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Abstract

A k-block in a graph G is a maximal set of at least k vertices no
two of which can be separated in G by removing less than k vertices.
It is polishable if it appears as a part of some tree-decomposition of
adhesion less than k of G.

Extending results of Carmesin, Diestel, Hamann, Hundertmark and
Stein, we construct for any finite graph a canonical tree-decomposition
of adhesion less than k distinguishing the k-blocks and the tangles
of order k with the additional property that every polishable k-block
is equal to the unique part in which it is contained. This proves a
conjecture of Diestel.
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1 Introduction

Robertson and Seymour [10] proved that every finite graph has a tree-
decomposition distinguishing any two maximal tangles. Carmesin, Diestel,
Hamann and Hundertmark [3] constructed such tree-decompositions in a
canonical way that distinguish the k-profiles1 of the graph for any k ∈ N.2

Like tangles, the k-profiles can be thought of as “highly connected pieces”
of a graph. While every tangle of order k is a k-profile, there are k-profiles
that are not tangles. A k-block in a graph G is a maximal set of at least
k vertices no two of which can be separated in G by removing less than k
vertices. Every k-block induces a k-profile as well.3

In [3], Carmesin et al. constructed several tree-decompositions of a fi-
nite graph each of which has adhesion less than k and distinguish any two
k-profiles. They are also canonical in that they are invariant under the auto-
morphisms of G. Carmesin et al. [4] gave examples of graphs where the size
of some parts of any canonical tree-decomposition needs to be much larger
than the tree-width of the graph. For applications of tree-decompositions in
general it has turned out to be useful that its parts are no larger than some
aspect of the graph forces them to be. Thomas [12] introduced the notion of
a lean tree-decomposition and showed that every graph G has a lean tree-
decomposition witnessing the tree-width of G. These tree-decompositions
need not be canonical and there are graphs without any canonical lean tree-
decomposition, as [4, Example 1] demonstrates.

In this paper we want to recover some aspect of leanness for canoni-
cal tree-decompositions of adhesion less than k that distinguish any two
k-profiles: we want some parts of the tree-decomposition to contain no
unnecessary vertices. For parts containing k-blocks this notion is easy to
capture: Let us call a k-block polishable if it is equal to a part of some
tree-decomposition of adhesion less than k of G.

The following theorem is the main result of this paper and was conjec-
tured by Diestel [7] (see also [4]).

Theorem 1.1. Every finite graph has a canonical tree-decomposition T of
adhesion less than k distinguishing any two k-profiles such that every pol-
ishable k-block is equal to the unique part in which it is contained.

Our main result implies a structural characterization of polishability.

1The precise definition of a k-profile is given in Section 2.
2This extended earlier results of Carmesin, Diestel, Hundertmark and Stein [5].
3For more details on k-profiles, tangles and k-blocks and on how these notions relate,

see [1]. For more details on profiles in general, see [9].
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Corollary 1.2. A k-block b of a finite graph G is polishable, if and only if
the neighbourhood of each component of G− b in G has size less than k.

We also show that every polishable k-block appears as a part in any
lean tree-decomposition of adhesion less than k. Hence our main construc-
tion captures that aspect of leanness for canonical tree-decompositions of
adhesion less than k.

After recalling some preliminaries in Section 2, we develop the necessary
tools in Section 3. Section 4 then uses these tools to prove Theorem 1.1.
In Section 5 we will compare the tree-decompositions we constructed with
other tree-decompositions. Finally, in Section 6 we give an alternate char-
acterization of a notion from Section 3.

The results of this dissertation are published in [6].

2 Preliminaries

Unless otherwise mentioned, G will always denote a finite, simple and undi-
rected graph with vertex set V (G) and edge set E(G). Any graph-theoretic
term and notation not defined here are explained in [8]. First we recall some
notations from [3].

An ordered pair (A,B) of subsets of V (G) is a separation of G if
A ∪B = V (G) and if there is no edge e = vw ∈ E(G) with v ∈ A \ B
and w ∈ B \ A. The cardinality |A ∩B| of the separator A ∩ B of a sepa-
ration (A,B) is the order of (A,B) and a separation of order k is called a
k-separation. A separation (A,B) is proper if neither A ⊆ B nor B ⊆ A.
Otherwise (A,B) is improper. A separation (A,B) is tight if every vertex in
A ∩B has a neighbour in A \B and a neighbour in B \A.

The set of separations of G is partially ordered via

(A,B) ≤ (C,D) ..⇔ A ⊆ C ∧ D ⊆ B.

For no two proper separations (A,B) and (C,D), the separation (A,B)
is ≤-comparable with (C,D) and (D,C). In particular we obtain that (A,B)
and (B,A) are not ≤-comparable.

A separation (A,B) is nested with a separation (C,D) if (A,B) is
≤-comparable with either (C,D) or with (D,C). Since

(A,B) ≤ (C,D) ⇔ (D,C) ≤ (B,A),

being nested is symmetric and reflexive. Separations that are not nested are
called crossing.
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A separation (A,B) is nested with a set S of separations if (A,B) is
nested with every (C,D) ∈ S. A set S of separations is nested with a set
S′ of separations if every (A,B) ∈ S is nested with S′ or equivalently every
(C,D) ∈ S′ is nested with S.

A set N of separations is nested if any two of its elements are nested.
A set S of separations is symmetric if for every (A,B) ∈ S it also contains
its flip separation (B,A). A symmetric set S of separations is also called a
separation system or a system of separations, and if all its separations are
proper, S is called a proper separation system. For a set S of separations
the separation system generated by S is the separation system consisting of
the separations in S and their flips. A set S of separations is canonical if it
is invariant under the automorphisms of G, i.e. for every (A,B) ∈ S and for
every ϕ ∈ Aut(G) we obtain (ϕ[A], ϕ[B]) ∈ S.

A separation (A,B) separates a vertex set X ⊆ V (G) if X meets both
A \ B and B \ A. Given a set S of separations a vertex set X ⊆ V (G)
is S-inseparable if no separation (A,B) ∈ S separates X. A maximal
S-inseparable vertex set is an S-block of G.

For k ∈ N let S<k denote the set of separations of order less than k of G.
The (< k)-inseparable sets are the S<k-inseparable sets. So the k-blocks are
exactly the S<k-blocks of size at least k.

For two separations (A,B) and (C,D) not equal to (V (G), V (G)) con-
sider a cross-diagram as in Figure 1. Every pair (X,Y ) ∈ {A,B} × {C,D}
denotes a corner of this cross-diagram, which we also denote with cor(X,Y ).
Let X ∈ {A,B} \ {X} and Y ∈ {C,D} \ {Y }. In the diagram we consider
the center c ..= A ∩B ∩ C ∩D and for a corner cor(X,Y ) as above the in-
terior int(X,Y ) ..= (X ∩ Y ) \ (X ∪ Y ) and the links `X ..= (X ∩ Y ∩ Y ) \ c
and `Y ..= (Y ∩X ∩X) \ c. The vertex set X ∩ Y is the disjoint union of
int(X,Y ) with `X , `Y and c and thus can be associated with the corner
cor(X,Y ).

Remark 2.1. Two separations (A,B) and (C,D) are nested, if and only
if for one of their corners cor(X,Y ) the interior int(X,Y ) and its links `X
and `Y are empty.

For a corner cor(X,Y ) there is a corner separation (X ∩ Y,X ∪ Y ),
which is again a separation of G.

Lemma 2.2. [5, Lemma 2.2] For two crossing separations (A,B) and (C,D)
any of its corner separation is nested with every separation that is nested
with both (A,B) and (C,D).
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A B

C

D

int(A,C) int(B,C)

int(A,D) int(B,D)

c`A `B

`C

`D

Figure 1: cross-diagram for (A,B) and (C,D)

In particular a corner separation is nested with (A,B), (C,D) and all
corner separations.

Recall that a tree-decomposition T of G is a pair
(
T, (Pt)t∈V (T )

)
of a tree

T and a family of vertex sets Pt ⊆ V (G) for every node t ∈ V (T ), such that

(T1) V (G) =
⋃
t∈V (T ) Pt;

(T2) for every edge e ∈ E(G) there is a node t ∈ V (T ) such that both end
vertices of e lie in Pt;

(T3) whenever t2 lies on the t1 – t3 path in T we obtain Pt1 ∩ Pt3 ⊆ Pt2 .

The sets Pt are the parts of T . For an edge tt′ ∈ E(T ) the intersection
Pt ∩ Pt′ is the corresponding adhesion set and the maximum size of an
adhesion set of T is the adhesion of T . A node t ∈ V (T ) is a hub node if
the corresponding part Pt is a subset of Pt′ for some neighbour t′ of t. If t is
a hub node, then Pt is a hub. A tree-decomposition T =

(
T, (Pt)t∈V (T )

)
of

G and a tree-decomposition T ′ =
(
T ′, (P ′t)t∈V (T ′)

)
of G′ are isomorphic if

there is a graph isomorphism ϕ : G→ G′ that induces for every part of T an
isomorphism between that part and a part of T ′ and induces an isomorphism
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between T and T ′. We say ϕ induces an isomorphism between T and T ′. A
tree-decomposition T is canonical if it is invariant under the automorphisms
of G, i.e. every automorphism of G induces an automorphism of T .

Let
(
T, (Pt)t∈V (T )

)
be a tree-decomposition of G. For t ∈ V (T ) the torso

Ht is the graph obtained from G[Pt] by adding all edges joining two vertices
in a common adhesion set Pt ∩ Pu for any tu ∈ E(T ). A separation (A,B)
of G[Pt] is a separation of Ht if and only if it does not separate any adhesion
set Pt ∩ Pt′ for tt′ ∈ E(T ). A separation (A,B) of G with A ∩ B ⊆ Pt for
some node t ∈ V (T ) that does not separate any adhesion set Pt ∩ Pt′ for
tt′ ∈ E(T ) induces the separation (A ∩ Pt, B ∩ Pt) of Ht.

Every oriented edge ~e = t1t2 of T divides T − e in two components T1
and T2 with t1 ∈ V (T1) and t2 ∈ V (T2). By [8, Lemma 12.3.1] e induces the
separation

(⋃
t∈V (T1)

Pt,
⋃
t∈V (T2)

Pt
)

of G such that the separator coincides
with the adhesion set Pt1 ∩ Pt2 . We say a separation is induced by T if it is
induced by an oriented edge of T .

The set of separations induced by a tree-decomposition T (of adhesion
less than k) is a nested system N(T ) of separations (of order less than k).
We say N(T ) is induced by T . Clearly if T is canonical, then so is N(T ).
Conversely, as proven in [5], every nested separation system N induces a
tree-decomposition T (N):

Theorem 2.3. [5, Theorem 4.8] Let N be a canonical nested separation
system of G. Then there is a canonical4 tree-decomposition T (N) of G such
that

(i) every N -block of G is a part of T (N);

(ii) every part of T (N) is either an N -block of G or a hub;

(iii) the separations of G induced by T (N) are precisely those in N ,

(iv) every separation in N is induced by a unique oriented edge of T (N).

Let S be a separation system. A subset O ⊆ S is an orientation of S,
if for every (A,B) ∈ S exactly one of (A,B) and (B,A) is an element
of O. An orientation O of S is consistent, if for every (A,B), (C,D) ∈ S
with (A,B) ∈ O and (C,D) ≤ (A,B) we obtain (C,D) ∈ O as well.5

4In the original paper this theorem is stated without the word canonical because it
holds in a greater generality. But it is clear from the proof that if N is canonical, then so
is T .

5In other contexts consistency is defined by requireing (D,C) /∈ O, which is in our
context equivalent.
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A consistent orientation Q of S<k is called a k-profile or a profile of order k
if it satisfies

(P) for all (A,B), (C,D) ∈ Q we have (B ∩D,A ∪ C) /∈ Q.

In particular if the order |(A ∪ C) ∩ (B ∩D)| of this corner separation is less
than k, we have (A ∪ C,B ∩D) ∈ Q.

It is easy to check that every k-block b induces a k-profile via

Pk(b) ..=
{

(A,B) ∈ S<k
∣∣ b ⊆ B}.

Also k-tangles, as introduced by Robertson and Seymour [10], are k-profiles.
For more background on profiles, see [1] or [9].

For r ∈ N, a k-profile Q is r-robust if for any (A,B) ∈ Q and any
(C,D) ∈ S<r+1 one of (A ∪ C,B ∩ D), (A ∪ D,B ∩ C) either has order
at least k − 1, or is in Q.

Lemma 2.4. (i) Every k-profile is `-robust for all ` < k;

(ii) if a k-block b contains a complete graph on k vertices, then the induced
profile Pk(b) is r-robust for all r ∈ N.

Proof. (i) is a direct consequence of (P). For (ii), let (A,B) ∈ Pk(b) and
(C,D) ∈ S<r+1. Suppose for a contradiction that the relevant corner sep-
arations have order less than k − 1 and are both not in Pk(b). Hence
(B∩D,A∪C) and (B∩C,A∪D) are in Pk(b) and therefore b ⊆ (A∩B)∪`B.
But since each of the separators of the two corner separations cannot con-
tain the complete subgraph Kk of b, both `C and `D contain a vertex of Kk,
contradicting that (C,D) is a separation.

Lemma 2.5. 6 Let X ⊆ V (G) with |X| < k and let Q be a k-profile. Then
there exists a component C of G−X such that (V (G) \ C,C ∪X) ∈ Q.
Furthermore, (V (G) \ C,C ∪N(C)) ∈ Q as well.

Proof. Let C1, . . . , Cn denote the components of G−X and for i ∈ {1, . . . , n}
let (Ai, Bi) ..= (V (G) \ Ci, Ci ∪X). To reach a contradiction suppose that
(Bi, Ai) ∈ Q for all i ∈ {1, . . . , n}. Then (P) yields inductively for all m ≤ n
that

(⋃
i≤mBi,

⋂
i≤mAi

)
∈ Q, since their separators all equal X. Hence for

m = n, we obtain (V (G), X) ∈ Q, contradicting the consistency of Q with
(X,V (G)) ≤ (V (G), X). Thus there is a component C of G −X such that
(A,B) ..= (V (G) \ C,C ∪X) ∈ Q.

6This lemma basically states, that every k-profile induces a k-haven, as introduced by
Seymour and Thomas [11]. For more details again see [1].
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Now suppose (C ∪ N(C), V (G) \ C) ∈ Q. Then (P) with (A,B) yields(
(V (G)\C)∪C∪N(C), (C∪X)∩(V (G)\C)

)
= (V (G), X) ∈ Q, contradicting

the consistency of Q again. Hence (V (G) \ C,C ∪N(C)) ∈ Q.

A k-profile Q inhabits a part Pt of a tree-decomposition
(
T, (Pt)t∈V (T )

)
if for every (A,B) ∈ Q we obtain that (B \A) ∩ Pt is not empty.

Corollary 2.6. Let
(
T, (Pt)t∈V (T )

)
be a tree-decomposition and let Q be a

k-profile. If Q inhabits a part Pt, then |Pt| ≥ k.

Proof. Our aim is to show that if |Pt| < k, then any profile Q does not
inhabit Pt. By Lemma 2.5 there is a component C of G − Pt such that
(V (G) \ C,C ∪ Pt) ∈ Q. Since (C ∪ Pt) \ (V (G) \ C) = C and since C ∩ Pt
is empty, we obtain that Q does not inhabit Pt.

Note that if for a node t ∈ V (T ) every separation induced by an oriented
edge ut of T has order less than k, then Q inhabits Pt if and only if all those
separations are in Q.

Lemma 2.7. Let Q be a profile of order at most k and let T =
(
T, (Pt)t∈V (T )

)
be a tree-decomposition of adhesion less than k. Then there is a part Pt of T
inhabited by Q.

Proof. If T is trivial, then clearly Q inhabits V (G). Hence let T be non-
trivial. Let (C,D) ∈ N(T ) be maximal such that there is a separation
(A,B) ∈ Q with (C,D) ≤ (A,B). If no such (C,D) exists, let (C,D) ∈ N(T )
be arbitrary. Let t ∈ V (T ) be such that (C,D) is induced by an incoming
edge to t and no outging edge from t, which exists since T is finite. We show
that Q inhabits Pt.

Suppose for a contradiction that Q does not inhabit Pt. Let (A,B) ∈ Q
witness this, i.e. (B \A) ∩ Pt is empty. By Lemma 2.5 there is a com-
ponent K of G− (A ∩B) such that (V (G) \K,K ∪N(K)) ∈ Q. By con-
sistency we obtain K ⊆ (B \A), and hence K ∩ Pt is empty. Thus for all
(E,F ) induced by any outgoing edge from t we obtain either K ⊆ (F \ E) or
K ⊆ (E \ F ), since (E ∩ F ) ⊆ Pt. If K ⊆ E \ F for all such (E,F ), then by
construction of N(T ) we obtain K ⊆ Pt, contradicting that K ∩ Pt is empty.
Hence there is a separation (E,F ) induced by an outgoing edge from t such
that K ⊆ (F \ E). Therefore we obtain (E,F ) ≤ (V (G) \K,K ∪N(K)).
Hence (E,F ) is a separation induced by T such that there is a separation
(A′, B′) ∈ Q with (E,F ) ≤ (A′, B′). Thus (C,D) was indeed chosen maxi-
mal with that property.
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If (E,F ) = (D,C), then (K ∪N(K), V (G) \K) ≤ (C,D) ≤ (A′, B′) for
the (A′, B′) ∈ Q which is greater or equal than (C,D), contradicting the
consistency of Q. And since (C,D) 6= (E,F ) by the choice of t, we obtain
(C,D) < (E,F ), contradicting the maximality of (C,D).

Two profiles Q and Q′ of order at most k are k-distinguishable if there
is a separation (A,B) ∈ S<k with (A,B) ∈ Q and (B,A) ∈ Q′. Such
a separation distinguishes Q and Q′. It is said to distinguish Q and Q′

efficiently if the order |A ∩B| is minimal among all separations in S<k which
distinguishQ andQ′. A set S of separations of order less than k distinguishes
a set P of profiles of order at most k (efficiently) if any two distinct Q,Q′ ∈ P
are distinguished by some (A,B) ∈ S (efficiently). A tree-decomposition T
distinguishes a set P of profiles of order at most k if every part of T is
inhabited by at most one profile of P. It distinguishes P efficiently if any
two distinct Q,Q′ ∈ P are efficiently distinguished by some (A,B) induced
by T . It is easy to verify that a tree-decomposition T distinguishes a set P
of profiles of order at most k efficiently, if and only if N(T ) does.

For our main result of this paper, we will build on the following theorem.

Theorem 2.8. Every graph G has a tree-decomposition T of adhesion less
than k distinguishing any two k-distinguishable (k − 1)-robust profiles of
order at most k of G efficiently.

We obtain this version of the theorem by combining a result of [2]
together with some methods of Section 3. The notion of a tree of tree-
decompositions introduced there directly translates into almost nested sets
of separations developed here. Hence Theorem 2.8 follows from Theorem 3.7
and [2, Theorem 9.2]. We will give more details on this characterization in
the Appendix. Theorem 2.8 also follows from a result of Hundermark and
Lemanczyk [9]. This extends earlier versions of Carmesin, Diestel, Hundert-
mark, Hamann and Stein [5, Theorem 6.5] and [3, Theorem 4.4].

A vertex is called central in G if the greatest distance to any other vertex
is minimal. It is well known that a finite tree T has either a unique central
vertex or precisely two central adjacent vertices v and w. In the second case
vw is called a central edge. For a vertex or edge to be central is obviously a
property invariant under automorphisms of G.
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3 Construction methods

3.1 Sticking tree-decompositions together

Given a tree-decomposition T of G and for each torso Ht of T a tree-
decomposition of HT we want to construct a new tree-decomposition T
of G by gluing together the tree-decompositions of the torsos along T in a
canonical way.

Example 3.1. In this example we explain the canonical gluing for a par-
ticular graph. Consider the graph G obtained from three disjoint triangles
D1, D2, D3 by first identifying an edge of D2 with an edge of D3 and then
identifying a vertex of that edge with a vertex of D1. In Figure 2, we de-
picted G together with one of its tree-decompositions, drawn in black. For
the upper torso we take the trivial tree-decomposition whilst for the lower
torso we take the tree-decomposition drawn in gray, whose tree is just an
edge. In order to stick these tree-decompositions of the torsos together in
a canonical way, which must be invariant under the automorphism group
of G, we first have to add a hub node to the gray tree-decomposition, see
Figure 3 for the stuck together tree-decomposition.

Figure 2: G with a tree-decomposition Figure 3: G with canonical gluing

Before we can construct T , we need some preparation. Given a tree-
decomposition T =

(
T, (Pt)t∈V (T )

)
we construct a new tree-decomposition

T̃ =
(
T̃ , (P̃t)t∈V (T̃ )

)
by contracting every edge tu of T where Pt = Pu. In

this tree-decomposition two adjacent nodes never have the same part. Let
F ⊆ E(T̃ ) be the set of edges tu where neither P̃t ⊆ P̃u nor P̃u ⊆ P̃t. By
subdiving every edge tu ∈ F and assigning to the subdivided node the part
P̃t ∩ P̃u, we obtain a new tree-decomposition T̂ =

(
T̂ , (P̂t)t∈V (T̂ )

)
.
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Remark 3.2. T̂ satisfies the following:

(i) for every node t ∈ V (T ) there is a node u ∈ V (T̂ ) such that Pt = P̂u;

(ii) every separation induced by T̂ is also induced by T ;

(iii) for every edge tu ∈ E(T̂ ) precisely one of P̂t or P̂u is a proper subset
of the other;

(iv) for every edge tu ∈ E(T ) that induces a separation not induced by T̂
we obtain Pt = Pu.

If T is canonical, then T̂ is canonical as well.

Lemma 3.3. Let
(
T, (Pt)t∈V (T )

)
be a tree-decomposition of a graph G and

K be a complete subgraph of G. Then there is a node t of T̂ such that K ⊆ P̂t
and its definition is invariant under the automorphism group of G.

Proof. As K is complete, there is a node u ∈ V (T̂ ) with K ⊆ P̂u by (T2).
In order to define a node t with this property in a canonical way, let W

be the subforest of T consisting of those nodes w with K ⊆ P̂w, which is
connected by (T3). Now W either has a central vertex t or a central edge tu
such that P̂u is a proper subset of P̂t. In both cases the definition of t is
invariant under the automorphism group of G.

Let T =
(
T, (Pt)t∈V (T )

)
be a canonical tree-decomposition of G. Two

torsos Ht and Hu of T are similar, if there is an automorphism of G that
induces an isomorphism between Ht and Hu. A family

(
T t
)
t∈V (T )

where

T t =
(
T t, (P tu)u∈V (Tt)

)
is a canonical tree-decomposition of the torso Ht for

each t ∈ V (T ) is canonical if for any two similar torsos Ht and Hu of T the
automorphism of G that witnesses the similarity of Ht and Hu induces an
isomorphism between T t and T u.

Lemma 3.4. Let T =
(
T, (Pt)t∈V (T )

)
be a canonical tree-decomposition

of G and let
(
T t
)
t∈V (T )

be a canonical familiy of tree-decompositions, where

T t =
(
T t, (P tu)u∈V (Tt)

)
is a tree-decomposition of the torso Ht for t ∈ V (T ).

Then there is a canonical tree-decomposition T =
(
T , (P t)t∈V (T )

)
of G such

that

(i) for t ∈ V (T ) every node u ∈ V (T t) is also a node of T and P u = P tu;

(ii) every node u ∈ V (T ) that is not a node of any T t is a hub node;
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(iii) every separation induced by T is either induced by T or induces a
separation of a torso Ht, which is induced by T t;

(iv) every separation induced by T is also induced by T ;

(v) if two profiles Q1 and Q2 of order at most k of a torso Ht are effi-
ciently distinguished by T t, then there is a separation induced by T
that induces a separation on Ht which also distinguishes Q1 and Q2

efficiently.

Proof. For every tree-decomposition T t consider T̂ t as in Remark 3.2. For
e = tu ∈ E(T ), let Ae be the adhesion set Pt ∩ Pu. Since Ht[Ae] is com-
plete, there is a canonically defined node γ(t, u) of T̂ t with Ae ⊆ P̂ tγ(t,u) by
Lemma 3.3.

We obtain the tree T from the disjoint union of the trees T̂ t for all
t ∈ V (T ) by adding the edges γ(t, u)γ(u, t) for each tu ∈ E(T ). Let P u be
P̂ tu for the unique t ∈ V (T ) with u ∈ V (T̂ t). Then T ..=

(
T , (P t)t∈V (T )

)
is a tree-decomposition of G since T is, since the T̂ t are tree decomposi-
tions of the torsos Ht and since by definition for e = tu ∈ E(T ) we obtain
Ae = P γ(t,u) ∩ P γ(u,t). It is a canonical tree-decomposition, since T is canon-
ical, since the family

(
T t
)
t∈V (T )

is canonical, and since the nodes γ(t, u) are

canonically defined.
Whilst (i) is true by construction, the nodes added in the construction

of T̂ t are hub nodes by definition, yielding (ii). Furthermore, (iii) and (iv)
follow from Remark 3.2 (ii) and from the observation that for all tu ∈ E(T )
the adhesion sets P γ(t,u) ∩ P γ(u,t) and Pt ∩ Pu are equal.

For (v) consider two profiles Q1, Q2 of order at most k of a torso Ht

efficiently distinguished by (A,B) ∈ N(T t). If (A,B) is also induced by
T̂ t, then we obtain by construction that there is a separation induced by
T which induces (A,B) on Ht. If not, then by Remark 3.2 (iv) we obtain
that the parts P tu and P tv for the edge uv ∈ E(T t) inducing (A,B) are equal,
and since A ∩B = P tu ∩ P tv = P tu by definition, we obtain |P tu| < k. Hence
by Corollary 2.6 neither Q1 nor Q2 inhabits P tu or P tv . Let P tui be a part
inhabited by Qi for i ∈ {1, 2}, which exists by Lemma 2.7. Then the path
in T t from u1 to u2 uses the edge uv. If no separation induced by an edge
of this path is also induced by an edge of T̂ t, then all parts corresponding
to the nodes on the path are equal to P tu, contradicting that Qi inhabits
P tui again with Corollary 2.6. Hence there is a separation (C,D) induced by

both an edge of this path and T̂ t. By (T3) the separator C ∩D is a subset
of P tu, and therefore (C,D) also distinguishes Q1 and Q2 efficiently.
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3.2 Obtaining tree-decompositions from almost nested sets
of separations

Theorem 2.3 tells how one can transform a nested set of separations into
a tree-decomposition. The main result of this subsection can be seen as a
generalization of this theorem.

For a separation (A,B) of G and X ⊆ V (G), the pair (A ∩ X,B ∩ X)
is a separation of G[X], which we call the restriction (A,B)�X of (A,B)
to X. It may happen that (A,B)�X is improper although (A,B) is proper.
The restriction S�X to X of a set S of separations of G to X consists of the
proper separations (A,B)�X where (A,B) ∈ S.

For a set S of separations of G let minord(S) denote the set of those
separations in S with minimal order. Note that if S is nonempty, then so
is minord(S), and that minord is canonical in that it commutes with graph
isomorphisms.

A finite sequence (β0, . . . , βn) of vertex sets of G is called an S-focusing
sequence if

(F1) β0 = V (G);

(F2) for all i < n, the separation system Nβi generated by minord(S�βi) is
nonempty and is nested with the set S�βi;

(F3) βi+1 is an Nβi-block of G[βi] .

An S-focusing sequence (β0, . . . , βn) is good if

(F∗) the separation system Nβn generated by minord(S�βn) is nested with
the set S�βn.

The set of all S-focusing sequences is partially ordered by extension,
where (V (G)) is the smallest element. The subset FS of all good S-focusing
sequences is downwards closed in this partial order. Note that for any S-
focusing sequence (β0, . . . , βn) the separation system Nβn is proper.

Lemma 3.5. Let (β0, . . . , βn) ∈ FS and let (A,B) ∈ S. If (A,B)�βn is
proper, then A ∩B ⊆ βn.

Proof. By assumption (A,B)�βn is proper, hence there are a ∈ (βn ∩A) \B
and b ∈ (βn∩B)\A. Since βn ⊆ βi for all i ≤ n the separations (A,B)�βi are
proper as well. Suppose for a contradiction there is a vertex v ∈ (A∩B)\βn.
Let j < n be maximal with v ∈ βj . Since βj+1 is an Nβj -block of G[βj ], there
is a separation (C,D) ∈ Nβj with v ∈ C \D and {a, b} ⊆ βn ⊆ βj+1 ⊆ D.
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Now a, b and v witness that (A,B)�βj and (C,D) are not nested: Indeed,
a witnesses that D is not a subset of B ∩ βj . Similarly, b witnesses that D
is not a subset of A ∩ βj . But v witnesses that neither A ∩ βj nor B ∩ βj is
a subset of D. Thus we get a contradiction to the assumption that Nβj is
nested with the set S�βj .

A set S of separations of G is almost nested if all S-focusing sequences
are good. In this case the maximal elements of FS of the partial order
are exactly the S-focusing sequences (β0, . . . , βn) with Nβn = ∅, and hence
S�βn = ∅.

Lemma 3.6. Let S be an almost nested set of separations of G.

(i) If (β0, . . . , βn) ∈ FS is maximal, then βn is an S-block.

(ii) If b is an S-block, there is a maximal (β0, . . . , βn) ∈ FS with βn = b.

Proof. Let (β0, . . . , βn) ∈ FS be maximal. Then S�βn is empty, i.e. no
(A,B) ∈ S induces a proper separation of G[βn]. Hence βn is S-inseparable.
For every v ∈ V (G)\βn there is an i < n and a separation in Nβi separating
v from βn. Hence βn is an S-block.

Conversely given an S-block b, let (β0, . . . , βn) ∈ FS be maximal with
the property b ⊆ βn, which exists since (V (G)) ∈ FS and since FS is finite.
Since b is Nβn-inseparable, there is some Nβn-block βn+1 containing b. The
choice of (β0, . . . , βn) implies that (β0, . . . , βn+1) /∈ FS and hence Nβn = ∅,
i.e. (β0, . . . , βn) is a maximal element of FS . Thus βn is an S-block with
b ⊆ βn and hence b = βn.

The rank of an S-focusing sequence (β0, . . . , βn) is either the size of any
separator A ∩B if there is a separation (A,B) ∈ Nβn , or ∞ otherwise.

For an almost nested set S of separations of G two S-focusing sequences
(β0, . . . , βn) and (α0, . . . αm) are similar if there is an automorphism ψ of G
inducing an isomorphism between G[βn] and G[αm]. Similar S-focusing
sequences clearly have the same rank. If S is canonical, then ψ induces an
isomorphism between T (Nβn) and T (Nαm) as obtained from Theorem 2.3.

Theorem 3.7. Let S be a canonical almost nested set of separations of G.
Then there is a canonical tree-decomposition T of G such that

(i) every S-block of G is a part of T ;

(ii) every part of T is either an S-block of G or a hub;
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(iii) and for every separation (A,B) induced by T there is a separation
(A′, B′) ∈ S such that A ∩B = A′ ∩B′.

Proof. We recursively construct for every S-focusing sequence (β0, . . . , βn)
a tree-decomposition T βn of G[βn] so that the tree-decomposition T V (G)

for the smallest S-focusing sequence is the desired tree-decomposition of G.
We show inductively that for any S-focusing sequence (β0, . . . , βn) the tree-
decomposition T βn has the following properties:

(a) every S-block included in βn is a part of T βn ;

(b) every part of T βn is either an S-block or a hub;

(c) every separation (A,B) induced by T βn is proper;

(d) and for every separation (A,B) induced by T βn there is a separation
(A′, B′) ∈ S and an S-focusing sequence (β0, . . . , β) ≥ (β0, . . . , βn)7

such that (A′, B′)�β = (A,B).

Furthermore we show by induction, that

(e) if (α0, . . . , αn) and (β0, . . . , βn) are similar, then T αm and T βn are
isomophic.

For the maximal S-focusing sequences we just take the trivial tree-
decompositions with only a single part. These tree-decompositions satisfy
(a) and (b) by Lemma 3.6, and (c) and (d) since their trees do not have
any edges. If for two S-blocks b1 and b2 there is an isomorphism between
G[b1] and G[b2] induced by an automorphism of G, then clearly the tree-
decompositions are isomorphic. Hence (e) holds for all S-focusing sequences
of rank ∞.

Suppose for our induction hypothesis that for every S-focusing sequence
(α0, . . . , αm) with rank greater than r there is a canonical tree-decomposition
T αm of G[αm] with the desired properties. Furthermore suppose that that
(e) holds for all (α0, . . . , αm) ∈ FS with rank greater than r.

To construct T βn for an S-focusing sequence (β0, . . . , βn) of rank r, first
we take the tree-decomposition T (Nβn) of G[βn] as in Theorem 2.3. Next
we define a canonical tree-decomposition of each torso Ht of T (Nβn). If t
is a hub node, we take the trivial tree-decomposition. Otherwise Pt is an
Nβn-block β by Theorem 2.3 (ii) and we take T β. This is indeed a tree-
decomposition of Ht: for a separation (A,B) induced by T β consider (A′, B′)

7Recall that the order on FS is given by extension.
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as given in (d). By Lemma 3.5 we obtain that A′ ∩ B′ ⊆ β and hence
A′ ∩B′ = A∩B. Therefore if (A,B) would separate an adhesion set C ∩D
for (C,D) ∈ Nβn , then so would (A′, B′)�βn, contradicting (F∗).

If two torsos Ht and Hu of T (Nβn) are similar, then either V (Ht) and
V (Hu) are N(βn)-blocks whose corrensponding S-focusing sequences have
rank greater than r, or they are hubs. If they are Nβn-blocks, the chosen
tree-decompositions are isomorphic by the induction hypothesis. If they are
hubs, the chosen trivial tree-decompositions are isomorphic as witnessed by
the same automorphism of G witnessing the similarity of Ht and Hu. Hence
this family of tree-decompositions of the torsos of T (Nβn) is canonical.

We apply Lemma 3.4 to T (Nβn) and the family of tree-decompositions of
the torsos to get a canonical tree-decomposition T βn ofG[βn] for (β0, . . . , βn),
which satisfies (a), (b) and (c) by Lemma 3.4 (i), (ii) and (iii) and by the in-
duction hypothesis. Also by Lemma 3.4 (iii) for a separation (A,B) induced
by T βn either (A,B) ∈ Nβn ⊆ S�βn or (A,B) induces a separation in T β for
an Nβn-block β on the corresponding torso. In the first case (β0, . . . , βn)
is the desired S-focusing sequence for (d) and in the second case the in-
duction hypothesis yields (A′, B′) ∈ S and the desired S-focusing sequence
extending (β0, . . . , βn, β). Hence (d) holds for T βn .

Let (α0, . . . , αm) be similar to (β0, . . . , βn). Since S is canonical, the au-
tomorphism of G that witnesses the similarity also witnesses that T (Nαm)
and T (Nβn) are isomorphic. Hence any torso of T (Nαm) is similar to
the corrensponding torso of T (Nβn) and by induction hypothesis the tree-
decompositions of the torsos are isomorphic. Therefore following the con-
struction of Lemma 3.4 yields (e).

Inductively the tree-decomposition T V (G) of G is canonical and satisfies
(i) and (ii) by (a) and (b). Finally, (iii) follows from (c), (d) and Lemma 3.5.

3.3 Extending a nested set of separations

Let T ..=
(
T, (Pt)t∈V (T )

)
be a tree-decomposition and let N ..= N(T ) be

the induced nested set of separations. Recall that a separation (A,B) of G
that is nested with N induces a separation (A∩Pt, B ∩Pt) of the torso Ht.
A k-profile Q̃ of Ht is induced by a k-profile Q of G if for every (A′, B′) ∈ Q̃
there is an (A,B) ∈ Q which induces (A′, B′) on Ht.

Lemma 3.8. Let t ∈ V (T ) and for i ∈ {1, 2} let Qi be a ki-profile of G
inhabiting Pt.

(i) Qi induces a unique ki-profile Q̃i of Ht;
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(ii) if a separation (A,B) of G nested with N distinguishes Q1 and Q2

(efficiently), then the by (A,B) induced separation on Ht distinguishes
the induced profiles Q̃1 and Q̃2 of Ht (efficiently);

(iii) if a separation (A,B) of Ht distinguishes the induced profiles Q̃1 and
Q̃2 of Ht (efficiently), then any separation of G nested with N that
induces (A,B) on Ht distinguishes Q1 and Q2 (efficiently);

(iv) if Qi is (k − 1)-robust, then so is Q̃i.

Proof. Let (A,B) be a proper separation of order less than ki of Ht. Ap-
plying Lemma 2.5 to X ..= A ∩B yields a component C of G−X such that
(V (G) \ C,C ∪X) ∈ Qi. Since Qi inhabits Pt, this separation witnesses that
C ∩ Pt is not empty. By construction C ∩ Pt is a subset of either A \ B or
B \ A, say B \ A. For every v ∈ Pt \X let Cv be the component of G−X
with v ∈ Cv. Let Y be the union of all components Cv with v ∈ B \ A.
Then the separation (V (G) \ Y,X ∪ Y ) is in Qi by consistency and induces
(A,B).

Hence we obtain an orientation Q̃i of separations of order less than ki
of Ht by additionally taking every improper separation (A, V (G)) of order
less than ki to be in Q̃i. Consistency and (P) for this orientation are inherited
from Qi, hence Q̃i is a ki-profile of Ht induced by Qi.

Let (A,B) be a separation of G nested with N distinguishing Q1 and Q2

(efficiently). Since both Q1 and Q2 inhabit Pt we obtain that (A \B) ∩ Pt
and (B \A) ∩ Pt are both not empty. Therefore the separation that (A,B)
induces on Ht is proper and hence distinguishes Q̃1 and Q̃2 (efficiently).

If a separation (A,B) of G nested with N does not distinguish Q1 and
Q2 (efficiently), then the induced separation does not distinguish Q̃1 and Q̃2

(efficiently) as well.
Hence (ii) and (iii) hold, implying the uniqueness of (i). (iv) holds since

the corner separations of two induced separations equal the induced separa-
tions of the corresponding corner separations of the original separations.

For a nested separation system N let SN<k be the set of separations of
order less than k of G nested with N .

Theorem 3.9. Let N be a canonical nested system of separations of order
less than k of G such that SN<k distinguishes any two k-distinguishable (k−1)-
robust profiles of order at most k of G efficiently. Then there is a canonical
nested system N̂ ⊇ N of separations of order less than k of G distinguishing
any two k-distinguishable (k − 1)-robust profiles of order at most k of G
efficiently.
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Proof. Let T (N) =
(
T, (Pt)t∈V (T )

)
be the canonical tree-decomposition ob-

tained with Theorem 2.3 from N . We define a canonical family
(
T t
)
t∈V (T )

of tree-decompositions of the torsos recursively. For any t ∈ V (T ) for which
T t has not been defined let T t be a canonical tree-decomposition of adhe-
sion less than k of the torso Ht that distinguishes all the k-distinguishable
(k − 1)-robust profiles of order ≤ k of Ht efficiently which exists by Theo-
rem 2.8. For every torso Hu similar to Ht witnessed by an automorphism ψ
of G we then define T u to be the tree-decomposition of Hu isomorphic to
T t as witnessed by ψ. We repeat this procedure until family

(
T t
)
t∈V (T )

has

been defined.
Let N t denote the canonical nested separation system induced by T t. By

applying Lemma 3.4 to T (N) and
(
T t
)
t∈V (T )

we obtain a canonical tree-

decomposition T̂ of G and we claim that the canonical nested separation
system N̂ induced by this tree-decomposition has the desired properties by
construction and Lemma 3.8.

We obtain N̂ ⊇ N by Lemma 3.4 (iv). Let Q1 and Q2 be any two
k-distinguishable (k − 1)-robust profiles of order at most k of G. Suppose
Q1 and Q2 are not already efficiently distinguished by N . Let (A,B) ∈ SN<k
distinguish Q1 and Q2 efficiently and let Pt be a part of T (N) such that
A ∩B ⊆ Pt.

If Q1 and Q2 both inhabit Pt, then there is a separation (C,D) ∈ N t

distinguishing the induced profiles Q̃1 and Q̃2 efficiently. By Lemma 3.4 (v)
and Lemma 3.8 (iii) there is a separation in N̂ distinguishing Q1 and Q2

efficiently.
If for both i ∈ {1, 2} we obtain that Qi inhabits Pti 6= Pt, then consider

the neighbour ui of t on the path between the t and ti. Let ki denote the size
of the adhesion set Pt ∩ Pui and let bi denote the ki-block of Ht containing
Pt ∩ Pui . Since (A,B) distinguishes Q1 and Q2, we obtain that b1 and b2
lie on different sides of (A,B). By the assumption that N does not distin-
guish Q1 and Q2 efficiently, we obtain that the order of (A,B) is less than
ki, and hence b1 6= b2. The induced profiles Pk1(b1) and Pk2(b2) are both
(k − 1)-robust by Lemma 2.4 and k-distinguishable, since by Lemma 3.8
the separation that (A,B) induces on Ht distinguishes them. Again with
Lemma 3.4 (v) we obtain a separation (C,D) ∈ N̂ inducing a separation on
Ht that distinguishes Pk1(b1) and Pk2(b2) efficiently. Since by construction
Pt1 and Pt2 lie on different sides of (C,D), we obtain that (C,D) distin-
guishes Q1 and Q2 efficiently.

If only one Qi inhabits Pt we obtain the theorem with a combination of
both of the above arguments.
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4 Proof of the main result

Recall that a k-block b is polishable if there is a tree-decomposition of ad-
hesion less than k of G in which b is a part. Given a k-block b, let S(b)
be the set of all tight separations (A,B) with b ⊆ B such that A \ B is a
component of G− b. Note that S(b) is a nested set of separations, while for
different k-blocks b, b′ the union S(b) ∪ S(b′) need not to be nested.

Lemma 4.1. Let b be a k-block of G. If b is polishable, then all separations
in S(b) have order less than k.

Proof. Let T =
(
T, (Pt)t∈V (T )

)
be a tree-decomposition of adhesion less

than k of G with Pt = b for some t ∈ V (T ). Each separation in S(b) has
the form (K ∪N(K), V (G) \K) for some component K of G− b. There is
a neighbour u of t such that the separation (A,B) induced by tu satisfies
b ⊆ B and K ⊆ A \B. As N(K) ⊆ A∩B, we have |N(K)| < k, completing
the proof.

Hence for S(b) to have only separations of order less than k is a necessary
condition for a k-block b to be polishable. Theorem 4.8 will imply that this
condition is also sufficient.

Remark 4.2. Let b be a k-block of G. For all (A,B) ∈ S(b) the separator
A ∩B is a subset of b.

Proof. Since A \ B is a component of G − b, the neighourhood of A \ B in
G is a subset of b. And since (A,B) is tight, the neighbourhood of A \B in
G is A ∩B.

For the remainder of this section we will focus on the following canonical
set of separarions of order less than k.

S ..=
⋃{

S(b) ∩ S<k
∣∣ b is a k-block of G

}
.

Lemma 4.3. Every k-block b of G with S(b) ⊆ S<k is an S-block.

Proof. Clearly, any k-block b is S-inseparable. For v ∈ V (G)\ b let C be the
component of G− b with v ∈ C. Every vertex w in the neighbourhood of C
also has a neighbour in V (G) \ (C ∪N(C)) since otherwise it could be sepa-
rated from b by N(C) \ {w}. Hence the separation (C ∪N(C), V (G) \ C) is
tight and therefore in S(b) ⊆ S by construction. Hence b is an S-block.

Lemma 4.4. Let (A,B) ∈ S and (C,D) an arbitrary separation of G. If
the link `A is empty, then (A,B) and (C,D) are nested.
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Proof. Since A \B is connected, either int(A,C) or int(A,D) is empty, say
int(A,C). Since (A,B) is tight, the link `C is empty. Hence by Remark 2.1
(A,B) and (C,D) are nested.

Lemma 4.5. Let (A,B), (C,D) ∈ S be crossing. Then the links `B and `D
are empty and the corner B ∩D is the union of left sides E of separations
(E,F ) ∈ S, all of whose orders are strictly smaller than the orders of both
(A,B) and (C,D).

Proof. Let b1 and b2 be k-blocks with (A,B) ∈ S(b1) and (C,D) ∈ S(b2). By
Lemma 4.4, `A and `C are not empty. Since by Remark 4.2, the separator
A ∩B is included in b1 and since (C,D) cannot separate b1, the link `D is
empty. Since b1 includes the nonempty link `C , we obtain b1 ⊆ C and hence
b1 ⊆ B ∩ C. Similarly we get that `B is empty and b2 ⊆ A ∩D.

Let K be an arbitrary component of G[int(B,D)]. Let E ..= K ∪N(K)
and F ..= V (G) \K. Since the center c is a subset of b1 ∩ b2 and since
K ∩ (b1 ∪ b2) is empty, K is a component of G − b1. Since every vertex in
E ∩ F ⊆ c also has a neighbour in A \B ⊆ F \ E, we obtain (E,F ) ∈ S(b1).
And since E ∩ F ⊆ c and since `A and `C are not empty, we obtain
|E ∩ F | < min{|A ∩B|, |C ∩D|}.

Lemma 4.6. S is almost nested.

Proof. We have to show that every S-focusing sequence (β0, . . . , βn) is good,
i.e. Nβn is nested with S�βn. Let (β0, . . . , βn) be an S-focusing sequence.
Let (A,B)�βn ∈ Nβn and (C,D)�βn ∈ S�βn. If (A,B) and (C,D) are nested,
then so are (A,B)�βn and (C,D)�βn. Suppose (A,B) and (C,D) are cross-
ing.

By Lemma 4.5 `B and `D is empty. If int(B,D) ∩ βn is empty, then
by Remark 2.1 (A,B)�βn and (C,D)�βn are nested. Hence by Lemma 4.5
it suffices to show that (E \ F ) ∩ βn is empty for every (E,F ) ∈ S with
E ⊆ B ∩D whose order is strictly smaller than the order of (A,B).

Since (A,B)�βn has minimal order among all separations in S�βn, we
obtain that (E,F )�βn is improper. As A ⊆ F , the set (F \ E) ∩ βn is not
empty, thus (E \ F ) ∩ βn is empty, as desired.

By combining Theorem 3.7 with Lemma 4.3 and Lemma 4.6 we ob-
tain a canonical tree-decomposition T̂ of G in which every k-block b with
S(b) ⊆ S<k is a part of T̂ . Let N be the canonical nested separation system
induced by T̂ and like before SN<k the set of separations of order less than k
of G nested with N .
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Lemma 4.7. SN<k distinguishes any two k-distinguishable (k − 1)-robust
profiles of order at most k of G efficiently.

Proof. Let Q1 and Q2 be k-distinguishable (k − 1)-robust profiles of order
at most k of G. Let (A,B) ∈ Q1 distinguish Q1 and Q2 efficiently such that
the (finite) cardinality of the set of separations (C,D) ∈ N that cross (A,B)
is minimal.

Suppose for a contradiction that there is a separation (C,D) ∈ N that
crosses (A,B). Since by Theorem 3.7 (iii) the separator C ∩ D coincides
with the separator of a separation in S, Remark 4.2 implies that C ∩D is
S<k-inseparable and hence either `A or `B is empty. Without loss of gener-
ality let `B be empty. The order of the corner separations (A ∪D,B ∩ C)
and (A∪C,B ∩D) is less or equal than |A ∩B|, hence they are oriented by
Q1 and Q2. Applying Lemma 2.5 to X ..= A∩B and Q1 yields a component
K of G−X with (V (G) \K,K ∪X) ∈ Q1. In particular we get K ⊆ B \A
by consistency. Since `B is empty and K is connected, we obtain K ⊆ C \D
or K ⊆ D \C. Therefore either (A∪D,B∩C) or (A∪C,B∩D) is in Q1 by
consistency to (V (G) \K,K ∪X), and not in Q2 by consistency to (B,A).

Hence there is a corner separation of (A,B) and (C,D) distinguishing
Q1 and Q2 efficiently. By Lemma 2.2 it is nested with every separation in N
that is also nested with (A,B), as well as with (A,B) itself. Hence it crosses
less separations of N than (A,B), contradicting the choice of (A,B). Thus
(A,B) is nested with N .

Theorem 4.8. Every graph G has a canonical tree-decomposition T of ad-
hesion less than k distinguishing any two k-distinguishable (k − 1)-robust
profiles of order at most k of G efficiently such that every k-block b of G
with S(b) ⊆ S<k is equal to the unique part of T in which it is contained.

Proof. By Theorem 3.9 and Lemma 4.7 the canonical nested separation
system N as before can be refined to a set N̂ that distinguishes all k-
distinguishable (k − 1)-robust profiles of order at most k of G efficiently
and hence T ..= T (N̂) as in Theorem 2.3 is the tree-decomposition with the
desired properties.

With Lemma 4.1 this yields the characterization in Corollary 1.2. Hence
we can restate this theorem in terms of polishable k-blocks.

Corollary 4.9. Every graph G has a canonical tree-decomposition T of
adhesion less than k distinguishing any two k-distinguishable (k − 1)-robust
profiles of order at most k of G efficiently such that every polishable k-block
of G is equal to the unique part of T in which it is contained.
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5 Comparison with other tree-decompositions

Every separation that is induced by any of the tree-decompositions con-
structed in [3] is essential, in that it distinguishes two k-profiles efficiently.

Example 5.1. This example shows a graph where the tree-decompositions
constructed in [3] do not bring out the polishable 4-blocks. Consider the
graph obtained from two disjoint cliques on four vertices and another vertex
v by connecting v to two vertices of each clique, as depicted in Figure 4. The
only essential separation is depicted in black and hence is the only separation
induced by an edge of any tree-decomposition constructed in [3]. But both
4-blocks are polishable, hence Theorem 4.8 yields the tree-decomposition
depicted in gray.

Figure 4: two canonical tree-decompositions

A tree-decomposition T ..=
(
T, (Pt)t∈V (T )

)
is lean if for any two nodes

t1, t2 ∈ V (T ) and vertex sets X1 ⊆ Pt1 and X2 ⊆ Pt2 with |X1| = |X2| =.. k,
either G contains k disjoint X1 – X2 paths or an adhesion set along the path
t1Tt2 has size less than k.

Proposition 5.2. Every polishable k-block b appears as a part in any lean
tree-decomposition of adhesion less than k of a graph G.

Proof. Let T be a lean tree-decomposition of adhesion less than k and let
Pt be the part of T with b ⊆ Pt. Suppose for a contradiction that there
is a vertex v ∈ Pt \ b. Using Lemma 4.1 we obtain a tight separation
(A,B) ∈ S(b) of order less than k with v ∈ A \ B and b ⊆ B. With
Remark 4.2 we obtain that A ∩ B ( b ( Pt. Let w ∈ b \ (A ∩ B), let
X1

..= (A ∩ B) ∪ {w} and let X2
..= (A ∩ B) ∪ {v}. Since A ∩ B separates

v from w, there is no v – w path avoiding A ∩ B and hence no |A ∩ B|+ 1
disjoint X1 – X2 paths, contradicting the leanness of T .
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6 Appendix

In this appendix we will relate the notion of almost nested sets of separations
with the notion of trees of tree-decompositions given in [2] to obtain Theo-
rem 2.8. This also yields an alternative characterization for almost nested
sets of separations in the process.

A tree of tree-decompositions U =
(
U, (T u)u∈V (U)

)
of a graph G consists

of a rooted tree U and for every node u ∈ V (U) a graph Hu and a tree-
decomposition T u =

(
T u, (P ut )t∈V (Tu)

)
of Hu, such that

(a) Hr = G for the root r of U ;

(b) the graphs assigned to the children8 of u ∈ V (U) are the torsos of the
parts of T u;

(c) if u ∈ V (U) is at level9 k, then every adhesion set of T u has size k.

A tree of tree-decompositions is canonical if each tree-decomposition T u
for u ∈ V (U) is canonical and if for every pair of nodes where the assigned
graphs Hu and Hv are similar10 the corresponding tree-decompositions are
isomorphic as witnessed by the same automorphism of G that witnesses the
similarity of Hu and Hv.

A part P ut for u ∈ V (U) and t ∈ V (T u) is called final if it is not a hub
and for every descendant11 u′ of u the tree-decomposition T u′ is trivial.

Proposition 6.1. For every canonical almost nested set S of separations
there is a canonical tree of tree-decompositions U such that

(i) the S-blocks are precisely the final parts of U ;

(ii) for every separation (A,B) ∈ S there is a node u ∈ V (U) and a
separation (A′, B′) ∈ N(T u) such that (A,B) induces (A′, B′) on Hu.

Proof. For every S-focusing sequence (β0, . . . , βn) ∈ FS we obtain a canoni-
cal tree-decomposition T (Nβn) of G[βn] by Theorem 2.3. As Nβn−1 is nested
with S�βn−1, in particular with the separations that induce Nβn on G[βn],
no separation in Nβn separates an adhesion set and thus T (Nβn) is a tree-
decomposition of the torso Ht. By construction all adhesion sets of the same

8A child of a node u is a neighbour with greater distance to the root.
9The k-th level is the set of all nodes with distance k to the root.

10As before we call Hu and Hv similar if there is an automorphism of G inducing an
isomorphism between Hu and Hv.

11The descendance of a node u are its children combined with their descendance.

23



tree-decomposition have the same size. Hence we obtain U by adding trivial
tree-decompositions of the torsos if the difference in this size between two
neighbouring S-focusing sequences is greater than one. With Lemma 3.6 we
obtain (i) and we obtain (ii) by construction. By construction U is canonical
since S is.

Lemma 6.2. Let T be a tree-decomposition of G, let Ht be a torso for a
node t and let (A,B) be a proper separation of Ht. Then there is a separation
of G nested with N(T ) that induces (A,B) on Ht.

Proof. As in the proof of Lemma 3.8 we obtain that there is a separation
of G that induces (A,B) and has the same separator. Let (A′, B′) be a
separation of G inducing (A,B) on Ht with A ∩B = A′ ∩B′ such that the
number of separations in N(T ) that cross (A′, B′) is minimal. Suppose for a
contradiction that there is a separation (C,D) ∈ N(T ) with V (Ht) ⊆ C that
crosses (A′, B′). The link `D is a subset of D\C, and since A′∩B′ ⊆ V (Ht),
we obtain that `D is empty. Since (A′, B′) does not separate C∩D, we obtain
that either `A′ or `B′ is empty, say `B′ = ∅. Then by Lemma 2.2 the corner
separation (A′ ∪C,B′ ∩D) is nested with (C,D). It still induces (A,B) on
Ht by construction, and it has the separator A∩B, contradicting the choice
of (A′, B′).

Proposition 6.3. For every canonical tree of tree-decompositions U there
is a canonical almost nested set S of separations such that

(i) the S-blocks are precisely the final parts of U ;

(ii) for every separation (A′, B′) ∈ N(T u) for any u ∈ V (U) there is a
separation (A,B) ∈ S inducing (A′, B′) on Hu.

Proof. Let
(
U, (T u)u∈V (U)

)
..= U . Let S be the set of all separations (A,B)

of G such that

(a) for all u ∈ V (U) the separation (A,B)�V (Hu) is either improper or
nested with N(T u);

(b) there is a node u ∈ V (U) and a separation (A′, B′) ∈ N(T u) such that
(A,B)�V (Hu) = (A′, B′).

By (b), S is canonical since U is. If for every node u ∈ V (U) and every
(A′, B′) ∈ N(T u) there is an (A,B) ∈ S such that (A,B)�V (Hu) = (A′, B′),
then S is almost nested by (a) and the S-blocks are the final parts by
construction.
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Let u ∈ V (U) and (A′, B′) ∈ N(T u). Applying Lemma 6.2 successively
yields a separation (A,B) of G such that for all s along the path P be-
tween the root of U and u we obtain (A,B)�V (Hs) is nested with N(T s)
and (A,B)�V (Hu) = (A′, B′). For every node s not on P we obtain that
(A,B)�V (Hu) is improper by construction. Hence we obntain (A,B) ∈ S,
as required.

Let U ..=
(
U, (T u)u∈V (U)

)
be a tree of tree-decompositions of G and let Q

be a k-profile of G. By applying Lemma 3.8 successively we obtain for every
1 ≤ ` ≤ k a unique node u` ∈ V (U) on level ` such that the from Q induced
k-profile on Hu`−1 inhabits the part V (Hu`) of T u`−1 tree-decomposition.
With setting u0 to be the root of U , we obtain that u` is a child of u`−1.
We call the path u0 . . . uk the induced path of Q in U .

A k1-profile Q1 and a k2-profile Q2 are distinguished by U if for some
` ≤ min{k1, k2} the the induced paths differ somewhere on the first ` + 1
nodes. They are distinguished efficiently if the last common node of the
induced paths is at level |A ∩ B| for any separation (A,B) that efficiently
distinguishes Q1 and Q2.

Hence Proposition 6.1 (ii), Proposition 6.3 (ii) and Lemma 3.8 yield

Corollary 6.4. A tree of tree-decompositions distinguishes two k-profiles
efficiently if and only if the corresponding almost nested set of separations
does.

With this characterization, Theorem 2.8 follows from [2, Theorem 9.2].
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