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Abstract. We extend the notion of a uniform matroid to the infinitary case

and construct, using weak fragments of Martin’s Axiom, self-dual uniform

matroids on infinite sets. In 1969, Higgs showed that, assuming the Generalised
Continuum Hypothesis (GCH), any two bases of a fixed matroid have the same

size. We show that this cannot be proved from the usual axioms of set theory,

ZFC, alone: in fact, we show that it is consistent with ZFC that there is a
uniform self-dual matroid with two bases of different size.

Self-dual uniform matroids on infinite sets also provide examples of infin-

itely connected matroids, answering a question of Bruhn and Wollan under
additional set-theoretic assumptions. While we do not know whether the ex-

istence of a self-dual uniform matroid on an infinite set can be proved in ZFC
alone, we show that ZF, Zermelo-Fraenkel Set Theory without the Axiom of

Choice, is not enough. Finally, we observe that there is a model of set theory

in which GCH fails while any two bases of a matroid have the same size. This
answers a question of Higgs.

1. Introduction

Results of Oxley ([12]) and Bruhn et al. ([5]) show that Higgs’ B-matroids (de-
fined in [6]) provide a suitable extension of finite matroids to the infinite. We use
the notation of Bruhn et al. and call B-matroids simply matroids. Matroids can be
described many different ways, for example in terms of their independent sets or in
terms of their bases. If the bases of a matroid are known, then a set is independent
iff it is included in a basis. If the the independent sets are known, then the bases
are the maximal independent sets. The definition of matroids in terms of bases
given in [5] is the following:

Definition 1. Let E be a set and B ⊆ P(E). Then B is the set of bases of a
matroid M on E if the following hold:

(B1) B 6= ∅
(B2) Whenever B1, B2 ∈ B and x ∈ B1 \ B2, there is y ∈ B2 \ B1 such that

(B1 \ {x}) ∪ {y} ∈ B.
(BM) Whenever I ⊆ B for some B ∈ B and I ⊆ X ⊆ E, then the collection

{B ∩X : B ∈ B ∧ I ⊆ B} has a maximal element.

A simple example of a matroid on a set E is the matroid Un(E) whose bases are
all subsets of E of a fixed finite size n with 0 ≤ n ≤ |E|. Such matroids are called
uniform. These uniform matroids are all finitary, that is, a set is independent iff
all of its finite subsets are independent.

The following is a natural generalization of uniformity to the infinitary case.
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Definition 2. Let B be the set of bases of a matroid M on a set E. Then M is
uniform if the following strengthening of (B2) holds:

(U) Whenever B ∈ B, x ∈ B, and y ∈ E \B, then (B \ {x}) ∪ {y} ∈ B.

Every matroidM has a dualM∗, whose set of bases consists of the complements
of bases of M . A matroid is self-dual if it is dual to itself. (Note that our notion of
self-duality is more restrictive than what is often found in the literature: frequently,
matroids are considered self-dual if they are just isomorphic to their duals.) A
matroid is cofinitary if its dual is finitary. In the next section we will observe that
a uniform matroid is finitary iff it has a finite basis. If a matroid has a finite basis,
then by (B2) all bases are finite and of the same size. It follows that self-dual
matroids on infinite sets are neither finitary nor cofinitary.

In [4] Bruhn and Wollan studied connectedness of infinite matroids and asked
whether there is an infinitely connected matroid on an infinite set. It turns out that
a uniform matroid with an infinite basis and a basis with an infinite complement is
infinitely connected. We show that the Continuum Hypothesis (CH, i.e., 2ℵ0 = ℵ1)
implies the existence of a self-dual uniform matroid on a countably infinite set,
solving the question of Bruhn and Wollan under some set-theoretic assumptions.

In [7], Higgs showed that, assuming the Generalised Continuum Hypothesis
(GCH, i.e., for every infinite cardinal κ, 2κ = κ+), any two bases of a fixed matroid
have the same size. Using a fragment of Martin’s Axiom together with the negation
of CH we obtain a self-dual uniform matroid on an uncountable set that has two
bases of different size. This shows that Higgs’ result cannot be proved without any
additional assumption beyond the usual axioms of set theory, ZFC.

It remains an open question whether uniform self-dual matroids on infinite sets
can be constructed in ZFC. However, we show that the existence of a self-dual
uniform matroid on a countably infinite set implies the existence of a set of reals
without the Baire property. By a result of Shelah [13], the existence of a set of
reals without the Baire property, and hence of a uniform self-dual matroid on a
countably infinite set, cannot be proved in ZF alone, i.e., without the Axiom of
Choice.

Finally, we answer two questions of Higgs ([6]). First we show that the statement
“all bases of a fixed matroid have the same size” does not imply GCH. Then we
show that a certain property shared by collections of bases of matroids characterizes
collections of bases of matroids on finite sets, but not on infinite sets.

2. Uniform matroids

Let us collect some basic facts on uniform matroids.
If M is a matroid on a set E and X ⊆ E, then the restriction of M to X is the

matroid M|X on X whose independent sets are the independent subsets of X (in
the sense of M).

Now let B be a basis ofM|X. The contraction ofM by X is the matroidM/X
on E \X whose bases are the sets A ⊆ E \X such that B ∪A is a basis of M.

Lemma 3. Contractions, restrictions, and duals of uniform matroids are again
uniform.

The proof of this lemma is straightforward. The following lemma collects the
main combinatorial properties of uniform matroids.
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Lemma 4. Let M be a uniform matroid on E.
a) For every set X ⊆ E there is a basis B of M such that X ⊆ B or B ⊆ X.
b) A set X ⊆ E is dependent iff it properly includes a basis.
c) If I ⊆ X ⊆ E, there is a basis B of M such that one of the following holds:

(i) B ⊆ I
(ii) I ⊆ B ⊆ X

(iii) X ⊆ B

Proof. For a) let A be a maximal element of A = {X ∩B : B is a basis of M}. Let
B be a basis of M such that A = X ∩B. If A = X then X ⊆ B and we are done.
Now assume A 6= B. Then either B ⊆ X or there is y ∈ B \X. Assume there is
y ∈ B \X. Let x ∈ X \ B. By (U), (B \ {y}) ∪ {x} is a basis of M. This shows
that A ∪ {x} ∈ A, contradicting the maximality of A. Hence B ⊆ X.

b) follows immediately from a). For c) assume that there is no basis of M that
is properly included in I. Then by b), I is independent. Now I itself is a basis of
M|I. Since M/I is uniform, by a) there is a basis A of M/I such that A ⊆ X \ I
or X \ I ⊆ A. Now B = I ∪A is a basis ofM such that I ⊆ B ⊆ X or X ⊆ B. �

Since the existence of a finite basis of a matroid implies that all bases are finite
and of the same size, every matroid with a finite basis is finitary. The converse is
true for uniform matroids that have more than one basis.

Corollary 5. Let M be a finitary uniform matroid on a set E such that E is not
a basis of M. Then M has a finite basis.

Proof. Since E is not a basis of M, it is dependent. Since M is finitary, every
dependent set contains a finite dependent set. Let D be a finite dependent subset
of E. By part b) of Lemma 4, D includes a basis of M. It follows that M has a
finite basis. �

Part c) of Lemma 4 can be used to characterize uniform matroids. First observe
that a matroid on E is uniform provided its set B of bases is closed under the
equivalence relation ∼ where for A,B ⊆ E we let A ∼ B iff A \ B and B \ A are
both finite and of the same size.

Theorem 6. Let B be a nonempty collection of subsets of E. Then B is the set of
bases of a uniform matroid on E iff the following hold:

(1) No element of B is properly included in another.
(2) B is closed under ∼.
(3) For all I,X \E with I ⊆ X and X \ I infinite there is B ∈ B such that one

of the following holds:
(i) B ⊆ I
(ii) I ⊆ B ⊆ X
(iii) X ⊆ B

Proof. Suppose B is the collection of bases of a matroidM on E. Then no element
of B is properly included in another. If M is uniform, then B is closed under ∼
and B satisfies (3) by Lemma 4 c).

Now suppose B satisfies (1)–(3). Since B is closed under ∼, it satisfies (U). It
remains to show (BM).
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Let I ⊆ E be such that for some B ∈ B, I ⊆ B and let X ⊆ E be such that
I ⊆ X. Let

A = {B ∩X : B ∈ B ∧ I ⊆ B}.
Note that A is nonempty since I ⊆ B for some B ∈ B. We have to show that A
has a maximal element. But this is obvious if X \ I is finite. Therefore we may
assume that X \ I is infinite.

Since I is included in a member of B, (1) implies that there is no B ∈ B with
B ( I. By (3), there is B ∈ B such that I ⊆ B ⊆ X or X ⊆ B. In the first case, B
is a maximal element of A. In the second case, X is a maximal element of A. �

In [4], Bruhn and Wollan defined k-connectedness for infinite matroids and asked
whether there is a matroid on an infinite set that is k-connected for all finite k.

Definition 7. Let M be a matroid on a set E. For independent sets I, J ⊆ E let

delM(I, J) = min{|F | : F ⊆ I ∪ J ∧ (I ∪ J) \ F is independent},
where delM(I, J) is defined to be ∞ if there is no finite set F such that (I ∪ J) \F
is independent.

Now for X ⊆ E let κM(X) be delM(B,B′) where B is a basis of M|X and B′

is a basis of M|(E \ X). (Bruhn and Wollan have shown that κM(X) does not
depend on the choice of B and B′. Hence κM(X) is well defined.)

The matroid M is k-connected for a natural number k, unless for some ` < k
there is an `-separation, i.e., a set X ⊆ E such that κM(X) < ` and |X|, |E\X| ≥ `.
M is infinitely connected if it is k-connected for every k ∈ N.

Theorem 8. Let M be a uniform matroid that is neither finitary nor cofinitary.
Then M is infinitely connected.

Proof. By Corollary 5, every basis of M is infinite and co-infinite. It follows from
(U) together with the existence of an infinite basis that every finite subset of E is
independent. We have to show that M has no `-separation for any ` ∈ N.

Let X ⊆ E and assume |X|, |E \X| ≥ ` for some ` ∈ N. We compute κM(X).
By Lemma 4 b), either X properly includes a basis of M or X is independent.
Hence we can choose a basis B of M|X such that B = X or B ⊆ X is a basis of
M. By the same argument, there is a basis B′ ofM � (E \X) such that B′ = E \X
or B′ is a basis of M.
Case 1. B or B′ is a basis of M.

Without loss of generality we may assume that B is a basis of M. By (U), for
every finite set F ⊆ B ∪B′, (B ∪B′) \ F is independent iff |F | ≥ |B′|. This shows
that delM(B,B′), and hence κM(X), is at least `.
Case 2. B = X and B′ = E \X.

In this case B ∪ B′ = E. Since every basis of M has an infinite complement,
every independent set has an infinite complement. It follows that delM(B,B′), and
therefore κM(X), is infinite.

In both cases it follows that X is not an `-separation of M. �

Our final observation in this section is that uniform matroids always satisfy the
following conjecture of Nash-Williams (see [1]).

Conjecture 9 (The infinite matroid intersection conjecture). Any two matroids
M1 andM2 on a common ground set E have a common independent set I admit-
ting a partition I = J1 ∪ J2 such that clM1

(J1) ∪ clM2
(J2) = E.
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The closure operator clM associated with a matroid M on a set E has a very
simple definition on independent sets I ⊆ E:

clM(I) = {e ∈ E : I ∪ {e} is dependent}

Theorem 10. Let M1 be a uniform matroid on a set E. If M2 is any matroid
on E, then there is set I ⊆ E that is independent with respect to both M1 and M2

such that clM1
(I) = E or clM2

(I) = E. In particular, M1 and M2 satisfy the
infinite matroid intersection conjecture.

Proof. Let B2 ⊆ E be a basis ofM2. By Lemma 4 a), there is basis B1 ofM1 such
that B1 ⊆ B2 or B2 ⊆ B1. Now I = B1 ∩B2 is an independent subset of bothM1

and M2 and a basis of at least one of them. Hence clM1(I) = E or clM2(I) = E.
If I = B1, let J1 = B1 and J2 = ∅. If I = B2 and B1 6= B2, let J1 = ∅ and J2 = B2.
In either case, clM1

(J1) ∪ clM2
(J2) = E. �

3. Martin’s Axiom

We introduce the fragment of Martin’s Axiom that we will use in the construction
of self-dual uniform matroids. The set-theoretic background and in particular the
proof of the consistency of full Martin’s Axiom with ¬CH can be found in either
[8] or [10].

Let (P,≤) be a partial order. For p, q ∈ P we say that p extends q if p ≤ q.
F ⊆ P is a filter if any two elements of F have a common extension in F and for
all p ∈ F and q ∈ P with p ≤ q, q ∈ F . A set D ⊆ P is dense in P if every p ∈ P
has an extension in D. A filter F ⊆ P is generic for a collection D of dense subsets
of P if F has a nonempty intersection with every D ∈ D.

Given a partial order P, MA(P) is the statement that for every collection D of
size < 2ℵ0 of dense subsets of P there is a D-generic filter F ⊆ P. For every partial
order P and every countable collection D of dense subsets of P there is a D-generic
filter F ⊆ P. This is the Rasiowa-Sikorski Theorem. Hence for every partial order
P, MA(P) follows from the Continuum Hypothesis (CH, 2ℵ0 = ℵ1).

We will be interested in partial orders of the following form:
For a cardinal κ let Fn(κ, 2) denote the set

{p : there is a finite set A ⊆ κ such that p : A→ {0, 1}}

ordered by reverse inclusion. For all infinite cardinals κ and λ with κ ≤ λ,
MA(Fn(κ, 2)) follows from MA(Fn(λ, 2)). The statement MA(Fn(ℵ0, 2)) is usu-
ally denoted by MA(countable). Martin’s Axiom is the statement that MA(P)
holds for all partial orders P that satisfy the so called countable chain condition
(c.c.c.). For all infinite cardinals κ, Fn(κ, 2) satisfies the c.c.c.

Gödel showed that if the usual system of axioms for set theory, ZFC, is consistent,
then so is ZFC together with CH. Of course, we have no reason to doubt the
consistency of ZFC and, following usual practice, assume it throughout the whole
article. Solovay and Tennenbaum constructed a model of ZFC that satisfies both
MA and 2ℵ0 = ℵ2. Also, it is known that MA implies 2ℵ0 = 2ℵ1 . It follows that
the statement

MA(Fn(ℵ1, 2)) ∧ 2ℵ1 = 2ℵ0 = ℵ2
is consistent with ZFC.
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4. The construction

Fix an infinite set E. Since we want to construct a self-dual matroid, we want to
talk about subsets of E and their complements at the same time. In other words, we
consider partitions of E into two classes A0 and A1. The following lemma isolates
the combinatorial effect of MA(Fn(κ, 2)) that we will use in our construction of a
uniform matroid.

Lemma 11. Let κ be an infinite cardinal < 2ℵ0 and let S ⊆ P(κ) be a collection
of infinite sets such that |S| < 2ℵ0 . Then MA(Fn(κ, 2)) implies that there is a
partition {A0, A1} of κ such that for all S ∈ S the sets S ∩ A0 and S ∩ A1 are
infinite.

Proof. For all infinite sets S ⊆ κ, all finite sets F ⊆ κ, and all i ∈ {0, 1} let

Di
F (S) = {p ∈ Fn(κ, 1) : ∃m ∈ S \ F (p(m) = i)}.

It is easily checked that the sets Di
F (S) are dense subsets of Fn(κ).

We may assume that κ ∈ S. Let

D = {D0
F (S) : S ∈ S ∧ F ∈ [κ]<ℵ0} ∪ {D1

F (S) : S ∈ S ∧ F ∈ [κ]ℵ0}.
Since κ < 2ℵ0 , |[κ]<ℵ0 | < 2ℵ0 . Hence, by MA(Fn(κ, 2)) there is a D-generic filter
G ⊆ Fn(κ, 2). Let x =

⋃
G. Since G is a filter, x is a function. For i ∈ {0, 1} let

A = x−1(i). By the choice of G and D, A0 and A1 have an infinite intersection
with all S ∈ S. �

We call two partitions {A0, A1} and {B0, B1} of E independent if the sets Ai∩Bj ,
i, j ∈ {0, 1}, are all nonempty. We define the equivalence relation ∼ on partitions
of E into two classes in the natural way:

{A0, A1} ∼ {B0, B1} iff for some i ∈ {0, 1}, A0 ∼ Bi.
Note that two partitions P and P ′ of E into infinite parts with P ∼ P ′ are inde-
pendent unless they are equal.

Lemma 12. Suppose 2|E| = 2ℵ0 . Then MA(Fn(|E|, 2)) implies that there is a set
P of partitions of E into two infinite classes with the following properties:

(1) P is closed under the equivalence relation ∼.
(2) The elements of P are pairwise independent.
(3) Whenever I0, I1 ⊆ E are disjoint with E \ (I0 ∪ I1) infinite, then there is

a partition {B0, B1} ∈ P such that one of the following holds:
(i) B0 ⊆ I0
(ii) I0 ⊆ B0 and I1 ⊆ B1.
(iii) B1 ⊆ I1

Proof. Let ((I0α, I
1
α))α<2ℵ0 be an enumeration of all pairs (I0, I1) of subsets of E

with I0 ∩ I1 = ∅ and E \ (I0 ∪ I1) infinite. We recursively choose partitions
Pα = {B0

α, B
1
α}, α < 2ℵ0 , of E into infinite sets.

Suppose that for some α < 2ℵ0 for all β < α, Pβ has been chosen. Let Pα denote
the closure of the family {Pβ : β < α} under ∼ and let

Bα = {B ⊆ E : ∃P ∈ Pα(B ∈ P )}.
We distinguish two cases:

Case 1. There is a partition {B0, B1} ∈ Pα such that one of the following holds:
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(i) B0 ⊆ I0α
(ii) I0α ⊆ B0 and I1α ⊆ B1.

(iii) B1 ⊆ I1α
In this case let Biα = Bi for i = 0, 1.

Case 2. There is no partition {B0, B1} ∈ Pα as in Case 1.
We construct a partition Pα = {B0

α, B
1
α} of E such that I0α ⊆ B0

α, I1α ⊆ B1
α, and

Pα is independent of all P ∈ Pα.
Let {A0, A1} be a partition of E such that I0α ⊆ A0 and I1α ⊆ A1 and let

{B0, B1} ∈ Bα. If for some i, j ∈ {0, 1}, Bi intersects Ijα, then Bi ∩ Aj 6= ∅. It
follows that for {B0

α, B
1
α} to be independent of all P ∈ Pα, we have to make sure

that for all i ∈ {0, 1} and all B ∈ Bα, if B ∩ Iiα = ∅, then B ∩Biα 6= ∅.

Claim 13. Suppose for some i ∈ {0, 1}, B ∈ Bα is disjoint from Iiα. Then B \ I1−iα

is infinite.

For the proof of the claim assume that B \I1−iα is finite. If |I1−iα \B| ≤ |B \I1−iα |,
there is B′ ∼ B such that I1−iα ⊆ B′ and B′ ∩ Iiα = ∅. Since Bα is closed under ∼,
B′ ∈ Bα. Now the partition {B′, E \ B′} ∈ Pα contradicts the fact that we are in
Case 2.

If |I1−iα \ B| > |B \ I1−iα |, then there is B′ ∼ B such that B′ ⊆ I1−iα . As before,
B′ ∈ Bα. Again the partition {B′, E \B′} contradicts the fact that we are in Case
2. This finishes the proof of the claim.

Let

S = {B \ I1−iα : B ∈ Bα ∧ i ∈ {0, 1} ∧B ∩ Iiα = ∅} ∪ {E \ (I0α ∪ I1α)}.
Then by the claim, all elements of S are infinite subsets of E \ (I0α ∪ I1α). Also,
0 < |S| < 2ℵ0 .

By Lemma 11, there is a partition {A0, A1} of E \ (I0α ∪ I1α) such that A0 and
A1 have an infinite intersection with all elements of S. In particular, A0 and A1

are both infinite. For i ∈ {0, 1} let Biα = Iiα ∪ Ai. By the previous discussion and
by the choice of S, the partition {B0

α, B
1
α} of E is independent of all the partitions

in Pα.
This finishes the recursive construction of the partitions {B0

α, B
1
α}. Observe that

since the Pα are closed under ∼ and {B0
α, B

1
α} is independent of all partitions in Pα,

also every partition {B0, B1} ∼ {B0
α, B

1
α} is independent of all partitions in Pα.

It follows that with our choice of {B0
α, B

1
α}, Pα+1 consists of pairwise independent

partitions if Pα does.
Finally let P =

⋃
α<2ℵ0 Pα. It is clear that P is closed under ∼. By the previous

discussion, the elements of P are pairwise independent. If I0, I1 ⊆ E are disjoint
and such that E \ (I0 ∪ I1) is infinite, then there is α < 2ℵ0 such that I0 = I0α and
I1 = I1α. Now {B0

α, B
1
α} witnesses (3) for I0α and I1α. It follows that P satisfies the

conditions (1)–(3). �

Lemma 14. If P is a set of partitions of E into two infinite classes such that
(1)–(3) of Lemma 12 are satisfied, then B = {B ⊆ E : {B,E \ B} ∈ P} is the set
of bases of a self-dual uniform matroid on E.

Proof. (3) together with the fact that E is infinite implies that P, and therefore
B, is nonempty. By (1), P is closed under ∼. Hence B is closed under ∼. By (2),
the partitions in P are pairwise independent. It follows that no element of B is
properly included in another.
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Now let I ⊆ X ⊆ E and assume that X \I is infinite. Let I0 = I and I1 = E\X.
Let {B0, B1} ∈ P be a witness of (3) for I0 and I1 and let B = B0. Now B ∈ B
and one of the following holds:

(i) B ⊆ I
(ii) I ⊆ B ⊆ X

(iii) X ⊆ B
By Theorem 6, B is the collection of bases of a uniform matroid. Since B is closed
under complementation, this matroid is self-dual. �

Theorem 15. a) CH implies the existence of a self-dual uniform matroid on a
countably infinite set.

b) The existence of a self-dual uniform matroid on a countably infinite set is
consistent with an arbitrarily large value of 2ℵ0 .

c) It is consistent that there is a self-dual uniform matroid on an uncountable
set that has one basis of size ℵ0 and another basis of size ℵ1.

Proof. By Lemma 12 together with Lemma 14, MA(countable) implies the exis-
tence of a self-dual uniform matroid on a countably infinite set. But MA(countable)
follows from CH. This shows a). Also, MA(countable) is consistent with arbitrarily
large values of 2ℵ0 . This implies b).

For c) let E be a set of size ℵ1. We modify the construction in Lemma 12 a
little bit. We may assume that the enumeration ((I0α, I

1
α))α<2ℵ0 is chosen so that

(I00 , I
1
0 ) = (∅, ∅). Now choose a partition of E into a countably infinite set B0

0 and
a set B1

0 of size ℵ1. We continue the construction as in the proof of Lemma 12 and
obtain a set P of partitions of E into two infinite classes satisfying (1)–(3). Now
the set B = {B ⊆ E : ∃P ∈ P(B ∈ P)} is the set of bases of a self-dual uniform
matroid on E and one basis, B0

0 , is countable, while another basis, B1
0 , is of size

ℵ1. �

Remark 16. The reaping number r is the least size of a family S of infinite subsets
of N such that there is no A ⊆ N such that for all S ∈ S, both S \ A and S ∩ A
are infinite (see [3]). By Lemma 11, MA(Fn(ℵ0, 2)) implies r = 2ℵ0 . This is well
known. On the other hand, r = 2ℵ0 is all we need for the construction of a self-dual
uniform on a countably infinite set.

Together with Higgs result about the equicardinality of a bases of matroids under
GCH, Theorem 15 c) yields the following corollary:

Corollary 17. Whether or not any two bases of a matroid have the same size
cannot be decided in ZFC alone.

5. The complexity of self-dual uniform matroids

In this section we work in ZF. The background in descriptive set theory used in
this section can be found in either [8] or [9].

Flutters were introduced and studied by Delhommé, Mathias, and Morillon [11].
They can be constructed in ZFC, but their existence does not follow from ZF alone.
We consider a notion that is formally slightly weaker than that of a 2-flutter.

Definition 18. A (∼, 2)-flutter is a set A ⊆ P(N) that is closed under ∼ and has
the property that for each A ⊆ N, exactly one of the sets A and N \A is a member
of A.
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We translate the notion of a (∼, 2)-flutter into a more topological setting. Instead
of P(N) we consider the Cantor space C = {0, 1}N. C Each set A ∈ P(N) corresponds
to its characteristic function in C. The relation ∼ translates to an equivalence
relation on C, also denoted by ∼, where for all x, y ∈ C we have x ∼ y iff the sets
{n ∈ N : x(n) 6= y(n) ∧ x(n) = 0} and {n ∈ N : x(n) 6= y(n) ∧ x(n) = 1} are finite
and of the same size.

We also consider the equivalence relation Comp on C that identifies every func-
tion x ∈ C with the function x : N → {0, 1};n 7→ 1 − x(n). In this setting, a
(∼, 2)-flutter is a subset of C that intersects each Comp-class in exactly one ele-
ment and is closed under ∼.

Definition 19. Recall that the topology on C is generated by the sets

[s] = {x ∈ C : s ⊆ x},
where s : S → {0, 1} for some finite set S ⊆ N. This topology is compatible with a
complete metric.

If X is any complete metric space, A subset N of X is nowhere dense if its
closure has empty interior. A subset of M of X is meager if it is a countable union
of nowhere dense sets. Finally, a subset A of X has the Baire property if there is
an open set O ⊆ X such that the symmetric difference A4O is meager.

The Baire category theorem implies that no nonempty open subset of C is meager.
In particular, no nonempty open subset of C is the union of two meager sets. In
other words, if O ⊆ C is open and nonempty and A0, A1 ⊆ O are comeager in O,
i.e., have a meager complement relative to O, then A0∩A1 6= ∅. Also, the collection
of sets with the Baire property is closed under complementation.

Theorem 20. A (∼, 2)-flutter on the Cantor space C does not have the Baire
property.

Proof. Let X ⊆ C be a (∼, 2)-flutter and suppose that X has the Baire property.
Now C \X is a (∼, 2)-flutter as well and has the Baire property. At most one of X
and C \X is meager. Hence we may assume that X is not meager.

Since X has the Baire property, there is an open set O ⊆ C such that X4O is
meager. Since X is not meager, O is nonempty. Hence there is a finite set S ⊆ N
and a function s : S → {0, 1} such that [s] ⊆ O.

Choose an extension t of s to some finite subset T of N such that t−1(0) and
t−1(1) have the same size. Let n be the minimal element of N \ dom(t). Let
t0 = t ∪ {(n, 0)} and t1 = t ∪ {(n, 1)}. For each x ∈ [t0] let h(x) ∈ [t1] be defined
by letting h(x) � dom(t) = x � t and h(x) � (N \ dom(t)) = x � (N \ dom(t)). The
map h : [t0]→ [t1] is a homeomorphism. Since the set [t0] ∩X is comeager in [t0],
h[[t0] ∩ X] is comeager in [t1]. Also, [t1] ∩ X is comeager in [t1]. Hence there is
x ∈ [t0] ∩ X such that h(x) ∈ X. Since t−1(0) and t−1(1) are of the same size,
h(x) ∼ x.

Since X is closed under ∼, x ∈ X. Hence X contains both x and x. Therefore
X is not a (∼, 2)-flutter, a contradiction. �

We will show that every self-dual uniform matroid on a countable set gives rise
to a (∼, 2)-flutter. First we observe the following:

Lemma 21. LetM be a uniform matroid on a set E. Then every dependent subset
of E includes a basis.
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Proof. Let X ⊆ E be dependent and let B be the set of bases of M. By (BM),
the collection {X ∩ B : B ∈ B} has a maximal element A. If X = A, then X is
independent, contradicting our assumption on X. Hence X 6= A. Let B ∈ B be
such that A = B ∩X.

We have to show that B ⊆ X. Suppose not. Then there are x ∈ B \ X and
y ∈ X \B. By (U), (B \ {x}) ∪ {y} ∈ B. But now B ∩X ( ((B \ {x}) ∪ {y}) ∩X,
contradicting the fact that A = B ∩X is maximal in {X ∩B : B ∈ B}.

This shows that X includes a basis and finishes the proof of the lemma. �

Theorem 22. If there is a self-dual uniform matroid on a countable set, then there
is a (∼, 2)-flutter.

Proof. Let M be a self-dual uniform matroid on E = N ∪ {∞}. Let

A = {A ⊆ N : A includes a basis of M}.
Since the set of bases of M is closed under ∼, so is A.

Now let {A0, A1} be a partition of N. If A0 is dependent, then there is a basis
B ⊆ A0. Now E \ B is a basis as well. Hence there is no basis included in A1 as
A1 is a proper subset of E \B.

If A0 is independent, then there is a basis B with A0 ⊆ B. Now E \B is a basis.
If A0 = B, then A1 is properly included in the basis E \ B and thus A1 does not
include a basis. If A0 6= B, then E \ B is a proper subset of A1 ∪ {∞}. There
is B′ ∼ E \ B such that ∞ 6∈ B′ and B′ ⊆ A1 ∪ {∞}. Now B′ is a basis that is
included in A1.

It follows that exactly one of A0 and A1 includes a basis. Hence A is a (∼, 2)-
flutter. �

Corollary 23. The existence of a self-dual uniform matroid on a countable set is
not provable in ZF+DC.

Proof. If there is a self-dual uniform matroid on a countable set then there is a
subset of C that does not have the Baire property. However, in [13] Shelah proved
that if ZF is consistent, then there is a model of ZF+DC where every subset of C
has the Baire property. In this model there is no self-dual uniform matroid on a
countable set. �

A subset A of a Hausdorff space X is analytic if it is the continuous image of
a Borel subset of a complete metric space. Analytic subsets of complete metric
spaces have the Baire property. For any countably infinite set E we can identify
P(E) with C and then we know when a set A ⊆ P(E) is analytic.

Corollary 24. The set of bases of a self-dual uniform matroid on a countably
infinite set E is not analytic.

Proof. Let B be the set of bases of a self-dual uniform matroid on E. As in Theorem
22 we can assume E = N ∪ {∞}. In the proof of Theorem 22 we defined

A = {A ⊆ N : ∃B ∈ B(B ⊆ A)}.
Now assume that B is analytic in P(E). Then the set

{(A,B) : A ⊆ N ∧B ∈ B ∧B ⊆ A}
is an analytic subset of P(N)×P(E). The set A is the projection of this set to the
first coordinate and hence analytic. But by Theorem 22 and Theorem 20, A does
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not have the Baire property and hence is not analytic, a contradiction. It follows
that B is not analytic. �

6. Two questions of Higgs

We continue our discussion of Higgs’ result about the equicardinality of bases
under GCH. Higgs actually proved the following stronger statement:

Theorem 25 ([7]). Assume GCH. Let E be a set and B be a collection of subsets
of E such that

(i) no one member of B is properly included in another, and
(ii) if B1, B2 ∈ B and I,X ⊆ E are such that I ⊆ X, I ⊆ B1, and B2 ⊆ X,

then there is B ∈ B such that I ⊆ B ⊆ X.

Then the members of B all have the same cardinality.

The collection of bases of a matroid satisfy (i) and (ii). This is obvious in the
case of (i). For (ii) suppose that I ⊆ X ⊆ E and there are bases B1 and B2 with
I ⊆ B1 and B2 ⊆ X. Let B be a maximal element of

A = {A ⊆ X : I ⊆ A and A is independent}.

If B is not a basis, then there are a basis B′ and y ∈ B′ such that B′ ∩X = B and
y ∈ B′ \ X. By (B2), there is x ∈ B2 \ B′ such that (B′ \ {y}) ∪ {x} is a basis.
Now B ∪ {x} = X ∩ ((B′ \ {y}) ∪ {x}) ∈ A witnesses that B is not maximal in A,
a contradiction.

Hence the equicardinality of bases of matroids under GCH follows from Theorem
25. Higgs asked whether the conclusion of Theorem 25 implies GCH.

The proof of Theorem 25 in [7] uses two different consequences of GCH:

(1) The continuum function κ 7→ 2κ is 1-1 on infinite cardinals.
(2) For every infinite cardinal κ, the partial order (P(κ),⊆) has a chain of size

2κ.

Theorem 26. If ZFC is consistent then so is ZFC together with the statements
(1) and (2) above and the negation of CH.

Proof. We use Easton forcing (see [8, Theorem 15.18]) over a model of GCH to
obtain a model of ZFC in which for each n ∈ N, 2ℵn = ℵn+2. This can be done
by a forcing of size 2ℵω = ℵ+ω . This forcing does not change the size of 2κ for any
κ ≥ ℵω. It follows that the continuum function is 1-1 in the resulting model.

We now work inside this forcing extension. Baumgartner and Mitchell indepen-
dently showed that P(κ) includes a chain of size 2κ iff there is a linear order of
size 2κ that has a dense subset of size κ ([2, Theorem 2.1]). From [2, Theorem 3.5]
together with [2, Theorem 2.2] it follows that if 2ℵn = ℵn+2 for all n ∈ N, then
for all n ∈ ω there is a linear order of size 2ℵn with a dense subset of size ℵn. In
our model GCH holds from ℵω on. Moreover, ℵω is the least cardinal µ such that
ℵω < 2µ. Now [2, Corollary 2.4] shows that for all κ ≥ ℵω there is a linear order of
size 2κ and density κ. It follows that for all infinite κ, P(κ) includes a chain of size
2κ. �

Corollary 27. If ZFC is consistent, then conclusion of Theorem 25 does not imply
GCH.
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In [7], Higgs also asked whether every nonempty collection B ⊆ P(E) that
satisfies (i) and (ii) in Theorem 25 is the set of bases of a matroid on E. We
show that this is not the case in general, but it is true if E is finite.

Theorem 28. a) There is a nonempty collection B of subsets of a countably infinite
set E satisfying (i) and (ii) in Theorem 25 such that B is not the set of bases of a
matroid.

b) If E is finite and B ⊆ P(E) is nonempty and satisfies (i) and (ii) in Theorem
25, then B is the set of bases of a matroid on E.

Proof. a) Let E be a countably infinite set. Let B ⊆ E be an infinite, co-infinite
set and let B be the ∼-class of B. Then B is not the set of bases of a matroid.

Namely, let I = ∅ and let X ⊆ E be such that both X∩B and B \X are infinite.
Then for all B′ ∈ B, (B′ \B)∩X is finite and for all finite sets F ⊆ X \B there is
B′ ∈ B with B′ ∩X = (X ∩B) ∪ F . In particular, the set {X ∩B′ : B′ ∈ B} does
not have a maximal element and hence B does not satisfy (BM).

On the other hand, B satisfies (i) and (ii) in Theorem 25. This can be seen as
follows:

Let I ⊆ X ⊆ E be such that for some B1, B2 ∈ B we have I ⊆ B1 and B2 ⊆ X.
Since B1 ∼ B2, the sets B1 \ B2 and B2 \ B1 are finite and of the same size. We
have B1 \X ⊆ B1 \B2 and B2 \B1 ⊆ X \ I. Let C = B1 \X and let D ⊆ B2 \B1

be a set of size |B1 \X|. Now let B = (B1 \C)∪D. We have B ∼ B1 and therefore
B ∈ B. Also, I ⊆ B ⊆ X.

b) We have to show that B satisfies (B2). LetB1, B2 ∈ B and suppose x ∈ B1\B2.
We first show that there is a set Y ⊆ B2 \ B1 such that (B1 \ {x}) ∪ Y ∈ B. Let
I = B1 \ {x} and X = I ∪B2. By our assumptions on B there is B ∈ B such that
I ⊆ B ⊆ X. Let Y = B \B1. Now B = (B1 \ {x}) ∪ Y and Y ⊆ B2.

We show that Y is a singleton. Since no two elements of B are properly included
in another, Y is nonempty. Let y ∈ Y . By the same argument as before, there is a
set X ⊆ B1 \ B such that (B \ {y}) ∪X ∈ B. Since B1 \ B = {x}, we must have
X = {x}. Now (B \ {y})∪{x} and B1 = (B \Y )∪{x} are both in B. Since no two
elements of B are properly included in another, Y = {y}. This finishes the proof of
the theorem. �

We finish with an observation that follows easily from Higgs’ proof of Theorem
25 without any instances of GCH.

Theorem 29. Let B be a nonempty collection of subsets of a countable set E
satisfying (i) and (ii) in Theorem 25. Then B is either countable or of size 2ℵ0 .
In particular, this dichotomy applies to the collection of bases of a matroid on a
countable set.

Proof. Suppose B is uncountable. Then there are B,B′ ∈ B such that the symmet-
ric difference

B4B′ = (B \B′) ∪ (B′ \B)

is infinite. Without loss of generality we may assume that B \ B′ is infinite. Let
S = P(B\B′). For each S ∈ S we have IS = (B∩B′)∪S ⊆ B andB′ ⊆ XS = S∪B′.
Hence, by (ii), for each S ∈ S there is BS ∈ B such that IS ⊆ BS ⊆ XS . Since
S = BS \B′ for every S ∈ S, the BS are pairwise distinct. Hence |B| ≥ |S| = 2ℵ0 .
On the other hand, B consists of subsets of the countable set E and therefore
|B| ≤ 2ℵ0 . �
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