 𝑘-tangles. This is a much weaker statement than Theorem 5.1, which
finds a tree-decomposition displaying the maximal 𝑘-tangles of that graph for all
values of 𝑘 simultaneously.

Let us show how to derive Theorem 5.4 from Lemma 13. For this, let 𝒫 be a set
of profiles of a submodular separation system 𝑆, and for distinct 𝑃 and 𝑃 ′ in 𝒫 let

𝒜𝑃,𝑃 ′ ≔ {𝑠 ∈ 𝑆 ∶ 𝑠 distinguishes 𝑃 and 𝑃 ′ }.

For proving Theorem 5.4 it suffices to show that the family of all these, i.e.
𝔄𝒫 ≔ (𝒜𝑃,𝑃 ′ ∶ 𝑃 ≠ 𝑃 ′ ∈ 𝒫), splinters:

Lemma 5.7. Given a set 𝒫 of profiles of a submodular separation system 𝑆 , the
family 𝔄𝒫 = (𝒜𝑃,𝑃 ′ ∶ 𝑃 ≠ 𝑃 ′ ∈ 𝒫) splinters.

Proof. Let 𝑃 ≠ 𝑃 ′ and 𝑄 ≠ 𝑄′ be two pairs of profiles in 𝒫 and let 𝑟 ∈ 𝒜𝑃,𝑃 ′ and
𝑠 ∈ 𝒜𝑄,𝑄′ be two distinct separations. We need to show that we have either 𝑟 ∈
𝒜𝑄,𝑄′ or 𝑠 ∈ 𝒜𝑃,𝑃 ′ , or that some corner separation of 𝑟 and 𝑠 lies in 𝒜𝑃,𝑃 ′ ∪𝒜𝑄,𝑄′ .
If 𝑟 and 𝑠 are nested, then they themselves are corner separations of 𝑟 and 𝑠 and
there is nothing to show, so let us suppose that 𝑟 and 𝑠 cross.

Both 𝑟 and 𝑠 are oriented by all four profiles 𝑃 , 𝑃 ′, 𝑄, and 𝑄′. If 𝑟 distinguishes
𝑄 and 𝑄′, or if 𝑠 distinguishes 𝑃 and 𝑃 ′, we are done; so suppose that there are
orientations 𝑟 and 𝑠 of 𝑟 and 𝑠 with 𝑟 ∈ 𝑄 ∩ 𝑄′ and 𝑠 ∈ 𝑃 ∩ 𝑃 ′. By possibly
switching the roles of 𝑃 and 𝑃 ′, or of 𝑄 and 𝑄′, we may further assume that 𝑟 ∈ 𝑃
and 𝑟 ∈ 𝑃 ′ as well as 𝑠 ∈ 𝑄 and 𝑠 ∈ 𝑄′.
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The submodularity of 𝑆 implies that at least one of the two corner separations
𝑟 ∨ 𝑠 and 𝑟 ∨ 𝑠 lies in 𝑆 . We will only treat the case that (𝑟 ∨ 𝑠) ∈ 𝑆 ; the other case
is symmetrical.

From the assumption that 𝑟 and 𝑠 cross it follows that 𝑟 ∨ 𝑠 is distinct from 𝑟
and 𝑠 as an unoriented separation. Therefore, by 𝑟 ∈ 𝑃 ′ and consistency, 𝑃 ′ cannot
contain 𝑟 ∨ 𝑠 and hence has to contain its inverse 𝑟 ∧ 𝑠. On the other hand, by
𝑟, 𝑠 ∈ 𝑃 and the profile property (P), 𝑃 cannot contain the inverse of 𝑟 ∨ 𝑠 and thus
must contain 𝑟 ∨ 𝑠. Now 𝑟 ∨ 𝑠 distinguishes 𝑃 and 𝑃 ′ and is therefore the desired
corner separation in 𝒜𝑃,𝑃 ′ .

Let us now deduce Theorem 5.4 from Lemma 13.

Proof of Theorem 5.4. Let 𝒫 be a set of profiles of 𝑆. By Lemma 5.7 the collection
(𝒜𝑃,𝑃 ′ ∶ 𝑃 ≠ 𝑃 ′ ∈ 𝒫) of subsets of 𝑆 splinters. Each of the 𝒜𝑃,𝑃 ′ is non-empty as
𝑃 and 𝑃 ′ are distinct profiles of 𝑆. Thus, by Lemma 13, we can pick one element
from each 𝒜𝑃,𝑃 ′ so that the set 𝑁 of all these elements is a nested set of separations.
It is then clear that 𝑁 distinguishes all the profiles in 𝒫.

The above way of using Lemma 13 to prove a tree-of-tangles theorem is archetyp-
ical, and we will use the strategy from this section as a blueprint for the applications
of Lemma 13 in the following sections.

5.3.3. Profiles in submodular universes

Theorem 5.4 from the previous section implied that every graph has, for any fixed
integer 𝑘, a tree-decomposition which displays its 𝑘-tangles. However, Robertson’s
and Seymour’s Theorem 5.1 shows that every graph has a tree-decomposition which
displays all itsmaximal tangles, i.e., which distinguishes all its distinguishable tangles
for all values of 𝑘 simultaneously, not just for some fixed value of 𝑘. Therefore
Theorem 5.4 does not imply Theorem 5.1.

Moreover, since Theorem 5.4 does not assume that the universe 𝑈 it is applied to
comes with an order function, Theorem 5.4 cannot say anything about the order of
the separations used in the nested set to distinguish all the profiles. If the universe
𝑈, as for instance in a graph, does come with a submodular order function, one
might ask for a nested set which not only distinguishes all the profiles given, but
one which does so efficiently, i.e., which contains for every pair 𝑃 , 𝑃 ′ of profiles a
separation of minimal order among all the separations in 𝑈 which distinguish 𝑃 and
𝑃 ′.

The following theorem satisfies both of the requirements above, and is the strongest
tree-of-tangles theorem known so far:

Theorem 5.8 (Canonical tree-of-tangles theorem for separation universes [26,
Theorem 3.6]). Let (𝑈,⩽, ∗, ∨, ∧, | ⋅ |) be a submodular universe of separations. Then
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for every robust set 𝒫 of profiles in 𝑈 there is a nested set 𝑇 = 𝑇(𝒫) ⊆ 𝑈 of
separations such that:
(i) every two profiles in 𝒫 are efficiently distinguished by some separation in 𝑇;
(ii) every separation in 𝑇 efficiently distinguishes a pair of profiles in 𝒫;
(iii) for every automorphism 𝛼 of 𝑈 we have 𝑇 (𝒫𝛼) = 𝑇 (𝒫)𝛼; (canonicity)
(iv) if all the profiles in 𝒫 are regular, then 𝑇 is a regular tree set.

Since the definition of robustness of a set of profiles is rather involved, we do not
repeat it here. We assure the reader that every set of robust profiles (as defined in
Chapter 2) is a robust set of profiles, and that the following proofs robustness will
be used only in one place. Therefore we shall use it there as a black box and refer
the reader to [26] for the full definition. A very sceptical reader may go forth and
read our proofs as if we only made our claims only for sets of robust profiles and
not robust sets of profiles.

Since every 𝑘-tangle of a graph is robust ([26]), Theorem 5.8 indeed implies
Theorem 5.1 of Robertson and Seymour that every graph has a tree-decomposition
displaying its maximal tangles (see [26, Section 4.1] for more on building tree-
decompositions from nested sets of separations, and how Theorem 5.8 implies
Theorem 5.1). Moreover, Theorem 5.8 improves upon Theorem 5.1 by finding a
canonical such tree-decomposition, i.e., one which is preserved by automorphisms
of the graph. Since Lemma 13 does not guarantee any kind of canonicity, we are
not able to deduce the full Theorem 5.8 from Lemma 13; however, using Lemma 13
we will be able to find a nested set 𝑇 ⊆ 𝑈 with the properties (i), (ii) and (iv). We
shall refer to this as the non-canonical Theorem 5.8. (In Section 5.4 we shall prove
a version of Lemma 13 which implies Theorem 5.8 in full.)

Our strategy will largely be the same as in Section 5.3.2. For a robust set 𝒫 of
profiles in a submodular universe 𝑈 we define for every pair 𝑃 , 𝑃 ′ of distinct profiles
in 𝒫 the set

𝒜𝑃,𝑃 ′ ≔ {𝑎 ∈ 𝑈 ∶ 𝑎 distinguishes 𝑃 and 𝑃 ′ efficiently }.

Let 𝔄𝒫 be the family (𝒜𝑃,𝑃 ′ ∶ 𝑃 ≠ 𝑃 ′ ∈ 𝒫). The only lemma we need in order to
apply Lemma 13 is the following:

Lemma 5.9. For a robust set 𝒫 of profiles in 𝑈 the family 𝔄𝒫 of the sets 𝒜𝑃,𝑃 ′

splinters.

Proof. Let 𝑃 , 𝑃 ′ and 𝑄,𝑄′ be two pairs of distinguishable profiles in 𝒫 and let
𝑟 ∈ 𝒜𝑃,𝑃 ′ and 𝑠 ∈ 𝒜𝑄,𝑄′ be two crossing separations. We need to show that we
have either 𝑟 ∈ 𝒜𝑄,𝑄′ or 𝑠 ∈ 𝒜𝑃,𝑃 ′ , or that some corner separation of 𝑟 and 𝑠
lies in 𝒜𝑃,𝑃 ′ ∪𝒜𝑄,𝑄′ . By switching their roles if necessary we may assume that
|𝑟| ⩽ |𝑠|.

Since 𝑄 orients all separations in 𝑈 of order at most the order of 𝑠, 𝑄 contains
some orientation 𝑟 of 𝑟. Similarly 𝑄′ contains some orientation of 𝑟: if 𝑟 ∈ 𝑄′ then
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𝑟 distinguishes 𝑄 and 𝑄′, and by |𝑟| ⩽ |𝑠| it does so efficiently, giving 𝑟 ∈ 𝒜𝑄,𝑄′ .
So suppose that 𝑟 ∈ 𝑄′.

If either one of the two corner separations 𝑟 ∨ 𝑠 and 𝑟 ∨ 𝑠 has order at most the
order of 𝑠, then that corner separation would distinguish 𝑄 and 𝑄′ by the profile
property. In particular, that corner separation would do so efficiently and hence lie
in 𝒜𝑄,𝑄′ . Thus we may assume that both of these corner separations have order
strictly larger than the order of 𝑠.

The submodularity of 𝑈 now implies that both of the other two corner separations,
that is, 𝑟 ∧ 𝑠 and 𝑟 ∧ 𝑠, have order strictly less than the order of 𝑟. Therefore both
𝑃 and 𝑃 ′ orient both of these corner separations. By possibly switching the roles of
𝑃 and 𝑃 ′ we may assume that 𝑟 ∈ 𝑃 and 𝑟 ∈ 𝑃 ′. Then 𝑃 ′ contains both 𝑟 ∧ 𝑠 and
𝑟 ∧ 𝑠 due to consistency, since both of these corner separations are distinct from 𝑟
as unoriented separations by the assumption that 𝑟 and 𝑠 cross.

But now the assumption that 𝑟 distinguishes 𝑃 and 𝑃 ′ efficiently implies that
neither of the two corner separations 𝑟 ∧ 𝑠 and 𝑟 ∧ 𝑠 can distinguish 𝑃 and 𝑃 ′, since
the corner separations have strictly lower order than 𝑟. Therefore 𝑃 contains 𝑟 ∧ 𝑠
and 𝑟 ∧ 𝑠 as well. However, by 𝑟 ∈ 𝑃, this contradicts the robustness of 𝑃, which
forbids exactly this configuration.

Let us now deduce the non-canonical Theorem 5.8 from Lemma 13:

Proof of Theorem 5.8, non-canonical. By Lemma 5.9 the collection 𝔄𝒫 of the sets
𝒜𝑃,𝑃 ′ splinters. Thus by Lemma 13 we can pick an element from each set 𝒜𝑃,𝑃 ′ in
𝔄𝒫 in such a way that the set 𝑇 of these elements is nested. Let us show that this
set 𝑇 is as claimed.

For (i), let 𝑃 and 𝑃 ′ be two profiles in 𝒫. As 𝑇 meets the set 𝒜𝑃,𝑃 ′ , some element
of 𝑇 distinguishes 𝑃 and 𝑃 ′ by definition of 𝒜𝑃,𝑃 ′ .

For (ii), observe that every element of 𝑇 lies in some 𝒜𝑃,𝑃 ′ and hence distinguishes
a pair of profiles in 𝒫 efficiently.

Finally, (iv) follows from the fact that all sets 𝒜𝑃,𝑃 ′ in 𝔄𝒫 are regular if every
profiles in 𝒫 is regular, which implies that 𝑇 is a regular tree set in that case.

5.3.4. Sequences of submodular separation systems

Let us, once more, compare Theorem 5.4 and Theorem 5.8. The first of these has
the advantage that it does not depend on any order function and thus applies to a
wider class of universes of separations; on the other hand, for those universes that do
have an order function, the latter theorem is much more flexible and powerful, since
it not only distinguishes all distinguishable profiles across all orders simultaneously,
but also does so efficiently.

Our aim in this section is to establish Theorem 14 which combines the advantages
of both Theorem 5.4 and Theorem 5.8 (without canonicity), i.e., which is not

70



5.3. Applications of the Splinter Lemma

dependent on the existence of some order function, but which is as powerful and
efficient as Theorem 5.8 if such an order function does exist.

Concretely, we shall answer the following question, which inspired this research:

If 𝑆1 ⊆ 𝑆2 ⊆ … ⊆ 𝑆𝑛 is an ascending sequence of structurally submodular
separations systems exhausting a universe of separations 𝑈, does there exist a nested
set of separations which efficiently distinguishes all the maximal profiles in 𝑈?

Let us substantiate this question with rigorous definitions of the terms involved.
We call a sequence 𝑆1 ⊆ 𝑆2 ⊆ … ⊆ 𝑆𝑛 ⊆ 𝑈 of submodular separation systems

in a universe 𝑈 compatible if for all pairs 𝑠𝑖 ∈ 𝑆𝑖 and 𝑠𝑗 ∈ 𝑆𝑗 with 𝑖 ⩽ 𝑗, either 𝑆𝑖
contains at least two corner separations of 𝑠𝑖 and 𝑠𝑗, or 𝑆𝑗 contains at least three
corner separations of 𝑠𝑖 and 𝑠𝑗.

Observe that if 𝑈 comes with a submodular order function | ⋅ | and the 𝑆𝑖 are
defined as in Section 5.3.3, i.e., if 𝑆𝑖 is the set of all separations in 𝑈 of order < 𝑖,
then the sequence 𝑆1 ⊆ 𝑆2 ⊆ … ⊆ 𝑆𝑛 ⊆ 𝑈 is a compatible sequence of submodular
separation systems.

A profile in 𝒮 = (𝑆1,… , 𝑆𝑛) is a profile of one of the 𝑆𝑖.
A separation 𝑠 ∈ 𝑆𝑛 distinguishes two profiles 𝑃 and 𝑄 in 𝒮 if there are orientations

of 𝑠 such that 𝑠 ∈ 𝑃 and 𝑠 ∈ 𝑄. The separation 𝑠 distinguishes 𝑃 and 𝑄 efficiently
if 𝑠 ∈ 𝑆𝑖 for every 𝑆𝑖 which contains a separation that distinguishes 𝑃 and 𝑄.

Note once more that, as above, these notions of profiles and efficient distinguishers
coincide with their usual definitions as given in Section 5.3.3 if 𝑈 has a submodular
order function and the 𝑆𝑖 are the subsets of 𝑈 containing all separations of order < 𝑖.

We also require a structural formulation of the concept of robustness from [26]:
A set 𝒫 of profiles in 𝒮 is robust if for all 𝑃 ,𝑄,𝑄′ ∈ 𝒫 the following holds: for every
𝑟 ∈ 𝑄∩𝑄′ with 𝑟 ∈ 𝑃 and every 𝑠 which distinguishes 𝑄 and 𝑄′ efficiently, if 𝑠 ∈ 𝑆𝑗,
then there is an orientation 𝑠 of 𝑠 such that either (𝑟 ∨ 𝑠) ∈ 𝑃 or (𝑟 ∨ 𝑠) ∈ 𝑆𝑗 .

𝑠

𝑄′𝑄
𝑟𝑃

Figure 5.1.: Robustness.

With the above definitions we are now able to formally state and prove Theorem 14,
which includes both Theorem 5.4 and the non-canonical Theorem 5.8 (and hence
Theorem 5.1) as special cases:
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Theorem 14. If 𝒮 = (𝑆1,… , 𝑆𝑛) is a compatible sequence of structurally submodular
separation systems inside a universe 𝑈, and 𝒫 is a robust set of profiles in 𝒮, then
there is a nested set 𝑁 of separations in 𝑈 which efficiently distinguishes all the
distinguishable profiles in 𝒫.

Since the proof of Theorem 14 runs along very similar lines as the proof of
Theorem 5.8 in the previous section we only sktech it here:

Sketch of proof. For every pair 𝑃 , 𝑃 ′ of distinguishable profiles in 𝒫 let 𝒜𝑃,𝑃 ′ be the
set of all 𝑠 ∈ 𝑆𝑛 that distinguish 𝑃 and 𝑃 ′ efficiently. The assertion of Theorem 14
follows directly from Lemma 13 if we can show that the family 𝔄 of these sets 𝒜𝑃,𝑃 ′

splinters.
So let 𝑟 ∈ 𝒜𝑃,𝑃 ′ and 𝑠 ∈ 𝒜𝑄,𝑄′ be given. If 𝑟 and 𝑠 are nested there is nothing

to show, so suppose they cross. Let 𝑖 and 𝑗 be minimal integers such that 𝑟 ∈ 𝑆𝑖
and 𝑠 ∈ 𝑆𝑗; we may assume without loss of generality that 𝑖 ⩽ 𝑗.

If 𝑟 distinguishes 𝑄 and 𝑄′, then 𝑟 ∈ 𝒜𝑄,𝑄′ , so suppose not, that is, suppose that
some orientation 𝑟 of 𝑟 lies in both 𝑄 and 𝑄′.

If one of the two corner separations 𝑟 ∨𝑠 and 𝑟 ∨𝑠 lies in 𝑆𝑗 , then that separation
distinguishes 𝑄 and 𝑄′ by consistency and the profile property and hence would lie
in 𝒜𝑄,𝑄′ . So we may suppose that neither of these two corner separations lies in 𝑆𝑗 .
The compatibility of 𝒮 then implies that both of the other two corner separations,
𝑟 ∨ 𝑠 and 𝑟 ∨ 𝑠, lie in 𝑆𝑖.

By possibly switching the roles of 𝑃 and 𝑃 ′ we may assume that 𝑟 ∈ 𝑃 ′ and
𝑟 ∈ 𝑃. Then the robustness of 𝒫 implies that 𝑃 contains either 𝑟 ∨ 𝑠 or 𝑟 ∨ 𝑠. This
corner separation then lies in 𝒜𝑃,𝑃 ′ due to the consistency of 𝑃 ′.

Theorem 14 directly implies both Theorem 5.4 and the non-canonical Theorem 5.8:
for the first theorem, consider the singleton sequence 𝑆1 = 𝑆; and for the latter, take
as 𝑆𝑖 the set of all separations of order < 𝑖 and let 𝑛 be large enough that 𝑆𝑛 = 𝑈.

5.3.5. Clique-separations in finite graphs

For a finite graph 𝐺 a separation (𝐴,𝐵) of 𝐺 is a clique separation if the induced
subgraph 𝐺[𝐴 ∩ 𝐵] is a complete graph. Clique separations in graphs have been
studied by various people over the course of the last century [53, 68]. More recently
clique separations have received quite some attention in theoretical computer science
(see for instance [2, 15, 60]) following Tarjan’s work [66] on their algorithmic aspects.

In [25] it was shown that the theory of submodular separation systems can be
applied to clique separations of finite graphs to deduce the existence of certain
nested distinguishing sets. Using Lemma 13 directly instead of Theorem 5.4, we are
able to obtain a stronger result than the one given in [25], much in the same way
that Theorem 14 improves upon Theorem 5.4.
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Given a finite graph 𝐺 = (𝑉 ,𝐸), let 𝑈 = 𝑆(𝐺) be the universe of separations of
𝐺 and let 𝒦 = 𝒦(𝐺) ⊆ 𝑈 be the separation system of all clique separations of 𝐺.
Consequently, 𝒦𝑘 = 𝒦𝑘(𝐺) is the set of all clique-separations in 𝐺 of order less
than 𝑘, i.e., the set of all (𝐴,𝐵) ∈ 𝒦 such that |𝐴 ∩ 𝐵| < 𝑘.

It was shown in [25, Lemma 17] that this 𝒦 is a submodular separation system.
Following their proof, we can show that in fact every such 𝒦𝑘 ⊆ 𝒦 is submodular
in 𝑈, and that these extend each other in a way similar to the ordinary 𝑆𝑘 of vertex
separations of 𝐺:

Lemma 5.10. Let 𝑟 and 𝑠 be two crossing clique separations with |𝑟| ⩽ |𝑠|. Then
there are orientations 𝑟 and 𝑠 of 𝑟 and 𝑠 such that (𝑟∧𝑠), (𝑟∧𝑠), and (𝑟∧𝑠) are clique
separations with |𝑟 ∧ 𝑠| ⩽ |𝑟| and |𝑟 ∧ 𝑠| ⩽ |𝑟| as well as |𝑟 ∧ 𝑠| ⩽ |𝑠|. Moreover, if
|𝑟 ∧ 𝑠| = |𝑟| = |𝑠|, then (𝑟 ∧ 𝑠) is also a clique separation with |𝑟 ∧ 𝑠| ⩽ |𝑟|.

Proof. Let 𝑠 = {𝐴,𝐵 } and 𝑡 = {𝐶,𝐷 } be two crossing clique separations of 𝐺
with |𝑟| ⩽ |𝑠|. Since 𝐶 ∩𝐷 is a separator of 𝐺, and all vertices in 𝐴∩𝐵 are pairwise
adjacent, 𝐴∩𝐵 must be a subset of either 𝐶 or 𝐷. Similarly 𝐶 ∩𝐷 must be a subset
of either 𝐴 or 𝐵. By renaming the sets if necessary we may assume that 𝐴∩𝐵 ⊆ 𝐶
and 𝐶 ∩ 𝐷 ⊆ 𝐴. We orient 𝑟 as 𝑟 = (𝐴,𝐵) and 𝑠 as 𝑠 = (𝐶,𝐷); let us show that
these orientations are as claimed.

Observe first that the separators of both (𝑟 ∧ 𝑠) and (𝑟 ∧ 𝑠) are subsets of 𝐴 ∩𝐵,
showing that these are clique separations of order at most |𝑟| = |𝐴 ∩ 𝐵|. Similarly,
the separator of the corner separation (𝑟 ∧ 𝑠) is a subset of 𝐶 ∩𝐷, and hence (𝑟 ∧ 𝑠)
is a clique separation of order at most |𝑠| = |𝐶 ∩ 𝐷|.

Finally, suppose that |𝑟 ∧ 𝑠| = |𝑟| = |𝑠|. Then, since the separator of (𝑟 ∧ 𝑠) is a
subset of both 𝐴 ∩ 𝐵 and of 𝐶 ∩ 𝐷, this separator must in fact be equal to both
𝐴∩𝐵 and 𝐶 ∩𝐷. Consequently the separator of (𝑟 ∧ 𝑠) also equals 𝐴∩𝐵 = 𝐶 ∩𝐷,
which shows that (𝑟 ∧ 𝑠) is a clique separation of order at most 𝑟.

We can now consider clique-profiles in 𝐺 with respect to these separation system,
that is a profile 𝑃 of order 𝑘 is a consistent orientation of 𝒦𝑘 satisfying the profile
property

∀𝑟, 𝑠 ∈ 𝑃 ∶ (𝑟 ∧ 𝑠) ∉ 𝑃 . (P)

Every hole in 𝐺 (i.e., an induced cycle of length at least 4) defines a clique-profile
𝑃 of order |𝑉 | in 𝐺 by letting 𝑃 contain a separation (𝐴,𝐵) ∈ 𝒦 of order less than
|𝑉 | if and only if that hole is contained in 𝐺[𝐵]. In an analogous way every clique
of size 𝑘 defines a clique-profile of order 𝑘 in 𝐺. Let us denote by 𝒫𝑘 the set of all
clique-profiles of order 𝑘.

As usual, given two distinguishable profiles 𝑃 and 𝑃 ′, let

𝒜𝑃,𝑃 ′ ≔ {𝑎 ∈ 𝒦 ∶ 𝑎 distinguishes 𝑃 , 𝑃 ′ efficiently }.

We will show that the collection of these 𝒜𝑃,𝑃 ′ splinters.
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Lemma 5.11. For any set 𝒫 of clique-profiles the collection

(𝒜𝑃,𝑃 ′ ∶ 𝑃 , 𝑃 ′ distinguishable profiles in 𝒫)

splinters.

Proof. Let 𝑃 , 𝑃 ′ and 𝑄,𝑄′ be two pairs of distinguishable profiles in 𝒫 and let
𝑟 ∈ 𝒜𝑃,𝑃 ′ and 𝑠 ∈ 𝒜𝑄,𝑄′ be two distinct separations. We need to show that we
have either 𝑟 ∈ 𝒜𝑄,𝑄′ or 𝑠 ∈ 𝒜𝑃,𝑃 ′ , or that some corner separation of 𝑟 and 𝑠 lies
in 𝒜𝑃,𝑃 ′ ∪𝒜𝑄,𝑄′ . If 𝑟 and 𝑠 are nested, then the latter is immediate, so suppose
that 𝑟 and 𝑠 cross. By switching their roles if necessary we may further assume that
|𝑟| ⩽ |𝑠|.

Since 𝑄 orients 𝑠, and |𝑟| ⩽ |𝑠|, the profile 𝑄 contains some orientation 𝑟 of 𝑟.
Similarly 𝑄′ contains some orientation of 𝑟. If 𝑟 ∈ 𝑄′, then 𝑟 distinguishes 𝑄 and
𝑄′, and by |𝑟| ⩽ |𝑠| it does so efficiently, giving 𝑟 ∈ 𝒜𝑄,𝑄′ . So suppose that 𝑟 ∈ 𝑄′.

By Lemma 5.10 at least three of the corner separations of 𝑟 and 𝑠 are clique
separations of order at most |𝑠|. Thus at least one of (𝑟 ∧ 𝑠) and (𝑟 ∧ 𝑠) is a clique
separation of order at most |𝑠|. This corner separation then distinguishes 𝑄 and 𝑄′

by the profile property, and in fact it does so efficiently, since its order is at most
|𝑠|, yielding the desired corner separation in 𝒜𝑄,𝑄′ .

It is now straightforward to use Lemma 13 to obtain the following theorem:

Theorem 15. There is a nested set of separations which efficiently distinguishes all
the distinguishable clique-profiles in ⋃𝑛

𝑖=1 𝒫𝑖.

Proof. By Lemma 5.11, we can apply Lemma 13 to

(𝒜𝑃,𝑃 ′ ∶ 𝑃 , 𝑃 ′ distinguishable profiles in ⋃
𝑖
𝒫𝑖),

resulting in the claimed nested subset.

In particular, for any two holes, a hole and a clique, or two cliques if there is a
clique separation which distinguishes them, then our nested set contains one such
separation of minimal order. As usual, such a nested set can be transformed into a
tree-decomposition of 𝐺 (see [21] for details). Thus 𝐺 admits a tree-decomposition
whose adhesion sets are cliques and which efficiently distinguishes all the holes and
cliques distinguishable by clique separations in 𝐺. Such a decomposition is similar
to, but not exactly the same as, the decomposition constructed by R. E. Tarjan [66].

We will see in Section 5.5.2 that such a decomposition can in fact be chosen
canonically, i.e., to invariantly under automorphisms of 𝐺.
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5.4. The Canonical Splinter Lemma

As we saw in the previous section, Lemma 13 is already strong enough to imply
most of Theorem 5.8, but crucially does not guarantee the canonicity asserted in
(iii). In this section we wish to prove a version of Lemma 13 using a stronger set of
assumptions from which we can deduce Theorem 5.8 in full: we want to find, for
a family 𝔄 = (𝒜𝑖 ∶ 𝑖 ∈ 𝐼) of subsets of some universe 𝑈, a nested set 𝑁 = 𝑁(𝔄)
meeting all the 𝒜𝑖 that is canonical, i.e., which only depends on invariants of 𝔄.
More formally, we want to find 𝑁 = 𝑁(𝔄) in such a way that if 𝔄′ = (𝒜′

𝑖 ∶ 𝑖 ∈ 𝐼) is
another family of subsets of some other universe 𝑈 ′ that also meets the assumptions
of our theorem, and 𝜑 is an isomorphism of separation systems between ⋃𝑖∈𝐼 𝒜𝑖 and
⋃𝑖∈𝐼 𝒜

′
𝑖 with 𝜑(𝒜𝑖) = 𝒜′

𝑖 for all 𝑖 ∈ 𝐼, we ask that 𝑁(𝔄′) = 𝜑(𝑁(𝔄)). In particular,
the nested set found by our theorem should not depend on the universe into which
the family 𝔄 is embedded.

The assumptions of Lemma 13 are not sufficient to guarantee the existence of
such a canonical set. Consider the example where we have just two separations, 𝑠
and 𝑡, which are crossing and let 𝔄 = (𝒜1) = ({ 𝑠, 𝑡 }). Note that 𝔄 splinters, but
there may be an automorphism that swaps the two separations so the choice of any
single one of them is non-canonical. Since the separations are crossing we cannot
use both of them for our nested set either.

For obtaining a canonical nested set, one crucial ingredient will be the notion of
extremal elements of a set of separations, which was already used in [26]. Given a
set 𝐴 ⊆ 𝑈 of (unoriented) separations, an element 𝑎 ∈ 𝐴 is extremal in 𝐴, or an
extremal element of 𝐴, if 𝑎 has some orientation 𝑎 that is a maximal element of 𝐴.
(Recall that 𝐴 is the set of orientations of separations in 𝐴.) The set of extremal
elements of a set of separations is an invariant of separation systems in the following
sense: if 𝐸 is the set of extremal elements of some set 𝐴 ⊆ 𝑆 of separations, and 𝜑 is
an isomorphism between 𝑆 and some other separation system, then 𝜑(𝐸) is precisely
the set of extremal separations of 𝜑(𝐴). Moreover, the extremal separations of a set
𝐴 ⊆ 𝑈 are nested with each other under relatively weak assumptions: for instance,
it suffices that for any two separations in 𝐴 at least two of their corner separations
also lie in 𝐴.

Let us formally state a set of assumptions under which we can prove a canonical
version of Lemma 13. Given two separations 𝑟 and 𝑠 and two of their corner
separations 𝑐1 and 𝑐2, we say that 𝑐1 and 𝑐2 are from different sides of 𝑟 if, for
orientations of 𝑐1, 𝑟, and 𝑠 with 𝑐1 = (𝑟 ∧ 𝑠), there is an orientation 𝑐2 of 𝑐2 such
that either 𝑐2 = (𝑟 ∧ 𝑠) or 𝑐2 = (𝑟 ∧ 𝑠). Note that 𝑐1 and 𝑐2 being from different
sides of 𝑟 does not imply that 𝑐1 and 𝑐2 are distinct separations; consider for instance
the edge case that 𝑟 = 𝑠 = 𝑐1 = 𝑐2.

Let 𝔄 = (𝒜𝑖 ∶ 𝑖 ∈ 𝐼) be a finite collection of non-empty finite subsets of 𝑈 and
let ≼ be any partial order on 𝐼. We write 𝑖 ≺ 𝑗 if and only if 𝑖 ≼ 𝑗 and 𝑖 ≠ 𝑗. We
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say that 𝔄 splinters hierarchically if for all 𝑎𝑖 ∈ 𝒜𝑖 and 𝑎𝑗 ∈ 𝒜𝑗 the following two
conditions hold:

(HS1) If 𝑖 ≺ 𝑗, either some corner separation of 𝑎𝑖 and 𝑎𝑗 lies in 𝒜𝑗, or two corner
separations of 𝑎𝑖 and 𝑎𝑗 from different sides of 𝑎𝑖 lie in 𝒜𝑖.

(HS2) If neither 𝑖 ≺ 𝑗 nor 𝑗 ≺ 𝑖, there are 𝑘 ∈ { 𝑖, 𝑗 } and corner separations 𝑐1 and
𝑐2 of 𝑎𝑖 and 𝑎𝑗 from different sides of 𝑎𝑘 such that 𝑐1 ∈ 𝒜𝑘 and 𝑐2 ∈ 𝒜𝑖 ∪𝒜𝑗.

𝑎𝑖

𝑎𝑗

𝑎𝑖

𝑎𝑗

𝑎𝑖

𝑎𝑗

𝑎𝑖

𝑎𝑗

Figure 5.2.: The possible configurations in condition (HS2), up to symmetry.

In particular if ≼ is the trivial partial order on 𝐼 in which all 𝑖 ≠ 𝑗 are incomparable,
then 𝔄 splinters hierarchically if and only if (HS2) holds for all 𝑎𝑖 ∈ 𝒜𝑖 and 𝑎𝑗 ∈ 𝒜𝑗;
this special case which ignores the partial order on 𝐼 is perhaps the cleanest form
of an assumption that suffices for a canonical nested set meeting all 𝒜𝑖 in 𝔄. The
reason we need to allow a partial order ≼ on 𝐼 and the slightly weaker condition
in (HS1) for comparable elements of 𝐼 is that otherwise we would not be able to
deduce Theorem 5.8 in full from our main theorem of this section due to a quirk in
the way that robustness is defined for profiles in [26] (see Section 5.5).

Our first lemma enables us to find a canonical nested set inside ⋃𝑖∈𝐼 𝒜𝑖 for a
collection of sets 𝒜𝑖 whose indexing set is an antichain:

Lemma 5.12. Let (𝒜𝑖 ∶ 𝑖 ∈ 𝐼) be a collection of subsets of 𝑈 that splinters
hierarchically. If 𝐾 ⊆ 𝐼 is an antichain in ≼, then the set of extremal elements of
⋃𝑘∈𝐾 𝒜𝑘 is nested.

Proof. Suppose that 𝐾 ⊆ 𝐼 is an antichain and that for some 𝑖, 𝑗 ∈ 𝐾 there are
𝑎𝑖 ∈ 𝒜𝑖 and 𝑎𝑗 ∈ 𝒜𝑗 such that 𝑎𝑖 and 𝑎𝑗 are extremal in ⋃𝑘∈𝐾 𝒜𝑘 but cross. Let
𝑎𝑖 and 𝑎𝑗 be the orientations of 𝑎𝑖 and 𝑎𝑗 witnessing their extremality. As 𝑎𝑖
and 𝑎𝑗 cross, there are three ways of orienting 𝑎𝑖 and 𝑎𝑗 so that the supremum
of this orientation is strictly larger than 𝑎𝑖 or 𝑎𝑗 . Hence none of these corner
separations can lie in 𝒜𝑖 ∪𝒜𝑗, since that would contradict the maximality of 𝑎𝑖 or
𝑎𝑗 in ⋃𝑘∈𝐾 𝒜𝑘 . On the other hand, since neither 𝑖 ≺ 𝑗 nor 𝑗 ≺ 𝑖, by condition (HS2)
and the assumption that 𝑎𝑖 and 𝑎𝑗 cross there are at least two orientations of 𝑎𝑖
and 𝑎𝑗 whose corresponding supremum lies in 𝒜𝑖 ∪𝒜𝑗, causing a contradiction to
the extremality of 𝑎𝑖 and 𝑎𝑗.
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We are now able to prove a canonical version of the Splinter Lemma by repeatedly
applying Lemma 5.12 to the collection of the 𝒜𝑖 of ≼-minimal index that have not
yet been met by the nested set constructed so far:

Lemma 16 (Canonical splinter lemma). Let 𝑈 be a universe of separations and
let 𝔄 = (𝒜𝑖 ∶ 𝑖 ∈ 𝐼) be a collection of subsets of 𝑈 that splinters hierarchically with
respect to a partial order ≼ on 𝐼. Then there exists a nested set 𝑁 = 𝑁(𝔄) meeting
every 𝒜𝑖 in 𝔄.

Moreover, 𝑁(𝔄) is canonical: if 𝜑 is an isomorphism of separation systems between
⋃𝑖∈𝐼 𝒜𝑖 and a subset of some universe 𝑈 ′ such that the family 𝜑(𝔄) ≔ (𝜑(𝒜𝑖) ∶ 𝑖 ∈ 𝐼)
splinters hierarchically with respect to ≼, then 𝑁(𝜑(𝔄)) = 𝜑(𝑁(𝔄)).

Proof. We proceed by induction on |𝐼|. If |𝐼| = 1 we can choose as 𝑁 the set of
extremal elements of 𝒜𝑖, which is nested by Lemma 5.12 and clearly canonical.

So suppose that |𝐼| > 1 and that the claim holds for all smaller index sets. Let
𝐾 be the set of minimal elements of 𝐼 with respect to ≼. By Lemma 5.12 the set
𝐸 = 𝐸(𝔄) of extremal elements of ⋃𝑘∈𝐾 𝒜𝑘 is nested. Let 𝐽 ⊆ 𝐼 be the set of indices
of all those 𝒜𝑗 that do not meet 𝐸, and for 𝑗 ∈ 𝐽 let 𝒜′

𝑗 be the set of all elements of
𝒜𝑗 that are nested with 𝐸. We claim that the collection 𝔄′ = (𝒜′

𝑗 ∶ 𝑗 ∈ 𝐽) splinters
hierarchically with respect to ≼ on 𝐽. This follows from Lemma 2.1 as soon as we
show that each 𝒜′

𝑗 is non-empty.
To see that each 𝒜′

𝑗 is non-empty, for 𝑗 ∈ 𝐽 let 𝑎𝑗 be an element of 𝒜𝑗 that crosses
as few elements of 𝐸 as possible. We wish to show that 𝑎𝑗 is nested with 𝐸 and thus
𝑎𝑗 ∈ 𝒜′

𝑗. So suppose that 𝑎𝑗 crosses some separation in 𝐸, that is, some 𝑎𝑖 ∈ 𝒜𝑖 ∩𝐸
with 𝑖 ∈ 𝐼 ⧵ 𝐽. Since 𝑖 is a minimal element of 𝐼 we have either 𝑖 ≼ 𝑗 or that 𝑖 and 𝑗
are incomparable. We shall treat these cases separately.

Consider first the case that 𝑖 ≺ 𝑗. By condition (HS1) of splintering hierarchically,
either some corner separation of 𝑎𝑖 and 𝑎𝑗 lies in 𝒜𝑗, or two corner separations of 𝑎𝑖
and 𝑎𝑗 from different sides of 𝑎𝑖 lie in 𝒜𝑖. The first of these possibilities contradicts
the choice of 𝑎𝑗, since that corner separation in 𝒜𝑗 would cross fewer elements of 𝐸
by Lemma 2.1. On the other hand, the latter of these possibilities contradicts the
choice of 𝑎𝑖 as an extremal element of ⋃𝑘∈𝐾 𝒜𝑘. Thus the case 𝑖 ≼ 𝑗 is impossible.

Let us now consider the case that 𝑖 and 𝑗 are incomparable. Again, by the choice
of 𝑎𝑗, none of the corner separations of 𝑎𝑖 and 𝑎𝑗 can lie in 𝒜𝑗 by Lemma 2.1.
Therefore condition (HS2) of splintering hierarchically yields the existence of a
corner separation of 𝑎𝑖 and 𝑎𝑗 in 𝒜𝑖 for each side of 𝑎𝑖; this, however, contradicts
the extremality of 𝑎𝑖 in ⋃𝑘∈𝐾 𝒜𝑘 as before.

Therefore each of the sets 𝒜′
𝑗 with 𝑗 ∈ 𝐽 is non-empty, and hence the collection

𝔄′ = (𝒜′
𝑗 ∶ 𝑗 ∈ 𝐽) splinters hierarchically with respect to ≼. Since |𝐽 | < |𝐼| we may

apply the induction hypothesis to this collection to obtain a canonical nested set
𝑁 ′ = 𝑁(𝔄′) meeting all 𝒜′

𝑗. Now 𝑁 = 𝑁 ′ ∪ 𝐸 is a nested subset of 𝑈 which meets
every 𝒜𝑖 for 𝑖 ∈ 𝐼. It remains to show that 𝑁 is canonical.
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To see that 𝑁 is canonical let 𝜑 be an isomorphism of separation systems between
⋃𝑖∈𝐼 𝒜𝑖 and a subset of some universe 𝑈 ′ such that 𝜑(𝔄) splinters hierarchically
with respect to ≼ in 𝑈 ′. Then 𝜑(𝐸) = 𝐸(𝜑(𝔄)), i.e., the set of extremal elements
of ⋃𝑖∈𝐼 𝜑(𝒜𝑖) is exactly 𝜑(𝐸). Therefore 𝜑(𝐸) meets 𝜑(𝒜𝑖) if and only if 𝐸 meets
𝒜𝑖. Consequently the restriction of 𝜑 to ⋃𝑗∈𝐽 𝒜𝑗

′ is an isomorphism of separation
systems between ⋃𝑗∈𝐽 𝒜𝑗

′ and its image in 𝑈 ′ with the property that 𝜑(𝔄′) splinters
hierarchically with respect to ≼ on 𝐽. Moreover, for 𝑗 ∈ 𝐽, the image 𝜑(𝒜′

𝑗) of 𝒜′
𝑗

is exactly the set of those separations in 𝜑(𝒜𝑗) that are nested with 𝜑(𝐸).
Thus we can apply the induction hypothesis to find that 𝑁(𝜑(𝔄′)) = 𝜑(𝑁(𝔄′)).

Together with the above observation that 𝜑(𝐸(𝔄)) = 𝐸(𝜑(𝔄)) this gives

𝜑(𝑁(𝔄)) = 𝜑(𝐸(𝔄)) ∪ 𝜑(𝑁(𝔄′)) = 𝐸(𝜑(𝔄)) ∪ 𝑁(𝜑(𝔄′)) = 𝑁(𝜑(𝔄)),

concluding the proof.

5.5. Applications of the Canonical Splinter Lemma

In this section we apply Lemma 16 to obtain a short proof of Theorem 5.8, to
strengthen Theorem 15 for clique separations so as to make it canonical, and finally
to establish a canonical tree-of-tangles theorem for another type of separations,
so-called circle separations.

5.5.1. Robust profiles

Having established Lemma 16 in the previous section, we are now ready to derive
the full version of Theorem 5.8. For this let (𝑈,⩽, ∗, ∨, ∧, | ⋅ |) be a submodular
universe of separations and 𝒫 a robust set of profiles in 𝑈, and let 𝐼 be the set of all
pairs of distinguishable profiles in 𝒫. As in Section 5.3.3, for {𝑃 , 𝑃 ′ } ∈ 𝐼 we let

𝒜𝑃,𝑃 ′ ≔ {𝑎 ∈ 𝑈 ∶ 𝑎 distinguishes 𝑃 and 𝑃 ′ efficiently },

and let 𝔄𝒫 be the family (𝒜𝑃,𝑃 ′ ∶ { 𝑃 , 𝑃 ′ } ∈ 𝐼). We furthermore define a partial
order ≼ on 𝐼 by letting {𝑃 , 𝑃 ′ } ≺ {𝑄,𝑄′ } if and only if the order of some element
of 𝒜𝑃,𝑃 ′ is strictly lower than the order of some element of 𝒜𝑄,𝑄′ . Note that the
separations in a fixed 𝒜𝑃,𝑃 ′ all have the same order.

We shall be able to deduce Theorem 5.8 from Lemma 16 as soon as we show that
𝔄𝒫 splinters hierarchically.

Lemma 5.13. 𝔄𝒫 splinters hierarchically with respect to ≼.

Proof. Let 𝑟 ∈ 𝒜𝑃,𝑃 ′ and 𝑠 ∈ 𝒜𝑄,𝑄′ be given. By switching their roles if necessary
we may assume that |𝑟| ⩽ |𝑠|. Then 𝑄 and 𝑄′ both orient 𝑟; we may assume without
loss of generality that 𝑟 ∈ 𝑄. We will make a case distinction depending on the way
𝑄′ orients 𝑟.
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Let us first treat the case that 𝑄 and 𝑄′ orient 𝑟 differently, i.e., that 𝑟 ∈ 𝑄′.
Then 𝑟 distinguishes 𝑄 and 𝑄′ and hence |𝑟| = |𝑠| by the efficiency of 𝑠. This
implies that {𝑃 , 𝑃 ′ } and {𝑄,𝑄′ } are either the same pair or else incomparable
in ≼. We may assume further without loss of generality that 𝑠 ∈ 𝑄 and 𝑠 ∈ 𝑄′.
Consider now the two corner separations 𝑟 ∨ 𝑠 and 𝑟 ∧ 𝑠: if at least one of these
two has order at most |𝑠|, then this corner separation would distinguish 𝑄 and
𝑄′ by the profile property. The efficiency of 𝑠 would then imply that this corner
separation has order exactly |𝑠| and hence lies in 𝒜𝑄,𝑄′ . The submodularity of the
order function implies that this is the case for at least one, and therefore for both of
these corner separations, yielding the existence of two corner separations of 𝑟 and 𝑠
from different sides of 𝑠 in 𝒜𝑄,𝑄′ and showing that (HS2) is satisfied.

Let us now consider the case that 𝑄 and 𝑄′ orient 𝑟 in the same way, i.e.,
that 𝑟 ∈ 𝑄′. We make a further split depending on whether |𝑟| = |𝑠| or |𝑟| < |𝑠|.

Suppose first that |𝑟| = |𝑠|; then neither {𝑃 , 𝑃 ′ } ≺ {𝑄,𝑄′ } nor {𝑄,𝑄′ } ≺
{𝑃 , 𝑃 ′ }. We may assume that 𝑃 and 𝑃 ′ orient 𝑠 in the same way: for if 𝑃 and
𝑃 ′ orient 𝑠 differently, we may switch the roles of 𝑟 and 𝑠 as well as {𝑃 , 𝑃 ′ } and
{𝑄,𝑄′ } and apply the above case. So suppose that both of 𝑃 and 𝑃 ′ contain 𝑠, say.
Then neither of the corner separations 𝑟 ∨ 𝑠 nor 𝑟 ∨ 𝑠 can have order strictly less
than |𝑟| = |𝑠|, as these corner separations would distinguish 𝑄 and 𝑄′ or 𝑃 and 𝑃 ′,
respectively, and would therefore contradict the efficiency of 𝑠 or of 𝑟, respectively.
The submodularity of | ⋅ | now implies that both of these corner separations have
order exactly |𝑟| = |𝑠| and hence lie in 𝒜𝑄,𝑄′ and 𝒜𝑃,𝑃 ′ , respectively, showing that
(HS2) holds.

Finally, let us suppose that |𝑟| < |𝑠|; then {𝑃 , 𝑃 ′ } ≺ {𝑄,𝑄′ }. Consider the two
corner separations 𝑟 ∨ 𝑠 and 𝑟 ∨ 𝑠: if both of 𝑟 ∨ 𝑠 and 𝑟 ∨ 𝑠 have order strictly
greater than |𝑠|, then by the submodularity of the order function both of the other
two corner separations 𝑟 ∨ 𝑠 and 𝑟 ∨ 𝑠 have order strictly smaller than |𝑟|. By the
robustness of 𝒫 one of these two corner separations would distinguish 𝑃 and 𝑃 ′,
contradicting the efficiency of 𝑟.

Thus we may assume at least one of 𝑟 ∨ 𝑠 and 𝑟 ∨ 𝑠 has order at most |𝑠|. Then
that corner separation distinguishes 𝑄 and 𝑄′. In fact, it does so efficiently and
hence lies in 𝒜𝑄,𝑄′ , showing that (HS1) holds and concluding the proof.

We are now ready to deduce the full Theorem 5.8 from Lemma 16:

Theorem 5.8 (Canonical tree-of-tangles theorem for separation universes [26,
Theorem 3.6]).  p. 68Let (𝑈,⩽, ∗, ∨, ∧, | ⋅ |) be a submodular universe of separations. Then
for every robust set 𝒫 of profiles in 𝑈 there is a nested set 𝑇 = 𝑇(𝒫) ⊆ 𝑈 of
separations such that:
(i) every two profiles in 𝒫 are efficiently distinguished by some separation in 𝑇;
(ii) every separation in 𝑇 efficiently distinguishes a pair of profiles in 𝒫;
(iii) for every automorphism 𝛼 of 𝑈 we have 𝑇 (𝒫𝛼) = 𝑇 (𝒫)𝛼; (canonicity)
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(iv) if all the profiles in 𝒫 are regular, then 𝑇 is a regular tree set.

Proof. By Lemma 5.13 the family 𝔄𝒫 splinters hierarchically. Thus we can apply
Lemma 16 to 𝔄𝒫 to obtain a nested set 𝑁 = 𝑁(𝔄𝒫) which meets every 𝒜𝑃,𝑃 ′ .
Clearly, 𝑁 satisfies (i), (ii) and (iv) of Theorem 5.8.

To see that 𝑁 satisfies (iii), let 𝛼 be an automorphism of 𝑈. Then the restriction
of 𝛼 to ⋃{𝑃,𝑃 ′}∈𝐼 𝒜𝑃,𝑃 ′ is an isomorphism of separation systems onto its image in
𝑈. We therefore have, by Lemma 16, that 𝛼(𝑁(𝔄𝒫)) = 𝑁(𝛼(𝔄𝒫)). For every 𝒜𝑃,𝑃 ′

in 𝔄𝒫 we have that 𝛼(𝒜𝑃,𝑃 ′) is precisely the set of those separations in 𝑈 which
distinguish 𝑃𝛼 and 𝑃 ′𝛼 efficiently; in other words, we have 𝛼(𝔄𝒫) = 𝔄𝒫𝛼 , showing
that (iii) is satisfied.

5.5.2. Clique separations

Regarding the clique-profiles discussed in Section 5.3.5, Lemma 5.10 not only suffices
to show that the sets 𝒜𝑃,𝑃 ′ splinter, but can be used to show that the collection
of these 𝒜𝑃,𝑃 ′ even splinters hierarchically, allowing us to apply Lemma 16: for
this we simply define the same partial order ≼ on the set of pairs {𝑃 , 𝑃 ′ } as in
the previous section, that is, {𝑃 , 𝑃 ′ } ≺ {𝑄,𝑄′ } if and only if |𝑟| < |𝑠| for some
(equivalently: for all) 𝑟 ∈ 𝒜𝑃,𝑃 ′ and 𝑠 ∈ 𝒜𝑄,𝑄′ .

To see this, let 𝑃 , 𝑃 ′ and 𝑄,𝑄′ be distinguishable pairs of profiles of clique
separations. Let 𝑟 ∈ 𝒜𝑃,𝑃 ′ and 𝑠 ∈ 𝒜𝑄,𝑄′ , and suppose without loss of generality
that |𝑟| ⩽ |𝑠|. If 𝑟 and 𝑠 are nested, then 𝑟 and 𝑠 themselves are corner separations
of 𝑟 and 𝑠 that lie in 𝒜𝑃,𝑃 ′ and 𝒜𝑄,𝑄′ , respectively. However, if 𝑟 and 𝑠 cross, then
by Lemma 5.10 there are orientations of 𝑟 and 𝑠 such that |𝑟 ∧ 𝑠| , |𝑟 ∧ 𝑠| ⩽ |𝑟| and
|𝑟 ∧ 𝑠| , |𝑟 ∧ 𝑠| , |𝑟 ∧ 𝑠| ⩽ |𝑠|. By switching their roles if necessary we may assume
that 𝑟 ∈ 𝑃 and 𝑟 ∈ 𝑃 ′, and likewise that 𝑠 ∈ 𝑄 and 𝑠 ∈ 𝑄′.

Since (𝑟 ∧ 𝑠), (𝑟 ∧ 𝑠) ⩽ 𝑠 and 𝑠 ∈ 𝑄′, the profile 𝑄′ contains both of these corner
separations by consistency. On the other hand, by the assumption that |𝑟| ⩽ |𝑠|, the
separation 𝑟 gets oriented by 𝑄, and consequently, by the profile property, 𝑄 must
contain the inverse of one of those two corner separations. This corner separation
then distinguishes 𝑄 and 𝑄′, and in fact it does so efficiently, since its order is at
most |𝑠|, meaning that this corner separation lies in 𝒜𝑄,𝑄′ . Therefore, if |𝑟| < |𝑠|,
then condition (HS1) of splintering hierarchically is satisfied.

So suppose further that |𝑟| = |𝑠|, and let us check that condition (HS2) of
splintering hierarchically is satisfied. Observe that, similarly as above, 𝑃 orients
𝑠, and 𝑃 ′ contains both (𝑟 ∧ 𝑠) and (𝑟 ∧ 𝑠) by consistency with 𝑟 ∈ 𝑃 ′, implying
as before that one of (𝑟 ∧ 𝑠) and (𝑟 ∧ 𝑠) also efficiently distinguishes 𝑃 and 𝑃 ′,
i.e., is an element of 𝒜𝑃,𝑃 ′ . If this corner separation in 𝒜𝑃,𝑃 ′ and the corner
separation in 𝒜𝑄,𝑄′ found above are from different sides of either 𝑟 or 𝑠, then
condition (HS2) of splintering hierarchically would be satisfied. So suppose not; that
is, suppose that (𝑟 ∧ 𝑠) distinguishes both 𝑃 and 𝑃 ′ as well as 𝑄 and 𝑄′ efficiently.
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In particular |𝑟 ∧ 𝑠| = |𝑟| = |𝑠|, and hence by the last part of Lemma 5.10, all four
corner separations of 𝑟 and 𝑠 have order at most |𝑟|. Consequently, since 𝑃 ′ orients
𝑠, one of (𝑟 ∧ 𝑠) and (𝑟 ∧ 𝑠) distinguishes 𝑃 and 𝑃 ′ efficiently, which one depending
on whether 𝑠 ∈ 𝑃 ′ or 𝑠 ∈ 𝑃 ′. In either case we have found a corner separation
of 𝑟 and 𝑠 in 𝒜𝑃,𝑃 ′ , which together with (𝑟 ∧ 𝑠) ∈ 𝒜𝑄,𝑄′ witnesses that (HS2) is
fulfilled.

Therefore, by Lemma 16 we get that we can choose the set in Theorem 15
canonically:

Theorem 17. For every set 𝒫 of clique-profiles of a graph 𝐺, there is a nested
set 𝑁 = 𝑁(𝒫) of separations which efficiently distinguishes all the distinguishable
clique-profiles in 𝒫 and is canonical, that is, such that 𝑁(𝒫𝛼) = 𝑁(𝒫)𝛼 for every
automorphism 𝛼 of the underlying graph 𝐺.

Proof. Every automorphism of 𝐺 induces an automorphism of the separation system.
Hence we can obtain the claimed nested set by applying Lemma 16 to the family
of the sets 𝒜𝑃,𝑃 ′ of those clique separations which efficiently distinguish the pair
𝑃 , 𝑃 ′ of distinguishable profiles in 𝒫.

5.5.3. Circle separations

Another special case of separation systems are those of circle separations discussed
in [25]: given a fixed cyclic order on a ground-set 𝑉, a circle separation of 𝑉 is a
bipartition (𝐴,𝐵) of 𝑉 into two disjoint intervals in the cyclic order. Observe that
the set of all circle separations is not closed under joins and meets and hence not a
sub-universe of the universe of all bipartitions of 𝑉:

Example 5.14. Consider the natural cyclic order on the set 𝑉 = { 1, 2, 3, 4 }.
The bipartitions ({ 1 }, { 2, 3, 4 }) and ({ 3 }, { 4, 1, 2 }) of 𝑉 are circle separations.
However, their supremum in the universe of all bipartitions of 𝑉 is ({ 1, 3 }, { 2, 4 }),
which is not a circle separation.

Let 𝑉 be a ground-set with a fixed cyclic order and (𝑈,⩽, ∗, ∨, ∧, | ⋅ |) the universe
of all bipartitions of 𝑉 with any submodular order function | ⋅ |. Let 𝑆 ⊆ 𝑈 be the
set of all separations in 𝑈 that are circle separations of 𝑉. We denote by 𝑆<𝑘 the
set of only those circle separations in 𝑆 whose order is less than 𝑘.

Given fixed integers 𝑚 ⩾ 1 and 𝑛 > 3, we call a consistent orientation of 𝑆𝑘 a
𝑘-tangle in 𝑆 if it has no subset in

ℱ = ℱ𝑛
𝑚 ≔ {𝐹 ⊆ 2𝑈 ∶ ∣⋂

(𝐴,𝐵)∈𝐹
𝐵 ∣ < 𝑚 and |𝐹 | < 𝑛 }.

A tangle in 𝑆 is then a 𝑘-tangle for some 𝑘, and a maximal tangle in 𝑆 is a tangle
not contained in any other tangle in 𝑆. As usual, two tangles are distinguishable if
neither of them is a subset of the other; a separation 𝑠 distinguishes two tangles if
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they orient 𝑠 differently, and 𝑠 does so efficiently if it is of minimal order among all
separations in 𝑆 distinguishing that pair of tangles.

Using Lemma 16 we can show that there is a canonical nested set of circle
separations which efficiently distinguishes all distinguishable tangles in 𝑆:

Theorem 18. The set 𝑆 of all circle separations of 𝑉 contains a tree set 𝑇 = 𝑇(𝑆)
that efficiently distinguishes all distinguishable tangles of 𝑆. Moreover, this tree set
𝑇 can be chosen canonically, i.e., so that for every automorphism 𝛼 of 𝑆 we have
𝑇 (𝑆𝛼) = 𝑇 (𝑆)𝛼.

In order to prove Theorem 18 we need the following short lemma:

Lemma 5.15. Let 𝑟 and 𝑠 be two circle separations of 𝑉. If 𝑟 and 𝑠 cross, then all
four corner separations of 𝑟 and 𝑠 are again circle separations.

Proof. Let 𝑟 = (𝐴,𝐵) and 𝑠 = (𝐶,𝐷). Since 𝑟 and 𝑠 cross, the sets 𝐴 ∩ 𝐶 and
𝐵 ∩𝐷 are non-empty and moreover intervals in the cyclic order. Thus 𝐵 ∪𝐷 is also
an interval and therefore 𝑟 ∧ 𝑠 = (𝐴 ∩ 𝐶 , 𝐵 ∪ 𝐷) is indeed a circle separation.

Let us now prove Theorem 18.

Proof of Theorem 18. For every pair 𝑃 , 𝑃 ′ of distinguishable tangles in 𝑆 let 𝒜𝑃,𝑃 ′

be the set of all circle separations that efficiently distinguish 𝑃 and 𝑃 ′. We define a
partial order ≼ on the set of all pairs of distinguishable tangles by letting {𝑃 , 𝑃 ′ } ≺
{𝑄,𝑄′ } for two distinct such pairs if and only if the separations in 𝒜𝑃,𝑃 ′ have
strictly lower order than those in 𝒜𝑄,𝑄′ .

Let us show that the collection of these sets 𝒜𝑃,𝑃 ′ splinters hierarchically; the
claim will then follow from Lemma 16.

For this let 𝑃 , 𝑃 ′ and 𝑄,𝑄′ be two distinguishable pairs of tangles in 𝑆 and let
𝑟 ∈ 𝒜𝑃,𝑃 ′ and 𝑠 ∈ 𝒜𝑄,𝑄′ . If 𝑟 and 𝑠 are nested, then 𝑟 and 𝑠 themselves are corner
separations from different sides of 𝑟 and 𝑠 that lie in 𝒜𝑃,𝑃 ′ and 𝒜𝑄,𝑄′ , respectively,
in which case there is nothing to show.

So suppose that 𝑟 and 𝑠 cross. Then by Lemma 5.15 all corner separations of 𝑟
and 𝑠 are circle separations. By switching their roles if necessary we may assume
that |𝑟| ⩽ |𝑠|; we shall treat the cases of |𝑟| < |𝑠| and |𝑟| = |𝑠| separately.

Let us first consider the case that |𝑟| < |𝑠|. Then {𝑃 , 𝑃 ′ } ≺ {𝑄,𝑄′ }, so it
suffices to show that (HS1) is satisfied, i.e., to find a corner separation of 𝑟 and 𝑠 in
𝒜𝑄,𝑄′ . Since 𝑄 and 𝑄′ both orient 𝑠, which is of higher order than 𝑟, both 𝑄 and
𝑄′ also orient 𝑟. By |𝑟| < |𝑠| and the efficiency of 𝑠, 𝑟 cannot distinguish 𝑄 and 𝑄′.
Thus some orientation 𝑟 of 𝑟 lies in both 𝑄 and 𝑄′.

By renaming them if necessary we may assume that 𝑟 ∈ 𝑃 and 𝑟 ∈ 𝑃 ′. Suppose
now that one of 𝑟 ∨ 𝑠 and 𝑟 ∨ 𝑠 has order at most |𝑠|. Then 𝑄 and 𝑄′ would both
orient that corner separation, and they would do so differently by the definition of a
tangle. Thus that corner separation would lie in 𝒜𝑄,𝑄′ , as desired.
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Hence we may assume that both of 𝑟 ∨ 𝑠 and 𝑟 ∨ 𝑠 have order higher than |𝑠|.
Then, by submodularity, both 𝑟 ∧ 𝑠 and 𝑟 ∧ 𝑠 have order less than |𝑟|. Therefore
both of these corner separations get oriented by 𝑃 and 𝑃 ′, but neither of them can
distinguish 𝑃 and 𝑃 ′ by the efficiency of 𝑟. In fact by the consistency of 𝑃 and 𝑃 ′

we must have (𝑟 ∧ 𝑠), (𝑟 ∧ 𝑠) ∈ 𝑃 ∩ 𝑃 ′. However the set { 𝑟, (𝑟 ∧ 𝑠), (𝑟 ∧ 𝑠) } lies in
ℱ, contradicting the assumption that 𝑃 and 𝑃 ′ are tangles in 𝑆.

It remains to deal with the case that |𝑟| = |𝑠| and show that (HS2) is satisfied.
For this we shall find corner separations from different sides of 𝑟 or of 𝑠 that lie
in 𝒜𝑃,𝑃 ′ and 𝒜𝑄,𝑄′ , respectively. By the submodularity of the order function,
and by switching the roles of 𝑟 and 𝑠 if necessary, we may assume that there are
orientations of 𝑟 and 𝑠 such that both 𝑟 ∨ 𝑠 and 𝑟 ∨ 𝑠 have order at most |𝑟|. By
possibly renaming 𝑠 and 𝑠 we may further assume that 𝑟 ∨ 𝑠 distinguishes 𝑃 and 𝑃 ′.
Then, by the efficiency of 𝑟, we must have |𝑟 ∨ 𝑠| = |𝑟|, and hence |𝑟 ∨ 𝑠| ⩽ |𝑠| by
submodularity. Recall that we assumed |𝑟 ∨ 𝑠| = |𝑟| = |𝑠|, so one of 𝑟 ∨ 𝑠 and 𝑟 ∨ 𝑠
must distinguish 𝑄 and 𝑄′. Again, that corner separation must in fact distinguish
𝑄 and 𝑄′ efficiently, i.e., lie in 𝒜𝑄,𝑄′ . Now this corner separation together with
𝑟 ∨ 𝑠 witnesses that (HS2) holds.
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5.6. The splinter lemma for a relation

Arguably, the splinter lemma is not really concerned with a separation system itself
any more but just with the nestedness relation. It can be phrased as a lemma
about a reflexive, symmetric ‘compatibility’ relation. It then says that, if we have
something like the fish lemma Lemma 2.1 to locally make our choice of elements
from some collection 𝔄 more compatible, then we can make this compatibility global.

To make this precise, let 𝐴 be some set and let ∼ be a reflexive and symmetric
relation on 𝐴 which we will refer to as ‘∼-nested’. An element 𝑐 ∈ 𝐴 is called a
∼-corner of 𝑎 ∈ 𝐴 and 𝑏 ∈ 𝐴 if every element of 𝐴 which is ∼-nested with both
𝑎 and 𝑏 is also ∼-nested with 𝑐. We now say that a collection 𝔄 = (𝒜𝑖)𝑖∈𝐼 of
subsets of 𝐴 ∼-splinters if for every pair of ∼-crossing (i.e., not ∼-nested) elements
𝑎𝑖 ∈ 𝒜𝑖 ⧵ 𝒜𝑗 and 𝑎𝑗 ∈ 𝒜𝑗 ⧵ 𝒜𝑖 there lies a ∼-corner of 𝑎𝑖 and 𝑎𝑗 in 𝒜𝑖 ∪𝒜𝑗.

Note that, under the general definition of a ∼-corner, both 𝑎 and 𝑏 always
constitute ∼-corners of 𝑎 and 𝑏. In the definition of ‘∼-splinters’ we can thus
equivalently ask that for every pair of ∼-crossing elements 𝑎𝑖 ∈ 𝒜𝑖 and 𝑎𝑗 ∈ 𝒜𝑗
there lies a ∼-corner of 𝑎𝑖 and 𝑎𝑗 in 𝒜𝑖 ∪𝒜𝑗. Note the omission of set-differences in
the choice of 𝑎𝑖 and 𝑎𝑗.

The splinter lemma and its proofs hold practically verbatim for this set of defini-
tions:

Lemma 19 (Relation splinter lemma). Let 𝐴 be a set, let 𝔄 = (𝒜𝑖)𝑖⩽𝑛 be a
family of subsets of 𝐴 and let ∼ be a reflexive and symmetric relation on 𝐴. If 𝔄
∼-splinters, then we can pick an element 𝑎𝑖 from each 𝒜𝑖 so that { 𝑎1,… , 𝑎𝑛 } is
pairwise ∼-nested.

In a similar way one could generalize Lemma 16 to such a relation. However, we
are forgoing this in favor of a version of Lemma 16 which not only works with a
relation, but can also be used in the context of infinite families of infinite sets 𝔄.
This will be the thin splinter lemma, Lemma 22.

5.7. Distinguishing directed tangles

To demonstrate the versatility of Lemma 19, we will now show an application to
directed tangles of directed graphs. Directed tangles are an analogue to tangles
in directed graphs, introduced by Giannopoulou, Kawarabayashi, Kreutzer, and
Kwon [48]. They relate to the concept of directed tree-width proposed by Reed [63]
and Johnson, Robertson, Seymour, and Thomas [56]. The ‘directed separations’
that directed tangles are defined with are more restrictive in terms of ‘taking corners’
than the usual separations of undirected graphs. This makes it impossible to find a
tree of tangles, in the sense of a nested set of (directed) separations, for directed
tangles. Instead Giannopoulou, Kawarabayashi, Kreutzer, and Kwon [48] introduced
a weaker analogoue of trees of tangles for directed tangles: tangle-tree-labellings.

84



5.7. Distinguishing directed tangles

In this section we will establish an abstract version of directed separations, i.e.,
a directed version of abstract separation systems, and show how to retrieve an
abstract version of such a tangle-tree-labelling using Lemma 19. We will use the
results of [48] to guide our effort.

The key different of directed tangles to usual tangles of graphs is that they work
with ‘directed separations’ of a digraph which have a ‘forwards’ and a ‘backwards’
direction. Formally, in the notation of [48], a directed separation (𝐴,𝐵) of a digraph
𝐺 consists of vertex sets 𝐴 and 𝐵 with 𝐴 ∪ 𝐵 = 𝑉, either such that no arc of 𝐺
goes from 𝐵 ⧵𝐴 to 𝐴⧵𝐵 or such that no arc of 𝐺 goes from 𝐴⧵𝐵 to 𝐵 ⧵𝐴. In the
former case it is also written as (𝐴 → 𝐵) and in the latter case as (𝐴 ← 𝐵). Note
that every separation of the underlying undirected graph is a directed separation
of 𝐺 both ways, but generally 𝐺 will have many more directed separations; the
directed separations of 𝐺 are a system of set separations of 𝑉 (𝐺). The order
of a directed separation is |𝐴 ∩ 𝐵|, as usual, and we consider the usual partial
order for set separations. A directed 𝑘-tangle in 𝐺 or tangle of order 𝑘, then, is
an orientation 𝜏 of all directed separations of order < 𝑘 such that for any three
(𝐴1, 𝐵1), (𝐴2, 𝐵2), (𝐴3, 𝐵3) ∈ 𝜏 we have that 𝐴1 ∪ 𝐴2 ∪ 𝐴3 ≠ 𝑉 (𝐺).

Diseparation systems

Differently from separations of a graph, the directed separations of a digraph do not
form a universe of separations: for two directed separations (𝐴 → 𝐵) and (𝐶 → 𝐷)
we have that (𝐴 ∪ 𝐶 → 𝐵 ∩𝐷) and (𝐴 ∩ 𝐶 → 𝐵 ∪𝐷) are also directed separations
(called upper and lower corner, respectively). On the other hand, (𝐴 ∪ 𝐷,𝐵 ∩ 𝐶)
and (𝐴 ∩ 𝐷,𝐵 ∪ 𝐶) generally may have cross-arcs going both ways, so the may not
be directed separations.

To handle this, we will now develop an abstract version of the setting of directed
separations.g We shall need to be able to keep track of the ‘forward’ direction of
a directed separation, but also be able to speak of an orientation of a directed
separation where we do not care about which direction is ‘forward’. The notation
that follows, while a bit unwieldy, allows us to do so without clashing too much with
existing notation of abstract separation systems – in fact, this will be a generalization
of separation systems.

A directed separation system, or diseparation system, shall be a poset 𝑆 = 𝑆 ∪ 𝑆
together with an order-reversing involution ∗ ∶ 𝑆 → 𝑆 which maps elements of
𝑆 to elements of 𝑆 and vice versa. Diseparations which are in 𝑆 , the forwards
diseparations, are always denoted with a forwards arrow, those in 𝑆, the backwards
diseparations, with a backwards arrow. We extend the convention of writing inverses
as 𝑠 = 𝑠∗ and 𝑠 = 𝑠∗. Diseparations which are only known to be in 𝑆 are denoted
with a double arrow, and ∗ is used to denote their inverse. We note that every
separation system can be turned into a diseparation system where 𝑆 = 𝑆 = 𝑆 . As
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with separation systems, we use 𝑠 to denote the unoriented diseparation { 𝑠, 𝑠 } and
𝑆 = { 𝑠 ∶ 𝑠 ∈ 𝑆 }.

If a diseparation system 𝑈 is such that 𝑈 (and thus also 𝑈) is a lattice, we say
that 𝑈 is a universe of directed separations, or diseparation universe for short. This
means that two diseparations 𝑟, 𝑠 ∈ 𝑈 have two directed corners: the upper corner
𝑟 ∨𝑠 and the lower corner 𝑟 ∨𝑠 = (𝑟 ∧𝑠)∗.1 The directed separations of a digraph 𝐺
form a diseparation universe as one would expect, and we denote this diseparation
universe by 𝑈(𝐺). The above translation of a separation system into a diseparation
system also makes every univserse of separations a diseparation universe.

Given a diseparation system 𝑆 an orientation of 𝑆 is a set 𝑂 ⊆ 𝑆 such that, for
every 𝑠 ∈ 𝑆 we have that |𝑂 ∩ 𝑠| = 1. Such an orientation 𝑂 is consistent if there
are no two distinct diseparations 𝑠, 𝑡 ∈ 𝑂 such that 𝑠∗ ⩽ 𝑡.

Given a diseparation universe 𝑈, a diseparation system 𝑆 ⊆ 𝑈 and some consistent
orientation 𝑃 of 𝑆 , we say that 𝑃 is a diprofile of 𝑆 if, for any 𝑠, 𝑡 ∈ 𝑆 ∩ 𝑃 we have
that (𝑠 ∨ 𝑡)∗ ∉ 𝑃, and for any 𝑠, 𝑡 ∈ 𝑆 ∩ 𝑃 we have that (𝑠 ∨ 𝑡)∗ ∉ 𝑃.

A diseparation 𝑠 ∈ 𝑆 is small if 𝑠 ⩽ 𝑠∗, in which case 𝑠∗ is cosmall. A diprofile 𝑃
is regular if it contains no cosmall diseparation.

A function | ⋅ | ∶ 𝑈 → ℕ is called an order function if |𝑠| = |𝑠| for all 𝑠 ∈ 𝑈. An
order function | ⋅ | called submodular if |𝑠|+ |𝑡| ⩾ |𝑠 ∨ 𝑡|+ |𝑠 ∧ 𝑡| for any two 𝑠, 𝑡 ∈ 𝑈,
i.e., if it is submodular on the lattice 𝑈; by symmetry | ⋅ | is then also submodular
on 𝑈.

Given such a submodular order function, the set 𝑆𝑘 = { 𝑠 ∈ 𝑈 ∶ |𝑠| < 𝑘 } is a
diseparation system. A diprofile of 𝑆𝑘 is called a 𝑘-diprofile in 𝑈 and a diprofile
in 𝑈 is a 𝑘-diprofile in 𝑈 for some 𝑘. Note that directed 𝑘-tangles in a digraph 𝐺
are regular 𝑘-diprofiles in the corresponding diseparation universe with the order
function |𝐴,𝐵| = |𝐴 ∩ 𝐵|.

5.7.1. Tangle tree-labellings

Giannopoulou, Kawarabayashi, Kreutzer, and Kwon’s version of a tree-of-tangles
theorem for directed tangles states the following:

Theorem 5.16 ([48, Theorem 6.2]). Every set 𝒯 of distinguishable tangles in a
digraph 𝐺 has a 𝒯-tree-labelling.

A directed separation (𝐴,𝐵) distinguishes two directed tangles 𝜏, 𝜏 ′ if (𝐴,𝐵) ∈ 𝜏
and (𝐵,𝐴) ∈ 𝜏 ′ or vice versa. A pair of directed tangles is distinguishable if they
are distinguished by some directed separation, and they are ℓ-distinguishable if the
are distinguished by a directed separation of order at most ℓ, otherwise they are
ℓ-indistinguishable.

The ‘𝒯-tree-labellings’ that feature here may be seen as weakened versions of
nested sets of separations as we know them from tree-of-tangles theorems, their
1Here we note that in diseparation universes, again, DeMorgans law’s hold.
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formalisation is closer to the ‘trees of tangles’ that we will discuss in Section 6.3.
Formally, a 𝒯-tree-labelling is a tuple (𝐿, 𝛽, 𝛾) consisting of a tree 𝐿, a bijection
𝛽 ∶ 𝑉 (𝐿) → 𝒯, and a map 𝛾 ∶ 𝐸(𝐿) → 𝑈(𝐺) where

(D) for every path 𝑃 in 𝐿, between vertices 𝑥, 𝑦 ∈ 𝑉 (𝐿) say, the minimum-order
elements of { 𝛾(𝑒) ∶ 𝑒 ∈ 𝑃 } are efficient 𝛽(𝑥)–𝛽(𝑦)-distinguishers.

Theorem 5.16 is proved first for sets of directed > ℓ-tangles all of which induce
the same directed ℓ-tangle:

Theorem 5.17 ([48, Theorem 6.3]). Let 𝒯 be a set of tangles of order > ℓ in a
digraph 𝐺 which are pairwise ℓ-distinguishable but (< ℓ)-indistinguishable. Then
there is a 𝒯-tree-labelling (𝐿, 𝛽, 𝛾) of 𝐺 such that |𝛾(𝑒)| = ℓ for all 𝑒 ∈ 𝐸(𝐿).

With all the associated separations being of the same order, the condition (D)
implies that every 𝛾(𝑒) efficiently distinguishes all pairs of directed tangles across
the two connected components of 𝐿 − 𝑒, this implies that all the directed tangles in
one component of 𝐿 − 𝑒 contain the same orientation of 𝛾(𝑒).

In fact, even [48]’s proof of Theorem 5.16 would allow replacing 𝛾 ∶ 𝐸(𝐿) → 𝑈(𝐺)
in the definition of a 𝒯-tree-labelling by a function 𝛼∶ 𝐸(𝐿) → 𝑈(𝐺) which commutes
with the involution. We can then demand, in place of condition (D), the following
condition:

(D�) for every directed path 𝑃 in 𝐿, from 𝑥 to 𝑦 say, the minimum-order elements
of {𝛼(𝑒) ∶ 𝑒 ∈ 𝑃 } are efficient 𝛽(𝑥)–𝛽(𝑦)-distinguishers where 𝛼(𝑒) ∈ 𝛽(𝑦)
and 𝛼(𝑒)∗ ∈ 𝛽(𝑥).

The existence of a 𝒯-tree-labelling, as guaranteed by Theorem 5.17, i.e., for a
fixed order ℓ, is then equivalent to the existence of a set of diseparations of 𝐺 of
order ℓ which induce a nested set of bipartitions of 𝒫 under the map

𝜋𝒯∶ 𝑆ℓ+1 (𝐺) → ℬ(𝒯), 𝑠 ↦ ({ 𝜏 ∈ 𝒯∶ 𝑠∗ ∈ 𝜏 }, { 𝜏 ∈ 𝒯∶ 𝑠 ∈ 𝜏 }),

which distinguishes all the elements of 𝒫, since for such a nested set of bipartitions
we can use the usual correspondence of nested set of separations to order-trees (cf.
Theorem 2.2) to assert the existence of the tree 𝐿, and obtaining 𝛽 is trivial.

We will now demonstrate how to prove the existence of such a set of diseprations
using Lemma 19 in the abstract setting of diseparation systems and diprofiles. For
that purpose, let us say that a diseparation 𝑠 distinguishes two diprofiles 𝑃 , 𝑃 ′

if there exists an orientation 𝑠 of 𝑠 such that 𝑠 ≠ 𝑠∗ and 𝑠 ∈ 𝑃 but 𝑠∗ ∈ 𝑃 ′; it
distinguishes them efficiently if it does so with lowest possible order. A pair of
diprofiles in 𝑈 is ℓ-distinguishable if they are distinguished by some diseparation of
order at most ℓ. Two diprofiles in 𝑈 are distinguishable if they are ℓ-distinguishable
for some ℓ.
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Given a set of diprofiles 𝒫 of 𝑆, two diseparations 𝑠, 𝑡 ∈ 𝑆 are called 𝒫-nested if
the bipartitions that they induce on the set 𝒫 via 𝜋𝒫∶ 𝑆 → ℬ(𝒫) form a nested set
of separations, i.e., there is a pair of orientations of 𝑠 and 𝑡 which is contained in no
diprofile in 𝒫.

We observe that the diprofile property makes the map 𝜋𝒫 compatible with meets
and joins (i.e., 𝜋𝒫(𝑠 ∨ 𝑡) = 𝜋𝒫(𝑠) ∨ 𝜋𝒫(𝑡) for all 𝑠, 𝑡 ∈ 𝑆) and with the involution.
Thus, Lemma 2.1, the fish lemma, applies to the 𝒫-nestedness-relation also, which
ensures that directed corners of two disepartions are ‘𝒫-nestedness’-corners in the
sense of Lemma 19.

Theorem 20. Let 𝑈 be a universe of directed separations with a submodular order
function, let ℓ ∈ ℕ and let 𝒫 be a set of diprofiles in 𝑈 which are pairwise efficiently
distinguished by diseparations of order precisely ℓ. Then there exists a 𝒫-nested set
of diseparations which distinguishes any two diprofiles in 𝒫 efficiently.

Proof. We let 𝔄 = (𝒜𝑃,𝑃 ′ ∶ 𝑃 , 𝑃 ′ ∈ 𝒫, 𝑃 ≠ 𝑃 ′) where

𝒜𝑃,𝑃 ′ = { 𝑠 ∈ 𝑆 ∶ 𝑠 distinguishes 𝑃 and 𝑃 ′ efficiently },

and we will show that 𝔄 splinters with respect to the relation ‘𝒫-nested’.
Let 𝑠 ∈ 𝒜𝑃,𝑃 ′ and 𝑡 ∈ 𝒜𝑄,𝑄′ be two 𝒫-crossing diseparations and note that both

𝑠 and 𝑡 have order ℓ. Since we could otherwise substitute 𝑠 for 𝑡 or vice versa, we
may assume that 𝑃 and 𝑃 ′ both orient 𝑡 the same, as 𝑡 say, and that 𝑄 and 𝑄′

both orient 𝑠 the same, as 𝑠 say.
Let us first assume that 𝑠 and 𝑡 are both forwards or both backwards separations.

Then by submodularity, one of 𝑠 ∨ 𝑡 and 𝑠 ∧ 𝑡 is a diseparation of order at most ℓ.
If 𝑠 ∨ 𝑡 has order at most ℓ, then by the diprofile property and consistency it is in

both 𝒜𝑃,𝑃 ′ and 𝒜𝑄,𝑄′ . Moreover, 𝑠 ∨ 𝑡 is a ‘𝒫-nestedness’-corner of 𝑠 and 𝑡, i.e.,
any diseparation which is 𝒫-nested with 𝑠 and 𝑡 is also 𝒫-nested with 𝑠 ∨ 𝑡, by our
preliminary observation.

So suppose the order of 𝑠 ∨ 𝑡 is larger than ℓ, then the order of 𝑠 ∧ 𝑡 is strictly
less than ℓ. Since 𝑠 and 𝑡 are 𝒫-crossing, there exists a diprofile 𝑅 ∈ 𝒫 with 𝑠∗ ∈ 𝑅
and 𝑡∗ ∈ 𝑅. The diprofile property implies that (𝑠 ∧ 𝑡)∗ ∈ 𝑅, but this means that 𝑅
is (< ℓ)-distinguishable from 𝑃, 𝑃 ′, 𝑄, and 𝑄′, each of which contradicts the choice
of 𝒫.

It remains to consider the case where 𝑠 and 𝑡 are one forwards and one backwards
separation, say 𝑠 = 𝑠 ∈ 𝑃 ′ is forwards and 𝑡 = 𝑡 ∈ 𝑄 is backwards. By submodular-
ity, one of 𝑠 ∨ 𝑡 and 𝑠 ∧ 𝑡 has order at most ℓ. If 𝑠 ∨ 𝑡 has order at most ℓ, then
𝑠 ∨ 𝑡 ∈ 𝑄′ by the diprofile property, and (𝑠 ∨ 𝑡)∗ ∈ 𝑄 by consistency. Together this
implies 𝑠 ∨ 𝑡 ∈ 𝒜𝑄,𝑄′ . If 𝑠 ∧ 𝑡 has order at most ℓ, then (𝑠 ∧ 𝑡)∗ ∈ 𝑃 by the diprofile
property, and 𝑠 ∧ 𝑡 ∈ 𝑃 ′ by consistency. Together this implies 𝑠 ∨ 𝑡 ∈ 𝒜𝑃,𝑃 ′ . In
either case the diseparation that we find is a ‘𝒫-nestedness’-corner of 𝑠 and 𝑡.

Thus, we can apply Lemma 19 to obtain the desired 𝒫-nested set.
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Once we allow diseparations of different orders 𝒫-nestedness becomes too strong
of a condition to ask for: even if two ‘𝒫-crossing’ diseparations are oriented by
all the diprofiles in 𝒫, we cannot necessarily uncross this pair as required for
Lemma 19. 𝒫-nested sets which distinguish all diprofiles in 𝒫may simply not exist,
and Theorem 5.16 does not claim such a thing for directed tangles either. In fact, in
a tangle-tree-labelling as constructed in the proof of Theorem 5.16 only the directed
separations of lowest order are nested in this sense: if 𝑘 is the lowest order of a
directed separation in the 𝒯-tree-labelling, then the directed separations of order 𝑘
in this labelling are 𝒯𝑘+1-nested, where 𝒯𝑘+1 is the set of restrictions of the directed
tangles in 𝒯 to directed separations of order at most 𝑘.

One thing to note, when considering the separations of different order across a
tangle-tree-labelling, is that one can construct multiple different tangle-tree-labellings
using the same set of directed separations. This is reflected in the final part of the
proof of Theorem 5.16 in [48] where one has to choose end-vertices for connecting
two tree-labellings (obtained by induction) to each other by an edge.

There is, however, a weaker nestedness-like condition which the directed separ-
ations in the constructed tangle-tree-labellings do satisfy, and a construction as
in the final part of the proof of Theorem 5.16 would allow us to again obtain a
tangle-tree-labelling from a set of directed separations which is weakly nested in the
following sense:

Given a set of diprofiles𝒫 in a diseparation universe 𝑈 we say that two diseparations
𝑠 and 𝑡 are weakly 𝒫-nested if

• if |𝑠| ⩽ |𝑡|, then there exists a witnessing orientation 𝑠 of 𝑠 such that of any two
diprofiles 𝑃 ,𝑄 ∈ 𝒫 which are (< |𝑠|)-indistinguishable and are distinguished
by 𝑡 at least one contains 𝑠; and

• if |𝑠| ⩾ |𝑡|, then there exists a witnessing orientation 𝑡 of 𝑡 such that of any two
diprofiles 𝑃 ,𝑄 ∈ 𝒫 which are (< |𝑡|)-indistinguishable and are distinguished
by 𝑠 at least one contains 𝑡.

A set of separations is weakly 𝒫-nested if every pair of diseparations from that set is
weakly 𝒫-nested. To help understand the equality case, we establish the following
lemma.

Lemma 5.18. If |𝑠| = |𝑡| = ℓ and 𝑠 and 𝑡 are not weakly 𝒫-nested, then there are
four diprofiles 𝑃𝑠,𝑡 , 𝑃𝑠,𝑡 , 𝑃𝑠,𝑡 , 𝑃𝑠,𝑡 ∈ 𝒫 which are pairwise (< ℓ)-indistinguishable
where 𝑠, 𝑡 ∈ 𝑃𝑠,𝑡 for 𝑠 ∈ { 𝑠, 𝑠 }, 𝑡 ∈ { 𝑡, 𝑡 }.

Proof. As 𝑠 and 𝑡 are not weakly 𝒫-nested, we may suppose without loss of generality
that there is a pair of diprofiles 𝑃𝑠,𝑡 , 𝑃𝑠,𝑡 ∈ 𝒫 which is (< |𝑠|)-indistinguishable
(with 𝑠 ∈ 𝑃𝑠,𝑡 , 𝑃𝑠,𝑡 , 𝑡 ∈ 𝑃𝑠,𝑡 and 𝑡 ∈ 𝑃𝑠,𝑡) and that there is a pair of diprofiles
𝑃𝑠,𝑡 , 𝑃𝑠,𝑡 ∈ 𝒫 which is (< |𝑠|)-indistinguishable (with 𝑠 ∈ 𝑃𝑠,𝑡 , 𝑃𝑠,𝑡 , 𝑡 ∈ 𝑃𝑠,𝑡 and
𝑡 ∈ 𝑃𝑠,𝑡).
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If not all four of these are pairwise (< |𝑠|)-indistinguishable, there is a diseparation
𝑟 such that |𝑟| < |𝑠| and 𝑟 ∈ 𝑃𝑠,𝑡 ∩ 𝑃𝑠,𝑡 and 𝑟 ∈ 𝑃𝑠,𝑡 ∩ 𝑃𝑠,𝑡 .

However, then there is a pair of directed corners between 𝑟 and 𝑡, and one of
these two has order less than |𝑡| and thereby contradicts the choice of one of the
two pairs of diprofiles.

For the weak 𝒫-nestedness-relation we show only a very weak version of Lemma 2.1,
which is just enough to show that the directed corners we will find when trying to
apply Lemma 19 are ‘weak 𝒫-nestedness’-corners.

Lemma 5.19. Let 𝑠 and 𝑡 be two diseparations which are not weakly 𝒫-nested, let
𝑟 be weakly 𝒫-nested with both 𝑠 and 𝑡 and let 𝑐 be a directed corner of 𝑠 and 𝑡.
If |𝑠| ⩽ |𝑡| and 𝑐 efficiently distinguishes a pair of diprofiles in 𝒫 which are also
efficiently distinguished by 𝑡 but not by 𝑠, then 𝑟 is weakly 𝒫-nested with 𝑐.

Proof. If |𝑐| ⩽ |𝑟| we need to show that there is a witnessing orientation of 𝑐 for
weak 𝒫-nestedness with 𝑟. In this case |𝑠| ⩽ |𝑡| = |𝑐| ⩽ |𝑟|, so there are orientations
𝑠 and 𝑡 of 𝑠 and 𝑡 witnessing the weak 𝒫-nestedness with 𝑟.

If 𝑐 has an orientation 𝑐 such that 𝑐 ⩽ 𝑠 or 𝑐 ⩽ 𝑡, then that orientation of 𝑐
is suitable to witness weak 𝒫-nestedness with 𝑟. Otherwise, 𝑐∗ = 𝑠∗ ∨ 𝑡∗ is an
orientation of 𝑐, and by symmetry we can consider just the case that 𝑐 is an upper
corner, i.e., 𝑐 = 𝑐 = 𝑠 ∨ 𝑡 which means that 𝑠 = 𝑠 and 𝑡 = 𝑡.

If some 𝑃 ,𝑄 ∈ 𝒫 which are (< |𝑡|)-indistinguishable and distinguished by 𝑟, say
𝑟 ∈ 𝑃 and 𝑟∗ ∈ 𝑄, are such that 𝑐 ∈ 𝑃 ∩ 𝑄, then by diprofile property we have
𝑠 ∈ 𝑃 or 𝑡 ∈ 𝑃, and 𝑠 ∈ 𝑄 or 𝑡 ∈ 𝑄. Moreover, by the 𝒫-nestedness of 𝑟 with 𝑠 and
𝑡, we may suppose up to renaming that 𝑠 ∈ 𝑃 and 𝑡 ∈ 𝑄, but 𝑠 ∈ 𝑃 and 𝑡 ∈ 𝑄. This
implies that |𝑠| = |𝑡| since 𝑃 and 𝑄 are (< |𝑡)|-indistinguishable.

Consider the diprofiles 𝑃𝑠,𝑡 , 𝑃𝑠,𝑡 from Lemma 5.18. We claim that 𝑃 ,𝑄, 𝑃𝑠,𝑡 , 𝑃𝑠,𝑡
are pairwise (< |𝑠|)-indistinguishable. Otherwise, there is a separation 𝑢 such that
|𝑢| < |𝑠| and 𝑢 ∈ 𝑃 ∩𝑄, 𝑢 ∈ 𝑃𝑠,𝑡 ∩𝑃𝑠,𝑡 , but then there is a directed corner between
𝑢 and 𝑠 of order less than |𝑠| which distinguishes 𝑃 from 𝑄 or 𝑃𝑠,𝑡 from 𝑃𝑠,𝑡 , a
contradiction.

Now either 𝑟 or 𝑟 is in 𝑃𝑠,𝑡 . In the first case 𝑃𝑠,𝑡 and 𝑄 contradict the assumption
that 𝑡 witnesses the weak 𝒫-nestedness of 𝑡 with 𝑟, whereas in the second case 𝑃𝑠,𝑡
and 𝑃 contradict the assumption that 𝑠 witnesses the weak 𝒫-nestedness of 𝑠 with 𝑟.
This concludes the proof, that there exists a witnessing orientation of 𝑐 if |𝑐| ⩽ |𝑟|.

If we have |𝑟| ⩽ |𝑐|, then we need to show that 𝑟 has a witnessing orientation for
weak 𝒫-nestedness with 𝑐. Suppose for a contradiction that 𝑟 has no such orientation.

We first want to show, that we can assume |𝑟| ⩽ |𝑠|. So, suppose |𝑠| < |𝑟| ⩽
|𝑡| = |𝑐|, then there is an orientation 𝑟 of 𝑟 witnessing the weak 𝒫-nestedness with 𝑡.
Since this orientation of 𝑟 does not witness also to the weak 𝒫-nestedness with 𝑐,
there is a pair 𝑃 ,𝑄 ∈ 𝒫 of (< |𝑟|)-indistinguishable diprofiles that are distinguished
by 𝑐 where both contain 𝑟∗. By the weak 𝒫-nestedness of 𝑟 and 𝑡 and the fact that
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𝑃 ,𝑄 both contain 𝑟∗, we know that this pair is not distinguished by 𝑡. They are
then, by the diprofile property, distinguished by 𝑠 and thus |𝑠| = |𝑟|, by efficiency,
which is a contradiction.

We may thus assume |𝑟| ⩽ |𝑠| ⩽ |𝑡| = |𝑐|. Then, there are orientations of 𝑟 which
witness the weak 𝒫-nestedness with 𝑠 and 𝑡, respectively. If these two orientations
coincide, this orientation clearly witness also the weak 𝒫-nestedness with 𝑐, so
suppose that 𝑟 witnesses the weak 𝒫-nestedness with 𝑠 and 𝑟∗ witnesses the weak
𝒫-nestedness with 𝑡.

By the premise of this lemma, 𝑐 and 𝑡 efficiently distinguish a pair of diprofiles
𝑃𝑡,𝑠 , 𝑃𝑡,𝑠 ∈ 𝒫which is not distinguished by 𝑠, so 𝑠 ∈ 𝑃𝑡,𝑠 , 𝑃𝑡,𝑠 and 𝑡 ∈ 𝑃𝑡,𝑠 , 𝑡 ∈ 𝑃𝑡,𝑠 .
Since 𝑠 and 𝑡 are not weakly 𝒫-nested, there is also a pair 𝑃𝑡,𝑠∗ , 𝑃𝑡,𝑠∗ of (< |𝑠|)-indis-
tinguishable diprofiles in 𝒫 which is distinguished by 𝑡 and which both contain 𝑠∗.

We claim that 𝑃𝑡,𝑠 , 𝑃𝑡,𝑠 , 𝑃𝑡,𝑠∗ and 𝑃𝑡,𝑠∗ are pairwise (< |𝑠|)-indistinguishable.
Indeed, if 𝑢 is a diseparation of order < |𝑠| such that 𝑢 ∈ 𝑃𝑡,𝑠 ∩ 𝑃𝑡,𝑠 and 𝑢∗ ∈
𝑃𝑡,𝑠∗ ∩ 𝑃𝑡,𝑠∗ , there is a directed corner of 𝑢 and 𝑡 which either contradicts the fact
that 𝑃𝑡,𝑠 and 𝑃𝑡,𝑠 are (< |𝑡|)-indistinguishable or the fact that 𝑃𝑡,𝑠∗ and 𝑃𝑡,𝑠∗ are
(< |𝑠|)-indistinguishable.

So, since 𝑃𝑡,𝑠 and 𝑃𝑡,𝑠∗ are distinguished by both 𝑠 and 𝑡 and the witnessing
orientations of 𝑟 for 𝑠 and 𝑡 are distinct, 𝑃𝑡,𝑠 and 𝑃𝑡,𝑠∗ need also be distinguished
by 𝑟. Similarly, 𝑃𝑡,𝑠∗ and 𝑃𝑡,𝑠 are also distinguished by 𝑟. Thus, there either is
an orientation 𝑟 of 𝑟 such that 𝑟 ∈ 𝑃𝑡,𝑠 ∩ 𝑃𝑡,𝑠 and 𝑟∗ ∈ 𝑃𝑡,𝑠∗ ∩ 𝑃𝑡,𝑠∗ , or there is an
orientation 𝑟 of 𝑟 such that 𝑟 ∈ 𝑃𝑡,𝑠 ∩ 𝑃𝑡,𝑠∗ and 𝑟∗ ∈ 𝑃𝑡,𝑠 ∩ 𝑃𝑡,𝑠∗ .

In the former case, the two diprofiles 𝑃𝑡,𝑠 and 𝑃𝑡,𝑠 are distinguished by 𝑡 and
(< |𝑟|)-indistinguishable (since |𝑟| ⩽ |𝑠|). Since both diprofiles contain 𝑟 and 𝑟 is
weakly 𝒫-nested with 𝑡, the orientation 𝑟 must be the orientation witnessing weak
𝒫-nestedness with 𝑡. But 𝑃𝑡,𝑠∗ and 𝑃𝑡,𝑠∗ are also distinguished by 𝑡 and (< |𝑟|)-in-
distinguishable and both contain 𝑟∗ which contradicts the conclusion that 𝑟 was the
witnessing orientation.

The latter case contradicts the weak 𝒫-nestedness of 𝑟 and 𝑠 by a symmetrical
argument.

We are now in a position to prove our main theorem with the help of Lemma 19.

Theorem 21. For every set 𝒫 of distinguishable diprofiles in a diseparation universe
with a submodular order function, there exists a weakly 𝒫-nested set of separations
which efficiently distinguishes all pairs of diprofiles in 𝒫.

Proof. We define 𝔄 = (𝒜𝑃,𝑃 ′ ∶ 𝑃 , 𝑃 ′ ∈ 𝒫,𝑃 ≠ 𝑃 ′) as before and want to apply
Lemma 19 with the relation ‘weakly 𝒫-nested’.

Now, in order to show that we can apply Lemma 19, let 𝑠 ∈ 𝒜𝑃,𝑃 ′ ⧵ 𝒜𝑄,𝑄′ and
𝑡 ∈ 𝒜𝑄,𝑄′ ⧵ 𝒜𝑃,𝑃 ′ not be weakly 𝒫-nested and suppose that |𝑠| ⩽ |𝑡|. Let 𝑠 be the
orientation of 𝑠 with 𝑠 ∈ 𝑄 ∩ 𝑄′.
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Let us first consider the case that |𝑠| < |𝑡|. Then there needs to be, since 𝑠 and 𝑡
are not weakly 𝒫-nested, a pair 𝑅,𝑅′ ∈ 𝒫 of diprofiles which are (< |𝑠|)-indistin-
guishable such that 𝑠∗ ∈ 𝑅 ∩ 𝑅′, 𝑡 ∈ 𝑅 and 𝑡 ∈ 𝑅′. Now if |𝑠 ∨ 𝑡| ⩽ |𝑡|, it is in
𝒜𝑄,𝑄′ and a ‘weak 𝒫-nestedness’-corner by Lemma 5.19. Otherwise |𝑠 ∧ 𝑡| < |𝑠|, by
submodularity, which contradicts the fact that 𝑅,𝑅′ are (< |𝑠|)-indistinguishable.

In the case that |𝑠| = |𝑡|, either there are diprofiles 𝑅,𝑅′ ∈ 𝒫 as above – (< |𝑠|)-in-
distinguishable and with 𝑠∗ ∈ 𝑅 ∩ 𝑅′, 𝑡 ∈ 𝑅, and 𝑡 ∈ 𝑅′ – in which case the
same argument applies, or we can exchange the roles of 𝑅 and 𝑅′, i.e., there are
(< |𝑠|)-indistinguishable diprofiles 𝑅,𝑅′ ∈ 𝒫 with 𝑡∗ ∈ 𝑅 ∩ 𝑅′, 𝑠 ∈ 𝑅, and 𝑠 ∈ 𝑅′,
where 𝑡 is the orientation of 𝑡 in 𝑃 ∩ 𝑃 ′ – in which case a symmetrical argument
holds.

This shows that we can apply Lemma 19, so there exists a weakly 𝒫-nested set of
diseparations which efficiently distinguishes all the diprofiles in 𝒫.

We note that in proving this Lemma, we did not need to rely on the concept of
𝒫-nestedness that we established for Theorem 20, in particular not on Theorem 20
itself.

One can turn a weakly 𝒫-nested set 𝑁 of diseparations which efficiently distin-
guishes 𝒫 as obtained from Theorem 21 into the equivalent of a tangle-tree-labelling
following [48]’s proof of Theorem 5.16. We will not go into the full proof here, but
only sketch the construction.

We call a tree 𝑇 together with a map 𝛼∶ 𝐸(𝑇 ) → 𝑆 an 𝑆-tree if it commutes with
the involution. (This is a natural extension of the notion of 𝑆-trees from separation
systems.) Our aim is to find an 𝑆-tree (𝑇 , 𝛼) where the vertices of 𝑇 are diprofiles
in 𝒫 and which satisfies condition (D�) (where 𝛽 is the identity function).

Assume that 𝑁 is a ⊆-minimal such distinguishing set and let 𝑇 be a tree with
vertex set 𝒫 where we draw an edge for every 𝑠 ∈ 𝑁 between some arbitrary pair of
diprofiles in 𝒫 which in 𝑁 is efficiently distinguished by 𝑠 and 𝑠 only.

We show that 𝑇 is a tree, inductively, by showing that every contraction 𝑇𝑘 =
𝑇/ ∼𝑘, where 𝑃 ∼𝑘 𝑄 if 𝑃 and 𝑄 are (< 𝑘)-indistinguishable, is a tree. Let 𝒫𝑘 be
the set of all 𝑘-diprofiles induced by diprofiles in 𝒫, we identify the vertices of 𝑇𝑘
with the according diprofiles in 𝒫𝑘.

For the induction start, observe that all edges in 𝑇1 are labelled with diseparations
of order 0. The definition of weak 𝒫-nestedness ensures that these are 𝒫1-nested,
i.e., the induced bipartitions of 𝒫1 under 𝜋𝒫1

are nested. Pulling back the tree
we obtain for these bipartitions from the equivalence of tree-sets and tree-orders
(e.g. Theorem 2.2), we obtain an 𝑆-tree which satisfies the condition that every
diseparation is the only one in 𝑁 efficiently distinguishing the diprofiles at its
end-vertices. Moreover, any two diprofiles which are not adjacent in this tree are
efficiently distinguished by at least two diseparations in 𝑁, and thus do not share
an edge in 𝑇1. Thus, 𝑇1 is uniquely defined: it is isomorphic to that 𝑆-tree.
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5.7. Distinguishing directed tangles

For the induction step, we only need to show that for every 𝑃 ∈ 𝒫𝑘 the induced
subgraph on the set 𝒫𝑃 ⊆ 𝒫𝑘+1 of those (𝑘 + 1)-diprofiles which induce 𝑃 is a tree.
Then, by the induction hypothesis we know that 𝑇𝑘 is a tree and thus these induced
subgraphs are joined up in a tree-like way, making 𝑇𝑘+1 a tree.

Every 𝑠 ∈ 𝑁 which efficiently distinguishes two diprofiles in 𝒫𝑃 efficiently distin-
guishes 𝑘 + 1-profiles only in 𝒫𝑃: if 𝑠 were to efficiently distinguish some diprofiles
𝑄,𝑄′ ∈ 𝒫𝑘+1 ⧵ 𝒫𝑃, say, then 𝑁 contains some efficient 𝑃–𝑄-distinguisher, which
would not be weakly 𝒫-nested with 𝑠.

Now, the diseparations in 𝑁 which efficiently distinguish 𝒫𝑃 induce a nested set
of bipartitions of 𝒫𝑃, i.e., they are 𝒫𝑃-nested. Then, again, the induced subgraph
on 𝒫𝑃 is uniquely determined to be the 𝑆-tree corresponding to these bipartitions.

By induction, this shows that 𝑇 is indeed a tree. We then chooce as 𝛼 the function
which assigns to each edge the separation for which we drew that edge in the
construction of 𝑇, with the orientations corresponding to profiles at the end-vertices.
The contractions 𝑇𝑘 can then also be used to verify that (D�) is satisfied: if some
diprofiles 𝑄 and 𝑄′ are efficiently distinguished at order ℓ, say, then 𝑄 and 𝑄′ live
in the same node of 𝑇ℓ−1, associated to the common restriction of 𝑄 and 𝑄′ to order
ℓ − 1 which we call 𝑃. The 𝑄–𝑄′-path in 𝑇 thus uses only diseparations associated
with edges of order at least ℓ. However, 𝑄 and 𝑄′ are contained in distinct nodes
in 𝑇ℓ, so the lowest order along the 𝑄–𝑄′-path is ℓ. Moreover, any diseparations
of order ℓ along the path distinguish some pair of profiles in 𝒫𝑃 efficiently, and we
know that these are 𝒫𝑃-nested. This ensures (D�).
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5. Trees of tangles and the splinter lemmas

5.8. The thin splinter lemma: A canonical splinter lemma for infinite
settings

Lemma 13 is proved by induction: it finds a separation 𝑎𝑖 ∈ 𝒜𝑖 which is nested with
some element of every other 𝒜𝑗, and then proceeds inductively on the remaining 𝑛−1
family members, restricted to those separations nested with 𝑎𝑖. This approach cannot
deal with infinite families of sets, however.

In this section we overcome these difficulties and present a way to obtain a version
of Lemma 13 for infinite families of sets of separations. Combining ideas from the
canonical splinter lemma, Lemma 16, and the relation splinter lemma, Lemma 19, we
obtain the ‘thin’ splinter lemma, which implies the existing tree-of-tangle theorems
for infinite graphs (Theorem 5.20 and 5.21 below).

Lemma 22 (Thin splinter lemma). p. 95 If (𝒜𝑖 ∶ 𝑖 ∈ 𝐼 ) thinly splinters with respect to
some reflexive symmetric relation ∼ on 𝒜 ≔ ⋃𝑖∈𝐼 𝒜𝑖, then there is a set 𝑁 ⊆ 𝒜
which meets every 𝒜𝑖 and is nested, i.e., 𝑛1 ∼ 𝑛2 for all 𝑛1, 𝑛2 ∈ 𝑁. Moreover, this
set 𝑁 can be chosen invariant under isomorphisms: if 𝜑 is an isomorphism between
(𝒜,∼) and (𝒜′, ∼′), then we have 𝑁((𝜑(𝒜𝑖) ∶ 𝑖 ∈ 𝐼 )) = 𝜑(𝑁((𝒜𝑖 ∶ 𝑖 ∈ 𝐼 ))).

We prove this statement in Section 5.8.1. Like Lemma 13, the statement of this
theorem is a bit technical, as we want it to be as widely applicable as possible.

We will see applications of the thin splinter lemma in Section 5.9.3.

5.8.1. Statement and proof

Our approach to generalizing the finite splinter lemma into an infinite setting will
require that the separations involved do not, in a sense, cross too badly in that they
cross only finitely many separations of lower order. This will allow us to choose
separations that minimise the number of separations crossing them, an idea which
also appeared in Carmesin’s original proof of Theorem 5.20 in [10], as well as in [14]
and our proof of the canonical splinter lemma, Lemma 16. However, our theorem
here applies to a more general setting and will allow us directly to deduce Carmesin’s
theorem for locally finite graphs.

In order to also be able to deduce the full Theorem 5.20 for arbitrary graphs, we
will state our theorem in more generality here: not as a theorem about nestedness
and separations, but as a theorem about a general nestedness-like relation, like in
Section 5.6. This allows us to apply the theorem in Section 5.9.3 not to separations
directly, where it would fail, but to substitute separators as a proxy giving our
Theorem 24. From this result we will retrieve the separations for our proof of
Theorem 5.20 in Section 5.9.3, but we will also build from this a tree of tree-
decompositions to deduce Theorem 5.21 in Section 5.9.3.
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5.8. The thin splinter lemma

The statement of our Lemma 22 is also inspired by our canonical splinter lemma
for the finite setting in [38], and it too will result in a canonical nested set, a set
which is invariant under isomorphisms.

So let 𝒜 be some set and ∼ a reflexive and symmetric binary relation on 𝒜. In
analogy to our terminology for separation systems, we say that two elements 𝑎 and
𝑏 of 𝒜 are nested if 𝑎 ∼ 𝑏. Elements of 𝒜 that are not nested cross. As usual, a
subset of 𝒜 is nested if all of its elements are pairwise nested, and a single element
is nested with a set 𝑁 if it is nested with every element of 𝑁.

In an abuse of notation, given elements 𝑎 and 𝑏 of 𝒜, we call 𝑐 ∈ 𝒜 a corner of 𝑎
and 𝑏 if every element of 𝒜 crossing 𝑐 also crosses one of 𝑎 and 𝑏. Observe that with
this definition corners of elements of 𝒜 exhibit the same behaviour as was asserted
by Lemma 2.1 for corner separations. However, in contrast to the terminology of
separation systems, we do not insist here that a corner of 𝑎 and 𝑏 is itself nested
with both 𝑎 and 𝑏. This distinction will become relevant in Section 5.9.3.

Now let (𝒜𝑖 ∶ 𝑖 ∈ 𝐼 ) be a family of non-empty subsets of 𝒜 and | ⋅ | ∶ 𝐼 → ℕ0
some function, where 𝐼 is a possibly infinite index set. We shall think of |𝑖| as the
order of the elements of 𝒜𝑖. For an 𝑎 ∈ 𝒜 and 𝑘 ∈ ℕ0 the 𝑘-crossing number of 𝑎
is the number of elements of 𝒜 that cross 𝑎 and lie in some 𝒜𝑖 with |𝑖| = 𝑘. This
𝑘-crossing number is either a natural number or infinity. The family (𝒜𝑖 ∶ 𝑖 ∈ 𝐼 )
thinly splinters if it satisfies the following three conditions:

(TS1) For every 𝑖 ∈ 𝐼 all elements of 𝒜𝑖 have finite 𝑘-crossing number for all 𝑘 ⩽ |𝑖|.

(TS2) If 𝑎𝑖 ∈ 𝒜𝑖 and 𝑎𝑗 ∈ 𝒜𝑗 cross with |𝑖| < |𝑗|, then 𝒜𝑗 contains some corner of 𝑎𝑖
and 𝑎𝑗 that is nested with 𝑎𝑖.

(TS3) If 𝑎𝑖 ∈ 𝒜𝑖 and 𝑎𝑗 ∈ 𝒜𝑗 cross with |𝑖| = |𝑗| = 𝑘 ∈ ℕ0, then either 𝒜𝑖 contains
a corner of 𝑎𝑖 and 𝑎𝑗 with strictly lower 𝑘-crossing number than 𝑎𝑖, or else 𝒜𝑗
contains a corner of 𝑎𝑖 and 𝑎𝑗 with strictly lower 𝑘-crossing number than 𝑎𝑗.

We are now ready to state and prove the main result of this section:

Lemma 22 (Thin splinter lemma). If (𝒜𝑖 ∶ 𝑖 ∈ 𝐼 ) thinly splinters with respect to
some reflexive symmetric relation ∼ on 𝒜 ≔ ⋃𝑖∈𝐼 𝒜𝑖, then there is a set 𝑁 ⊆ 𝒜
which meets every 𝒜𝑖 and is nested, i.e., 𝑛1 ∼ 𝑛2 for all 𝑛1, 𝑛2 ∈ 𝑁. Moreover, this
set 𝑁 can be chosen invariant under isomorphisms: if 𝜑 is an isomorphism between
(𝒜,∼) and (𝒜′, ∼′), then we have 𝑁((𝜑(𝒜𝑖) ∶ 𝑖 ∈ 𝐼 )) = 𝜑(𝑁((𝒜𝑖 ∶ 𝑖 ∈ 𝐼 ))).

Proof. We shall construct inductively, for each 𝑘 ∈ ℕ0, a nested set 𝑁𝑘 ⊆ 𝒜
extending 𝑁𝑘−1 and meeting every 𝒜𝑖 with |𝑖| ⩽ 𝑘, so that the choice of 𝑁𝑘 is
invariant under isomorphisms. The desired nested set 𝑁 will then be the union of
all these sets 𝑁𝑘.

We set 𝑁−1 ≔ ∅. Suppose that for some 𝑘 ∈ ℕ0 we have already constructed a
nested set 𝑁𝑘−1 so that 𝑁𝑘−1 is canonical and meets every 𝒜𝑖 with |𝑖| ⩽ 𝑘 − 1. We
shall construct a canonical nested set 𝑁𝑘 ⊇ 𝑁𝑘−1 that meets every 𝒜𝑖 with |𝑖| ⩽ 𝑘.
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5. Trees of tangles and the splinter lemmas

Let 𝑁+
𝑘 be the set consisting of the following: for every 𝑖 ∈ 𝐼 with |𝑖| = 𝑘, among

those elements of 𝒜𝑖 that are nested with 𝑁𝑘−1, those of minimum 𝑘-crossing
number. We claim that 𝑁𝑘 ≔ 𝑁𝑘−1 ∪ 𝑁+

𝑘 is as desired.
Since the choice of 𝑁+

𝑘 is invariant under isomorphisms, and 𝑁𝑘−1 is canonical by
assumption, 𝑁𝑘 is clearly canonical as well. It thus remains to show that 𝑁𝑘 meets
every 𝒜𝑖 with |𝑖| = 𝑘, and that the set 𝑁𝑘 is nested.

To see that the former is true, let 𝑖 ∈ 𝐼 with |𝑖| = 𝑘 be given. It suffices to show
that 𝒜𝑖 contains some element that is nested with 𝑁𝑘−1. If 𝒜𝑖 already meets 𝑁𝑘−1
there is nothing to show, so suppose that it does not. By condition (TS1) every
element of 𝒜𝑖 crosses only finitely many elements of 𝑁𝑘−1; pick an 𝑎𝑖 ∈ 𝒜𝑖 that
crosses as few as possible. Suppose for a contradiction that 𝑎𝑖 crosses some element
of 𝑁𝑘−1, that is, some 𝑎𝑗 ∈ 𝒜𝑗 with |𝑗| < |𝑖|. But then, by condition (TS2), 𝒜𝑖
contains a corner of 𝑎𝑖 and 𝑎𝑗 that is nested with 𝑎𝑗. This element of 𝒜𝑖 does
not cross 𝑎𝑗 and therefore, by virtue of being a corner of 𝑎𝑖 and 𝑎𝑗, crosses fewer
elements of 𝑁𝑘−1 than 𝑎𝑖 does, contrary to the choice of 𝑎𝑖. Therefore, 𝑁𝑘 indeed
contains an element of each 𝒜𝑖 with |𝑖| ⩽ 𝑘.

Let us now show that 𝑁𝑘 is nested. Since 𝑁𝑘−1 is a nested set by assumption,
and every element of 𝑁+

𝑘 is nested with 𝑁𝑘−1, we only need to show that the set 𝑁+
𝑘

itself is nested. So suppose that some two elements of 𝑁+
𝑘 cross. These two elements

then are some 𝑎𝑖 ∈ 𝒜𝑖 and 𝑎𝑗 ∈ 𝒜𝑗 with |𝑖| = |𝑗| = 𝑘. But now condition (TS3)
asserts that one of 𝒜𝑖 and 𝒜𝑗 contains a corner of 𝑎𝑖 and 𝑎𝑗 with a strictly lower
𝑘-crossing number than the corresponding element 𝑎𝑖 or 𝑎𝑗. Since both 𝑎𝑖 and 𝑎𝑗
are nested with 𝑁𝑘−1 their corner is nested with 𝑁𝑘−1 as well, and hence contradicts
the choice of 𝑎𝑖 or 𝑎𝑗 for 𝑁+

𝑘 .

5.9. Distinguishing tangles in infinite graphs

In this section we are going to apply Lemma 22 to vertex tangles (or more generally:
robust regular profiles) in infinite graphs. We will later show another application of
Lemma 22, not to (vertex) tangles of graphs, though still to infinite graphs, using it
to exhibit the edge-connectivity of a graph in Section 5.10.

As a simple example, we start with applying it to tangles in locally finite graphs
in Section 5.9.2. This application is a straightforward application to a universe of
separations and demonstrates the prototypical way of applying Lemma 22.

It is also possible to apply Lemma 22 to arbitrary infinite graphs, and we do
so in Section 5.9.3. This application uses another new, and interesting, shift of
perspective: We cannot apply Lemma 22 directly to the sets of separations efficiently
distinguishing two profiles since, in general, these will not splinter thinly. Instead,
we consider the separators of those separations, there Lemma 22 does apply:
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Theorem 24.  p. 109Given a set of distinguishable robust regular profiles 𝒫 of a graph 𝐺
there exists a canonical nested set of separators efficiently distinguishing any pair of
profiles in 𝒫.

This theorem acts as an intermediary result between the existing results about
tangles in arbitrary infinite graphs. On the one hand we can, waiving canonicity,
transform the nested set of separators back into a nested set of separations, recovering
the following result of Carmesin about distinguishing tangles in infinite graphs by
way of a nested set of separations:

Theorem 5.20 ([10, Theorem 5.12]). For any graph 𝐺, there is a nested set 𝑁 of
separations that distinguishes efficiently any two robust principal profiles (that are
not restrictions of one another).

This theorem is a cornerstone in Carmesin’s proof that every infinite graph has a
tree-decomposition displaying all its topological ends. For more about the relation
between ends and tangles also see [18,57]. We deduce Theorem 5.20 from Theorem 24
in Section 5.9.3.

On the other hand, if we want to keep canonicity, we can use Theorem 24 to deduce
a result by Carmesin, Hamann, and Miraftab [14]. They construct a canonical
object, which they call a tree of tree-decompositions, to distinguish the tangles:

Theorem 5.21 ([14, Remark 8.3]). Let 𝐺 be a connected graph and 𝒫 a distin-
guishable set of principal robust profiles in 𝐺. There exists a canonical tree of
tree-decompositions with the following properties:

(1) the tree of tree-decompositions distinguishes 𝒫 efficiently;
(2) if 𝑡 ∈ 𝑉 (𝑇 ) has level 𝑘, then (𝑇𝑡, 𝒱𝑡) contains only separations of order 𝑘;
(3) nodes 𝑡 at all levels have |𝑉 (𝑇𝑡)| neighbours on the next level and the graphs

assigned to them are all torsos of (𝑇𝑡, 𝒱𝑡).

We will deduce Theorem 5.21 from Theorem 24 in Section 5.9.3, but Theorem 24
is also an interesting result in its own right: the set of separators that it provides is
a natural intermediate object between the non-canonical nested set of separations
in Theorem 5.20 and the canonical tree of tree-decompositions in Theorem 5.21.

Moreover, proving Theorem 5.20 or Theorem 5.21 by first proving Theorem 24
and then deducing them breaks up the proof nicely and is, in total, shorter than
the original proofs from [10,14].

5.9.1. Terminology and basic facts

Recall that a profile 𝑃 in 𝐺 is regular if it does not contain any cosmall separation
of 𝐺, i.e., it contains no separation of the form (𝑉 (𝐺),𝑋). Note that, in graphs, the
irregular profiles are not of large interest, since they always point towards either the
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empty set or a single non-cut-vertex. Formally, we can summarize this statement
from [23] as follows:

Lemma 5.22 ([23]). Let 𝐺 = (𝑉 ,𝐸) be a graph and 𝑃 an irregular profile in 𝐺 then
either 𝐺 is connected and 𝑃 = { (𝑉 , ∅) } or 𝐺 has a non-cutvertex 𝑥 ∈ 𝑉 such that

𝑃 = { (𝐴,𝐵) ∈ 𝑆2 ∶ 𝑥 ∈ 𝐵 and (𝐴,𝐵) ≠ ({𝑥}, 𝑉 ) }.

These irregular profiles are distinguished efficiently from each other and from all
other profiles in 𝐺 by the set of separations

{ {𝑉 (𝐺), ∅} } ∪ { {𝑉 (𝐺), {𝑥}} ∶ 𝑥 ∈ 𝑉 (𝐺) and 𝑥 is not a cutvertex of 𝐺}.

Every separation in this set is nested with all separations of 𝐺. Hence, our efforts
for applications in graphs will concentrate on regular profiles.

Given some set of vertices 𝑋 ⊆ 𝑉 (𝐺), we say that a connected component 𝐶 of
𝐺−𝑋 is tight, if 𝑁(𝐶) = 𝑋.

For two vertices 𝑥, 𝑦 ∈ 𝑉 (𝐺) of a graph 𝐺, an 𝑥–𝑦-separator of order 𝑘 is a vertex
set 𝑋 ⊆ 𝑉 (𝐺) ⧵ { 𝑥, 𝑦 } of size 𝑘 such that 𝑥 and 𝑦 lie in different components of
𝐺 − 𝑋. We shall need the following basic fact about such separators in infinite
graphs at various points throughout our applications.

Lemma 5.23 ([54, 2.4]). Let 𝐺 be a graph, 𝑢, 𝑣 ∈ 𝑉 (𝐺) and 𝑘 ∈ ℕ. Then there are
only finitely many separators of size at most 𝑘 separating 𝑢 and 𝑣 minimally.

Additionally, we shall use the following more general observation about separations
nested with a corner separation:

Lemma 5.24. Let 𝑟 and 𝑠 be two separations. Every separation nested with one
of 𝑟 or 𝑠 is also nested with at least one of 𝑟 ∧ 𝑠 and 𝑟 ∨ 𝑠.

Proof. Let 𝑡 be a separation nested with, say, 𝑟. Then 𝑡 has an orientation 𝑡 with
either 𝑡 ⩽ 𝑟 or 𝑡 ⩽ 𝑟. In the first case 𝑡 is nested with 𝑟 ∨ 𝑠 by 𝑡 ⩽ 𝑟 ⩽ (𝑟 ∨ 𝑠). In
the latter case 𝑡 is nested with 𝑟 ∧ 𝑠 by 𝑡 ⩽ 𝑟 ⩽ (𝑟 ∧ 𝑠)∗.

The separations that distinguish a given pair of profiles exhibit a lattice structure:

Lemma 5.25. Let 𝑈 be a universe with a submodular order function and 𝑃 and 𝑃 ′

two profiles in 𝑈. If 𝑟, 𝑠 ∈ 𝑃 distinguish 𝑃 and 𝑃 ′ efficiently, then both 𝑟 ∨ 𝑠 and
𝑟 ∧ 𝑠 also lie in 𝑃 and distinguish 𝑃 and 𝑃 ′ efficiently.

Proof. If one of 𝑟∨𝑠 and 𝑟∧𝑠 has order at most |𝑟| = |𝑠|, then that corner separation
lies in 𝑃 and distinguishes 𝑃 and 𝑃 ′ by their consistency and the profile property
(P). The efficiency of 𝑟 and 𝑠 now implies that neither of the two considered corner
separations can have order strictly lower than |𝑟|. Therefore, by submodularity,
both of them have order exactly |𝑟|, which implies the claim.
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We will utilize the fact that separations which efficiently distinguish two regular
profiles are ‘tight’. For a set 𝑋 ⊆ 𝑉 a component 𝐶 of 𝐺−𝑋 is tight if 𝑁(𝐶) = 𝑋.
We say that a separation (𝐴,𝐵) of 𝐺 is tight if for 𝑋 ≔ 𝐴 ∩ 𝐵 each of 𝐴 ⧵ 𝐵 and
𝐵 ⧵ 𝐴 contains some tight component of 𝐺−𝑋.

Lemma 5.26. Let 𝑃 , 𝑃 ′ be two distinct regular profiles in an arbitrary graph 𝐺. If
(𝐴,𝐵) is a separation of finite order that efficiently distinguishes 𝑃 and 𝑃 ′, then
(𝐴,𝐵) is tight.

Proof. Let (𝐴,𝐵) ∈ 𝑃, (𝐵,𝐴) ∈ 𝑃 ′.
Suppose for a contradiction that 𝐵 ⧵ 𝐴 does not contain a tight component of

𝐺− (𝐴 ∩ 𝐵). Let 𝑌1,…𝑌𝑚 be an enumeration of all proper subsets of 𝐴 ∩ 𝐵. For
every 𝑌𝑙 let 𝒞𝑙 be the set of components of 𝐺− (𝐴 ∩ 𝐵) in 𝐵 with neighbourhood
exactly 𝑌𝑙. By consistency of 𝑃 ′ we have (⋃𝒞𝑙 ∪ 𝑌𝑙, 𝑉 ⧵ ⋃𝒞𝑙) ∈ 𝑃 ′. Since
moreover (𝐴,𝐵) efficiently distinguishes 𝑃 from 𝑃 ′ and |𝑌𝑙| < |𝐴∩𝐵| we know that
(⋃𝒞𝑙 ∪𝑌𝑙, 𝑉 ⧵⋃𝒞𝑙) ∈ 𝑃 as well. Moreover, (𝐴∩𝐵, 𝑉 ) ∈ 𝑃 since 𝑃 is regular. Thus,
by an inductive application of the profile property (P) we have that for every 𝑙

(𝐴 ∩ 𝐵, 𝑉 ) ∨ (⋃𝒞1 ∪ 𝑌1, 𝑉 ⧵⋃𝒞1) ∨ ⋯ ∨ (⋃𝒞𝑙 ∪ 𝑌𝑙, 𝑉 ⧵⋃𝒞𝑙) ∈ 𝑃 .

However, for 𝑙 = 𝑚 this contradicts the assumption since

(𝐴 ∩ 𝐵, 𝑉 ) ∨ (⋃𝒞1 ∪ 𝑌1, 𝑉 ⧵⋃𝒞1) ∨ ⋯ ∨ (⋃𝒞𝑚 ∪ 𝑌𝑚, 𝑉 ⧵⋃𝒞𝑚) = (𝐵,𝐴) ∉ 𝑃 .

Moreover, we shall need a way to transition between nested sets of separations
and tree-decompositions of graphs. Such a method already exists in finite graphs
[13], and Kneip and Gollin [49] all but proved an analogue for infinite graphs. We
shall combine Theorem 2.2 (which is from [49]) with the ingredients of the proof
in [13] to show Lemma 5.27.

Recall that a tree-decomposition of a 𝐺 is a pair (𝑇 , 𝒱) of a tree 𝑇 together with
a family 𝒱 = (𝑉𝑡)𝑡∈𝑇 of vertex sets 𝑉𝑡 ⊆ 𝑉 (𝐺) such that:

(T1) 𝑉 (𝐺) = ⋃𝑡∈𝑇 𝑉𝑡;

(T2) Given 𝑒 ∈ 𝐸[𝐺] there exists a 𝑡 ∈ 𝑇 such that 𝑒 ⊆ 𝑉𝑡;

(T3) Given a path 𝑃 in 𝑇 from 𝑡1 to 𝑡3 and a vertex 𝑡2 ∈ 𝑃 we have 𝑉𝑡1 ∩ 𝑉𝑡3 ⊆ 𝑉𝑡2 .

A separation (𝐴,𝐵) is induced by a tree-decomposition (𝑇 , 𝒱) if, and only if, there
exists an edge 𝑡𝑡′ ∈ 𝑇 such that for the components 𝑇𝑡, 𝑇𝑡′ of 𝑇 − 𝑡𝑡′ containing 𝑡 or
𝑡′ respectively, we have

(𝐴,𝐵) = ( ⋃
𝑡″∈𝑇𝑡

𝑉𝑡″ , ⋃
𝑡″∈𝑇𝑡′

𝑉𝑡″) .
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Also recall that Theorem 2.2 states that every regular tree set which does not
contain a chain of order type 𝜔 + 1 is isomorphic to the edge tree set of a suitable
tree.

We obtain the following lemma, whose proof is inspired by [13].

Lemma 5.27. Let 𝐺 = (𝑉 ,𝐸) be an infinite graph and let 𝑁 ⊆ 𝑆ℵ0
(𝐺) be a regular

tree set. If we have for every 𝜔-chain (𝐴1, 𝐵1) < (𝐴2, 𝐵2) < … which is contained
in 𝑁 that ⋂𝑖∈ℕ 𝐵𝑖 = ∅, then there exists a tree-decomposition (𝑇 , 𝒱) of 𝐺 whose set
of induced separations is 𝑁.

Moreover, this tree-decomposition can be chosen canonical: if 𝜑∶ 𝐺 → 𝐺′ is an
isomorphism of graphs, then the tree-decomposition constructed for 𝜑(𝑁) in 𝐺′ is
precisely the image under 𝜑 of the tree-decomposition constructed for 𝑁 in 𝐺.

Proof. Let 𝑇 = (𝑉 ,𝐸) be the tree obtained from applying Theorem 2.2 to 𝑁. Note
that, by Theorem 2.2, any isomorphism between the edge tree sets of any two trees
induces an isomorphism of the underlying trees.

Let 𝛼 be the isomorphism from the edge tree set of 𝑇 to 𝑁. Given some node
𝑡 ∈ 𝑇 let us denote as 𝐹𝑡 the set of oriented separations

𝐹𝑡 ≔ {𝛼(𝑠, 𝑡) ∶ (𝑠, 𝑡) ∈ 𝐸 } .

We define the bags of our tree-decomposition as 𝑉𝑡 ≔ ⋂(𝐴,𝐵)∈𝐹𝑡
𝐵. Let us verify

that (𝑇 , 𝒱) with 𝒱 = (𝑉𝑡 )𝑡∈𝑇 is the desired tree-decomposition.
For (T1) let 𝑣 ∈ 𝑉 be given; we need to find a 𝑡 ∈ 𝑇 with 𝑣 ∈ 𝑉𝑡. If 𝑣 ∈ 𝐴 ∩ 𝐵 for

some (𝐴,𝐵) ∈ 𝑁 then 𝑣 ∈ 𝑉𝑡 for 𝑡 being either of the two end-vertices of the edge
whose image under 𝛼 is (𝐴,𝐵). Otherwise, 𝑣 induces an orientation 𝑂 of 𝐸(𝑇 ) by
orienting each edge { 𝑥, 𝑦 } of 𝑇 as (𝑥, 𝑦) if 𝑣 ∈ 𝐵 ⧵ 𝐴 for (𝐴,𝐵) = 𝛼(𝑥, 𝑦).

Observe that 𝑂 is consistent. If 𝑂 has a sink, that is, if there is a node 𝑡 of 𝑇 all
of whose incident edges are oriented inwards by 𝑂, then 𝑣 ∈ 𝑉𝑡 by definition of 𝑂. If
𝑂 does not have a sink then 𝑂 contains an 𝜔-chain. This is impossible though, since
by definition of 𝑂 we would have 𝑣 ∈ ⋂𝑖∈ℕ 𝐵𝑖, where (𝐴𝑖, 𝐵𝑖) is the image under 𝛼
of the 𝑖-th element of the 𝜔-chain in 𝑂. Thus (T1) holds.

The proof of (T2) can be carried out in much the same way due to the fact that
every edge of 𝐺 is included in either 𝐴 or 𝐵 for each (𝐴,𝐵) ∈ 𝑁.

Before we prove (T3), let us show that (𝑇 , 𝒱) indeed induces 𝑁. For this we need
to show that if (𝑥, 𝑦) is an oriented edge of 𝑇 then

𝛼(𝑥, 𝑦) = ( ⋃
𝑧∈𝑇𝑥

𝑉𝑧 , ⋃
𝑧∈𝑇𝑦

𝑉𝑧) ,

where 𝑇𝑥 and 𝑇𝑦 are the components of 𝑇 − 𝑥𝑦 containing 𝑥 and 𝑦, respectively. So
let (𝑥, 𝑦) ∈ 𝐸 be given and 𝛼(𝑥, 𝑦) = (𝐴,𝐵). Observe first that 𝐴∩𝐵 ⊆ 𝑉𝑥 ∩ 𝑉𝑦 by
definition. It thus suffices to show that 𝐴 ⊇ ⋃𝑧∈𝑇𝑥

𝑉𝑧 and 𝐵 ⊇ ⋃𝑧∈𝑇𝑦
𝑉𝑧 to establish

the desired equality.
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To see this, consider a vertex 𝑣 ∈ 𝑉𝑧 for some 𝑧 ∈ 𝑇𝑥. Let 𝑒 be the first edge of
the unique 𝑧–𝑥-path in 𝑇 and let 𝛼(𝑒) = (𝐴′, 𝐵′). We have 𝑒 ⩽ (𝑥, 𝑦) by definition
of an edge tree set, and hence (𝐴′, 𝐵′) ⩽ (𝐴,𝐵) since 𝛼 is an isomorphism. From
this we know that 𝐴′ ⊆ 𝐴. We further have (𝐵′, 𝐴′) ∈ 𝐹𝑧 and thus, by definition of
𝑉𝑧, that 𝑣 ∈ 𝐴′. This shows 𝑣 ∈ 𝐴. The argument that 𝐵 ⊇ ⋃𝑧∈𝑇𝑦

𝑉𝑧 is similar.
Having established that (𝑇 , 𝒱) indeed induces 𝑁, we can now deduce from this

that (T3) holds: if 𝑉𝑡1 and 𝑉𝑡3 are two bags of (𝑇 , 𝒱) which both contain some
vertex 𝑣, then 𝑣 also needs to lie in the separator of every separation that is an
image under 𝛼 of an edge on the path 𝑃 in 𝑇 from 𝑡1 to 𝑡3. Therefore, 𝑣 lies in every
𝑉𝑡2 with 𝑡2 ∈ 𝑃.

5.9.2. Profiles in locally finite graphs

In this section we apply Lemma 22 to the set of separations of a locally finite graph,
which will result in a canonical nested set of separations efficiently distinguishing
any two distinguishable regular profiles in 𝐺. The proof of this theorem will be
a straightforward application of Lemma 22 to sets 𝒜𝑃,𝑃 ′ of separations efficiently
distinguishing two profiles in 𝐺. Following the strategy of this proof, one might be
able to obtain similar results for other infinite separation systems, e.g., in a matroid.

So let 𝐺 = (𝑉 ,𝐸) be a locally finite connected graph and 𝒫 a set of robust regular
profiles in 𝐺.

Let 𝐼 be the set of pairs of distinguishable profiles in 𝒫. For each pair 𝑃 and
𝑃 ′ of distinguishable profiles in 𝒫 let 𝒜𝑃,𝑃 ′ be the set of all separations of 𝐺 that
distinguish 𝑃 and 𝑃 ′ efficiently. Observe that by definition all separations in 𝒜𝑃,𝑃 ′

are of the same order; let us write |𝑃 , 𝑃 ′| for this order.
Let 𝒜 be the union of all the 𝒜𝑃,𝑃 ′ . We wish to show that (𝒜𝑖 ∶ 𝑖 ∈ 𝐼 ) thinly

splinters, using as the relation ∼ on 𝒜 the usual nestedness of separations. We shall
prove first that condition (TS1) is satisfied, i.e., that each separation in an 𝒜𝑃,𝑃 ′

crosses only finitely many other separations from sets 𝒜𝑄,𝑄′ with |𝑄,𝑄′| ⩽ |𝑃 , 𝑃 ′|.
Making use of the tightness of the separations in the 𝒜𝑃,𝑃 ′ , condition (TS1) will

follow immediately from the following assertion:

Proposition 5.28. Let (𝐴,𝐵) be a separation that efficiently distinguishes some
two regular profiles in 𝐺. Then 𝐺 has only finitely many tight separations of order
at most |(𝐴,𝐵)| that cross (𝐴,𝐵).

We shall derive Proposition 5.28 from the following lemma about tight separations:

Lemma 5.29. Let (𝐴,𝐵) and (𝐴′, 𝐵′) be two tight separations of 𝐺. Then (𝐴′, 𝐵′)
is either nested with (𝐴,𝐵), or its separator 𝐴′ ∩ 𝐵′ is a ⊆-minimal 𝑥–𝑦-separator
in 𝐺 for some pair 𝑥, 𝑦 of vertices from (𝐴 ∩ 𝐵) ∪ 𝑁(𝐴 ∩ 𝐵).

Proof. Since (𝐴′, 𝐵′) is tight each of 𝐴′ ⧵ 𝐵′ and 𝐵′ ⧵ 𝐴′ contains some tight
component of 𝐺− (𝐴′ ∩ 𝐵′). If 𝐴 ∩ 𝐵 meets all tight components of 𝐺− (𝐴′ ∩ 𝐵′)
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then in particular 𝐴 ∩ 𝐵 meets these two components, say in 𝑥 and in 𝑦. But then
𝐴′ ∩ 𝐵′ is a ⊆-minimal 𝑥–𝑦-separator with 𝑥, 𝑦 ∈ 𝐴 ∩ 𝐵.

Therefore, we may assume that 𝐴 ∩ 𝐵 misses some tight component 𝐶′ of
𝐺− (𝐴′ ∩ 𝐵′). By switching their names if necessary we may assume that this
component 𝐶′ is contained in 𝐴 ⧵ 𝐵. Since 𝐶′ ⊆ 𝐴 ⧵ 𝐵 has no neighbours in 𝐵 ⧵ 𝐴
but has 𝐴′ ∩ 𝐵′ as its neighbourhood we can infer that (𝐴′ ∩ 𝐵′) ⊆ 𝐴.

Consider now a tight component 𝐶 of 𝐺 − (𝐴 ∩ 𝐵) that is contained in 𝐵 ⧵ 𝐴.
From (𝐴′ ∩𝐵′) ⊆ 𝐴 it follows that 𝐶 does not meet 𝐴′ ∩𝐵′ and is hence contained
in either 𝐴′ ⧵ 𝐵′ or 𝐵′ ⧵ 𝐴′. By possibly switching the roles of 𝐴′ and 𝐵′ we may
assume that 𝐶 ⊆ 𝐴′ ⧵ 𝐵′. As above we can conclude from the tightness of 𝐶 that
(𝐴 ∩ 𝐵) ⊆ 𝐶.

It remains to check two cases. If (𝐵 ⧵ 𝐴) ∩ (𝐵′ ⧵ 𝐴′) is empty we have 𝐵 ⊆ 𝐴′

and 𝐵′ ⊆ 𝐴, that is, that (𝐴′, 𝐵′) is nested with (𝐴,𝐵). The other remaining case
is that (𝐵 ⧵ 𝐴) ∩ (𝐵′ ⧵ 𝐴′) is non-empty.

In that case, since 𝐺 is connected, the set (𝐴∩𝐵)∩ (𝐴′ ∩𝐵′) must be non-empty
as well, since 𝑁((𝐵 ⧵ 𝐴) ∩ (𝐵′ ⧵ 𝐴′)) ⊆ (𝐴 ∩ 𝐵) ∩ (𝐴′ ∩ 𝐵′). Pick a vertex 𝑧 from
that set. Since (𝐴′, 𝐵′) is tight 𝑧 has neighbours 𝑥 and 𝑦 in some tight components
of 𝐺− (𝐴′ ∩ 𝐵′) contained in 𝐴′ ⧵ 𝐵′ and in 𝐵′ ⧵ 𝐴′, respectively. Then 𝐴′ ∩ 𝐵′

is a ⊆-minimal 𝑥–𝑦-separator in 𝐺, and moreover 𝑥, 𝑦 ∈ (𝐴 ∩ 𝐵) ∪ 𝑁(𝐴 ∩ 𝐵) since
𝑧 ∈ 𝐴 ∩ 𝐵.

Let us now use Lemma 5.29 to establish Proposition 5.28:

Proof of Proposition 5.28. Since 𝐺 is locally finite the set (𝐴∩𝐵)∪𝑁(𝐴∩𝐵) is finite.
Therefore, by Lemma 5.23, there are only finitely many ⊆-minimal 𝑥–𝑦-separators
of size at most |(𝐴,𝐵)| with 𝑥, 𝑦 ∈ (𝐴 ∩ 𝐵) ∪ 𝑁(𝐴 ∩ 𝐵). Leveraging again the fact
that 𝐺 is locally finite, and using that 𝐺 is connected, we get that there are only
finitely many separations of 𝐺 with such a separator.

The assertion now follows from Lemma 5.29 since we know by Lemma 5.26 that
(𝐴,𝐵) is tight.

The family (𝒜𝑖 ∶ 𝑖 ∈ 𝐼 ) therefore satisifes condition (TS1). We show condi-
tion (TS2) in the following lemma:

Lemma 5.30. Let (𝐴,𝐵) ∈ 𝒜𝑃,𝑃 ′ and (𝐶,𝐷) ∈ 𝒜𝑄,𝑄′ with |(𝐴,𝐵)| < |(𝐶,𝐷)|.
Then some corner separation of (𝐴,𝐵) and (𝐶,𝐷) lies in 𝒜𝑄,𝑄′ .

In other words, if 𝑎𝑖 ∈ 𝒜𝑖 and 𝑎𝑗 ∈ 𝒜𝑗 cross with |𝑖| < |𝑗|, then 𝒜𝑗 contains
some corner separation of 𝑎𝑖 and 𝑎𝑗.

Proof. Since |(𝐴,𝐵)| < |(𝐶,𝐷)| it follows that both 𝑄 and 𝑄′ orient {𝐴,𝐵} the
same, say (𝐴,𝐵) ∈ 𝑄 ∩ 𝑄′. If |(𝐴,𝐵) ∨ (𝐶,𝐷)| ⩽ |(𝐶,𝐷)| or |(𝐴,𝐵) ∨ (𝐷,𝐶)| ⩽
|(𝐶,𝐷)|, it follows that this corner separation efficiently distinguishes 𝑄 and 𝑄′

by Lemma 2.1, so suppose that this is not the case. Then submodularity implies
that |(𝐵,𝐴) ∨ (𝐶,𝐷)| < |(𝐴,𝐵)| and |(𝐵,𝐴) ∨ (𝐷,𝐶)| < |(𝐴,𝐵)|, which in turn
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contradicts the efficiency of (𝐴,𝐵), since one of (𝐵,𝐴) ∨ (𝐶,𝐷) and (𝐵,𝐴) ∨ (𝐷,𝐶)
would also distinguish the two robust profiles 𝑃 and 𝑃 ′.

It remains to show that (𝒜𝑖 ∶ 𝑖 ∈ 𝐼 ) satisfies condition (TS3). As a first step
we consider separations (𝐴,𝐵) ∈ 𝒜𝑃,𝑃 ′ and (𝐶,𝐷) ∈ 𝒜𝑄,𝑄′ of equal order, and
show that there are two opposite corner separations of (𝐴,𝐵) and (𝐶,𝐷) that lie in
𝒜𝑃,𝑃 ′ or in 𝒜𝑄,𝑄′ :

Lemma 5.31. Let (𝐴,𝐵) ∈ 𝒜𝑃,𝑃 ′ and (𝐶,𝐷) ∈ 𝒜𝑄,𝑄′ with |(𝐴,𝐵)| = |(𝐶,𝐷)|.
Then there is either a pair of two opposite corner separations of (𝐴,𝐵) and (𝐶,𝐷)
with one element in 𝒜𝑃,𝑃 ′ and one in 𝒜𝑄,𝑄′ , or else there are two pairs of opposite
corner separations of (𝐴,𝐵) and (𝐶,𝐷), the first with both elements in 𝒜𝑃,𝑃 ′ and
the second with both elements in 𝒜𝑄,𝑄′ .

Proof. From |(𝐴,𝐵)| = |(𝐶,𝐷)| it follows that 𝑃 and 𝑃 ′ both orient {𝐶,𝐷}, and
likewise that 𝑄 and 𝑄′ both orient {𝐴,𝐵}.

Let us first treat the case that one of 𝑃 and 𝑃 ′ orients both {𝐴,𝐵} and {𝐶,𝐷} in
the same way as one of 𝑄 and 𝑄′ does. So suppose that, say, both 𝑃 and 𝑄 contain
(𝐴,𝐵) as well as (𝐶,𝐷).

If 𝑃 ′ contains (𝐷,𝐶), then (𝐶,𝐷) is in 𝒜𝑃,𝑃 ′ and Lemma 5.25 gives that
(𝐴,𝐵) ∨ (𝐶,𝐷) ∈ 𝒜𝑃,𝑃 ′ and (𝐵,𝐴) ∨ (𝐷,𝐶) ∈ 𝒜𝑃,𝑃 ′ . Thus by property (P) we
also have (𝐴,𝐵) ∨ (𝐶,𝐷) ∈ 𝒜𝑄,𝑄′ , producing the desired pair of opposite corner
separations. If 𝑄′ contains (𝐵,𝐴) we argue analogously.

So suppose that (𝐶,𝐷) ∈ 𝑃 ′ and (𝐴,𝐵) ∈ 𝑄′. Then (𝐵,𝐴) ∨ (𝐶,𝐷) ∈ 𝑃 ′

and (𝐴,𝐵) ∨ (𝐷,𝐶) ∈ 𝑄′ by the profile property, since by submodularity and the
efficiency of (𝐴,𝐵) and (𝐶,𝐷) both of these corner separations have order exactly
|(𝐴,𝐵)|. These two separations, then, are opposite corner separations of (𝐴,𝐵) and
(𝐶,𝐷) with the first lying in 𝒜𝑃,𝑃 ′ and the second lying in 𝒜𝑄,𝑄′ .

The remaining case is that no two of the four profiles agree in their orientation of
{𝐴,𝐵} and {𝐶,𝐷}. But then both of (𝐴,𝐵) and (𝐶,𝐷) lie in 𝒜𝑃,𝑃 ′ as well as in
𝒜𝑄,𝑄′ , and the existence of two pairs of opposite corner separations, one with both
elements in 𝒜𝑃,𝑃 ′ and one with both in 𝒜𝑄,𝑄′ , follows from Lemma 5.25 and the
disagreement of the four profiles on {𝐴,𝐵} and {𝐶,𝐷}.

We note that Lemma 5.30 and 5.31 do not require the graph to be locally finite,
and we will be reusing these lemmas in Section 5.9.3. For now, let us show that
(𝒜𝑖 ∶ 𝑖 ∈ 𝐼 ) satisfies condition (TS3) using Lemma 5.24 and 5.31:

Lemma 5.32. If 𝑎𝑖 ∈ 𝒜𝑖 and 𝑎𝑗 ∈ 𝒜𝑗 cross with 𝑘 = |𝑖| = |𝑗|, then either 𝒜𝑖
contains a corner separation of 𝑎𝑖 and 𝑎𝑗 with strictly lower 𝑘-crossing number
than 𝑎𝑖 , or else 𝒜𝑗 contains a corner separation of 𝑎𝑖 and 𝑎𝑗 with strictly lower
𝑘-crossing number than 𝑎𝑗 .
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Proof. By switching their roles if necessary we may assume that the 𝑘-crossing
number of 𝑎𝑖 is at most the 𝑘-crossing number of 𝑎𝑗 .

From Lemma 5.31 it follows that 𝒜𝑗 contains a corner separation of 𝑎𝑖 and 𝑎𝑗
whose opposite corner separation lies in either 𝒜𝑖 or 𝒜𝑗. Now Lemma 5.24 implies
that the sum of the 𝑘-crossing numbers of this pair of opposite corner separations
is at most the sum of the 𝑘-crossing numbers of 𝑎𝑖 and 𝑎𝑗 . This inequality is in
fact strict since 𝑎𝑖 and 𝑎𝑗 cross each other but are each nested with both corner
separations.

If the first corner separation is not already as desired, that is, if its 𝑘-crossing
number is not strictly lower than the 𝑘-crossing number of 𝑎𝑗 , we can infer that the
𝑘-crossing number of the opposite corner separation is strictly lower than that of 𝑎𝑖 .
Since we assumed in the beginning that the 𝑘-crossing number of 𝑎𝑖 is no greater
than that of 𝑎𝑗 this proves the claim.

This all but completes the proof the main result of this subsection, which is similar
to [14, Theorem 7.5]:

Theorem 23. Let 𝐺 be a locally finite connected graph and 𝒫 some set of robust
regular profiles in 𝐺. Then there exists a nested set 𝒩 of separations which
efficiently distinguishes any two distinguishable profiles in 𝒫. Moreover, this set is
canonical, i.e., invariant under isomorphisms: if 𝛼∶ 𝐺 → 𝐺′ is an isomorphism,
then 𝛼(𝒩(𝐺,𝒫)) = 𝒩(𝛼(𝐺), 𝛼(𝑃)).

Proof. The combination of Proposition 5.28 and Lemma 5.30 and 5.32 shows that
the family (𝒜𝑖 ∶ 𝑖 ∈ 𝐼 ) thinly splinters. The nested set 𝑁 ⊆ 𝒜 produced by
Lemma 22 meets each set 𝒜𝑖 and thus disinguishes all pairs of dinstinguishable
profiles in 𝒫 efficiently.

The nested set found by Theorem 23 does not in general correspond to a tree-
decomposition of 𝐺: even in locally finite graphs it is not generally possible to find
a tree-decomposition which efficiently distinguishes all the distinguishable robust
regular bounded profiles, as witnessed by the following example:

Example 5.33. Consider the graph displayed in Fig. 5.4. This graph is constructed
as follows: for every 𝑛 ∈ ℕ pick a copy of 𝐾2𝑛+2 together with 𝑛 + 3 vertices
𝑤𝑛

1 ,… ,𝑤𝑛
𝑛+3. Pick 2𝑛 vertices of the 𝐾2𝑛+2 and call them 𝑢𝑛

1 ,… , 𝑢𝑛
2𝑛 . Additionally,

pick 2𝑛+1 vertices from 𝐾2𝑛+2 , disjoint from the set of 𝑢𝑛
𝑖 , and call them 𝑣𝑛1 ,… , 𝑣𝑛2𝑛+1 .

Now identify 𝑢𝑛+1
𝑖 with 𝑣𝑛𝑖 and add edges between every 𝑤𝑛

𝑖 and every 𝑤𝑛+1
𝑗 as well

as between 𝑤𝑛
𝑖 and 𝑣𝑛1 = 𝑢𝑛+1

1 .
Finally, we pick one copy of 𝐾10 and join one vertex 𝑣01 of this 𝐾10 to 𝑢1

1 and 𝑢2
1.

Additionally we pick two vertices 𝑤0
1, 𝑤0

2 which are distinct from 𝑣01 from this 𝐾10

and add an edge between each 𝑤0
𝑖 and each 𝑤1

𝑗 .
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K
8 K

16 K
32 K

64 K
128 K

256

K
10

Figure 5.3.: A locally finite graph where no tree-decomposition distinguishes all the
robust regular bounded profiles efficiently. The green separator is the
one of the only separation which efficiently distinguishes the profile
induced by the 𝐾64 from the profile induced by the 𝐾128.

Now each of the chosen 𝐾2𝑛+2 induces a robust profile 𝑃𝑛 of order 2
3 ⋅ 2𝑛+1 which

obviously is regular and bounded. The only separation which efficiently distinguishes
𝑃𝑛 and 𝑃𝑛+1 is the separation 𝑠𝑛 with separator { 𝑣𝑖1 ∶ 𝑖 < 𝑛 } ∪ {𝑢𝑛+1

𝑗 }.

Additionally, the 𝐾10 induces a robust profile 𝑃0 of order 4. However, the only
separation that efficiently distinguishes 𝑃0 and 𝑃1 has the separator { 𝑣01, 𝑤0

1, 𝑤0
2 }.

But these separations 𝑠1, 𝑠2,… , and 𝑠0 can be oriented such as to form a chain of
order type 𝜔 + 1. This chain witnesses that there cannot be a tree-decomposition
which distinguishes all regular bounded profiles efficiently: the separations given
by such a tree-decomposition would have to contain this chain of order type 𝜔 + 1
which is not possible as every chain in the edge tree set of a tree has length at most
𝜔, cf. Lemma 5.27.

Theorem 23 can however be used to show that for every fixed integer 𝑘 the subset
of 𝒩 consisting of all separations of order at most 𝑘 gives rise to a tree-decomposition
of 𝐺, as this subset will satisfy the conditions from Lemma 5.27. In particular we
can use Theorem 23 together with Lemma 5.27 to prove [14, Theorem 7.3] that there
is, for every 𝑘 ∈ ℕ, every locally finite graph 𝐺 and every set 𝒫 of robust regular
profiles which are pairwise distinguishable by a separation of order at most 𝑘, a
canonical tree-decomposition of 𝐺 that efficiently distinguishes all profiles from 𝒫.
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5.9.3. Profiles in graphs with vertices of infinite degree

When we consider graphs with vertices of infinite degree, the method of the previous
section fails as we loose Proposition 5.28: It does not necessarily hold that every
separation in an 𝒜𝑃,𝑃 ′ crosses only finitely many other separations from sets 𝒜𝑄,𝑄′

with |𝑄,𝑄′| ⩽ |𝑃 , 𝑃 ′|. Moreover, Dunwoody and Krön [30] gave an example of a
graph which does not contain a canonical nested set of separations separating its
ends. As ends induce robust regular profiles, in arbitrary graphs, it is not generally
possible to find a canonical nested set of separations distinguishing all the robust
regular profiles.

To show the result for locally finite graphs we made use of the observation that only
finitely many distinct separators are involved, and then used that every separator
appears in only finitely many separations. Thus, in this section instead of applying
Lemma 22 directly to some set of separations, we are going to apply it to only the
set of separators.

With this approach we show that in an arbitrary graph you can find a canonical
nested set of separators which efficiently distinguishes all the robust regular profiles
in 𝐺. We shall make the meaning of this more precise shortly. We propose that
this set of separators is a natural intermediate object for distinguishing profiles.
Moreover, we will show that if we restrict ourselves to the set of robust principal
profiles – which we will define at the end of this section – then from this set we can
build both a non-canonical nested set of separations as in Theorem 5.20 (from [10])
as well as a canonical tree of tree-decompositions in the sense of [14].

Either of these objects can trivially be converted back to a set of separators. Our
technique splits the process of building either of these cleanly into two independent
steps, which makes it more accessible than the proofs in [10] and [14]. Moreover, the
first step of this process also works for non-principal but regular profiles, allowing us
to also get a (intermediate) result for those profiles, unlike the theorems from [10]
and [14]. Note that distinguishing non-principal profiles is also discussed extensively
in [43].

Many of the techniques applied throughout are similar to or inspired by arguments
made in [14], particularly the approach of minimising the crossing-number, even
though the different levels of abstraction make it hard to draw concrete parallels.

Let us now begin with the formal notation. We say that a set of vertices 𝑋 ⊆ 𝑉 (𝐺)
efficiently distinguishes a pair 𝑃 and 𝑃 ′ of profiles in 𝐺 if there exists a separation
(𝐴,𝐵) of 𝐺 with separator 𝐴 ∩ 𝐵 = 𝑋 which efficiently distinguishes 𝑃 and 𝑃 ′.
Such a separation (𝐴,𝐵) is then a witness that 𝑋 efficiently distinguishes 𝑃 and 𝑃 ′.

Given some set of distinguishable robust regular profiles 𝒫 of an (infinite) graph
𝐺, we define as 𝒜 the set of all such separators 𝑋 which distinguish some pair of
profiles in 𝒫 efficiently. We say that a separator 𝑋 is nested with 𝑌 ∈ 𝒜, i.e., 𝑋 ∼ 𝑌,
whenever 𝑋 is contained in 𝐶 ∪ 𝑌 for some component 𝐶 of 𝐺− 𝑌. In other words
𝑌 does not properly separate any two vertices of 𝑋. This relation is reflexive, the
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following lemma shows that it is also symmetric on 𝒜. Unfortunately, its natural
extension to all finite subsets of 𝑉 (𝐺) is not. The reader should take note that this
will lead to some situations where we argue that some set 𝑌 is nested with some
𝑋 ∈ 𝒜 provided that 𝑌 ∈ 𝒜.

Lemma 5.34. If 𝑋,𝑌 ∈ 𝒜 and 𝑋 is contained in 𝑌 together with some component
of 𝐺− 𝑌, then 𝑌 is contained in 𝑋 together with some component of 𝐺−𝑋.

Proof. Pick a separation (𝐴,𝐵) witnessing that 𝑋 ∈ 𝒜. Since this separation
efficiently distinguishes two regular profiles, by Lemma 5.26, there are at least two
tight components of 𝐺−𝑋, one in either side of (𝐴,𝐵). At least one of these tight
components, say 𝐶, does not meet 𝑌 and is therefore contained in a connected
component 𝐶′ of 𝐺− 𝑌. Now, as required, we find

𝑋 = 𝑁(𝐶) ⊆ 𝐶 ∪ 𝑁(𝐶) ⊆ 𝐶′ ∪ 𝑁(𝐶′) ⊆ 𝐶′ ∪ 𝑌 .

As usual, we take as 𝐼 the set of pairs of distinguishable profiles in 𝒫. But this
time we define 𝒜𝑃,𝑃 ′ for each pair 𝑃 , 𝑃 ′ in 𝐼 to be the set of all the sets of vertices
in 𝐺 which distinguish 𝑃 and 𝑃 ′ efficiently. All these separators in 𝒜𝑃,𝑃 ′ have the
same size; this size shall be |𝑃 , 𝑃 ′|.

We claim that {𝒜𝑃,𝑃 ′ ∶ {𝑃 , 𝑃 ′} ∈ 𝐼 } thinly splinters. Before we can show
condition (TS1) we need to make two basic observations about how the vertices of
a crossing pair of separators in 𝒜 lie:

Lemma 5.35. If 𝑋,𝑌 ∈ 𝒜 cross, then 𝑌 contains a vertex from every tight
component of 𝐺−𝑋.

Proof. If 𝐶 is a tight component of 𝐺 − 𝑋 such that 𝑌 does not contain any
vertex of 𝐶 then 𝐶 is contained in some component 𝐶′ of 𝐺 − 𝑌. However, then
𝑋 = 𝑁(𝐶) ⊆ 𝐶′ ∪ 𝑌, i.e., 𝑋 is nested with 𝑌 contradicting the assertion.

Lemma 5.36. If 𝑋,𝑌 ∈ 𝒜 cross, then 𝑌 contains a pair of vertices 𝑣 and 𝑤 such
that 𝑋 is a ⊆-minimal 𝑣–𝑤-separator.

Proof. There are at least two tight components 𝐶1, 𝐶2 of 𝐺−𝑋 and 𝑌 meets both
of them by Lemma 5.35. Let 𝑣 be a vertex in 𝑌 ∩ 𝐶1 and 𝑤 a vertex in 𝑌 ∩ 𝐶2. As
both 𝐶1 an 𝐶2 are tight components, 𝑋 is indeed a ⊆-minimal 𝑣–𝑤-separator.

We can now combine these with Lemma 5.23 to prove condition (TS1).

Lemma 5.37. For every pair of profiles 𝑃 , 𝑃 ′ ∈ 𝒫 every 𝑋 ∈ 𝒜𝑃,𝑃 ′ has finite
k-crossing-number for all 𝑘 ⩽ |𝑃 , 𝑃 ′|.

Proof. By Lemma 5.36, for every 𝑌 ∈ 𝒜 of size 𝑘 which crosses 𝑋, there are vertices
𝑣, 𝑤 ∈ 𝑋 which are minimally separated by 𝑌. However, there is only a finite number
of pairs of vertices 𝑣, 𝑤 in 𝑋 and by Lemma 5.23 every pair has only finitely many
minimal separators of size 𝑘. Therefore, only finitely many such 𝑌 ∈ 𝒜 exist.
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The following lemmas show how the separators of corner separations behave
under our new nestedness relation. We will need these to prove conditions (TS2)
and (TS3). Recall from Section 5.8.1 that a corner of two separators 𝑋,𝑌 ∈ 𝒜 is a
separator 𝑍 ∈ 𝒜 which crosses only elements of 𝒜 which cross either 𝑋 or 𝑌. Note
that this does not imply that 𝑍 is nested with 𝑋 and 𝑌.

Lemma 5.38. Let 𝑋,𝑌 ∈ 𝒜 be a crossing pair of separators and let (𝐴𝑋, 𝐵𝑋) and
(𝐴𝑌, 𝐵𝑌), respectively, be separations which witness that these are in 𝒜. Then for
every 𝑍 ∈ 𝒜 which is nested with both 𝑋 and 𝑌 there is a component 𝐶𝑍 of 𝐺− 𝑍,
such that 𝑋 ∪ 𝑌 ⊆ 𝐶𝑍 ∪ 𝑍. In particular, (𝐴𝑋 ∪ 𝐴𝑌) ∩ (𝐵𝑋 ∩ 𝐵𝑌), the separator of
(𝐴𝑋, 𝐵𝑋) ∨ (𝐴𝑌, 𝐵𝑌), is a corner of 𝑋 and 𝑌 provided that it lies in 𝒜.

Proof. We first show that 𝑍 does not separate 𝑋 and 𝑌. Since 𝑍 is nested with 𝑋
and 𝑋 efficiently distinguishes two regular profiles there is, by Lemma 5.26, a tight
component 𝐶𝑋 of 𝐺−𝑋 which is disjoint from 𝑍. By Lemma 5.35, there is a vertex
𝑦 ∈ 𝐶𝑋 ∩ 𝑌 ⊆ 𝑌 ⧵ 𝑍.

By a symmetrical argument there also exists a vertex 𝑥 ∈ 𝑋 ⧵ 𝑍. Since 𝐶𝑋 is
tight there is a path from 𝑥 to 𝑦 contained in 𝐶𝑋 except for 𝑥. This path avoids 𝑍.

Now, since 𝑍 is nested with 𝑋 there is a component 𝐶𝑍 of 𝐺− 𝑍 which contains
𝑋 ⧵ 𝑍. In particular this component contains 𝑥. Similarly, there is a component of
𝐺−𝑍 containing 𝑌 ⧵𝑍 and hence, in particular, 𝑦. Since 𝑍 does not separate 𝑥 and
𝑦 this component is the same as 𝐶𝑍. Therefore, 𝑋 ∪ 𝑌 ⊆ 𝐶𝑍 ∪ 𝑍, as required. In
particular, if (𝐴𝑋 ∪ 𝐴𝑌) ∩ (𝐵𝑋 ∩ 𝐵𝑌) ∈ 𝒜 then (𝐴𝑋 ∪ 𝐴𝑌) ∩ (𝐵𝑋 ∩ 𝐵𝑌) ⊆ 𝐶𝑍 ∪ 𝑍,
hence (𝐴𝑋 ∪𝐴𝑌) ∩ (𝐵𝑋 ∩𝐵𝑌) ∼ 𝑍 and therefore (𝐴𝑋 ∪𝐴𝑌) ∩ (𝐵𝑋 ∩𝐵𝑌) is a corner
of 𝑋 and 𝑌.

Lemma 5.39. Let 𝑋,𝑌 ∈ 𝒜 be a crossing pair of separators and let (𝐴𝑋, 𝐵𝑋) and
(𝐴𝑌, 𝐵𝑌), respectively, be witnesses that these are in 𝒜. If 𝑍 ∈ 𝒜 is nested with 𝑋,
and each of the corner separations (𝐴𝑋, 𝐵𝑋) ∨ (𝐴𝑌, 𝐵𝑌) and (𝐴𝑋, 𝐵𝑋) ∧ (𝐴𝑌, 𝐵𝑌)
distinguishes some pair of profiles efficiently then 𝑍 is nested with one of the
separators (𝐴𝑋 ∪ 𝐴𝑌) ∩ (𝐵𝑋 ∩ 𝐵𝑌) or (𝐴𝑋 ∩ 𝐴𝑌) ∩ (𝐵𝑋 ∪ 𝐵𝑌).

Proof. Since 𝑍 and 𝑋 are nested there is a component 𝐶𝑍 of 𝐺 − 𝑋 such that
𝑍 ⊆ 𝐶𝑍 ∪𝑋. Let us assume without loss of generality that 𝐶𝑍 ⊆ 𝐴𝑋, we will show
that 𝑍 is nested with (𝐴𝑋 ∪ 𝐴𝑌) ∩ (𝐵𝑋 ∩ 𝐵𝑌).

Since (𝐴𝑋, 𝐵𝑋) ∨ (𝐴𝑌, 𝐵𝑌) efficiently distinguishes some regular profiles there is,
by Lemma 5.26, a tight component of (𝐴𝑋∪𝐴𝑌)∩(𝐵𝑋∩𝐵𝑌) contained in (𝐵𝑋∩𝐵𝑌).
However, 𝑍 ⊆ 𝐴𝑋, so this component cannot meet 𝑍. Hence, by Lemma 5.35, 𝑍
cannot cross the separator (𝐴𝑋 ∪ 𝐴𝑌) ∩ (𝐵𝑋 ∩ 𝐵𝑌).

These now allow us to reuse Lemma 5.30 and 5.31 to prove conditions (TS2)
and (TS3):
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Lemma 5.40. If two separators 𝑋 ∈ 𝒜𝑃,𝑃 ′ and 𝑌 ∈ 𝒜𝑄,𝑄′ cross and we have
|𝑃 , 𝑃 ′| < |𝑄,𝑄′|, then there is a corner 𝑌 ′ ∈ 𝒜𝑄,𝑄′ of 𝑋 and 𝑌 which is nested
with 𝑋.

Proof. Let (𝐴𝑋, 𝐵𝑋) be a separation witnessing that 𝑋 ∈ 𝒜𝑃,𝑃 ′ and let (𝐴𝑌, 𝐵𝑌)
be a separation witnessing that 𝑌 ∈ 𝒜𝑄,𝑄′ . By Lemma 5.30 there is a corner
separation of (𝐴𝑋, 𝐵𝑋) and (𝐴𝑌, 𝐵𝑌) which also distinguishes 𝑄 and 𝑄′ efficiently.
The separator 𝑌 ′ of this corner separation does not meet all tight components of
𝐺−𝑋, so 𝑌 ′ is nested with 𝑋 and thus is by Lemma 5.38 as desired.

Lemma 5.41. If two separators 𝑋 ∈ 𝒜𝑃,𝑃 ′ and 𝑌 ∈ 𝒜𝑄,𝑄′ cross and we have
|𝑃 , 𝑃 ′| = |𝑄,𝑄′| = 𝑘, then either there is a corner 𝑌 ′ ∈ 𝒜𝑄,𝑄′ of 𝑋 and 𝑌 which
has a strictly lower 𝑘-crossing number than 𝑌, or there is a corner 𝑋′ ∈ 𝒜𝑃,𝑃 ′ of 𝑋
and 𝑌 which has strictly lower 𝑘-crossing number than 𝑋.

Proof. By switching their roles if necessary we may assume that the 𝑘-crossing
number of 𝑌 is at most the 𝑘-crossing number of 𝑋. Let (𝐴𝑋, 𝐵𝑋) be a separation
witnessing that 𝑋 ∈ 𝒜𝑃,𝑃 ′ and let (𝐴𝑌, 𝐵𝑌) be a separation witnessing that 𝑌 ∈
𝒜𝑄,𝑄′ . By Lemma 5.31 there is a corner separation of (𝐴𝑋, 𝐵𝑋) and (𝐴𝑌, 𝐵𝑌) which
efficiently distinguishes 𝑃 and 𝑃 ′ and whose opposite corner separation efficiently
distinguishes either 𝑃 and 𝑃 ′ or 𝑄 and 𝑄′. Let us denote their separators as 𝑍 and
𝑍′ respectively.

By Lemma 5.38 and 5.39 and the fact that 𝑍 and 𝑍′ are nested with both 𝑋 and
𝑌 we have that 𝑍 and 𝑍′ are corners of 𝑋 and 𝑌 and that the sum of the 𝑘-crossing
numbers of 𝑍 and 𝑍′ is strictly lower than the sum of the 𝑘-crossing numbers of 𝑋
and 𝑌.

Thus, if the 𝑘-crossing number of 𝑍 is strictly lower than the 𝑘-crossing number
of 𝑋, we can take 𝑍 for 𝑋′. Otherwise we can infer that the 𝑘-crossing number
of 𝑍′ is strictly lower than that of 𝑌. Since we assumed in the beginning that the
|𝑖|-crossing number of 𝑌 is not greater than that of 𝑋. This proves the claim since
we can then take 𝑍′ for 𝑋′ or 𝑌 ′, depending.

With this all the requirements of Lemma 22 are satisfied. Immediately we obtain
the main result of this section:

Theorem 24. Given a set of distinguishable robust regular profiles 𝒫 of a graph 𝐺
there exists a canonical nested set of separators efficiently distinguishing any pair of
profiles in 𝒫.

As noted before, to be able to deduce Theorem 5.20 and [14, Remark 8.3] we
restrict our set 𝒫 to be a set of principal robust profiles. A 𝑘-profile 𝑃 in 𝐺 is
principal if it contains for every set 𝑋 of less than 𝑘 vertices a separation of the form
(𝑉 (𝐺) ⧵𝐶,𝐶 ∪𝑋) where 𝐶 is a connected component of 𝐺−𝑋. In particular, every
principal profile is regular. Note that this notion of principal profiles is equivalent to
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the notion of ‘profiles’ in Carmesin’s [10]; the term principal profiles comes from [14].
Observe that in locally finite graphs an inductive application of the profile property
(P) shows that every profile is principal.

This restriction to principal profiles is necessary for Theorem 5.20, as Elm and
Kurkofka [43, Corollary 3.4] have shown that there is a graph together with a set
of (non-principal but robust and distinguishable) profiles, which do not permit the
existence of a nested set of separations distinguishing all of them.

Nested sets of separations

If we restrict 𝒫 to a set of principal profiles, the nested set of separators from The-
orem 24 can be transformed into a nested set of separations which still distinguishes
all the profiles in 𝒫 if we give up on canonicity. This task is not entirely trivial.

The natural approach would be to take for each separator every one of the
separations belonging to one of its tight components, i.e., the separation (𝐶∪𝑋, 𝑉 ⧵𝐶)
for every tight component 𝐶 of 𝐺−𝑋. However, if the separators overlap the resulting
set of separations might not be nested. The following recent result by Elm and
Kurkofka states that we need to omit no more than one of the tight components for
each separator to reclaim nestedness.

Theorem 5.42 ([43, Corollary 6.1]). Suppose that 𝒴 is a principal collection of
vertex sets in a connected graph 𝐺. Then there is a function 𝒦 assigning to each
𝑋 ∈ 𝒴 a subset 𝒦(𝑋) ⊆ 𝒞𝑋 (the set 𝒞𝑋 consists of the components of 𝐺−𝑋 whose
neighbourhoods are precisely equal to 𝑋) that misses at most one component from
𝒞𝑋, such that the collection

{ {𝑉 ⧵ 𝐾, 𝑋 ∪𝐾} ∶ 𝑋 ∈ 𝒴 and 𝐾 ∈ 𝒦(𝑋) }

is nested.

Here, a principal collection of vertex sets is just a set 𝒴 of subsets of 𝑉 such that,
for every 𝑋,𝑌 ∈ 𝒴, there is at most one component of 𝐺−𝑋 which is met by 𝑌. In
particular, any nested set of separators is a principal collection of vertex sets.

Having for every separator all but one of these tight component separations is
still enough to efficiently distinguish all the profiles in 𝒫. However, as Theorem 5.42
does not give as a canonical choice for the function 𝒦, we need to give up the
canonicity at this point. However, this still allows us to prove the following theorem
by Carmesin:

Theorem 5.20 ([10, Theorem 5.12]). p. 97 For any graph 𝐺, there is a nested set 𝑁 of
separations that distinguishes efficiently any two robust principal profiles (that are
not restrictions of one another).

Proof. If 𝐺 is not connected, then every robust principal profile of 𝐺 induces a
robust principal profile on exactly one of the connected components of 𝐺. It is easy
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to see that we can then apply the theorem to all connected components from 𝐺
independently and obtain our desired nested set of separations of 𝐺 from those
of the connected components together with separations of the form (𝐶, 𝑉 ⧵ 𝐶) for
connected components 𝐶 of 𝐺. Thus let us suppose that 𝐺 is connected.

Let 𝑁 be the nested set of separations obtained by applying Theorem 5.42
to the set 𝒩 of separators obtained from Theorem 24. Given any two profiles
𝑃 ,𝑄 ∈ 𝒫 there is a separator 𝑋 in 𝒩 which efficiently distinguishes 𝑃 and 𝑄. By
Lemma 5.26 there are two distinct tight components 𝐶 and 𝐶′ of 𝐺−𝑋 such that
both (𝑉 ⧵ 𝐶,𝐶 ∪ 𝑋) ∈ 𝑃 and (𝐶′ ∪𝑋, 𝑉 ⧵ 𝐶′) ∈ 𝑃 efficiently distinguish 𝑃 and 𝑄.
However, at least one of these two separations is an element of 𝑁.

For the reader’s convenience, we also offer a direct proof of Theorem 5.20 which
does not use Theorem 5.42. Instead, we perform an argument akin to one of the
arguments used in the proof of Theorem 5.42 but in slightly simpler form, as the
statement we need is a weaker one than Theorem 5.42.

Direct proof of Theorem 5.20. Let 𝒩 be the nested set of separators obtained from
Theorem 24 applied to the set of robust principal profiles. Pick an enumeration of
𝒩 which is increasing in the size of the separators, i.e., an enumeration 𝒩 = {𝑋𝛼 ∶
𝛼 < 𝛽 } such that |𝑋𝛼| ⩽ |𝑋𝛾| whenever 𝛼 < 𝛾.

We will construct a transfinite ascending sequence of nested sets (𝑁𝛾)𝛾⩽𝛽, of
separations. Each 𝑁𝛾 will contain only separations with separators in {𝑋𝛼 ∶ 𝛼 < 𝛾 },
and every pair of profiles efficiently distinguished by such a separator 𝑋𝛼, 𝛼 < 𝛾,
will also be efficiently distinguished by some separation in 𝑁𝛾.

For the successor steps of our construction suppose that we already constructed
𝑁𝛾 and consider 𝑋𝛾. Since 𝑋𝛾 is nested with all 𝑋𝛼 satisfying 𝛼 < 𝛾 we know that
𝑋𝛾 induces a consistent orientation of 𝑁𝛾 since any separation (𝐴,𝐵) ∈ 𝑁𝛾 satisfies
either 𝑋𝛾 ⊆ 𝐴 or 𝑋𝛾 ⊆ 𝐵 but not both, as |(𝐴,𝐵)| ⩽ |𝑋𝛾|.

Consider the set 𝒞 of tight components of 𝐺 −𝑋𝛾 and let 𝒟 be the set of the
remaining, non-tight, components of 𝐺−𝑋𝛾.

Given any separation (𝐴,𝐵) ∈ 𝑁𝛾 pointing away from 𝑋𝛾 (that is 𝑋𝛾 ⊆ 𝐴), the
side 𝐵 is contained in the union of one component 𝐶𝐵 ∈ 𝒞 together with some
components in 𝒟: Since 𝑋𝛾 is nested with 𝐴 ∩ 𝐵 there is a component in 𝐺−𝑋𝛾
containing (𝐴 ∩ 𝐵) ⧵ 𝑋𝛾, thus, any other component 𝐶 of 𝐺−𝑋𝛾 meeting 𝐵 does
not meet 𝐴∩𝐵 and must therefore satisfy 𝑁(𝐶) ⊆ 𝐴∩𝐵∩𝑋𝛾, i.e., this component
is not tight.

Given a tight component 𝐶 ∈ 𝒞 let 𝒟𝐶 ⊆ 𝒟 be the set of all components 𝐷 in
𝒟 with the property that there is some (𝐴,𝐵) ∈ 𝑁𝛾 pointing away from 𝑋𝛾 such
that 𝐷 meets 𝐵 and 𝐶𝐵 = 𝐶. Informally, these sets 𝒟𝐶 are the components which
we will need to group together with their 𝐶 when choosing our next separations.
The 𝒟𝐶 are pairwise disjoint: Indeed, given two separations (𝐴,𝐵) and (𝐴′, 𝐵′)
pointing away from 𝑋𝛾, if (𝐵′, 𝐴′) ⩽ (𝐴,𝐵) then the set 𝐵′ and 𝐵 are disjoint, and
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if (𝐴,𝐵) ⩽ (𝐴′, 𝐵′), then (𝐴′ ∩ 𝐵′) ⧵ 𝑋𝛾 and (𝐴 ∩ 𝐵) ⧵ 𝑋𝛾 cannot be contained in
different tight components of 𝐺−𝑋𝛾.

Let 𝑁𝛾+ consist of 𝑁𝛾 together with, for every tight component 𝐶 ∈ 𝒞 of 𝐺−𝑋𝛾,
the separation (𝐶 ∪⋃𝒟𝐶 ∪𝑋𝛾, 𝑉 (𝐺)⧵ (𝐶 ∪ ⋃𝒟𝐶) ). It is easy to see that this set
is a nested set of separations. Moreover, any pair of profiles efficiently distinguished
by 𝑋𝛾 is efficiently distinguished by one of these new separations.

For limit ordinals 𝛾 let 𝑁𝛾 ≔ ⋃𝛼<𝛾 𝑁𝛼, this set is nested since every pair in 𝑁𝛾
is already in some 𝑁𝛼.

Then 𝑁 ≔ 𝑁𝛽 is the desired nested set of separations.

Canonical trees of tree-decompositions

To canonically and efficiently distinguish a robust set of principal profiles in a graph
Carmesin, Hamann, and Miraftab [14] introduced more complex objects than nested
sets of separations: trees of tree-decompositions. These consist of a rooted tree
where every node is associated with a tree-decomposition. At the root this is a tree
decomposition of 𝐺. At every remaining node there is a tree-decomposition of one
of the torsos of the tree-decomposition at the parent node. Their main result is the
following:

Theorem 5.21 ([14, Remark 8.3]). p. 97 Let 𝐺 be a connected graph and 𝒫 a distin-
guishable set of principal robust profiles in 𝐺. There exists a canonical tree of
tree-decompositions with the following properties:

(1) the tree of tree-decompositions distinguishes 𝒫 efficiently;
(2) if 𝑡 ∈ 𝑉 (𝑇 ) has level 𝑘, then (𝑇𝑡, 𝒱𝑡) contains only separations of order 𝑘;
(3) nodes 𝑡 at all levels have |𝑉 (𝑇𝑡)| neighbours on the next level and the graphs

assigned to them are all torsos of (𝑇𝑡, 𝒱𝑡).

We can also construct such a tree of tree-decompositions from our nested set of
separators. In order to do that, let us recall the most important definitions from [14].

In a rooted tree (𝑇 , 𝑟), the level of a vertex 𝑡 ∈ 𝑉 (𝑇 ) is 𝑑(𝑡, 𝑟) + 1. A tree
of tree-decompositions is a triple ((𝑇 , 𝑟), (𝐺𝑡)𝑡∈𝑉 (𝑇), (𝑇𝑡, 𝒱𝑡)𝑡∈𝑉 (𝑇)) consisting of a
rooted tree (𝑇 , 𝑟), a family (𝐺𝑡)𝑡∈𝑉 (𝑇) of graphs and a family (𝑇𝑡, 𝒱𝑡)𝑡∈𝑉 (𝑇) of tree-
decompositions of the 𝐺𝑡. The graphs 𝐺′

𝑡 assigned to the neighbours 𝑡′ on the next
level from a node 𝑡 ∈ 𝑉 (𝑇 ) shall be distinct torsos of the tree-decomposition (𝑇𝑡, 𝒱𝑡).
This tree of tree-decompositions is a tree of tree-decompositions of 𝐺, if 𝐺𝑟 = 𝐺.

A separation (𝐴,𝐵) of 𝐺 induces a separation (𝐴′, 𝐵′) of 𝐺𝑡 if 𝐴 ∩𝐺𝑡 = 𝐴′ and
𝐵 ∩ 𝐺𝑡 = 𝐵′. Given two profiles 𝑃 , 𝑃 ′, we say that a tree of tree-decompositions
(efficiently) distinguishes 𝑃 and 𝑃 ′ if there is a separation (𝐴,𝐵) in 𝐺 (efficiently)
distinguishing them and a node 𝑡 ∈ 𝑉 (𝑇 ) such that the separation induced by (𝐴,𝐵)
on 𝐺𝑡 is one of the separation induced by the tree-decomposition (𝑇𝑡, 𝒱𝑡) of 𝐺𝑡.
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In order to deduce Theorem 5.21 from Theorem 24 it is useful to observe that our
set of separators is nested in an even stronger sense: We say that two separators 𝑋
and 𝑌 are strongly nested if there is a component 𝐶 of 𝐺−𝑋 such that 𝑌 ⊆ 𝐶 ∪𝑁(𝐶)
and there is a component 𝐶′ of 𝐺− 𝑌 such that 𝑋 ⊆ 𝐶′ ∪ 𝑁(𝐶′). The separators
from the nested set 𝒩 from Theorem 24 are strongly nested:

Lemma 5.43. If 𝑋 and 𝑌 are a pair of nested separators each of which efficiently
distinguishes some pair of robust principal profiles, then they are strongly nested.

Proof. We show that there is a component 𝐶 of 𝐺−𝑋 such that 𝑌 ⊆ 𝐶 ∪𝑁(𝐶).
If 𝑌 ⊆ 𝑋 the statement is obvious, by picking as 𝐶 a tight component of 𝐺−𝑋.

So we may assume that 𝑌 meets some component 𝐶 of 𝐺−𝑋 in a vertex 𝑣 ∈ 𝑌 ∩𝐶.
By nestedness 𝑌 ⊆ 𝐶 ∪𝑋. Suppose for a contradiction that 𝑌 ⊈ 𝐶 ∪𝑁(𝐶), i.e., 𝑌
contains a vertex 𝑤 ∈ 𝑋 ⧵ 𝑁(𝐶).

Since 𝑌 efficiently distinguishes two principal profiles there are two distinct tight
components 𝐶1, 𝐶2 of 𝐺− 𝑌, by Lemma 5.26. 𝑋 meets at most one of 𝐶1 and 𝐶2
since it is nested with 𝑌; without loss of generality we may assume 𝑋 ∩ 𝐶2 = ∅.
Since 𝐶2 is a tight component of 𝐺− 𝑌 there is a path 𝑃 from 𝑣 to 𝑤 with all its
interior vertices in 𝐶2. On the other hand 𝑣 lies in 𝐶 and 𝑤 outside of 𝐶 ∪𝑁(𝐶), so
𝑁(𝐶) separates 𝑣 from 𝑤. But 𝑁(𝐶) ⊆ 𝑋 does not meet 𝑃 since 𝑋 ∩ 𝐶2 = ∅. This
is a contradiction.

Note that for a separator 𝑋 to be strongly nested with itself is a non-trivial
property: it is precisely the statement that there is a tight component of 𝐺 −𝑋.
Thus, if we talk about a strongly nested set of separators, we mean that not only
any pair of distinct separators from that set is strongly nested, we also require each
of the separators from that set to be nested with itself.

Next we show that we can close our strongly nested set under taking subsets:

Lemma 5.44. Let 𝒩 be a strongly nested set of separators and let 𝒩′ be the set of
all subsets of elements of 𝒩. Then 𝒩′ is strongly nested as well.

Proof. Let 𝑋,𝑌 ∈ 𝒩 and let 𝑋′ ⊆ 𝑋,𝑌 ′ ⊆ 𝑌, possibly equal. Take 𝐶𝑋 to be a
component of𝐺−𝑋 for which 𝑌 ⊆ 𝐶𝑋∪𝑁(𝐶𝑋), then in particular 𝑌 ′ ⊆ 𝐶𝑋∪𝑁(𝐶𝑋).
Since𝑋′ ⊆ 𝑋 there is some component 𝐶𝑋′ ⊇ 𝐶𝑋 of 𝐺−𝑋′, thus 𝑌 ′ ⊆ 𝐶𝑋′∪𝑁(𝐶′

𝑋).
By symmetry, we also find a component 𝐶𝑌 ′ such that 𝑋′ ⊆ 𝐶𝑌 ′ ∪ 𝑁(𝐶𝑌 ′)

So let 𝒩′ be the strongly nested set of all subsets of separators from 𝒩, the
canonical nested set of separators from Theorem 24. As such, 𝒩′ is canonical as
well. The following lemma about separations with strongly nested separators will
allow us to construct a tree of tree-decompositions from 𝒩′ inductively, starting
with the separators of lowest size.

Lemma 5.45. If 𝑋,𝑌 are distinct strongly nested separators and (𝐴𝑋, 𝐵𝑋) and
(𝐴𝑌, 𝐵𝑌) are separations with separators 𝑋 and 𝑌 respectively, such that 𝑌 ⊆ 𝐵𝑋,
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𝑋 ⊆ 𝐵𝑌, then either (𝐴𝑋, 𝐵𝑋) and (𝐴𝑌, 𝐵𝑌) are nested, or there is a component 𝐶
of 𝐺− (𝑋 ∩ 𝑌 ) which meets neither 𝑋 nor 𝑌.

Proof. Suppose that (𝐴𝑌, 𝐵𝑌) ≰ (𝐵𝑋, 𝐴𝑋). Then either there is a vertex in 𝐴𝑌
which does not lie in 𝐵𝑋, or there is a vertex in 𝐴𝑋 which does not lie in 𝐵𝑌. Since
𝐴𝑋 ∩ 𝐵𝑋 = 𝑋 ⊆ 𝐵𝑌 and 𝐴𝑌 ∩ 𝐵𝑌 = 𝑌 ⊆ 𝐵𝑋 either of these cases implies that
there is a vertex 𝑣 in (𝐴𝑋 ⧵ 𝐵𝑋) ∩ (𝐴𝑌 ⧵ 𝐵𝑌). This vertex 𝑣 needs to lie in some
component 𝐶 of 𝐺− (𝑋 ∪ 𝑌 ). However, 𝐶 cannot send an edge to 𝑋 ⧵ 𝑌 since such
an edge would contradict the fact that (𝐴𝑌, 𝐵𝑌) is a separation. Similarly, 𝐶 cannot
be adjacent to any vertex of 𝑌 ⧵ 𝑋. Thus 𝐶 is in fact a component of 𝐺− (𝑋 ∩ 𝑌 )
which meets either 𝑋 nor 𝑌.

Now we are ready to deduce Theorem 5.21 from Theorem 24:

Proof of Theorem 5.21. Let𝒩′ be as above. We will build our tree of tree-decompositions
inductively level-by-level, adding at stage 𝑘 to every node 𝑡 on level 𝑘−1 new neigh-
bours on level 𝑘, one for every torso of the tree-decompositions (𝑇𝑡, 𝒱𝑡). We do this
in a way that ensures the following properties:

(a) If 𝑑(𝑟, 𝑡) = 𝑘 then every separation in (𝑇𝑡, 𝒱𝑡) has order 𝑘 + 1.

(b) Every separator in 𝒩′ of size at least 𝑘 + 2 is contained in exactly one of the
torsos of (𝑇𝑡, 𝒱𝑡) whenever 𝑑(𝑡, 𝑟) ⩽ 𝑘.

(c) If 𝑑(𝑡, 𝑟) = 𝑘, every torso of (𝑇𝑡, 𝒱𝑡) meets at most one component of 𝐺−𝑋
for every 𝑋 ∈ 𝒩′ of size ⩽ 𝑘 with 𝑋 ⊆ 𝑉 (𝐺𝑡).

Our inductive construction goes as follows: For 𝑘 = 0 we consider the set 𝑆1
which consists of, for every separator 𝑋 of size 1 in 𝒩′ and every component 𝐶 of
𝐺−𝑋, the separation (𝐶 ∪𝑋, 𝑉 (𝐺) ⧵ 𝐶), unless 𝐶 is the only component of 𝐺−𝑋.

Observe that 𝑆1 is a nested set of separations: any two separations with the same
separator are nested by construction and for separations with distinct separators 𝑋
and 𝑌 the separators are disjoint, so 𝐺−(𝑋 ∩𝑌 ) = 𝐺 is connected and Lemma 5.45
gives that the separations are nested.

Moreover, every 𝜔-chain (𝐴1, 𝐵1) < (𝐴2, 𝐵2) < … in 𝑆1 has ⋂𝑖∈ℕ 𝐵𝑖 = ∅: We
may assume without loss of generality that no two of these separations have the
same separator since 𝑆1 has no 3-chain of separations with the same separator. On
the other hand a path from a vertex in ⋂𝑖∈ℕ 𝐵𝑖 to 𝐴1 (which has finite length)
would need to meet all the infinitely many disjoint separators 𝐴𝑖 ∩ 𝐵𝑖.

Since 𝑆1 contains no separation with a small orientation, it is, by construction, a
regular tree set. Thus, by Lemma 5.27 it induces a canonical tree-decomposition
(𝑇𝑟, 𝒱𝑟) of 𝐺𝑟 = 𝐺. We assign this tree-decomposition to the root of our tree of
tree-decompositions and shall now verify properties (a) to (c).

Observe that this decomposition satisfies properties (a) and (c) as we only used
separators of size 1 and every torso of (𝑇𝑡, 𝒱𝑡) meets at most one component of
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𝐺 −𝑋 for every 𝑋 ∈ 𝒩′ of size ⩽ 1 with 𝑋 ⊆ 𝑉 (𝐺𝑡). Moreover, property (b) is
also satisfied since every separator 𝑋 in 𝒩′ of size at least 2 is nested with each
of the separators used in (𝑇𝑟, 𝒱𝑟): Such a separator cannot be contained in two
distinct torsos since then a separation with separator in 𝒩′ would separate them.
Conversely, there is a torso which contains 𝑋: Otherwise consider a torso 𝑉𝑡 that
contains as much of 𝑋 as possible and another torso 𝑉 ′

𝑡 which contains a vertex in
𝑋 ⧵ 𝑉𝑡. Then one of the edges on the path between 𝑡 and 𝑡′ in 𝑇 again corresponds
to a separation which separates 𝑋. But this is not possible since the separators of
these separations are in 𝒩′ and thus nested with 𝑋.

For the 𝑘-th step of our construction, where 𝑘 ⩾ 1, we attach at every node 𝑡
on level 𝑘 − 1 of our so-far constructed tree of tree-decompositions, for every torso
𝐺′ of (𝑇𝑡, 𝒱𝑡) a new node 𝑡′ (which then is at level 𝑘) with 𝐺𝑡′ ≔ 𝐺′. We the
independently construct tree-decompositions for each of these torsos 𝐺𝑡′ . For every
torso we use all those separators from 𝒩′ which are of size 𝑘 + 1 and lie inside that
torso. Note that property (b) guarantees that every separator in 𝒩′ of size 𝑘 + 1 is
contained in exactly one of the newly added torsos.

Given one torso 𝐺𝑡′ of the tree-decomposition (𝑇𝑡, 𝒱𝑡), we let 𝑆𝑘+1 be the set of
all separations (𝐴,𝐵) of 𝐺𝑡′ of order 𝑘 + 1 with separator in 𝒩′ and the property
that 𝐴 ⧵ 𝐵 is a component of 𝐺− (𝐴 ∩ 𝐵) but not the only one.

We claim that 𝑆𝑘+1 is a nested set of separations. Indeed, if two separations from
𝑆𝑘+1 with different separators 𝑋 and 𝑌 were to cross, then by Lemma 5.45 there
would be a component of 𝐺𝑡′ − (𝑋 ∩ 𝑌 ) avoiding 𝑋 and 𝑌. However, 𝑋 ∩𝑌 has size
less than 𝑘, lies in 𝒩′ and 𝐺𝑡′ meets, by property (c), at most one component of
𝐺− (𝑋 ∩ 𝑌 ). Hence, if we take vertices 𝑥 and 𝑦 in 𝐺𝑡′ − (𝑋 ∩ 𝑌 ), we find a path
𝑃 between them in 𝐺− (𝑋 ∩ 𝑌 ). But since 𝐺𝑡′ is obtained from 𝐺 by repeatedly
building a torso, 𝑃 ∩ 𝐺𝑡′ needs to contain a path between 𝑥 and 𝑦 in 𝐺𝑡′ . In
particular, this path does not meet 𝑋 ∩ 𝑌 and thus 𝐺𝑡′ − (𝑋 ∩ 𝑌 ) has only one
component, in particular every component of 𝐺𝑡′ − (𝑋 ∩ 𝑌 ) meets 𝑋 and 𝑌.

Now consider an 𝜔-chain (𝐴1, 𝐵1) < (𝐴2, 𝐵2) < … in 𝑆𝑘+1. We may assume
without loss of generality that no two of these separations have the same separator,
as in the case 𝑘 = 0. If ⋂𝑖∈ℕ 𝐵𝑖 is non-empty then its neighbourhood 𝑍 ≔
𝑁𝐺𝑡′

(⋂𝑖∈ℕ 𝐵𝑖) needs to be properly contained in some 𝐴𝑙 ∩ 𝐵𝑙: Every vertex in 𝑍
needs to be contained in some 𝐴𝑚 ∩ 𝐵𝑚 and if such a vertex lies in 𝐴𝑚 ∩𝐵𝑚, then
it also lies in 𝐴𝑛 ∩𝐵𝑛 for every 𝑛 ⩾ 𝑚. In particular, if |𝑍| ⩾ 𝑘 + 1, there would be
an 𝑚 such that 𝐴𝑚 ∩𝐵𝑚 ⊆ 𝑍 and thus 𝐴𝑛 ∩𝐵𝑛 = 𝐴𝑚 ∩𝐵𝑚∀𝑛 ⩾ 𝑚 contradicting
the assumption that no two of the (𝐴𝑙, 𝐵𝑙) have the same separator. Hence, |𝑍| ⩽ 𝑘
and we can easily find an 𝑙 so that 𝑍 ⊊ 𝐴𝑙 ∩ 𝐵𝑙.

But then, again, 𝐺𝑡′ would meet two distinct components of 𝐺− 𝑍: one meeting
⋂𝑖∈ℕ 𝐵𝑖 and one meeting 𝐴𝑙. This, however, is not possible since |𝑍| < |𝐴𝑙 ∩ 𝐵𝑙|
and 𝑍 ∈ 𝒩′.
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By construction 𝑆𝑘+1 contains no separation with a small orientation, it is thus
a regular tree set. So, by Lemma 5.27, the set 𝑆𝑘+1 induces a canonical tree-
decomposition (𝑇𝑡′ , 𝒱𝑡′) of 𝐺𝑡′ . In this way we construct all the tree-decompositions
for nodes at level 𝑘. We need to verify properties (a) to (c). Property (a) is obvious.
For property (b) we observe that every separator in 𝒩′ of size at least 𝑘 + 2 which
was contained in 𝐺𝑡′ was nested with every separator of a separation in 𝑆𝑘+1 and is
therefore contained in exactly one of the torsos of (𝑇𝑡′ , 𝒱𝑡′), by the same argument
as in the case 𝑘 = 0.

For property (c) we note that for separators 𝑋 of size ⩽ 𝑘 every torso of (𝑇𝑡′ , 𝒱𝑡′)
meets at most one component of 𝐺−𝑋 as, by induction 𝐺𝑡′ itself only meets one
component of 𝐺−𝑋. For a separator 𝑋 of size 𝑘 + 1 let 𝐻 be a torso of (𝑇𝑡′ , 𝒱𝑡′).
Firstly, 𝐻 meets at most one component of 𝐺𝑡′ −𝑋 since if 𝐺𝑡′ −𝑋 has more than
one component then 𝑋 is one of the separators of (𝑇𝑡′ , 𝒱𝑡′) and therefore, as 𝑆𝑘+1
includes every separation of the form (𝐶 ∪ 𝑋,𝐺𝑡′ ⧵ 𝑋) for any component 𝐶 of
𝐺𝑡′ −𝑋, there needs to be a component 𝐶 of 𝐺𝑡′ −𝑋 such that 𝐻 is contained in
𝐶 ∪𝑋 .

Secondly, when building the torso 𝐺𝑡′ from 𝐺 we never add edges between distinct
components of 𝐺−𝑋 since we only add edges inside of separators in 𝒩′, which are
nested with 𝑋. Hence, if 𝐻 would meet two components of 𝐺 − 𝑋 it would also
meet two components of 𝐺𝑡′ −𝑋. Hence 𝐻 meets at most one component of 𝐺−𝑋.
This gives property (c).

Verification of correctness. Let us now verify that the so constructed tree of tree-
decompositions ((𝑇 , 𝑟), (𝐺𝑡)𝑡∈𝑉 (𝑡), (𝑇𝑡, 𝒱𝑡)𝑡∈𝑉 (𝑇)) – which is canonical by construc-
tion – has the properties (1)–(3) from the assertion. The properties (2) and (3) are
fulfilled by construction, so we only need to verify (1).

Let 𝑃 , 𝑃 ′ be two robust principal profiles from 𝒫. By Theorem 24, 𝒩′ contains
some separator 𝑋 which belongs to a separation efficiently distinguishing 𝑃 and 𝑃 ′,
say |𝑋| = 𝑘. By our inductive construction, there is a unique 𝐺𝑡 at level 𝑘 which
contains 𝑋. As 𝑃 and 𝑃 ′ are principal profiles, there are two distinct components
𝐶,𝐶′ of 𝐺 − 𝑋 such that (𝑉 (𝐺) ⧵ 𝐶,𝐶 ∪ 𝑋) ∈ 𝑃, and (𝑉 (𝐺) ⧵ 𝐶′, 𝐶′ ∪ 𝑋) ∈ 𝑃 ′.
We claim that 𝐶 ∩ 𝑉 (𝐺𝑡) is not empty.

Note that 𝐺𝑡 is obtained from 𝐺 by repeatedly taking some separation (𝐴,𝐵) of
order < 𝑘 with 𝑋 ⊆ 𝐵, deleting 𝐴⧵𝐵 and making 𝐴∩𝐵 complete. If we apply this
operation for a single (𝐴,𝐵) which, say, turns some graph 𝐻 with 𝑉 (𝐻) ⊆ 𝑉 (𝐺)
into 𝐻′ then this preserves for 𝐻′ the properties of 𝐻 that (i) 𝐻[𝐶 ∩ 𝑉 (𝐻)] is
connected and (ii) every vertex in 𝑋 has, in 𝐻, a neighbour in 𝐶 ∩ 𝑉 (𝐻). Thus
every vertex in 𝑋 has, in 𝐺𝑡, a neighbour in 𝐶 ∩ 𝑉 (𝐺𝑡) proving that 𝐶 ∩ 𝑉 (𝐺𝑡) is
non-empty.

By a symmetrical argument not only 𝐶 but also 𝐶′ meets some component
of 𝐺𝑡 − 𝑋. Moreover, no two distinct components of 𝐺 − 𝑋 can meet the same
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component of 𝐺𝑡 −𝑋: this would require an edge between these components, which
would have to be added by the torso operation – but this operation only adds edges
inside a separator 𝑌 ∈ 𝒩′. And since 𝑌 is nested with 𝑋, that is 𝑌 meets only one
component of 𝐺−𝑋, this cannot add edges between different components of 𝐺−𝑋.

Thus, there is exactly one component 𝐶𝑡 of 𝐺𝑡 −𝑋 such that 𝐶𝑡 ⊆ 𝐶 and this
component is not the only one from 𝐺𝑡 − 𝑋. So, by construction the separation
(𝐶𝑡 ∪ 𝑋,𝐺𝑡 ⧵ 𝑋), which efficiently distinguishes the induced profiles of 𝑃 and 𝑃 ′

onto 𝐺𝑡 is induced by (𝑇𝑡, 𝒱𝑡).
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5. Trees of tangles and the splinter lemmas

5.10. Distinguishing edge-blocks in finite and infinite graphs

The 𝑘-tangles and 𝑘-profiles in a graph that we considered in the previous section
are a way of expressing its ‘𝑘-vertex-connected pieces’, though these are very indirect
ways of expressing ‘pieces’ of a graph via orientations of separations. A much
more concrete structure are the 𝑘-blocks of a graph and, analogously to these, if we
consider edge-connectivity instead of vertex-connectivity, there is a single concrete
and undeniably natural notion of ‘𝑘-edge-connected pieces’. Let 𝑘 ∈ ℕ ∪ {∞} and
let 𝐺 be any connected graph, possibly infinite. We say that two vertices or ends
are <𝑘-edge-inseparable in 𝐺 if they cannot be separated in 𝐺 by fewer than 𝑘
edges. This defines an equivalence relation on ̂𝑉 (𝐺) ≔ 𝑉 (𝐺) ∪ Ω(𝐺) where Ω(𝐺)
denotes the set of ends of 𝐺 (which is empty if 𝐺 is finite). Its equivalence classes
are the ‘𝑘-edge-connected pieces’ of 𝐺, its 𝑘-edge-blocks. A subset of ̂𝑉 (𝐺) is an
edge-block if it is a 𝑘-edge-block for some 𝑘. Note that any two edge-blocks are
either disjoint or one contains the other. The thin splinter lemma allows us to find
a canonical tree-like decomposition of any connected graph, finite or infinite, into
its 𝑘-edge-blocks — for all 𝑘 ∈ ℕ ∪ {∞} simultaneously. To state our result, we
only need a few intuitive definitions.

A subset 𝑋 ⊆ ̂𝑉 (𝐺) lives in a subgraph 𝐶 ⊆ 𝐺 or vertex set 𝐶 ⊆ 𝑉 (𝐺) if all
the vertices of 𝑋 lie in 𝐶 and all the rays of ends in 𝑋 have tails in 𝐶 or 𝐺[𝐶],
respectively. If 𝐺 is finite, saying that 𝑋 lives in 𝐶 simply means that 𝑋 ⊆ 𝐶. An
edge set 𝐹 ⊆ 𝐸(𝐺) distinguishes two edge-blocks of 𝐺, not necessarily 𝑘-edge-blocks
for the same 𝑘, if they live in distinct components of 𝐺− 𝐹. It distinguishes them
efficiently if they are not distinguished by any edge set of smaller size. Note that if 𝐹
distinguishes two edge-blocks efficiently, then 𝐹 must be a bond, a cut with connected
sides. A set 𝐵 of bonds distinguishes some set of edge-blocks of 𝐺 efficiently if
every two disjoint edge-blocks in this set are distinguished efficiently by a bond in 𝐵.
Two cuts 𝐹1, 𝐹2 of 𝐺 are nested if 𝐹1 has a side 𝑉1 and 𝐹2 has a side 𝑉2 such that
𝑉1 ⊆ 𝑉2. Note that this is symmetric. The fundamental cuts of a spanning tree, for
example, are (pairwise) nested. Our main result reads as follows:

Theorem 25. Every connected graph 𝐺 has a nested set of bonds that efficiently
distinguishes all the edge-blocks of 𝐺.

The nested sets 𝑁 = 𝑁(𝐺) that we construct, one for every 𝐺, have two strong
additional properties:

(i) They are canonical in that they are invariant under isomorphisms: if 𝜑∶ 𝐺 →
𝐺′ is a graph-isomorphism, then 𝜑(𝑁(𝐺)) = 𝑁(𝜑(𝐺)).

(ii) For every 𝑘 ∈ ℕ, the subset 𝑁𝑘 ⊆ 𝑁 formed by the bonds of size less than 𝑘
is equal to the set of fundamental cuts of a tree-cut decomposition of 𝐺 that
decomposes 𝐺 into its 𝑘-edge-blocks.
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Tree-cut decompositions are decompositions of graphs similar to tree-decompositions
but based on edge-cuts rather than vertex-separators. They were introduced by
Wollan [69], and they are more general than the ‘tree-partitions’ introduced by
Seese [65] and by Halin [55]; see Section 5.10.2.

The second additional property above is best possible in the sense that 𝑁𝑘 cannot
be replaced with 𝑁: there exists a graph 𝐺 (see Example 5.55) that has no nested
set of cuts which, on the one hand, distinguishes all the edge-blocks of 𝐺 efficiently,
and on the other hand, is the set of fundamental cuts of some tree-cut decomposition.
(This is because the ‘tree-structure’ defined by a nested set of cuts may have limit
points, and hence not be representable by a graph-theoretical tree.)

It turns out that the nested sets of bonds which make Theorem 25 true can
be characterised in terms of generating bonds (for the definition of generate see
Section 5.10.3):

Theorem 26.  p. 126Let 𝐺 be any connected graph and let 𝑀 be any nested set of bonds
of 𝐺. Then the following assertions are equivalent:

(i) 𝑀 efficiently distinguishes all the edge-blocks of 𝐺;

(ii) For every 𝑘 ∈ ℕ, the ⩽𝑘-sized bonds in 𝑀 generate all the 𝑘-sized cuts of 𝐺.

Nested sets of bonds which are canonical and satisfy assertion (ii) of Theorem 26
have been constructed by Dicks and Dunwoody using their algebraic theory of
graph symmetries. This is one of the main results of their monograph [17, II 2.20f].
Since the implication (ii)→(i) of Theorem 26 is straightforward, Theorem 25 can be
deduced from their theory, but it is not stated in [17] explicitly. Our Theorem 26
itself, in particular its highly non-trivial forward implication (i)→(ii), does not follow
from material in [17]. Since our proofs are purely combinatorial, we can combine
Theorem 25 and the forward implication (i)→(ii) of Theorem 26 to obtain a purely
combinatorial proof of the main result of Dicks and Dunwoody.

After setting up just a bit more terminology and tools, we will prove Theorem 25
using Lemma 22 in Section 5.10.1. In Section 5.10.2 we relate each 𝑁𝑘 to a tree-cut
decomposition. In Section 5.10.3 we prove Theorem 26.

Additional terminology and tools

Throughout this chapter, 𝐺 = (𝑉 ,𝐸) denotes a fixed connected graph, finite or
infinite. When we say ends we mean the usual vertex-ends, not edge-ends. If a
subset 𝑋 ⊆ ̂𝑉 (𝐺), usually an edge-block, lives in a subgraph 𝐶 ⊆ 𝐺 or vertex set
𝐶 ⊆ 𝑉 (𝐺), we denote this by 𝑋 ⊑ 𝐶 for short. Recall that 𝑋 ⊑ 𝐶 defaults to
𝑋 ⊆ 𝐶 if 𝐺 is finite.

The order of a cut is its size. A cut-separation of a graph 𝐺 is a bipartition
{𝐴,𝐵 } of the vertex set of 𝐺, and it induces the cut 𝐸(𝐴,𝐵). Then the order of the
cut 𝐸(𝐴,𝐵) is also the order of {𝐴,𝐵 }. Recall that in a connected graph, every cut
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is induced by a unique cut-separation in this way, to which it corresponds. A bond-
separation of 𝐺 is a cut-separation that induces a bond of 𝐺, a cut with connected
sides. We say that a cut-separation distinguishes two edge-blocks (efficiently) if its
corresponding cut does, and we call two cut-separations nested if their corresponding
cuts are nested. Thus, two cut-separations {𝐴,𝐵 } and {𝐶,𝐷} are nested if one of
the four inclusions 𝐴 ⊆ 𝐶, 𝐴 ⊆ 𝐷, 𝐵 ⊆ 𝐶 or 𝐵 ⊆ 𝐷 holds.

We use the following lemma about bonds which is well-known [19, Exercise 8.12];
we provide a proof for the reader’s convenience.

Lemma 5.46. Every edge of a graph lies in only finitely many bonds of size 𝑘 of
that graph, for any 𝑘 ∈ ℕ.

Proof. Let 𝑒 be any edge of a graph 𝐺, and suppose for a contradiction that 𝑒 lies
in infinitely many distinct bonds 𝐵0, 𝐵1,… of size 𝑘, say. Let 𝐹 be an inclusionwise
maximal set of edges of 𝐺 such that 𝐹 is included in 𝐵𝑛 for infinitely many 𝑛 (all 𝑛,
without loss of generality). Then |𝐹 | < 𝑘 because the bonds are distinct, and any
bond 𝐵𝑛 ⊋ 𝐹 gives rise to a path 𝑃 in 𝐺− 𝐹 that links the endvertices of 𝑒. Now
all the infinitely many bonds 𝐵𝑛 must contain an edge of the finite path 𝑃. But by
the choice of 𝐹, each edge of 𝑃 lies in only finitely many 𝐵𝑛, a contradiction.

Corollary 5.47. Let 𝐺 be any connected graph, 𝑘 ∈ ℕ, and let 𝐹0, 𝐹1,… be infinitely
many distinct bonds of 𝐺 of size at most 𝑘 such that each bond 𝐹𝑛 has a side 𝐴𝑛
with 𝐴𝑛 ⊊ 𝐴𝑚 for all 𝑛 < 𝑚. Then ⋃𝑛∈ℕ 𝐴𝑛 = 𝑉.

Proof. If ⋃𝑛 𝐴𝑛 is a proper subset of 𝑉, then any 𝐴0–(𝑉 ⧵⋃𝑛 𝐴𝑛)-path in 𝐺 admits
an edge that lies in infinitely many 𝐹𝑛, contradicting Lemma 5.46.

5.10.1. Proof of Theorem 25

Let 𝐺 be any connected graph, possibly infinite, and consider the set 𝒜 of all
bond-separations of 𝐺 with the relation ∼ being the usual nestedness-realation on
bipartitions. For the family (𝒜𝑖 ∶ 𝑖 ∈ 𝐼 ) we will consider 𝐼 to be the collection of all
the unordered pairs formed by two disjoint edge-blocks of 𝐺, and each 𝒜𝑖 will consist
of all the bond-separations of 𝐺 that efficiently distinguish the two edge-blocks
forming the pair 𝑖. Our choice for |𝑖| will be the unique natural number that is
the order of all the bond-separations in 𝒜𝑖. Note that each of the two edge-blocks
forming the pair 𝑖 will be a 𝑘-edge-block for some 𝑘 > |𝑖|.

Our aim is to employ Lemma 22 to deduce Theorem 25. In order to do that,
we first have to verify that (𝒜𝑖 ∶ 𝑖 ∈ 𝐼 ) thinly splinters. To this end, we verify
all the three properties (TS1)–(TS3) below. The following lemma clearly implies
condition (TS1):

Lemma 5.48. Every finite-order bond-separation of a graph 𝐺 is crossed by only
finitely many bond-separations of 𝐺 of order at most 𝑘, for any given 𝑘 ∈ ℕ.

120



5.10. Distinguishing edge-blocks

Proof. Our proof starts with an observation. If two bond-separations {𝐴,𝐵 } and
{𝐴′, 𝐵′ } cross, then 𝐴′ contains a vertex from 𝐴 and a vertex from 𝐵. Let 𝑣 ∈ 𝐴′∩𝐴
and 𝑤 ∈ 𝐴′ ∩𝐵. Since 𝐺[𝐴′] is connected, there exists a path from 𝑣 to 𝑤 in 𝐺[𝐴′].
This path, and thus 𝐺[𝐴′], must contain an edge from 𝐴 to 𝐵. Similarly, 𝐺[𝐵′]
must contain an edge from 𝐴 to 𝐵.

Now suppose for a contradiction that there are infinitely many bond-separations
of order at most a given 𝑘 ∈ ℕ, which all cross some finite-order bond-separation
{𝐴,𝐵 }. Without loss of generality, all the crossing bond-separations have or-
der 𝑘. Using our observation, the pigeon-hole principle and the finite order of
{𝐴,𝐵 }, we find two edges 𝑒, 𝑓 ∈ 𝐸(𝐴,𝐵) and infinitely many bond-separations
{𝐴0, 𝐵0 }, {𝐴1, 𝐵1 },… that all cross {𝐴,𝐵 } so that 𝑒 ∈ 𝐺[𝐴𝑛] and 𝑓 ∈ 𝐺[𝐵𝑛] for
all 𝑛 ∈ ℕ. Let 𝑃 be a path in 𝐺 that links an endvertex 𝑣 of 𝑒 to an endvertex 𝑤
of 𝑓. Now 𝑣 is contained in all the 𝐴𝑛 and 𝑤 is contained in all the 𝐵𝑛, thus for
every {𝐴𝑛, 𝐵𝑛 } there exists an edge of 𝑃 with one end in 𝐴𝑛 and the other in 𝐵𝑛.
However, every {𝐴𝑛, 𝐵𝑛 } corresponds to a bond of size 𝑘 of 𝐺 and, again by the
pigeon-hole principle, infinitely many of these bonds must contain the same edge
of 𝑃. This contradicts Lemma 5.46.

Next, to show the second property, we use the following lemma special case of
the fish lemma, Lemma 2.1.

Lemma 5.49. If two cut-separations {𝐴1, 𝐵1 } and {𝐴2, 𝐵2 } cross, and a third
cut-separation {𝑋, 𝑌 } is nested with both {𝐴1, 𝐵1 } and {𝐴2, 𝐵2 }, then {𝑋, 𝑌 }
is nested with {𝐴1 ∩ 𝐴2, 𝐵1 ∪ 𝐵2 } (provided that this is a cut-separation).

Using this, we now show condition (TS2):

Lemma 5.50. If {𝐴,𝐵 } ∈ 𝒜𝑖 and {𝐶,𝐷} ∈ 𝒜𝑗 cross with |𝑖| < |𝑗|, then 𝒜𝑗
contains some corner of {𝐴,𝐵 } and {𝐶,𝐷} that is nested with {𝐴,𝐵 }.

Proof. Let us denote the two edge-blocks in 𝑗 as 𝛽 and 𝛽′ so that 𝛽 ⊑ 𝐶 and 𝛽′ ⊑ 𝐷.
Since the order of {𝐴,𝐵 } is less than |𝑗|, we may assume without loss of generality
that 𝛽, 𝛽′ ⊑ 𝐴. We claim that either {𝐴∩𝐶,𝐵∪𝐷} or {𝐴∩𝐷,𝐵∪𝐶 } is the desired
corner in 𝒜𝑗, and we refer to them as corner candidates. Both are cut-separations
that distinguish 𝛽 and 𝛽′, and both are nested with {𝐴,𝐵 }. Furthermore, by
Lemma 5.49, every cut-separation that is nested with both {𝐴,𝐵 } and {𝐶,𝐷} is
also nested with both corner candidates. It remains to show that at least one of the
two corner candidates has order at most |𝑗|, because then it lies in 𝒜𝑗 as desired.

Let us assume for a contradiction that both corner candidates have order greater
than |𝑗|. Then the two inequalities

|𝐸(𝐴 ∩ 𝐶,𝐵 ∪ 𝐷)| + |𝐸(𝐵 ∩ 𝐷,𝐴 ∪ 𝐶)| ⩽ |𝐸(𝐴,𝐵)| + |𝐸(𝐶,𝐷)|
and |𝐸(𝐴 ∩ 𝐷,𝐵 ∪ 𝐶)| + |𝐸(𝐵 ∩ 𝐶,𝐴 ∪ 𝐷)| ⩽ |𝐸(𝐴,𝐵)| + |𝐸(𝐶,𝐷)|
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imply
|𝐸(𝐵 ∩ 𝐷,𝐴 ∪ 𝐶)| < |𝑖| and |𝐸(𝐵 ∩ 𝐶,𝐴 ∪ 𝐷)| < |𝑖| .

Recall that the edge-blocks forming the pair 𝑖 are 𝑘-edge-blocks for some values 𝑘
greater than |𝑖|. One of the edge-blocks of the pair 𝑖 lives in 𝐵, and due to the latter
two inequalities, this edge-block must live either in 𝐵 ∩𝐷 or in 𝐵 ∩ 𝐶. But then
either {𝐵 ∩ 𝐷,𝐴 ∪ 𝐶 } or {𝐵 ∩ 𝐶,𝐴 ∪ 𝐷} is a cut-separation of order less than |𝑖|
that distinguishes the two edge-blocks forming the pair 𝑖, contradicting the fact that
an order of at least |𝑖| is required for that.

Finally, to show the third property, we need the following lemma:

Lemma 5.51. Let {𝐴1, 𝐵1 } and {𝐴2, 𝐵2 } be crossing cut-separations such that
both {𝐴1 ∩𝐴2, 𝐵1 ∪𝐵2 } and {𝐴1 ∪𝐴2, 𝐵1 ∩𝐵2 } are cut-separations as well. Then
every cut-separation that crosses both {𝐴1 ∩ 𝐴2, 𝐵1 ∪ 𝐵2 } and {𝐴1 ∪ 𝐴2, 𝐵1 ∩ 𝐵2 }
must also cross both {𝐴1, 𝐵1 } and {𝐴2, 𝐵2 }.

Proof. Consider any cut-separation {𝑋, 𝑌 } that crosses both {𝐴1 ∩ 𝐴2, 𝐵1 ∪ 𝐵2 }
and {𝐴1 ∪𝐴2, 𝐵1 ∩𝐵2 }. Since {𝑋, 𝑌 } crosses {𝐴1 ∩𝐴2, 𝐵1 ∪𝐵2 }, both 𝑋 and 𝑌
contain a vertex from 𝐴1 ∩ 𝐴2. Since {𝑋, 𝑌 } crosses {𝐴1 ∪ 𝐴2, 𝐵1 ∩ 𝐵2 }, both 𝑋
and 𝑌 contain a vertex from 𝐵1 ∩ 𝐵2. Hence {𝑋, 𝑌 } crosses both {𝐴1, 𝐵1 } and
{𝐴2, 𝐵2 }.

Let us now show condition (TS3):

Lemma 5.52. If {𝐴,𝐵 } ∈ 𝒜𝑖 and {𝐶,𝐷} ∈ 𝒜𝑗 cross with |𝑖| = |𝑗| = 𝑘 ∈ ℕ, then
either 𝒜𝑖 contains a corner of {𝐴,𝐵 } and {𝐶,𝐷} with strictly lower 𝑘-crossing
number than {𝐴,𝐵 }, or else 𝒜𝑗 contains a corner of {𝐴,𝐵 } and {𝐶,𝐷 } with
strictly lower 𝑘-crossing number than {𝐶,𝐷}.

Proof. Let us assume without loss of generality that the 𝑘-crossing number of {𝐴,𝐵 }
is less than or equal to the 𝑘-crossing number of {𝐶,𝐷 }, and let us denote the
edge-blocks in 𝑗 as 𝛽 and 𝛽′ so that 𝛽 ⊑ 𝐶 and 𝛽′ ⊑ 𝐷. We consider two cases.

In the first case, {𝐴,𝐵 } distinguishes the two edge-blocks 𝛽 and 𝛽′. Hence
𝛽 ⊑ 𝐴 ∩ 𝐶 and 𝛽′ ⊑ 𝐵 ∩𝐷, say. Then both {𝐴 ∩ 𝐶,𝐵 ∪ 𝐷} and {𝐵 ∩ 𝐷,𝐴 ∪ 𝐶 }
distinguish the two edge-blocks 𝛽 and 𝛽′ that form the pair 𝑗, and so they have
order at least |𝑗| = 𝑘. Furthermore, we have submodularity:

|𝐸(𝐴 ∩ 𝐶,𝐵 ∪ 𝐷)| + |𝐸(𝐵 ∩ 𝐷,𝐴 ∪ 𝐶)| ⩽ |𝐸(𝐴,𝐵)| + |𝐸(𝐶,𝐷)| = 2𝑘, (5.1)

so both {𝐴 ∩ 𝐶,𝐵 ∪ 𝐷} and {𝐵 ∩ 𝐷,𝐴 ∪ 𝐶 } must have order exactly 𝑘. In
particular, both are contained in 𝒜𝑗, and they are corners of {𝐴,𝐵 } and {𝐶,𝐷 }
by Lemma 5.49. Next, we assert that the 𝑘-crossing numbers of {𝐴∩𝐶,𝐵∪𝐷} and
{𝐵∩𝐷,𝐴∪𝐶 } in sum are less than the sum of the 𝑘-crossing numbers of {𝐴,𝐵 } and
{𝐶,𝐷 }. Indeed, all the 𝑘-crossing numbers involved are finite by condition (TS1),
and the two cut-separations {𝐴,𝐵 } and {𝐶,𝐷} cross which allows us to deduce
the desired inequality between the sums by Lemma 5.49 and 5.51, as follows:
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• by Lemma 5.49, every {𝑋, 𝑌 } ∈ 𝒜 of order 𝑘 that crosses at least one of
{𝐴 ∩ 𝐶,𝐵 ∪ 𝐷} and {𝐵 ∩ 𝐷,𝐴 ∪ 𝐶 } must cross at least one of {𝐴,𝐵 } and
{𝐶,𝐷}; and

• by Lemma 5.51, every {𝑋, 𝑌 } ∈ 𝒜 of order 𝑘 that crosses both {𝐴∩𝐶,𝐵∪𝐷}
and {𝐵 ∩ 𝐷,𝐴 ∪ 𝐶 } must cross both {𝐴,𝐵 } and {𝐶,𝐷}.

But then the strict inequality between the sums, plus our initial assumption that
the 𝑘-crossing number of {𝐴,𝐵 } is less than or equal to that of {𝐶,𝐷}, implies
that one of {𝐴 ∩ 𝐶,𝐵 ∪ 𝐷} and {𝐵 ∩ 𝐷,𝐴 ∪ 𝐶 } must have a 𝑘-crossing number
less than the one of {𝐶,𝐷 }, as desired.

In the second case, {𝐴,𝐵 } does not distinguish the two edge-blocks 𝛽 and 𝛽′.
Recall that all the edge-blocks in the two pairs 𝑖 and 𝑗 are ℓ-edge-blocks for some
values ℓ > 𝑘. Hence 𝛽 ∪ 𝛽′ ⊑ 𝐴, say. Let us denote by 𝛽″ the edge-block in 𝑖 that
lives in 𝐵. Then either 𝛽″ ⊑ 𝐵 ∩ 𝐶 or 𝛽″ ⊑ 𝐵 ∩𝐷, say 𝛽″ ⊑ 𝐵 ∩𝐷. In total:

𝛽 ⊑ 𝐴 ∩ 𝐶, 𝛽′ ⊑ 𝐴 ∩𝐷 and 𝛽″ ⊑ 𝐵 ∩𝐷.

Therefore, {𝐴 ∩ 𝐶,𝐵 ∪ 𝐷} distinguishes the two edge-blocks 𝛽 and 𝛽′ forming the
pair 𝑗 which imposes an order of at least 𝑘, and {𝐵 ∩ 𝐷,𝐴 ∪ 𝐶 } distinguishes the
two edge-blocks forming the pair 𝑖 which imposes an order of at least 𝑘 as well.
Combining these lower bounds with (5.1) we deduce that both {𝐴 ∩ 𝐶,𝐵 ∪ 𝐷}
and {𝐵 ∩𝐷,𝐴 ∪ 𝐶 } have order exactly 𝑘. In particular, they are contained in 𝒜𝑗
and 𝒜𝑖 respectively, and they are corners of {𝐴,𝐵 } and {𝐶,𝐷 } by Lemma 5.49.
Repeating the final argument of the first case, we deduce from the strict inequality
between the sums of the 𝑘-crossing numbers that either {𝐴 ∩ 𝐶,𝐵 ∪ 𝐷} ∈ 𝒜𝑗 has
strictly lower 𝑘-crossing number than {𝐶,𝐷}, or else {𝐵 ∩ 𝐷,𝐴 ∪ 𝐶 } ∈ 𝒜𝑖 has
strictly lower 𝑘-crossing number than {𝐴,𝐵 }, completing the proof.

With all three properties shown, the proof of our main result is all but complete:

Proof of Theorem 25. Let 𝐺 be any connected graph. By Lemma 5.48, Lemma 5.50
and Lemma 5.52 we may apply Lemma 22 to the family (𝒜𝑖 ∶ 𝑖 ∈ 𝐼 ) defined at the
beginning of the section. This results in the desired nested set 𝑁(𝐺) ⊆ 𝒜. To see
that it is canonical, note that any isomorphism 𝜑∶ 𝐺 → 𝐺′ induces an isomorphism
between (𝒜,∼) and (𝒜′, ∼′), where the latter is defined like the former but with
regard to 𝐺′. Thus, by the ‘moreover’ part of Lemma 22, we indeed obtain that
𝜑(𝑁(𝐺)) = 𝑁(𝜑(𝐺)).

5.10.2. From nested sets of bonds to tree-cut-decompositions

Recall that, given a connected graph 𝐺, we denote by 𝑁 = 𝑁(𝐺) the canonical set
of nested bonds from Theorem 25 that efficiently distinguishes all the edge-blocks
of 𝐺. Furthermore, recall that the subset 𝑁𝑘 ⊆ 𝑁 is formed by the bonds in 𝑁 of
order less than 𝑘. In this section, we show property (ii) from above, that is:
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• For every 𝑘 ∈ ℕ, the subset 𝑁𝑘 ⊆ 𝑁 is equal to the set of fundamental cuts of
a tree-cut decomposition of 𝐺 that decomposes 𝐺 into its 𝑘-edge-blocks.

To this end, we first introduce the notion of a tree-cut decomposition. Recall that a
near-partition of a set 𝑀 is a family of pairwise disjoint subsets 𝑀𝜉 ⊆ 𝑀, possibly
empty, such that ⋃𝜉 𝑀𝜉 = 𝑀.

Let 𝐺 be a graph, 𝑇 a tree, and let 𝒳 = (𝑋𝑡)𝑡∈𝑇 be a family of vertex sets
𝑋𝑡 ⊆ 𝑉 (𝐺) indexed by the nodes 𝑡 of 𝑇. The pair (𝑇 ,𝒳) is called a tree-cut-
decomposition of 𝐺 if 𝒳 is a near-partition of 𝑉 (𝐺). The vertex sets 𝑋𝑡 are the parts
or bags of the tree-cut-decomposition (𝑇 ,𝒳). When we say that (𝑇 ,𝒳) decomposes
𝐺 into its 𝑘-edge-blocks for a given 𝑘, we mean that the non-empty parts of (𝑇 ,𝒳)
are the sets of vertices of the 𝑘-edge-blocks of 𝐺. For our purposes, we require the
nodes with non-empty parts to be dense in 𝑇 in that every edge of 𝑇 lies on a path
in 𝑇 that links up two nodes with non-empty parts.

If (𝑇 ,𝒳) is a tree-cut-decomposition, then every edge 𝑡1𝑡2 of its decomposition
tree 𝑇 induces a cut 𝐸(⋃𝑡∈𝑇1

𝑋𝑡 , ⋃𝑡∈𝑇2
𝑋𝑡 ) of 𝐺 where 𝑇1 and 𝑇2 are the two

components of 𝑇 − 𝑡1𝑡2 with 𝑡1 ∈ 𝑇1 and 𝑡2 ∈ 𝑇2. Here, the nodes with non-empty
parts densely lying in 𝑇 ensures that both unions are non-empty, which is required
of the sides of a cut. We call these induced cuts the fundamental cuts of the tree-
cut-decomposition (𝑇 ,𝒳). Note that, unlike the fundamental cuts of a spanning
tree, the fundamental cuts of a tree-cut-decomposition need not be bonds.

It is important that parts of a tree-cut-decomposition are allowed to be empty, as
the following example demonstrates.

Example 5.53. Let the graph 𝐺 arise from the disjoint union of three copies 𝐺1,
𝐺2 and 𝐺3 of 𝐾4 by selecting one vertex 𝑣𝑖 ∈ 𝐺𝑖 for all 𝑖 ∈ [3] and adding all edges
𝑣𝑖𝑣𝑗 (for 𝑖 ≠ 𝑗 ∈ [3]). Then the 3-edge-blocks of 𝐺 are the three vertex sets 𝑉 (𝐺1),
𝑉 (𝐺2) and 𝑉 (𝐺3). Since 𝑁(𝐺) is canonical, we have 𝑁3(𝐺) = {𝐹1, 𝐹2, 𝐹3 } where
𝐹𝑖 ≔ {𝑣𝑖𝑣𝑗 ∶ 𝑗 ≠ 𝑖 }. However, we cannot find a tree-cut-decomposition (𝑇 ,𝒳) of 𝐺
so that, on the one hand, 𝑇 is a tree on three nodes 𝑡1, 𝑡2, 𝑡3 and 𝑋𝑡𝑖 = 𝑉 (𝐺𝑖) for
all 𝑖 ∈ [3], and on the other hand, the fundamental cuts of (𝑇 ,𝒳) are precisely the
bonds in 𝑁3(𝐺): the decomposition tree 𝑇 would then be a path of length two, and
hence would induce two fundamental cuts, but 𝑁3(𝐺) consists of three bonds.

To relate 𝑁𝑘 to a tree-cut decomposition, we will use Theorem 2.2 by Gollin and
Kneip. For this, we first note that cut-separations of a graph are an instance of
set-separations or, more specifically, they form the separation system of bipartitions
of 𝑉 (𝐺). Similarly to the correspondence of tree-decompositions of graphs and
nested sets of vertex separations (cf. Section 2.6.1), a tree-cut decomposition (𝑇 ,𝒳)
makes 𝑇 into an order-respecting 𝑆-tree where 𝑆 is the set of cut-separations which
correspond to its fundamental cuts. We will now consider at the converse.
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𝑁𝑘 is a set of fundamental cuts

The following theorem clearly implies that 𝑁𝑘 is the set of fundamental cuts of a
tree-cut decomposition of 𝐺 that decomposes 𝐺 into its 𝑘-edge-blocks:

Theorem 5.54. Let 𝐺 be any connected graph and 𝑘 ∈ ℕ. Every nested set of bonds
of 𝐺 of order less than 𝑘 is the set of fundamental cuts of some tree-cut-decomposition
of 𝐺.

Proof. Let 𝐺 be any connected graph, 𝑘 ∈ ℕ, and let 𝐵 be any nested set of bonds of
𝐺 of order less than 𝑘. We write 𝑆 for the set of bond-separations which correspond
to the bonds in 𝐵.

First, we wish to use Theorem 2.2 to find an 𝑆-tree (𝑇 , 𝛼) so that 𝛼∶ 𝐸(𝑇 ) → 𝑆 is
an isomorphism. For this, it suffices to show that 𝐵 cannot contain pairwise distinct
bonds 𝐹0, 𝐹1,… , 𝐹𝜔 such that each bond 𝐹𝛼 has a side 𝐴𝛼 with 𝐴𝛼 ⊊ 𝐴𝛽 for all
𝛼 < 𝛽 ⩽ 𝜔. This is immediate from Corollary 5.47.

Second, we wish to find a tree-cut-decomposition (𝑇 ,𝒳) whose fundamental cuts
are precisely equal to the bonds in 𝐵. We define the parts 𝑋𝑡 of (𝑇 ,𝒳) by letting

𝑋𝑡 ≔ ⋂{𝐷 ∶ (𝐶,𝐷) = 𝛼(𝑥, 𝑡) where 𝑥𝑡 ∈ 𝐸(𝑇 ) }.

Then clearly the parts 𝑋𝑡 are pairwise disjoint. To see that ⋃𝑡 𝑋𝑡 includes the
whole vertex set of 𝐺, consider any vertex 𝑣 ∈ 𝑉 (𝐺). We orient each edge 𝑡1𝑡2 ∈ 𝑇
towards the 𝑡𝑖 with 𝑣 ∈ 𝐷 for (𝐶,𝐷) = 𝛼(𝑡3−𝑖, 𝑡𝑖). By Corollary 5.47 we may let 𝑡
be the last node of a maximal directed path in 𝑇; then all the edges of 𝑇 at 𝑡 are
oriented towards 𝑡, and 𝑣 ∈ 𝑋𝑡 follows. Therefore, 𝒳 is a near-partition of 𝑉 (𝐺). It
is straightforward to see that 𝐵 is the set of fundamental cuts of (𝑇 ,𝒳).

𝑁 is not a set of fundamental cuts

Finally, we show that there exists a graph 𝐺 that has no nested set of cuts which,
on the one hand, distinguishes all the edge-blocks of 𝐺 efficiently, and on the other
hand, is the set of fundamental cuts of some tree-cut decomposition.

Example 5.55. This example is a variation of Example 5.33. Consider the locally
finite graph displayed in Fig. 5.4. This graph 𝐺 is constructed as follows. For every
𝑛 ∈ ℕ⩾1 we pick a copy of 𝐾2𝑛+2 together with 𝑛+2 additional vertices 𝑤𝑛

1 ,… ,𝑤𝑛
𝑛+2.

Then we select 2𝑛 vertices of the 𝐾2𝑛+2 and call them 𝑢𝑛
1 ,… , 𝑢𝑛

2𝑛 . Furthermore, we
select 2𝑛+1 vertices of the 𝐾2𝑛+2 , other than the previously chosen 𝑢𝑛

𝑖 , and call them
𝑣𝑛1 ,… , 𝑣𝑛2𝑛+1 . Now we add all the red edges 𝑣𝑛𝑖 𝑢𝑛+1

𝑖 , all the blue edges 𝑤𝑛
𝑖 𝑤𝑛+1

𝑗 , and
if 𝑛 ⩾ 2 we also add the black edge 𝑢𝑛

1𝑤𝑛
1 . Finally, we disjointly add one copy of

𝐾10 and join one vertex 𝑣01 of this 𝐾10 to 𝑢1
1 and 𝑢1

2; and we select another vertex
𝑤0

1 ∈ 𝐾10 distinct from 𝑣01 and add all edges 𝑤0
1𝑤1

𝑖 . This completes the construction.
Now the vertex sets of the chosen 𝐾2𝑛+2 are (2𝑛+2 − 1)-edge-blocks 𝐵𝑛. The

cut-separation 𝐹𝑛 ≔ {⋃𝑛
𝑘=1 𝐵𝑛 , 𝑉 ⧵ ⋃𝑛

𝑘=1 𝐵𝑛 } is the only one that efficiently
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Figure 5.4.: The only cut that efficiently distinguishes the two edge-blocks defined
by 𝐾64 and by 𝐾128 is drawn in green.

distinguishes 𝐵𝑛 from 𝐵𝑛+1. Additionally, the vertex set of the 𝐾10 is a 9-edge-
block 𝐵0. The only cut-separation efficiently distinguishing 𝐵0 and 𝐵1 is 𝐹0 ≔
{𝐵0, 𝑉 ⧵ 𝐵0 }. Therefore, 𝑁(𝐺) must contain all the cuts corresponding to the
cut-separations 𝐹𝑛 (𝑛 ∈ ℕ). But the cut-separations 𝐹𝑛 define an (𝜔 + 1)-chain

(𝐵1, 𝑉 ⧵ 𝐵1) < (𝐵1 ∪ 𝐵2, 𝑉 ⧵ (𝐵1 ∪ 𝐵2)) < ⋯ < (𝑉 ⧵ 𝐵0, 𝐵0),

so 𝑁(𝐺) cannot be equal to the set of fundamental cuts of a tree cut-decomposition
of 𝐺 by Theorem 2.2.

5.10.3. Generating all bonds

A set 𝑆 of cut-separations generates a cut {𝑋, 𝑌 } if and only if both (𝑋, 𝑌 ) and
(𝑌 ,𝑋) can be obtained from finitely many oriented cut-separations in 𝑆 by taking
suprema and infima in the universe of all cut-separations, i.e., the universe of
bipartitions of 𝑉 (𝐺). If 𝑆 generates {𝑋, 𝑌 }, then the cuts corresponding to the
cut-separations in 𝑆 generate the cut corresponding to {𝑋, 𝑌 }. In this section we
prove the following result:

Theorem 26. Let 𝐺 be any connected graph and let 𝑀 be any nested set of bonds
of 𝐺. Then the following assertions are equivalent:

(i) 𝑀 efficiently distinguishes all the edge-blocks of 𝐺;

(ii) For every 𝑘 ∈ ℕ, the ⩽𝑘-sized bonds in 𝑀 generate all the 𝑘-sized cuts of 𝐺.
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For the proof, we use a generalized version of the star-comb lemma [19, Lemma 8.2.2].
A comb in a given graph 𝐺, for our generalization, shall mean one of the following
two substructures of 𝐺:

1. The union of a ray 𝑅 (the comb’s spine) with infinitely many disjoint finite
paths, possibly trivial, that have precisely their first vertex on 𝑅. The last
vertices of those paths are the teeth of this comb.

2. The union of a ray 𝑅 (the comb’s spine) with infinitely many disjoint pairwise
inequivalent rays 𝑅0, 𝑅1,… that have precisely their first vertex on 𝑅. The
ends to which the rays 𝑅0, 𝑅1,… belong are the teeth of this comb.

Given a set 𝑈 ⊆ 𝑉 (𝐺) ∪ Ω(𝐺), a comb attached to 𝑈 is a comb with all its teeth
in 𝑈. A star attached to 𝑈 is either a subdivided infinite star with all its leaves in
𝑈, or a union of infinitely many rays that meet precisely in their first vertex and
belong to distinct ends in 𝑈.

Lemma 5.56 (Generalized star-comb lemma). Let 𝑈 ⊆ 𝑉 (𝐺) ∪Ω(𝐺) be an infinite
set for a connected graph 𝐺. Then 𝐺 contains either a comb attached to 𝑈 or a star
attached to 𝑈.

Proof. If 𝑈 contains infinitely many vertices of 𝐺, then we are done by the standard
star-comb lemma [19, Lemma 8.2.2]. Hence, we may assume that 𝑈 consists of ends
and, say, is countable. Inductively, we choose for each end 𝜔 ∈ 𝑈 a ray 𝑅𝜔 ∈ 𝜔 so
that 𝑅𝜔 is disjoint from all previously chosen rays, ensuring that all chosen rays
are pairwise disjoint, and we let 𝑈 ′ consist of the first vertices of these rays. Then
we consider an inclusionwise minimal tree 𝑇 ⊆ 𝐺 that extends all the rays 𝑅𝜔 with
𝜔 ∈ 𝑈. Let 𝑇 ′ ⊆ 𝑇 be the inclusionwise minimal subtree that contains 𝑈 ′. Then, by
the standard star-comb lemma, 𝑇 ′ contains either a star or a comb attached to 𝑈 ′,
and either extends to a star or comb attached to 𝑈.

For more on stars and combs, see the series [5–8].

Proof of Theorem 26. (ii)→(i). Let 𝑀 be any nested set of bonds of 𝐺 such that, for
every 𝑘 ∈ ℕ, the ⩽𝑘-sized bonds in 𝑀 generate all the 𝑘-sized cuts of 𝐺, and suppose
for a contradiction that there are two edge-blocks 𝛽1, 𝛽2 which are not efficiently
distinguished by any bond in 𝑀. Let {𝑋, 𝑌 } be some bond-separation which
efficiently distinguishes 𝛽1 and 𝛽2, and let 𝑘 be its order. Let { {𝐴ℓ, 𝐵ℓ} ∶ ℓ < 𝑛 }
be a finite set of ⩽𝑘-sized bonds in 𝑀 which generate {𝑋, 𝑌 }. Since 𝑀 does not
efficiently distinguish 𝛽1 from 𝛽2, for every ℓ < 𝑛 we either have that both 𝛽1 and
𝛽2 live in 𝐴ℓ, or that both of them live in 𝐵ℓ. However, this implies that either
both 𝛽1 and 𝛽2 live in 𝑋, or that both of them live in 𝑌, contradicting the fact that
{𝑋, 𝑌 } distinguishes 𝛽1 and 𝛽2.

(i)→(ii). We assume (i). It suffices to prove (ii) for finite bonds. Let 𝐵 = 𝐸(𝑉1, 𝑉2)
be any bond of 𝐺 of size 𝑘, say. By Theorem 5.54, the set formed by the ⩽𝑘-sized
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bonds in 𝑀 is the set of fundamental cuts of a tree-cut decomposition (𝑇 ,𝒳) of 𝐺.
Write (𝑇 , 𝛼) for the 𝑆-tree that arises from (𝑇 ,𝒳).

Since 𝐵 is finite, only finitely many parts of (𝑇 ,𝒳) contain endvertices of edges
in𝐵. We let𝐻 be the minimal subtree of 𝑇 which contains all the nodes corresponding
to these parts. Note that 𝐻 is finite. Then we let 𝐻′ be the subtree of 𝑇 which is
induced by the nodes of 𝐻 and all their neighbours in 𝑇. The subtree 𝐻′ might
be infinite, but it is rayless. Let ℋ be the tree-cut decomposition of 𝐺 which
corresponds to the restricted 𝑆-tree (𝐻′, 𝛼 ↾ 𝐸(𝐻′)).

We claim that every two edge-blocks of 𝐺 that are distinguished by 𝐵 are also
distinguished by some fundamental cut of ℋ. For this, let 𝛽1 ⊑ 𝑉1 and 𝛽2 ⊑ 𝑉2
be any two edge-blocks of 𝐺 that are distinguished by 𝐵. Then 𝛽1 and 𝛽2 are also
distinguished by a ⩽ 𝑘-sized bond in 𝑀, and hence some fundamental cut of (𝑇 ,𝒳)
distinguishes 𝛽1 and 𝛽2 as well. Let 𝑠𝑡 be an edge of 𝑇 whose induced fundamental
cut distinguishes 𝛽1 and 𝛽2, chosen at minimal distance to 𝐻′ in 𝑇. Then 𝛽1 lives
in 𝐶 and 𝛽2 lives in 𝐷 for (𝐶,𝐷) = 𝛼(𝑠, 𝑡), say. We claim that 𝑠𝑡 is also an edge
of 𝐻′, and assume for a contradiction that it is not. Then 𝑠, say, is not a vertex
of 𝐻′ and 𝑡 lies on the 𝑠–𝐻′-path in 𝑇. Since {𝐶,𝐷 } is an element of 𝑀, it is a
bond and in particular 𝐺[𝐶] is connected. Moreover, 𝐶 avoids the endvertices of
the edges in 𝐵, because 𝑡 separates 𝑠 from 𝐻. Therefore, 𝐶 is included in one of
the two sides of 𝐵, say in 𝑉1, so 𝛽1 lives in 𝑉1. The node 𝑡, however, cannot lie in
𝐻 because this would imply 𝑠 ∈ 𝐻′, so 𝑡 has a neighbour 𝑢 in 𝑇 which separates 𝑡
(and 𝑠) from 𝐻. Let (𝐶′, 𝐷′) ≔ 𝛼(𝑡, 𝑢). Since 𝑠 and 𝑢 are distinct neighbours of 𝑡,
we have (𝐶,𝐷) ⩽ (𝐶′, 𝐷′). As argued for (𝐶,𝐷), we find that 𝐶′ must be included
in one of the two sides of 𝐵, and this side must be 𝑉1 since 𝐶 is included in both
𝑉1 and 𝐶′. By the choice of 𝑠𝑡 at minimal distance to 𝐻′, the edge-block 𝛽2 must
live in 𝐶′ (or we could replace 𝑠𝑡 with 𝑡𝑢, contradicting the choice of 𝑠𝑡). But then
both 𝛽1 and 𝛽2 live in 𝑉1, the desired contradiction.

We replace (𝑇 ,𝒳) with ℋ. Then:

Every two edge-blocks of 𝐺 that are distinguished by 𝐵 are also distin-
guished by some fundamental cut of (𝑇 ,𝒳). (∗)

Given a node 𝑡 ∈ 𝑇, we denote by �̂�𝑡 the subset of ̂𝑉 (𝐺) which is the union of all
the (𝑘 + 1)-edge-blocks of 𝐺 that live in 𝐷 for all cut-separations (𝐶,𝐷) = 𝛼(𝑠, 𝑡)
with (𝑠, 𝑡) ∈ 𝐸(𝑇 ). Then �̂�𝑡 ∩ 𝑉 (𝐺) = 𝑋𝑡 and we call �̂�𝑡 the extended part of
𝑡. Note that extended parts of distinct nodes are disjoint. Since 𝑇 is rayless, the
extended parts near-partition ̂𝑉 (𝐺). As an immediate consequence of (∗), every
extended part of (𝑇 ,𝒳) lives either in 𝑉1 or 𝑉2.

We colour the nodes of 𝑇 using red and blue, as follows. Colour a node 𝑡 ∈ 𝑇
red if �̂�𝑡 is non-empty and �̂�𝑡 ⊑ 𝑉1. Similarly, we colour a node 𝑡 ∈ 𝑇 blue if �̂�𝑡
is non-empty and �̂�𝑡 ⊑ 𝑉2. Finally, we consider all the nodes 𝑡 ∈ ̂𝑇 with �̂�𝑡 = ∅.
These induce a forest in 𝑇. Colour all the nodes in a component of this forest red if
the component has a red neighbour, and blue otherwise.
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Let 𝑇1 ⊆ 𝑇 be the forest induced by the red nodes, and let 𝑇2 ⊆ 𝑇 be the
forest induced by the blue nodes. The way in which we coloured the nodes with
empty extended parts ensures that, for every connected component 𝐶 of 𝑇1 or
of 𝑇2, some node 𝑡 ∈ 𝐶 has a non-empty extended part �̂�𝑡. Note that 𝐵 =
𝐸(⋃𝑡∈𝑇1

𝑋𝑡 , ⋃𝑡∈𝑇2
𝑋𝑡 ) by the definition of 𝑇1 and 𝑇2. We claim that we are done

if 𝑇 contains only finitely many 𝑇1–𝑇2-edges. Indeed, if 𝑠0𝑡0,… , 𝑠𝑛𝑡𝑛 are the finitely
many 𝑇1–𝑇2-edges with 𝑠ℓ ∈ 𝑇1 and 𝑡ℓ ∈ 𝑇2, then

(𝑉1, 𝑉2) = ⋀
𝐶 a component of 𝑇2

⋁
ℓ ∶ 𝑡ℓ∈𝐶

𝛼(𝑠ℓ, 𝑡ℓ) .

Thus, it remains to show that 𝑇 contains only finitely many 𝑇1–𝑇2-edges. For this,
we consider the tree ̃𝑇 that arises from 𝑇 by contracting every component of 𝑇1
and every component of 𝑇2 to a single node. Since 𝑇 is rayless, so is ̃𝑇. By Kőnig’s
infinity lemma, it remains to show that ̃𝑇 is locally finite.

Suppose for a contradiction that 𝑑 ∈ ̃𝑇 is a vertex that has some infinitely many
neighbours 𝑐𝑛 (𝑛 ∈ ℕ). Recall that the sets 𝑌𝑐 ≔ ⋃𝑡∈𝑐

̂𝑋𝑡, where 𝑐 is a node of ̃𝑇,
are non-empty. We choose one point 𝑢𝑛 ∈ 𝑌𝑐𝑛 for every 𝑛 ∈ ℕ, and we apply the
star-comb lemma in the connected side 𝐺[𝑉𝑖] of 𝐵 where all sets 𝑌𝑐𝑛 live to the
infinite set 𝑈 ≔ {𝑢𝑛 ∶ 𝑛 ∈ ℕ}. Then we cannot get a star, because the finite
fundamental cuts of (𝑇 ,𝒳) induced by its 𝑇𝑖–𝑑-edges would force the centre vertex
to lie in 𝑌𝑑, contradicting the fact that 𝑌𝑑 lives in 𝑉3−𝑖. Therefore, the star-comb
lemma must return a comb contained in 𝐺[𝑉𝑖] and attached to 𝑈. Without loss of
generality, each 𝑢𝑛 is a tooth of this comb.

Let us consider the end of 𝐺 that contains the spine of the comb. This end is
contained in a (𝑘+1)-edge-block 𝛽 ⊑ 𝑉𝑖. And 𝛽 in turn is included in a set 𝑌𝑐 where
𝑐 is a component of 𝑇𝑖. Hence 𝑐 ≠ 𝑑. But then the fundamental cut of (𝑇 ,𝒳) which
corresponds to the 𝑇𝑖–𝑑-edge on the 𝑐–𝑑-path in 𝑇 separates a tail of the comb from
infinitely many 𝑢𝑛, which is a contradiction.
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6. Trees of tangles from tangle–tree duality

In this chapter, which is based on [40] and joint work with Christian
Elbracht and Jakob Kneip, we present a way of deducing tree-of-tangles
theorems from the abstract tangle–tree duality theorem.

Already in the original work by Robertson and Seymour the theory of tangles has two
major theorems: the tree-of-tangles theorem and the tangle–tree duality theorem.
These two form the main pillars of tangle theory.

As we have seen, the first of these theorems allows one to distinguish all the tangles
in a tree-like way, displaying their relative position in the underlying combinatorial
structure. Recall one of the most abstract variants of the tree-of-tangles theorem:

Theorem 5.4 ([25, Theorem 6]).  p. 60Let 𝑆 be a submodular separation system in some
universe 𝑈 of separations and let 𝒫 a set of profiles of 𝑆. Then 𝑆 contains a nested
set that distinguishes 𝒫.

The tangle–tree duality theorem, on the other hand, provides a tree-like dual
object to tangles which, if no tangle exists, serves as a witness that there can be no
tangle. In this chapter we demonstrate the versatility of the most abstract version
of this duality theorem: we deduce Theorem 5.4 and some of its variations from the
tangle–tree duality theorem, reducing the two pillars of abstract tangle theory to a
single pillar.

In order to use tangle–tree duality to deduce tree-of-tangles theorems like The-
orem 5.4, we exploit the generality of the most abstract version of the tangle–tree
duality theorem, which reads as follows:

Theorem 6.1 (Tangle–tree duality theorem [28, Theorem 4.3]).  p. 134Let 𝑈 be a universe
containing a finite separation system 𝑆 ⊆ 𝑈 and let ℱ ⊆ 2𝑈 be a set of stars such
that ℱ is standard for 𝑆 and 𝑆 is ℱ-separable. Then exactly one of the following
statements holds:

• there is an ℱ-tangle of 𝑆;
• there is an 𝑆-tree over ℱ.

The strength of Theorem 6.1 lies in the flexibility it allows in the choice of ℱ.
This set ℱ can be tailored to capture a wide variety of tangles and clusters, allowing
Theorem 6.1 to be employed in a multitude of different settings ([25, 27]). The
freedom in choosing and manipulating ℱ will also allow us to achieve our goal of
deducing tree-of-tangles theorems from Theorem 6.1: by a clever choice of ℱ we can

131



6. Trees of tangles from tangle–tree duality

ensure that there is no ℱ-tangle of 𝑆, and that the 𝑆-tree over ℱ one then obtains
will be a tree of tangles. We will present multiple variations of this idea throughout
the chapter.

In terms of simplicity and brevity, reducing the tree-of-tangles theorem to the
tangle–tree duality theorem in this way cannot compete with its direct proofs, not
with those in [25, 26] and certainly not the one in Chapter 5. Instead of competing
in terms of simplicity and brevity just for a proof of the tree-of-tangles theorem, our
aim here is to bridge the two parts of the theory needed for their classical proofs.
This can be viewed in two ways.

Firstly, that we introduce tools from tangle–tree duality into the world of trees of
tangles, which gives us a new method for building trees in this context very unlike
the proofs in [25, 26] and Chapter 5. Secondly, and perhaps more importantly, from
the perspective of tangle–tree duality this may be viewed as introducing a new range
of ways of how to apply the duality theorem by a careful choice of ℱ. Previous
applications of Theorem 6.1 all worked with largely similar choices of ℱ, all designed
to capture some notion of ‘width’, whereas we specifically construct ℱ in such a
way that no ℱ-tangle can exist, thereby making sure that Theorem 6.1 gives us the
dual object which will be the desired tree-of-tangles.

A new result that we get from this method is that it allows us to bound the
degrees of the nodes in a tree of tangles in some contexts. Getting such a degree
condition out of the original proofs does not appear to be simple.

To achieve our last result, we use a strengthened version of Theorem 6.1, the
proof of which can be found in the paper [40] upon which this chapter is based or
in Kneip’s thesis [58].

In Section 6.1 we will introduce the required terminology of tangle–tree duality.
In Section 6.2 we prove our first basic tree-of-tangles theorem, for structurally
submodular separation systems. A refined version of this argument will be given
in Section 6.3, where we show that the approach via tangle–tree duality yields a
bound on the degrees of the nodes in a tree of tangles. In Section 6.4 we present
a more involved argument to obtain a tree of tangles that distinguishes a set of
profiles efficiently. Again, this approach can be used to obtain a result about the
degrees in such a tree, and we do so in Section 6.5. In Section 6.6 we prove a tree-
of-tangles theorem for tangles of different orders. In our final section, Section 6.6.1,
we introduce the strengthened tangle–tree duality theorem and use it to obtain a
tree-of-tangles theorem for profiles of different order.

6.1. Tangle–tree duality: terminology and tools

Since we combine the theory of tangle–tree duality and of trees of tangles we need
the terminology of both. Consequently, this results in a large number of definitions
which need to be understood for the comprehension of our proofs. In addition
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to the frameworks of [20, 25, 26] which are comprehensively used throughout the
thesis, we further need the tools of tangle–tree duality from [28]. We will summarise
the needed facts and terminology briefly, for an in-depth motivation of the set-up
see [28] itself.

We will again be working with ℱ-tangles, particularly ℱ-tangles in submodular
universes, and profiles. Observe that profiles are 𝒫-tangles for the set 𝒫 of all ‘profile
triples’ { 𝑟, 𝑠, (𝑟 ∨ 𝑠)∗ } ⊆ 𝑆 .

For the duality theorem however, we will consider sets ℱ of stars: sets 𝜎 ⊆ 𝑆 of
non-degenerate separations such that 𝑠 ⩽ 𝑡 for all 𝑠, 𝑡 ∈ 𝜎.

We say that a set ℱ forces a separation 𝑠 ∈ 𝑆 if { 𝑠 } ∈ ℱ. A set ℱ is standard
for 𝑆 if it forces all trivial separations in 𝑆 , that is ℱ contains all singletons { 𝑠 }
for 𝑠 ∈ 𝑆 which are cotrivial in 𝑆 .

Recall that, given a separation system 𝑆 , an 𝑆-tree (𝑇 , 𝛼) is a tree 𝑇 together with
a function 𝛼∶ 𝐸(𝑇 ) → 𝑆 which commutes with ∗, i.e., 𝛼(𝑒) = 𝛼(𝑒)∗. The 𝑆-tree is
order-respecting if 𝛼 preserves the partial order: 𝛼(𝑒) ⩽ 𝛼(𝑓) whenever 𝑒 ⩽ 𝑓, i.e.,
𝛼 is a homomorphism of separation systems.

Now, for 𝑡 ∈ 𝑉 (𝑡) we denote as 𝛼(𝑡) the set {𝛼(𝑠𝑡) ∶ 𝑠 ∈ 𝑁(𝑡) }. Given some set
ℱ of subsets of 𝑆, an 𝑆-tree (𝑇 , 𝛼) is over ℱ if 𝛼(𝑡) ∈ ℱ for all 𝑡 ∈ 𝑉 (𝑇 ).

An 𝑆-tree (𝑇 , 𝛼) is irredundant, if for every node 𝑡 ∈ 𝑉 (𝑇 ) and distinct neighbours
𝑡′, 𝑡″ ∈ 𝑁(𝑡) we have that 𝛼(𝑡′, 𝑡) ≠ 𝛼(𝑡″, 𝑡).

Note that, if ℱ is a set of stars, then every irredundant 𝑆-tree over ℱ is order-
respecting.

Given a separation system 𝑆 inside a universe 𝑈 and 𝑟, 𝑠0 ∈ 𝑆 with 𝑠0 ⩾ 𝑟 and
where 𝑟 is neither degenerate nor trivial in 𝑆 , the shifting map 𝑓 ↓𝑟𝑠0 is defined by
letting

𝑓 ↓𝑟𝑠0 (𝑠) = 𝑠 ∨ 𝑠0 and 𝑓 ↓𝑟𝑠0 (𝑠) = (𝑠 ∨ 𝑠0 )∗

for every 𝑠 ∈ 𝑆⩾𝑟 ⧵ { 𝑟 }, where 𝑆⩾𝑟 is the set of all separations 𝑠 ∈ 𝑆 which have an
orientation 𝑠 with 𝑠 ⩾ 𝑟, and 𝑆⩾𝑟 is the set of all orientations of separations in 𝑆⩾𝑟 .

For a leaf 𝑥 of an irredundant 𝑆-tree (𝑇 , 𝛼) over some set of stars with { 𝑟 } = 𝛼(𝑥),
we write

𝛼𝑥,𝑠0 ≔ 𝑓 ↓𝑟𝑠0 ∘ 𝛼 .

The resulting new tree (𝑇 , 𝛼𝑥,𝑠0 ) is called the shift of (𝑇 , 𝛼) from 𝑟 to 𝑠0 if the leaf
𝑥 is the only one which has 𝛼(𝑥) = { 𝑟 }.

Given a separation system 𝑆 inside a universe 𝑈 and a star 𝜎 ⊆ 𝑆 a shift of 𝜎 (to
some 𝑠0 ∈ 𝑆) is a star of the form

𝜎𝑠0
𝑥 ≔ {𝑥 ∨ 𝑠0 } ∪ { 𝑦 ∧ 𝑠0 ∶ 𝑦 ∈ 𝜎 ⧵ { 𝑥 } },

where 𝑥 ∈ 𝜎. Note that if, for some 𝑟 ∈ 𝑆 , we have 𝑥 ⩾ 𝑟, then 𝜎𝑠0
𝑥 is the image of

𝜎 under 𝑓 ↓𝑟𝑠0 .
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A separation 𝑠 emulates 𝑟 in 𝑆 if 𝑠 ⩾ 𝑟 and for every 𝑡 ∈ 𝑆 ⧵ { 𝑟 } with 𝑡 ⩾ 𝑟 we
have 𝑠 ∨ 𝑟 ∈ 𝑆 . The separation 𝑠 emulates 𝑡 in 𝑆 for ℱ if additionally for every
star 𝜎 ∈ ℱ with 𝑟 ∉ 𝜎 and every 𝑥 ∈ 𝜎 with 𝑥 ⩾ 𝑟 we have 𝜎𝑠

𝑥 ∈ ℱ.
Note that for an irredundant 𝑆-tree (𝑇 , 𝛼) over some set of stars ℱ with { 𝑟 } =

𝛼(𝑥), for some leaf 𝑥 of 𝑇, the shift from 𝑟 to 𝑠0 is again an 𝑆-tree over ℱ if 𝑠0
emulates 𝑟 in 𝑆 for ℱ.

A separations system 𝑆 is separable if for any two non-trivial non-degenerate
separations 𝑟1 , 𝑟2 ∈ 𝑆 with 𝑟1 ⩽ 𝑟2 there exists a separation 𝑠0 ∈ 𝑆 , with
𝑟1 ⩽ 𝑠0 ⩽ 𝑟2 such that 𝑠0 emulates 𝑟1 in 𝑆 and 𝑠0 emulates 𝑟2 in 𝑆. The
separation system 𝑆 is ℱ-separable if we can choose, for any two such 𝑟1 and 𝑟2
which are non-trivial non-degenerate and not forced by ℱ, such an 𝑠0 so that 𝑠0
emulates 𝑟1 in 𝑆 for ℱ and 𝑠0 emulates 𝑟2 in 𝑆 for ℱ.

The abstract tangle–tree duality theorem now states the following:

Theorem 6.1 (Tangle–tree duality theorem [28, Theorem 4.3]). Let 𝑈 be a universe
containing a finite separation system 𝑆 ⊆ 𝑈 and let ℱ ⊆ 2𝑈 be a set of stars such
that ℱ is standard for 𝑆 and 𝑆 is ℱ-separable. Then exactly one of the following
statements holds:

• there is an ℱ-tangle of 𝑆;
• there is an 𝑆-tree over ℱ.

If, in the following, we speak of the duality theorem, we mean Theorem 6.1.
The condition of ℱ-separability is sometimes split into two parts which, in sum,

are stronger: Firstly, that 𝑆 is separable and secondly that ℱ is closed under shifting,
that is, every shift 𝜎′ of a star 𝜎 ∈ ℱ is also in ℱ if 𝜎′ ⊆ 𝑆 . (Compare [25, Lemma
12].)

We shall need the following additional lemmas from the literature:

Lemma 6.2 ([28, Lemma 2.1]). Every irredundant 𝑆-tree (𝑇 , 𝛼) over stars is
order-respecting. In particular, 𝛼(𝐸(𝑇 )) is a nested set of separations in 𝑆 .

Lemma 6.3 ([28, Lemma 2.2]). Let (𝑇 , 𝛼) be an irredundant 𝑆-tree over a set
ℱ of stars. Let 𝑒, 𝑓 be distinct edges of 𝑇 with orientations 𝑒 < 𝑓 such that
𝛼(𝑒) = 𝛼(𝑓) ≕ 𝑟. Then 𝑟 is trivial.
In particular, 𝑇 cannot have distinct leaves associated with the same star { 𝑟 }

unless 𝑟 is trivial.

Lemma 6.4 ([28, Lemma 2.3]). If (𝑇 , 𝛼) is an 𝑆-tree over ℱ, possibly redundant,
then 𝑇 has a subtree 𝑇 ′ such that (𝑇 ′, 𝛼′) is an irredundant 𝑆-tree over ℱ, where 𝛼′

is the restriction of 𝛼 to 𝐸(𝑇 ′). If (𝑇 , 𝛼) is rooted at a leaf 𝑥 and 𝑇 has an edge,
then 𝑇 ′ can be chosen so as to contain 𝑥 and 𝑒𝑥, the edge incident to 𝑥 in 𝑇.

Lemma 6.5 ([28, Lemma 2.4]). Let (𝑇 , 𝛼) be an 𝑆-tree over a set ℱ of stars, rooted
at a leaf 𝑥. Assume that 𝑇 has an edge, and that 𝑟 = 𝛼(𝑒𝑥 ) is non-trivial. Then 𝑇
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has a minor 𝑇 ′ containing 𝑥 and 𝑒𝑥 such that (𝑇 ′, 𝛼′), where 𝛼′ = 𝛼 ↾ 𝐸(𝑇 ′), is a
tight and irredundant 𝑆-tree over ℱ.

For every such (𝑇 ′, 𝛼′) the edge 𝑒𝑥 is the only edge 𝑒 ∈ 𝐸(𝑇 ′) with 𝛼(𝑒) = 𝑟.

Lemma 6.6 ([25, Lemma 13]). Let 𝑈 be a universe of separations and 𝑆 ⊆ 𝑈 a
structurally submodular separation system. Then 𝑆 is separable.

Moreover, we shall need a variant of [28, Lemma 4.2] which follows with the exact
same proof:

Lemma 6.7 ([28]). Let ℱ ⊆ 2𝑈 be a set of stars. Let (𝑇 , 𝛼) be a tight and
irredundant 𝑆-tree with at least one edge, over some set of stars, and rooted at a
leaf 𝑥. Assume that 𝑟 ≔ 𝛼(𝑒𝑥 ) is non-trivial and non-degenerate, let 𝑠0 ∈ 𝑆 emulate 𝑟
in 𝑆 for ℱ, and consider 𝛼′ ≔ 𝛼𝑥,𝑠0 . Then (𝑇 , 𝛼′) is an order-respecting 𝑆-tree in
which { 𝑠0 } is a star associated with 𝑥 but with no other leaf of 𝑇. Moreover 𝛼′(𝑡) ∈ ℱ
for all 𝑡 ≠ 𝑥 with 𝛼(𝑡) ∈ ℱ.

The only difference in the statement between Lemma 6.7 and [28, Lemma 4.2]
is that [28, Lemma 4.2] requires that (𝑇 , 𝛼) is an 𝑆-tree over ℱ, whereas we only
require (𝑇 , 𝛼) to be an 𝑆-tree over some set of stars. Consequently, in [28, Lemma
4.2] it is shown that then (𝑇 , 𝛼′) is an 𝑆-tree over ℱ ∪ {{𝑠0 } } whereas we only
conclude that 𝛼′(𝑡) ∈ ℱ whenever 𝛼(𝑡) ∈ ℱ.

6.1.1. Splices in submodular universes

In addition to the existing terminology, we shall use the following new concept,
which has already been considered in [27], but was not given a name there: In a
submodular universe 𝑈 a separation 𝑠 is a splice for a separation 𝑟 with 𝑟 ⩽ 𝑠
if there is no separation 𝑡 with 𝑟 ⩽ 𝑡 ⩽ 𝑠 and |𝑡| < |𝑠|. A splice between two
separations 𝑟 and 𝑠 with 𝑟 ⩽ 𝑠 is one of minimum order among all 𝑡 with 𝑟 ⩽ 𝑡 ⩽ 𝑠.

These splices are good choices for proving separability due to the next lemma.
It follows directly from the proof of Lemma 3.4 of [27] which, phrased in our
terminology, considers a splice between two separations. We recapitulate the main
argument of this proof below.

Lemma 6.8 ([27]). Consider 𝑆𝑘 ⊆ 𝑈 in a submodular universe. If 𝑠 ∈ 𝑆𝑘 is a
splice for 𝑟 ∈ 𝑆𝑘 , then, for every 𝑡 ∈ 𝑈 with 𝑡 ⩾ 𝑟, the order of 𝑡 ∨ 𝑠 is at most the
order of 𝑡. In particular, 𝑠 emulates 𝑟 in 𝑆𝑘 .

Proof sketch, see [27, Lemma 3.4]. If the order of 𝑡 ∨ 𝑠 were greater than the order
of 𝑡, then, by submodularity, the order of 𝑡 ∧ 𝑠 would be less than the order of 𝑠.
However, by the fish Lemma 2.1, 𝑟 ⩽ 𝑡 ∧ 𝑠 ⩽ 𝑠 and this contradicts the fact that 𝑠
is a splice for 𝑟.

This lemma then directly implies the ultimate statement of [27, Lemma 3.4]:

Lemma 6.9 ([27, Lemma 3.4]). Every 𝑆𝑘 ⊆ 𝑈 in a submodular universe is separable.
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6.2. Trees of tangles in submodular separation systems

In this section we will prove a first tree-of-tangles theorem. It is a theorem for
regular profiles, all of the same structurally submodular separation system, and
states as follows:

Theorem 6.10. Let 𝑆 be a submodular separation system in some universe of
separations 𝑈. Then 𝑆 contains a nested set that distinguishes the set of regular
profiles of 𝑆.

By itself Theorem 6.10 is nothing special; indeed, it is a slight weakening of
Theorem 5.4, which asserts the same but without requiring the profiles to be regular.
In this case the ingredients of the proof are more interesting than its result: we shall
obtain Theorem 6.10 as a direct consequence of Theorem 6.1.

So let 𝑆 be a structurally submodular separation system inside some universe 𝑈.
Since we are interested in the regular profiles of 𝑆 we may assume that 𝑆 has no
degenerate elements. Our strategy will be as follows: we shall construct a set
ℱ ⊆ 2𝑈 for which there is no ℱ-tangle of 𝑆, and so that every element of ℱ is
included in at most one regular profile of 𝑆. If we can achieve this, then Theorem 6.1
applied to this set ℱ will yield an 𝑆-tree over ℱ. The set 𝑁 of edge labels of this
𝑆-tree (𝑇 , 𝛼) will then be the desired nested set distinguishing all regular profiles
of 𝑆: each regular profile 𝑃 of 𝑆 orients the edges of 𝑇 and hence includes a star 𝜎
of the form 𝛼(𝑡) for some 𝑡 ∈ 𝑉 (𝑇 ). By choice of ℱ, this 𝜎 is included in no other
regular profile of 𝑆, which means that it distinguishes 𝑃 from all other profiles.

To construct this set ℱ, first let 𝒫 be the set of all ‘profile triples’ in 𝑆 : the set
of all { 𝑟, 𝑠, (𝑟 ∨ 𝑠)∗ } ⊆ 𝑆 . For a consistent orientation of 𝑆 it is then equivalent to
be a profile of 𝑆 and to be a 𝒫-tangle. Furthermore, let 𝒞 be the set of all { 𝑠 } with
𝑠 ∈ 𝑆 co-small. Finally, let ℳ consist of each of the sets max𝑃 of maximal elements
of 𝑃 for each regular profile 𝑃 of 𝑆. We then take

ℱ ≔ 𝒫∪ 𝒞 ∪ℳ.

With these definitions the regular profiles of 𝑆 are precisely its (𝒫∪ 𝒞)-tangles; and
there are no ℱ-tangles of 𝑆 since each regular profile 𝑃 of 𝑆 includes max𝑃 ∈ ℳ ⊆ ℱ.
If this ℱ were a set of of stars and if we could feed this ℱ to Theorem 6.1, we
would receive an 𝑆-tree over ℱ and the edge labels of this 𝑆-tree would be our
desired nested set, since each element of ℱ in included in at most one regular profile
of 𝑆: indeed, the regular profiles of 𝑆 have no subsets in 𝒫 or 𝒞, and each element
max𝑃 ∈ ℳ in included only in 𝑃 itself.

Unfortunately, we are still some way off from plugging ℱ into Theorem 6.1: we
need to ensure that ℱ is a set of stars that is standard for 𝑆 and that 𝑆 is ℱ-
separable. Out of these the second and one half of the third are easy: ℱ is standard
for 𝑆 since 𝒞 ⊆ ℱ is, and 𝑆 is separable by Lemma 6.6.
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6.2. Trees of tangles in submodular separation systems

We thus need to show that 𝑆 is not only separable but ℱ-separable. While our
current set ℱ is not even a set of stars yet, in [23] a solution was laid out for this
exact situation: a series of lemmas from [23] shows that we can simply transform ℱ
into a set of stars and close it under shifting without altering the set of ℱ-tangles
of 𝑆.

The way to do this is as follows. Given two elements 𝑟 and 𝑠 of some set 𝜎 ⊆ 𝑆 ,
by submodularity, either 𝑟 ∧ 𝑠 or 𝑟 ∧ 𝑠 must lie in 𝑆 . Uncrossing 𝑟 and 𝑠 in 𝜎 then
means to replace either 𝑟 by 𝑟 ∧𝑠 or 𝑠 by 𝑟 ∧𝑠, depending on which of these two lies
in 𝑆 . (Structural submodularity ensures that at least one of them does.) Uncrossing
all pairs of elements of 𝜎 in turn yields a star 𝜎∗, which we call an uncrossing of 𝜎.
(Note that 𝜎∗ is not in general unique since it depends on the order in which one
uncrosses the elements of 𝜎.) It is then easy to see that a regular profile of 𝑆 includes
𝜎 if and only if it includes 𝜎∗:

Lemma 6.11 ([23, Lemma 11]). If a regular profile of 𝑆 includes an uncrossing of
some set, it also includes that set.

Conversely, if a regular consistent orientation of 𝑆 includes some set, it also
includes each uncrossing of that set.

Let us write ℱ∗ for the set of all uncrossings of elements of ℱ. Then ℱ∗ is a set
of stars that is standard for 𝑆. We are still not done, however, since ℱ∗ need not be
closed under shifting. We can fix this in a similar manner though.

Just as for uncrossings it is not hard to show that the inclusion of a star’s shift in
a regular profile implies that star’s inclusion:

Lemma 6.12 ([23, Lemma 13]). If a regular profile of 𝑆 includes a shift of some
star, it also includes that star.

In [23] the definition of a shift of a star contains additional technical assumptions
on 𝜎 and 𝑠0 , keeping in line with the precise assumptions of Theorem 6.1. However
the proof of Lemma 6.12 does not necessitate this, and neither does its application.

Lemma 6.12 says that if we close ℱ∗ under shifting we, again, do not alter the set
of ℱ∗-tangles of 𝑆. Formally, set 𝒢0 = ℱ∗, and for 𝑖 ⩾ 1 let 𝒢𝑖 be the set of all shifts
of stars in 𝒢𝑖−1. We write ̂ℱ∗ ≔ ⋃𝑖∈ℕ 𝒢𝑖. Then, by Lemma 6.12, the ̂ℱ∗-tangles
of 𝑆 are precisely its ℱ∗-tangles, which is to say that there are no ̂ℱ∗-tangles of 𝑆.
Moreover, this set ̂ℱ∗ still has the property that each star in it is included in at
most one regular profile: let us say that ̂𝜎∗ ∈ ̂ℱ∗ originates from 𝜎 ∈ ℱ if ̂𝜎∗ can
be obtained by a series of shifts from an uncrossing of 𝜎. Lemma 6.11 and 6.12 then
say that if ̂𝜎∗ ⊆ 𝑃 for a regular profile 𝑃, and ̂𝜎∗ originates from 𝜎 ∈ ℱ, then 𝜎 ⊆ 𝑃.
Since the only element of ℱ which 𝑃 includes is max𝑃, this implies that no other
regular profile of 𝑆 includes ̂𝜎∗.

We can thus formally prove Theorem 6.10:
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6. Trees of tangles from tangle–tree duality

Proof of Theorem 6.10. Define 𝒫, 𝒞, ℳ, ℱ, ℱ∗, and ̂ℱ∗ as above. Then ̂ℱ∗ is
standard for 𝑆 since 𝒞 ⊆ ̂ℱ∗, and closed under shifting by construction. By
Lemma 6.6 𝑆 is separable. Together this gives that 𝑆 is ℱ-separable. Hence we can
apply the tangle–tree duality theorem, Theorem 6.1, to obtain either an ̂ℱ∗-tangle
of 𝑆 or an 𝑆-tree over ̂ℱ∗.

We claim that the first is impossible. For suppose that 𝑃 is some ̂ℱ∗-tangle of 𝑆.
From 𝒞 ⊆ ̂ℱ∗ we know that 𝑃 is a regular and consistent orientation of 𝑆. If 𝑃 has
the profile property (P), then we could derive a contradiction from Lemma 6.11
and 6.12 since 𝑆 has no ℱ-tangle. On the other hand, if 𝑃 is not a profile, then 𝑃
includes some set 𝜎 ∈ 𝒫. By the second part of Lemma 6.11 𝑃 then also includes
some (in fact: each) uncrossing of 𝜎 and hence a set in ℱ∗ ⊆ ̂ℱ∗, contrary to its
status as an ̂ℱ∗-tangle.

So let (𝑇 , 𝛼) be the 𝑆-tree over ̂ℱ∗ returned by Theorem 6.1, which we may
assume to be irredundant (Lemma 6.4). Let 𝑁 be the image of 𝛼. Then 𝑁 is
a nested subset of 𝑆 (Lemma 6.2). Let us show that 𝑁 distinguishes all regular
profiles of 𝑆. Since (𝑇 , 𝛼) is an 𝑆-tree over ̂ℱ∗ each consistent orientation of 𝑆
includes some star ̂𝜎∗ ∈ ̂ℱ∗ ∩ 2𝑁. In particular if 𝑃 is a regular profile of 𝑆, then 𝑃
includes some ̂𝜎∗ ∈ ̂ℱ∗ ∩2𝑁. Since the only element of ℱ which 𝑃 includes is max𝑃,
this ̂𝜎∗ must originate from max𝑃. Consequently no other regular profile of 𝑆 can
include ̂𝜎∗, since none of them include max𝑃. Thus ̂𝜎∗ distinguishes 𝑃 from every
other regular profile of 𝑆. Since 𝑃 was arbitrary this shows that 𝑁 distinguishes all
regular profiles of 𝑆.

Let us make some remarks on this proof of Theorem 6.10. First, in the definition
of ℱ, we could have used other sets ℳ: the only properties of ℳ that we used
is that every regular profile of 𝑆 contains some set from ℳ, and that no element
of ℳ is included in more than one such regular profile. We will put this observation
to good use in Section 6.3, where we will make a more refined choice for ℳ than
simply collecting the sets of maximal elements from each profile.

Second, with the approach shown here it is not easy to strengthen Theorem 6.10 to
the level of Theorem 5.4 by dropping the assumption of regularity, since Lemma 6.12
cannot do without this regularity.

In the remainder of this section we will show a more direct version of the proof
presented above. This proof will be the guiding principle by which we will approach
the issues of efficiency and profiles of differing order in Sections 6.4 and 6.6.

The core idea is that one can take as ℱ the set of all stars that are included
in at most one regular profile of 𝑆. An 𝑆-tree over this set ℱ would immediately
lead to the desired nested set distinguishing all regular profiles. Moreover this ℱ is
standard for 𝑆 since 𝒞 ⊆ ℱ. To obtain this 𝑆-tree over ℱ from Theorem 6.1 one
would only need to show two things, namely that 𝑆 is ℱ-separable and that there
is no ℱ-tangle of 𝑆. The first of these amounts to Lemma 6.12; the second requires
the two insights that every ℱ-avoiding consistent orientation is a regular profile,
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6.2. Trees of tangles in submodular separation systems

and that each regular profile of 𝑆 includes some star in ℱ, both of which retrace
some steps of Lemma 6.11.

Lemma 6.13. Let 𝑆 ⊆ 𝑈 be a submodular separation system in a universe 𝑈 and
let 𝑃 be a profile of 𝑆 . There exists a star 𝜎 ⊆ 𝑃 such that no other profile of 𝑆
includes 𝜎.

Proof. Let 𝜎 ⊆ 𝑃 be a star which minimizes the number of profiles which include 𝜎.
Suppose for a contradiction that there exists a profile 𝑃 ′ ≠ 𝑃 with 𝜎 ⊆ 𝑃. Some
separation 𝑠, say, distinguishes 𝑃 from 𝑃 ′. Clearly 𝑠 crosses some element of 𝜎.

Suppose that, subject to the above, 𝜎 and 𝑠 are chosen so that the number of
separations in 𝜎 that 𝑠 crosses is minimum. Let 𝑡 ∈ 𝜎 be a separation that 𝑠 crosses.
If either of the corner separations 𝑡 ∨𝑠 or 𝑡 ∨𝑠 was in 𝑆 , then, by the profile property,
it would distinguish 𝑃 and 𝑃 ′. It would also, by the fish Lemma 2.1, cross one less
separation in 𝜎 than 𝑠 does, contradicting the choice of 𝑠.

So by submodularity the corner separations 𝑡 ∧ 𝑠 and 𝑡 ∧ 𝑠 are in 𝑆 . Note that,
by the profile property, any profile including

𝜎′ ≔ 𝜎 ⧵ { 𝑡 } ∪ { 𝑡 ∧ 𝑠, 𝑡 ∧ 𝑠 }

also includes 𝜎. Consequently 𝜎′ together with 𝑠 are a better choice than 𝜎 and 𝑠,
a contradiction.

Lemma 6.14. Given any set 𝒫 of profiles of 𝑆 , every consistent orientation 𝑂 of
𝑆 which is not a profile in 𝒫 contains a star 𝜎 which is not contained in any profile
in 𝒫.

Proof. Since 𝑂 is not a profile in 𝒫 there is, for every profile 𝑃 in 𝒫, a separation 𝑠
such that 𝑠 ∈ 𝑂 but 𝑠 ∈ 𝑃. Pick a set 𝑁 ⊆ 𝑂 which contains one such separation
for every profile in 𝒫 and is, subject to this, ⩽-minimal: That is, there is no other
such set 𝑁 ′ together with an injective function 𝛼∶ 𝑁 ′ → 𝑁 satisfying 𝑠′ ⩽ 𝛼(𝑠′) for
all 𝑠′ ∈ 𝑁 ′.

If 𝑁 is a nested set, then 𝑁 contains the desired star, so suppose that 𝑠, 𝑡 ∈ 𝑁 cross.
By submodularity we may suppose, after possibly renaming 𝑠 and 𝑡, that 𝑠∧𝑡 ∈ 𝑆 and
thus, by consistency, 𝑠∧𝑡 ∈ 𝑂. We claim that (𝑁 ⧵{ 𝑠 })∪{ 𝑠∧𝑡 } is also a candidate
for 𝑁, contradicting the ⩽-minimality. So suppose that (𝑁 ⧵ { 𝑠 }) ∪ { 𝑠 ∧ 𝑡 } does
not contain a separation 𝑟 such that 𝑟 ∈ 𝑃, say. Then clearly 𝑠 ∈ 𝑃 and 𝑡 ∈ 𝑃, thus,
by the profile property 𝑠 ∨ 𝑡 ∈ 𝑃 which is precisely such an 𝑟, a contradiction.

We are now ready to give a proof of Theorem 6.10 without resorting to Lemma 6.11:

Direct proof of Theorem 6.10. Let 𝒫be the set of regular profiles of 𝑆. Let ℱ𝒫 ⊆ 2𝑆
consist of all stars 𝜎 ⊆ 𝑆 for which one of the following is true:

(i) no profile in 𝒫 includes 𝜎, or
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(ii) precisely one profile in 𝒫 includes 𝜎.

This ℱ𝒫 is, by Lemma 6.12, closed under shifting: any shift of a star contained in
at most one profile is again contained in at most one profile. The set ℱ𝒫 is also
standard for 𝑆 , since cosmall separations are contained in no regular profile.

By Theorem 6.1 there either exists an 𝑆-tree over ℱ𝒫, or an ℱ𝒫-tangle of 𝑆. In the
former case we obtain the desired nested set. For the latter case observe that every
ℱ𝒫-tangle 𝑃, say, is a regular profile: By Lemma 6.14 every consistent orientation
which avoids ℱ𝒫 is a profile and if 𝑃 would not be regular, it would contain a cosmall
separation 𝑠 which is impossible, since {𝑠} ∈ ℱ𝒫. So by Lemma 6.13 there exists a
star 𝜎 ⊆ 𝑃 which every profile other than 𝑃 avoids. In particular 𝜎 ∈ ℱ𝒫, which
contradicts the fact that 𝑃 is an ℱ𝒫-tangle.

6.3. Application: Degrees in trees of tangles

In this section we are going to see that our proof of Theorem 6.10 in Section 6.2 has
one advantage over the usual, more direct proofs of Theorem 6.10 from [25,38]: It
allows us to easily control the maximum degree of the resulting tree. More precisely:
Let 𝑆 be a submodular separation system in a universe 𝑈 and 𝑃 a regular profile of
𝑆. In this section we answer the following question: over all trees of tangles that
distinguish all regular profiles of 𝑆, how low can the degree of the node containing
𝑃 in those trees of tangles be?

Let us first make this notion of degree in a tree of tangles formal. For the purposes
of this application only, a tree of tangles (for 𝑆) is an irredundant 𝑆-tree (𝑇 , 𝛼)
whose set of edge labels distinguishes all regular profiles of 𝑆. For a regular profile 𝑃
of 𝑆 and a tree of tangles (𝑇 , 𝛼), the node of 𝑃 in 𝑇 is the unique sink of the
orientation of 𝑇’s edges induced by 𝑃, and the degree of 𝑃 in (𝑇 , 𝛼) is the degree of
this node.

Our question is thus: what is the minimum degree of 𝑃 in (𝑇 , 𝛼) over all trees of
tangles (𝑇 , 𝛼)?

A lower bound for this degree can be established as follows. Let 𝛿(𝑃 ) denote the
minimal size of a set of separations which distinguishes 𝑃 from all other regular
profiles of 𝑆. If 𝑡 is the node of 𝑃 in some tree of tangles (𝑇 , 𝛼), then 𝛼(𝑡) is such a
set of separations which distinguishes 𝑃 from all other regular profiles of 𝑆; thus,
the degree of 𝑃 in every tree of tangles (𝑇 , 𝛼) is at least 𝛿(𝑃 ).

We show that this lower bound can be achieved: there is a tree of tangles (𝑇 , 𝛼)
for 𝑆 in which 𝑃 has degree exactly 𝛿(𝑃 ). In fact (𝑇 , 𝛼) will be optimal in this
sense not just for 𝑃, but for all regular profiles of 𝑆 simultaneously. Additionally
the degrees of those nodes of (𝑇 , 𝛼) that are not the node of some regular profile
will not be unreasonably high: the maximum degree of 𝑇 will be attained in some
profiles’ node.
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Theorem 27. Let 𝑆 be a submodular separation system in a universe of separations
𝑈. Then there is a tree of tangles (𝑇 , 𝛼) for 𝑆 in which each regular profile 𝑃 of 𝑆
has degree exactly 𝛿(𝑃 ). Furthermore, if Δ(𝑇 ) > 3, then Δ(𝑇 ) = 𝛿(𝑃) for some
regular profile 𝑃 of 𝑆.

To prove Theorem 27 we will follow the first proof of Theorem 6.10, making a
more refined choice of ℳ, and utilize the fact that uncrossing and shifting a set
cannot increase its size.

We will later see an example of a submodular separation system in which 𝛿(𝑃 ) ⩽ 2
for every profile 𝑃 but Δ(𝑇 ) = 3 for every tree of tangles 𝑇; this will demonstrate
that the last assertion of Theorem 27 is optimal in that regard.

Observe further that the set of maximal elements of a profile 𝑃 is a set which
distinguishes 𝑃 from every other profile of 𝑆. (In fact, the maximal elements of 𝑃
distinguish 𝑃 from every other consistent orientation of 𝑆.) Therefore 𝛿(𝑃 ) ⩽ |max𝑃 |
and hence the degree of 𝑃 in the tree of tangles from Theorem 27 is at most |max𝑃 |.

Proof of Theorem 27. For each regular profile 𝑃 of 𝑆 pick a subset 𝐷𝑃 ⊆ 𝑃 of
size 𝛿(𝑃 ) which distinguishes 𝑃 from every other regular profile of 𝑆. Let 𝒟 be the
set of these 𝐷𝑃. Define 𝒫 and 𝒞 as in the proof of Theorem 6.10, and set

ℱ ≔ 𝒫∪ 𝒞 ∪𝒟 .

From here, define ℱ∗ and ̂ℱ∗ just as in Theorem 6.10 and follow the same proof.
The result is an 𝑆-tree over ̂ℱ∗, which we may assume to be irredundant and hence
a tree of tangles for 𝑆.

Now let 𝑃 be a regular profile of 𝑆, let 𝑡 be the node of 𝑃 in 𝑇, and ̂𝜎∗ ≔ 𝛼(𝑡). As in
the proof of Theorem 6.10 the only element of ℱ from which ̂𝜎∗ can originate is 𝐷𝑃.
Since uncrossing and shifting 𝐷𝑃 cannot increase its size we have ∣ ̂𝜎∗∣ ⩽ |𝐷𝑃| = 𝛿(𝑃 ).
Conversely we have ∣ ̂𝜎∗∣ ⩾ 𝛿(𝑃 ) since ̂𝜎∗ distinguishes 𝑃 from all other regular profiles.
Thus the degree of 𝑃 in (𝑇 , 𝛼) is indeed 𝛿(𝑃 ).

Finally, if Δ(𝑇 ) > 3, the maximum degree of 𝑇 is attained in some node 𝑡
whose associated star 𝛼(𝑡) originates from some 𝐷𝑃 ∈ 𝒟, since all elements of ̂ℱ∗

originating from elements of 𝒫 or 𝒞 have size at most three. As above we thus have
|𝛼(𝑡)| ⩽ |𝐷𝑃| = 𝛿(𝑃 ), giving Δ(𝑇 ) = 𝛿(𝑃).

Let us see an example showing that we cannot guarantee to find 𝑇 with maximum
degree less than three even if all regular profiles of 𝑆 have 𝛿(𝑃 ) ⩽ 2:

Example 6.15. Let 𝑉 consist of the six points in Fig. 6.1, and 𝑆 be the separation
system given by the six outlined bipartitions of 𝑉 together with { ∅, 𝑉 }. The regular
profiles of 𝑆 correspond precisely to the six elements of 𝑉: each 𝑣 ∈ 𝑉 induces a
profile of 𝑆 by orienting each bipartition towards 𝑣, and conversely each profile of 𝑆
is of this form. Each profile 𝑃 has at most two maximal elements, giving 𝛿(𝑃 ) ⩽ 2.
However, every tree of tangles for 𝑆 must contain the outer three bipartitions and
hence have a maximum degree of at least three.
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Figure 6.1.: A ground-set and system of bipartitions.

6.4. Efficient distinguishers

Often the submodularity of a separation system 𝑆 is induced by a submodular order
function from some submodular universe 𝑈. In this case we are not just interested
in a nested set of separations which distinguishes all profiles, but one which does
so efficiently, that is, for any two profiles it contains a distinguishing separation
of minimum possible order. In this section we are going to see how this can be
achieved for regular profiles of a fixed 𝑆𝑘 ⊆ 𝑈 utilising the duality theorem together
with a separate application of its core mechanism: shifting 𝑆-trees.

We will prove this theorem:

Theorem 6.16. Let 𝑈 be a submodular universe and let 𝒫 be a set of regular profiles
of some 𝑆𝑘 ⊆ 𝑈. Then there exists a nested set 𝑁 ⊆ 𝑆𝑘 efficiently distinguishing all
the profiles in 𝒫.

Our approach is similar to the one of the direct proof in Section 6.2, but we shall
restrict our set of stars so that they do not interfere with efficiency.

Consider a nested set of separations which distinguishes all profiles efficiently and,
subject to this, is ⊆-minimal. Every profile 𝑃 induces an orientation of this set, and
the maximal elements of this orientation form a star. The separations in this star
are, in a way, ‘well connected’ to the profile. We make this a condition on the stars
we consider. For a star 𝜎 and a profile 𝑃, we say that 𝜎 has the property Eff(𝑃 ) if
the following holds:

∄ 𝑠 ∈ 𝜎 and 𝑠′ ∈ 𝑃 ∶ 𝑠 ⩽ 𝑠′ and |𝑠′| < |𝑠| . (Eff(𝑃 ))

This condition ensures that, for two profiles 𝑃 and 𝑃 ′, a star 𝜎 with property Eff(𝑃 )
containing 𝑠, and a star 𝜎′ with property Eff(𝑃 ′) containing 𝑠, the separation 𝑠
needs to be an efficient 𝑃–𝑃 ′-distinguisher. For if 𝑠 is not efficient, consider an
efficient 𝑃–𝑃 ′-distinguisher 𝑟 ∈ 𝑃. Then 𝑟 cannot be nested with 𝑠, since 𝑠 ⩽ 𝑟
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would contradict property Eff(𝑃 ) whereas 𝑟 ⩽ 𝑠 would contradict property Eff(𝑃 ′).
But 𝑟 cannot cross 𝑠 either: if it did we would have either |𝑟 ∨ 𝑠| < |𝑠| or |𝑟 ∧ 𝑠| < |𝑠|
by submodularity, again contradicting property Eff(𝑃 ) or Eff(𝑃 ′), respectively.

Property Eff(𝑃 ) is preserved under taking shifts:

Lemma 6.17. Let 𝑠 ∈ 𝑆𝑘 be a splice for 𝑟 ∈ 𝑆𝑘 and let 𝜎 ⊆ 𝑆𝑘 be a star with
some 𝑥 ∈ 𝜎 with 𝑥 ⩾ 𝑟. If a profile 𝑃 contains both 𝜎 and 𝜎′ ≔ 𝜎𝑠

𝑥 and 𝜎 has
property Eff(𝑃 ), then also 𝜎′ has property Eff(𝑃 ).

Proof. Suppose for a contradiction that 𝜎′ does not have property Eff(𝑃 ), that is,
above some 𝑡 ∧ 𝑠 ∈ 𝜎′, where 𝑡 ∈ 𝜎, there is a separation 𝑡′ ∈ 𝑃 of lower order than
𝑡 ∧ 𝑠.

We will first show that we may assume 𝑡′ ⩽ 𝑡. Since 𝑠 is a splice for 𝑟 we
have |𝑠 ∧ 𝑡| ⩾ |𝑠|, and thus by submodularity |𝑠 ∧ 𝑡| ⩽ |𝑡|. So if 𝑡′ > 𝑡, then this
contradicts the assertion that 𝜎 has property Eff(𝑃 ). If however 𝑡′ crosses 𝑡, then,
by the profile property of 𝑃 and property Eff(𝑃 ) of 𝜎, the supremum 𝑡′ ∨ 𝑡 has at
least the order of 𝑡. By submodularity then 𝑡′ ∧ 𝑡 has at most the order of 𝑡′. This
is also a separation in 𝑃 which is above 𝑡 ∧ 𝑠 and of lower order than 𝑡 ∧ 𝑠, so we
may consider it instead.

Now, since 𝑠 is a splice for 𝑟 we have that |𝑡′ ∧𝑠| ⩾ |𝑠|, so by submodularity 𝑡′ ∧𝑠
has at most the order of 𝑡′. But this 𝑡′ ∧ 𝑠 is the same as 𝑡 ∧ 𝑠 since 𝑡 ⩾ 𝑡′ ⩾ 𝑡 ∧ 𝑠.
So we have |𝑡 ∧ 𝑠| ⩽ |𝑡′|, which contradicts the assumption that |𝑡′| < |𝑡 ∧ 𝑠|.

We define ℱ𝑒 as the set of all stars 𝜎 ⊆ 𝑆𝑘 which are contained in at most one
profile in 𝒫 and which, if they are contained in a profile 𝑃 ∈ 𝒫, fulfil property Eff(𝑃 ).

From Lemma 6.12 and 6.17 immediately we obtain the following corollary:

Corollary 6.18. 𝑆𝑘 is ℱ𝑒-separable.

However, an 𝑆-tree over ℱ𝑒 does not necessarily give rise to an efficient distin-
guisher set for 𝒫 because we make no assumptions on those stars which are not
contained in any profile. Our proof of Theorem 6.16 will need to make additional
arguments on why an efficient such tree exists.

It would be much more elegant if we could introduce a condition, similar to Eff(⋅),
on the stars which are in no profile, so as to guarantee that any 𝑆𝑘-tree over these
stars is as desired. However, all possible such properties that the authors could
come up with failed to give ℱ-separability and there is reason to believe that such
a solution is not possible: The critical part in the proof of Theorem 6.16 will make
a global argument, specifically that of two shifts of one separation one is an efficient
distinguisher. Separability on the other hand is defined in terms of each individual
shift of a star.

For this section’s analogue of Lemma 6.13, we define the fatness of a star 𝜎 as
the tuple (𝑛𝑘−1, 𝑛𝑘−2,… , 𝑛1, 𝑛0), where 𝑛𝑖 is the number of separations of order 𝑖
in 𝜎. We will consider the lexicographic order on the fatness of stars.
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Lemma 6.19. Given a set 𝒫 of regular profiles of 𝑆𝑘 , every profile 𝑃 ∈ 𝒫 includes
a star in ℱ𝑒.

Proof. By Lemma 6.13 𝑃 includes a star which is contained only in 𝑃. Take such a
star 𝜎 which has lexicographically minimal fatness and suppose for a contradiction
that 𝜎 does not have property Eff(𝑃 ). So take 𝑠 ∈ 𝜎 and 𝑟 ∈ 𝑃 with 𝑠 ⩽ 𝑟 and
|𝑟| < |𝑠|. Among the possible choices for 𝑟, let 𝑟 be one which crosses as few
separations in 𝜎 as possible. If 𝑟 were nested with 𝜎, then the maximal elements
of 𝜎 ∪ { 𝑟 } would form a star of lower fatness, thus we may suppose that 𝑟 crosses
some 𝑥 ∈ 𝜎.

By the choice of 𝑟, the corner separations 𝑟 ∨ 𝑥 and 𝑟 ∧ 𝑥 must have strictly
higher order than |𝑟| since both are ⩾ 𝑠. Thus, by submodularity, the corner
separations 𝑟 ∧ 𝑥 and 𝑟 ∧ 𝑥 have strictly lower order than |𝑥|. Now the star
𝜎′ ≔ 𝜎 ⧵ {𝑥 } ∪ { 𝑟 ∧ 𝑥, 𝑟 ∧ 𝑥 } has a lower fatness. This star is still contained in
𝑃 by consistency and in no other profile, since every profile which includes 𝜎′ also
includes 𝜎 by the profile property applied with 𝑥 and 𝑟. This contradicts the choice
of 𝜎.

We are now able to prove Theorem 6.16:

Proof of Theorem 6.16. We may apply Theorem 6.1 for ℱ𝑒 since 𝑆𝑘 is ℱ𝑒-separable
by Corollary 6.18 and ℱ𝑒 is standard since cotrivial separations are not contained
in any regular profile. From this theorem we cannot get an ℱ𝑒-tangle: such a tangle
cannot be a profile in 𝒫by Lemma 6.19, and Lemma 6.14 states that every consistent
orientation which is not a profile in 𝒫 includes a star which is not contained in any
profile in 𝒫, but each of these stars is contained in ℱ𝑒, so no such orientation is an
ℱ𝑒-tangle. So instead, there exists an 𝑆𝑘-tree over ℱ𝑒.

Among all 𝑆𝑘-trees over ℱ𝑒 pick an irredundant one, (𝑇 , 𝛼) say, whose associated
separations efficiently distinguishes as many pairs of profiles as possible. Let us
suppose that some pair of profiles 𝑃1, 𝑃2 is not distinguished efficiently by this tree.

Consider the nodes 𝑣𝑃1
, 𝑣𝑃2

of this tree corresponding to 𝑃1 and 𝑃2. These nodes
are distinct, since every star in ℱ𝑒 is contained in at most one profile. Moreover, we
can assume without loss of generality, that in no node on the path between 𝑣𝑃1

and
𝑣𝑃2

there lives a profile 𝑄: In that case either the pair 𝑃1, 𝑄 or the pair 𝑄,𝑃2 would
not be efficiently distinguished by (𝑇 , 𝛼) either, so we could consider them instead.

Let 𝑠𝑃1
be the separation associated to the first edge on the path from 𝑣𝑃1

to 𝑣𝑃2

and let 𝑠𝑃2
be the separation associated to the first edge on the path from 𝑣𝑃2

to 𝑣𝑃1
.

There exists a separation 𝑡 which efficiently distinguishes 𝑃1 and 𝑃2 and is nested
with 𝑠𝑃1

and 𝑠𝑃2
: if 𝑡 ∈ 𝑃1 is not nested with, say 𝑠𝑃1

, we know by property Eff(𝑃 )
that 𝑠𝑃1

∨ 𝑡 needs to have order at least |𝑠𝑃1
|, thus 𝑠𝑃1

∧ 𝑡 has order at most |𝑡|,
so it efficiently distinguishes 𝑃1 and 𝑃2 and is nested with 𝑠𝑃 . Thus by the fish
Lemma 2.1, there indeed needs to exists such a 𝑡 which efficiently distinguishes 𝑃1
and 𝑃2 and is nested with 𝑠𝑃1

and 𝑠𝑃2
. Moreover, 𝑡 has an orientation such that
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6.5. Degrees in efficient trees of tangles

𝑠𝑃1
⩽ 𝑡 ⩽ 𝑠𝑃2

, otherwise the existence of 𝑡 again contradicts either property Eff(𝑃 )
or Eff(𝑄). Note that 𝑡 thus is a splice between 𝑠𝑃1

and 𝑠𝑃2
and therefore 𝑡 emulates

𝑠𝑃1
for ℱ𝑒 and 𝑡 emulates 𝑠𝑃2

for ℱ𝑒.
Let 𝑇𝑃1

be the subtree of 𝑇 consisting of the component of 𝑇 −𝑣𝑃1
which contains

𝑣𝑃2
together with 𝑣𝑃1

and similarly let 𝑇𝑃2
be the subtree consisting of the component

of 𝑇 − 𝑣𝑃2
containing 𝑣𝑃1

together with 𝑣𝑃2
.

We consider the trees (𝑇𝑃1
, 𝛼𝑃1

) and (𝑇𝑃2
, 𝛼𝑃2

) obtained from the restrictions
(𝑇𝑃1

, 𝛼 ↾ 𝑇𝑃1
) and (𝑇𝑃2

, 𝛼 ↾ 𝑇𝑃2
) by applying the shifts 𝑓 ↓𝑠𝑃1

𝑡 and 𝑓 ↓𝑠𝑃2
𝑡 , respectively.

Consider now the tree (𝑇 ′, 𝛼′) obtained from these two trees by identifying the
respective edges associated with 𝑡. By applying Lemma 6.7 with the two shifted
trees the combined tree is again over ℱ𝑒. We may again assume it to be irredundant.
We are going to show that it efficiently distinguishes more pairs of profiles than
(𝑇 , 𝛼).

Let 𝑄1, 𝑄2 be a pair profiles which were efficiently distinguished by a separation
𝑟 associated to an edge of (𝑇 , 𝛼). If 𝑟 is not associated to any edge of (𝑇 ′, 𝛼′), then,
without loss of generality, either 𝑠𝑃1

⩽ 𝑟 ⩽ 𝑠𝑃2
or both 𝑠𝑃1

⩽ 𝑟 and 𝑠𝑃2
⩽ 𝑟.

In the first case 𝑟 distinguishes 𝑃1 and 𝑃2 and therefore |𝑟| > |𝑡|. By the definition
of the shift, our tree (𝑇 ′, 𝛼′) contains both, 𝑟 ∨ 𝑡 and 𝑟 ∧ 𝑡, and both of them have
order at most the order of 𝑟, by Lemma 6.8. However, one of 𝑟 ∨ 𝑡, 𝑟 ∧ 𝑡 and 𝑡
distinguishes 𝑄1 and 𝑄2 and does so efficiently.

In the second case, by the definition of the shift, our tree (𝑇 ′, 𝛼′) contains both,
𝑟 ∨ 𝑡 and 𝑟 ∨ 𝑡, and both of them have order at most the order of 𝑟, again by
Lemma 6.8. Again, one of 𝑟 ∨ 𝑡 and 𝑟 ∨ 𝑡 distinguishes 𝑄1 and 𝑄2 and does so
efficiently.

Thus, since (𝑇 ′, 𝛼′) additionally efficiently distinguishes 𝑃1 and 𝑃2 with 𝑡, this
contradicts the choice of (𝑇 , 𝛼).

6.5. Degrees in efficient trees of tangles

In this section we apply our method from Section 6.3 to Theorem 6.16 to obtain a
tree of tangles of low degree, but this time one which efficiently distinguishes the
profiles. That is, we are interested in the minimal degrees of a tree of tangles whose
associated separations efficiently distinguish all regular profiles of 𝑆𝑘.

Extending the definitions of Section 6.3, let us say that a tree of tangles (𝑇 , 𝛼)
for 𝑆𝑘 is efficient, if the set of edge labels not only distinguishes all regular profiles
of 𝑆𝑘, but does so efficiently.

Given a 𝑘-profile 𝑃, we denote by 𝛿𝑒(𝑃 ) the minimal size of a star 𝜎 ⊆ 𝑃 with
property Eff(𝑃 ) which distinguishes 𝑃 from all other regular profiles of 𝑆𝑘, i.e., every
other regular profile orients some 𝑠 ∈ 𝜎 as 𝑠. Note that, by Lemma 6.19, there exists
such a star for every regular profile 𝑃, thus 𝛿𝑒(𝑃 ) is a well defined natural number.

We denote by 𝛿𝑒,max the maximum of 𝛿𝑒(𝑃 ) over all regular profiles 𝑃.
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6. Trees of tangles from tangle–tree duality

We can give a bound on 𝛿𝑒(𝑃 ) which is not in terms of stars or nested sets:

Lemma 6.20. Let 𝑃 be a regular 𝑘-profile in 𝑈 and let 𝐷𝑃 ⊆ 𝑃 be a subset of 𝑃
which contains, for every regular 𝑘-profile 𝑃 ′ ≠ 𝑃 in 𝑈, a separation which efficiently
distinguishes 𝑃 from 𝑃 ′. Let us denote as 𝑚 the number of maximal elements of
𝐷𝑃. Then 𝛿𝑒(𝑃 ) ⩽ 𝑚.

Proof. It is enough to consider a set 𝐷𝑃 ⊆ 𝑃 such that 𝑚 = |max𝐷𝑃| is as small as
possible. Moreover, we may assume without loss of generality that every element of
𝐷𝑃 distinguishes 𝑃 efficiently from some other profile in 𝒫, since we could otherwise
remove it from 𝐷𝑃. We may furthermore assume that, subject to all this, 𝐷𝑃
is chosen so that max𝐷𝑃 is ⩽-minimal. Furthermore we may suppose that, for
separations 𝑟 ⩽ 𝑠 in 𝐷𝑃, the order of 𝑟 is lower than the order of 𝑠, since otherwise
we could just remove 𝑟 from 𝐷𝑃.

If the maximal separations in 𝐷𝑃 are pairwise nested, they satisfy property Eff(𝑃 )
by the fact that they distinguish 𝑃 efficiently from some other profile 𝑃 ′. Further,
every profile 𝑃 ′ is distinguished from 𝑃 by some maximal separation in 𝐷𝑃: there is
an efficient 𝑃–𝑃 ′-distinguisher 𝑠 ∈ 𝐷𝑃 and thus a maximal separation 𝑡 ⩾ 𝑠 in 𝐷𝑃
also distinguishes 𝑃 from 𝑃 ′. Hence, if the maximal elements of 𝐷𝑃 are pairwise
nested, they are a candidate for 𝛿𝑒(𝑃 ) and therefore witness that 𝛿𝑒(𝑃 ) ⩽ 𝑚.

So suppose that this is not the case, so two maximal separations 𝑠, 𝑡 ∈ 𝐷𝑃 cross
and, without loss of generality, |𝑠| ⩽ |𝑡|. By the definition of 𝐷𝑃, there is a profile
𝑃𝑠 which is efficiently distinguished from 𝑃 by 𝑠 ∈ 𝐷𝑃. Similarly, there is such a
profile 𝑃𝑡 for 𝑡.

Since 𝐷𝑃 was chosen to have as few maximal elements as possible, the separation
𝑠 ∨ 𝑡 has greater order than 𝑡: otherwise we could, by consistency and the profile
property, replace 𝑡 in 𝐷𝑃 by 𝑠 ∨ 𝑡. Thus, by submodularity, the order of 𝑠 ∧ 𝑡 is
less than the order of 𝑠. In particular, by efficiency of 𝑠 and 𝑡, neither 𝑃𝑠 nor 𝑃𝑡
contains (𝑠 ∧ 𝑡)∗ = 𝑠 ∨ 𝑡.

Thus 𝑠 ∧ 𝑡 and 𝑠 ∧ 𝑡 have order precisely |𝑠| and |𝑡|, respectively: if one of them
had lower order this would, by the profile property, contradict the fact that 𝑠 or 𝑡,
respectively, efficiently distinguishes 𝑃 from 𝑃𝑠 or 𝑃𝑡, respectively. This means that,
in particular, 𝑠 ∧ 𝑡 efficiently distinguishes 𝑃 from 𝑃𝑠.

For every 𝑟 ⩽ 𝑠 in 𝐷𝑃 we have assumed |𝑟| < |𝑠|. Both 𝑟 ∧ 𝑡 and 𝑟 ∧ 𝑡 have at
most the order of 𝑟 due to submodularity, the efficiency of 𝑡, the profile property
and consistency, analogue to the above.

Let us consider the set 𝐷′
𝑃 obtained from 𝐷𝑃 by removing all 𝑟 ⩽ 𝑠, and adding

𝑠 ∧ 𝑡 as well as, for every 𝑟 ⩽ 𝑠, any 𝑟 ∧ 𝑡 and 𝑟 ∧ 𝑡 which efficiently distinguishes 𝑃
from some other profile. By the above, this set 𝐷′

𝑃 distinguishes 𝑃 from every other
regular profile, and is a candidate for 𝐷𝑃. The maximal separations of 𝐷′

𝑃 and of
𝐷𝑃 are the same except that 𝑠 in 𝐷𝑃 is replaced by 𝑠 ∧ 𝑡 in 𝐷′

𝑃. This contradicts
the choice of 𝐷𝑃 with ⩽-minimal maximal elements.
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To limit the degree of the node of 𝑃 in our tree of tangles we want to remove
from ℱ𝑒 all the stars which are contained in 𝑃 but are larger than 𝛿𝑒(𝑃 ). In order
to achieve a maximum degree of 𝛿𝑒,max we also need to limit the size of the stars in
ℱ𝑒 which are contained in no profile to 𝛿𝑒,max. As in Section 6.3, we cannot limit
the maximum degrees below 3. Along the lines of the proof of Lemma 6.11, the
next lemma shows that we can find, in every consistent orientation 𝑂 of 𝑆𝑘 which
is not a profile, a star of size 3 contained in 𝑂 and in no profile.

Lemma 6.21. Every consistent orientation 𝑂 of 𝑆𝑘 which is not a profile contains
a star 𝜎 of size 3 which is not contained in any profile.

Proof. As 𝑂 is not a profile, there are 𝑠, 𝑡 ∈ 𝑂 such that 𝑠∧𝑡 ∈ 𝑂. By submodularity,
either 𝑠 ∧ 𝑡 or 𝑠 ∧ 𝑡 ∈ 𝑆 , let us suppose the former one. Then 𝜎 = { 𝑠 ∧ 𝑡, 𝑡, 𝑠 ∧ 𝑡 } is
a star in 𝑂 and 𝜎 cannot be contained in any profile: any profile 𝑃 needs to contain
either 𝑠 or 𝑠, and the profile property implies that 𝑃 then cannot contain both, 𝑠 ∧ 𝑡
and 𝑠 ∧ 𝑡.

We can now show the following variant of Theorem 6.16, which shows that we
can find a tree of tangles of bounded degree:

Theorem 28. Let 𝑈 be a submodular universe and let 𝒫 be the set of regular profiles
of 𝑆𝑘 . Then there exists tree of tangles (𝑇 , 𝛼) such that, for every profile 𝑃 ∈ 𝒫, the
degree of 𝑃 in (𝑇 , 𝛼) is 𝛿𝑒(𝑃 ) and the maximal degree of 𝑇 is at most max{ 𝛿𝑒(𝒫), 3 }.

Proof. Let ℱ𝑠
𝑒 be the subset of ℱ𝑒 consisting of, for every profile 𝑃, all stars from

ℱ𝑒 of size 𝛿𝑒(𝑃 ) contained in 𝑃, together with all stars of size at most max{ 𝛿𝑒(𝒫), 3 }
from ℱ𝑒 not contained in any profile. For any star 𝜎 and any shift 𝜎𝑟

𝑠 of 𝜎 we
have |𝜎| ⩾ |𝜎𝑟

𝑠 |. Further, 𝑆𝑘 is ℱ𝑒-separable by Corollary 6.18. Moreover, the shift
of a star cannot contain any profile which does not contain the original star by
Lemma 6.12, thus 𝑆𝑘 is also ℱ𝑠

𝑒-separable.
Thus, all we need to show is that applying Theorem 6.1 cannot result in an ℱ𝑠

𝑒-
tangle, the rest of the proof can then be carried out as the proof of Theorem 6.16:
Instead of 𝑆-trees over ℱ𝑒 we now consider 𝑆-trees over ℱ𝑠

𝑒, and observe that the
shifting argument in the proof of Theorem 6.16 again shifts stars in ℱ𝑠

𝑒 to stars
in ℱ𝑠

𝑒.
However, applying Theorem 6.1 indeed cannot result in an ℱ𝑠

𝑒-tangle: Such a
tangle cannot be a regular profile, since by our definition of 𝛿𝑒(𝑃 ), there is a star in
ℱ𝑠

𝑒 contained in 𝑃. But every consistent orientation which is not a regular profile
either contains a star {𝑠} for a cosmall separation 𝑠 – each such star is also contained
in ℱ𝑒 – or contains, by Lemma 6.21 a star of size 3 not contained in any profile.
Either such star is also contained in ℱ𝑠

𝑒 by definition.
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6.6. Tangles of mixed orders

In this section we would like to use the ideas from Section 6.4 to obtain a proof of
the following theorem by Diestel, Hundertmark, and Lemanczyk using tangle–tree
duality:

Theorem 6.22 ([26, Corollary 3.7 without canonicity]). Let (𝑈,⩽,∗ , ∨, ∧, | ⋅ |) be
a submodular universe of separations. For every set 𝒫 of pairwise distinguishable
robust regular profiles in 𝑈 there is a regular tree set 𝑇 = 𝑇(𝒫) ⊆ 𝑈 of separations
such that:

1. every two profiles in 𝒫 are efficiently distinguished by some separation in 𝑇;
2. every separation in 𝑇 efficiently distinguishes a pair of profiles in 𝒫.

Note that the original statement [26, Corollary 3.7] included a third property
which guaranteed that the resulting set 𝑇 is invariant under automorphisms. Our
method, using the tangle–tree duality theorem, will not allow us to guarantee this,
which is why we exclude the property in this version of [26, Corollary 3.7]. For more
discussion of this property, canonicity, see [26, 34] as well as our proof of the full
Corollary 3.7 of [26] in Section 5.5.

The challenge of Theorem 6.22 compared to Theorem 6.16 is that the set of
profiles 𝒫 considered in Theorem 6.22 consists of profiles of different orders. In
particular, there might be profiles 𝑃1 and 𝑃2 in 𝒫which are efficiently distinguished
by separations of order 𝑘, say, and there might be another profile 𝑄 ∈ 𝒫 which has
only order 𝑙 < 𝑘 and thus does not orient the separations which efficiently distinguish
𝑃1 and 𝑃2. Thus, we cannot simply require the stars in our set ℱ to be contained
in at most one profile: the resulting 𝑆-tree over ℱ would not necessarily distinguish
all profiles in 𝒫, for example it might not distinguish the profiles 𝑃1 and 𝑄 from
above. Our solution to this problem will be to restrict the set of stars further by
additionally requiring that all the separations in a star in ℱ ‘could be oriented’ by
every profile in 𝒫, even if that profile has lower order than the separation considered.

With this further restricted set of stars however 𝑆 will no longer be ℱ-separable,
but it will only fail to do so under rather specific circumstances. Thus in order
to obtain a result in the fashion of Theorem 6.22, we shall use a slightly stronger
version of Theorem 6.1, which allows us to exclude this specific situation im the
requirement of ℱ-separability. The proof of this stronger version of Theorem 6.1 is
due to Kneip and can be found in the paper version [40] of this chapter as well as in
Kneip’s thesis [58]. The statement of the strengthened duality theorem is this:

Theorem 6.23. Let 𝑈 be a finite universe, 𝑆 ⊆ 𝑈 a separation system, and ℱ ⊆ 2𝑆
a set of stars such that ℱ is standard for 𝑆 and 𝑆 is critically ℱ-separable. Then
precisely one of the following holds:

• there is an 𝑆-tree over ℱ;
• there is an ℱ-tangle of 𝑆.
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This theorem is a strengthening in the sense that it weakens the technical as-
sumption that 𝑆 be ℱ-separable to only require ℱ-separability for those separations
whose inverse lies in no star of ℱ, rather than for all separations in 𝑆 . Formally:

A separation 𝑟 in 𝑆 is ℱ-critical if 𝑟 ∈ 𝜎 for some 𝜎 ∈ ℱ, but there is no 𝜎′ ∈ ℱ
with 𝜎′ ∩ 𝑟 = { 𝑟 }. Observe that if 𝑟 ∈ 𝑆 is ℱ-critical, then 𝑟 is non-degenerate and
not forced by ℱ, and in particular 𝑟 is non-trivial in 𝑆 since ℱ is standard for 𝑆.
We say that 𝑆 is critically ℱ-separable if for all ℱ-critical 𝑟, 𝑟′ ∈ 𝑆 with 𝑟 ⩽ 𝑟′ there
exists an 𝑠0 ∈ 𝑆 with an orientation 𝑠0 that emulates 𝑟 in 𝑆 for ℱ and such that 𝑠0
emulates 𝑟′ in 𝑆 for ℱ. Clearly, if 𝑆 is ℱ-separable, then 𝑆 is critically ℱ-separable.

6.6.1. Obtaining a tree of mixed-order tangles from tangle–tree duality

Theorem 6.23 now allows us to use our methods from Theorem 6.16 to prove a
tree-of-tangles theorem for different order tangles. More specifically we will obtain a
result similar to Theorem 6.22, however our construction only works in distributive
universes – that is, 𝑟 ∨(𝑠 ∧𝑡) = (𝑟 ∨𝑠)∧(𝑟 ∨𝑠), always – since we need the following
result from [31], which is also found in [26]:

Lemma 6.24 ([26, Theorem 3.11], [31, Theorem 1], strong profile property). Let 𝑈
be a distributive universe and 𝑆 ⊆ 𝑈 structurally submodular, then for any profile 𝑃
of 𝑆 and any 𝑟 and 𝑠 ∈ 𝑃 there does not exists any 𝑡 ∈ 𝑃 such that 𝑟 ∨ 𝑠 ⩽ 𝑡.

Moreover, our method will not allow us to distinguish all robust profiles, instead
we need a slight strengthening of robustness: We say that a 𝑘-profile 𝑃 is strongly
robust, if for any 𝑠 ∈ 𝑃 and 𝑟 ∈ 𝑈 where 𝑠 ∨ 𝑟 and 𝑠 ∨ 𝑟 both have at most the order
of 𝑠 one of 𝑠 ∨ 𝑟 and 𝑠 ∨ 𝑟 is in 𝑃. Note that most instances of tangles, for example
tangles in graphs, are strongly robust profiles.

For this section let 𝑈 be a distributive submodular universe and let 𝒫 be some set
of pairwise distinguishable strongly robust profiles in 𝑈 (possibly of different order).

To handle the issue, that not all separations in a tree-of-tangles for profiles of
different orders are oriented by all the considered profiles, we introduce the following
additional definition: A consistent orientation 𝑂 of 𝑆𝑘 weakly orients a separation 𝑠
as 𝑠 if 𝑂 contains a separation 𝑟 such that 𝑠 ⩽ 𝑟. If we want to omit 𝑠 we just say
𝑂 weakly contains 𝑠.

We will now only consider stars of separations where every separation is at least
weakly oriented by all the profiles in 𝒫. Specifically, we work with the set ℱ𝑑
consisting of all stars 𝜎 with the following properties:

1. There exists at most one profile 𝑃 ∈ 𝒫 such that 𝜎 ⊆ 𝑃.

2. For every profile 𝑃 ∈ 𝒫 such that 𝜎 ⊈ 𝑃 there exists 𝑠 ∈ 𝜎 such that 𝑃 weakly
orients 𝑠 as 𝑠.

3. If there exists a 𝑃 ∈ 𝒫 such that 𝜎 ⊆ 𝑃, then 𝜎 satisfies property Eff(𝑃 ).
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6. Trees of tangles from tangle–tree duality

We want to show that 𝑈 is critically ℱ𝑑-separable, and our first step to do so is
to show that splices – which we want to use in separability – are weakly oriented by
every profile in 𝒫.

Lemma 6.25. Let 𝑈 be a distributive submodular universe and let 𝒫 be a set of
strongly robust profiles in 𝑈. Suppose that 𝑟 and 𝑠 are ℱ𝑑-critical separations in
𝑈 with 𝑟 ⩽ 𝑠, then every splice between 𝑟 and 𝑠 is weakly oriented by every profile
in 𝒫.

Proof. Since 𝑟 and 𝑠 are ℱ𝑑-critical, they are contained in some star in ℱ𝑑 and
hence weakly oriented by every profile in 𝒫.

Let 𝑡 be a splice between 𝑟 and 𝑠. If 𝑡 is not weakly oriented by every profile in
𝒫, then 𝒫 contains a profile 𝑃 of order at most |𝑡| which weakly orients 𝑟 as 𝑟 and 𝑠
as 𝑠, since every witnessing separation that a profile weakly orients 𝑟 as 𝑟 or 𝑠 as
𝑠 also witnesses that it weakly orients 𝑡. Let 𝑀𝑃

𝑟 be the set of all separations 𝑤𝑟
in 𝑃 satisfying 𝑟 ⩽ 𝑤𝑟 and having minimal possible order with that property. Let
𝑤𝑟 ∈ 𝑀𝑃

𝑟 be chosen ⩽-maximally. Let 𝑤𝑠 be defined for 𝑠, accordingly.
Observe that if 𝑤𝑟 ⩽ 𝑠, respectively, then, by the order-minimality of 𝑀𝑃

𝑟 , the
order of 𝑤𝑟 is at least |𝑡| so 𝑃 orients 𝑡, which contradicts the assumption that 𝑃
does not weakly orient 𝑡. Similarly, 𝑤𝑠 ⩽ 𝑟 results in a contradiction.

Suppose now that 𝑤𝑟 crosses 𝑠.

𝑟 𝑠
𝑡

𝑤𝑟

𝑤

𝑃 ′

𝑃
𝑤𝑠

We claim that every profile 𝑃 ′ in 𝒫 which weakly orients 𝑠 as 𝑠 also weakly
contains either 𝑠 ∨𝑤𝑟 or 𝑠 ∨𝑤𝑟 . This then impies that { 𝑠, 𝑠 ∧𝑤𝑟 , 𝑠 ∧𝑤𝑟 } is a star
in ℱ𝑑, which will contradict the ℱ𝑑-criticality of 𝑠.

So suppose that 𝑃 ′ weakly orients 𝑠 as 𝑠, witnessed by some 𝑤 ∈ 𝑃 ′ with 𝑤 ⩾ 𝑠.
If 𝑤𝑟 ∨ 𝑤 had order at most the order of 𝑤𝑟 , this would contradict the choice of

𝑤𝑟 : By Lemma 6.24 applied to the separations 𝑤𝑟 , 𝑤𝑠 , 𝑤 ∧ 𝑤𝑟 , the profile 𝑃 would
need to contain 𝑤𝑟 ∨𝑤 which contradicts the choice of 𝑤𝑟 being ⩽-maximal in 𝑀𝑃

𝑟 .
Similarly, if 𝑤 ∧ 𝑤𝑟 had order less than the order of 𝑤𝑟 , this would contradict

the choice of 𝑤𝑟 : By consistency 𝑃 would need to contain 𝑤 ∧𝑤𝑟 which contradicts
the definition of 𝑀𝑃

𝑟 , from which 𝑤𝑟 was chosen.
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Thus, by submodularity, 𝑤 ∧ 𝑤𝑟 has order less than the order of 𝑤, and 𝑤 ∧ 𝑤𝑟
has order at most the order of 𝑤. Hence, as 𝑃 ′ is strongly robust, 𝑃 ′ contains either
𝑤 ∨𝑤𝑟 or 𝑤 ∨𝑤𝑟 and therefore either weakly orients 𝑠 ∧ 𝑤𝑟 as 𝑠 ∨ 𝑤𝑟 or 𝑠 ∧ 𝑤𝑟 as
𝑠 ∨ 𝑤𝑟 .

This proves the claim which results in a contradiction to the assumption that 𝑠 is
ℱ𝑑 critical. Thus we may suppose that 𝑤𝑟 does not cross 𝑠 and, by a symmetric
argument, that 𝑤𝑠 does not cross 𝑟. Hence 𝑟 ⩽ 𝑤𝑠 and 𝑠 ⩽ 𝑤𝑟 . We may therefore
assume without loss of generality that 𝑤𝑟 = 𝑤𝑠 .

𝑟 𝑠
𝑡

𝑤𝑟 = 𝑤𝑠
𝑃

If 𝑤𝑟 = 𝑤𝑠 crosses 𝑡, then, by the choice of 𝑡, that neither 𝑤𝑟 ∧ 𝑡 nor 𝑤𝑟 ∧ 𝑡 has
order less than |𝑡|, thus 𝑤𝑟 ∨ 𝑡 and 𝑤𝑟 ∨ 𝑡 both have order at most the order of 𝑤𝑟 .
By the strong robustness of 𝑃 applied to 𝑤𝑟 , 𝑤𝑟 ∧ 𝑡 and 𝑤𝑟 ∧ 𝑡, we know that either
𝑤𝑟 ∨ 𝑡 ∈ 𝑃 or 𝑤𝑟 ∨ 𝑡 ∈ 𝑃. However, both contradict the ⩽-maximal choice of 𝑤𝑟 .
So, instead 𝑤𝑟 is nested with 𝑡, that is, 𝑡 has an orientation 𝑡 such that 𝑡 ⩽ 𝑤𝑟 , so 𝑡
is weakly oriented by 𝑃, as claimed.

Note that the assumption that our profiles are strongly robust is essential in this
argument, for example for the case 𝑤𝑟 = 𝑤𝑠 : If we only assume robustness, we can
not conclude that 𝑃 contains either 𝑤𝑟 ∨ 𝑡 or 𝑤𝑟 ∨ 𝑡 and thus would not obtain a
contradiction.

The next step is to verify that shifting with a splice as in Lemma 6.25 maps stars
in ℱ𝑑 to stars in ℱ𝑑, which will prove that 𝑈 is critically ℱ𝑑-seperable:

Lemma 6.26. Let 𝑟 and 𝑠0 be separations which are weakly oriented by every profile
in 𝒫 and suppose that 𝑠0 us a splice for 𝑟. Let 𝜎 ∈ ℱ𝑑 be a star which contains a
separation 𝑥 ⩾ 𝑟. Then the shift 𝜎𝑠0

𝑥 of 𝜎 from 𝑥 to 𝑠0 is again an element of ℱ𝑑.

Proof. Since 𝑠0 is a splice for 𝑟, by Lemma 6.8, 𝑠 ∨ 𝑠0 has at most the order of 𝑠
for every 𝑠 ⩾ 𝑟.

Let 𝜎 be any star in ℱ𝑑 containing a separation 𝑥 ⩾ 𝑟. By the above, if 𝜎 ⊆ 𝑆𝑘
for some 𝑘, then also the shift 𝜎𝑠0

𝑥 is a subset of 𝑆𝑘 . Hence by Lemma 6.12, every
profile in 𝑈 which contains 𝜎𝑠0

𝑥 also contains 𝜎. Now if some profile 𝑃 contains 𝜎,
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6. Trees of tangles from tangle–tree duality

then 𝑃 orients every separation in 𝜎𝑠0
𝑥 , and thus either 𝑃 contains the inverse of

some separation in 𝜎𝑠0
𝑥 or 𝜎𝑠0

𝑥 ⊆ 𝑃.
Hence, by Lemma 6.17 it is enough to show that every profile from 𝒫 which, for

some 𝑦 ∈ 𝜎, weakly contains 𝑦 also weakly contains 𝑦′ for some separation 𝑦′ ∈ 𝜎𝑠0
𝑥 .

So suppose such a profile 𝑃, for some 𝑦 ∈ 𝜎, weakly contains 𝑦 and suppose that
this is witnessed by 𝑤𝑦 ∈ 𝑃. If 𝑟 ⩽ 𝑦, then 𝑦 is shifted onto 𝑦 ∧ 𝑠0 and therefore
𝑤𝑦 also witnesses that 𝑃 weakly contains 𝑦 ∧ 𝑠0 while 𝑦 ∨ 𝑠0 ∈ 𝜎𝑠0

𝑥 . Thus we may
suppose that 𝑟 ⩽ 𝑦 and therefore that 𝑦 is shifted onto 𝑦 ∨ 𝑠0 .

If 𝑃 weakly orients 𝑠0 as 𝑠0 , then 𝑃 also weakly contains 𝑦 ∧ 𝑠0 ⩽ 𝑠0 while
𝑦 ∨ 𝑠0 ∈ 𝜎𝑠0

𝑥 .
Thus we may suppose that 𝑃 weakly orients 𝑠0 as 𝑠0 , witnessed by 𝑤0 ∈ 𝑃.
By our assumptions on 𝑠0 we know that the order of 𝑠0 ∧𝑤𝑦 is at least the order

of 𝑠0 and thus, by submodularity, 𝑠0 ∧𝑤𝑦 has order at most the order of 𝑤𝑦, i.e., it is
oriented by 𝑃. By Lemma 6.24 applied to 𝑤0 , 𝑤𝑦 ∈ 𝑃 and 𝑠0 ∧𝑤𝑦 we can therefore
conclude that 𝑃 contains 𝑠0 ∨ 𝑤𝑦 , i.e., 𝑃 weakly contains 𝑦 ∨ 𝑠0 ⩽ 𝑠0 ∨ 𝑤𝑦 .

In order to use our stronger tangle–tree duality theorem, Theorem 6.23, with our
set ℱ𝑑 of stars to obtain a tree of tangles for strongly robust profiles it only remains
for us to show that this application cannot result in an ℱ𝑑-tangle. We do so in the
following two lemmas.

Lemma 6.27. For every profile 𝑃 in 𝑈 and every set 𝒫′ of strongly robust profiles in
𝑈 distinguishable from 𝑃, there exists a nested set 𝑁 which distinguishes 𝑃 efficiently
from all the profiles in 𝒫′.

Proof. For every profile 𝑄 ∈ 𝒫′ pick a ⩽-minimal separation 𝑠𝑄 ∈ 𝑃 which efficiently
distinguishes 𝑄 from 𝑃. We claim that the set 𝑁 consisting of all these separations
𝑠𝑄 is nested and therefore as claimed.

So suppose that this is not the case, so 𝑠𝑄 and 𝑠𝑄′ , say, cross. We may assume
without loss of generality that ∣𝑠𝑄 ∣ ⩽ ∣𝑠𝑄′ ∣. Now 𝑠𝑄 ∨ 𝑠𝑄′ has order at least the
order of 𝑠𝑄′ since otherwise, by the profile property, 𝑠𝑄 ∨𝑠𝑄′ would also distinguish
𝑃 and 𝑄′ and would thus contradict the fact that 𝑠𝑄′ did so efficiently. Thus
∣𝑠𝑄 ∧ 𝑠𝑄′ ∣ ⩽ ∣𝑠𝑄 ∣.

Now 𝑄′ orients 𝑠𝑄 and it cannot contain 𝑠𝑄 since then, by the profile property,
𝑠𝑄 ∧ 𝑠𝑄′ would also distinguish 𝑃 and 𝑄′ efficiently and would therefore contradict
the ⩽-minimal choice of 𝑠𝑄′ .

Thus 𝑠𝑄 ∈ 𝑄′. Now ∣𝑠𝑄 ∧ 𝑠𝑄′ ∣ > ∣𝑠𝑄′ ∣ since otherwise, again by the profile
property, 𝑠𝑄 ∧ 𝑠𝑄′ contradicts the ⩽-minimal choice of 𝑠𝑄′ .

Thus, by submodularity, ∣𝑠𝑄 ∧ 𝑠𝑄′ ∣ < ∣𝑠𝑄 ∣ and ∣𝑠𝑄 ∧ 𝑠𝑄′ ∣ ⩽ ∣𝑠𝑄 ∣. But, by strong
robustness, either 𝑠𝑄 ∨ 𝑠𝑄′ or 𝑠𝑄 ∨ 𝑠𝑄′ is in 𝑄. In particular, 𝑠𝑄 ∧ 𝑠𝑄′ or 𝑠𝑄 ∧ 𝑠𝑄′

efficiently distinguishes 𝑃 and 𝑄 and therefore contradicts the ⩽-minimal choice
of 𝑠𝑄 .
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Unlike for structurally submodular separation systems in Lemma 6.14 or efficient
distinguishers in Lemma 6.21, in this setup we can not necessarily find a star in ℱ𝑑
which is contained in 𝑂 but in no profile in 𝒫 for every orientation 𝑂 of 𝑈 which
not include any profile in our set 𝒫 of strongly robust profiles. This is because we
require that every profile in 𝒫 weakly orients a separation in our star outwards,
but the stars constructed in Lemma 6.21, for example, do not necessarily have this
property. Thus we are going to, instead, find a star 𝜎 contained in both 𝑂 and
exactly one profile from 𝒫. Since each such star also lies in ℱ𝑑, this will be enough
to ensure that our application of Theorem 6.23 does not result in an ℱ𝑑-tangle.

Lemma 6.28. For every consistent orientation 𝑂 of 𝑈 and every set 𝒫 ≠ ∅ of
distinguishable strongly robust profiles in 𝑈 there exists a star 𝜎 in ℱ𝑑 contained
in 𝑂.

Proof. Pick a star 𝜎 (not necessarily from ℱ𝑑) with the following properties:

(i) 𝜎 ⊆ 𝑂.

(ii) 𝜎 is contained in at least one profile in 𝒫.

(iii) Property Eff(𝑃 ) is satisfied for every profile 𝑃 ∈ 𝒫 such that 𝜎 ⊆ 𝑃.

(iv) Every 𝑃 ∈ 𝒫 either contains 𝜎 or weakly contains 𝑠 for some separation 𝑠 ∈ 𝜎.

(v) For every separation 𝑠 ∈ 𝜎 and any profile 𝜎 ⊆ 𝑃 there exists a profile 𝑄 ∈ 𝒫
such that 𝑠 is a efficient 𝑃–𝑄-distinguisher.

Note that the empty set is such a star. Let us further assume that we choose our
star 𝜎 fulfilling (i)–(v) so that as few profiles in 𝒫 as possible contain 𝜎.

If only one profile contains 𝜎, then 𝜎 ∈ ℱ𝑑 is as desired, so let us suppose for a
contradiction that there are at least two such profiles.

Pick two such profiles 𝑃1, 𝑃2 ⊇ 𝜎 such that the order of an efficient 𝑃1–𝑃2-distin-
guisher is as small as possible. Pick an efficient 𝑃1–𝑃2-distinguisher 𝑠 which crosses
as few elements of 𝜎 as possible. 𝑂 orients 𝑠, say 𝑠 ∈ 𝑂. If 𝑠 is nested with 𝜎, the
maximal elements of 𝜎 ∪ { 𝑠 } form a star violating the definition of 𝜎: Every profile
containing this new star also contains 𝜎. To see that (iii) is fulfilled, note that there
is no profile 𝑃 ⊇ 𝜎 in 𝒫 such that 𝑠 ∈ 𝑃 for which there is a 𝑠′ of lower order than 𝑠
such that 𝑠 ⩽ 𝑠′ ∈ 𝑃, since such an 𝑠′ would be a distinguisher of lower order than
𝑠 for some pair of profiles containing 𝜎, contrary to the coice of 𝑠.

Thus we may assume that 𝑠 is not nested with 𝜎, say 𝑠 crosses 𝑡 ∈ 𝜎. Since, by
(v), there is some profile 𝑄 ∋ 𝑡 for which 𝑡 is an efficient 𝑃1–𝑄-distinguisher, we
know that at least one of 𝑠 ∧ 𝑡 and 𝑠 ∧ 𝑡 has order at least the order of 𝑡: Otherwise
this would contradict the fact that 𝑡 is an efficient 𝑃1–𝑄-distinguisher by robustness
(if |𝑡| < |𝑠|) or the profile property (if |𝑠| ⩽ |𝑡|) of 𝑄.
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Thus by submodularity the order of at least one of 𝑠 ∨ 𝑡 and 𝑠 ∨ 𝑡 is at most the
order of 𝑠 and that separation is therefore also an efficient 𝑃1–𝑃2-distinguisher (by
the profile property and consistency), which would make it a better choice for 𝑠, a
contradiction.

Thus 𝜎 contains precisely one profile and therefore, by construction, 𝜎 ∈ ℱ𝑑.

Together with Theorem 6.23, these lemmas give a proof of a tree-of-tangles
theorem for strongly robust profiles of different orders in a submodular universe.
This theorem does not give efficient distinguishers; we will deal with efficiency in a
later step.

Theorem 6.29 (Tree-of-tangles theorem for different orders). Let (𝑈,⩽,∗ , ∨, ∧, | ⋅ |)
be a submodular distributive universe of separations. Then for every distinguishable
set 𝒫 of strongly robust profiles in 𝑈 there is a nested set 𝑇 = 𝑇(𝒫) ⊆ 𝑈 of separations
such that:
(i) every two profiles in 𝒫 are distinguished by some separation in 𝑇;
(ii) for any profile 𝑃 ∈ 𝒫, any maximal 𝑠 ∈ 𝑃 ∩𝑇 and any 𝑠′ ∈ 𝑃 such that 𝑠 ⩽ 𝑠′

we have |𝑠| ⩽ |𝑠′|.

Proof. By Lemma 6.25 and Lemma 6.26 the set 𝑈 is critically ℱ𝑑-separable for the
set ℱ𝑑 defined above. Thus we can apply Theorem 6.23. This can, by Lemma 6.28,
not result in an ℱ𝑑-tangle, thus there is an 𝑈-tree over ℱ𝑑. By Lemma 6.4 we may
assume this 𝑈-tree to be irredundant. The set of separations associated to edges of
this tree is then a nested set 𝑇.

Every profile in 𝒫 induces a consistent orientation of 𝑇, since all the separations in
𝑇 are weakly oriented by every profile in 𝒫. The maximal elements of this orientation
form a star 𝜎𝑃 in ℱ𝑑, and this star is a subset of 𝑃 by the definition of ℱ𝑑.

To see that 𝑇 distinguishes every pair of profiles in 𝒫, consider two profiles 𝑃
and 𝑄 in 𝒫. These two profiles cannot induce the same orientation of 𝑇, since then
𝜎𝑃 = 𝜎𝑄 would be a subset of both 𝑃 and 𝑄, contradicting the definition of ℱ𝑑.
Thus some 𝑠 ∈ 𝜎𝑃 witnesses that 𝑃 weakly orients some 𝑡 ∈ 𝜎𝑄 as 𝑡 and, vice versa,
𝑡 witnesses that 𝑄 weakly contains 𝑠. Of these two separations 𝑠 and 𝑡, the one of
lower order is thus a 𝑃–𝑄-distinguisher in 𝑇.

Property (ii) is then immediate from the definition of ℱ𝑑.

Note that the nested set constructed in Theorem 6.29 does not yet necessarily
distinguish any two profiles efficiently. However, we can use Theorem 6.16 in
combination with Theorem 6.29 to obtain such a set:

Theorem 6.30 (Efficient tree - of - tangles theorem for different order profiles).
Let (𝑈,⩽,∗ , ∨, ∧, | ⋅ |) be a submodular distributive universe of separations. Then
for every distinguishable set 𝒫 of strongly robust profiles in 𝑈 there is a nested
set 𝑇 = 𝑇(𝒫) ⊆ 𝑈 of separations such that every two profiles in 𝒫 are efficiently
distinguished by some separation in 𝑇.
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Proof. Let 𝑘 be the maximal order of a profile in 𝑈. Let 𝑇 be the 𝑈-tree over ℱ𝑑
from the proof of Theorem 6.29. We consider the ⊆-maximal subtrees 𝑇𝑖 of 𝑇 with
the property that no internal node of 𝑇𝑖 corresponds to a profile in 𝒫. Clearly
𝑇 = ⋃𝑚

𝑖=1 𝑇𝑖 and no two 𝑇𝑖 share an edge.
We are going to simultaneously replace each of the nested sets of separations

corresponding to the 𝑇𝑖s with other separations in such a way that the resulting set
of separations is still nested and we ensured that every pair of profiles contained in
some 𝑇𝑖 is efficiently distinguished by this new set of separations.

So, given some 𝑇𝑖, let 𝒫𝑖 be the set of profiles in 𝒫 living, in 𝑇, in one of the
leaves of 𝑇𝑖. Let 𝐿𝑖 be the set of all separations associated to one of the directed
edges adjacent and pointing away from such a leaf. Note that 𝐿𝑖 is a star. For every
𝑠 ∈ 𝐿𝑖 let 𝑃𝑠 ∈ 𝒫𝑖 be the unique profile corresponding to a leaf of 𝑇𝑖 and containing
𝑠.

It is easy to check that for any two profiles 𝑃 and 𝑄 in 𝒫𝑖 there is a efficient 𝑃–𝑄-
distinguisher 𝑡 which is nested with all of 𝐿𝑖 : Pick one 𝑡 which is nested with as many
separations from 𝐿𝑖 as possible. Now 𝑡 cannot cross an 𝑠 ∈ 𝐿𝑖 such that 𝑃𝑠 = 𝑃 or
𝑃𝑠 = 𝑄, as in that case, for 𝑡 ∈ 𝑃𝑠, either 𝑡 ∨ 𝑠 or 𝑡 ∧ 𝑠 would, by submodularity,
consistency and the profile property, be an efficient 𝑃-𝑄--distinguisher and as such
contradict the choice of 𝑡 by Lemma 2.1. If on the other hand 𝑡 crosses some 𝑠 ∈ 𝐿𝑖 ,
such that 𝑃𝑠 ∉ {𝑃 ,𝑄}, then not both of 𝑠 ∨ 𝑡 and 𝑠 ∨ 𝑡 can have order less than
the order of 𝑠 by the profile property since, by property (ii), there is no 𝑠′ ∈ 𝑃𝑠
such that 𝑠 ⩽ 𝑠′ and |𝑠| > |𝑠′|. Thus the order of either 𝑠 ∨ 𝑡 or 𝑠 ∨ 𝑡 is at most the
order of 𝑡, however by Lemma 6.24 and the fish lemma, Lemma 2.1, this separation
then contradicts the choice of 𝑡.

Moreover, there exists such an efficient 𝑃–𝑄-distinguisher 𝑡 which has an orient-
ation 𝑡 such that 𝑠 ⩽ 𝑡 for every 𝑠 ∈ 𝐿𝑖 : Otherwise 𝑠 ⩽ 𝑡 for some orientation of
𝑡 and if neither 𝑃 = 𝑃𝑠 nor 𝑄 = 𝑃𝑠, then both 𝑃 and 𝑄 would weakly orient 𝑡 as
𝑡 since they weakly contain 𝑠. On the other hand if 𝑃 = 𝑃𝑠, say, then, again by
property (ii), the order of 𝑡 is at least the order of 𝑠, thus 𝑠 itself would be the
required efficient 𝑃–𝑄-distinguisher.

Now consider, for every 𝑇𝑖, the set 𝑈 𝑖 of all separations 𝑡 in 𝑈 nested with 𝐿𝑖
and fulfilling the additional property of having, for every 𝑠 ∈ 𝐿𝑖 , an orientation
such that 𝑠 ⩽ 𝑡, i.e., 𝑈 𝑖 is the set of all separations in 𝑈 inside of 𝐿𝑖 . 𝑈

𝑖 is closed
under ∨ and ∧ in 𝑈 by the fish Lemma 2.1, thus the restriction of 𝑈 to 𝑈 𝑖 is again
a submodular universe of separations.

Given any 𝑠 ∈ 𝐿𝑖 , the down-closure of 𝑠 is a regular profile of 𝑈 𝑖. Note that every
efficient distinguisher for the profiles induced by 𝑠1 and 𝑠2 ∈ 𝐿𝑖 on 𝑈 𝑖 is also an
efficient distinguisher of 𝑃𝑠1 and 𝑃𝑠2 .

By Theorem 6.16 applied to the set of all separations of order less than 𝑘 in 𝑈 𝑖,
we thus find a 𝑈 𝑖-tree ̂𝑇 𝑖 over ℱ𝑒 (defined for 𝒫𝑖). The corresponding nested set
𝑁𝑖 efficiently distinguishes all these profiles induced by some 𝑠𝑖 ∈ 𝐿𝑖 .
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6. Trees of tangles from tangle–tree duality

But now the nested 𝑁 given by ⋃𝑚
𝑖=1(𝑁𝑖 ∪ 𝐿𝑖) is as desired: It is easy to see

that this set is nested and every 𝑁𝑖 efficiently distinguishes any two profiles in 𝒫𝑖.
Moreover, we only ever changed separations inside of 𝐿𝑖 for every 𝑇𝑖.

The set 𝑁 also contains an efficient 𝑃–𝑄-distinguisher for profiles 𝑃 and 𝑄 in
different 𝑇𝑖s: A profile 𝑅 whose node in 𝑇 lies on the path between the nodes
containing 𝑃 and 𝑄, respectively, also does so in the tree induced by 𝑁. Thus, if
we have efficient distinguishers for 𝑃 and 𝑅 and for 𝑅 and 𝑄, respectively, in 𝑁,
then one of the two is also an efficient 𝑃–𝑄-distinguisher. An inductive application
of this argument proves the claim, that the set 𝑁 efficiently distinguishes any two
profiles in 𝒫.
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7. Tangle-finding and a tree-of-tangles
algorithm

This chapter presents a practical approach to tangle computation. It is
loosely based on the preprint note [35], which is joint work with Chris-
tian Elbracht and Jakob Kneip; this chapter contains new, unpublished
variations of those ideas as indicated throughout the text and in Ap-
pendix A.4.

If we want to apply tangles to identify dense clusters in real-world data, then we
will quickly run into the issue that the time and space requirements for precise
computation of most kinds of tangles on large ground sets can be immense. While
good work has been put into making the computation as efficient as possible, such
as the algorithm by Grohe and Schweitzer for finding the tangles and a tree of
tangles for a connectivity function [51], there is only so much that can be done, since
deciding whether a graph has tree-width 𝑘, where both 𝑘 and the graph are input
variables, is NP-complete [1] and this decision problem is linked to the existence of
tangles in the graph: the existence of a high-order tangle implies high tree-width and
high tree-width is witnessed by a high-order tangles, up to a constant factor. [64]

Instead of calculating those hard-to-compute tangles of a connectivity function,
in this section we will utilize the generality that abstract separation systems have
to offer: we will work not with the tangles in some submodular universe 𝑈, but
with just some small separation system 𝑆 which we think of as some ‘representative
sample’ of 𝑈. There is a variety of approaches how such a set 𝑆 might be obtained
for any given set-up, e.g. from a rough1 MinCut-approximation algorithm, see [33]
for a demonstration of just some approaches.

We will first introduce the most obvious2 algorithm for finding ℱ-tangles of
some separation system in Section 7.2. This algorithm assumes that we are given
the separation system 𝑆 as an enumeration where the separations are in order
of increasing value of the order function; this algorithm will help us build an
understanding for the setting. We then, in Section 7.3, present a more refined
tangle-search algorithm to which the separations can be provided in arbitrary order,
e.g. in the order that they come out of our separation sampling process. This
1In practice it seems to be the case that you want locally minimal cuts, in some sense. A too good
MinCut-algorithm would just give you the global minimal cut which, alone, is not helpful for
tangles.

2That is, apart from independently checking for every orientation whether it is a tangle.
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algorithm can run in parallel to our sampling process, enabling us to keep track
of the tangle structure uncovered by the so-far sampled separations while avoiding
the redundant computation that would come from re-running the algorithm from
Section 7.2 for every new separation. This also opens the option of having the tangle
structure inform the sampling of new separations.

In the worst case both of these algorithms have a runtime which is exponential
in ∣𝑆∣. As an extreme example, if ℱ = ∅, then every one of the 2𝑆 subsets of 𝑆
avoids ℱ and thus the number of tangles is exponential in ∣𝑆∣, requiring the runtime
of the algorithm to be exponential as well. Practically, the runtime is determined
mainly by the number of tangles which exist, and any sensible data analysis using
tangles should adjust ℱ so that the number of tangles is not too large in order to get
meaningful information out of tangles anyway. Moreover, the number of separations
that we consider is a parameter that we have control over, so we can make trade-offs
between runtime and amount of detail that we recover.

Finally, in Section 7.4, we show how one can build trees of tangles in the separation-
sampling approach. A randomly sampled separation system 𝑆 will be unlikely to
allow for a nested set of separations that distinguishes all its tangles, but careful
expansion of 𝑆 can make that possible.

7.1. Setting and Terminology

In this chapter we consider a separation system 𝑆 together with an order function
| ⋅ | ∶ 𝑆 → ℝ⩾0. Usually 𝑆 will be a ‘sampled’ subset of some submodular universe
𝑈, which is also where the order function comes from. (However, this will only
become a proper prerequisite for Section 7.4.) Analogous to tangles in a submodular
universe, we will define tangles in 𝑆.

Let ℱ be some fixed set of sets of separations. For 𝑟 ∈ ℝ ∪∞, let us denote by
𝑆<𝑟 the set { 𝑠 ∈ 𝑆 ∶ |𝑠| < 𝑟 }. Note that 𝑆<𝑟 is defined as a subset of 𝑆 and not of
some universe which 𝑆 might be a subset of, thus we avoid the usual 𝑆𝑘-notation
here. An 𝑟-tangle in 𝑆 shall be an ℱ-avoiding orientation 𝜏 of 𝑆<𝑟.3 A tangle in
𝑆 is an 𝑟-tangle in 𝑆 for any 𝑟, and the order of a tangle 𝜏 in 𝑆 is the maximum
𝑟 ∈ ℝ ∪∞ for which 𝜏 is an 𝑟-tangle. A maximal tangle in 𝑆 is one which is not a
subset of any higher-order tangle in 𝑆.

For the presentation of the algorithms, we will always assume that the order
function | ⋅ | takes distinct values on distinct unoriented separations. This is to avoid
some rather technical bookkeeping, which would get in the way of understanding
the main parts of the algorithms. However, all the algorithms presented can be
augmented with a certain amount of bookkeeping to be able to do away with

3We do not demand consistency separately here. Instead, if consistency is required, we encode this
by letting ℱ contain all inconsistent pairs of separations. This is a minor detail which will simplify
the upcoming presentation of our algorithms.
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this assumption. From a theoretical standpoint we can also apply Corollary 9.9 to
perturb our order function into one which takes distinct values on distinct unoriented
separations, as we did for unrabelling order-induced submodular separation systems
in Section 9.2. Practically, you would first have to find an efficient way of calculating
a tie-breaker like the function from Corollary 9.9 for any given setup.

Our algorithms will be given access to ℱ not as a complete list but rather as
a membership oracle, i.e., a procedure which decides for any given subset of 𝑆
whether it is an element of ℱ or not. A full list of the elements of ℱ would be
far to long to be practical in most cases. Thus, such an oracle access is preferable
and aligns well with how tangle conditions are usually defined. In most settings we
know that the elements of ℱ have a bounded size of at most some 𝑚 ∈ ℕ.4 We will
mark the places in the algorithms where this knowledge can be used to avoid some
unnecessary computation.

7.2. The tangle search tree

The first algorithm – an algorithm for finding all the tangles in 𝑆 – can already be
found in our note on generic tangle algorithms [35] and was applied in [33] as joint
work with machine learning scientists. It is also a very straightforward algorithm
which naturally arises from the definitions; a pseudo code representation can be
seen in Algorithm 1.

To find out whether a given orientation 𝜏 of 𝑆 avoids ℱ we have to check all the
subsets of 𝜏 for membership in ℱ. (At least those of size ⩽ 𝑚.) Since any subset
of 𝜏 also avoids ℱ, we can also formulate this recursively: if 𝜏 = 𝜏 ′ ∪ { 𝑠 } then 𝜏
avoids ℱ if, and only if, 𝜏 ′ avoids ℱ and no <𝑚-element subset of 𝜏 together with
𝑠 is in ℱ.

Now if we want to find all tangles of 𝑆, we can use this recursive approach bottom-
up to solve the problem of finding tangles by a binary tree search, as follows. Let
𝑆 = { 𝑠1,… , 𝑠𝑛 }, enumerated with increasing order, and denote 𝑆𝑖 ≔ {𝑠1,… , 𝑠𝑖 }.
Then we can define a binary tree 𝑇 on the vertex set ⨆0⩽𝑖⩽𝑛 2𝑆

𝑖
, where every 𝜏 ∈ 2𝑆

𝑖

(for 𝑖 > 0) has the parent 𝜏− ≔ 𝜏 ∩ 𝑆 𝑖−1. If 𝜏 is a tangle of 𝑆 𝑖 then 𝜏− is one of
𝑠𝑖−1. Thus, the tangles in 𝑆 form a binary subtree of 𝑇, and we can perform a tree
search (depth-first or breadth-first) of this binary subtree to find all the tangles of
𝑆 , starting at the trivial tangle ∅.5

In this way, we do not only find all the tangles of 𝑆 but all tangles of all the 𝑆 𝑖s.
Thus, since we chose the enumeration of 𝑆 to be non-decreasing with respect to
the order function | ⋅ |, this gives us not only all tangles of 𝑆, but all tangles in 𝑆.
This computation then yields the whole hierarchy of tangles in 𝑆 represented by

4For typical choices of ℱ, like in the cases of profiles and of tangles in graphs, we have 𝑚 = 3.
5Unless ∅ ∈ ℱ which would be silly, since then no ℱ-tangles can possibly exist.
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TangleSearch([𝑠1,… , 𝑠𝑛],ℱ)

1 𝒯max ← ∅
2 𝒯0 ← {∅}
3 for 𝑖 = 1…𝑛
4 𝒯𝑖 ← ∅
5 for each 𝜏 ∈ 𝒯𝑖−1
6 isMaximal ← True
7 for each orientation 𝑠 of 𝑠𝑖
8 if ∀𝑋 ⊆ 𝜏 ∶ { 𝑠 } ∪ 𝑋 ∉ ℱ (Checking 𝑋 of size ⩽ 𝑚− 1

suffices.)
9 𝒯𝑖 ← 𝒯𝑖 ∪ { 𝜏 ∪ { 𝑠 } }

10 isMaximal ← False
11 if isMaximal
12 𝒯max ← 𝒯max ∪ { 𝜏 }
13 𝒯max ← 𝒯max ∪ 𝑇
14 return 𝒯max

Algorithm 1: Pseudo-code for a depth-first tangle search yielding the set of maximal
tangles.

the binary tree. The leaves of this tree are the maximal tangles in 𝑆 and the whole
tree can easily be reconstructed from just them.

7.3. On-line tangle search

Suppose we are not given access to all of 𝑆 at once but that it is given to us one
separation at a time in an uncontrollable order. Maybe these separations come from
a randomized process, and it is unreasonable to demand that separations are given
to us in increasing order. We now want to be able to compute the tangle hierarchy
on-line, i.e., going through the separations in the order they are given to us and
maintaining a list of the tangles found so far, in the given subset of 𝑆 . This will also
come in handy later, in the context of the tree of tangles, where we will ‘discover’
separations which had not been considered during tangle search.

We encode the order in which the separations are given to us as some fixed
enumeration 𝑆 = { 𝑠1, 𝑠2,… , 𝑠𝑛 } which need not respect | ⋅ |, and we shall write 𝑆𝑖

for { 𝑠1,… , 𝑠𝑖 }.
Our aim is to find the maximal tangles in 𝑆 inductively: given the maximal

tangles of 𝑆𝑖 and their respective orders, we consider 𝑠𝑖+1 and compute the maximal
tangles of 𝑆𝑖+1.
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UpdateTangle(𝜏, 𝑘, 𝑠,ℱ)

1 [𝑠1 ,… , 𝑠ℓ ] ← 𝜏 (Enumeration of 𝜏 with increasing order.)
2 𝑖0 ← min({ 𝑖 ∶ |𝑠| < |𝑠𝑖 | } ∪ { ℓ + 1 }) (Determine insertion point for 𝑠.)
3 for each 𝑋 ⊆ {𝑠1 ,… , 𝑠𝑖0−1 } (Checking 𝑋 of size ⩽ 𝑚− 1 suffices.)
4 if 𝑋 ∪ { 𝑠 } ∈ ℱ ({ 𝑠1 ,… , 𝑠𝑖0−1 , 𝑠 } includes a forbidden set.)
5 return [𝑠1 ,… , 𝑠𝑖0−1 ], |𝑠|
6 for 𝑖 = 𝑖0,… , 𝑛
7 for each 𝑋 ⊆ {𝑠1 ,… , 𝑠𝑖−1 } (Checking 𝑋 of size ⩽ 𝑚− 2 suffices.)
8 if 𝑋 ∪ { 𝑠𝑖 , 𝑠 } ∈ ℱ ({𝑠1 ,… , 𝑠𝑖0−1 , 𝑠, 𝑠𝑖0 ,… 𝑠𝑖 } includes a

forbidden set.)
9 return [𝑠1 ,… , 𝑠𝑖0−1 , 𝑠, 𝑠𝑖0 ,… 𝑠𝑖−1 ], |𝑠𝑖|

10 return [𝑠1 ,… , 𝑠𝑖0−1 , 𝑠, 𝑠𝑖0 ,… 𝑠𝑖 ], 𝑘

UpdateTangles(𝒯, 𝑠,ℱ)

1 𝒯′ ← ∅
2 for each (𝜏, 𝑘) ∈ 𝒯
3 𝜏1, 𝑘1 ← UpdateTangle(𝜏, 𝑘, 𝑠,ℱ)
4 𝜏2, 𝑘2 ← UpdateTangle(𝜏, 𝑘, 𝑠,ℱ)
5 𝒯′ ← 𝒯∪ { (𝜏1, 𝑘1), (𝜏2, 𝑘2) }
6 return MaximalElements(𝒯)

TangleSearchOnLine(𝑆,ℱ)

1 𝒯← { (∅,∞) }
2 for each 𝑠 ∈ 𝑆
3 𝒯← UpdateTangles(𝒯, 𝑠,ℱ)
4 return 𝒯

Algorithm 2: The procedures that make up the on-line tangle search algorithm. The
procedure MaximalElements is trivial and not listed; it determines
the maximal elements with respect to (𝑘, 𝜏) ⩽ (𝑘′, 𝜏 ′) ∶⇔ 𝜏 ⊆ 𝜏 ′.
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A pseudo code version of this algorithm is displayed in Algorithm 2. In the (𝑖+1)th
step of the algorithm, for every maximal tangle 𝜏 in 𝑆𝑖 and every orientation 𝑠 of
𝑠𝑖+1, we do the following: let 𝑟 be the order of 𝜏. Set 𝜏 ′ = 𝜏 ∪ { 𝑠 } and determine
the largest 𝑟′ for which 𝜏 ′𝑟′ ≔ 𝜏 ′ ∩ 𝑆 𝑖+1

<𝑟′ = { 𝑠 ∈ 𝜏 ′ ∶ |𝑠| < 𝑟′ } is an 𝑟′-tangle, i.e.,
the largest 𝑟′ for which the elements of 𝜏 ′ of order < 𝑟′ contain no subset in ℱ.
This 𝑟′ is at least |𝑠| and at most 𝑟. In-between the two it may take any value which
is the order of a separation in 𝑆𝑖. We can perform these checks for membership
in ℱ in-order, so that we do not test sets for membership in ℱ unnecessarily, see
Algorithm 2.

Finally, the maximal elements among all such 𝜏 ′ are the maximal tangles in 𝑆𝑖+1,
as desired.

7.4. Building a tree of tangles with partial information

Once we have found the tangles in some 𝑆 , we might want to use them to split
up our structure into a tree of tangles. Suppose we are working in a submodular
universe 𝑈 and the set ℱ includes all those two- and three-element subsets of 𝑈
which would violate consistency, the profile property (P), or the robustness property
(R). If the separation system that we ran the algorithm on was some 𝑆 = 𝑆𝑘 ⊆ 𝑈,
then the profiles in 𝑆 are robust profiles in 𝑈 and our simplifying assumption that
the order function takes distinct values on different separations makes it very easy to
find a tree of tangles: recall that for such a set of robust profiles there exists a nested
set of separations which efficiently distinguishes all the profiles by Theorem 5.8.
Now„ in this set-up, every pair of profiles is efficiently distinguished precisely by
the unique separation of the smallest order among the separation on which the
profiles differ. So, if we pick for every pair of profiles this unique separation, we will
automatically obtain a nested set.

What can we do if we are not given 𝑆𝑘 as a whole, but only a fragment of it?
Closing our separation system 𝑆 under all possible corners in 𝑈 can be prohibitively
expensive in terms of time and memory, let alone running a tangle search on it. But,
using our insights from the splinter lemma in Section 5.2, we can still build a tree of
tangles where we extend 𝑆 by only those separations which are necessary to achieve
a nested set, as we will now explain.

First, we take for every pair of tangles in 𝑆 an efficient distinguishing separations
in 𝑆 , as above; these might not form nested set. We will now make a corner-taking
argument along the lines of the arguments we made for the applications of the
splinter lemma in Section 5.3, as follows.

Say there is a pair 𝑠, 𝑡 of separations that cross, 𝑠 distinguishing some tangles 𝜏𝑠 , 𝜏𝑠
efficiently and 𝑡 distinguishing 𝜏𝑡 , 𝜏𝑡 efficiently, where each contains the separation
indicated by its index. Assume w.l.o.g. that |𝑠| < |𝑡|, then 𝜏𝑡 and 𝜏𝑡 both orient 𝑠, and
that, by the efficiency of 𝑡, both orient 𝑠 the same, as 𝑠 say. By the submodularity
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of | ⋅ |, either one of 𝑠 ∨ 𝑡 and 𝑠 ∨ 𝑡 has a lower order than 𝑡, or both 𝑠 ∨ 𝑡 and 𝑠 ∨ 𝑡
have a lower order than 𝑠. In either case, the fact that ℱ enforces robust profiles
implies that one of those lower-order corners has not been considered during our
tangle search, i.e., one of the tangles does not orient it but orients some separation
of higher order. We thus run the UpdateTangles procedure of Algorithm 2 with
that separation and start anew with building a distinguishing set. We repeat this
process until the set of efficient distinguishers comes out nested.

This process terminates; at the latest once we have run UpdateTangles with
all the separations in 𝑈. Take note that UpdateTangles can change the number
of tangles both ways: a tangle might split in two, if both orientations of the newly
considered separation are possible; and a tangle might disappear by being truncated
in UpdateTangle so that it comes out as a subset of another tangle and is then
eliminated by MaximalElements.

The result of this process is a separation system 𝑆 ′ ⊆ 𝑈, which is a superset of
the separation system 𝑆 that we started with, the set 𝒯′ of all ℱ-tangles in 𝑆 ′ and a
nested set of separations 𝑁 ⊆ 𝑆′ which distinguishes all the tangles in 𝒯′ efficiently.

It is possible to adapt this algorithm to allow distinct separations of the same
order. If we allow multiple separations of the same order, then we have to choose
between multiple possible efficient distinguisher-separations for each pair of tangles.
Even if 𝑆 was some 𝑆𝑘 , not every possible such choice would be nested. We can
however follow our proof of Lemma 5.5 to make them nested, resolving one crossing
pair at a time. In general, our approach requires not discarding the distinguishing
set and starting anew after every UpdateTangles, but to keep track of one choice
of distinguishers and making changes to it only as necessary. One can then follow
the proof of Lemma 5.5, to gradually make the distinguishing set ‘more and more
nested’. See our note [35] for a detailed, and very technical, variant of this approach
which, additionally, goes out of it’s way to update as few tangles as necessary to
build a nested set – at the cost of the tangles becoming tangles of ⊆-incomparable
subsystems 𝑆 ⊆ 𝑈.
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8. Submodularity in separation systems

In this chapter we analyse and differentiate three key notions of submodu-
larity. The contents of this chapter are based on the preprint [37] which is
joint work together with Christian Elbracht and Jakob Kneip. Section 8.6
is my own addition.

A central property that is required of separation systems in almost every context
is some form of submodularity: a property needed to make the separation system
‘rich enough’ to prove the desired theorems, for example the tree-of-tangles theorem
[26]. Our aim for this part of the thesis is to study, and relate, the various forms of
submodularity.

Originally, in [26,28,47,64], it was not only required that 𝑆 was part of a universe
of separations but also that there exist a submodular order function 𝑓 ∶ 𝑈 → ℝ⩾0
and 𝑘 ∈ ℝ⩾0 such that

𝑆 = 𝑆𝑘 ≔ {𝑠 ∈ 𝑈 ∶ 𝑓(𝑠) < 𝑘 }.

Diestel, Erde, and Weißauer [25] showed that the theorems of tangle theory could
also be deduced without relying on such an order function, demanding instead just
one structural property of 𝑆 ⊆ 𝑈 which in the case of the sets 𝑆𝑘 is imposed by the
submodularity of 𝑓: that for all 𝑟, 𝑠 ∈ 𝑆 at least one of 𝑟 ∨ 𝑠 and 𝑟 ∧ 𝑠 is also in 𝑆 .
Note that this structural property of 𝑆 is measured externally: in the universe 𝑈,
where the join 𝑟 ∨ 𝑠 and the meet 𝑟 ∧ 𝑠 are taken. To reflect this, we say that 𝑆 ⊆ 𝑈
is submodular in 𝑈. Whenever a submodular order function 𝑓 on 𝑈 and a number 𝑘
exist such that 𝑆 = 𝑆𝑘 for this order function, we say that the submodularity of 𝑆
in 𝑈 is order-induced in 𝑈.

Much of the work presented in this thesis, particularly in Part II, relies heavily on
such structural submodularity of separation systems, rather than on the existence
of a submodular order function. Indeed, separation systems which are submodular
in some universe of separations form the most relevant class of separation systems
nowadays, and the most general theorems of abstract tangle theory are formulated
in their context [25,26,28,34].

The most natural structural notion of submodularity, however, is simply to call
a separation system 𝑆 submodular if any two separations 𝑟, 𝑠 ∈ 𝑆 have either
a supremum 𝑟 ∨ 𝑠 or an infimum 𝑟 ∧ 𝑠 in 𝑆 . Unlike in our earlier definition of
submodularity for 𝑆 in some universe 𝑈, the question now is whether such infima
and suprema exist – not whether they lie in 𝑆 .
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Note that every separation system 𝑆 that is submodular in some universe 𝑈 of
separations is also submodular also in this latter sense, since every infimum or
supremum of 𝑟, 𝑠 ∈ 𝑆 in 𝑈 which (by submodularity in 𝑈) also lies in 𝑆 , is also
the supremum or infimum of 𝑟 and 𝑠 in 𝑆 . Submodularity of a separation system
𝑆 , as defined locally in 𝑆 itself, is therefore a weakening of submodularity in some
surrounding universe of separations.

One can then ask whether this weaker kind of submodularity still suffices as a basis
for the theorems of tangle theory, which traditionally assume that the separation
system 𝑆 whose tangles are studied is submodular in some universe 𝑈. Our first
result, which we prove in Section 8.2, shows that it does:

Theorem 29. p. 173 Every submodular separation system is submodular in some universe
of separations.

Theorem 29 allows us to apply the main theorems of tangle theory to separation
systems which are known to be submodular only in the weaker local sense, without
the need to re-prove them under this weaker assumption.

In Sections 8.3 and 8.4 we turn our attention to the question of when the
submodularity of a separation system in a universe 𝑈 is always induced by a
submodular order function on 𝑈. In Section 8.3 we prove that it need not be:

Theorem 30. p. 177 There exists a separation system 𝑆 which is submodular in a universe
𝑈 of set bipartitions, but whose submodularity in 𝑈 is not induced by a submodular
order function on 𝑈.

More precisely, we present a necessary condition for the submodularity of a
separation system in a universe 𝑈 to be order-induced in 𝑈, and use this to give
concrete examples of systems which are submodular in some universe 𝑈 of separations
but whose submodularity is not order-induced in this 𝑈.

In Section 8.4 we consider another aspect of order-induced submodularity. Whether
the submodularity in a universe 𝑈 of a separation system is order-induced or not
depends, a priori, on the choice of 𝑈. As a simple example, consider the case that a
separation system 𝑆 is submodular in a universe 𝑈 of separations, and that 𝑈 is a
subuniverse of some larger universe 𝑈′ of separations. Then 𝑆 is submodular also in
𝑈′. If the submodularity of 𝑆 in 𝑈 is witnessed by some submodular order function
on 𝑈, we may ask whether we can extend this function to 𝑈′ to witness that 𝑆 is
submodular also in 𝑈′. We show that this can be done in some cases. The general
question of whether it is always possible to extend such a witnessing submodular
order function to a larger universe remains open.

Finally, in Section 8.5, we present two decomposition theorems for separation
systems that are submodular in distributive universes. Our first decomposition
theorem allows us to write every such separation system 𝑆 as a (not necessarily
disjoint) union of three smaller ones, each of which is not only again submodular in
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the same universe, but is also closed under taking existing corners in 𝑆 . Thus, we
cover 𝑆 by smaller, simpler, ‘spanned’ subsystems. To prove this, we introduce a
variation of Birkhoff’s representation theorem for universes of separations instead of
lattices. Moreover, in our decomposition theorem, the subsystems can be chosen
disjoint, unless the separation system to be decomposed is one of set bipartitions.

Separation systems that are submodular in the universe 𝑈 of bipartitions of a
set 𝑉 cannot be decomposed disjointly into submodular subsystems. Indeed, every
non-empty subsystem would have to contain the separations (𝑉 , ∅) and (∅, 𝑉 ), since
these form opposite corners of every pair of inverse separations. By submodularity
in 𝑈, one of these – and hence also the other, as its inverse – would have to lie in
this subsystem.

Separation systems of set bipartitions are, however, very concrete and better
understood than the more general abstract separation systems. We may view these
bipartition systems as the ‘elementary building blocks’ which make up the separation
systems that are submodular in distributive universes. Applying our decomposition
theorem repeatedly, for as long as disjoint decompositions are possible, we can thus
break down every separation system that is submodular in a distributive universe
into those elementary subsystems.

Theorem 35.  p. 187Every separation system 𝑆 which is submodular in some distributive
universe 𝑈 of separations is a disjoint union of corner-closed subsystems 𝑆1 ,… , 𝑆𝑛
of 𝑆 (which are thus also submodular in 𝑈) each of which can be corner-faithfully
embedded into a universe of bipartitions.

Specifically, these subsystems are the equivalence classes of the relation ∼ on 𝑆
where 𝑠 ∼ 𝑡 if and only if 𝑠 ∧ 𝑠 = 𝑡 ∧ 𝑡 in 𝑈.

In the chapter after this one, Chapter 9, we will introduce the unravelling problem,
which is concerned with yet another, very particular, property in which the three
kinds of submodularity differ.

8.1. Lattice terminology and tools

For this chapter we will use some additional terminology and insights from lattice
theory wherein we follow the definitions of the textbook of Davey and Priestley [16].
We also introduce generalizations of the submodularity concepts from separation
systems and universes of separations to posets and lattices.

Recall, that a lattice is distributive if it satisfies the distributive laws, that is for all
𝑎, 𝑏, 𝑐 ∈ 𝐿 we have that 𝑎∨(𝑏∧𝑐) = (𝑎∨𝑏)∧(𝑎∨𝑐) and 𝑎∧(𝑏∨𝑐) = (𝑎∧𝑏)∨(𝑎∧𝑐).
A typical example of a distributive lattice is the subset lattice of a set 𝑉, which
consists of the subsets of 𝑉 ordered by ⊆. Here the join of two sets is their union,
the meet is their intersection.

In fact, all finite distributive lattices can be represented as a set of subsets where
∨ and ∧ coincide with union and intersection. This is a fundamental result of lattice
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theory known as the Birkhoff representation theorem, which we can state after the
following additional definitions: a non-bottom element 𝑥 ∈ 𝐿 is join-irreducible if
whenever 𝑥 = 𝑎∨𝑏 for some 𝑎, 𝑏 ∈ 𝐿, then 𝑥 ∈ { 𝑎, 𝑏 }. The set of all join-irreducible
elements of 𝐿 is denoted 𝒥(𝐿) and forms a partially ordered set with the order
inherited from 𝐿. Given a partially ordered set (𝑃 ,⩽), the down-closed sets in 𝑃
form a distributive lattice with ⊆ as the partial order, union as join and intersection
as meet. This lattice is denoted as 𝒪(𝑃).

Theorem 8.1 (Birkhoff representation theorem; cf. [16, 5.12]). Let 𝐿 be a finite
distributive lattice. The map 𝜂 ∶ 𝐿 → 𝒪(𝒥(𝐿)) defined by 𝜂(𝑎) = {𝑥 ∈ 𝒥(𝐿) ∶ 𝑥 ⩽
𝑎 } = ⌈𝑎⌉𝒥(𝐿) is an isomorphism of lattices.

Given a lattice 𝐿, any subset 𝑃 ⊆ 𝐿 together with the restrictions of ∨ and ∧ (as
partial functions) is called a partial lattice, cf. [52].

In analogy to submodularity of separation systems in universes, we now introduce
submodular subsets of lattices. Let 𝐿 be a lattice and 𝑃 ⊆ 𝐿 a subset of 𝐿. We say
that 𝑃 is submodular in 𝐿 if for all 𝑎, 𝑏 ∈ 𝑃 at least one of 𝑎 ∨ 𝑏 and 𝑎 ∧ 𝑏 is in 𝑃 as
well.

If 𝑓 ∶ 𝐿 → ℝ⩾0 is a submodular function on 𝐿, then the sets 𝑓−1([0, 𝑥)) are
submodular in 𝐿. If for some submodular 𝑃 in 𝐿 there exists some submodular
function 𝑓 and some 𝑥 such that 𝑃 = 𝑓−1([0, 𝑥)), then we say that the submodularity
of 𝑃 in 𝐿 is induced by 𝑓 (and 𝑥), or that the submodularity of 𝑃 in 𝐿 is order-
induced.1

We say that a poset 𝑃 (in and of itself) is submodular if any two elements 𝑎, 𝑏 ∈ 𝑃
have a supremum in 𝑃 or an infimum in 𝑃.

8.2. Witnessing submodularity externally

The traditional, external, notions of submodularity always require our separation
system 𝑆 to be part of a universe 𝑈 of separations, even though, often, we are
interested in 𝑆 and substructures therein only and do not particularly care about
the shape of 𝑈. The only reason for keeping this ambient universe 𝑈 around is
that we need to be able to express joins and meets of elements of 𝑆 , and decide
whether these lie in- or outside of 𝑆 . The mathematical arguments exploiting the
submodularity of 𝑆 never truly make use of 𝑈, but only of the knowledge that at
least one of two opposing corner separations, 𝑟 ∨ 𝑠 and 𝑟 ∨ 𝑠 = (𝑟 ∧ 𝑠)∗, is always
present in 𝑆 , for all 𝑟, 𝑠 ∈ 𝑆 .

As discussed above, the simplest, most general, and thus most natural, form of
submodularity for a separation system is intrinsic from its poset structure, where a
poset 𝑃 = (𝑃 ,⩽) is submodular if all pairs 𝑎, 𝑏 ∈ 𝑃 have a supremum or an infimum
1This term is used to emulate the notation for separation system. The ‘order’-part of order-induced
submodularity, i.e., the symmetry of the submodular function is not applicable to lattices.
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in 𝑃. Yet almost all theorems in the theory of abstract separation systems are
phrased in terms of some form of submodularity which is external, in some universe
of separations, even when that universe bears no particular relevance on the result.

In this section we offer a way out: a method by which the submodularity of some
𝑆 in itself can be reflected into a suitable universe of separations in such a way,
that its submodularity is expressed externally. If 𝑆 is a separation system which is
submodular in some universe 𝑈, then 𝑆 is also submodular on its own. Here, we will
show a converse to this: if a separation system 𝑆 is submodular on its own, then
we can construct a universe 𝑈 which contains an isomorphic copy of the separation
system 𝑆 , i.e., there is an embedding of 𝑆 into 𝑈. We can choose this embedding
in such a way, that the pre-existing joins and meets inside 𝑆 are preserved. More
precisely, if 𝑟 and 𝑠 have a supremum 𝑡 in 𝑆 , then after embedding 𝑆 into 𝑈 we will
have 𝑡 = 𝑟 ∨ 𝑠, where the latter is measured in 𝑈. Thus our 𝑈 is chosen so that 𝑆 is
submodular in 𝑈.

Theorem 8.2. For every separation system 𝑆 , finite or infinite, there exists a
universe 𝑈 of separations and an embedding 𝜑∶ 𝑆 → 𝑈, with the property that
𝜑(𝑡) = 𝜑(𝑟) ∨ 𝜑(𝑠) if and only if 𝑡 is the supremum of 𝑟 and 𝑠 in 𝑆 , and likewise
𝜑(𝑢) = 𝜑(𝑟) ∧ 𝜑(𝑠) if and only if 𝑢 is the infimum of 𝑟 and 𝑠 in 𝑆 . Moreover, if 𝑆
is finite, then 𝑈 can be chosen to be finite.

In particular, if 𝑆 is submodular, then 𝜑(𝑆) is submodular in 𝑈.

The heavy lifting of Theorem 8.2’s proof is done by employing the Dedekind–
MacNeille-completion [62], a lattice theoretic tool with which one can embed an
arbitrary poset into a suitable lattice while preserving any pre-existing finite joins
and meets.2 Our task then is to equip the resulting completion of the poset 𝑆 with
an involution which turns it into a universe of separations, and which makes the
embedding of 𝑆 into its Dedekind–MacNeille-completion an isomorphism onto its
image.

To define this Dedekind–MacNeille-completion, we follow the notation of [16].
Let 𝑃 be any poset, finite or infinite. Given a subset 𝑋 ⊆ 𝑃 we write 𝑋ℓ for the set of
lower bounds of 𝑋 in 𝑃: the set of all 𝑝 ∈ 𝑃 such that 𝑝 ⩽ 𝑥 for all 𝑥 ∈ 𝑋. Similarly
we write 𝑋𝑢 for the set of all upper bounds of 𝑋 in 𝑃. To improve readability we
will omit braces when concatenating these operations, e.g., we shall write 𝑋𝑢ℓ rather
than (𝑋𝑢)ℓ.

The Dedekind–MacNeille-completion of 𝑃 is then given by

DM(𝑃 ) ≔ {𝑋 ⊆ 𝑃 ∶ 𝑋𝑢ℓ = 𝑋 }

using ⊆ as the partial order. A result by MacNeille [62] asserts that DM(𝑃 ) is
indeed a lattice and, moreover, the map 𝜑∶ 𝑃 → DM(𝑃 ) given by

𝜑(𝑝) ≔ {𝑝}ℓ

2The Dedekind–MacNeille-completion is more commonly used for infinite lattices, where it is used to
embed a lattice into a complete lattice, hence the name. It is also known as the completion by cuts.
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is an embedding of the poset 𝑃 into DM(𝑃 ) with the property that 𝜑(𝑟) is the
supremum (resp. infimum) of 𝜑(𝑝) and 𝜑(𝑞) if and only if 𝑟 is the supremum (resp.
infimum) of 𝑝 and 𝑞 in 𝑃. (Compare [16, Theorem 7.40].)

To build some intuition about the Dedekind–MacNeille-completion, observe that
for a singleton {𝑝}, the set {𝑝}𝑢 is simply the up-closure ⌊𝑝⌋ of 𝑝 in 𝑃. Moreover an
element 𝑞 of 𝑃 is a lower bound of the up-closure of some 𝑝 precisely if 𝑞 ⩽ 𝑝, and
hence {𝑝}𝑢ℓ = {𝑝}ℓ = ⌈𝑝⌉. In particular, when applying any series of 𝑢 and ℓ to a
singleton set {𝑝}, only the very last operation is relevant: for instance {𝑝}ℓ𝑢ℓ = {𝑝}ℓ,
which shows that the map 𝜑 indeed takes its image in DM(𝑃 ).

Let us now prove Theorem 8.2.

Proof of Theorem 8.2. Let 𝑆 = (𝑆,⩽, ∗) be a separation system. Let 𝑈 = DM(𝑆)
be the Dedekind–MacNeille-completion of the poset 𝑆 with the embedding 𝜑∶ 𝑆 → 𝑈
given by 𝜑(𝑠) = {𝑠}ℓ.

For a set 𝑋 ⊆ 𝑆 we write 𝑋∗ for the point-wise involution { 𝑥 ∶ 𝑥 ∈ 𝑋 } of 𝑋.
For readability we shall extend our convention to omit braces to include ∗, 𝑢, and ℓ.
Clearly 𝑋∗∗ = 𝑋 for all 𝑋 ⊆ 𝑆 .

We define an involution ⊛ on 𝑈 by letting

𝑋⊛ ≔ 𝑋𝑢∗

and claim that this turns 𝑈 into a universe of separations and 𝜑 into an isomorphism
of separation systems between 𝑆 and its image in 𝑈. To verify this claim we need
to ascertain the following: that ⊛ takes its image in 𝑈 = DM(𝑆), that ⊛ is an
involution, that ⊛ is order-reversing, and finally that 𝜑 commutes with the involution,
i.e., that 𝜑(𝑠)⊛ = 𝜑(𝑠).

Before we do this, observe that since the involution ∗ of 𝑆 is order-reversing we
have

𝑋𝑢∗ = 𝑋∗ℓ and 𝑋ℓ∗ = 𝑋∗𝑢

for all 𝑋 ⊆ 𝑆 . We shall be using these two equalities throughout the remainder of
the proof.

To see that ⊛ takes its image in 𝑈, note that for 𝑋 ∈ 𝑈 we have

(𝑋⊛)𝑢ℓ = 𝑋𝑢∗𝑢ℓ = 𝑋𝑢ℓ∗ℓ = 𝑋∗ℓ = 𝑋𝑢∗ = 𝑋⊛ ,

where the third equality used the definition of 𝑈 = DM(𝑆) to infer 𝑋𝑢ℓ = 𝑋. Thus
we indeed have 𝑋⊛ ∈ 𝑈 by definition of 𝑈 = DM(𝑆).

The map ⊛ is an involution since

(𝑋⊛)⊛ = 𝑋𝑢∗𝑢∗ = 𝑋𝑢ℓ∗∗ = 𝑋𝑢ℓ = 𝑋 ,

for 𝑋 ∈ 𝑈, using again the definition of 𝑈 = DM(𝑆).
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To see that ⊛ is order-reversing let 𝑋,𝑌 ∈ 𝑈 with 𝑋 ⊆ 𝑌 be given; we need to
show that 𝑋⊛ ⊇ 𝑌 ⊛. From 𝑋 ⊆ 𝑌 it follows that 𝑋𝑢 ⊇ 𝑌 𝑢, which in turn implies
𝑋𝑢∗ ⊇ 𝑌 𝑢∗. Thus indeed 𝑋⊛ ⊇ 𝑌 ⊛.

We now show that 𝜑(𝑠)⊛ = 𝜑(𝑠) for all 𝑠 ∈ 𝑆 . So let 𝑠 ∈ 𝑆 be given. Recall that
{𝑠}ℓ𝑢 = {𝑠}𝑢 and 𝜑(𝑠) = {𝑠}ℓ. Using this equality we find that

𝜑(𝑠)⊛ = 𝜑(𝑠)𝑢∗ = {𝑠}ℓ𝑢∗ = {𝑠}𝑢∗ = {𝑠}∗ℓ = {𝑠}ℓ = 𝜑(𝑠) ,

as claimed.
Since 𝜑 preserves the existing pairwise suprema and infima of the poset 𝑆 , it is

thus the desired embedding.

We can phrase Theorem 8.2 more concisely, as follows:

Theorem 29. Every submodular separation system is submodular in some universe
of separations.

8.3. Structural submodularity which is not order-induced

In this section we deal with the question whether the submodularity of a submodular
subsystem 𝑆 ⊆ 𝑈 of a universe 𝑈 is always induced by some submodular order
function 𝑓 on 𝑈, i.e., that 𝑆 = 𝑆𝑘 for some 𝑘. We will answer this question in the
negative, even for distributive 𝑈, and thus show that submodularity in a universe is
a proper generalization of order-induced submodularity.

We consider the question first for partial lattices 𝑃 ⊆ 𝐿 which are submodular in
some lattice 𝐿. Recall that these are partial lattices 𝑃 ⊆ 𝐿 such that for any two
points 𝑎, 𝑏 ∈ 𝑃 at least one of 𝑎 ∨ 𝑏 and 𝑎 ∧ 𝑏 (taken in 𝐿) is in 𝑃.

One way to show that the submodularity of a given partial lattice is not order-
induced is to find a sequence 𝑎1, 𝑎2,… , 𝑎𝑛 of elements of a lattice 𝐿 so that every
submodular function 𝑓 on 𝐿 for which 𝑃 is an 𝑆𝑘 would need to satisfy 𝑓(𝑎1) <
𝑓(𝑎2) < ⋯ < 𝑓(𝑎𝑛) < 𝑓(𝑎1). Such a sequence may be found by finding a directed
cycle in a digraph 𝐷 on 𝐿 where we draw an edge from 𝑎 to 𝑏 whenever every
suitable submodular function on 𝐿 needs to satisfy 𝑓(𝑎) > 𝑓(𝑏).

This motivates the following definition: for 𝑃 ⊆ 𝐿 we define the dependency
digraph 𝐷 = (𝐿,𝐸) of 𝑃 as a directed graph where (𝑎, 𝑏) is an edge in 𝐸 if and only
if one of the following holds:

• 𝑎 ∈ 𝐿 ⧵ 𝑃 and 𝑏 ∈ 𝑃 ;

• 𝑎, 𝑏 ∈ 𝑃 and there is some 𝑐 ∈ 𝑃 such that either
– 𝑏 = 𝑎 ∨ 𝑐 and 𝑎 ∧ 𝑐 ∉ 𝑃, or
– 𝑏 = 𝑎 ∧ 𝑐 and 𝑎 ∨ 𝑐 ∉ 𝑃 ;

• 𝑎, 𝑏 ∉ 𝑃 and there is some 𝑐 ∈ 𝑃 such that either
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– 𝑏 = 𝑎 ∨ 𝑐 and 𝑎 ∧ 𝑐 ∉ 𝑃, or
– 𝑏 = 𝑎 ∧ 𝑐 and 𝑎 ∨ 𝑐 ∉ 𝑃.

Let us first show that given an order-induced submodular partial lattice 𝑃 ⊆ 𝐿,
the edges in the dependency digraph indeed witness that their start vertex has
higher order than their end vertex.

Lemma 8.3. If 𝑃 ⊆ 𝐿 is order-induced submodular, witnessed by some 𝑓 and 𝑘,
and (𝑎, 𝑏) is an edge in the dependency digraph of 𝑃, then 𝑓(𝑎) > 𝑓(𝑏).

Proof. Let (𝑎, 𝑏) be an edge in the dependency digraph. If 𝑎 ∈ 𝐿⧵𝑃 and 𝑏 ∈ 𝑃 then
𝑓(𝑎) > 𝑓(𝑏) since 𝑓 induces the submodularity of 𝑃 in 𝐿.

If 𝑎, 𝑏 ∈ 𝑃 we may assume without loss of generality that the edge between 𝑎 and
𝑏 exists because of some 𝑐 ∈ 𝑃 with 𝑏 = 𝑎 ∨ 𝑐 and 𝑎 ∧ 𝑐 ∉ 𝑃.

Because 𝑓 induces the submodularity of 𝑃 in 𝐿 we have 𝑓(𝑎 ∧ 𝑐) > 𝑓(𝑐). Since 𝑓
is submodular

𝑓(𝑎 ∨ 𝑐) + 𝑓(𝑎 ∧ 𝑐) ⩽ 𝑓(𝑎) + 𝑓(𝑐),

and hence 𝑓(𝑏) = 𝑓(𝑎 ∨ 𝑐) < 𝑓(𝑎), as required.
Similarly, if 𝑎, 𝑏 ∉ 𝑃 we may assume without loss of generality that the edge

between 𝑎 and 𝑏 exists because of some 𝑐 ∈ 𝑃 with 𝑏 = 𝑎 ∨ 𝑐 and 𝑎 ∧ 𝑐 ∉ 𝑃.
Because 𝑓 induces the submodularity of 𝑃 in 𝐿 we have 𝑓(𝑎 ∧ 𝑐) > 𝑓(𝑐). Again,

since 𝑓 is submodular

𝑓(𝑎 ∨ 𝑐) + 𝑓(𝑎 ∧ 𝑐) ⩽ 𝑓(𝑎) + 𝑓(𝑐),

and hence 𝑓(𝑏) = 𝑓(𝑎 ∨ 𝑐) < 𝑓(𝑎), as required.

Thus a directed cycle in the dependency digraph is an obstruction to the order-
induced submodularity of 𝑃.

Corollary 8.4. If the dependency digraph of 𝑃 contains a directed cycle then 𝑃 is
not order-induced submodular.

Since every cycle in the dependency digraph 𝐷 of 𝑃 is completely contained in
either 𝐷[𝑃 ] or 𝐷[𝐿 ⧵ 𝑃 ], we sometimes consider these two subgraphs independently
of each other, naming them the inner dependency digraph 𝐷[𝑃 ] and the outer
dependency digraph 𝐷[𝐿 ⧵ 𝑃 ].

Each cycle in the dependency digraph has length at least 3:

Lemma 8.5. Let 𝑃 ⊆ 𝐿 be submodular in 𝐿, then the dependency digraph of 𝑃
contains no directed cycle of length 2.

Proof. As stated above, a cycle of length 2 cannot contain one vertex in 𝑃 and one
in 𝐿 ⧵ 𝑃. Thus if the dependency digraph 𝐷 contains a cycle of length 2 between 𝑎
and 𝑏, then by the definition of the dependency digraph 𝑎 and 𝑏 are comparable in
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⩽, so 𝑎 ⩽ 𝑏, say. Note that either 𝑎, 𝑏 ∈ 𝑃 or 𝑎, 𝑏 ∉ 𝑃. In either case, as (𝑎, 𝑏) is an
edge in 𝐷, there exists a 𝑐 ∈ 𝑃 such that 𝑎 ∨ 𝑐 = 𝑏 and 𝑎 ∧ 𝑐 ∉ 𝑃. Similarly, there
exists a 𝑑 ∈ 𝑃 such that 𝑏 ∧ 𝑑 = 𝑎 and 𝑏 ∨ 𝑑 ∉ 𝑃.

If 𝑐 ⩽ 𝑑 then 𝑑 ⩾ 𝑎 and 𝑑 ⩾ 𝑐 and thus 𝑎∨𝑐 = 𝑏 ⩽ 𝑑 contradicting the assumption
that 𝑏∨𝑑 ∉ 𝑃. Similarly, if 𝑑 ⩽ 𝑐 then 𝑑 ⩽ 𝑐 ⩽ 𝑏, again contradicting the assumption.
Hence, 𝑐 and 𝑑 are incomparable and thus 𝑐∨𝑑 ∈ 𝑃 or 𝑐∧𝑑 ∈ 𝑃, as 𝑐, 𝑑 ∈ 𝑃 and 𝑃 is
submodular in 𝐿. However, 𝑏 = 𝑎∨𝑐 ⩽ 𝑑∨𝑐, thus 𝑑∨𝑐 ⩾ 𝑏, hence 𝑑∨𝑐 ⩾ 𝑏∨𝑑, but
also 𝑑∨𝑐 ⩽ 𝑑∨𝑏 as 𝑐 ⩽ 𝑏, and thus 𝑑∨𝑐 = 𝑑∨𝑏 ∉ 𝑃. And similarly, 𝑎 = 𝑑∧𝑏 ⩾ 𝑑∧𝑐,
thus 𝑑 ∧ 𝑐 ⩽ 𝑎 ∧ 𝑐 but also 𝑑 ∧ 𝑐 ⩾ 𝑎 ∧ 𝑐 and thus 𝑑 ∧ 𝑐 = 𝑎 ∧ 𝑐 ∉ 𝑃.

Thus, 𝐷 cannot contain a cycle of length 2.

Using the dependency digraph, we can give an example of a lattice 𝐿 together
with a partial lattice 𝑃 ⊆ 𝐿 which is submodular in 𝐿, but where this submodularity
is not order-induced. Our example will use a universe of separations as its lattice,
and a submodular separation system for the partial lattice.

In fact, our example consists of oriented bipartitions (equivalently: subsets) on a
set of six elements. The Hasse diagram of this example is displayed in Fig. 8.1; a
formal description follows.

Consider the universe 𝑈 = ℬ(𝑉 ) of bipartitions of 𝑉 = {𝑎, 𝑏, 𝑐, 𝑑, 𝑒, 𝑓 }. In there
we consider the separation system 𝑆 consisting of the orientations of the following
unoriented bipartitions:

𝑆 = { { ∅, 𝑉 },
{ {𝑏}, {𝑎, 𝑐, 𝑑, 𝑒, 𝑓} }, { {𝑑}, {𝑎, 𝑏, 𝑐, 𝑒, 𝑓} }, { {𝑓}, {𝑎, 𝑏, 𝑐, 𝑑, 𝑒} },
{ {𝑎, 𝑏}, {𝑐, 𝑑, 𝑒, 𝑓} }, { {𝑐, 𝑑}, {𝑎, 𝑏, 𝑒, 𝑓} }, { {𝑒, 𝑓}, {𝑎, 𝑏, 𝑐, 𝑑} },
{ {𝑎, 𝑏, 𝑐}, {𝑑, 𝑒, 𝑓} }, { {𝑎, 𝑏, 𝑓}, {𝑐, 𝑑, 𝑒} }, { {𝑎, 𝑒, 𝑓}, {𝑏, 𝑐, 𝑑} } }.

It is easy to see that 𝑆 is submodular in 𝑈. However, the dependency digraph of 𝑆
in 𝑈 contains the directed cycle

({𝑎, 𝑏, 𝑐, 𝑑}, {𝑒, 𝑓}) → ({𝑎, 𝑏}, {𝑐, 𝑑, 𝑒, 𝑓}) → ({𝑎, 𝑏, 𝑒, 𝑓}, {𝑐, 𝑑}) → ({𝑒, 𝑓}, {𝑎, 𝑏, 𝑐, 𝑑})
→ ({𝑐, 𝑑, 𝑒, 𝑓}, {𝑎, 𝑏}) → ({𝑐, 𝑑}, {𝑎, 𝑏, 𝑒, 𝑓}) → ({𝑎, 𝑏, 𝑐, 𝑑}, {𝑒, 𝑓}).

For example, there is an arc between ({𝑎, 𝑏, 𝑐, 𝑑}, {𝑒, 𝑓}) and ({𝑎, 𝑏}, {𝑐, 𝑑, 𝑒, 𝑓})
since

({𝑎, 𝑏, 𝑐, 𝑑}, {𝑒, 𝑓}) ∧ ({𝑎, 𝑏, 𝑓}, {𝑐, 𝑑, 𝑒}) = ({𝑎, 𝑏}, {𝑐, 𝑑, 𝑒, 𝑓})

and
({𝑎, 𝑏, 𝑐, 𝑑}, {𝑒, 𝑓}) ∨ ({𝑎, 𝑏, 𝑓}, {𝑐, 𝑑, 𝑒}) = ({𝑎, 𝑏, 𝑐, 𝑑, 𝑓}, {𝑒}),

but ({𝑎, 𝑏, 𝑐, 𝑑, 𝑓}, {𝑒}) is not an element of 𝑆 . The existence of the remaining arcs
in the cycle can be checked similarly.

This example proves the following theorem:
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Figure 8.1.: The Hasse diagram of 𝑈 from Theorem 30. For readability, only points
in 𝑆 are labelled and only one side of each bipartition is denoted.
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8.3. Structural submodularity which is not order-induced

Theorem 30. There exists a separation system 𝑆 which is submodular in a universe
𝑈 of set bipartitions, but whose submodularity in 𝑈 is not induced by a submodular
order function on 𝑈.

One might wonder if every example of a partial lattice with a cycle in its depend-
ency digraph actually contains a cycle in the inner dependency digraph. This is not
the case, as an example we show the Hasse digram of such a lattice in Fig. 8.2 and
indicate the partial lattice inside this lattice as well as the cycle in the dependency
digraph.

1

2

4

5

9

3

6

8

10

12

14

7

11

13

15

Figure 8.2.: The dark blue elements form a partial lattice, which does not contain a
cycle in the inner dependency digraph, however the green dashed edges
form a cycle in the outer dependency digraph

However, we are not aware of any examples of submodular separation systems
whose submodularity in a universe is not order-induced and whose dependency
digraph is acyclic:

Question 8.6. Does there exists a separation system 𝑆 ⊆ 𝑈 which is submodular
in 𝑈, such that the dependency digraph of 𝑆 does not contain a cycle, but the
submodularity of 𝑆 in 𝑈 is not order-induced?

We can ask the same question for a submodular partial lattice:

Question 8.7. Does there exists a partial lattice 𝑃 ⊆ 𝐿 which is submodular in
the lattice 𝐿 such that the dependency digraph of 𝑃 does not contain a cycle, but
the submodularity of 𝑃 in 𝐿 is not order-induced?

These two questions are, in fact, equivalent. To see this, observe that a positive
answer to Question 8.6 implies a positive answer to Question 8.7: if there exists
a separation system 𝑆 ⊆ 𝑈 which is submodular in 𝑈, such that the dependency
digraph of 𝑆 does not contain a cycle, but the submodularity is not order-induced,
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then we can consider 𝑆 as a partial lattice inside the lattice 𝑈 which still does
not contain a cycle in its dependency digraph. However, if 𝑔 ∶ 𝑈 → ℝ⩾0 would
be a submodular function witnessing that 𝑆 is order-induced submodular as a
partial lattice with some 𝑘 ∈ ℝ⩾0, then we could consider the function 𝑓 given
by 𝑓(𝑠) = 𝑔(𝑠) + 𝑔(𝑠) for every 𝑠 ∈ 𝑆 , which would then be a submodular order
function for 𝑈, and 𝑓 and 2𝑘 induce the submodularity of 𝑆 in the universe 𝑈.

On the other hand, if there exists a partial lattice 𝑃 ⊆ 𝐿 which is submodular
in the lattice 𝐿 such that the dependency digraph of 𝑃 does not contain a cycle,
but the submodularity is not order-induced, we can construct a universe 𝑈 and
a submodular subsystem 𝑆 ⊆ 𝑈, so that the dependency digraph of 𝑆 does not
contain a cycle, but the submodularity of 𝑆 in 𝑈 is not order-induced, as follows:
let 𝐿′ be a copy of 𝐿 with reversed partial order (i.e., the poset-dual of 𝐿). We let
𝑈 be the disjoint union 𝐿 ⊔ 𝐿′, where we additionally declare 𝑟 ⩽ 𝑠 for all 𝑟 ∈ 𝐿
and 𝑠 ∈ 𝐿′. The involution on 𝑈 is defined by mapping an element of 𝐿 to its
respective copy in 𝐿′ and vice versa. It is easy to see that this is a universe of
separations and that 𝑆 = 𝑃 ∪𝑃 ′ (where 𝑃 ⊆ 𝐿 is as above and 𝑃 ′ ⊆ 𝐿′ is the image
of 𝑃 in 𝐿′) is a submodular subsystem of 𝑈. 3 Moreover, 𝑆 is not order-induced
submodular, since we can restrict any witnessing submodular order function on 𝑈
to a submodular function on 𝐿, which would then witness that the submodularity
of 𝑃 in 𝐿 is order-induced.

The dependency digraph of 𝑆 cannot contain a cycle either, since any such cycle
would result in a cycle in the dependency digraph of 𝐿 or 𝐿′: every edge in the
dependency digraph of 𝑈 either is also an edge in the dependency digraph of 𝐿 or
𝐿′, or is an edge between 𝐿 and 𝐿′ which needs to be an edge between an element
of 𝑈 ⧵ 𝑆 and 𝑆 . Thus, given any cycle in the dependency digraph of 𝑈 which meets
both 𝐿 and 𝐿′, we can consider a maximal subpath of this cycle contained in 𝐿;
there then needs to be a directed edge in the dependency of 𝐿 between the last and
the first vertex of this path.

8.4. Extending a submodular function

Our aim in this section is to better understand for what kind of submodular
separation systems the submodularity is order-induced. We investigate inhowfar the
existence of a submodular function depends on the surrounding universe 𝑈, that
is, if we have an order function 𝑓 which induces the submodularity of some 𝑆 in
a subuniverse 𝑈′ ⊆ 𝑈, we ask whether we can extend 𝑓 to 𝑈 in such a way that it
induces the submodularity of 𝑆 in 𝑈.

We give partial answers to this question: firstly that submodular functions can
be extended in this way from an interval in a universe and, secondly, that for every
3Note, that in 𝑈 every separation is either small or co-small, i.e., for every 𝑠 ∈ 𝑈 either 𝑠 ⩽ 𝑠 or
𝑠 ⩽ 𝑠.
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subuniverse 𝑈′ of a universe 𝑈 there exists a submodular function 𝑓 and some 𝑘,
such that 𝑈′ = 𝑆𝑓,𝑘 = 𝑓−1([0, 𝑘)), that is 𝑈′ is order-induced submodular in 𝑈.

It suffices to first consider these problems for submodular functions on lattices,
rather than submodular order functions on universes of separations: if 𝑓 ′ ∶ 𝑈′ → ℝ⩾0
is a submodular function on 𝑈′ ⊇ 𝑈 which agrees on 𝑈 with some submodular order
function 𝑓 ∶ 𝑈 → ℝ⩾0, then we can define a submodular order function ̄𝑓 on 𝑈′

which agrees with 𝑓 by setting

̄𝑓(𝑠) ≔ 𝑓 ′(𝑠) + 𝑓 ′(𝑠)
2

.

We will then easily see that, in both cases, this function is as desired.
For the first theorem, recall that an interval in a lattice 𝐿 is, for some 𝑥, 𝑦 ∈ 𝐿, a

subset [𝑥, 𝑦] = { 𝑠 ∈ 𝐿 ∶ 𝑥 ⩽ 𝑠 ⩽ 𝑦 }. Every such interval forms a sublattice. The
following result shows that we can extend a submodular function defined on an
interval.

Theorem 8.8. Let 𝐿 be a lattice and 𝐿′ = [𝑥, 𝑦] ⊆ 𝐿 an interval in 𝐿. Suppose
that 𝑓 ∶ 𝐿′ → ℝ⩾0 is a submodular function on 𝐿′ with maximum value 𝑘. Then
there exists a submodular function 𝑔 ∶ 𝐿 → ℝ⩾0 such that 𝑔(𝑧) = 𝑓(𝑧) for all 𝑧 ∈ 𝐿′

and 𝑔(𝑧) > 𝑘 for all 𝑧 ∉ 𝐿′.

Proof. Let us denote as 𝐿↓ the set of all 𝑧 ∈ 𝐿 ⧵ 𝐿′ such that 𝑧 ⩽ 𝑦, as 𝐿↑ the set of
all 𝑧 ∈ 𝐿 ⧵ 𝐿′ such that 𝑧 ⩾ 𝑥 and as 𝐿↔ the set of all 𝑧 ∈ 𝐿 ⧵ 𝐿′ such that neither
𝑧 ⩽ 𝑦 nor 𝑧 ⩾ 𝑥. Note that 𝐿↓, 𝐿↑, 𝐿↔ and 𝐿′ together form a partition of 𝐿.

For 𝑧 ∈ 𝐿 such that 𝑧 ⩽ 𝑦 we define its down-level dl(𝑧) recursively as follows:
assign dl(⊥) = 0 for the bottom element ⊥ of 𝐿 and set dl(𝑧) ≔ max{ dl(𝑧′) + 1 ∶
𝑧′ < 𝑧 } for all other 𝑧 ∈ 𝐿. Similarly, for 𝑧 ∈ 𝐿 such that 𝑧 ⩾ 𝑥 we define its
up-level ul(𝑧) recursively: we assign ul(⊤) = 0 for the top element ⊤ of 𝐿 and set
ul(𝑧) ≔ max{ ul(𝑧′) + 1 ∶ 𝑧′ > 𝑧 } for all other 𝑧 ∈ 𝐿.

Let ℓ be the maximum possible level (up or down) and let 𝑀 = 2ℓ ⋅ 𝑘 > 𝑘. We
now define 𝑔 as follows:

𝑔(𝑧) =

⎧
{
{
⎨
{
{
⎩

𝑓(𝑧) if 𝑧 ∈ 𝐿′,
𝑀 ⋅ (2 − 2− dl(𝑧)) if 𝑧 ∈ 𝐿↓,
𝑀 ⋅ (2 − 2− ul(𝑧)) if 𝑧 ∈ 𝐿↑,
4 ⋅ 𝑀 if 𝑧 ∈ 𝐿↔.

To verify that this function is submodular we distinguish the possible cases which can
occur for two incomparable elements 𝑎, 𝑏 ∈ 𝐿. Note that in the case of comparable
elements, submodularity is trivially satisfied, so we suppose they are incomparable.

The case 𝑎, 𝑏 ∈ 𝐿↔.
By construction, the maximal value of 𝑔 is 4 ⋅ 𝑀, thus

𝑔(𝑎 ∨ 𝑏) + 𝑔(𝑎 ∧ 𝑏) ⩽ 4 ⋅ 𝑀 + 4 ⋅ 𝑀 = 𝑔(𝑎) + 𝑔(𝑏).
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The case 𝑎 ∈ 𝐿↑, 𝑏 ∈ 𝐿↔.
By the definition of 𝐿↑, we have 𝑎 ∨ 𝑏 ∈ 𝐿↑ and ul(𝑎) > ul(𝑎 ∨ 𝑏), thus

𝑔(𝑎 ∨ 𝑏) + 𝑔(𝑎 ∧ 𝑏) ⩽ 𝑀 ⋅ (2 − 2− ul(𝑎∨𝑏)) + 4 ⋅ 𝑀
< 𝑀 ⋅ (2 − 2− ul(𝑎)) + 4 ⋅ 𝑀 = 𝑔(𝑎) + 𝑔(𝑏).

The case 𝑎 ∈ 𝐿↓, 𝑏 ∈ 𝐿↔.
Analogous to the above.

The case 𝑎 ∈ 𝐿′, 𝑏 ∈ 𝐿↔.
By the definition of 𝐿↑, we have, since 𝑎 ∨ 𝑏 ⩾ 𝑎 ⩾ 𝑥, that 𝑎 ∨ 𝑏 ∈ 𝐿↑ ∪𝐿′ and
similarly, 𝑎 ∧ 𝑏 ∈ 𝐿↓ ∪ 𝐿′. Thus, we have

𝑔(𝑎 ∨ 𝑏) + 𝑔(𝑎 ∧ 𝑏) ⩽ 2𝑀 + 2𝑀 ⩽ 𝑔(𝑏) ⩽ 𝑔(𝑎) + 𝑔(𝑏).

The case 𝑎, 𝑏 ∈ 𝐿↑.
Suppose without loss of generality that ul(𝑎) ⩽ ul(𝑏). By the definition of 𝐿↑

and ul, we have 𝑎 ∨ 𝑏 ∈ 𝐿↑ and ul(𝑎 ∨ 𝑏) < ul(𝑎). Furthermore 𝑎 ∧ 𝑏 ∈ 𝐿↑ ∪ 𝐿′,
so in any case 𝑔(𝑎 ∧ 𝑏) < 2𝑀. We calculate

𝑔(𝑎 ∨ 𝑏) + 𝑔(𝑎 ∧ 𝑏) < 𝑀 ⋅ (2 − 2−(ul(𝑎)−1)) + 2𝑀
= 4𝑀 −𝑀(2− ul(𝑎) + 2− ul(𝑎))
⩽ 4𝑀 −𝑀(2− ul(𝑎) + 2− ul(𝑏)) = 𝑔(𝑎) + 𝑔(𝑏).

The case 𝑎, 𝑏 ∈ 𝐿↓.
Analogous to the above.

The case 𝑎 ∈ 𝐿↓, 𝑏 ∈ 𝐿↑.
By construction 𝑎 ∧ 𝑏 ∈ 𝐿↓ and 𝑎 ∨ 𝑏 ∈ 𝐿↑. Moreover, by the definition of 𝑔
we have 𝑔(𝑎 ∧ 𝑏) ⩽ 𝑔(𝑎) and 𝑔(𝑎 ∨ 𝑏) ⩽ 𝑔(𝑏) and thus

𝑔(𝑎 ∧ 𝑏) + 𝑔(𝑎 ∨ 𝑏) ⩽ 𝑔(𝑎) + 𝑔(𝑏).

The case 𝑎 ∈ 𝐿′, 𝑏 ∈ 𝐿↑.
By the definition of 𝐿↑, we have 𝑎∨ 𝑏 ∈ 𝐿↑. Moreover 𝑢𝑙(𝑎∨ 𝑏) < 𝑢𝑙(𝑏), by the
definition of 𝑔 and choice of 𝑀, we thus have 𝑔(𝑎 ∨ 𝑏) ⩽ 𝑔(𝑏)− 𝑘. Additionally,
𝑔(𝑎 ∧ 𝑏) ∈ 𝐿′, since 𝑥 ⩽ 𝑎 ∧ 𝑏 and 𝑎 ∧ 𝑏 ⩽ 𝑎 ⩽ 𝑦. Thus, by the definition of 𝑘,
we have 𝑔(𝑎 ∧ 𝑏) ⩽ 𝑔(𝑎) + 𝑘 and thus

𝑔(𝑎 ∨ 𝑏) + 𝑔(𝑎 ∧ 𝑏) ⩽ 𝑔(𝑏) − 𝑘 + 𝑔(𝑎) + 𝑘 = 𝑔(𝑎) + 𝑔(𝑏).

The case 𝑎 ∈ 𝐿′, 𝑏 ∈ 𝐿↓.
Analogous to the above.
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The case 𝑎, 𝑏 ∈ 𝐿′.
Immediate, by the submodularity of 𝑓.

Since furthermore 𝑔(𝑧) > 𝑘 whenever 𝑧 ∈ 𝐿⧵𝐿′, by the definition of 𝑀, the function
𝑔 is as claimed.

This theorem will also serves as a tool in proving the second theorem, which is
the following:

Theorem 8.9. Let 𝐿 be a distributive lattice and 𝐿′ ⊆ 𝐿 a sublattice. Then there
exists a submodular function 𝑓 ∶ 𝐿 → ℝ⩾0 and a 𝑘 ∈ ℝ⩾0 such that 𝐿′ = 𝑓−1([0, 𝑘)).

Theorem 8.8 allows us to first prove Theorem 8.9 only for the special case of
sublattices 𝐿′ which include the top and bottom element of 𝐿, and to then handle
general sublattices by combing that result with Theorem 8.8.

Lemma 8.10. Let 𝐿 be a distributive lattice and 𝐿′ ⊆ 𝐿 a sublattice, such that
𝐿 and 𝐿′ have the same top and the same bottom element. Then there exists a
submodular function 𝑓 ∶ 𝐿 → ℝ⩾0 such that 𝐿′ = 𝑓−1(0).

Proof. By the Birkhoff representation theorem (Theorem 8.1) we may suppose
without loss of generality that 𝐿 = 𝒪(𝑃), for some poset 𝑃. We may thus interpret
the elements of 𝐿 (and thus also those of 𝐿′) as subsets of 𝑃.

For every element 𝑝 ∈ 𝑃 let 𝐸𝑝 be the set of elements of 𝐿′ which contain 𝑝.
In particular, the top element of 𝐿 lies in 𝐸𝑝, so 𝐸𝑝 is non-empty. Thus, we can
consider, for every 𝑝 ∈ 𝑃, the set 𝑋𝑝 given by ⋂𝑋∈𝐸𝑝

𝑋. Note that 𝑝 is an element
of 𝑋𝑝.

Observe that, since 𝐿′ is a sublattice, we have 𝑋𝑝 ∈ 𝐿′ for every 𝑝. Given some
𝑌 ∈ 𝐿 we define 𝑓(𝑌 ) by summing, over all 𝑝 in 𝑌, the number of elements of 𝑋𝑝
that do not lie in 𝑌. Formally,

𝑓(𝑌 ) = ∑
𝑝∈𝑌

∣𝑋𝑝 ⧵ 𝑌 ∣ .

This function is submodular, since for all 𝑋,𝑌 ∈ 𝐿 we can calculate as follows

𝑓(𝑋) + 𝑓(𝑌 ) = ∑
𝑝∈𝑌

∣𝑋𝑝 ⧵ 𝑌 ∣ + ∑
𝑝∈𝑋

∣𝑋𝑝 ⧵ 𝑋∣

= ∑
𝑝∈𝑋∩𝑌

(∣𝑋𝑝 ⧵ 𝑌 ∣ + ∣𝑋𝑝 ⧵ 𝑋∣) + ∑
𝑝∈𝑌 ⧵𝑋

∣𝑋𝑝 ⧵ 𝑌 ∣ + ∑
𝑝∈𝑋⧵𝑌

∣𝑋𝑝 ⧵ 𝑋∣

= ∑
𝑝∈𝑋∩𝑌

(∣𝑋𝑝 ⧵ (𝑋 ∩ 𝑌 )∣ + ∣𝑋𝑝 ⧵ (𝑋 ∪ 𝑌 )∣) + ∑
𝑝∈𝑌 ⧵𝑋

∣𝑋𝑝 ⧵ 𝑌 ∣ + ∑
𝑝∈𝑋⧵𝑌

∣𝑋𝑝 ⧵ 𝑋∣

= 𝑓(𝑋 ∩ 𝑌 ) + ∑
𝑝∈𝑋∩𝑌

∣𝑋𝑝 ⧵ (𝑋 ∪ 𝑌 )∣ + ∑
𝑝∈𝑌 ⧵𝑋

∣𝑋𝑝 ⧵ 𝑌 ∣ + ∑
𝑝∈𝑋⧵𝑌

∣𝑋𝑝 ⧵ 𝑋∣

⩾ 𝑓(𝑋 ∩ 𝑌 ) + ∑
𝑝∈𝑋∩𝑌

∣𝑋𝑝 ⧵ (𝑋 ∪ 𝑌 )∣ + ∑
𝑝∈𝑌 ⧵𝑋

∣𝑋𝑝 ⧵ (𝑋 ∪ 𝑌 )∣ + ∑
𝑝∈𝑋⧵𝑌

∣𝑋𝑝 ⧵ (𝑋 ∪ 𝑌 )∣
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= 𝑓(𝑋 ∩ 𝑌 ) + ∑
𝑝∈𝑋∪𝑌

∣𝑋𝑝 ⧵ (𝑋 ∪ 𝑌 )∣

= 𝑓(𝑋 ∩ 𝑌 ) + 𝑓(𝑋 ∪ 𝑌 ).

Thus, all that is left to show is that 𝑓(𝑌 ) > 0 for every 𝑌 ∈ 𝐿 ⧵ 𝐿′. To see
this, we observe that, since the bottom element lies in 𝐿′, any such 𝑌 needs to
contain some element 𝑝. If 𝑋𝑝 ⊆ 𝑌 for every 𝑝 ∈ 𝑌, then this would imply that
𝑌 = ⋃𝑋𝑝, contradicting the assumption that 𝑌 ∉ 𝐿′. Thus there is some 𝑝 ∈ 𝑌
such that 𝑋𝑝 ⊈ 𝑌. In particular there needs to be some 𝑞 ∈ 𝑋𝑝 such that 𝑞 ∉ 𝑌,
which witnesses that 𝑓(𝑌 ) > 0.

Combining Lemma 8.10 and Theorem 8.8 results in a proof of Theorem 8.9:

Proof of Theorem 8.9. Let ⊥ be the bottom element of 𝐿′ and let ⊤ be the top
element of 𝐿′. By Lemma 8.10 there is a submodular function 𝑓 on 𝐿′ = [⊥,⊤] ⊆ 𝐿
such that 𝑓−1(0) = 𝐿′ and since 𝐿′ is finite there is some 𝑘 ∈ ℝ⩾0 such that
𝑓−1([0, 𝑘)) = 𝐿′. Using this 𝑓 as input in Theorem 8.8 results in the desired
submodular function on 𝐿.

From Theorem 8.8 and Theorem 8.9 we now immediately obtain the same results
for subuniverses, in the way discussed above:

Theorem 31. In other words every subuniverse 𝑈′ of a distributive universe 𝑈 is
order-induced submodular in 𝑈.

Proof. We apply Theorem 8.9 to 𝑈′ as a sublattice of 𝑈 to obtain a submodular
function 𝑓 ′ and 𝑘′ ∈ ℝ⩾0 with 𝑈′ = 𝑓 ′−1([0, 𝑘′)). We now define a symmetric order
function 𝑓 on 𝑈 with 𝑓(𝑠) ≔ 𝑓 ′(𝑠)+𝑓 ′(𝑠). With 𝑘 ≔ 2𝑘′ we have 𝑈′ = 𝑓−1([0, 𝑘)) =
𝑆𝑓,𝑘 , as desired.

Theorem 32. Let 𝑈 be a universe of separations and 𝑈′ = [𝑥, 𝑥] ⊆ 𝑈 a symmetric
interval in 𝑈. Suppose that 𝑓 ∶ 𝑈′ → ℝ⩾0 is a submodular order function on 𝑈′ with
maximum value 𝑘. Then there exists a submodular order function 𝑔 ∶ 𝑈 → ℝ⩾0 such
that 𝑔(𝑧) = 𝑓(𝑧) for all 𝑧 ∈ 𝑈′ and 𝑔(𝑧) > 𝑘 for all 𝑧 ∉ 𝑈′.

Proof. We apply Theorem 8.8 to 𝑈′ as an interval in the lattice 𝑈, to obtain a
submodular function 𝑔′ on 𝑈 which agrees with 𝑓 on 𝑈′. This function need not be
symmetric, but we can define 𝑔(𝑧) ≔ 𝑔′(𝑧)+𝑔′(𝑧)

2 . Since 𝑓 is symmetric and 𝑔′ agrees
with 𝑓 on 𝑈′, also 𝑔 agrees with 𝑓 on 𝑈. Moreover 𝑔 is symmetric. Since 𝑔′ takes
values larger than 𝑘 outside of 𝑈′, so does 𝑔.
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8.5. Submodular decompositions in distributive universes

In this concluding section we consider decompositions of separation systems which
are submodular in some universe, asking how such a separation system can be
written as the union of proper subsystems which are still submodular. On one hand,
we show that each separation systems 𝑆 which is submodular in some distributive
universe 𝑈 of separations can be decomposed (although not necessarily disjoint) into
at most three strictly smaller, again submodular in 𝑈, separation systems. On the
other hand, we will be able to deduce that we can decompose every such separation
system into disjoint submodular subsystems, each of which can be embedded into a
universe of bipartitions, in which they are again submodular.

The former statement also allows us to lower bound the size of a largest proper
submodular subsystem: by the pigeon-hole principle, at least one of these subsystems
will have a size of at least |𝑆|

3 .4

However, while this is a decomposition into fewer parts than the ones we will
obtain from our theorems, our decompositions will have the advantage that their
constituent subsystems are not merely submodular in 𝑈 but ‘spanned’ in 𝑆 : Given
a universe 𝑈 of separations and a subsystem 𝑆 ⊆ 𝑈, we say that 𝑆 ′ ⊆ 𝑆 is a
corner-closed subsytem of 𝑆 (in 𝑈) if, for all 𝑠, 𝑟 ∈ 𝑆 ′ we have 𝑠 ∨ 𝑟 ∈ 𝑆 ′ whenever
𝑠 ∨ 𝑟 ∈ 𝑆 . In particular, if 𝑆 is submodular in 𝑈, then any corner-closed subsystem
𝑆 ′ ⊆ 𝑆 is submodular in 𝑈 as well.

We begin by considering the special case of systems of bipartitions. This will
later become a subcase in the proof of our general decomposition theorem. The idea
applied in the general case will also be similar to the one in the bipartition case.
To be able to transfer these techniques we will apply the Birkhoff representation
theorem to a universes of separations and investigate how the involution of the
universes interacts with this representation. We will state this in the form of an
extended Birkhoff theorem for universes of separations.

8.5.1. Decomposition in bipartition universes

Given the universe 𝑈 of bipartitions of some set 𝑉 and a separation system 𝑆 ⊆ 𝑈
which is submodular in 𝑈, we consider, for some 𝑣, 𝑤 ∈ 𝑉, the set

{ (𝐴,𝐵) ∈ 𝑆 ∶ {𝑣, 𝑤} ⊆ 𝐴 or {𝑣, 𝑤} ⊆ 𝐵 }.

This set forms a corner-closed subsystem of 𝑆 in 𝑈. We can utilize this observation
to find a decomposition of 𝑆 into three proper subsystems.

4This observation also links the question of submodular decompositions to the unravelling problem,
which we will discuss in the next chapter: suppose 𝑆 contains a separation 𝑠 such that 𝑆′ =
𝑆 ⧵ { 𝑠, 𝑠 } is still submodular – this is the case if 𝑆 can be unravelled – then we can decompose
𝑆 into the two submodular subsystems 𝑆′ and { 𝑠, 𝑠, 𝑠 ∨ 𝑠, 𝑠 ∧ 𝑠 }.
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Theorem 8.11. Given a universe 𝑈 = ℬ(𝑉 ) of bipartitions and a separation system
𝑆 ⊆ 𝑈, such that |𝑆| ⩾ 3, there are corner-closed subsystems 𝑆1 , 𝑆2 , 𝑆3 ⊊ 𝑆 , such
that 𝑆1 ∪ 𝑆2 ∪ 𝑆3 = 𝑆 .

Proof. As |𝑆| ⩾ 3, there are two distinct separations {𝐴,𝐵}, {𝐶,𝐷} ∈ 𝑆 such that
𝐴,𝐵,𝐶,𝐷 ≠ ∅. Moreover, we may assume that, after possibly exchanging 𝐶 and 𝐷,
we have neither 𝐶 ⊆ 𝐴 nor 𝐶 ⊆ 𝐵 and thus 𝐴∩𝐶 ≠ ∅ and 𝐵∩𝐶 ≠ ∅. Additionally,
after possibly exchanging 𝐴 and 𝐵, we may assume 𝐵 ∩𝐷 ≠ ∅.

Now pick 𝑥 ∈ 𝐴 ∩ 𝐶, 𝑦 ∈ 𝐵 ∩ 𝐶 and 𝑧 ∈ 𝐵 ∩ 𝐷. Let 𝑆1 be the set of all
separations in 𝑆 not separating 𝑥 from 𝑦, let 𝑆2 be the set of all separations in
𝑆 not separating 𝑥 from 𝑧 and let 𝑆3 consists of all separations not separating 𝑦
from 𝑧. By construction, theses sets form corner-closed subsystems: a corner of two
separations not separating 𝑥 from 𝑦, say, does not separate these two points either.

Moreover, (𝐴,𝐵) is in neither 𝑆1 nor 𝑆2 and (𝐶,𝐷) neither in 𝑆2 nor 𝑆3 , thus
𝑆𝑖 ⊊ 𝑆 for all 1 ⩽ 𝑖 ⩽ 3.

Finally, observe that, given any (𝐸, 𝐹) ∈ 𝑆 , either 𝐸 or 𝐹 contains two of the
points 𝑥, 𝑦 and 𝑧, so (𝐸, 𝐹) ∈ 𝑆1 ∪𝑆2 ∪𝑆3 . Thus 𝑆1 ∪𝑆2 ∪𝑆3 = 𝑆 , as claimed.

8.5.2. Birkhoff’s theorem for distributive universes and decompositions in
distributive universes

To lift Theorem 8.11 to general distributive universes of separations, we will represent
separations as subsets of some ground set. For this we will once more, as in
Section 8.4, use the Birkhoff representation theorem for distributive lattices:

Theorem 8.1 (Birkhoff representation theorem; cf. [16, 5.12]). p. 170 Let 𝐿 be a finite
distributive lattice. The map 𝜂 ∶ 𝐿 → 𝒪(𝒥(𝐿)) defined by 𝜂(𝑎) = {𝑥 ∈ 𝒥(𝐿) ∶ 𝑥 ⩽
𝑎 } = ⌈𝑎⌉𝒥(𝐿) is an isomorphism of lattices.

If, in this theorem, the provided distributive lattice 𝐿 is actually a universe of
separations, we obtain an order-reversing involution on 𝒪(𝒥(𝐿)) by concatenating
𝜂 with the involution on the universe. For our version of the Birkhoff theorem in
distributive universes, we examine how this involution behaves with respect to 𝒥(𝐿).

Theorem 33 (Birkhoff representation of universes of separations).
For every involution poset5 (𝑃 ,⩽, ′), the lattice 𝒪(𝑃) becomes a distributive universe
of separations (𝒪(𝑃), ∗) when equipped with the involution ∗ ∶ 𝑋 ↦ 𝑃⧵𝑋′, where 𝑋′ =
{𝑥′ ∶ 𝑥 ∈ 𝑋 }.

Let 𝑈 be a finite distributive universe of separations and let 𝑃 = 𝒥(𝑈). Then there
exists an order-reversing involution ′ on 𝑃, such that the map 𝜂 ∶ 𝑈 → 𝒪(𝑃) defined
by 𝜂(𝑎) = {𝑥 ∈ 𝑃 ∶ 𝑥 ⩽ 𝑎 } = ⌈𝑎⌉𝑃 is an isomorphism of universes of separations
between 𝑈 and (𝒪(𝑃), ∗).
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Proof of Theorem 33. The first statement is immediate. For the second part let us
assume we are given a distributive universe 𝑈 of separations and need to construct
an involution on 𝑃 ≔ 𝒥(𝑈) so that 𝑈 is isomorphic to 𝒪(𝑃).

Theorem 8.1 tells us that the two are isomorphic as lattices, so it remains to take
care of the involution. Concatenating the isomorphism of lattices 𝜂 ∶ 𝑈 → 𝒪(𝐽(𝑈))
with the involution on 𝑈 gives us an involution ∗ on 𝒪(𝑃) which is order-reversing.
Take note that ∗ maps down-closet subsets of 𝑃 to down-closed subsets of 𝑃 ; it is
not defined on the elements of 𝑃.

That ∗ is order-reversing means that 𝑋 ⊊ 𝑌 if, and only if, 𝑋∗ ⊋ 𝑌 ∗ for all
down-closed subsets 𝑋,𝑌 of 𝑃. Our aim is to define an order-reversing involution ′

on 𝑃 so that for all 𝑋 ∈ 𝒪(𝑃) we have 𝑋∗ = 𝑃 ⧵ {𝑥′ ∶ 𝑥 ∈ 𝑋 }. We begin with the
following claim, which is also a necessary condition for this aim to be achievable:

For all 𝑋 ∈ 𝒪(𝑃) we have that |𝑋∗| = |𝑃 | − |𝑋|. (※)

We prove (※) by contradiction: assume that 𝑋 is an inclusion-wise minimal down-
closed subset of 𝑃 for which (※) does not hold. (It clearly holds for the empty set.)
Take a maximal element 𝑥 of 𝑋 and consider the down-closed set 𝑋 − 𝑥. By choice
of 𝑋, we have |(𝑋 − 𝑥)∗| = |𝑃 | − |(𝑋 − 𝑥)|. From 𝑋∗ ⊊ (𝑋 − 𝑥)∗ it thus follows
that |𝑋∗| ⩽ |𝑃 | − |𝑋|.

To see that this holds with equality, first observe that since there is no down-
closed set 𝑌 with (𝑋 − 𝑥) ⊊ 𝑌 ⊊ 𝑋 and neither is there a down-closed set 𝑌 ∗ with
(𝑋 − 𝑥)∗ ⊋ 𝑌 ∗ ⊋ 𝑋∗. However, if (𝑋 − 𝑥)∗ ⧵ 𝑋∗ had more than one element, then
adding a minimal one among them to 𝑋∗ would give such a set 𝑌 ∗. Hence 𝑋∗ must
be exactly one element smaller than (𝑋 − 𝑥)∗, giving equality and contradicting the
choice of 𝑋. This proves (※).

Let us now define the involution ′ on 𝑃. The following up- and down-closures are
all to be taken in 𝑃. For each 𝑥 ∈ 𝑃 we define 𝑥′ to be the unique element of
(⌈𝑥⌉ − 𝑥)∗ ⧵ ⌈𝑥⌉∗; this is well-defined by (※). We will need to show that ′ is an
involution, that ′ is order-reversing and that 𝑋∗ = 𝑃 ⧵ {𝑥′ ∶ 𝑥 ∈ 𝑋 } for every
down-closed set 𝑋.

We have ⌈𝑥⌉∗ ⊆ 𝑃 ⧵⌊𝑥′⌋, and hence (𝑃 ⧵ ⌊𝑥′⌋)∗ ⊆ ⌈𝑥⌉. If we had proper inclusion,
i.e., (𝑃 ⧵ ⌊𝑥′⌋)∗ ⊊ ⌈𝑥⌉, then the down-closedness of (𝑃 ⧵ ⌊𝑥′⌋)∗ would imply that
(𝑃 ⧵ ⌊𝑥′⌋)∗ ⊆ ⌈𝑥⌉− 𝑥 and thus (⌈𝑥⌉ − 𝑥)∗ ⊆ 𝑃 ⧵ ⌊𝑥′⌋, contradicting the choice of 𝑥′.
Thus the inclusion holds with equality, and we have ⌈𝑥⌉∗ = 𝑃 ⧵ ⌊𝑥′⌋.

We are now going to show, given some down-closed set 𝑋 in which 𝑥 is maximal,
that (𝑋 − 𝑥)∗ ⧵ 𝑋∗ = {𝑥′ }. Since ⌈𝑥⌉ ⊆ 𝑋, we have that 𝑋∗ ⊆ ⌈𝑥⌉∗ and thus 𝑋∗

cannot contain 𝑥′. But (𝑋 − 𝑥)∗ does contain 𝑥′, as otherwise, by ⌈𝑥⌉∗ = 𝑃 ⧵ ⌊𝑥′⌋,
we have that (𝑋 − 𝑥)∗ ⊆ ⌈𝑥⌉∗ and thus (𝑋 − 𝑥) ⊇ ⌈𝑥⌉, which is absurd.
5Recall that involution posets are the same as separation systems. However, to emphasise that the
involution on 𝒥(𝑈) is different from the involution on 𝑈, despite 𝒥(𝑈) being a subset of 𝑈, we
prefer the term ‘involution poset’ in this context.
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This observation allows us to infer that ′ is indeed an involution on 𝑃: by the fact
that ⌈𝑥⌉∗ = (⌈𝑥⌉−𝑥)∗−𝑥′ is down-closed, we know that 𝑥′ is maximal in (⌈𝑥⌉−𝑥)∗
and 𝑥″ is the unique element of ((⌈𝑥⌉ − 𝑥)∗ − 𝑥′)∗ ⧵ (⌈𝑥⌉ − 𝑥)∗∗ = ⌈𝑥⌉ ⧵ (⌈𝑥⌉ − 𝑥),
so 𝑥″ is 𝑥.

Let us show that we have 𝑋∗ = 𝑃 ⧵ {𝑥′ ∶ 𝑥 ∈ 𝑋 } for all 𝑋 ∈ 𝒪(𝑃). We do so by
induction on the size of 𝑋; for the empty set the statement is immediate. So suppose
that the assertion holds for each proper down-closed subset of some non-empty 𝑋 ∈
𝒪(𝑃) and let 𝑥 be a maximal element of 𝑋. Then (𝑋−𝑥)∗ = 𝑃 ⧵{ 𝑦′ ∶ 𝑦 ∈ (𝑋−𝑥) }.
By the earlier observation, the single element in (𝑋 −𝑥)∗ ⧵𝑋∗ is precisely 𝑥′, giving
𝑋∗ = 𝑃 ⧵ { 𝑦′ ∶ 𝑦 ∈ 𝑋 } as claimed.

Finally, we shall check that ′ is order-reversing. For this let some 𝑥 ∈ 𝑃 be given.
Since ⌈𝑥⌉∗ is a down-closed set which does not contain 𝑥′ we have ⌈𝑥⌉∗ ⊆ 𝑃 ⧵ ⌊𝑥′⌋.
By applying ∗ to both sides and using the above paragraph we get that ⌈𝑥⌉ ⊇
𝑃 ⧵ { 𝑦′ ∶ 𝑦 ∈ 𝑃 ⧵ ⌊𝑥′⌋ }. The right-hand side simplifies to { 𝑦′ ∶ 𝑦 ∈ ⌊𝑥′⌋ }. Since
this set is down-closed and contains 𝑥″ = 𝑥, the inclusion is in fact an equality, i.e.,
⌈𝑥⌉ = { 𝑦 ∶ 𝑦′ ∈ ⌊𝑥′⌋ }. From this it follows that 𝑦 ⩽ 𝑥 if and only if 𝑦′ ⩾ 𝑥′.

We are now ready to prove the central decomposition theorem, that every suf-
ficiently large separation system which is submodular inside a distributive host
universe of separations, can be either decomposed into three disjoint submodular sub-
systems, or is isomorphic to a subsystem of a universe of bipartitions while preserving
existing corners (i.e., joins and meets). Such an isomorphism 𝜄 ∶ 𝑆 → 𝑆 ′ between two
subsystems 𝑆 ⊆ 𝑈 and 𝑆 ′ ⊆ 𝑈′ of universes 𝑈 and 𝑈′, where 𝜄(𝑟) ∨ 𝜄(𝑠) = 𝜄(𝑟 ∨ 𝑠)
whenever 𝑟 ∨ 𝑠 ∈ 𝑆 , and conversely 𝜄(𝑟) ∧ 𝜄(𝑠) = 𝜄(𝑟 ∧ 𝑠) whenever 𝑟 ∧ 𝑠 ∈ 𝑆 , for all
𝑟, 𝑠 ∈ 𝑆 , is called a corner-faithful embedding.

Theorem 34. Let 𝑈 be a distributive universe of separations and let 𝑆 ⊆ 𝑈, |𝑆| ⩾ 3,
be a separation system which is submodular in 𝑈. Then there are corner-closed
subsystems 𝑆1 , 𝑆2 , 𝑆3 ⊊ 𝑆 which are submodular in 𝑈 and such that 𝑆1 ∪𝑆2 ∪𝑆3 = 𝑆 .

Moreover 𝑆1 , 𝑆2 , 𝑆3 can be chosen disjointly unless 𝑆 can be corner-faithfully
embedded into a universe of bipartitions.

Proof. The proof goes via induction on |𝑈|. By applying Theorem 33 we may
assume, without loss of generality, that 𝑈 = 𝒪(𝑃) for some involution poset (𝑃 ,⩽, ′).
For every 𝑝 ∈ 𝑃 consider the sets

𝑆𝑝 ≔ {𝑋 ∈ 𝑆 ∶ 𝑝 ∈ 𝑋, 𝑝′ ∉ 𝑋 },
𝑆𝑝′ ≔ {𝑋 ∈ 𝑆 ∶ 𝑝 ∉ 𝑋, 𝑝′ ∈ 𝑋 },

𝑆𝑝,𝑝′ ≔ 𝑆 ⧵ (𝑆𝑝 ∪ 𝑆𝑝′ ).

Note that these are pairwise disjoint, closed under involution, corner-closed and
𝑆 = 𝑆𝑝,𝑝′ ∪ 𝑆𝑝 ∪ 𝑆𝑝′ . If for any 𝑝 these three sets form a non-trivial decomposition,
we are done. Otherwise either for every 𝑝 ∈ 𝑃 we have 𝑆 = 𝑆𝑝,𝑝′ or for some 𝑝 we
have 𝑆 = 𝑆𝑝 .
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If for some 𝑝 we have 𝑆 = 𝑆𝑝 , then we can consider 𝑆 as a subsystem of
𝑈′ ≔ 𝒪(𝑃 ⧵ { 𝑝, 𝑝′ }) under the corner-faithful embedding 𝜄 ∶ 𝑆𝑝 → 𝑈′, 𝑋 ↦ 𝑋 − 𝑝.
Since |𝑈 ′| < |𝑈| we can then apply the induction hypothesis to get the desired
decomposition.

If 𝑆 = 𝑆𝑝,𝑝′ for every 𝑝 ∈ 𝑃, then this means, that for every 𝑝 we have 𝑝 ∈ 𝑋 ⇔
𝑝′ ∈ 𝑋 for all 𝑋 ∈ 𝑆 . In particular, for every 𝑋, we have 𝑋∗ = 𝑋 ⧵ 𝐴′ = 𝑋 ⧵ 𝐴.
This means that 𝑆 is a submodular subsystem of the bipartition universe ℬ(𝑃), and
Theorem 8.11 gives the desired decomposition.

Observe that in the universe 𝒪(𝑃) we have 𝑋 ∧𝑋∗ = {𝑝 ∈ 𝑃 ∶ 𝑝 ∈ 𝑋, 𝑝′ ∉ 𝑋 }.
Hence, when recursively applying the decomposition into 𝑆𝑝 , 𝑆𝑝′ and 𝑆𝑝,𝑝′ as above,
we never separate any 𝑋 and 𝑌 where 𝑋 ∧𝑋∗ = 𝑌 ∧ 𝑌 ∗.

Conversely, given any 𝑋 ∈ 𝒪(𝑃), the set of all 𝑌 ∈ 𝑆 with 𝑌 ∧ 𝑌 ∗ = 𝑋 ∧𝑋∗ is a
corner-closed subsystem of 𝑆 . By the last argument of the proof above, these can
be considered as subsystems of bipartition universes. We thus obtain our second
decomposition result, while also explicitly specifying the subsystems that make up
our decomposition:

Theorem 35. Every separation system 𝑆 which is submodular in some distributive
universe 𝑈 of separations is a disjoint union of corner-closed subsystems 𝑆1 ,… , 𝑆𝑛
of 𝑆 (which are thus also submodular in 𝑈) each of which can be corner-faithfully
embedded into a universe of bipartitions.

Specifically, these subsystems are the equivalence classes of the relation ∼ on 𝑆
where 𝑠 ∼ 𝑡 if and only if 𝑠 ∧ 𝑠 = 𝑡 ∧ 𝑡 in 𝑈.

8.6. A separation nested with many others

How nested are the separations in a submodular separation system? This is only a
vague question, but we know that reasonably many separations must be nested, since
submodularity make the tree-of-tangles theorem work, so a submodular separation
system contains a set of at least as many separations as it has profiles, minus one.

Another approach to finding many nested separations is this: using Ramsey’s
theorem one can easily deduce that every sufficiently large separation system contains
either a large set of pairwise nested separations or a large set of pairwise crossing
separations. If the separation system is submodular, then for such a large set of
pairwise crossing separations we have many pairwise corner separations, which might
again be used to construct a large nested set, were it not for the fact that many of
the corners might coincide.

As a (non-distributive) example, consider a universe of separations which consists
of some large number 𝑛 of pairwise crossing separations plus just one separation
whose orientations form the bottom and top element of our lattice. This universe
contains a set of 𝑛 pairwise crossing separations, yet the largest nested sets (of
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8. Submodularity in separation systems

unoriented separations) consist of only two elements. It does however contain a
single separation which is nested with many others.

In the case of a full universe of separations this is hardly surprising, after all the
top/bottom separation is always nested with all separations in the universe. Yet,
we can show also that every submodular separation system contains a separation
which is nested with many others:

Theorem 8.12. Let 𝑆 be a submodular separation system. Then there exists a
separation 𝑠 ∈ 𝑆 which is nested with at least √|𝑆| many separations in 𝑆 (including
𝑠 itself).

Proof. Let 𝑠 ∈ 𝑆 be nested with as many separations from 𝑆 as possible. Let 𝑁 ⊆ 𝑆
denote the set of separations which are nested with 𝑠. There are |𝑆 ⧵𝑁| = |𝑆|− |𝑁|
many separations in 𝑆 which cross 𝑠. Since 𝑆 is submodular it contains, for every
𝑡 ∈ 𝑆 which crosses 𝑠, a corner of 𝑠 and 𝑡; this corner is in 𝑁 and distinct from 𝑠.
So, every 𝑡 ∈ 𝑆 which crosses 𝑠 is nested with at least one element of 𝑁 ⧵ {𝑠}.

By the pigeon hole principle there then exists an 𝑟 ∈ 𝑁 which is nested with at
least |𝑆|−𝑏

𝑏 elements of 𝑁 ⧵ {𝑠}. Since 𝑟 is also nested with 𝑠, it is nested with at
least |𝑆|−𝑏

𝑏 + 1 elements of 𝑁. By the choice of 𝑏 we conclude:

𝑏 ⩾ |𝑆| − 𝑏
𝑏

+ 1 ⟹ 𝑏2 ⩾ (|𝑆| − 𝑏) + 𝑏 ⟹ 𝑏 ⩾ √|𝑆| .
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9. Submodularity and the unravelling problem

In this chapter we analyse a simple combinatorial problem that is derived
from submodularity. The contents of this chapter are based on the
preprint [39] which is joint work together with Christian Elbracht and
Jakob Kneip.

Here is an intriguingly simple combinatorial problem – simple enough that you
can explain it to a first-year student of mathematics – but which is challenging
nonetheless:

Problem 9.1 (Unravelling problem). A finite set 𝒳 of finite sets is woven if, for all
𝑋,𝑌 ∈ 𝒳, at least one of 𝑋 ∪ 𝑌 and 𝑋 ∩ 𝑌 is in 𝒳. Let 𝒳 be a non-empty woven
set. Does there exist an 𝑋 ∈ 𝒳 for which 𝒳−𝑋 is again woven?

Given a set of subsets 𝒳 which is woven, an unravelling of 𝒳 shall be a sequence
𝒳 = 𝒳𝑛 ⊇ ⋯ ⊇ 𝒳0 = ∅ of sets, all woven, such that |𝒳𝑖 ⧵ 𝒳𝑖−1| = 1 for all
1 ⩽ 𝑖 ⩽ 𝑛. If the unravelling problem has a general positive answer, then every
woven set will have an unravelling.

The question whether every woven set has an unravelling arose naturally in our
study of structurally submodular separation systems. These systems are a framework
developed by Diestel, Erde, and Weißauer [25] to generalize the theory of tangles in
graphs to an abstract setting, allowing the application of tangles in a multitude of
contexts including graphs and matroids, but also other combinatorial structures.

In this chapter we analyse the unravelling problem. We prove affirmative results
for versions in two important cases, which come from the original context where
the problem arose: submodular separation systems. Our first main result is that
unravellings exist for sets 𝒳 that consist, for some submodular function 𝑓 on the
subsets of 𝑉 = ⋃𝒳, precisely of the sets 𝑋 ⊆ 𝑉 with 𝑓(𝑋) < 𝑘 for some integer
𝑘. Our second main result settles the unravelling problem for general finite posets,
which we call woven if they contain, for every two elements, either an infimum or a
supremum of these two elements.

In Section 9.1 we give an equivalent formulation of the unravelling problem in
terms of distributive lattices and also establish a kind of converse of unravelling,
showing that we can find, for every woven set 𝒳, some subset of ⋃𝒳 which we can
add to 𝒳 and remain woven. We then explain how the unravelling problem turns
up in the context of submodularity in abstract separation systems. Throughout the
chapter, we will come back to the context of abstract separation systems, to discuss
how our results apply there.
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9. Submodularity and the unravelling problem

In Section 9.2 we give a partial solution to the unravelling problem, by showing
that the following class of woven sets, which is particularly important in the theory
of tangles, can indeed be unravelled: Let 𝒳 be a collection of subsets of some finite
set 𝑉. If 𝒳 has the form 𝒳 = {𝑋 ∈ 2𝑉 ∶ 𝑓(𝑋) < 𝑘 } for some function 𝑓 ∶ 2𝑉 → ℝ
and 𝑘 ∈ ℝ, let us say that 𝑓 induces 𝒳.

Theorem 37. p. 194 If 𝒳 ⊆ 2𝑉 is induced by a submodular function on 2𝑉, then 𝒳 can be
unravelled.

In Section 9.3 we introduce a possible generalisation of the unravelling problem
from subsets of some power set to subsets of any lattice. We show that the lattice
analogue of the unravelling problem can be answered in the negative for non-
distributive lattices, constructing an explicit counterexample. However, if we restrict
this generalized formulation of the unravelling problem to distributive lattices, it
becomes equivalent to Problem 9.1.

We conclude in Section 9.4 with our second main result, a variant of the unravelling
problem for general partially ordered sets. Let us call a finite poset 𝑃 woven if
there exists, for any 𝑝, 𝑞 ∈ 𝑃, either a supremum or an infimium in 𝑃. A sequence
𝑃 = 𝑃𝑛 ⊇ ⋯ ⊇ 𝑃0 = ∅ of subposets is an unravelling of 𝑃 if 𝑃𝑖 is woven and
|𝑃𝑖 ⧵ 𝑃𝑖−1| = 1 for every 1 ⩽ 𝑖 ⩽ 𝑛. Our second main result is that all woven posets
have an unravelling:

Theorem 40. p. 202 Every woven poset can be unravelled.

Wovenness in posets corresponds to the most general notion of submodularity for
separation systems, which we discussed in Section 8.2.

9.1. Unravelling in lattices and separation systems

We can formulate a problem equivalent to Problem 9.1 in terms of lattices. This
problem might be easier to work with, and will also allow us to explain how the
unravelling problem originally came up:

Problem 9.2. Let 𝐿 be a finite lattice and 𝑃 ⊆ 𝐿 a non-empty woven subset. Does
there exist 𝑝 ∈ 𝑃 for which 𝑃 − 𝑝 is again woven?

For distributive lattices, Problem 9.2 is equivalent to Problem 9.1 by Birkhoff’s
representation theorem (see Theorem 8.1), which says that every finite distributive
lattice is isomorphic to a sublattice of the subset lattice of some finite set. For
general lattices, however, we have a negative solution to Problem 9.2: in Section 9.3
we shall construct a (non-distributive) counterexample for Problem 9.2.

Perhaps surprisingly, it is easy to establish a kind of converse to Problem 9.2:
given a lattice 𝐿 and a woven poset 𝑃 ⊆ 𝐿 we can always find a 𝑝 ∈ 𝐿 ⧵ 𝑃 which
one can add to 𝑃 while keeping it woven.
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9.1. Unravelling in lattices and separation systems

Proposition 9.3. If 𝐿 is a lattice and 𝑃 ⊊ 𝐿 a proper woven subset of 𝐿, then
there exists a 𝑝 ∈ 𝐿 ⧵ 𝑃 such that 𝑃 + 𝑝 is again woven.

Proof. Let 𝑝 be a maximal element of 𝐿 ⧵ 𝑃. Then 𝑃 ′ ≔ 𝑃 + 𝑟 is woven: for each
𝑞 ∈ 𝑃 ′ we have (𝑝 ∨ 𝑞) ∈ 𝑃 ′ by the maximality of 𝑝 in 𝐿 ⧵ 𝑃.

In terms of woven sets in the sense of Problem 9.1, this statement directly implies
the following:

Corollary 9.4. If 𝑉 is a finite set and 𝒳 ⊊ 2𝑉 woven, then there is a 𝑋 ⊆ 𝑉 such
that 𝑋 ∉ 𝒳 and such that 𝒳+𝑋 is again woven.

The original motivation for considering the unravelling problem originates in
submodular separation systems: Given a submodular separation system 𝑆 inside a
universe 𝑈 of separations, it might be possible that we find a separation 𝑠 inside
𝑆 which we can delete, together with its inverse, and be left with a separation
system 𝑆 ⧵ { 𝑠, 𝑠 } that is again submodular in 𝑈. Formally, given a submodular
separation system 𝑆 inside a universe 𝑈 of separations, we are interested if the
following property holds:

Property 9.5. There is an 𝑠 ∈ 𝑆 such that 𝑆 ⧵ { 𝑠, 𝑠 } is submodular in 𝑈.

If this were to hold for all separation systems which are submodular in 𝑈, then we
could recursively apply this reduction step to unravel such a separation system, i.e.,
we would obtain a sequence ∅ = 𝑆1 ⊆ 𝑆2 ⋯ ⊆ 𝑆𝑛 = 𝑆 of submodular subsystems
such that, for every 𝑖 < 𝑛, we have that 𝑆𝑖+1 ⧵ 𝑆𝑖 consists of just one separation
𝑠𝑖 together with its inverse. Such an unravelling sequence would be of particular
use for proving theorems about submodular separation systems via induction. For
example, it is possible to obtain a short proof of a tree-of-tangles theorem for sub-
modular separation systems, effectively Theorem 5.4, which have such an unravelling
sequence [58, Section 4.1.8].

This question, whether Property 9.5 holds for every structurally submodular
separation system, is now closely related to Problem 9.2. In fact, if we could unravel
every structurally submodular separation system, we could answer Problem 9.2
positively: If there exists a woven poset 𝑃 inside a lattice 𝐿, such that 𝑃 − 𝑝 is not
woven, we could construct a structurally submodular separation system inside a
universe 𝑈 of separations which can not be unravelled. We use such a construction
in Section 9.3 to turn our counterexample to Problem 9.2 into an example of a
structurally submodular separation system inside a non-distributive lattice which
cannot be unravelled.

Also, the converse of Problem 9.2 established by Proposition 9.3 directly translates
to a similar statement about structurally submodular separation systems inside a
universe of separations.
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Corollary 9.6. If 𝑈 is a universe of separations and 𝑆 ⊊ 𝑈 submodular in 𝑈, then
so is 𝑆 + 𝑟 for some 𝑟 ∈ 𝑈 ⧵ 𝑆.

Proof. Let 𝑟 be a maximal element of 𝑈 ⧵ 𝑆 . By Proposition 9.3, the separation
system 𝑆′ ≔ 𝑆 + 𝑟 is again submodular in 𝑈.

9.2. Unravelling order-induced submodular sets

In this section we show that for a subclass of the woven subsets of a lattice we
indeed have unravellings. For this, recall from Chapter 8 that a set 𝑃 inside a lattice
𝐿 is order-induced submodular if there exists a submodular function 𝑓 ∶ 𝐿 → ℝ⩾0
and a real number 𝑘 such that 𝑃 = { 𝑝 ∈ 𝐿 ∶ 𝑓(𝑝) < 𝑘 }. Here, 𝑓 being submodular
should mean that 𝑓(𝑝)+𝑓(𝑞) ⩾ 𝑓(𝑝 ∨ 𝑞)+𝑓(𝑝 ∧ 𝑞) for any 𝑝, 𝑞 ∈ 𝐿. Note that every
order-induced set 𝑃 is woven, as the submodularity of 𝑓 implies that at least one
of 𝑓(𝑝 ∨ 𝑞), 𝑓(𝑝 ∧ 𝑞) is at most max{ 𝑓(𝑝), 𝑓(𝑞) } and thus at least one of 𝑝 ∨ 𝑞 and
𝑝 ∧ 𝑞 lies in 𝑃, whenever both 𝑝 and 𝑞 lie in 𝑃. However, there do exists woven sets
which are not order-induced submodular, see [37].

We will see in what follows that for order-induced submodular subposets 𝑃 of a
lattice 𝐿 it is possible to find an unravelling, that is a sequence 𝑃 = 𝑃𝑛 ⊇ ⋯ ⊃ 𝑃0 = ∅
of posets which are woven in 𝐿 such that |𝑃𝑖 ⧵ 𝑃𝑖−1| = 1 for every 1 ⩽ 𝑖 ⩽ 𝑛.

We say that 𝑃 can be unravelled if there exists an unravelling for 𝑃. In other
words 𝑃 can be unravelled if we are able to successively delete elements from 𝑃 until
we reach the empty set and maintain the property of being woven throughout.

We shall demonstrate that every order-induced submodular subposet of a lattice
can be unravelled.

Theorem 36. Let 𝐿 be a lattice with a submodular function 𝑓 and consider the
subset 𝑃 = { 𝑝 ∈ 𝐿 ∶ 𝑓(𝑝) < 𝑘 } for some 𝑘. Then 𝑃 can be unravelled.

For the remainder of this section let 𝐿 be a lattice with a submodular order
function 𝑓 and 𝑃 ⊆ 𝐿. It is easy to see that we can perform the first step of an
unravelling sequence:

Lemma 9.7. If 𝑃 = { 𝑝 ∈ 𝐿 ∶ 𝑓(𝑝) < 𝑘 } and 𝑝 ∈ 𝑃 maximises 𝑓(𝑝) in 𝑆, then 𝑃 −𝑝
is woven in 𝐿.

Proof. Given 𝑞, 𝑟 ∈ 𝑃 − 𝑝, since 𝑃 is woven in 𝐿 at least one of 𝑞 ∨ 𝑟 and 𝑞 ∧ 𝑟 also
lies in 𝑃. However, by the choice of 𝑝 we have 𝑓(𝑝) ⩾ 𝑓(𝑞) and 𝑓(𝑝) ⩾ 𝑓(𝑟). Thus
if one of 𝑞 ∨ 𝑟 and 𝑞 ∧ 𝑟 equals 𝑝, the other also needs to lie in 𝑃. Thus 𝑃 − 𝑝 is
indeed woven in 𝐿.

Unfortunately we cannot rely solely on Lemma 9.7 to find an unravelling of 𝑃,
since after its first application and the deletion of some 𝑝 the remaining poset 𝑃 − 𝑝
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may no longer be order-induced submodular. This can happen if 𝑃 − 𝑝 contains an
𝑟 such that 𝑓(𝑟) = 𝑓(𝑝).

To rectify this, and thereby allow the repeated application of Lemma 9.7, we shall
perturb the submodular function 𝑓 on 𝐿 to make it injective, whilst maintaining its
submodularity and the assertion that 𝑃 = { 𝑝 ∈ 𝐿 ∶ 𝑓(𝑝) < 𝑘 } for a suitable 𝑘. This
approach is similar to – and inspired by – the idea of tie-breaker functions employed
by Robertson and Seymour [64] to construct certain tree-decompositions. For this
we show the following:

Theorem 9.8. Let 𝐿 be a lattice, then there is an injective submodular func-
tion 𝜌 ∶ 𝐿 → ℕ. Moreover, we can choose 𝜌 so that, for any 𝑝1, 𝑝2, 𝑞1, 𝑞2 ∈ 𝐿, we
have that 𝜌(𝑝1) + 𝜌(𝑝2) = 𝜌(𝑞1) + 𝜌(𝑞2) if and only if { 𝑝1, 𝑝2 } = { 𝑞1, 𝑞2 }.

Proof. Enumerate 𝐿 as 𝐿 = {𝑝1,… , 𝑝𝑛 }. For 𝑞 ∈ 𝐿 let 𝐼(𝑞) be the set of all 𝑖 ⩽ 𝑛
with 𝑝𝑖 ⩽ 𝑞. We define 𝜌 ∶ 𝐿 → ℕ by letting

𝜌(𝑞) = 3𝑛+1 − ∑
𝑖∈𝐼(𝑞)

3𝑖 .

To see that this function is submodular note that for 𝑞 and 𝑟 in 𝐿 we have 𝐼(𝑞)∩𝐼(𝑟) =
𝐼(𝑞 ∧ 𝑟) and 𝐼(𝑞)∪ 𝐼(𝑟) ⊆ 𝐼(𝑞 ∨ 𝑟). Therefore each 𝑖 ⩽ 𝑛 appears in 𝐼(𝑞) and 𝐼(𝑟) at
most as often as it does in 𝐼(𝑞 ∨ 𝑟) and 𝐼(𝑞 ∧ 𝑟). This establishes the submodularity.

It remains to show that 𝜌(𝑞) ≠ 𝜌(𝑟) for all 𝑞 ≠ 𝑟. For this note that by definition
of 𝜌 we have 𝜌(𝑞) = 𝜌(𝑟) if and only if 𝐼(𝑞) = 𝐼(𝑟). But if 𝑞 ≠ 𝑟, then either 𝑞 ∉ 𝐼(𝑟)
or 𝑟 ∉ 𝐼(𝑞).

To see the moreover part we note that 𝜌(𝑝1) + 𝜌(𝑝2) = 𝜌(𝑞1) + 𝜌(𝑞2) if and
only if 𝐼(𝑝1) ∪ 𝐼(𝑝2) = 𝐼(𝑞1) ∪ 𝐼(𝑞2) and 𝐼(𝑝1) ∩ 𝐼(𝑝2) = 𝐼(𝑞1) ∩ 𝐼(𝑞2). Since
𝐼(𝑝1), 𝐼(𝑝2), 𝐼(𝑞1) and 𝐼(𝑞2) correspond to the down-closures of 𝑝1, 𝑝2, 𝑞1, 𝑞2 in
𝐿, this implies that { 𝑝1, 𝑝2 } = { 𝑞1, 𝑞2 }: Clearly, if 𝑝1 = 𝑞1 then we need to have
𝑝2 = 𝑞2, so suppose that { 𝑝1, 𝑝2 } and { 𝑞1, 𝑞2 } are disjoint. Since 𝑝1 ∈ 𝐼(𝑝1), we
see that 𝑝1 ∈ 𝐼(𝑞1) ∪ 𝐼(𝑞2). So suppose without loss of generality that 𝑝1 < 𝑞1.
Since 𝑞1 ∈ 𝐼(𝑞1) and 𝑞1 ∉ 𝐼(𝑝1), we thus conclude that 𝑞1 ∈ 𝐼(𝑝2), thus 𝑞1 < 𝑝2.
As 𝑝2 ∈ 𝐼(𝑝2), this then implies 𝑝2 < 𝑞2. As 𝑞2 ∈ 𝐼(𝑞2), this is a contradiction
as 𝑞2 ∉ 𝐼(𝑝1) ∪ 𝐼(𝑝2).

We immediately obtain the following corollary about universes of separations:

Corollary 9.9. Let 𝑈 be a universe of separations. Then there is a submodular
order function 𝛾 ∶ 𝑈 → ℕ with 𝛾(𝑟) ≠ 𝛾(𝑠) for all 𝑟 ≠ 𝑠.

Proof. Let 𝜌 be the function obtained from Theorem 9.8 applied to 𝑈 as a lattice.
We set 𝛾(𝑠) = 𝜌(𝑠) + 𝜌(𝑠). It is easy to see that this is a submodular order function.
The moreover part of Theorem 9.8 guarantees that indeed 𝛾(𝑟) ≠ 𝛾(𝑠) ∀𝑟 ≠ 𝑠.

We can now establish Theorem 36.
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Proof of Theorem 36. Let 𝐿 be a lattice with a submodular order function 𝑓.
Let 𝑃 = { 𝑝 ∈ 𝐿 ∶ 𝑓(𝑝) < 𝑘 } for some 𝑘 ∈ ℝ⩾0. Let 𝜌 be the submodular
function on 𝐿 from Theorem 9.8. Let 𝜀 be the minimal difference between two
distinct values of 𝑓, that is |𝑓(𝑝) − 𝑓(𝑞)| ⩾ 𝜀 or 𝑓(𝑝) = 𝑓(𝑞) for any two 𝑝, 𝑞 ∈ 𝐿.
Since 𝐿 is finite, 𝜀 > 0. Pick a positive constant 𝑐 ∈ ℝ+ so that 𝑐 ⋅ 𝜌(𝑝) < 𝜀 for
all 𝑝 ∈ 𝐿. We define a new function 𝑔 ∶ 𝐿 → ℝ⩾0 on 𝐿 by setting

𝑔(𝑝) ≔ 𝑓(𝑝) + 𝑐 ⋅ 𝜌(𝑝) .

Then 𝑔 is submodular and, like 𝜌, has the property that 𝑔(𝑝) ≠ 𝑔(𝑞) whenever 𝑝 ≠
𝑞. Enumerate the elements 𝑝1,… , 𝑝𝑛 of 𝑃 so that 𝑔(𝑝1) < 𝑔(𝑝2) < ⋯ < 𝑔(𝑝𝑛).
Then 𝑃𝑖 ≔ {𝑝1,… , 𝑝𝑖 } ⊆ 𝑃 is woven in 𝐿 for each 𝑖 ⩽ 𝑛: for 𝑖 = 𝑛 it equals 𝑃, and
for 𝑖 < 𝑛 we have that 𝑃𝑖 = {𝑝 ∈ 𝐿 ∶ 𝑔(𝑝) < 𝑔(𝑝𝑖+1) }, which is woven in 𝐿 since 𝑔
is a submodular function on 𝐿. Thus 𝑃 = 𝑃𝑛 ⊇ ⋯ ⊇ 𝑃0 = ∅ is an unravelling
for 𝑃.

Theorem 36 allows us to give a class of sets 𝒳 ⊆ 2𝑉 for which we can answer
Problem 9.1 positively:

Theorem 37. If 𝒳 ⊆ 2𝑉 is induced by a submodular function on 2𝑉, then 𝒳 can be
unravelled.

Proof. By adding a large constant to 𝑓(𝑋) for every 𝑋 ⊆ 𝑉 we may suppose that
𝑓(𝑋) ⩾ 0 ∀𝑋 ⊆ 𝑉. Applying Theorem 36 to the subset-lattice 2𝑋 together with its
subset 𝒳 results in the desired sequence ∅ = 𝒳0 ⊆ 𝒳1 ⊆ ⋯ ⊆ 𝒳𝑛 = 𝒳.

As a corollary, Theorem 36 also allows us to show that separation systems 𝑆𝑘
inside a universe of separations with a submodular order function can be unravelled.

Theorem 38. Let 𝑈 be a universe of separations with a submodular order function
𝑓 and 𝑆 = 𝑆𝑘 for some 𝑘. Then 𝑆 can be unravelled.

Proof. Perform the same argument as in the proof of Theorem 36, using the function
𝛾 from Corollary 9.9 instead of the function 𝜌 from Theorem 9.8.

9.3. A woven subset of a lattice which cannot be unravelled

In this section we are going to construct a counterexample to Problem 9.2 for
non-distributive lattices. So, we construct a lattice 𝐿 together with a woven subset
𝑃 of 𝐿 so that 𝑃 − 𝑝 is not woven in 𝐿 for any 𝑝 ∈ 𝑃.

This construction needs to be such that for every element 𝑝 of 𝑃 there are elements
𝑞 and 𝑟 of 𝑃 such that either 𝑝 = 𝑞 ∨ 𝑟 and 𝑞 ∧ 𝑟 ∉ 𝑃 or 𝑝 = 𝑞 ∧ 𝑟 and 𝑞 ∨ 𝑟 ∉ 𝑃.

We will construct our lattice 𝐿 by building its Hasse diagram. To be able to prove
that our construction results in a lattice we need to start with a graph of high girth.
Specifically we will use a 4-regular graph of high girth as a starting point. Lazebnik
and Ustimenko have constructed such graphs:
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Lemma 9.10 ([59]). There exists a 4-regular graph 𝐺 with girth at least eleven.

For contradiction arguments we will try to find short closed walks in our graph.
The following simple lemma then tells us that these contradict the high girth of 𝐺:

Lemma 9.11. If 𝐺 is a graph, 𝑊 = 𝑣1𝑣2 …𝑣𝑛𝑣1 a closed walk in 𝐺 such that there
exists an 𝑗 with 𝑣𝑖 ≠ 𝑣𝑗 for all 𝑖 ≠ 𝑗 and 𝑣𝑗−1 ≠ 𝑣𝑗+1, then 𝑊 contains a cycle. In
particular, 𝐺 contains a cycle of length at most 𝑛.

Proof. Since 𝑣𝑗 ≠ 𝑣𝑖 for all 𝑖 ≠ 𝑗, the graph 𝑊 − 𝑣𝑗 is connected. Thus, 𝑊 − 𝑣𝑗
contains a path between 𝑣𝑗−1 and 𝑣𝑗+1 which together with 𝑣𝑗 forms the desired
cycle.

We are now ready to start the construction of our lattice 𝐿 together with its
woven subset 𝑃.

Let 𝐺 be a 4-regular graph of girth at least eleven. The ground set of our lattice
𝐿 consists of a top element 𝑡, a bottom element 𝑏 and four disjoint copies of 𝑉 (𝐺)
which we call 𝑉 −, 𝑉 ,𝑊 and 𝑊+.

We say that 𝑣 ∈ 𝑉 − ∪𝑉 ∪𝑊 ∪𝑊+ corresponds to 𝑤 ∈ 𝑉 − ∪𝑉 ∪𝑊 ∪𝑊+ if they
are copies of the same vertex in 𝑉 (𝐺).

We now start with defining our partial order on 𝐿. We define, for 𝑣 ∈ 𝑉 and
𝑤 ∈ 𝑊, that 𝑣 ⩽ 𝑤 if and only if there is an edge between 𝑣 and 𝑤 in 𝐺.

Now consider the bipartite graph 𝐺′ on 𝑉 ∪𝑊 where 𝑣 ∈ 𝑉 is adjacent to 𝑤 ∈ 𝑊
if and only if 𝑣 ⩽ 𝑤. This bipartite graph is 4-regular graph and has girth at least
twelve. Every regular bipartite graph has a 1-factor. Hence, 𝐺′ has a colouring of
𝐸[𝐺′] with two colours, red and blue say, such that every vertex in 𝐺′ is adjacent
to exactly two red and exactly two blue edges. We fix one such colouring.

To define our partial order for 𝑣− ∈ 𝑉 − and 𝑣 ∈ 𝑉 we define that 𝑣− ⩽ 𝑣 if and
only if there is a red edge between 𝑣 and the vertex in 𝑊 corresponding to 𝑣−. Thus,
every 𝑣− in 𝑉 − lies below exactly two points in 𝑉, we call these the neighbours in 𝑉
of 𝑣−.

Similarly, we let 𝑤 ⩽ 𝑤+ for 𝑤 ∈ 𝑊 and 𝑤+ ∈ 𝑊+ if and only if there is a blue
edge between 𝑤 and the vertex in 𝑉 corresponding to 𝑤+. We call the two points in
𝑊 which lie below 𝑤+ ∈ 𝑊+ the neighbours in 𝑊 of 𝑤+.

We finish our definition of ⩽ by taking the transitive closure and defining 𝑏 ⩽ 𝑣
and 𝑣 ⩽ 𝑡 for every 𝑣 ∈ 𝐿. It is easy to see that this ⩽ is indeed a partial order.

We claim that (𝐿,⩽) is a lattice, that 𝑃 = 𝑉 ∪𝑊 ∪ { 𝑡, 𝑏 } ⊆ 𝐿 is a woven subset
of 𝐿 and that 𝑃 − 𝑝 is not woven in 𝐿 for any 𝑝 ∈ 𝑃. To show that 𝐿 is a lattice
and that 𝑃 is woven in 𝐿 we have to show that there is, for every pair 𝑥, 𝑦 ∈ 𝐿, a
supremum and an infimum and that at least one of these two lies in 𝑃 if 𝑥, 𝑦 ∈ 𝑃.
We do so via a series of lemmas which distinguish different cases for 𝑥, 𝑦.

Let us first consider the case that either both 𝑥 and 𝑦 lie in 𝑉, or that they both
lie in 𝑊:
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𝑡

𝑏

𝑉 −

𝑉

𝑊

𝑊+

𝐺′

Figure 9.1.: The Hasse diagram of 𝐿. The points in 𝑃 are denote by black dots, the
points outside of 𝑃 are white.

Lemma 9.12. If 𝑣1, 𝑣2 ∈ 𝑉, then there is a supremum and an infimum of 𝑣1, 𝑣2 in
𝐿. Moreover, if 𝑣1 ∧ 𝑣2 ≠ 𝑏 then 𝑣1 ∨ 𝑣2 ∈ 𝑊.
Analogously, if 𝑤1, 𝑤2 ∈ 𝑊, then there is a supremum and an infimum of 𝑤1, 𝑤2

in 𝐿. Moreover, if 𝑤1 ∨ 𝑤2 ≠ 𝑡 then 𝑤1 ∧ 𝑤2 ∈ 𝑉.

Proof. Let us start by showing that there is a supremum of 𝑣1 and 𝑣2.
First consider the case that the neighbourhoods of 𝑣1 and 𝑣2 in 𝐺′ intersect, that

is, 𝑁𝐺′(𝑣1) ∩ 𝑁𝐺′(𝑣2) ≠ ∅. In this case, there is only one point in the intersection,
since if there are 𝑤1, 𝑤2 ∈ 𝑁𝐺′(𝑣1) ∩ 𝑁𝐺′(𝑣2), 𝑤1 ≠ 𝑤2, then 𝑣1𝑤1𝑣2𝑤2𝑣1 would be
a cycle of length 4 in 𝐺′, contradicting the fact that 𝐺′ has girth at least 12. We
claim that the single point in the intersection, which we call 𝑤, is the supremum of
𝑣1 and 𝑣2.

To see this consider any 𝑥 ∈ 𝐿 such that 𝑣1 ⩽ 𝑥, 𝑣2 ⩽ 𝑥. We need to show that
𝑤 ⩽ 𝑥. If 𝑥 = 𝑡 then this is clear and 𝑥 ∈ 𝑊 ∪ 𝑉 ∪ 𝑉 − ∪ {𝑏} is not possible, so
suppose that 𝑥 ∈ 𝑊+. Let 𝑤1, 𝑤2 be the neighbours in 𝑊 of 𝑥, i.e., 𝑤1, 𝑤2 ⩽ 𝑥.
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We show that 𝑤1 = 𝑤 or 𝑤2 = 𝑤. So suppose that 𝑤 ≠ 𝑤1, 𝑤2. Let 𝑣𝑥 ∈ 𝑉 be the
point corresponding to 𝑥. As 𝑣1 ⩽ 𝑥 we may suppose without loss of generality that
𝑣1 ⩽ 𝑤1. Now if 𝑣2 ⩽ 𝑤2 then 𝑤𝑣1𝑤1𝑣𝑠𝑤2𝑣2𝑤 contains a cycle of length at most
6 in 𝐺′ by Lemma 9.11, as 𝑣1 ≠ 𝑣2 and 𝑤 ∉ { 𝑣1, 𝑤1, 𝑣𝑠, 𝑤2, 𝑣2 }. This contradicts
the fact that 𝐺′ has girth at least 12. Thus, 𝑣2 ⩽ 𝑤1 and, hence, 𝑤1 = 𝑤 as
𝑁𝐺′(𝑣1) ∩ 𝑁𝐺′(𝑣2) = {𝑤}, contradicting the assumption that 𝑤 ≠ 𝑤1 and thus
proving 𝑤 ⩽ 𝑥.

Now suppose that 𝑁𝐺′(𝑣1) ∩ 𝑁𝐺′(𝑣2) = ∅.
Then every candidate for a supremum of 𝑣1 and 𝑣2 is either 𝑡, or lies in 𝑊+,

hence it is enough to show that there cannot be two elements 𝑤+
1 , 𝑤+

2 ∈ 𝑊+ both
satisfying 𝑣1, 𝑣2 ⩽ 𝑤+

1 , 𝑤+
2 . So suppose that there are two such points and denote

the neighbours of 𝑤+
1 and 𝑤+

2 in 𝑊 as 𝑤11, 𝑤12 and 𝑤21, 𝑤22 respectively, i.e.,
𝑤11, 𝑤12 ⩽ 𝑤+

1 and 𝑤21, 𝑤22 ⩽ 𝑤+
2 .

As 𝑣1 ⩽ 𝑤+
1 , 𝑤+

2 , we may suppose without loss of generality that 𝑣1 ⩽ 𝑤11, 𝑤21.
Since 𝑁𝐺′(𝑣1)∩𝑁𝐺′(𝑣2) = ∅, we thus have 𝑣2 ⩽ 𝑤12, 𝑤22 and 𝑤12, 𝑤22 ∉ {𝑤11, 𝑤21 }.
Let us denote the corresponding points of 𝑤+

1 and 𝑤+
2 in 𝑉 as 𝑣𝑤+

1
and 𝑣𝑤+

2
. Since

𝑤+
1 ≠ 𝑤+

2 either 𝑤12 ≠ 𝑤22 or 𝑤11 ≠ 𝑤21, as otherwise 𝐺′ would contain a cycle of
length four. In any case, we consider the closed walk 𝑣1𝑤11𝑣𝑤+

1
𝑤12𝑣2𝑤22𝑣𝑤+

2
𝑤21𝑣1.

As 𝑣𝑤+
1
≠ 𝑣𝑤+

2
, we have 𝑣1 ≠ 𝑣𝑤+

1
or 𝑣1 ≠ 𝑣𝑤+

2
and 𝑣2 ≠ 𝑣𝑤+

1
or 𝑣2 ≠ 𝑣𝑤+

2
. Furthermore,

either 𝑤11 ∉ {𝑤12, 𝑤21, 𝑤22 } and 𝑤21 ∉ {𝑤11, 𝑤12, 𝑤22 } or 𝑤12 ∉ {𝑤11, 𝑤21, 𝑤22 }
and 𝑤22 ∉ {𝑤11, 𝑤12, 𝑤21 } This allows the application of Lemma 9.11 to our walk,
yielding a cycle of length at most 8, which contradicts the fact that 𝐺′ has girth at
least 12. Thus, there exists a supremum 𝑣1 ∨ 𝑣2 in 𝐿.

One candidate for the infimum 𝑣1 ∧ 𝑣2 is 𝑏. Every other candidate needs to
lie in 𝑉 −. However, there can be at most one such candidate in 𝑉 −, otherwise,
these candidates together with 𝑣1, 𝑣2 would correspond to a cycle of length 4 in
𝐺′ contradicting the fact that 𝐺′ has girth at least 12. Thus, there is indeed an
infimum 𝑣1 ∧ 𝑣2.

Moreover, if 𝑣1 ∧ 𝑣2 ≠ 𝑏, then there is a point 𝑤 ∈ 𝑊 such that both, 𝑣1𝑤 and
𝑣2𝑤 are red edges in 𝐺′, hence 𝑁𝐺′(𝑣1) ∩ 𝑁𝐺′(𝑣2) ≠ ∅, which shows the moreover
part of the claim.

The statement for 𝑤1, 𝑤2 ∈ 𝑊 follows by a symmetric argument.

We can now apply Lemma 9.12 to show the existence of suprema and infima
between 𝑣 ∈ 𝑉 and 𝑤 ∈ 𝑊:

Lemma 9.13. If 𝑣 ∈ 𝑉 and 𝑤 ∈ 𝑊, then there is a supremum and an infimum of 𝑣
and 𝑤 in 𝐿. Moreover, if 𝑣 ∧ 𝑤 ≠ 𝑏 then 𝑣 ∨ 𝑤 = 𝑡 or 𝑣 ⩽ 𝑤.

Proof. If 𝑣 ⩽ 𝑤 then the statement is obvious, so suppose that 𝑣 ≰ 𝑤.
By Lemma 9.12, every point 𝑤𝑖 ∈ 𝑁𝐺′(𝑣) has a supremum with 𝑤 which is either

𝑡 or lies in 𝑊+. Moreover, there can be at most one point 𝑤𝑖 ∈ 𝑁𝐺′(𝑣) such that
the supremum 𝑤𝑖 ∨𝑤 is in 𝑊+, since if there are two, 𝑤1, 𝑤2 ∈ 𝑁𝐺′(𝑣) say, then, by
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Lemma 9.12, 𝑤1 ∧ 𝑤 and 𝑤2 ∧ 𝑤 ∈ both lie in 𝑉 and thus 𝑤𝑣1𝑤1𝑣𝑤2𝑣2𝑤 is a cycle
of length 6 in 𝐺′. Hence 𝑣 ∨ 𝑤 is well-defined.

A symmetric argument shows that also 𝑣 ∧ 𝑤 is well-defined, so all that is left to
show is that 𝑣 ∨ 𝑤 ∈ 𝑊+ and 𝑣 ∧ 𝑤 ∈ 𝑉 − cannot both occur.

However, if this were the case, say 𝑤+ = 𝑣 ∨ 𝑤 ∈ 𝑊+ and 𝑣− = 𝑣 ∧ 𝑤 ∈ 𝑉 −, we
can consider the corresponding vertex 𝑣𝑤+ of 𝑤+ in 𝑉 and the corresponding vertex
𝑤𝑣− of 𝑣− in 𝑊. By definition, there is a vertex 𝑤1 ∈ 𝑊 such that 𝑣𝑤1 ∈ 𝐸(𝐺′) and
both 𝑤1𝑣𝑤+ and 𝑤𝑣𝑤+ are blue edges. Similarly, there is a vertex 𝑣1 ∈ 𝑉 such that
𝑣1𝑤 ∈ 𝐸(𝐺′) and both 𝑣1𝑤𝑣− and 𝑣𝑤𝑣− are red edges. Consider the closed walk
𝑣𝑤1𝑣𝑤+𝑤𝑣1𝑤𝑣−𝑣. We have 𝑣 ∉ { 𝑣𝑤+ , 𝑣1 } as 𝑣 ≰ 𝑤 and similarly 𝑤 ∉ {𝑤1, 𝑤𝑣− }.
Moreover, since every edge in 𝐺′ has precisely one colour we have 𝑣1𝑤𝑣− ≠ 𝑣𝑤+𝑤1
and thus either 𝑤𝑣− ≠ 𝑤1 or 𝑣1 ≠ 𝑣𝑤+ . We can thus apply Lemma 9.11 to our walk to
show the existence of a cycle of length at most 6 in 𝐺′, which is a contradiction.

Finally it remains to consider suprema 𝑥 ∨ 𝑦 and infima 𝑥 ∧ 𝑦 where one of 𝑥 and
𝑦 lies in 𝑉 − or 𝑊+:

Lemma 9.14. If 𝑣− ∈ 𝑉 − and 𝑥 ∈ 𝐿, then there exists a supremum and an infimum
of 𝑣 and 𝑥 in 𝐿.

Similarly, if 𝑤+ ∈ 𝑊+ and 𝑥 ∈ 𝐿, then there exists a supremum and an infimum
of 𝑣 and 𝑥 in 𝐿.

Proof. If 𝑣− and 𝑥 are comparable, the statement is obvious, so suppose that this is
not the case. It is then immediate that 𝑣− ∧ 𝑥 = 𝑏.

Let 𝑣1, 𝑣2 be the two points in 𝑉 such that 𝑣− = 𝑣1 ∧ 𝑣2 and let 𝑤𝑣− be the point
in 𝑊 corresponding to 𝑣−. We note that any 𝑙 ∈ 𝐿 satisfies 𝑣− < 𝑙 if and only if
𝑣1 ⩽ 𝑙 or 𝑣2 ⩽ 𝑙. We distinguish multiple cases, depending on whether 𝑥 lies in
𝑊+,𝑊, 𝑉 or 𝑉 −.

If 𝑥 ∈ 𝑊+, then 𝑥 ∨ 𝑣− = 𝑡.
If 𝑥 ∈ 𝑊, then 𝑥∨𝑣1 and 𝑥∨𝑣2 exist by Lemma 9.13 and it is enough to show that

𝑥 ∨ 𝑣1 and 𝑥 ∨ 𝑣2 are comparable. If they are incomparable, then 𝑥 ∨ 𝑣1 ∈ 𝑊+ and
𝑥∨𝑣2 ∈ 𝑊+ and moreover 𝑥∨𝑣1 ≠ 𝑥∨𝑣2 and 𝑣1 ≰ 𝑥∨𝑣2 as well as 𝑣2 ≰ 𝑥∨𝑣1. Let
𝑣3 ∈ 𝑉 be the point corresponding to 𝑥∨𝑣1, let 𝑣4 ∈ 𝑉 be the point corresponding to
𝑥∨𝑣2, let 𝑤3 ∈ 𝑊 such that 𝑤3∨𝑥 = 𝑥∨𝑣1 and let 𝑤4 ∈ 𝑊 such that 𝑤4∨𝑥 = 𝑥∨𝑣2.
Note that both 𝑣1, 𝑣2, 𝑣3, 𝑣4 and 𝑥,𝑤𝑣− , 𝑤3, 𝑤4 consist of pairwise distinct points as
𝑣1 ≰ 𝑥 and 𝑣2 ≰ 𝑥 and 𝑤𝑣− ∉ {𝑥,𝑤3, 𝑤4 }, thus 𝑤3𝑣3𝑤𝑣4𝑤4𝑣2𝑤𝑣−𝑣1𝑤3 needs to be
a cycle of length 8 in 𝐺′ contradicting the fact that 𝐺′ has girth at least 12.

If 𝑥 ∈ 𝑉, then again 𝑥 ∨ 𝑣1 and 𝑥 ∨ 𝑣2 exist by Lemma 9.13, and if they are
incomparable we may suppose that 𝑥 ∨ 𝑣1 ∈ 𝑊+ ∪𝑊 and 𝑥 ∨ 𝑣2 ∈ 𝑊+ ∪𝑊 and
moreover 𝑥 ∨ 𝑣1 ≠ 𝑥 ∨ 𝑣2.

If 𝑥 ∨ 𝑣1 ∈ 𝑊 and 𝑥 ∨ 𝑣2 ∈ 𝑊, then 𝑣1𝑤𝑣−𝑣2(𝑥 ∨ 𝑣2)𝑥(𝑥 ∨ 𝑣1)𝑣1 would be a cycle
of length 6 in 𝐺′ as 𝑥 ∨ 𝑣1 ≠ 𝑥 ∨ 𝑣2.
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9.3. A woven subset of a lattice which cannot be unravelled

Now suppose that 𝑥 ∨ 𝑣1 ∈ 𝑊 and 𝑥 ∨ 𝑣2 ∈ 𝑊+. Let 𝑣𝑥2
be the point in 𝑉

corresponding to 𝑥 ∨ 𝑣2 and let 𝑤1, 𝑤2 ∈ 𝑊 such that 𝑤1 ∨ 𝑤2 = 𝑥 ∨ 𝑣2. We may
suppose that 𝑤1, 𝑤2 ≠ 𝑥 ∨ 𝑣1 and that 𝑣2 ⩽ 𝑤1 and 𝑥 ⩽ 𝑤2. Note that 𝑣𝑥2

≠ 𝑥 as
otherwise 𝑥 ∨ 𝑣𝑥 = 𝑤2. Now 𝑥𝑤2𝑣𝑥2

𝑤1𝑣2𝑤𝑣−𝑣1(𝑥 ∨ 𝑣1)𝑥 contains a cycle of length
at most 8 in 𝐺′ by Lemma 9.11, as 𝑠 ∉ { 𝑣1, 𝑣2, 𝑣𝑥2

} and 𝑥 ∨ 𝑣1 ≠ 𝑤2.
So we may suppose that 𝑥 ∨ 𝑣1 ∈ 𝑊+ and 𝑥 ∨ 𝑣2 ∈ 𝑊+.
Let 𝑣𝑥1

be the point in 𝑉 corresponding to 𝑥 ∨ 𝑣1, 𝑣𝑥2
be the point in 𝑉 cor-

responding to 𝑥 ∨ 𝑣2, let 𝑤1, 𝑤2, 𝑤3, 𝑤4 ∈ 𝑊 such that 𝑤1 ∨ 𝑤2 = 𝑥 ∨ 𝑣1 and
𝑤3 ∨ 𝑤4 = 𝑥 ∨ 𝑣2. We may suppose that 𝑣1 ⩽ 𝑤1, 𝑣2 ⩽ 𝑤3 and 𝑥 ⩽ 𝑤2, 𝑤4. Note
that 𝑥 ∉ { 𝑣1, 𝑣2, 𝑣𝑥1

, 𝑣𝑥2
} and that 𝑤4 ≠ 𝑤2 as otherwise 𝑤4 ⩽ 𝑥 ∨ 𝑣1 and thus

𝑥 ∨ 𝑣2 = 𝑥 ∨ 𝑤4 ⩽ 𝑥 ∨ 𝑣1. Thus, 𝑥𝑤2𝑣𝑥1
𝑤1𝑣1𝑤𝑣−𝑣2𝑤3𝑣𝑥2

𝑤4𝑥 contains a cycle in 𝐺′

of length at most 10 by Lemma 9.11.
So the remaining case is 𝑥 ∈ 𝑉 −. Let us denote the vertex in 𝑊 corresponding

to 𝑥 as 𝑤𝑥 and let 𝑣3, 𝑣4 ∈ 𝑉 such that 𝑣3 ∧ 𝑣4 = 𝑥. Since every candidate for a
supremum of 𝑣− and 𝑥 lies above one of 𝑣1 ∨ 𝑣3, 𝑣1 ∨ 𝑣4, 𝑣2 ∨ 𝑣3 and 𝑣2 ∨ 𝑣4, all of
which exist by Lemma 9.13, it is enough to show that all these points are comparable,
since then the smallest of them needs to be the supremum of 𝑣− and 𝑥.

However, we know by the previous argument that 𝑣− ∨ 𝑣3 exists, which needs to
be equal to 𝑣1 ∨ 𝑣3 or 𝑣2 ∨ 𝑣3. Hence 𝑣1 ∨ 𝑣3 and 𝑣2 ∨ 𝑣3 are comparable.

Similarly, if we consider 𝑣− ∨ 𝑣4 we see that 𝑣1 ∨ 𝑣4 and 𝑣2 ∨ 𝑣4 are comparable.
If we consider 𝑥 ∨ 𝑣1, we observe that 𝑣1 ∨ 𝑣3 and 𝑣1 ∨ 𝑣4 are comparable.
And finally, if we consider 𝑥 ∨ 𝑣2, we see that 𝑣2 ∨ 𝑣3 and 𝑣2 ∨ 𝑣4 are comparable

as well and therefore there indeed exists a supremum of 𝑣− and 𝑥.

We have now seen that 𝐿 is indeed a lattice and that 𝑃 is woven in 𝐿. This allows
us to state and prove the main result of this section:

Theorem 9.15. 𝐿 is a lattice and 𝑃 = 𝑉 ∪𝑊 ∪{ 𝑡, 𝑏 } ⊆ 𝐿 is woven in 𝐿 such that
𝑃 − 𝑝 is not woven in 𝐿 for any 𝑝 ∈ 𝑃.

Proof. By Lemma 9.12 to 9.14 𝐿 is indeed a lattice. To see that 𝑃 is woven in 𝐿
observe that by Lemma 9.12, Lemma 9.13 and the fact that 𝑡 and 𝑏 are comparable
with every element in 𝑃 it follows that at most one of 𝑥 ∨ 𝑦 and 𝑥 ∧ 𝑦 lie outside of
𝑃, for any 𝑥, 𝑦 ∈ 𝑃.

For any 𝑝 ∈ 𝑉 there are 𝑤1, 𝑤2 ∈ 𝑊 such that 𝑝𝑤1 and 𝑝𝑤2 are both blue edges
in 𝐺′, thus both 𝑤1 ∨ 𝑤2 and 𝑤1 ∧ 𝑤2 lie outside of 𝑃 − 𝑝. Similarly, 𝑃 − 𝑝 is not
woven in 𝐿 for any 𝑝 ∈ 𝑊. Finally, if 𝑝 = 𝑏 we note that there are 𝑣1, 𝑣2 ∈ 𝑉 such
that 𝑣1 ∨𝑣2 ∈ 𝑊+ which implies that 𝑣1 ∧𝑣2 = 𝑏 and shows that 𝑃 −𝑏 is not woven
in 𝐿. Similarly, 𝑃 − 𝑡 is not woven in 𝐿.

As before, this result about woven subsets of lattices allows us to directly obtain a
result about structurally submodular separation systems, as we can use this lattice
𝐿 to construct a universe 𝑈 of separations together with a structurally submodular
separation system 𝑆 ⊆ 𝑈 which cannot be unravelled:
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9. Submodularity and the unravelling problem

Theorem 39. There exists a universe 𝑈 of separations and a submodular subsystem
𝑆 ⊆ 𝑈 such that 𝑆 ⧵ { 𝑠, 𝑠 } is not submodular in 𝑈 for any 𝑠 ∈ 𝑆 .

Proof. Let 𝐿′ be a copy of 𝐿 with reversed partial order, i.e., the poset-dual of
𝐿. In the disjoint union 𝐿 ⊔ 𝐿′ we now identify the copy of 𝑡 in 𝐿 (the top of 𝐿)
with the copy of 𝑏 in 𝐿′ (the top of 𝐿′) and the copy of 𝑏 in 𝐿 with the copy of 𝑡
in 𝐿′ to obtain 𝑈. It is easy to see that this forms a universe of separations and
that 𝑆 = 𝑃 ∪ 𝑃 ′ (where 𝑃 ⊆ 𝐿 is as above and 𝑃 ′ ⊆ 𝐿′ is the image of 𝑃 in 𝐿′) is
a separation system which is submodular in 𝑈. Moreover, there is no separation
𝑠 ∈ 𝑆 such that 𝑆 ⧵ { 𝑠, 𝑠 } is again submodular in 𝑈.

Note that neither our lattice 𝐿 nor the constructed universe 𝑈 of separations are
distributive.

9.4. Woven posets

Instead of asking in Problem 9.2 for a woven subset 𝑃 inside a lattice 𝐿, we might
as well directly ask for a partially ordered set 𝑃, which is woven in itself. More
precisely let us say that a partially ordered set 𝑃 is woven if we have, for any two
elements 𝑝, 𝑞 of 𝑃 a supremum or an infimum in 𝑃, i.e., there exists a 𝑟 ∈ 𝑃 such
that 𝑝 ⩽ 𝑟, 𝑞 ⩽ 𝑟 and 𝑟 ⩽ 𝑠 whenever 𝑠 ∈ 𝑃 such that 𝑞 ⩽ 𝑠 and 𝑝 ⩽ 𝑠 or there
exists a 𝑟 ∈ 𝑃 such that 𝑝 ⩾ 𝑟, 𝑞 ⩾ 𝑟 and 𝑟 ⩾ 𝑠 whenever 𝑠 ∈ 𝑃 such that 𝑞 ⩾ 𝑠 and
𝑝 ⩾ 𝑠.

The Dedekind-MacNeille-completion [62] from lattice theory implies that we can
find, for each poset 𝑃, a lattice 𝐿 in which 𝑃 can be embedded in such a way that
existing joins and meets in 𝑃 are preserved. Hence, if 𝑃 is a finite woven set there
exists a lattice 𝐿 in which 𝑃 can be embedded so that the image of 𝑃 in 𝐿 is woven
in 𝐿.

Using this notion of wovenness inside the poset itself, we can now weaken the
concept of unravelling, by considering a woven poset 𝑃 instead of a woven subset
of a lattice. We will be able to show that, given a woven poset 𝑃, we can always
remove a point so that the remainder is again a woven poset.

Even though every woven poset can be embedded into a lattice, this still is a
proper weakening of the unravelling conjecture. The key difference here lies in the
different perspective we take on 𝑃 − 𝑝, given a poset 𝑃 and some 𝑝 ∈ 𝑃: if we
consider 𝑃 as a woven poset and 𝑃 − 𝑝 is again woven, then there are lattices 𝐿
and 𝐿′ in which 𝑃 and 𝑃 − 𝑝, respectively, can be embedded so that the images
are woven as subset of these lattice. However, these two lattices are different, and
in general it is not possible to find one lattice in which both 𝑃 and 𝑃 − 𝑝 can be
embedded so that their images are woven in that lattice. In this sense, having
an unravelling for the wovenness of a poset is a weaker property than having an
unravelling as a woven subset of a lattice.
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To prove this weaker unravelling property for woven posets we will show that
every woven poset contains a point 𝑝 with precisely one lower (or one upper) cover,
i.e., there exists precisely one 𝑞 such that 𝑝 > 𝑞 (𝑝 < 𝑞) and there does not exist
any 𝑐 ∈ 𝑃 such that 𝑝 > 𝑐 > 𝑞 (𝑝 < 𝑐 < 𝑞). Deleting such a point does not destroy
the wovenness, as shown by the following lemma:

Lemma 9.16. Let 𝑃 be a woven poset and 𝑝 ∈ 𝑃 a point with precisely one lower
(upper) cover 𝑝′, then 𝑃 ′ = 𝑃 − 𝑝 is a woven poset.

Proof. Let 𝑥, 𝑦 ∈ 𝑃 ′. We need to show that 𝑥 and 𝑦 have a supremum or an infimum
in 𝑃 ′. If they have a supremum 𝑠 in 𝑃, then 𝑠 ≠ 𝑝: as 𝑝′ is the only lower cover of
𝑝 we have 𝑥, 𝑦 ⩽ 𝑝′ as soon as 𝑥, 𝑦 ⩽ 𝑝. Thus 𝑠 ∈ 𝑃 ′ is also the supremum of 𝑥 and
𝑦 in 𝑃 ′.

If 𝑥, 𝑦 have an infimum 𝑧 in 𝑃, then either 𝑧 ≠ 𝑝 and 𝑧 is also the infimum in 𝑃 ′

or 𝑧 = 𝑝, in which case 𝑝′ is the infimum of 𝑥 and 𝑦 in 𝑃 ′, as 𝑝′ is the only lower
cover of 𝑝.

The upper cover case is dual.

Thus, what is left to show is that there always exists a point 𝑝 ∈ 𝑃 with precisely
one upper or precisely one lower cover. To see this, we consider the maximal elements
of 𝑃, since any subset of them needs to have an infimum by the following lemma:

Lemma 9.17. Let 𝑃 be a woven poset and 𝑀 its set of maximal elements. Then
every non-empty subset 𝑀 ′ ⊆ 𝑀 has an infimum inf𝑀 ′ in 𝑃.

Proof. We proceed by induction on |𝑀 ′|. For the induction start |𝑀 ′| = 1 this is
trivial. For the induction step consider |𝑀 ′| ⩾ 2 and let 𝑚 ∈ 𝑀 ′ and 𝑀″ ≔ 𝑀 ′−𝑚.
By the inductive hypothesis 𝑀″ has an infimum 𝑝. Since 𝑚 is maximal there can
only be a supremum of 𝑚 and 𝑝 if 𝑚 and 𝑝 are comparable. However, then there
also exists an infimum of 𝑚 and 𝑝 in 𝑃. Thus, as 𝑃 is woven, in any case 𝑃 needs to
contain an infimum 𝑞 of 𝑚 and 𝑝. This 𝑞 lies below all of 𝑀 ′ and, conversely, every
point which lies below all of 𝑀 ′ lies below both 𝑝 and 𝑚 and hence below 𝑞. Thus
𝑞 is the infimum of 𝑀 ′ in 𝑃.

Given a woven poset 𝑃, let 𝑀 be the set of maximal elements of 𝑃. Given some
subset 𝑀 ′ ⊆ 𝑀 we are interested in those points 𝑥 ∈ 𝑃 where, for every maximal
element 𝑚 ∈ 𝑀 we have 𝑥 ⩽ 𝑚 precisely if 𝑚 ∈ 𝑀 ′. Let us denote as 𝑑(𝑀 ′) the
set of all these points in 𝑃.

Either each such set 𝑑(𝑀 ′) just consist of at most one point, or there is some 𝑀 ′

such that 𝑑(𝑀 ′) has size more than one. In the latter case, the following lemma
guarantees that we find a point 𝑝 ∈ 𝑃 with only one upper cover:

Lemma 9.18. Let 𝑃 be a woven poset and 𝑀 the set of maximal elements of 𝑃.
If 𝑀 ′ ⊆ 𝑀 is subset-minimal with the property that 𝑑(𝑀 ′) contains at least two
points, then there is an 𝑥 ∈ 𝑑(𝑀 ′) for which inf𝑀 ′ is the only upper cover.
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Proof. Observe that, if 𝑑(𝑀) ≠ ∅ then inf𝑀 ′ ∈ 𝑑(𝑀). Let 𝑥 be a maximal element
of 𝑑(𝑀 ′)− inf𝑀 ′. Since 𝑥 is a candidate for inf𝑀 ′, we have that inf𝑀 ′ is an upper
cover of 𝑥. If 𝑦 is any point other than inf𝑀 ′ such that 𝑥 < 𝑦 then 𝑦 lie in 𝑑(𝑀″)
for some proper subset 𝑀″ of 𝑀. Thus, by our assumption, 𝑦 is the only element of
𝑑(𝑀″) and therefore 𝑦 = inf𝑀″. However, inf𝑀 ′ ⩽ inf𝑀″ and 𝑦 ≠ inf𝑀 ′, thus 𝑦
is not an upper cover of 𝑥.

It remains to consider the case where every 𝑑(𝑀 ′) has size one. However, in that
case we can find an element with only one lower cover, as shown in the following
lemma:

Lemma 9.19. Let 𝑃 be a woven poset. Then 𝑃 has an element which has precisely
one lower or one upper cover.

Proof. Suppose the converse is true. Let𝑀 be the set of maximal elements of 𝑃. Note
that every element of 𝑃 lies in 𝑑(𝑀 ′) for exactly one set 𝑀 ′ ⊆ 𝑀. By Lemma 9.18,
given any 𝑀 ′ ⊆ 𝑀 there exists at most one element in 𝑑(𝑀 ′). Moreover, by
Lemma 9.17 we know that inf𝑀 ′ exists for every 𝑀 ′ ⊆ 𝑀.

Now if |𝑑(𝑀 ′)| = 1 for some 𝑀 ′ ⊆ 𝑀, then inf𝑀 ′ ∈ 𝑑(𝑀 ′): we know that inf𝑀 ′

is in 𝑑(𝑀″) for some 𝑀″ ⊆ 𝑀 and clearly 𝑀 ′ ⊆ 𝑀″, however if 𝑑(𝑀 ′) = {𝑣}, say,
then clearly 𝑣 ⩽ inf𝑀 ′ which implies that 𝑀″ ⊆ 𝑀 ′ and thus 𝑀 ′ = 𝑀″.

However, since every element of 𝑃 lies in some 𝑑(𝑀 ′) and inf𝑀 ′ ⩽ inf𝑀″

whenever 𝑀″ ⊆ 𝑀 ′ this implies that inf𝑀 is the smallest element of 𝑃. However,
any upper cover of this smallest element inf𝑀 has precisely one lower cover, which
is a contradiction.

Thus, if we consider woven posets instead of woven subsets of a fixed lattice (as
in Section 9.3) we can indeed unravel every such poset: given some woven poset 𝑃,
by Lemma 9.19, 𝑃 contains an element 𝑝 which has only one upper or lower cover,
and, by Lemma 9.16, 𝑃 − 𝑝 is again woven. We obtain the following theorem:

Theorem 40. Every woven poset can be unravelled.

Again we can translate this result to abstract separation systems. Consider
separation systems 𝑆 which are submodular on their own, not in the context of
a surrounding universe 𝑈 of separations, that is, for any two separations 𝑠, 𝑡 ∈ 𝑆
a supremum or an infimum in 𝑆 – this is the same as for woven posets, but only
applying Theorem 40 to these does not give us an unravelling of 𝑆 , since we always
need to delete a separation together with its inverse. We will take care of that,
proving the following corollary of Theorem 40:

Theorem 41. Let 𝑆 be a submodular separation system. Then there exists an 𝑠 ∈ 𝑆
such that 𝑆 ⧵ { 𝑠, 𝑠 } is again submodular.
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Proof. Observe that 𝑆 considered as a poset is woven. Let 𝑀 be the set of maximal
elements of 𝑆 . We note that 𝑠 ⩾ 𝑡 for all 𝑠, 𝑡 ∈ 𝑀. Therefore inf𝑀 ⩾ 𝑡 for all 𝑡 ∈ 𝑀
and thus inf𝑀 ⩾ sup𝑀∗ = (inf𝑀)∗. Suppose that there is a proper subset 𝑀 ′ of
𝑀 such that |𝑑(𝑀 ′)| ⩾ 2 and let 𝑀 ′ be chosen subset-minimal with that property.
Let 𝑥 ∈ 𝑑(𝑀 ′) be as guaranteed by Lemma 9.18. We note that 𝑥 ≠ (inf𝑀 ′)∗ as
otherwise 𝑥 ⩽ (inf𝑀)∗ ⩽ inf𝑀, contradicting the fact that 𝑥 ∈ 𝑑(𝑀 ′). But this
implies that 𝑆 − 𝑥 is a woven poset by Lemma 9.16. However, 𝑥 has only one lower
cover in 𝑆 and, since this cover is not 𝑥, also exactly one lower cover in 𝑆 − 𝑥.
Thus, again by Lemma 9.16, also (𝑆 − 𝑥) − 𝑥 is a woven poset and thus 𝑆 − 𝑥 is a
submodular separation system.

Hence, we may suppose that |𝑑(𝑀 ′)| ⩽ 1 for all proper subset 𝑀 ′ of 𝑀. This
implies that every element 𝑠 ∈ 𝑆 is nested with inf𝑀: if 𝑠 ∈ 𝑑(𝑀) then 𝑠 ⩽ inf𝑀
and if 𝑠 ∈ 𝑑(𝑀 ′) for a proper subset 𝑀 ′ of 𝑀, then 𝑠 = inf𝑀 ′ ⩾ inf𝑀. Now
suppose that |𝑀| ⩾ 2. Then there is a 𝑚 ∈ 𝑀 such that 𝑚 ≠ inf𝑀. We claim that
𝑆 ⧵ {𝑚,𝑚 } is again submodular. To see this suppose that, for some 𝑥, 𝑦 ∈ 𝑆 , we
have that 𝑥 ∨ 𝑦 = 𝑚 (the case 𝑥 ∧ 𝑦 = 𝑚 is dual). As 𝑥 and 𝑦 are nested with
inf𝑀 this implies that 𝑥, 𝑦 ⩾ inf𝑀 as 𝑥 ⩽ inf𝑀 would imply that 𝑥 ∨ 𝑦 = 𝑦 or
𝑥∨𝑦 ⩽ inf𝑀. Thus, 𝑥 = inf𝑀 ′ and 𝑦 = inf𝑀″ for subsets 𝑀 ′,𝑀″ of 𝑀, say. Thus,
inf(𝑀 ′∪𝑀″), which exists by Lemma 9.17, is also the infimum of 𝑥 and 𝑦. Moreover,
since 𝑚 ≠ inf𝑀 and 𝑚 is a minimal element of 𝑆 and inf(𝑀 ′ ∪ 𝑀″) ⩾ inf𝑀 we
have that inf(𝑀 ′ ∪𝑀″) ≠ 𝑚 and, thus, there is a corner of 𝑥 and 𝑦 in 𝑆 ⧵ {𝑚,𝑚 }.

It remains the case that |𝑀| = 1, say 𝑀 = {𝑚}. In this case however, we have
that 𝑠 ⩽ 𝑚 for every 𝑠 ∈ 𝑆 . If 𝑆 = {𝑚,𝑚 } the statement is trivial, so let 𝑠 ∈ 𝑆−𝑚
be ⩽-maximal such that 𝑠 ≠ 𝑚. Such an 𝑠 exists as 𝑚 is a ⩽-minimal element of 𝑆 .
Then 𝑚 is the unique upper-cover of 𝑠. Thus 𝑆 −𝑠 is a woven poset by Lemma 9.16.
Moreover, 𝑚 is the unique lower cover of 𝑠 and, since 𝑚 ≠ 𝑠 it is also the unique
lower cover of 𝑠 in 𝑆 − 𝑠. Thus, (𝑆 − 𝑠) − 𝑠 is a woven poset by Lemma 9.16, and
𝑆 − 𝑠 is a submodular separation system.

The Dedekind-MacNeille completion of posets [16], which we have seen in Sec-
tion 8.2, allows us to embed every woven poset into a lattice so that the poset is
woven in this lattice. We showed in Section 8.2 that this completion can also be
applied to submodular separation systems to obtain a universe of separations in
which the separation system is submodular.

In particular, if 𝑃 is a woven poset and 𝑝 ∈ 𝑃 such that 𝑃 ′ = 𝑃 − 𝑝 is again
woven, there are lattices 𝐿 and 𝐿′ such that 𝑃 is woven in 𝐿 and 𝑃 ′ is woven in 𝐿′.
If we could arrange for these two lattices to be sublattices of one another, 𝐿′ ⊆ 𝐿, in
such a way that every element of 𝑃 ′ ⊆ 𝐿′ is mapped to the corresponding element
of 𝑃 ⊆ 𝐿, then this would imply that 𝑃 could be unravelled as a woven subset of 𝐿
in the sense of Problem 9.2.

The way in which we constructed 𝑃 ′, however, makes this almost impossible.
We choose 𝑝 as an element with a unique upper, or a unique lower cover. Now
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9. Submodularity and the unravelling problem

if 𝑝 ∈ 𝑃 has a unique upper cover 𝑞, say, and is also the supremum of some two
points 𝑟, 𝑠 ∈ 𝑃 ⧵ {𝑝}, then the Dedekind-MacNeille completion 𝐿′ of 𝑃 ′ cannot be
embedded in the way outlined above into the Dedekind-MacNeille completion 𝐿 of
𝑃 : in 𝐿′, the images of 𝑟 and 𝑠 have the image of 𝑞 as supremum and an embedding
as a sublattice would need to preserve this property, but the images of 𝑟 and 𝑠 in
𝐿 have the image of 𝑝 as their supremum. (However, 𝐿′ is order-isomorphic to a
subposet of 𝐿.)
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A. Appendix

A.1. Deutschsprachige Zusammenfassung

Diese Dissertation beschäftigt sich mit Tangles in abstrakten Teilungssystemen, einer
Charakterisierung von dichten, oder besonders zusammenhängenden, Teilstrukturen –
also „Clustern“ – für diverse Kontexte, sowie mit den Submodularitätsanforderungen
die man an diese Teilungssysteme stellen kann. Tangles sind eine indirekte Art Cluster
zu beschreiben: Sie geben nicht explizite Teile einer Struktur an, sondern machen
nur für verschiedene Weisen eine Struktur zu Zerteilen eine Angabe in welchem Teil
der Cluster liegt. Dieses Vorgehen erlaubt es auch Cluster zu erfassen, bei denen die
konkrete Zugehörigkeit einzelner Punkte ungewiss ist. Tangles stammen ursprünglich
aus der Graphen-Minorentheorie, wo sie genutzt werden um die Baumartigkeit eines
Graphen zu untersuchen. Insgesamt ist die vorliegende Arbeit in drei Teile gegliedert.

In Teil I geht es – in zwei unteschiedlichen Kontexten – um Strukturen die ein
einzelnes Tangle induzieren kann.

Eine offene Frage über Graphen-Tangles ist jene nach der Existenz einer Entschei-
dermenge, einer Menge 𝑋 von Ecken, so dass, wannimmer das Tangle eine Teilung
(𝐴,𝐵) nach 𝐵 orientiert, die Mehrheit von 𝑋 auf der 𝐵-Seite liegt. In Kapitel 3
beweisen wir die Existenz einer gewichteten Version von Entscheidern, also einer
nicht-negativen Funktion auf den Ecken so dass die Summe der Funktionswerte über
𝐴 bei einer Teilung (𝐴,𝐵) im Tangle stets kleiner als die entsprechende Summe
über 𝐵 ist.

Kapitel 4 behandelt Dualität zwischen Tangles auf den zwei Seiten eines bipartiten
Graphen. Für einen bipartiten Graphen mit Partitionsklassen 𝑋 und 𝑌 zeigen wir
wie man Tangles der Teilungen von 𝑋 bzw. 𝑌 so definieren kann, dass auf ganz
natürliche Weise die Tangles auf 𝑋 welche auf 𝑌 induzieren und umgekehrt. Es
stellt sich dann in Abschnitt 4.2 heraus, dass diese dualen Tangles sich auch durch
eine neue Art von Tangle, welches auf Teilungen der Kanten definiert ist, bezeugen
lassen.

Teil II ist den Trees of Tangles gewidmet. Der Tree-of-Tangles-Satz ist einer der
fundamentalen Sätze der Tangletheorie. Man versteht unter diesem Begriff tatsäch-
lich eine ganze Familie von Sätzen, wovon jeder, auf die eine oder andere Weise,
aussagt, dass es zu jeder (wohlgeformten) Menge 𝒯 von Tangles eine Menge 𝑁
verschachtelter Teilungen gibt, so dass je zwei Tangles aus 𝒯 sich durch eine Teilung
in 𝑁 unterscheiden. Die verschachtelte Anordnung der Teilungen offenbart dabei
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eine baumförmige Anordnung der Tangles in 𝒯. Je nachdem wie wohlgeformt die
Menge 𝒯 ist, liefern diese Sätze zusätzliche Eigenschaften: dass 𝑁 kanonisch ist
und/oder dass dir Unterscheiderteilungen effizient (d.h. besonders schlank) sind.

In Kapitel 5 führen wir mit den Splinter-Lemmata ein allgemeines Prinzip ein,
nach dem wir die bedeutsamsten dieser Sätze einheitlich und einfach beweisen
können. Durch diese Lemmata können wir auch schnell neue Tree-of-Tangles-Sätze
schaffen, beispielsweise einen für Profile in aufsteigenden Folgen submodularer
Teilungssysteme.

Dieses Framework erweitern wir in Abschnitt 5.8 und 5.9 auch auf unendliche
Teilungssysteme und Tanglemengen. Mit dieser Erweiterung beweisen wir zwei Exis-
tenzsätze für bestimmte Baumzerlegungen unendlicher Graphen neu, indem wir einen
neuen Satz entwickeln der in Mitte zwischen den beiden liegt. Eine weitere Anwen-
dung dieses Splinter-Lemmas fürs Unendliche, nämlich auf Kantenzusammenhang
in unendlichen Graphen, stellen wir in Abschnitt 5.10 vor.

Auch Kapitel 6 besteht aus Beweisen von Tree-of-Tangles-Sätzen. Die Sätze,
die wir dort zeigen, sind für sich genommen nichts besonderes – gerade vor dem
Hintergrund von Kapitel 5. Die Art und Weise auf die wir sie beweisen ist jedoch
außergewöhnlich: Wir wenden den zweiten fundamentalen Satz der Tangletheorie an,
den Tangle–Tree-Dualitätssatz. Zwar können beide Sätze, der Tree-of-Tangles-Satz
und der Dualitätssatz, einen Baum als Ergebnis liefern, aber gewöhnlich tut der
Dualitätssatz dies nur, wenn es keinen Tangle gibt, während der Tree-of-Tangles-Satz
nur Anwendung findet, wenn es mehrere Tangles gibt. In Kapitel 6 reizen wir den
Tangle–Tree-Dualitätssatz an seine Grenzen aus und bringen ihn dazu einen Tree of
Tangles zu liefern.

Abschließend stellen wir in Kapitel 7 einen heuristischen Ansatz zur Berechnung
von Tangles und Trees of Tangles vor. Wir erklären, wie man ohne perfektes Kentnis
eines vollständigen Teilungssystems dennoch eine Annäherung der Tangles und Trees
of Tangles für diese berechnen kann.

Teil III befasst sich mit den Teilungssystemen an sich – genauer, mit ihrer Submo-
dularität. Submodularität ist eine wichtige Eigenschaft für die Tangletheorie und
spielt in nahezu jedem Beweis über Tangles eine Rolle. Es gibt jedoch verschiedene
Abstufungen von Submodularitätsbedingungen, die man an sein Teilungssystem
stellen kann und Kapitel 8 untersucht die Beziehung zwischen den drei natürlichen
Submodularitätsbedingungen: Submodularität, (strukturelle) Submodularität inner-
halb eines Teilungsuniversums und ordnungsinduzierte Submodularität – eine jede
Bedingung schärfer als die vorhergehenden. Insbesondere zeigen wir in Abschnitt 8.2,
wie die (für sich genommene) Submodularität eines Teilungssystem auch durch die
Konstruktion eines geeigneten Teilungsuniversums um das Teilungssystem herum
bezeugt werden kann und verknüpfen dadurch die schwächste mit der mittleren
Bedingung. Andererseits beweisen wir in Abschnitt 8.3, dass ordnungsinduzierte
Submodularität eine echt stärkere Eigenschaft ist als bloße Submodularität innerhalb
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eines Teilungsuniversums, was die stärkste Bedingung von der mittleren abgrenzt.
Über diesen Vergleich der Bedingungen hinaus entwicklen wir zwei Zerlegungssät-
ze für Teilungssysteme die submodular im zweiten Sinne in einem distributiven
Teilungsuniversum sind.

In Kapitel 9 stellen wir eine weiter fundamentale Frage zu submodularen Tei-
lungssystemen: Gibt es in einem submodularen Teilungssystem immer eine Teilung,
die wir löschen können, so dass dass der Rest noch submodular ist? Wenn wir eine
Folge solcher Teilungen finden können, die wir nacheinander unter Beibehaltung der
Submodularität löschen können bis wir schlussendlich die leere Menge erreichen, so
sprechen wir von einer Entwirrung. Wir beweisen die Existenz solcher Entwirrungs-
folgen, sowohl für das stärkste, als auch das schwächste Submodularitätskonzept, in
den Abschnitten 9.2 und 9.4. Für das dritte Konzept von Submodularität, Submo-
dularität innerhalb eines Teilungsuniversums, präsentieren wir ein Gegenbeispiel,
das keine Entwirrung ermöglicht.

A.2. Summary

This thesis treats tangles in abstract separation systems, a way of characterising dense
or well-connected substructure or ‘clusters’ in various contexts, and the underlying
submodularity properties that one can demand of these separation systems. Tangles
describe clusters in an indirect way: not by specifying explicit parts of a data
structure, but only by declaring for every way of cutting the structure into two parts
which side the cluster lies. This approach allows to capture concepts of clusters
where the membership of individual points in a specific cluster is uncertain. The
concept of tangles originates from graph minor theory, where they are used to
characterise how tree-like a graph is. This thesis is divided into three parts.

In Part I we present two instances of structure induced by a single tangle.
An open question about tangles in graphs is whether each of them has a decider

set: a set 𝑋 of vertices so that for every separation (𝐴,𝐵) where the tangle points
to 𝐵 more vertices of 𝑋 are in 𝐵 than in 𝐴. In Chapter 3 we show that a weighted
version of deciders exists, i.e., that there always is a non-negative weight function
defined on the vertices such that, for every separation (𝐴,𝐵) in the tangle, the sum
over the weights in 𝐵 is larger than the sum over the weights in 𝐴.

Chapter 4 covers dual tangles in the setting of bipartite graphs. Given a bipartite
graph with partition classes 𝑋 and 𝑌, we show how one can define tangles in the
separations of 𝑋 and 𝑌, so that tangles in 𝑋 induce tangles in 𝑌 – and vice versa –
in a natural way. These dual tangles turn out to also be witnessed by a new kind of
tangles defined on the set separations of the edge set, which we cover in Section 4.2.

Part II, is devoted to trees of tangles. The tree-of-tangles theorem is one of the
fundamental theorems of tangle theory. In fact, the term is used to describe a whole
class of theorems, all of which state that for every (sufficiently nice) set of tangles 𝒯,
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then there exists a nested set of separations 𝑁 containing a distinguishing separation
for every pair of tangles in 𝒯. Such a nested set reveals a tree-shaped arrangement
of the tangles in the separation system. Depending on the conditions on the set of
tangles 𝒯, these theorems guarantee additional properties of the set 𝑁: canonicity
and/or the efficiency of the distinguishing separations.

Chapter 5 introduces our splinter lemmas, a framework which allows us to prove
in a unified and simple way the most relevant existing tree-of-tangles theorems.
They also allow as introduce some of our own tree-of-tangles theorems; for example,
for profiles in sequences of separation systems.

We also extend this framework to an infinite setting in Sections 5.8 and 5.9,
re-proving two existence theorems on tree-decompositions of infinite graphs by
introducing a new theorem which sits midway between the two. We introduce
another application, this time to edge-connectivity in infinite graphs, in Section 5.10.

Chapter 6 comprises proofs of tree-of-tangles theorems as well. And while the
theorems themselves are unspectacular, especially in light of Chapter 5, the ex-
traordinary aspect is the method by which we prove those theorems: by applying the
tangle–tree duality theorem. The tangle–tree duality theorem and the tree-of-tangles
theorem are the two fundamental pillars on which tangle theory stands. But while
both can give a tree-like arrangement of separations as a result, the way in which
you apply them is very different: the tree-of-tangles theorem gives you tree if there
are tangles, the tangle–tree duality theorem gives you a tree if there is no tangle.
In Chapter 6 we push the limits of the tangle–tree duality theorem and make it
produce a tree of tangles.

Finally, Chapter 7 introduces a heuristic approach for computing tangles and
trees of tangles. There we explain how, without perfect knowledge of a complete
separation system, one can compute an approximation of the tangles and build trees
of tangles for such approximate tangles.

The final part, Part III, is concerned with the structural properties of the separation
systems – specifically with submodularity. Submodularity is a central property in
tangle theory and features in virtually every proof concerned with tangles. However,
there are multiple gradations of submodularity conditions. Chapter 8 explores
the relationship between the three natural submodularity conditions that one can
impose onto a separation system: submodularity, (structural) submodularity inside
a universe of separations, and order-induced submodularity, where each is stronger
requirement than the previous. In particular, in Section 8.2 we show how the
submodularity of a separation system on its own can be witnessed by constructing
an appropriate universe around it, linking the first and second condition. On the
other hand, we show in Section 8.3 that order-induced submodularity is a strictly
stronger property than mere submodularity in a universe, making the distinction
between the second and third condition explicit. Beyond comparing the types
of submodularity, we develop two decomposition theorems for separation systems
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which satisfy submodularity of the second type within a distributive universe of
separations.

Chapter 9 introduces one fundamental question about submodular separation
systems: Given a submodular separation system, is there always a separation
that we can delete, so that the remainder is still submodular? If we can find a
sequence of separations that we can delete one after the other while maintaining
submodularity until we reach the empty set, we speak of an unravelling. We
show the existence of unravellings for the strongest and for the weakest concept of
submodularity in Section 9.2 and Section 9.4, respectively. For the third concept,
(structural) submodularity inside a universe of separations, we give a counterexample
in Section 9.3.

A.3. Publications related to this thesis

The following articles and preprints are related to this dissertation:
Chapter 3 is based on [36].
Chapter 4 is based on [24].
Chapter 5 up to and including Section 5.5 is based on [38].
Sections 5.8 and 5.9 are based on [41].
Section 5.10 is based on [42].
Chapter 7 is partially based on [35] as elaborated in the following section.
Chapter 8 is based on [37].
Chapter 9 is based on [39].

A.4. Declaration of contributions

Most research presented in this thesis was conducted in close collaboration with my
respective co-authors of the publications listed in Appendix A.3. This is especially
true for Christian Elbracht and Jakob Kneip, both of whom I head the delight of
sharing an office with. Thus, we often contributed equal amounts of work in research
and writing. Even if one of us had the final idea which made a proof work, this
was often a product of many previous failed iterations contributed by the others. I
will now go into more detail on the work that went into the respective chapters of
this thesis, point out where contributions differ, and emphasise some of the ideas I
contributed myself.

Chapter 3

Chapter 3 was joint work with Christian Elbracht and Jakob Kneip. We had worked
on the problem of deciders for about a year in close collaboration and finally achieved
a breakthrough on the day that I suggested trying for a linear programming approach.

213



A. Appendix

Our first proof sketch was rather complicated, Elbracht then found Tucker’s Lemma
which completed and simplified the proof to its current form. Kneip touched up
our notes from that common research into what is now all of Chapter 3 excepting
Section 3.2. Section 3.2, which is a later addition, was drafted by Elbracht, the final
version is written by me.

Chapter 4

Chapter 4 is based on a section of [24], a joint paper of Reinhard Diestel, Christian
Elbracht, Joshua Erde, and me. Note that I suggested both Diestel and Erde as
evaluators for this thesis, and that Diestel is my doctoral supervisor. The general
concept of dual separation systems was introduced by Diestel, and in that paper
he introduces his work on them. The results presented in this thesis is based on
joint research with only Erde and Elbracht which is largely independent of Diestel’s
work on dual separation system apart from its motivation; the remaining parts of
the paper [24] are written by Diestel.

Erde introduced Elbracht and me to the concept of tangles on the sides of a
bipartite graph and showed us a proof that one could shift a tangle to give a tangle
again, the predecessor of what is now Theorem 5 and asked us whether shifting
stabilizes. Elbracht and I then proved Theorem 6; we also discovered and analysed
the associated edge tangles, which is Section 4.2. The part of [24] that is presented
in Chapter 4 is based on a draft by Elbracht and me and was finished up jointly by
Elbracht, Erde, and myself.

Chapter 5 up to and including Section 5.5

The splinter lemma and the canonical splinter lemma are joint work with Elbracht
and Kneip [38]. The first version of Lemma 13 was discovered by Elbracht and
myself in close cooperation. It was first formulated in terms of profiles and with a
more complex proof along the lines of Lemma 5.5. After presenting the proof to
Kneip, he greatly simplified both the statement and the proof to the form they have
today.

The canonical version was developed, again in close cooperation, of Elbracht and
me, although our work on canonicity in general was joint among all three of us.
Elbracht and I prepared a first draft of [38], the finished version was written mostly
by Kneip.

Sections 5.6 and 5.7

The relation splinter lemma was developed by Elbracht, Kneip, and me during the
writing of [38]. The application to directed tangles is a recent addition, based on
joint and equal work of Elbracht and me. Section 5.7 is based on shared notes of
ours, the final presentation in this thesis is my own.
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Sections 5.8 and 5.9

Section 5.8 is based on [41] which is joint work with Elbracht and Kneip. Kneip
developed the splinter lemma for profinite universes, which is not part of this thesis.
The part presented here was developed by Elbracht and me. I developed a topological
approach which was later superseded by Elbrachts definition of ‘thin splintering’.
Elbracht also devised the idea of applying the lemma to separators instead of
separations. The parts of [41] that are contained in this thesis are written mostly
by Elbracht and me in close collaboration, based on drafts written by Elbracht.

Section 5.10

Section 5.10 is joint work with Jan Kurkofka and Christian Elbracht. Kurkofka asked
Elbracht and me for a tree-of-tangles theorem for edge blocks, upon which Elbracht
and me drafted the proof of Theorem 25. The relation to tree-cut decompositions
was observed by Kurkofka, who also wrote most of the final version. The three of
us then proved Theorem 26 in close cooperation.

Chapter 6

Chapter 6 is joint work with Elbracht and Kneip based on a question originally posed
by Nathan Bowler and Joshua Erde of whether it is possible to obtain a tree-of-
tangles theorem from clever application of the tangle–tree duality theorem. Elbracht
and me jointly developed such a method, which is the first proof of Theorem 6.10 in
Section 6.2. Kneip then devised the proof based on uncrossing stars and derived the
bound on degrees in trees of tangles as in Section 6.3. He also wrote most of the
corresponding sections. The generalization to efficient distinguishers (Sections 6.4
and 6.5) as well as the mixed order case (Section 6.6) were created solely by Elbracht
and me, and we wrote Sections 6.4 to 6.6 in close collaboration.

Chapter 7

The work on algorithms for Chapter 7 was together with Elbracht and Kneip
and primarily consisted of joint programming. During our work we developed the
simple tangle search algorithm (the one presented in Section 7.2) as well as a more
complicated tree-of-tangles algorithm; the latter was developed by myself with some
important contributions from Elbracht. Elbracht and I wrote a draft [35] together
presenting those results. Section 7.3 with its on-line algorithm and Section 7.4 with
its simplified tree-of-tangles algorithm are my own work.
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Chapter 8

Chapter 8 is based on joint research with Elbracht and Kneip. Section 8.2 is by
Kneip and me. The original question and the idea to apply the Dedekind–MacNeille-
completion was devised by me. We then developed the proof of Theorem 8.2
together.

Sections 8.3 to 8.5 are by only Elbracht and me. The concept of submodular
decompositions in Section 8.5 as well as an earlier version of Theorem 8.11 was
proven by me. Upon me mentioning the result to him, Elbracht promptly proved
Theorem 35, which allowed me to strengthen Theorem 8.11 to be a decomposition
into three (instead of six) parts, and lead me to discover Theorem 34.

Section 8.6 is my own work.

Chapter 9

Chapter 9 is also based on joint work with Elbracht and Kneip. The question
of deletable separations was posed by Joshua Erde. Christian Elbracht and me
discovered Lemma 9.7 and Proposition 9.3 together. Elbracht, Kneip, and I then
further pursued the issue together and Kneip proved the remaining results of
Section 9.2 (originally for universes instead of lattices) by proving an earlier version
of Theorem 9.8, while the research for Sections 9.3 and 9.4 was done by only Elbracht
and myself.
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