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1. Introduction

The definition of an infinite matroid on which this thesis is based is relatively
new. The historic development of the research towards this definition is described
in [9], which is the paper in which the axioms where introduced. It was published
in 2013, but others already worked with the definition for some years before.
Several concepts of finite matroids were already generalised to infinite matroids.
For this thesis the most important generalisations are those of representability [1]
(which has already several equivalent definitions for tame matroids and will again
be modified here) and finite separations [10].
But infinite matroid theory is not only about finding suitable infinite analogues of
concepts which are important in finite matroid theory, but also about investigating
phenomena which only (may) occur in infinite matroids. For example, a matroid
can be finitary (containing only finite circuits, these matroids are in most cases a
lot easier to handle than arbitrary matroids) or at least similar to a finitary matroid
in the following way: the finitarisation of a matroid M is the matroid Mfin whose
circuits are precisely the finite circuits of M . Each base of M is contained in a base
of Mfin, and a matroid is called nearly finitary if every base of M can be extended
to a base of Mfin by adding only finitely many edges. Nearly finitary matroids form
one of the special cases for which it was proved that the union of two matroids is
again a matroid ([3, Theorem 1.2]. If there is even a natural number l such that
every base of M can be extended to a base of Mfin by adding at most l edges,
then M is l-nearly finitary. Matroids which are l-nearly finitary for some l resemble
finitary matroids even more than just nearly finitary matroids. In this context, the
following question arises naturally:

Open Question 1.1. Let M be a nearly finitary matroid. Is M also l-nearly
finitary for some natural number l?

Question 1.1 is confirmed for cofinitary matroids in Theorem 4.4. Surprisingly,
if M is the algebraic cycle matroid of some locally finite connected graph G, then
this is equivalent to Halin’s theorem for G (and this equivalence is a lot more direct
than the fact that both are true): For a family of vertex disjoint rays there are a
base B of M and a base Bfin of the finitarisation of M such that B ⊂ Bfin and the
edges of the rays are all contained in B. Then the set of rays corresponds (possibly
after deleting one ray) to a subset of Bfin\B, so the latter is large if the family is
large. If in the other direction bases B of M and Bfin of Mfin with B ⊂ Bfin are
given, then these are the edge sets of subgraphs of G. Let GB be the graph which is
induced by B, then Bfin\B corresponds to a subset of the components of GB which
all contain a ray. This link is made more plausible by the fact that the infinite
circuits of M are the double rays of G, so connecting two rays to a double ray
makes these rays somehow visible in the algebraic cycle matroid. The link between
Halin’s theorem and Question 1.1 will be established in Section 3.
Section 4 mainly consists of the proof of Theorem 4.4 and the lemmas which will be
needed for this proof. In contrary to the proof of Halin’s theorem which is given in
[11], the proof of Theorem 4.4 first collects infinitely many pairwise disjoint finite
sets Si such Bfin\B will contain an edge of each Si (thereby somehow determining
where the rays have to start if M is the algebraic cycle matroid of some graph),
and then in a second step extends this edge set to Bfin such that Bfin\F contains
a base of M . This last step is a straightforward compactness argument. That this
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approach works relies heavily on the assumption that M is cofinitary.
Section 2 (Preliminaries) already contains some new proofs in addition to the col-
lection of the lemmas and definitions from other papers which will be needed later
on: in Subsection 2.3 the definition of tame representable matroids given in [1] is
modified to an equivalent one which is better suited for the purposes of this thesis.
In the same Subsection there is also a generalisation of the axiom (C3) of infinite
matroids. This generalisation can only be formulated for representable matroids.
The adjusted definition will be a basic definition for Section 5 and the generalisa-
tion of the axiom will be used in a proof in the same section.
Several further results occurred during the earlier attempts to solve special cases of
Theorem 4.4. They lost their importance for Question 1.1 now that Theorem 4.4
is proved, but the ones which are interesting in themselves are collected in Sections
5 and 6.
Section 5 is concerned with finite separations of representable matroids. Separations
display a lot of information on the structure of matroids: If E(M) is the ground
set of some matroid M and E(M) = P1 ⊍P2 is a small separation of M (compared
to min(|P1|, |P2|)), then what the matroid looks like on one Pi influences what M
looks like on the other Pi less than would typically be possible. In an infinite ma-
troid M , any finite separation where both sides Pi are infinite is a small separation
and thus displays a lot of structural information about M . In Section 5 it is shown
that if a representable matroid has such a finite separation, then the structure of
M can be displayed even better by finding other representable matroids Mi on a
set similar to Pi such that M is a nice sum of M1 and M2.
Waves and hindrances in graphs were invented in order to prove infinite analogues
of Menger’s theorem [2]. They were then translated to matroids in order to inves-
tigate matroid intersection for infinite matroids. Both applications suggest that a
promising approach for proving an infinite version of Lemmas 4.2 and 4.3 would
be to apply waves and hindrances to the assumptions of the lemmas. Section 6
contains some proofs of properties of hindrances.
Section 7 is about lattices of cyclic flats of matroids and is not connected to the
other results of thesis in another way than that it is also about infinite matroids.
In this section the main statement is that there is a correspondence between the
lattices which are the lattice of cyclic flats of finite rank of a finitary matroid and
the lattices in which every element has finite height and on which there is a sub-
modular rank-function. It is also explained how the lattice of cyclic flats of finite
rank and the lattice of all cyclic flats of a finitary matroid are linked. This enables
us to construct new finitary matroids from submodular lattices and in particular
yields an example of a matroid whose lattice of cyclic flats is not atomic.
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2. Preliminaries

2.1. Matroids. The matroids used here are infinite. The axioms presented below
coincide an a finite ground set with the usual matroid axioms and enable infinite
analogues of important finite matroid concepts such as duality and minors. In the
paper where the axioms are introduced ([9]), there are many equivalent axiom sys-
tems presented. All the objects on which these axiom systems are defined (circuits,
bases, independent sets etc.) will be used, but of the axioms the circuit axioms will
be most important. Usually a matroid is defined via the independence axioms:

Definition 2.1. [9, Subsection 1.1] Let E be a set. A set I ⊂ P(E) is the set of
independent sets of a matroid if it satisfies

• (I1) ∅ ∈ I.
• (I2) I is closed under taking subsets.
• (I3) For every I ∈ I which is not maximal in I and every I ′ which is

maximal in I there is x ∈ I ′\I such that I + x ∈ I.
• (IM) For all sets J ∈ I, X ⊂ E such that J ⊂ X the set {I ∈ I|J ⊂ I ⊂ X}

has a maximal element.

Definition 2.2. [9, definition in Subsection 1.4 and Theorem 4.3] Let E be a set.
A set C ⊂ P(E) is the set of circuits of a matroid if it satisfies

• (C1) ∅ /∈ C
• (C2) No element of C is a subset of another.
• (C3) Whenever X ⊂ C ∈ C and (Cx|x ∈ X) is a family of elements of C such

that x ∈ Cy ⇔ x = y for all x, y ∈ X, then for every z ∈ C\
(⋃

x∈X Cx
)

there exists an element C ′ ∈ C such that z ∈ C ′ ⊂
(
C ∪

⋃
x∈X Cx

)
\X.

• (CM) The set I(M) of all subsets of E not containing an element of C
satisfies that for all I ∈ I and for all X ⊂ E(M) such that I ⊂ X the set
{J ∈ I : I ⊂ J ⊂ X} has a maximal element.

Let M be a matroid.

Definition 2.3. [4, Subsection 2.2][14] The ground set of M is denoted by E(M).
A scrawl of M is a union of circuits, a subset of E(M) not containing a circuit is an
independent set, a base is a maximal independent set. The set of scrawls is denoted
by S(M), the set of independent sets by I(M) and the set of bases by B(M).

Remark 2.4. [7, between Lemmas 2.1 and 2.2] Let X be a subset of E(M). The set
{C ∈ C|C∩X = ∅} is the set of circuits of a matroid on ground set E(M)\X denoted
by M\X or M�E\X . The minimal non-empty elements of the set {C\X|C ∈ C}
form the set of circuits of a matroid on ground set E(M)\X. This matroid is
denoted by M/X or M.(E\X).

Remark 2.5. [9, Lemma 3.7] Let B1, B2 be two bases of M . If |B1\B2| <∞, then
|B2\B1| = |B1\B2|.

Definition 2.6. [9, Theorem 3.1] Let B∗ = {E(M)\B|B ∈ B(M)}. Then B∗ is the
set of bases of a matroid, called the dual matroid M∗ of M . The bases, circuits,
scrawls etc. of M∗ are called the cobases, cocircuits, coscrawls etc. of M . A
matroid is finitary if every circuit is finite (Corollary 3.9).

Remark 2.7. [4, Lemma 2.6] A set S ⊂ E(M) is a scrawl of M iff it meets no
cocircuit of M in exactly one edge.
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Lemma 2.8. [5, Lemma 2.4] Let C be a circuit of M containing two different edges
e and f . Then there is a cocircuit D of M such that C ∩D = {e, f}.

Definition 2.9. [3, subsection 4.3] Let M be a matroid. The finitarisation Mfin

of M is the matroid on the same ground set E(M) as M with circuit set C(Mfin) =
{C ∈ C(M)|C is finite}.

Remark 2.10. [3, Proposition 4.11] The finitarisation of a matroid is a matroid.

Definition 2.11. [3, subsection 4.3] Let M be a matroid, Mfin its finitarisation. If
for all bases B of M and all bases Bfin of Mfin such that B ⊂ Bfin Bfin\B is finite,
then M is called nearly finitary. If there is k ∈ N such that Bfin\B has at most
size k for all bases B ⊂ Bfin of M and Mfin respectively, then M is called k-nearly
finitary.

Remark 2.12. [9, Lemma 3.5] Let M be a matroid and X ⊂ E(M). For B ⊂ X,
the following are equivalent:

• B is a base of M.X
• B ∪B′ is a base of M for every base B′ of M\X.

Definition 2.13. [10, section 4]Let Bi be a base of M�Pi and B a base of M such
that B ⊂ B1∪B2. If |(B1∪B2)\B| ≤ l−1 ∈ N and |Pi| ≥ l , then E(M) = P1⊍P2 is
an l-separation of M . If there is an l, such that E(M) = P1 ⊍P2 is an l-separation,
then it is a finite separation. If |(B1 ∪B2)\B| = l − 1, then E(M) = P1 ⊍ P2 is an
exact l-separation (even if the size of some Pi is l − 1). If M has no l-separation
with l < m, then M is m-connected. If M is 2-connected, then it is connected.

By Definition 2.13 there may be separations E(M) = P1 ⊍P2 which are an exact
l-separation for some l but are not an l-separation because one set Pi is not large
enough. In this case the small Pi has to be independent and coindependent in M .
This is an unusual convention but in Section 4 there will be a lot fewer special cases
because of it.

Remark 2.14. [10, Lemma 14] Let B1 be a base of M�P1 , B′1 a base of M.P1 and
B2 a base of M�P2 . Then E(M) = P1⊍P2 is an l-separation of M iff |B1\B′1| ≤ l−1.

2.2. Matroids which are associated with graphs. Facts and lemmas about
infinite graphs and about matroids on infinite graphs will only appear in Section 3
and will only be relevant there. Nevertheless, they are important in the whole thesis
because a good way to give examples of matroids is to specify them as the cycle
matroid of some infinite graph. Because of this I will give two examples of matroids
on infinite graphs here. The definitions for graphs are mainly taken from [11]. The
only exception is the following: For a graph G there should be a subgraph which
is not induced by an edge set but by a vertex set. As matroids associated with a
graph have its edge set as ground set, it is then possible to consider subgraphs that
correspond to edge sets in the matroid.

Definition 2.15. Let S ⊂ E(G). The subgraph of G whose edge set is S and whose
vertex set consists of the end vertices of edges of S is called the graph induced by
S.

Paths and circles are officially subgraphs but often the distinction between these
graphs and their edge sets is forgotten.
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Definition 2.16. [8, section 3][12] Let G be a graph. The set of edge sets of finite
circuits of G is the set of circuits of a matroid, called the finite cycle matroid of
G. The set of edge sets of finite circuits of G together with the set of edge sets of
double rays of G is the set of circuits of a matroid, the algebraic cycle matroid, if
G does not contain a subdivision of the Bean graph.

Remark 2.17. [8] Let G be a locally finite connected graph. The Bean graph
contains a vertex of infinite degree, so G cannot contain a subdivision of the Bean
graph and thus the finite cycle matroid of G exists. Furthermore the algebraic cycle
matroid of G is cofinitary, i.e. its dual is finitary.

2.3. Representable matroids.

Definition 2.18. The support of a function f is denoted by f . For a set of functions
V denote the set of supports of functions in V by V . If f has a set A as its domain,
then for a set B ⊂ A denote the set {f(b)|b ∈ B} by f(B).
Let S be a set, k a field and S′ a subset of S. Then the characteristic function of
S′ is the function χS′ : S → k which maps all elements of S′ to 1 and all elements
of S\S′ to 0. If S′ contains only one element e, then abbreviate χ{e} by χe. Denote

the projection from kS to kS
′

by pS′ .

Definition 2.19. [1] A matroid is called tame if the intersection of any of its
circuits with any of its cocircuits is finite.

A finite matroid M is called representable if there are a vector space V and a
function i : E(M)→ V such that a subset F of E(M) is independent in M iff the
family (ef )f∈F of vectors is independent in V . In order to define what an infinite
representable matroid is it is not a good idea to just drop the condition of finiteness
in that definition, because then all representable matroids would be finitary which
is a severe restriction. Instead, in [1] a notion of representability is introduced
which coincides with the usual definition on finite sets but defines a much larger
class of infinite matroids to be representable, namely that of thin sums matroids.
Let M be a tame matroid, let k be a field and denote k − 0 by k∗.

Definition 2.20. [1] Let E,A be sets and f : E → kA a function. A thin depen-
dence of f is a map c : E → k such that for all a ∈ A there are only finitely many
e ∈ E with f(e)c(e) 6= 0 and

∑
e∈E c(e)f(e)(a) = 0. M is a thin sums matroid

over k if there are a set A and a function f : E(M) → kA such that I ⊂ E(M)
is independent iff for all thin dependencies c : E(M) → k such that c 6= 0 there is
e ∈ E with c(e) 6= 0 and e /∈ I.

In [1] there is a second definition of a thin sums matroid which is equivalent to
the first one for tame matroids:

Lemma 2.21. [1, Lemma 6.2] M is a thin sums matroid over k iff there are for each
circuit C ∈ C(M) and for each cocircuit D ∈ C(M∗) functions fC : C → k∗ and gD :
D → k∗ such that for all circuits C ′ and cocircuits D′

∑
e∈C′∩D′ fC′(e)gD′(e) = 0.

This definition can be modified further for tame matroids: in [6] there is directly
after Definition 5.1 an equivalent definition for a tame thin sums matroid: A ma-
troid M is a thin sums matroid over a field k iff there are orthogonal vector spaces
V,W ≤ kE(M) satisfying an extra condition such that the minimal non-empty el-
ements of V are C(M) and the minimal non-empty sets of W are C(M∗). I will
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later want to modify a thin sums matroids slightly and show that the result is still
a thin sums matroid, so modifying two vector spaces instead of two large families
is a more suitable definition of a thin sums matroid. But it is even possible to get
rid of the second vector space when putting more conditions on the first one which
ensure that its orthogonal complement can take the role of the second vector space.
The following three statements show this by methods which are used in [1].

Lemma 2.22. A tame matroid M is a thin sums matroid over k iff there is a
vector space V ≤ kE(M) such that C(M) ⊂ V ⊂ S(M) and C(M∗) ⊂ V ⊥ ⊂ S(M∗).

Proof. Let M be a thin sums matroid over k. By Theorem 2.21 there are for each
circuit C ∈ C(M) and each cocircuit D ∈ C(M∗) functions fC : C → k∗ and gD :
D → k∗ such that for all circuits C ′ and cocircuits D′

∑
v∈C′∩D′ fC′(e)gD′(e) = 0.

Consider the functions fC as elements of kE(M) by mapping all elements not in C
to zero and let V be the linear span of the functions fC over k. Then obviously
C(M) ⊂ V . In order to show V ⊂ S(M), let v ∈ V and D be a cocircuit of M .
Then v is of the form v =

∑n
i=1 λifCi

for suitable circuits Ci and elements λi ∈ k.
Hence

〈v, gD〉 = 〈
n∑
i=1

λifCi , w〉 =

n∑
i=1

λi〈fCi , gD〉 =

n∑
i=1

λi · 0 = 0

so gD is orthogonal to all vectors in V and thus an element of V ⊥. Thus the support
of v cannot meet D in exactly one edge. As this is true for all cocircuits D, by
Lemma 2.7 v is a scrawl, hence V ⊂ S(M). The fact that each gD is an element of
V ⊥ also shows that C(M∗) ⊂ V ⊥. Let w be a vector of V ⊥. Then for all circuits
C, w is orthogonal to fC and thus C and supp (w) do not meet in exactly one edge.
Again by Lemma 2.7 the support of w must be a scrawl, so V ⊥ ⊂ S(M∗).
Let V ⊂ kE(M) be a vector space such that C(M) ⊂ V ⊂ S(M) and C(M∗) ⊂
V ⊥ ⊂ S(M∗). Then for each circuit C of M there is a vector fC ∈ V such that
fC = C and for each cocircuit D of M there is a vector gD ∈ V ⊥ such that
gD = D. By restricting these functions to their respective supports, these are
functions fC : C → k∗ and gD : D → k∗ such that

∑
e∈C∩D FC(e)gD(e) = 0 as

they are orthogonal vectors. �

Lemma 2.23. Let V ⊂ kE(M) be a vector space such that C(M) ⊂ V ⊂ S(M) and
no element of V meets a cocircuit of M in an infinite set. Then C(M∗) ⊂ V ⊥ ⊂
S(M∗).

Proof. Let w ∈ V ⊥ and C a circuit of M . Then there is v ∈ V such that v = C.
As w ⊥ v, |w ∩ v| 6= 1. So w meets no circuit of M in exactly one edge and is thus
by Remark 2.7 a scrawl of M∗.
Let D ∈ C(M∗) and e ∈ D. By the dual of Lemma 2.8, for all f ∈ D − e there is
a circuit Cf of M such that Cf ∩ D = {e, f}. Then for each such f there also is
and a vector vf ∈ V such that vf = Cf and vf (f) = 1. Define a vector w ∈ kE via

w(e) = 1, w(f) = −vf (e) for f ∈ D − e and 0 everywhere else. In order to show
w ∈ V ⊥, let v ∈ V . Define z = v −

∑
f∈D−e v(f)vf . This is well-defined and an

element of V as the support of v meets D only in finitely many edges, so only for
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finitely many edges f ∈ D − e, v(f)vf is non-zero. Then for g ∈ (D ∩ v)− e,

z(g) = v(g)−
∑

f∈D−e

v(f)vf (g)

= v(g)−
∑

f∈D−e

v(f)δfg = v(g)− v(g) = 0

and for g ∈ (D\v)− e

z(g) = v(g)−
∑

f∈D−e

v(f)vf (g)

= 0−
∑

f∈D−e

v(f)δfg = 0− v(g) = 0− 0 = 0.

Hence z ∩ D contains at most e. But z ∈ V , so z is a scrawl and by Remark 2.7
does not meet D in exactly one edge. Thus z(e) = 0 and v(e) =

∑
f∈D−e v(f)vf (e).

Now v ∩D is finite, hence

〈v, w〉 = v(e)w(e) +
∑

f∈(D∩v)−e

v(f)w(f)

=
∑

f∈D−e

v(f)vf (e) +
∑

f∈D−e

v(f)(−vf (e))

=
∑

f∈D−e

(v(f)vf (e)− v(f)vf (e)) = 0.

So w ∈ V ⊥. �

Corollary 2.24. Let k be a field and M a tame matroid. Then M is a thin sums
matroid over k iff there is a vector space such that C(M) ⊂ V ⊂ S(M) and no
support of a vector of V meets a cocircuit in an infinite set.

Proof. Let M be a thin sums matroid over k. Then by Lemma 2.22 there is a
vector space V such that C(M) ⊂ V ⊂ S(M) and C(M∗) ⊂ V ⊥ ⊂ S(M∗). Let
v be a vector of V and D a cocircuit of M . As C(M∗) ⊂ V ⊥, there is a vector
w ∈ V ⊥ whose support equals D. The fact that w is orthogonal to v implies that
their supports only share finitely many edges, hence the support of v meets D only
in a finite set.
For the other direction let V ≤ kE(M) be a vector space such that C(M) ⊂ V ⊂
S(M) and the support of no vector of V meets a cocircuit of M in an infinite set.
Then by Lemma 2.23 C(M∗) ⊂ V ⊥ ⊂ S(M∗). Thus again by Lemma 2.22 M is a
thin sums matroid over k. �

This last equivalent definition of a representable matroid is the one which will
be used in this thesis (note that a matroid which is representable in this sense is
necessarily tame):

Definition 2.25. Let V ⊂ kE(M) a vector space. A matroid M is said to be
represented by V if C(M) ⊂ V ⊂ S(M) and the support of every element of V
meets every cocircuit of M in only finitely many edges. If there is a vector space
V ≤ kE(M) such that M is represented by V , then M is representable (over k).
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Figure 1. Above is an infinite graph and below is a subset of its
edge set which is an infinite union of finite cycles.

If V is a vector space such that there is a matroid M which is represented by
V , then M is uniquely determined by V . But not for every vector space there
is a matroid which is represented by it, and for a representable matroid M the
corresponding vector space is not uniquely determined by M .

Example 2.26. There are a field k, a set E and a vector space V ⊂ kE such that
there is no matroid which is represented by V .

Consider the finite cycle matroid M of the graph in Figure 1. Let v be the
characteristic function of the set in Figure 1 and V =< {χC |C ∈ C(M)} ∪ v >.
Then C(M) ⊂ V ⊂ S(M), so if there is a matroid which is represented by V , then
it is M . But if D is the cocircuit of M consisting of all the edges which are depicted
vertically in the graph, then the support of v and D meet in infinitely many edges,
so M is not represented by V . However, the problem here is that V simply contains
too many vectors: If for a field k, a tame matroid M and a vector space V ≤ kE(M)

it is true that C(M) ⊂ V ⊂ S(M), then M is represented by the vector space V ′

which is spanned (as a vector space) by the vectors of V which have a circuit of M
as support.

Example 2.27. V is not uniquely determined by M .
By Lemma 2.23 any matroid represented by a vector space is thinly representable.
M is uniquely determined by V . On the other hand, V is not uniquely determined
by M , not even when the vectors whose subsets are the circuits are already defined:
Let M be the algebraic cycle matroid of the graph in Figure 1, k = F2 and let v
be the characteristic function of the edge set shown below the graph. Let

V = {χF | every vertex is contained in a even number of elements of F}.
and let V ′ be the vector space which is spanned by the vectors of V whose supports
are circuits of M . Every infinite circuit of M consists of a tail of the upper ray, a
tail of the lower ray and an additional edge and hence the sum of two characteristic
functions of infinite circuits is a finite circuit or zero. So a linear combination of
vectors of which the support is a circuit of M has either finite support or is the
sum of a vector corresponding to an infinite circuit and the characteristic function
of a finite set, hence has a support which consists again of a tail of the upper ray, a
tail of the lower ray and finitely many other edges. The support of v is not of this
form, so v is not a vector of V ′ and thus V ′ 6= V . Nevertheless, M is represented
by both.

Definition 2.28. Let M be a matroid, I an independent set and e an edge such
that I + e contains a circuit. Then there is exactly one circuit contained in I + e.
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This is the fundamental circuit of e in I and is denoted by CIe . If M is represented
by a vector space V , then there is exactly one vector vIe ∈ V such that its support
equals CIe and vIe(e) = 1. This is the fundamental vector of e in I.

If e is an element of I or I + e is independent, then define CIe = ∅ and vIe = 0.
If I is a base of M , then for all e ∈ e(M)\I, I + e contains a circuit.
The assumptions in the following lemma look relatively technical, but if Z contains
only one edge e, then the support of v is a circuit as is the support of w and thus
this lemma is just a reformulation of (C3). Hence this lemma is a generalisation of
(C3) for representable matroids.

Lemma 2.29. Let k be a field and M a matroid on ground set E(M) which is
represented by a vector space V ⊂ kE(M). Let v ∈ V , X ⊂ supp (v), (Cx|x ∈ X) a
family of circuits and Z ⊂ supp (v) \

⋃
x∈X Cx a finite set such that supp (v) \Z is

independent and for all x ∈ X, Cx∩ supp (v) = {x}. Then there is w ∈ V such that

• supp (w) ⊂
(
supp (v) ∪

⋃
x∈X Cx

)
\X

• supp (w) \Z is independent and
• pZ(w) = pZ(v).

Proof. Let Y =
(
supp (v) ∪

⋃
x∈X Cx

)
\(X ∪ Z) and let B be a base of M�Y . As

X is spanned by Y , B is also a base of M�Y ∪X . Let B′ be a base of M�Y ∪X∪Z
containing B. Define w =

∑
f∈Z\B′ v(f)vB

′

f and u = v − w. Hence for all f ∈
Z\B′, u(f) = v(f) − v(f)vB

′

f (f) = 0 and thus supp (u) ∩ Z ⊂ B′. Assume for a

contradiction that there is an edge z ∈ supp (u) ∩ Z. As u ∈ V there is a circuit C
such that z ∈ C ⊂ supp (u). Let U = C\(Z ∪B′), then z /∈ U . Then by (C3) there

is a circuit C ′ such that z ∈ C ′ ⊂
(
C ∪

⋃
e∈U C

B′

e

)
\U which is a subset of

(C\U) ∪

(⋃
e∈U

CB
′

e \U

)
⊂ (C ∩ (Z ∪B′)) ∪B′

⊂ (supp (u)) ∩ Z) ∪B′ ⊂ B′

which is the desired contradiction. Hence supp (u) ∩ Z = ∅, thus pZ(v) = pZ(w).
Also supp (w) ⊂

⋃
f∈Z\B′ supp (vf ) ⊂ B′ ∪ Z, so supp (w) \Z is independent and

supp (w) ⊂ Y ∪ Z = (supp (v) ∪
⋃
x∈X Cx)\X. �
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3. Halin’s theorem for locally finite graphs

Remark 3.1. [11, Theorem 8.2.5, Halin] If an infinite graph G contains l (vertex-)
disjoint rays for every l ∈ N, then G contains infinitely many disjoint rays.

We want to generalise this theorem to matroids. The first problem to be solved
is that there is no good analogue of rays in matroids. But as the infinite circuits
of the algebraic cycle matroid of a graph are just its double rays, in this matroid
circuits can be seen as analogues of double rays. So we wish to translate Halin’s
theorem to a statement about double rays. In a connected graph, that is easily
done for two rays: for any two rays of a connected graph there is a double ray
consisting of a finite number of edges and tails of the two rays. From such a double
ray one can again obtain two rays by just deleting one edge. This But the concept
of a ray cannot be translated to a matroid very well. What is the analogue of a
family of pairwise rays in this context?

Definition 3.2. Let M be a matroid. A family of circuits (Ci)i∈I is independent
concerning finite circuits if the edge set E

(
(Ci)i∈I

)
= E

(⋃
i∈I Ci

)
does not contain

finite circuits and there is a set F = (fi)i∈I such that fi ∈ Cj ⇔ i = j.

That a matroid contains a large such family of circuits is equivalent to the
statement that it is not l-nearly finitary for large l:

Remark 3.3. Let M be a matroid. For any l ∈ N, M is not l-nearly finitary iff M
contains a family of circuits (Ci)i∈I which is independent concerning finite circuits
such that |I| = l + 1.

The following Lemma will show that in locally finite connected graphs it is
possible to switch between families of rays and families of circuits easily. The
statement will just give a family of the same size, but in the proof this family will
be constructed such that the rays are subsets of the circuits. In this section, infinite
sets have all the same size, forgetting about possibly different cardinalities.

Lemma 3.4. Let G be a locally finite connected graph containing a ray and M its
algebraic cycle matroid. Then G contains a family (Ri)i∈I of vertex disjoint rays iff
there are bases B of M and Bfin of Mfin containing B such that |Bfin\B| ≥ |I| − 1.

Proof. Let (Ri)i∈I be a family of vertex disjoint rays. Denote the set of edges
contained in one of these rays by ER. Let Bfin be a base of M and B a base of M
such that ER ⊂ B ⊂ Bfin. As G is connected, Bfin is the edge set of a spanning
tree of G. Let F = Bfin\B and GB be the graph which is induced by B. Then
GB is a forest. Each ray Ri is contained in GB , as it does not use edges of F .
As B is independent in M , it does not contain double rays, hence if i 6= j, then
Ri and Rj are contained in different components of GB , so GB has at least as
many components as I contains elements. As Bfin is the edge set of a spanning tree
containing GB , |F | ≥ |I| − 1.
So let B and Bfin be bases of M and Mfin respectively such that B ⊂ Bfin and
|Bfin\B| ≥ |I|−1 for some set I. If F = Bfin\B is empty, then by assumption there
is a ray contained in G and the lemma holds. So assume that F contains at least
one element. For each element f of F there is a fundamental circuit Cf of f in B
with respect to M . As Cf is a subset of Bfin which does not contain finite circuits
of M , it is an infinite circuit, hence the edge set of a double ray in the graph.
Cf − f is thus a union of two vertex disjoint rays which only use edges of B and
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thus are contained in GB . Let H be the graph whose vertex set is the set of those
components of GB and whose edge set is F such that each edge of F connects the
two components of GB in which its end vertices lie. This is well-defined: the end
vertices of every edge f of F are starting edges of the two rays of Cf −f , thus every
end vertex of f is contained in a component of GB . Furthermore every component
of GB which contains an end vertex of an edge from F contains a ray. As GBfin

is a spanning tree of a connected graph and thus connected, every component of
GB contains an end vertex of an edge of F = Bfin\B and thus contains a ray. In
particular H is connected. Any path in H can be extended to a walk in GBfin

by
inserting paths inside components of GB and thus also every finite circuit in H can
be extended to a finite circuit in GBfin

. As Bfin does not contain finite circuits, H
also cannot contain finite circuits and is thus a tree. So the number of vertices of
H is |F |+ 1 ≥ |I| − 1 + 1 = |I|. As each vertex of H corresponds to a component
of GB containing a ray, there is a family of vertex disjoint rays of G of size at least
|I|. �

Of course this characterisation in terms of bases is the one we will work with
in the context of matroids, but the intuition of what happens in Halin’s theorem,
namely that systems of something are increased, is nearer to the families of circuits
defined in Definition 3.2.

Corollary 3.5. Let G be a locally finite connected graph containing a ray and M
its algebraic cycle matroid. Then G contains a family (Ri)i∈I+j of vertex disjoint
rays such that j is not an element of I iff M contains a family of circuits (Ci)i∈I
which is independent concerning finite circuits.

So for a given locally finite graph the fact that Halin’s theorem holds is equivalent
to the fact that Question 1.1 holds for its algebraic cycle matroid, which will be
shown in Section 4.

Lemma 3.6. Let G be a locally finite graph. If there are arbitrarily large finite
families of pairwise vertex disjoint rays of G, then there is an infinite such family.

Proof. Let G have arbitrarily large finite families of pairwise vertex disjoint rays.
If G has infinitely many components containing a ray, then taking one ray from
each of these components gives rise to an infinite family of vertex disjoint rays and
this Lemma holds for G. If G does not have infinitely many components containing
a ray, then there is one component of G containing arbitrarily large finite families
of vertex disjoint rays. So without loss of generality it may be assumed that G is
connected.
Let M be the algebraic cycle matroid of G. As G is locally finite, M exists and
is cofinitary. By Lemma 3.4 M is not l-nearly finitary for any natural number l,
so by Lemma 4.4 there are bases B of M and Bfin of Mfin such that B ⊂ Bfin

and Bfin\B is infinite. Hence again by Lemma 3.4 this implies that G contains an
infinite family of pairwise vertex disjoint rays. �

In the last proof we used that G is locally finite. But as Halin’s theorem can be
reduced to the case where G is locally finite, this re-proves Halin’s theorem from
Lemma 4.4.



12

4. The assertion of Question 1.1 for cofinitary matroids

The proof uses the following observation:

Lemma 4.1. Let M be a matroid and B,Bfin bases of M and Mfin respectively
such that B ⊂ Bfin. Let F = Bfin\B be a finite set and and n = |F |. Then there is
no n-separation E(M) = P1 ⊍ P2 of M such that P1 is finite and contains F .

Proof. Let E(M) = P1⊍P2 be a separation of M such that P1 is finite and contains
F . In order to show that E(M) = P1 ⊍ P2 is not an n-separation of M , let B1 be
a base of M�P1 containing Bfin ∩ P1. This is possible as P1 is finite and Bfin does
not contain finite circuits. As B is a base of M , every edge of F is spanned in M
by B, so F is spanned in M.P1 by B ∩ P1. Hence F is also spanned by B1\F in
M.P1, so E(M) = P1 ⊍ P2 cannot be an n-separation of M . �

This leads to the question whether the other direction is true as well: If there is
a set F of size n and there is no n-separation E(M) = P1 ⊍ P2 of M such that P1

is finite and contains F , are there then bases B of M and Bfin of Mfin such that
Bfin\B contains F?
This is the same question as the one whether for every such F there is a family
of circuits (Cf )f∈F which is independent concerning finite circuits such that f ∈
Cg ⇔ f = g. If F is finite and M is countable and cofinitary, then it is possible to
extend F to such a family by adding finite pieces to the (future) circuits in a way
such in no step a finite circuit emerges and the results are indeed circuits. If M has
more than countably many edges, then it is necessary to complete the circuits by
a compactness argument instead of adding countable many finite pieces. Lemmas
4.2 and 4.3 show that F can be extended suitably by finite pieces.

Lemma 4.2. Let M be a matroid and E(M) = P1 ⊍Q1 = Q2 ⊍P2 two exact n+ 1-
separations of M such that P1 is a subset of Q2 and F := Q2\P1 is finite. Assume
further that there is no n-separation E(M) = Z1 ⊍ Z2 of M such that Pi ⊂ Zi.
Then there is a set X which is a base of M/P1\P2 as well as of M\P1/P2. The
following two lemmas show the existence of pieces which can be added to finite parts
of circuits.

Proof. The proof is by induction on the size of F . Let Bi be a base of M�Pi and
B′i a base of M.Pi which is contained in Bi. This implies that |Bi\B′i| = n. If F is
the empty set, then X = ∅ meets the requirements of this lemma. If F contains a
unique element e, then by Remark 2.5 B1 ∪B′2 is a base of M iff B′1 ∪B2 is a base
of M . In this case let X = ∅. Otherwise B1 ∪B′2 + e and B′1 ∪B2 + e are bases of
M , let X = {e}.
So let |F | ≥ 2 and pick an edge e ∈ F . If M\e has no n-separation E(M − e) =
Z1⊍Z2 such that Pi ⊂ Zi, then by the induction hypothesis there is a set X ′ ⊂ F−e
which is a base both of (M − e)\P1/P2 and of (M − e)/P1\P2. By Remark 2.5
either B1 ∪X ′ ∪ B′2 and B′1 ∪X ′ ∪ B2 are bases of M or B′1 ∪ (X ′ + e) ∪ B2 and
B1 ∪ (X ′ + e) ∪B′2 are bases of M . In the first case let X = X ′ and in the second
case define X ′ = X + e.
If M\e has an n-separation E(M − e) = Z2 ⊍ Z2 such that Pi ⊂ Zi, then by
|F | ≥ 2 some Zi\Pi is non-empty. Assume without loss of generality that Z1\P1

is non-empty. Then E(M) = Z1 ⊍ (Z2 + e) is an exact n + 1-separation of M .
By the induction hypothesis there are sets Xi ⊂ Zi\Pi such that Xi is a base of
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M.Zi\Pi and of M�Zi
/Pi. Then X = X1 ∪X2 is a base of M\P1/P2 as well as of

M/P1\P2. �

Lemma 4.3. Let M be a matroid, E(M) = P1 ⊍ Q1 an exact n1-separation of
M and E(M) = Q2 ⊍ P2 and exact n2-separation of M such that P1 ⊂ Q2 and
|Q2\P1| is finite. Assume further that n1 ≤ n2 and there is no n1 − 1-separation
E(M) = Z1 ⊍Z2 of M such that Pi ⊂ Zi. Then there are bases B1, B2 of M/P1\P2

and M\P1/P2 respectively such that B2 ⊂ B1 and |B1\B2| = n2 − n1.

Proof. The proof is by induction on the size of F := E(M)\(P1 ∪ P2). If n1 = n2,
then we are done by Lemma 4.2, so assume n2 > n1. If F contains exactly one edge
e, then n1 + 1 = n2, so let B1 = {e} and B2 = ∅. B1 and B2 meet the requirements
of this lemma.
So let F contain at least two elements. If there is an exact n1-separation E(M) =
Z1 ⊍ Z2 such that each Pi is a proper subset of Zi then by Lemma 4.2 there is
a set X which is a base of M/P1\Z2 as well as of M\P1/Z2. By the induction
hypothesis there are bases B′1 of M/Z1\P2 and B′2 of M\Z1/P2 such that B′2 ⊂ B′1
and |B′1\B′2| = n2−n1. Then B1 = B ∪B′1 is a base of M/P1\P2 and B2 = B ∪B′2
is a base of M\P1/P2. Also B2 ⊂ B1 and |B1\B2| = |B′1\B′2| = n2 − n1.
So assume that there is no such exact n1-separation of M . Let e be an edge of
F , then E(M) = (P1 + e) ⊍ (Q1 − e) is an exact n1 + 1-separation of M . By
the induction hypothesis e is a base of M/P1\(Q1 − e) and the empty set is a
base of M\P1/(Q1 − e). Also by the induction hypothesis there are bases B′1 of
M/(P1 + e)\P2 and B′2 of M\(P1 + e)/P2 such that B′2 ⊂ B′1 and |B′1\B′2| =
n2 − (n1 + 1). So B1 = B′1 + e is a base of M/P1\P2, B2 = B′2 is a base of
M\P1/P2, B2 ⊂ B1 and |B1\B2| = |B′1\B′2|+ 1 = n2 − n1. �

The idea for the proof of Theorem 4.4 is first to collect edges f1, f2, ... recursively
such that every finite subset of F = {f1, f2, ...} is as above; and then to show
with compactness that there is a family (Cf )f∈F of circuits which is independent
concerning finite circuits such that f ∈ Cg ⇔ f = g. It is possible to do so, but
the proof becomes a lot shorter when not defining edges f1, f2, ... but instead finite
sets S1\S0, S2\S1, ... such that each Si+1\Si contains possible candidates for fi but
not specifying yet which edge of Si+1\Si will be in F .

Theorem 4.4. Let M be a cofinitary matroid. Then either M is l-nearly finitary
for some natural number l or M is not nearly finitary at all.

Proof. Assume that M is not l-nearly finitary for any natural number l. First we
show the existence of sets (Si)i∈N such that the following conditions hold for all
i ≥ 1:

• Si ⊂ E(M) is finite and contains Si−1.
• E(M) = Si ⊍ (E(M)\Si) is an exact i+ 1-separation of M .
• There is no exact i-separation E(M) = Z1 ⊍Z2 of M such that Z1 is finite

and contains Si.

To do so let S0 = ∅. Let i ≥ 1. As M is not i − 1-nearly finitary, there are bases
B of M and Bfin of Mfin such that B ⊂ Bfin and |Bfin\B| ≥ i. Let F be a subset
of Bfin\B of size i. By Lemma 4.1 there is no i-separation E(M) = Z1 ⊍ Z2 of M
such that Z1 is finite and contains Si−1 ∪ F . Let G ⊂ F be a minimal non-empty
set such that there is no i-separation E(M) = Z1 ⊍ Z2 of M such that Z1 is finite
and contains Si−1 ∪ G. Then G contains an edge e. Let E(M) = Z1 ⊍ Z2 be



14

an i-separation of M such that Z1 is finite and contains Si−1 ∪ (G − e), possibly
Z1 = Si−1 and define Si = Si−1 ∪ Z1 + e. Then E(M) = Si ⊍ (E(M)\Si) is an
exact i + 1-separation of M . As Si contains G ∪ Si−1, there is no i-separation
E(M) = Z1 ⊍ Z2 of M such that Z1 is finite and contains Si.
Now we show that for all natural numbers j there are bases B of M�Sj

and B′ of
M.Sj such that B′ ⊂ B and B\B′ meets all the sets Si+1\Si for i < j. The proof
is by induction on j. For j = 0 let B = B′ = ∅. So let j ≥ 1. By the induction
hypothesis there are bases B1, B

′
1 of M �Sj−1 and M.Sj−1 respectively such that

B′1 ⊂ B1 and B1\B′1 meets all sets Si+1\Si for i < j − 1. Define T = E(M)\Sj .
Then by Lemma 4.3 there are bases B2 of M/Sj−1\T and B′2 of M\Sj−1/T such
that B′2 ⊂ B2 and |B2\B′2| = (j + 1)− ((j − 1) + 1) = 1. Then B1 ∪B2 is a base of
M�Sj

, B′1 ∪ B′2 is a base of M.Sj and (B1 ∪ B2)\(B′1 ∪ B′2) meets all sets Si+1\Si
for i < j.
Let Y = {0, 1, 2}E(M) be a topological space with the product topology where
each component carries the discrete topology. Consider the following three types
of closed subsets of Y :

YC =
⋃
e∈C
{y ∈ Y |y(e) = 0} for a finite circuit C of M

YD =
⋃
e∈D
{y ∈ Y |y(e) = 2} for a cocircuit D of M

Yi =
⋃

e∈Si+1\Si

{y ∈ Y |y(e) = 1} for every natural number i

If there is an x ∈ Y which is contained in all of these sets, then B = {e ∈
E(M)|x(e) = 2} is spanning in M (and hence contains a base of M), Bfin =
{e ∈ E(M)|x(e) 6= 0} is independent in Mfin (and is thus contained in a base of
Mfin)and Bfin\B = {e ∈ E(M)|x(e) = 1} is infinite. So B and Bfin witness that
M is not nearly finitary. In order to show that there is such an x, it is enough
to show that for each finite set Y of closed subsets of the form YC , YD or Yi their
intersection is non-empty.
So let Y be a finite set of closed subsets of the form YC , YD or Yi. Let j be the
largest number such that Yj ∈ Y and let R be the union of Sj , the circuits C
such that YC ∈ Y and the cocircuits D such that YD ∈ Y. As shown before in
this proof, there are bases B1 of M �Sj and B′1 of M.Sj such that B′1 is a sub-
set of B1 and B1\B′1 meets all sets Si+1\Si for i < j. As there is no j-separation
E(M) = Z1⊍Z1 of M such that Z1 is finite and contains Sj , E(M) = R⊍(E(M)\R)
is an exact n-separation for some n > j. So by Lemma 4.3 there are bases B2 of
M/Sj\(E(M)\R) and B′2 of M\Sj/(E(M)\R) such that B′2 is a subset of B2 and
|B2\B′2| = n−(j+1). Then B3 = B1∪B2 is a base of M�R/Sj and B′3 = B′1∪B′2 is
a base of M.R\Sj such that their difference meets all sets Si+1\Si for i > j. Thus
every x ∈ Y with x(e) = 0 if e ∈ R\B3, x(e) = 1 if e ∈ B3\B′3 and x(e) = 2 if
e ∈ B′3 is contained in the intersection of the closed sets contained in Y. �

Corollary 4.5. Let G be a locally finite connected graph and M its algebraic cycle
matroid. Then M is l-nearly finitary for some natural number l or M is not nearly
finitary at all.
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5. Full separations of glued represented matroids

5.1. In general. The following operation of gluing together two matroids in order
to get a new matroid is taken from [5], where it is only defined for finite matroids.
The definition makes sense for infinite matroids which are represented as defined
in this thesis. The result of such an operation should also be a matroid if the parts
are infinite, but this is not stated in [5] and will not be proved here. It does not
matter here, because the leading question in this section is when a matroid M can
be written as the sum of two smaller ones. So the structure resulting from the
gluing operation is M and thus already a matroid by assumption.

Remark 5.1. [5, section 7] Let M1,M2 be two matroids which are thinly repre-
sentable over the same field k and represented by V1, V2 respectively such that their
edge sets intersect in a finite set K. Define P = E(M1)\K and Q = E(M2)\K.
Let V1 ⊕K V2 = {(v1, v2) ∈ kP × kQ|∃v′1 ∈ V1∃v′2 ∈ V2 : pP (v′1) = v1 and pQ(v′2) =
v2 and pK(v′1) = pK(v′2)}. If there is a matroid which is represented by V1 ⊕K V2,
then denote M = M1 ⊕K M2.

Definition 5.2. [5] The matroids M1,M2 from Remark 5.1 are glued together along
K. If there is a matroid represented by V1 ⊕K V2, then denote it by M1 ⊕K M2.

When a representable matroid is the sum of two others, then this sum displays a
lot of structure of M . When M1�P = M�P and M2�Q = M�Q then this sum makes
the structure of M even clearer. In Subsection 5.2 it will be shown that whenever
E(M) = P1 ⊍ P2 is a finite separation of M , then there are matroids M1,M2 such
that E(M1) ∩ E(M2) = K is a finite set, M = M1 ⊕K M2, M�Pi = Mi�Pi and this
sum has several other properties. This is a very long proof, so it will be delayed
until the end of this section and gets its own subsection. Lemma 5.3 establishes
that E(M) = P1 ⊍P2 is indeed a finite separation and characterises when this sep-
aration has nice properties. As this is possible for all finite separations of M , being
able to write it as a sum along that separation does not give it extra structure, but
the structure of M can be much better seen.
Let M1,M2 be two matroids represented by Vi ≤ kE(Mi) such that K = E(M1) ∩
E(M2) is finite and M = M1 ⊕K M2. Let Pi = E(Mi)\K.

Lemma 5.3. E(M) = P1 ⊍ P2 is an l-separation of M with l ≤ |K| + 1. It is an
exact (|K|+ 1)-separation of M iff K is independent and coindependent in M1 as
well as in M2.

Proof. Let BM ∈ B(M�P1
), B′M ∈ B(M.P1), B1 ∈ B(M1�P1

) and B′1 ∈ B(M1.P1)
such that B′1 ⊂ B′M ⊂ BM ⊂ B1. Then we have

|BM\B′M | ≤ |B1\B′1| ≤ |K|
so E(M) = P1 ⊍ P2 is an l-separation of M with l ≤ |K|+ 1.
”⇒” If E(M) = P1 ⊍ P2 is an exact |K|+ 1-separation of M , then we have

|K| = |BM\B′M | ≤ |B1\B′1| ≤ |K|
so we get that |B1\B′1| = |K|. Pick a base BK ∈ B(M1�K). Then B′1 ∪K is a base
of M1 and |(B1 ∪BK)\B1| ≤ |K| = |B1\(B′1 ∪BK)|, so B1 is a base of M1 (thus K
is coindependent in M1) and BK = K, hence K is independent in M1. Similarly
K is independent and coindependent in M2.
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”⇐” B1 is spanning in M1 and thus a base as well as B′1∪K. Hence |B1\(B′1∪K)| =
|(B′1 ∪K)\B1| = |K|. As K is independent in M2, every circuit of M which is a
subset of P1 is also a circuit of M1. So B1 is independent in M and thus a base
of M�P1

⇒ B1 = BM . Dually, as K is coindependent in M2, we get that B′1 is
spanning in M.P1, thus B′1 ∈ B(M.P1) and therefore B′1 = B′M . So we get that

|BM\B′M | = |B1\B′1| = |K|
so E(M) = P1 ⊍ P2 is an exact |K|+ 1-separation of M . �

Definition 5.4. If E(M) = P1 ⊍ P2 is an exact |K| + 1-separation, then M is
properly glued along K.

Corollary 5.5. If M = M1 ⊕K M2 is properly glued along K, then the following
things hold:

• M�Pi
= Mi�Pi

and M.Pi = Mi.Pi.
• The projection pPi : V (Mi)→ kPi is injective
• For every vector v ∈ kK there is a vector v′ ∈ V (Mi) such that pK(v′) = v
• For every vector v ∈ V (M) there are unique vectors vi ∈ V (Mi) such that
pPi

(vi) = pPi
(v) and v = v1 ⊕K v2.

Also any base of M can be split up into a base of M1 and a base of M2. This
is shown in Lemma 5.9. The other statements before that are necessary for that
Lemma.

Remark 5.6. Let B be a base of M and let Bi be a base of Mi such that B∩Ei ⊂
Bi ⊂ B ∪K. Then |B1 ∩K|+ |B2 ∩K| = |K|.

Lemma 5.7. Let kE = V1 ⊕ V2 be a finite-dimensional vector space which is the
direct sum of two subspaces. Then there is a partition E = B1 ∪ B2 into possibly
empty sets such that Vi ∩ kBi = {0}.

Proof. By induction on |E|. For |E| = 0 we can take B1 = B2 = ∅. So let |E| be
at least one, and let e ∈ E. Let pe be the projection from kE onto kE−e. There are
two cases:

(1) ∃v1 ∈ V1 − 0 : pe(v1) ∈ V2

In this case it is not possible that there is also a v2 ∈ V2\{0} with pe(v2) ∈ V1.
Assume for a contradiction that there is: so we have some v1 = v′2 + v1(e)χe and
some v2 = v′1 + v2(e)χe such that vi ∈ Vi\{0} and v′i ∈ Vi ∩ kE−e. Then vi(e) 6= 0

as V1 ∩ V2 = {0}. Define λ = v1(e)
v2(e) . Then we have v′1(e) = 0 and

v1 = v′2 + v1(e)χe and λv2 = λv′1 + v1(e)χe

which implies that
v1 + λv′1 = λv2 + v′2.

As V1 ∩ V2 = {0}, it follows that 0 = 0(e) = v1(e) + λv′1(e) = v1(e), which is a
contradiction to the choice of v1. So in this case we get that there is no v2 ∈ V2\{0}
such that pe(v2) ∈ V1. By swapping the numbers 1 and 2 we get into the next case:

(2) @v1 ∈ V1\{0} : pe(v1) ∈ V2

In this case, consider pe(V1) + (V2 ∩ kE−e). Then 0 is the only element of V1 which
is mapped by p2 to an element of V2 and ker pe∩V1 = {0}, so dim pe(V1) = dimV1,
hence kE−e = pe(V1)⊕ (V2 ∩ kE−e). As the size of E − e is smaller than the size of
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E, we get by induction hypothesis that there is a partition E − e = B′1 ∪ B′2 such

that kB
′
1 ∩ pe(V1) = {0} and kB

′
2 ∩ (V2 ∩ kE−e) = {0}. Define B1 := B′1 + e and

B2 := B′2. Then we immediately get that kB2 ∩ V2 = kB
′
2 ∩ (V2 ∩ kE−e) = {0}.

Let x ∈ kB1 ∩ V1. Then we have that pe(x) ∈ kB′1 ∩ pe(V1), so pe(x) = 0. Again
by assumption we have that kerpe ∩ V1 = {0}, so x = 0. Therefore we have that
kB1 ∩ V1 = {0}. �

Remark 5.8. Let B be a base of M . Let V ′i := pK(Vi∩kB∪K). This is a subspace
of kK and represents M\(Pi\B)/(B ∩ Pi).

Lemma 5.9. If E(M) = P1 ⊍ P2 is an exact |K| + 1-separation of M , then there
is a partition K = B1 ⊍B2 such that (B ∩ Pi) ∪Bi is a base of Mi.

Proof. By Remark 5.6 we have that

dimV1 + dimV2 = |K| − rankM1
(K) + |K| − rankM ′2(K)

= |K|+ |K| − |K|
= |K|

We also have that for v ∈ V1∩V2−0 there are vi ∈ V (Mi) with supp (() vi) ⊂ B∪K
and vi = v on K. As B is a base, this implies that vi = v on all of Pi. As
E(M) = P1⊍P2 is an exact |K|+1-separation of M , we have that K is independent
in both Mi, so v = 0, which is a contradiction to the choice of v, so we have that
kK = V1 ⊕ V2. By Lemma 5.7 we get that there is a partition K = B1 ⊍ B2 such
that kBi ∩Vi = {0}. So each Bi is independent in M ′i . As the size of each Bi equals
the rank of M ′i , we have that Bi is a base of M ′i , hence (B ∩ Pi) ∪ Bi is a base of
Mi. �

5.2. Dividing a matroid. In this section it will be shown that for a given thinly
representable matroid M represented over a vector space V , and a finite separation
E(M) = P1 ⊍ P2 of M there are two matroids M1,M2 such that E(Mi) = Pi ⊍K
for some finite set K and M = M1 ⊕K M2. The matroids Mi will be constructed
carefully to ensure that M is glued properly along K.
There are many ways to manipulate a matroid in a finite way and get a new matroid.
When M is represented by a vector space V , then one of these ways is to apply an
isomorphism to V which only changes something on a finite subset of E(M). We
will need this fact for the proof of Lemma 5.11.

Lemma 5.10. Let M be a tame matroid on ground set E, which is represented by
V ⊂ kE. Let L ⊂ E be an independent and coindependent finite set and φL : kL →
kL an isomorphism. Define φ : kE → kE to be the unique linear function such that
pkL ◦ φ = φL and pkE\L ◦ φ = idkE\L . Let V ′ = φ(V ). Then there is a matroid M ′

represented by V ′.

Proof. Let

V ′ = {S ⊂ E|∃v ∈ V ′ : S = supp (v)}
C′ = {C ∈ V ′|C is minimal non-empty}
S ′ = {S ⊂ E|S is a union of elements of C} and

I ′ = {I ⊂ E|I contains no element of C}

Claim 1. For all v′ ∈ V ′, supp (v′) is an element of S ′.
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Proof. The proof goes by induction on |supp (v′) ∩ L|. If |supp (v′) ∩ L| = 0, then
v′ ∈ V and thus supp (v′) is a union of circuits of M . For each of these circuits
C there is a vector vC ∈ V such that supp (vC) = C. The support of vC does not
meet L, hence vC is also a vector of V ′ with minimal non-empty support. Thus
supp (v′) is a union of elements of C′.
So consider the case that |supp (v′)∩L| > 0. Let B′ be a base of M�supp(v′)\L. Then

B′ does not contain an element of C′ and spans supp (v) \L. Let v = φ−1(v′) and
B a base of M�supp(v) containing B′. Define w = v −

∑
e∈L∩(supp(v)\B) v(e)vBe ∈ V

which is a finite linear combination of fundamental vectors of B.
Assume for a contradiction that supp (w) contains edges from L. As supp (w) is a
scrawl of M , it contains a circuit C containing an edge z of L. By the construction of
w, supp (w) ⊂ (supp (v) \L)∪(L∩B). Hence C∩L ⊂ B. Then by (C3) forM applied

to z ∈ C, C\(B′ ∪ L) and (CB
′

e )e∈C\(B′∪L), there is a circuit using z which is a
subset of B∪B′ = B. This is a contradiction to the fact that B is independent in M .
Hence w does not use edges from L and thus pL(v) = pL(

∑
e∈L∩(supp(v)\B) v(e)vBe ).

Let

w′ = φ

 ∑
e∈L∩(supp(v)\B)

v(e)vBe

 =
∑

e∈L∩(supp(v)\B)

v(e)φ(vBe ) ∈ V ′.

Then supp (w′) ⊂ B′∪ (supp (v′)∩L) ⊂ supp (v′). As B′ does not contain elements

of V ′ and supp (v′)∩L is finite, the vector space V ′∩ksupp(w′) has finite dimension.
Thus supp (w′) contains an element C of C′ and this necessarily contains an element

z ∈ L. Let vC ∈ V ′ such that supp (vC) = C. Then v′ − v′(z)
vC(z)vC ∈ V

′ contains

strictly less edges from L in its support than v′, so by the induction hypothesis its
support is in S ′. Then

supp (v′) = supp

(
v′ − v′(z)

vC(z)
vC +

v′(z)

vC(z)
vC

)
⊂ supp

(
v′ − v′(z)

vC(z)
vC

)
∪ supp

(
v′(z)

vC(z)
vC

)
= supp

(
v′ − v′(z)

vC(z)
vC

)
∪ C

⊂ supp (v′) ∪ supp (vC) ∪ C,

so supp (v′) = supp

(
v′ − v′(z)

vC(z)
vC

)
∪ C is a union of elements of C′. �

Claim 2. C′ satisfies (C1) and (C2).

Proof. By definition of C′, every element of C′ is non-empty, hence ∅ /∈ C′. Also by
the definition of C′, every element of it is minimal non-empty, so no element of C′
can be a proper subset of another one. �

Claim 3. C′ satisfies (C3).

Proof. Let C1, C2 ∈ C′, x ∈ C1 ∩ C2 and z ∈ C1\C2. Let v1, v2 ∈ V ′ such that

supp (v1) = C1 and supp (v2) = C2, then v1−
v1(x)

v2(x)
v2 has a support which by Claim

1 is a union of elements of C′ and thus contains an element of C′ containing z. So C′
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satisfies (C3) if X contains at most one element. By induction it also satisfies (C3)
if X is a finite set. Let (Cx|x ∈ X) be a family of elements of C′, C an element of C′
and z ∈ C\

⋃
x∈X Cx such that for all x in X, Cx ∩ C = {x}. Then X1 = X ∩ L is

finite, so there is an element C1 of C′ such that z ∈ C1 ⊂
(
C ∪

⋃
x∈X1

Cx
)
\X1. For

each x ∈ X\L there is a vector vx ∈ V ′ such that supp (vx) = Cx and vx(x) = 1.
Let X2 ⊂ X\L be a maximal set such that (pL(vy))y∈X2

is independent in the
vector space kL. The size of X2 is bounded by the size of L which is finite,
so X2 exists and is a finite set. Then for each x in X3 := X\(X1 ∪ X2) there
is a unique linear combination

∑
y∈X2

αxyvy such that v′x := vx −
∑
y∈X2

αxyvy
does not contain edges of L in its support. For all x ∈ X3, v′x(x) = 1, so by
Claim 1 there is an element C ′x of C′ such that x ∈ C ′x ⊂ supp (v′x). None of
the C ′x meets L, so each is a circuit of M . Let v ∈ V ′ be a vector such that
supp (v) = C1. Then the family (C ′x|x ∈ X3), the vector φ−1(v) and the set
supp

(
φ−1(v)

)
∩ L + z meet the requirements of Lemma 2.29 and thus there is a

vector w ∈ V such that pL+z(w) = pL+z(φ
−1(v)) (hence pL+z(φ(w)) = pL+z(v)),

supp (w) ⊂
(
supp

(
φ−1(v)

)
∪
⋃
x∈X3

C ′x
)
\X3 (hence supp (φ(w)) is a subset of(

supp (v) ∪
⋃
x∈X3

C ′x
)
\X3) and supp (w) \(L + z) is independent in M (so it is

contained in I ′). As φ(w) ∈ V ′, by Claim 1 there is C2 ∈ C′ such that

z ∈ C2 ⊂ supp (φ(w)) ⊂

(
supp (v) ∪

⋃
x∈X3

C ′x

)
\X3

=

(
C1 ∪

⋃
x∈X3

C ′x

)
\X3

⊂

((
C ∪

⋃
x∈X1

Cx

)
∪
⋃
x∈X3

supp (v′x)

)
\(X1 ∪X3)

⊂

(C ∪ ⋃
x∈X1

Cx

)
∪
⋃
x∈X3

supp (vx) ∪
⋃
y∈X2

supp (vy)

 \(X1 ∪X3)

=

C ∪ ⋃
x∈X1

Cx ∪
⋃
x∈X3

Cx ∪
⋃
y∈X2

Cy

 \(X1 ∪X3)

=

(
C ∪

⋃
x∈X

Cx

)
\(X1 ∪X3).

As X2 is finite, there is an element C3 of C′ such that

z ∈ C3 ⊂

C2 ∪
⋃
y∈X2

Cy

 \X2

⊂

(C ∪ ⋃
x∈X

Cx

)
\(X1 ∪X3) ∪

⋃
y∈X2

Cy

 \X2

=

(
C ∪

⋃
x∈X

Cx

)
\X.



20

�

Claim 4. I ′ satisfies (IM), thus C′ satisfies (CM).

Proof. Let I ∈ I ′ and X ⊂ E such that I ⊂ X. The proof is by induction on
|I ∩ L|. If |I ∩ L| = 0, then I is independent in M and by (IM) of M there is
a maximal independent set B ⊂ X\L containing I which then also is a maximal
element of I ′ contained in X\L. As L is finite, there is a maximal B′ ∈ I ′ such
that B ⊂ B′ ⊂ X. Then B′ contains I.
So let |I ∩ L| > 0 and pick l ∈ I ∩ L. As |(I − l) ∩ L| < |I ∩ L|, there is a maximal
element B of I ′ satisfying I − l ⊂ B ⊂ X. If B + l ∈ I ′, then B + l is a maximal
element of I ′ such that I ⊂ B + l ⊂ X. Otherwise there is v ∈ V ′\{0} such that
supp (v) ⊂ B + l. As B ∈ I ′, v(l) 6= 0. Similarly as I ∈ I ′, there is b ∈ B\I such
that v(b) 6= 0. Then B+ l− b ∈ I ′ is a subset of X, contains I and is maximal with
these properties. �

The Claims 1 - 4 show that there is a matroid on ground set E such that its set
of circuits is C′. Denote this matroid by M ′.

Claim 5. Every cocircuit of M ′ meets every element of V ′ only in finitely many
edges.

Proof. Let D′ be a cocircuit of M . Assume first that D′ does not meet L. Then
D′ is also a cocircuit of M . Let v′ ∈ V ′ and v = φ−1 ∈ V , then D′ ∩ supp (v′) =
D′ ∩ supp (v) is finite. So assume next that D′ meets L.
Then D′\L is a scrawl of M ′∗/L = (M ′\L)∗ = (M\L)∗ = M∗/L so there is a scrawl
D of M∗ such that D′\L ⊂ D ⊂ D′ ∪L. Furthermore D′\L = D\L is independent
in M ′�E\L and thus independent in M . Let B be a base of M�D containing D\L,

then D equals
⋃
e∈D\B C

B
e where CBe is the fundamental circuit of e in B with

respect to M∗. Let v′ ∈ V ′ and v = φ−1(v) ∈ V . Then supp (v) \L = supp (v′) \L
and hence

D′ ∩ supp (v′) ⊂ ((D′\L) ∩ (supp (v′) \L)) ∪ L
⊂ (D ∩ supp (v)) ∪ L

⊂
⋃

e∈D\B

(CBe ∩ supp (v)) ∪ L.

As L, D\B and each CBe ∩ supp (v) are finite sets, D′ ∩ supp (v′) is also finite. �

By the definition of C′, C′ ⊂ V ′, and Claim 1 shows that V ′ ⊂ S ′. Thus by
Claim 5 M ′ is represented by V ′. �

Lemma 5.11. Let M be a tame matroid represented by a vector space V ⊂ kE(M).
Let E(M) = P1 ⊍ P2 be an exact l+ 1-separation of M . Then there are a finite set
K of size l and matroids Mi represented by Vi ⊂ kPi∪K s.th. E(Mi) = Pi ∪K and
M = M1 ⊕K M2.

Proof. Let Bi ∈ B(M�Pi) and B′i ∈ B(M.Pi) s. th. B′i ⊂ Bi. Then |Bi\B′i| = l.

Let K be a set which has size l. The maps pBi\B′i : kB1∪B2 ∩ V → kBi\B′i are

isomorphisms: Let v ∈ kB1∪B2 ∩ V such that pB1\B′1(v) = 0, then supp (v) ∩ P1 is
a subset of B′1. As supp (v) ∩ P1 is a scrawl of M.P1 and B′1 is a base of M.P1,
supp (v) ∩ P1 is the empty set and thus supp (v) ⊂ B2. But B2 is a base of M�P2

,

so supp (v) = ∅ and thus v = 0. So pB1\B′1 : kB1∪B2 ∩ V → kB1\B′1 is injective and
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kB1\B′1 kP1∪K

V ∩ kB1∪B2 kK

kB2\B′2 kP2∪K

h1

∼

t1

φ1

∼

h2∼

t2

φ2

∼

Figure 2. A commutative diagram illustrating some of the linear
functions defined in the proof of Lemma 5.11.

similarly pB2\B′2 : kB1∪B2 ∩ V → kB2\B′2 is injective. By Remark 2.12 B′1 ∪ B2 is
a base of M , so for every edge e ∈ B1\B′1 there is a fundamental vector, denote it

short by ve. As (χe)e∈B1\B′1 spans kB1\B′1 and pB1∩B′1(ve) = χe, this implies that

pB1\B′1 : kB1∪B2∩V → kB1\B′1 is surjective. Similarly pB2\B′2 : kB1∪B2∩V → kB2\B′2

is surjective. Hence these two maps are isomorphisms. Denote their inverses with
h1 and h2. Pick an isomorphism φ1 : kB1\B′1 → kK . Let φ2 = φ1 ◦ h−1

1 ◦ h2 and

define ti : kBi\B′i → kPi∪K by ti(x) = pPi
◦ hi(x) + φi(x). Some of these maps

are shown in Figure 2. Let Wi = ti(k
Bi\B′i) and Vi = (V ∩ kPi) + Wi. By picking

an arbitrary bijection from B1\B′1 to K, φ1 can be seen as an automorphism on

kB1\B′1 . Let U := p(P1∪B2)\B′2(V ∩ kP1∩B2). Then (M �P1∪B2)/B′2 is represented
by U and V1 represents a matroid M1 by Lemma 5.10 (renaming some edges of a
matroid does not change its being a matroid). Similarly V2 represents a matroid
M2.
In order to show that M = M1⊕KM2, let first v ∈ V (M1⊕KM2). Then there are
vi ∈ Vi such that pPi(v) = pPi(vi) and pK(v1) = pK(v2) and thus v′i ∈ V ∩kPi , wi ∈
Wi such that vi = v′i +wi. Let xi ∈ V ∩ kB1∩B2 such that ti ◦ h−1

1 (xi) = w1. Then

φ1 ◦ h−1
1 (x1) = pK ◦ t1 ◦ h−1

1 (x1) = pK(w1) = pK(v1)

= pK(v2) = pK(w2) = pK ◦ t2 ◦ h−1
2 (x2) = φ2 ◦ h−1

2 (x2).

As the φi and hi are isomorphisms, this implies that x1 = x2. So (pP1
(w1), pP2

(w2)) =
x1 = x2 when identifying kE with kP1 × kP2 . So v = v′1 + v′2 + x1 is an element
of V . This implies that V1 ⊕K V2 ⊂ V and thus that the support of any vector in
V1 ⊕K V2 is a scrawl of M .
Let v ∈ V be a vector such that the support of pP2(v) is a subset of B2. Define z =
h2◦pB2\B′2(v) and v′ = v−w ∈ V , then the support of v′ is a subset of P1∪B′2. As B′2
is a base of M.P2, supp (v′) ⊂ P1 and thus v = (pP1

(v′+t1◦h−1
1 (w)), pK ◦t2◦h2(w))

is a vector in V1 ⊕K V2. This shows that all v ∈ V only using edges of P1 ∪ B2

have a support which is a scrawl of M1 ⊕K M2. Now let C be a circuit of M . If C
is a subset of some Pi, then there is a vector v ∈ V ∩ kPi such that supp (v) = C
implying that v ∈ Vi. So in this case there is a vector of Vi such that its support
equals C. Assume that C meets both P1 and P2. Hence C ∩ P1 is independent in
M and there is a base B of M�P1

containing C ∩ P1. By Remark 2.12, B ∪ B′2 is
a base of M . Let B′ be a base of M such that B2 ⊂ B′ ⊂ B2 ∪ B. By Remark
2.5, |(B ∪ B′2)\B′| = |B′\(B ∪ B′2)| = |B2\B′2|. So there are finitely many edges
e ∈ B\B′. For each of these edges there is a fundamental circuit in B′ and thus a
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vector ve ∈ V such that its support equals the fundamental circuit. Let v ∈ V be

a vector such that supp (v) = C, then w = v−
∑
e∈B\B′

v(e)
ve(e)ve is an element of V .

The support of w is a subset of B′. By Remark 2.5 B′∩P1 is a base of M�P1
and thus

supp (w)∩P1, which is a scrawl of .P1, has to be the empty set. Hence the support
of w is a subset of P2 and thus w ∈ V ∩kP2 ⊂ V1⊕K V2. Since supp (ve) ⊂ P1∪B2,

for all e ∈ B\B′ it is true that ve ∈ V1⊕K V2. Hence v = w+
∑
e∈B\B′

v(e)
ve(e)ve is an

element of V1⊕K V2. So for every circuit C of M there is a vector in V1⊕K V2 such
that its support equals C. Hence C(M) ⊂ V1 ⊕K V2 ⊂ S(M). As V1 ⊕K V2 ⊂ V ,
the support of every vector of V1 ⊕K V2 meets every cocircuit of M in only finitely
many edges, so M is represented by V1 ⊕K V2. �

Example 5.12. Even if the vector spaces in Lemma 5.11 are constructed to ensure
that M1 ⊕K M2 = M , they do not necessarily satisfy V (M) = V1 ⊕K V2.
Let E be an infinite set and M the matroid with ground set E in which every
subset of E is dependent. Let E = P1 ⊍P2 be a partition of E(M) into two infinite
sets. Then the empty set is a base of M�P1

= M.P1 as well as of M�P2
= M.P2,

so E = P1 ⊍ P2 is an exact 1-separation of M . Let V be the vector space which
is spanned (as a vector space) by the vectors {χe|e ∈ E} ∪ {χE}. As M does not
have any cocircuits, it is represented by V . So the construction of Lemma 5.11 can
be applied to M , V and E = P1 ⊍ P2. It yields the two vector spaces Vi ≤ kPi (K
has size 0 and is thus empty) which contain all those functions f : Pi → k whose
support is finite. Then also every vector in V1⊕K V2 has finite support, so χE is not
an element of V1 ⊕K V2 and thus V 6= V1 ⊕K V2. Of course still M = M1 ⊕K M2;
V and V1 ⊕K V2 are different representations of M .
It is not possible to change the construction in Lemma 5.11 such that V (M) =
V1⊕KV2 but M is still properly glued along K: Let M1,M2 be matroids represented
by vectorspaces V1, V2 such that for K = E(M1) ∩ E(M2) it is true that M =
M1 ⊕K M2, E(Mi) = Pi ⊍ K and M is properly glued along K. Then by the
definition of properly glued and the fact that E = P1 ⊍ P2 is an exact 1-separation
of M , K has to be the empty set. Thus V1 ⊕K V2

∼= V1 × V2. Assume for a
contradiction that V = V1⊕K V2. As V contains χE , χP1

has to be contained in V1

and χP2
has to be contained in V2. Both of these vectors have infinite support. Let

e be an edge which is contained in P2. Then {e} is a circuit of M and thus a circuit
of M2, so χe ∈ V2. So the vector (χP1 , χe) is a vector in V . Hence the support of
(χP1 , χe) contains infinitely many edges (namely E + e) and its complement also
contains infinitely many edges (namely P2 − e). But the support of every vector in
V either contains only finitely many edges or contains all but finitely many edges
of E.
But as in Example 2.26, again the only problem is that V contains too many edges:
Let M be a matroid which is represented by a vectorspace V which only consists
of vectors whose support is a circuit of M and linear combinations of these vectors.
Assume that P1, P2, K, M1, M2, V1 and V2 are as in Lemma 5.11. Then it is already
shown in the proof of Lemma 5.11 that V1⊕K V2 is a subset of V . In order to show
that V1 ⊕K V2 = V , let v ∈ V . Then v is a linear combination v =

∑
i∈I λivi of

vectors whose support supp (vi) = Ci is a circuit of M . As M = M1 ⊕K M2, each
Ci is a circuit of M1⊕K V2 and thus there is a vector wi ∈ V1⊕K V2 whose support
equals Ci. As V1⊕K V2 ⊂ V , wi is an element of V . As Ci is a minimal non-empty
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element of V , wi has to be a multiple of vi and thus vi is an element of V1 ⊕K V2.
Hence v is also an element of V1 ⊕K V2 and thus V1 ⊕K V2 = V .
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6. Some results about hindrances

In [7] it was conjectured that for any family (Mk)k∈K of matroids on the same
ground set for which there is no hindrance there is a covering. This was shown
to be equivalent to the packing/covering conjecture [7, Proposition 4.11] and other
conjectures (for example intersection [7, Propositon 3.6]). In the same paper it was
shown that in some special cases there is no hindrance of (Mk)k∈K , implying some
special cases of the packing/covering conjecture and other conjectures [7, Theorem
4.16]. Let M1 and M2 be two matroids on the same ground set E(M1) = E(M2) =
E.

Definition 6.1. [7, Definiton 4.1] A set (P1, P2, e) is called a hindrance if

• Each Pj is a subset of E(M1) = E(M2) and spans P1 ∪ P2 + e in Mj

• e ∈ E(M) and the sets P1, P2, {e} are pairwise disjoint.

In [7], the definition allows several edges in the place of e by naming the union
P1 ∪P2 + e (or more edges than e) instead of naming e explicitly, but the existence
of one such edge is enough for the purpose of a hindrance.

Remark 6.2. Let (P1, P2, e) be a hindrance and define S = P1 ∪ P2 + e.

(1) Let P ′j ⊂ Pj be a base of Mj � S for j ∈ {1, 2}. Then (P ′1, P
′
2, e) is a

hindrance, too.
(2) Let Qj be the set of coloops of Pj in Mj�S (j ∈ {1, 2}) and Q = Q1 ∪Q2.

Then (P1\Q,P2\Q, e) = (P1\Q1, P2\Q2, e) is a hindrance and neither Mi�

Pi\Qi
contains a coloop.

(3) As each Pj is spanning in Mj�S , there are circuits Cj , j ∈ {1, 2} of Mj such
that e ∈ Cj ⊂ Pj +e. Pick edges ej ∈ Cj . Then the sets (P1 +e−e1, P2, e1)
and (P1, P2 + e− e2, e2) are hindrances, too. If P1 is a base of M1, then so
is P1 + e− e1, and if P2 is a base of M2, then P2 + e− e1 is a base of M2,
too.

Definition 6.3. 1 Define an order on hindrances with the same edge e as third
entry via

(P ′1, P
′
2, e) ≤ (P1, P2, e) :⇔ P ′1 ⊂ P1 and P ′2 ⊂ P2

Lemma 6.4. Let (P1, P2, e) be a hindrance such that each Pj is a base of P1∪P2+e
in Mj. Then there is a minimal hindrance (P ′1, P

′
2, e) ≤ (P1, P2, e).

Proof. Let Q0 = {e}. For i ∈ N and j ∈ {1, 2} define recursively Q2i+j =⋃
{CPj

f |f ∈ Q2i+j−1}. This is well-defined as C
Pj

f is empty if f ∈ Pj . Then

Q2i+j\Q2i+j−1 is a subset of Pj . Define P ′j =
⋃
i∈NQ2i+j\Q2i+j−1.

For f ∈ P ′2 + e there is a smallest index i ∈ N such that f ∈ Q2i+1 and hence

CP1

f ⊂ Q2i+2 ⊂ P ′1∪P ′2 +e. As CP1

f −f ⊂ P1 and (P ′2 +e)∩P1 ⊂ (P2 +e)∩P1 = ∅,
CP1

f − f is a subset of P ′1. So f is spanned in M1 by P ′1. Similarly, every

edge f ∈ P ′1 + e is spanned in M2 by P ′2. So (P ′1, P
′
2, e) is a hindrance with

(P ′1, P
′
2, e) ≤ (P1, P2, e).

For each i ∈ N, the edges in Q2i+1\Q2i are necessary to span the edges of Q2i in M1

and the edges in Q2i+2\Q2i+1 are necessary to span the edges of Q2i+1 in M2, so
any sets P ′′1 ⊂ P ′1, P ′′2 ⊂ P ′2 either satisfy P ′′1 = P ′1 and P ′′2 = P ′2 or that (P ′′1 , P

′′
2 , e)

is not a hindrance. �

1This is very similar to the definition of an order on waves (and thus on hindrances which are
special cases of waves) except of course that the definition of a hindrance here is slightly different.
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Corollary 6.5. (i) For every hindrance (P1, P2, e) (not necessarily such that
the Pj are bases) there is a minimal hindrance (P ′1, P

′
2, e) such that

(P ′1, P
′
2, e) ≤ (P1, P2, e).

(ii) If there exists a hindrance (P1, P2, e), then there also exists a hindrance
(P ′1, P

′
2, e) such that S′ = P ′1 ∪ P ′2 + e is a scrawl both in M1 and in M2.

Proof. (i) Let (P1, P2, e) be a hindrance. By Part 1 of Remark 6.2 there
is a hindrance (P ′′1 , P

′′
2 , e) such that each P ′′j is a base of P ′′1 ∪ P ′′2 + e

in the corresponding Mj . By Lemma 6.4 there is a minimal hindrance
(P ′1, P

′
2, e) ≤ (P ′′1 , P

′′
2 , e), so (P ′1, P

′
2, e) ≤ (P1, P2, e) is minimal.

(ii) Let (P1, P2, e) be a hindrance. Then by (i) there is a minimal hindrance
(P ′1, P

′
2, e) ≤ (P1, P2, e), and by Part 2 of Remark 6.2 there are no coloops

in M1�P ′1∪P ′2+e or in M1�P ′1∪P ′2+e.
�

Lemma 6.6. Let B1, B2 be two bases of the same matroid M and let x ∈ E(M)
be an edge of that matroid. Then

CB1
x 4CB2

x := (CB1
x \CB2

x ) ∪ (CB2
x \CB1

x ) ⊂
⋃

z∈CB1
x \(B2+x)

CB2
z .

Proof. Define Z = CB1
x \(B2 +x) and let y be an element of CB1

x . If y /∈
⋃
z∈Z C

B2
z ,

then by (C3) there is a circuit Cy such that

y ∈ Cy ⊂ (CB1
x ∪

⋃
z∈Z

CB2
z )\Z ⊂ B2 + x

which implies that Cy = CB2
x and y ∈ CB2

x . Thus CB1
x \CB2

x ⊂
⋃
z∈Z C

B2
z . In

particular every a ∈ CB2
x is an element of Cx, so contained in CB1

x ∪
⋃
z∈Z C

B2
z .

Thus either a ∈ CB1
x (which implies that a /∈ CB2

x \CB1
x ) or a ∈

⋃
z∈Z C

B2
z . This

proves CB2
x \CB1

x ⊂
⋃
z∈Z C

B2
z . �

Lemma 6.7. Let (P1, P2, e) be a minimal hindrance and S = P1 ∪ P2 + e. Then
for each f ∈ S there is a minimal hindrance (N1, N2, f) such that N1∪N2 +f = S.

Proof. By Part 3 of Remark 6.2 it is true for ej ∈ C
Pj
e that (P1 + e− e1, P2, e1) and

(P1, P2 + e− e2, e2) are hindrances.
Assume for a contradiction that (P1 +e−e1, P2, e1) is not minimal. Then there is a
minimal hindrance (P ′1, P

′
2, e) ≤ (P1+e−e1, P2, e1). By the minimality of (P1, P2, e)

and of (P ′1, P
′
2, e) and by Part 1 of Remark 6.2, P1 and P ′1 are bases of M1, so the

fundamental circuit CP1+e−e1
e1 = CP1

e is a subset of P ′1 + e1 and C
P ′1
e1 = CP1

e . Thus
(P ′1 +e1−e, P ′2, e) is a hindrance which is strictly smaller than (P1, P2, e). This is a
contradiction to the fact that (P1, P2, e) is minimal. Similarly, (P1, P2 +e−e2, e2) is
minimal. So if a hindrance is minimal, then the result of any operation of swapping
e with an edge in its fundamental circuit in one of the bases is minimal, too.
Define T0 = {(P1, P2, e)} and for i ∈ N, define recursively

T2i+1 = {(P ′1, P ′2, f ′)|P ′1 = P ′′1 + f − f ′ and P ′2 = P ′′2 for some

(P ′′1 , P
′′
2 , f) ∈ T2i with f ′ ∈ CP

′′
1

f }
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T2i+2 = {(P ′1, P ′2, f ′)|P ′1 = P ′′1 and P ′2 = P ′′2 + f − f ′ for some

(P ′′1 , P
′′
2 , f) ∈ T2i+1 with f ′ ∈ CP

′′
2

f }

Also define Ri = {f |∃(P ′1, P ′2, f ′) ∈ Ti : f ′ = f}.
Now the goal is to show by induction that the Qi as defined in the proof of Lemma
6.4 above coincide with the just defined Ri. R0 = {e} = Q0 and R1 = CP1

e = Q1,
so let n ≥ 2 and r ∈ Rn. Then there is a hindrance (P ′1, P

′
2, f) ∈ Tn−1 such that

r ∈ CP
′
j

f for some j ∈ {1, 2}. By Lemma 6.6 it is true that

C
P ′j
f 4C

Pj

f ⊂
⋃

z∈P ′j\Pj

CPj
z .

For an edge z′ ∈ P ′j\Pj there is a smallest index i ∈ N such that there is a hindrance
(N ′1, N

′
2, g) ∈ Ti where z′ /∈ N ′j . This index i is smaller than n. But then z′ = g

and thus z′ ∈ Ri ⊂ Rn−1. As Rn−1 = Qn−1 by the induction hypothesis, it is true

that C
Pj

z′ ⊂ Qn. This implies that

C
P ′j
f 4C

Pj

f ⊂
⋃

z∈P ′j\Pj

CPj
z ⊂ Qn.

As (P ′1, P
′
2, f) ∈ Tn−1, it is true that f ∈ Rn−1 = Qn−1, hence C

Pj

f ⊂ Qn and thus

C
P ′j
f = (C

P ′j
f \C

Pj

f ) ∪ (C
P ′j
f ∩ C

Pj

f )

⊂ (C
P ′j
f 4C

Pj

f ) ∪ CPj

f ⊂ Qn ∪Qn = Qn.

So r ∈ Qn.

Let on the other hand q ∈ Qn, then there is q′ ∈ Qn−1 such that q ∈ CPj

q′ for some

j ∈ {1, 2}. By the induction hypothesis Rn−1 = Qn−1, so there is a hindrance
(P ′1, P

′
2, f) ∈ Tn−1 such that f = q′. Then

C
Pj

q′ \C
P ′j
q′ ⊂ C

Pj

q′ 4C
P ′j
q′ = C

P ′j
q′ 4C

Pj

q′ ⊂
⋃

z∈P ′j\Pj

CPj
z .

For z ∈ P ′j\Pj , z is an element of Ri for some smallest index i ∈ N where i < n− 1.

This implies that C
Pj
z ⊂ Qi+1 = Ri+1 ⊂ Rn−1 and hence C

Pj

q′ \C
P ′j
q′ ⊂ Rn−1. So

if q ∈ CPj

q′ \C
P ′j
q′ , then q ∈ Rn, and otherwise q ∈ CP

′
j

q′ , so there is (N ′1, N
′
2, g) ∈ Tn

such that g = q.
So the union of all Ri equals the union of all Qi and, as (P1, P2, e) was chosen
minimal, the union of all Ri equals S. This implies that for all f ∈ S there are an
index n ∈ N and a hindrance (P ′1, P

′
2, f
′) ∈ Tn such that f ′ = f . As all hindrances

in the Ti are minimal, so is (P ′1, P
′
2, f
′). �
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7. Lattices of cyclic flats of finitary matroids

Julie A. Sims proved in [15] that if V is a lattice in which the heights of the
elements are bounded, then there is a matroid M such that V is isomorphic to the
lattice of cyclic flats of M , using the fact that on every lattice of finite height there
is a rank-function. She actually wrote about an ”independence space” but that
just means a finitary matroid. This result cannot hold for a lattice in which every
element has finite height but there is no bound on the height of the elements, as
every lattice of cyclic flats of a matroid has a biggest element (Example 7.5). But
it is possible to work around this problem by considering lattices of cyclic flats of
finite rank. The lattice of all cyclic flats of a finitary matroid can be reconstructed
from its lattice of cyclic flats of finite rank.
Our notation for lattices follows [13].

Definition 7.1. A lattice is a set V together with two operations ∧,∨ : V ×V → V
such that

• ∀v, w ∈ V : v ∧ (v ∨ w) = v = v ∨ (v ∧ w) (absorption)
• ∀v, w ∈ V : v ∨ w = w ∨ v and v ∧ w = w ∧ v (commutativity)
• ∀v, w, x ∈ V : v ∨ (w ∨ x) = (v ∨ w) ∨ x and v ∧ (w ∧ x) = (v ∧ w) ∧ x

(associativity).

If V has a least element 0 ∈ V , then the height of v ∈ V is the maximal length of
a chain from v to 0 if it exists and infinite otherwise.

Remark 7.2. [13, Vierter Abschnitt, 1.2] Let V be a lattice.

(1) Let v be an element of V , then it is true that v = v ∨ v and v = v ∧ v
(idempotency).

(2) There is a partial ordering defined on the elements of V by

∀v, w ∈ V : v ≤ w :⇔ v ∨ w = w.

For all v, w ∈ V , v ∨w = w and v ∧w = v are equivalent statements and it
is equivalent to the definition above to define

∀v, w ∈ V : v ≤ w :⇔ v ∧ w = v.

For all v, w ∈ V , the element v ∨ w of V is the least element bigger than v
and bigger than w with respect to the partial order and v∧w is the greatest
element of V smaller than v and smaller than w.

(3) Let v, w, x ∈ V .Then v ≤ w and v ≤ x is equivalent to the statement that
v ≤ w ∧ x. Similarly, the statement that v ∨ x ≤ w is equivalent to the
statement that v ≤ w and x ≤ w.

Remark 7.3. Let M be a matroid, let V be the set of its cyclic flats and define
∨,∧ : V × V → V via

v ∨ w = spanM (v ∪ w)

v ∧ w =
⋃
{C ∈ C(M)|C ⊂ v ∩ w}.

Then (V,∨,∧) is a lattice.

Definition 7.4. Let V be a lattice. A function r : V → N is called a rank-function
for V if it satisfies

• ∀v, w ∈ V : (v 6= w and v ∨ w = w)⇒ r(v) < r(w) (strict monotonicity)
• ∀v, w ∈ V : r(v) + r(w) ≥ r(v ∨ w) + r(v ∧ w) (submodularity).
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Example 7.5.
The figure on the left shows the Hasse diagram of a lattice V which is the
partially ordered set N with an additional greatest element. There cannot
be a rank-function on it, simply because it has an element of infinite height.
Nevertheless it is isomorphic to the lattice of cyclic flats of some matroid: Let
V f = N with the usual order on N. In Proposition 7.9 a matroid will be
constructed for V f such that its lattice of cyclic flats is isomorphic to V .
This problem is a problem for all lattices V with infinite length: Assume there
is a matroid M such that V is isomorphic to the lattice of cyclic flats of M .
Then V has a greatest element 1, namely the element which is mapped to
the cyclic flat E(M) of M under the isomorphism. The height of 1 is an
upper bound on the height of the elements of V and as V has infinite height,
the height of 1 is necessarily infinite. So the way a rank-function is defined
here, no lattice of infinite height on which there is a rank-function can be
isomorphic to the lattice of cyclic flats of some matroid. One possible solution

of the problem is to not consider the lattice of all cyclic flats of a matroid, but the
lattice of cyclic flats of finite rank of a matroid.

Lemma 7.7 will justify the focus on the lattice V ′ of cyclic flats of finite rank
instead of the lattice V of all cyclic flats: In a finitary matroid, the lattice V is the
ideal completion of V ′ and can thus be reconstructed from V ′.

Definition 7.6. [13, Vierter Abschnitt, 1.9]
Let V be a lattice. An ideal of V is a subset I ⊂ V which satisfies

• ∀v, w ∈ V : v ≤ w ∈ I ⇒ v ∈ I
• ∀v, w ∈ I : v ∨ w ∈ I.

The ideal completion of V is the lattice of all ideals of V ordered by inclusion.

Lemma 7.7. Let M be a finitary matroid and V f the set of its cyclic flats of finite
rank. Define ∨,∧ as in Remark 7.3, then (V f ,∨,∧) is a lattice and the lattice
(V,∨,∧) of cyclic flats of M is isomorphic to the ideal completion of (V f ,∨,∧).

Proof. Denote the ideal completion of (V f ,∨,∧) by (V ′,∨′,∧′). Define a function
ϕ : (V,∨,∧)→ (V ′,∨,∧) by F 7→ {G ∈ V f |G ⊂ F}. Then

• ϕ(F ) is well-defined, as it is an ideal of V f for all F ∈ F .
• ϕ is injective, because

⋃
ϕ(F ) = F for all F ∈ V .

• ϕ is surjective: Let J ∈ V ′ be an ideal of V f and e an edge of M spanned
by
⋃
J . Then there is a circuit C ⊂

⋃
J ∪ e containing e. As M is finitary,

C is finite, thus there are finitely many cyclic flats F1, ..., Fr ∈ J of finite
rank such that C ⊂ F1 ∪ ... ∪ Fr + e. Let F = F1 ∨ ... ∨ Fr, then F is a
flat, thus e ∈ F , and F ∈ J , as J is an ideal. Thus

⋃
J is a cyclic flat and

ϕ(
⋃
J) = J .

• ϕ is an isomorphism of lattices, as for all F,G ⊂ V such that F ⊂ G,
ϕ(F ) ⊂ ϕ(G).

So (V,∨,∧) and (V ′,∨′,∧′) are isomorphic. �

If a lattice V f is the lattice of cyclic flats of finite rank of a finitary matroid,
then each v ∈ V f has a rank r(v) ∈ N in M and this rank-function necessarily
satisfies the conditions of Definition 7.4. On the other hand, the existence of such
a rank-function on a lattice V f is also sufficient to make V f arise from the cyclic
flats of some matroid, as will soon be shown.
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Let V be a lattice and r a rank-function for V . Let (Xv)v∈V be a family of pairwise
disjoint infinite sets and X =

⋃
v∈V Xv. We want to construct a matroid M on X

via r. The following set shall be the set of independent sets of that matroid:

J =

J ⊂ X|∀w ∈ V :

∣∣∣∣∣∣J ∩
⋃
v≤w

Xv

∣∣∣∣∣∣ ≤ r(w)

 .

Then the set C containing all subsets of X which are not contained in J and are
minimal subject to that condition will be the set of circuits of M .

Lemma 7.8. For each element C of C there is exactly one w ∈ V such that
|C ∩ (

⋃
v≤wXv)| > r(w). This w satisfies C ⊂

⋃
v≤wXv and r(w) + 1 = |C|.

Proof. Let C ∈ C and define VC = {w ∈ V |
∣∣∣C ∩ (

⋃
v≤wXv)

∣∣∣ > r(w)}. By the

definition of C, VC is non-empty. Assume for a contradiction that there is an element
w ∈ VC such that C *

⋃
v≤wXv. Then there is an element c ∈ C\

⋃
v≤wXv and

thus ∣∣∣∣∣∣(C − c) ∩
⋃
v≤w

Xv

∣∣∣∣∣∣ =

∣∣∣∣∣∣C ∩
⋃
v≤w

Xv

∣∣∣∣∣∣ > r(w)

so C − c is not an element of J . This is a contradiction to the minimality of C.
Thus for all w ∈ VC , C ⊂

⋃
v≤wXv. If there were an element w ∈ VC such that

|C| ≥ r(w) + 2, then for any c ∈ C we would have∣∣∣∣∣∣(C − c) ∩
⋃
v≤w

Xv

∣∣∣∣∣∣ ≥
∣∣∣∣∣∣C ∩

⋃
v≤w

Xv

∣∣∣∣∣∣− 1 = |C| − 1 ≥ r(w) + 2− 1 > r(w),

but then C − c would not be an element of J which would again contradict the
minimality of C. So for all w ∈ VC , it is true that |C| = r(w) + 1.
Let w, x be two elements of VC , c ∈ C and y ∈ V the element of V such that
c ∈ Xy. As C ⊂

⋃
v≤wXv, it is true that y ≤ w, and similarly it is true that y ≤ x.

By Part 3 of Remark 7.2 this implies that y ≤ w ∧ x. This is true for all c ∈ C, so
in particular C ⊂

⋃
v≤w∧yXv. Hence∣∣∣∣∣∣C ∩

⋃
v≤w∧x

Xv

∣∣∣∣∣∣ = |C| = r(w) + 1 > r(w ∧ x).

This implies that for all w, x ∈ VC w ∧ x is an element of VC , too. As all elements
of VC have rank |C| − 1, the rank of w ∧ x equals the rank of w and the rank of x.
By the monotonicity of a rank-function of a lattice, this implies that neither w nor
x is strictly bigger than w ∧ x. Since w ∧ x ≤ w and w ∧ x ≤ x, this implies that
w = w ∧ x = x, so there are no two different elements of VC , which thus contains
at most one element and hence exactly one element. �

Proposition 7.9. There is a matroid M such that J equals the set of independent
sets of M .

Proof. By Lemma 7.8 each C ∈ C has finite size. So it is enough to show that the
circuit axioms (C1), (C2) and (C3) hold and that for all S ⊂ X it is true that
S ∈ J iff it does not contain an element of C.
(C1): By the definition of J , the empty set is an element of J and thus not an
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element of C.
(C2): As C contains only minimal sets not in J , no element of C can contain another
element of C as a proper subset.
(C3): As (C1) and (C2) are true, it is enough to show (C3)′ which is2

∀C1 6= C2 ∈ C∀x ∈ C1 ∩ C2∃C3 ∈ C : C3 ⊂ C1 ∪ C2 − x.

So let C1, C2 be two different elements of C and let x be an element of C1∩C2. For
each c ∈ C1∪C2 let w(c) be the element of V such that c ∈ Xw(c) and for i ∈ {1, 2}
let wi be the unique element of V such that |Ci ∩

⋃
v≤wXv| > r(wi) (which exists

by Lemma 7.8). By c ∈ C1 ∪ C2 there is an i ∈ {1, 2} such that c ∈ Ci. This
implies by Lemma 7.8 that c ∈

⋃
v≤wi

Xv, so w(c) ≤ wi and thus by associativity

w(c) ≤ w1 ∨ w2. As this is true for all c ∈ C1 ∪ C2, C1 ∪ C2 ⊂
⋃
v≤w1∨w2

Xv.

Furthermore, if c is also an element of C1∩C2, then w(c) ≤ w1 and w(c) ≤ w2. This
implies by Part 3 of Remark 7.2 that w(c) ≤ w1∧w2. Thus C1∩C2 ⊂

⋃
v≤w1∧w2

Xv.

As C1 and C2 are different elements of C, and by (C2) it is impossible that one is
a subset of the other, C1 ∩C2 is a proper subset both of C1 and of C2. Because C1

is an element of C, i.e. a minimal element not in J , every proper subset of it is an
element of J , so in particular C1 ∩ C2 ∈ J , hence∣∣∣∣∣∣C1 ∩ C2 ∩

⋃
v≤w1∧w2

Xv

∣∣∣∣∣∣ ≤ r(w1 ∧ w2).

Because C1 ∩C2 ⊂
⋃
v≤w1∧w2

Xv, this implies that |C1 ∩C2| ≤ r(w1 ∧w2). So the
following equations are true:∣∣∣∣∣∣(C1 ∪ C2 − x) ∩

⋃
v≤w1∨w2

Xv

∣∣∣∣∣∣ = |(C1 ∪ C2)− x|

= |C1|+ |C2| − |C1 ∩ C2| − 1

= |C1| − 1 + |C2| − 1− |C1 ∩ C2|+ 1

= r(w1) + r(w2)− |C1 ∩ C2|+ 1

≥ r(w1) + r(w2)− r(w1 ∧ w2) + 1

≥ r(w1 ∨ w2) + 1

The last inequality is true by the submodularity of the rank-function. So C1∪C2−x
is not an element of J . Because it is finite, it contains a minimal element C3 not
in J . This proves (C3)′.
S ∈ J ⇔ (∀C ∈ C : C * S): Let S be a subset of X which is not contained in
J . Then there is an element w ∈ V such that |S ∩ (

⋃
v≤wXv)| > r(w). Define

S′ ⊂ S ∩ (
⋃
v≤wXv) such that |S′| = r(w) + 1, then S′ is a finite subset of X and

is not an element of J , so it contains a minimal element C /∈ J . Then C is an
element of C and a subset of S′ so in particular a subset of S. Hence S is a superset
of an element of C.
Let S be an element of J . By definition of J , all subsets of S are in J , too, so S

2this is called (C3) or weak circuits elimination in [14], as this book does not include infinite
matroids. Proposition 1.4.12 in the same book shows that (C3)′ implies strong circuits elimination

which by induction implies (C3) as in this thesis for finitary matroids.
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Figure 3. A lattice in which every element has finite height on
which there is no rank-function.

contains no elements of C.
(CM): This is a straightforward application of Zorn’s Lemma. �

Corollary 7.10. Let (V f ,∨,∧) be a lattice. It arises from the cyclic flats of finite
rank of a finitary matroid iff there is a rank-function r on V f .

Remark 7.11. Let V be a lattice and V f be the set of its elements of finite height.
If there is a rank-function on V f and V is isomorphic to the ideal completion of
V f , then V is isomorphic to the lattice of cyclic flats of some matroid.

In contrast to lattices of finite height, there are lattices of infinite height on
which there is no rank-function. One class of such lattices are those with at least
one element of infinite height (see Example 7.5). But there are also lattices in which
each element has finite height and on which there is nevertheless no rank-function:

Example 7.12. Figure 3 shows the Hasse diagram of a lattice L which does not
arise as the lattice of cyclic flats of finite rank of a matroid. Assume for a contra-
diction that L is isomorphic to the lattice of flats of finite rank of some matroid M .
Then for each xji ∈ L there is a cyclic flat Eji ⊂ E(M) which is mapped to xji by
this isomorphism. These cyclic flats satisfy for all n ≥ 1 that

rM (E1
1) + rM (E0

n) ≥ rM (E0
1) + rM (Enn) ≥ rM (E0

1) + rM (E0
n) + n.

The first inequality holds because r(A) + r(B) ≥ r(A ∪ B) + r(A ∩ B) for all
A,B ⊂ E(N) in all matroidsN and the second inequality holds because for all cyclic
flats of finite rank F1, F2 of a matroid it is true that (F1  F2) ⇒ r(F1) < r(F2).
Thus rM (E1

1) ≥ rM (E0
1) + n for all n ∈ N, which is a contradiction.

Definition 7.13. Let V be a lattice with a least element 0 ∈ V . An element v ∈ V
is called atomic if the only element of V smaller than v is 0. A lattice is called
atomic if for every element w ∈ V there is an atomic element v ∈ V such that
w ≥ v.

Corollary 7.14. There is a matroid such that its lattice of cyclic flats is not atomic.

Proof. Let V f = N be the lattice with the usual ordering on the natural numbers
and let r : V f → N be the rank-function v 7→ v on V f . Let M be the matroid as
constructed in Proposition 7.9 which has V f as its lattice of cyclic flats of finite rank.
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The lattice V of all cyclic flats of M contains only one further element, namely the
cyclic flat consisting of all edges of M , called 1. This is the lattice from Example
7.5. Consider the dual M∗ of M . Then each cyclic flat of M∗ is the complement of
a cyclic flat of M , hence the lattice of cyclic flats of M∗ is isomorphic to the lattice
on the same ground set as V but with the ordering inversed. Each v ∈ V which is
smaller than 1 is an element of V f and thus v + 1 is also an element of V f . It is
bigger than v and smaller than 1, so in V ∗ there is no atomic element. �
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8. Outlook

Of course the most obvious question for further work is whether it is possible
to solve Question 1.1 for arbitrary matroids. Let M be a matroid which is not
l-nearly finitary for any natural number l. The proof of Theorem 4.4 consists of
two steps: The first is the part where the Si are constructed (using the assumption
that M is not l-nearly finitary) and the second step is the part where B and
Bfin are constructed from the existence of the Si (using the assumption that M is
cofinitary). As already mentioned in Section 4, it should possible by some extra
effort to define the Si such that each Si+1\Si contains only one edge and thereby
to obtain an infinite set F such that for no finite subset F ′ ⊂ F there is a |F ′|-
separation E(M) = P1 ⊍ P2 such that P1 is finite and contains F ′. The existence
of this set then results from M not being l-nearly finitary for any natural number l
and thus can be used for arbitrary matroids and is thus true for arbitrary matroids.
The second step can then be rewritten to the following Lemma:

Lemma 8.1. Let M be a cofinitary matroid. Let F ⊂ E be a set such that for
no finite subset F ′ ⊂ F there is a |F ′|-separation E(M) = P1 ⊍ P2 such that P1 is
finite and contains F ′. Then there are bases B of M and Bfin of Mfin such that
B ⊂ Bfin and F ⊂ Bfin\B.

The proof of this lemma is very similar to the second step of the proof of Theorem
4.4, even if F is finite. This is the converse of Lemma 4.1. In order to confirm
Question 1.1 for arbitrary matroids, one possible approach is to try to show Lemma
8.1 for arbitrary matroids. Even if this approach does not work, it can probably be
proved for Ψ-matroids (introduced in [5]) and possibly for representable matroids.
Lemma 5.9 can be extended without difficulties to a finite sum of matroids. But
Ψ-matroids define a possibility to take infinitely many sums simultaneously and
maybe it is possible to split a base of such a Ψ-matroid into bases of the glued
matroids. Similarly it is possible by Lemma 5.11 to replace a gluing set in a Ψ-
matroid M by a gluing set along which M is glued properly. But maybe it is
possible to replace all gluing sets simultaneously by ones along which M is glued
properly?
Of course the characterisation of lattices of cyclic flats of finite rank of finitary
matroids in Corollary 7.10 is not as good a characterisation as one might wish: to
show the existence or non-existence of a rank-function is less work than to show that
there is or is not a finitary matroid such that the given lattice is the lattice of cyclic
flats of finite rank of that matroid. But there is currently no simple characterisation
of which lattices have such a rank-function. So further work has to be done on the
topic of when such a rank-function exists.
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