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1 Introduction

For as long as the connectivity of graphs has been studied, people have considered
different types of highly connected substructures that may occur in a graph, for example
highly connected subgraphs, blocks, highly connected (topological) minors and large
grids.

The simplest example of such a structure is a k-connected subgraph for some large
integer k. A more general structure that may be investigated are the k-blocks. Whereas
we require for the vertex set X of a k-connected subgraph that the induced graph G[X]
is k-connected, for X to be a k-block we only require X to be “k-connected in our graph
G”. More precisely a k-block is a maximal set X ⊆ V of at least k vertices, such that no
two vertices v, w ∈ X can be separated from each other in the graph G by less than k
vertices. In particular, every k-connected subgraph extends to a k-block in our graph G.
The opposite direction however is far from true: There are graphs G containing k-blocks
X such that G[X] is not even connected. Consider for example a graph G consisting of
r ≥ k isolated vertices that are pairwise joined by k pairwise disjoint independent paths
of length two. Then this set of r vertices is a k-block: There are k + 1 disjoint paths
between any two of this vertices. However the subgraph induced by this vertex set is
not even connected and does note extend to even a 3-connected subgraph of G.

Another type of “highly connected” substructure, the k-connected topological minors,
also extends to k-blocks in this way. Indeed, the branch vertices of any topological minor
cannot be separated from each other by a set of less then k vertices and hence extend
to a k-block. Instead of considering topological minors we might also consider ordinary
minors and ask whether our graph contains a k-connected minor. A graph containing

Figure 1: The dotted sets define the branch sets of a K5.

a k-connected minor does not necessarily contain a k-block; consider for example the
graph in Figure 1. This graph has a K5 as minor but does not contain a 4-block, as
any two vertices that are not adjacent can be separated from each other by 3 other
vertices.
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Large ((n× n), say) grids are another substructure we would like to consider as “highly
connected”. These grids do not give rise to a k-block for k ≥ 5, but it is still reasonable
to declare them as a highly connected substructure, as we can, for example, not separate
them into two parts of roughly equal size by deleting a small number of vertices.

Different though they may appear, all these substructures have one thing in common:
They define an orientation of the separations of order less than k, as follows. Given a
graph G = (V,E), a separation in G is a unordered pair {A,B} such that A ∪ B = V
and there is no edge from A \ B to B \ A. The order of such a separation is the size
|A ∩B| of A∩B. By declaring one side, for example A, of such a separation to be small
and the other site, for example B, to be big, we can orient these separations. We write
(A,B) for the oriented separation with A as small side and B as big side and think of
this separation as pointing towards B. If we orient all separations of order less than k
in such a way that no two separations point away from each other (so there are no two
oriented separations (A,B) and (C,D) such that D ⊆ A and B ⊆ C), we call such an
orientation consistent.

Let us now see how the various highly connected substructures mentioned earlier orient
the separations of small order of a graph.

Let X be a k-block and {A,B} a separation of order less than k. If X had a vertex
v in A \ B and a vertex w B \ A, the set A ∩ B would be a set of order less than k
that separates these vertices from each other in G. As no two vertices in a k-block
can be separated from each other by such a set, therefore there is exactly one side, for
example B, of the separation {A,B} such that X ⊆ B. By orienting all separations in
this direction a k-block induces a consistent orientation of the separations of order less
than k.

A k-connected ordinary minor H � G also induces such an orientation. Indeed, let
{A,B} be a separation of order less than k. Every k-connected minor has at least k
branch sets, therefore at least one of these branch sets X does not meet the set A ∩ B.
As every branch set is connected, therefore there is at least one branch set X and one
side B of {A,B} such that X lies completely in B \ A. If there was another branch
set Y that lay completely in A \B, these two branch sets could then be separated from
each other in G by the set A ∩ B. Let S be the set of all the vertices of H whose
branch set meets A ∩ B. Let us suppose that there is a path P between the vertices
associated with X and Y in H − S. As branch sets are connected, this would imply
that there is a path between X and Y in G whose vertex set is a subset of the union of
the branch sets associated with the vertices in P . Especially, this path would therefore
not meet A ∩ B, contradicting the fact that A ∩ B separates X from Y in G. Thus
there cannot be such a path, so the set S separates the vertices associated with X and
Y from each other. As S is of order less than k, this therefore contradicts the fact that
H is k-connected. Therefore, given any k-connected minor, there is always exactly one
side B of any separation {A,B} of order less than k such that at least one branch set
X of the minor satisfies X ⊆ B \ A. Orienting every separation of order less than k in
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this direction again defines a consistent orientation of the separations of order less than
k. Thus, if we say that a vertex of H lives in one side B of a separation if and only
if the branch set assosiated with this vertex meets B, as for k-blocks, the minor lives
completely in one side of every separation.

Let H be an (n × n)-grid. The way in which H as subgraph of G induces such an
orientation is less obvious. Given a separation {A,B} of G, the vertex set X of H (and
even an arbitrary subset Y of X of size at least k) does not need to lie entirely in one
side of this separation. Namely it is possible, if for example G = H, that there is for
every subset Y of X of size at least k a separation {A,B} of order less than k (if k is
> 5), such that Y meets A \B as well as B \ A. In contrast to the k-connected minors
there also is no obvious definition of when a grid “lives completely on one side” of a
separation that allows us to orient every separation in that direction, as a grid does not
have something like branch-sets. However, if n > k, a grid H ⊆ G with vertex set X
induces a consistent orientation of the separations of order less than k by orienting every
separation {A,B} so that |X ∩A| < |X ∩B|. Usually, if n is large enough, the size of
X ∩B will be considerably larger than the size of X ∩A. If for example n is at least 2k,
we have |X ∩B| > 7 |X ∩A| for every separation (A,B) of order less than k.

The consistent orientations of all the separations of order less than k that are induced
by any of the highly connected substructures we considered (k-connected subgraphs,
minors or topological minors, as well as k-blocks and large grids) are all examples of
tangles. Formally, a k-tangle in a graph is a consistent orientation of all its separations
of order < k that satisfies an additional consistency requirement made not of the pairs
but of the triples of its oriented separations. (See Section 2 for a formal definition).
We might consider tangles in general as an abstract definition of a highly connected
substructure. It is not known whether every tangle is induced by a “concrete” highly
connected substructure like k-blocks or grids. In fact, we do not even know whether
there is, for a given tangle, any set of vertices, highly connected or not, that induces this
tangle in the following sense:

Problem 1.1. Let G be a graph and k ∈ N. If T is a k-tangle in G, is there always a
vertex set X such that |X ∩A| < |X ∩B| for every separation (A,B) ∈ T ?

When a tangle T and a set X of vertices of a graph G are related as in Problem 1.1, we
say that X determines T by majority vote. Problem 1.1 is the guiding question of this
dissertation, we were not able to answer it in general, but solved some special cases. If
k is at most 3, the answer follows from a Theorem of Tutte proved in the 1980s ([1],[8]),
in which he showed that we can decompose, in a tree-like way, every 2-connected graph
into parts that are either 3-connected or circles.

Theorem 1.2. Let G be a graph. If k ≤ 3, then for every k-tangle T in G there is a
set X of vertices such that |X ∩A| < |X ∩B| for every separation (A,B) ∈ T .

We will prove this theorem later, without using Tutte’s Theorem.
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The main result of this dissertation is that for any given integer k, under a mild assump-
tion on the order of our graph, (k+ 1)-tangles in k-connected graphs are determined by
majority vote:

Theorem 1.3. Let k be an integer, G a k-connected graph with at least 4k vertices and
T a (k + 1)-tangle in G. Then there is a set X of vertices such that |X ∩A| < |X ∩B|
for every separation (A,B) ∈ T .

The structure of this dissertation is as follows: In Section 2 we give the basic definitions
of and review some basic facts about separations and tangles. In Section 3 we present
some background theory, namely, two theorems required for our first approach to solve
Problem 1.1, which we present in Section 4. Sections 5 to 7 contain the proof of Theorem
1.3. The facts presented in Section 5 are also valid in arbitrary graphs, whereas the facts
presented in Section 6 and 7 require our graph to be k-connected.

2 Basic definitions and facts

Given a graph G = (V,E), a separation is a set {A,B} such that A∪B = V and there is
no edge from A \B to B \A. The oriented pairs (A,B) and (B,A) are the orientations
of {A,B}, we call them oriented separations. We say that A is the small or left side and
that B is the big or right side of (A,B). The proper left/small (respectively right/big)
side of (A,B) is A \B (respectively B \A). The inverse of (A,B) is (B,A). The order
|{A,B}| is the size |A ∩B| of A∩B, the order |(A,B)| of an oriented separation is defined
accordingly. We call an oriented separation (A,B) small if A ⊆ B, this is equivalent to
B = V . Given two oriented separations (A,B) and (C,D), defining

(A,B) ≤ (C,D) :⇔ A ⊆ C and B ⊇ D

results in a partial ordering on the set of all oriented separations. Given two separa-
tions {A,B} and {C,D}, we say that {A,B} and {C,D} are nested if there are ori-
entations (A,B) and (C,D) such that (A,B) ≤ (C,D). Otherwise {A,B} and {C,D}
cross. Two oriented separations (A,B) and (C,D) are nested if {A,B} and {C,D} are
nested, otherwise they cross. Given two oriented separations (A,B) and (C,D), we de-
fine the infimum (A,B)∧(C,D) as the oriented separation (A∩C,B∪D), the supremum
(A,B) ∨ (C,D) is the oriented separation (A ∪ C,B ∩D).

Note that our order-function is submodular, so given two separations (A,B) and (C,D)
it is

|(A,B)|+ |(C,D)| ≥ |(A,B) ∨ (C,D)|+ |(A,B) ∧ (C,D)|

For k ∈ N let Sk be the set of all separations of order strictly less than k in G and let S
be the set of all separations in G. Given any set of separations S, we denote by ~S the
set of all orientations of separations in S (so ~Sk is the set of all orientation of separations
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in Sk). An orientation O ⊆ ~S of S is a set of oriented separations such that for all
{A,B} ∈ Sk exactly one of (A,B) and (B,A) lies in O. A set ~N of oriented separations
is said to be consistent if there are no two separations (A,B), (C,D) ∈ ~N such that
(B,A) ≤ (C,D). So, a set of separations is consistent, if there are no two separations
pointing away from each other. An orientation O of Sk is therefore consistent if for all
oriented separations in O all smaller ones lie in O as well, so if (C,D) ≤ (A,B) and
(A,B) ∈ O then (C,D) ∈ O as well. A tangle T of order k or a k-tangle in G is a
consistent orientation of Sk fullfilling

(A,B), (C,D), (E,F ) ∈ T ⇒ G[A] ∪G[C] ∪G[E] 6= G (1)

For a separation (A,B) ∈ T we think of A as the small and B as the big side of (A,B),
so in a tangle no three small sides cover the whole graph. Especially, every k-tangle
contains all small separations (A, V ) of order less than k.

A separation {A,B} distinguishes two tangles T and T ′ in G if (A,B) ∈ T and
(B,A) ∈ T ′.

Given a vertex set X ⊆ V , we say that X determines an oriented separation (A,B) if
|A ∩X| < |B ∩X|. Given a tangle T , we say that X determines T if X determines
every separation (A,B) ∈ T .

We say that a separation (A,B) is semi-small if there are separations (C,D) ≤ (A,B)
and (E,F ) ≤ (A,B) both of order less than |(A,B)| such that G[C]∪G[E]∪G[B] = G.
Thus, if a tangle of order > |(A,B)| contains (C,D) and (E,F ) it must also contain
(A,B).

Given a separation (A,B) of order k, if |A \B| < k
2 , the separation (A,B) lies in any

(k + 1)-tangle:

Lemma 2.1. Let G be a graph and T a (k+ 1)-tangle in G. Let (A,B) be a separation
of order at most k in G. If |A \B| < k

2 , it is (A,B) ∈ T .

Proof. LetB1tB2 = A∩B be a partition of A∩B into two sets such that |B1| , |B2| ≤ dk
2e.

Then ((A\B)∪B1, V ) and ((A\B)∪B2, V ) are both small separations of order at most
k, so they both lie in T . As G[(A \B)∪B1]∪G[(A \B)∪B2]∪G[B] = G, it is therefore
(B,A) /∈ T , so (A,B) ∈ T as claimed.

If a set X determines a separation (A,B), the set X also determines every separation
(C,D) ≤ (A,B):

Lemma 2.2. Let G be a graph and (A,B) a separation that is determined by a set X
of vertices. Then every separation (C,D) such that (C,D) ≤ (A,B) is determined by X
as well.
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Proof. As (A,B) is determined by X, it is |X ∩A| < |X ∩B|. By definition of ≤ for
separations, it is C ⊆ A and B ⊆ D, so it is

|X ∩ C| ≤ |X ∩A| < |X ∩B| ≤ |X ∩D|

So (C,D) is indeed determined by X.

If a consistent set ~N of oriented separations is nested, we know that the intersection of
all the big sides of separations in ~N is not empty. If the set ~N is a subset of a tangle, it
is then determined by this intersection:

Lemma 2.3. Let G be a graph and ~N a set of oriented separations in G that is nested
and consistent. Then the intersection

X := ∩(A,B)∈ ~NB

of the big sides of these separations is not empty. If ~N is additionally a subset of a
k-tangle T , the size of X is at least k, so X determines every separation in ~N .

Proof. Let (A,B) be a ≤-maximal separation in ~N . We claim that A ∩B ⊆ X. Other-
wise, let x ∈ (A ∩ B) \X. Then there is a separation (C,D) ∈ ~N such that x /∈ D, so
x ∈ C\D. Thus A 6⊆ D and therefore, as ~N is consistent and nested, it is (A,B) < (C,D)
contradicting the maximality of (A,B).

Let us now suppose that ~N is a subset of a k-tangle T and that X is of order at most
k. Let ~M := {(Ai, Bi)|1 ≤ i ≤ n} be the set of ≤-maximal separations in ~N . As it is
Ai ∩Bi ⊆ X for all i, we know that the separation (Ã2, B̃2) := (A1, B1) ∨ (A2, B2) is of
order less than k, as Ã2 ∩ B̃2 ⊆ X. So it is (Ã2, B̃2) ∈ T . Accordingly, the recursively
defined separations

(Ãi, B̃i) := (Ai, Bi) ∨ ( ˜Ai−1, ˜Bi−1)

lie in T as well. But, as B̃n = ∩n
i=1Bi and the (Ai, Bi) are all the ≤-maximal separations

in ~N , it is B̃n = X. Especially, V \X ⊆ Ãn \ B̃n. But, as (X,V ) ∈ T , this contradicts
the definition of a tangle, as G[X] ∪G[Ãn] = G.

So, given a separation (A,B) ∈ ~N , it is X ⊆ B and |X| > |A ∩B|, so X indeed
determines (A,B).

3 Background Theory

In this section we will introduce two theorems: The Tangle-Tree-Theorem proved by
Carmesin, Diestel, Hamann and Hundertmark in [5] and the Strong Duality Theorem
proved by Diestel and Oum in [2]. The first Theorem basicly tells us that, given any
graph G, there is a nested set of separations distinguishing, for a given integer k, all k-
tangles in G. The Duality Theorem basicly gives us, in a general setup, a characterisation
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of graphs not containing a tangle. We will use this theorems both together in section 4
for an aproach to solve Problem 1.1.

But for making this precise, we first need to phrase both theorems and the definitions
required for them. Both theorems are stated in a more general setup than the one we
will refer to, but the version stated here will be general enough for our purposes. Let us
start with the Tangle-Tree-Theorem from [5].

We say that a separation {A,B} distinguishes two tangles T and T ′ efficently, if {A,B}
distinguishes T and T ′ and is of minimal order with this property, so for every separa-
tion {C,D} with |(C,D)| < |(A,B)| there is an orientation (C,D) of {C,D} such that
(C,D) ∈ T ∩ T ′. Given a set of tangles T ◦, we say that a separation is T ◦-essential
if it efficently distinguishes some pair of tangles in T ◦. A set of separations N dis-
tinguishes a set of tangles T ◦ (efficently), if there is for every pair T , T ′ of tangles in
T ◦ a separation {A,B} in N that distinguishes T and T ′ (efficently). A nested set of
separations is canonical if the algorithm we used to construct this set is invariant under
the automorphisms of the graph G. The Tangle-Tree-Theorem from [5] now states the
following:

Theorem 3.1 (Tangle-Tree-Theorem). Given a graph G and a set T ◦ of k-tangles
in G, there is a canonical nested set N of T ◦-essential separations of order < k that
distinguishes all the tangles in T ◦ efficently.

We can especially distinguish all tangles of order k by a nested set of separations.

The other theorem we will use is the Duality-Theorem by Diestel and Oum. Therefore
we will now refer to this theorem as well as some definitions from [2]. As we only want
to use the Duality Theorem for separations of graphs, we will phrase these definitions
and the theorem only in the generality required for this and not in the generality Diestel
and Oum stated it.

A small separation (A, V ) ∈ ~Sk is trivial, if there is another small separation (B, V ) ∈ ~Sk

such that (A, V ) < (B, V ).

Given any set of not oriented separations S, we say that a non-empty set τ ⊆ ~S is a star
of separations, if any two separations in τ point towards each other, so (A,B) ≤ (D,C)
for all (A,B), (C,D) ∈ τ .

Given any set of not oriented separations S, an S-tree (T, α) is a pair of a non-trivial
tree T together with a map α, mapping the set ~E of all orientations of edges of T (so
~E := {(x, y)|xy ∈ E(T )}) into the set ~S of all orientations of separations in S such that
this map is order-reversing (so if α(x, y) = (A,B) then α(y, x) = (B,A)).

We say that (T, α) is an S-tree over a set of stars F ⊆ 2~S (so every element of F is
a star of separations), if given a vertex t ∈ V (T ) of T , the set α( ~Ft) is in F , where
~Ft := {(x, t)|xt ∈ E(T )} is the set of all oriented edges in T pointing towards t.
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We call such a set of stars F ⊆ 2~S standard if {(V,A)} ∈ F for every trivial separation
(A, V ) ∈ ~S.

Given a non-trivial element (A,B) of ~S, let S≥(A,B) be the set of all separations {C,D}
fullfilling either (A,B) ≤ (C,D) or (A,B) ≤ (D,C). Given a separation
(A,B) ≤ (A0, B0) ∈ ~S and a separation (C,D) ∈ ~S≥(A,B) \ {(A,B), (B,A)}, let
us define:

f ↓(A,B)
(A0,B0) ((C,D)) := (C,D) ∨ (A0, B0) if (C,D) ≥ (A,B) and

f ↓(A,B)
(A0,B0) ((C,D)) := (C,D) ∧ (B0, A0) if (D,C) ≥ (A,B)

As for every separation ~S≥(A,B) 3 (C,D) /∈ {(A,B), (B,A)} it is either (A,B) ≤ (C,D)
or (A,B) ≤ (D,C), this is well defined. We set f ↓(A,B)

(A0,B0) ((A,B)) := (A0, B0) and
f ↓(A,B)

(A0,B0) ((B,A)) := (B0, A0).

Given a separation (A0, B0) ∈ ~S, we say that (A0, B0) is linked to (C,D) ∈ ~S if
(A0, B0) ≥ (C,D) and it is (E,F ) ∨ (A0, B0) ∈ ~S for all (D,C) 6= (E,F ) ≥ (C,D).

A set ~S of separations is said to be separable if, given any two separations (A,B) and
(D,C) in ~S such that (A,B) ≤ (C,D), there is a separation (A0, B0) such that (A0, B0)
is linked to (A,B) and (B0, A0) is linked to (D,C).

Given a set of stars F ⊆ 2~S , we say that a separation (A0, B0) ∈ ~S is F-linked to
(C,D) ∈ ~S, if (A0, B0) is linked to (C,D) and, given a star τ ⊆ S≥(C,D) not containing
(D,C), the image of τ under f ↓(C,D)

(A0,B0) is again in F .1

We say that ~S is F-separable if for any two separations (A,B), (D,C) ∈ ~S such that
(A,B) ≤ (C,D) it is either {(B,A)} ∈ F , or {(C,D)} ∈ F , or there exists a separa-
tion (A0, B0) ∈ ~S such that (A0, B0) is F-linked to (A,B) and (B0, A0) is F-linked to
(D,C).

A set F of stars is said to be closed under shifting if, given any separation (A0, B0)
that is linked to a separation (A,B) ≤ (A0, B0), it is either {(B,A)} ∈ F or (A0, B0) is
F-linked to (A,B). The following Lemma by Diestel and Oum tells us that this property
can be used to show that a set of separations is F-separable:

Lemma 3.2. If ~S is separable and F is closed under shifting, then ~S is F-separable.

Finally, given a set S of not oriented separations and a set F of stars, a consistent
orientation O of S is a F-tangle if it avoids F , so if τ 6⊆ O for any star τ in F .

Diestel and Oum’s Strong Duality Theorem now states the following:

1Diestel and Oum showed, that the map f ↓(A,B)
(A0,B0) preserves the ordering ≤ on ~S≥(A,B) \ {(D,C)},

thus the image of τ under this map is always again a star.
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Theorem 3.3 (Strong Duality Theorem). Let S be a set of separations and F ⊆ 2~S a
standard set of stars. If ~S is F-separable, exactly one of the following assertions holds:

(i) There exists an S-tree over F .

(ii) There exists an F-tangle of S.

4 The structural approach

Given any tangle T of order k in G, we know by the Tangle-Tree-Theorem, that there
is a star of separations distinguishing T from every other k-tangle in G, namely the
following corollary is true:

Corollary 4.1. Let G be a graph, k an integer and T a tangle of order k in G. Then
there is a star of separations ~D ⊆ T such that ~D 6⊆ T ′ for any tangle T ′ 6= T of order k.

Proof. By Theorem 3.1, there is a nested set N of separations distinguishing all tangles
of order k in G efficently. Let ~N be the orientation of N induced by T . Let ~D be the set
of ≤- maximal separations in ~N . Then ~D is a star of separations, as ~D is nested and there
are no two separations (A,B), (C,D) ∈ ~D such that (A,B) < (C,D). We claim that ~D is
the desiered set. Let T ′ 6= T be a tangle of order k. Then there is a separation (A,B) ∈ ~N
such that (B,A) ∈ T ′. If (A,B) /∈ ~D, there is a separation (A,B) ≤ (C,D) ∈ ~D
witnessing this. But then, as (D,C) ≤ (B,A) ∈ T ′, it is (D,C) ∈ T ′, so it is indeed
(C,D) /∈ T ′.

The general idea of this structural approach to prove the existence of a majority set for
any given tangle now is as follows: Given a graph G and a k-tangle T in G, let ~D be a
star of separations fullfilling the properties from corollary 4.1. Let

X := ∩(A,B)∈ ~DB

be the intersetion of all big sides of separations in ~D. We then know by Lemma 2.3
that X determines all separations in ~D. So by Lemma 2.2, every separation (C,D) that
is less or equal to a separation (C,D) ≤ (A,B) ∈ ~D is also determined by X. Let
(Y, Z) ∈ T be a ≤-maximal separation in T that is not less or equal to one in ~D. As ~D
distinguishes T from every other tangle T ′, we know that there is no tangle containing
every separation in ~D and (Z, Y ). As the Duality-Theorem of Diestel and Oum is stated
in a really general setup, we will be able to use it to get a tree-like structure, which we
can use to construct the separation (Y,Z) from small separations and separations less
or equal to one in ~D.

For our application of this theorem, let S be the set Sk of separations of order less than
k. We now want to define a set F ⊆ 2~Sk of stars such that an F-tangle would be a tangle
containing (Z, Y ) and every separation in ~D, as we know that such a tangle cannot exist.
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Thus we then get an Sk-tree over this set F . We therefore construct our set F as follows:
Let

FP := {{(A,B), (C,D), (E,F )}|G[A] ∪G[C] ∪G[E] = G}

FT := {{(B,A)}|∃(C,D) ∈ ~D : (A,B) ≤ (C,D)}

Let F ′P ⊆ FP be the set of stars in FP . Set

F := F ′P ∪ FT ∪ {{(C,D)}|(Y,Z) ≤ (C,D)} ∪ {{(V,A)}|A ⊆ V }

This is then a set of stars, we will check that ~Sk is F-separable, as F is obviously
standard.

Let us first show that this set F is closed under shifting. The proof of this is similar to
the one given by Diestel and Oum for applying there Duality Theorem on k-tangles in
graphs:

Lemma 4.2. F is closed under shifting.

Proof. Let (A0, B0) be linked to a separation (A,B) ≤ (A0, B0) and suppose that
{(B,A)} is not a star in F . Let τ be a star in ~S≥(A,B). If τ is not a star in F ′P , it is
τ = {(C,D)} for a separation (C,D) ∈ ~S≥(A,B). But this implies that (C,D) 6≤ (B,A),
as otherwise, by the definition of F , the set {(B,A)} would also be a star in F . Thus,
the only possibility is (A,B) ≤ (C,D). But then f ↓(A,B)

(A0,B0) (τ) = {(C,D) ∨ (A0, B0)},
which is, as (C,D) ≤ (C,D) ∨ (A0, B0), again a star in F .

Thus τ must be a star in F ′P , so

τ = {(A1, B1), (A2, B2), (A3, B3)} ⊆ ~S≥(A,B)

Without loss of generality, let (A,B) ≤ (A1, B1). Then

f ↓(A,B)
(A0,B0) (τ) = {(A1 ∪A0, B1 ∩B0), (A2 ∩B0, B2 ∪A0), (A3 ∩B0, B3 ∪A0)}

And as f ↓(A,B)
(A0,B0) (τ) is a star and it is G[B1 ∩B0] ∪G[B2 ∪A0] ∪G[B3 ∪A0] = G, it is

therefore f ↓(A,B)
(A0,B0) (τ) ∈ F ′P .

We know by Diestel and Oum ([2], Lemma 5.1) that ~Sk is separable.

Lemma 4.3 ([2], Lemma 5.1). ~Sk is separable.

Thus we know by Lemma 3.2 that ~Sk is F-separable. So we can apply the Strong Duality
Theorem with this set F , so there is either an Sk-tree over F or an F-tangle T ′ of Sk.

Let us now show that every F-tangle is also a k-tangle, thus the existence of such an
F-tangle would contradict the definition of ~D. The proof of this is similar to the one
Diestel and Oum used in Lemma 5.2 of [2].
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Lemma 4.4. Any F-tangle T of Sk in G is a tangle of order k.

Proof. An F-tangle T of Sk in G is a consistent orientation of Sk that avoids F . So, if T
would not be a k-tangle, it would violate (1), so there would be separations (A,B), (C,D)
and (E,F ) ∈ T ′ such that G[A]∪G[C]∪G[E] = G. If (A,B), (C,D), (E,F ) are nested,
our consistent orientation would not be F-avoiding, so they are not.

If (A,B) ≤ (C,D), say, we can replace (C,D) by (A,B). Thus we may assume that
(A,B), (C,D), (E,F ) are chosen such that this is not the case.

As these separations do not form a nested set, at least two of this three separations cross,
let us assume without loss of generality that (A,B) and (C,D) cross. Then either the
separation (A ∩D,B ∪ C) ≤ (A,B) or the separation (B ∩ C,A ∪D) ≤ (C,D) also lies
in ~Sk by submodularity, thus if we replace one of the separations (A,B) and (C,D) with
the smaller separation (A∩D,B ∪C) or (B ∩C,A∪D), our set of separations remain a
set in FP and we reduce the amount of crossings between these three separations. Thus,
if we choose (A,B), (C,D), (E,F ) such that the amount of crossings between these three
separations is minimal, we must have chosen them as a nested set of separations, and
therefore T would not be F-avoiding. Thus T ′ is indeed a tangle.

We can now use all this Lemmas together with the Strong-Duality-Theorem to prove
the existence of an F-tree that can be used to generate (Y, Z).

Theorem 4.5. Let G be a graph, T a tangle of order k in G and let ~D ⊆ T be any star
of separations separating T from every other k-tangle, so ~D 6⊆ T ′ for any tangle T ′ 6= T
of order k in G. Let (Y, Z) be a ≤-maximal separation in T \ ~D. Then there is an Sk-tree
(T, α) over the set F defined above containing a leaf t0 such that α(Ft0) = {(Y,Z)}.

Proof. By Lemma 4.2, 4.3 and 3.2 we can apply the Strong-Duality-Theorem 3.3 with
the sets Sk and F . Thus there is either an Sk-tree over F or an F-tangle of Sk. If there
would be an F-tangle, by Lemma 4.4 this F-tangle T ′ would be a tangle of order k.
But T ′ contains (Z, Y ) whereas T contains (Y,Z), so they are not the same tangle. By
construction there would therefore be a separation (A,B) ∈ ~D such that (A,B) ∈ T
and (B,A) ∈ T ′, contradicting the fact that T ′ does not contain a star in FT .

So there must be an Sk-tree (T, α) over F . If we orient every separation associated to an
edge of this Sk-tree in the same direction as T orients this separation, we get a vertex t
of T such that α(Ft) is a subset of T . As T is a consistent orientation that avoids

F ′P ∪ FT ∪ {{(C,D)}|(Y,Z) < (C,D)}

(by maximality of (Y,Z)), this vertex t must suffice α(Ft) = {(Y,Z)}. So this vertex
must be a leaf.
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Let us consider this tree as rooted in this leaf t0 satisfying α(Ft0) = {(Y, Z)} and let us
think of every edge ~e as oriented away from the root. Then all images α(~e) = (C,D)
in the tree satisfy (Z, Y ) ≤ (C,D), especially for every leaf t 6= t0 it is α(Ft) ∈ FT or
α(Ft) = {(V,A)} for a separation (V,A) of order less than k. So, if ~e is the edge pointing
towards t, the separation α(~e) = (C,D) satisfies X ⊆ C.

So the separation (Y,Z) can be build along this tree: Starting at the leaves, we know
that every separation forms a star in F together with the at most two separations above
it, so the three small sides of these separations together cover the whole graph.

Unfortunately, if {(A,B), (C,D), (E,F )} ∈ F ′P is a star in F ′P and it is X ⊆ B and
X ⊆ D this does not imply that X ⊆ E (see Figure 2).

v

(A,B) (C,D)

(E,F )

Figure 2: The separations (A,B), (C,D), (E,F ) form a star in F , the vertex v lies in B
and D but not in E.

We could therefore not hope to use this construction to show that X ⊆ Y . As addi-
tionally the height of our tree T is not bounded, we could not even guarantee that the
majority of X still lies in Y .

Thus, if this construction should be of any use for proving the existence of a majority
set, there are only two possibilities. Either we find a vertex set X̃ ⊆ V (maybe a subset
of X) that is still a majority set for all the separations in ~D as well as all the small
separations and has the following additional propoerty: If {(A,B), (C,D), (E,F )} ∈ FP

is a star in FP and X̃ is a majority set for (A,B) and (C,D) then X is a majority set
for (F,E) as well.

The other possibility is to try is to choose the set ~D in a clever way. One might try, for
example, to choose ~D in such a way that X is of minimal size |X|. Then we know that
for every star {(A,B), (C,D), (E,F )} ∈ FP such that (A,B), (C,D) ∈ ~D, we can not
reduce the size of X by replacing (A,B) and (C,D) in ~D by (F,E).

Thus we may then be able to show that every such star {(A,B), (C,D), (E,F )} ∈ FP

fullfilles X ⊆ E. Unfortunately, in general most of (or even all of) the separations related
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to the leaves of the tree T are small separations, which are not effected by our choice of
the set ~D. Consider for example an arbitrary long path P = v1v2 . . . vn (see Figure 4),
were only v1 and vn have other neighbours in our graph G.

v1

v2 v3 v4 vn−1

vn

Figure 3: The separation separating the long path is build along small separations.

Consider the following stars of separations of order 2:

F1 := {({v1, v2}, V ) , ({v2, v3}, V ) , (V \ {v2}, {v1, v2, v3})}
F2 := {({v1, v2, v3}, V \ {v2}) , ({v3, v4}, V ) , (V \ {v2, v3}, {v1, v2, v3, v4})}

...
Fn−2 := {({v1, . . . , vn−1}, V \ {v2, . . . , vn−2}) , ({vn−1, vn}, V ) , (V \ {v2, . . . vn−1}, {v1, . . . vn})}

These stars are the stars assigned to the inner vertices (all the vertices that are not leaves)
of an Sk-tree over F that we may have used to construct the separation
(V \ {v2, . . . vn−1}, {v1, . . . vn}). Thus, for beeing a majority set for
(V \ {v2, . . . vn−1}, {v1, . . . vn}), we must make sure that our majority set X is not the
set {v1, . . . vn}. As all the separations in the stars Fi do not distinguish any tangle, we
were not able to achieve this by only choosing the set ~D in a clever way.

We were therefore not able to prove the existence of a majority set with this approach,
even if we assume our graph G to be k − 1-connected.

Our second approach however does solve the problem for these connected graphs, as long
as they have enough vertices.

5 The second approach in arbitrary graphs

For this approach, the majority set we construct does not necessary lie in the center of
a star. Instead, we try to find some sets in G that are a majority set for a (as large as
possible) collection of separations.

But first let us try to reduce the problem: LetM ⊆ T be the set of maximal separations
in T , so the set of all (A,B) ∈ T such that for all separations (C,D) with (A,B) ≤ (C,D)
it is (C,D) /∈ T . Our first Lemma will show us that we can restrict ourselves on the set
of these maximal separations, as a set X determining M also determines T :
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Lemma 5.1. Let G be a graph, X ⊆ V a set of vertices, T a tangle in G and M the set
of maximal separations in T . Then X determines every separation in M if and only if
it determines T .

Proof. The if direction is obvious, for the only if direction let (A,B) ∈ T \M , we show
that (A,B) is determined by X. As (A,B) /∈M , there is a separation (C,D) ∈M such
that (A,B) < (C,D). As X determines (C,D), the set X also determines (A,B) by
Lemma 2.2.

Thus, we can restrict ourselves on the set M . This is useful as we can especially use the
submodularity to get some information about crossing separations in M :

Lemma 5.2. Let T be a k+ 1-tangle in G and M the set of maximal separations in T .
If a separation (A,B) ∈M crosses a separation (C,D) in T , the order of the separation
(A,B)∧ (C,D) is less than min{|(A,B)| , |(C,D)|}, so especially, |(A,B) ∧ (C,D)| < k.

Proof. As (A,B) is in M and therefore maximal in T , the separation (A,B) ∨ (C,D)
cannot be in T , as (C,D) crosses (A,B) and therefore (A,B) ∨ (C,D) > (A,B). So, as
a k + 1-tangle is a consistent orientation of ~Sk+1, either the separation (A,B) ∨ (C,D)
is not in ~Sk+1 or its inverse, namely the separation (B,A) ∧ (D,C) = (B ∩D,A ∪C) is
in T . But this second case is not possible, as G[A]∪G[C]∪G[B ∩D] = G contradicting
property (1) of a tangle.

So (A,B) ∨ (C,D) /∈ ~Sk+1, and therefore by the definition of ~Sk+1 the order of the
separation (A,B) ∨ (C,D) is at least k + 1. Thus it is especially

|(A,B) ∨ (C,D)| > |(A,B)| and |(A,B) ∨ (C,D)| > |(C,D)| .

So we know by submodularity that the order of (A,B) ∧ (C,D) is less than
min{|(A,B)| , |(C,D)|}.

We are now ready to start our proof of Theorem 1.2, that for tangles of order at most
3 there is always a majority set. The main reason why this is true is that, if k is at
most 2, we can make some minor adujstments on the set of k-separations to make it
nested. If this set is nested, the intersection of all big sides is then not empty, thus
can be used as majority set. For k < 2, the only adjustment we have to do is to
reduce ourselves on a connected graph G. For k = 2, we then reduce ourselves on a
2-connected component. The reason why we can do this is basicly that we know that we
can decompose a connected graph into pieces, that are either 2-connected or to small,
to contain a 3-tangle. Before we make this precise, let us state two Lemmas needed in
the proof:

Lemma 5.3. If G is a connected graph and T a tangle of order 2 in G, then the set M
of ≤-maximal separations in T is nested.
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Proof. Let {A,B} be an arbitrary separation of order 1 in a connected graph. We claim
that G[A] and G[B] are connected: Otherwise there are two vertices v, w ∈ A, say, such
that there is no path from v to w in G[A]. Let x be the vertex in A ∩ B. As G is
connected, there is a path P = v0v1v2 . . . vm, with v = v0 and w = vm in G. As P is
not a path in G[A], there are vertices vi in P , that are not vertices in A. Let i0 be
the smallest index such that vi0 /∈ A and i1 the largest index such that vi1 /∈ A. As
vi0−1, vi1+1 ∈ A and vi0 , vi1 /∈ A, it is vi0−1 = x = vi1+1, contradicting the definition of
a path. Thus, P is a path in G[A] and G[A] is therefore connected.

Let us now suppose that M is not nested, so there are separations (A,B), (C,D) ∈ M
that cross. As G is connected, these separations are separations of order 1, let v be the
vertex in A ∩ B and let w be the vertex in C ∩ D. Let us first consider the case that
v 6= w.

As two oriented separations are nested if and only if the unordered separations they
induce are nested, it is enough to consider the case that w ∈ A \ B and v ∈ D \ C. As
G[C] is connected and v /∈ C, it is either C ⊆ A or C ⊆ B. As w ∈ A \ B, only C ⊆ A
is possible. Accordingly, it is B ⊆ D, thus {A,B} and {C,D} are nested.

If v = w, the separation (A,B) ∨ (C,D) is of order 1 as well. As therefore
(A,B) ∨ (C,D) ∈ T , it is, by the maximality of (A,B) and (C,D) in T , either
(A,B) ∨ (C,D) = (A,B) or (A,B) ∨ (C,D) = (C,D). Let us assume without loss of
generality that (A,B)∨ (C,D) = (A,B). But then A∪C = A and B∩D = B, so C ⊆ A
and B ⊆ D. Therefore (C,D) ≤ (A,B) and these separations are nested as well.

Whereas the last Lemma gave us information about separations of order 1 in connected
graphs, the next Lemma will give us information about separations of order 2 in 2-
connected graphs:

Lemma 5.4. Let G be a 2-connected graph and T a tangle of order 3 in G. If (A,B)
and (C,D) are ≤-maximal separations in T that are not small, then (A,B) and (C,D)
are nested.

Proof. If (A,B) and (C,D) are such separations that are not nested, it is either A 6⊆ D or
C 6⊆ B. Thus we may assume without loss of generality that A 6⊆ D, so there is a vertex
v in A \D. Additionally, we know by Lemma 5.2, that the separation (A,B)∧ (C,D) is
of order less then 2, so, as G is a 2-connected graph, this separation must be small. It is
therefore |A ∩ C| ≤ 1 and B ∪D = V . As v /∈ D, it is v ∈ C and therefore {v} = A∩C.
Additionally, as v ∈ V = B ∪D, it is v ∈ B. So (C ∩D) ∩A = ∅.

Let w be the other vertex in A∩B, so A∩B = {v, w}. Then the separation (A,B)∧(D,C)
is of order at most 1 as well, as its separator is

(A ∩D) ∩ (B ∪ C) = (A ∩B ∩D) ∪ (A ∩D ∩ C) = ({v, w} ∩D) ∪ ∅ ⊆ {w}
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Therefore, as G is two connected, this separation is small, so it is

A ∩D = (A ∩D) ∩ (B ∪ C) ⊆ {w}

and therefore
A = (A ∩ C) ∪ (A ∪D) ⊆ {v} ∪ {w} = {v, w}

So it is A ⊆ B and the separation (A,B) is small, contradicting the assumption.

We are now ready to prove Theorem 1.2.

Proof of Theorem 1.2. If k is 0, the assertion is obvious, as every 1-tangle represents
one connected component. Thus we may assume that k is at least 1, so especially T
induces a 2-tangle T2 in G. Additionally we may assume without loss of generality that
the graph G is connected. By Lemma 5.3 and Lemma 2.3, we know that the intersection
X := ∩(A,B)∈T2B of all the big sides of separations in T2 is a set of order at least 2. We
claim that G[X] is either 2-connected or a K2.

Given 2 vertices x, y ∈ X, there is either an edge between x and y or there are two
disjoint paths between x and y in G. Otherwise, by Mengers Theorem, there would
be a separation (A,B) of order 1 such that x ∈ A \ B and y ∈ B \ A, say. As this
separation must be oriented by the tangle T2, this would contradict the assumption that
{x, y} ⊆ X. Given two disjoint paths between x and y, all vertices on these paths lie
in X as well, as there is no separation of order 1 separating any of these vertices from
the set {x, y}. Thus, the two disjoint paths between x and y lie in G[X]. Together,
this implies the fact stated above: If G[X] contains at least 3 vertices, it is 2-connected,
as there are 2 disjoint paths in G[X] between any two not adjacent vertices. If G[X]
contains only 2 vertices, it is a K2. If T = T2, this would already imply the assumption,
as then X fullfilles |X ∩A| < |X ∩B| for every separation (A,B) ∈ T .

Let us now suppose that T is a 3-tangle and the set X does not meet the required
property. Suppose that G[X] is a K2, with vertex set {v1, v2}, say. let Kv2 be the
component of G− v1 containing v2 and let Kv1 be the component of G− v2 containing
v1. Then (V \Kv2 ,Kv2 ∪{v1}) and (V \Kv1 ,Kv1 ∪{v2}) are separations of order 1 that
lie in T . Thus, as ({v1, v2}, V ) is a separation in T as well, this contradicts the definition
of a tangle. Therefore G[X] is not a K2, so it is 2-connected.

We can then restrict ourselves on the Graph G′ := G[X]. Every separation (A,B) of
order 2 in T induces a separation of G′ via (A′, B′) := (A ∩X,B ∩X). One can easily
check that the set T ′ of all separations induced by separations in T is consistent and
fullfilles (1) – for example there are no two separations (A,B) and (C,D) ∈ T such
that (A′, B′) = (D′, C ′): Otherwise let (A,B) and (C,D) both be chosen ≤-maximal. If
(A′, B′) would be a separation of order 1, this would contradict the choice of X. Thus
(A′, B′) is a separation of order 2, so it is A ∩ B = A′ ∩ B′ = C ′ ∩ D′ = C ∩ D. As
G[A] ∪G[C] 6= G, there is a vertex v /∈ A ∪ C, so v ∈ (B \ A) ∩ (D \ C). Let K be the
connected component of G − X containing v. By the way we have chosen X, there is
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a unique vertex xv ∈ X such that N(K) = {xv} in G. And, as (A,B) and (C,D) are
separations in G, it is xv ∈ B∩D. Thus, as A′∪C ′ = X, it is xv ∈ A∩B or xv ∈ C ∩D,
let us assume without loss of generality, that xv ∈ A ∩B. But, as X lies in the big side
of every separation of order 1 in T , it is (V (K) ∪ {xv}, V \ V (K)) ∈ T , thus we know
that (A∪V (K), B \V (K)) ∈ T as well, contradicting the maximality of (A,B). So there
are indeed no two separations (A,B) and (C,D) ∈ T such that (A′, B′) = (D′, C ′).

We know that, given a vertex v not in X, there is a unique vertex xv ∈ X separating v
from X. So there is, given a separation {E,F} of G′, a separation {A,B} of order at
most 2 in G such that {A′, B′} = {E,F}: Let A consist of E together with all vertices
v fullfilling xv ∈ A and let B consist of F together with V \A.

So the set T ′ is a tangle of order 3 in G′. Thus, by Lemma 5.4 and Lemma 2.3, we know
that the intersection X ′ := ∩(A′,B′)∈T ′B

′ of all the big sides of separations in T ′ is a set
of order at least 3.

Especially, this set is a majority set for T ′ and therefore for T as well: Given any
separation (A,B) ∈ T we know that |A ∩X ′| = |A′ ∩X ′| < |B′ ∩X ′| = |B ∩X ′|

Thus, the general Theorem is true at least for small values of k.

The next Lemma gives us some information about crossing separations in M and addi-
tionally justifies the definition of semi-small separations:

Lemma 5.5. If (A,B) ∈ M is a separation that is not semi-small and crosses a sepa-
ration (C,D) ∈ T , then the separation (A,B)∧ (D,C) is not of order less than |(A,B)|.

(A,B)

(C
,D

)

(A,B) ∧ (C,D)

(A,B) ∧ (D,C)

Figure 4: The separation (A,B) ∧ (C,D) is of order less than |(A,B)|, so
|(A,B) ∧ (D,C)| ≥ |(A,B)|.

Proof. The separation (A,B)∧(C,D) is of order less than |(A,B)| by Lemma 5.2. Thus,
if (A,B)∧(D,C) is also of order less than |(A,B)|, the separation (A,B) would be semi-
small, asG[A∩C]∪G[A∩D]∪G[B] = G and (A,B)∧(C,D), (A,B)∧(D,C) ≤ (A,B).
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Semi-small separations behave a bit like small separations, that is why we call them
semi-small: One essential property of small separations is that every tangle contains all
small separations in our graph G. Semi-small separations however, lie not necessarily
in all tangles. But, if (A,B) is a semi-small separation of order k and T a tangle of
order (k+ 1) containing (A,B), then there is no other (k+ 1)-tangle inducing the same
k-tangle as T and containing (B,A). So, the semi-small separations are not charateristic
for a specific tangle, they do not minimal distinguish two tangles:

Lemma 5.6. Let T be a k + 1-tangle in G containg a semi-small separation (A,B) of
order k. Let Tk be the tangle induced from T on Sk. Then every k + 1-tangle T ′ that
induces Tk also includes (A,B).

Proof. As (A,B) is semi-small, there are two separations (C,D), (E,F ) < (A,B) of
order less than |(A,B)| such that G[B] ∪ G[C] ∪ G[E] = G. As T ′ induces Tk, it is
(C,D), (E,F ) ∈ T ′. So, (B,A) ∈ T ′ would violate (1), therefore it is (A,B) ∈ T ′.

Especially, if every maximal separation in a tangle T is semi-small, this tangle is com-
pletely induced by a tangle of smaller order. Therefore it is reasonable to focus on
tangles including maximal separations that are not semi-small. In such tangles we can
then find a set X, that is nearly a majority set, except of the fact that there will be one
separation (A,B) ∈M only fullfilling |A ∩X| = |B ∩X|:

Lemma 5.7. Let G be a graph, T a tangle of order k + 1 and (A,B) ∈ T a maximal
separation that is not semi-small. Let X := A∩B. Then for every separation (C,D) ∈ T
it is |C ∩X| < |D ∩X| or C ∩D = X and (C,D) ≤ (A,B).

Proof. Let (A,B) 6= (C,D) ∈ T . If (C,D) ≤ (A,B), the assertion is obvious. By
Lemma 5.1, we may therefore assume that (C,D) is maximal in T . Thus, if (C,D) is
nested with (A,B), it is (C,D) ≤ (B,A) as (A,B) is a maximal separation in T . So in
this case it is D ⊇ A and therefore X ⊆ D. So, the assertion is true as long as X 6⊆ C,
so let us suppose, that this is not the case.

In a maximal separation (A,B) the set B \ A must be connected: Otherwise there is a
connected proper subset K of B \A, but then the separation (V \K,K ∪X) cannot be
in T by the maximality of (A,B). Thus (K ∪X,V \K) is in T , but then, by (1), the
separation (A ∪K,B \K) must be in T , contradicting the maximality of (A,B). Thus
G[B \ A] is connected, so B \ A ⊆ C and therefore (A,B) = (D,C), contradicting the
definition of a tangle.

So we may assume that (A,B) and (C,D) cross. Then by Lemma 5.2, the separation
(A,B) ∧ (C,D) is small and of order less than |(A,B)|.

We then know by Lemma 5.5 that the separation (A,B) ∧ (D,C) cannot be of or-
der less than |(A,B)| as well, as this would imply that (A,B) is semi-small. So it is
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|(A,B) ∧ (C,D)| < |(A,B) ∧ (D,C)| and therefore by the definition of the order func-
tion it is

|(A ∩ C) ∩ (B ∪D)| < |(A ∩D) ∩ (B ∪ C)|

And therefore

|X ∩ (C \D)| = |A ∩B ∩ (C \D)| < |A ∩B ∩ (D \ C)| = |X ∩ (D \ C)|

So it is indeed |X ∩ C| < |X ∩D|.

This Lemma guarantees the existence of a majority set for some types of tangles:

First, given a tangle T of order k, if there is an integer l > k and two different tangles T ′
and T ′′ of order l both inducing T and efficently distinguished by a separation of order
l − 1, there is a majority set for T : There exists a maximal, not semi-small separation
(A,B) in T ′ \ T , so by Lemma 5.7, there is a majority set for every separation (C,D) in
T ′ not fullfilling C ∩D = A ∩ B. Especially, this is a majority set for every separation
in T , as every separation in T is of order less than l − 1.

Also, if there are two maximal not semi-small separations (A,B) and (C,D) in our given
tangle T such that A ∩ B and C ∩ D are disjoint, we get by Lemma 5.7 that there is
a majority set for T : In this case the union of A ∩ B and C ∩ D is the desiered set,
as A ∩ B is a majority set for every separation in M except of (A,B) and C ∩ D is a
majority set for every separation in M except of (C,D).

If we consider (k+ 1)-tangles in a k-connected graph, we will be able to use this Lemma
as one part of the construction of a majority set for our tangle.

6 (k + 1)-tangles in k-connected graphs

From now on let G be a k-connected graph, we consider the set Sk+1 of separations of
order at most k. As G is k-connected, every separation of order less than k must be
small. Thus, Lemma 5.2 implies that, if a maximal separation (A,B) ∈ T crosses a
separation (C,D) ∈ T , the separation (A,B) ∧ (C,D) must be a small separation, as it
is a separation of order less than k. Especially, there are no vertices lying properly on
the small side of two different maximal separations of T .

Also, in a k-connected graph we get an additional property of the semi-small separations
which will allow us to concentrate our efforts for constructing the majority set on the
set of not semi-small separations:

Lemma 6.1. If G is a k-connected graph and (A,B) a semi-small separation of order
k in G, it is |A \B| < k

2
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Proof. Let (C,D) ≤ (A,B) and (E,F ) ≤ (A,B) be the separations of order less than k
witnessing that (A,B) is semi-small, so G[B]∪G[C]∪G[E] = G. As (C,D) and (E,F )
are of order less than k, they are small separations, so D = F = V and |C| , |E| < k.

As G is k-connected, we know that every vertex in A ∩B has a neighbour in A \B (as
there would be otherwise a separation of order less than k that is not small). Thus, as
G[B] ∪ G[C] ∪ G[E] = G, we know that every vertex in A ∩ B must lie in at least one
of the sets C and E. If one vertex v in A \ B would lie in C but not in E, say, the
set C \ {v} would be a set of order less than k that separates v from G, contradicting
the fact that G is k-connected. Thus every vertex in A \ B lies in both sets, C and E.
Therefore it is:

k + 2 |A \B| = |A ∩B|+ 2 |A \B| ≤ |C|+ |E| < 2k

And therefore |A \B| < k
2 .

This Lemma implies that every semi-small separation (A,B) in our tangle T is deter-
mined by any set X of order at least 2k, as for a semi-small separation (A,B) it is
|A \B| < k

2 . Therefore, for constructing a majority set, we restrict ourselves on the set
M̄ of all maximal separations of T that are not semi-small, so

M̄ = M \ {(A,B) ∈ ~Sk+1|(A,B) semi-small},

and would like to find a set X of order at least 2k that determines all of M̄ .

For this, we will distinguish the separations in M̄ into two classes, the deep separations
and the flat separations.

We say that a vertex v ∈ V is deep with respect to (A,B) ∈ M̄ if v ∈ D \ C for all
(C,D) ∈ M̄ \ {(A,B)}, so v is deep if {v} determines all separations in M̄ except of
(A,B). A separation (A,B) is deep if there exists a vertex v that is deep with respect
to (A,B), otherwise (A,B) is flat.

v

(A,B)

Figure 5: The vertex v is deep with respect to (A,B).
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The picture of deep vertices is that they are lying deep inside the side A \ B, so that
they cannot be touched from any other separation (C,D) ∈ M̄ .

As G is k-connected we get an at the first glance surprising result about a class of
separations that must be deep, namely we will show that, given a separation (A,B) ∈ M̄ ,
all but at most k vertices in A \ B are deep with respect to (A,B). The reason why
this works is mainly because there are no vertices lying properly in the small side of two
separations. Thus, roughly speaking, if a vertex is not deep, it lies in the interior of an
other separation. But this other separation must cross the original separation (A,B)
and this cannot happen arbitrary wild, as these separations have to interact with each
other as well. Precisely the proof is as follows:

Lemma 6.2. Let (A,B) ∈ M̄ , then all but at most k vertices in A \ B are deep with
respect to (A,B).

Proof. We construct an injective function f from the set of all non deep vertices W in
A \B to A ∩B. As |A ∩B| ≤ k, we then get the claimed result.

For every non deep vertex in A \ B we have a separation (C,D) ∈ M̄ witnessing that
this vertex is not deep, namely v /∈ D \ C, so v ∈ C. By Lemma 5.2 the separation
(A,B)∧ (C,D) is small, so there is no vertex in (A∩C)\ (B∪D). Especially, v therefore
lies in C ∩D. Pick one such separation (C,D) witnessing that v is not deep for every
vertex v in W , let F ⊆ M̄ be the set of all these witnesses and let W(C,D) for (C,D) ∈ F
be the set of vertices for which (C,D) was picked as witness.

(A,B)

(C
,D

)

(C ∩D) ∩ (A \B)

(A ∩B) ∩ (C \D)

Figure 6: The set (C ∩D) ∩ (A \B) has at most the same order as (A ∩B) ∩ (C \D).

Let (C,D) ∈ F , then W(C,D) ⊆ (C ∩D) ∩ (A \B). We show that

|(C ∩D) ∩ (A \B)| ≤ |(A ∩B) ∩ (C \D)| (2)
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By Lemma 5.5, as the separation (C,D) is not semi-small, the separation (B,A)∧(C,D)
is of order at least k. So, descriptive, (2) is true as (B,A)∧ (C,D) has at least the same
order as (C,D), so there are at least as many vertices in the interior of (B,A) ∧ (C,D)
that are not in the interior of (C,D) as vice versa. For the formal proof we calculate:

|B ∩ C ∩ (A ∪D)| ≥ |C ∩D|
⇒ |(B ∩ C ∩D) t ((B ∩ C ∩A) \D)| ≥ |(C ∩D ∩B) t ((C ∩D ∩A) \B)|
⇒ |(B ∩ C ∩A) \D| ≥ |(C ∩D ∩A) \B|
⇒ |(C ∩D) ∩ (A \B)| ≤ |(A ∩B) ∩ (C \D)|

So (2) is true indeed. For every vertex v ∈W(C,D) pick one vertex in (A ∩B) ∩ (C \D)
as image of v under f such that now two vertices in W(C,D) get the same image.

We claim, that this f is indeed injecitve: Otherwise there are two vertices v, w ∈ W
such that f(v) = f(w). By construction their witnesses (Cv, Dv) and (Cw, Dw) are
different (as we constructed f such that all vertices in W(C,D) have different images).
But then, by construction, f(v) ∈ Cv \Dv and f(w) ∈ Cw \Dw. So there is a vertex in
Cv \Dv ∩ Cw \Dw = (Cv ∩ Cw) \ (Dv ∪Dw), contradicting Lemma 5.2, as this implies
that (Cv, Dv) ∧ (Cw, Dw) is not a small separation.

So f is indeed injective, and therefore there are at most k vertices in A \B that are not
deep.

7 Constructing a majority set

The picture we had in mind for our construction of a majority set is the one in figure 7.

v

w

x

Figure 7: The three vertices v, w, x together form a majority set for the three separations.
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If we find vertices that lie inside the small side of only one separation, we could pick
such vertices for different separations resulting in a majority set for all separations. This
inspired the definition of deep vertices. There are two problems we have to face with
here: First we need to make sure that our majority set is large enough, as we do not
know anything about the relation between deep vertices and semi-small separations.
The other problem is that we cannot guarantee that there are enough, namely at least 3,
deep separations to make this work. Facing this two problems, our strategy for finding
a majority set is as follows:

If the set V is not a majority set, we can show that there is a deep separation (A,B), if G
contains enough vertices. We then would like to pick two sets X1 ⊆ A\B and X2 ⊆ B\A
such that |X1| = |X2| − 1, where the set X1 will be a set of deep vertices with respect
to (A,B). We then would like to set X = X1 t X2. No matter how we choose these
sets X1, X2, we then determine (A,B). Also, for every other separation (C,D) in M̄ ,
we know that the whole set X1 lies in its proper big side, thus this separation can only
be not determined correctly if all but at most one vertex of X2 lies on the proper small
side of (C,D). By picking the set X2 in a clever way, we can make sure that this is not
the case, so all other separations in M̄ are also determined by X.

As the last step, we then may add a set we got by Lemma 5.7 to our set X to make sure
that it is of size at least 2k, so all semi-small separations in M are then determined by
X as well.

For constructing these sets X1 and X2, we shall need to distinguish some cases. As
already said above, if there are no deep separations at all we will be able to pick the
whole set V :

Lemma 7.1. Let G be a k-connected graph with more than 3k vertices and let T be a
(k+ 1)-tangle in G. If there are no deep separations in T , the set X := V is a majority
set for T .

Proof. By Lemma 5.1, it suffices to show that X determines every separation in M . As
there are no deep separations in M , by Lemma 6.1 and Lemma 6.2 it is |A \B| ≤ k for
every separation (A,B) ∈M . But it is |A ∩B| ≤ k and

|A \B|+ |A ∩B|+ |B \A| = |V | > 3k

and therefore |B \A| > k ≥ |A \B|, so X determines (A,B).

Thus, we may assume that there are deep separations in T . The clue is now to find
a suitable set X2. To have a chance at least to pick this set X2 such that X then
determines every separation in M̄ , it is necessary that, given a separation (C,D) ∈ M̄ ,
we can find some vertices in B \ A that do not lie in C \D, as otherwise this approach
would be hopeless. Luckly, this is indeed the case, as the small sides of at most three
separations in a tangle cannot cover the whole graph:
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Lemma 7.2. Let G be a k-connected graph, T a (k + 1)-tangle and k ≥ 3. If (A,B)
and (C,D) are separations in T , then there are at least two vertices v, w ∈ (B \A)∩D.

Proof. If (B \ A) ∩ D = ∅, this would imply that G = G[A] ∪ G[C]: Let e = vw
be an edge not in G[A], then without loss of generality, it is v ∈ B \ A. Thus, it is
v ∈ C \D and therefore, as (C,D) is a separation, it is w ∈ C as well. So e ∈ G[C]. But
G = G[A]∪G[C] is a contradiction to the fact that T is a tangle. Thus |B \A ∩D| ≥ 1.
Suppose now, that there is only one vertex v in (B \A) ∩D.

If the neighbourhood N(v) of v is a subset of A∩B, then ({v}∪ (A∩B), V \ {v}) would
be a separation of order k in T that (as k ≥ 3), by Lemma 2.1, lies in T . But it is
G[A] ∪ G[C] ∪ G[{v} ∪ A ∩ B] = G: If e = wu is an edge not adjacent to v and not in
G[A], then as above it is without loss of generality w ∈ C \D and therefore e ∈ G[C]. If
w = v say, then e ∈ G[{v} ∪A ∩B] as N(v) ⊆ A ∩B. But this contradicts property (1)
of T .

v

(A,B)

(D,C)
w

Figure 8: If v ∈ C ∩D, the dotted line gives us a small separation.

So the only possibility is N(v) 6⊆ A∩B and therefore, as v ∈ B\A, it is N(v)∩C \D 6= ∅,
so v ∈ C (see Figure 8). As G is k-connected and (B \A) \ {v} ⊆ C \D, there is at least
one vertex w ∈ A∩B ∩C, as {v} ∪ (C ∩A∩B) separates B \ (A∪ {v}) from the rest of
the graph. So ({v} ∪ (A∩B) \ {w}, V ) is a small separation and therefore in T . But as
above G[A]∪G[C]∪G[{v} ∪ (A∩B) \ {w}] = G contradicting the definiton of a tangle.

Thus there are at least two vertices in (B \A) ∩D.
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Thus, if we can pick the whole set B \ A as our set X1, we will indeed determine all
separations in M̄ . This is the case if there is at least one separation (A,B), for which
there are sufficently many deep vertices, namely at least |B \A| − 1:

Lemma 7.3. Let G be a graph, k an integer and T a tangle of order (k + 1) in G. Let
M̄ be defined as above and let (A,B) ∈ M̄ . Let VD := {v ∈ A \B|v deep w.r.t. (A,B)}
be the set of all deep vertices with respect to (A,B). If |VD| ≥ |B \A| − 1, there is a set
X determining all separations in T .

Proof. Let X2 := B\A and let X1 ⊆ VD be an arbitrary subset of the set of deep vertices
such that |X1| = |B \A| − 1. We show that X ′ := X1 tX2 determines every separation
in M̄ : X ′ determines (A,B) as X ′ ∩ A = X1 and X ∩ B = X2 and by construction
|X1| = |X2| − 1. For (C,D) 6= (A,B) ∈ M̄ it is, by the definition of deep vertices,
X1 ⊆ D \ C. By Lemma 7.2, there are at least two vertices in X2 \ (C \ D). Thus
|X ′ ∩ (C \D)| ≤ |X2| − 2. Therefore∣∣X ′ ∩ (C \D)

∣∣ ≤ |X2| − 2 < |X1| ≤
∣∣X ′ ∩ (D \ C)

∣∣
so X ′ determines (C,D). As by Lemma 5.7 the set A ∩ B determines every separation
(A,B) 6= (C,D) ∈ M , the set X := X ′ ∪ A ∩ B also determines every separation in M̄ .
Additionally it is |X ′| ≥ k: Otherwise it is |X2| ≤ k

2 , thus, by Lemma 2.1, the separation
(B,A) would lie in T contradicting the definition of a tangle. So

|X| =
∣∣X ′∣∣ + |A ∩B| ≥ 2k.

Therefore, X determines every semi-small separation as well. So every separation in M
is determined by X, by Lemma 5.1 the set X therefore determines every separation in
T .

So, from now on we may assume that there is no such separation. If there is additionally
only one deep separation, we have no chance to use our approach X := X1 ∪X2, as it
may be the case that for any subset X2 of B \ A having the correct size, there is one
separation (C,D) ∈M such that X2 ⊆ C \D. Thus in this case we have to use the same
approach as in the case of no deep separations at all, namely that if V is large enough,
it will then automaticly determine T :

Lemma 7.4. If a (k+ 1)-tangle T in a k-connected graph G with more than 4k vertices
contains exactly one deep separation (A,B), there is a set X ⊆ V that determines every
separation in T .

Proof. If there are at least |B \A| − 1 many deep vertices with respect to (A,B), the
assertion is true by Lemma 7.3. Otherwise by Lemma 6.2 it is |A \B| − k < |B \A|,
so there are more than k vertices in B \ A: As G contains more than 4k vertices it is
|A \B|+ |A ∩B|+ |B \A| = |V | > 4k and therefore 2 |B \A| > 2k. Thus, we can pick
a set X of order at least 3k + 1 that determines (A,B): For example let X consist of

25



A∩B and B \A together with a subset of A\B of order |B \A|−1. Then X determines
every separation in T : By Lemma 5.1, we only need to check the separations in M ,
every separation except of (A,B) in M is either semi-small or flat, thus for any such
separation (C,D) it is |C \D| ≤ k and therefore |X ∩ C| < |X ∩D|. Thus X indeed
determines every separation in T .

If we have at least two deep separations, we can return to the strategy mentioned above.
Let (A,B) and (C,D) be tow such deep separations. We know by Lemma 7.2, that we
can pick X2 such that X also determines (C,D). Additionally, we know that there is
a vertex that is deep with respect to (C,D). By making sure that this vertex also lies
in X2, we then know that all other separations in M̄ are determined as well: There are
more than |X|2 vertices in X that are deep with respect to (A,B) or (C,D), thus all other
separations in M̄ are then determined automaticly:

Lemma 7.5. If a (k+ 1)-tangle T in a k-connected graph G with more than 4k vertices
contains at least two deep separations and k is at least 3, there is a set X ⊆ V that
determines every separation in T .

Proof. If there is a deep separation (A,B) such that

|{v ∈ V |v deep w.r.t. (A,B)}| ≥ |B \A| ,

the assertion would be true by Lemma 7.3, so we may assume that this is not the
case. Additionally we may assume that there is a deep separation (A,B) such that
|B \A| ≤ |A \B|: If this is not the case, the set X := V would determine every sepa-
ration in T . Every deep separation would then be determined by assumption and given
a separation (C,D) in M that is not deep, we know by Lemma 6.2 that |C \D| ≤ k,
and thus, as |V | > 4k, it is |D \ C| > 2k. So by Lemma 5.1, X would determine every
separation in T . Thus we may assume that there is a deep separation (A1, B1) such that
|B1 \A1| ≤ |A1 \B1|. Let (A2, B2) be another deep separation.

Let VD be the set of deep vertices with respect to (A1, B1). As |V | > 4k, by Lemma 6.2
together with the two unequations shown above there are more than k

2 vertices in VD:

4k < |V | = |A1 \B1|+ |A1 ∩B1|+ |B1 \A1| ≤ k + 2 |A1 \B1|
⇒3k < 2 |A1 \B1| ≤ 2(k + |VD|)

⇒k

2 < |VD|

By Lemma 7.2 there are at least two vertices in B1\A1 that are not in A2\B2. Let v 6= w
be two such vertices. Additionally, as (A2, B2) is a deep separation, there is a vertex x
that is deep with respect to (A2, B2). By the definiton of deep, this vertex lies in B1 \A1
as well and is different from v and w. As k is at least 3, there are at least 2 vertices in
VD. As |B1 \A1| > |VD|+ 1, we can pick an arbitrary subset X2 ⊆ B1 \ (A1 ∪ {v, w, x})
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of size |VD| − 2. We claim that the set X ′ := VD ∪ X2 ∪ {v, w, x} determines every
separation in M̄ .

By construction, X ′ determines (A1, B1) as |X ′ ∩ (A1 \B1)| = |X ′ ∩ (B1 \A1)|−1. The
separation (A2, B2) is determined by X ′ as VD, by the definition of deep, is a subset of
B2 \A2 and v, w /∈ A2 \B2. Thus∣∣X ′ ∩ (A2 \B2)

∣∣ ≤ |X2 ∪ {x}| = |VD| − 1 ≤
∣∣X ′ ∩ (B2 \A2)

∣∣− 1

Last, all other separations in M̄ are determined by X ′ as, given such a separation (C,D),
it is VD ∪ {x} ⊆ D \C by the definition of deep. As |VD ∪ {x}| > |X|

2 , the set X indeed
determines (C,D). Thus, as |X ′| ≥ k and X ′ ∩ (A1 ∩B1) = ∅, as in the proof of Lemma
7.3, the set X := X ′ ∪ (A ∩B) determines every separation in T .

Thus, putting all this cases together we can now proof our main theorem:

Proof of Theorem 1.3. If k is at most 2, the assertion is true by Theorem 1.2. If G
contains no deep separations, the assertion is true by Lemma 7.1. If G contains exactly
one deep separation, the assertion is true by Lemma 7.4. If k is at least 3 and G contains
at least two deep separations, the assertion is true by Lemma 7.5.

So, for which graphs G and tangles T of order k do we know that they have a majority
set?

First all tangles of order at most 3 have a majority set by Theorem 1.2. Then, all
k-tangles in (k − 1)-connected graphs have a majority set by Theorem 1.3. Also, if a
k-tangle in a not necessarily (k − 1)-connected graph induces a k-tangle in a (k − 1)-
connected subgraph, there is a majority set for this tangle.

Additionally, if there are two different tangles T ′ and T ′′ of the same order l > k both
inducing T , there is a majority set by Lemma 5.7. We also get a majority set by 5.7 if
there are two maximal, non-semi-small separations with disjoint interior in T .

And, if the tangle T is induced by a block of G, the set of vertices of this block is a
majority set.
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