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CHAPTER 1

Overview

This habilitation thesis represents the outcome of six extensive research projects I have
been involved in since taking up my postdoc position at the University of Hamburg in the
fall of 2015. The first three of these projects fall into the area of structural infinite graph
theory displaying connections to infinite combinatorics and logic. The other three fall
into the area of infinite topological graph theory with various connections to topology and
geometry. The results presented here are based on thirteen papers [31, 32, 33, 35, 36,
37, 66, 70, 76, 77, 78, 101, 134] conceived and written together with varying groups
of collaborators.

The first part of this thesis on structural infinite graph theory contains results and

solutions to the following three problems:

The reconstruction problem for locally finite graphs. (Chapters 2 & 3). The
reconstruction problem asks whether local information about a graph determines its global
isomorphism type. In these two chapters we construct examples showing that, perhaps
surprisingly, this question for infinite, locally finite graphs is to be answered in the negative.
These results summarily solve a group of seven problems in the literature, which were open
for more than 50 years. This construction is joint work with N. Bowler, J. Erde, P. Heinig
and F. Lehner [36, 35], published in the Bulletin of the London Mathematical Society and
Journal of Combinatorial Theory Series B.

The main idea of our construction relies on the same principle that lies behind the
proof of the completeness theorem for first-order logic: In each step, we can arrange for one
additional requirement — while paying the price of simultaneously introducing countably
many new future tasks still to be solved. However, by a suitable book-keeping procedure,

one can satisfy all requirements in an w-length recursion.

The ubiquity problem. (Chapters 4, 5 & 6). A graph G is called ubiquitous if
whenever some graph [' contains arbitrarily many disjoint copies of G, then I' must contain
a family of infinitely many disjoint copies of G. The Ubiquity Conjecture, due to Andreae,
suggests that every locally finite connected graph is ubiquitous. While proven for certain
well-behaved classes of graphs, the general case remains a challenging open problem with
connections to the theory of well- and better-quasi orderings of graphs.

Our results include the solution of the ubiquity problem for trees in Chapter 4, solving
a 40-year-old problem raised by Halin and Andreae, as well as the solution of the ubiquity

7



8 1. OVERVIEW

problem for locally finite graphs of finite tree-width in Chapter 6. This is joint work
with N. Bowler, C. Elbracht, J. Erde, P. Gollin, K. Heuer and M. Teegen [31, 32, 33|,
submitted for publication.

Forbidden minors for normal spanning trees. (Chapter 7). This chapter contains
the solution of two 15-year-old problems due to Diestel and Leader about the existence of
normal spanning trees in infinite graphs. This is joint work with N. Bowler and S. Geschke
[37], published in Fundamenta Mathematicae.

Normal spanning trees are amongst the most useful objects governing the structure of
finite and infinite connected graphs. While every countable connected graph has a normal
spanning tree, not all uncountable graphs do, and a challenging problem is to characterise
the existence of normal spanning trees by a small list of forbidden minors. Our main
result is that two natural questions by Diestel and Leader about these forbidden minors
are independent of the usual ZFC-axioms of set theory: For one direction we prove a
strong structural result under Martin’s axiom, and for the other we present a construction

under CH that takes advantage of an Aronszajn tree.

The second part of this thesis on infinite topological graph theory contains the following
Hamiltonicity and Eulerianity results:

Hamiltonicity results for infinite graphs with ends. (Chapters 8 & 9). We
present an affirmative solution to Alspach’s problem about decompositions of infinite Cay-
ley graphs into Hamiltonian double rays, for a large class of abelian groups: Every Cayley
graph of a one-ended abelian group generated by a finite set of non-torsion elements has
such a Hamilton decomposition. This is joint work with J. Erde und F. Lehner [66], to
appear in the Journal of Combinatorial Theory Series B.

We then investigate a problem by Mohar whether there exist infinite cubic graphs
that are uniquely Hamitonian (by a theorem of Thomason, every finite Hamiltonian cubic
graph contains at least three distinct Hamilton cycles). We show that in the one-ended
case, there always exists a second Hamilton cycle (and construct an example showing that
there might not be a third), while constructing examples of uniquely Hamiltonian cubic
graphs as soon as there are at least two ends. This paper is single authored [134] and

published in the Electronic Journal of Combinatorics.

Circuits, paths and cycles containing prescribed edges and points. (Chapters
10, 11 & 12). First for a given n € N, we characterise the finite graphs in which any n
edges lie on a common circuit (a closed walk that repeats no edges). This is joint work with
P. Knappe, [101], submitted for publication. Next, we characterise for which graphs any
n topological points (i.e. vertices or interior points of edges) lie on a common topological
path or cycle, respectively. Finally, we extend this characterisation to locally finite graphs
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with ends, and describe the jump in complexity for this problem when considering graph-
like continua. The finite case is joint work with P. Gartside and A. Mamatelashvili,
[76], submitted for publication, and the infinite case is joint work with P. Gartside [78],
published in Topology and its Applications.

The Eulerian problem for topological spaces. (Chapters 13 & 14). We first
generalise Diestel and Kiihn’s theory of topological Euler tours from locally finite graphs
with ends to graph-like continua. This is joint work with B. Espinoza and P. Gartside
[70], submitted for publication. The abstract viewpoint of graph-like spaces allows us to
simplify also other results by Georgakopoulos [79], Bruhn & Stein [39], and Berger &
Bruhn [20] about locally finite graphs with ends.

Finally, we generalise the theory of topological Euler tours further to geometric struc-
tures such as hyperbolic graphs with Gromov boundary, and finally to arbitrary topological
spaces. This is joint work with P. Gartside [77], submitted for publication. In the process
we uncover a connection to a 90-year-old problem in topology: characterising the irre-
ducible images of the circle. Our first main result is that these irreducible images of the
circle are precisely the Eulerian spaces, the proof of which relies on a Baire Category func-
tion space argument. This new viewpoint makes it possible to apply combinatorial tools
to study such topological spaces. In particular, we define a natural notion of edge-cuts
in topological spaces and conjecture that a space is Eulerian if and only if it is a Peano
continuum where all edge-cuts have even size. As our second main result, we confirm this
conjecture for a variety of topological spaces, in particular for all one-dimensional ones.
This subsumes and extends all known results about the Eulerianity of infinite graphs and
continua to date.

This paper marks a new point in the combinatorial theory of topological graphs with
ends, in the sense that its cycle space theory, topological spanning trees, and fundamental
cycles and -cuts are here for the first time applied to help solving a natural, longstanding
open problem arising outside of combinatorics.

Acknowledgements. I would like to thank my collaborators in the above projects,
especially Nathan Bowler, Joshua Erde, Paul Gartside and Florian Lehner: Working to-
gether on these problems has been inspiring, exciting and rewarding. It has also been a
joy to work in Hamburg during the past four years, and I would like to thank Reinhard

Diestel for his guidance and inspiration about all things related to infinite graphs.
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Structural infinite graph theory






CHAPTER 2

A counterexample to the reconstruction conjecture for locally

finite trees

Two graphs G and H are hypomorphic if there exists a bijection ¢: V(G) —
V(H) such that G — v = H — ¢(v) for each v € V(G). A graph G is recon-
structible if H = G for all H hypomorphic to G.

It is well known that not all infinite graphs are reconstructible. However,
the Harary-Schwenk-Scott Conjecture from 1972 suggests that all locally finite
trees are reconstructible.

In this paper, we construct a counterexample to the Harary-Schwenk-Scott
Conjecture. Our example also answers four other questions of Nash-Williams,

Halin and Andreae on the reconstruction of infinite graphs.

2.1. Introduction

We say that two graphs G and H are (vertex- )hypomorphic if there exists a bijection ¢
between the vertices of G and H such that the induced subgraphs G —v and H — ¢(v) are
isomorphic for each vertex v of G. Any such bijection is called a hypomorphism. We say
that a graph G is reconstructible if H = G for every H hypomorphic to GG. The following
conjecture, attributed to Kelly and Ulam, is perhaps one of the most famous unsolved

problems in the theory of graphs.

CONJECTURE 2.1.1 (The Reconstruction Conjecture). FEvery finite graph with at least

three vertices is reconstructible.

For an overview of results towards the Reconstruction Conjecture for finite graphs
see the survey of Bondy and Hemminger [29]. Harary [90] proposed the Reconstruction
Conjecture for infinite graphs, however Fisher [73] found a counterexample, which was
simplified to the following counterexample by Fisher, Graham and Harary [74]: consider
the infinite tree G in which every vertex has countably infinite degree, and the graph H
formed by taking two disjoint copies of G, which we will write as G LI G. For each vertex
v of GG, the induced subgraph G — v is isomorphic to G LU G LI ---, a disjoint union of
countably many copies of GG, and similarly for each vertex w of H, the induced subgraph
H — w is isomorphic to GUG U - -+ as well. Therefore, any bijection from V(G) to V(H)
is a hypomorphism, but G and H are clearly not isomorphic. Hence, the tree G is not
reconstructible.

13



14 2. NON-RECONSTRUCTIBLE LOCALLY FINITE TREES

These examples, however, contain vertices of infinite degree. Regarding locally finite
graphs, Harary, Schwenk and Scott [91] showed that there exists a non-reconstructible
locally finite forest. However, they conjectured that the Reconstruction Conjecture should
hold for locally finite trees.

CONJECTURE 2.1.2 (The Harary-Schwenk-Scott Conjecture). Every locally finite tree
1s reconstructible.

This conjecture has been verified in a number of special cases. Kelly [100] showed
that finite trees on at least three vertices are reconstructible. Bondy and Hemminger [28]
showed that every tree with at least two but a finite number of ends is reconstructible, and
Thomassen [151] showed that this also holds for one-ended trees. Andreae [12] proved
that also every tree with countably many ends is reconstructible.

A survey of Nash-Williams [127] on the subject of reconstruction problems in infinite
graphs gave the following three main open problems in this area, which have remained

open until now.

PrOBLEM 2.1.3 (Nash-Williams). Is every locally finite connected infinite graph re-
constructible?

PROBLEM 2.1.4 (Nash-Williams). If two infinite trees are hypomorphic, are they also
isomorphic?

PrROBLEM 2.1.5 (Halin). If G and H are hypomorphic, do there exist embeddings
G — H and H — G7

Problem 2.1.4 has been emphasized in Andreae’s [14], which contains partial affirma-
tive results on Problem 2.1.4. A positive answer to Problem 2.1.3 or 2.1.4 would verify
the Harary-Schwenk-Scott Conjecture. In this paper we construct a pair of trees which
are not only a counterexample to the Harary-Schwenk-Scott Conjecture, but also answer
the three questions of Nash-Williams and Halin in the negative. Our counterexample will

in fact have bounded degree.

THEOREM 2.1.6. There are two (vertex)-hypomorphic infinite trees T and S with maz-
imum degree three such that there is no embedding T < S or S — T.

Our example also provides a strong answer to a question by Andreae [13] about edge-
reconstructibility. Two graphs G and H are edge-hypomorphic if there exists a bijection
¢: E(G) — E(H) such that G —e = H — ¢(e) for each e € E(G). A graph G is edge-
reconstructible if H = G for all H edge-hypomorphic to G. In [13] Andreae constructed
countable forests which are not edge-reconstructible, but conjectured that no locally finite

such examples can exist.

PROBLEM 2.1.7 (Andreae). Is every locally finite graph with infinitely many edges
edge-reconstructible?
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Our example answers Problem 2.1.7 in the negative: the trees 7" and S we construct for
Theorem 2.1.6 will also be edge-hypomorphic. Besides answering Problem 2.1.7, this ap-
pears to be the first known example of two non-isomorphic graphs that are simultaneously
vertex- and edge-hypomorphic.

The Reconstruction Conjecture has also been considered for general locally finite
graphs. Nash-Williams [126] showed that any locally finite graph with at least three,
but a finite number of ends is reconstructible, and in [128], he established the same result

for two-ended graphs. The following problems, also from [127], remain open:

PrROBLEM 2.1.8 (Nash-Williams). Is every locally finite graph with exactly one end
reconstructible?

PROBLEM 2.1.9 (Nash-Williams). Is every locally finite graph with countably many
ends reconstructible?

In a paper in preparation [36], we will extend the methods developed in the present
paper to also construct counterexamples to Problems 2.1.8 and 2.1.9.

This paper is organised as follows. In the next section we will give a short, high-level
overview of our counterexample to the Harary-Schwenk-Scott Conjecture. In Section 2.3,
we will develop the technical tools necessary for our construction, and in Section 2.4, we
will prove Theorem 2.1.6.

For standard graph theoretical concepts we follow the notation in [54].

2.2. Sketch of the construction

In this section we sketch the main ideas of the construction. For the sake of simplicity
we only indicate how to ensure that the trees T' and S are vertex-hypomorphic and non-
isomorphic, but not that they are edge-hypomorphic as well, nor that neither embeds into
the other.

Our plan is to build the trees T"and S recursively, where at each step of the construction
we ensure for some vertex v already chosen for T' that there is a corresponding vertex w of
S with T'—v = S —w, or vice versa. This will ensure that by the end of the construction,
the trees we have built are hypomorphic.

More precisely, at step n we will construct subtrees 7T, and S,, of our eventual trees,
where some of the leaves of these subtrees have been coloured in two colours, say red and
blue. We will only further extend the trees from these coloured leaves, and we will extend
from leaves of the same colour in the same way.

That is, the plan is that there should be two further rooted trees R and B such that
T can be obtained from T, by attaching copies of R at all red leaves and copies of B at
all blue leaves, and S can be obtained from S,, in the same way. At step n, however, we
do not yet know what these trees R and B will eventually be.
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Nevertheless, we can ensure that the induced subgraphs, 7" — v and S — w, of the
vertices we have dealt with so far really will match up. More precisely, by step n we have
vertices x1,...,x, of T, and yi,...,y, of S, for which we intend that 7" — x; should be
isomorphic to S — y; for each j. We ensure this by arranging that for each j there is an
isomorphism from 7;, — x; to \S,, — y; which preserves the colours of the leaves.

The T,, will be nested, and we will take 7" to be the union of all of them; similarly the
S,, will be nested and we take S to be the union of all of them.

There is a trick to ensure that 7" and S do not end up being isomorphic. First we
ensure, for each n, that there is no isomorphism from 7,, to S,,. We also ensure that the
part of T" or S beyond any coloured leaf of T}, or .S,, begins with a long non-branching path
(called a bare path), longer than any such path appearing in 7,, or S,,. Call the length of
these long paths k1.

Suppose now for a contradiction that there is an isomorphism from 7" to S. Then
there must exist some large n such that the isomorphism sends some vertex t of T, to a
vertex s of S,,. However, T, is the component of T' containing ¢ after all bare paths of
length &, have been removed’, and so it must map isomorphically onto the component
of S containing s after all bare paths of length k£, have been removed, namely onto S,,.
However, there is no isomorphism from 7, onto S,,, so we have the desired contradiction.

A G G AR G SR
FiGURE 2.1. A first approximation of 7T}, on the left, and S, ; on the
right. All dotted lines are non-branching paths of length k,, .

Suppose now that we have already constructed 7T;, and S,, and wish to construct T},,1
and S,.1. Suppose further that we are given a vertex v of T}, for which we wish to find a
partner w in S, 11 so that 7' — v and S — w are isomorphic. We begin by building a tree
Tn 2 T, which has some vertex w such that T, — v = Tn —w. This can be done by taking
the components of T,, — v and arranging them suitably around the new vertex w.

We will take S,,.1 to include S,, and Tn, with the copies of red and blue leaves in Tn
also coloured red and blue respectively. As indicated on the right in Figure 2.1, we add
paths of length k£, to some blue leaf b of S,, and to some red leaf 7 of T, and join these
paths at their other endpoints by some edge e,. We also join two new leaves y and g to
the endvertices of e,,. We colour the leaf y yellow and the leaf g green (to avoid confusion

'Here and throughout this section we will omit minor technical details for brevity.
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with the red and blue leaves from step n, we take the two colours applied to the leaves in
step n + 1 to be yellow and green).

To ensure that T,.1 —v = S, 11 — w, we take T}, to include T, together with a copy
S, of S,, coloured appropriately and joined up in the same way, as indicated on the left
in Figure 2.1.

The only problem up to this point is that we have not been faithful to our intention
of extending in the same way at each red or blue leaf of T}, and .S,,. Thus, we now copy
the same subgraph appearing beyond r in Fig. 2.1, including its coloured leaves, onto all
the other red leaves of S,, and T},. Similarly we copy the subgraph appearing beyond the
blue leaf b of S,, onto all other blue leaves of S,, and T,,.

1A 0 A

134 133 1343 1343
LA AT AT AL
GhnoeR BeR 468048 BoR BhhdeR BAR 468040 BEG

F1GURE 2.2. A sketch of T, ;1 and S,,;1 after countably many steps.

At this point, we would have kept our promise of adding the same thing behind every
red and blue leaf of T}, and S,,, and hence would have achieved T}, — z; = 5,11 — y; for
all 7 < n. However, by gluing the additional copies to blue and red leaves of T, and .S,
we now have ruined the isomorphism between 7},,1 — v and 5,11 — w. In order to repair
this, we also have to copy the graphs appearing beyond r and b in Fig. 2.1 respectively
onto all red and blue leaves of S’n and T, n. This repairs T, 11 — v = 5,41 — w, but again
violates our initial promises. In this way, we keep adding, step by step, further copies of
the graphs appearing beyond r and b in Fig. 2.1 respectively onto all red and blue leaves
of everything we have constructed so far.

At every step we preserved the colours of leaves in all newly added copies, so we get
new red leaves and blue leaves, and we continue the process of copying onto those new
leaves as well. After countably many steps we have dealt with all red or blue leaves. We
take these new trees to be S, 11 and 7;,1;. They are non-isomorphic, since after removing
all long bare paths, T}, contains 7T,, as a component, whereas .S,,,1 does not.

Figure 2.2 shows how 7T, and S,,11 might appear. We have now fulfilled our intention
of sticking the same thing onto all red leaves and the same thing onto all blue leaves, but
we have also ensured that 7,1 —v = 5,11 — w, as desired.
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2.3. Closure with respect to promises

In this section, we formalise the ideas set forth in the proof sketch of how to extend a
graph so that it looks the same beyond certain sets of leaves.

Given a directed edge € = 2 in some forest G = (V| E), we denote by G(€) the unique
component of G — e containing the vertex y. We think of G(€) as a rooted tree with root
y. As indicated in the previous section, in order to make 7" and S hypomorphic at the
end, we will often have to guarantee S(€) = T(f) for certain pairs of edges & and f.

DEFINITION 2.3.1 (Promise structure). A promise structure P = <G, P, E) consists
of:
e a forest G,
o P={p;:iecl}aset of directed edges P C E(G), and
o L ={L;: 1€ I} aset of pairwise disjoint sets of leaves of G.

Often, when the context is clear, we will not make a distinction between £ and the set
\U; L;, for notational convenience.

We will call an edge p; € P a promise edge, and leaves ¢ € L; promise leaves. A
promise edge p; € P is called a placeholder-promise if the component G(p;) consists of a
single leaf ¢; € L;, then called a placeholder-leaf. We write

L,={L;: i€ I, p;aplaccholder-promise} and £, = L\ L,.

Given a leaf £ in G, there is a unique edge ¢, € E(G) incident with ¢, and this edge has
a natural orientation ¢; towards ¢. Informally, we think of the ‘promise’ ¢ € L; as saying
that if we extend G to a graph H D G, we will do so in such a way that H(q;) = H(p;).
Given a promise structure P = (G, ﬁ, £>, we would like to construct a graph H D G
which satisfies all the promises in P. This will be done by the following kind of extension.

DEFINITION 2.3.2 (Leaf extension). Given an inclusion H O G of forests and a set L
of leaves of GG, H is called a leaf extension, or more specifically an L-extension, of G, if:
e every component of H contains precisely one component of GG, and
e for every vertex h € H \ G and every vertex g € G in the same component as h,
the unique g — h path in H meets L.

In the remainder of this section we describe a construction of a forest cl(G) which has
the following properties.

PROPOSITION 2.3.3. Let G be a forest and let (G, ]3, E) be a promise structure. Then
there is a forest cl(G) such that:
(cl.1) cl(G) is an L,-extension of G, and
(cl.2) for every p; € P and all { € L;,

cl(G)(pi) = cl(G)(q)
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are isomorphic as rooted trees.

We first describe the construction of cl(G), and then verify the properties asserted in

Proposition 2.3.3. Let us define a sequence of promise structures (H @, 13, E(i)) as follows.
We set (H ©) 13, £(0)> = (G, 13, E). We construct a sequence of graphs
G=HOY9cHOWCH? C...,

and each H™ will get a promise structure whose set of promise edges is equal to P

again, yet whose set of promise leaves depends on n as follows: given (H ), ]3, E(")>,

) a rooted copy

we construct H*D by gluing, for each i, at every promise leaf ¢ € L§”
of G(p;). As promise leaves for H™*Y we take all promise leaves from the newly added
copies of G(p;). That is, if a leaf ¢ € G(p;) was such that ¢ € L;, then every copy of that
leaf will be in LE"H).

Formally, suppose that (G P, E) is a promise structure. For each p; € Plet C; = G (pi)
and let ¢; be the root of this tree. If U is a set and H is a graph, then we denote by U x H
the graph whose vertices are pairs (u,v) with v € U and v a vertex of H, and with an

edge from (u,v) to (u,w) whenever vw is an edge of H. Let (H(O),ﬁ, £(O)> = (G,ﬁ, £>
and given (H (n) ]3, E(”)> let us define:

o H(™D 0 be the quotient of H™ LI |_|l.€[(L(.") x C;) w.r.t. the relation

I~ (l,¢;) for 1€ L\ e £™.
o L) — {LE”“): iel } with L") = U, L x (C; 0 Ly).

There is a sequence of natural inclusions G = H® C HM C ... and we define cl(G)
to be the direct limit of this sequence.

DEFINITION 2.3.4 (Promise-respecting map). Let G be a forest, F) and F® be
leaf extensions of G, and P = (F(l),ﬁ,£(1)> and P® = (F(Q),ﬁ,£(2)> be promise
structures with P C E(G). Suppose X C V(F®) and X® C V(F®).

A bijection ¢: X® — X is P-respecting (with respect to PM) and P@) if the image
of Lgl) N X® under ¢ is LEQ) N X® for all i.

Since both promise structures P and P refer to the same edge set P , we can think
of them as defining a |]3 |-colouring on some sets of leaves. Then a mapping is ﬁ—respecting
if it preserves leaf colours.

LEMMA 2.3.5. Let (G, P, E) be a promise structure and let G = HO C HO C ... be
as defined above. Then the following statements hold:

o H™ is an L,-extension of G for all n,
o A(H"D) = A(H™) for all n, and
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e For each ¢ € L; € L there exists a sequence of ﬁ—respectz’ng rooted isomorphisms
Don: H® (p) — H™(q,) such that Yon+1 extends oy, for all n € N.

PROOF. The first two statements are clear. We will prove the third by induction on n.
To construct H from G, we glued a rooted copy of G(p;) to each £ € L;, keeping all copies
of promise leaves. Hence, for any given ¢ € L;, the natural isomorphism ¢,o: G(p;) —
HY(q) is ﬁ—respecting as desired.

Now suppose that ¢y, exists for all £ € £. To form H™(p;), we glued on a copy of
G(p;) to each £ € L™ N H™ (), and to construct H™2(g), we glued on a copy of G(p;)
to each ¢ € LE"*” N H™(g), in both cases keeping all copies of promise leaves.

Therefore, since ¢y, was a ﬁ—respecting rooted isomorphism from H™ (p;) to H™(g;),
we can combine the individual isomorphisms between the newly added copies of G(p;) with

Pen to form Pen+1- O
We can now complete the proof of Proposition 2.3.3.

PROOF OF PROPOSITION 2.3.3. First, we note that G’ C cl(G), and since each H™
is an L -extension of G for all n, so is cl(G). Also, since each H™ is a forest it follows
that cl(G) is a forest.

Let us show that cl(G) satisfies property (cl.2). Since we have the sequence of in-
clusions G = HO® C H® C ... it follows that cl(G)(q) is the direct limit of the se-
quence HO(g;) € HV(g) C --- and also cl(G)(p;) is the direct limit of the sequence
HO(p;) € HY(p;) C ---. By Lemma 2.3.5 there is a sequence of rooted isomorphisms
Do H®™ (p;) — H(g;) such that Yont1 extends @, 50 @r =, @on is the required
isomorphism. O

We remark that it is possible to show that cl(G) is in fact determined, uniquely up to
isomorphism, by the properties (cl.1) and (cl.2). Also we note that since each H™ has
the same maximum degree as G, it follows that A(cl(G)) = A(G).

There is a natural promise structure on cl(G) given by the placeholder promises in p
and their corresponding promise leaves. In the construction sketch from Section 2.2, these
leaves corresponded to the yellow and green leaves. We now show how to keep track of
the placeholder promises when taking the closure of a promise structure.

Note that if p; is a placeholder promise, then for each (H M P, ﬁ(”)) we have Lgn) D)
Lgn_l). Indeed, for each leaf in Lgn_l) we glue a copy of the component ¢; together with the
associated promises on the leaves in this component. However, ¢; is just a single vertex,
with a promise corresponding to p;, and hence LE“’ D Lz(-"fl). For every placeholder
promise 7 € P we define cI(L;) = |, L\".

DEFINITION 2.3.6 (Closure of a promise structure). The closure of the promise struc-
ture (G, P, L) is the promise structure cl(P) = (cl(G), cl(P), Cl(ﬁ)), where:
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e l(P)={p;:p;ePisa placeholder—promlse} and
e cl(L) = {cl(L;): p; € P is a placeholder-promise}.

We note that, since each isomorphism ¢y, from Lemma 2.3.5 was ﬁ—respecting, it is
possible to strengthen Proposition 2.3.3 in the following way.

PROPOSITION 2.3.7. Let G be a forest and let (G, ﬁ, E) be a promise structure. Then
the forest cl(G) satisfies:

(cl.3) for every p; € P and every { € L;,
l(G)(pi) = l(G)(q)

are 1somorphic as rooted trees, and this isomorphism is cl(ﬁ)—respectmg with re-
spect to cl(P).

PROOF. Since each isomorphism ¢y, : H™(p;) — H™Y(g) in Proposition 2.3.5 is
ﬁ—respecting, we have

<M4¢“nﬂw@D=LﬁmmHW“@»
For each placeholder promise we have that cl(L;) =, L , and so it follows that

d@»ﬂd@@%%J@WﬂHW@D

and
(L) N (G U( L™ A HO( )).
From this it follows that ¢, = |, w1 is a cl(P)-respecting isomorphism between cl(G)(p;)
and cl(G)(¢) as rooted trees. O
It is precisely this property (cl.3) of the promise closure that will allow us, in Claim 8
below, to maintain partial hypomorphisms during our recursive construction.
2.4. The construction

In this section we construct two hypomorphic locally finite trees neither of which embed
into the other, establishing our main theorem announced in the introduction.

2.4.1. Preliminary definitions.

DEFINITION 2.4.1 (Bare path). A path P = vg,vy,...,v, in a graph G is called a bare
path if degq(v;) = 2 for all internal vertices v; for 0 < @ < n. The path P is a mazimal
bare path (or mazimally bare) if in addition degy(vy) # 2 # degy,(v,). An infinite path
P = vy, v1, vy, ... 18 mazimally bare if degq(vy) # 2 and deg,(v;) = 2 for all i > 1
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LEMMA 2.4.2. Let T be a tree and e € E(T). If every maximal bare path in T has
length at most k € N, then every mazimal bare path in T' — e has length at most 2k.

Proor. We first note that every maximal bare path in 7" — e has finite length, since
any infinite bare path in 7T, — e would contain a subpath which is an infinite bare path
in T. If P = {xg,21,...,2,} is a maximal bare path in 7" — e which is not a subpath
of any maximal bare path in 7', then there is at least one 1 < ¢ < n — 1 such that e is
adjacent to x;, and since T was a tree, x; is unique. Therefore, both {z, z1,...,z;} and
{z;,xi11,...,2,} are maximal bare paths in 7. By assumption both i and n — i are at
most k, and so the length of P is at most 2k, as claimed. O

DEFINITION 2.4.3 (Bare extension). Given a forest G, a subset B of leaves of GG, and
a component T' of G, we say that a tree T > T is a bare extension of T at B to length
k if T can be obtained from T by adjoining, at each vertex [ € BN V(T), a new path of
length k starting at [ and a new leaf whose only neighbour is .

A tree T with designated leaf set B. A bare extension of T at B.

FIGURE 2.3. Building a bare extension of a tree T" at B to length k. All
dotted lines are maximal bare paths of length k.

Note that the new leaves attached to each | € B ensure that the paths of length k are
indeed maximal bare paths.

DEFINITION 2.4.4 (k-ball). For G a subgraph of H, the k-ball Bally(G,k) is the
induced subgraph of H on the set of vertices within distance k of some vertex of G.

DEFINITION 2.4.5 (Binary tree). For k > 1, the binary tree of height k is the unique
rooted tree on 28 —1 =1+ 2+ --- 4+ 2871 vertices such that the root has degree 2, there
are 281 leaves, and all other vertices have degree 3. By a binary tree we mean a binary
tree of height k for some k£ € N.

2.4.2. The back-and-forth construction. We prove the following theorem.

THEOREM 2.4.6. There are two (vertez- )hypomorphic infinite trees T and S with maz-
imum degree 3 such that there is no embedding T'— S or S — T.
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AN

FIGURE 2.4. The binary tree of height 3.

To do this we shall recursively construct, for each n € N,

e disjoint (possibly infinite) rooted trees 7T,, and S,,,
e disjoint (possibly infinite) sets R,, and B, of leaves of the forest T,, U S,,
e finite sets X,, C V(7},) and Y,, C V(S,), and bijections ¢,,: X,, — Yy,
e a family of isomorphisms H,, = {hp.: T, — 2 — S, — on(2): © € X, },
e strictly increasing sequences of integers k,, > 2 and b,, > 3,
such that (letting all objects indexed by —1 be the empty set) for all n € N:
1) T,-1 €T, and S,,_; C S, as induced subgraphs,
) the vertices of T;, and S,, all have degree at most 3,
3) the root of T}, is in R,, and the root of S, is in B,,
) all binary trees appearing as subgraphs of 7}, U S,, are finite and have height at
most by,
(t5) all bare paths in 7), LI S,, are finite and have length at most k,,
(t6) Bally, (1)1, kn—1+1) is a bare extension of T,,_; at R,_1UB,,_; to length k,,_;+1
and does not meet R, U B,,,
(17) Ballg, (Sp—1, kn—1+1) is a bare extension of S,,_; at R, _1UB,_; to length k,,_;+1
and does not meet R, U B,
(18) there is no embedding from 7,, into any bare extension of S, at R, U B,, to any
length, nor from S,, into any bare extension of 7, at R, U B, to any length,
(19) any embedding of T}, into a bare extension of T, at R, U B,, to any length fixes
the root of T,, and has image T,
(t10) any embedding of S,, into a bare extension of S, at R, U B, to any length fixes
the root of S,, and has image S,,,
(t11) there are enumerations V(1},) = {t;: j € J,} and V(S,) = {s;: j € J,,} such that
e J,_1CJ,CN,
o {t;: j € J,} extends the enumeration {t;: j € J,_1} of V(T,,_1), and simi-
larly for {s;: j € J,.},
o N\ J,| = o0,
e {0,1,...,n} C J,,
(112) {t;,s;: j < n}N (R, UB,) =0,
(113) the finite sets of vertices X,, and Y,, satisty | X,,| = n = |Y,|, and
e X, 1CX,and Y, ; CY,,
® oo [ X1 =1,
o {tj:j<n} C Xoppq and {s;: j <n} C Yopin),
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o (X,UY,)N(R,UB,) =0,
(114) the families of isomorphisms H,, satisfy
® hpy [ (Thoy —x) = hyy, forall x € X,
e the image of R, NV (T,) under h,, is R, NV (S,), and
e the image of B, N V(T,) under h,, is B, NV (S,) for all z € X,,.

2.4.3. The construction yields the desired non-reconstructible trees. By prop-
erty (f1), we have Ty C Ty CTo, C --- and Sy € .S; C S5 C ---. Let T and S be the union
of the respective chains. It is clear that 7" and S are trees, and that as a consequence of
(12), both trees have maximum degree 3.

We claim that the map ¢ = |J,, ¢n is a hypomorphism between 7" and S. Indeed, it
follows from (f11) and (f13) that ¢ is a well-defined bijection from V(T') to V'(S). To see
that ¢ is a hypomorphism, consider any vertex x of T". This vertex appears as some ¢; in
our enumeration of V(T'), so by (114) the map

h, = U hpz: T —x— S — ()
n>2j
is an isomorphism between 7' — x and S — p(z).

Now suppose for a contradiction that f: 7" < S is an embedding of 7" into S. Then
f(to) is mapped into S,, for some n € N. Properties (15) and (16) imply that after deleting
all maximal bare paths in T of length > k,, the connected component of ¢y, is a bare
extension of T}, to length 0. Further, by (17), Ballg(S,, k, + 1) is a bare extension of .S,, at
R, U B, to length k, + 1. But combining the fact that f(7,,)NS, # 0 and the fact that T,
does not contain long maximal bare paths, it is easily seen that f(7,,) C Ballg(S,, k, + 1),
contradicting (18).

The case S — T yields a contradiction in a symmetric fashion, completing the proof.

2.4.4. The base case: there are finite rooted trees 7; and S, satisfying re-
quirements ({1)—(114). Choose a pair of non-isomorphic, equally sized trees T and Sy
of maximum degree 3, and pick a leaf each as roots r(7}) and r(Sp) for Ty and Sy, subject
to conditions (18)—(110) with Ry = {r(7p)} and By = {r(So)}. A possible choice is given
in Fig. 2.5. Here, (18) is satisfied, because any embedding of Tj into a bare extension of .Sy
has to map the binary tree of height 3 in Tj to the binary tree in Sy, making it impossible
to embed the middle leaf. Properties (19) and (10) are similar.

Let Jo = {0,1,...,|Ty| — 1} and choose enumerations V(Tp) = {t;: j € Jo} and V(Sp) =
{sj: j € Jo} with ¢y # r(Tp) and s¢ # r(Sp). This takes care of (f11) and ({12). Finally,
(t13) and (114) are satisfied for Xo =Yy = Ho = @9 = (). Set ko = 2 and by = 3.

2To get the non-embedding property, we have used (15)-(8) at every step n. While at the first
glance, properties (4), (19) and (110) do not seem to be needed at this point, they are crucial during the

construction to establish (18) at step n + 1. See Claim 5 below for details.
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FIGURE 2.5. A possible choice for finite rooted trees Ty and Sj.

2.4.5. The inductive step: set-up. Now, assume that we have constructed trees
Ty and Sy, for all £ < n such that (11)—(114) are satisfied up to n. If n = 2m is even, then
we have {t;: j <m — 1} C X, so in order to satisfy ({13) we have to construct 7,41 and
Spa1 such that the vertex ¢, is taken care of in our partial hypomorphism. Similarly, if
n = 2m+1 is odd, then we have {sj: j <m—1} CY, and we have to construct 7,1 and
Spa1 such that the vertex s, is taken care of in our partial hypomorphism. Both cases
are symmetric, so let us assume in the following that n = 2m is even.

Now let v be the vertex with the least index in the set {t;: j € J,} \ X, i.e.

(1) v=t; for i=min{l:t, € V(T,)\ X,}.

Then by assumption (113), v will be t,,, unless ¢,, was already in X,, anyway. In any
case, since | X,| = |Y,| = n, it follows from (111) that i < n, so by (f12), v does not lie in
our leaf sets R, U B, i.e.

(2) v ¢ R,UB,.

In the next sections, we will demonstrate how to to obtain trees T,,; D T, and
Spt1 DS, with X, = X, U{v} and Y11 = Y, U {p,11(v)} satisfying (11)—(110) and
(113)—(114).

After we have completed this step, since |N\ J,,| = oo, it is clear that we can extend
our enumerations of T,, and .S,, to enumerations of T,,,; and S,, 1 as required, making sure
to first list some new elements that do not lie in R, U B,;1. This takes care of ({11)
and (112) and completes the recursion step n — n + 1.

2.4.6. The inductive step: construction. Given the two trees T, and S,, we
extend each of them through their roots as indicated in Figure 2.6 to trees T, n and gn
respectively. The trees T}, and 5,1 will be obtained as components of the promise
closure of the forest G,, = T, W U Sn with respect to the coloured promise edges.

Since v is not the root of T},, there is a first edge e on the unique path in 7,, from v to
the root.

(3) This edge we also call e(v).
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Then T,, — e has two connected components: one that contains the root of 7, which we
name 7T, (r), and one that contains v which we name T,,(v).

Since every maximal bare path in 7T, has length at most k, by (15), it follows from
Lemma 2.4.2 that all maximal bare paths in 7, — e, and so all bare paths in 7,(r) and
T.,(v), have bounded length. Let k = k, be twice the maximum of the length of bare paths
in T,,, Sy, T,(r) and T,,(v), which exists by (f5).

1(Thy1) 9 Y 1(Snt1)
r(7,) r(Sy)
)
D, T.(0)D,,
T, S T (r) Sn
(A) tree T}, The tree S,,.

FIGURE 2.6. All dotted lines are maximal bare paths of length at least
k= l;:n The trees D,, are binary trees of height b, + 3, hence D,, <> T,, and

Dy o+ Sn by ((14)).

To obtain T}, we extend T}, through its root r(7},) € R, by a path
I'(Tn) = Up, U1, ... 7up—1a U’p = r<‘§n>

of length p = 4(k, + 1) + 3, where at its last vertex u, we glue a rooted copy S, of S, (via
an isomorphism w <> w), identifying u, with the root of S,

Next, we add two additional leaves at ug and u,, so that deg(r(7},)) = 3 = deg (r <5’n> )
Further, we add a leaf r(7},11) at uggyo, which will be our new root for the next tree T,,1;
and another leaf g at ugxy 5. Finally, we take a copy D,, of a rooted binary tree of height
b, + 3 and connect its root via an edge to ugxy3. This completes the construction of Tn

The construction of S,, is similar, but with a twist. For its construction, we extend S,
through its root r(S,) € B, by a path

r(Sn) = Up, Up—1, ..., 01,09 = r(Tn(r))

of length p, where at its last vertex vy we glue a copy T,(r) of T, (r), identifying vy with
the root of T,,(r). Then, we take a copy T}, (0) of T, (v) and connect © via an edge t0 vgi1.

(4) This edge we call e(0).
Finally, as before, we add two leaves at vy and v, so that deg (r <Tn(r)>> =3 =

deg (r(S,)). Next, we add a leaf r(S,11) to varis, which will be our new root for the
next tree S,.1; and another leaf y to vor1o. Finally, we take another copy D,, of a rooted
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binary tree of height b,, + 3 and connect its root via an edge to voxy3. This completes the
construction of S,,.

By the induction hypothesis, certain leaves of T}, have been coloured with one of the
two colours R, U B,,, and also some leaves of S, have been coloured with one of the two
colours R, U B,. In the above construction, we colour leaves of S, 1, () and Tn(@)
accordingly:

R, = (Rn U {w €S, UTh(r) UT(d): we Rn}> \ {r(Tn),r<Tn(T)>},

oy (Beu {0 € 8,0 T UT(0): we Bu}) \ {x(S).r(S0) }

Now put G, := T, U S, and consider the following promise structure P = (Gn, 15, £>

on G, consisting of four promise edges P = {P1, P2, D3, Pa} and corresponding leaf sets
L ={Ly, Ly, L3, Ly}, as follows:

e p; pointing in 7T, towards the root r(T,), with L; = R,
S,

n), with L2 = Bn>

Tn+1)> with Lz = {r(Tn-i-l)a y}>
e [y pointing in S, towards the root r Spt1), with Ly = {r(Sy11),9}-

e p, pointing in .S,, towards the root r

(6)

(
(
e /i3 pointing in 7T, towards the root r(
(
Note that our construction so far has been tailored to provide us with a ﬁ—respecting

isomorphism

(7) h:T,—v— S, —0.

Consider the closure cl(G,,) with respect to the promise structure P defined above.
Since cl(G,,) is a leaf-extension of G, it has two connected components, just as G,. We

now define
T,+1 = the component containing T, in cl(G,), and

(8)

Spy1 = the component containing S, in cl(G,,).

It follows that cl(G,) = Thy1 U S,y1 and © € V(S,41). Further, since p3 and pj are
placeholder promises, cl(G) carries a corresponding promise structure, see Definition 2.3.6.
We define

9) Rny1 =cl(L3) and By = cl(Ly).
Lastly, we set

Xni1 = X, U{v},
(10) Yo =Y, U{v}, and

Pni1 = e U{(v,0)},
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and put
(11) kny1 = 2k, +3 and b,y = b, +3

The construction of trees T, and 5,1, coloured leaf sets R, and B,1, the bijection
Oni1: Xpe1 — Yau1, and integers k,.1 and b,,, is now complete. In the following, we
verify that (11)—(114) are indeed satisfied for the (n + 1) instance.

2.4.7. The inductive step: verification.

CrAamm 1. T,y and S,41 extend T, and S,,. Moreover, they are rooted trees of max-
imum degree 3 such that their respective roots are contained in R,,; and B, ;. Hence,
(t1)=(13) are satisfied.

PROOF. Property (f1) follows from (cl.1), i.e. that cl(G,) is a leaf-extension of G,.
Thus, T},11 is a leaf extension of T~n, which in turn is a leaf extension of 7T,,, and similar
for S,,. This shows (1).

As noted after the proof of Proposition 2.3.3, taking the closure does not affect the
maximum degree, i.e. A(cl(G,)) = A(G,,) = 3. This shows (12).

Finally, (9) implies (13), as r(T,41) € Ry11 and 1(Sy41) € B O

CrAmM 2. All binary trees appearing as subgraphs of T, 1 LI.S,,+1 have height at most
bn+1, and every such tree of height b, is some copy D, or En Hence, T,,+1 and S,+1
satisfy (4).

PROOF. We first claim that all binary trees appearing as subgraphs of T, U S, which
are not contained in D, or D, have height at most b,, + 1. Indeed, note that any binary
tree appearing as a subgraph of T,, Tn(r), Tn(v), S, or S, has height at most b, by the
inductive hypothesis. Since the paths we added to the roots of T}, and S’n to form T, were
sufficiently long, any binary tree appearing as a subgraph of T, can only meet one of T,,,
S’n or D,. Since the roots of 7T, and Sn are adjacent to two new vertices in Tn, one of
degree 1, any such tree meeting 7}, or S, must have height at most b,, + 1. By Figure 2.6
we see that any binary tree in 7}, which meets D,, but whose root lies outside of D, has
height at most 3 < b, + 1. Consider then a binary tree whose root lies inside D,,, but
that is not contained in D,,. Again, by Figure 2.6 we see that the root of D,, must lie in
one of the bottom three layers of this binary tree. Hence, if the root of this tree lies on
the kth level of D, then the tree can have height at most min{b, + 3 — k, k + 2}, and
hence the tree has height at most b,,/2 + 2 < b, + 1. Any other binary tree meeting D, is
then contained in D,,. It follows that the only binary tree of height b, + 3 appearing as a
subgraph of T, is D,,, and a similar argument holds for S, and f)n

Recall that T,,,; and S,;; are the components of cl(Tn L gn) containing T, n and Sn
respectively. If we refer back to Section 2.3 we see that T4 can be formed from 7, by
repeatedly gluing components isomorphic to T, (p1) or S, (p3) to leaves. Consider a binary
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tree appearing as a subgraph of 7),.; which is contained in T,, or one of the copies of
T.(p7) or S,(p3). By the previous paragraph, this tree has height at most b, + 3, and if
it has height b, + 3 it is a copy D,, or D,. Suppose then that there is a binary tree, of
height b, whose root is in T,,, but is not contained in 7},. Such a tree must contain some
vertex £ € Tn which is adjacent to a vertex not in Tn Hence, ¢ must have been a leaf
in 7,, at which a copy of Tn(pj) or S’n(p_é) was glued on. However, the roots of each of
these components are adjacent to just two vertices, one of degree 1, and hence this leaf
¢ must either be in the bottom, or second to bottom layer of the binary tree. Therefore,
b < b, +2. A similar argument holds when the root lies in some copy of T}, (1) or S, (1),
and also for S, 1.

Therefore, all binary trees appearing as subgraphs of T, Ll .S,,.1 have height at most
b, + 3, and every such tree is some copy D,, or ﬁn Hence, since b,.1 = b, + 3, it follows
that b,.1 > b, and T,,1 and S, satisfy ({4). O

CLAIM 3. Every maximal bare path in 7)1 Ul S,+1 has length at most £, ;. Hence,
T,+1 and S, satisfy (15).

ProOOF. We first claim that all maximal bare paths in T, n L S‘n have length at most
2k, + 3. Firstly, we note that any maximal bare path which is contained in 7}, or S, has
length at most k,, < ky, by the induction hypothesis. Also, since the roots of T;, and S,
have degree 3 in T),, any maximal bare path is either contained in 7T}, or S,,, or does not
contain any interior vertices from 7, or S’n However, it is clear from the construction that
any maximal bare path in T, that does not contain any interior vertices from 7), or S,
has length at most 2k, + 3. Similarly, any maximal bare path which is contained in 7, n(1),
Tn(v), or S, has length at most k, by definition. By the same reasoning as above, any
maximal bare path in S, not contained in T, (r), T, (v), or S, has length at most 2k, + 3.

Again, recall that T, can be formed from T,, by repeatedly gluing components iso-
morphic to T, (p1) or S,(p3) to leaves. Any maximal bare path in T,,,; which is contained
in T,, or one of the copies of T,,(p7) or S, (p3) has length at most 2k, + 3 by the previous
paragraph. However, since every interior vertex in a maximal bare path has degree two,
and the vertices in 7,1 at which we, at some point in the construction, stuck on copies
of T,,(p1) or Sn(p3) have degree 3, any maximal bare path in 7},,; must be contained in
T,, or one of the copies of T, (i) or S,(p3). Again, a similar argument holds for S,
Hence, all maximal bare paths in Tj,q U Sns1 have length at most 2k, + 3. Therefore,
since k, 11 = 2k, + 3, it follows that kny1 =k, and T, 41 and S, 41 satisfy (15). O

Cram 4. Bally, (T, k, + 1) is a bare extension of T), at R, U B,, to length k, + 1
and does not meet R, .1 U B, and similarly for S,.;. Hence, T,,,1 and S, satisfy (16)
and (17) respectively.
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PrROOF. We will show that 7)., satisfies (16), the proof that S,1 satisfies (17) is
analogous. By Proposition 2.3.3, the tree T,,,; is an ((Rn UB,)N V(Tn))—extension of

’fn. Hence 7;,44 is an
(12) (((Rn UB,)N V(Tn)> U T(Tn)> = ((Ra U B,) N V(T3,))-extension of T,.

By looking at the construction of cl(G) from Section 2.3, we see that T, is also an
L'-extension of the supertree 7' D T,, formed by gluing a copy of T,(p) to every leaf in
R, NV(T,) and a copy of S,(p3) to every leaf in B, N V(T,), where the leaves in L' are
the inherited promise leaves from the copies of T}, (p1) and S, (p3).

However, we note that every promise leaf in T),(pi) and S,(p3) is at distance at
least k, + 1 from the respective root, and so Bally, +1(Tn,l%n) = Ballp (Tn,l;:n). How-
ever, Bally/ (T, /;n) can be seen immediately to be a bare extension of T;, at R, U B,, to
length k,, and since k,, > k, + 1 it follows that Bally, (T}, k, + 1) is a bare extension of
T, at R, U B,, to length k,, + 1 as claimed.

Finally, we note that R, 1 U B,y is the set of promise leaves cl(£,). By the same
reasoning as before, Bally, . (T, k, + 1) contains no promise leaf in cl(£,), and so does
not meet R, .1 U B, 1 as claimed. O

CrAamm 5. Let U, 41 be a bare extension of cl(G},) = Tp,+1US,4+1 at R,y U B4 to any
length. Then any embedding of T},.1 or S, into U, fixes the respective root. Hence,
T,+1 and S, 41 satisfy (18).

PRrROOF. Recall that the promise closure was constructed by recursively adding copies
of rooted trees C; and identifying their roots with promise leaves. For the promise structure
P = (Gn,ﬁ, E) on G,, we have C] = Tn(p]) and Cy = gn(pé).

Note that by (5), the image of any embedding 7}, < U,,;1 cannot contain a bare path
of length k,, + 1. Also, by construction, every copy of T},, S,, Tn(r), or Tn(f)) in 7,41 has
the property that its (k, + 1)-ball in T}, is a bare extension to length k, + 1 of this copy.
Hence, if the root of T,, embeds into some copy of T},, Sy, Tn(r), or Tn(@), then the whole
tree embeds into a bare extension of this copy. The same is true for S,,.

By (18), there are no embeddings of T,, into a bare extension of S, or of S,, into a
bare extension of T,,. Moreover, since both T,,(r) and T}, () are subtrees of T,, there is no
embedding of T}, or S,, into bare extensions of them by (18) and (19).

Thus, only the following embeddings are possible:

e T, embeds into a bare extension of a copy of T,, or S, embeds into a bare
extension of a copy of S,,. In both cases, the root must be preserved, as otherwise

we contradict (19) or (110).
Let f: T,.1 — U,+1 be an embedding. By Claim 2, U,,; contains no binary trees of
height b, + 3 apart from D, D,, and the copies of those two trees that were created by
adding copies of C'; and Cs. Consequently f maps D, to one of these copies, mapping
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the root to the root. The neighbours of r(7,.1) and g must map to vertices of degree
3 at distance two and three from the image of the root of D,, respectively, which forces
f(x(Ths1)) € Rpgr. I f(r(Thg1)) = r(Th41) then we are done.

Otherwise there are two possibilities for f(r(7},41)). If f(r(7,41)) is contained in a
copy of C, then r(T,) maps to a promise leaf other than the root in a copy of T),, S,,
To(r), or Tp(0). If f(r(Thst)) =y or f(r(T,s1)) is contained in a copy of Cy, then r(7T},)
maps to a copy of r<Tn(r)> or some vertex of T},(¢). In both cases the root of T}, does not
map to the root of a copy of T},, which is impossible by the first bullet point.

Finally, let f: S,1+1 < U,+1 be an embedding. By the same arguments as above
f(r(Spy1)) € Bpyr. If f fixes r(S,,41), we are done.

Otherwise we have again two cases. If f(r(S,41)) = g, or f(r(Sn+1)) is contained in a
copy of Cy, then vi,1 (the neighbour of v on the long path) would have to map to a vertex
of degree 2, giving an immediate contradiction. If f(r(S,,1)) is contained in a copy of Cs,
then r(S,) maps to a promise leaf other than the root in a copy of T}, Sy, T, (1), or Tp ()
which is also impossible by the observations in the bullet points. 0

CLAIM 6. Let U, 41 be as in Claim 5. Then there is no embedding of 7},+1 or 5,1 into
Un+1 whose image contains vertices outside of cl(G,,), i.e. vertices that have been added
to form the bare extension.

Since a root-preserving embedding of a locally finite tree into itself must be an auto-
morphism, this together with the previous claim implies (19)and (110).

PrOOF. We prove this claim for 7,1, the proof for S, is similar. Assume for a
contradiction that there is a vertex w of T, and an embedding f: 7,1 < U,.1 such
that f(w) ¢ cl(G,). By definition of bare extension, removing f(w) from U, splits the
component of f(w) into at most two components, one of which is a path.

Note first that w does not lie in a copy of D, or D,,, because these must map to
binary trees of the same height by Claim 2. Furthermore, all vertices in R,, .1 U B, ;1 have
a neighbour of degree 3 whose neighbours all have degree > 2, thus w ¢ R,11 U B,41.
Finally, only one component of 7,1 — w can contain vertices of degree 3. Consequently,
w must lie in a copy C of Ty, Sy, Tu(r), or Tp(0).

All maximal bare paths in the image f(C') have length at most k = k,, so f(C) cannot
intersect any copies of T, Sn, Th(r), or (Tp,(0) + vgs1). Let 7 be the root of C' (where
r = 0 in the last case). Now f(r) must have the following properties: it is a vertex of
degree 3, and the root of a nearest binary tree of height b, not containing f(r) lies at
distance d from f(r), where 5 < d < 2k + 4.

But the only vertices with these properties are contained in copies of T,,, S’n, T, n (1),
or (T,,(0) + vps1). This contradicts the fact that f(C') does not intersect any of these
copies. 0
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CrAmM 7. The function ¢,,; is a well-defined bijection extending ¢,,, such that its do-
main and range do not intersect R, 1UB,, 1. Hence, property (113) holds for ¢, 11: X411 —
Y-

PROOF. By the choice of z in (1) and the definition of ¢,.1: X,11 — Y41 in (10),
the first three items of property (113) hold.

Since v does not lie in R,, U B,, by (2), it follows by our construction of the promise
structure P = (Gn, P, E) in (5) and (6) that neither v nor v = ¢, 1(v) appear as promise
leaves in £. Furthermore, by the induction hypothesis, (X, UY,) N (R, U B,) = 0, so no
vertex in (X, UY,,) appears as a promise leaf in £ either. Thus, in formulas,

(13) (Xo UYe) N J L =0.
Lec

In particular, since
(Rps1 U Bpi1) NGy, = (cl(L3) Ucl(Ly)) NG, = L3 U Ly,

and X, 11 UY, 11 C G, we get (X1 UY,01) N (Ry1 U Byy1) = 0. Thus, also the last
item of (113) is verified. O

CLAIM 8. There is a family of isomorphisms H,+1 = {hnt1.: ¢ € X411} witnessing
that 7,11 —z and S, 11 — @n11(2) are isomorphic for all € X, 1, such that h, 1, extends
hy . for all x € X,,. Hence, property (114) holds.

PROOF. There are four things to be verified for this claim. Firstly, we need an iso-
morphism /41, witnessing that 7,41 — v and 5,41 — 0 are isomorphic. Secondly, we
need to extend all previous isomorphisms h,, , between T,, — x and S,, — () to T),41 —
and S, 11 — ¢n(x). This will take care of the first item of (114). To also comply with the

remaining two items, we need to make sure that each isomorphism in

Hn+1 = {thrl,z: T e XnJrl}

maps leaves in R, 11 NV (T,41) bijectively to leaves in R, 1 NV (S,41), and similarly for
Bpi1.

To find the first isomorphism, note that by construction of the promise structure
P = <G’n, P, L') on G, in (5), and properties (cl.1) and (cl.3) of the promise closure, the
trees T),41 and S, are obtained from T, and S, by attaching at every leaf r € R, a copy
of the rooted tree cl(G,,)(p1), and by attaching at every leaf b € B, a copy of the rooted
tree cl(G,)(p2).

By (13), neither v nor ¢,1(v) are mentioned in £. As observed in (7), there is a
ﬁ—respecting isomorphism

h:T,—v— S, — Ont1(v).

In other words, A maps promise leaves in L; N V(T},) bijectively to the promise leaves

in L; N V(S,) for all i = 1,2,3,4. Our plan is to extend h to an isomorphism between
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—

Trr1—v and S, 11—, (v) by mapping the corresponding copies of cl(G},)(p1) and cl(G,,)(p2)
attached to the various red and blue leaves to each other.

Formally, by (cl.3) there is for each ¢ € (Rn U Bn) NV(T) a cl(P)-respecting isomor-
phism of rooted trees

cl(G) (@) = (G (Ghiey)-

Therefore, by combining the isomorphism h between 7}, — v and S,, — ¢, 1 (v) with these
isomorphisms between each cl(G,,)(¢;) and cl(G,)(qhe)) We get a cl(P)-respecting isomor-
phism

e e e Ont1(V).
And since R, ;1 and B, have been defined in (9) to be the promise leaf sets of cl(P),
by definition of cl(ﬁ)-respecting (Def. 2.3.4), the image of R,,+1 NV (T},4+1) under hy,1q, is
R,11 NV (Suy1), and similarly for B, ;.

It remains to extend the old isomorphisms in #H,. As argued in (12), both trees T}, 1
and S, are leaf extensions of T, and S, at R, U B, respectively. By property (cl.3),
these leaf extensions are obtained by attaching at every leaf r € R,, a copy of the rooted
tree cl(G,,)(p1), and similarly by attaching at every leaf b € B,, a copy of the rooted tree
l(G) (D2)-

By induction assumption ({14), for each x € X,, the isomorphism
hpz: T —x — Sy — on(x)

maps the red leaves of T, bijectively to the red leaves of S,,, and the blue leaves of T,,

bijectively to the blue leaves of S,,. Thus, by property (cl.3), there are cl(P)-respecting
isomorphisms of rooted trees

cl(Gn)(qe) = cl(Gn)(qh, . ()

for all £ € (R, U B,,) N V(T,,). By combining the isomorphism h,, , between T,, — z and
Sp—@n(x) with these isomorphisms between each cl(G,)(¢;) and cl(Gy)(qh, . (1)), We obtain

—

a cl(P)-respecting extension

thrl,x: TnJrl — X — Sn+1 - @n<x>

As before, by definition of cl(P)-respecting, the image of R,11 NV (T}41) under hyyq 4 8
R, 1 NV (S,41), and similarly for B, ;.

Finally, by construction we have hy,11, [ (T, — ) = hy,, for all x € X, as desired.
The proof is complete. O

2.5. The trees are also edge-hypomorphic

In this final section, we briefly indicate why the trees T" and S yielded by our strategy
above are automatically edge-hypomorphic: we claim the correspondence

¥ e(r) = e(p(x))
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as introduced in (3) and (4) is an edge-hypomorphism between 7" and S. For this, we need
to verify that

(a) 1 is a bijection between E(T) and E(S), and that
(b) the maps h, U{{z,p(z))}: G —e(x) — H — e(p(z)) are isomorphisms.
Regarding (b), observe that the map h as defined in (7) yields, by construction, also a

P-respecting isomorphism
hU{(v,0)}: T, — e(v) = S, — e(0),

and from there, the arguments are entirely the same as in the previous section.

For (a), we use the canonical bijection between the edge set of a rooted tree, and
its vertices other than the root; namely the bijection mapping every such vertex to the
first edge on its unique path to the root. Thus, given the enumeration of V(7)) and
V(S,) in (f11), we obtain corresponding enumerations of E(T,,) and E(S,), and since
the rooted trees 7T, and S, are order-preserving subtrees of the rooted trees 7,.; and
Spi1 (cf. Figure 2.6), it follows that also our enumerations of E(T,) and E(S,) extend
the enumerations of E(T,_1) and E(S,_1) respectively. But now it follows from (13)
and the definition of v that by step 2(n + 1) we have dealt with the first n edges in our
enumerations of E(T) and E(S) respectively.



CHAPTER 3

Non-reconstructible locally finite graphs

Two graphs G and H are hypomorphic if there exists a bijection ¢: V(G) —
V(H) such that G — v = H — ¢(v) for each v € V(G). A graph G is recon-
structible if H = G for all H hypomorphic to G.

Nash-Williams proved that all locally finite graphs with a finite number
> 2 of ends are reconstructible, and asked whether locally finite graphs with
one end or countably many ends are also reconstructible.

In this paper we construct non-reconstructible graphs of bounded maxi-
mum degree with one and countably many ends respectively, answering the two
questions of Nash-Williams about the reconstruction of locally finite graphs

in the negative.

3.1. Introduction

Two graphs G and H are hypomorphic if there exists a bijection ¢ between their vertex
sets such that the induced subgraphs G — v and H — ¢(v) are isomorphic for each vertex
v of G. We say that a graph G is reconstructible if H = G for every H hypomorphic to
G. The Reconstruction Conjecture, a famous unsolved problem attributed to Kelly and
Ulam, suggests that every finite graph with at least three vertices is reconstructible.

For an overview of results towards the Reconstruction Conjecture for finite graphs see
the survey of Bondy and Hemminger [29]. The corresponding reconstruction problem for
infinite graphs is false: the countable regular tree T, and two disjoint copies of it (written
as T, UT,) are easily seen to be non-homeomorphic reconstructions of each other. This
example, however, contains vertices of infinite degree. Regarding locally finite graphs,
Harary, Schwenk and Scott [91] showed that there exists a non-reconstructible locally
finite forest. However, they conjectured that the Reconstruction Conjecture should hold
for locally finite trees. This conjecture has been verified for locally finite trees with at
most countably many ends in a series of paper [12, 28, 151]. However, very recently, the
present authors have constructed a counterexample to the conjecture of Harary, Schwenk
and Scott.

THEOREM 3.1.1 (Bowler, Erde, Heinig, Lehner, Pitz [36]). There exists a non-recon-

structible tree of mazimum degree three.

35



36 3. NON-RECONSTRUCTIBLE LOCALLY FINITE GRAPHS

The Reconstruction Conjecture has also been considered for general locally finite
graphs. Nash-Williams [126] showed that if p > 3 is an integer, then any locally fi-
nite graph with exactly p ends is reconstructible; and in [128] he showed the same is true
for p = 2. The case p = 2 is significantly more difficult. Broadly speaking this is because
every graph with p > 3 ends has some identifiable finite ‘centre’, from which the ends
can be thought of as branching out. A two-ended graph however can be structured like a
double ray, without an identifiable ‘centre’.

The case of 1-ended graphs is even harder, and the following problems from a survey
of Nash-Williams [127], which would generalise the corresponding results established for

trees, have remained open.

PROBLEM 3.1.2 (Nash-Williams). Is every locally finite graph with exactly one end

reconstructible?

PROBLEM 3.1.3 (Nash-Williams). Is every locally finite graph with countably many
ends reconstructible?

In this paper, we extend our methods from [36] to construct examples showing that
both of Nash-Williams’ questions have negative answers. Our examples will not only be
locally finite, but in fact have bounded degree.

THEOREM 3.1.4. There is a connected one-ended non-reconstructible graph with bounded

mazimum degree.

THEOREM 3.1.5. There is a connected countably-ended non-reconstructible graph with
bounded maximum degree.

Since every locally finite graph has either finitely many, countably many or continuum
many ends, Theorems 3.1.1, 3.1.4 and 3.1.5 together with the results of Nash-Williams
provide a complete picture about what can be said about number of ends versus recon-

struction:

e A locally finite tree with at most countably many ends is reconstructible; but
there are non-reconstructible locally finite trees with continuum many ends.

e A locally finite graph with at least two, but a finite number of ends is recon-
structible; but there are non-reconstructible locally finite graphs with one, count-
ably many, and continuum many ends respectively.

This paper is organised as follows: In the next section we give a short, high-level
overview of our constructions which answer Nash-Williams’ problems. In Sections 3.3 and
3.4, we develop the technical tools necessary for our construction, and in Sections 3.5 and
3.6, we prove Theorems 3.1.4 and 3.1.5.

For standard graph theoretical concepts we follow the notation in [54].
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3.2. Sketch of the construction

In this section we sketch the main ideas of the construction in three steps. First, we
quickly recall our construction of two hypomorphic, non-isomorphic locally finite trees
from [36]. We will then outline how to adapt the construction to obtain a one-ended-,

and a countably-ended counterexample respectively.

3.2.1. The tree case. This section contains a very brief summary of the much more
detailed sketch from [36]. The strategy is to build trees T and S recursively, where at
each step of the construction we ensure for some new vertex v already chosen for T" that
there is a corresponding vertex w of S with T'— v = S — w, or vice versa. This will ensure
that by the end of the construction, the trees we have built are hypomorphic.

More precisely, at step n we will construct subtrees T, and S,, of our eventual trees,
where some of the leaves of these subtrees have been coloured in two colours, say red
and blue. We will only further extend the trees from these coloured leaves, and we will
extend from leaves of the same colour in the same way. We also make sure that earlier
partial isomorphisms between T,, — v; & S,, — w; preserve leaf colours. Together, these
requirements guarantee that earlier partial isomorphisms always extend to the next step.

The T, will be nested, and we will take T" to be the union of all of them; similarly the
S,, will be nested and we take S to be the union of all of them. To ensure that T and S
do not end up being isomorphic, we first ensure, for each n, that there is no isomorphism
from T, to S,,. Our second requirement is that 7" or .S beyond any coloured leaf of T}, or
S, begins with a long non-branching path, longer than any such path appearing in 7}, or
S,. Together, this implies that T" and S are not isomorphic.

L O
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® ﬁ

FiGURE 3.1. A first approximation of T},.; on the left, and S,,; on the
right. All dotted lines are long non-branching paths.

Algorithm Stage One: Suppose now that we have already constructed T, and S, and
wish to construct 7,1 and S, 1. Suppose further that we are given a vertex v of T,, for
which we wish to find a partner w in 5,1 so that T"— v and S — w are isomorphic. We
begin by building a tree Tn 2 T, which has some vertex w such that T,, — v = Tn — w.
This can be done by taking the components of T,, — v and arranging them suitably around
the new vertex w.

We will take 5,11 to include S, and Tn, with the copies of red and blue leaves in Tn
also coloured red and blue respectively. As indicated on the right in Figure 3.1, we add
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long non-branching paths to some blue leaf b of S, and to some red leaf r of T}, and join
these paths at their other endpoints by some edge e,,. We also join two new leaves y and g
to the endvertices of e,,. We colour the leaf y yellow and the leaf g green. To ensure that
Thi1 —v = Spy1 —w, we take T),11 to include T}, together with a copy S’n of S, with its
leaves coloured appropriately, and joined up in the same way, as indicated on the left in
Figure 3.1. Note that, whilst S, and S, are isomorphic as graphs, we make a distinction
as we want to lift the partial isomorphisms between T;, —v; = S,, —w; to these new graphs,
and our notation aims to emphasize the natural inclusions 7,, C T,,+; and S,, C S, 11.

Algorithm Stage Two: We now have committed ourselves to two targets which are
seemingly irreconcilable: first, we promised to extend in the same way at each red or blue
leaf of T}, and .S,,, but we also need that 7},,1 —v = S,,.1 —w. The solution is to copy the
same subgraph appearing beyond r in Fig. 3.1, including its coloured leaves, onto all the
other red leaves of S,, and T,,. Similarly we copy the subgraph appearing beyond the blue
leaf b of S,, onto all other blue leaves of S,, and T,,. In doing so, we create new red and
blue leaves, and we will keep adding, step by step, further copies of the graphs appearing
beyond r and b in Fig. 3.1 respectively onto all red and blue leaves of everything we have
constructed so far.

L L
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FIGURE 3.2. A sketch of T},;; and S, after countably many steps.

After countably many steps we have dealt with all red and blue leaves, and it can be
checked that both our targets are achieved. We take these new trees to be S, and 7},41.
They are non-isomorphic, as after removing all long non-branching paths, 7,1 contains
T, as a component, whereas S, 1 does not.

3.2.2. The one-ended case. To construct a one-ended non-reconstructible graph,
we initially follow the same strategy as in the tree case and build locally finite graphs
G, and H, and some partial hypomorphisms between them. Simultaneously, however, we
will also build one-ended locally finite graphs of a grid-like form F,, x N (the Cartesian
product of a locally finite tree F,, with a ray) which share certain symmetries with G,
and H,. These will allow us to glue F,, x N onto both G, and H,, in order to make
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° G, o u ° G, ® u oGy o u ® [, u ® o

° G, u * Gy ® u o Hyo u ®H,o u ®H, o

FIGURE 3.3. A sketch of G (above) and H; (below).

them one-ended, without spoiling the partial hypomorphisms. Let us illustrate this idea
by explicitly describing the first few steps of the construction.

We start with two non-isomorphic graphs Go and Hy, such that Go and Hy each have
exactly one red and one blue leaf. After stage one of our algorithm, our approximations
to G and H; as in Figure 3.1 contain, in each of GY, I:IO, Go and Hy, one coloured leaf. In
stage two, we add copies of these graphs recursively. It follows that the resulting graphs
G and H{ have the global structure of a double ray, along which parts corresponding to
copies of Gy, Hy, Go and Hy appear in a repeating pattern. Crucially, however, each graph
G and H{ has infinitely many yellow and green leaves, which appear in an alternating
pattern extending to infinity in both directions along the double ray.

Consider the minor F} of G} obtained by collapsing every subgraph corresponding to
Go, Hy, Gy and Hy to a single point. Write ¥¢: G} — F} for the quotient map. Then F
is a double ray with alternating coloured leaves hanging off it. Note that we could have
started with H| and obtained the same Fj. In other words, F} approximates the global
structures of both G} and Hj. Consider the one-ended grid-like graph F; x N, where we
let Fy x {0} inherit the colours from Fj. We now form G and H; by gluing F; x N onto

', by identifying corresponding coloured vertices y and ¥g(y), and similarly for Hj. '
Since the coloured leaves contained both ends of our graphs in their closure, the graphs
G, and H; are now one-ended.

It remains to check that our partial isomorphism h;: G — v; — H| — w; guaranteed
by step two can be extended to G; —v; — H; — w;. This can be done essentially because
of the following property: let us write £(-) for the set of coloured leaves. It can be checked
that there is an automorphism 7 : F} — F} such that the diagram

For technical reasons, in the actual construction we identify ¥a(y) with the corresponding base
vertex of the leaf y in G}. In this way the coloured leaves of G remain leaves, and we can continue our

recursive construction.
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hi | L(G1)

L(GY) L(H])
wc‘ ‘¢H
m [ L(F1)

L(Fy) L(F)

is colour-preserving and commutes. Hence, m; X id is an automorphism of F; x N which
is compatible with our gluing procedure, so it can be combined with h; to give us the
desired isomorphism.

We are now ready to describe the general step. Instead of describing F;, as a minor of
GG, which no longer works naively at later steps, we will directly build F;, by recursion,
so that it satisfies the properties of the above diagram.

Suppose at step n we have constructed locally finite graphs G, and H,, and also a
locally finite tree F,, where some leaves are coloured in one of two colours. Furthermore,
suppose we have a family of isomorphisms

Hy={h,: G, —x— H, — p(z): v € X, },

for some subset X,, C V(G,), a family of isomorphisms II,, = {m,: F,, — F,: v € X, },
and colour-preserving bijections ¢, : L(G,) — L(F,) and ¥g,: L(H,) — L(F,) such
that the corresponding commutative diagram from above holds for each z. We construct
G, and H]_ | according to stages one and two of the previous algorithm. As before our
isomorphisms h, will lift to isomorphisms between G, —x and H] | — ¢(x).

|

G H
n Fn

FIGURE 3.4. The auxiliary graph F),.

Algorithm Stage Three. As indicated in Figure 3.4, we take two copies F'¢ and G of
F,,, and glue them together mimicking stage one of the algorithm, i.e. connect g, (r) in
F% by a path of length three to ¥y, (b) in FZ and attach two new leaves coloured yellow
and green in the middle of the path. Call the resulting graph F,. We then apply stage
two of the algorithm to this graph, gluing again and again onto every blue vertex a copy
of the graph of F, behind t, (b), and similarly for every red leaf, to obtain a tree F, ;.
Since this procedure is, in structural terms, so similar to the construction of G, and
H) ., it can be shown that we do obtain a colour-preserving commuting diagram of the

n

form
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’ hx Fﬁ(G;’L 1) /

ﬁ( n+1) h [’(Hn—‘rl)
an+1‘ ‘an-H
T Fﬁ(Fn 1)
£<Fn+l) - ‘C(Fn-i-l)

As before, this means that we can indeed glue together G}, , and F,,;; x N, and H,
and F, 1 X N to obtain one-ended graphs G, .; and H,,; as desired.

At the end of our construction, after countably many steps, we have built two graphs
G and H which are hypomorphic, and for the same reasons as in the tree case the two
graphs will not be isomorphic. Further, since all GG, and H,, are one-ended, so will be G
and H.

3.2.3. The countably-ended case. In order to produce hypomorphic graphs with
countably many ends we follow the same procedure as for the one-ended case, except that
we start with one-ended (non-isomorphic) graphs Gy and H,.

After the first and second stage of our algorithm, the resulting graphs G| and H| will
again consist of infinitely many copies of Go and Hy glued together along a double ray.
After gluing F; x N to these graphs as before, we obtain graphs with one thick end, with
many coloured leaves tending to that end, as well as infinitely many thin ends, coming from
the copies of Gy and Hj, each of which contained a ray. These thin ends will eventually
be rays, and so have no coloured leaves tending towards them. This guarantees that in
the next step, when we glue F; x N onto G, and H), the thin ends will not be affected,
and that all the other ends in the graph will be amalgamated into one thick end.

Then, in each stage of the construction, the graphs G, and H, will have exactly
one thick end, again with many coloured leaves tending towards it, and infinitely many
thin ends each of which is eventually a ray. This property lifts to the graphs G and H
constructed in the limit: they will have one thick end and infinitely many ends which are
eventually rays. However, since G and H are countable, there can only be countably many
of these rays. Hence the two graphs G and H have countably many ends in total, and as

before they will be hypomorphic but not isomorphic.

3.3. Closure with respect to promises

A bridge in a graph G is an edge e = {x, y} such that = and y lie in different components
of G —e. Given a directed bridge € = 2y in some graph G = (V, E), we denote by G(€)
the unique component of G — e containing the vertex y. We think of G(€) as a rooted
graph with root y.

DEFINITION 3.3.1 (Promise structure). A promise structure P = (G, P, E) is a triple

consisting of:
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e a graph G,
o P={p;:icl}asetof directed bridges P C E(G), and
o L={L;:1€ I} aset of pairwise disjoint sets of leaves of G.

We insist further that, if the component G(p;) consists of a single leaf ¢ € L;, then i = j.

Often, when the context is clear, we will not make a distinction between £ and the set
|, L;, for notational convenience.

We call an edge p; € Pa promise edge, and leaves ¢ € L; promise leaves. A promise
edge p; € P is called a placeholder-promise if the component G(p;) consists of a single leaf
c € L;, which we call a placeholder-leaf. We write

L, ={L;: p; a placeholder-promise} and £, = L\ L,.

Given a leaf ¢ in G, there is a unique edge ¢, € F(G) incident with ¢, and this edge
has a natural orientation ¢; towards ¢. Informally, we think of ¢ € L; as the ‘promise’ that
if we extend G to a graph H D G, we will do so in such a way that H(q;) = H(p;).

DEFINITION 3.3.2 (Leaf extension). Given an inclusion H O G of graphs and a set L
of leaves of GG, H is called a leaf extension, or more specifically an L-extension, of G, if:

e every component of H contains precisely one component of GG, and
e every component of H — G is adjacent to a unique vertex [ of GG, and we have
le L.

In [36], given a promise structure P = <G P, L) , it is shown how to construct a graph
cl(G) D G which has the following properties.

PROPOSITION 3.3.3 (Closure w.r.t a promise structure, cf. [36, Proposition 3.3|). Let
G be a graph and let <G, 15, E) be a promise structure. Then there is a graph cl(G), called
the closure of G' with respect to P, such that:
(cl.1) cl(G) is an L,-extension of G,
(cl.2) for every p; € P and all { € L;,

cl(G)(pi) = cl(G)(qk)

are isomorphic as rooted graphs.

Since the existence of cl(G) is crucial to our proof, we briefly remind the reader how
to construct such a graph. As a first approximation, in order to try to achieve ((cl.2)), we
glue a copy of the component G(p;) onto each leaf ¢ € L;, for each i € I. We call this the
1-step extension G of G. If there were no promise leaves in the component G(p;), then
the promises in L; would be satisfied. However, if there are, then we have grown G(p;) by
adding copies of various G(p;)s behind promise leaves appearing in G(p;).

However, remembering all promise leaves inside the newly added copies of G(p;) we
glued behind each ¢ € L;, we continue this process indefinitely, growing the graph one step



3.3. CLOSURE WITH RESPECT TO PROMISES 43

at a time by gluing copies of (the original) G(p;) to promise leaves ¢’ which have appeared
most recently as copies of £ € L;. After a countable number of steps the resulting graph
cl(G) satisfies Proposition 3.3.3. We note also that the maximum degree of cl(G) equals
that of G.

DEFINITION 3.3.4 (Promise-respecting map). Let G be a graph, P = <G, P, E) be a
promise structure on G, and let T} and T, be two components of G.

Given x € T7 and y € Ty, a bijection p: 71 —x — Ty —y is ﬁ—respecting (with respect
to P) if the image of L; N T} under ¢ is L; N T, for all 4.

We can think of P as defining a ]13 |-colouring on some sets of leaves. Then a mapping
is ﬁ—respecting if it preserves leaf colours.

Suppose that p; is a placeholder promise, and G = H© C H® C ... is the sequence
of 1-step extensions whose direct limit is cl(G). Then, if we denote by LE") the set of
promise leaves associated with p; in H™, it follows that Lg") ) Lﬁ.”*” since G(p;) is just
a single vertex ¢; € L;. For every placeholder promise p; € ﬁ, we define cl(L;) =, L§”).

DEFINITION 3.3.5 (Closure of a promise structure). The closure of the promise struc-

ture (G, P, E) is the promise structure cl(P) = (cl(G), cl(ﬁ),cl(ﬁ)), where:

° cl(ﬁ) =<pi:pi € Pisa placeholder—promise},
e cl(L) = {cl(L;): p; € P is a placeholder-promise}.

PROPOSITION 3.3.6 ([36, Proposition 3.3]). Let G be a graph and let (G, P, £> be a

promise structure. Then cl(G) satisfies:

(cl.3) for every p; € P and every { € L;,

A(G)(p;) = (G (@)

are isomorphic as rooted graphs, and this isomorphism s cl(ﬁ)-respecting with
respect to cl(P).

It is precisely this property (cl.3) of the promise closure that will allow us to maintain
partial hypomorphisms during our recursive construction.

The last two results of this section serve as preparation for growing G,.i, Hpi1
and Fj, 1 ‘in parallel’, as outlined in the third stage of the algorithm in §3.2.2. If
L={L;:iel}and L' ={L;:i€ 1}, wesay amap ¢ :|JL — |JL is colour-preserving
if Y(L;) C L} for every i.

LEMMA 3.3.7. Let <G,]3, E) and (G’,ﬁ’,ﬁ’) be promise structures, and let G =
HO CHD C... and G’ = H® C H'M C ... be 1-step extensions approzimating their

respective closures.
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Assume that P = {P1,...,Px} and P = {F1,..., 7}, and that there is a colour-

preserving bijection
E U L — U L

such that (recall that L(-) is the set of leaves of a graph that are in L)
¥ 1 GE): LIG(F) = L(G(7))

1s still a colour-preserving bijection for all p; € P.
Then for each i < k there is a sequence of colour-preserving bijections

s L(HW() — £ ()
such that ol | extends o,.

PROOF. Fix i. We proceed by induction on n. Put o, := v | G(p;).

Now suppose that of, exists. To form H™+Y(p;), we glued a copy of G(p}) to each
le Lgn) N H™(p;) for all j < k, and to construct H'™V(7;), we glued a copy of G'(r7) to
each ¢ € L;(n) N H'™(r}) for all j < k, in both cases keeping all copies of promise leaves.

By assumption, the second part can be phrased equivalently as: we glued on a copy
of G'(773) to each o () for £ € Lg-n) N H™(r}). Thus, we can now combine the bijections
ol (€) with all the individual bijections ¢ between all newly added G(p;) and G'(7;) to

n

obtain a bijection o, as desired. O

COROLLARY 3.3.8. In the above situation, for each i there is a colour-preserving bijec-
tion o' between L(cl(G)(p;)) and L' (cl(G")(r3)) with respect to the promise closures cl(P)
and cl(P’).

PROOF. Put o =, of,. Because all o, respected all colours, they respect in partic-
ular the placeholder promises which make up c¢l(P) and cl(P’). O

3.4. Thickening the graph

In this section, we lay the groundwork for the third stage of our algorithm, as outlined
in §3.2.2. Our aim is to clarify how gluing a one-ended graph F' onto a graph G affects
automorphisms and the end-space of the resulting graph.

DEFINITION 3.4.1 (Gluing sum). Given two graphs G and F', and a bijection 1 with
dom(vy) C V(G) and ran(y)) C V(F), the gluing sum of G and F along 1, denoted by
G @y F, is the quotient graph (G U F')/ ~ where v ~ ¢ (v) for all v € dom(¢).

Our first lemma of this section explains how a partial isomorphism from G, — z to
H, — ¢(x) in our construction can be lifted to the gluing sum of G,, and H,, with a graph
F respectively.
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LEMMA 3.4.2. Let G, H and I be graphs, and consider two gluing sums G @y, F
and H @y, F along partial bijections g and Y. Suppose there exists an isomorphism
h: G —x — H — vy that restricts to a bijection between dom (i) and dom(iy).

Then h extends to an isomorphism (G @y, F) —x — (H By, F') —y provided there is
an automorphism m of F such that 7 o g(v) = ¥y o h(v) for all v € dom(¢g).

Proor. We verify that the map

. h(v) ifve G —x, and
hi (G@y, F)—2— (H®y, F)—y, v
m(v) ifveF

is a well-defined isomorphism. It is well-defined, since if v ~ g (v) in GBy,, F, then h(v) ~
h(1a(v)) in H @, F by assumption on 7. Moreover, since h and 7 are isomorphisms, it
follows that & is an isomorphism, too. 0]

For the remainder of this section, all graphs are assumed to be locally finite. A ray
in a graph G is a one-way infinite path. Given a ray R, then for any finite vertex set
S C V(@) there is a unique component C(R,S) of G — S containing a tail of R. An end

in a graph is an equivalence class of rays under the relation
R ~ R’ & for every finite vertex set S C V(G) we have C(R,S) = C(R',S).

We denote by (G) the set of ends in the graph G, and write C(w, S) := C(R, S) with
R € w. Let Qw,S) = {v": C,S)=C(w,S)}. The singletons {v} for v € V(G)
and sets of the form C'(w, S) UQ(w, S) generate a compact metrizable topology on the set
V(G)UQ(G), which is known in the literature as |G].> This topology allows us to talk about
the closure of a set of vertices X C V(G), denoted by X. Write 9(X) = X\ X = XNQ(X)
for the boundary of X: the collection of all ends in the closure of X. Then an end w € Q(G)
lies in O(X) if and only if for every finite vertex set S C V(G), we have | X N C(w, S)| = oo.
Therefore 2(G) = 9(X) if and only if for every finite vertex set S C V(G), every infinite
component of G — S meets X infinitely often. In this case we say that X is dense for
Q(G).

Finally, an end w € Q(G) is free if for some S, the set Q(w,S) = {w}. Then Q'(G)
denotes the non-free (or limit-)ends. Note that €'(G) is a closed subset of Q(G).

LEMMA 3.4.3. For locally finite connected graphs G and F', consider the gluing sum
G @y F for a partial bijection . If F is one-ended and dom(v)) is infinite, then Q(G @y
F)=Q(G)/0(dom(v)).

2Normally |G| is defined on the 1-complex of G together with its ends, but for our purposes it will
be enough to just consider the subspace V(G) U Q(G). See the survey paper of Diestel [53] for further
details.
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ProoOF. Note first that for locally finite graphs G and F', also G @y, F' is locally finite.
Observe further that all rays of the unique end of F' are still equivalent in G ®y, F', and so
G @y I has an end @ containing the single end of F'.

We are going to define a continuous surjection f: Q(G) — Q(G @y F') with the property
that f has precisely one non-trivial fibre, namely f~(&) = d(dom(v)). It then follows
from definition of the quotient topology that f induces a continuous bijection from the
compact space 2(G)/0(dom(¢)) to the Hausdorff space Q(G @, F'), which, as such, is
necessarily a homeomorphism.

The mapping f is defined as follows. Given an end w € Q(G) \ d(dom(v))), there is a
finite S C V(G) such that C(w, S)Ndom(¢p) = 0, and so C' = C(w, S) is also a component
of (G @y F) — S, which is disjoint from F. Define f to be the identity between Q(G)NC
and Q(G ® F) N C, while for all remaining ends w € Q(G) N dom(v)), we put f(w) = &.

To see that this assignment is continuous at w € Q(G) N dom(v)), it suffices to show
that C':= C(w, S) C G — S is a subset of C' := C(w,5) C (G @y F)— S for any finite set
S C G @y F. To see this inclusion, note that by choice of w, we have |dom(y)) N C| = oo.
At the same time, since F' is both one-ended and locally finite, F' — S has precisely one
infinite component D and F' — D is finite, so as 1 is a bijection, there is v € dom(¢)) N C
with ¢(v) € D (in fact, there are infinitely many such v). Since v and ¥ (v) get identified in
G @y F', we conclude that CUD is connected in (G @&y F)) — S, and hence that CUD C C’
as desired.

Finally, to see that f is indeed surjective, note first that the fact that dom(v) is
infinite implies that dom () N Q(G) # 0, and so & € ran(f). Next, consider an end
w € QG @y F) different from @. Find a finite separator S C V(G @, F) such that
C(w,S) # C(w,S). Tt follows that dom(¢)) N C(w,S) is finite. So there is a finite S" O S
such that C' := C(w, S") # C(w, S") and dom(1p) NC = (. So by definition, f is a bijection
between Q(G) N C and Q(G &y F) N C, so w € ran(f). O

COROLLARY 3.4.4. Under the above assumptions, if dom(v)) is dense for Q(G), then
G @y F' is one-ended.

COROLLARY 3.4.5. Under the above assumptions, if dom(¢) N Q(G) = QV(G), then
G @y I has at most one non-free end.

We remark that more direct proofs for Corollaries 3.4.4 and 3.4.5 can be given that do

not need the full power of Lemma 3.4.3.

3.5. The construction

3.5.1. Preliminary definitions. In the precise statement of our construction in

§3.5.2, we are going to employ the following notation.
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DEFINITION 3.5.1 (Mii-path). A path P = vg,vq,...,v, in a graph G is called inter-
nally isolated if degq(v;) = 2 for all internal vertices v; for 0 < ¢ < n. The path P is
mazimal internally isolated (or mii for short) if in addition degg(vy) # 2 # degq(v,). An
infinite path P = v, vy, vg, ... is mii if degq(vg) # 2 and degq(v;) = 2 for all ¢ > 1.

DEFINITION 3.5.2 (Mii-spectrum). The mii-spectrum of G is
Y(G) :={k € N: G contains an mii-path of length k}.
If (@) is finite, we let 0¢(G) = max X(G) and 01(G) = max (X(G) \ {00(G)}).

LEMMA 3.5.3. Let e be an edge of a locally finite graph G. If X(G) is finite, then
X(G —e) is finite.

PRrROOF. Observe first that every vertex of degree < 2 in any graph can lie on at most
one mii-path.

We now claim that for an edge e = zy, there are at most two finite mii-paths in G — e
which are not subpaths of finite mii-paths of G.

Indeed, if degx = 3 in G, then x can now be the interior vertex of one new finite
mii-path in G —e. And if degz = 2 in GG, then z can now be end-vertex of one new finite
mii-path in G — e (this is relevant if x lies on an infinite mii-path of G). The argument is
for y is the same, so the claim follows. O

DEFINITION 3.5.4 (Spectrally distinguishable). Given two graphs G and H, we say that
G and H are spectrally distinguishable if there is some k > 3 such that k € X(G)AX(H) =
N(G)\X(H) UX(H) \ £(G).

Note that being spectrally distinguishable is a strong certificate for being non-isomorphic.

DEFINITION 3.5.5 (k-ball). For G' a subgraph of H, and k > 0, the k-ball Bally (G, k)
is the induced subgraph of H on the set of vertices at distance at most k£ of some vertex
of G.

DEFINITION 3.5.6 (proper Mii-extension; infinite growth). Let G be a graph, B a
subset of leaves of GG, and H a component of G.

e A graph G D H is an mii-extension of H at B to length k if Balls(H, k) can be
obtained from H by adjoining, at each vertex | € BNV (H), a new path of length
k starting at [, and a new leaf whose only neighbour is 1.”

e A leaf [ in a graph G is proper if the unique neighbour of [ in G has degree > 3.
An mii-extension is called proper if every leaf in B is proper.

e An mii-extension G of G is of infinite growth if every component of G- G is

infinite.

3We note that this is a slightly different definition of an mii-extension to that in [36].
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3.5.2. The back-and-forth construction. Our aim in this section is to prove our

main theorem announced in the introduction.

THEOREM 2.1.6. There are two hypomorphic connected one-ended infinite graphs G

and H with maximum degree five such that G is not isomorphic to H.

To do this we shall recursively construct, for each n € N,

e disjoint rooted connected graphs G, and H,,

e disjoint sets R, and B, of proper leaves of the graph G, U H,,

e trees Fj,,

o disjoint sets R], and B), of leaves of F},,

e bijections ¢, : V(G,) N (R, U B,) — R, U B, and

Yu,: V(H,) N(R,UB,) — R, UB/,

finite sets X,, C V(G,) and Y,, C V(H,), and bijections ¢, : X,, — Y},

e a family of isomorphisms H,, = {h.: G, — = — H, — p,(x): x € X,,},
e a family of automorphisms II,, = {m,.: F,, = F,: x € X,,},
e a strictly increasing sequence of integers k,, > 2,

such that for all n € N:*

(1) Gn-1 € G, and H,_; C H,, as induced subgraphs,

(12) the vertices of G, and H,, all have degree at most 5,

(13) the vertices of F), all have degree at most 3,

(t4) the root of G,, is in R,, and the root of H,, is in B,,

(15) 00(Gn) = 00(Ha) = .

(16) G, and H, are spectrally distinguishable,

(t7) G, and H, have at most one end,

(18) Q(G, UH,) € R,UB,,

(19) (a) Gy is a (proper) mii-extension of infinite growth of G,,_; at

R, 1UB, 1 tolength k, ; + 1, and
(b) Ballg, (G,—1, kn—1 + 1) does not meet R,, U By,
(110) (a) H, is a (proper) mii-extension of infinite growth of H,,_; at
R, 1UB,_1 tolength k, 1 + 1, and
(b) Bally, (H,_1,k,—1 + 1) does not meet R, U B,
(t11) there are enumerations V(G,) = {t;: j € J,} and V(H,) = {s;: j € J,} such
that
e J, 1 CJ, CN,
o {t;: j € J,} extends the enumeration {t;: j € J,_1} of V(G,_1), and simi-
larly for {s;: j € J,},
o [N\ J,| =00

If the statement involves an object indexed by n — 1 we only require that it holds for n > 1.
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o {0,1,....,n} C Jy,
(112) {t;,s;: 7 < n}N (R, UB,) =0,
(113) the finite sets of vertices X,, and Y,, satisfy | X,,| =n = |Y,,|, and
e X, 1CX,and Y, CY,,
e op [ Xp1=Qn_1,
o {t: 5 < L(n—1)/20} € Xo and {s5;: j < [n/2] — 1} C i,
e (X,UY,)N (R, UB,) =10,
(t14) the families of isomorphisms H,, satisfy
 hpo [ (Ghoy —x) = hyy, forall x € X, 4,
e the image of R, NV (G,) under h,, is R, NV (H,),
e the image of B, N V(G,) under h,, is B, NV (H,,) for all z € X,.
(t15) the families of automorphisms II,, satisfy
o T,, | R is a permutation of R], for each z € X,,,
e T,, | B, is a permutation of B/, for each z € X,,,
e for each x € X,,, the following diagram commutes:

hne | £(Go)

L(Gy) L(H,)

wcnl lwm,
Tno | L(Fn

C(F,) VEE Ry

Le. forevery ¢ € L(G,,) := V(G,)N(R, U B,,) we have m,, . (¢V, () = ¥m, (hn . (£)).

3.5.3. The construction yields the desired non-reconstructible one-ended
graphs. By property (1), we have Gy C G; C Gy C -+ and Hy C Hy C Hy C ---. Let
G and H be the union of the respective sequences. Then both G and H are connected,
and as a consequence of (2), both graphs have maximum degree 5.

We claim that the map ¢ = |J,, ¢» is a hypomorphism between G and H. Indeed, it
follows from (111) and (113) that ¢ is a well-defined bijection from V' (G) to V(H). To see
that ¢ is a hypomorphism, consider any vertex x of G. This vertex appears as some t; in
our enumeration of V(G), so the map

hy, = U hpz: G—x— H—p(x),
n>2j
is a well-defined isomorphism by ({14) between G — x and H — ¢(x).

Now suppose for a contradiction that there exists an isomorphism f: G — H. Then
f(to) is mapped into H, for some n € N. Properties (f5) and ({9) imply that after
deleting all mii-paths in G of length > k,, the connected component C' of t; is a leaf
extension of G,, adding one further leaf to every vertex in V/(G,,) N (R, U B,,). Similarly,
properties (15) and (110) imply that after deleting all mii-paths in H of length > k,, the
connected component D of f(ty) is a leaf-extension of H,, adding one further leaf to every
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vertex in V(H,) N (R, U B,,). Note that f restricts to an isomorphism between C' and
D. However, since C' and D are proper extensions, we have X(C)AX(G,) C {1,2} and
Y(D)AX(H,) C {1,2}. Hence, since G,, and H, are spectrally distinguishable by (16),
so are C' and D, a contradiction. We have established that G and H are non-isomorphic
reconstructions of each other.

Finally, for G being one-ended, we now show that for every finite vertex separator
S C V(G), the graph G — S has only one infinite component (the argument for H is
similar). Suppose for a contradiction G — S has two infinite components C; and Cs.
Consider n large enough such that S C V(G,,). Since G, is one-ended for all k by (17),
we may assume that C7 N Gy falls apart into finite components for all £ > n. Since Cf is
infinite and connected, it follows from (19)(b) that C} intersects G, 1 —G,. But since G4,
is an mii-extension of G,, of infinite growth by (19)(a), we see that that Cy N (Gp11 — Gy)

contains an infinite component, a contradiction.

3.5.4. The base case: there are finite rooted graphs G, and H, satisfying re-
quirements (11)—(115). Choose a pair of spectrally distinguishable, equally sized graphs
Gy and Hy with maximum degree < 5 and 0¢(Go) = 0o(Hp) = ko. Pick a proper leaf each
as roots r(Gy) and r(Hy) for Gy and Hy, and further proper leaves ¢, € Gy and ¢, € Hy.

y

1"(G,O)I e I e
s

Y(H,O)I e I I :

F1GURE 3.5. A possible choice for the finite rooted graphs G, and H,.

Define Ry = {r(Gy), ¢, } and By = {r(Hy), lp}. We take Fpy to be two vertices z and y
joined by an edge, with R = {z} and B = {y} and take 1, to be the unique bijection
sending Ry N Gy to R and By N Gy to By, and similarly for ¢y, .

re—eY
FIGURE 3.6. Fy.

Let Jo = {0,1,...,|Go| — 1} and choose enumerations V(Gy) = {t;: j € Jo} and
V(Hy) = {s;: j € Jo} with to # r(Go) and sg # r(Hp). Finally we let Xo =Yy = Ho = 0.
It is a simple check that conditions ({1)—(f15) are satisfied.

3.5.5. The inductive step: set-up. Now, assume that we have constructed graphs
Gy and Hy, for all k < n such that (11)—(115) are satisfied up to n. If n = 2m is even, then
we have {t;: j <m —1} C X,, and in order to satisfy (113) we have to construct G, 11
and H, ., such that the vertex ¢, is taken care of in our partial hypomorphism. Similarly,
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if n =2m+ 1 is odd, then we have {s;: j < m —1} CY, and we have to construct G,4;
and H,,; such that the vertex s,, is taken care of in our partial hypomorphism. Both
cases are symmetric, so let us assume in the following that n = 2m is even.

Now let v be the vertex with the least index in the set {t;: j € J,} \ Xy, i.e.

(14) v=t; for i=min{j:¢; € V(G,)\ X}

Then by assumption (113), v will be t,,, unless t,, was already in X,, anyway. In any
case, since | X,| = |Y,| = n, it follows from (111) that i < n, so by (f12), v does not lie in

our leaf sets R,, U B, i.e.
(15) vé¢ R,UB,,.

In the next sections, we will demonstrate how to obtain graphs G,,.1 D G,, H,.1 D H,
and F,.; with X,,1; = X,, U{v} and Y11 = Y, U {p,11(v)} satistying (11)—(110) and
(113)~(115).

After we have completed this step, since |N'\ J,,| = oo, it is clear that we can extend
our enumerations of G,, and H, to enumerations of G, ,; and H, ; as required, making
sure to first list some new elements that do not lie in R, .1 U B,;1. This takes care of
(t11) and (f12) and completes the step n +— n + 1.

3.5.6. The inductive step: construction. We will construct the graphs G, and
H, 1, in three steps. First, in §3.5.6.1 we construct graphs G, ., D G, and H, | D H,
such that there is a vertex ¢,1(v) € H) | with G|, ., —v = H) | — @,11(v). This first
step essentially follows the argument from [36, §4.6]. We will also construct a graph F, 4
via a parallel process.

Secondly, in §3.5.6.2 we will show that there are well-behaved maps from the coloured
leaves of G, and H,_ , to F,41 x N, such that analogues of (114) and (115) hold for

w1, H) o and F, 11, giving us control over the corresponding gluing sum.

Lastly, in §3.5.6.3, we do the actual gluing process and define all objects needed for
step n + 1 of our inductive construction.

3.5.6.1. Building the auziliary graphs. Given the two graphs G, and H,, we extend
each of them through their roots as indicated in Figure 3.7 to graphs G,, and H,, respec-
tively.

Since v is not the root of G,,, there is a unique component of G,, — v containing the
root, which we call G,,(r). Let G,(v) be the induced subgraph of G,, on the remaining
vertices, including v. We remark that if v is not a cutvertex of G, then G,(v) is just
a single vertex v. Since 0¢(G,) = k, by (15) and deg(v) < 5 by (12), it follows from
an iterative application of Lemma 3.5.3 that X (G, (r)) and X (G,(v)) are finite. Let
k =k, = max{oo(Gy), 00 (Gp (7)) , 00 (Gn(v)) , 00(Hp)} + 1.
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The graph Ghn. The graph H,.

FIGURE 3.7. All dotted lines are mii-paths of length at least k + 1 = k, + 1.

To obtain G,,, we extend G,, through its root r(G,,) € R, by a path
I'(Gn> = U, U1,y .- 7up717up = r(ﬁn>

of length p = 4(k, + 1) + 1, where at its last vertex u, we glue a rooted copy H,, of H,
(via an isomorphism Z > 2), identifying u, with the root of H,.

Next, we add two additional leaves at ug and u,, so that deg(r(G,)) = 3 = deg <r <I:[n) >
Further, we add a leaf 1"(G;1 +1) at Ugp2, which will be our new root for the next tree G7, ,;;
and another leaf g at ugyy3. This completes the construction of G,.

The construction of H, is similar, but not entirely symmetric. For its construction, we
extend H, through its root r(H,) € B, by a path

r(H,) = Up, Up_1,...,01,0 = r(é’n(r))

of length p, where at its last vertex vy we glue a copy Gn(r) of G, (r), identifying vy with
the root of G,,(r). Then, we take a copy Gn(0) of G,(v) and connect ¢ via an edge to
Vk4-1-

Finally, as before, we add two leaves at vy and v, so that deg <r <Gn(r))> =3 =
deg (r(H,)). Next, we add a leaf r(H), ) to va 3, which will be our new root for the next
tree H) ,,; and another leaf y to vy,42. This completes the construction of H,.

By the induction assumption, certain leaves of G,, have been coloured with one of the
two colours in R,, U B,,, and also some leaves of H,, have been coloured with one of the two
colours in R, U B,,. In the above construction, we colour leaves of H,,, én(r) and én(@)
accordingly:

R, = (Rn U {z € H,UGn(r) UG (0): » € Rn}> \ {r(Gn),r<én(r)) }

16) By = (Bau{z€ A, UG UGW(©): 2 € By} )\ () x (1) }.

Now put M,, := én Uﬁn and consider the following promise structure P = <Mn, ]3, E)

on M, consisting of four promise edges P = {P1, P2, 3, Pa} and corresponding leaf sets
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L ={Ly, Ly, L3, Ly}, as follows:
e p; pointing in G,, towards r(G,,), with L, = R,
e P> pointing in H, towards r(H,), with Ly = B,

(a7) e [J; pointing in G, towards r(Gl,,), with Ly = {r(G, ).y},

e [y pointing in H, towards r(H, ), with Ly = {r(H,,),9}.

Note that our construction so far has been tailored to provide us with a f’—respecting
isomorphism

(18) h: Gn —v — H, — 0.

Consider the closure cl(M,,) with respect to the above defined promise structure P.
Since cl(M,,) is a leaf-extension of M,, it has two connected components, just as M,,. We
now define
(19) G4 = the component conta%n%ng G, i.n cl(M,),

H, ., = the component containing H, in cl(M,,).
It follows that cl(M,) = G, U H], ;. Further, since p3 and pj are placeholder promises,
cl(M,,) carries a corresponding promise structure, cf. Def. 3.3.5. We define

(20) R, =cl(L3) and By = cl(Ly).
Lastly, set
Xn+1 = XTL U {U},
Y1 =Y, U{o},
(21) A
Pnt1 = pn U{(v,0)},
kg1 = 2(kn +1).
We now build F,,,; in a similar fashion to the above procedure. That is, we take
two copies of F}, and join them pairwise through their roots as indicated in Figure 3.7 to

form a graph Fn. We consider the graph N, = F’n U Fn, and take Fj,.1 to be one of the
components of cl(V,,) (unlike for cl(M,,), both components of cl(}V,,) are isomorphic).

Ty Y
Ve, ((G) | ¥m,((Ha)) Vor(Ga) | T v, (M)
The graph F,. The graph ﬁn

FIGURE 3.8. The graph N,, = Fn U ﬁ’n.
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More precisely we take two copies of F},, which we will denote by F¢ and FZ. We
extend F¥ through the image of the r(G,,) under the bijection v, by a path

Ve, (1(Gr)) = uo, ur, U, uz = Y, (r(Hy))

of length three, where ¢, (r(G,,)) is taken in F¢ and g, (r(H,,)) is taken in FT. Further,
we add a leaf = at u;, and another leaf y at uy. We will consider the graph N, = F, U F,,
as in Figure 3.8 formed by taking two disjoint copies of F,.

By the induction assumption, certain leaves of F), have been coloured with one of the
two colours in R, U B/,. In the above construction, we colour leaves of FS FH EFG and
ﬁ’f accordingly:

B={we FSURIUFSUES + we B\ {06, 0(G,). v, (GL)) )

(22) (b, (e (HL), o, (L)) |

B @ewuquuwxwuy

n —

Now consider the following promise structure P’ = <Nn, P.r ) on N,, consisting of

four promise edges P’ = {71, 7, 75,74} and corresponding leaf sets £' = {L}, L}, L}, L)}},

as follows:
e 7 pointing in F¢ towards ¢, (r(G,)), with L} = R,
e 7% pointing in F towards ¢y, (r(H,)), with L, = B’
(23)

e 7%, pointing in F,, towards z, with Ly ={z, 1},
e 7/, pointing in F, towards g, with L, = {y,9}.

Consider the closure cl(N,,) with respect to the promise structure P’ defined above.
Since cl(N,,) is a leaf-extension of N,,, it has two connected components, and we define F},
to be the component containing F¢ in cl(N,,). Since 73 and 7 are placeholder promises,

cl(NV,,) carries a corresponding promise structure, cf. Def. 3.3.5. We define
(24) Ry, i =cl(Ly) N Foy1 and By = cl(L)) N Fpyy.

3.5.6.2. Extending maps. In order to glue F, 11 x N onto Gj,.; and H]_; we will need
to show that that analogues of (f14) and (115) hold for G, H ,, and F,;;. Our next
lemma is essentially [36, Claim 4.13|, and is an analogue of ({14). We briefly remind the

reader of the details, as we need to know the nature of our extensions in our later claims.

LEMMA 3.5.7. There is a family of isomorphisms H,, | = {h;bJrLI: T € Xpi1} witness-

ing that G, — x and H, , — ny1(x) are isomorphic for all x € X, 11, such that by, ,
extends hy, , for all x € X,,.

PROOF. The graphs G/, and H/,, defined in (19) are obtained from G, and H,, by
attaching at every leaf in R, a copy of the rooted graph cl(M,)(p}), and by attaching at
every leaf in B, a copy of the rooted graph cl(M,)(f,) by (cl.2).
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From (18) we know that there is a ﬁ—respecting isomorphism

h: G, —v— H, — Oni1(v).

In other words, h maps promise leaves in L; N V(G,,) bijectively to the promise leaves in
L;NV(H,) for all i = 1,2,3,4.
There is for each ¢ € R,UB,U{r(G,),r(H,)} a cl(P)-respecting isomorphism of rooted

graphs
(25) fer l(My)(Ge) = cl(My)(57)

given by (cl.3) for £ € (R, U B,), where i equals blue or red depending on whether ¢ € R,
or B, and for the roots of G,, and H,, we have ¢, = p; and the isomorphism is the identity.
Hence, for each /,

f/;(é) o for el(My,)(Gr) = cl(My)(Ghe))
is a cl(ﬁ)—respecting isomorphism of rooted graphs. By combining the isomorphism A
between G, — v and H, — ¢,11(v) with these isomorphisms between each cl(M,,)(q) and
cl(My,)(qhee)) we get a cl(P)-respecting isomorphism

h;1+17u3 G —v— Hy = @nyi(v).

To extend the old isomorphisms h,, (for x € X,), note that G)_, and H, , are
obtained from G, and H, by attaching at every leaf in R, a copy of the rooted graph
cl(M,)(p1), and similarly by attaching at every leaf in B, a copy of the rooted graph
cl(M,)(p2). By induction assumption ({14), for each z € X,, the isomorphism

hpz: Gn— 2 — Hy — pn(2)

maps the red leaves of GG,, bijectively to the red leaves of H,,, and the blue leaves of G,,
bijectively to the blue leaves of H,. Thus, by (25),

Tl for AM)(@) = A(M) (G, . o)

are cl(P)-respecting isomorphisms of rooted graphs for all ¢ € (R, U B,) N V(G,). By
combining the isomorphism h,, , between G, —x and H,, — ¢, (x) with these isomorphisms
between each cl(M,)(q) = G, (q@) and cl(My)(Gh,.q)) = H}1(Gh,.)), We obtain a

n
—

cl(P)-respecting extension
Pyir et Gryr — 2 — H) = @n(). O

Our next claim should be seen as an approximation to property (f15). Recall that

~

cl(N,) has two components F, ;1 = F, ;.

LEMMA 3.5.8. There are colour-preserving bijections
ngH : V(G;wl) n (Rn—i-l U Bn+1) - R/n+1 U B;L+17

Yo V(Hpyy) N (Ryst U Bost) > R, UB)
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and a family of isomorphisms

A

Hn—l—l - {ﬁn—l—l,r: Fn+1 — Fn—l—l: RS Xn+1}

such that for each x € X, 1 the following diagram commutes.

h{rH»l,a: F ‘C’(GLLJrl)

L(Ghsa) L(H},,)
wG’n+1 ‘/ ‘q/)H;lJA
T+, [[,'(Fn 1) ~
E/(Fn-&-l) - . ‘C,(Fn-kl)

PROOF. Defining ¢qr » and 1/1H;L+1. By construction, we can combine the maps ¥¢,
and ¥y, to obtain a natural colour-preserving bijection

v L(M,) — L'(N,),
which satisfies the assumptions of Lemma 3.3.7. Thus, by Corollary 3.3.8, there are
bijections
a't L(el(M,,)(p)) — L' (cl(Nn) (7))
which are colour-preserving with respect to the promise structures cl(P) and cl(P’) on

cl(M,) and cl(N,,), respectively.

We now claim that 1 extends to a colour-preserving bijection (w.r.t. cl(P))
cl(¢): L(cl(M,)) — L'(cl(N,)).
Indeed, by (cl.3), for every ¢ € R;L U B;, there is a ﬁ’—respecting rooted isomorphism
(26) ge: l(Na)(qz) = cl(Nn)(75),

where 7 equals blue or red depending on whether £ € R or B’. As in the case of (25)
we define the maps g, with ¢ = 7 for the roots of F¢ and ﬁf respectively to be the
identity. Together with the rooted isomorphisms f, from (25), it follows that for each
(€ R,UB,U{r(G,),r(H,)}, the map

Ve = gy © @ 0 for LIUM) (@) — L(A(No) (o))

is a colour-preserving bijection. Now combine ¢ with the individual 1, to obtain cl(1)).
We then put

Vo, = W) [ Gy and Yy, = () | Hy,,.

Defining isomorphisms fInH. To extend the old isomorphisms m, ., given by the in-
duction assumption, note that by (cl.2), F, ;1 is obtained from F), by attaching at every
leaf in R/, a copy of the rooted graph F,,1(7}), and similarly by attaching at every leaf in
B! a copy of the rooted graph F, (7). For each z € X,, let us write 7, , for the map
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sending each z € FS to the copy of m, .(z) in F. By the induction assumption (15), for
each x € X, the isomorphism

Fpe: S — FH
preserves the colour of red and blue leaves. Thus, using the maps g, from (26), the
mappings

Q;nl,x(g) o ge: cl(Nn)(q2) = cl(Np)(G,00)

are cl(P')-respecting isomorphisms of rooted graphs for all £ € R, U B.,. By combining
the isomorphism 7, , with these isomorphisms between each F,,1(g;) and Fnﬂ(q}n,z(@),

—

we obtain a cl(P’)-respecting extension
7?rn—i—l,oc: Fn+1 — Fn—i—l'

For the new isomorphism 41,1 Flp1 — F’nH, we simply take the ‘identity’ map which
extends the map sending each z € F, to 2 € E,.

The diagram commutes. To see that the new diagram above commutes, for each z € X,
it suffices to check that for all ¢ € (R, U B,) N V(G,,) we have

ﬁ-n-ﬁ-l,x o 77Z)G’n+1 f [’( ',n—i-l((ﬁ)) = ¢H7’L+1 © h;ﬁ—l,m r L( ',rz+1<(7€))7

which by construction of cl(¢)) above is equivalent to showing that

~ /
Tn+1,z © W = 'lvbhn,z(é) o hn—f—l,m‘

By definition of v, this holds if and only if

Pt © Gy(e) © 0" 0 Jo = Gyt o) © @ © Trno(® © Moy

Now by construction of 7,41, and h,,, ,, we have

Tatie © 9y = Irnatwo) N s © Hogro = fo
Hence, the above is true if and only if

—1
.

Finally, this last line holds since ¥(¢) = v¢, (¢) and ¥ (hy, . (€)) = Yu, (hn(€)) by definition

of 1, and because

7 -1 7
wie) O ¥ St = Gy, ey © 0 fe

ﬁn,m o ¢Gn (£> = an o hn,l" (‘6)

by the induction assumption.

For 7,41, we see that, as above, it will be sufficient to show that for all ¢ € (R, U

B,) NV (G,) we have
ﬁ-n-‘rl,v 0y = wh;L_H’U(E) © h',n-i-lﬂ;a
which reduces as before to showing that,

1 i 1 ;
Tt © ¢ O S0 =Gy, 0y © @ ° e
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Recall that, 7,,1, sends each v to © and also, since hy,,,,, | G, = h, the image of every
leaf £ € (R, U B,) NV (G,) is simply [ € G,,(v) UGy (r). Hence we wish to show that

7 -1 7
Wiy 0@ O fe=9,q 00 0 f

that is,
((0) = ¢(0),

which follows from the construction of . OJ

3.5.6.3. Gluing the graphs together. Let us take the cartesian product of Fj, | with a
ray, which we simply denote by F, 1 X N. If we identify F,,, with the subgraph F,,; x {0},
then we can interpret both ¢¢, | and ¢y, as maps from £ ;“r}) and L(H) ) to a set
of vertices in Fj,;; X N, under the natural isomorphism between F, .1 and Fj .

Instead of using the function ¢, directly for our gluing operation, we identify, for

!/

every leaf [ in £(G, ) the unique neighbour of | with Yar (1). Formally, define a bijection

!/

XGynya Detween the neighbours of £(G7, ) and L'(F,41) via

(27) XGrni1 = {(21,22): € L(G 1) st 21 € N(0) and Y, (1) = 22},
and similarly
(28) XHp1 = {(zl,zg): 3l € L(Hy ) st. 21 € N(€) and ¥y (1) = 22}.

: : oy , .
Since two promise leaves in G, | or H],; are never adjacent to the same vertex, x¢,,, and

n+1
XH,4, are indeed bijections. Moreover, since all promise leaves were proper, the vertices
in the domain of x¢,., and xg,,, have degree at least 3. Using our notion of gluing-sum

(see Def. 3.4.1), we now define
(29)  Gusri= Gy Brg,, (Fuss x N) and Hyoy = Hiy @y, | (Fupy x N).

We consider R, 11, Bpi1, Xny1 and Y, as subsets of G471 and H,,,; in the natural
way. Then ¢, , and ¢y, , can be taken to be the maps ¢G%+1 and wHLH’ again identifying
F, 11 with F,; in the natural way. We also take the roots of G, .1 and H, i to be the
roots of G, and H_ | respectively

This completes the construction of graphs G,1+1, H,+1, and F, 1, the coloured leaf
sets Ryq1, Bpy1, Ry, and B],_, the bijections 9, ., and ¥y, ., as well as @1 X1 —
Yoi1, and k11 = 2(l~€n + 1). In the next section, we show the existence of families
of isomorphisms H,1 and Il,.;, and verify that (11)-(115) are indeed satisfied for the

(n + 1)™ instance.

3.5.7. The inductive step: verification.

LEMMA 3.5.9. We have Gn - Gn—i—l; H, C Hn—i—l; A(Gn+1),A(Hn+1) <5, A(Fn+1) <
3, and the roots of Gp,+1 and Hy,11 are in R,11 and B, 1 respectively.
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ProoF. We note that G, C G, by construction. Hence, it follows that
G, C G;’L"rl C G{n—i—l @xan+1 (Fry1 X N) = Gy,

and similarly for H,. Since we glued together degree 3 and degree 2 vertices, and
A(G,),A(H,) < 5 and A(F,) < 3, it is clear that the same bounds hold for n + 1.
Finally, since the root of G,, was a placeholder promise, and R, .1 was the corresponding

set of promise leaves in cl(G,,), it follows that the root of G, is in R, and hence so is
the root of G, 1. A similar argument shows that the root of H, 1 is in B,1. O

LEMMA 3.5.10. We have UO(GTL+1) = O'o(Hn+1) = kn+1.

PROOF. By construction we have that oo(G,) = 0o(H,) = kn41. Since G, ; and H,,,
are realised as components of the promise closure of M,,, and this was a proper extension,
it is a simple check that oo(G, ) = 0o(H), ;) = kn+1. Also note that F,;; x N has
no mii-paths of length bigger than two, since the vertices of degree two in F,,; X N are
precisely those of the form (¢,0) with ¢ a leaf of F,, .

Since G, SN (F+1xN) is formed by gluing a set of degree-two vertices of Fj, ;1 xN
to a set of degree-three vertices in G7,,, it follows that o¢(Gpi1) = knq1 as claimed. A
similar argument shows that oo(H,1) = kni1- O

LEMMA 3.5.11. The graphs G111 and H,.1 are spectrally distinguishable.

PROOF. Since in G,, we have that all long mii-paths except for those of length kpiq are
contained inside G,, or H,, it follows from our induction assumption (15) that o1 (G,) = ky.
However, in H,, we attached @n(ﬁ) to generate an mii-path of length k, +1in H, (see
Fig. 3.7), implying that

o (Hy) = ky 4+ 1>k, = 01(G).
As before, since the promise closures G, and H), ,, are proper extensions of G, and H,,
they are spectrally distinguishable. Lastly, since F},;; X N has no leaves and no mii-paths
of length bigger than two, the same is true for G,,;1 and H,, 1. O

LEMMA 3.5.12. The graphs G,.1 and H,., have exactly one end, and Q(G,41 U
Hy41) € Ryp1 U By

PROOF. By the induction assumption ({8), we know that Q(G,, U H,) C R, U B,,.
CramM. The set R,41 U B,41 is dense for G, ;.

Consider a finite S C V(G ;). We have to show that any infinite component C' of
1 — S has non-empty intersection with R, 11 U B, 4.

Let us consider the global structure of G, ; as being roughly that of an infinite regular
tree, as in Figure 3.2. Specifically, we imagine a copy of GG, at the top level, at the next
level are the copies of GG,, and H,, that come from a blue or red leaf in the top level, at the
next level are the copies attached to blue or red leaves from the previous level, and so on.
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With this in mind, it is evident that either C' contains an infinite component from some
copy of H, — S or G,, — S, or C contains an infinite ray from this tree structure. In the
first case, we have |C'N (R, U B,)| = oo by induction assumption. Since any vertex from
R, UB, has aleaf from R,,.;UB,,,; within distance k,,.1+1 (cf. Figure 3.7), it follows that
C' also meets R, 1 U B, ;1 infinitely often. In the second case, the same conclusion follows,
since between each level of our tree structure, there is a pair of leaves in R, 1 U B, 1.
This establishes the claim.

Cram. The set R, U By is dense for H), ;.

The proof of the second claim is entirely symmetric to the first claim.

To complete the proof of the lemma, observe that F,,; X N is one-ended, and with
R, 11U By, also dom(xg,,,) Udom(xs,,,) is dense for G, U H, | by our claims. So
by Corollary 3.4.4, the graphs G, and H,,; have exactly one end. Moreover, since
R,+1 U B, meets both graphs infinitely, it follows immediately that it is dense for
Gri1 U Hpy. O

LEMMA 3.5.13. The graph G411 is a proper mii-extension of infinite growth of G, at
R, U B, to length k, + 1, and Ballg, (G, k, +1) does not meet R, 11U Bpy1. Similarly,
H, .1 is a proper mii-extension of infinite growth of H, at R, U B, to length k, + 1, and
Bally, ,, (Hy, ky + 1) does not meet R,y1 U Byiq. Hence, (19) and (110) are satisfied at
stage n + 1.

Proor. We will just prove the statement for G, .1, as the corresponding proof for
H, ., is analogous.
Since G, is an ((}?n UB,)N V(én))—extension of G, it follows that G’ ., is an

(30) (((Rn UB,) N V(Gn)> U r(Gn)> = ((R, U B,) N V(G,))-extension of G,.

i
n+1

is also an L'-extension of the supergraph K of G,, formed by gluing a copy of G,(p1) to
every leaf in R, N V(G,) and a copy of H,(p3) to every leaf in B, N'V(G,), where L' is
defined as the set of inherited promise leaves from the copies of G, (p1) and H,(p3).

However, from the construction of the closure of a graph it is clear that that G

However, we note that every promise leaf in G,(pi) and H,(p3) is at distance at
least k, 4+ 1 from the respective root, and so BallG%H(Gn, l~fn) = Ballg (G, /~cn) However,
Ballg (G, k,) can be seen immediately to be an mii-extension of G,, at R, U B,, to length
l%n, and since /%n >k, + 1 it follows that BallG%H(Gn, k, + 1) is an mii-extension of G,, at
R, U B, to length k, + 1 as claimed.

Finally, we note that R, 1 U B,y is the set of promise leaves cl(£,). By the same
reasoning as before, Ballg, | (G, kn+1) contains no promise leaf in cl(£,,), and so does not
meet R, 1UDB, 1 as claimed. Furthermore, it doesn’t meet any neighbours of R, .1 UDB,, ;.
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Recall that G, 11 is formed by gluing a set of vertices in (F,, 11 X N) to neighbours of
vertices in R, .1 U B, 1. However, by the above claim, Ballggl +1(Gn, k. + 1) does not meet
any of the neighbours of R, U B,41 and so Ballg, (G, k, +1) = BallG%H(Gn, kn+1),
and the claim follows.

Finally, to see that G,.; is a leaf extension of GG, of infinite growth, it suffices to
observe that G,, .1 — G, consists of one component only, which is a superset of the infinite
graph F, x N. U

LEMMA 3.5.14. There is a family of isomorphisms

Hn—l—l - {hn—i-l,:c: Gn—H - — Hn+1 - Spn—l—l(x): MRS Xn—l—l}y
such that

o hpiia [ (Gn— ) = hyy for all x € X,
o the image of Ry41 NV (Gpy1) under hyiq 4 15 Ryy1 NV (Hpq1),
o the image of B,11 NV (Gpy1) under hyiq4 is Bpi1 NV (Hpy) for all v € X4

PRrROOF. Recall that Lemma 3.5.7 shows that the there exists such a family of isomor-
phisms between G/, and H),_,. Furthermore, we have that

Gn+1 = G;H-l @XG,,L+1 (Fn+1 X N) and Hn+1 = H;"H—l @XHn+1 (Fn+1 X N)

where it is easy to check that x¢, ., and xg,,, satisfy the assumptions of Lemma 3.4.2,
since the functions ¢g/ » and @Z)H;H do by Lemma 3.5.8.
More precisely, given z € X, and h;, ., ,, it follows from Lemma 3.5.8 that
XHn+1 © h;l+1,$ o XGTL+1

extends to an isomorphism m,1, of F,+1. Hence, by Lemma 3.4.2, h/, il extends to
an isomorphism A4, from G417 — 2 to H,+; —y. That this isomorphism satisfies the
three properties claimed follows immediately from Lemma 3.5.7 and the fact that A,4q, |
(Gn — ) = h'/n—i-l,z [ (G — ). O

LEMMA 3.5.15. There exist bijections
anH : V<Gn+1) N (Rn+1 U BnH) — R;Iri’l U B;LH
and
Uyt V(Ho1) O (Roga U Bpgr) = By U By,
and a family of isomorphisms
Hn+1 - {ﬂ-n—i-l,r: Fn+1 — Fn—l—l: T c Xn—i—l};
such that

® oo | Ry, is a permutation of R, for each ,

® Tyi1. | By s a permutation of B, ., for each x, and
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o for each x € X, 11, the corresponding diagram commutes:

hnti,2 | L(Gnt1)
L(Gn+1) . . E(Hn—l-l)

an,+1 ‘/ ‘/an+1
Tn+1,x r Z:(FTL+1)

/C(Fn—i-l) ['(Fn—H)

Le. for everyl € V(Gpi1)N(Rpy1 U Byyr) we have mp 41 2(Va, ., (0)) = Y, ., (Ang1,2(0)).

PROOF. Since Ry y1, By € Gy, UH, , and hy, 41, extends by, , foreach z € X, 4,
this follows immediately from Lemma 3.5.8 after identifying F,,,; with Fl,,. O

This completes our recursive construction, and hence the proof of Theorem 3.1.4 is
complete.

3.6. A non-reconstructible graph with countably many ends

In this section we will prove Theorem 3.1.5. Since the proof will follow almost exactly
the same argument as the proof of Theorem 3.1.4, we will just indicate briefly here the
parts which would need to be changed, and how the proof is structured.

The proof follows the same back and forth construction as in Section 3.5.2, however
instead of starting with finite graphs Gy, and Hy we will start with two infinite graphs,
each containing one free end. For example we could start with the graphs in Figure 3.9.

b
I’(G.O)I : ,,I,.I......
100) SN U

FiGURE 3.9. A possible choice for Gy and Hj, where the dots indicate a ray.

The induction hypotheses remain the same, with the exception of (17) and ({8) which
are replaced by

(t7’) G, and H,, have exactly one limit end and infinitely many free ends when n > 1,

and

(18) R, UB,NQ(G, UH,) = (G, UH,).

The arguments of Section 3.5.5 will then go through mutatis mutandis: for the proof
of the analogue of Lemma 3.5.12, use Corollary 3.4.5 instead of Corollary 3.4.4.

To show that the construction then yields the desired non-reconstructible pair of graphs
with countably many ends, we have to check that (17’) holds for the limit graphs G and
H. It is clear that since R, U B, N Q(G, U H,) = (G, U H,), every free end in a graph
G, or H, remains free in the limit. Moreover, a similar argument to that in Section 3.5.3
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shows that any pair of rays in G or H which were not in a free end in some G,, or H,, are
equivalent in G' or H, respectively.

However, since the end space of a locally finite connected graph is a compact metrizable
space, and therefore has a countable dense subset, such a graph has at most countably
many free ends, since they are isolated in ©Q(G). Hence, both G and H have at most
countably many free ends, and one limit end, and so both graphs have countably many
ends.






CHAPTER 4

Topological ubiquity of trees

Let < be a relation between graphs. We say a graph G is <l-ubiquitous if
whenever I' is a graph with nG < T for all n € N, then one also has NgG <1 T',
where aG is the disjoint union of @ many copies of G.

The Ubiquity Conjecture of Andreae, a well-known open problem in the
theory of infinite graphs, asserts that every locally finite connected graph is
ubiquitous with respect to the minor relation.

In this paper, which is the first of a series of papers making progress
towards the Ubiquity Conjecture, we show that all trees are ubiquitous with
respect to the topological minor relation, irrespective of their cardinality. This
answers a question of Andreae from 1979.

4.1. Introduction

Let < be a relation between graphs, for example the subgraph relation C, the topo-
logical minor relation < or the minor relation <. We say that a graph G is <-ubiquitous
if whenever I' is a graph with nG < T for all n € N, then one also has NyG < I'; where
a( is the disjoint union of o many copies of G.

Two classic results of Halin [85, 86] say that both the ray and the double ray are C-
ubiquitous, i.e. any graph which contains arbitrarily large collections of disjoint (double)
rays must contain an infinite collection of disjoint (double) rays. However, even quite
simple graphs can fail to be C or <-ubiquitous, see e.g. [9, 168, 109], examples of which,
due to Andreae [16], are depicted in Figures 4.1 and 4.2 below.

F1GURE 4.1. A graph which is not C-ubiquitous.

FIGURE 4.2. A graph which is not <-ubiquitous.

65
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However, for the minor relation, no such simple examples of non-ubiquitous graphs are
known. Indeed, one of the most important problems in the theory of infinite graphs is the
so-called Ubiquity Conjecture due to Andreae [15].

THE UBIQUITY CONJECTURE. Fvery locally finite connected graph is <-ubiquitous.

In [15], Andreae constructed a graph that is not <-ubiquitous. However, this con-
struction relies on the existence of a counterexample to the well-quasi-ordering of infinite
graphs under the minor relation, for which counterexamples are only known with very
large cardinality [148]. In particular, it is still an open question whether or not there
exists a countable connected graph which is not <-ubiquitous.

In his most recent paper on ubiquity to date, Andreae [16] exhibited infinite families of
locally finite graphs for which the ubiquity conjecture holds. The present paper is the first
in a series of papers [32, 33, 34] making further progress towards the ubiquity conjecture,
with the aim being to show that all graphs of bounded tree-width are ubiquitous.

As a first step towards this, we in particular need to deal with infinite trees, for which
one even gets affirmative results regarding ubiquity under the topological minor relation.
Halin showed in [87] that all trees of maximum degree 3 are <-ubiquitous. Andreae
improved this result to show that all locally finite trees are <-ubiquitous [10], and asked if
his result could be extended to arbitrary trees [10, p. 214]. Our main result of this paper

answers this question in the affirmative.
THEOREM 4.1.1. Every tree is ubiquitous with respect to the topological minor relation.

The proof will use some results about the well-quasi-ordering of trees under the topo-
logical minor relation of Nash-Williams [125] and Laver [111], as well as some notions
about the topological structure of infinite graphs [55]. Interestingly, most of the work in
proving Theorem 4.1.1 lies in dealing with the countable case, where several new ideas are
needed. In fact, we will prove a slightly stronger statement in the countable case, which
will allow us to derive the general result via transfinite induction on the cardinality of the
tree, using some ideas from Shelah’s singular compactness theorem [143].

To explain our strategy, let us fix some notation. When H is a subdivision of G we
write G <* H. Then, G < I' means that there is a subgraph H C I'" which is a subdivision
of G, that is, G <* H. If H is a subdivision of G and v a vertex of GG, then we denote by
H (v) the corresponding vertex in H. More generally, given a subgraph G’ C G, we denote
by H(G’) the corresponding subdivision of G’ in H.

Now, suppose we have a rooted tree T and a graph I'. Given a vertex t € T, let T}
denote the subtree of T rooted in t. We say that a vertex v € I is t-suitable if there is some
subdivision H of T; in I" with H(t) = v. For a subtree S C T we say that a subdivision
H of S in T is T-suitable if for each vertex s € V(S) the vertex H(s) is s-suitable, i.e. for
every s € V(S) there is a subdivision H' of T such that H'(s) = H(s).
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An S-horde is a sequence (H;: i € N) of disjoint suitable subdivisions of S in I'. If S’ is
a subtree of S, then we say that an S-horde (H;: i € N) extends an S’-horde (H|: i € N)
if for every ¢ € N we have H;(S") = H|.

In order to show that an arbitrary tree T" is <-ubiquitous, our rough strategy will be
to build, by transfinite recursion, S-hordes for larger and larger subtrees S of T', each
extending all the previous ones, until we have built a 7T-horde. However, to start the
induction it will be necessary to show that we can build S-hordes for countable subtrees
S of T'. This will be done in the following key result of this paper:

THEOREM 4.1.2. Let T be a tree, S a countable subtree of T and I' a graph such that
nT < T for everyn € N. Then there is an S-horde in T'.

Note that Theorem 4.1.2 in particular implies <-ubiquity of countable trees.

We remark that whilst the relation < is a relaxation of the relation <, which is itself
a relaxation of the relation C, it is not clear whether C-ubiquity implies <-ubiquity,
or whether <-ubiquity implies <-ubiquity. In the case of Theorem 4.1.1 however, it is
true that arbitrary trees are also <-ubiquitous, although the proof involves some extra
technical difficulties that we will deal with in a later paper [34]. We note, however, that it
is surprisingly easy to show that countable trees are <-ubiquitous, since it can be derived
relatively straightforwardly from Halin’s grid theorem, see [32, Theorem 1.7].

This paper is structured as follows: In Section 4.2, we provide background on rooted
trees, rooted topological embeddings of rooted trees (in the sense of Kruskal and Nash-
Williams), and ends of graphs. In our graph theoretic notation we generally follow the
textbook of Diestel [54]. Next, Sections 4.3 to 4.5 introduce the key ingredients for our
main ubiquity result. Section 4.3, extending ideas from Andreae’s [10], lists three useful
corollaries of Nash-Williams’ and Laver’s result that (labelled) trees are well-quasi-ordered
under the topological minor relation, Section 4.4 investigates under which conditions a
given family of disjoint rays can be rerouted onto another family of disjoint rays, and
Section 4.5 shows that without loss of generality, we already have quite a lot of information
about how exactly our copies of nG are placed in the host graph I'.

Using these ingredients, we give a proof of the countable case, i.e. of Theorem 4.1.2,
in Section 4.6. Finally, Section 4.7 contains the induction argument establishing our main
result, Theorem 4.1.1.

4.2. Preliminaries

DEFINITION 4.2.1. A rooted graph is a pair (G,v) where G is a graph and v € V(G)
is a vertex of G which we call the root. Often, when it is clear from the context which
vertex is the root of the graph, we will refer to a rooted graph (G, v) as simply G.

Given a rooted tree (T, v), we define a partial order <, which we call the tree-order,
on V(T) by letting x < y if the unique path between y and v in T passes through x.
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See [54, Section 1.5] for more background. For any edge e € E(T) we denote by e~ the
endpoint closer to the root and by e™ the endpoint further from the root. For any vertex
t we denote by N*(t) the set of children of t in T, the neighbours s of ¢ satisfying ¢ < s.
The subtree of T rooted at t is denoted by (73,t), that is, the induced subgraph of 7" on
the set of vertices {s € V(T): t < s}.

We say that a rooted tree (S, w) is a rooted subtree of a rooted tree (T,v) if S is a
subgraph of T" such that the tree order on (S, w) agrees with the induced tree order from
(T, v). In this case we write (S,w) C, (T,v).

We say that a rooted tree (S, w) is a rooted topological minor of a rooted tree (T, v) if
there is a subgraph S’ of T" which is a subdivision of S such that for any z <y € V(S5),
S'(z) < S'(y) in the tree-order on 7. We call such an S” a rooted subdivision of S. In this
case we write (S,w) <, (T,v), cf. [54, Section 12.2].

DEFINITION 4.2.2 (Ends of a graph, cf. [54, Chapter 8]). An end in an infinite graph
I' is an equivalence class of rays, where two rays R and S are equivalent if and only if
there are infinitely many vertex disjoint paths between R and S in I". We denote by Q(T)
the set of ends in I'. Given any end € € (I') and a finite set X C V(I") there is a unique
component of I' — X which contains a tail of every ray in €, which we denote by C'(X,€).

A vertex v € V(I') dominates an end w if there is a ray R € w such that there are
infinitely many vertex disjoint v — R-paths in I'.

DEFINITION 4.2.3. For a path or ray P and vertices v,w € V(P), let vPw denote the
subpath of P with endvertices v and w. If P is a ray, let Pv denote the finite subpath of
P between the initial vertex of P and v, and let vP denote the subray (or tail) of P with
initial vertex v.

Given two paths or rays P and () which are disjoint but for one of their endvertices,
we write P() for the concatenation of P and (), that is the path, ray or double ray P U Q.
Since concatenation of paths is associative, we will not use parentheses. Moreover, if we
concatenate paths of the form vPw and w@Qx, then we omit writing w twice and denote

the concatenation by vPwQzx.

4.3. Well-quasi-orders and x-embeddability

DEFINITION 4.3.1. Let X be a set and let < be a binary relation on X. Given an
infinite cardinal x we say that an element € X is k-embeddable (with respect to <) in

X if there are at least x many elements 2’ € X such that x < 2’

DEFINITION 4.3.2 (well-quasi-order). A binary relation < on a set X is a well-quasi-
order if it is reflexive and transitive, and for every sequence x1,xs,... € X there is some
i < j such that z; < z;.
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LEMMA 4.3.3. Let X be a set and let < be a well-quasi-order on X. For any infinite
cardinal k the number of elements of X which are not k-embeddable with respect to < in

X 1s less than k.

PRrROOF. For z € X let U, = {y € X: x < y}. Now suppose for a contradiction that
the set A C X of elements which are not k-embeddable with respect to <1 in X has size
at least k. Then, we can recursively pick a sequence (z, € A)pen such that x,, 4 =, for
m < n. Indeed, having chosen all z,, with m < n it suffices to choose x,, to be any element

of the set A\ |J
By construction we have x,, 4 x, for m < n, contradicting the assumption that < is

men Uz, Which is nonempty since A has size k but each U,,, has size < k.

a well-quasi-order on X. O

We will use the following theorem of Nash-Williams on well-quasi-ordering of rooted

trees, and its extension by Laver to labelled rooted trees.

THEOREM 4.3.4 (Nash-Williams [125]). The relation <, is a well-quasi order on the

set of rooted trees.

THEOREM 4.3.5 (Laver [111)). The relation <, is a well-quasi order on the set of rooted

trees with finitely many labels, i.e. for every finite number k € N, whenever (11, c¢1), (s, c2), . ..

is a sequence of rooted trees with k-colourings ¢;: T; — [k|, there is some i < j such that
there exists a subdivision H of T; with H C,. T and c;(t) = ¢;(H(t)) for all t € T;.!

Together with Lemma 4.3.3 these results give us the following three corollaries:

DEFINITION 4.3.6. Let (7,v) be an infinite rooted tree. For any vertex ¢ of 7" and
any infinite cardinal x, we say that a child ¢’ of ¢ is k-embeddable if there are at least x

children t” of t such that T}, is a rooted topological minor of T..

COROLLARY 4.3.7. Let (T,v) be an infinite rooted tree, t € V(T') and T = {Ty: t' €
N*(t)}. Then for any infinite cardinal K, the number of children of t which are not k-

embeddable is less than k.

PROOF. By Theorem 4.3.4 the set T = {Ty: t' € NT(t)} is well-quasi-ordered by <,
and so the claim follows by Lemma 4.3.3 applied to T, <, and k. O

COROLLARY 4.3.8. Let (T,v) be an infinite rooted tree, t € V(T) a vertex of infinite
degree and (t; € NT(t): i € N) a sequence of countably many of its children. Then there
exists Ny € N such that for all n > Ny,

o< uyr,
>Ny >n
(considered as trees rooted at t) fixing the root t.

In fact, Laver showed that rooted trees labelled by a better-quasi-order are again better-quasi-ordered

under <, respecting the labelling, but we shall not need this stronger result.
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PRrROOF. Consider a labelling ¢: T; — [2] mapping ¢ to 1, and all remaining vertices of
T; to 2. By Theorem 4.3.5, the set T = {{t} UU,.,, Tt,: n € N} is well-quasi-ordered by
<, respecting the labelling, and so the claim follows by applying Lemma 4.3.3 to 7 and
<, with kK = N,. O

DEFINITION 4.3.9 (Self-similarity). A ray R = rirors... in a rooted tree (7),v) which
is upwards with respect to the tree order displays self-similarity of T if there are infinitely
many n such that there exists a subdivision H of T}, with H C, T, and H(R) C R.

COROLLARY 4.3.10. Let (T,v) be an infinite rooted tree and let R = rirars ... be a
ray which is upwards with respect to the tree order. Then there is a k € N such that r, R
displays self-similarity of T.”

PROOF. Consider a labelling ¢: T — [2] mapping the vertices on the ray R to 1, and
labelling all remaining vertices of T' with 2. By Theorem 4.3.5, the set T = {(T}..,¢;): i €
N}, where ¢; is the natural restriction of ¢ to T, is well-quasi-ordered by <, respecting
the labellings. Hence by Lemma 4.3.3, the number of indices 7 such that 7;, is not Ny-
embeddable in 7 is finite. Let k be larger than any such ¢. Then, since T}, is N,-
embeddable in T, there are infinitely many r; € r, R such that T,, <, T,, respecting the
labelling, i.e. mapping the ray to the ray, and hence ry R displays the self similarity of
T. O

4.4. Linkages between rays

In this section we will establish a toolkit for constructing a disjoint system of paths

from one family of disjoint rays to another.

DEFINITION 4.4.1 (Tail of aray). Given aray R in a graph I" and a finite set X C V/(I')
the tail of R after X, denoted by T'(R, X)), is the unique infinite component of R in I' — X.

DEFINITION 4.4.2 (Linkage of families of rays). Let R = (R;:i € [) and S = (S;: j €

J) be families of vertex disjoint rays, where the initial vertex of each R; is denoted x;.
A family of paths P = (P;: i € I), is a linkage from R to § if there is an injective function
o: I — J such that

e cach P joins a vertex xj € R; to a vertex yo;) € So();

o the family 7 = (2; R, Piyo(i)Ss¢): © € I) is a collection of disjoint rays.
We say that T is obtained by transitioning from R to & along the linkage P. Given a
finite set of vertices X C V/(I'), we say that P is after X if 2} € T(R;, X') and @, Piyo(:)So()
avoids X for all 2 € [.

ZA slightly weaker statement, without the additional condition that H(R) C R appeared in [10,

Lemma 1].
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LEMMA 4.4.3 (Weak linking lemma). Let I' be a graph and € € Q). Then for any
families R = (R;: i € [n]) and S = (S;: j € [n]) of vertex disjoint rays in € and any finite
set X of vertices, there is a linkage from R to S after X.

PROOF. Let us write z; for the initial vertex of each R; and let x} be the initial vertex
of the tail T'(R;, X). Furthermore, let X" = X U, Riz}. For i € [n] we will construct
inductively finite disjoint connected subgraphs K; C IT" for each i € [n| such that

o K; meets T'(S;, X') and T'(R;, X') for every j € [n];
e I avoids X'.

Suppose that we have constructed Ki,..., K,,_1 for some m < n. Let us write X,, =
X' ulU,.,, V(K;). Since Ry,...,R, and Sy,..., S, lie in the same end ¢, there exist
paths @, ; between T'(R;, X,,,) and T'(S;, X,,,) avoiding X, for all ¢ # j € [n]. Let K,,, =
F'UU,zjep @ig: where F consists of an initial segment of each T'(R;, X,,,) sufficiently
large to make K, connected. Then it is clear that K, is disjoint from all previous K; and
satisfies the claimed properties.

Let K = J;_, K; and for each j € [n], let y; be the initial vertex of T'(S;, V(K)). Note
that by construction 7°(S;, V(K)) avoids X for each j, since K; meets T'(S;, X) and so
T(Sj7 V<K)) - T(Sj7 X)

We claim that there is no separator of size < n between {z/,...,z)} and {y1,...,yn}
in the subgraph I C T" where I = KU{J/_, T(R;, X")UT(S;, X'). Indeed, any set of < n
vertices must avoid at least one ray R;, at least one graph K,, and one ray S;. However,
since K, is connected and meets R; and S}, the separator does not separate x; from y;.

Hence, by a version of Menger’s theorem for infinite graphs [54, Proposition 8.4.1],
there is a collection of n disjoint paths P; from z; to y,(; in I". Since I" is disjoint from
X and meets each R;x} in x only, it is clear that P = (P;: i € [n]) is as desired. O

In some cases we will need to find linkages between families of rays which avoid more
than just a finite subset X. For this we will use the following lemma, which is stated in
slightly more generality than needed in this paper. Broadly the idea is that if we have a
family of disjoint rays (R;: ¢ € [n]) tending to an end € and a number a € N, then there
is some fixed number N = N(a,n) such that if we have NV disjoint graphs H;, each with a
specified ray S; tending to €, then we can ‘re-route’ the rays (R;: ¢ € [n]) to some of the
rays (S;: j € [IN]), in such a way that we totally avoid a of the graphs H;.

LEMMA 4.4.4 (Strong linking lemma). Let I' be a graph and ¢ € Q(I"). Let X be a
finite set of vertices, a,n € N, and R = (R;: i € [n]) a family of vertex disjoint rays in €.
Let x; be the initial vertex of R; and let ) the initial vertex of the tail T(R;, X).

Then there is a finite number N = N(R, X, a) with the following property: For every
collection (H;: j € [N]) of vertex disjoint subgraphs of I', all disjoint from X and each
including a specified ray S; in €, there is a set A C [N] of size a and a linkage P = (P;: i €
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[n]) from R to (S;: j € [N]) which is after X and such that the family
T = (2iRi%; Piyo(i)Se@): © € [n])

avoids e 4 Hi.

PRrOOF. Let X' = X UJ
with N = No +n?® +a.
Indeed suppose that (H;: j € [N]) is a collection of vertex disjoint subgraphs as in the

| Riz; and let Ny = |X'|. We claim that the lemma holds

i€ln

statement of the lemma. Since the H; are vertex disjoint, we may assume without loss of
generality that the family (H,: j € [n® + a]) is disjoint from X"

For each i € [n?] we will build inductively finite, connected, vertex disjoint subgraphs
Ki such that

e K; contains T} (mod n):
e [; meets exactly n of the H;, that is [{j € [n® +a] : K; N H; # 0} = n, and
° [A(l avoids X'.

Suppose we have done so for all i < m. Let X,, = X" UlJ,_,, V(K;). We will build
inductively for t = 0, ..., n increasing connected subgraphs f(fn that meet R; (mod n), meet
exactly ¢ of the H;, and avoid X,,.

We start with [A(BAL = (. Foreacht =0,...n—1,if T(R,, (mod n), Xm) meets some H; not
met by Kfn then there is some initial vertex z; € T(R,, (mod n)> X)) where it does so and
we set f(f,fl = Kfﬁ UT(Rm (mod n)s Xm)z. Otherwise we may assume T'(Ry, (mod n)s Xm)
does not meet any such H,. In this case, let j € [n® + a] be such that K! N H; =
(. Since Ry (modn) and S; belong to the same end e, there is some path P between
T(Rm (mod n), Xm) and T'(S;, X;,) which avoids X,,. Since this path meets some Hj, with
k € [n® + a] which f(fn does not, there is some initial segment P’ which meets exactly
one such Hy. To form K% we add this path to K’ together with an appropriately large
initial segment of T'(Ry; (mod n); Xm) such that [A(f;“ ! is connected and contains 2/ (
Finally we let K, = K.

Let K =

mod n)"

] Kz Since each K’Z meets exactly n of the H;, the set
J={jen’+d : HiNK #0}

satisfies |J| < n®. For each j € J let y; be the initial vertex of T'(S;, V(K)).

We claim that there is no separator of size < n between {z},...2,} and {y; : j € J}
in the subgraph I" C I' where I = K U ;¢ T(R;, X') U U,e; Hj. Suppose for a
contradiction that there is such a separator S. Then S cannot meet every R;, and hence

i€[n?

avoids some R,. Furthermore, there are n distinct K; such that i = g (mod n), all of
which are disjoint. Hence there is some K, with 7 = ¢ (mod n) disjoint from S. Finally,
{j € J : K,NH; # 0}| = n and so there is some H, disjoint from S such that K,NH, # 0.
Since K, meets T(R,, X') and Hy, there is a path from 7 to y, in I, contradicting our

assumption.
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Hence, by a version of Menger’s theorem for infinite graphs [54, Proposition 8.4.1],
there is a family of disjoint paths P = (P;: i € [n]) in I from 2 to y,(;). Furthermore,
since |J| < n? there is some subset A C [n® + a] of size a such that Hy is disjoint from K
for each k € A.

Therefore, since I is disjoint from X’ and meets each R;x} in x} only, the family P is
a linkage from R to (S;);ens1q Which is after X such that

T = (ZEszZE;PZyJ(Z)SU(Z) 1€ [n])
avoids (e 4 Hi- -

We will also need the following result, which allows us to work with paths instead of
rays if the end € is dominated by infinitely many vertices.

LEMMA 4.4.5. Let T" be a graph and € an end of I' which is dominated by infinitely
many vertices. Let x1,xo,...,xy be distinct vertices. If there are disjoint rays from the x;

to € then there are disjoint paths from the x; to distinct vertices y; which dominate €.

ProoOF. We argue by induction on k. The base case k = 0 is trivial, so let us assume
k> 0.

Consider any family of disjoint rays R;, each from x; to €. Let y; be any vertex
dominating €. Let P be a ykale R;-path. Without loss of generality the endvertex
u of P in Ule R; lies on Rj. Then by the induction hypothesis applied to the graph
I' — RyuP we can find disjoint paths in that graph from the z; with i < k to vertices y;
which dominate €. These paths together with RiuP then form the desired collection of
paths. [l

To go back from paths to rays we will use the following lemma.

LEMMA 4.4.6. LetT" be a graph and € an end of I" which is dominated by infinitely many
vertices. Let y1,Ys, ..., yr be vertices, not necessarily distinct, dominating I'. Then there
are rays R; from the respective y; to € which are disjoint except at their initial vertices.

PROOF. We recursively build for each n € N paths P[*,..., P, each P/ from y; to
a vertex y' dominating e, disjoint except at their initial vertices, such that for m < n
each P! properly extends P™. We take P? to be a trivial path. For n > 0, build the P
recursively in ¢: To construct P, we start by taking X to be the finite set of all the
vertices of the P;' with j < i or Pj"_1 with 7 > ¢. We then choose a vertex y;' outside of
X7 which dominates € and a path Q7 from 3! to 7 internally disjoint from X7. Finally
we let PP = P 'y, 1Qn.

Finally, for each ¢ < k, we let R; be the ray (J,.y P/"- Then the R; are disjoint except
at their initial vertices, and they are in €, since each of them contains infinitely many
dominating vertices of e. 0
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4.5. (G-tribes and concentration of GG-tribes towards an end

For showing that a given graph G is ubiquitous with respect to a fixed relation <,
we shall assume that nG < T" for every n € N and need to show that this implies that
NoG < I'. Since each subgraph witnessing that nG <1 ' will be a collection of n disjoint
subgraphs each being a witness for G < I'; it will be useful to introduce some notation for
talking about these families of collections of n disjoint witnesses for each n.

To do this formally, we need to distinguish between a relation like the topological minor
relation and the subdivision relation. Recall that we write G <* H if H is a subdivision
of G and G < I' if GG is a topological minor of I'. We can interpret the topological minor
relation as the composition of the subdivision relation and the subgraph relation.

Given two relations R and S, let their composition S o R be the relation defined by
x(S o R)z if and only if there is a y such that xRy and yS=z.

Hence we have that G (C o <*) T if and only if there exists H such that G <* H C T,
that is, if and only if G < T'.

While in this paper we will only work with the topological minor relation, we will state
the following definition and lemmas in greater generality, so that we may apply them in
later papers in this series [32, 33, 34].

In general, we want to consider a pair (<1, <) of binary relations of graphs with the
following properties.

(R1) @ = (Co )
(R2) Given a set I and a family (H; : i € I) of pairwise disjoint graphs with G <« H;
for all ¢ € I, then |I|-G «|J{H, : i € T}.

We call a pair (<, «) with these properties compatible.

Other examples of compatible pairs are (C,2), where = denotes the isomorphism
relation, as well as (=, <*), where G <* H if H is an inflated copy of G.

DEFINITION 4.5.1 (G-tribes). Let G and I' be graphs, and let (<1, «€) be a compatible

pair of relations between graphs.

o A G-tribe in T (with respect to (<1, ) ) is a collection F of finite sets F' of disjoint
subgraphs H of I such that G <« H for each member of F H € |J F.

o A G-tribe F in T is called thick, if for each n € N there is a layer F' € F with
|F| > n; otherwise, it is called thin.”

e A G-tribe F' in I' is a G-subtribe of a G-tribe F in I', denoted by F' < F, if
there is an injection W: 7' — F such that for each F’ € F’ there is an injection

3A similar notion of thick and thin families was also introduced by Andreae in [10] (in German) and
n [16]. The remaining notions, and in particular the concept of a concentrated G-tribe, which will be the

backbone of essentially all our results in this series of papers, is new.
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ppr: F' — W(F') such that V(H') C V(pp/(H')) for each H € F’'. The G-
subtribe F’ is called flat, denoted by F' C F, if there is such an injection W
satisfying F’ C W(F").

e A thick G-tribe F in I' is concentrated at an end € of I, if for every finite vertex
set X of I', the G-tribe Fx = {Fx: F € F} consisting of the layers Fx = {H €
F:HZC(X,e)} C F is a thin subtribe of F.

Hence, for a given compatible pair (<, <), if we wish to show that G is <-ubiquitous,
we will need to show that the existence of a thick G-tribe in I' with respect to (<, <)
implies XgG < I'. We first observe that removing a thin G-tribe from a thick G-tribe
always leaves a thick G-tribe.

LEMMA 4.5.2 (cf. [10, Lemma 3] or [16, Lemma 2]). Let F be a thick G-tribe in T' and
let F' be a thin subtribe of F, witnessed by V: F' — F and (pp: F' € F'). For F € F,
if F € U(F'), let U"Y(F) = {Fp} and set F = pp, (F}). If F ¢ W(F), set F = 0. Then

J-"”::{F\F:Fe]—"}
is a thick flat G-subtribe of F.

PRrROOF. F” is obviously a flat subtribe of F. As F’ is thin, there is a k£ € N such that
|F'| < k for every F' € F'. Thus |F| < k for all F € F. Let n € N. As F is thick, there
is a layer F' € F satisfying |F| > n+ k. Thus |[F\ F| >n+k —k =n. O

Given a thick G-tribe, the members of this tribe may have different properties, for
example, some of them contain a ray belonging to a specific end € of I' whereas some of
them do not. The next lemma allows us to restrict onto a thick subtribe, in which all
members have the same properties, as long as we consider only finitely many properties.
E.g. we find a subtribe in which either all members contain an e-ray, or none of them

contain such a ray.

LEMMA 4.5.3 (Pigeon hole principle for thick G-tribes). Suppose for some k € N, we
have a k-colouring c: |JF — [k] of the members of some thick G-tribe F in T'. Then there
is a monochromatic, thick, flat G-subtribe F' of F.

PROOF. Since F is a thick G-tribe, there is a sequence (n;: ¢ € N) of natural numbers
and a sequence (F; € F: i € N) such that

n1<|F1|<n2<|F2|<n3<|F3|<---.

Now for each i, by pigeon hole principle, there is one colour ¢; € [k] such that the subset
F! C F; of elements of colour ¢; has size at least n;/k. Moreover, since [k] is finite, there
is one colour ¢* € [k] and an infinite subset  C N such that ¢; = ¢* for all ¢ € I. But this
means that F' := {F/: i € I} is a monochromatic, thick, flat G-subtribe. O
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In this series of papers we will be interested in graph relations such as C, < and <.
Given a connected graph G and a compatible pair of relations (<1, «) we say that a G-tribe
F w.rt (<, «) is connected if every member H of F is connected. Note that for relations
« like =2, <*, x*, if G is connected and G €4 H, then H is connected. In this case, any
G-tribe will be connected.

LEMMA 4.5.4. Let G be a connected graph (of arbitrary cardinality), (<, €) a compat-
ible pair of relations of graphs and I a graph containing a thick connected G-tribe F w.r.t.
(<, ). Then either RoG < T, or there is a thick flat subtribe F' of F and an end € of T
such that F' is concentrated at €.

PROOF. For every finite vertex set X C V(I'), only a thin subtribe of F can meet X,
so by Lemma 4.5.2 a thick flat subtribe F” is contained in the graph I' — X. Since each
member of F” is connected, any member H of F” is contained in a unique component
of I' — X. If for any X, infinitely many components of I' — X contain a <«-copy of G,
the union of all these copies is a 4-copy of oG in I' by (R2), hence RgG <1 I'. Thus, we
may assume that for each X, only finitely many components contain elements from F”,
and hence, by colouring each H with a colour corresponding to the component of I' — X
containing it, we may assume by the pigeon hole principle for G-tribes, Lemma 4.5.3, that
at least one component of I' — X contains a thick flat subtribe of F.

Let Cp =T and Fy = F and consider the following recursive process: If possible, we
choose a finite vertex set X,, in C), such that there are two components C,,11 # D, of
C, — X,, where C,, contains a thick flat subtribe F,,.; C F,, and D,,; contains at least
one «-copy H,,1 of G. Since by construction all H,, are pairwise disjoint, we either find
infinitely many such H,, and thus, again by (R2), an RoG <1 I', or our process terminates
at step IV say. That is, we have a thick flat subtribe Fy contained in a subgraph Cy such
that there is no finite vertex set Xy satisfying the above conditions.

Let F' := Fy. We claim that for every finite vertex set X of I, there is a unique
component Cx of I' — X that contains a thick flat G-subtribe of F’. Indeed, note that
if for some finite X C I there are two components C' and C’ of I' — X both containing
thick flat G-subtribes of F’, then since every G-copy in F’ is contained in Cy, it must be
the case that C N Cy # 0 # C'NCy. But then Xy = X N Cy # 0 is a witness that our
process could not have terminated at step N.

Next, observe that whenever X’ O X, then Cx, C Cx. By a theorem of Diestel and
Kiihn, [55], it follows that there is a unique end € of I" such that C'(X, €) = Cx for all finite
X CT. It now follows easily from the uniqueness of Cx = C(X,¢€) that F’ is concentrated
at this e. O

We note that concentration towards an end e is a robust property in the following

sense:
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LEMMA 4.5.5. Let G be a connected graph (of arbitrary cardinality), (<, 4) a compat-
ible pair of relations of graphs and I' a graph containing a thick connected G-tribe F w.r.t.
(<, €) concentrated at an end € of I'. Then the following assertions hold:

(1) For every finite set X, the component C(X,€) contains a thick flat G-subtribe
of F.
(2) Every thick subtribe F' of F is concentrated at €, too.

PrOOF. Let X be a finite vertex set. By definition, if the G-tribe F is concentrated
at €, then F is thick, and the subtribe Fx consisting of the sets Fx = {H € FF': H ¢
C(X,€e)} C F for F € F is a thin subtribe of F, i.e. there exists k € N such that |Fx| < k
for all F'x € Fx.

For (1), observe that the G-tribe 7' = {F \ Fx: F' € F} is a thick flat subtribe of F
by Lemma 4.5.2; and all its members are contained in C'(X, €) by construction.

For (2), observe that if F’ is a subtribe of F, then for every F' € F’ there is an
injection @p : F' — F for some F € F. Therefore, |05/ (Fx)| < k for Fx C F as defined
above, and so only a thin subtribe of F” is not contained in C'(X,¢). O

4.6. Countable subtrees

In this section we prove Theorem 4.1.2. Let S be a countable subtree of 7. Our aim is
to construct an S-horde (Q;: i € N) of disjoint suitable subdivisions of S in I" inductively.
By Lemma 4.5.4, we may assume without loss of generality that there are an end € of I'
and a thick T-tribe F concentrated at e.

In order to ensure that we can continue the construction at each stage, we will require
the existence of additional structure for each n. But the details of what additional structure
we use will vary depending on how many vertices dominate €. So, after a common step of
preprocessing, in Section 4.6.1, the proof of Theorem 4.1.2 splits into two cases according
to whether the number of e-dominating vertices in I' is finite (Section 4.6.2) or infinite
(Section 4.6.3).

4.6.1. Preprocessing. We begin by picking a root v for S, and also consider T" as a
rooted tree with root v. Let V. (S) be the set of vertices of infinite degree in S.

DEFINITION 4.6.1. Given S and T as above, define a spanning locally finite forest
S* C S by
S =8\ (J {tti:t; e NT(1),i > N},
tEVio (S)
where /V; is as in Corollary 4.3.8. We will also consider every component of S* as a rooted

tree given by the induced tree order from 7.

DEFINITION 4.6.2. An edge e of S* is an extension edge if there is a ray in S* starting
at e which displays self-similarity of 7. For each extension edge e we fix one such a ray
R.. Write Ext(S*) C E(S*) for the set of extension edges.
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Consider the forest S* — Ext(S*) obtained from S* by removing all extension edges.
Since every ray in S* must contain an extension edge by Corollary 4.3.10, each component
of S* — Ext(S*) is a locally finite rayless tree and so is finite (this argument is inspired
by [10, Lemma 2]). We enumerate the components of S* — Ext(S*) as S§, S}, ... in such
a way that for every n > 0, the set

Jvish

is a finite subtree of S containing the root r. Let us write 9(S,) = Fg+(S,, S* \ S,), and
note that 9(S,) C Fxt(S*). We make the following definitions:

e For a given T-tribe F and ray R of T', we say that R converges to € according to
F if for all members H of F the ray H(R) is in e. We say that R is cut from €
according to JF if for all members H of F the ray H(R) is not in e. Finally we say
that F determines whether R converges to e if either R converges to e according
to F or R is cut from e according to F.

e Similarly, for a given T-tribe F and vertex ¢t of T', we say that ¢t dominates €
according to F if for all members H of F the vertex H(t) dominates e. We say
that ¢ is cut from € according to F if for all members H of F the vertex H(t) does
not dominate €. Finally we say that F determines whether t dominates € if either
t dominates € according to F or t is cut from € according to F.

e Given n € N, we say a thick T-tribe F agrees about 0(S,) if for each extension
edge e € J(S,), it determines whether R, converges to e. We say that it agrees
about V' (.S,,) if for each vertex t of S, it determines whether ¢ dominates e.

e Since 0(S5,) and V(S,,) are finite for all n, it follows from Lemma 4.5.3 that given
some n € N, any thick 7T-tribe has a flat thick T-subtribe F such that F agrees
about 0(S,) and V(S,). Under these circumstances we set

0:(Sn) :={e € 9(S,): R. converges to e according to F},
0-¢(S,) :={e € 9(Sy,): R, is cut from € according to F},
Ve(Sy) :={t € V(S,): t dominates € according to F}, and
( (Sn)

Voe(Sy) :={t e V(S

) tis cut from € according to F} .

e Also, under these circumstances, let us write S, for the component of the forest

S — 0.(S,) —{e € Es(S,, S\ S,): e Ve(Sy)} containing the root of S. Note
that S,, C S, .

The following lemma contains a large part of the work needed for our inductive con-

struction.

LEMMA 4.6.3 (T-tribe refinement lemma). Suppose we have a thick T-tribe JF,, concen-
trated at € which agrees about 9(S,) and V(S,) for some n € N. Let f denote the unique
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edge from S, to Syi1\ Sp. Then there is a thick T-tribe F, 1 concentrated at € with the

following properties:

(i) Fni1 agrees about O(Sp11) and V(Syi1).
(i1) Fni1 UF, agree about (S,) \ {f} and V(S,).
(i) S5, 2 S
(i) For all H € Fyiq there is a finite X C T' such that H(S;$,) N (X UCrp(X,¢€)) =
H(Ve(Sni1))-
Moreover, if f € 0.(S,), and Ry = wvyvive... C S* (with vo = f+) denotes the ray
displaying self-similarity of T at f, then we may additionally assume:
(v) For every H € F, 1 and every k € N, there is H' € F, 11 with
e H'C, H
o H'(Sy) = H(Sn),
e H(T,,) C, H(T,,), and
e H'(Ry) C H(Ry).

ProOF. Concerning (v), if f € 0.(S,) recall that according to Definition 4.6.2, the
ray [y satisfies that for all & € N we have T, <, T,, such that R; gets embedded into
itself. In particular, there is a subtree Tl of T,,, which is a rooted subdivision of T}, with
Tl(Rf) C Ry, considering Ty as a rooted tree given by the tree order in 7T;,. If we define
recursively for each k € N Ty = Tj_1(7}) then it is clear that (7}: k € N) is a family of
rooted subdivisions of T}, such that for each £ € N

4 Tk‘ g Tvk;

A

b Tk 2 Th1;
o Ti(Ry) C Ry
Hence, for every subdivision H of T with H € |JF, and every k € N, the subgraph
H (Tk) is also a rooted subdivision of T},,. Let us construct a subdivision H*) of T by letting
H™ be the minimal subtree of H containing H (T \ T,,) U H(T}), where H®(T'\ T,,,) =
H(T\T,,) and H¥(T,,) = H(T}). Note that

H™(T,)) = H(Ty) S, H*9(T,)) = H(T}1) S, ... C, H(Ty,).

In particular, for every subdivision H € (JF, of T and every k € N, there is a
subdivision H® C H of T such that H®(S) = H(S;<), H*)(T,,) <, H(T,,), and
H®(R;) C H(Ry). By the pigeon hole principle, there is an infinite index set Ky =
{kH kY ..} C Nsuch that {{H®}: k € Ky} agrees about 9(S,;1). Consider the thick
subtribe F = {F/: F € F,,,i € N} of F,, with

() F={H*). HeF).
Observe that F,, U F, still agrees about 9(S,,) and V(S,). (If f € 0-.(S,), then skip this
part and simply let F), := F,,.)
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Concerning (iii), observe that for every H € | J F,,, since the rays H(R,) for e € 0-.(S,)
do not tend to €, there is a finite vertex set Xy such that H(R.) N C(Xg,€) = O for all
e € 0-¢(Sy,). Furthermore, since Xy is finite, for each such extension edge e there exists
r. € R, such that

H(T,)NC(Xu,e) = 0.

By definition of extension edges, cf. Definition 4.6.2, for each e € 0_.(S,,) there is a rooted
embedding of T.+ into H(T},). Hence, there is a subdivision H of T with H < H and
H(S,) = H(S,) such that H(T.+) C H(T,,) for each e € d-(S,,).

Note that if e € 0-(5,,) and g is an extension edge with e < g € 9(S,,41) \ 9(S,,), then
H(R,) C H(S.+) C H(S,,), and so

(1) H(R,) doesn’t tend to e.

Define F, to be the thick T-subtribe of F/, consisting of the H for every H in |J F7..
Now use Lemma 4.5.3 to chose a maximal thick flat subtribe F* of F,, which agrees
about 9(S,,1) and V(S,41), so it satisfies (i) and (ii). By (f), the tribe F satisfies (iii),
and by maximality and (}), it satisfies (v).
In our last step, we now arrange for (iv) while preserving all other properties. For each
H e |JF;. Since H(S,41) is finite, we may find a finite separator Yy such that

H(Sn41) N (Ve UC(Ya, €)) = H(Ve(Sni1))

Since Yy is finite, for every vertex t € V_.(S,11), say with NT(¢) = (¢;);en, there exists
ny € N such that C(Yy,e) N H(T;,) = 0 for all j > n,. Using Corollary 4.3.8, for every
such ¢ there is a rooted embedding

o <{BulJmn,.

7>Ny j>ng

fixing the root ¢. Hence there is a subdivision H’ of T" with H' < H such that H'(T'\ §) =
H(T\ S) and for every t € V_.(Sp41)

N C(YH, 6) == (Z)

H' [{t} U U T

J>N¢
Moreover, note that by construction of F),, every such H’ automatically satisfies that
H(SeJr) N O(XH U YH, E) = @

for all e € 0-¢(Sp+1). Let Fy1 consist of the set of H' as defined above for all H € F.
Then Xy U Yy is a finite separator witnessing that F,, 1, satisfies (iv). O
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4.6.2. Only finitely many vertices dominate e. We first note as in Lemma 4.5.4,
that for every finite vertex set X C V/(I') only a thin subtribe of F can meet X, so a thick
subtribe is contained in the graph I' — X. By removing the set of vertices dominating e,
we may therefore assume without loss of generality that no vertex of I' dominates e.

DEFINITION 4.6.4 (Bounder, extender). Suppose that some thick T-tribe F which is
concentrated at e agrees about 5, for some given n € N, and Q7, @5, ..., Q" are disjoint
subdivisions of S, (note, S, depends on F).

e A bounder for the (Q7: i € [n]) is a finite set X of vertices in I' separating all the
Q; from e, i.e. such that

cX.enlJor=0
i=1
e An extender for the (Q: 7 € [n]) is a family &, = (El;: e € 0:(5,),1 € [n]) of
rays in I" tending to € which are disjoint from each other and also from each Q7
except at their initial vertices, and where the start vertex of E7; is Qf (e™).

To prove Theorem 4.1.2, we now assume inductively that for some n € N, with r :=
|n/2] and s := [n/2] we have:
(1) A thick T-tribe F, in I' concentrated at e which agrees about 0(S,), with a
boundary 9, (S,) such that S¢, C S <.*
(2) a family (QF: i € [s]) of s pairwise disjoint T-suitable subdivisions of S in I'
with Q(S¢) = Q" ' foralli < s— 1,
(3) a bounder X, for the (Q7: i € [s]), and
(4) an extender &, = (E7;: e € 0.(5,), i € [s]) for the (QF: i € [s]).

The base case n = 0 it easy, as we simply may choose Fy <, F to be any thick
T-subtribe in I' which agrees about 0(Sy), and let all other objects be empty.

So, let us assume that our construction has proceeded to step n > 0. Our next
task splits into two parts: First, if n = 2k — 1 is odd, we extend the already existing k
subdivisions (Q7: i € [k]) of S;¢, to subdivisions (Q7': i € [k]) of S;¢. And secondly, if
n = 2k is even, we construct a further disjoint copy QZLI of S.°.

Construction part 1: n = 2k—1 is odd. By assumption, F;_; agrees about 9(Sk_1).
Let f denote the unique edge from Sy_; to Sy \ Sk_1. We first apply Lemma 4.6.3 to Fj_4
in order to find a thick T-tribe Fj concentrated at e satisfying properties (i)—(v). In
particular, Fj, agrees about 0(Sk) and S, C S,

We first note that if f & 9.(Sk_1), then S, = Si, and we can simply take Q7 := Q7
for all i € [k], Epy1 := &, and X, q1 := X,

4Note that since € is undominated, every thick T-tribe agrees about the fact that Ve(Si) = 0 for all
i€ N.
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Otherwise, we have f € 0.(Sk—1). By Lemma 4.5.5(2) F, is concentrated at €, and so
we may pick a collection {Hj, ..., Hy} of disjoint subdivisions of T" from some F € Fy,

all of which are contained in C(X,,€), where N = |£,|. By Lemma 4.4.3 there is some
linkage P C C(X,,, €) from

En to (Hj(Ry): j € [N]),
which is after X,,. Let us suppose that the linkage P joins a vertex z.; € EZ; t0 Yo(c,i) €
H,ei (Ry) viaapath P.; € P. Let 2. be a vertex in Ry such that yo(es) < Ho(e,i)(Zo(ei))
in the tree order on Hoy( (7).

By property (v) of F, in Lemma 4.6.3, we may assume without loss of generality that
for each H; there is a another member H} C Hj of Fj such that H}(Ty+) C, H;(T%;). Let
P; C Hj denote the path from H;(y;) to Hj(f™).

Now for each i € [k], define

Qi = QY UE} 5 Priv(s.iyPoriy U Hy( (S \ Spy)-

By construction, each Q7" is a T-suitable subdivision of S;*.
By Lemma 4.6.3(iv) we may find a finite set X,,;; C ' with X,, C X,,;; such that

C(Xpr )N (| Q) =0.

i€k]

This set X,,,1 will be our bounder.
Define an extender €,.1 = (EI'f': e € 9.(Sk),i € [k]) for the Q""" as follows:
e For e € 0.(Sk—1) \ {f}, let Ef;jl 1= B e i Peilo(e.i) Ho (e, (Rf)-
e For e € 9.(Sk) \ O(Sk-1), let BT = HY o (Re).
Since each Ho(c;), H

o

ei) € \J Fi, and Fj, determines that R, converges to e, these
are indeed € rays. Furthermore, since H(;(e,i) C Hy(ey and {Hy,..., Hy} are disjoint, it
follows that the rays are disjoint.

Construction part 2: n = 2k is even. If 0.(S;) = 0, then S;* = S, and so picking
any element Q77 from Fj, with Q7] C C(X,, €) gives us a further copy of S disjoint from
all the previous ones. Using Lemma 4.6.3(iv), there is a suitable bounder X,,;; 2 X,, for
Qpf1, and we are done. Otherwise, pick ey € 9.(Sy) arbitrary.

Since Fy, is concentrated at €, we may pick a collection {Hy, ..., Hy} of disjoint sub-
divisions of T from Fj, all contained in C(X,,,€), where N is large enough so that we may
apply Lemma 4.4.4 to find a linkage P C C(X,,,€) from

En to (Hi(Re,): i € [N]),

after X,,, avoiding say H;. Let us suppose the linkage P joins a vertex z.; € EZ; to
Yo(ei) € Ho(ei)(Re,) via a path P,; € P. Define

Qifr = Hi(Sy").
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Note that QZE is a T-suitable subdivision of S,

By Lemma 4.6.3(iv) there is a finite set X, ;3 C I' with X,, € X,,; such that
C(Xps1,€) N QZLI = (). This set X,,41 will be our new bounder.

Define the extender £,,1 = (Ef': € € .(Sk11),i € [k 4 1]) of erays as follows:

e Fori ¢ [k], let EnJrl = Eg;ixe,’ipe,iya(e,i)Ho‘(e,i) (Re())-

e Fori=Fk+1, let Egz}rl := Hi(R,) for all e € 0.(Sy41)-

Once the construction is complete, let us define H; := Un>2i—1 Qr.

Since (J,,cy S = S, and due to the extension property (2), the collection (H;)ey is
an S-horde. O

We remark that our construction so far suffices to give a complete proof that countable
trees are <-ubiquitous. Indeed, it is well-known that an end of I' is dominated by infinitely
many distinct vertices if and only if T' contains a subdivision of Ky, [54, Exercise 19,
Chapter 8], in which case proving ubiquity becomes trivial:

LEMMA 4.6.5. For any countable graph G, we have Xy - G C Ky,.

PROOF. By partitioning the vertex set of Ky, into countably many infinite parts, we
see that Ng- Ky, C Ky,. Also, clearly G C Ky,. Hence, we have Rg-G C Rg- Ky, C Ky,. U

4.6.3. Infinitely many vertices dominate e¢. The argument in this case is very
similar to that in the previous subsection. We define bounders and extenders just as
before. We once more assume inductively that for some n € N, with r := [n/2], we have
objects given by (1)—(4) as in the last section, and which in addition satisfy

(5) F, agrees about V(S,).
(6) For any t € V,(S,) the vertex Q7' (t) dominates €

The base case is again trivial, so suppose that our construction has proceeded to step
n > 0. The construction is split into two parts just as before, where the case n = 2k, in
which we need to refine our T-tribe and find a new copy QZE of S;¢, proceeds just as in
the last section.

If n =2k —1is odd, and if f € 0-(Sk_1) or 0.(Sk_1), then we proceed as in the last
subsection. But these are no longer the only possibilities. It follows from the definition of
S,¢ that there is one more option, namely that f~ € V.(Sk). In this case we modify the
steps of the construction as follows:

We first apply Lemma 4.6.3 to F;_; in order to find a thick T-tribe F;_; which agrees
about 0(Sy) and V(Sk).

Then, by applying Lemma 4.4.5 to tails of the rays Ef; in Cr(X,,¢€), we obtain a
family P,y of paths P"Jrl which are disjoint from each other and from the Q) except at
their initial vertices, where the initial vertex of P is QP(e”) and the final vertex y.';"!
of P dominates e.
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Since F}, is concentrated at €, we may pick a collection {Hq, ..., Hy} of disjoint subdi-
visions of T from Fj, all contained in C'(X,, UJPni1,€).
Now for each i € [k], define

Qi = QF UHi(f7) U Hi(Sy"\ 57%)-

These are almost T-suitable subdivisions of S,¢, except we need to add a path between
Q7 (f7) and Hi(f7).

By applying Lemma 4.4.5 to tails of the rays H;(R.) inside C(X,, U |JPni1,€) with
e € D(Sk+1)\9(Sk) we can construct a family P;,; := {P"F: e € 0c(Sk41)\0(Sk), i < k}
of paths which are disjoint from each other and from the Q”H except at their initial
vertices, where the initial vertex of P is H;(e™) and the final vertex y.f' of Pl

dominates €. Therefore the family
Po1 UP, ., = (P"+1 e € 0:(Sky1),1 € [k])

is a family of disjoint paths, which are also disjoint from the @?H except at their initial
vertices, where the initial vertex of P”Jrl is H;(e™) or QF(e~) and the final vertex ygfl of
pPrr ! dominates e.

Since Q7' (f _) and H;(f~) both dominate € for all ¢, we may recursively build a sequence
Pos1 = {Pi: 1 < i < k} of disjoint paths P, from Q7(f) to Hy(f~) with all internal
vertices in C(X,41 U (U 1 U UPn+1) €). Letting Q' = Q;‘“ U P,, we see that each
Q! is a T-suitable subdivision of Sy in T

Our new bounder will be X,, 1 := X,, U{J Ppiq U UP..1 UUPrsa.

Finally, let us apply Lemma 4.4.6 to Y = {y/f': e € 0.(Sp41),i < k} in I[Y U
C(Xpi1,€)]. This gives us a family of disjoint rays

‘cjnJrl = (EA:;H: €c aé(SkJrl)vi € [kD
such that ng has initial vertex y”“ Let us define our new extender &, given by
o BNt = Qu(en) P yi T BT i e € 0.(Sk), i € [K];
[} EZ;H = Hi(e_)P2+lygj_lEn+1 ife c 0€(Sk+1) \ 8(Sk),z € [k’]
This concludes the proof of Theorem 4.1.2. OJ

4.7. The induction argument

We consider T' as a rooted tree with root r. In Section 4.6 we constructed an S-horde
for any countable subtree S of T. In this section we will extend an S-horde for some
specific countable subtree S to a T-horde, completing the proof of Theorem 4.1.1.

Recall that for a vertex t of T and an infinite cardinal x we say that a child ¢’ of ¢ is
r-embeddable if there are at least  children " of ¢ such that Ty is a (rooted) topological
minor of Ty» (Definition 4.3.6). By Corollary 4.3.7, the number of children of ¢ which are
not k-embeddable is less than k.
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DEFINITION 4.7.1 (k-closure). Let T' be an infinite tree with root 7.

e If S is a subtree of T" and S’ is a subtree of S, then we say that S’ is k-closed
in S if for any vertex t of S’ all children of ¢ in S are either in S’ or else are
k-embeddable.

e The k-closure of S in S is the smallest x-closed subtree of S including S’.

LEMMA 4.7.2. Let S’ be a subtree of S. If k is a uncountable reqular cardinal and S’

has size less than k, then the k-closure of S’ in S also has size less than k.

PROOF. Let S’(0) := 5" and define inductively S’(n + 1) to consist of S’(n) together
with all non-s-embeddable children contained in S for all vertices of S'(n). It is clear that
Unen S'(n) is the s-closure of S'. If &, denotes the size of S’(n), then x, < by induction
with Corollary 4.3.7. Therefore, the size of the s-closure is bounded by >

since k has uncountable cofinality. 0

kn < R,

We will construct the desired T-horde via transfinite induction on the cardinals u < |77].
Our first lemma illustrates the induction step for regular cardinals.

LEMMA 4.7.3. Let k be an uncountable regular cardinal. Let S be a rooted subtree of
T of size at most k and let S’ be a k-closed rooted subtree of S of size less than k. Then
any S'-horde (H;: 1 € N) can be extended to an S-horde.

PROOF. Let (s,: @ < k) be an enumeration of the vertices of S such that the parent
of any vertex appears before that vertex in the enumeration, and for any « let S, be the
subtree of T with vertex set V(S") U {ss: B < a}. Let S, denote the s-closure of S, in S,
and observe that |S,| < & by Lemma 4.7.2,

We will recursively construct for each a an S,-horde (H®: i € N) in I', where each of
these hordes extends all the previous ones. For a = 0 we let HY = H; for each i € N. For
any limit ordinal A we have Sy = (J;_, Sp, and so we can take H} = |J,_, H? for each
© € N.

For any successor ordinal o = 8 + 1, if sg € Ss, then S, = Ss, and so we can take
H® = HY for each i € N. Otherwise, S, is the s-closure of S5 4 s3, and so S, — Sp is a
subtree of T§,. Furthermore, since sg is not contained in Sg, it must be k-embeddable.

Let s be the parent of sg. By suitability of the Hf , we can find for each i € N some
subdivision H; of T, with H;(s) = H’(s). We now build the H* recursively in i as follows:

Let t; be a child of s such that 7}, has a rooted subdivision K of T, and such that
ﬁi(Tti +s) — ]:[1(5) is disjoint from all Hf" with j < 7 and from all Hf. Since there
are r disjoint possibilities for K, and all H with j < ¢ and all H JB cover less than
vertices in I', such a choice of K is always possible. Then let H® be the union of Hf with
H;(K (S, — Sg) + st;).

This completes the construction of the (H{: i € N). Obviously, each H® for i € N is
a subdivision of S, with H{(S,) = H] for all v < a, and all of them are pairwise disjoint
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for i # j € N. Moreover, H* is T-suitable since for all vertices H?(t) whose t-suitability
is not witnessed in previous construction steps, their suitability is witnessed now by the
corresponding subtree of H;. Hence (|, < H: i1 € N) is the desired S-horde extending
(H;:i€eN). O

Our final lemma will deal with the induction step for singular cardinals. The crucial
ingredient will be to represent a tree S of singular cardinality p as a continuous increasing
union of <p-sized subtrees (S,: o < cf(u)) where each S, is |S,|T-closed in S. This type
of argument is based on Shelah’s singular compactness theorem, see e.g. [143], but can be

read without knowledge of the paper.

DEFINITION 4.7.4 (S-representation). For a tree S with |S| = p, we call a sequence
S = (5,: 0 < cf(u)) of subtrees of S with |S,| = u, an S-representation if

o (u,: 0 <cf(p)) is a strictly increasing continuous sequence of cardinals less than
i which is cofinal for p,
e S, C Sy forall p <, ie. Sis increasing,

e for every limit A < cf(u) we have |J,_, S, = S, i.e. S is continuous,

o<

e p<ci( u) S, =95, i.e. S is ezhausting,
e S, is pj-closed in S for all ¢ < cf(y), where pu is the successor cardinal of .

Moreover, for a tree S” C S we say that S is an S-representation extending S’ if additionally
o 5" C S, for all p < cf(p).

LEMMA 4.7.5. For every tree S of singular cardinality and every subtree S’ of S with

|S’| < |S| there is an S-representation extending S’.

PROOF. Let |S| = p be singular, and let |S’| = k. Let (so: a < p) be an enumeration
of the vertices of S. Let v be the cofinality of u and let (u,: 0 < y) be a strictly increasing
continuous cofinal sequence of cardinals less than p with g > v and pg > k. By recursion
on ¢ we choose for each ¢ € N a sequence (Sg: 0 < 7y) of subtrees of S of cardinality s,
where the vertices of each SZ) are enumerated as (SZ@: a < fi,), such that:

(1) Siis pu}-closed.

(2) S’ is a subtree of S).

(3) S is a subtree of S’ for o’ < p.

(4 )SQESZ for oo < p,.

(5) s, , €S forany j <i, 0< o <vanda <y,

This is achleved by recursion on p as follows: For any given o < v, let X Z) be the set of
all vertices which are forced to lie in Sé by conditions 2-5, that is, all vertices of S” or of
Si, with ¢’ < g, all s5 with 8 < p, and all 5}, | with j <, 0 < ¢ <y and a < y1,. Then
X, has cardinality 11, and so it is included in a subtree of S of cardinality 1,. We take S|,
to be the 7 -closure of this subtree in S. Note that, since yf is regular, it follows from

Lemma 4.7.2 that S} has cardinality ,.
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For each o0 < 7, let S, := [,y SZ). Then each S, is a union of uz—closed trees and so
is pf-closed itself. Furthermore, each S, clearly has cardinality s,.

It follows from 4 that S = (J,_,
is indeed continuous, i.e. that for any limit ordinal A < v we have S\, = |J pcx Do The

S,. Thus, it remains to argue that our sequence

inclusion J 0<A S, € S) is clear from 3. For the other inclusion, let s be any element of 5.
Then there is some 7 € N with s € S§ and so there is some a < yi, with s = s} ,. Then
by continuity there is some o < A\ with a < ji, and so s € St C S, C Uper Se- O

LEMMA 4.7.6. Let pu be a cardinal. Then for any rooted subtree S of T of size p and
any uncountable reqular cardinal k < p, any S'-horde (H;: i € N) of a k-closed rooted

subtree S" of S of size less than k can be extended to an S-horde.

PROOF. The proof is by transfinite induction on p. If u is regular, we let S” be the -
closure of S"in S. Thus S” has size less than p. So by the induction hypothesis (H;: i € N)
can be extended to an S”-horde, which by Lemma 4.7.3 can be further extended to an
S-horde.

So let us assume that p is singular, and write v = cf(u). By Lemma 4.7.5, fix an
S-representation S = (S,: o < cf(p)) extending S” with |S| < |Sy|.

We now recursively construct for each o < v an S,-horde (H}: i € N), where each of
these hordes extends all the previous ones and (H;: i € N). Using that each S, is ,u;r-closed
in S, we can find (H?: i € N) by the induction hypothesis, and if ¢ is a successor ordinal
we can find (H?: i € N) by again using the induction hypothesis. For any limit ordinal A
we set H} = J 0 H? for each i € N, which yields an Sy-horde by the continuity of S.

This completes the construction of the H7. Then (U,., H;: i € N) is an S-horde
extending (H;: i € N). O

Finally, with the right induction start we obtain the following theorem and hence a
proof of Theorem 4.1.1.

THEOREM 4.7.7. Let T be a tree and I' a graph such that nT" < T' for every n € N.
Then there is a T-horde, and hence NyT < T'.

PRrROOF. By Theorem 4.1.2, we may assume that T is uncountable. Let S’ be the
N;-closure of the root {r} in 7. Then S’ is countable by Lemma 4.7.2 and so there is an
S’-horde in ' by Theorem 4.1.2. This can be extended to a T-horde in I" by Lemma 4.7.6
with u = |T|. O






CHAPTER 5

Ubiquity of graphs with non-linear end structure

A graph G is said to be <-ubiquitous, where < is the minor relation between
graphs, if whenever I is a graph with nG < T for all n € N, then one also
has XgG < I', where aG is the disjoint union of o many copies of G. A well-
known conjecture of Andreae is that every locally finite connected graph is
=<-ubiquitous.

In this paper we give a sufficient condition on the structure of the ends
of a graph GG which implies that G is <-ubiquitous. In particular this implies
that the full grid is <-ubiquitous.

5.1. Introduction

This paper is the second in a series of papers making progress towards a conjecture of
Andreae on the ubiquity of graphs. Given a graph G and some relation <1 between graphs
we say that G is <-ubiquitous if whenever I' is a graph such that nG < T for all n € N,
then NgG < T', where aG' denotes the disjoint union of & many copies of G. For example,
a classic result of Halin [85] says that the ray is C-ubiquitous, where C is the subgraph
relation.

Examples of graphs which are not ubiquitous with respect to the subgraph or topo-
logical minor relation are known (see [16] for some particularly simple examples). In [15]
Andreae initiated the study of ubiquity of graphs with respect to the minor relation <.
He constructed a graph which is not <-ubiquitous, however the construction relied on the
existence of a counterexample to the well-quasi-ordering of infinite graphs under the minor
relation, for which only examples of very large cardinality are known [148]. In particular,
the question of whether there exists a countable graph which is not <-ubiquitous remains
open. Most importantly, however, Andreae [15] conjectured that at least all locally finite
graphs, those with all degrees finite, should be <-ubiquitous.

THE UBIQUITY CONJECTURE. FEwvery locally finite connected graph is <-ubiquitous.

In [16] Andreae proved that his conjecture holds for a large class of locally finite
graphs. The exact definition of this class is technical, but in particular his result implies
the following.

THEOREM 5.1.1 (Andreae, [16, Corollary 2]). Let G be a connected, locally finite graph
of finite tree-width such that every block of G is finite. Then G is <-ubiquitous.

89
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Note that every end in such a graph G must have degree' one.

Andreae’s proof employs deep results about well-quasi-orderings of labelled (infinite)
trees [110]. Interestingly, the way these tools are used does not require the extra condition
in Theorem 5.1.1 that every block of GG is finite and so it is natural to ask if his proof can
be adapted to remove this condition. And indeed, it is the purpose of the present and
subsequent paper in our series, [33], to show that this is possible, i.e. that all connected,
locally finite graphs of finite tree-width are <-ubiquitous.

S

D

FiGURE 5.1. A linkage between R and S.

The present paper lays the groundwork for this extension of Andreae’s result. The
fundamental obstacle one encounters when trying to extend Andreae’s methods is the
following: Let [n] = {1,2,...,n}. In the proof we often have two families of disjoint rays
R = (R;:i € [n]) and S = (5;: j € [m]) in T, which we may assume all converge' to a
common end of I', and we wish to find a linkage between R and S, that is, an injective
function o: [n] = [m] and a set P of disjoint finite paths P; from x; € R; to you) € S
such that the walks

T = (szzpzya(z)sa'(z) 1€ [n])

formed by following each R; along to x;, then following the path P to y,(;, then following
the tail of Sy(;), form a family of disjoint rays (see Figure 5.1). Broadly, we can think of
this as ‘re-routing’ the rays R to some subset of the rays in §. Since all the rays in R and
S converge to the same end of I, it is relatively simple to show that, as long as n < m,

there is enough connectivity between the rays in I' so that such a linkage always exists.

1A precise definitions of rays, the ends of a graph, their degree, and what it means for a ray to

converge to an end can be found in Section 5.2.
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However, in practice it is not enough for us to be guaranteed the existence of some
injection o giving rise to a linkage, but instead we want to choose ¢ in advance, and be
able to find a corresponding linkage afterwards.

In general, however, it is quite possible that for certain choices of ¢ no suitable linkage
exists. Consider for example the case where T" is the half grid (briefly denoted by ZON),
which is the graph whose vertex set is Z x N and where two vertices are adjacent if they
differ in precisely one co-ordinate and the difference in that co-ordinate is one. If we
consider two sufficiently large families of disjoint rays R and & in I', then it is not hard
to see that both R and § inherit a linear ordering from the planar structure of I', which
must be preserved by any linkage between them.

Analysing this situation gives rise to the following definition: We say that an end e
of a graph G is linear if for every finite set R of at least three disjoint rays in G which
converge to € we can order the elements of R as R = { Ry, Ra, ..., R,} such that for each
1 <k <i< < n,the rays Ry and Ry belong to different ends of G — V(R;).

Thus the half grid has a unique end and it is linear. On the other end of the spectrum,
let us say that a graph G has nowhere-linear end structure if no end of G is linear. Since
ends of degree at most two are automatically linear, every end of a graph with nowhere-
linear end structure must have degree at least three.

Our main theorem in this paper is the following.

THEOREM 5.1.2. Every locally finite connected graph with nowhere-linear end structure
18 <-ubiquitous.

Roughly, if we assume that every end of G has nonlinear structure, then the fact that
nG < I' for all n € N allows us to deduce that [' must also have some end with a sufficiently
complicated structure that we can always find suitable linkages for all o as above. In fact,
this property is so strong that we do not need to follow Andreae’s strategy for such graphs.
We can use the linkages to directly build a Ky,-minor of I', and it follows that RyG < I'.

In later papers in the series, we shall need to make more careful use of the ideas
developed here. We shall analyse the possible kinds of linkages which can arise between
two families of rays converging to a given end. If some end of I' admits many different
kinds of linkages, then we can again find a Ky,-minor. If not, then we can use the results
of the present paper to show that certain ends of GG are linear. This extra structure allows
us to carry out an argument like that of Andreae, but using only the limited collection
of these maps o which we know to be present. This technique will be key to extending
Theorem 5.1.1 in [33].

Independently of these potential later developments, our methods already allow us to
establish new ubiquity results for many natural graphs and graph classes.

As a first concrete example, let G be the full grid, a graph not previously known to
be ubiquitous. The full grid (briefly denoted by Z[Z) is analogously defined as the half
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grid but with Z x Z as vertex set. The grid G is one-ended, and for any ray R in G, the
graph G — V(R) still has at most one end. Hence the unique end of G is non-linear, and
so Theorem 5.1.2 has the following corollary:

COROLLARY 5.1.3. The full grid is <-ubiquitous.

Using an argument similar in spirit to that of Halin [87], we also establish the following

theorem in this paper:
THEOREM 5.1.4. Any connected minor of the half grid NOZ is <-ubiquitous.

Since every countable tree is a minor of the half grid, Theorem 5.1.4 implies that all
countable trees are x-ubiquitous, see Corollary 5.7.4. We remark that while all trees are
ubiquitous with respect to the topological minor relation, [31], the problem whether all
uncountable trees are <-ubiquitous has remained open, and we hope to resolve this in a
paper in preparation [34].

In a different direction, if G is any locally finite connected graph, then it is possible
to show that GOZ or GUN either have nowhere-linear end structure, or are a subgraph
of the half grid respectively. Hence, Theorems 5.1.2 and 5.1.4 together have the following
corollary:.

THEOREM 5.1.5. For every locally finite connected graph G, both GUZ and GUN are
<-ubiquitous.

Finally, we will also show the following result about non-locally finite graphs. For
k € N, we let the k-fold dominated ray be the graph DR, formed by taking a ray together
with k additional vertices, each of which we make adjacent to every vertex in the ray. For
k <2, DRy, is a minor of the half grid, and so ubiquitous by Theorem 5.1.4. In our last
theorem, we show that DR}, is ubiquitous for all k£ € N.

THEOREM 5.1.6. The k-fold dominated ray DRy is <-ubiquitous for every k € N.

The paper is structured as follows: In Section 5.2 we introduce some basic terminology
for talking about minors. In Section 5.3 we introduce the concept of a ray graph and
linkages between families of rays, which will help us to describe the structure of an end.
In Sections 5.4 and 5.5 we introduce a pebble-pushing game which encodes possible linkages
between families of rays and use this to give a sufficient condition for an end to contain a
countable clique minor. In Section 5.6 we re-introduce some concepts from [31] and show
that we may assume that the G-minors in I' are concentrated towards some end € of I'. In
Section 5.7 we use the results of the previous section to prove Theorem 5.1.4 and finally
in Section 5.8 we prove Theorem 5.1.2 and its corollaries.
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5.2. Preliminaries

In our graph theoretic notation we generally follow the textbook of Diestel [54]. Given
two graphs G and H the cartesian product GOH is a graph with vertex set V(G) x V(H)
with an edge between (a, b) and (¢, d) if and only if a = cand (b,d) € E(H) or (a,c) € E(G)
and b = d.

DEFINITION 5.2.1. A one-way infinite path is called a ray and a two-way infinite path
is called a double ray.

For a path or ray P and vertices v,w € V(P), let vPw denote the subpath of P with
endvertices v and w. If P is a ray, let Pv denote the finite subpath of P between the
initial vertex of P and v, and let vP denote the subray (or tail) of P with initial vertex v.

Given two paths or rays P and () which are disjoint but for one of their endvertices,
we write P(Q for the concatenation of P and (), that is the path, ray or double ray P U Q).
Moreover, if we concatenate paths of the form vPw and wQx, then we omit writing w
twice and denote the concatenation by vPwQx.

DEFINITION 5.2.2 (Ends of a graph, cf. [54, Chapter 8]). An end of an infinite graph
I' is an equivalence class of rays, where two rays R and S are equivalent if and only if
there are infinitely many vertex disjoint paths between R and S in I". We denote by Q(T)
the set of ends of I'.

We say that a ray R C I' converges (or tends) to an end € of I' if R is contained in e.
In this case we call R an €-ray.

Given an end € € Q(I') and a finite set X C V(I') there is a unique component of
I' — X which contains a tail of every ray in €, which we denote by C'(X€).

For an end € € ' we define the degree of € in I' as the supremum of all sizes of sets
containing vertex disjoint e-rays. If an end has finite degree, we call it thin. Otherwise,
we call it thick.

A vertex v € V(') dominates an end € € (I') if there is a ray R € w such that there
are infinitely many v— R-paths in I" that are vertex disjoint except from v.

We will use the following two basic facts about infinite graphs.

PROPOSITION 5.2.3. [54, Proposition 8.2.1] An infinite connected graph contains either

a ray or a vertex of infinite degree.

PROPOSITION 5.2.4. [54, Exercise 8.19] A graph G contains a subdivided Ky, as a

subgraph if and only if G has an end which is dominated by infinitely many vertices.

DEFINITION 5.2.5 (Inflated graph, branch set). Given a graph G we say that a pair
(H, ) is an inflated copy of G, or an IG, if H is a graph and ¢: V(H) — V(G) is a map
such that:
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e For every v € V(G) the branch set ¢~ (v) induces a non-empty, connected sub-
graph of H;

e There is an edge in H between ¢~ *(v) and ¢~ !(w) if and only if (v,w) € E(G)
and this edge, if it exists, is unique.

When there is no danger of confusion we will simply say that H is an /G instead of
saying that (H, ) is an IG, and denote by H(v) = ¢~ !(v) the branch set of v.

DEFINITION 5.2.6 (Minor). A graph G is a minor of another graph I', written G < T,
if there is some subgraph H C I" such that H is an inflated copy of G.

DEFINITION 5.2.7 (Extension of inflated copies). Suppose G C G’ as subgraphs, and
that H is an IG and H' is an IG’'. We say that H' extends H (or that H' is an extension
of H) if HC H' as subgraphs and H(v) C H'(v) for all v € V(G) N V(G).

Note that since H C H’, for every edge (v,w) € E(G), the unique edge between the
branch sets H'(v) and H'(w) is also the unique edge between H(v) and H(w).

DEFINITION 5.2.8 (Tidiness). An IG (H, ) is called tidy if

e H[p !(v)] is a tree for all v € V(G);
e H(v) is finite if dg(v) is finite.

Note that every IG H contains a subgraph H' such that (H', ¢ | V(H')) is a tidy IG,
although this choice may not be unique. In this paper we will always assume without loss
of generality that each IG is tidy.

DEFINITION 5.2.9 (Restriction). Let G be a graph, M C G a subgraph of G, and
let (H,¢) be an IG. The restriction of H to M, denoted by H(M), is the IG given by
(H(M),¢') where ©'~}(v) = ¢~ (v) for all v € V(M) and H(M) consists of union of the
subgraphs of H induced on each branch set p~!(v) for each v € V(M) together with the
edge between ¢! (u) and ¢~!(v) for each (u,v) € E(M).

Note that if H is tidy, then H(M) will be tidy. Given a ray R C G and a tidy IG
H in a graph I', the restriction H(R) is a one-ended tree, and so every ray in H(R) will
share a tail. Later in the paper we will want to make this correspondence between rays in

G and ' more explicit, with use of the following definition:

DEFINITION 5.2.10 (Pullback). Let G be a graph, R C G aray, and let H be a tidy IG.
The pullback of R to H is the subgraph H¥(R) C H where H*(R) is subgraph minimal
such that (HY(R), | V(H*(R))) is an I M.

Note that, since H is tidy, H*(R) is well defined. As well shall see, H¥(R) will be a
ray.
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LEMMA 5.2.11. Let G be a graph and let H be a tidy IG. If R C G is a ray, then the
pullback H*(R) is also a ray.

PROOF. Let R = xy25 . ... For each integer ¢ > 1 there is a unique edge (v;, w;) € E(H)
between the branch sets H(x;) and H(z;;1). By the tidiness assumption, H (z;,1) induces
a tree in H, and so there is a unique path P; C H(z;1) from w; to v;y1 in H.

By minimality of H¥(R), it follows that H¥(R)(z;) = {v1} and H¥(R)(z;1) = V(P;)
for each i > 1. Hence H*(R) is a ray. O

5.3. The Ray Graph

DEeFINITION 5.3.1 (Ray graph). Given a finite family of disjoint rays R = (R;: 1 € I)
in a graph I' the ray graph RGr(R) = RGr(R;: i € I) is the graph with vertex set I and
with an edge between 7 and j if there is an infinite collection of vertex disjoint paths from
R; to R; in I' which meet no other Rj;. When the host graph I' is clear from the context
we will simply write RG(R) for RGr(R).

The following lemmas are simple exercises. For a family R of disjoint rays in G tending
to the same end and H C I" being an /G the aim is to establish the following: if S is a
family of disjoint rays in I" which contains the pullback H*(R) of each R € R, then the
subgraph of the ray graph RGr(S) induced on the vertices given by {H*(R) : R € R} is
connected.

LEMMA 5.3.2. Let G be a graph and let R = (R;: i € I) be a finite family of disjoint
rays in G. Then RGa(R) is connected if and only if all rays in R tend to a common end
w e QG).

LEMMA 5.3.3. Let G be a graph, R = (R;: i € I) be a finite family of disjoint rays in
G and let H be an IG. If R' = (H¥*(R;): i € I) is the set of pullbacks of the rays in R in
H, then RGo(R) = RGgx(R').

LEMMA 5.3.4. Let G be a graph, H C G, R = (R;: i € I) be a finite disjoint family of
rays in H and let S = (S;: j € J) be a finite disjoint family of rays in G — V(H), where
I and J are disjoint. Then RGy(R) is a subgraph of RGo(R US)[I]. In particular, if
all rays in R tend to a common end in H, then RGo(RUS) [I} is connected.

Recall that an end w of a graph G is called linear if for every finite set R of at least
three disjoint w-rays in G we can order the elements of R as R = {Ry, R, ..., R,} such
that for each 1 < k < i < ¢ < n, the rays Ry, and R, belong to different ends of G-V (R;).

LEMMA 5.3.5. An end w of a graph G is linear if and only if the ray graph of every
finite family of disjoint w-rays is a path.
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PROOF. For the forward direction suppose w is linear and {Ry, Ry, ..., R,} converge
to w, with the order given by the definition of linear. It follows that there is no 1 < £ <
i < ¢ < n such that (k, () is an edge in RG(R,;: j € [n]). However, by Lemma 5.3.2
RG(R;: j € [n]) is connected, and hence it must be the path 12...n.

Conversely, suppose that the ray graph of every finite family of w-rays is a path. Then,
every such family R can be ordered as {Ri, Ra, ..., R,} such that RG(R) is the path
12...n. It follows that, for each i, (k,¢) ¢ EF(RG(R)) whenever 1 < k <i<{<n—1,
and so by definition of RG(R) there is no infinite collection of vertex disjoint paths from
Ry to Ry in G — V(R;). Therefore Ry and Ry belong to different ends of G — V(R;). O

DEFINITION 5.3.6 (Tail of a ray after a set). Given a ray R in a graph G and a finite
set X C V(QG) the tail of R after X, denoted by T'(R, X), is the unique infinite component
of Rin G — X.

DEFINITION 5.3.7 (Linkage of families of rays). Let R = (R;: 1 € I) and S = (S;: j €
J) be families of disjoint rays of I', where the initial vertex of each R; is denoted z;. A
family P = (FP;: i € I) of paths in I' is a linkage from R to S if there is an injective
function o: I — J such that

e Bach P; goes from a vertex z; € R; to a vertex yo;) € Sy(i;
o The family 7 = (2, R} P;Yo(:)Ss¢i): © € I) is a collection of disjoint rays.

We say that T is obtained by transitioning from R to S along the linkage. We say the
linkage P induces the mapping o. Given a vertex set X C V(G) we say that the linkage
is after X if X N V(R;) C V(x;R;x) for all ¢ € I and no other vertex in X is used by
T. We say that a function o: I — J is a transition function from R to § if for any finite
vertex set X C V(G) there is a linkage from R to S after X that induces o.

We will need the following lemma from [31], which asserts the existence of linkages.

LEMMA 5.3.8 (Weak linking lemma). Let I' be a graph, w € Q(I") and let n € N. Then
for any two families R = (R;: 1 € [n]) and S = (S;: j € [n]) of vertex disjoint w-rays and
any finite vertex set X C V(Q), there is a linkage from R to S after X.

5.4. A pebble-pushing game

Suppose we have a family of disjoint rays R = (R;: i € I) in a graph G and a subset
J C I. Often we will be interested in which functions we can obtain as transition functions
between (R;: i € J) and (R;: i € I). We can think of this as trying to ‘re-route’ the rays
(R;: i € J) to a different set of |J| raysin (R;: i € I).

To this end, it will be useful to understand the following pebble-pushing game on a
graph.
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DEFINITION 5.4.1 (Pebble-pushing game). Let G = (V, E) be a finite graph. For any
fixed positive integer k we call a tuple (x1,xs,...,z;) € V¥ a game state if z; # x; for all
i,7 € [k] with i # j.

The pebble-pushing game (on G ) is a game played by a single player. Given a game state
Y = (y1,92,---,Yr), we imagine k labelled pebbles placed on the vertices (y1, ¥y, - - -, Yk)-
We move between game states by moving a pebble from a vertex to an adjacent vertex
which does not contain a pebble, or formally, a Y-move is a game state Z = (z1,25. .., 2)
such that there is an ¢ € [k] such that y,2, € F and y; = z; for all i € [k] \ {¢}.

Let X = (x1,22...,2%) be a game state. The X-pebble-pushing game (on G) is a

pebble-pushing game where we start with & labelled pebbles placed on the vertices (1, x5 . . .

We say a game state Y is achievable in the X-pebble-pushing game if there is a sequence
(X;: i € [n]) of game states for some n € N such that X; = X, X,, =Y and X, is an
X,;-move for all i € [n — 1], that is, if it is a sequence of moves that pushes the pebbles
from X to Y.

A graph G is k-pebble-win if Y is an achievable game state in the X-pebble-pushing

game on G for every two game states X and Y.

The following lemma shows that achievable game states on the ray graph RG(R) yield
transition functions from a subset of R to itself. Therefore, it will be useful to understand
which game states are achievable, and in particular the structure of graphs on which there

are unachievable game states.

LEMMA 5.4.2. LetI' be a graph, w € QI'), m > k be positive integers and let (S;: j €
[m]) be a family of disjoint rays in w. For every achievable game state Z = (z1, 2o, . . . , 2k)
in the (1,2, ..., k)-pebble-pushing game on RG(S;: j € [m]), the map o defined via o (i) :=
z; for every i € [k] is a transition function from (S;: i € [k]) to (S;: j € [m]).

PRrOOF. We first note that if ¢ is a transition function from (S;: i € [k]) to (5;: j €
[m]) and 7 is a transition function from (S5;: i € o([k])) to (S;: j € [m]), then clearly 700
is a transition function from (S;: ¢ € [k]) to (S;: j € [m]).

Hence, it will be sufficient to show the statement holds when ¢ is obtained from
(1,2,...,k) by a single move, that is, there is some t € [k] and a vertex o(t) & [k] such
that o(t) is adjacent to ¢t in RG(S;: j € [m]) and o (i) =1 for ¢ € [k] \ {t}.

So, let X C V(G) be a finite set. We will show that there is a linkage from (S;: i € [k])
to (S;: 7 € [m]) after X that induces 0. By assumption there is an edge (¢,0(t)) €
E(RG(S;: j € [m])). Hence, there is a path P between T'(S;, X) and T'(S,(;), X) which
avoids X and all other S;.

Then the family P = (P, Py, ..., P;) where P, = P and P; = () for each i # ¢ is a
linkage from (5;: i € [k]) to (S;: j € [m]) after X that induces o. O
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We note that this pebble-pushing game is sometimes known in the literature as “per-
mutation pebble motion” [102] or “token reconfiguration” [43]. Previous results have
mostly focused on computational questions about the game, rather than the structural
questions we are interested in, but we note that in [102] the authors give an algorithm
that decides whether or not a graph is k-pebble-win, from which it should be possible to
deduce the main result in this section, Lemma 5.4.9. However, since a direct derivation
was shorter and self contained, we will not use their results. We present the following

simple lemmas without proof.

LEMMA 5.4.3. Let G be a finite graph and X a game state.
e IfY is an achievable game state in the X -pebble-pushing game on G, then X is

an achievable game state in the Y -pebble-pushing game on G.

e [fY is an achievable game state in the X -pebble-pushing game on G and Z is an
achievable game state in the Y -pebble-pushing game on G, then Z is an achievable
game state in the X -pebble-pushing game on G.

DEFINITION 5.4.4. Let G be a finite graph and let X = (z1,2,...,2x) be a game
state. Given a permutation o of [k] let us write X7 = (To(1), To2), - - - To(k))- We define
the pebble-permutation group of (G, X) to be the set of permutations o of [k] such that
X7 is an achievable game state in the X-pebble-pushing game on G.

Note that by Lemma 5.4.3, the pebble-permutation group of (G, X) is a subgroup of
the symmetric group Sj.

LEMMA 5.4.5. Let G be a graph and let X be a game state. If Y is an achievable game
state in the X -pebble-pushing game and o s in the pebble-permutation group of Y, then o
15 in the pebble-permutation group of X.

LEMMA 5.4.6. Let G be a finite connected graph and let X be a game state. Then G
is k-pebble-win if and only if the pebble-permutation group of (G, X) is Sk.

Proor. Clearly, if the pebble-permutation group is not Sy then G is not k-pebble-win.
Conversely, since G is connected, for any game states X and Y there is some 7 such that V"
is an achievable game state in the X-pebble-pushing game, since we can move the pebbles
to any set of k vertices, up to some permutation of the labels. We know by assumption
that X7 ' is an achievable game state in the X-pebble-pushing game. Therefore, by
Lemma 5.4.3 Y is an achievable game state in the X-pebble-pushing game. [

LEMMA 5.4.7. Let G be a finite connected graph and let X = (x1,xa,...,xx) be a game
state. If G is not k-pebble-win, then there is a two colouring c: X — {r,b} such that
both colour classes are non trivial and for all i,j € [k] with c(z;) = r and c(x;) = b the

transposition (ij) is not in the pebble-permutation group.
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PROOF. Let us draw a graph H on {1, 22, ..., x;} by letting (z;, z;) be an edge if and
only if (i) is in the pebble-permutation group of (G, X). It is a simple exercise to show
that the pebble-permutation group of (G, X) is Sy, if and only if H has a single component.

Since G is not k-pebble-win, we therefore know by Lemma 5.4.6 that there are at least
two components in H. Let us pick one component C and set ¢(z) = r for all x € V/(C})
and c(x) = b for all x € X \ V(C). O

DEFINITION 5.4.8. Given a graph G, a path z125 . .. x,, in G is a bare path if dg(z;) = 2
forall 2 <<i<m—1.

LEMMA 5.4.9. Let G be a finite connected graph with vertex set V' which is not k-
pebble-win and with |V| > k4 2. Then there is a bare path P = pips...p, in G such that
[V \V(P)| < k. Furthermore, either every edge in P is a bridge in G, or G is a cycle.

PROOF. Let X = (z1,29,...,2;) be a game state. Since G is not k-pebble-win, by
Lemma 5.4.7 there is a two colouring c: {z;: i € [k]} — {r,b} such that both colour
classes are non trivial and for all ¢, 5 € [k] with ¢(z;) = r and ¢(z;) = b the transposition
(7j) is not in the pebble permutation group. Let us consider this as a three colouring
c: V. — {r,b,0} where c¢(v) =0if v & {x1,29,..., 2k}

For every achievable game state Z = (z1, 22, ..., 2) in the X-pebble-pushing game we
define a three colouring ¢ given by cz(z;) = ¢(x;) for all i € [k] and by ¢z(v) = 0 for all
v ¢ {z1,2,...,2}. We note that, for any achievable game state Z there is no z; € c¢,;'(r)
and z; € ¢, (b) such that (ij) is in the pebble permutation group of (G, Z). Indeed, if
it were, then by Lemma 5.4.3 X ) is an achievable game state in the X-pebble-pushing
game, contradicting the fact that c¢(z;) = r and c(z;) = b.

Since G is connected, for every achievable game state Z there is a path P = p1ps...pm
in G with cz(p1) =r, cz(pm) = b and cz(p;) = 0 otherwise. Let us consider an achievable
game state Z for which G contains such a path P of maximal length.

We first claim that there is no v ¢ P with c¢z(v) = 0. Indeed, suppose there is such a
vertex v. Since G is connected there is some v—P path @ in G and so, by pushing pebbles
towards v on (), we can achieve a game state Z’ such that ¢z = ¢z on P and there is
a vertex v' adjacent to P such that cz (v') = 0. Clearly v/ cannot be adjacent to p; or
Pm, since then we can push the pebble on p; or p,, onto v' and achieve a game state Z”
for which G contains a longer path than P with the required colouring. However, if v’ is
adjacent to p, with 2 < ¢ < m — 1, then we can push the pebble on p; onto p, and then
onto v’, then push the pebble from p,, onto p; and finally push the pebble on v onto p,
and then onto p,,.

However, if Z' = (z1,2y,...,2;,) with p; = z; and p,, = 2}, then above shows that
(7j) is in the pebble-permutation group of (G, Z’). However, cz (z]) = cz(p1) = r and

cz/(2j) = cz(pm) = b, contradicting our assumptions on cz.
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Next, we claim that each p; with 3 <7 < m — 2 has degree 2. Indeed, suppose first
that p; with 3 <7 < m — 2 is adjacent to some other p; with 1 < j < m such that p; and
p; are not adjacent in P. Then it is easy to find a sequence of moves which exchanges the
pebbles on p; and p,,, contradicting our assumptions on cyz.

Suppose then that p; is adjacent to a vertex v not in P. Then, cz(v) # 0, say without
loss of generality cz(v) = r. However then, we can push the pebble on p,, onto p;_1, push
the pebble on v onto p; and then onto p,, and finally push the pebble on p;_; onto p; and
then onto v. As before, this contradicts our assumptions on cy.

Hence P’ = pops...pm-_1 is a bare path in G, and since every vertex in V — V(P’) is
coloured using r or using b, there are at most k such vertices.

Finally, suppose that there is some edge in P’ which is not a bridge of G, and so no
edge of P’ is a bridge of G. We wish to show that G is a cycle. We first make the following

claim:

CrAamm 9. There is no achievable game state W = (wq, ws, ..., wy) such that there is
a cycle C = cicy...cpc; and a vertex v ¢ C' such that:

e There exist distinct positive integers 4, j, s and ¢ such that ey (¢;) =7, cw(cj) = b
and ¢y (cs) = ew(er) = 0;

e v adjacent to some ¢, € C.

PrOOF OF CLAIM 9. Suppose for a contradiction there exists such an achievable game
state WW. Since C is a cycle we may assume without loss of generality that ¢; = ¢1,¢, =
Cy = ¢y, ¢¢ = cg and ¢; = ¢4. If ¢y (v) = b, then we can push the pebble at v to ¢y and
then to c3, push the pebble at ¢; to ¢ and then to v, and then push the pebble at ¢35 to
¢1. This contradicts our assumptions on cy. The case where ¢y (v) = r is similar. Finally
if ey (v) = 0, then we can push the pebble at ¢; to ¢ and then to v, then push the pebble
at ¢4 to c¢1, then push the pebble at v to ¢y and then to ¢4. Again this contradicts our

assumptions on cyy. [

Since no edge of P’ is a bridge, it follows that G contains a cycle C' containing P’. If
G is not a cycle, then there is a vertex v € V' \ C' which is adjacent to C. However by
pushing the pebble on p; onto py and the pebble on p,, onto p,,_1, which is possible since
|V| > k + 2, we achieve a game state Z’ such that C' and v satisfy the assumptions of the
above claim, a contradiction. O

5.5. Pebbly ends

DEFINITION 5.5.1 (Pebbly). Let ' be a graph and w an end of I'. We say w is pebbly
if for every k € N there is an n > k and a family R = (R;: ¢ € [n]) of disjoint rays in w
such that RG(R) is k-pebble-win. If for some & there is no such family R, we say w is not
k-pebble-win.
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The following is an immediate corollary of Lemma 5.4.9.

COROLLARY 5.5.2. Let w be an end of a graph I which is not k-pebble-win and let
R = (R;: i € [m]) be a family of m > k + 2 disjoint rays in w. Then there is a bare path
P =pips...p, in RG(R;: i € [m]) such that |[m]\ V(P)| < k. Furthermore, either each
edge in P is a bridge in RG(R;: 1 € [m]), or RG(R;: i € [m]) is a cycle.

Hence, if an end in I' is not pebbly, then we have some constraint on the behaviour of
rays towards this ends. In a later paper [33] we will investigate more precisely what can
be said about the structure of the graph towards this end. For now, the following lemma
allows us to easily find any countable graph as a minor of a graph with a pebbly end.

LEMMA 5.5.3. Let T' be a graph and let w € Q(I') be a pebbly end. Then Ky, < T.

PrOOF. By assumption, there exists a sequence Ry, Ro,... of families of disjoint w-
rays such that, for each k € N, RG(Ry) is k-pebble-win. Let us suppose that

R; = (R\,R,,... R}, ) for each i € N.

Let us enumerate the vertices and edges of Ky, by choosing some bijection o : NUN®) —
N such that o(i,j) > o(i),o(j) for every {i,7} € N® and also o(1) < ¢(2) < --- . For
each k € N let Gy be the graph on vertex set Vj, = {i € N : o(i) < k} and edge set
By ={{i,j} e N® : o(i,j) < k}.

We will inductively construct subgraphs Hj of I' such that Hj is an IG). extending
Hy_1. Furthermore for each k € N if V(Gy) = [n] then there will be tails 73, T5,...,T,
of n distinct rays in R,, such that for every i € [n] the tail T; meets Hj, in a vertex of
the branch set of i, and is otherwise disjoint from H;. We will assume without loss of
generality that 7; is a tail of R}

Since o(1) = 1 we can take H; to be the initial vertex of Ri. Suppose then that
V(Gph-1) = [r] and we have already constructed H,_; together with appropriate tails T;
of RY for each i € [r]. Suppose firstly that c~!(n) =r+1 € N.

Let X = V(H,_1). There is a linkage from (T;: i € [r]) to (R{™', RS™', ... R'T1) after
X by Lemma 5.3.8, and, after relabelling, we may assume this linkage induces the identity
on [r]. Let us suppose the linkage consists of paths P; from z; € T} to y; € R, .

Since X U, P, U, Tz, is a finite set, there is some vertex y,41 on R:ﬂ such that
the tail y,. R/ 1] is disjoint from X UJ, P, U, Tyx;.

To form H,, we add the paths T;x; U P; to the branch set of each ¢ < r and set y,1 as
the branch set for » + 1. Then H, is an IG,, extending H,_; and the tails ij;“ are as
claimed.

Suppose then that 0~'(n) = {u,v} € N® with u,v < r. We have tails T} of R} for
each i € [r] which are disjoint from H,,_; apart from their initial vertices. Let us take tails

T} of R} for each j > r which are also disjoint from H,, ;. Since RG (R.) is r-pebble-win,



102 5. UBIQUITY OF GRAPHS WITH NON-LINEAR END STRUCTURE

it follows that RG(T;: i € [m,]) is also r-pebble-win. Furthermore, since by Lemma 5.3.2
RG(T;: i € [m,]) is connected, there is some neighbour w € [m,] of w in RG(T;: i € [m,]).

Let us first assume that w ¢ [r]. Since RG(T;: i € [m,]) is r-pebble-win, the game
state (1,2,...,v—1,w,v+1,...,7) is an achievable game state in the (1,2,...,7)- pebble-
pushing game and hence by Lemma 5.4.2 the function ¢; given by ¢4 (i ) = ¢ for all
i €[r]\ {v} and p;(v) = w is a transition function from (7;: ¢ € [r]) to (T;: i € [m,]).

Let us take a linkage from (7;: i € [r]) to (T;: i € [m,]) inducing ¢; which is after
V(H,_1). Let us suppose the linkage consists of paths P; from x; € T; to y; € T; for i # v
and P, from x, € T, toy, € T,,. Let

X =V(H UPUUTxZ

i€[r] i€[r]

Since u is adjacent to w in RG(T}: i € [m,]) there is a path P between T(T,, X) and
T(T,, X) which is disjoint from X and from all other T}, say P is from 7 € T, toyeT.

Finally, since RG(T;: i € [m,]) is r-pebble-win, the game state (1,2, ..., ) is an achiev-
able game state in the (1,2,...,v — 1,w,v + 1,...,r)-pebble-pushing game and hence by
Lemma 5.4.2 the function ¢y given by ¢o(i) =i for all ¢ € [r] \ {v} and po(w) = v is a
transition function from (7;: ¢ € [r] \ {v} U{w}) to (T;: i € [m,]).

Let us take a further linkage from (7;: i € [r] \ {v} U {w}) to (T;: i € [m,]) inducing
w9 which is after X U PUT,zU y,Twy. Let us suppose the linkage consists of paths P/
from 2 € T; to y; € T; for i € [r] \ {v} and P from ] € T, to y, € T,,.

In the case that w € [r], w < v, say, the game state

(1,2,...,w — Lv,w + 1,...,0v — LLw,vo + 1,...7)

is an achievable game state in the (1,2,...,r)-pebble pushing-game and we get, by a
similar argument, all P, z;,y;, P/, x}, y, and P.
We build H,, from H,_; by adjoining the following paths:
e for each i # v we add the path T;z; Py Tz, P!y, to H,_, adding the vertices to
the branch set of i;
e we add P to H,_;, adding the vertices of V/(P) \ {#} to the branch set of u;
e we add the path T,z,P,y,T,x, Py, to H,_1, adding the vertices to the branch

set of v.

We note that, since ¢ € y, 1,2, the branch sets for v and v are now adjacent. Hence
H, is an IG, extending H,, ;. Finally the rays y.T; for i € [r] are appropriate tails of the
used rays of R,. OJ

As every countable graph is a subgraph of Ky,, a graph with a pebbly end contains
every countable graph as a minor. Thus, as NoG is countable, if G is countable, we obtain
the following corollary:
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COROLLARY 5.5.4. Let I' be a graph with a pebbly end w and let G be a countable
graph. Then VoG < T.

5.6. G-tribes and concentration of G-tribes towards an end

To show that a given graph G is <-ubiquitous, we shall assume that nG < I" holds for
every n € N an show that this implies NgG < I'. To this end we use the following notation
for such collections of nG in I', most of which we established in [31].

DEFINITION 5.6.1 (G-tribes). Let G and I" be graphs.

o A G-tribe in I (with respect to the minor relation) is a family F of finite collections
F of disjoint subgraphs H of I' such that each member H of F is an IG.

e A G-tribe F in I is called thick, if for each n € N there is a layer F' € F with
|F'| > n; otherwise, it is called thin.

e A G-tribe F' in I is a G-subtribe ' of a G-tribe F in I', denoted by F' < F, if
there is an injection W: F' — F such that for each F" € F’ there is an injection
wpr: F' — W(F') such that V(H') C V(¢ (H')) for each H' € F'. The G-
subtribe F’ is called flat, denoted by F' C F, if there is such an injection W
satisfying F” C W(F").

e A thick G-tribe F in I' is concentrated at an end € of ', if for every finite vertex
set X of I', the G-tribe Fx = {Fx: F' € F} consisting of the layers Fx = {H €
F:HYZC(X,e)} C F is a thin subtribe of F. It is strongly concentrated at € if
additionally, for every finite vertex set X of I', every member H of F intersects
C(X,e).

We note that, every thick G-tribe F contains a thick subtribe F’ such that every
H e |JFisatidy IG. We will use the following lemmas from [31].

LEMMA 5.6.2 (Removing a thin subtribe, [31, Lemma 5.2]). Let F be a thick G-tribe
in T' and let F' be a thin subtribe of F, witnessed by V: F' — F and (pp: F' € F').
For F € F, if F € W(F'), let U"Y(F) = {F}} and set I = pp (Fp). If F ¢ U(F), set
F =10. Then
f”::{F\F:FEf}
15 a thick flat G-subtribe of F.

LEMMA 5.6.3 (Pigeon hole principle for thick G-tribes, [31, Lemma 5.3]). Suppose for
some k € N, we have a k-colouring c: |JF — [k] of the members of some thick G-tribe F
in I'. Then there is a monochromatic, thick, flat G-subtribe F' of F.

Note that, in the following lemma, it is necessary that G is connected, so that every

member of the G-tribe is a connected graph.

I'When G is clear from the context we will often refer to a G-subtribe as simply a subtribe.
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LEMMA 5.6.4 ([31, Lemma 5.4]). Let G be a connected graph and T' a graph containing
a thick G-tribe F. Then either XoG < ', or there is a thick flat subtribe F' of F and an
end € of I such that F' is concentrated at €.

LEMMA 5.6.5 ([31, Lemma 5.5]). Let G be a connected graph and I' a graph containing
a thick G-tribe F concentrated at an end € of I'. Then the following assertions hold:

(1) For every finite set X, the component C(X,€) contains a thick flat G-subtribe
of F.
(2) Every thick subtribe F' of F is concentrated at €, too.

LEMMA 5.6.6. Let G be a connected graph and I' a graph containing a thick G-tribe F
concentrated at an end € € Q(I"). Then either oG < T, or there is a thick flat subtribe of
F which s strongly concentrated at €.

PROOF. Suppose that no thick flat subtribe of F is strongly concentrated at e. We
construct an NyG < I' by recursively choosing disjoint IGs Hy, Ho,... in I' as follows:
Having chosen Hy, Hs, ..., H, such that for some finite set X,, we have

HiﬂC(Xn,E) :®

for all ¢ € [n], then by Lemma 5.6.5(1), there is still a thick flat subtribe F;, of F contained
in C(X,,¢). Since by assumption, F, is not strongly concentrated at e, we may pick
H, 1 € F, and a finite set X,,11 2 X,, with H,,,1 N C(X,+1,€) = (). Then the union of all
the H; is an NG < T O

The following lemma will show that we can restrict ourself to thick G-tribes which are

concentrated at thick ends.

LEMMA 5.6.7. Let G be a connected graph and I a graph containing a thick G-tribe F
concentrated at an end € € Q(I') which is thin. Then RoG < T'.

PROOF. Since € is thin, we know by Proposition 5.2.4 that only finitely many vertices
dominate €. Deleting these yields a subgraph of I' in which there is still a thick G-tribe
concentrated at e. Hence we may assume without loss of generality that € is not dominated
by any vertex in I'.

Let k € N be the degree of €. By [82, Corollary 5.5] there is a sequence of vertex sets
(Sy: n € N) such that:

o [Su| =k,
o C(Spy1,€) CC(Sy,€), and
® Nen C(Sn,€) = 0.

Suppose there is a thick subtribe F’ of F which is strongly concentrated at e. For any

F € F' there is an Np € N such that H\ C(Sy,,€) # 0 for all H € F by the properties of
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the sequence. Furthermore, since F' is strongly concentrated, H N C(Sy,,¢€) # () as well
for each H € F.

Let F' € F' be such that |F'| > k. Since G is connected, so is H, and so from the above
it follows that H N Sy, # () for each H € F, contradicting the fact that |Sy,| =k < |F]|.
Thus NoG < I' by Lemma 5.6.6. 0

Note that, whilst concentration is hereditary for subtribes, strong concentration is not.
However if we restrict to flat subtribes, then strong concentration is a hereditary property.

Let us show see how ends of the members of a strongly concentrated tribe relate to
ends of the host graph I'. Let G be a connected graph and H C I" an IG. By Lemmas 5.3.2
and 5.3.4, if w € Q(G@) and Ry and Ry € w then the pullbacks H*(R;) and H*(R,) belong
to the same end w' € Q(I'). Hence, H determines for every end w € G a pullback end
H(w) € Q). The next lemma is where we need to use the assumption that G is locally
finite.

LEMMA 5.6.8. Let G be a locally finite connected graph and T a graph containing a
thick G-tribe F strongly concentrated at an end e € Q(I") where every member is a tidy
IG. Then either XgG < T, or there is a flat subtribe F' of F such that for every H € |J F
there is an end wy € Q(G) such that H(wgy) = €.

PROOF. Since G is locally finite and every H € | J F is tidy, the branch sets H(v) are
finite for each v € V(G). If € is dominated by infinitely many vertices, then we know by
Proposition 5.2.4 that I" contains a topological Ky, minor, in which case RyG < I, since
every locally finite connected graph is countable. If this is not the case, then there is some
k € N such that € is dominated by k vertices and so for every F' € F at most k of the
H € F contain vertices which dominate € in I'. Therefore, there is a thick flat subtribe
F' of F such that no H € |JF’ contains a vertex dominating € in I'. Note that F’ is still
strongly concentrated at e, and every branch set of every H € | JF’ is finite.

Since F' is strongly concentrated at e, for every finite vertex set X of I every H € |J F’
intersects C'(X,€). By a standard argument, since H as a connected infinite graph does
not contain a vertex dominating € in I', instead H contains a ray Ry € e.

Since each branch set H(v) is finite, Ry meets infinitely many branch sets. Let us
consider the subgraph K C G consisting of all the edges (v, w) such that Ry uses an edge
between H(v) and H(w). Note that, since there is a edge in H between H(v) and H(w)
if and only if (v, w) € E(G), K is well-defined and connected.

K is then an infinite connected subgraph of a locally finite graph, and as such contains
a ray Sy in G. Since the edges between H(v) and H(w), if they exist, were unique, it
follows that the pullback H¥(Sy) of Sy has infinitely many edges in common with Ry,
and so tends to € in I'. Therefore, if Sy tends to wy in Q(G), then H(wy) = €.

OJ
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5.7. Ubiquity of minors of the half grid

Here, and in the following, we denote by H the infinite, one-ended, cubic hexagonal
half grid (see Figure 5.2). The following theorem of Halin is one of the cornerstones of
infinite graph theory.

FI1GURE 5.2. The hexagonal half grid H.

THEOREM 5.7.1 (Halin, see [54, Theorem 8.2.6)). Whenever a graph I' contains a thick
end, then H < T'. O

In [87], Halin used this result to show that every topological minor of H is ubiquitous
with respect to the topological minor relation <. In particular, trees of maximum degree 3
are ubiquitous with respect to <.

However, the following argument, which is a slight adaptation of Halin’s, shows that
every connected minor of H is ubiquitous with respect to the minor relation. In particular,
the dominated ray, the dominated double ray, and all countable trees are ubiquitous with
respect to the minor relation.

The main difference to Halin’s original proof is that, since he was only considering
locally finite graphs, he was able to assume that the host graph I was also locally finite.

LEMMA 5.7.2 ([87, (4) in Section 3]). RoH is a topological minor of H.
THEOREM 5.1.4. Any connected minor of the half grid NOZ is X-ubiquitous.

PROOF. Suppose G < NOZ is a minor of the half grid, and I" is a graph such that
nG < T for each n € N. By Lemma 5.6.4 we may assume there is an end € of I' and a
thick G-tribe F which is concentrated at e. By Lemma 5.6.7 we may assume that € is
thick. Hence H < I' by Theorem 5.7.1, and with Lemma 5.7.2 we obtain

NoG < Ro(NOZ) x NgH < H < T U

LEMMA 5.7.3. H contains every countable tree as a minor.
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PROOF. It is easy to see that the infinite binary tree T, embeds into H as a topological
minor. It is also easy to see that countably regular tree T,, where every vertex has infinite
degree embeds into T; as a minor. And obviously, every countable tree T is a subgraph
of T,. Hence we have

TCT,<xTy,<H

from which the result follows. 0
COROLLARY 5.7.4. All countable trees are ubiquitous with respect to the minor relation.

Proor. This is an immediate consequence of Lemma 5.7.3 and Theorem 5.1.4. U

5.8. Proof of main results

LEMMA 5.8.1. Let € be a non-pebbly end of I' and let F be a G-tribe such that for every
H € |JF there is an end wy € Q(G) such that H(wy) = €. Then there is a thick flat
subtribe F' such that wy is linear for every H € |JF' .

PROOF. Let F’ be the flat subtribe of F given by F' = {F': F € F} with
F'={H: H € F and wy is not linear}.

Suppose for a contradiction that F” is thick. Then, there is some F' € F which contains
k + 2 disjoint IGs, Hy, Hs, ..., Hxio, where k is such that e is not k-pebble-win. By
assumption wy, is not linear for each ¢, and so for each ¢ there is a family of disjoint rays
{R{, R}, ..., R, }in G tending to wy, whose ray graph in G is not a path. Let
S = (H{(R)): i€ [k+2],j € [mi).

By construction § is a disjoint family of rays which tend to € in I' and by Lemma 5.3.3
and Lemma 5.3.4 RGrp(S) contains disjoint subgraphs K7, Ko, ..., Kxi2 such that K; =
RGg(Réi J € [my]). However, by Corollary 5.5.2, there is a set X of vertices of size at
most k such that RGp(S) — X is a bare path P. However, then some K; C P is a path, a

contradiction.
Since F is the union of 7" and F” where 7" = {F": F € F} with

F"={H: H € F and wy is linear},

it follows that F” is thick. O

THEOREM 5.1.2. Every locally finite connected graph with nowhere-linear end structure
18 <-ubiquitous.

PROOF. Let T be a graph such that nG < I' holds for every n € N. Hence, I’
contains a thick G-tribe F. By Lemmas 5.6.4 and 5.6.6 we may assume that F is strongly

concentrated at an end € of I' and so by Lemma 5.6.8 we may assume that for every
H € |JF there is an end wy € Q(G) such that H(wy) = €.
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Since wy is not linear for each H € |JF, it follows by Lemma 5.8.1 that e is pebbly,
and hence by Corollary 5.5.4 oG 5 T'. U

A

~

g

FiGURE 5.3. The ray graphs in the full grid are cycles.

COROLLARY 5.1.3. The full grid is <-ubiquitous.

PROOF. Let G be the full grid. Since G — R has at most one end for any ray R € G,
by Lemma 5.3.2 the ray graph RG(R) is 2-connected for any finite family of three or more
rays. Hence, by Theorem 5.1.2 G is -ubiquitous O

REMARK 5.8.2. In fact, every ray graph in the full grid is a cycle (see Figure 5.53).

THEOREM 5.1.5. For every locally finite connected graph G, both GUZ and GUN are

<-ubiquitous.

Proor. If G is a path or a ray, then GLZ is a subgraph of the half grid NOJZ and thus
<-ubiquitous by Theorem 5.1.4. If G is a double ray then GUZ is the full grid and thus
<-ubiquitous by Corollary 5.1.3. Otherwise let G’ be a finite connected subgraph of G
which is not a path. For any end w of GUZ there is a ray R of Z such that all rays of the
form {v}0OR for v € V(G) go to w. But then G” is a subgraph of RGoz(({v}AR)vev(ary),
so this ray-graph is not a path, hence by Lemma 5.3.5 GUZ has nowhere-linear end
structure and is therefore <-ubiquitous by Theorem 5.1.2. U

Finally let us prove Theorem 5.1.6. Recall that for £ € N let DRj, denote the graph
formed by taking a ray R together with k vertices vy, vs,..., v, adjacent to every vertex
in R. We shall need the following strengthening of Proposition 5.2.3.
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A comb is a union of a ray R with infinitely many disjoint finite paths, all having

precisely their first vertex on R. The last vertices of these paths are the teeth of the comb.

PROPOSITION 5.8.3. [54, Proposition 8.2.2] Let U be an infinite set of vertices in a
connected graph G. Then G either contains a comb with all teeth in U or a subdivision of

an infinite star with all leaves in U.
THEOREM 5.1.6. The k-fold dominated ray DRy, is <-ubiquitous for every k € N.

Proor. Note that if £ < 2 then DRy, is a minor of the half grid, and hence ubiquity
follows from Theorem 5.1.4.

Suppose then that £ > 3 and I' is a graph which contains a thick D Ry-tribe F each
of whose members is tidy. By Lemma 5.6.6 we may assume that there is an end € of
I' such that F is concentrated at e. If there are infinitely many vertices dominating e,
then NgDRy < Ky, < I holds by Proposition 5.2.4. So we may assume that only finitely
many vertices dominate €. By taking a thick subtribe if necessary, we may assume that
no member of F contains such a vertex.

As before, if we can show that € is pebbly, then we will be done by Corollary 5.5.4. So
suppose for a contradiction that € is not r-pebble-win for some r € N.

Let R be the ray as stated in the definition of DRy, and let vy, vq, ..., v € V(DRy) be
the vertices adjacent to each vertex of R. For each H € | J F and each i € [k] we have the
H(v;) is a connected subgraph of I'. Let U be the set of all vertices in H(v;) which are the
endpoint of some edge in H between H(v;) and H(w) with w € R. Since v; dominated
R, U is infinite, and so by Proposition 5.8.3 H(v;) either contains a comb with all teeth
in U or a subdivision of an infinite star with all leaves in U. However in the latter case
the centre of the star would dominate €, and so each H(v;) contains such a comb, whose
spine we denote by Ry ;. Let Ry = H*(R) be the pullback of the ray R in H. Now we
set Ry = (Ru1, Rua, ..., Ruk, Ru).

Since Ry ; is the spine of a comb, all of whose leaves are in U, it follows that in the
graph RGp(Rpy) each Ry, is adjacent to Ry. Hence RGy(Rpy) contains a vertex of
degree k > 3.

There is some layer F' € F of size { > r+1, say F = (H;: i € [{]). For every i € [r+1]

we set Ry, = (Ru, 1, Ry, 2, .- Ry, x, Ru,). Let us now consider the family of disjoint rays
r4+1
R=JRu,.

i=1

By construction R is a family of disjoint rays which tend to € in I" and by Lemma 5.3.3
and Lemma 5.3.4 RGp(R) contains r+ 1 vertices whose degree is at least k > 3. However,
by Corollary 5.5.2, there is a vertex set X of size at most r such that RGr(R) — X is a
bare path P. But then some vertex whose degree is at least 3 is contained in the bare
path, a contradiction. O






CHAPTER 6

Ubiquity of locally finite graphs with extensive tree

decompositions

A graph G is said to be <-ubiquitous, where < is the minor relation between
graphs, if whenever I is a graph with nG < T for all n € N, then one also
has RoG < I'. A well-known conjecture of Andreae is that every locally finite
graph is <-ubiquitous.

In this paper we show that locally finite graphs admitting a certain type of
tree-decomposition, which we call extensive tree decomposition, are <-ubiquitous.
In particular this includes all locally finite graphs of finite tree-width and lo-

cally finite graphs with finitely many ends, all of which are thin.

6.1. Introduction

Given a graph G and some relation <1 between graphs we say that G is <-ubiquitous
if whenever I' is a graph such that nG < T for all n € N, then RoG < I', where aG is the
disjoint union of o many copies of G. A classic result of Halin [85, Satz 1] says that the
ray is C-ubiquitous, where C is the subgraph relation. That is, any graph which contains
arbitrarily large collections of vertex-disjoint rays must contain an infinite collection of
vertex-disjoint rays. Later, Halin showed that the double ray is also C-ubiquitous [86].

However, not all graphs are C-ubiquitous, and in fact even trees can fail to be C-
ubiquitous (see for example [168]). The question of ubiquity for classes of graphs has also
been considered for other graph relations. In particular, whilst there are still reasonably
simple examples of graphs which are not <-ubiquitous (see [109, 9]), where < is the
topological minor relation, it was shown by Andreae that all rayless countable graphs [11]
and all locally finite trees [10] are <-ubiquitous. The latter result was recently extended
to the class of all trees by the authors [31].

In [15] Andreae initiated the study of ubiquity of graphs with respect to the minor
relation, <. He constructed a graph which was not <-ubiquitous, however the construction
relied on the existence of a counterexample to the well-quasi-ordering of infinite graphs
under the minor relation, for which only examples of very large cardinality are known
[148]. In particular, the question whether there exists a countable graph which is not
<-ubiquitous remains open.

Andreae conjectured that at least all locally finite graphs, those with all degrees finite,
should be <-ubiquitous.

111
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THE UBIQUITY CONJECTURE. Fvery locally finite connected graph is <-ubiquitous.

In [16] Andreae proved that his conjecture holds for a large class of locally finite
graphs. The exact definition of this class is technical, but in particular his result implies
the following.

THEOREM 6.1.1 (Andreae, [16, Corollary 1]). Let G be a locally finite, connected graph
with finitely many ends such that every block of G is finite. Then G is <-ubiquitous.

THEOREM 6.1.2 (Andreae, [16, Corollary 2]). Let G be a locally finite, connected graph
of finite tree-width such that every block of G is finite. Then G is <X-ubiquitous.

Note, in particular, that if G is such a graph, then the degree of every end in G must
be one.! In this paper we will extend Andreae’s approach to prove that an even larger
class of locally finite graphs is <-ubiquitous, removing the assumption of finite blocks.
Again, the exact definition of this class will be technical, but in particular it will imply
the following results, extending Theorems 6.1.1 and 6.1.2:

THEOREM 6.1.3. Let G be a locally finite, connected graph with finitely many ends such
that every end of G has finite degree. Then G is <-ubiquitous.

THEOREM 6.1.4. Every locally finite, connected graph of finite tree-width is <-ubiquitous.

The proof uses in an essential way some known results about the well-quasi-ordering of
graphs under the minor relation, including Thomas’ result [149] that graphs of bounded
tree width are well-quasi-ordered under the minor relation. Our methods, building on
Andreae’s, give a blueprint by which stronger results about the well-quasi-ordering of
graphs can be used to prove the ubiquity of larger classes of graphs. A more precise
discussion of this connection will be given in Section 6.10.

In Section 6.2 we will give a sketch of the key ideas in the proof, at the end of which

we will provide a more detailed overview of the structure and the different sections of this

paper.
6.2. Proof sketch

To give a flavour of the main ideas involved in the proof, let’s begin by considering the
case of a locally finite connected graph G with a single end w, where w has finite degree
d (this means that there is a family (A4; : 1 < i < d) of d disjoint rays in w, but no family
of more than d such rays). Our construction will exploit the fact that graphs of this kind
have a very particular structure. More precisely, there is a tree-decomposition (S,V) of
G, where S = 505152 ... is a ray and such that, if we denote V;, by V,, and Ul% Vi by G,
for each n, the following holds:

1A precise definitions of the ends of a graph and their degree can be found in Section 6.3.
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(1)

(2) every vertex of G appears in only finitely many V,,;

(3) all the A; begin in V), and

(4) for each m > 1 there are infinitely many n > m such that G,, is a minor of G,,,

each V,, is finite;

in such a way that for any edge e of GG,,, and any ¢ < d, e is an edge of A; if and
only if the edge representing it in this minor is.

Property 4 seems rather strong, and the reason it can always be achieved has to do
with the well-quasi-ordering of finite graphs. For details of how this works, see Section 6.5.
The skeptical reader who does not yet see how to achieve this may consider the argument
in this section as showing ubiquity simply for graphs G with a decomposition of the above
kind.

Now we suppose that we are given some graph I' such that nG < T" for each n, and
we wish to show that RgG < I'. Consider a G-minor H in I". Any ray R of G can then be
expanded to a ray H(R) in the copy H of G in I', and since G only has one end, all rays
H(R) go to the same end ey of I'; we shall say that H goes to the end ey.

We now show that we can suppose without loss of generality that all G-minors go to
the same end € of I'. For suppose that there are two G-minors H and H' with ey # ep.
Since G is locally finite, we may assume that all branch sets of H and H' are finite. Thus
there is a finite set X such that each of H and H' only uses vertices from one component
of ' = X. In any (|X| 4+ 2n)G-minor of I, only at most | X| of the G-minors involved can
meet X, and each of the remaining 2n must be included in some component of G — X.
Without loss of generality at most n of them are in the component that meets H, and so
I' — H has an nG-minor.

Thus there is a G-minor H of I" such that I'; :=I' — Hj still has an nG-minor for each
n. If there are two G-minors going to different ends of I'; then we may as above find a
G-minor H; of I'y such that I'y := I'y — H; has an nG-minor for any n. Proceeding in this
way we either find infinitely many disjoint G-minors Hy, Hy, Hs, . . ., giving an NoG-minor,
or else after finitely many steps we find a subgraph I'y of I' which has an nG-minor for
any n and in which all G-minors go to the same end e.

So from now on we will assume that all G-minors of I' go to the same end €. From any
G-minor H we obtain rays H(A;) corresponding to our marked rays A; in G. We will call
this collection of rays the bundle of rays given by H.

Our aim now is to build up an NyG-minor of I' recursively. At stage n we hope to
Vin)-minors Hy', HY, ... H), such that for each such H there
is a family (R}, ; : 7 < k) of disjoint rays to €, where the path in H], corresponding to

construct n disjoint G|

m<n

the initial segment of the ray A; in (J,,.,, Gm is an initial segment of R, ;, but these rays
are otherwise disjoint from the various H;' and from each other. We aim to do this in
such a way that each H" extends all previous H' for [ < n, so that at the end of our

construction we can obtain infinitely many disjoint G-minors as ({,,,, H,, : m € N). The
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rays chosen at later stages need not bear any relation to those chosen at earlier stages; we
just need them to exist so that there is some hope of continuing the construction.

We will again refer to the families (R}, ; : i < k) of rays starting at the various HJ, as
the bundles of rays from those H}.

n
Rll

H{l (@ g%i bundle
R3

Fo6s C@ o
;z,:,]

n
Ria

Ry
Hy 12
4 Ris

The rough idea for getting from the n'® to the n + 1 stage of this construction is now
as follows: we choose a very large family H of disjoint G-minors in I'. We throw away all
those which meet any previous H, and we consider the family of rays corresponding to the
A; in the remaining minors. Then it is possible to find a collection of paths transitioning
from the R}, ; from stage n onto these new rays. Precisely what we need is captured in
the following definition, which also introduces some helpful terminology for dealing with

such transitions:

DEFINITION 6.2.1 (Linkage of families of rays). Let R = (R;: 1 € I) and S = (S;: j €
J) be families of disjoint rays, where the initial vertex of each R; is denoted x;. A family of
paths P = (P;: i € I), is a linkage from R to S if there is an injective function o: [ — J
such that

e Bach P; goes from a vertex z; € R; to a vertex yo;) € Sy(i);
o The family 7 = (2, R} P;Yo(:)Ss¢): © € I) is a collection of disjoint rays.” We
write R op S for the family 7 as well R; op S for the ray in 7 with initial vertex
x;.
We say that 7 is obtained by transitioning from R to S along the linkage. We say the
linkage P induces the mapping o. We further say that P links R to S. Given a set X we
say that the linkage is after X if X N R; C x;R;x} for all i € I and no other point in X is
used by T.

2Where we use the notation as in [54], see also Definition 6.3.3.
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Thus our aim is to find a linkage from the Ry, ; to the new rays after all the HJ,. That
this is possible is guaranteed by the following lemma from [31]:

LEMMA 6.2.2 (Weak linking lemma [31, Lemma 4.3]). Let I be a graph and w € Q(T).
Then for any collections R = (Ry,...,R,) and § = (S1,...,Sy,) of vertex disjoint rays in
w and any finite set X of vertices, there is a linkage from R to S after X.

The aim is now to use property 4 of our tree decomposition of GG to find copies of
V41 sufficiently far along the new rays that we can stick them on to our H), to obtain
suitable H™!. There are two difficulties at this point in this argument. The first is that,
as well as extending the existing H" to H™'! we also need to introduce H!'t]. To achieve
this, we ensure that one of the G-minors in H is disjoint from all the paths in the linkage,
so that we may take an initial segement of it as Hgill This is possible because of a
slight strengthening of the linking lemma above; see [31, Lemma 4.4] or 4.4.4 for a precise
statement.

A more serious difficulty is that in order to stick the new V,,; onto H]! we need the
following property:

For each of the bundles corresponding to an H, the rays in the
(%) bundle are linked precisely to the rays in the bundle coming from
*

some H € H. This happens in such a way that each R}, ; is linked

Thus we need a great deal of control over which rays get linked to which. We can keep
track of which rays are linked to which as follows:

DEFINITION 6.2.3 (Transition function). Let R = (R;: ¢ € I) and S = (S;: j € J) be
families of disjoint rays, where the initial vertex of each R; is denoted z;. We say that a
function o: I — J is a transition function from R to S if for any finite set X of vertices

there is a linkage from R to S after X that induces o.

So our aim is to find a transition function assigning new rays to the R}, so as to achieve
(*). One reason for expecting this to be possible is that the new rays all go to the same
end, and so they are joined up by many paths. We might hope to be able to use these
paths to move between the rays, allowing us some control over which rays are linked to
which. The structure of possible jumps is captured by a graph whose vertex set is the set

of rays:

DEFINITION 6.2.4 (Ray graph). Given a finite family of disjoint rays R = (R;: 7 € I)
in a graph I the ray-graph, RGr(R) = RGr(R;: i € I) is the graph with vertex set I and
with an edge between ¢ and j if there is an infinite collection of vertex disjoint paths from
R; to R; which meet no other R;. When the host graph I' is clear from the context we
will simply write RG(R) for RGr(R).
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Unfortunately, the collection of possible transition functions can be rather limited.
Consider, for example, the case of families of disjoint rays in the grid. Any such family
has a natural cyclic order, and any transition function must preserve this cyclic order.
This paucity of transition functions is reflected in the sparsity of the ray graphs, which
are all just cycles.

In Sections 6.6 and 6.7 we therefore carefully analyse the possibilities for how the ray
graphs and transition functions associated to a given thick® end may look. We find that
there are just 3 possibilities.

The easiest case is that in which the rays to the end are very joined up, in the sense
that any injective function between two families of rays is a transition function. This case
was already dealt with in [32]. The second possibility is that which we saw above for
the grid: all ray graphs are cycles, and all transition functions between them preserve the
cyclic order. The third possibility is that all ray graphs consist of a path together with
a bounded number of further junk vertices, where these junk vertices are hanging at the
ends of the paths (formally: all interior vertices on this central paths have degree 2 in the
ray graph). In this case, the transition functions must preserve the linear order along the
paths.

The second and third cases can be dealt with using similar ideas, so we will focus on
the third one here.

The structure of the ray graphs and transition functions can be used to get around the
problem discussed above, by slightly strengthening the properties required of the rays in
the recursive construction. More precisely, we want that the ray graph of a slightly larger

n
™m,i

family R of disjoint rays, consisting of the R . and some extra ‘junk’ rays, should have

all the R, ; on the central path, arranged in such a way that for each n and m the R}, ;
are consecutive in order from RJ ; to RJ ;.

Of course, in order that this is possible we must first ensure that the A; are arranged
in order so that for every n we can find n disjoint G-minors H such that there is some ray
graph in which, for each H, the rays H(A;) appear in order along the central path. Since
there are only finitely many possible orders, there must be an order with this property.

Then our extra order assumptions ensure that, by transitioning between rays using
edges of the ray graph, we can modify the linkage so that (x) holds.

There is one last subtle difficulty which we have to address, once more relating to
the fact that we want to introduce a new H'f| together with its private bundle of rays
corresponding to its copies of A;’s, disjoint from all the other H”™ and their bundles.
Recall that the strong linking lemma allows us to find a linkage which avoids one of
the G-minors in H, but this linkage may not have property (x). We can modify it to
one satisfying (%) by diverting the rays along some of the paths between the new rays.

3An end is thick if there are infinitely many disjoint rays to it.
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But then some of the rays through which we divert may be forced to intersects the rays
emanating from H]'[}, if these rays from H]"[{ lie between rays from the same bundle of

n
some H.

T
n -~
Hm % e e
n+1
Q Hn+1 Q

However, we can get around this by using the paths between the rays in R to jump

between them before the linkage, so as to rearrange which bundles make use of (the tails
of) which rays. More precisely, we first take a large but finite set of paths between the
rays which is rich enough to allow us to rearrange which bundles end up where as much as
possible. We collect these together in a transition box. Only then do we choose the linkage
from R to the rays from 4, and we make sure that this linkage is after the transition
box. Then, when we later see how the bundles should be arranged in order that the rays
emanating from Hgill do not appear between rays from the same bundle, we can go back
and perform a suitable rearrangement within the transition box, see Figure 6.1.

This completes the sketch of the proof that locally finite graphs with a single end of
finite degree are ubiquitous. Our results in this paper are for a more general class of
graphs, but one which is chosen to ensure that arguments of the kind outlined above will
work for them. Hence we still need a tree-decomposition with properties similar to (1)-(4)
from our ray-decomposition above. Tree decompositions with these properties are called
extensive, and the details can be found in Section 6.4.

However, certain aspects of the sketch above must be modified to allow for the fact
that we are now dealing with graphs G with multiple, indeed possibly infinitely many,
ends. For any end 0 of G and any G-minor H of I, all rays H(R) with R in ¢ belong to
the same end H(§) of I'. But for different values of ¢, the ends H(J) may well be different.

So there is no hope of finding a single end € of I" to which all rays in all G-minors
converge. Nevertheless, we can still find an end € towards which the G-minors are concen-
trated, in the sense that for any finite X there are arbitrarily large families of G-minors
in the same component of G — X as e. See Section 5.6 for details. In that section we
introduce the term tribe for a collection of arbitrarily large families of disjoint G-minors.
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FIGURE 6.1. The transitioning strategy between the old and new bundles.

The recursive construction will work pretty much as before, in that at each step n we
will again have embedded G"-minors for some large finite part G™ of GG, together with a
number of rays to € corresponding to some canonical rays going to certain ends § of G.

In order for this to work, we need some consistency about which H () are equal to €
and which are not. It is clear that for any finite set A of ends of GG there is some subset
A’ such that there is a tribe of G-minors H converging to ¢ with the property that the
set of 0 in A with H(d) = e is A’. This is because there are only finitely many options for
this set. But if G has infinitely many ends, there is no reason why we should be able to
do this for all ends of G at once.

Our solution is to keep track of only finitely many ends of G at any stage in the con-
struction, and to maintain at each stage a tribe concentrated towards e which is consistent
for all these finitely many ends. Thus in our construction consistency of questions such
as which ends ¢ of G converge to € or of the proper linear order in the ray graph of the
families of canonical rays to those ends is achieved dynamically during the construction,
rather than being fixed in advance. The ideas behind this dynamic process have already
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been used successfully in our earlier paper [31], where they appear in slightly simpler
circumstances.

The paper is structured as follows. In Section 5.2 we give precise definitions of some
of the basic concepts we will be using, and prove some of their fundamental properties.
In Section 6.4 we introduce extensive tree decompositions and in Section 6.5 we illustrate
that many locally finite graphs can be given such decompositions. Sections 6.6 and 6.7 are
devoted to the possible collections of ray graphs and transition functions between them
which can occur in a thick end. In Section 5.6 we introduce the notion of tribes and of
their concentration towards an end and begin building some tools for the main recursive
construction, which is given in Section 4.6. We conclude with a discussion of the future
outlook in Section 6.10.

6.3. Preliminaries

In this paper we follow the convention that 0 is not an element of the set N of natural
numbers.

For a graph G = (V, E) and W C V' we write G[W] for the induced subgraph. For two
vertices v, w of a connected graph G, we write dist(v,w) for the edge-length of a shortest
v —w path. A path P = vyv; ... v, in a graph G is called a bare path if deg,(v;) = 2 for

all inner vertices v; for 0 <7 < n.

6.3.1. Rays and ends.

DEFINITION 6.3.1 (Rays and initial vertices of rays). A one-way infinite path is called
a ray and a two-way infinite path is called a double ray. For a ray R let init(R) denote
the initial vertex of R, that is the unique vertex of degree 1 in R. For a set R of rays let

init(R) denote the set of initial vertices of the rays in R.

DEFINITION 6.3.2 (Tail of aray). Given aray R in a graph G and a finite set X C V(G)
the tail of R after X, T(R, X), is the unique infinite component of R in G — X.

DEFINITION 6.3.3 (Concatenation of paths and rays). For a path or ray P and vertices
v,w € V(P), let vPw denote the subpath of P with endvertices v and w, and vPw for
the subpath strictly between v and w. If P is a ray, let Pv denote the finite subpath of
P between the initial vertex of P and v, and let vP denote the subray (or tail) of P with
initial vertex v. Similarly, we write Pv and vP for the corresponding paths without the
vertex v.

Given two paths or rays P and () which which intersect in a single vertex only, which
is an endvertex in both P and @), we write PQ for the concatenation of P and (), that is
the path, ray or double ray P U (). Moreover, if we concatenate paths of the form vPw
and wQx, then we omit writing w twice and denote the concatenation by vPwQx.
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For a ray R =1rory ... let R~ denote the tail r1 R of R starting at 1. Given a set R of
rays let R~ denote the set {R™: R € R}

DEFINITION 6.3.4 (Ends of a graph, cf. [54, Chapter 8]). An end of an infinite graph
I' is an equivalence class of rays, where two rays R and S are equivalent if and only if
there are infinitely many vertex disjoint paths between R and S in I'. We denote by (I)
the set of ends of T.

We say that a ray R C T' converges (or tends) to an end € of I" if R is contained in e.
In this case we call R an e-ray.

Given an end € € Q(I') and a finite set X C V(I') there is a unique component of
I' — X which contains a tail of every ray in €, which we denote by C'(X¢).

For an end € € T we define the degree of € in I', denoted by deg(e) € NU {oo}, as
the largest cardinality of a collection of vertex disjoint e-rays. An end with finite/infinite
degree is called thin/thick.

6.3.2. Inflated copies of graphs.

DEFINITION 6.3.5 (Inflated graph, branch set). Given a graph G we say that a pair
(H, ) is an inflated copy of G or an IG if H is a graph and ¢: V(H) — V(G) is a map
such that:

e For every v € V(G) the branch set ¢~ (v) induces a non-empty, connected sub-
graph of H;

e There is an edge in H between ¢ !(v) and ¢~ !(w) if and only if (v,w) € E(G)
and this edge, if it exists, is unique.

When there is no danger of confusion we will simply say that H is an /G instead of
saying that (H, ) is an IG, and denote by H(v) = ¢! (v) the branch set of v.

DEFINITION 6.3.6 (Minor). A graph G is a minor of another graph ', written G < T,
if there is some subgraph H C I" such that H is an inflated copy of G.

DEFINITION 6.3.7 (Extension of inflated copies). Suppose G C G’ as subgraphs, and
that H is an IG and H' is an IG’'. We say that H' extends H (or that H' is an extension
of H)if H C H' as subgraphs and H(v) C H'(v) for all v € V(G) N V(G").

If H" is an extension of H and X C V(@) is such that H'(z) = H(x) for every x € X
then we say H' is an extension of H fixing X.

Note that since H C H’, for every edge (v,w) € E(G), the unique edge between the
branch sets H'(v) and H'(w) is also the unique edge between H(v) and H(w).

DEFINITION 6.3.8 (Tidiness). An IG (H, ) is called tidy if

o Hlp 1(v)] is a tree for all v € V(G);
e H(v) is finite if dg(v) is finite.
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Note that every /G H contains a subgraph H' such that (H',¢ [ V(H')) is a tidy IG,
although this choice may not be unique. In this paper we will always assume without loss
of generality that each IG is tidy.

DEFINITION 6.3.9 (Restriction). Let G be a graph, M C G a subgraph of G, and
let (H,p) be an IG. The restriction of H to M, denoted by H(M), is the IG given by
(H(M),¢') where o'~} (v) = ¢ 1(v) for all v € V(M) and H(M) consists of union of the
subgraphs of H induced on each branch set ¢~!(v) for each v € V(M) together with the
edge between ¢! (u) and ¢~ !(v) for each (u,v) € E(M).

Note that if H is tidy, then H(M) will be tidy. Given a ray R C G and a tidy /G
H in a graph I', the restriction H(R) is a one-ended tree, and so every ray in H(R) will
share a tail. Later in the paper we will want to make this correspondence between rays in
G and I' more explicit, with use of the following definition:

DEFINITION 6.3.10 (Pullback). Let G be a graph, R C G aray, and let H be a tidy IG.
The pullback of R to H is the subgraph H*(R) C H where H*(R) is subgraph minimal
such that (H¥(R),y | V(H*(R))) is an I M.

Note that, since H is tidy, H*(R) is well defined. As well shall see, H*(R) will be a
ray.

LEMMA 6.3.11. Let G be a graph and let H be a tidy IG. If R C G s a ray, then the
pullback HY(R) is also a ray.

PROOF. Let R = 125 .. .. For each integer ¢ > 1 there is a unique edge (v;, w;) € E(H)
between the branch sets H(x;) and H(x;;1). By the tidiness assumption, H (z;,1) induces
a tree in H, and so there is a unique path P, C H(x;41) from w; to v;11 in H.

By minimality of H*(R), it follows that H*(R)(z1) = {v1} and HY(R)(z;11) = V(P))
for each i > 1. Hence H¥(R) is a ray. O

DEFINITION 6.3.12. Let GG be a graph, R be a family of disjoint rays in G' and let H
be a tidy IG. We will write H*(R) for the family (H*(R): R € R).

DEFINITION 6.3.13. For an end w of G and H C I' a tidy IG, we denote by H(w) the
unique end of I' containing all rays H*(R) for R € w.

It is an easy check that if two rays R and S in G are equivalent, then also H*(R) and
H*(S) are rays (Lemma 6.3.11) which are equivalent in H, and hence also equivalent in
I

6.3.3. Transitional linkages and the strong linking lemma.

DEFINITION 6.3.14. We say a linkage is transitional if the function which it induces
between the corresponding ray graphs is a transition function.
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LEMMA 6.3.15. Let T' be a graph and ¢ € Q(T'). Then for any collections R =
(Ry,...,R,) and § = (S1,...,5,) of e-rays in I' there is a finite set X such that ev-
ery linkage after X is transitional.

PROOF. By definition, for every function o: [n] — [n] which is not a transition function
from R to S there is a finite set X, C V(I') such that there is no linkage from R to S
after X, which induces o. If we let ® be the set of ¢ which are not transition functions

then the set X :=|J__4 X, satisfies the conclusion of the lemma. O

ced

In addition to Lemma 6.2.2 we will also need the following stronger linking lemma,
which is a slight modification of [31, Lemma 4.4]:

LEMMA 6.3.16 (Strong linking lemma). Let I' be a graph and w € Q(I'). Let X be a
finite set of vertices, n € N, and R = (R;: i € [n]) a family of vertex disjoint rays in w.
Let x; = init(R;) and ), = init(T(R;, X)). Then there is a finite number N = N(R,X)
with the following property: For every collection (H;: j € [N]) of vertex disjoint subgraphs
of I', all disjoint from X and each including a specified ray S; in w, there is a j € [N]
and a transitional linkage P = (P;: i € [n]) from R to (S;: j € [N]) which is after X and
such that the family

T = (a:iR,-ngiya(i)Sa(i): 1€ [n])

avoids H;.

PROOF. Let Y C V(') be a finite set as in Lemma 6.3.15. We apply the strong linking
lemma established in [31, Lemma 4.4] to the set X UY to obtain this version of the strong
linking lemma. [

LEMMA AND DEFINITION 6.3.17. Let ' be a graph, e € Q(T"), X C V(') be finite, and
let R=(R;i:i€l),S = (S;:i€ L) be two finite families of disjoint e-rays with |I;| <
|I5]. Then there is a finite subgraph Y C C(X,€) such that for any transition function o
between R and S there is a linkage P, from R to S inducing o with |JP, C I'[Y].

We call such a set'Y a transition box between R and S (after X).

PROOF. Let o : I} — I5 be a transition function between R and S§. By definition there
is a linkage P, from R to S after X which induces o. Note that, since P, is after X, it
follows that |JP, C C(X,¢).

Let ® be the set of all transition functions between R and S and let Y = |J, .4 Po-
Then Y is a transition box between R and S (after X). O]

REMARK AND DEFINITION 6.3.18. Let I" be a graph and € € Q(I"). Let Ry, Ra2, R3
be finite families of disjoint e-rays, P; a transitional linkage from R; to R, and P, a
transitional linkage from R, to R3 after | Ps.

(1) Py is also a transitional linkage from (R op, R2) to Rs.
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(2) The linkage from R, to R yielding the rays (R op, Ra) op, R3, which we call
the concatenation Py + P of P; and Ps is transitional.

The following lemmas are simple exercises.

LEMMA 6.3.19. Let (R;: i € I) be a disjoint finite family of e-rays, then the ray graph
RG(R;: i € I) is connected. Also, if R} is a tail of R; for each i € I, then RG(R;: i €
I)=RG(R:i€1). O

LEMMA 6.3.20 ([32, Lemma 3.4]). Let G be a graph, H C G, R = (R;: i € I) be a finite
disjoint family of rays in H and let S = (S;: j € J) be a finite disjoint family of rays in
G-V (H), where I and J are disjoint. Then RGy(R) is a subgraph of RGo(RUS)[I]. O

6.4. Extensive tree-decompositions and self minors

The purpose of this section is to explain the extensive tree decompositions mentioned in
the proof sketch. Some ideas motivating this definition are already present in Andreae’s
proof that locally finite trees are ubiquitous under the topological minor relation [10,
Lemma 2].

6.4.1. Separations and tree-decompositions of graphs.

DEFINITION 6.4.1. Let T be a tree with a root v € V(7). Given nodes z,y € V(T
let us denote by xT'y the unique path in T" between x and y, by T, denote the component
of T — E(vTx) containing z, and by T, the tree T' — T,.

Given an edge e = tt' € E(T'), we say that t is the lower vertez of e, denoted by e, if
t € vTt'. In this case, t’ is the higher vertex of e, denoted by e™.

If S is a subtree of a tree T" let us write 9(S) = E(S,T\ S) for the edge cut between

S and its complement in 7.

DEFINITION 6.4.2. Let G = (V, E) be a graph. A separation of G is a pair (A, B) of
subsets of vertices such that AU B = V and such that there is no edge between B\ A

and A\ B. Given a separation (A, B) we write G[B] for the graph obtained by deleting
all edges in the separator AN B from G[B].

A reader unfamiliar with tree-decompositions may also consult [54, §12.3].

DEFINITION 6.4.3 (Tree-decomposition). Given a graph G = (V, E) a tree-decomposition
of G is a pair (T,V) consisting of a rooted tree T', together with a collection of subsets of
vertices V = (V; CV(G): t € V(T)) such that:

o V(G) =UV;
e For every edge e € E(G) there is a t € V(T) such that e lies in G[V;];
o Vi, NV, CV,, whenever ty € V(t;Tt3).
The vertex sets V; for t € V(T') are called the parts of the tree-decomposition (7, V).
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DEFINITION 6.4.4 (Tree-width). Suppose (7,V) is a tree-decomposition of a graph G.
The width of (T,V) is the number sup {|V;| —1: t € V(T)} € NU {oc}. The tree-width of
a graph G is the least width of any tree-decomposition of G.

DEFINITION 6.4.5 (Separations induced by tree-decompositions). Given a tree-decomposition

(T, V) of a graph G, and an edge e € E(T), let

o Ale) = {Vi: t' ¢ V(T.+)},

e Ble) = {Vi:t' € V(T.+)}, and

o S(e):=A(e)NBle) =V.- N V.
Then (A(e), B(e)) is a separation of G (cf. [54, 12.3.1]). We call B(e) the bough of
(T, V) rooted in e and S(e) the separator of B(e). When writing G[B(e)] it is implicitly
understood that this refers to the separation (A(e), B(e)) (cf. Definition 6.4.2.)

DEFINITION 6.4.6. Let (7,V) be a tree-decomposition of a graph G. For a subtree
S C T let us write

G =c¢| Y w

tev(s)

and if H is an IG we write H(S) = H(G(S)) for the restriction of H to G(S).

DEFINITION 6.4.7 (Self-similar bough). Let (7)) be a tree-decomposition of a graph
G. Given e € E(T), the bough B(e) is called self-similar (towards an end w of G), if there
is a set {R.s: s € S(e)} of disjoint w-rays in G such that for all n € N there is an edge
¢ € E(T,+) with dist(e, €’) > n such that
o for each s € S(e) the ray R, s starts in s and meets S(€);
e there is a subgraph W C G[B(e/)] which is an inflated copy of G[B(e)];
o for each s € S(e), we have V(R. ;) N S(e) C W(s).

Such an W is called a witness for the self-similarity of B(e) of distance at least n.

DEFINITION 6.4.8 (Extensive tree-decomposition). A tree-decomposition (7,V) of G
is extensive if
e T is a locally finite, rooted tree;
e cach part of (7,V) is finite;
e every vertex of G appears in only finitely many parts of V, and
e for each e € F(T), the bough B(e) is self-similar towards some end w, of G.

The following is the main result of this paper.

THEOREM 6.4.9. Fvery locally finite connected graph admitting an extensive tree-

decomposition 1s <-ubiquitous.
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6.4.2. Self minors and push-outs. The existence of an extensive tree-decomposition
of a graph G will imply the existence of many self-minors of GG, which will be essential to
our proof.

Throughout this subsection, let G denote a locally finite, connected graph with an

extensive tree-decomposition (T, V).

DEFINITION 6.4.10. Let (A, B) be a separation of G with AN B = {vy,vs,...,0,}.
Suppose H;, Hy are subgraphs of a graph I where H; is an inflated copy of G[A], H; is an
inflated copy of m and for all vertices x,y € G, Hi(x) N Hy(y) # 0 only if x =y = v;
for some i. Suppose further that P is a family of disjoint paths (P;: ¢ € [n]) in I" such that
each P; is a path from H;(v;) to Hs(v;) which is otherwise disjoint from H; U Hy. Note
that P, may be a single vertex if Hy(v;) N Ha(v;) # 0.

We write Hy @&p Hs for the IG given by (H, ) where H = J,_. . P, U Hy U Hy and

i€[n]
H1<'U,L>UV(P1)UHQ(UZ) ifv:viEAﬂB,

H(v) = ¢ (v) = ¢ Hi(v) ifve A\ B,
Hj(v) if ve B\ A.

DEFINITION 6.4.11 (Push-out). A self minor G’ C G (meaning G’ is an IG) is called a
push-out of G along e to depth n for some e € E(T) if there is an edge € € R, such
that dist(e”,e~) > n and a subgraph W C B(¢’) which is an IG[B(e)] such that
G' = G[A(e)] @p W, where P = (Ps: s € S(e)) is defined as the family of paths where P
is the initial segment of R, s up to the first point it meets W (s).

Similarly, if H is an IG then a subgraph H’ of H is a push-out of H along e to depth n
for some e € E(T) if there is an edge € € R, such that dist(e™,e¢~) > n and a subgraph

W C H(B(¢')) which is an IG[B(e)] such that
H' = H(G[A(e)]) &p W

where P = (P;: s € S(e)) is defined as the family of paths where P is the initial segment
of H*(R.,) up to the first point it meets W (s).

Note that, if G’ is a push-out of G along e to depth n then H(G’) has a subgraph
which is a push-out of H along e to depth n.

LEMMA 6.4.12. For each e € E(T), each n € N and each witness W of the self-

similarity of B(e) of distance at least n there is a corresponding push-out Gy := G[A(e)] ©p W

of G along e to depth n, where P = (Ps: s € S(e)) is defined as the family of paths where
Py is the initial segment of R, s up to the first point it meets W (s).

PROOF. Given an edge e € E(T'), by Definition 6.4.7 for every n € N there is a witness
W for the self-similarity of B(e) of distance at least n along the ray R..
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Explicitly there is a family of rays (R.s: s € S(e)) such that for every n € N there is
an edge ¢/ € E(T,+) of distance at least n from e, and a subgraph W C G[B(¢')], such
that

o for each s € S(e) the ray R, s starts in s and meets S(e);
e W is an inflated copy of G[B(e)l;
o for each s € S(e), we have V(R. ;) N S(e) C W(s).
Since (A(e), B(e)) and (A(€'), B(€')), and W C B(¢') it is clear that W N G[A(e)] C
S(e), and since
Let us define P = (Ps: s € S(e)) as in the statement of the lemma. It is clear that
each P; is from G[A(e)](s) to W(s), and is otherwise disjoint from G[A(e)] U .
Furthermore, since (A(e), B(e)) and (A(e'), B(e')) are nested separations of G, A(e)N
V(W) C S(e)nS(e’). Hence if W(s)NG[A(e)](s) # 0 it follows that s € S(e)NS(e’), and
hence s’ € V(R +)NS(e') C W(s'), by Definition 6.4.7. In particular, W (s)NG[A(e)](s") #
() only if s = s" € S(e).
Hence, by Definitions 6.4.10 and 6.4.11, G[A(e)] &p W is well-defined and is indeed a
push-out of GG along e to depth n. O

The existence of push-out of G along e to arbitrary depths is in some sense the essence
of extensive tree-decompositions, and lies at the heart of our inductive construction in
Section 6.9.

6.5. Existence of extensive tree-decompositions

The purpose of this section is to examine two classes of locally finite connected graphs
that have extensive tree-decompositions: Firstly, the class of graphs with finitely many
ends, all of which are thin, and secondly the class of graphs of finite tree-width. We will
deduce the existence of such tree-decompositions using some results about the well-quasi-
ordering of certain classes of graphs.

A quasi-order is a a reflexive and transitive binary relation, such as the minor relation
between graphs. A quasi-order < on a set X is a well-quasi-order if for all sequences
x1,T2,... € X there exists an ¢ < j such that z; < x;. The following two alternative
characterisations will be useful.

REMARK 6.5.1. A simple Ramsey type argument shows that if < is a well-quasi-order
on X, then every sequence x1,Za,... € X contains an increasing subsequence T;,, Ti,, ... €
X. That is, an increasing sequence iy < ig < ... such that x;; X z;, forall j < k.

Also, it is simple to show that if X is a well-quasi-order on X and xq,xs,... € X, then

there is an iy € N such that for every i = iy there are infinitely many j € N with z; < x;.

A famous result of Robertson and Seymour [136], proved over a series of 20 papers,
shows that finite graphs are well-quasi-ordered under the minor relation. Thomas [149]
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showed that for any k& € N the class of graphs with tree-width < % is well-quasi-ordered
by the minor relation.

We will use slight strengthenings of both of these result, Lemma 6.5.3 and Lemma
6.5.11, to show that our two classes of graphs admit extensive tree-decompositions.

In Section 6.10 we will discuss in more detail the connection between our proof and
well-quasi-ordering, and indicate how stronger well-quasi-ordering results could be used to
prove the ubiquity of larger classes of graphs.

6.5.1. Finitely many thin ends. We will consider the following strengthening of

the minor relation.

DEFINITION 6.5.2. Given ¢ € N an /-pointed graph is a graph G together with a point
function 7: [¢] — V(G). For ¢(-pointed graphs (Gy,m ) and (Gg, m2), we say (G1,m1) <p
(Gy,m9) if G1 < G4 and this can be arranged in such a way that m3(7) is contained in the
branch set of (i) for every i € [(].

LEMMA 6.5.3. The set of (-pointed finite graphs is well-quasi-ordered under the relation
<p-

Proor. This follows from a stronger statement Robertson and Seymour proved in
(137, 1.7]. 0

We will also need the following structural characterisation of locally finite one-ended
graphs with a thin end due to Halin.

LEMMA 6.5.4. Fvery one-ended, locally finite connected graph G with a thin end of
degree k € N has a tree-decomposition (R,V) of G such that R = totits... is a ray, and
for every i € N:

o |Vi,| is finite;
o |S(tiaty)| =k;
o S(ti1t;) N S(titiyr) = 0.

PROOF. See [85, Satz 3']. O

Note that in the above lemma, for a given finite set X C V(G), by taking the union
over an initial segment of parts, one may always assume that X C V;,. Moreover, note
that since S(t;_1t;) N S(t;it;r1) = 0, it follows that every vertex of G is contained in at
most two parts of the tree-decomposition.

LEMMA 6.5.5. Fvery one-ended, locally finite connected graph G with a thin end has

an extensive tree decomposition (R,V) where R = totity. .. is a ray with root .

PROOF. Let k € N be the degree of the thin end of G, and let R = {R;: j € [k]} be
a maximal collection of disjoint rays in G. Let (R', W) be the tree-decomposition of G
given by Lemma 6.5.4 where R = t(t] ... a ray.
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Without loss of generality (taking the union over the first few parts, and considering
tails of rays if necessary) we may assume that each ray in R starts in S(¢(t}). Note that
each ray in R meets the separator S(t;_,t;) for each i € N. Since R is a disjoint family of
k rays and |S(t;_,t.)| = k for each i € N, each vertex in S(t;_,t;) is contained in a unique
ray in ‘R.

Let ¢ = 2k and consider a sequence (G, m;)ien of f-pointed finite graphs defined by
Gi = G[Wy] and

the unique vertex in S(t;_;t;) N V(R;) for 1 <j <k,

mi: [ = V(Gi), j—
the unique vertex in S(¢:t; N ik or k<j< = /.
h S(t, ;+1 V(R; for k 2k =1

By Lemma 6.5.3 and Remark 6.5.1 there is an ng such that for every n > ng there are
infinitely many m > n with (G, 7,) <p (G, ™).

Let Vi, := U2, Wy and V;, := Wy, ., forall 2 € N. We claim that (R,(V;,:ieN))is
the desired extensive tree-decomposition of G where R = tgtits ... is a ray with root tg.
The ray R is a locally finite tree and all the parts are finite. Moreover, every vertex of
(G is contained in at most two parts. It remains to show that for every i € N, the bough
B(t;_1t;) is self-similar.

Let e = t;_1t;. Let us label R = {R.s: s € S(e)} where R, is the unique ray in
R containing s. We wish to show there is a witness W for the self-similarity of B(e) of
distance at least n for each n € Nbb. Note that B(e) = ;5o Gny+i+j- By the choice of ng
in Remark 6.5.1, there exists m > ¢ + n such that (Ggti, Tng+i) <p (Grgtms Tng+m). Let
€ =ty _1t,. We will show that there exists a W C G[B(¢’)] witnessing the self-similarity
of B(e).

Recursively, for each 7 > 0 we can find m = my < m; < mg < --- with

(G”0+i+j7 7Tn0+l'+j) %p (Gnoerj ) 7Tn0+mj )

In particular there are subgraphs H,,; € Gp,+m, Which are inflated copies of G4y, all
compatible with the point-functions. In particular, S(t;, +mj_1t;m +mj)US (the +m; the +m, 41) €
Hp, for each 7 > 0.

Hence for, for every j € N there is a unique H,,, , — H,,, subpath P, ; of R,. We claim

that
W= JHum,uJ U P

J=0 JEN pe(k]
is a subgraph of G[B(¢')] that is an IG[B(e)].

To prove this claim, for each j € N and each s € S(t;_1t;), let R,y € R be the unique
ray with s € Ry). Then W'(s) = Hy,,_(5) U Pps); U Hyp, () is a connected branch set.
Indeed, by construction, every P, ; is a path from 7, 4m;_, (k+p) t0 Tpgsm; (p). And since
the H,,, are pointed minors of Gypyim,, it follows that 7T, 1m,_, (k 4+ p(s)) € Hy,,_,(s) and
Tno+m; (P(5)) € Hm,(s) are as desired.
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Finally, since (Gpnytis Tng+i) <p (Gnotms Tng+m) as witnessed by H,,,, the branch set
of each s € S(t;_1t;) must indeed include V' (R.s) N S(€). O

LEMMA 6.5.6. If G is a locally finite connected graph with finitely many ends, each of

which 1s thin, then G has an extensive tree-decomposition.

PROOF. Let Q(G) = {wi,...,w,} be the set of the ends of G. Pick a finite set X C V
of vertices separating the ends of G, i.e. so that all C; = C(X,w;) are pairwise disjoint.
Without loss of generality we may assume that V(G) = X U, Ci-

Let G; := G[C; U S]. Then each G; is a locally finite connected one-ended graph,
with a thin end w;, and hence by Lemma 6.5.5 each of the G; admits an extensive tree-
decomposition (R, V") with root r* € V/(R'). Without loss of generality, X C V', for each
i € [n].

Let T be the tree formed by identifying the family of rays (R': i € [n]) at their
roots, let r be the root of T', and let (7', V) be the tree-decompositions whose root part is
Uiep Vi and which otherwise agrees with the (R',V"). It is a simple check that (T, V) is
an extensive tree-decomposition of G. O

6.5.2. Finite tree-width.

DEFINITION 6.5.7. A rooted tree-decomposition (7,V) of G is lean if for any k € N,
any two nodes ty,to € V(T) and any X;, C Vi, X3, C V,, such that | Xy, |, |Xt,| > k there
are either k£ disjoint paths in G, between X; and X5, or there is a vertex ¢ on the path in
T between t; and t, such that |Vi| < k.

REMARK 6.5.8. K7z and Thomas [105] showed that if G has tree-width <m for some
m € N, then G has a lean tree-decomposition of width <m.

LEMMA 6.5.9. If G is a connected locally finite graph and (T, (V;: t € T')) a lean tree-
decomposition of G such that every V; is finite, then there is a locally finite subtree S of
T such that (S, (Vi: t € S)) is also a lean tree-decomposition of G.

PROOF. Pick a arbitrary root r of T. We will build recursively finite subtrees of T’
whose union will be the desired locally finite tree. Let Sy = Lo = {r}. For each n € N let
L,, be the set of leaves of S,,.

Consider some t € L,,. Since V; is finite and G is locally finite, the set C; of components
of G —V, is finite. Then, for each edge e leaving T,, with ¢ = e~ we have, by the definition
of a tree-decomposition, that there is some subset C, C C; such that

Je. € Ble) < e uv.

For each of the finitely may sets C C C; appearing as some C. pick an arbitrary e which
witnesses this. Let E; C E(T) be the set of all e chosen in this way, note that FE; is finite.
Let S,.1 be S, U E,.
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Finally, we let S := |, _n Sn. It is simple to check that S is a locally finite tree and

neN ~n

that (S, {V; | t € S}) is indeed a lean tree-decomposition of G. O

LEMMA 6.5.10. Let G be a locally finite, connected graph, and let (T, V) be a lean tree-
decomposition of G with root r and width <m, with T locally finite. Then there exists a
lean tree-decomposition of G with width <m such that every bough is connected, and the
decomposition tree is locally finite. Moreover, we may assume that every vertex appears in
only finitely many parts.

PROOF. Let Dy := {r} and (Tp, V) := (T, V). For i € N let
D;:={e€ E(T;_1): disty,(r,e”) =i}.

Construct (73,V;) from (T;_1,V;_1) by performing the following operation for each edge
ee D

Let t = ¢ and let C,...,C, be the connected components of B(e). Replace the
subtree T; with nT;. For each s € T, there are k copies of s in nT; which we will call
S1,...,5; For each s € T} and k € [n] let V;, := C, N V,. Finally, let T = Uien Til{t €
T, | dp(r,t) <i} and V = (V; | t € T).

It is simple to check that (T, f/) is a tree-decomposition of width <m, that T is locally
finite, and by construction B(e) is connected for each e € E(T'). Furthermore, suppose
keN,ty,tyeT and X;, CV;,,X,;, CV,, are such that |X;,|,|X;,| > k. By construction,
there are nodes t| and t, of T such that X;, C th CVy, Xy, C ‘A/tQ C Vi,. Thus, since
(T, V) is lean, either there is a vertex ¢’ of T" between ¢/, t}, such that |Vi/| < k or there are
k disjoint paths between X;, and X, in G. However, in the first case, by construction,
there also is a node t of T' between t; and t, such that ‘A/t C Vy. Thus, (T, f/) is indeed
lean.

Suppose there is an edge e = st € T, such that B (e) if finite, but T, is infinite. Since
V., C B(e) for any vertex 2 € V(T}), the set {V,: 2 € V(T})} is finite. Hence, there is
a finite subtree T, C Tt which contains at least one node for each of these bags. Let us
replace, for each minimal e € E(T) with B(e) finite, the subtree T} with T}, to give a
tree T, and let V = (V;: t € V(T)). Then, (T,V) is a lean-tree decomposition with width
<m such that T is locally finite and every bough B(e) is connected. Moreover it has the
following property

(f) For every t € V(T), if T} is infinite, then so is B(e).

Finally, suppose for a contradiction that there are vertices which appear in infinitely
many parts of (7,V). Let X be a C-maximal set of vertices appearing as a subset in
infinitely many parts of (T,V). Note that X is finite, since every part has size at most
m. Since T is locally finite and (7',)) is a tree-decomposition, there is a ray R in T such
that X appears as a subset in every part corresponding to a node of R. We may assume
without loss of generality that R C T, where r = init(R). Since for each t € R the subtree
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T, contains a tail of R, it is infinite, and hence by (1) B(e) is infinite and X C B(e) for
every e € R,. Since B(e) is connected, X has a neighbour in B(e) \ X. However, since
G is locally finite, X has only finitely many neighbours, and by C-maximality of X each
neighbour appears in only finitely many parts of (T,V), and so in only finitely many sets
B(e) with e € R. This contradicts the fact that X has a neighbour in every B(e) \ X. O

LEMMA 6.5.11. For all k,¢ € N the class of {-pointed graphs with tree-width <k is
well-quasi-ordered under the relation <.

PRrooF. This is a consequence of a result of Thomas [149]. O

LEMMA 6.5.12. Every locally finite connected graph of finite tree-width has an extensive
tree-decomposition.

PROOF. Let G be a locally finite connected graph of tree-width m € N. By Lemma
6.5.9 there is a lean tree-decomposition (7', V) of G with width m, such that T is a locally
finite tree with root r. By Lemma 6.5.10 we may assume that every vertex is contained
in only finitely many parts of this tree-decomposition.

Let € be an end of T" and let R be the unique e-ray starting at the root of 7. Let
d. = liminf.cg|S(e)|, and fix a tail £§t{ ... of R such that |S(t5_,t{)| > d. for all i € N.
Note that [S(t;, _,t;, )| = d. for an infinite sequence i; < iy < --- of indices.

Since (T',V) is lean, there are d. disjoint paths between S(¢7 _¢) and S(¢7, 1t )
for every k € N. Moreover, since each S(t;, _,t; ) is a separator of size d., these paths are
all internally disjoint. Hence, since every vertex appears in only finitely many parts, by
concatenating these paths, we get a family of d. many disjoint rays in G.

Fix one such family of rays (R: j € [dc]). We claim that there is an end w of G such
that RS € w for all j € [d.]. Indeed, if not then there is a finite set X separating some pair
of rays R and R’. However, since each vertex appears in only finitely many parts, there is
some k£ € N such that X NV, =0 for all t € T; iy By construction R and R’ have tails
in B(t; 41 ,,)) which is connected, and disjoint from X, contradicting the fact that X
separates R and R'.

For every k € N we define a point-function 7§ : [d] — S(t _,t5 ) by letting 75 (j) be
the unique vertex in R§ N S(t5, 45, ).

By Lemma 6.5.11 and Remark 6.5.1, the sequence (G[B(t;, _,t5,)], 75, Jren., has an
increasing subsequence (G[B(t¢_t6)], 7§ )ier,, i-e. for any k, j € I,k < j we have

(GIB(ti-1t)] m1) <p (GIB(51t5)], 75)-

j
Let us define F, = {t{_,t5: k€ I.} C E(T).

Consider T~ =T —  cqr) Fe. and let us write C(7~) for the components of 7. We
claim that every component C' € C(77) is a locally finite rayless tree, and hence finite.
Indeed, if C' contains a ray R C T then R is in an end € of T" and hence F. N R # (), a
contradiction. Consequently, also each set |J,. V; is finite.
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Let us define a tree decomposition (77,V’) on 7" = T//C(T~) where Vi = [,y Vi We
claim this is an extensive tree-decomposition.

Clearly, T" is a locally finite tree, and each part of (7”,)’) is finite, and every vertex
of G in contained in only finitely many parts of the tree-decomposition. Give e € E(T")
there is some € € Q(T") such that e € F.. Consider the family of rays (R, ;: j € [d.]) given
by Re; = R;N B(e). Let w, be the end of G in which the rays R, ; lie.

There is some k£ € N such that e = #5_,t;,. Given n € N let ¥’ € I. be such that
there are at least n indices ¢ € I. with k < ¢ < k', and let ¢’ = ¢;,_,t,. Note that
¢/ € F. and hence ¢/ € E(T"). Furthermore, by construction ¢ has distance at least
n from e in 7'. Since G[B(e)] = G[B(t,_,t°)] and G[B(¢')] = G[B(t§,_4t,)] we have
(G[B(e)],m,) <p (G[B(€")], m,), witnessing the self-similarity of B(e) towards w, with the
rays (Re;: j € [de]). O

REMARK 6.5.13. If for every ¢ € N the class of {-pointed locally finite graphs without
thick ends is well-quasi-ordered under <,, then every locally finite graph without thick
ends has an extensive tree-decomposition. This follows by a simple adaptation of the proof

above.

6.5.3. Special graphs. We note that, whilst Lemmas 6.5.6 and 6.5.12 show that
a large class of locally finite graphs have extensive tree-decompositions, for many other
graphs it is possible to construct an extensive tree-decomposition ‘by hand’. In particular,
the fact that no graph in these classes has a thick end is an artefact of the method of
proof, rather than a necessary condition for the existence of such a tree-decomposition, as
is demonstrated by the following examples:

REMARK 6.5.14. The grid Z x Z has an extensive tree-decomposition, as can be seen
i Figure 6.2. More explicitly, we can take a ray decomposition of the grid given by a
sequence of increasing diamond shaped regions around the origin. It is easy to check that
every bough will self similar.

A similar argument shows that the half-grid has an extensive tree-decomposition. How-
ever, we note that both of these graphs were already be shown to be ubiquitous in [32].

In fact, we do not know of any construction of a locally finite graph which does not

admit an extensive tree-decomposition.

QUESTION 6.5.15. Do all locally finite graphs admit an extensive tree-decomposition?

6.6. The structure of non-pebbly ends

We will need a structural understanding of how the arbitrarily large families of IGs
(for some fixed graph () can be arranged inside of some host graph I'. In particular we are
interested in how the rays of these minors occupy a given end € of I'. In [32] we established
the distinction between pebbly and non-pebbly ends, cf. Definition 6.6.4. We showed that
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FIGURE 6.2. In the grid the boughs are self-similar.

the existence of a pebbly end of I" already guarantees the existence of a KX°-minor in T,
and therefore the following corollary holds:

COROLLARY 6.6.1 ([32, Corollary 6.4]). Let I' be a graph with a pebbly end w and let
G be a countable graph. Then RoG < T'.

We will now analyse the structure of non-pebbly ends and give a description of their
shape. For a fixed set of start vertices we will consider the possible families of disjoint
rays with these start vertices. This shall be made precise in the definition of polypods, cf.
Definition 6.6.7 below. We will investigate how these rays relate in terms of connecting
paths between them and see that, due to the non-pebbly structure of the end, the structure

of possible connections between the rays is somewhat restricted.

6.6.1. Pebble Pushing. Given a path P with end-vertices s and ¢ we say the orien-
tation of P from s to t to mean the total order on the vertices of P where a < b if and
only if a lies on sPb, in this case we say that a lies before b. Note that every path with at
least one edge has precisely two orientations.

Given a cycle C a cyclic orientation of C' is an orientation of the graph C' which does
not have any sink. Note that any cycle has precisely two cyclic orientations. Given a
cyclic orientation and 3 distinct vertices z,y, z we say that they appear consecutively in
the order (z,y, z) if y lies on the unique directed path from z to z. Given two cycles C, C’,
each with a cyclic orientation, we say that an injection f: V(C) — V(C') preserves the
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cyclic orientation if whenever three distinct vertices x,y and z appear on C' in the order
(x,y, z) then their images appear on C’ in the order (f(x), f(vy), f(2)).

A permutation of a finite set X is a bijection v: X — X. A sequence (z;...xz,)
of distinct elements of X is called a cycle of v if v(x,) = x; and v(x;) = ;41 for all
i €{1,...,n—1}. In this case n is called the length of the cycle, a cycle of length 1 is
called trivial. The term (zp...x,) is also used to denote the bijection v which contains
the cycle (2 ...z,) and otherwise is the identity on X \ {z1,...,2,}. It is a well-known
fact that every bijection can be written as a product of (disjoint) cycles.

We utilise the following results and definitions from [32].

DEFINITION 6.6.2 (Pebble-pushing game). Let G = (V, E) be a graph. We call a tuple
(z1,...,2%) € V¥ a game state (of order k) if x; # x; for all 4,5 € [k] with ¢ # j.

The pebble-pushing game (on G) is a game played by a single player. Given a game
state Y = (y1,...,yr), we imagine k labelled pebbles placed on the vertices (yi, ..., yx)-
A move for a game state in the pebble-pushing game consists of moving a pebble from a
vertex to an adjacent vertex which does not contain a pebble, or formally, a Y-mowve is
a game state Z = (z1,...,2) such that there is an ¢ € [k] such that y,z, € E and y; = z;
for all ¢ € [k] \ {¢}.

Let X = (x1,...,2x) be a game state. The X -pebble-pushing game (on G ) is a pebble-
pushing game where we start with & labelled pebbles placed on the vertices (1, ..., zx).

We say a game state Y is achievable in the X-pebble-pushing game if there is a sequence
(X;: i € [n]) of game states for some n € N such that X; = X, X,, =Y and X, is a
X;-move for all i € [n — 1], that is if there is a sequence of moves that pushes the pebbles
from X to Y.

A graph G is k-pebble-win if Y is an achievable game state in the X-pebble-pushing
game on G for every two game states X and Y of order k.

LEMMA 6.6.3 ([32, Lemma 4.2]). Let T be a graph, w € Q(T'), m > k be positive
integers and let (S;: j € [m]) be a family of disjoint rays in w. For every achievable game
state Z = (z1, 29, . .., z) in the (1,2,..., k)-pebble-pushing game on RG(S;: j € [m]), the
map o defined via o(i) := z; for every i € [k] is a transition function® from (S;: i € [k])

to (Sj: j € [m]).

DEFINITION 6.6.4 (Pebbly ends). Let I' be a graph and w an end of I'. We say w is
pebbly if for every k there is an n > k and a family R = {R;,..., R,} of disjoint rays in
w such that RG(R;: i € [n]) is k-pebble-win. If for some k there is no such family R we
say w is mot k-pebble-win.

LEMMA 6.6.5 ([32, Lemma 6.3]). Let I be a graph and let w € QT") be a pebbly end.
Then Ky, < T.

4Gee Definition 6.2.3.
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Recall that a path P = vgv; ... v, in a graph G is called a bare if all its inner vertices

have degree 2 in G.

COROLLARY 6.6.6 ([32, Corollary 5.2]). Let w be an end of T which is not k-pebble-win
and let R = (R;: i € [m]) be a family of m > k + 2 disjoint rays in w. Then there is a
bare path P = p;y ...p, in RG(R;: i € [m]) such that n > m — k. Furthermore, either each
edge in P is a bridge, or RG(R;: i € [m]) is a cycle.

6.6.2. Polypods.

DEFINITION 6.6.7. Given an end w of a graph I, a polypod (for w inT')is a pair (X,Y)
of disjoint finite sets of vertices of I' such that there is at least one family (R,: y € Y)
of disjoint rays to w, where R, begins at y and all the R, are disjoint from X. Such a
family (R,) is called a family of tendrils for (X,Y). The order of the polypod is |Y|. The
connection graph Kxy of a polypod (X,Y") is a graph with vertex set Y. It has an edge
between vertices v and w if and only if there is a family (R,: y € Y') of tendrils for (X,Y)
such that there is an R,~R,-path in I' disjoint from X and from every other R,,.

Note that the ray graph of any family of tendrils for a polypod must be a subgraph of
the connection graph of that polypod.

DEFINITION 6.6.8. We say that a polypod (X,Y) for w in I is tight if its connection
graph is minimal amongst connection graphs of polypods for w in I' with respect to the
spanning isomorphic subgraph relation, i.e. for no other polypod (X', Y”) for w in I' of
order |Y'| = |Y| is the graph Ky y- isomorphic to a proper subgraph of Kxy. (Let us
write H € G if H is isomorphic to a subgraph of G.) We say that a polypod attains its
connection graph if there is some family of tendrils for that polypod whose ray graph is
equal to the connection graph.

LEMMA 6.6.9. Let (X,Y) be a tight polypod, (R,: y € Y) a family of tendrils and for
every y € Y let v, be a vertex on R,. Let X' be a finite vertex set disjoint from all v, R,
and including X as well as each of the initial segments R,v,. LetY' = {v,: y € Y}. Then
(X",Y") is a tight polypod with the same connection graph as (X,Y).

PrOOF. The family (v,R,: y € Y) witnesses that (X’,Y”) is a polypod. Moreover
every family of tendrils for (X’,Y”) can be extended by the paths R,v, to obtain a family
of tendrils for (X,Y). Hence if there is an edge v,v, in Ky/ys then there must also be the
edge yz in Kxy. Thus Kx/y» © Kxy. But since (X,Y) is tight we must have equality.
Therefore (X', Y”) is tight as well. O

LEMMA 6.6.10. Any tight polypod (X,Y) attains its connection graph.

PROOF. We must construct a family of tendrils for (X,Y’) whose ray graph is Kxy.
We will recursively build larger and larger initial segments of the rays, together with
disjoint paths between them.
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Precisely this means that, after partitioning N into infinite sets A., one for each edge
e of Kxy, we will construct, for each n € N, a family (P;': y € Y) of paths and a path
(),, such that:

e Each P} starts at y.

e Each P has length at least n.

e For m < n, the path P} extends P".

o If n € A,, then @), is a path from P} to P).

e If n € Ay, then @, meets no P;" with y & {v,w}.

e All the @, are disjoint.

e All the P and all the @), are disjoint from X.

e For any n there is a family (R} : y € Y) of tendrils for (X,Y’) such that each P
is an initial segment of the corresponding Ry, and the R} only meet the ), with

m < n in inner vertices of the Py".

It is clear that if we can do this then we will obtain a family of tendrils by letting Rz,
be the union of all the P;'. Furthermore, for any edge e of Ky y the family (Q,: n € A.)
will witness that e is in the ray graph of this family. So that ray graph will be the whole
of Kxy, as required.

So it remains to explain how to carry out this recursive construction. Let vw be the
edge of Kxy with 1 € A,,. By the definition of the connection graph there is a family
(R,:y €Y) of tendrils for (X,Y) such that there is a path @, from R} to R, disjoint
from all other R}, and from X. For each y € Y let P} be an initial segment of R} of length
at least 1 and containing all vertices of @' N R. This choice of the P, and of @ clearly
satisfies the conditions above.

Now suppose that we have constructed suitable PJ" and @, for all m < n. For each
y €Y, let y, be the endvertex of P". Let Y, be {yn:y €Y} and

Zn=XuJ |JWV@EMHUV@n)-
m<n yeyY
Let X, be Z, \ Y, and note that every V(Q,,) C X,, for every m. Then by Lemma 6.6.9
(Xn,Yy) is a tight polypod with the same connection graph as (X,Y).

In particular, letting vw be the edge of Kxy with n +1 € A,,, we have that v,w, is
an edge of Kx, y,. So there is a family (S;]:l: Yn € Yy,) of tendrils for (X,,Y,) together
with a path Q1 from St to Sp disjoint from all other Sp*! and from X,. Now
for any y € Y we let Ry*™" be the ray yP}'y,S; " and let P;*! be an initial segement of
RZ“ long enough to include P}, of length at least n + 1, and containing all vertices of
Qni1 N RZ“ as inner vertices. This completes the recursion step, and so the construction

is complete. O

LEMMA 6.6.11. If (X,Y) is a polypod of order n for w in I' with connection graph
Kxy then for any set of n disjoint w-rays (R;: i € [n]) in ', RG(R;: i € [n]) S Kxy-.
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PRrROOF. If we apply the Weak Linking Lemma 6.2.2 to the rays (R;: i € [n]) and a
family of tendrils for (X,Y"), together with the finite set X, we obtain a family of tendrils
for (X,Y) whose tails coincide with that of (R;: i € [n]). Hence, the ray graph of these
tendrils is RG(R;: i € [n]) and so RG(R;: i € [n]) € Kxy. O

COROLLARY AND DEFINITION 6.6.12. Any two polypods for w in T of the same order
which attain their connection graphs have isomorphic connection graphs.

We will refer to the graph arising in this way for polypods of order n for w in I' as the
n'" shape graph of the end w. 0

6.6.3. Frames. Akin to the transition boxes defined in Lemma 6.3.17 we want to
consider frames, finite subgraphs which are just large enough to include a linkage which,
say, induces a transition function of the family of tendrils of some polypod. This will allow

us to reason about transition functions in terms of graph automorphisms.

DEFINITION 6.6.13. Let Y be a finite set. A Y -frame (L, «, ) consists of a finite graph
L together with two injections o and f from Y to V(L). The set A = a(Y") is called the
source set and the set B = (YY) is called the target set. A weave of the Y-frame is a
family Q = (Q,: y € Y) of disjoint paths in L from A to B, where the initial vertex of @,
is a(y) for each y € Y. The weave pattern mg of Q is the bijection from Y to itself sending
y to the inverse image under g of the endvertex of @),. In order words, 7g is the function
so that every @, is an a(y) — B(mg(y)) path. The weave graph Kg of Q has vertex set
Y and an edge joining distinct vertices u and v of Y precisely when there is a path from
Q. to @, in L disjoint from all other ¢),. We call the Y-frame strait if it has at most one
weave graph and at most one weave pattern. For a graph K with vertex set Y, we say
that the Y-frame is K -spartan if all its weave graphs are subgraphs of K and all its weave
patterns are automorphisms of K.

Connection graphs of polypods and weave graphs of frames are closely connected:

LEMMA 6.6.14. Let (X,Y) be a polypod for w in I" attaining its connection graph Kxy
and let R = (R,: y € Y) be a family of tendrils for (X,Y). Let L be any finite subgraph
of I' disjoint from X but meeting all the R,. For each y € Y let a(y) be the first vertex of
R, in L and ((y) the last vertex of R, in L. Then the Y -frame (L, «, ) is Kx y-spartan.

PROOF. Since there is some family of tendrils (S,: y € Y) attaining Ky and there
is by Lemma 6.2.2 a linkage from (R,: y € Y) to (S,: y € Y) after X and V(L), we may
assume without loss of generality that RG(R,: y € Y) is isomorphic to Kx y.

For a given weave Q = (Q,: y € Y), applying the definition of the connection graph
to the rays R,a(y)QyB(ma(y))Rro(y) shows that Kg is a subgraph of Kxy and that the
inverse image of any edge of K xy under mg is again an edge of Kx y, from which it follows
that g is an automorphism of Kx y. O
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COROLLARY 6.6.15. Let (X,Y) be a polypod for w in I attaining its connection graph
Kxy andlet R = (Ry: y €Y) be a family of tendrils for (X,Y'). Then for any transition
function o from R to itself there is a Kxy-spartan Y -frame for which both o and the

identity are weave patterns.

PROOF. Pick a linkage (P,: y € Y') from R to itself after X inducing o. Let L be a
finite subgraph graph of I' containing all P, as well as a finite segment of each R,, such
that each P, is a path between two such segments. Then the frame on L which exists by

Lemma 6.6.14 has the desired properties. U

LEMMA 6.6.16. Let (X,Y) be a polypod for w in I' attaining its connection graph Kx y
and let R = (Ry: y € Y) be a family of tendrils for (X,Y). Then there is a Kx y-spartan
Y -frame for which both Kxy and RG(R,:y € Y) are weave graphs.

ProoF. By adding finitely many vertices to X if necessary, we may obtain a superset
X' of X such that for any two of the R, if there is any path between them disjoint from
all the other rays and X', then there are infinitely many such paths. Let (S,: y € Y') be
any family of tendrils for (X,Y’) with connection graph Kxy.

For each edge e = uv of RG(R,: y € Y) let P, be a path from R, to R, disjoint from
all the other R, and from X'. Similarly for each edge f = uv of Kxy let Q) be a path
from S, to S, disjoint from all the other S, and from X'. Let (P;: y € Y) be a linkage
from the S, to the R, after

X'U U ru |J @r
e€EE(RG(Ry: yeY)) fEE(Kx,y)
Let the initial vertex of P, be v(y) and the end vertex be 8(y). Let m(y) be the element
of Y with B(y) on Ryy). Let L be the subgraph of I' containing all paths of the forms
Sy’y(y), RW(Y)ﬁ(y)J Pij P, and Qf'

Letting « be the identity function on Y, it follows from Lemma 6.6.14 that (L, «, 5)
is a Ky y-spartan Y-frame. The paths )y witness that the weave graph for the paths
Syy(y)P; includes Ky y and so, by Kx y-spartanness, must be equal to Kxy. The paths
P, witness that the weave graph for the paths R,3(y) includes the ray graph of the R,,.
The two must be equal since whenever for two of the R, there is any path between them,
disjoint from all the other R, and from X', then there are infinitely many disjoint such
paths. O

Hence to understand ray graphs and the transition functions between them it is useful
to understand the possible weave graphs and weave patterns of spartan frames. Their

structure can be captured in terms of automorphisms and cycles:

DEFINITION 6.6.17. Let K be a finite graph. An automorphism o of K is called local
if it is a cycle (z;...z) where, for any i < ¢, there is an edge from z; to o(z;) in K. If
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t > 3 this means that z; ... 22 is a cycle of K, and we call such cycles turnable. If t =2
then we call the edge 2,29 of K flippable. We say that an automorphism of K is locally
generated if it is a product of local automorphisms.

REMARK 6.6.18. A cycle C in K is turnable if and only if all its vertices have the same
neighbourhood in K —C', and whenever a chord of length { € N is present in K[C|, then all
chords of length ¢ are present. Similarly an edge e of K s flippable if and only if its two
endvertices have the same neighbourhood in K —e. Thus, if K contains at least 3 vertices,
no vertex of degree one or cutvertex of K can lie on a turnable cycle or a flippable edge. So

vertices of degree one and cutvertices are preserved by locally generated automorphisms.

LEMMA 6.6.19. Let (L, 8) be a Y -frame which is K-spartan but not strait. Then
each of its weave graphs includes a turnable cycle or a flippable edge of K and for any two

of its weave patterns m and 7' the automorphism ' - 7' of K is locally generated.

PROOF. Suppose not for a contradiction, and let (L, «, 5) be a counterexample in
which |E(L)| is minimal. Note that, as L is not strait, there are either at least two weave
patterns for L or there are at least two weave graphs for L. Thus, we can find weaves
P=(P:yeY)and Q = (Q,: y € Y) such that either Kp # Kg or mp # mg and
such that either Ko includes no turnable cycle or flippable edge or 7T7§1 - o is not locally
generated. Furthermore, by exchanging P and Q if necessary, we may assume that Kp is
not a proper subgraph of K.

Each edge of L is in one of P or Q since otherwise we could simply delete it. Similarly
no edge appears in both P and Q since otherwise we could simply contract it. No vertex
appears on just one of P, or (), since otherwise we could contract one of the two incident
edges. Vertices appearing in neither P nor Q are isolated and so may be ignored. Thus
we may suppose that each edge appears in precisely one of P or Q, and that each vertex
appears in both.

Let Z be the set of those y € Y such that a(y) # B(y). For any z € Z let v(z) be the
second vertex of P, and let f(z) € Y be chosen such that vy(z) lies on Q). Then since
v(2) # a(f(2)) we have f(z) € Z for all z € Z. Furthermore, Z is nonempty as P and Q
are distinct. Let z be any element of Z. Then since Z is finite there must be ¢ < j with
fi(z) = fi(z), which means that f(z) = f77/(f"(z)). Let ¢ > 0 be minimal such that
there is some 21 € Z with z; = f'(z1).

If ¢ = 1 then we may delete the edge a(z;)y(z1) and replace the path P, with
a(21)Q.,v(z1)P,,. This preserves all of mp, mg and Ko and can only make Kp bigger,
contradicting the minimality of our counterexample. So we must have ¢t > 2.

For each ¢ < t let z; be fi71(2;) and let ¢ be the bijection (2125 ...2) on Y. Let L’ be
the graph obtained from L by deleting all vertices of the form a(z;). Let o’ be the injection
from Y to V(L') sending z; to v(z;) for i < n and sending any other y € Y to a(y). Then
(L', o/, ) is a Y-frame. For any weave (P,: y € Y) in this Y-frame, (a(y)y(y)P,)yey is a
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weave in (L, a, ) with the same weave pattern and whose weave graph includes that of

A

(Py:ye€Y). Thus (L, o/, B) is K-spartan.

Let P be o/(y) P, and Q;, be o/(y;)Qsy,) for any y € Y. Then we have ng = mg - 0
and so 0 = 5" - mg is an automorphism of K. For any i < t the edge a(z;)7(2;) witnesses
that z;0(z;) is an edge of Kg and so o is local. Hence Ko includes a turnable cycle or a
flippable edge. By the minimality of |E(L)| we know that 75/ - 7o is locally generated
and hence so is 75" - g = 7r7§,1 -mg - o~ L. This is the desired contradiction. U

Finally, the following two lemmas are the main outcomes of this section:

LEMMA 6.6.20. Let (X,Y') be a polypod attaining its connection graph Kxy such that
Kxy is a cycle of length at least 4. Then for any family of tendrils R for this polypod the
ray graph is Kxy. Furthermore, any transition function from R to itself preserves each

of the cyclic orientations of Kxy.

PrRoOF. By Lemma 6.6.16 there is some Kx y-spartan Y-frame for which both Ky y
and the ray graph are weave graphs. Since Kxy is a cycle of length at least 4 and hence
has no flippable edges, the ray graph must include a cycle by Lemma 6.6.19 and so since
it is a subgraph of Kxy it must be the whole of Kxy. Similarly Lemma 6.6.19 together
with Corollary 6.6.15 shows that all transition functions must be locally generated and so
must preserve the orientation. ]

LEMMA 6.6.21. Let (X,Y) be a polypod attaining its connection graph Kxy such that
Kxy includes a bare path P whose edges are bridges. Let R be a family of tendrils for
(X,Y) whose ray graph is Kxy. Then for any transition function o from R to itself, the

restriction of o to P is the identity.

PrROOF. By Lemmas 6.6.15 and 6.6.19 any transition function must be a locally gen-
erated automorphism of Ky, and so by Remark 6.6.18 it cannot move the vertices of the

bare path, which are vertices of degree one or cutvertices. O

6.7. Grid-like and half-grid-like ends

We are now in a position to analyse the different kinds of thick ends which can arise
in a graph in terms of the possible ray graphs and the transition functions between them.
We fix a graph I" together with a thick end w of I'. If w is pebbly then Ky, < I' by Lemma
6.6.5, and every locally finite graph G satisfies NG < Ky, < T

So in the following we further restrict ourselves to the case that w is not pebbly; for
this section we fix a number N such that there is no family (R;: ¢ € [n]) of disjoint rays
with n > N such that RG(R;: i € [n]) is N-pebble win. Under these circumstances we
get nontrivial restrictions on the ray graphs and the transition functions between them.
There are two essentially different cases, corresponding to the two cases in Corollary 6.6.6:
The grid-like and the half-grid-like case.
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6.7.1. Grid-like ends. The first case is ends which behave like that of the infinite
grid. In this case, all large enough ray graphs are cycles and all transition functions
between them preserve the cyclic order.

Formally, we say that the end w is grid-like if the (N + 2)"¢ shape graph for w is a
cycle. For the rest of this subsection we will assume that w is grid-like. Let us fix some
polypod (X, Y) of order N +2 attaining its connection graph. Let (S,: y € V') be a family
of tendrils for (X,Y) whose ray graph is the cycle Cnyo = Kx y.

LEMMA 6.7.1. Any ray graph K for a set (R;: i € I) of w-rays in ' with |I| > N + 2

s a cycle.

PROOF. Let (T,: y € Y) be a family of tendrils for (X,Y) obtained by transitioning
from the S, to the R; after X along a linkage, and let o: Y — I be the function induced
by this linkage. Then by Lemma 6.6.20 the ray graph of the 7} is the cycle Kxy. We
know by Corollary 6.6.6 that K includes a bare path P such that |V (P)| > |V(K)| — N.
Thus there are distinct vertices y1,y2 € Y with o(y1),0(y2) € P and no other vertex in
the image of o between them on P. Then for any other vertex y of Y there are paths from
y to y; avoiding y, and from y to y» avoiding y; in Ky y. Hence there are paths from o(y)
to each of o(y;) and o(y2) avoiding o(y;)Po(ys). Thus none of the edges of o(y1)Po(ys)
is a bridge, so by Corollary 6.6.6 again K is a cycle. U

We will now choose cyclic orientations of all these cycles such that the transition
functions preserve the cyclic orders corresponding to those orientations. To that end, we
fix a cyclic orientation of Kxy. We say that a cyclic orientation of the ray graph for a
family (R;: i € I) of at least N 43 disjoint w-rays is correct if there is a transition function

o from the S, to the R; which preserves the cyclic orientation of Kx y.

LEMMA 6.7.2. For any such family (R;: i € I) of at least N + 3 disjoint w-rays there
is precisely one correct cyclic orientation of its ray graph.

PROOF. That there is at least one is clear by Lemma 6.2.2. Suppose for a contra-
diction that there are two, and let ¢ and ¢’ be transition functions witnessing that both
orientations of the ray graph are correct. By Lemma 6.6.3 we may assume without loss of
generality that the images of o and ¢’ are the same. Call this common image I’. Since the
ray graphs of (R;: i € I) and (R;: i € I') are both cycles, the former is obtained from the
latter by subdivision of edges. Since this doesn’t affect the cyclic order, we may assume
without loss of generality that I’ = I. By Lemma 6.2.2 again, there is some transition
function 7 from the R; to the S,. By Lemma 6.6.20 both 7-¢ and 7-¢’ must preserve the
cyclic order, which is the desired contradiction. O

It therefore makes sense to refer to the correct orientation of a ray graph.
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COROLLARY 6.7.3. Any transition function between ray graphs on at least N + 3 rays

preserves the correct orientations of the cycles. |

6.7.2. Half-grid-like ends. In this subsection we suppose that w is thick but neither
pebbly nor grid-like. We shall call such ends half-grid-like, since as we shall shortly see
in this case the ray graphs and the transition functions between them behave similarly to
those for the unique end of the half grid.

We will need to carefully consider how the ray graphs are divided up by their cutver-
tices. In particular, for a graph K and vertices x and y of K we will denote by C*¥(K)
the union of all components of K — x which do not contain y, and we will denote by K*Y
the graph K — C*(K) — C¥*(K). We will refer to K* as the part of K between = and y.

As in the last subsection, let (X, Y") be a polypod of order N +2 attaining its connection
graph and let (S,: y € Y') be a family of tendrils for (X,Y) with ray graph Ky, which
by assumption is not a cycle. By Corollary 6.6.6 there is a bare path of length at least 2
in Kxy of which all edges are bridges. Let y;y, be any edge of that path. Without loss
of generality we have C¥'%2(Kxy) # 0.

Let (R;: ¢ € I) be a family of disjoint rays with |/| > N +3 and let K be its ray graph.

REMARK 6.7.4. For any transition function o from the S, to the R; we have o[CY'¥*(Kxy)] C
Cowew2)(K) and o[C¥% (Kxy)] C C°WeW)(K). Thus o[Kxy] and KW)oW2) meet
precisely in o(y;) and o(yz).

LEMMA 6.7.5. For any transition function o from the S, to the R; the graph Kow)aly2)
is a path from o(yy) to o(y2). This path is a bare path in K and all of its edges are bridges.

PROOF. Since K is connected, K7¥17®2) must include a path P from o (y;) to o(y2).
If it is not equal to that path then it follows from Lemma 6.6.3 that the function o', which
we define to be just like o except for ¢'(y;1) = o(y2) and o'(y2) = o(y1), is a transition
function from the S, to the R;. But then by Remark 6.7.4 we have o[C¥"¥*(Kxy)] C
Cowow2) (KN O wo'v2) () = Colwlow2)(K)nCoW2)ow) () = (). So this is impossible,
and K°Wio2) = P The last sentence of the lemma now follows from the definition of
Keo)o(yz) m

Now we fix a transition function oy, so that the path P := Kmax®)omax(v2) ig g
long as possible. If 0. [CY¥2(Kx y)] were a proper subset of Comax(y1)omax(¥2) ([{) then
we would be able to use Lemma 6.6.3 to produce a transition function in which this
path is longer. So we must have 0. [C¥¥2(Kxy)] = ComaxW)omax(v2)(K) and similarly
Omax|C¥2Y (K x y )] = Comax(W2)omax(y1) (),

We call P the central path of K and the orientation from oyax(y1) t0 Omax(y2) the
correct orientation. In the following lemma we use this orientation to determine which

vertices appear before which along P.
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LEMMA 6.7.6. For any two vertices vy and vo of K, there is a transition function
o: Kxy — K with o(y1) = v1 and o(y2) = ve if and only if vi and vy both lie on P, with
vy before vy.

PRrooOF. The ‘if’ direction is clear by applying Lemma 6.6.3 to .. For the ‘only if’
direction, we begin by setting ¢; = |C¥'¥?(Kxy)| and ¢y = |C¥*¥'(Kx y)|. We enumerate
C"%2(Kxy) as ys...Yey42 and C¥¥ (Kxy) a8 Y43 - - - Yoy +ept+2- Lhen for any N + 2-
tuple (z7 ...z n49) of distinct vertices achievable in the (Gpmax (Y1), - - -, Omax(Yn12)) pebble
pushing game must have the following 3 properties, since they are preserved by any single

move:

e 7, and x, lie on P, with x; before xs.
o {z3,...,0, 42} C C™2(K).
® {Teriss s Tertertat © O™ (K).

Now let o be any transition function from the S, to the R;. Let (zi,...,2n42) be
an N + 2-tuple achievable in the (omax(¥1),-- -, Omax(Yn+2)) pebble pushing game such
that {z1,...,2ny41} = o[Y]. By Lemma 6.6.3 the function ¢’ sending y; to x; for each
i < N + 2 is also a transition function and ¢'[Y] = o[Y]. Let 7 be a transition function
from (R;: i € o[Y]) to the S,. Then by Lemma 6.6.21 both 7 - ¢ and 7 - ¢’ keep both y;
and ys fixed. Thus o(y;) = o'(y1) = 1 and o(y2) = 0'(y2) = z2. As noted above, this
means that o(y;) and o(ys) both lie on P with o(y;) before o(ys), as desired. O

Thus the central path and the correct orientation depend only on our choice of y; and
yo. Hence we get

COROLLARY 6.7.7. Each ray graph contains a unique central path with a correct ori-
entation and all transition functions between ray graphs send vertices of the central path

to vertices of the central path and preserve the correct orientation.

We note that, in principle, this trichotomy that an end of a graph is either pebbly, grid-
like or half-grid-like, and the information that this implies about its finite rays graphs,
could be derived from earlier work of Diestel and Thomas [60], who gave a structural
characterisation of graphs without a Ky,-minor. However, to introduce their result and
derive what we needed from it would have been at least as hard, if not more complicated,
and so we have opted for a straightforward and self-contained presentation.

6.7.3. Core rays in the half-grid-like case.

DEFINITION 6.7.8. Given a graph G, an end w and three rays R, S, T in w such that
R, S, T have disjoint tails, we say that S separates R from T if the tails of R and T disjoint
from S belong to different ends of G — S.

For the following, recall the definition of ray graph in Definition 6.2.4.
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LEMMA 6.7.9. Let G be a graph, w an end of G and (R;);c; a finite family of disjoint
w-rays. 1If, for some 11,12, € I, the vertices i1 and iy belong to different components of

RG((R;)ier) — j, then R; separates R;, from R, .

PrOOF. If R;, and R;, belong to the same end of G —V(R;), there are infinitely many
disjoint paths between R;, and R;, in G —V(R;). Hence, by the pigeonhole principle there
are indices j; and js belonging to different components of RG((R;)icr) — 7, such that these
disjoint paths induce infinitely many disjoint paths from R;, to R;, all disjoint from all
other R;. Thus there is an edge from j; to j; in RG((R;);es) contradicting the assumption
that 7 disconnects j; from 5. O

LEMMA 6.7.10. Consider three rays R, S, T belonging to the same end w of some graph
G. If S separates R from T, then T does not separate R from S and R does not separate
S from T.

PrROOF. As R and T both belong to w, there are infinitely many disjoint paths between
them. As S separates R from 7', .S must meet infinitely many of these paths. Hence, there
are infinitely many disjoint paths from S to R, all disjoint from 7. Similarly, there are
infinitely many disjoint paths from S to 7', all disjoint from R. Hence T" does not separate
R from S and R does not separate S from 7' O

DEFINITION 6.7.11. Given a graph G and two (possibly infinite) vertex-sets X and Y,
we say that an end w of G — X is a sub-end of an end w’ of G — Y if every ray in w has a

tail in w’.

DEFINITION 6.7.12. Let w be a half-grid-like end, let R be an w-ray. We say R is a
core ray (of w) if there is a finite family R = (R;: i € I) of disjoint w-rays with R = R,
for some ¢ € I such that c lies on, but is not an endpoint, of the central path of R.

LEMMA 6.7.13. Let R be a core ray of w. Then in G — R the end w splits into precisely
two different ends. (That is, there are two ends W' and w" of G — R such that every w-ray

in G\ V(R) isin w" orw".)

PROOF. Let R = (R;: i € I) be a family witnessing that R = R, for some ¢ € [
is a core ray. Then there are exactly two ends in G \ V(R) which contain rays in R,
since connected components of RG(R) when we delete the vertex corresponding to R are
equivalent sets of rays in G\ V(R) and more over, no two of these connected components
can belong to the same end of G\ V(R) by Lemma 6.7.9.

Suppose there is a third end in G'\ V(R) that contains an w-ray S. We first claim that
there is a tail of S which is disjoint from R. Indeed, clearly S is disjoint from R, and if S
met | JR infinitely often then it would meet some R; € R infinitely often, and hence lie
in the same end of G\ V(R) as R;. Let us assume then that S is disjoint from R.
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Let us consider the ray graph RG(RU{S}). Again, if S is adjacent to any ray except
R in the ray graph, it would lie in the same end as some ray in R, in G \ V(R).

Since S is an w-ray the ray graph is connected, and hence S is adjacent to R, and R
is still connected to its neighbours in RG(R). However, R U {S} is also a family that
witnesses that R = R, is a core ray and hence ¢ has degree two in RG(R U {S}), a
contradiction. U

Given a family of rays (R;);e; witnessing that R = R. is a core ray, we denote
by T(R,(R;)icr) the end of G — V(R) containing rays R; satisfying i < ¢ and with
L (R, (R;)icr) the end containing rays R; satisfying i > c.

LEMMA 6.7.14. Let R and S be disjoint core rays of w. Let us suppose that w splits in
G — S inwyg and wg and in G — R in wy and wh. If R belongs to wy and S belongs to wh,

" / "o /
then wg is a sub-end of Wy and Wy, is a sub-end of wy.

PROOF. Let T be a ray in w¢. As R belongs to a different end of G — S than 7', there
is a tail of T" which is disjoint from R. Thus, we may assume that 7" and R are disjoint. As
S separates R from T', by Lemma 6.7.10, R does not separate S from 7', hence T' belongs
to wh. O

LEMMA AND DEFINITION 6.7.15. Let Ry = (R;: i € 1), Ry = (R;: i € 1) be two
finite families of disjoint w-rays both witnessing that for some ¢ € Iy N I the ray R, is a
core ray in w. Then T(R, (Ri)ier,) = T(R, (Ri)icr,) and L(R, (Ri)ier,) = L(R, (Ri)ier,)-

We therefore write T (w, R) for the end T(R,(R;)icr,) and L(w, R) respectively, i.e
T(w, R) is the end of G — R containing rays that appear on the central path of some
ray graph before R according to the correct orientation and 1 (w, R) is the end of G — R
containing rays that appear on the central path of some ray graph after R according to the
correct orientation. Note that T(w, R) N L(w, R) = (.

PROOF. Suppose, this is not the case, hence w; = T(R., (R;)icr,) = L(Re, (Ri)ier,)
and wy 1= L(Re, (Ri)ier,) = T(Re, (Ri)ier,). Let Ry, be the set of rays in Ry belonging
to wy. Let Rpwy,Riw, and Ry, be defined accordingly. If |Rpw,| > |Riw,| we define
R, to be Ry, , otherwise Ry, = Rp,w,. Let Ry, be defined similarly.

Let us consider R := R,,, UR,, U{R.}. After replacing some of the rays with tails,
this is a collection of disjoint rays, so let us assume that R itself is a family of disjoint
rays. There is a transition function from R, to R mapping R, to itself, every ray in R,
to a ray in ‘R, and every ray in Ry, to a ray in R,:

Consider a finite separator X separating w; from wy in G — V(R,.). Consider linkages
after X in G — V(R,) from R,, to R,, and from R,, to R,,. Pairs of such linkages can
be combined to suitable linkages on &, inducing a transition function which is as desired.

Similarly there is a transition function from R;, to R mapping R. to itself, every ray
in Rp,,, to arayin R,, and every ray in Ry, to a ray in R,,.



146 6. UBIQUITY OF GRAPHS WITH EXTENSIVE TREE DECOMPOSITIONS

These transition functions preserve the central path, thus c¢ lies on the central path
of RG(R). Moreover, R also witness that R, is a core ray. However, the first transition
function shows that w; = T(R., R) whereas the second one shows that wy = T(R., R),
contradicting the assumption that w; # ws. O

LEMMA AND DEFINITION 6.7.16. Let core(w) denote the set of core rays in w. We

define a partial order <, on core(w) by
R <, S if and only if either R =S,
or R and S have disjoint tails xR and yS and xR € T(w,yS)
for R, S € core(w).

PrOOF. For the anti-symmetry let us suppose that R and S are disjoint rays such that
R <, Sand S <, R. Hence, R € T(w,S) as well as S € T(w, R). Let Rg be a family
of rays witnessing that S is a core ray and Ry a family witnessing that R is a core ray.
By Lemma 6.7.14, 1(w,S) is a sub-end of T(w, R) and L (w, R) is a sub-end of T (w,S).
Let R () be the subset of Rg of rays, which belong to L(w,S). Let R (r) be defined
accordingly. After replacing rays with tails all rays in R := R | (s)UR () U{R} U{S} are
pairwise disjoint. More over, R and S both lie on the central path of RG(R) and are both
not endpoints of this central path. Thus either S € L(w, R) or R € L(w,S) contradicting
Lemma 6.7.15.

For the transitivity, let us suppose that R, S, T are rays, such that R <, Sand S <, T.
We may assume that R and S, and S and T are disjoint. As <, is anti-symmetric, it is
T £, S, hence T' € L(w,S). Thus, R and T belong to different ends of G — S, thus we
may assume that they are also disjoint. As S therefore separates R from T, by Lemma
6.7.10, T" does not separate S from R. Thus, R and S belong to the same end of G — T.
Hence R € T(w,T). O

REMARK 6.7.17. Let R, S € core(w) and let R be a finite family of disjoint w-rays.

(1) Any ray which shares a tail with R is also a core ray of w.

(2) If R and S are disjoint, then R and S are comparable under <,,.

(3) If R and S are on the central path of R, then R <, S if and only if R appears
before S in the correct orientation of RG(R).

(4) The mazimum number of disjoint rays in w \ core(w) is bounded by 2 - (p, + 1).

LEMMA 6.7.18. Let R,S € core(w). Let Z C V(G) be a finite set such that T(w,S)
and L(w,S) are separated by Z in G —V(S). Let H C G — Z be a connected subgraph
which is disjoint to S and contains R, and let T' C H be some core w-ray. Then S is in
the same relative <, -order to T as to R.

PROOF. Assume S <, R and hence R € T(w,S). Since H is connected, we obtain
that T € T(w, S) as well and hence S <, T. The other case is analogous. 0J
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LEMMA AND DEFINITION 6.7.19. Let R be a finite family of disjoint core w-rays. Then
there exists a family R’ of disjoint w-rays such that RG(R) is precisely the inner vertices
of the central path of RG(R). Even though such a family is not unique, we denote by R
an arbitrary such family.

DEFINITION 6.7.20. If P is a linkage from R to S then a sub-linkage of P is just a
subset of P, considered as a linkage from the corresponding subset of R to S.

REMARK 6.7.21. A sub-linkage of a transitional linkage is transitional.

PROOF. By Remark 6.7.17(2) the rays in R are linearly ordered by <,. Let R de-
note the < -smallest and S denote the <, -greatest element of R. As in the proof
of Lemma 6.7.16, consider the sets R (r) and Rt(s), which are without loss of gen-
erality minimal with respect to their defining property. Now R,y C L(w,R) and
R € T(w, R) for every R' € R\ {R} and hence tails of R (g) are disjoint to | JR. Analo-
gously, Rt(gy € T(w,S) and R' € L(w,S) for every R' € R\ {S} and hence tails of R | ()
are disjoint to (JR. Finally, Rrs)y € T(w,R) and Rz € L(w,S) by Lemma 6.7.14,
yielding that tails of Rt (g are necessarily disjoint from tails in R | (). Their the union of
those tails with R yields a set R as desired. 0

DEFINITION 6.7.22. Let R, S be finite families of disjoint w-rays and let R’ be a
subfamily of R consisting of core rays. A linkage P between R and S is preserving on R’

if P links R’ to core rays and preserves the order <..
The following remarks are a direct consequence of the definitions and Corollary 6.7.7.

REMARK 6.7.23. Let R, S, T be finite families of disjoint w-rays, let R' C R be a
subfamily of core rays, and let Py, Ps be a linkages from R to S and from (Rop, S) to T

respectively.

(1) If Py is transitional and R’ is on the central path of R, then it is preserving on
R

(2) If Py is preserving on R', then the sub-linkage of Py from R’ to the respective
subfamily of S is transitional.

(8) If Py is preserving on R, then any P; C Py as a linkage between the respective
subfamilies is preserving on the respective subfamily of R’.

(4) If Py is preserving on R’ and Py is preserving on R’ op, S, then the concatenation
P1 + Py is preserving on R'.

LEMMA 6.7.24. Let R and S be finite families of disjoint core rays of w, and let 8" C S
be a subfamily of S with |R| = |S'|. Then there is a transitional linkage from R to S which
is preserving on R and links the rays in R to rays in S’.

PRrOOF. Consider 7 := (S\ S)US’ C S. Take a transitional linkage from R to 7.
This linkage can be viewed as a linkage from R to S, is preserving on R by Remark 6.7.23(1),
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and hence the sub-linkage from R to &’ is also preserving on R by Remark 6.7.23(3) as
well as transitional by Remark 6.7.21. U

6.8. (G-tribes and concentration of G-tribes towards an end

To show that a given graph G is <-ubiquitous, we shall assume that nG < T for every
n € N and need to show that this implies NG < I'. To this end we use the following
notation for such collections of nG in I' which is established in [31] and [32] .

DEFINITION 6.8.1 (G-tribes). Let G and I" be graphs.

o A G-tribe in I' (with respect to the minor relation) is a family F of finite col-
lections F' of disjoint subgraphs H of I' such that each member H of F is an
IG.

e A G-tribe F in T is called thick, if for each n € N there is a layer F € F with
|F'| > n; otherwise, it is called thin.

e A G-tribe F is connected if every member H of F is connected. Note that this is
the case precisely if G is connected.

o A G-tribe F' in I' is a G-subtribe ° of a G-tribe F in I', denoted by F' < F, if
there is an injection W: 7' — F such that for each F’' € F’ there is an injection
wpr: F!' — W(F") with V(H') C V(g (H')) for every H' € F'. The G-subtribe
F' is called flat, denoted by F' C F, if there is such an injection ¥ satisfying
F' CU(F).

e A thick G-tribe F in I' is concentrated at an end € of T, if for every finite vertex
set X of I', the G-tribe Fx = {Fx: F' € F} consisting of the layers Fx = {H €
F: H{ZC(X,e)} C F is a thin subtribe of F.

We note that, if G is connected, every thick G-tribe F contains a thick subtribe F’
such that every H € |JF is a tidy IG. We will use the following lemmas from [31].

LEMMA 6.8.2 (Removing a thin subtribe, [31, 5.2]). Let F be a thick G-tribe in T and
let F' be a thin subtribe of F, witnessed by V: F' — F and (pp: F' € F'). For F € F,
if F € U(F), let U"Y(F) = {Fp} and set F = op (Fp). If F ¢ W(F'), set F = 0. Then

F':={F\F:FecF}
15 a thick flat G-subtribe of F.

LEMMA 6.8.3 (Pigeon hole principle for thick G-tribes, [31, 5.3]). Suppose for some
k € N, we have a k-colouring c: |JF — [k| of the members of some thick G-tribe F in I.
Then there is a monochromatic, thick, flat G-subtribe F' of F.

SWhen @ is clear from the context we will often refer to a G-subtribe as simply a subtribe.
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LEMMA 6.8.4 ([31, 5.4]). Let G be a connected graph and T a graph containing a thick
connected G-tribe F. Then either NoG < T, or there is a thick flat subtribe F' of F and
an end € of I' such that F' is concentrated at €.

LEMMA 6.8.5 ([31, 5.5]). Let G be a connected graph and I a graph containing a thick
connected G-tribe F concentrated at an end € of I'. Then the following assertions hold:

(1) For every finite set X, the component C(X,€) contains a thick flat G-subtribe
of F.
(2) Every thick subtribe F' of F is concentrated at €, too.

The following lemma from [32] shows that we can restrict ourself to thick G-tribes

which are concentrated at thick ends.

LEMMA 6.8.6 ([32, 6.7]). Let G be a connected graph and I' a graph containing a thick
G-tribe F concentrated at an end € € Q(I') which is thin. Then RoG < T

Given an extensive tree decomposition (T,V) of G, broadly, our strategy will be to
obtain a family of disjoint IGs by choosing a sequence of trees Ty, C T C ... such that
U T; = T and to construct inductively a family of finitely many IG|[Tj1]s which extend the
IG[T}]s built previously (cf. Definition 6.4.6). The extensiveness of the tree-decomposition
ensures that, at each stage, there will be some edges in 0(7;) = E(T;, T\ T;), each of which
has in G a family of rays R. along which the graph displays self-similarity.

In order to extend our IG[T}] at each step, we will want to assume that the /Gs in F
lie in a ‘uniform’ manner in the graph I' in terms of these rays R..

More specifically, for each edge e € O(T;) the rays R. tend to a common end w, in G,
and for each H € [JF, the corresponding rays in H converge to an end H(w.) € Q(T) (cf.
Definition 6.3.13) which might either be €, or another end of I'. We would like that our
G-tribe F makes a consistent choice of whether H(w,) is €, for each e € O(T;).

Furthermore, if H(w,) = € for every H € |JF then this imposes some structure on the
end w, of G. More precisely with [32, Lemma 9.1] we may assume that RGg(H*(R.)) is
a path for each H in the G-tribe F.

By moving to a thick subtribe, we may assume that every ray in every H € | J F is core,
in which case <. imposes a linear order on every family of rays H¥(R.), which induces
one of the two distinct orientations of the path RGy(H*(R.)) (reference to make this
clear/precise). We will also want that our tribe F induces this orientation in a consistent
manner.

Let us make the preceding discussion precise with the following definitions:

DEFINITION 6.8.7. Let G be a connected locally finite graph with a extensive tree-
decomposition (7,V), S be an initial subtree of T. Let H C I" be an IG, H be a set of
tidy IGs in I' and € an end of I'.
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e Given an end w of G, we say that w converges to € according to H if for every
ray R € w we have H¥(R) € e. The end w converges to € according to H if it
converges to € according to every element of .

We say that w is cut from € according to H if for every ray R € w we have
HY(R) ¢ e. The end w is cut from € according to H if it is cut from e according
to every element of H.

Finally we say that H determines whether w converges to € if either w converges
to € according to H or w is cut from € according to H.

e Given E C E(T), we say H weakly agrees about E if for each e € E, H determines
whether w, converges to e. If H weakly agrees about 9(.S) we let

0c(S5) :={e € 9(5): w, converges to € according to H} ,
0-c(5) :={e € 9(9): w, is cut from € according to H},

and write

S7¢ for the component of the forest T'— 9.(S) containing the root of T,

S€ for the component of the forest T — 0-(.S) containing the root of 7.

Note that S = S7nN S°.

e We say that H is well-separated from e at S, if H weakly agrees about 9(S) and
H(S™¢) can be separated from € in I" for all elements H € H, i.e. for every H
there is a finite X C V(T") such that H(S™) N Cr(X,¢) = 0.

In the case that e is half-grid-like, we say that H strongly agrees about 9(S) if

e it weakly agrees about J(S5);

e for each H € H every e-ray R C H is in core(e); and

o for every e € 0.(5) there is a linear order <z, on S(e) such that the order induced
on HY(R.) by <r.) agrees with <. on H*(R,) for all H € H.

If F is a thick G-tribe concentrated at an end e, we use these terms in the following way:

e Given £ C E(T), we say that F weakly agrees about E if | JF weakly agrees
about F w.r.t. e.

e We say that F is well-separated from e at S if | J F is.

e We say that F strongly agrees about 9(S) if | F does.

REMARK 6.8.8. We note that the properties of weakly agreeing about E, being well
separated from € and strongly agreeing about O(S) are all preserved under taking subsets,
and hence under taking flat subtribes.

Note that by the pigeon hole principle for G-tribes, given a finite edge set E C E(T),
any thick G-tribe F concentrated at e has a thick (flat) subtribe which weakly agrees
about E.
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The next few lemmas show that, with some slight modification, we may restrict to a

further subtribe which strongly agrees about E and is also well-separated from e.

DEFINITION 6.8.9 ([32]). Let w be an end of a graph G. We say w is linear if RG(R)
is a path for every finite family R of disjoint w-rays.

LEMMA 6.8.10 ([32, 8.1]). Let € be a non-pebbly end of I' and let F be a G-tribe such
that for every H € |JF there is an end wy € Q(G) such that H(wg) = €. Then there is
a thick flat subtribe F' such that wy is linear for every H € |JF'.

COROLLARY 6.8.11. Let G be a connected locally finite graph with an extensive tree-
decomposition (T,V), S be an initial subtree of T, and let F be a thick G-tribe which is
concentrated at a non-pebbbly end € of a graph I' and weakly agrees about S. Then w, is

linear for every e € 0.(S).

PROOF. For any e € 0.(S) apply Lemma 6.8.10 to F with wy = w, for each H €
UF. O

LEMMA 6.8.12. Let G be a connected locally-finite graph with a tree-decomposition
(T,V). Let F be a thick G-tribe in ' concentrated at € which weakly agrees about some
finite O(S) C E(T'). Then F has a flat thick subtribe F' so that F' strongly agrees about
a(9S).

PRrRooOF. Clear. O

LEMMA 6.8.13. Let G be a connected locally-finite graph with an extensive tree-decom-
position (T,V). Let H C T be an IG and € an end of I'. Let e be an edge of T', such that
H(w.) # €. There is a finite set X C V(G) such that for every finite X’ O X there exists
a push-out H, of H along e so that Cr(X', G(w.)) # Cr(X',€) and

(1) He(G[B(e)]) € Cr(X', G(we)),
(2) H.(G[B(e)]) \ X C H(G[B(€")]) for an edge €' on R., and
(3) H.(G[A(e)]) extends H(G[A(e)]) fizing A(e) \ S(e).

PRroOOF. Let X; C V(I') be a finite vertex set such that Cr(X, G(w,)) # Cr(X, ¢€), then
given any finite X’ D X, surely Cr(X',G(w.)) # Cr(X',€). Since X is finite, there are
only finitely many v € G whose branch sets H(v) meet X;. By extensiveness, every vertex
of G is contained in only finitely many parts of the tree-decomposition, and so there exists
an edge e; on R, with

H(G[B(e1)]) N X, = 0.
For each s € S(e) let P; be the initial segment of R, s up to the first time it meets S(ey).
Let
X=xu |J H).
veV (Ps),s€S(e)
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Then, given any X’ O X, as before there is an edge ¢’ on R, such that
H(G[B(e)]) N X" =0.

Since (T, V) is an extensive tree-decomposition there is a witness W of the self-similarity of
B(e) at distance at least max{dist(e™, e ),dist(e, ¢ )} := n. Then by Definition 6.4.11
and Lemma 6.4.12 there is a push-out H, of H along e to depth n.

By Definition 6.4.11 V(H.(G[B(e)]) C V(H.(W))UX and hence (1) and (2) hold, and
also H.([A(e)]) extends H(G[A(e)]) fixing A(e) \ S(e). O

LEMMA 6.8.14. Let G be a connected locally finite graph with an extensive tree-decom-
position (T, V) with root r. Let T' be a graph and F a thick G-tribe concentrated at a
half-grid-like end € of I'. Then there is a thick sub-tribe F' of F such that

(1) F' is concentrated at a half-grid-like end e.
(2) F' strongly agrees about O({r}).
(3) F' is well-separated from € at {r}.

PROOF. Since d(r) is finite, by choosing a thick flat subtribe of F, we may assume
that F weakly agrees about d({r}). Moreover, by Lemma 6.8.12, we may even assume
that F strongly agrees about 0({r}).

For every member H of F, and for every e € 0-.({r}) there exists by Lemma 6.8.13
a finite set X, such that for every finite X’ O X, there is a push-out H, of H along e so
that Cr(X', G(w.)) # Cr(X',€) and

(1) H(G[B(e)]) € Cr(X', G(we)),

(2) H.(G[B(e)]) \ X. € H(G[B(€')]) for an edge ¢’ on R, and

(3) H.(G]A(e)]) extends H(G[A(e)]) fixing A(e) \ S(e).
Let X be the union of all these X, together with H({r}). For each e € 0_.({r}) let H, be
the push-out whose existence is guaranteed by the above with respect to this set X.

Let us define an IG
H:= |J H({r}uT.).
e€d-e({r})

It is straightforward, although not quick, to check that this is indeed an /G and so we will
not do this in detail. Briefly, this can be deduced from multiple applications of Defintion
6.4.10 and by (3) all that we need to check is that the extra vertices added to the branch
sets of vertices in S(e) are distinct for each edge e. However, this follows from Definition
6.4.11, since these vertices come from H(R.) and the rays R., and R. ¢ are disjoint
except in their initial vertex when s = §’. Let F’ be the tribe given by {F': F € F}
where [ = {H': H € F'} for each F' € F. We claim that F’ satisfies the conclusion of
the lemma.

Firstly, we claim that H strongly agrees with H" about 0({r}) for every member H of F.
Indeed, by construction for each e € 0_.({r}), H'(G[B(e)]) C Cr(X’, G(w.)), and hence w,
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is cut from e according to H'. Furthermore, by construction H ({r})\X = H'({r}¢)\X and
S0 w, is converges to € according to H' for every e € O_.({r}). In fact, H*(R.) = H*(R.)
for every e € 0-.({r}). Finally, since H" C H, and F strongly agrees about 0({r}) it
follows that every e-ray in H' is in core(e).

Then, since F is strongly concentrated at € and strongly agrees about d({r}) it follows
that (1) and (2) hold for F'. It remains to show that F' is well-separateed from € at {r}.

However, we claim that for each member H of F the set X defined above separates
H'({r}™) from € in I". Indeed,

H{r}™)=H{rhHu |J HGBE),
e€d-c({r})
and so H'({r}™) N Cr(X,€) = 0. Tt follows that F' satisfies the conclusion of the lemma.
0

LEMMA 6.8.15 (Well-separated push-out). Let G be a connected locally-finite graph
with an extensive tree-decomposition (T, V). Let H C T be an IG and € an end of T'. Let
S be a finite subtree of T such that {H} is well-separated from € at S and let f € 0.(5).
Then there ezists exists a push-out H' of H along f to depth O (see Definition 6.4.11) such
that {H'} is well-separated from e at S = S U{f}.

PROOF. Let X’ C V(I') be a finite set with H(S™)NCp(X’,€) = 0. If 9_(S)\I(S) = 0
then H' = H satisfies the conclusion of the lemma, hence we may assume that d-.(S)\d(S)
is non-empty.

By applying Lemma 6.8.13 to every e € 9-.(S) \ 9(S), we obtain a finite set X D X’
and a family (H.: e € 0-.(S)\ 9(S)) where each H, is a push out of H along e such that

(1) He(G[B(e)]) € Cr(X, H(we)),

(2) H.(G[B(e)]) € H(G[B(¢')]) for some edge ¢ on R., and

(3) H.(G[A(e)]) extends H(G[A(e)]) fixing A(e) \ S(e).

Let
H:= |J H/(SUT~).
e€d-¢(5)\9(9)

As before it is straightforward to check that H’ is an IG, and that H’' is a push out
of H along f to depth 0. We claim that H’ is well-separated from e at S. Since H is
well-separated from e at S there is a finite set X such that H(S™) N Cr(X,¢) = 0. Let

X=Xxu |J VHS()),
e€8-(S)\A(S)
note that X is finite.

It is sufficient to show that X separates H'(G[B(e)]) from € in T' for each e € 9-(S),
since then X together with H'(S) separates H'(S™¢) from € in T'. Given an edge e € 9-.(S)
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cither e € 9_(S) or e € D-.(S) \ A(S). In the first case, since
HGBENS )  Ho@GBE)CHGBEDU  |J  Ho(S()),

e'€d-c(S)\(S) e/ €8-¢(S)\O(S)

by (3), it follows that H'(G[B(e)]) N Cr(X,¢) = 0.

In the second case e € 0-.(S5) \ 9(5), and so again it follows from (3) that

H'(G[B(e)]) € H(G[B(e)]) U U He(S(e)).
ee/ €8 (5)\O(S)

Hence, H'(G[B(e)]) N Cr(X,€) = 0.
[

The following lemma contains a large part of the work needed for our inductive con-
struction. The idea behind the statement is the following: At step n in our construction
we will have a G-tribe F,, which agrees about 9(7},), which will allows us to extend our
IG[T,]s to IG[T,41]s. In order to perform the next stage of our construction we will need
to ‘refine’ F, to a G-tribe F,, .1 which agrees about the boundary of T, .

This would be a relatively simple application of the pigeon hole principle for G-tribes,
Lemma 6.8.3, except that in our construction we cannot extend by a member of F,
naively. Indeed, suppose we wish to use an IG, say H, to extend an IG|[T,,| to an IG[T,,11].
There is some subgraph, H(7,,+1 \ T,,), of H which is an IG[T,,4+1 \ 5], however in order
to use this to extend the IG[T,] we first have to link the branch sets of the boundary
vertices to this subgraph, and there may be no way to do so without using other vertices
of H(T,41 \ T}).

For this reason we ensure the existence of an ‘intermediate G-tribe’ F*, which has
the property that for each member H of F*, there are push-outs at arbitrary depth of H
which are members of F,, ;. This allows us to first link our IG[T,,] to some H € F* and
then choose a push-out H' € F, 1 of H such that H'(T,.1 \ T,,) avoids the vertices we
used to link.

LEMMA 6.8.16 (G-tribe refinement lemma). Let G be a connected locally finite graph
with an extensive tree-decomposition (T,V), let S be a subtree of T with O(S) finite, and
let F be a thick G-tribe of a graph I" such that

(1) F is concentrated at a half-grid-like end e.
(2) F strongly agrees about O(S).
(3) F is well-separated from € at S.

Suppose f € 9.(S) and let S = SU{f}. Then there is a thick flat subtribe F* of F and a
thick G-tribe F' in " with the following properties:

(i) F' is concentrated at €.
(ii) F' strongly agrees about O(S).
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(iii) F' is well-separated from € at S.

(iv) F'UF strongly agrees about 0(S) \ {f}.

(v) S™¢ w.r.t. F is a subtree of S~ w.r.t. F'.

(vi) For every F' € F* and every m € N, there is F' € F' such that for oll H € F
there is an H' € F' which is a push-out of H to depth m along f.

PROOF. For every member H of F consider a sequence (H: i € N) where H® is a
push-out of H along f to depth at least i. After choosing a subsequence of (H®: i € N)
and relabelling (monotonically), we may assume that for each H, the set {H®: i ¢ N}
weakly agrees on 9(S), i.e. for every e € 9(S) either H®(R) € ¢ for every R € w, and all
i or HO(R) ¢ ¢ for every R € w, and all i. Note that a monotone relabelling preserves
the property of H® being a push-out of H along f to depth at least i.

This uniform behaviour of (H®: i € N) on 9(S) for each member H of F gives rise to
a finite colouring ¢: |JF — 20(5). By Lemma 6.8.3 we may choose a thick flat subtribe
F1 C F such that ¢ is constant on J F;.

Recall that by Corollary 6.8.11 for every e € 9.(S) (w.r.t. F;) the ray graph RG(R.)
is a path. We pick an arbitrary orientation of this path and denote by <, the corresponding
linear order on R..

Again for every member H € | JF; define

dy: {H?:ie N} - {-1,0,1}%
where

0 if HY(R,) are not all core rays,
dH(H("))6 = ¢ +1 if HO(R,) are all core rays and <. agrees with <.,
—1 if H® (R.) are all core rays and <. agrees with >..

Since dy has finite range we may assume as above, after choosing a subsequence and
relabelling, that dy is constant on {H®: i € N} and that H® is still a push-out of H
along f to depth at least 1.

Now consider d: |JF; — {—1,0,1}%®) with d(H) = dg(HD) (= dg(H®) for all i).
Again, we may choose a thick flat subtribe 7, C F; such that d is constant on F.

Note that no coordinate of d takes the value 0. Indeed, for e € 9,(S) and every layer
F € F, the rays in (HW(R,): H € F) are disjoint, and for large enough F it cannot be
the case that there is a non-core ray in every HV(R,).

We can now apply Lemma 6.8.15 to each H® to obtain H'®, the collection of which
is well-separated from e at S. Note that H'® is still a push-out of H along f to depth i.

Now let F* = Fy and F/ = {{H'®: H € F}:i € N,F € F*}. Let us verify that
these satisfy (i)—-(vi). F* is concentrated at € because it is a thick flat subtribe of F by
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Lemma 6.8.5. By a comparison, layer by layer, since all members of F are push-outs of
members of F* along f, the tribe F' is also concentrated at e, satisfying (i).

(i) is satisfied: Since ¢ and d are constant on | JF, the collection of the H® (for
H € |JF,) strongly agrees on 9(5), since we have chosen an appropriate subsequence in
which dy(H®) is constant. The H'® are constructed such that this property is preserved.
Property (iii) is immediate from the choice of H'®. Properties (iv) & (v) follow from (2)
and the fact that every member of F” is a push-out of a member of F along f. Property (vi)

is immediate from the construction of F". O

6.9. The inductive argument

In this section we prove Theorem 6.4.9. Given a connected, locally finite graph G which
admits an extensive tree-decomposition (7,V) and a graph I" which contains a thick G-
tribe F, our aim is to construct an infinite family (Q;: ¢ € N) of disjoint G-minors in I’
inductively.
Our work so far will allow us to make certain assumptions about JF. For example, by
Lemma 6.8.4 we may assume that F is concentrated at some end € of I', which by Lemma
6.8.6 we may assume is a thick end, and by Lemma 6.6.5 we may assume is not pebbly.
Hence, by the work of Section 6.7 we may assume that € is either half-grid-like or grid-like.
At this point our proof will split into two different cases, depending on the nature of €.
However, the two cases are very similar, with the grid-like case being significantly simple.
Therefore we will first prove Theorem 6.4.9 in the case where € is half-grid-like, and then
in Section 6.9.2 we will briefly sketch the differences for the grid-like case.
So, to briefly recap, in the following section we will be working under the standing
assumptions that there is a thick G-tribe F in I and an end € of I' such that
— F is concentrated at ¢;
— € is thick;

€ is not pebbly;

— ¢ is half-grid-like.

6.9.1. The half-grid-like case. As explained in Section 6.2, our strategy will be
to take some sequence of subtrees S; C Sy C S3... of T, such that UZ S; = T, and to
inductively build a collection of n inflated copies of G(S,), at each stage extending the
previous copies. However, in order to ensure that we can continue the construction at
each stage, we will require the existence of additional structure.

Let us pick an enumeration {t;: i > 0} of V(T) such that ty is the root of T and
T, = T[{t;: 0 < i < n}| is connected for every n € N. We will not take the S,, above
to be the subtrees T;,, but instead the subtrees T, with respect to some tribe F,, which
weakly agrees about 0(7},). This will ensure that every edge in the boundary 0(S,,) will
be in 0.(T;,). For every edge e € E(T) let us fix a family R. = (R.s: s € S(e)) of
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disjoint rays witnessing the self-similarity of the bough B(e) towards an end w, of G
where init(R,. ;) = s. By taking S,, = T, we guarantee that for each edge in e € 9(5,),
s € S(e) and every H € |JF, the ray HY(R,.,) is an e-ray.

Furthermore, since 0(7},) is finite, we may assume by Lemma 6.8.12 that F,, strongly
agrees about 0(7;,). We can now describe the additional structure that we require for the
induction hypothesis.

At each stage of our construction we will have built some inflated copies of G(S,),
which we wish to extend in the next stage. However, S, will not in general be a finite
subtree, and so we will need some control over where these copies lie in I' to ensure we
have not ‘used up’ all of I'. The control we will want is that there is a finite set of vertices
X, which we call a bounder which separates all we have built so far from the end e. This
will guarantee, since JF is concentrated at e, that we can find arbitrarily large layers of F
which are disjoint from what we’ve built so far.

Furthermore, in order to extend these copies in the next set we will need to be able to
link the boundary of our inflated copies of G(S,,) to this large layer of F. To this end we
will also want to keep track of some structure which allows us to do this, which we call an

extender. Let us make the preceding discussion precise.

DEFINITION 6.9.1 (Bounder, extender). Let F be a thick G-tribe which is concen-
trated at e and strongly agrees about 9(S) for some subtree S of T, and let £ € N. Let
Q = (Q;: 1 € [k]) be a family of disjoint inflated copies of G(S™) in I' (note, S™ depends
on F).

o A bounder for Q is a finite set X of vertices in ' separating each @); in Q from e,
i.e. such that

k
C(X,e)N UQ’ = 0.
i=1

e For A C FE(T),let I(A, k) denote the set {(e,s,i): e € A, s € S(e),i € [k]}.

e An extenderfor Q is a family € = (E.s;: (e,s,1) € 1(0.(5), k)) of e-rays in I" such
that the graphs in £~ U Q are pairwise disjoint and such that init(E. ;) € Q;(s).

e Given an extender £, an edge e € 0.(S) and i € [k] we let

Eei = (Eesi:s€Se)).

Recall that, since € is half-grid like, there is a partial order <, defined on the core
rays of €, see Lemma 6.7.16. Furthermore, if F strongly agrees about 9(S) then, as in
Definition 6.8.7, for each e € J.(5) there is a linear order <x. on S(e).

DEFINITION 6.9.2 (Extension scheme). Under the conditions above, we call a tuple
(X, ) an extension scheme for Q if the following holds:
(ES1) X is a bounder for Q and £ is an extender for Q;
(ES2) € is a family of core rays;
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(ES3) the order <. on &; (and thus on &.;) agrees with the order induced by <z, on
&, for all e € 9,(S) and i € [K];
(ES4) the sets £; are intervals with respect to <. on £~ for all e € 0.(5) and i € [k].

We will in fact split our inductive construction into two types of extensions, which we
will do on odd and even steps respectively.

In an even step n = 2k, starting with a G-tribe Fy, k disjoint inflated copies of G(7})
and an appropriate extension scheme, we will construct @, ;, a further disjoint inflated
copy of G(T}7¢), and an appropriate extension scheme for everything we built so far.

In an odd step n = 2k — 1 (for k > 1), starting with the same G-tribe Fj_; from the
previous step, k disjoint inflated copies of G(T. ;) and an appropriate extension scheme,
we will refine to a new G-tribe Fj, which strongly agrees on 9(7}), extend each copy QF
of G(T;¢,) to a copy Q! of G(T}) for i € [k], and construct an appropriate extension
scheme for everything we built so far.

So, we will assume inductively that for some n € N, with r := |n/2]| and s := [n/2]

we have:

(I1) a thick G-tribe F, in I' which
e is concentrated at ¢;
e strongly agrees about 0(7,.);
e is well-separated from € at 7T,; and
e whenever [ < k < r, T, with respect to F}, is a sub-tree of T, with respect
to Fi.
(I12) a family Q,, = (QF: i € [s]) of s pairwise disjoint inflated copies of G(7.¢) (where
T, is considered with respect to F,) in I';
it n > 1, we additionally require that @)} extends Q?‘l forall e < s—1;
(I3) an extension scheme (X, &,) for Q,;
(I4) if n is even and O.(T}) # 0, we require that there is a set 7, of disjoint core e-rays
disjoint to &, with |7,.| = (|0.(T;)| + 1) - |Ex]-

Suppose we have inductively constructed Q,, for all n € N. Let us define H; :=
Un>2i—1 Q7. Since T)° with respect to Fj is a sub-tree of 7, with respect to F; for
all k& < I, we have J, .7, = T (where we considered 7, w.r.t. F,), and due to the
extension property (12), the collection (H;: i € N) is an infinite family of disjoint G-minors,
as required.

So let us start the construction. To see that our assumptions for the case n =0 we
first note that since Ty = tg, by Lemma 6.8.14 there is a thick subtribe Fy of F which

satisfies (I1). Let us further take

e Qy=E = Xo=10;
e Jy be any suitably large set of disjoint core rays of e.
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The following notation will be useful throughout the construction. Given e € E(T)
and some inflated copy H of G, recall that H*(R.) denotes the family (H¥(R.,): s €
S(e)). Given a G-tribe F, a layer F' € F and a family of rays R in G we will write
FY(R)=(H*(R): He F,ReR).

Construction part 1: n = 2k is even

Case 1: 0.(T}) = 0.

In this case T, = T and so picking any member H € F; with H C C(X,,¢) and
setting Qf} = H(T},©) gives us a further inflated copy of G(7,) disjoint from all the
previous ones. We set Q7' = Q" for all i € [k] and Q, 11 = (Q7™: i € [k + 1]). Using
that Fj, is well-separated from € at T}, there is a suitable bounder X,,.; D X, for Q, 1.
Then (X1, 0) is an extension scheme for Q,,; while Fj remains unchanged.

Case 2: 0.(Ty) # 0. (See Figure 6.9.1)

Consider the family R~ := (J{R.: e € 0.(Tx)}. Moreover, set C := &, U J, and
consider C as in Definition 6.7.19. Let Y C C(X,,,€) be a finite set which is a transition
box between £, and C as in Lemma 6.3.17. Let F' be a flat thick G-subtribe of F such
that each member of F” is contained in C'(X,, UY, ¢), which exists by Lemma 6.8.5 since
both X,, and Y are finite.

Let R be an arbitrary element of R. Let F' € F' be large enough such that we may
apply Lemma 6.3.16 to find a transitional linkage P C C(X, UY,¢) from C to F¥*(R™)
after X,, UY avoiding some member H € F. Note that, since X,, is a bounder and
P C C(X,UY,e), P is disjoint from all Q,, and Y.

Let

Qrtr = H(T,").
Note that QZ]: is an inflated copy of G(T},€). Moreover let QI'*! := Q7 for all i € [k] and
Qni1 = (Q' i € [k + 1)), yielding property (12).

Since Fj, is well-separated from € at Ty, and H € |J Fj, there is a finite set X,,.; C T
containing X,, UY such that C'(X,,41,€) ﬂQZLl = (). This set X, is a bounder for Q,,,.

Since P is transitional, Remark 6.7.23(1) implies that the linkage is preserving on C.
Since all rays in F¥(R™) are core rays, < is a linear order on F*(R™). Moreover, for each
e € 0.(Ty), the rays in H¥(R.) correspond to an interval in this order. Thus, deleting
these intervals from F¥(R™) leaves behind at most |0, (T;)| + 1 intervals in F4(R™) (with
respect to <) which do not contain any rays in H*(R). Since |Ji| = (|0.(T})| + 1) - |Exl,
by the pigeonhole principle there is such an interval on F*(R~) that

— does not contain rays in H+(R); and
— where a subset P’ C P of size |£,| links a corresponding subset A’ C A of C to
rays B in that interval.
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By Lemma 6.7.24 and Remark 6.7.23(1 and 3), and Lemma 6.3.17 there is a linkage P”
from &, to A contained in I'[Y] which is preserving on &, .
For e € 0.(T}) and s € S(e) define

Egj}ﬁ a=H i(Reys) for the corresponding ray R, s € R..

and moreover for each i € [k], we define

E'T = init(E"

e,8,i e,s,i

)(E_ . 07)// A) O7J/ B

By construction, all these rays are, except for their first vertex, disjoint from 9,,.1. More-
over, Eng1 = (ElL: (e,5,1) € 1(0e(Tk), k + 1)) is an extender for Q,41. Note that each
ray in &, shares a tail with a ray in F¥(R™).

We claim that (X,,41,&,41) is an extension scheme for Q,,; and hence property (13)
is satisfied. Since every ray in &,;; has a tail which is also a tail of a ray in F¥(R™),
property (ES2) is satisfied by Remark 6.7.171. Since P’ is preserving on A" and P” is
preserving on &, , Remark 6.7.23(4) implies that the linkage P” 4+ P’ is preserving on &, .
Hence property (ES3) holds for each i € [k]. Furthermore, since E''} | = H*(R.,) for
each e € 0.(T}) and s € S(e), it is clear that property (ES3) holds for i = k + 1. Finally,
property (ES4) holds for ¢ = k + 1 since for each e € 9.(T}), the rays in H*(R.) are an
interval with respect to <. on F+(R ™), and it holds for i € [k] by the fact that P” + P’ is
preserving on &, together with the fact that P” + P’ is preserving on &, links &, to an
interval of F*(R™) containing no ray in H*(R).

Finally note that (I11) is still satisfied by Fy and T}, and (I4) is vacuously satisfied.
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Construction part 2: n =2k — 1 is odd (for k£ > 1).
Let f denote the unique edge of T' between T_1 and Ty, \ Tj_1.

Case 1: f ¢ 0.(T)—1).

Let Fj := Fk_1. Since Fj_1 is well separated from e at T}, it follows that e € 0_.(T})
for every e € 9(Ty) \ O(Tx—1). Hence T,¢ = T;.¢; and O0.(Ty—1) = 0.(Tk), and so we can
simply take Q11 1= Q,, Env1 1= Eny Tk = Tk—1 and X, 11 = X, to satisfy (I1), (12), (I3)
and (14).

Case 2: f € 0.(Tk—1). (See Figure 6.9.1)

By (I1) we can apply Lemma 6.8.16 to Fj;_; in order to find a thick G-tribe Fj, and a
thick flat sub-tribe F* of Fi_1, both concentrated at €, satisfying properties (i)—(vi) from
that lemma. It follows that Fj satisfies (I1) for the next step.

Let F' € F* be a layer of F* such that

|F'| = (0c(Th) +2) - [1(0(Tk), )]

and consider the rays F¥(R;). Consider the rays in the extender corresponding to the
edge f, that is & 1= (E},;: i € [k],s € S(f)). By Lemma 6.7.24, there is, for every subset
S of F¥(Ry) of size |7 | a transitional linkage P C C(X,,€) from & to FHRy) after
X, U init(&,) such that P links & to S, if we view it as a linkage from &, to FY(Ry).
Since all rays in £ and in F¥(R;) are core rays, any such linkage is preserving on &;.

Let us choose Hy, Hy, ..., H, € F and let S = (Hj(Rfﬁs): i€lk],se S(f)). Let P be
the linkage given by the previous paragraph, which we recall is preserving on &;. Since for
every i < k the family (E},,: s € S(f)) forms an interval in &, and the set H(R) forms
an interval in F¥(R) it follows that, after perhaps relabelling the H;, for every i € [k]
and s € S(f), P links 7, to Hf (Ry,).

Let Z C V(I') be a finite set such that T(w,R) and Ll(w, R) are separated by Z
in ' —V(R) for all R € FY(R;) (cf. Lemma 6.7.18).

Since |F| is finite and (7, V) is an extensive tree-decomposition there exists an m € N
such that if e € Ry with dist(f~,e”) = m then H(B(e)) N (X, UZ UV (JP)) = 0. Let
F € Fy, be as in Lemma 6.8.16(vi) for F with such an m.

Hence, by definition, for each H; € F there is some subgraph W; C H(B(e)) which is
an IG[B(f)] such that for each s € S(f), W;(s) contains the first point of W; on Hy (Ry.,).

For each i € [k] we construct QI*! from Q7 as follows. Consider the part of G that
we want to add G(7}¢) to obtain G(7}), namely

D :=G[B(f)] |V+ U U Ble)|.

€€0-e(T)\O=e(Th_1)
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Let K; := W;(D). Note that, this is an inflated copy of D and for each s € S(f) and each
i € [k] the branch set K;(s) contains the first point of K; on Hy(Ry.).

Note further that by the choice of m, all the K; are disjoint to Q,,. Let z; denote
the first vertex on the ray H; (Ry,) in K;, and let

Osi = (B} ;0p F(Ry))xssi-
Then, if we let O; := (Os,: s € S(f)) and O = (O;: s € S(f),i € [k]), we see that
Qitt = Qf ®o, K;
(see Definition 6.4.10) is an inflated copy of G(7) extending Q. Hence,
QM= (@7 i € [K])

is a family satisfying (12).
Since Fj is well-separated from e at T}, and each K; is a subgraph of the restriction

of ﬁz to D, for each K; there is a finite set )A(l separating K; from e, and hence the set

Xor =X, U | X0V (UO)
i€[k]
is a bounder for Q"1
For e € 0.(Ti—1) \ {f}, s € S(e) and i € [k] we set

EM = E" op FJ/(Rf),

e,s,1 e,s,1

and set
E = (E::zl (e,8,4) € I (0(Tr—1) \ {[}, k:))
Moreover, for e € 0.(Tx) \ 0c(Tx—1), s € S(e) and i € [k] we set

E" = HY(R..,),

e,s,i

and set

E" = (Bl (e,8,1) € 1(0.(Tk) \ 0e(Th—1), k)) -

Note that, by construction, such a ray has its initial vertex in the branch set Q7' (s) and
is otherwise disjoint to | Q1. We set £,41 := & UE". It is easy to check that this is an
extender for Q, .

We claim that (X,,41,&,41) is an extension scheme. Property (ES1) is apparent. Since
the G-tribes Fj and F* both strongly agree about d(7}), and every ray in &, shares a
tail with a ray in a member of F; or F* it follows that all rays in &, are core rays, and
so (ES2) holds.

For any e € 0.(Ty—1) \ {f} and ¢ € [k] the rays (&,+1)e; are a subfamily of £, obtained
by transitioning from the family (&,); to F*(R;) along linkage P. By the induction
hypothesis <. agreed with the order induced by <z, _,. on (&,)c;, and since Fj, U Fr_q
strongly agrees about J.(T;—1) \ {f}, this is also the order induced by <z, .. Hence, since
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P is preserving, by Remark 6.7.23(1) it follows that the order induced by <z, . on (&€,41)e.
agrees with <.

For for e € 8.(T}) \ 8:(Ti—1) and i € [k] the rays (E,41)es are (H'(Rey): s € S(e)).
Since H; € F € F;, and Fy strongly agrees about 0(7}), it follows that the order induced
by <z, on (E,11)e; agrees with <.. Hence Property (ES3) holds.

Finally, by Lemma 6.3.20 it is clear that for any e € 0.(Tx—1) \ {f} and i € [k] the rays
(€r41)ei form an interval with respect to <. on &£, ,, since they are each contained in a
connected subgraph H; to which the tails of the rest of &,.1 are disjoint. Furthermore,
by choice of Z and Lemma 6.7.18 it it clear that, since P is preserving on &, , for each
e € 0:(Tk) \ Oc(Ty—1) and i € [k| the rays (£, ), also form an interval with respect to <.
on &, ;. Hence property (ES4) holds and therefore (I3) is satisfied for the next step.

For property (I4) we note that every ray in &, has a tail in some H € F € F*.
Since there is at least one core e-ray in each H € F' € F*, we can find family of at least

|F'| — |&n41| such rays. However since
[F| 2 (0(Tk) +2) - |€nsa

it follows that we can find a suitable family |7|.
This concludes the induction step. ]
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6.9.2. The grid-like case. In this section we will give a brief sketch of how the
argument differs in the case where the end ¢, towards which we may assume our G-tribe
F is concentrated, is grid-like.

In the case where € is half-grid-like we showed that the end e had a roughly linear
structure, in the sense that there is a global partial order <. which is defined on almost
all of the e-rays, namely the core ones, such that every pair of disjoint core rays are
comparable, and that this order determines the relative structure of any finite family of
disjoint core rays, since it determines the ray graph.

Since, by Corollary 6.8.11, RG¢(R.) is a path whenever e € 0.(T}), there are only two
ways that <. can order H¥(R,), and, since d,(T}) is finite, by various pigeon-hole type
arguments we can assume that it does so consistently for each H € |J F, and each &, ;.

We use this fact crucially in part 2 of the construction, where we wish to extend the
graphs (QI': i € [k]) from inflated copies of G(7}¢;) to inflated copies of G(T}¢) along an
edge e € O(Ty_1). We wish to do so by constructing a linkage from the extender &, to
some layer F' € Fy, using the self-similarity of G to find an inflated copy of G(e') which
is ‘rooted’ on the rays H¥(R,.) and extending each Q" by such a subgraph.

However, for this step to work it is necessary that the linkage from &, to F' is such
that for each i € [k] there is some H € F such that ray F,; is linked to H¥(R,,) for
each s € S(e). However, since any transitional linkage we construct between £ and a layer
F e F, will respect <., we can use a transition box to ‘re-route’ our linkage such that the
above property holds.

In the case where € is grid-like we would like to say that the end has a roughly cyclic
structure, in the sense that there is a global ‘partial cyclic order’ C, defined again on
almost all of the e-rays which will again determine the relative structure of any finite
family of disjoint ‘core’ rays.

As before, since RG¢(R.) is a path whenever e € 0.(T,,), there are only two ways that
C. can order H*(R,) (‘clockwise’ or ‘anti-clockwise’) and so we can use similar arguments
to assume that it does so consistently for each H € |JFy and each &, ;, which allows us
as before to control the linkages we build.

To this end, suppose € is a grid-like end, and that N is a number such that no family
of disjoint e-rays has a ray graph which is N-pebble win. We say that an e-ray R is a core
ray (of €) if there is some finite family (R;: i € [n]) of n > N + 3 disjoint e-rays such that
R = R, for some i € [n]".

Every large enough ray graph is a cycle, which has a correct orientation by Lemma
6.7.2 and we would like to say that this orientation is induced by a global ‘partial cyclic
order’ defined on the core rays of e.

By a similar argument as in Section 6.7.3 one can show the following:

6We note that it is possible to show that, if € is grid-like, then in fact N = 3.
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LEMMA 6.9.3. Let R and R’ be disjoint core rays of . Then in G — (V(R) UV (R'))

the end € splits into precisely two different ends.

DEFINITION 6.9.4. Let R and R’ be a core ray of e. We denote by T (e, R, R’) the end
of G — (V(R) UV(R')) containing rays which appear between R and R’ according to the
correct orientation of some ray graph and by L(e, R, R') the end of G — (V(R) UV (R))
containing rays which appear between R’ and R in the correct orientation of some ray
graph.

We will model our global ‘partial cyclic order” as a ternary relation on the set of core
rays of e. That is, a partial cyclic order on a set X is a relation C' C X3 written [a, b, c]
satisfying the following axioms:

e If [a,b, ] then [b, ¢, al.
e If [a, b, c] then not [c, b, a].
e If [a,b,c] and [a, ¢, d] then [a,b,d].

LEMMA AND DEFINITION 6.9.5. Let core(€) denote the set of core rays of e. We define

a partial cyclic order C. on core(e) as follows:
(R, S, T) if and only if R, S, T have disjoint tails xR, yS, 2T and yS € T (e, xR, 2T).

Then, for any disjoint family of at least N + 3 e-rays (R;: i € [n]) the cyclic order
induced on (R;: i € [n]) by C. agrees with the correct orientation.

Again by a similar argument as in Section 6.7.3 on can show that this relation is in
fact a partial cyclic order and that it always agrees with the correction orientation of large
enough ray graphs. Furthermore, by Lemma 6.7.3, given two families R and S of at least
N + 3 disjoint e-rays, every transitional linkage between R and & preserves C., for the
obvious definition of preserving.

Given a disjoint family of w-rays R = (R;: i € [n]) with a linear order < on R we say
that < agrees with C. if [R;, R;, Ry] whenever R; < R; < Ry.

Recall that, given a family F' = (f;: ¢ € I) and a linear order < on I we denote by
F(<) the linear order on F' induced by <, i.e. the order defined by f;F(<)f; if and only
if i < .

We say F strongly agrees about O(T,,) if

e it weakly agrees about 0(7},);

e for each H € |JF every eray R C H is in core(e); and

e for every e € 0.(T},) there is a linear order <z, on S(e) such that H+(R.)(<F.)
agrees with C. on H¥(R.) for all H € |J F.

Using this definition the G-tribe refinement lemma (Lemma 6.8.16) can also be shown
to hold in the case where w is a grid-like-end.
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Furthermore we modify the definition of an extension scheme for a family of disjoint
inflated copies of G(T.°).

DEFINITION 6.9.6 (Extension scheme). Let Q = (Q;: i € [k]) be a family of disjoint
inflated copies of G(S™) and F be a G-tribe which strongly agrees about 9(S). We call
a tuple (X, &) an extension scheme for Q if the following holds:

(ES1) X is a bounder for Q and £ is an extender for Q;

(ES2) £ is a family of core rays;

(ES3) the order C. agrees with £_,(<z,.) for every e € 0.(5);

(ES4) the sets £, are intervals of C. on £~ for all e € 0.(S5) and i € [].

The we can then proceed by induction as before, with the same induction hypotheses.
For the most part the proof will follow verbatim, apart from one slight technical issue.

Recall that, in the case where n is even, we use the existence of the family of rays C to
find a linkage from C to F*(R~) which is preserving on C and similarly, in the case where
n is odd, we do the same for €. In the grid-like case we don’t have to be so careful,
since every transitional linkage from C to F¥(R~) will preserve C,, as long as |C| is large
enough.

However, in order to ensure that |C| and |&,, | are large enough in each step, we should
start by building N + 3 inflated copies of G(7,) in the first step, which can be done
relatively straightforwardly. Indeed, in the case n = 0 most of the argument in the
construction is unnecessary, since a large part of the construction is constructing a new
copy whilst re-routing the the rays &, to avoid this new copy, but & is empty. Therefore
it is enough to choose a layer F' € Fy with |F| > N + 3, with say Hy,..., Hy € F and to
take

Qi = H(T})

for each i € [N 4 3] and to take E_ ; = H}(R.,) for each e € 0.(T}), s € S(e) and

i € [N +3]. One can then proceed as before, extending the copies in odd steps and adding

a new copy in even steps.

6.10. Outlook: connections with well-quasi-ordering and
better-quasi-ordering

Our aim in this section is to sketch what we believe to be the limitations of the
techniques of this paper. We will often omit or ignore technical details in order to give a
simpler account of the relationship of the ideas involved.

Our strategy for proving ubiquity is heavily reliant on well-quasi-ordering results. The
reason is that they are the only known tool for finding extensive tree-decompositions for
broad classes of graphs.

To more fully understand this, let’s recall how well-quasi-ordering was used in the
proofs of Lemmas 6.5.6 and 6.5.12. Lemma 6.5.6 states that any locally finite connected
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graph with only finitely many ends, all of them thin, has an extensive tree decomposition.
The key idea of the proof was as follows: for each end, there is a sequence of separators
converging towards that end. The graphs between these separators are finite, and so are
well-quasi-ordered by the Graph Minor Theorem. This well-quasi-ordering guarantees the
necessary self-similarity.

Lemma 6.5.12, where infinitely many ends are allowed but the graph must have finite
tree-width, is similar: once more, for each end there is a sequence of separators converging
towards that end. The graphs between these separators are not necessarily finite, but they
have bounded tree-width and so they are again well-quasi-ordered.

Note that the Graph Minor Theorem is not needed for this latter result. Instead,
the reason it works can be expressed in the following slogan, which will motivate the

considerations in the rest of this section:

Trees of wombats are well-quasi-ordered precisely when wombats them-

selves are better-quasi-ordered.

Here better-quasi-ordering is a strengthening of well-quasi-ordering introduced by Nash-
Williams in [125] essentially in order to make this slogan be true. Since graphs of bounded
tree-width can be encoded as trees of graphs of bounded size, what is used here is that
graphs of bounded size are better-quasi-ordered.

What if we wanted to go a little further, for example by allowing infinite tree-width
but requiring that all ends should be thin? In that case, all we would know about the
graphs between the separators would be that all their ends are thin. Such graphs are
essentially trees of finite graphs. So, by the slogan above, to show that such trees are well-
quasi-ordered we would need the statement that finite graphs are better-quasi-ordered.

Indeed, this problem arises even if we restrict our attention to the following natural

common strengthening of Theorems 6.1.1 and 6.1.2:

CONJECTURE 6.10.1. Any locally finite connected graph in which all blocks are finite
is ubiquitous.

In order to attack this conjecture with our current techniques we would need better-
quasi-ordering of finite graphs.

Thomas has conjectured that countable graphs are well-quasi-ordered with respect to
the minor relation. If this were true, it could allow us to resolve problems like those
discussed above for countable graphs at least, since all the graphs appearing between
the separators are countable. But this approach does not allow us to avoid the issue
of better-quasi-ordering of finite graphs. Indeed, since countable trees of finite graphs
can be coded as countable graphs, well-quasi-ordering of countable graphs would imply
better-quasi-ordering of finite graphs.

Thus until better-quasi-ordering of finite graphs has been established, the best that we
can hope for — using our current techniques — is to drop the condition of local finiteness
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from the main results of this paper, something which we hope to do in the next paper in
this series [34].



CHAPTER 7

Minimal obstructions for normal spanning trees

Diestel and Leader have characterised connected graphs that admit a nor-
mal spanning tree via two classes of forbidden minors. One class are Halin’s
(No, Nq)-graphs: bipartite graphs with bipartition (A, B) such that |A| = Ny,
|B| = X; and every vertex of B has infinite degree.

Our main result is that under Martin’s Axiom and the failure of the Contin-
uum Hypothesis, the class of forbidden (R, 8;)-graphs in Diestel and Leader’s
result can be replaced by one single instance of such a graph.

Under CH, however, the class of (Rg,N;)-graphs contains minor-incom-
parable elements, namely graphs of binary type, and U-indivisible graphs.
Assuming CH, Diestel and Leader asked whether every (R, ¥;)-graph has an
(Np, N1 )-minor that is either indivisible or of binary type, and whether any two
U-indivisible graphs are necessarily minors of each other. For both questions,

we construct examples showing that the answer is in the negative.

7.1. Introduction

A (graph theoretic) tree is a connected, acyclic graph. A subgraph H of a graph G is
called spanning if H has the same vertex set as GG. Thus, a spanning tree T of a connected
graph G is a connected, acyclic subgraph containing every vertex of GG. A tree is rooted
if it has one designated vertex, called the root. Fixing a root of a graph-theoretic tree
T induces a natural tree order on its vertex set V(7') with the root as unique minimal
element.

A rooted spanning tree T of a graph G is called normal if the end-vertices of any edge
of G are comparable in the natural tree order of T, see e.g [54, §1.5]. Intuitively, all the
edges of G run ‘parallel’ to branches of 7', but never ‘across’. Every countable connected
graph has a normal spanning tree, but uncountable graphs might not, as demonstrated by
complete graphs on uncountably many vertices [54, 8.2.3].

Halin [89, 7.2] observed that as a consequence of a theorem of Jung, the property of
having a normal spanning tree is minor-closed, i.e. preserved under taking (connected)
minors. Here, a graph H is a minor of another graph G, written H < G, if to every vertex
x € H we can assign a (possibly infinite) connected set V, C V(G), called the branch
set of x, so that these sets V,, are disjoint for different x and G contains a V, — V,, edge
whenever xy is an edge of H.

171
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Halin’s observation opens up the possibility of a forbidden minor characterisation for
the property of admitting normal spanning trees. In the universe of finite graphs, the fa-
mous Seymour-Robertson Theorem asserts that any minor-closed property of finite graphs
can be characterised by finitely many forbidden minors, see e.g. [54, §12.7]. Whilst for
infinite graphs, we generally need an infinite list of forbidden minors, Diestel and Leader
have shown that for the property of having a normal spanning tree, the forbidden minors
come in two structural types.

Following Halin, a bipartite graph with bipartition (A, B) is called an (R, Yy)-graph if
|A| = W, |B] = Yy, and every vertex in B has infinite degree.

THEOREM (Diestel and Leader, [58]). A connected graph admits a normal spanning
tree if and only if it does not contain an (Rg, Ny)-graph or an AT-graph (a certain kind of

graph whose vertez set is an order-theoretic Aronszajn tree) as a minor.

In the same paper, they ask how one might further describe the minor-minimal graphs
within the class of (R, N )-graphs.

One family of possibly minimal (Xg,N;)-graphs suggested by Diestel and Leader are
the binary trees with tops, also called (g, 8y )-graphs of binary type: Let A be a binary tree
of countable height, and let B index R;-many branches of A. We form an (X, 8 )-graph
with bipartition (A, B) by connecting every vertex b € B to infinitely many points on its
branch. Details on these graphs can be found in Section 7.2. We can now state our main

result as follows.

THEOREM 7.1.1. Let T be an arbitrary binary tree with tops. Under Martin’s Azxiom
and the failure of the Continuum Hypothesis, the graph T embeds into any other (Wo, ¥y)-
graph as a subgraph.

Answering a question by Diestel and Leader, it follows that it is consistent with the
usual axioms of set theory ZFC that there is a minor-minimal graph without a normal
spanning tree. As a second consequence, we can extend Diestel and Leader’s result as
follows.

THEOREM 7.1.2. Let T be an arbitrary binary tree with tops. Under Martin’s Axiom
and the failure of the Continuum Hypothesis, a graph has a normal spanning tree if and

only if it does not contain T, or an AT-graph as a minor.

However, under the Continuum Hypothesis (CH) the situation is different. Now, there
exist indivisible (Ng, N;)-graphs, i.e. graphs (N, B) where for every partition N = A;UA,,
only one of the induced graphs (A;, B) and (A, B) contains an (R, N;)-subgraph. Note
that for every indivisible graph (N, B) there is a corresponding (non-principal) ultrafilter U
consisting of all subsets A C N such that (A, B) contains an (X, X;)-subgraph. Indivisible
graphs with associated ultrafilter U are also called U -indivisible.
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In [58, 8.1], Diestel and Leader proved that binary trees with tops and indivisible
graphs form two minor-incomparable classes of (Rg, N;)-graphs. Further, they mention
the following two problems involving indivisible graphs:

QUESTION 1 (Diestel and Leader). Assuming CH, does every (Xg,X;)-graph have an
(Ng, Ny )-minor that is either indivisible or of binary type?

QUESTION 2 (Diestel and Leader). Assuming CH, are any two U-indivisible (Ng, N;)-
graphs necessarily minors of each other?

One particular property of (Rg, Ny )-graphs of binary type is that they are almost disjoint
(AD): neighbourhoods of any two distinct B-vertices intersect only finitely (see Section 7.2
for further details). Of course, not every (Ng, N;)-graph has this property, as complete
bipartite graphs show. However, our first result in this paper is that we can always
restrict our attention to almost disjoint (R, Ny )-graphs: In Theorem 7.3.3 below, we show
that every (Ng, X;)-graph has an AD-(Xg, X;)-subgraph.

Once we have made this reduction, we turn towards Questions 1 and 2. In Theo-
rem 7.5.1, we show that Question 1 has a negative answer. Our construction refines a
strategy developed by Roitman and Soukup for the combinatorical analysis of almost dis-
joint families. We then construct in Theorem 7.6.2 two U-indivisible graphs that are not

minor-equivalent, answering Question 2 in the negative.

7.2. Collections of infinite subsets of N, and (X, X;)-graphs

The following connection between collections of infinite subsets of N and (R, Ry )-graphs
will be used frequently in this paper. Let G' be an (g, X;)-graph with bipartition (A, B),
and enumeration B = {b,: a < w;}. Identifying A with the integers N, we can encode
G as (multi-)set (N (by): a < wy) of infinite subsets of N. Conversely, given any multiset
(N, : o < wy) of infinite subsets of N, we can form an (X, 8; )-graph with bipartition (N, B)
by setting N (b,) := N,.

This correspondence allows us to translate graph-theoretic problems about (Rg, X;)-
graphs to the realm of infinite combinatorics. Let A and B be subsets of N. If A\ B is
finite, we say that A is almost contained in B, or A is contained in B mod finite, and write
A C* B. Consequently, A and B are almost equal, A =* B, if A C* B and B C* A (which
means their symmetric difference is finite).

Given any collection P of infinite subsets of N, we say that an infinite set A C N is a
pseudo-intersection for P if A C* P for all P € P. Every countable P that is directed by
C* has a pseudo-intersection.

A collection A of infinite subsets of N is an almost disjoint family (AD-family) if
ANA =*( for all A, A" in A (in other words, if the pairwise intersection of elements of .4
is always finite). By a diagonalisation argument, every infinite AD-family can be extended
to an uncountable AD-family.
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The simplest example of an (Rg, X;)-graph is the complete bipartite graph Ky, x,-
Binary trees with tops as introduced above are strictly smaller (with respect to the minor
relation <) examples of (Xg, 8y )-graphs, as they have the property that |[N(b) N N (V)| < oo
for all b # b € B. Changing our perspective, we see that in this case, the collection
(N (by): o < wy) forms an almost disjoint family on N. Let us call any (Rg, X;)-graph with
this last property an almost disjoint (Xg, N1 )-graph, or for short an AD-(Xg, 8;)-graph.

A tree T = (T,<) in the order-theoretic sense is a partially ordered set 7" with a
smallest element such that all predecessor sets t+ = {s € T': s < t} are well-ordered by <.
The order type of t* is called the height of t, and denoted by ht(t). The set of all elements
of T of height « is denoted by 7 (), and called the o' level of T. A subset S C T of a
tree 7 = (T, <) is an 4nitial subtree if t* C S for all t € S. By T(< a) = Uz, T(B) we
mean the initial subtree of 7 consisting of all elements of T of height at most «.

A linearly ordered subset of T is also called a chain. A branch of a tree T is an
inclusion-maximal chain. The collection of branches is also denoted by B(7). For b a
branch and « an ordinal, b [ « denotes the unique element of b N T'(«). An Aronszajn
tree is an uncountable tree such that all levels and all branches are countable. The binary
tree of countable height is the tree 2<%, the set of all finite binary sequences, ordered by
extension. Similarly, a binary tree of finite height is a tree isomorphic to 2<“(<n) for some
n € N.

In the following, we list some special types of (Xg, X;)-graphs (suggested by Diestel and
Leader [58]), and some well-known types of almost disjoint families (studied by Roitman
and Soukup [138]), all of which will play a role in this paper.

Graph-theoretic perspective (Diestel & Leader).

o T, Let A = 2<% be a binary tree of height w, and B be a set of ¥;-many
branches of A. Any graph isomorphic to some (Xg,N;)-graph formed on the
vertex set AUB by connecting every vertex b € B to infinitely many points on its
branch is called a Ty°”*, or an (R, ®;)-graph of binary type.

o full T,’": As above, but now connect every vertex b € B to all points on its
branch.

e divisible: An (R, N;)-graph with bipartition (A, B) is divisible if there are parti-
tions A = AjUAy and B = B1UB, such that both (A;, By) and (A, By) contain
(Ng, Ny)-subgraphs.

e U-indivisible: For a non-principal ultrafilter U, an (Xg, X;)-graph with bipartition
(N, B) is called U-indivisible if for all A € U we have N(b) C* A for all but
countably many b € B.



7.2. COLLECTIONS OF INFINITE SUBSETS OF N, AND (R, X;)-GRAPHS 175

Set-theoretic perspective (Roitman & Soukup).

e tree-family: An uncountable AD-family A on N is a tree-family if there is a tree-
ordering T of countable height on N so that for every A € A there is a branch of
T which almost equals A.

e weak tree-family: As above, but now it is only required that there is an injective
assignment from A to branches of T such that every A € A is almost contained
in its assigned branch.

e hidden (weak) tree-family: A is a hidden (weak) tree family if for some countable
tree T, {T'Na: a € A} a (weak) tree family.

e anti-Luzin: An AD-family A is anti-Luzin if for all uncountable B C A there are
uncountable C,D C B such that (JC N YD is finite.

Comparing the different notions. There are striking similarities between the graph-
theoretic and the set-theoretic perspective. We gather dependencies between the above
concepts in the following diagram. All these implications are straightforward from the

definitions.
hidden
, weak tree containing 75"
tree family — _ —  weak tree —

family _ subgraph

family
0 TN Il
full T57°  — T5oP anti-Luzin — divisible

A little less straightforward is the fact that none of the arrows in the above diagram
can generally be reversed. This is witnessed by the following examples.

OBSERVATION 7.2.1. Under CH, there is a binary tree with tops which is not a tree
family.

CONSTRUCTION SKETCH. Consider a binary tree order 7 on N and, using CH, enu-
merate its branches B(T) = {b,: @ <w;}. In order to diagonalize against all possible
tree families, enumerate all tree orders of countable height on N as {7,: o < w;}. Now if
|bo, N b| = oo for some branch b of 7T, then choose N, C b, such that N, C* b. Otherwise,
put N, = b,. Then (N,: a < wy) is as desired. O

Hence, the implications ‘tree family — weak tree family’ and “full T, — T5%*’ cannot
be reversed.

Next, if in a full T. 2t°p * one additionally makes all tops adjacent to one special node of
the tree, one obtains a tree family which cannot be a Ty, because in a T3”° without
isolated points on the countable side, only the root of the tree can be simultaneously
adjacent to all tops. In particular, the implications ‘T3”"° — weak tree family’ and ‘full
T3P — tree family’ cannot be reversed.
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Hidden weak tree families need not be anti-Luzin, see [138, p.58]. In particular, the
implications ‘weak tree family — hidden weak tree family’ and ‘anti-Luzin — divisible’
cannot be reversed. In Theorem 7.5.1 below, we construct under CH an anti-Luzin family
which contains no Ty°"° subgraph, so the implications ‘weak tree family — anti-Luzin’
and ‘containing T3 subgraph — divisible’ cannot be reversed. Finally, the implication
‘hidden weak tree family — containing a T3”"° subgraph’ cannot be reversed:

OBSERVATION 7.2.2. Under CH, there is an AD-family (N,: o < wq) containing a
T3 subgraph but which is not a hidden weak tree family.

CONSTRUCTION SKETCH. Consider a binary tree order 7 on N and enumerate its
branches B(7T) = {bs: @ < wi}. Enumerate all tree orders of countable height with
groundset some infinite subset of N as {7,: @ < w;}. Every N, will be the union of at
most two bg, (o) and bg, (). At step o < wi, we have 8 = sup {bg, (1), bg,(): ¥ < @} < wi.
If there is bs with § > 3 such that bs is not almost contained in a single branch of 7,
put N, = bs. If all by with 0 > [ are almost contained in the same branch of 7, put
Ny = bgy1. Otherwise, there are 5;(a) > 5 and fa(a) > B such that bg, () and bg,(a) are
almost contained in different branches of 7,. Put N, = bg, (o) U bgy(a)- Then it is easily
checked that (N,: o < wy) is as desired. O

However, under MA+—-CH, every < ¢-sized AD family is a hidden weak tree family
[138, 4.4], so the last construction cannot be done in ZFC alone.

7.3. Finding almost disjoint (X, X;)-subgraphs

Almost disjoint (N, N;)-graphs are natural candidates for smaller obstruction sets in
Diestel and Leader’s result. In this section, we prove that indeed, every (¥, ®;)-graph
contains an almost disjoint (R, N;)-subgraph.

We say that a collection F of infinite subsets of some countably infinite set has an
almost disjoint refinement if there is a choice of infinite subsets Ar C F' such that A =
{Ap: F € F} is an almost disjoint family.

THEOREM 7.3.1 (Baumgartner, Hajnal and Mate; Hechler). Every < c-sized collection

of infinite subsets of N has an almost disjoint refinement.

The theorem is due to Baumgartner, Hajnal and Mate [18, 2.1], and independently
due to Hechler [94, 2.1]. For convenience, we will indicate the proof below.

COROLLARY 7.3.2. Assume -C'H. FEvery (Ro,Xy)-graph has a spanning AD-(Rg, R;)-
subgraph.

PROOF. An almost disjoint refinement corresponds, in the graph-theoretic perspective,
to a subgraph obtained by deleting, at every vertex on the B-side, co-infinitely many
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incident edges. Since we did not remove any vertices, we obtain indeed a spanning AD-

(Ng, Ny )-subgraph. O

Theorem 7.3.1 does not hold for families of size ¢ (consider the collection of all infinite
subsets of N). Still, we can prove that the corresponding result for subgraphs is true

nonetheless (but we can no longer guarantee spanning subgraphs).
THEOREM 7.3.3. Every (No, Ny )-graph has an AD-(Xg,R;)-subgraph.

First, a piece of notation. Let F be a collection of infinite subsets of N, and A be
an almost disjoint family. Following Hechler, [94], we say that A covers F if for every
F € F, the collection {A € A: |[FF'N A| = oo} is of size | A.

Hechler showed that a collection F of infinite subsets of N has an almost disjoint
refinement if and only if there is an almost disjoint family of size |F| covering F [94,
2.3]. We shall only make use of the backwards implication, the proof of which is nicely
illustrated in the claim below.

PROOF OF THEOREM 7.3.3. Suppose we are given an (Xg, N;)-graph G with biparti-
tion (N, B), an enumeration B = {b,: a < w;} and neighbourhoods N, = N(b,).

CrLAM. If {N,: o < w;} forms an uncountable decreasing chain mod finite (i.e. Ng C*
N, for all a < f3), then G has an AD-(R,, 8, )-subgraph.

For the claim, consider two alternatives. Either, N' = {N,: a < w;} has an infinite
pseudo-intersection A, in which case any uncountable AD-family A = {A,: o < w;} on A
covers { N, : a < wy }. Picking N! = N,NA, readily provides an almost disjoint refinement
of N. And if N does not have an infinite pseudo-intersection, then moving to a subgraph,
we may assume that C, = N, \ N,y is infinite for all @ < w;. Now if & < ( then
CaNCpg C Ny \ Not1 N Np is finite, as Ng\ Nyoqq is finite by assumption. So {Cy: oo < wy}
gives rise to an AD-(R, 8 )-subgraph of G, establishing the claim.

Now suppose there exists an infinite set A C N with the property that for every infinite
C C A there is an uncountable set K¢ = {f <w;: |[N3gNC| = oo0}. Let us construct, by
recursion,

(1) a faithfully indexed set {N,,: @ <w;} C N, and
(2) infinite subsets C, C N, N A such that C, C* Cj for all a > f.

First, let pip = min K4 and put Cy = ANN,,, an infinite subset of A. Next, let oo < wy
and suppose g and Cs have been defined according to (1) and (2) for all 5 < a. Let
C, be an infinite pseudo-intersection of the countable collection {Cj: f < a}. We may
assume that C, C A and let p, = min (Kéa \{us: B < a}). Then C, = C, N N, is as
required.

Once the recursion is completed, we can move to the subgraph on (A, {ua: o < wi})
with neighbourhoods N () given by C,,. By property (2), the claim applies and we obtain
an AD-(Xg, N;)-subgraph.
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Thus, we can assume that every infinite subset of N, and in particular every N, contains
an infinite subset C,, such that K is countable. Recursively, pick an increasing transfinite
subsequence {v,: a < w;} of wy, defined recursively by vy = 0 and

Ve = SUP ({1/5: pf<alU U KCVB> +1 < w.
B<a
We claim that {C,, : a < w;} gives rise to an AD-(Rg, X;)-subgraph of G. It is a subgraph,
since by construction, we have C,, C N(v,). And it is almost disjoint, since given two
arbitrary neighbourhoods C,,_, and C’l,ﬁ with say v, < v, we have C,,, N C’,,ﬁ cC,n Nygs
which is finite since vz ¢ K, by construction. O

For completeness, we provide the proof of Theorem 7.3.1.

PROOF OF THEOREM 7.3.1. Let F = {F,: o < K} be a k < ¢ sized family of infinite
subsets of N. We want to find an almost disjoint family B = {B,: a < k} such that
B, C F, for all o < k.

Step 1: Split each F, into an almost disjoint family S, = {Sg“: E< /€+}, Le. all S¢
are infinite subsets of F,, and Sg' NS¢ is finite whenever § # ¢ < k1. As kT < ¢, this is
always possible. Note that x* is a regular cardinal.

Step 2: From our definition of ‘covering’ after Theorem 7.3.3, it follows that a x*-sized
AD-family S, covers {Fs} iff {Sg N Fj: |S§“ N Fs| = 0o} is a kT -sized AD-family on Fp.

For all @ < x we use
Yo ={0 < k: S, covers {Fz}}

to build a partition of k into (possibly empty) sets {X,: a < x}, defined by Xy = Y} and

Xo =Y\ Uﬁ<aYB'
Step 3: For all a ¢ Yj thereis k(a, 8) < kT such that
Define

F,N Sf‘ < oo forall € > k(a, B).

n=sup{r(a,B): B <k, ¢ Ys} < k™.

Step 4: Here, we pick the almost disjoint refinement. For all 5 there is () such that
B € Xop)- Forall B € X, we choose different £(3) > 7 and define Bs = S?((ﬁﬁ)) N Fj. Since
the X, form a partition of «, this is a well-defined assignment. Now consider 5 < v. We

need to show that Bz N B, is finite.

e If a(f) = a = a(y) then BgN B, C 5S¢z NS, which is finite, since both sets
are elements of the same AD-family S,.

e Otherwise, if say a(f) < a(vy), then v ¢ Yy, so BgN B, C S?(%) N F, is finite
since £(5) > n = k(y, a(B)). O
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7.4. The situation under Martin’s Axiom

In this section we prove that under MA+—CH, any binary tree with tops serves as a
one-element obstruction set for the class of (Rg,N;)-graphs. For background on Martin’s
Axiom, see [106, I11.3]. We begin with a sequence of lemmas.

LEMMA 7.4.1. Under MA+—CH, every (Xo,Nq)-graph contains a spanning subgraph

1somorphic to a binary tree with tops.

PROOF. Let (A, B) be an (Xg,N;)-graph. We want to find an infinite set 77 C A
plus a tree order < on T such that 7 = (T, <) is isomorphic to 2<“, and an injective
map h: B — B(T) (assigning to each element b € B a unique branch of 7) such that
N(b) N h(b) is infinite for all b € B. Once we have achieved this, we delete for every b € B
all edges from b to A\ h(b) to obtain a binary tree with tops with bipartition (T, B). The
remaining vertices in A\ 7" can be easily interweaved with 7 as isolated vertices to obtain
a spanning such subgraph.

To build this tree T, we consider finite approximations (7}, <,) to 7 (which will be
finite initial segments of 7), and then use Martin’s Axiom to find a consistent way to
build the desired full binary tree. Formally, consider the partial order (P, <) consisting of
tuples p = (1},, <p, By, h;,) such that

e 7, C A finite, and <, a tree-order on T, such that (7}, <,) is a binary tree of
some finite height,

e B, C B finite, and

e h,: B, — B((T,,<,)) an injective assignment of branches,

and p < q if

e (T,,<,) is an initial subtree of (7}, <,),

e B, C B,, and

e h, extends h, in the sense h,(b) D h,(b) for all b € B,.

To see that (P, <) is cce, consider an uncountable collection
{Pa = (Ta, <, Ba ha): a < wy} CP.

By the A-System Lemma [106, II1.2.6], there is a finite root R C B and an uncountable
K C wy such that B, N Bz = R for all o # 8 € K. And since there are only countably
many finite subsets of A, each with only finitely many possible tree-orders and branch-
assignments for R, there is an uncountable K’ C K such that (T, <,) = (13, <p) and
he | R =hg | Rforal o # f € K'. But then for any a # € K', ¢ = (T, <.
, B, U Bg, hy Uhg) is a condition below p, and ps (where we possibly have to increase T,
by one level so a suitable extension of h, U hg can be injective).
Next we claim that for all b € B and n € w, the set

Dy, ={pe€P:be B, and |h,(b) N N(b)| > n}
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is dense. To see this, consider any condition ¢ € P and suppose (7,, <,) has height k.
Choose any subset of £, C N(b) \ T, of size n, and extend T, to a full binary tree T}, of
height k& + n, making sure that F, C h,(b).

Finally, by Martin’s Axiom there is a filter G meeting each of our R; < ¢ many dense
sets in D = {Dy,,: b € B,n € w}. Then

T =(T,<) = (UTw U <P>

peEG pEG

is a countable binary tree, and

h: B— B(T), b | hy(b)

is an injective function witnessing that N(b) N h(b) is infinite, for our dense sets make sure
it has cardinality at least n for all n € N. O

We remark that it has been shown in either of [144, Thm. 6], [160, 2.3] or [138,
4.4] (in historical order) that under MA+4—CH, every almost disjoint family of size < ¢
contains a hidden tree family, which together with our Theorem 7.3.3 and the observations
in Section 7.2 implies the result of Lemma 7.4.1.

However, we will now strengthen the claim of Lemma 7.4.1 to hold for full binary trees
with tops. Clearly, binary trees with tops have fewer edges, and are therefore easier to
find as subgraphs than full binary trees with tops. But under Martin’s Axiom, it turns
out that the additional leeway is not needed. Note though that in the previous theorem,
we could find a spanning binary tree with tops. In the next theorem, we can obtain full
binary trees with tops as subgraphs, but can no longer guarantee that they are spanning.

LEMMA 7.4.2. Under MA+—CH, every (No, Ny)-graph contains a full binary tree with
tops as a subgraph.

PROOF. Let (A, B) be an (R, Xy )-graph. We want to find an infinite set 7" C A plus a
tree order < on 7" such that 7 = (T, <) is isomorphic to 2<“, and an uncountable By C B
plus an injective map h: By — B(7T) (assigning to each element b € By a unique branch
of T) such that h(b) C N(b) for all b € Br. Once we have achieved this, we delete for
every b € By all edges from b to T\ h(b) to obtain the desired full binary tree (7', Br)
with tops.

To find this tree 7, we build countably many such trees in parallel, which together take
care of all b € B. Consider the partial order (P, <) consisting of tuples p = (7}, <,, By, hy)
such that

e 7, C A finite, and <, a tree-order on T, such that (7}, <,) is a binary tree of
some finite height,
e B, C B finite,
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e h,: B, — B((T,,<,)) an injective assignment of branches, and
e h,(b) C N(b) for all b € B,
and p < ¢ if
e (T,,<,) is an initial subtree of (7}, <,),
e B, C B, and
e h, extends h, in the sense h,(b) 2 h,(b) for all b € B,,.

As in the proof of Lemma 7.4.1, this partial order is ccc, and hence so is the finite support
product

fin
[[P:={reP: {n:p #1}| < oo}

n<w

by [106, 111.3.43].
We claim that for all b € B, the set D, = {§: In € w s.t. b € By, } is dense in [[™
And indeed, to any condition p which does not yet mention b we can simply add b to a

n<w

free coordinate, even using the empty tree.
So by Martin’s Axiom, there is a filter G meeting every one of our 8; < ¢ many dense
sets in D = {D,: b € B}. It follows that

(Tn,B,) = | U Tp.. | Bp, | :neN

peg peG

is a countable collection of binary trees with tops, such that B = |J, .y Bn. Thus, at least
one of them, say B,, is uncountable. It follows that in (T, Br) = (T, B,) we have found
our full binary tree with tops embedded as a subgraph as desired. 0

We now proceed to showing that under MA, any two binary trees with tops embed
into each other. Consider the binary tree 7' = 2<¢“. A subset B C B(T') of branches is
called dense (or N;-dense) if for every ¢ € T the set B(t) = {b € B: t € b} has size at least
No (or Nj respectively).

It is well known that the Cantor set 2 is countable dense homogeneous, i.e. for every
two countable dense subsets A, B C 2¥ there is a self-homeomorphism f of 2¥ such that
f(A) = B. It is also known that under MA+—CH, this assertion can be strengthened to N;-
dense subsets of 2, see for example [17, 3.2] and [145]. In the following, we shall see that
a mild refinement of this approach, namely adding condition (d) to the partial order below,
also works for (R, Ry)-graphs of binary type. In this condition (d) below, a level 7 (a) of
a tree T is said to separate a collection of branches B C B(7) if B(t) = {b€ B: t € b}
has size at most one for all t € T («).

LEMMA 7.4.3. Under MA+—CH, any two full X;-dense binary trees with tops are iso-

morphic.
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PROOF. Suppose G = (T4, A) and H = (T, B) are two full R;-dense binary trees
with tops. For convenience, we treat a € A as branch of the tree T4. Recall that a [ n
denotes the unique node of the branch a of height n.

It is clear that A and B can be partitioned into X; many disjoint countable dense sets
{As: @ <wi} and {B,: a < w; } respectively. Consider the partial order (P, <) consisting
of tuples p = (f,, gp) such that

(a) f, is a finite injection with dom(f,) C A and ran(f,) C B,

(b) if z € A, then f,(z) € B,,

(c) gp is an order isomorphism between T4 (<n,) and T(<n,) for some n, € N,
(d) Ta(n,) separates dom(f,) and Tg(n,) separates ran(f,),

(e) for all a € dom(f,) we have g,(a [ n,) = f,(a) [ n,,

and define p < ¢ if

e fp, 2 fg and
® gy 2 Gy

To see that (P, <) is cce, consider an uncountable collection

{pa = (faaga): o < wl} C P

Applying the A-System Lemma to all sets of the form I, = {y: A, Ndom(f,) # 0} (for
a < wy), we obtain a finite root R and an uncountable K C w; such that I, NIz = R for
all o # p € K.

Since there are only countably many different finite subsets of A" = (J g Ao, We
may assume that dom(f,) N A" = S = dom(fz) N A’ for all & # f € K. And since
(b) implies that there are only countably many choices for f, [ S, we may assume that
Jo I S=[fs]Sforall «# 3 € K. Finally, since there are only countably many different
Ja, we may assume that all g,: Ta(< n) — Tp(< n) agree.

But now any two conditions in {p,: o € K} are compatible. By (b) and the definition
of R, the map f = f, U fs is a well-defined injective partial map. Extend g, to an order
isomorphism ¢: T4 (< m) — Ts(< m) for some sufficiently large m > n, making sure that
(d) and (e) are satisfied. Then (f, g) is a condition below f, and f3, so (P, <) is ccc.

As our dense sets, we will consider

(1) D, ={p € P: T4(< n) C dom(g,)}, for n € N,
(2) D, ={p€P:acdom(f,)} fora e A, and
(3) Dy={peP:beran(f,)} for b e B.

To see that sets in (1) are dense, consider any condition ¢ = (f,,g,) € P and assume
that dom(g,) = Ta(< m) for some m < n. Since for every ¢t € T(m) there is at most
one a € dom(f;) such that ¢t € a by (d), it is clear that we can extend g, to a function
gp defined on T4(< n) by mapping the upset ¢ in T4 (< n) to the corresponding upset of
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g,()" of T(< n) such that the branch a | ' is mapped to f,(a) | g,(t)". For f, = f, we
have p = (fp, gp) is a condition in D,, below q.

To see that sets in (2) are dense, consider any condition ¢ € P and assume that
a ¢ dom(f,). Say dom(g,) = Ta(< n) for a given n € N. By (1) we may assume that
Ta(n) separates dom(f;) U {a}. Find t € T4(n) such that ¢ € a. Note that a € A, for
some « < wy. By density of B,, we may pick b € B, extending g,(t). Then f, = f,U(a,b)
and g, = g, gives a condition in D, below ¢. The argument for (3) is similar.

Finally, Martin’s Axiom gives us a filter G meeting all specified dense sets. But then
(2) and (3) force that f = (U, fp: A — B is a bijection, and (1) forces that g =
Upeg gp: T4 — T is an isomorphism of trees. In combination with property (¢), we have
gla] = f(a) for all @ € A, and this means, since G' and H were full binary trees with tops,
that fUg: G — H is an isomorphism of graphs. 0

THEOREM 7.4.4. Under MA+—CH, any binary tree with tops embeds into all other
(No, Ny )-graphs as a subgraph.

PROOF. Suppose G = (T4, A) is a binary tree with tops, and H an arbitrary (R, Y;)-
graph. Our task is to embed G into H as a subgraph. By Lemma 7.4.2, we may assume
that H = (T, B) is a full binary tree with tops.

Our plan is (a) to extend G to a full X;-dense binary tree with tops G’, and (b) to find
in H a full R;-dense binary tree with tops H' as a subgraph. Then Lemma 7.4.3 implies
that

G—G =H — H,
establishing the theorem.

Only item (b) requires proof. For this, we observe that every uncountable set of
branches X of a binary tree T contains at least one complete accumulation point, i.e. a
branch z € X such that for every t € x, the set B(t) = {y € X: t € y} is uncountable.
Indeed, otherwise for every x € X there is ¢, such that B(t,) is countable, and hence
X C U, er B(ts) is countable, a contradiction.

It follows that in fact all but at most countably many points of X are complete accu-
mulation points, so without loss of generality, we may assume that every point of B is a
complete accumulation point. Consider T = (J,czb € Ts. Then T} is a (subdivided)
binary tree, so after deleting all non-splitting nodes from 77, we obtain a full N;-dense
binary tree with tops H’ as desired. The proof is complete. 0

7.5. A third type of (X, N;)-graph

In this section we present a counterexample to the main open question from [58, §8],
which is our Question 1 from the beginning.

THEOREM 7.5.1. Under CH, there is an almost disjoint (Ro, 8y)-graph which contains

no (N, Ny)-minor that is indivisible or of binary type.
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Our proof is inspired by the proof strategy of the following result due to Roitman &
Soukup: Under CH plus the existence of a Suslin tree, there is an uncountable anti-Luzin
AD-family containing no uncountable hidden weak tree families [138, 4.6]. Note though,
that not containing a binary (Xg, X;)-graph as a minor or just as a subgraph are stronger
assertions than not containing an uncountable hidden weak tree family.

We shall make use of the following lemma.

LEMMA 7.5.2. Whenever T* is Aronszajn, and B an uncountable set of branches of T*
such that no two elements of B have the same order type, there are incompatible elements

s,t € T* both contained in uncountably many branches of B.

PROOF. The proof follows [138, 4.7]. Consider an Aronszajn tree 7*, and let B be
an uncountable set of branches of 7* such that no two elements of B have the same order
type.

Suppose for a contradiction that whenever s and ¢ are incompatible, then either
B(s) = {b€ B: s € b} is countable or B(t) = {b € B:t € b} is countable. Then S =
{s: B(s) is uncountable} forms a chain, hence is countable. So there is o < w; with
T*(a) NS = (. But now all but countably many elements of B are contained in the
countable set J c7. () B(s), a contradiction. O

PrROOF OF THEOREM 7.5.1. Consider an Aronszajn tree 7", and let B be an un-
countable set of branches of 7* such that no two elements of B have the same order
type.

Using CH, let {7, = (T, <a): @ < wy} enumerate all trees of countable height whose
underlying set is an infinite family of non-empty disjoint subsets of N. For a subset C' C N
we define C(7T,) = {t € T,: C Nt # 0}

Let us construct, by recursion on a < wy,

e families {Cy: t € T*(«)} of infinite subsets of N, and

e countable families B, of branches of 7,,
such that
(a) for all s,t € T* we have C; C* Cs if s < t, and Cs, N Cy =* O if s and ¢ are

incomparable,

(b) for all s #t € T*(a), we have Cs(Ty) N Cy(T,) =* 0, and

(c) for all t € T*(«), if C¢(7,) contains an infinite chain in 7, then there is b € B,
such that Cy(7,) C* b.

For the construction, suppose for some a < w; that we have already constructed
infinite sets C; C N for all ¢ € T* of height strictly less than «. By (a), we may pick for
every t € T*(«) an infinite pseudo-intersection D, of the family {Cs: s < t}. Using that
every level T*(a) of our Aronszajn tree 7* is countable, find an almost disjoint refinement
{D;:te€T*(a)} of {Dy:t € T*(c)}. This can be done either by hand, or by invoking
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Theorem 7.3.1. Similarly, we can find a further refinement {D}: ¢t € T*(«)} such that
DY(To) N DY (T) =* 0 for all s # ¢ € T*(«). This takes care of property (b).

For (c), we use the Aronszajn property to enumerate 7*(a) = {t,: n € N}. Forn € N,
if D (7,) has infinite intersection with some branch of 7, we pick one such branch b,
and pick an infinite subset Cy, C Dy such that Cy,(7) C b,. Otherwise, we simply put
Ci, = D (and let b, be an arbitrary branch). This final refinement preserves (a) and
(b), and after putting B, = {b,: n € N}, we see that also (c) is satisfied.

Having completed the construction, we may pick, by (a), for every branch b € B an
infinite pseudo-intersection N (b) along the branch b, i.e. N(b) C* C, for all t € b. It follows
from (a) that {N(b): b € B} is an almost disjoint family of size w;.

Let G be the almost disjoint (Xg, X;)-graph with bipartition (N, B) where the neigh-
bourhood of b € B is N(b).

CrAM. Property (c¢) implies that no (Rg, Xy)-minor of G is of binary type.

To see the claim, suppose that H = (7, X) is an (g, 8y )-minor of G of binary type.
Since any non-trivial branch set of the bipartite graph G must contain a vertex from N, we
may assume, without loss of generality, that X C B, and that every branch set X; C V(G)
corresponding to a vertex of ¢ € T intersects N. Further, there is an injective function
h: X — Br(T) mapping points in X to branches of T such that Ng(x)(T) N h(z) is
infinite for all z € X.

However, the tree 7 = 7T, appears in our enumeration. Without loss of generality,
X C {be€ B:ht(b) > a}. But then (c¢) implies that ran(h) C B,, which is countable,
contradicting that X is uncountable and h injective.

CrAIM. Property (b) implies that every (Xg, X;)-minor of G is divisible.

Suppose that H = (A, X) is an (g, Ry)-minor of G. As before, we may assume
that X C B and that the branch sets X, C V(G) for a € A intersect N. Note that
X ={X,NN: a € A} is the underlying set of uncountably many of our trees 7.

Now by Lemma 7.5.2, there are incomparable s,t € T* each contained in uncountably
many branches of X. Find a > ht(s),ht(¢) such that X = T,, and find ¢',¢' € T*(«)
extending s and ¢ respectively such that C ={b€ X: s € b} and D ={be X: t' € b} are
both uncountable.

But then (b) implies that Cy(7,) and its complement witness that H is divisible.
Indeed, each b € C has co-finitely many of its neighbours in Cy(7,), since N(b) C* Cy for
all b € C, and similarly, each b € D has co-finitely many of its neighbours in Cy(7,), as
N(b) C* Cy for all b € D. O

Since every AD-family built in the above way satisfying (a) is anti-Luzin [138, 4.10],
we obtain the following corollary.
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COROLLARY 7.5.3. Under CH, there is an uncountable anti-Luzin AD-family which

contains no uncountable hidden weak tree families.

This improves the corresponding result from [138, 4.6], where it was proved under the

additional assumption of the existence of a Suslin tree.

7.6. More on indivisible graphs

In this final section, we investigate indivisible graphs in more detail. Our aim is
to construct a counterexample to Question 2 from the introduction. First however, we
consider the question of when precisely indivisible graphs exist.

We recall two cardinal invariants in infinite combinatorics. The ultrafilter number u
is the least cardinal of a collection U of infinite subsets of N that form a base of some

non-principal ultrafilter on N. In formulas,
u =min {|U|: U C [N]* is a base for a non-principal ultrafilter on N}.

(Recall that U is a base for an ultrafilter V if Y C V and for all V' € V there is U € U such
that U C V.) We call R C [N]* a reaping family if for all A € [N]* there is R € R such
that either [AN R| or |R\ A| is finite. The reaping number v is the least size of a reaping
family. In formulas,

v =min{|R|: R C [N]* and VA € [NJ*TR € R(ANR ="V R\ A =" ()}

THEOREM 7.6.1. The equality uw = wy implies that indivisible (No,Ny)-graphs exist,
whereas v > wy implies they do not exist.

PROOF. Let V be a non-principal ultrafilter and let {U,: o < w;} be a base for V.
We will build an indivisible (R, X;)-graph with bipartition (N, B) as follows. Let B =
{ba: @ <wy}. For every b, we let N(b,) be an infinite pseudo-intersection of the family
(Us)p<a- It is easy to check that this yields a graph as desired.

Conversely, if (N, B) is indivisible, then for every A C N, all but countably many
elements of {N(b) : b € B} are almost contained in A or almost disjoint from A. It follows
that {N(b) : b € B} is a reaping family and therefore t = wy. O

In particular, it is well-known (see [159]) that we have w; < v = 7u < u < ¢, where
mu is the least cardinal of a local m-base of some non-principal ultrafilter on N. Since
it is consistent that w; = u < ¢, it follows that CH is independent of the existence of
indivisible (Rg, N;)-graphs. However, we do not know whether indivisible graphs exist in
the Bell-Kunen model where wy = 7u < u, [19].

Lastly, we observe the following connection between indivisible graphs and m-bases:
The neighbourhoods N (b,) of an U-indivisible (Rg, X;)-graph form a m-base for ¢4. And
conversely, if a family {/V,: a < w;} of infinite subsets of N forms a m-base for a unique
ultrafilter U, then the corresponding (R, N )-graph is indivisible.
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We are now ready to answer Question 2 in the negative.

THEOREM 7.6.2. Assume CH. Let U be a non-principal ultrafilter on the natural
numbers. For every U-indivisible (No, Ny)-graph G there exists an U-indivisible (Rg, Ny)-
graph H such that G £ H.

PRrOOF. Using CH, let {U,: o < w1} be an enumeration of the elements of U, and let
{X4: @ < w;} be an enumeration of all infinite sequences of non-empty disjoint subsets of
N. For a < w; write X, = (X%: n e N) € P(N)".

Suppose G is a U-indivisible (Xg, X;)-graph with bipartition (N, B). We write B =
{ba: @ <wi}. Our graph H will be an (Xg, 8;)-graph with bipartition (N, C') where C' =
{¢a: @ <wi}. Our task is to define suitable neighbourhoods N(c,) for all & < w;. We
will do this as follows. At step o < wy, choose a neighbourhood N(¢,) C N such that

(1) N(co) € Ug for all 5 < a, and

(2) for any 7,6 < a there is n € N(b,) such that N(c,) N X2 = 0.
To build the neighbourhood N (¢,) = {my: k € N} recursively, enumerate the set {Us: 8 <
as {U™: n € N} and {(8,7): 8,7 < a} as {(Bn,m): n € N}

To choose my, note that since the collection {X*: n € N(bg, )} is infinite and disjoint,
there is an index ny € N(bg,) such that X)* ¢ U and X* N {m;: | < k} = 0. Now pick

mg € ﬂ Ul X’W
1<k
This choice of N(c,) = {my: k € N} clearly satisfies (1). To see that it satisfies (2), note
that X% N {m;: [ <k} = by our choice of ng, and X)* N {m;: [ > k} = () by our choice

of the my; for [ > k. This completes the recursive construction of the graph H.
CLAIM. H is U-indivisible.
This is immediate from (1).
CrAIM. G is not a minor of H.

Suppose for contradiction that it is. Without loss of generality, we may assume that
every vertex on the N-side of G has uncountable degree. Write V,,, W, C V(H) (n € N,
a < wq) for the branch sets of the vertices in N and B respectively. By our assumption
on the degrees of the vertices on the N-side of G, it follows that V,, "N # () for all n € N.
Thus, (V, "N: n € N) = X, for some 7 < wy.

Also, since only countably many branch sets can intersect N, there is some § < w; such
that W, = {cﬂ(a)} for all @ > §. Also, since branch sets must be disjoint, the function
f: a B(a) is injective.

Let n = max{vy,0}. We claim that for all « > 7, we have 5(a) < «a. Indeed, W,
needs to have an edge to all V,, for n € N(b,), which requires that cg,) has an edge to
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X7 for all n € N(b,). However, if a < f(«), then this is impossible, as (2) implies that
N(cp(a)) N X, = 0 for at least one ng € N(ba).

Thus, we have f(«) < « for all @ > 7. By Fodor’s Lemma [106, I11.6.14], however,
this implies that the map [ is constant on an uncountable subset of w, contradicting its

injectivity. U

QUESTION 3. Assume CH. Is it true that for every U-indivisible (Rg, X;)-graph G
there exists a U-indivisible (Xg, X;)-graph H such that both G £ H and H £ G?
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CHAPTER 8

Hamilton decompositions of one-ended Cayley graphs

We prove that any one-ended, locally finite Cayley graph G(I',S), where '
is an abelian group and S is a finite generating set of non-torsion elements,
admits a decomposition into edge-disjoint Hamiltonian (i.e. spanning) double-
rays. In particular, the n-dimensional grid Z™ admits a decomposition into n

edge-disjoint Hamiltonian double-rays for all n € N.

8.1. Introduction

A Hamiltonian cycle of a finite graph is a cycle which includes every vertex of the graph.
A finite graph G = (V| E) is said to have a Hamilton decomposition if its edge set can
be partitioned into disjoint sets £ = EyUE,U---UE, such that each E; is a Hamiltonian
cycle in G.

The starting point for the theory of Hamilton decompositions is an old result by Walecki
from 1890 according to which every finite complete graph of odd order has a Hamilton
decomposition (see [4] for a description of his construction). Since then, this result has
been extended in various different ways, and we refer the reader to the survey of Alspach,
Bermond and Sotteau [5] for more information.

Hamiltonicity problems have also been considered for infinite graphs, see for example
the survey by Gallian and Witte [167]. While it is sometimes not obvious which objects
should be considered the correct generalisations of a Hamiltonian cycle in the setting of
infinite graphs, for one-ended graphs the undisputed solution is to consider double-rays,
i.e. infinite, connected, 2-regular subgraphs. Thus, for us a Hamiltonian double-ray is then
a double-ray which includes every vertex of the graph, and we say that an infinite graph
G = (V, E) has a Hamilton decomposition if we can partition its edge set into edge-disjoint
Hamiltonian double-rays.

In this paper we will consider infinite variants of two long-standing conjectures on
the existence of Hamilton decompositions for finite graphs. The first conjecture concerns
Cayley graphs: Given a finitely generated abelian group (I', 4+) and a finite generating set
S of T', the Cayley graph G(T',S) is the multi-graph with vertex set I' and edge multi-set

{(z,x4+g) : x€l,ge S}

191
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CONJECTURE 8.1.1 (Alspach [2, 3]). IfT" is an abelian group and S generates G, then
the simplification of G(I', S) has a Hamilton decomposition, provided that it is 2k-reqular
for some k.

Note that if SN —S = (), then G(T', S) is automatically a 2|S|-regular simple graph.
If G(T',S) is finite and 2-regular, then the conjecture is trivially true. Bermond, Favaron
and Maheo [22] showed that the conjecture holds in the case k = 2. Liu [113] proved
certain cases of the conjecture for finite 6-regular Cayley graphs, and his result was further
extended by Westlund [164]. Liu [114, 115] also gave some sufficient conditions on the
generating set S for such a decomposition to exist.

Our main theorem in this paper is the following affirmative result towards the corre-
sponding infinite analogue of Conjecture 8.1.1:

THEOREM 8.1.2. Let T' be an infinite, finitely generated abelian group, and let S be
a generating set such that every element of S has infinite order. If the Cayley graph
G = G(I',S) is one-ended, then it has a Hamilton decomposition.

We remark that under the assumption that elements of S are non-torsion, the sim-
plification of G(T",S) is always isomorphic to a Cayley graph G(I",S") with S" C S and
S'N—S" = (), and so our theorem implies the corresponding version of Conjecture 8.1.1 for
non-torsion generators, in particular for Cayley graphs of Z" with arbitrary generators.

In the case when G = G(I', §) is two-ended, there are additional technical difficulties
when trying to construct a decomposition into Hamiltonian double-rays. In particular,
since each Hamiltonian double-ray must meet every finite edge cut an odd number of
times, there can be parity reasons why no decomposition exists. One particular two-ended
case, namely where I' = Z, has been considered by Bryant, Herke, Maenhaut and Webb
[40], who showed that when G(Z,S) is 4-regular, then G' has a Hamilton decomposition
unless there is an odd cut separating the two ends.

The second conjecture about Hamiltonicity that we consider concerns Cartesian prod-
ucts of graphs: Given two graphs G and H the Cartesian product (or product) GOH is the
graph with vertex set V(G) x V(H) in which two vertices (g, h) and (¢, h’) are adjacent
if and only if either

e g = ¢ and h is adjacent to b/ in H, or
e h =1 and g is adjacent to ¢’ in G.

Kotzig [103] showed that the Cartesian product of two cycles has a Hamilton decompo-
sition, and conjectured that this should be true for the product of three cycles. Bermond
extended this conjecture to the following:

CONJECTURE 8.1.3 (Bermond [21)). If Gy and Go are finite graphs which both have

Hamulton decompositions, then so does G1G,.
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Alspach and Godsil [6] showed that the product of any finite number of cycles has a
Hamilton decomposition, and Stong [147] proved certain cases of Conjecture 8.1.3 under
additional assumptions on the number of Hamilton cycles in the decomposition of G; and
G5 respectively.

Applying techniques we developed to prove Theorem 8.1.2, we show as our second
main result of this paper that Conjecture 8.1.3 holds for countably infinite multi-graphs.

THEOREM 8.1.4. If G and H are countable multi-graphs which both have Hamilton
decompositions, then so does their product GLUIH .

Note that the restriction to countable multi-graphs, i.e multi-graphs with countably
many vertices and edges, is necessary. Indeed the existence of a spanning double ray
implies that G and H have countable vertex sets. But then if G contains a countable
edge cut, then so does GLIH. However, if H has uncountably many edges, then any
Hamilton decomposition of GLIH must consist of uncountably many edge-disjoint double-
rays, contradicting the existence of a countable edge cut.

The paper is structured as follows: In Section 8.2 we mention some group theoretic
results and definitions we will need. In Section 8.3 we state our main lemma, the Covering
Lemma, and show that it implies Theorem 8.1.2. The proof of the Covering Lemma will be
the content of Section 8.4. In Section 8.5 we apply our techniques to prove Theorem 8.1.4.
Finally, in Section 8.6 we list open problems and possible directions for further work.

8.2. Notation and preliminaries

If G = (V,E)is agraph, and A, B C V, we denote by E(A, B) the set of edges between
Aand B, ie. E(A,B)={(z,y) € E:x € A,y € B}. For ACV or F C E we write G[A]
and G[F] for the subgraph of G induced by A and F' respectively.

For A, B C T subsets of an abelian group I" we write —A := {—a: a € A} and A +
B:={a+b:acAbe B} CT. If Aisa subgroup of I', and A C I' a subset, then
A% = {a+ A: a € A} denotes the family of corresponding cosets. If ¢ € T' we say that
the order of g is the smallest k£ € N such that k-g = 0. If such a k exists, then g is a torsion
element. Otherwise, we say the order of ¢ is infinite and g is a non-torsion element. For
k € N we write [k] = {1,2,...,k}.

The following terminology will be used throughout.

DEFINITION 8.2.1. Given a graph G, an edge-colouring c¢: E(G) — [s] and a colour
i € [s], the i-subgraph is the subgraph of G induced by the edge set ¢'(i), and the
i-components are the components of the i-subgraph.

DEFINITION 8.2.2 (Standard and almost-standard colourings of Cayley graphs). Let
I be an infinite abelian group, S = {g1,¢2,...,9s} a finite generating set for I" such that
every g; € S has infinite order, and let G be the Cayley graph G(T', S).
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e The standard colouring of G is the edge colouring csq: F(G) — [s] such that
cstd((x,m -+ gz)) =i foreach x €', g; € S.

e Given a subset X C V(G) we say that a colouring c is standard on X if ¢ agrees
with cgq on G[X]. Similarly if F C E(G) we say that ¢ is standard on F if ¢
agrees with cgq on F.

e A colouring c¢: E(G) — [s] is almost-standard if the following are satisfied:

— there is a finite subset F' C E(G) such that ¢ is standard on E(G) \ F;
— for each i € [s] the i-subgraph is spanning, and each i-component is a double-

ray.

DEFINITION 8.2.3 (Standard squares and double-rays). Let I" and S be as above. Given
rel'and g, # g; € S, we call

an (i, j)-square with base point x, and
e (z,9:) = {(v +ngi,z+ (n+1)gi): n € Z}

an i-double-ray with base point x.
Moreover, given a colouring c: E(G(I',S)) — [s] we call B(z,g;,g;) and «~(z,g;)
an (4, j)-standard square and i-standard double-ray if c is standard on M(zx,g¢;,g;) and

o~ (, g;) Tespectively.

Since I' is an abelian group, every M(z, g;, g;) is a 4-cycle in G(I', S) (provided g; #
—g;), and since S contains no torsion elements of I', «~(z, gi) really is a double-ray in
the Cayley graph G(T',.5).

Let I be a finitely generated abelian group. By the Classification Theorem for finitely
generated abelian groups (see e.g. [75]), there are integers n,q,...,q. such that I' =
Z" & @;_, Z,,;, where Z, is the additive group of the integers modulo ¢. In particular, for
each I' there is an integer n and a finite abelian group I's, such that I' = Z™ & I'y,.

The following structural theorem for the ends of finitely generated abelian groups is

well-known:

THEOREM 8.2.4. For a finitely generated group I' = Z" ® 1'fy, the following are equiv-
alent:
on =2,
e there erists a finite generating set S such that G(I', S) is one-ended, and
e for all finite generating sets S, the Cayley graph G(I',S) is one-ended.

PROOF. See e.g. [141, Proposition 5.2] for the fact the number of ends of G(I',S)
is independent of the choice of the generating set S, and [141, Theorem 5.12] for the
equivalence with the first item. O
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A group I satisfying one of the conditions from Theorem 8.2.4 is called one-ended.

COROLLARY 8.2.5. Let T' be an abelian group, S = {g1,...,9s} be a finite generating
set such that the Cayley graph G(I',S) is one-ended. Then, for every g; € S of infinite
order, there is some g; € S such that {(g;, g;) = (Z*,+).

PROOF. Suppose not. It follows that in I'/(g;) every element has finite order, and
since it is also finitely generated, it is some finite group I'y such that I' = Z @ I'y. Thus,
by Theorem 8.2.4, G is not one-ended, a contradiction. 0]

8.3. The covering lemma and a high-level proof of the main theorem

Every Cayley graph G(I', S) comes with a natural edge colouring cyq, where we colour
an edge (z,x+ g;) with x € T" and g; € S with the index i of the corresponding generating
element g;. If every element of S has infinite order, then every i-subgraph of G(I', S) con-
sists of a spanning collection of edge-disjoint double-rays, see Definitions 8.2.1 and 8.2.2.
So, it is perhaps a natural strategy to try to build a Hamiltonian decomposition by com-
bining each of these monochromatic collections of double-rays into a single monochromatic
spanning double-ray.

Rather than trying to do this directly, we shall do it in a series of steps: given any
colour i € [s] where s = |S| and any finite set X C V(G), we will show that one can
change the standard colouring at finitely many edges, in particular only edges outside of
X, so that there is a single double-ray in the colour ¢ which covers X. Moreover, we
can ensure that the resulting colouring maintains enough of the structure of the standard
colouring that we can repeat this process inductively: it should remain almost-standard,
i.e. all monochromatic components are still double-rays, see Definition 8.2.2. By taking an
appropriate sequence of sets X; C X5 C - exhausting the vertex set of G, and varying
which colour 7 we consider, we can ensure that in the limit, each colour class consists of a
single spanning double-ray, giving us the desired Hamilton decomposition.

In this section, we formulate our key lemma, namely the Covering Lemma 8.3.1, which
allows us to do each of these steps. We will then show how Theorem &8.1.2 follows from

the Covering Lemma. The proof of the Covering Lemma is given in Section 8.4.

LEMMA 8.3.1 (Covering lemma). Let T' be an infinite, one-ended abelian group, S =
{91,92,--.,9s} a finite generating set such that every g; € S has infinite order, and G =
G(T',S) the corresponding Cayley graph.

Then for every almost-standard colouring ¢ of G, every colour i and every finite subset
X CV(Q), there exists an almost-standard colouring ¢ of G such that

e ¢ =c on E(G[X]), and

e some t-component in ¢ covers X.
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PROOF OF THEOREM 8.1.2 GIVEN LEMMA 8.3.1. Fix an enumeration V(G) = {v,,: n € N}.
Let Xo=Dy=D", =...=D" ., ={v} and ¢y = ¢ya. For each n > 1 we will recur-
sively construct almost-standard colourings ¢, : E(G) — [s], finite subsets X,, C V(G), (n
mod s)-components D,, of ¢, and finite paths D!, C D,, such that for every n € N
(1) X1 U{v,} C X,

(2) V(D)) € X,
(3) X, CV(D)),
(4) D!, properly extends the path D! __ (the ‘previous’ path of colour n mod s) in
both endpoints of D! ., and
(5) ¢, agrees with ¢,—; on E(G[X,)]).

Suppose inductively for some n € N that ¢,,, X,,, D,, and D,, have already been defined.
Choose some X,,11 2 X, U{v,} large enough such that (1) and (2) are satisfied. Applying
Lemma 8.3.1 with input ¢, and X,,,; provides us with a colouring ¢, such that (5) is
satisfied and some (n + 1 mod s)-component D, 1 covers X, 1. Since ¢,.; is almost-
standard, D,,;; is a double-ray. Furthermore, since ¢, agrees with ¢, on E(G[X,1]),
by the inductive hypothesis it agrees with ¢, on E(G[Xy41]) for each k < n.

Therefore, since D), . C X, 4o is a path of colour (n 4+ 1 mod s) in ¢pyq_g, it
follows that D], ,_, C D, and so we can extend D;,_,_, to a sufficiently long finite path
D;, .y € Dy such that (3) and (4) are satisfied at stage n + 1.

Once the construction is complete, we define T1,...,T, C G by

= |J D,
n=i mod s

and claim that they form a decomposition of GG into edge-disjoint Hamiltonian double-rays.
Indeed, by (4), each T; is a double-ray. That they are edge-disjoint can be seen as follows:
Suppose for a contradiction that e € E(T;) N E(1;). Choose n(i) and n(j) minimal such
that e € E(D,;) € E(T;) and e € E(D,;)) C E(T}). We may assume that n(i) < n(j),
and so e € E(G[X,)+1]) by (2). Furthermore, by (5) it follows that c,(;) agrees with ¢,
on E(G[Xn4)41]). However by construction c,gjy(e) = j # i = cn()(e) contradicting the
previous line.

Finally, to see that each 7; is spanning, consider some v, € V(G). By (1), v, € X,.
Pick n’ > n with n’ =4 mod s. Then by (3), D!, C T; covers X,, which in turn contains
Un, as v, € X, € X, by (1). O

8.4. Proof of the Covering Lemma

8.4.1. Blanket assumption. Throughout this section, let us now fix

e a one-ended infinite abelian group I' with finite generating set S = {g1,...,9s}
such that every element of S has infinite order,
e an almost-standard colouring ¢ of the Cayley graph G = G(T', S),
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e a finite subset X C I' such that ¢ is standard on V(G) \ X,

e a colour 7, say ¢ = 1, and corresponding generator g; € .S, for which we want to
show Lemma 8.3.1, and finally

e a second generator in S, say ¢, such that A := (g1, ¢2) = (Z* +), see Corol-
lary 8.2.5.

8.4.2. Overview of proof. We want to show Lemma 8.3.1 for the Cayley graph G,
colouring ¢, generator ¢g; and finite set X. The cosets of (g1, ¢g2) in I" cover V(G), and in
the standard colouring the edges of colour 1 and 2 form a grid on (g1, go). So, since c is
almost-standard, on each of these cosets the edges of colour 1 and 2 will look like a grid,
apart from some finite set.

Our aim is to use the structure in these grids to change the colouring ¢ to one satisfying
the conclusions of Lemma 8.3.1. It will be more convenient to work with large finite grids,
which we require, for technical reasons, to have an even number of rows. This is the reason

for the slight asymmetry in the definition below.

NOTATION 8.4.1. Let g;,9; € I'. For N, M € N we write
(Gi» 9N :={ngi+mg;:n,meZ, —N <n<N, —-M <m< M} C(g,g;) CT.

The structure of our proof can be summarised as follows. First, in Section 8.4.3,
we will show that there is some Ny and some ‘nice’ finite set P of representatives of
cosets of (g1, g2) such that P+ (g1, g2) n,.v, covers X. We will then, in Section 8.4.4 pick
sufficiently large numbers Ny < N; < Ny < N3 and consider the grids P + (g1, 92) Ny N, -
Using the structure of the grids we will make local changes to the colouring inside P +
({91, 92)Ns.Ny \ (91, 92) N N,) tO construct our new colouring ¢. This new colouring ¢ will
then agree with ¢ on the subgraph induced by P + (g1, g2) ny.v, 2 X, and be standard on
V(G)\ (P + (91, 92) N, Nl), and hence, as long as we ensure all the colour components are
double-rays, almost-standard.

These local changes will happen in three steps. First, in Step 1, we will make local
changes inside z¢ + ({91, 92) Ny, Ny \ (91, 92) No, N, ) for each z, € P, in order to make every
i-component meeting P + (g1, g2) n,.n, @ finite cycle.

Next, in Step 2, we will make local changes inside x; + ({91, g2) No. 3, \ (91, 92) Ny N, ) fOT
each z, € P, in order to combine the cycles meeting this translate of the grid into a single
cycle.

Finally, in Step 3, we will make local changes inside P + ({91, 92) ny.vy \ (915 G2) No.No )
in order to join the cycles for different z, into a single cycle covering P+ (g1, g2) ny.n,- We

then make one final local change to turn this finite cycle into a double-ray.
8.4.3. Identifying the relevant cosets.

LEMMA 8.4.2. There exist Ny € N and a finite set P = {xq,...,z;} CT such that
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o PA={zg+ A, ...,z + A} is a path in GT/A,(S'\ {91’92})A>’ and
e X CP+ <91792>N07N0'

PROOF. Since X is finite, there is a finite set Y = {y1,...,yx} C I such that the
cosets in Y2 = {y; + A, ..., yx + A} are all distinct and cover X. Moreover, since every
(ye + A) N X is finite, there exists Ny € N such that

(e +(91,92)) N X = (ye + (91, 92) no,vo) N X

for all 1 << k. Then X CY + (g1, 92)Ny.No -

Next, by a result of Nash-Williams [122], every Cayley graph of a countably infinite
abelian group has a Hamilton double-ray, and it is a folklore result (see [167]) that every
Cayley graph of a finite abelian group has a Hamilton cycle. So in particular, the Cayley
graph of (I/A, (S \ {g1,92})*), has a Hamilton cycle or double-ray, say H. Let P D Y
be a finite set of representatives of the cosets of A such that P? is the set of vertices of a
subpath of H. It is clear that P is as required. [

e For the rest of this section let us fix Ny € N and P = {x,...,2;} C T to be as
given by Lemma 8.4.2.

8.4.4. Picking sufficiently large grids. In order to choose our grids large enough to
be able to make all the necessary changes to our colouring, we will first need the following
lemma, which guarantees that we can find, for each k£ # 1,2 and x € I', many distinct
standard k-double-rays which go between the cosets = + A and (z + gx) + A.

LEMMA 8.4.3. For any g, € S\ {¢1,92} and any pair of distinct cosets x + A and

(gr + ) + A, there are infinitely many distinct standard k-double-rays R for the colouring
c with E(R)NE(x+ A, (g +2) + A) # 0.

PRrROOF. It clearly suffices to prove the assertion for ¢ = ¢iq. We claim that either
Ry ={ew(x+mgr,gx): m €L} or Ry = {e~(x+ mgs,gx): m € Z}

is such a collection of disjoint standard k-double-rays.

Suppose that R is not a collection of disjoint double-rays. Then there are m # m' € Z
and n,n’ € Z such that

mgy + ngi = m'g1 + n'gy.
Since ¢g; has infinite order, it follows that n # n’, too, and so we can conclude that there
are (,0' € Z \ {0} such that £g; = ¢'g;. Similarly, if Ry is not a collection of disjoint
double-rays, then we can find ¢q,¢" € Z\ {0} such that qgo = ¢’gx. However, it now follows
that
q'lgr = q'(Cgr) = U'(q'gr) = C'qg2,

contradicting the fact that (g1, g2) = (Z?,+). This establishes the claim.
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Finally, observe that if say R is a disjoint collection, then for every R,, = «~(x 4+ mgy, gx) €

Ry we have (x +mgi,z +mg1 + gx) € E(R,) N E(x + A, (gr + ) + A) as desired. O

We are now ready to define our numbers Ny < N; < Ny < N3. Recall that Ny and
P = {xo,..., x4} are given by Lemma 8.4.2. For each ¢ € [t], let g, be some generator
in S\ {g1, g2} that induces the edge between z,_; + A and z, + A on the path P>. Note

that n(¢) € [s] \ {1,2} for all /.
By Lemma 8.4.3, we may find ¢*> many disjoint standard double-rays

R={R}: 1<k (<1t}
such that for every ¢, the double-rays in { R} = «~(y}, gu(0)) : k € [t]} are standard n(()-
double-rays containing an edge
ef = (Y0, Y0 + 9nw) € E(RY) N Bz + Az + A)

so that all T} = I(yf . 1, gn(g)) are (1,n(¢))-standard squares for ¢ which have empty in-
tersection with {x,_1, 2} + (91, 92) Ny N, - Furthermore we may assume that these standard
squares are all edge-disjoint. Then

e let Ny > N, be sufficiently large such that the subgraph induced by P+(g1, g2) Ny —3,n, -3

contains all standard squares T mentioned above.
e Let N, be arbitrary with Ny > 5/V;.
e Let N3 be arbitrary with N3 > Ny + 2/V;.

8.4.5. The cap-off step. Our main tool for locally modifying our colouring is the
following notion of ‘colour switchings’, which is also used in [113]. Informally, given a
four cycle on which the edge colouring alternates between two colours, to perform a colour

switching on this square we exchange the colours of the edges.

DEFINITION 8.4.4 (Colour switching of standard squares). Given an edge colouring
c: E(G(I',S)) — [s] and an (i,j)-standard square B(z,g;,g;), a colour switching on
B(z, g;, g;) changes the colouring ¢ to the colouring ¢’ such that
o /=con £\ Mz, g,g,),
° c’((x,:z: +gi)) = c’((:v +g;, v+ g + gj)) =7,
o d((z,249;)) = ((x+gix+g:i+9g5) =i

It would be convenient if colour switchings maintained the property that a colouring
is almost-standard. Indeed, if ¢ is standard on E(G) \ F then ¢ is standard on E(G) \
(FFUM(z,g;,9;)). Also, it is a simple check that if the ¢ and j-subgraphs of G for ¢ are
2-regular and spanning, then the same is true for ¢. However, some ¢ or j-components

may change from double-rays to finite cycles, and vice versa.

STEP 1 (Cap-off step). There is a colouring ¢’ obtained from ¢ by colour switchings of
finitely many (1, 2)-standard squares such that
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e ¢ =con E(G[X]);

e every l-component in ¢ meeting P+ (g1, g2)n,.n, is a finite cycle intersecting both
P+ ({91, 92) ns,3 \ (91, 92) Novy) and P+ (g1, 92) Ny v 5

e every other 1-component, and all other components of all other colour classes of
¢ are double-rays;

e ( is standard outside of P+(g1, g2) ns.n, and inside of P+({g1, g2) ny.n, \ (g1, 92) No.No );

for each x, € P, the set of vertices

{z; 4+ ng + mga: Ny < |n| < Nyym € {Ny,N; — 1}}
is contained in a single 1-component of ¢

PROOF. For ¢ € [t] and ¢ € [Nq] let Rf; = I(vf;,gl,gQ) and Lf; = I(ws,gl,gg) be
the (1,2)-squares with base point v; = ¢+ (N3 +1—2¢) - g1 + (N1 + 1 — 2¢) - g» and
wh =1y — (N3 +2—2q) - g1 + (N + 1 — 2q) - go respectively. The square L is the mirror
image of Ré with respect to the y-axis of the grid z, + (g1, ¢g2), however the base points
are not mirror images, accounting for the slight asymmetry in the definitions.

Since N3 > Ny + 2Ny, it follows that

RUULL C E(ze+ ({91, 92) Nayn \ (91, 92) N, )

for all ¢ € [NV1], and so by assumption on ¢, all Rf; and Lf; are indeed standard (1,2)-
squares. We perform colour switchings on R, and LY for all £ € [t] and ¢ € [N1], and call
the resulting edge colouring ¢'. It is clear that ¢ = ¢ on E(G[X]) and that ¢ is standard
outside of P + (g1, g2)ny.n, and inside of P + ({g1,92) vy \ (91, 92)Ng.No)- Let C C G

X [ PO I O A X

i
%
»

oLy

0+ (91, 92) No,Ng

x ERAS x

(917 92>N1,N1
<gl7 g2>N2,N1

<gl7 92>N3,N1

FI1GURE 8.1. Performing colour switchings of standard squares at positions
indicated by ‘x" in a copy z; + (g1, g2) N5, N, Of a finite grid.

denote the region consisting of all vertices that lie in z; 4 ({91, g2) Ny, for some ¢ between
a pair Lg and Rg for some ¢, i.e.

t N 2

C=JU U {ae+ng + (N1 +m —29)g>: [n] < Ny + 1 - 24}

{=1g=1m=1
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Then P + (g1, 92)n,.n, € C. By construction, there are no edges of colour 1 in ¢ leaving
C, that is, E(C,V(G)\ C)Nd~1(1) = 0. In particular, since the 1-subgraph of G under
¢ remains 2-regular and spanning, as remarked above, all 1-components under ¢ inside C
are finite cycles, whose union covers C'.

Also, since each 1-component of ¢ is a double-ray, it must leave the finite set P +
(g1, 92) NN, and hence meets some RS or Lg. Therefore, by construction each 1-component
of ¢ inside C' meets some RY or L and so, since ¢ is standard outside of P+ (g1, g2) vy,
except at the squares R} or Lf, each such 1-component meets both P + ({g1,g2)ns n, \
(91, 92) vo,vy) and P+ (g1, g2) vy v, -

Moreover, all other colour components remain double-rays. This is clear for all k-
components of G if k # 1,2 (as the colours switchings of (1,2)-standard squares did not
affect these other colours). However, it is also clear for the 1-coloured double-rays outside
of C' and also for all 2-coloured components, as we chose our standard squares Rf; and Lg
‘staggered’, so as not to create any finite monochromatic cycles, see Figure 8.1 (recall that
every xy + A is isomorphic to the grid).

Finally, since N7 > Ny, the edge set

{(ze+ng1 + Niga, xe + (n + 1)g1 + Niga): — N3 < |n| < N3 — 1}
U {(v1, 01 + o), ((w) + g1, 0y + g1+ g2)) }
U{(ze+ng1+ (N1 = D)g2,ze + (n+ 1)g1 + (N1 = 1)g2)} : =Ns <n < =Ny
U{(ze+ngi+ (N1 —1)go,ze+(n+1)g1 + (N1 —1)g2)} : Ny <n < Nj

meets only RY and L{ and therefore is easily seen to be part of the same 1-component
of ¢. In Figure 8.1, these edges correspond to the red line at the top, and the two lines
below it on either side of x; + (g1, g2) Ny, - O

8.4.6. Combining cycles inside each coset of A. In the previous step we chose
the (1, 2)-standard squares at which we performed colour switchings in a staggered manner
in the grids x; + (g1, g2) n5.n,» SO that we could guarantee that all the 2-components were
still double-rays afterwards. In later steps we will no longer be able to be as explicit
about which standard squares we perform colour switchings at, and so we will require the
following definitions to be able to say when it is ‘safe’ to perform a colour switching at a

standard square.

DEFINITION 8.4.5 (Crossing edges). Suppose R = {(v;,v;41): ¢ € Z} is a double-ray
and e; = (vj,,v;,) and ey = (vy,, vk,) are edges with j; < jo and k1 < ke. We say that e;
and ey cross on R if either j; < k1 < Jo < ko or ki < j1 < kg < Jo.

LEMMA 8.4.6. For an edge-colouring c: E(G(I',S)) — [s]|, suppose that B(z, g;, gr)
is an (i, k)-standard square with g; # —gg, and further that the two k-coloured edges
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(x,x+ gr) and (x + gi,x + g; + gr) of M(x, g;, gx) lie on the same standard k-double-ray
R = «w(x, gx). Then the two i-coloured edges of B(x, g;, gr) cross on R.

PROOF. Write ¢; = (x,2 + ¢;) and e3 = (x + gx,z + gr + g;) for the two i-coloured
edges of M(x,g;,gr). The assumption that (z,z + gx) and (x + g;, = + ¢; + gx) both
lie on e~ (z, g) implies that g; = rgx for some r € Z\ {-1,0,1}. If r > 1, we have
r<x+gr<zT+g; <+ g+ g (where < denotes the natural linear order on the vertex
set of the double-ray), and if r < —1, we have z + ¢; < z + gx + ¢; < © < x + g, and so
the edges e; and e; indeed cross on R. O

DEFINITION 8.4.7 (Safe standard square). Given an edge colouring c¢: E(G(T',5)) —
[s] we say an (i, k)-standard square 7" = B(z, g;, gx) is safe if g; # —gi and either
e the k-components for ¢ meeting 1" are distinct double-rays, or
e there is a unique k-component for ¢ meeting 7', which is a double-ray on which
(x,z + g;) and (x + gg, * + ¢; + gx) cross.

The following lemma tells us, amongst other things, that if we perform a colour switch-
ing at a safe (1, k)-standard square then the k-components in the resulting colouring meet-
ing that square will still be double-rays.

LEMMA 8.4.8. Let c¢: E(G(I',S)) — [s] be an edge colouring, T = B(x,g;,gx) be an
(1, k)-standard square with g; # —gx, and ¢ be the colouring obtained by performing a
colour switching on T'. Then the following statements are true:

e [f there are two distinct i-components Cy and Cy for ¢ meeting T which are both
2-reqular, at least one of which is a finite cycle, then there is a single i-component
for ¢ meeting T which is 2-reqular and whose vertex set is V(C1) UV (Cy);

e [fthe k-components for c meeting T are distinct double-rays then the k-components
for ¢ meeting T are distinct double-rays;

o [f there is a unique k-component for ¢ meeting T, which is a double-ray on which
(x,z+ g;) and (x + g, T + g; + gr) cross, then there is unique k-component for
meeting T', which is a double-ray.

PROOF. Let us write ¢; = (z,2x + ¢;), ex = (v, 2+ gx), €, = (v + gk, * + ¢; + gx) and
e, = (v + gi,x + g; + gi), so that B(x, g;, ;) = {e;, ex, €}, €.}

For the first item, let the i-components for ¢ be e; € C) and e, € Cy, where without
loss of generality C is a finite cycle. Then Cy — €/ is a finite path, and C) — e; has at most
2 components, one containing x and one containing x + ¢;. Hence, the i-component for ¢/
meeting 7', (Cy U Cy) —{e;, el } + {ex, €} }, is connected and has vertex set V(Cy) U V(Cy).

For the second item, let the k-components for ¢ be e, € Dy and €), € Dy. Then D; —ey,
has two components, a ray starting at « and a ray starting at x + gg. Similarly, Dy — €},
has two components, a ray starting at  + ¢g; and a ray starting at « + g; + gx. Hence, the
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€k €
€; |

| ei L ... ...

FIGURE 8.2. The two situations in Lemma 8.4.8 with 7 in red and & in blue.

k-components for ¢ meeting T', which are the components of (D;UDs) —{ex, €.} +{ei, €},
are distinct double-rays.

Finally, if there is a single k-component D for ¢ meeting 1" such that D is a double-ray,
then D — {ey, e}, } consist of three components. Since e; and e} cross on D there are two
cases as to what these components are. Either the components consist of two rays, starting
at r and x + g; + g5 and a finite path from x + g5 to x + g;, or the components consist of
two rays, starting at x + ¢; and x + g, and a finite path from x + g; + gx to x. In either
case, the k-component for ¢ meeting 7', namely D — {ey, €}.} + {e;, €}, is a double-ray. O

Lemma 8.4.8 is also useful as the first item allows us to use (1, k) colour switchings to

combine two 1-components into a single 1-component which covers the same vertex set.

STEP 2 (Combining cycles step). We can change ¢ from Step 1 via colour switchings
of finitely many (1, 2)-standard squares to a colouring ¢’ satisfying

o /= =con E(G[X));

e cvery l-component in ¢’ meeting P + (g1, g2)n, v, is a finite cycle intersecting
both P+ ((g1, g2) nu,n \ (91, 92) Na,v) and P + (g1, g2) vy, vi 5

e every other 1-component, and all other components of all other colour classes of
¢’ are double-rays;

e cvery l-component in ¢’ meeting some zx + ({91, 92)no.n, \ (91, 92) Ny.v,) COVETS

Ty + (<gl>g2>Nz,N1 \ <91792>N07N0);
e " isstandard outside of P+(g1, g2) ny,n, and inside of P+((g1, g2) ny.n; \(91, 92) No.No ) -

PRrROOF. Our plan will be to go through the ‘grids’ zx + (g1, 92)n,.n, in order, from
k = 0 to t, and use colour switchings to combine all the 1-components which meet z; +
({91, g2) no.vy \ (91, 92)No.N,) Into a single 1-component. We note that, since ¢ is not
standard on X, it may be the case that these 1-components also meet zx + (g1, g2) Ny N,
for k' # k.

We claim inductively that there exists a sequence of colourings ¢ = ¢y, ¢1,...,¢ = ¢
such that for each 0 < ¢ < ¢

e ¢y = =con E(G[X));

/!
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e every l-component in ¢, meeting P + (g1, 92)n,.n, 18 a finite cycle intersecting
both P + ((g1, g2) na,m \ (91, 92) o,y ) and P+ (g1, g2) ny v,
o for every k < {, every l-component in ¢, meeting x + ((91, 92) no. 3 \ (915 92) No.No )
covers i + ({91, 92) No.v1 \ (91, 92) No.No );
o for every k > (, ¢y = ¢ on xi, + (g1, 92) Ny, My
e every other 1-component, and all other components of all other colour classes of
¢y are double-rays;
o ¢, is standard outside of P+(g1, g2) ny,n, and inside of P+((g1, g2) ny,n, \(91, 92) No.No ) -
In Step 1 we constructed ¢y = ¢ such that this holds. Suppose that 0 < ¢ < ¢, and
that we have already constructed ¢ for k£ < /.
For ¢ € [4N; — 2] we define T, = B(v,, g1, g2) to be the (1,2)-square with base point

2o+ (No+2—=2¢)1 + (N1 — q)g2 if ¢g<2N;—1, and

vy = ‘
rp—(No+3-2¢)g1 + (N1 —¢)g if ¢ =q—(2N,—-1) =1

With these definitions, Thy, 144 is the mirror image of T, for all ¢ € [2N; — 1] along
the y-axis. Moreover, since Ny > 5Ny, each T, is contained within xj + ({91, 92)no.n, \
(91, 92) N, .N, ), see Figure 8.3.

We will combine the 1-components in ¢, which meet @, + ({g1, g2) No.n, \ (91, 92) No.No )
into a single component by performing colour switchings at some of the (1,2)-squares Tj.
Let us show first that most of the induction hypotheses are maintained regardless of the

subset of the T}, we make switchings at.

T x L O DO OO x| :

oLy

X[ [ 1Z¢ + (91, 91) No,No|_|_|X
L
T

L B

(gl, 92>N1,N1

<gla 92>N2,N1
FIGURE 8.3. The standard squares Tj, with a colour switching performed at 75.

We note that, since ¢,—; is standard inside of xy + ({91, 91)no.vy \ (91, 92) No.1vy) and
outside of P+ (g1, g2) Ny N, , and g1 # —ga, each T, is a safe (1,2)-standard square for ¢y_;.
Furthermore, by construction, even if we perform colour switchings at any subset of the
T;, the remaining squares remain standard and safe.

Hence, by Lemma 8.4.8 and the induction assumption, after performing colour switch-
ings at any subset of the standard squares 77, all 2-components of the resulting colouring
will be double-rays. Secondly, these colour switchings will not change the colouring out-
side of P + (g1, 92) N, N, and inside of P + (g1, g2) Ny Ny, OF in any zx + (g1, g2) Ny, n, With
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k # (. In particular, every l-component not meeting P + (g1, g2)n, N, Will still be a
double-ray. Finally, again by Lemma 8.4.8, every 1-component of the resulting colouring
meeting P+ (g1, g2) N, n, Will be a finite cycle which covers the vertex set of some union of
1-components in ¢,_, and hence will intersect both P+ ({91, 92) Ny, Ny \ (91, G2) ny,n, ) and
P+ (g1, g2) ny Ny -

Let us write e, = (vy, v,+¢1) for each ¢ € [AN;—2]. Since ¢,—1 = ¢ on z¢+ (g1, g2) Ny.N; 5
and by Step 1 ¢ is standard on zy+ ({91, 92) No.Ny \ (915 G2) No. N )s €ach 1-component of ¢;_4
that meets z¢ + ({91, 92) No,v, \ (91, 92) No,Ny) cOntains at least one e,. Also, e; and ey,
belong to the same 1-component by the last claim in Step 1. Let us write C for the
collection of such cycles, and consider the map

a:C—{l,...,4N; — 1}, C— min{q: e, € E(C)},

which maps each cycle to the first e, that it contains. Since C is a disjoint collection of
cycles, the map « is injective. Now let ¢, be the colouring obtained from ¢,_; by switching

all standard squares in
T ={T,: ¢ € im(a)} \ {T"}.

We claim that ¢, satisfies our induction hypothesis for ¢. By the previous comments it

will be sufficient to show

CrAamm 10. Every 1-component in ¢, meeting z; + ({g1, g2) No.ny \ (91, 92) Ng.N,) COVELS
Ty + (<gl792>N2,N1 \ <91792>N07N0)'

To see this, we index C = {C4,...,C,} such that u < v implies a(C,) < «(C,), and
consider the sequence of colourings {c¢*: z € [r]} where ¢! = ¢,_; and each ¢* is obtained
from ¢*~! by switching the standard square 7, a(CL)-

Let us show by induction that for every z € [r] there is a 1-component of ¢ which
covers |J,, Cy. For z =1 the claim is clearly true. So, suppose z > 1. Since a(C,) is
minimal in {a(Cy): y > 2} it follows that e, € U, Cy for every ¢ < a(C;). Note that,
since ¢y—1 = ¢ on x¢ + (g1, g2) Ny, N, » it follows from the final claim in the Cap-off step that
(' contains both e; and eyy,, and so a(C,) # 2N;.

Consider the standard square Ti,(c.). Since ¢;—1 = ¢ on x;+ (g1, g2) Ny, N, , Dy construc-
tion the edge ‘opposite’ to eq(c,) in Ty (c,), that is, eq(c.) + gj, is in the same 1-component
in ¢,y as eq(c,)—1, and hence is contained in Uy <. Cy.

Therefore, by Lemma 8.4.8, after performing an (1, 2)-colour switching at Ty(c.,), the
1-component in ¢* contains |J,, Cy.

Hence, there is a 1-component of ¢, = ¢ which covers Uy <~ Cy, and so there is a unique
1-component of ¢, meeting z, + ({91, 92) na, Ny \ (91, 92) No, N, ) Which covers it, establishing
the claim. 0



206 8. HAMILTON DECOMPOSITIONS OF ONE-ENDED CAYLEY GRAPHS

8.4.7. Combining cycles across different cosets of A. In the third and final step
we join the finite cycles covering each x4+ ((g1, 92) vy,5, \ (91, 92) No, o) into a single finite
cycle, and then make one final switch to absorb this cycle into a double-ray. The resulting
colouring will then satisfy the conditions of Lemma 8.3.1.

STEP 3 (Combining cosets step). We can change ¢’ from the previous lemma to an
almost-standard colouring ¢ such that
o (== =con E(G[X));
e Some component in colour 1 covers P + (g1, g2) ny N -

PROOF. Recall that P = {xg,...,7,} is such that P® = {zo+ A,..., 2, + A} is a
finite, graph-theoretic path in the Cayley graph of the quotient I'/A with generating set
(S\ {g1,92})*. Moreover, recall from Section 8.4.4 that Ny > Ny was chosen so that for
the initial colouring ¢ there were t* many disjoint standard double-rays

R={Rj: 1<k (<t}

such that for every ¢, the double-rays in {R’EC = ew%(yf, gn(g)) ke [t]} are standard n(¢)-
double-rays containing an edge

b = (Yf, Y8 + gnwy) € E(RE) N E (w1 + A, 20+ A)

so that all T} = B(y}, g1, gn(e)) are edge-disjoint (1, n(¢))-standard squares for the colour-
ing ¢ contained in the subgraph induced by P + (g1, g2) N, —3.n,—3 Which have empty inter-
section with {z,_1, ¢} + (g1, 92) Ny N, - However, since we only altered the (1,2)-subgraphs
of G in Step 1 and 2, it is clear that all these standard double-rays and standard squares
for ¢ remain standard also for the colourings ¢’ and in particular ¢”.

We claim that there exists a function k: [t] — [t] U{L} such that iteratively switching
’_Z}k(g) (or not doing anything at all if k(¢) = L) results in a sequence of colourings ¢’ =
o, C1, - - -, ¢ such that for each 0 < ¢ < ¢,

(1) a single finite 1-component in ¢, covers {xo, ..., 2¢} + ({91, g2) Ny.Ny \ (91, 92) No.No )

(2) for every k, every 1-component in ¢, meeting zx + ({91, g2) Ny 5, \ (91, 92) No.Ng) 18
a finite cycle covering x + ({91, 92)n1.n \ (915 92) o, ) and

(3) every other 1-component, and all other components of all other colour classes in

¢y are double-rays.

In Step 2 we constructed a colouring ¢y = ¢’ for which properties (1)—(3) are satisfied.
Now suppose that ¢ > 1, and that the colouring ¢,_; obtained by switching the standard
squares {Te]f(él): Uellt—1], k() # J_} satisfies (1)—(3). By construction, each such stan-

dard square T is has an edge in common with the ray Rf,w) and potentially one further
n(¢')-component. But since we had reserved more that ¢ — 1 different rays R}, ..., R}, it

follows that some ray R} remains a standard n(¢)-coloured component for ¢;_;.
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gn(l) gn(2)

FI1GURE 8.4. Using (1,n(¢))-standard squares to join up different cosets.
For this picture, we assume wlog that x,1 = 2¢ + gpn41).

Both edges (y/*,y* + i) and (Y + Gu(e)s Yo* + 9n@ey + 9i) of T/ are contained in
{zo—1, 20} + ({91, 92) vy vy \ (91, 92)No.N,), and hence are, by assumption (2), covered by
finite 1-cycles in ¢,_q. If both edges lie in the same finite 1-cycle, there is nothing to do
and we set k() := L, so that ¢, = ¢y_;. However, if they lie on different finite cycles,
set k(¢) := K. Then, in our procedure we perform a colour switching on the standard
square TKW) and claim that the resulting ¢, is as required. By Lemma 8.4.8, the two finite
1-components merge into a single finite cycle, and so (1) and (2) are certainly satisfied for
Cy.

To see (3), we need to verify that Tf(@ is, when we perform the switching, safe. How-

()

ever, Tf was chosen so that the edge (yf(z),yf(e) + gnr) € TZW) lies on a standard

double-ray R = Rf(g) of ¢i—1. Also, by the inductive assumption (3), the second n(¢)-
coloured edge (yf(z) + 9i, yf(e) + i + gn(e) € TZW) lies on an n(l)-coloured double-ray R’
in ¢y_y. If R and R’ are distinct, then TZW) is safe, and if R = R’ then, since R is a
standard n(f)-double-ray, Lemma 8.4.6 implies that Tf(z) is safe. Hence ¢, satisfies (3).
This completes the induction step.

Thus, by (1) and (3), we obtain an edge-colouring ¢, for G such that a single fi-
nite 1-component covers P + ((g1,92) N1,z \ (91, 92)No,N,); and all other 1-components
and all other components of other colour classes in ¢; are double-rays. Furthermore,
since every l-component which meets P + (g1, g2) no,n, must meet P + ((g1, 92) ny,Ny \
(91,92)No.Ny)» it follows that the l-component in fact covers P + (g1, 92)ny.n,- More-
over, since TZW) C P+ (91,92)Ny—3.n,—3 for all £ € [t], it follows that ¢; is standard on

To + (<91,92>N1,oo \ <91792>N1_3,N1_3), and that it is standard outside of P + <gl,gg>N3’N1.
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Hence, the square B(zx, g1, go) with base point x = xy + (N; — 2)g; + N1gs is a standard
(1,2)-square such that

e the edge (z,z + ¢1) lies on the finite 1-cycle of ¢,
e the edge (z+ g2,z + g2 + g1) lies on a standard 1-double-ray «~(z + g, 1) (lying
completely outside of P + (g1, g2) Ny, ) Of ¢, and
e the edges (z,x+¢g2) and (z+ g1, 2+ g2+ ¢1) lie on distinct standard 2-double-rays
o (2, g2) and e~(z + g1, 92) € 2o + ((91, 92)N1.00 \ (91, 92) N1 3,3, -3)-
Therefore, we may perform a colour switching on B(z, g1, g2), which results, by Lemma 8.4.8,

in an almost-standard colouring of G such that a single 1-component covers P+(g1, g2) n, ., »
and hence X. O

8.5. Hamiltonian decompositions of products

The techniques from the previous section can also be applied to give us the following

general result about Hamiltonian decompositions of products of graphs.

THEOREM 8.1.4. If G and H are countable multi-graphs which both have Hamilton
decompositions, then so does their product GUH .

PROOF. Suppose that {R;: ¢ € I} and {S;: j € J} form decompositions of G and H
into edge-disjoint Hamiltonian double-rays, where I, J may be finite or countably infinite.
Note that, for each i € I, j € J, R;1S; is a spanning subgraph of GUH, and is isomorphic
to the Cayley graph of (Z?, +) with the standard generating set.

Let ng: GUOH — G and ny: GOOH — H the projection maps from GLJH onto the
respective coordinates. As our standard colouring for GLOH we take the map

i ifee ;' (E(R)),

c: E(GOH) — 1UJ, e —
i ifeeny (E(S))).

Then each R;[1S; is 2-coloured (with colours ¢ and j), and this colouring agrees with the
standard colouring of Cz2 = G((Z*,+),{(1,0),(0,1)}) from Section 8.3. We also define
an almost-standard colouring of GLJH as in Definition 8.2.2.

We may suppose that V(G) = N = V(H). Fix a surjection f: N — [ U J such that
every colour appears infinitely often.

By starting with ¢y = ¢ and applying Lemma 8.3.1 recursively inside the spanning
subgraphs R[S, if f(k) € I, or inside RSy, for f(k) € J, we find a sequence of
almost-standard edge-colourings ¢, : GLJH — IUJ and natural numbers M, < N < M.
such that

e (.1 agrees with ¢, on the subgraph of GOH induced by [0, My4]?,

e there is a finite path Dy, of colour f(k) in ¢ covering [0, Ni]?, and
e My is large enough such that Dy C [0, My 1]%
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To be precise, suppose we already have a finite path Dy of colour f(k) in ¢; covering
[0, NiJ?, and at stage k+1 we have say f(k+1) € I, and so we are considering Ry (41,05 =
Cy2. We choose
e M. > N, large enough such that Dy C [0, My4]> € GOH, and
® N1 > My large enough such that Q; = [0, Ni41]> € GUOH contains all edges
where ¢, differs from the standard colouring c.
Next, consider an isomorphism h: Rypq1)[S1 = Cgz2. Pick a ‘square’ Q2 € Rya41)1S)
with Q1 C ()9, i.e. a set ()5 such that h restricted to )5 is an isomorphism to the subgraph
of Cye induced by [—Nyy1, Npsq)? C Z? for some Niyq € N, and then apply Lemma 8.3.1
to Ryu41)US1 and Q3 to obtain a finite path Dy of colour f(k+1) in cgxyq covering Qs.
It follows that the double-rays {T;: i € It U{T}: j € J} with Ti = Uycs-1(p Dr give
the desired decomposition of GL1H. O

8.6. Open Problems

As mentioned in Section 8.2, the finitely generated abelian groups can be classified as
the groups Z" & B;_, Z,,, where n,r,qi,...,q, € Z. Theorem 8.1.2 shows that Alspach’s
conjecture holds for every such group with n > 2, as long as each generator has infinite
order. The question however remains as to what can be said about Cayley graphs G(T', S)
when S contains elements of finite order.

PROBLEM 8.6.1. Let I" be an infinite, finitely-generated, one-ended abelian group and
S be a generating set for I' which contains elements of finite order. Show that G(I", S) has
a Hamilton decomposition.

Alspach’s conjecture has also been shown to hold when n = 1, » = 0, and the generating
set S has size 2, by Bryant, Herke, Maenhaut and Webb [40]. In a paper in preparation
[65], the first two authors consider the general case when n = 1 and the underlying Cayley
graph is 4-regular. Since the Cayley graph is 2-ended, it can happen for parity reasons
that no Hamilton decomposition exists. However, this is the only obstruction, and in all
other cases the Cayley graphs have a Hamilton decomposition. Together with the result
of Bermond, Favaron and Maheo [22] for finite abelian groups, and the case ' & (Z2, +)
of Theorem 8.1.2, this fully characterises the 4-regular connected Cayley graphs of finite
abelian groups which have Hamilton decompositions. A natural next step would be to
consider the case of 6-regular Cayley graphs.

PROBLEM 8.6.2. Let I be a finitely generated abelian group and let .S be a generating
set of I" such that C(T',S) is 6-regular. Characterise the pairs (I, S) such that G(I',S)

has a decomposition into spanning double-rays.






CHAPTER 9

Hamilton cycles in infinite cubic graphs

Investigating a problem of B. Mohar, we show that every one-ended Hamil-
tonian cubic graph with end degree 3 contains a second Hamilton cycle. We
also construct two examples showing that this result does not extend to give

a third Hamilton cycle, nor that it extends to the two-ended case.

9.1. Introduction

In this note we investigate whether results about the Hamiltonicity of finite cubic
graphs extend to the infinite setting. The term ‘graph’ in this paper is reserved for simple
graphs; when allowing parallel edges or loops, we explicitly use the term ‘multi-graph’.
Our terminology follows [54].

9.1.1. Hamiltonicity in finite regular graphs. The starting point of this paper
are the following results and conjectures for finite regular graphs.

THEOREM 9.1.1 (Smith 46, see [156]). Every Hamiltonian finite cubic graph has at
least two Hamilton cycles.

Here, a graph is Hamiltonian if it contains a Hamilton cycle. A graph with precisely
one Hamilton cycle is also called uniquely Hamiltonian. Sheehan conjectured that finite
cycles are the only examples of uniquely Hamiltonian regular graphs.

CONJECTURE 9.1.2 (Sheehan '75, [142]). Every d-regular Hamiltonian finite graph
with d > 3 has at least two Hamilton cycles.

For more details on Sheehan’s conjecture, we refer the reader to [152]. Using a nice
parity argument, the so-called “lollypop technique”, Thomason extended Smith’s result
in a different direction as follows:

THEOREM 9.1.3 (Thomason '78, [150]). Every edge in a finite graph with odd degrees
only lies on an even number of Hamilton cycles. Hence, every Hamiltonian such graph

has at least three Hamuilton cycles.

In particular, every finite Hamiltonian cubic graph contains at least three Hamilton
cycles.

211
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9.1.2. Infinite Hamilton circles. For a locally finite graph G, which can be consid-
ered as a topological space using the 1-complex topology, we let |G| denote its Freudenthal
compactification. Extending the notion of cycles, one defines circles in |G| as homeomor-
phic images of the unit circle in |G|, see [54, §8]. A circle of |G| containing all vertices
(and all ends) of G is a Hamilton circle. A Hamilton cycle is a subgraph of G given by
the edge set of a Hamilton circle of |G|.

In one-ended graphs, Hamilton cycles correspond to spanning double rays. In a two-
ended graph GG, a Hamilton cycle consists of two vertex-disjoint double rays R; and Ry
which together span GG, such that the two tails of each R; belong to different ends of G. For
example, the 2-ended double ladder in Figure 9.1 has a unique Hamilton cycle comprised
of all horizontal edges.

FiGURE 9.1. The infinite double ladder and its unique Hamilton cycle.

9.1.3. Questions on Hamiltonicity in infinite regular graphs. In 2007, Mohar
asked to what extent the above results about Hamiltonicity in finite regular graphs gener-
alise to the infinite setting. While the infinite double ladder in Figure 9.1 witnesses that
Theorem 9.1.1 fails to extend verbatim to the infinite case, Mohar suggested two possible
solutions.

First, we might restrict our attention to one-ended graphs, and second, we might say
that the double ladder is not truly regular, as its ends have degree 2. Here, we take the
degree of an end to be the maximum number of edge-disjoint rays leading to that end, see
[39] or Section 9.2 below for details.

QUESTION 9.1.4 (Mohar ’07, [119]). Does there exist a uniquely Hamiltonian, one-
ended, d-regular graph for d > 37

QUESTION 9.1.5 (Mohar ’07, [119]). Does there exist a uniquely Hamiltonian, d-
regular graph for d > 3 where also all ends have degree d?

K. Heuer [95] has recently constructed a uniquely Hamiltonian cubic graph with con-
tinuum many ends where all ends have degree 3, thus answering Question 9.1.5. He left
open the natural question whether simultaneously restricting the number of ends plus the
end-degrees allows us to extend finite theorems to the infinite setting.

9.1.4. Results. In this note, we establish the following extension of Smith’s Theo-
rem 9.1.1 about second Hamilton cycles to the infinite setting, providing a partial answer
to Mohar’s questions.
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THEOREM 9.1.6. Every Hamiltonian one-ended cubic graph with end degree at most 3

has at least two Hamilton cycles.

Our proof of Theorem 9.1.6 combines the stronger of the finite results, namely Thoma-
son’s Theorem 9.1.3, and a sequence of parity arguments. Interestingly, Thomason’s Theo-
rem 9.1.3 itself does not extend to the above setting: we construct one-ended cubic graphs
with end-degree 2 or 3 that have precisely two Hamilton cycles, see Examples 9.4.1 and
9.4.3.

Improving on Heuer’s example, we also construct in Example 9.4.4 a two-ended,
uniquely Hamiltonian, cubic graph where both ends have degree 3. This shows that
in general, it is only in the one-ended case where one could hope for an affirmative result
about second Hamilton circles in cubic graphs.

Finally, we remark that we do not know whether every Hamiltonian one-ended cubic
graph with end-degree 4 has a second Hamilton cycle—this seems to be the next crucial
case in attacking Question 9.1.4.

9.2. Two facts about end degrees

In our proofs below we need two facts about end degrees in locally finite graphs. Given
a graph G = (V, E) and a set of vertices S C V', we denote by E(S,V \ S) C E the set
of edges of G with one endvertex in S and the other in the complement of S. We also
abbreviate E(v) = E({v}, V \ {v}).

Following [39], for an end w of some locally finite graph G we take its degree (to be
precise: its edge-degree) to be the maximum number of edge disjoint rays in G leading to
w, and its vertez-degree to be the maximum number of vertex-disjoint rays in G leading
to w.

LEMMA 9.2.1 ([39, Lemma 10]). Let w be an end of a locally finite graph G and
S C V(G) a finite vertex set. Then the mazimal number of edge-disjoint rays to w starting

in S equals the minimum cardinality of an edge cut separating S from w.
LEMMA 9.2.2. In cubic graphs, edge- and vertez-degree of ends coincide.

PRrROOF. In any locally finite graph, the vertex-degree of a given end is at most its
edge-degree. Conversely, any family {R;: i € I} of edge disjoint rays in a cubic graph
have to be internally vertex-disjoint, as otherwise there would be a vertex of degree > 4.
Thus, if R; denotes the ray R; minus its initial vertex, then {R}: i € I} is a family of
vertex-disjoint rays of the same cardinality as our initial family. 0

9.3. Affirmative results for second Hamilton cycles

In this section, we present our positive results about the existence of additional Hamil-
ton cycles in one-ended cubic graph with end-degree 2 or 3.



214 9. HAMILTON CYCLES IN INFINITE CUBIC GRAPHS

THEOREM 9.3.1. FEvery Hamiltonian one-ended cubic graph with end-degree 2 has at

least two Hamilton cycles.

ProOOF. Let C be a Hamilton cycle of G. Since the end of G has degree 2, by
Lemma 9.2.1 there is a finite vertex set S C V with |E(S,V \ 9)| = 2.

Consider the minor G of G where we contract V' \ S to a single ‘dummy’ vertex. Then
C' | G witnesses that G is a finite Hamiltonian graph. Moreover, G is nearly-cubic, that is
all vertices of G have degree 3, with the exception of the dummy vertex, which has degree
2. By [64, Theorem 1], every nearly cubic Hamiltonian graph has a second Hamilton
cycle. By combining the two Hamilton cycles of G with C \ E (G‘), we have found two
distinct Hamilton cycles of G. 0

F1GURE 9.2. The Tutte fragment 7.

For the end-degree 3 case, we employ the following auxiliary multi-graph which encodes
how Hamilton cycles choose incident edges of certain vertices of a graph.

DEFINITION 9.3.2 (Hamilton incidence multi-graph). Let v and w be distinct vertices
of a Hamiltonian graph G. The Hamilton incidence multi-graph H = H (G, v, w) of G with
respect to v and w is the bipartite multi-graph with bipartition

where the multiplicity of an edge pg € E(H) corresponds to the number of Hamilton cycles
D of G withpUq C D.

As a concrete example of a Hamilton incidence multi-graph (which we shall meet again
in Section 9.4 below), consider the Tutte fragment 7" (invented by Tutte in [156]) with
leaves £,, ¢, and ¢, as depicted in Figure 9.2.
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FI1GURE 9.3. The six Hamilton cycles of T".

Let 7" = T/{l, = £, = (.} be the graph obtained from 7" by identifying its three leaves.
Then T" is a cubic graph with precisely six Hamilton cycles (see [48, 95, 156]), which we
may visualise as follows:

The first two Hamilton cycles use the edge pair e, = f,x and e, = /(,z, and the
other four Hamilton cycles use the edge pair e, = {,y and e,. In particular, there are no
Hamilton cycles of 7" using the edge pair {e,,e,}. Writing w for the contracted vertex
{l; =0, =10} in T', and letting v and its incident edges f,, f, and f. be as indicated in
Figure 9.2, we see that the Hamilton incidence graph H = H(T’, w,v) as in Definition 9.3.2
is given by the multigraph in Figure 9.4.

{exaey} i {fa;fb}
{es e} {fa, fe}
{ey e.} {fos fe}

FIGURE 9.4. The Hamilton incidence multi-graph H(T", w,v).

Note that all vertices of our example H(T",w,v) have even degree. In the following
two lemmas, we show that this parity condition holds in general.

LEMMA 9.3.3. Let v and w be distinct vertices of a finite cubic graph G. Then the sum
of the degrees of any pair of vertices in the Hamilton incidence multi-graph H(G,v,w)

from the same side of its vertex bipartition is always even.

PROOF. Indeed, if say p # q € [E(v)]?, we have p N q = {e} for some edge e € E(v),
as G is cubic. So the sum of degrees d(p) + d(q) equals the number of Hamilton cycles in
GG using the edge e, which is even by Theorem 9.1.3. 0

LEMMA 9.3.4. If v and w are distinct vertices of a finite cubic graph G, then all vertex

degrees in H(G,v,w) are of the same parity.

PROOF. Suppose one vertex in [E(v)]* has odd (even) degree. Since |[E(v)]?| = 3,
we can apply Lemma 9.3.3 twice to conclude that all degrees on the [E(v)]? side of our
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bipartite graph H = H(G,v,w) are odd (even). Hence,

S dulp) = |EH) = S dulp)
PE[E(v)]? PE[E(w)]?
is odd (even). Applying Lemma 9.3.3 twice again, we see that also all degrees on the
[E(w)]? side of our bipartite graph H must be odd (even). Thus, all vertex degrees in
H(G,v,w) are of the same parity. d

THEOREM 9.3.5. Every Hamiltonian one-ended cubic graph with end-degree 3 has at
least two Hamilton cycles.

PROOF. Let C be a Hamilton cycle (i.e. a spanning double ray) of G. By assumption
on the degree of our end together with Lemma 9.2.1, there is a sequence of pairwise disjoint
edge cuts F,, = E(S,,V \ S,) with S, finite, |F,,| = 3, S, € Sp41, and |,y S = V(G).

Let F,, = {en, fn, gn}- As every double ray in a one-ended locally finite graph intersects
each finite cut in a positive, even number of edges, we may suppose that e,, f, € E(C)
and g, ¢ FE(C) for all n € N. Let G, be the minor of G where we identify V' \ S, to
a single dummy vertex x,, and let G, ,+1 be the minor of G' where we identify S,, and
V'\ Sp41 to dummy vertices v, and w, respectively.

While a priori, G,, and G,, ,,+1 are multi-graphs (with possibly parallel edges at dummy
vertices), we may assume they are simple: By Lemma 9.2.2, there are three vertex-disjoint
rays Ry, Ry and R3 leading to the single end w. Choose N € N such that E(R;) N F,, # ()
for all n > N and all 7. Since the R; are vertex-disjoint, it follows that all z,,, v, and w,,
have three distinct neighbours for all n > N.

So by moving to a suitable subsequence, we may assume that all our minors G,, and
G n+1 are simple cubic graphs. Moreover, in all cases, the corresponding restriction of C'
witnesses that these minors are in fact Hamiltonian.

Now, if some G, has two distinct Hamilton cycles both using the edge set {e,, f.}, then,
following the same strategy as in Theorem 9.3.1, we may combine both with C' [ (V' \ S,,)
to obtain two distinct Hamilton cycles of G. Hence, we may assume for the remainder of
the proof that for all n € N, the restriction C' | GG,, is the only Hamilton cycle of G,, that
uses {e,, fn}. In particular, we are in the case where the assumptions of the following

claim are satisfied for all n € N:

Cramm. If G, and G,y have unique Hamilton cycles using the edge set {e,, f,} and
{€nt1, fur1} respectively, then every Hamilton cycle of G,, extends to a Hamilton cycle of
Grit-

To see why the claim implies the theorem, note that by Theorem 9.1.3, the edge eq
is contained in an even number of Hamilton cycles of GGy, and hence there must be a
second Hamilton cycle Ay of Gy which uses the edge set say {eg, go}. Applying the claim
recursively, we obtain a sequence of Hamilton cycles A, of G,, such that A, extends
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A, for all n € N. Then A = |
witnessed by go € E(A) \ E(C).
It remains to prove the claim. Assume that GG, and G,, 1 have unique Hamilton cycles

nen An @ Hamilton cycle of G, which is distinct from C

using the edge sets {e,, fn} and {e,i1, fni1} respectively, and consider the Hamilton
incidence graph H,, = H(Gpn+t1, Vn, Wy) of Gy, 11 With respect to its two dummy vertices.

STEP 4. We have dg, ({ent1, fui1}) = 1.

This is where we use the assumption that G, and G,,;1 have unique Hamilton cycles
using the edge sets {e,, fn} and {e,11, fni1} respectively. Indeed, note first that C' |
Grnnt1 witnesses that dg, ({€n+1, fuy1}) = 1. Next, since there is a unique Hamilton
cycle A of G, that uses {e,, f,}, Theorem 9.1.3 implies that G,, must have two further
Hamilton cycles B and C' using the edge sets {e,, g,} and {f,, g,} respectively. Thus, if
du, ({ent1, fas1}) = 2, Le. if there are two distinct Hamilton cycles of Gy, 41 using the
edge set {€,11, fni1}, then we can combine them suitably with either A, B or C to obtain
two distinct Hamilton cycles of G, 11 both using the edge set {e,11, fni1}, a contradiction.

STEP 5. Every vertex of H, has odd degree.

Since Step 4 implies in particular that dg, ({€ni1, fur1}) is odd, Step 5 is immediate
from Lemma 9.3.4.

STEP 6. Every Hamilton cycle of (G,, extends to a Hamilton cycle of G,,41.

Suppose we have a Hamilton cycle A of G,, using the edge set p € [F},]?. By Step 5, we
know that in particular dg, (p) > 1, which means there is a Hamilton cycle B of G, 41
using the edge set p. Then AU B is a Hamilton cycle of G,, ;1 extending A. This completes
the proof of the final step of the claim, and so the theorem follows. O

9.4. Examples witnessing optimality

In the previous section, we have seen that Smith’s Theorem 9.1.1 extends to the one-
ended cubic case where the end has degree at most 3. In this section, we show that
Theorem 9.1.1 does not extend to the two-ended case, and that Thomason’s Theorem 9.1.3

does not extend to the infinite case at all.
9.4.1. Ends with degree two.

EXAMPLE 9.4.1. There is a one-ended cubic graph with end degree 2 that has precisely
two Hamilton cycles. In particular, there are edges which do not lie on an even number
of Hamilton circles.

CONSTRUCTION. Consider the cubic, one-way infinite ladder as in Figure 9.5. Clearly,
it has precisely one end, which has degree 2. Moreover, it is not hard to check that this
graph has precisely two Hamilton cycles. In particular, there are edges which do not lie
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FIGURE 9.5. The infinite cubic ladder.

on an even number of Hamilton circles. In our example, these are the edges ey, es, f; and
Ja. O

For completeness, we record again:

EXAMPLE 9.4.2. The double ladder is a uniquely Hamiltonian, two-ended cubic graph
with both ends of degree 2.

9.4.2. Ends with degree three.

EXAMPLE 9.4.3. There is a one-ended cubic graph with end degree 3 that has precisely
two Hamilton cycles. In particular, there are edges which do not lie on an even number
of Hamilton circles.

CONSTRUCTION. Let {7},: n € N} be a family of disjoint graphs such that Ty = T"
and T,, 2 T for all n > 1. Here, T is the Tutte fragment from Figure 9.2, and 7" is its
cubic quotient. We use the same of vertices in 1" and 7" as above, and by v,,, a,, b,, ¢, € T),
etc. we refer to the respective copies of the vertices v, a,b,c € T.

We now construct a sequence {G,,: n € N} of finite cubic graphs as follows: Put Gy =
Ty, and define

G1 = (GO—UouTl)/N where aowém, bONgyla CON£Z1.

We think of this operation as replacing the vertex vy and its incident edges by a new copy
of T', where the leaves of the new T are suitably identified with the old neighbours of .
Similarly, assuming G, has already been defined, let

Gni1 = (Gp —v, UT,41)/ ~ where a, ~ ¢ b, ~

Tn+1) Yn+12 Cp ~~ gzn+1 .

In other words, in every step, we replace the most recent copy of the vertex v by a new
copy of T

Note that G, —v,, € G411 — v,y1 for all n, so we may denote by G be the direct limit
of these graphs. (Alternatively, |G| can be viewed as the inverse limit of the G,, under
natural minor relation G,, < G,1, cf. [54, §8.8], and so G as a 1-complex is given by the
space |G| minus its unique end).

Since T" is 3-edge connected, it follows that G is a one-ended cubic graph with end-
degree 3. Writing S,, = V(G,,) \ {v,}, we see that the end-degree of G is witnessed by the
3-edge cuts

F, = E(S,,V(G)\ Sy).
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{ezov.eyo} {fa()?fbo}w{exweyl} {fa17fb1}N{61276y2} {fa27f172}~{61376y3}

famfc'o}"’ faufc'l}N fazfoE}N

{exovezo} ~ {ewuem} ~ {69627622} ~ {63337623}

{evor €20} (oo food ~ {egisen ] Ui fard ~ {eyar€aa) Ubas foa} ~ {eysr €20}

FIGURE 9.6. The incidence multi-graph for Hamilton cycles of G.

Moreover, if we define, as in the proof of Theorem 9.3.5, the graphs G, ,,11 to be the minors
of G where we identify S,, and V(G) \ Spy1 to dummy vertices «, and f3, respectively,
then our construction of G guarantees the existence of isomorphisms

On: T" = Gp i1 such that o, (w) = oy, and ¢, (v) = B,
such that, due to our choice of the quotient patterns ~,

(T) Spn(fa) = (10n+1(€x>7 (Pn(fb) = Qanrl(ey) and Qon(fc) = 90n+1(€z)

for all n € N.

Next, recall that every Hamilton cycle C' of GG restricts, for any n € N, to a Hamilton
cycle of Gy, ;,+1, and therefore looks locally like one of the six Hamilton cycles of Figure 9.3.
Pasting together the individual Hamilton incidence graphs of G, 41 (cf. Figure 9.4) using
the identities provided in () gives the picture of Figure 9.6. And since for every Hamilton
cycle C' of G we have

E(C I Gn,n+1) N E(ﬁn) = E(C I Gn+1,n+2) N E<04n+1)

we see that Hamilton cycles of G are in 1-1 correspondence with those rays in the multi-

graph in Figure 9.6 that pick a single edge from each level.

{fo, fe} {ey, ez} ~ {exqs eyo }

. i E{ez’ez//
{faafc} ~ {efbovezo}g ; g ;
{a: fo {essey} ~ {eges ez}

F1GURE 9.7. The incidence multi-graph for Hamilton cycles of H.

To complete the construction of Example 9.4.3, we now consider the graph

H=(TUG —wy)/ ~ where l, ~ zy, £, ~ yo, L, ~ .
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Figure 9.7 shows the analogue of Figure 9.6 for our new graph H.

By the same reasoning as above, Hamilton cycles of H are in 1-1 correspondence with
those rays in the multi-graph in Figure 9.7 that pick a single edge from each level. But
this means that H has precisely two Hamilton cycles: Only the two left-most red edges
can be extended to a ray through the Hamilton incidence multi-graph using a single edge
from each level, and both these extensions are unique. ]

EXAMPLE 9.4.4. There is a uniquely Hamiltonian, two-ended cubic graph with both
ends of degree 3.

CONSTRUCTION. For the construction, take a disjoint copy G’ of G from the graph as
constructed in the previous construction (cf. Figure 9.6). By wy, xy, v, 2 € G’ ete. we

refer to the respective copies of the vertices wy, o, 4o, 20 € G. Now consider the graph
H' = (G — wi UG — wp) with three added edges x(z0, Yoy, and zyzo.
Then H' is a 2-ended cubic graph with both ends of degree 3. Figure 9.8 shows the

analogue of Figure 9.7 for our new graph H’.

{ey' ) €2 } ~ {emoﬂ eyo}

f E i_ iem/’ez//

{616 eyo ~ {eymezo}

FIGURE 9.8. The incidence graph for Hamilton cycles of H'.

By the same reasoning as before, Hamilton cycles of H' correspond in a 1-1 fashion
to those double rays in the multi-graph in Figure 9.8 that pick a single edge from each
level. But then it is obvious that H’ has a unique Hamilton cycle, which corresponds to

the double ray formed by the middle horizontal edges. U



CHAPTER 10

Circuits through prescribed edges

We prove that a connected graph contains a circuit—a closed walk that repeats
no edges—through any k prescribed edges if and only if it contains no odd cut

of size at most k.

10.1. Introduction

Finding a cycle' containing certain prescribed vertices or edges of a graph is a classical
problem in graph theory. When specifying vertices, already Dirac [61, Satz 9] observed
that, in a k-connected graph, any £ vertices lie on a common cycle, and that this is not
necessarily true for k£ + 1 distinct vertices. Dirac’s results marked the starting point for a
number of results giving conditions under which a set of vertices lies on a common cycle,
and we refer the reader to Gould’s survey [83] for a detailed overview of results in this
direction.

When trying to find a cycle containing some specified edges, research has been driven
by a number of conjectures due to Lovasz [116] (1973) and Woodall [169] (1977). The
strongest of these is the following:

CONJECTURE 10.1.1 (Lovasz-Woodall Conjecture). Let S be a set of k independent
edges in a k-connected graph G. If k is even or G — S is connected, then there is a cycle

in G containing S.

Building on earlier work by Woodall, in particular on a technique of Woodall from [169]
called the Hopping Lemma, Haggkvist and Thomassen [84] (1982) and Kawarabayashi [99,
Theorem 2| (2002) established the following variants of the Lovész-Woodall Conjecture.
First, in the case of Haggkvist and Thomassen, by setting out from the stronger assumption
of (k+1)-connectedness, and second, in the case of Kawarabayashi, by obtaining a weaker
conclusion, namely, two cycles instead of one.

THEOREM 10.1.2 (Haggkvist and Thomassen). For any set S of k independent edges

in a (k4 1)-connected graph, there is a cycle in G containing S.

THEOREM 10.1.3 (Kawarabayashi). Let S be a set of k independent edges in a k-
connected graph G. If k is even or G — S is connected, then S is contained in one or a
union of two vertex disjoint cycles of G.

IThis paper follows the notation in Bollobas’ Graph theory, [27).

221
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In the present paper, we are interested in a further variant of the problem, where
instead of a cycle we aim to find a circuit—a closed walk that repeats no edges (but
may repeat vertices)—containing a set of prescribed edges. Clearly, for this variant, it
is no longer necessary to assume our edges to be independent. If one aims for results
similar in spirit to the cycle case above, it seems natural to consider edge-connectivity
instead of vertex connectivity. But whereas in the above cases, vertex connectivity is
a far-from necessary condition, the corresponding version for circuits admits a complete

characterisation in terms of edge cuts, which is the main result of our paper.

THEOREM 10.1.4. A connected graph contains a circuit through any k prescribed edges
if and only if it contains no odd cut of size at most k.

COROLLARY 10.1.5. If for some k € N a connected graph contains a circuit through
any 2k — 1 prescribed edges, then it also contains a circuit through any 2k prescribed edges.

While all the graphs treated in this paper are simple, one can easily derive the same
characterisation for multigraphs, since subdividing every edge of a multigraph once does
not give rise to new odd cuts.

To see that the condition in Theorem 10.1.4 is necessary, recall that the graph given by
the vertices and edges of a circuit is Eulerian, i.e. even and connected, and so a necessary
requirement for finding a circuit through a set of edges is that it can be extended to an
even subgraph. The latter has been characterised by Jaeger [97] in 1979.

THEOREM 10.1.6 (Jaeger). A set of edges in a graph G is contained in an even subgraph
of G if and only if it contains no odd cut of G.

However, while Jaeger’s theorem immediately shows the necessity of our characterising
condition in Theorem 10.1.4, it does not yield its sufficiency, as Jaeger’s even subgraph is
not necessarily connected (even if G is). This issue was also overlooked by Lai [108]. See

Section 10.5 for further discussion when Jaeger’s condition does give rise to a circuit.

ExAMPLE 10.1.7 (Counterexample to [108, Theorem 1.1 & 4.1]). Let k > 3, let G be
the ladder with k& + 1 rungs, and S be a set of rungs of G of size 3 < |S| < k. Then S
extends to an even subgraph of GG, but every such even subgraph has at least [@1 > 2

components.

PROOF. Since G — S is connected, the set S does not contain any cut of G (regardless
of its parity), and so S extends to an even subgraph by Theorem 10.1.6.

Now let e1,es,e3 € S be three edges ordered from left to right (cf. Figure 10.1),
and suppose for a contradiction there is an even, connected subgraph H of G containing
e1, €9, e3. Let C' and C’ be the edge cuts consisting of the two incident edges to the left
and to the right of ey respectively (cf. Figure 10.1). Since H is connected and contains e;
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NN L

€1 C €9 C’/ €3 . . . €k

ya— s

FIGURE 10.1. A ladder with specified rungs S = {ey,...,ex}.

and e3, H meets both cuts C' and C’. Since H is even, it meets every cut of GG in an even
number of edges, and so C UC" C E(H). But then both end vertices of e, have degree
three in H, a contradiction to H being even.

In particular, if H is an even subgraph containing S, then every component of H

contains at most two rungs from S, and so H has at least [@} components. O

So instead of referring to Jaeger’s theorem for proving the sufficiency of the charac-
terising condition in Theorem 10.1.4, we once more build on the technique of Woodall’s
hopping lemma.

Finally, let us mention the survey by Catlin [45] for related research on the existence
of spanning circuits in a graph. Lai [108, Theorem 3.3] established the following sufficient
condition for a graph to contain a spanning circuit through any k prescribed edges:

THEOREM 10.1.8 (Lai). For k € N let f(k) be the smallest even integer > max(k,4).
If G is f(k)-edge-connected, then G contains a spanning circuit through any k prescribed
edges.

A related variant is to find spanning trails (not necessarily closed) containing a given
set of edges, see e.g. [170] and the references therein.

10.2. Preliminaries
All graphs in this paper are finite and simple. We let N = {0,1,2,...} and use
n] = {1,2,...,n} and [0,n] = {0,1,...,n}. For our use of the terms cycle, walk, trail
and circuit, we follow [27]. Let us clarify the use of technical terms now.
DEFINITION 10.2.1. Let G = (V, E) be a graph. For a set of vertices A C V| we write
e OcA :={uv € E:ue A v ¢ A} for the edge boundary of A in G.
For FF C E, we call

e [ a cut of GG, if there is an A C V such that 0gA = F', and
e a cut F' odd, if |F| is odd. Otherwise, we call F' even.

Recall that all cuts of some graph are even if and only if all its vertices have even
degree.
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DEFINITION 10.2.2. Let G = (V, E) be a graph, and let T = vy ... v, a walk in G.

e T'is a trail in G, if all of its edges are distinct. Further, v, is the start vertex and
v, is the end vertex of T, and all other vertices are called inner vertices of T.

e T is closed, if its start and end vertex agree. A closed trail is also called circuit.

e V(T) and E(T) denote the vertices and edges of the underlying subgraph of T'.

DEFINITION 10.2.3. Let G = (V, E) be a graph. For z,y € V|, XY C V and trails
P=py...prand Q =qp...q, in G, we define

e PQ or poPp,Qq, is the concatenated trail py...pq1 ... ¢, (only when P and @
are edge-disjoint and p, = qp),

e Pisan X-Y trail, if py € X, p, € Y and no inner vertex is in X or Y. For
singletons write x—y trail instead of {x}—{y} trail,

e P is a subtrail of Q with witnessing interval Ip = {tp,...tp +r} C [0,w], if
Ph = Qipin for every h € [0,7] or py, = Gipir—p for every h € [0, 7], and

o () =qy...qis the reversed trail of Q.

Fact 10.2.4. If P is a subtrail of () and P uses at least one edge, then the witnessing
interval Ip of P in () is unique.

PROOF. Let P =py...p. and Q = qp...q, with r > 1. Note that while for a single
vertex p; there might be several ¢; with p; = g;, for every edge p;_1p; there is a unique
Jj = j(i) € [w] with p;_1p; = hj_1h; (since our graphs are simple). From this, it follows
that Ip = U,¢,{5(¢) — 1,5(¢)}, and so the witnessing interval /p of P in @) is unique. [

DEFINITION 10.2.5. Let (X, <x) be a finite linear order. For a <x b € X, we define
e [a,blc, :=={l € X:a<xl<x b} as the closed interval from a to b.
Further, for a subset Y C X, we write

e max., Y for the greatest element of Y with respect to <x, and

e min_, Y for the smallest element of Y with respect to <x.

10.3. A reduction to the bridge case

The proof of our characterisation theorem of graphs containing a circuit through any
k prescribed edges will proceed via induction on k. For the induction step, suppose we
have k + 1 edges ey, ..., exy1 of G and may assume inductively that any k£ edges lie on a
common circuit in G. Let H be such a circuit through eq,..., e, in G. Our task is then
to also incorporate the last edge e, into a circuit.

As our first result, we will show that it suffices to consider the case where ep,q is
a bridge in G — E(H). More precisely, we claim that it suffices to prove the following
theorem:
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THEOREM 10.3.1. Let G be a graph containing no odd cut of size at most k + 1, let
{e1,...,exs1} be a collection of k+1 edges in G, and H be a circuit in G through ey, . .., ey
such that ey is a bridge in G — E(H).

Then there exists a circuit H' in G through ey, ..., ex1. Moreover, if an end vertex of

er+1 15 not in V(H), then we may assume that H' passes it exactly once.

We defer the proof of Theorem 10.3.1 until the next section, and first show how to
complete the proof of the Characterisation Theorem 10.1.4 given Theorem 10.3.1.

PROOF OF THEOREM 10.1.4 GIVEN THEOREM 10.3.1. As announced, the proof of
the sufficiency of the characterisation in Theorem 10.1.4 will go via induction on k. The
base case is easy: A connected graph without odd cuts of size at most & = 1 is evidently
the same as a bridgeless connected graph. But any edge in such a graph lies on a circuit.

Now assume inductively that Theorem 10.1.4 holds for some integer k € N. To prove
Theorem 10.1.4 in the case k + 1, let G be a graph containing no odd cut of size at most
k+1,and S = {ey,...,ery1} a collection of k + 1 edges in G. By induction, we may find
a circuit H in G through ey, ... ex. If ey € E(H), we are done.

So assume that ex 1 ¢ E(H). If ex; is a bridge of G — E(H), then we are done by
Theorem 10.3.1 (the moreover-part is not needed in this case). Otherwise, e is not a
bridge in G — E(H), and we may pick D as the maximal 2-edge-connected subgraph of
G — E(H) containing ej.1.

Note that D and H are edge-disjoint, but might share vertices. If they do, choose
v € V(D)NV(H) arbitrarily. To see that there is a circuit H* in D containing v and ey 1,
construct an auxiliary graph D’ from D by subdividing e;,; by a new vertex w. Since
D is 2-edge-connected, so is D’. By Menger’s theorem, there are two edge-disjoint w—uv
paths in D’ translating to the desired circuit H* in D. Since H and H* are edge-disjoint
and intersect in v, it is clear that F(H)U E(H") is the edge set of a circuit covering S.

Thus, we may assume that V(D) NV (H) = 0. Let F := 0g(V (D)) C E\ E(H) and
observe that every edge in F'is a bridge in G— FE(H). Since G is connected, F'is non-empty,
and we choose ep € F arbitrarily. Write e = uw with u € V(D). Next, we contract D
in G. Let G’ be the resulting graph and vp € V(G’) be the vertex corresponding to the
contracted D.

Observe that H is still a circuit through eq,...,e; in G’, that vp is not contained
in V(H) and that G’ is simple. Furthermore, every cut of G’ is also a cut in G (after
uncontracting vp), and so G’ contains no odd cut of size at most k& + 1. Hence, we may
apply Theorem 10.3.1 to G', H and ey to find a circuit H' C G’ through ey, ..., e and ep,
such that H' passes vp exactly once (by the moreover-part). Let e = v'w’ with ' € V(D)
be the edge in F' corresponding to the other edge in H' incident with vp. The circuit H’
in G’ corresponds to an «'—u trail H* in G — E(D). By subdividing e, in D once and
using Menger’s theorem in the resulting 2-edge-connected graph D', we find an u—u' trail
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Q@ in D trough ep,;. Since Q and H* are edge-disjoint, it follows that uQu'H*u is the
desired circuit in G through ey, ..., exiq. ]

10.4. Proving the bridge case

In this section, we prove Theorem 10.3.1, completing the proof of the characterisation
stated in Theorem 10.1.4. As indicated in the introduction, our proof of Theorem 10.3.1
is based on the so-called Hopping Lemma due to Woodall [169].

Throughout this section, when describing our set-up and stating our auxiliary results,
we work in a fixed 2-edge connected graph G = (V, E), with S = {ej,...,ex11} a collec-
tion of k£ + 1 edges of G, and H a shortest circuit through ey, ..., e; in G. Any remaining
assumptions featuring in Theorem 10.3.1 will only be used in the final proof of Theo-
rem 10.3.1 itself at the very end of this section.

Ifeq,...,exlieonacycle C, then C—{ey, ..., e} naturally falls apart into components,
each of which is a path. If as in our situation ey, ..., e; lie on a common circuit H, then
H —{ey, ..., e} also falls apart into segments: subtrails Hy, ..., Hx of H such that (after
relabelling our edges) we have H = Hye;Haes ... ex_1 Hyey,. Note, however, that different
segments of H — {ey,...,ex} are no longer vertex-disjoint (and so do not correspond to
components of the subgraph H — {ey, ..., e}, cf. Figure 10.2).

DEFINITION 10.4.1. Given the circuit H = Hye1Haes . .. ex—1Hyey, we call H; the j-th
segment of H. Since H is shortest possible, every segment H; is a path. We let <; denote
the path order on V(H;) induced by the circuit H.

Hy
€1

FIGURE 10.2. A circuit H = H161H2€2H363 with segments Hl, HQ, Hg.

DEFINITION 10.4.2. Given the circuit H with segments {H;: j € [k]}, for U C V and
J € [k], we define (cf. Definition 10.2.5)
(1) On;(U) := U NV(H;) as the vertices of U on the j-th segment of H,
(2) CL;(U) := [ming, On;(U), max., On;(U)|<, as the closure of U on the j-th seg-
ment of H,
(3) CUU) = Uyepyy Cle(U) as the closure of U in H,
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(4) Fr;(U) := {min., On;(U), max., On;(U)} as the frontier of U on the j-th segment
of H and
(5) Fr(U) := Upepp Fre(U) as the frontier of U in H.

Note that due to the fact that different segments can intersect, the set inclusions
CI(U) C CK(CLU)), CL;(U) € On,;(CL(U)) and Fr;(U) € On,;(Fr(U)) might be proper.

Fact 10.4.3. For j € [k] and U C V', we have CL;(U) is a subtrail of H;.

DEFINITION 10.4.4. For z,y € V(G) and X C V, we say
(1) an x—y trail P is admissible, if it is in G— E(H)—eg1 and V(P)NV(H) C {z,y},
and
(2) R(X) :={y € V(H): 32’ € X 3 admissible 2'—y/ trail} as reach of X after H.

We stress that the inner vertices of an admissible x—y trail are not in V(H).

DEFINITION 10.4.5. We define an increasing sequence (A;);en recursively by
(1) Ag:=10,
(2) Ay :=R({a}), and
(3) if A; is already defined for some i > 1, then A;;; := R(CI(4;)).

Further, we set A := (J,cy Ai. Analogously, we define an increasing sequence (B;);en and
B by interchanging a with b.

The idea behind this definition is the simple observation that if A; and B; intersect
the same segment of H, then we clearly would be done. This will not always be possible,
and so we iterate this procedure again and again, until we do find one vertex in A and one
vertex in B that are contained in the same segment of H, as Lemma 10.4.6 below shows.

We remark that Definition 10.4.5 of (A4;);en differs from Woodall’s in that Woodall’s
admissible paths (see x xy in [169]) from A; to new vertices of A;; are not allowed to
start from the frontier of A;.

LEMMA 10.4.6. If Onj(A) = 0 or On;(B) = 0 for every j € [k], then G contains an
odd cut of size at most k + 1.

ProoOF. First of all, since G is 2-edge-connected, both A and B are non-empty: Since
G —eg41 is connected, any a—V (H) path in G —eg1 is an admissible trail which witnesses
the non-emptiness of A; C A, and similarly for B.

Since A, B C V(H) and On;(A) = 0 or On;(B) = 0 for every j € [k], A and B are
disjoint. Further, from the pigeonhole principle it follows without loss of generality, that
{j € [k]: On;(A) # 0} < [%]. Then

|8HA’ = | U a(ej—lHjej) OnJ(A)‘ < Z ‘a(ej—lHjej) OnJ(A)‘ =2- LgJ ,

J€lk] J€lk]
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and since H induces an even subgraph, |0y A| is even. Thus, C' := 0y AU {exs1} is odd
and has size |C| < 2- ng +1<k+1.
To complete the proof, it remains to show that C' is a cut in . For this, we consider

D ={veV(G): 3a' € AU{a} 3 admissible a'—v trail},

and claim that 0D = C.

To see C' C 0g D, note that dg A C 0gD by definition of A. For ey € gD, suppose
to the contrary that b € D. Then there exists an admissible b—(A U {a}) trail T. Since
B # (), T combined with an admissible b— B trail witnesses that ANB # (), a contradiction.

To prove 0gD C C, let us suppose for a contradiction that there exists some edge
e=uv € (0gD) \ C withsay u € D and v ¢ D. Since u € D, we can pick an admissible
trail 7" starting in some o’ € AU {a} and ending in u. If e € E(H), then u € V(H) and
thus u € A by Definition 10.4.5. Now e € 9y (A), which contradicts e ¢ C. So, we assume
e¢ E(H). If ue V(H), then u € A and the trail uv is a witness for v € D. Otherwise,

Tuv is a witness. In any case, this contradicts v ¢ D. 0J

Now that we know that A and B intersect the same segment H; of H, it is clear
that there is a natural trail in H starting at a vertex of A, ending at a vertex of B,
and containing all of the edges ey, ..., eg. If we consider the ‘first time’ that A, and B,,
intersect a given segment H;, then this trail has the following three crucial properties of
Definition 10.4.7, as Lemma 10.4.8 shows.

DEFINITION 10.4.7. For n,m € N, we say a trail Q = qq. .. ¢ is A,— B,,—coherent, if

(Cy) e1,...,ex € E(Q), qo € Apy1 and ¢ € By,

(Cy) for every s € [w] with ¢s_1q, € E\E(H), there exist r,t € [0, w] with ¢,, ¢ € V(H)
and r < s < t such that ¢.(QQ¢; is an admissible ¢,—g; trail and each of the sets
A,y1 and B,,,1 contains at most one of ¢, and ¢;, and

(C3) for every j € [k|, Cl;(A,) and Cl;(B,,) are subtrails of () with witnessing intervals
I,4,; and Ip, ; such that Iy ; N Iy; = 0 for every XY € {4,, B,,} and every
two distinct j # j' € [K].

LEMMA 10.4.8. If Clj(A,+) # 0 # Clj(By,») for some j € [k], then there exists an
A,—B,,— coherent trail for some n < n*, m < m*.

PROOF. Let j be in [k] such that Clj(A,«) # 0 # ClLi(B~). Choose n < n* and
m < m* minimal such that Cl;(A,41) # 0 # Clj(Bp,+1) and pick a,11 € Onj(A,+1) and
bm+1 € On;(Bpy1).” We claim that the trail @ with start vertex a,.; and end vertex

20ne could make a stronger minimality assumption by choosing n, m minimal so that Cl;(A,) # 0 #
Cl;(B,,) for some j € [k]. Following the same proof, this gives rise to a trail ¢ which satisfies the following
stronger variant of (C3), namely Ix ;N Iy j = () for every X,Y € {A,, B,,} and every two (not necessarily

distinct) 7,5’ € [k]. However, we do not need this stronger conclusion for the remainder of our proof.
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bm+1 along the circuit H through ey, ..., e, and Hj as subtrail for every j' € [k] \ {j} is
A, — B,,—coherent as desired.

Indeed, (C;) holds by construction and (C,) is an empty condition. Lastly, since
Cli(A4,) = 0 = Cl;(B), and all other segments H; for j' € [k] \ {j} are subtrails of Q
with pairwise disjoint witnessing intervals by construction, also (C3) holds for Q. O

While conditions (C;) and (Csy) are straightforward adaptions from Woodall’s notion
of coherence [169, §III] from paths to trails, a word on (C3) might be in order. Given the
‘time-minimal’ subtrail @) of H constructed in Lemma 10.4.8, we aim to modify ) while
preserving as much structure of ), and hence of H, as possible. Since segments of H may
intersect, the correct notion of ‘structure preserving’ is to think about the trail in terms
of time: Our initial trail ) constructed in Lemma 10.4.8 spends disjoint time intervals
to cover the different segments of H that contain vertices from Cl(A4,) U Cl(B,). When
modifying @), however, we can no longer require to completely cover all these segments. So
instead, we only preserve the property that if T and S are subpaths of distinct segments
H; and Hj of the form T € {Cl;(4,),CL(B,)} and S € {Cl;(A,),Cly/(B,,)}, then we

continue to spend disjoint time intervals to cover 7" and S.

THEOREM 10.4.9. If there exists an A, —B,,—coherent trail for some n,m € N, then

there also exists an Ay— By— coherent trail.
For the proof, we need two easy lemmas.

LEMMA 10.4.10. Let n,m € N and Q = qo...q, be an A,—B,,—coherent trail. If
n>=1andq € A,, then Q is A,_1—B,,—coherent, and if m > 1 and q, € B,,, then Q is
A, —B,,_1—coherent.

PROOF. Due to the symmetry of the statements, we just check the conditions for @)
being A,,_1—B,,—coherent for n > 1. Property (C;) is clear, and (C,) is immediate from
the fact that (A;);en is an increasing sequence.

Finally, (C;) follows from the fact that since (A;);en is increasing, Cl;(A4,-1) is a
subtrail of Cl;(A,,), and hence we have I, ,; C 14, ; for the respective witnessing intervals
for all j € [k]. Since Ix;NIy;; = 0 for every X,Y € {A,, B,,} and every two distinct j, j' €
[k] holds by assumption, it follows that the same holds for every X,Y € {A,_1, B,,}. O

LEMMA 10.4.11. Letn,m € N and v € (Cl(A,)U{a})U(CYB,,)U{b}). If Q = qo .- . qu
is an Ap— By, — coherent trail and P is an admissible v—V (H) trail, then Q) and P are edge-
disjoint.

PROOF. By symmetry we may assume that v € CI(A,) U {a}. Suppose for a contra-
diction that P and @ are not edge-disjoint. Choose s € [w] such that gs_1qs is the first
edge of P that is also in E(Q). Since ¢s_1¢9s € E(P) C E'\ E(H) by Definition 10.4.4, it
follows from property (Cs) of A,—B,,—coherent that there are r,t € [0, w] with r < s <t
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and ¢, q € V(H) such that ¢.Qgq, is an admissible g,.—¢, trail and each set A, 1 and By, 11
contains at most one of ¢, and ¢;. But since gs_1¢s is the first edge of P in E(Q), both
vPqs_1Qq, and vPg,_1Qq; are admissible trails witnessing that ¢,,q € A,41 (cf. Defini-
tion 10.4.5(3)), a contradiction. O

PROOF OF THEOREM 10.4.9. Let n, m be minimal such that there is an A,,—B,,—coherent
trail Q = qq . . . ¢, With start vertex ¢y = a,.1 € A,;1 and end vertex q, = by 11 € Bni1-
We claim that n = m = 0. Otherwise, without loss of generality we may assume n > 1.
By Lemma 10.4.10 and the minimality assumption, we have a, 11 € A1 \ A,. We write
Q as a4,11Q¢:Qq4Qby 1 where ¢, d € [0, w] are defined as follows:

(a) Since a, 1 € A,11\ A, and by Definition 10.4.5(3) of A, 11, there is an x € CI(A4,)
such that there exists an admissible x—a,; trail P (which might be trivial).
From Definition 10.4.2(3) of the closure it follows that there is an j € [k] such
that « € Cl;(A4,). By property (C;) of A, —B,,—coherent, Cl;(A,) is a subtrail of
() with witnessing interval I4, ; C [0, w]. Now, we choose d € I, ; as the unique
index with ¢4 = .

(b) Next, choose ¢ := max{r € [0,w]: ¢- € ;¢ Frj(4:) A7 < d}. Ifr:=minly,
then ¢, € Fr;(A,) and obviously r < d. Hence, c exists.

Qi1 (min1,,, ; Qe qd Clj(A,) b1

P

FIGURE 10.3. Obtaining the rerouted trail @’ from Q.

Further, we set n' := min{i € [n]: ¢. € Fr;(A;1+1)} and observe
(1) ]An’,j N [C, d] = @,
(2) if [Bm,j N [C, d] 7£ (Z), then CIJ(AH) N Clj(Bm+1) # (Z),
(3) if gqa € B, then Cl;i(A,) N CLi(Byi1) # 0, and
(4)

PROOF OF (1). We assume for a contradiction that I, N [c,d] # 0. Then, either
choosing r as min(l4, , N le,d]) or max(l4, N le,d]) will lead to g, € Frj(Ay), which is

P and @ are edge-disjoint.

a contradiction to the choice of ¢ or n’ because ¢ < r < d.

PROOF OF (2). Let Ip, ;N [e,d] # 0. So, Ia,;NIp, ; # 0 because [¢,d] C g, ;.
Further, Cl;(A,,)NCL(B,,) € CL;(A4,)NCL;(By,41) implies then that Cl; (A, )NCL(Bm11) #
0.

PROOF OF (3) If qq € Bm+17 then, qq € Clj<An) N Clj(Bm+1) 7é 0.



10.5. CONCLUDING REMARKS AND AN OPEN QUESTION 231

PROOF OF (4). Since ¢4 € Cl;(4,) C Cl(A,) and Q is A,,—B,,—coherent, this follows
from Lemma 10.4.11.

If Ip, ;N [c,d] # 0 or g4 € By, then (2) or (3) imply that Cl;(A,) N CL(By11) # 0,
which by Lemma 10.4.8 gives rise to a coherent trail that contradicts the minimality of n
and m. Hence, we assume I, ; N[c,d] =0 and ¢4 ¢ Bpi1-

Now we reroute @@ and obtain Q' := q.Qa,41PqiQbyi1, see Figure 10.3. From (4)
it follows that @' is a trail. We show that @’ is A, —B,,—coherent, contradicting the

minimality of n and m:

(Cy) Since E(qc...q4) € E(H;) and since all our edges satisfy e; ¢ E(H;), the fact
that @ satisfied (C;) implies that @’ uses ey, ..., e,. Also, the start vertex g, is
in Frj(A,4+1) € Ay41 and the end vertex by, is still in By,44.

(Cs) Because a,+1 ¢ A, 2 Apyq and qq € By, each of the sets A,y and By,
contains at most the start or the end vertex of P. Also, the ¢;—a, 1 trail P is
admissible. This implies that (C,) is true for edges that are in P. For edges that
are not in P, it follows directly from Q’s (C,) and ¢.,qqs € V(H).

(C3) Due to (1) and Ip,, ; N [c,d] = 0, the trails Cl;y(A,/) and Cl;y(B,,) are subtrails
of g1...q. or qq...q, for every j° € [k]. Hence, Q" inherits property (C3) from
Q. O

We are now ready to complete the proof of Theorem 10.3.1.

PROOF OF THEOREM 10.3.1. Since G contains no odd cut of size at most k + 1,
Lemma 10.4.6 implies that On;(A) # 0 # On;(B) for some j € [k]. By Lemma 10.4.8
there is an A, — By, —coherent trail in G —ey, 1 for some n,m € N, and so by Theorem 10.4.9
there also exists an Ag—Bg—coherent trail () from a vertex a; € A; to a vertex b; € By in
G — epq1-

By Definition 10.4.5(2) of A; and B, there is an admissible a—a; trail P, and an
admissible b—b; trail B,. Since ey, is a bridge in G — E(H),” the trails P, and P,
are vertex-disjoint. Thus, P,, P,, () and ey, are edge-disjoint by Lemma 10.4.11 and
Definition 10.4.4(1). Together with property (C;) of Q, it follows that H' := baP,a;Qb, Pyb
is the desired circuit in G through ey, ..., ex 1.

To see the moreover-part of Theorem 10.3.1, observe that if a ¢ V(H), then a ¢ V(Q)
due to (C,) and Definition 10.4.5(2) of A;. Thus, the circuit H’ passes a once, since P,
and P, are vertex disjoint. The same holds for b. 0

10.5. Concluding remarks and an open question

To find a circuit through any k prescribed edges we employed a global property by
forbidding all odd cuts of bounded size. However, if we are only interested in one specific

3We remark that this is the only place in our argument where we use that ey is a bridge in G— E(H).



232 10. CIRCUITS THROUGH PRESCRIBED EDGES

edge set, forbidding all bounded sized odd cuts seems unnecessarily strong: For example,
if our k edges are contained in a (k + 1)-edge-connected subgraph, then it is irrelevant
whether the whole graph contains some further small odd cuts. Hence, the following

natural question arises:
QUESTION 4. When can a given edge set of a graph GG be covered by a circuit in G7

One line of investigation could be whether a condition similar to the one in Jaeger’s
theorem 10.1.6 could be of additional help:

DEFINITION 10.5.1. For any k € N, let g(k) be the smallest integer such that a set of
at most k edges in a g(k)-edge-connected graph G is covered by a circuit in G if and only

if it contains no odd cut of G.

LEMMA 10.5.2. For any k € N,

(1) g(k) < m < k+ 1, where m is the smallest even integer >k, and
(2) for k >4, g(k) > €, where { is the greatest odd integer <3(v/8k — 7+ 1).

ProOOF. The first part follows directly from Theorem 10.1.4.

For the lower bound of g(k), let £ is the greatest odd integer <i(v/8k —7 + 1), and
consider H; tobe a Ky with V(H) = {v;1,...,v;¢} fori € [2]. Further, we define G := H,+
Hy+{v1,v9,: j € [{]}. We remark that G is (-connected. Now, we pick S := E(H;)U{e}
where e is some edge of E(Hy). We calculate

/ 00 —1)
pu— = <
|S] (2)+1 5 +1<k

where the inequality holds for ¢ < %(\/8k — 7+1). By Theorem 10.1.6, S contains no odd
cut of G, because S is contained in the even subgraph H; + H,. But clearly there exists
no circuit H" in G that covers S. OJ

Fact 10.5.3. We have
g(1) =0, g(2) =2, g(3) =3 and g(4) = 4.

PRrROOF. To see g(1) = 0, observe that any edge not being a bridge of its component
must lie on a cycle.

For ¢g(2) = 2, note that g(2) < 2 by Lemma 10.5.2, and ¢g(2) > 1 by considering two
disjoint cycles connected by an edge, and letting S consist of one edge from each cycle.

Next, Example 10.1.7 shows g(3) > 2. For ¢(3) < 3, let G be a 3-edge-connected
graph and S be a 3-set of edges which contains no odd cut of size at most three. By
Theorem 10.1.6, there exists an even subgraph H of G. We choose H subgraph-minimal,
and so H has at most three components.
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First, we assume that H has three components C, Csy, C3, and reduce it to the case
where H has two components by considering the three edge-disjoint V(Cy)—V (Cy 4+ Cs)
paths in G which exist by Menger’s theorem.

Now, we assume that H has two components C, Cy where without loss of generality
|E(Cy) N'S| = 1. Again there are three edge-disjoint V' (C1)—V(Cy) paths in G. At least
two of them meet the same segment of Cy such that we can construct a cycle in G which
goes through all three edges.

Finally, g(4) = 4 follows from Lemma 10.5.2. O

Thus, by adding Jaeger’s condition, for odd |S| it appears we need less edge connec-
tivity than before. It might be an interesting problem to find the precise values for the
function f, or at least to improve any of the bounds given in Lemma 10.5.2. In particular,

we were not able to find an example witnessing g(5) > 4.






CHAPTER 11

n-Arc connected graphs

Given a graph G, of arbitrary size and unbounded vertex degree, denote by
|G| the one-complex associated with G. The topological space |G| is n-arc
connected (n-ac) if every set of no more than n points of |G| are contained in
an arc (a homeomorphic copy of the closed unit interval).

For any graph G, we show the following are equivalent: (i) |G| in 7-ac, (ii)
|G| is n-ac for all n, and (iii) G is a subdivision of one of nine graphs. A graph
G has |G| 6-ac if and only if either G is one of the nine 7-ac graphs, or, after
suppressing all degree-2-vertices, the graph G is 3-regular, 3-connected, and
removing any 6 edges does not disconnect G into 4 or more components.

Similar combinatorial characterizations of graphs G such that |G| is n-
ac for n = 3,4 and 5 are given. Together these results yield a complete

classification of n-ac graphs, for all n.

11.1. Introduction

Graphs are typically considered as combinatorial objects: a set of vertices, along with
a set of un-ordered pairs of vertices, forming edges abstractly connecting the vertices; but
it is equally natural to consider graphs as geometric objects with a set of vertices and some
pairs of vertices literally connected by an arc (a homeomorphic copy of the closed unit
interval). Indeed right at the birth of graph theory, with Euler’s solution of the Konigsberg
Bridges problem — asking for a particular kind of physical path — and a little later with
Hamilton’s solution of his Icosian problem — requesting an arc, or circle, in the skeleton
of a dodecahedron, containing all vertices — the geometric view is the most immediate.
When we think of a graph geometrically (a 1-complex), then the points on edges become
first class citizens, and this change in perspective opens up new classes of problems. In
this paper we always consider a given combinatorial graph as a geometric graph with the
natural underlying set, topologized in any way so that each arc forming an edge has its
usual topology as a subspace (the exact topology on the graph will not turn out to be
important here).

A natural extension of Hamilton’s problem is to ask, for some n, which graphs G
are n-arc Hamilton (respectively, n-Hamilton) that for any choice of at most n vertices
there is an arc (respectively, a circle) in G containing the specified points. For example,
a classical theorem in graph theory of Dirac [61, Satz 9] says that a n-connected graphs
are n-Hamilton. (Recall that a combinatorial graph is k-connected if deleting at most

235
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k — 1 vertices does not result in a disconnection.) However, high connectivity isn’t always
necessary, indeed every cycle is n-Hamilton, for all n, despite it being only 2-connected.
Dirac also noted in [61] that n-connected graphs are not necessarily (n + 1)-Hamilton.
A characterization was found in [163]: let G be an n-connected graph, n > 3, then G
is (n + 1)-Hamilton if and only if no set 7" of vertices of G of size n separates G into
more than n components. As is well-known, despite the existence of simple sufficient
conditions, there is still no characterization of Hamiltonicity. Let us also note that Egawa,
Glas & Locke [163] gave a sufficient condition for an n-connected graph to be (n 4+ 1)-arc
Hamilton, but the authors are not aware of characterizations of the (n + 1)-arc Hamilton,
n-connected graphs.

Taking the geometric viewpoint we are led to consider connecting arbitrary points in
a graph by arcs or circles. Let G be a graph, considered as a topological space, and S
a subset of G, then (S,G) is n-arc connected (or, S is n-ac in G) if for any choice of at
most n elements of S there is an arc in G containing the specified points, while (S, G) is
n-circle connected (or, S is n-cc in G) if for any choice of at most n elements of S there
is a simple closed curve in GG containing the specified points. Further, we say S is w-ac
(respectively, w-cc) in X if it is n-ac (n-cc) in X for all integers n € N. Observe that a
graph G with vertices V' has a Hamiltonian path (respectively, cycle) if and only if V' is
|V|-ac (respectively, |V|-cc) in G, and is n-arc Hamilton (respectively, n-Hamilton) if and
only if V' is n-ac (respectively, n-cc) in G.

Define a graph G to be n-ac (resp., n-cc) if G is n-ac (resp., n-cc) in G — in other words,
for any choice of at most n points of G there is an arc (resp., circle) in G containing the
specified points. In this paper we give a complete solution to the problem of characterizing
which graphs are n-ac or n-cc. By ‘complete’ we mean for any n, and for any graph,
without restriction on the number of vertices, or edges, or the degree of any vertex. Our
characterizations give tests for a graph to be m-ac or m-cc which are combinatorial in
nature, only referring to vertices and edges, and which are polynomial in the number of
vertices for finite graphs. The proofs largely rely on Menger-type results, and arguments
based on (and in some cases, extending) the theory of alternating walks.

In describing our results, we should start by stating that it is straightforward to see
that a graph is 2-cc if and only if it is 2-connected, while the only 3-cc graphs are cycles
(see Theorem 11.3.1 and preceding discussion). Hence our focus is on n-ac graphs, for some
n. It is also clear that a graph G is 2-ac if and only if it is connected (combinatorially).
In [69] it was shown that a non-degenerate finite connected graph G is 7-ac if and only
if it is w-ac if and only if G is homeomorphic to one of 6 graphs (arc, circle, lollipop,
Y-curve, figure-of-eight, dumbbell). Extending that argument shows that this behaviour
occurs also for arbitrary graphs. Indeed (see Theorem 11.3.15), a non-degenerate graph G
is 7-ac if and only if it is n-ac for all n, and if and only G is homeomorphic to a finite list
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of graphs, namely homeomorphic to one of the six finite 7-ac graphs, or one of the finite
7-ac graphs with some endpoints removed (giving three more possibilities).

It remains, then, to characterize the n-ac graphs for n = 3,4,5 and 6. In [69] infinite
families of finite graphs which are n-ac but not (n + 1)-ac were given for all 2 < n < 6,
and the problem of characterizing finite n-ac graphs for n = 3,4,5 and 6 was raised.
Theorems 11.3.1 and 11.3.2, 11.3.3 and 11.3.5, 11.3.6 and 11.3.7, and 11.3.10 solve that
problem for arbitrary graphs. As a sample: a graph G is 6-ac if and only if either G is
one of the nine 7-ac graphs mentioned above, or, after suppressing all degree-2-vertices,
the combinatorial graph G is 3-regular, 3-connected, and removing any 6 edges does not

disconnect G into 4 or more components.

11.2. Preliminaries

In this paper, the term graph refers to a combinatorial graph G = (V| E) where V is
a (possibly infinite) set and E C [V]?. However, to every combinatorial graph G = (V, E)
we associate the topological space, |G|, which is the 1-complex of G, namely the quotient
space (V © P.cxl0, 1]6) / ~ where V' carries the discrete topology and for an edge e =
{v,w} € F we identify v in V' with the 0 € [0, 1], and w with 1 € [0, 1]. In fact our results
hold whenever the set |G| is given a topology in which the image under the quotient of
each [0, 1], is homeomorphic to [0, 1]. (For example, the metric topology induced by vertex
distance, extended to interior points of edges in the natural manner, would work equally
well. The quotient topology is simply the finest one satisfying this property.) Where no
confusion can arise — when we discuss purely topological notions, for example — we abuse

notation and simply write G for |G]|.

11.2.1. Notation and Conventions. Let G = (V, E) be a graph. An edge, ¢ =
{v,w} is often abbreviated, e = vw. By convention we label fized vertices by a,b, ..., and
general vertices as v,w et cetera. Let V = AUB a partition of its vertex set. The set
E(A, B) of edges of G with one endpoint in A and the other in B is called an edge-cut of
G.

For ACV or F C E we write G[A] and G[F] for the induced subgraph of G.

A subset e of |G] is called a closed edge if it is the image under the quotient map of
some |0, 1], and is called an edge if it is a closed edge minus its endpoints. In particular
note that edges are open sets. If e = vw € E(G) then € = {v,w} Ue C |G| is the closed
edge in |G| naturally associated with the combinatorial edge e in G. By convention we

label points in the space |G| by z,vy, .. ..

11.2.2. Background from graph theory. Our main tools from graph theory will
be the block-cutvertex decomposition of (possibly infinite) connected graphs, and certain
variants of Menger’s theorem, especially the ones involving the concept of alternating
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walks. A good overview of these techniques is given, for example, in the chapter on
connectivity of Diestel’s book, [54, § 3.1 & 3.3].

A graph G = (V, E) is cyclically connected if every two vertices lie on a cycle, and,
recall, is 2-connected if removing any single vertex does not disconnect the graph. Note
that a graph is cyclically connected if, in our terminology, the vertices are 2-cc in the
graph. Observe that, according to this definition, the complete graph on two vertices is
2-connected but not cyclically connected. However, by Menger’s theorem stated below,
any 2-connected graph with at least 3 vertices is cyclically connected.

11.2.2.1. Block-cutvertex decomposition. Let G be a connected graph. A block of G
is an inclusion-maximal 2-connected subgraph. Every edge is contained in a block, and
by their maximality, different blocks overlap in at most one vertex, which then must be
a cut-vertex of GG. Therefore, the blocks form an edge-disjoint decomposition of G. Let
C' C V denote the set of cut-vertices of G = (V, E) and B the collection of blocks. The
block graph B(G) of G is the bipartite graph formed on the vertex set CUB with an edge
c¢B € E(B(Q)) if and only if ¢ € B. For the proof of the next lemma see [54, Lemmas 3.1.3
& 3.1.4].

LEMMA 11.2.1. The block graph of a (possibly infinite) connected graph is a (possibly
infinite) graph-theoretic tree.

11.2.2.2. Chain graphs and cycle graphs. A connected graph is called a chain graph if
it is a linearly ordered union (possibly just one) of subgraphs (called links) such that only
consecutive graphs meet, and their intersection consists of a single vertex only (called the
linking vertex). Thus, a connected graph G is a chain graph of 2-connected links if and
only if its block graph B(G) is a finite path, a ray, or a double ray.

Similarly, a connected graph G is a cycle graph if G is a union of graphs Lg, L1, ..., L, 4
(called links) for some n € N where (a) L;NL; = 0 if |i — j| > 1 mod n and (b) L; meets
L; at a single vertex (called the linking vertez) if |i — j| =1 mod n.

11.2.2.3. Menger’s theorem and alternating walks. We say a graph G = (V, E) is k-
connected for some k£ € N if the induced subgraph G — W is connected for all W C V' with
|W| < k. We note that even if a graph G is k-connected for some large k, the underlying
topological 1-complex |G| is never 3-connected in the topological sense, as removing two
endpoints of an edge disconnects the interior of that edge from the rest of the graph.

Given sets A, B of vertices, we call a path [walk] P = xy,...,z, an A — B path [walk]
if V(P)NA={zo} and V(P)N B = {x,}, i.e. if the path [walk] starts in A, ends in B
and is otherwise disjoint from AU B. Two or more paths are independent if none of them
contains an inner vertex of another. If A/ B C V and X C V is such that every A — B
path in G contains a vertex from X, then we say that X separates the vertex set A from
B. This implies AN B C X, i.e. X does not have to be disjoint from A or B.
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THEOREM 11.2.2 (Menger’s Theorem). Let G = (V, E) be a (potentially infinite) graph
and A, B C V. Then the minimum number of vertices separating A from B in G is equal

to the maximum number of disjoint A — B paths in G.

PROOF. See [54, Theorem 3.3.1 & Prop 8.4.1] respectively for the proof for finite
graphs and its infinite extension. ([l

However, at several points in this paper we shall employ the following more algorithmic
version of Menger’s theorem using the notion of alternating walks. Recall that for given sets
A, B of vertices and P a collection of disjoint A— B paths, a walk W = zgepzi€1 ... €012,
in G with no repeated edges (but possibly repeated vertices) is alternating with respect
to P if

e W starts in A\ P,

e the only repeated vertices of W lie on paths in P,

e whenever W hits a vertex of some path () € P (meaning say e; ¢ () but z;1; € Q)
then P follows () back towards the direction of A for at least one edge of (), and

e whenever W uses an edge e from a path Q € P, then W traverses this edge
backwards.

We refer the reader to [54, Fig. 3.3.2] and the surrounding discussion for further informa-
tion. The following two lemmas list the two crucial properties of alternating paths in the
context of Menger’s theorem. For the proof of the first see [54, Lemma 3.3.3].

LEMMA 11.2.3. If no alternating walk ends in B \ |JP, then G contains an A — B
separator X on P with | X| = |P].

LEMMA 11.2.4. If an alternating walk W ends in B\ |JP, then G contains a set of
disjoint paths P’ with |P'| = |P| + 1. Moreover, the alternating walk W can be chosen
such that

(1) E(P') is precisely the symmetric difference E(P)AE(W), and
(2) every path P’ € P’ traverses the edges of E(P') N E(W) in the same order as W.

PROOF. The first assertion of the lemma is proved in [54, Lemma 3.3.2]. However, in
order to see the moreover-part, we need to recall the main idea of [54, Lemma 3.3.2]. First,
the definition of an alternating walk ensures that after taking the symmetric difference
A=EP)AEW) :=Upep E(P)AE(W), every vertex outside AU B will have degree 0
or 2 in G[A], and vertices in A or B lying on P of W will continue to have degree 1. Thus,
every component of G[A] containing a vertex a € A will have to be a finite path starting
at a and ending at A U B. To see that any such path in fact has to end at a vertex of B,
one proves the additional fact that the path traverses an edge in the symmetric difference
always in the forward direction with respect to P or W. This, clearly, yields the first

assertion of the lemma.
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However, there might be further components of G[A] which are finite cycles not incident
with A U B. To eliminate the occurrence of such finite cycles (and hence to establish
property (1)), we choose an alternating walk W ending in B \ |JP such that |E(W) \
Upep E£(P)| is minimal. Now suppose for a contradiction that there is a cycle C' in G[A].
By the argument above, we know that traversing the edges of (' in the forward direction
with respect to P or W induces a cyclic order < on E(C'). Observe that since (C, <) is a
cyclic order, there are edges eg, epy; for i > 0 of E(W) such that ex; < fi < fi < -+ <
fo < ey is a segment of (E(C'), <), where £ > 0 and f,..., f¢ is a subpath of some path
P € P (here, £ = 0 allows for the possibility that egy; < ex are successors in (E(C), <)).

If £ > 0, then the walk W' = xqeq...ep_12kfe ... f1Thriz1€hpizt - - - €n_1Ty 1S an alter-
nating walk contradicting the minimality of W. Otherwise, if £ =0 (so ¢ > 0), write x for
the vertex incident with both e, ,; and ex. Then by definition of alternating, there is a path
Q € P with @ = yofoy1f1 - fimn—1Ym such that ez 41 = f;, ex—1 = fry1 and z = y,41. But
then the walk W/ = xgeq ... ep_1T€51i11 - . . €n_12, 18 an alternating walk contradicting the
minimality of W. This contradiction shows that A is cycle-free, establishing (1).

It remains to argue that by choosing |[E(W) \ [Upep £(P)| minimal, we also have
property (2). But if (2) fails for some path P’ € P’, there a segment on the path P’ of the
form e, < fi < fi <--- < fr < e, where £ >0 and fy,..., fs is a subpath of some path
P € P, which yields a contradiction to the minimality of W as before. OJ

From Lemmas 11.2.3 and 11.2.4 we immediately deduce:

THEOREM 11.2.5. Let G = (V, E) be a (potentially infinite) k-connected graph, A, B C
V' be disjoint sets of vertices each of size at least k, and P a collection of disjoint A — B
paths with |P| = i < k. Then there exists an alternating A — B walk W such that the
symmetric difference E(P)AE(W) is precisely the edge set of a collection of i + 1 many
disjoint A — B paths.

11.2.3. Background on n-arc connectedness.

LEMMA 11.2.6 ([69, Lemma 2.6 |). Let v be a vertex of a graph G of degree at least
3. If xg, 21,29 are interior points of distinct edges of G incident with v, then any arc «
containing {xo, x1, T2} satisfies v € int(a), and one of its endpoints lies in [v, o] U[v, x1]U
[v, z2]. O

The next lemma can be seen as a partial extension of the previous lemma:

LEMMA 11.2.7. Let G be a graph, and E(A,B) = {e1 = ai1by,...,e, = a,b,} be an
edge cut of G with a; € A and b; € B. Suppose that x; € e; are interior points.

Then any arc containing xq,...,x, with endpoints x1 and x, contains either both
lay, 1] and [a,,z,] or both [xi,bi] and [x,,b,] if n is even, and it contains |ai,z1] and
[, by or vice versa if n is odd.
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PROOF. From the given arc, fix an embedding « : [0,1] — G such that «(0) = 2,
a(l) =z, and xg, ..., z,_1 are in ([0, 1]). For concreteness let us suppose that n is even
and the arc « travels from x; along the edge e; to a; (rather than b;), and so the given
arc contains [a1, z1]. We show the arc also contains [a,, z,|. The other cases are similar.

After aq, which is in A, the arc « passes through the even number of points s, ..., x,_1
in some order, before ending at z,,. As it does so the arc must cross backwards and forwards

between A and B an even number of times. Hence o must enter e,, from A, in other words

by passing through a,, and thus the arc contains [a,, x,], as claimed. U
Note that when picking an arc witnessing that points xg,z1,...,2,_1 € X lie on a
common arc, we may assume that endpoints of the arc are among xg, 1, ..., 2, 1.

LEMMA 11.2.8. Let X be a topological space. If there exists A C X such that |A| <
n € N and X\ A has at least n + 2 components, then X is not (n + 2)-ac.

ProoF. Pick n + 2 points xg, x1,...,z,41 each belonging to a distinct component of
X\A. Suppose there is an arc containing g, x1,...,ZT,+1. Relabeling xg, xq,..., 0 if
necessary, we can fix an embedding o : I — X and 0 = t) < t; < --- < t,,41 = 1 such
that x; = a(t;) for each i. Then a((t;,t;41)) N A # 0 for each i = 0,1,...,n, which is a
contradiction since |A] < n and « is injective. O

LEMMA 11.2.9. Let G be a graph. If for some n € N, the condition
(%n) no n points of |G| cut |G| into at least n + 2 components
holds, then () implies (xp,) for all 1 < m < n.

PrROOF. Let A C |G| be finite of size m > 1 witnessing the failure of (x,,). Then
|G| \ A contains at least one half-open edge, i.e. an open set U such that U = (0,1) and
U =2 [0,1). By picking n — m many points from U and adding them to the set A, we
obtain a set A" witnessing the failure of (*,). O

Our last lemma in this section says that when verifying whether a graph G is n-ac, it

suffices to consider points on the interior of edges of |G|.
LEMMA 11.2.10. Forn € N, a graph G is n-ac if and only if (|G| \ V,|G]) is n-ac.

PROOF. Only the backwards implication requires proof. Assume that (|G| \ V,|G|) is
n-ac and let zg, z1, .. ., 2, € G be arbitrary. Pick yo, y1,...,yn € |G[\V as follows: if z; lies
on the interior of an edge, then y; = z;; otherwise, if x; € V| let y; be a point on the interior
of some edge incident with z;. By assumption, there is an arc « containing yo, y1,-- -, Yn
which we may assume to have endpoints yy and y,,. Therefore, x1,x9,..., 2,1 € a. We
will show that o can be extended to include zy and the same argument will work for x,,
as well. If yo = xo we are done. If yy # ¢ then z is an endpoint of the edge containing
Yo, say e. The arc a contains one of these endpoint and if o € a we are done. Otherwise,
aUeU{zo} is also an arc and contains x. O
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11.3. Characterizing n-ac Graphs

11.3.1. Characterizing 2-ac, 2-cc, 3-ac and 3-cc graphs. A graph G is n-strongly
arc connected, abbreviated n-sac (see [68]) if for any list of no more than n elements of |G|
there is an arc in GG containing the points in the specified order. We note that no graph is
4-sac (pick four points x1, r3, x2, x4 in that order along any edge). It is evident that the
following are equivalent for a graph G: (i) G is 2-ac, (ii) G is 2-sac, (iii) |G| is connected,
and (iv) G is connected (combinatorially).

It is also clear that a graph is 3-cc if and only if it is a cycle. Indeed a graph G is
not 3-cc if (i) it contains a vertex of degree one (that vertex is not in any circle), or (ii) a
vertex of degree at least 3 (consider three points from the interior of three edges exiting
the vertex), or (iii) is a chain.

We characterize 3-sac and 2-cc graphs. The equivalence of (1) through (4) below for
finite graphs was established in [68, Prop. 6].

THEOREM 11.3.1. For a (possibly infinite) graph G, the following are equivalent:

(1) G is 3-sac,

(2) G is cyclically connected,

(8) any three points of |G| lie on a circle or a ¥-curve,
(4) G # K is 2-connected, and

(5) G is 2-cc.

PRrROOF. The equivalence of (2) < (4) follows from Menger’s Theorem 11.2.2.

For (2) = (3), pick three points zg, z1,22 € G. Now for every each 2-element subset
A; of {zg, x1, 2}, use the fact that G is cyclically connected to find a (finite) cycle C; € G
containing the two points of A;. Then consider the finite connected subgraph H = |J, C;
of G. By construction, any two points of H lie on a cycle, so H is cyclically connected.
By the finite case, the three points g, x1, 2 of H lie on a circle or a ¥-curve in H, and
hence in also G.

The implication (3) = (1) follows from the finite case (see [68, Prop. 6]), and to see
(1) = (4), note that if a topological space has a cut-point, then it fails to be 3-sac, [68,
Lemma 1].

Finally, evidently 2-cc graphs are cyclically connected, while (3) = (5) since the circle

and v-curve are clearly 2-cc. O

Thus cyclically connected graphs are (strongly) 3-ac, and this extends naturally to a
characterization of 3-ac graphs.

THEOREM 11.3.2. A (potentially infinite) graph G is 3-ac if and only if it is a chain
graph of 2-connected links, or, equivalently, if and only if its block graph is connected and

contains no verter of degree at least 3.
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PRrROOF. To see that the conditions are necessary, consider the block-cutvertex decom-
position of G and its associated block graph B(G), which is a (potentially infinite) tree
by Lemma 11.2.1. To prove that G is a chain graph of 2-connected links, it suffices to
show every vertex of B(G) has degree at most 2. It follows from Lemma 11.2.8 that no
cut-vertex of G can have degree strictly bigger than 2 in 7. And if there is a block B of
G with contains at least three cut vertices ¢y, ¢1, ¢o, then picking three points x; each on
the interior of edges e¢; € G\ E(B) incident with ¢; easily shows that G cannot be 3-ac.

For the converse direction, suppose G is a chain graph of 2-connected graphs. Pick
Xo,x1, T2 in G. Then there is a minimal finite ‘convex’ part of that chain, say Ly,..., L,
with L; N L; 1 = v;, covering xg, 1, To.

If all zg, 1,29 lie in the same link Ly, we are done by Theorem 11.3.1, as Ly is 2-
connected. If xg, x; lie in same link, say Lg, and x5 lies in L,,, then we may find

e an arc o in Lg that picks up {xg, 21,00} ending at vy (clear if Ly = K,, and by
Theorem 11.3.1 otherwise),
e arcs «; in L; with endpoints v;_; and v; for 0 < i < n, and
e an arc «,, in L, with endpoints v,,_; and x3.
It is then clear that the concatenation of the «; is an arc though our three points xg, 1, xs.
Finally, in the case where xg € Ly, x1 € L; for 0 < < n and x5 € L, the same approach
extends straightforwardly. O

11.3.2. Characterizing 4-ac graphs. Let us say that a graph G is a basic 4-ac
graph if G is (a subdivision of) a circle, a ¥-curve, a cycle graph of two circles and an arc
(‘happy-face curve’), or if it is (a subdivision of) a cycle graph of alternating two circles
and two arcs (‘baguette curve’). See the following sketch for the latter two basic 4-ac
graphs.

As any four edges of these graphs either lie on a common ¥-curve, a figure-8-curve or
a dumbbell, these graphs are indeed 4-ac. The purpose of our next theorem is to prove a
‘converse’ of this observation for cyclically connected 4-ac graphs.

THEOREM 11.3.3. For a cyclically connected graph G, the following are equivalent:
(1) G is 4-ac,
(2) no two vertices cut G into 4 or more components, and
(8) any four edges of G are contained in a basic 4-ac subgraph of G.



244 11. n-ARC CONNECTED GRAPHS

PROOF. The implication (1) = (2) is Lemma 11.2.8, and (3) = (1) is clear.

For (2) = (3), let G be a 4-ac cyclically connected graph such that no two point set
cuts it into at least 4 components. Let xq,...,23 € GG. To show that G is 4-ac, we may
assume, by Lemma 11.2.10, that all x; are interior points of edges.

By Theorem 11.3.1, the three points xg, z1,x2 lie on a common circle or a common
Y-curve X. In the first case, Menger’s Theorem 11.2.2—applied with the two endvertices
of the edge containing x3 against V(X )—shows that there are two disjoint z3 — X arcs,
and so there is a ¥-curve contain {x, ..., 23} and we are done.

Otherwise, let us write a and b for the two degree-3-vertices of the v-curve X, and
€g, €1, € for its three edges. Further, as xg,z1,x2 do not lie on a common cycle, we
may label the edges of X such that x; € e;. Since G is cyclically connected, it follows
from Menger’s Theorem 11.2.2 as before that there is an arc « such that x3 € a and

X Na={a(0),a(1)}. Up to symmetry, the following cases can occur:

(1) a(0), (1) € e, (2) a(0) € eg, a(l) € ey,
(3) a(0)=a, a(l) €eg,or (4) «(0) =a, a(l) =b.

In the first case, Y = X U« is homeomorphic to a baguette curve. In the second case,
Y is homeomorphic to a K4, where removing any edge not containing a point x; reduces
it to a Y¥-curve. In the third case, Y is a happy-face-curve. Finally, in the last case, Y
consists of the vertices a and b with four parallel edges ey, ..., e3 between them. Since by
assumption, |G|\ {a, b} consists of at most three components, there is an arc § in G\ {a, b}
internally disjoint from Y with say §(0) € ey and d(1) € e;. One checks that any four
points in Z = Y U4 lie on either a ¥J-curve or on a happy-face-curve, which completes the
proof. O

Next, we extend our characterization of 4-ac graphs to graphs which are no longer
necessarily cyclically connected. For this, the following lemma gives us additional control
over arcs in our four basic 4-ac graphs.

LEMMA 11.3.4. Let G be one of our basic 4-ac graphs. If w is a point in the interior of
an edge of G, then for any three further points in G, there exists an arc in G that contains
those three points and has w as an endpoint.

PROOF. If GG is either a circle or a ¢ curve, then it is easy to see that the assertion of
the lemma holds.

So let GG be the happy-face curve with cycles C4, Cs, degree-4 vertex a € Cy N Cy,
degree-3-vertices b € C1\ Cy and ¢ € Cy\ C and edges {eg, e1} = E(Cy), {e2,e3} = E(Cs)
and e; = be. Pick points w, xg, x1, 72 € G. Since removing one of ey, . . ., e3 reduces G to a
¥-curve, we only have to consider the case when one of w, xg, 1, 2 belongs to the interior
of each e; for 0 < 7 < 3. But now, since G \ ¢4 is a figure-8-curve, the assertion of the
lemma is clear.
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Finally, assume G is the baguette curve with cycles C, Cy, degree-3 vertices a,b € C
and ¢,d € Cy and edges {ep,e1} = E(C1), {e2,e3} = E(Cy) and ey = ac, e5 = bd between
C} and Cs. Pick points w, xg, x1, 72 € G. Since removing one of e, ..., es reduces G to a
J-curve, we only have to consider the case when one of w, xq, x1, x5 belongs to the interior
of each e; for 0 < i < 3. But now, since G \ e5 is a dumbbell with w lying on one of its
cycles, the assertion of the lemma is again clear. 0

THEOREM 11.3.5. A graph G is 4-ac if and only if it is a chain graph such that
(1) all links are 2-connected and 4-ac,

(2) all interior links are edges,
(3) if v is a cut vertex and L a link of G with v € L, then deg; (v) < 2.

PROOF. Suppose G is a 4-ac graph. Then G is 3-ac, and so a chain graph of 2-connected
links by Theorem 11.3.2. Item (1) is now clear.

For (2), suppose for a contradiction, there is a chain graph G of 2-connected links with
decomposition {L,: n € J} for J C Z with |J| > 3 that is 4-ac but one of the interior links,
say Ly, is not an arc. Consider the subgraph G’ = L_1ULqU Ly where L_1N Lo = {u} and
LoN Ly = {v}. Pick xy in L_; \ {u} and z3 in Ly \ {v}. Observe that any arc containing
zo and z3 and any two further points in Ly must (without loss of generality) start at xg
and end at x3. So it suffices to show that we can choose 1, x5 in Lo \ {u, v} so that there
is no arc in Ly starting at u, ending at v and containing both x; and x,. Consider u in L.
By 2-connectedness of Ly and the fact that Lg is not an arc, we must have deg; (u) > 2.
Pick x; and x5 from the interior of distinct edges of Ly incident with u. Now it is clear
that no arc in Ly starting at u and containing x; and x5, can end at v, a contradiction.

For (3), suppose there are links Ly and L; with LoN Ly = {v} and deg; (v) > 3. Then
picking three vertices on the interior of different edges incident with v in Ly, and picking
a fourth vertex on the interior of an edge incident with v in L; shows that G is not 4-ac,
a contradiction.

For the converse, assume that G is a chain graph satisfying properties (1)—(3). We
may suppose that G' contains a non-trivial link L not isomorphic to Ks. If the block graph
of G is infinite, it follows from (2) that G is isomorphic to L with a one-way infinite ray
R attached to a vertex v of L. But then it is clear that it suffices to show that L with
a single extra edge attached at v is 4-ac. Thus we may assume, by (1) and the foregoing
discussion, that G consists of finite number > 2 of links. So let Ly,..., L, with n > 2
and L; N L; 1 = {v;} be the decomposition of G into links according to properties (1)—(3).
Pick four points xzq,...,x3 € G. If all four points are contained in the same link, then we
are done by (1). Otherwise, find basic 4-ac subgraphs H and H’ in L; and L,, containing
v U ({zo,...,x3} N Ly) and v,—1 U ({xg, ..., 23} N L,) respectively. Since by (3), v; and
v,,_1 have degree 2 in H and H’ respectively, it follows from Lemma 11.3.4 that there are
arcs o and o in H and H’ picking up all vertices {xg, ..., 23} N Ly and {zo,...,x3} N L,
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and starting at v; and v,_; respectively. Since all middle links are arcs by (2), the arc
aULyU...UL,_;Ud witnesses that G is 4-ac. O

11.3.3. Characterizing 5-ac graphs. Our first theorem reduces the problem of
characterizing all 5-ac graphs to the cyclically connected case.

THEOREM 11.3.6. Let G be a graph which is not cyclically connected. Then G is 5-ac
if and only if G is homeomorphic to one of the following graphs:

(a) a finite path (equivalently, an arc), a ray or a double ray; (b) a lollipop with or
without the endpoint; (c) the dumbbell graph, or (d) the figure-of-eight-graph.

See the following diagram for sketches of the lollipop graph, the dumbbell graph, and
the figure-of-eight graph.

—0 OO OO

PROOF. It is straightforward to check that each of the listed graphs is indeed 5-ac.
So suppose G is a non-cyclically connected but 5-ac graph. By Theorem 11.3.5, G is a
chain graph with multiple links such that all interior links are arcs. If G is not a double
ray, then we may suppose that G has a block decomposition {L,: n € J} where J is an
interval in {0} UN containing 0. We show that Ly is either an arc or circle, for then any
end-link of the block decomposition of G is a circle or an arc, and all interior links are
arcs — and the theorem follows immediately.

Claim: Lg is either a circle or an arc. Indeed, let vy be the linking vertex Lo N L.
By Theorem 11.3.5 (3), if Lo is not an arc, vy has degree 2 in Ly. Let eg and e; be the
two edges of L incident with vy. If Ly is not a circle, we may suppose without loss of
generality that ey = vow where w has degree 3 in Ly. Write eq, e3 for the other two edges
incident with w. Pick four points xg,...,x3 with x; on the interior of e; for 0 < i < 3
and pick x4 on the interior of an edge e in L incident with vy. Then these five points
witness that G is not 5-ac: By Lemma 11.2.7, any arc would need to start and end on
the same side of the edge cut {eg,e1} = E(Lo \ {vo}, G \ Lo), but also needs to start and
end in a neighbourhood of w and a neighbourhood of vy respectively by Lemma 11.2.6, a
contradiction. O

Thus, we may concentrate on cyclically connected graphs. Here, we have the following

characterization.

THEOREM 11.3.7. A cyclically connected graph G is 5-ac if and only if

(1) G has mazimum degree 4,

(2) no 3, or fewer, vertices of G cut |G| into 5 or more components,
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(8) G is not a cycle graph of three (non-trivial) links Lo, L1, Ly such that the linking
vertex v € Lo N Ly has both deg; (v) =2 = deg; (v), and

(4) G is not the union of three (edge-disjoint) connected subgraphs Lo, Ly, Ly with
two linking vertices v,a such that Lo N Ly = Lo N Ly = Ly N Ly = {v,a} and
deg;, (v) = 2.

Note that the combinatorial condition (2) is equivalent to the topological statement
(2') ‘no 3 points of |G| cut |G| into 5 or more components’, and this is what we use below.
(To see this equivalence, observe that (2') is automatically stronger than (2), and for the
converse, replace any point of |G| in the interior of an edge with one of the vertices at
the ends of the edge.) We also remark that the three graphs sketched below witness that
even given (1), conditions (2)—(4) are mutually independent. A K, i.e. a K5 with one
of the edges removed, violates (2) but satisfies (3) and (4). Similarly, the second graph
is a non-5-ac graph which fails (3) (as the diagram shows, it is a cycle graph of the type
excluded by (3)) but satisfies (2) and (4). Finally, the third graph below satisfies (2)
and (3) but not condition (4). (To see that (4) is violated, consider the decomposition as
shown in the diagram, where the restriction imposed by (4) on degrees fails.)

We split the proof of Theorem 11.3.7 into two parts. First, in Proposition 11.3.8, we
will show that the four conditions listed in the characterization are necessary (replacing
(2) with (2') where convenient). In Proposition 11.3.9 further below, we will then show

the converse direction.

PROPOSITION 11.3.8. Any cyclically connected 5-ac graph satisfies properties (1)-(4)
above.

PRrOOF. For (1), suppose that v is a vertex of degree at least 5, and x, ..., x4 are
chosen from the interior of distinct edges of GG incident with v. Suppose for a contradiction
that there is an arc « in G though all five points. Applying Lemma 11.2.6 to [v, x| U
[v, 1] U[v, 22, we know that v is an interior point of & and may assume that one endpoint
of a lies say on (v, zg]. Next, applying Lemma 11.2.6 with [v, 1] U [v, 25] U [v, 23] we may
assume that the second endpoint of « lies say on (v, z1]. But applying Lemma 11.2.6 once
again with [v, xs] U [v, 23] U [v, 4], we see that « is forced to have a third endpoint, a
contradiction.

Condition (2) follows from Lemma 11.2.8.
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For (3), suppose G is a cycle graph of three (non-trivial) links Lg, Ly, Ly with LoN L, =
{v}, LoN Ly = {v1} and Ly N Ly = {vy} such that the linking vertex v € Ly N L; say has
both deg; (v) = 2 = degy, (v). Pick points zg,z; on the interior of the distinct edges in
Ly incident with v, points s, 3 on the interior of the distinct edges in L, incident with v,
and x4 on the interior of some edge in Ly. We claim that these five points witness that G
cannot be 5-ac. To see this, observe first that Lemma 11.2.6 implies that any potential arc
a: [0,1] — G containing xo, . . . , 4 has to start and end inside [v, zo]U[v, 21]U[v, z2]U[v, 23].
In particular, x4 lies on the interior of «, and so also v; and v, lie on the interior of «.
Without loss of generality, let 0 < t; < t3 < 1 be the points where a(t;) = v; for i = 1, 2.
Now following the arc « [ [0, ;] backwards in time, we will first encounter say z, at time
0 < sp < t1. Similarly, following the arc « | [t2, 1] forwards in time, we will first encounter
say T, at time t; < so < 1. Now, however, the points zg,...,x3 are contained in the
space Y = G \ a | (So,82). But v is a 4-cut point of Y with all z; contained in different
components of Y —v. As in Lemma 11.2.8, it follows that the set {z1,..., x4} cannot be
covered by the two disjoint arcs « | [0, so] and « [ [se, 1], a contradiction.

For (4), the argument is somewhat similar to the previous case. Pick points xg, z; on
the interior of the edges incident with v in Ly and L; respectively, points o, x3 on the
interior of the distinct edges in Ly incident with v, and x4 on the interior of some edge
e = ab in Ly incident with a (where, without loss of generality, we assume that b # v).
We claim that these five points witness that G cannot be 5-ac. To see this, observe first
that Lemma 11.2.6 implies that any potential arc «: [0,1] — G containing xy, . .., x4 has
to start and end inside [v, o] U [v, 21| U [v, 25| U [v, z3]. In particular, z4 lies on the interior
of a, and so also a and b lie on the interior of a, too. Without loss of generality, let
0 < t; < ty < 1 be the points where a(t;) = v; for i = 1,2. Now following the arc
a [ [0,t;] backwards in time, if « continues in Lg or in L;, we can argue similar to the
previous case. If, however, a stays in Lo, then without loss of generality there are s, s3
with 0 < s9 < t; <ty < s3 < 1 with a(ss) = x5 and a(s3) = x3, and again we can argue
that v is a 4-cut point of Y = G'\ « | (8¢, $2) with all z; contained in different components
of Y — v, and we get a contradiction as before. O

PROPOSITION 11.3.9. Let G be a cyclically connected graph such that

(1) G has mazimum degree 4,

(2) no 3 points of |G| cut |G| into 5 or more components,

(3) G is not a cycle graph of three (non-trivial) links Lo, L1, Ly such that the linking
vertex v € Lo N Ly has both deg; (v) = 2 = deg;, (v), and

(4) G is not the union of three (edge-disjoint) connected subgraphs Lo, L1, Ly with
two linking vertices v,a such that Lo N Ly = LoN Ly = Ly N Ly = {v,a} and
deg;, (v) = 2.

Then |G| is 5-ac.
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Proor. Consider zg,...,z4 € |G|. By Lemma 11.2.10, to show that G is 5-ac, it
suffices to consider points z; which lie on the interior of edges of G. Applying Lemma 11.2.9
and Theorem 11.3.3, we see that condition (2) implies in particular that xz,...,z3 lie on
a basic 4-ac space X, i.e. either on a cycle, a ¥-curve, a baguette- or a happy-face-curve.
Using 2-connectedness, we may connect x4 to X via to internally disjoint paths aq, as, i.e.
paths with a;(0) = x4, a;(1) € X, and « | [0,1) N X = (). If X was a cycle, then all five
points lie on a ¥-curve, so in particular they lie on a common arc, and we are done. Thus,
only the three cases remain where X is a v-curve, a baguette-curve, or a happy-face-curve.
We now analyze each case separately.

Case 1. X a ¥-curve.

Write a and b for the two degree-3-vertices of the ¥-curve, and eq, eq, e for the three
edges of the ¥-curve. As we may suppose that no 4 vertices of {xg,..., x4} lie on a cycle,
we may label the edges of our ¥-curve such that xg € ey, r1 € e; and x5, 23 € 5. Since
vertices in G have degree at most 4, the following cases for how that arcs oy and a5 connect
up to X can occur:

(i) a1(1) = a and ay(1) =0,
(i) a1(1) = a and as(1) € ¢;, or

(iii) both «a; and s hit X on interior points of edges.

In (iii), either aq(1) and as(1) lie on the same edge e; C X, in which case ¥ =

X Uay Uag is a baguette-curve containing {xo, ..., x4}, or, by symmetry, we may assume
that a1 (1) € (a,x9) C ep and as(1) € e; Ueg, in which case Y = (X \ (a,1(1))) Uy Uay
is a ¥-curve containing {zo, ..., x4}. In both cases, our five points xy, ..., x5 lie on a 5-ac

subspace, and we are done.

Next, we claim that-similar to the proof of Theorem 11.3.3—case (i) reduces to case
(ii). Indeed, suppose that a;(1) = a and as(1) = b. Then ¥ = X Uy U s is a graph
with vertices a and b and four parallel edges e, ..., e3 with xg € e, x1 € ey, T2, 23 € €9
and z; € e3. By assumption (2) and Lemma 11.2.9, the points a and b do not cut G
into 4 or more components, and hence there is an arc § in G between two different edges
of Y. By symmetry, we may assume that §(0) € (a,z9) C ep. But then Y \ (a,6(0)) is
homeomorphic to a ¥-curve X’ = {a,b} U e; U ey U ez with the point z( joined to X' via
two arcs attaching to 6(1) and b, i.e. the configuration of subcase (ii).

Thus, it remains to work through case (ii). By symmetry, the following possibilities

Ccall occur:

ay(1) € (a,70) Ceg € X, aa(l) € (z0,b) Ceg € X, as(l) € (a,29) Cex C X,
as(l) € (zg,23) Cea € X, or ag(l) € (x3,b) Cex C X.
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Write ¥ = X U a; U as. In the first and third case,

Y\ (a,as(1)) is a ¥-curve containing {zo, ..., x4}, and in the "

second and fourth case, Y\ (a2(1), b) is a figure-8-curve contain-

ing {zo,...,24}. Thus, in the first four cases, our five points

Tg, ..., T5 lie on a common w-ac subspace, and we are done. In ¢, 4
the fifth case, we see that Y is a happy-face curve, i.e. a cycle
graph consisting of two cycles and an arc with a point z; on
every single edge. For convenience, let us relabel all edges and

points of Y as in the picture.
By condition 2, the three points a, b, ¢t do not disconnect G into 5 or more components,

and therefore there is an arc ¢ internally disjoint from Y connecting some pair of edges e;
and e; for i # j. Again we differentiate several subcases (up to symmetry) depending on
the attaching points of 9.

(a) 6(0) € (a,z1) and 6(1) € (a,x2), (f) 0(0) € (a,z2) and 6(1) € (a,x5),
(b) 0(0) € (a,x1) and §(1) € (xo,1), (g) 6(0) € (a,z2) and 6(1) € (x5,b),
(c) 6(0) € (a,x3) and 6(1) € (x3,1), (h) 6(0) € (x2,t) and 6(1) € (a,x5),
(d) 0(0) € (a,x2) and §(1) € (b, x3), (i) 0(0) € (z2,t) and 6(1) € (w5,b).
(e) 0(0) € (xo,t) and §(1) € (w3,1),

Note in case (a), for example, we additionally know that (a,z1) C e; and (a, z3) C es),
and similarly for all the cases. Write Z =Y Ud. Now in (b) and (c¢), {xg,..., x4} lie on
the common ¥-curve Z\ ((a,d(0)) U (§(1), 1)) respectively. In (d), Z\ ((a,d(0)) U (b,d(1)))
is a figure-8-curve containing {zo,...,z4}. In (e), Z\ ((6(0),t) U (6(1),t)) is a figure-8-
curve containing {zo,...,z4}. In (g), {zo,...,z4} lie on the common figure-8-curve 7 \
((a,6(0)) U (6(1),b)). In (h), {zo, ..., x4} lie on the common ¥-curve Z\ ((§(0),t) U (a,s(1))).
And in (i), Z \ ((6(0),t) U (6(1),b)) is a dumbbell containing {zo, ..., x4}.

Thus, it remains to check cases (a) and (f). Note first these cases are isomorphic
(after relabeling a := §(1) in (f), and so forth). So without loss of generality, we may
assume we are in case (a). Note that by assumption 3, there must exist some additional
arcs connecting different parts of the subgraph. Let us work in the (connected) space
G' = |G|\ {t}. First, assume there is no cut-vertex separating A = e; U {a} U ey from
B = e3U{b} Uey in G’ (in particular, we assume b is not such a cut-vertex). Then by
Menger, there exists an A — B walk  in G — ¢ which is alternating with respect to e5 such
that a,b & 5.

Claim 1: If 8N (x5,b) # 0, then we are done.

To see the claim, let ¢ € (0,1) be minimal such that 5(t) € e5. Since we have excluded
(h) and (i) above, we may assume that 5(0) € (a,z2) C es. Next, let t' € (0,1) be
minimal such that x = §(t') € (x5,b), and consider the arc g = g | [0,#]. Then /5’
is an A — x walk disjoint from B and alternating with respect to [a,x] C €5 such that
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x5 ¢ 3 (this follows from the definition of ‘alternating’), and so we find two independent
A — z-paths v, and 7, in the symmetric difference of " and [a, x] with starting vertices a
and $(0) respectively such that x5 € +; for precisely one i, see Lemma 11.2.4. But then
Y\ ((a,5(0)) Ues)] Uy Uns is a figure-8-curve containing {zo, ..., z4}.

Claim 2: If 8N (x5,b) = 0, then we are also done.

To see this, note that 5 N (x5,b) = () implies, by the definition of alternating, that
x5 ¢ [B. Therefore, by taking the symmetric sum of é5 and (3, we obtain two disjoint A — -
paths v, and 7, with starting vertices a and §(0) respectively such that = € ~; for precisely
one 7 (if we choose the walk 5 according to the moreover-part of Lemma 11.2.4). Next, since
we have excluded cases (¢), (d) and (e) above, we may assume that 5N (a, z5) # (), and since
we have excluded cases (h) and (i) above, we may further assume that 5(0) € (a,z2) C es.

Thus, up to symmetry, the following four arrangements can occur:

(1) ’71(1> = b7 72(1) (b7 .1'3) g €3, (3> ’}/2(1> = b7
(2) 7(1) = b, 72(1) € (x3,t) C e3 (4) 72(1) = b,

In the first case, (Y \ [e5 U (a,72(0)) U (b,72(1))]) U1 U 72 is a figure-8-curve con-
taining {xg,...,z4}. In the second case, (Y \ [e5U (a,72(0)) U (12(1),8)]) Uy U~y is
a v-curve containing {xg,...,z4}. In the third case, (Y \ [e5 U (a,72(0)) U (b,71(1))]) U
v U7 is a figure-8-curve containing {zo,...,74}. And in the last case, the subgraph
(Y'\ [e5 U (a,72(0)) U (71(1),)]) U U e is a d-curve containing {xg, ..., x4}

This completes the case checks for when there was no cut-vertex between A and B in

€ 71(1) € (b,x3) C es,
€ ¥

1(1) € (x3,t) C es.

G’. So now, we may assume that some vertex v € e; U {b} is a cut-vertex of G'. Without
loss of generality, v is chosen as close to a on €5 as possible.

Claim 3: Ifv € (a,x5), then we are done.

Indeed, the existence of a further cut point v separating x5 from B in G — {t,v}
would contradict condition (3). Therefore, by Menger (cf. Corollary 11.2.5), there exists
an x5 — B walk § in G — {t,v} which is alternating with respect to [z5,b] C e5. Write z
for the endpoint of 5 on ez Uey. By the excluded cases (h) and (i) above, we may assume
that B(1) € (b, z3) C e3. By taking the symmetric difference of [x5,b] and 3, we see as in
Claim 1 above that our set {xy,...,z4} lies on a figure-8-curve.

Claim 4: Ifv € (5,b), then then we are also done. This case follows as in Claim 1
(using the fact that v was chosen left-most).

Claim 5: Can deal with the case v =b.

Again, since v was chosen left-most, our paths § and e5 witness that b has degree 2 in
Ly := G\ (e3Uey). Now at this point, {¢,b, w} would give rise to a decomposition of G
into

Lo=¢;, L1 =¢;, and Ly =G\ (e3Uey),
contradicting condition (4). Therefore, since v = b was assumed to be a cut-vertex,
we are forced to conclude there there must be an additional arc ¢’ between es; and ey.
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As we have excluded (b) and (c¢) above, we may assume that §'(0) € (b,z3) C e3 and
d'(1) € (byz4) C ey.

Finally, since we have dealt with Claim 1 already, we may assume that x5 ¢ 5. Taking
the symmetric difference of 5 and €5 gives us two disjoint A — b paths ~; and 75 such
that © € ~; for precisely one i (again assuming that we choose the walk g according
to the moreover part of Lemma 11.2.4), with say 71(0) = a and 1(0) € (a,z2). But
then [Y \ (e5 U (a,72(0)) U (b,6'(0)) U (b,d'(1)))] Uy U~e is a figure-8-curve containing
{zo, ..., 24}, and we are done.

Case 2. X a baguette-curve.

This case is fairly easy in comparison. If X is a baguette curve with cycles C4, Cs,
degree-3-vertices a,b € C} and ¢,d € Cy and edges {eg,e1} = E(CY), {e2,e3} = E(Cy)
and e; = ac,e; = bd between C and Cs, we may assume that z; € e; for 0 < @ < 3,
as otherwise we are back in the J-curve case. Now consider where the arcs o and oy
attaching x4 hit X. Note first that if say a;(1) € C;, then {xg,...,z4} lie on a common
dumbbell, and we are done. Thus, up to symmetry, the following cases remain:

(a) aq(1) € e3 Uey, (c) ai(1) € ey, (1) € e5 U {d}, or
(b) a1(1) € eq, az(1) = ¢, (d) aq(1) = ¢, az(1) =d.

In case (a), we may assume by symmetry that a;(1) € (¢,x3). Then (X Uaq) \
((c,a1(1)Ues) is a lollipop containing {xg,...,z4}. Next, let Y = X Uy Uag. In
case (b), Y\ (a1(1), (1)) is a baguette-curve containing {xo,...,z4}. In case (c), Y\
(a1(1),¢) U (b,a2(1)) is a lollipop containing {zo,...,z4}. Thus, it remains to analyze
case (d) more closely. In this case, the subgraph Y = X Uaj Uy is the baguette curve X
with an extra edge eg with endpoints ¢ and d. In particular, removing the vertices ¢ and
d from |Y'| would leave 4 connected components.

Thus, using the condition that no two vertices split |G| into 4 different components (by
condition (2) and Lemma 11.2.9), we know that there must be a further arc § internally
disjoint from Y and connecting different components of Y|\ {a,b}. Up to symmetry
(as there is no structural difference between eq, e3 and eg), we may assume that §(0) €
(x2,d) C ey. Then for the other endpoint of §, the following cases can occur:

(i) 0(1) € e, (iv) 6(1) = b, (vii) (1) € (a, o) C eo,
(11) 5(1) € s, (V) 6(1) € (.’L’g,d) g €3, (Vlll) 5(1> € (._'L'[),b) g €.
(iii) 6(1) = a, (vi) 6(1) € (c,23) C es,

In all cases, it is straightforward to see to verify that our five points zg, ..., x4 lie on

a common dumbbell. This completes the proof of Case 2.

Case 3. X a happy-face-curve.

Again, this case is fairly easy in comparison. If X is a happy face curve with cycles
C1, Cy, degree-4 vertex a € Cy N Cy, degree-3-vertices b € C; \ Cy and ¢ € Cy \ C; and
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edges {eg,e1} = E(CY), {es,e3} = E(Cy) and ey = be, we may assume that x; € e; for
0 <17 < 3, as otherwise we are back in the ¥-curve case. Now consider where the arcs o
and oy attaching x4 hit X. Note that the «; cannot hit on any z; (as they were chosen to
lie on the interior of edges of G), nor on the center vertex a, by condition (1).

If oy and oy hit the same segment of C; \ {a, z;, z)}, then ignoring the edge e,, we see
that all our 5 points lie on a figure-8-curve.

Next, if aq hits C; say, and as doesn’t, then it’s easy to see that we are back in the
discussion as in Case 1, where all our five points lie on the different edges of a happy face
curve, so we are done, as we have solved this arrangement already.

Lastly, we assume that a; and ay hit different segments of say Cy \ {a, zo,z1}. Let us
view C] as a cycle aexyfriga with vertices a, zg, x1 and three edges. After removing the
edge e5, we see that up to symmetry, the following three cases can occur: (i) ay(1) € e
and az(1) € f, (ii) au(1) € e and ay(l) € g, or (iil) a1(1) € f and ax(1) € g. In all three
cases, we see that X \ (e5 U (a,;(1))) is a dumbbell containing our five points xo, . .., z4.
This completes the proof. 0

11.3.4. Characterizing 6-ac graphs. Our characterization of 6-ac graphs, the main
result of this section, is as follows.

THEOREM 11.3.10. A graph G is 6-ac if and only if either G is one of the nine 7-
ac graphs of Theorem 11.5.15 or, after suppressing all degree-2-vertices, the graph G is
3-regular, 3-connected, and removing any 6 edges does not disconnect G into 4 or more

components.*

Note that the last condition in particular implies that G' must be triangle-free. How-
ever, the stronger condition we chose is necessary for the characterization, as demonstrated
by the following 3-regular 3-connected, triangle-free graphs, which both fail to be 6-ac (in
both cases consider the six points labeled +).

Equivalently, if G is 3-regular, 3-connected and not an inflated K,: there is no partition of V(G)
into four non-empty subsets Vi,. ..,V such that each G; = G[V;] is connected and there is precisely one

G; — G edge in G for every pair i # j.
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We split the proof of Theorem 11.3.10 into two parts. First, in Proposition 11.3.11,
we will show that the three conditions mentioned in the characterization are necessary. In
Proposition 11.3.14 further below, we will then show the converse direction.

PRrROPOSITION 11.3.11. Let G be a 6-ac graph which different from the nine 7-ac graphs.
Then G is 3-reqular, 3-connected, and removing any 6 edges does not disconnect G into 4
or more components.

PROOF. Let G be a 6-ac graph which different from the nine 7-ac graphs.

To see that G is 3-regular, note that G' contains no vertices of degree 1, since The-
orem 11.3.6 implies that G is cyclically connected. We suppress vertices of degree 2.
Suppose for a contradiction that v is a vertex of G of degree > 4. Since G is cyclically
connected, it follows that G must have another branch point. Then one of the edges in-
cident with v have a branch point as its other endpoint, say u. Let this edge be e. Pick
arcs aq, g, o3 interior-disjoint from each other and e with {v} = a; N «;, such that for
each 7, o; \ {v} contains no branch points of G. Also pick arcs 1, 52 interior-disjoint from
the «;, each other and e, 51 N By = {u} and B; \ {u} contain no branch points of G. Pick
one point from the interior of each of «;, 5; and e. Then, by Lemma 11.2.6, there is no
arc going through these points.

To see that G is 3-connected, it suffices to show, since G is 3-regular, that it is 3-edge
connected, i.e. that there is no partition V(G) = AUB with |E(A, B)| < 2. Note that
cyclical connectedness implies that |E(A, B)| > 2. So suppose for a contradiction that
there is a 2-edge cut E(A, B) = {ey,e2}. Let e; = a;b; with a; € A and b; € B. Note that
since G is cyclically connected and 3-regular, all four endpoints of e; and e; are distinct. In
particular, a; is incident with two further edges es, e, which both have all their endpoints
in A, and by is with two further edges es, e which both have all their endpoints in B.
Pick six points x; € e;. Since any arc « picking up x; and x5 has to have, without loss
of generality, both its endpoints on the A-side of G \ {x1, 22} by Lemma 11.2.7, it follows
that it cannot pick up x5 and zg without violating Lemma 11.2.6.

Finally, suppose deleting edges eq, ..., eq from G leaves components Cy,...,Cy. We
clavm that k < 3. First, observe that every edge e; is incident with at most 2 different
components, and by 3-connectedness, every component C; is incident with at least 3
distinct edges. By double counting, it follows k < 4.

So assume that £ = 4. Then every component must be incident with precisely 3 of the
6 edges. We claim that the four components and the 6 edges are arranged like a K. For
this, it suffices to show that for any two components there is only one edge incident with
both components. If there were two components that share three incident edges, then
G would be disconnected, a contradiction. And if there are two components that share
two incident edges, then the other two components must also share two further incident
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edges, from which we conclude that the remaining two edges form a disconnection of the
G, contradicting once again 3-connectedness.

Thus, the 4 components together with the 6 edges are arranged like a K. But then it
follows from Lemma 11.2.7 that if we choose an interior point z; on each of the six edges
e; for 1 <7 < 6, there is no arc « in the graph picking up these 6 points. Indeed, suppose
that the arc « starts at zq, traverse x5 up to x5 in the given order and ends and xg. Write
v for the first vertex on « and assume v € V().

If e is not incident with Cy, consider the cut E(Cy,G \ C1) = {e1,e;, ¢} of G with
1<i<j<6. Let B:=a|[0,a (z;)] and v = a | [ !(x;),1] denote the subarcs of a
from z; to x; and from x; to zg respectively. By Lemma 11.2.7, it follows that [z;, w] with
w € C; C B is the final segment of 5. Pick y € (z;, w). Then {1, x;,y} is a separation of
G separating z; from zg, contradicting the fact that v is an arc in G'\ {21, z;, y} between
these very two points. Finally, if e is also incident with C7, then say C5 is incident with
edges e;,¢;,e, with 1 < i < j < £ < 6. Considering the arcs 8 := a | [a ' (z;), o (xy)]
and v = «a | [a7!(z(), 1], we may arrive at a similar contradiction as before. O

Before we start proving the converse, we need the following two lemmas. Note also
that the properties 3-connected and 3-regular imply that our graph is simple, i.e. (even

after suppressing all degree-2-vertices) it contains no loops or parallel edges.

LEMMA 11.3.12. Any four points of a 3-reqular, 3-connected graph lie on a circle or a

J-curve.

PROOF. Let G be a 3-regular, 3-connected graph. It is easy to check that 3-regularity
and 2-connectedness imply that any 4 points 1, ..., x4 of |G| lie on a circle, a theta curve,
or a baguette curve.

In the first two cases, we are done, so it remains to show that if our four vertices lie
on a baguette curve, they also lie on a ¥-curve. Let C7 and C5 be the two cycles of the
baguette curve. Note that we may assume that x1, 25 lie on C; and x3,24 on Cs. Now
by Menger’s theorem (using 3-connectedness of G and the fact that |V(C;)| > 3), there
are 3 vertex disjoint paths aq, ag, ag from C; to Cs, each meeting C; U Cy only in their
endpoints. Note that C; \ {x1, 22} consists of two segments, so one of these segments
meets both say a; and ay. But then the cycle C5 together with a4, then walking around
(1 picking up x; and w9, and then following back along as gives us a ¥-curve containing
the four points z1,..., x4. O

LEMMA 11.3.13. Any five points of a 3-reqular, 3-connected graph lie on a circle or a

J-curve.

PRrROOF. Let G be a 3-regular, 3-connected graph and consider five points 1, ..., x5 of
|G|. If any four of them lie on a circle, then we are done.
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Thus, by the previous lemma, we may assume that z,..., x4 lie on a J-curve with
edges ey, €9, e3 and vertices a and b. By symmetry, we may assume that x1, x5 € €1, 3 € €3
and x4 € e3. Connect the last point x5 to the ¥-curve via two new independent arcs ag
and ag. Since G is 3-regular, the two arc a; and «s cannot hit the ¥J-curve in a or b. If
the two arcs connect to different edges of the ¥-curve, then in particular either e, or ej is
hit, and by deleting a suitable part of e; or e3 not containing x3 or x4, we have found a
¥-curve containing x1,...,rs. Thus, we may assume that the two arcs hit the same edge
e;, and then we have found a baguette curve of G containing all five points x1,...,x5. We
will show that in this case, they also lie on a ¥-curve.

Let C; and C5 be the two cycles of the baguette curve. Up to symmetry, the following

cases can occur:

(1) T4, T ¢ Cy U Cg, (2) T1,T2,T3 € Cl, x4 € Cy and x5 é Cy U 02,
(3) x1,29 € Cy and z3, x4, x5 € Cy, or
(4) T1,T9 € Cl, T3, T4 € CQ and T5 ¢ Cl U CQ,

In case (1), if two vertices lie outside of Cy U Cy, then it’s easy to find a circle inside
the baguette curve containing four of the vertices. In case (2), we may again find a circle
inside the baguette curve picking up x4, 5 and two of the remaining three vertices on C}.

In case (3) we follow a strategy similar to the previous lemma. By Menger and 3-
connectedness, there are 3 vertex disjoint paths aq, as, a3 from C to Cy, each meeting
C7 U C; only in their endpoints. Note that C \ {z1, 22} has two components, so one of
these segments meets say a; and ay. But then we can follow «q, then walking around C4
picking up x; and w9, and then following as and then walk around Cs back to the endpoint
of a; in the correct direction so as to pick up two out of the three vertices on C5. So we
have found four points on a circle.

In case (4), let us denote by § the C7 — Cy-edge of our baguette curve containing xs.
As before, by Menger and 3-connectedness, there are three vertex disjoint C; — Cy paths
a1, a9 and as.

Subcase (4a). If it is possible to choose arcs aq, ag, ag such that one of them contains
x5, then we do so. Assume that a; contains x;5. If a second path say as hits C} \ {z1, 22}
in the same segment as ay, then first using oy, then picking up x1, x5 on C, then using
ae, and then returning to a; on Cy picking up at least one more point say x4 gives a circle
containing four of our points, and we are done. Otherwise, by symmetry and pigeon hole
principle, we may assume that as and ag both hit Cy \ {x1, 22} as well as Cy \ {x3, x4}
in the same segments, and so it is easy finding a circle containing z, ..., x4 and we are
again done.

Subcase (4b). No path system between C; and Cy contains x5. By construction (and
the fact that we have excluded subcase 3a) there is a subarc ' C 8 such that x5 € 5" and
say 3'(0) € ay, (1) € ay and which is otherwise disjoint from C; U Cy U ag U ap U 3.
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Now if say as hits C} \ {1, 22} in the same segment as a3, then by following as, picking
up x1, x2 on C1, then following along s until we can turn into 8’ to pick up x5, and then
following a4 into Cs, and back to the beginning of a3 picking up one more point say x4
on (5, we have found a circle containing four of our points, and are done. Otherwise, by
symmetry and pigeon hole principle, we may assume that oy and ay both hit Cy \ {z1, 22}
as well as Cy \ {x3, 24} in the same segments, and so it is easy finding a circle containing
x1,...,7r4 and we are again done. 0

We are now ready to prove the converse direction of our main characterization theorem.

PROPOSITION 11.3.14. Let G be a simple 3-reqular, 3-connected graph such that re-
moving any 6 edges does not disconnect G into 4 or more components. Then G is 6-ac.

PROOF. Pick six points z1, ..., xs from G which we may assume, by Lemma 11.2.10,
to be interior points of edges. By Lemma 11.3.13, there is a J-curve © containing the first
five points x1,...,x5. Write e, f, g for the edges of ©® and a, b, for the vertices of ©. We
may assume that every edge of e, f, g is incident with a point x;, and so up to symmetry

there are two cases to consider, namely
(A) 71 < x9 < x3 € e (ordered from a to b), 4 € f and x5 € g, or
(B) 21,29 € €, x3,24 € f and x5 € g.
We may assume that xg ¢ ©. Pick two independent x4 — © arcs a; and ay. By

3-regularity, the arcs cannot hit © in a or b.

In case (A), if one of the arcs hits © on a segment of ©\ {z1, ..., x5} incident with a or b,
then it’s easy to see that all 6 points lie on a theta curve or on a dumbbell. Similarly, if the
two arcs hit the same segment of ©\ {a, b, 1, ..., x5} then all 6 points lie on a theta curve.
Hence, it remains to investigate the case where oy hits on the segment (zq,22) C e and
oy hits on the segment (x9, 23) C e. In this situation, we have a baguette curve consisting
of two cycles C and Cy and disjoint C; — Cs arcs 57 and [y with x1, 29 € C1, 23,24 € CY,
x5 € f1 and xg € Po (i.e. one point z; on every edge of the baguette curve).

By 3-connectedness, and the fact that [V(C;)| > 3, there exists a C) — Cy path [3
which is alternating with respect to f; and f5. Indeed, by Lemma 11.2.4 and the fact that
in a 3-regular graph, every alternating walk is automatically a path, we may choose an
alternating path 3 such that the symmetric difference 51 A By /A B3 yields 3 disjoint C; — Cy
paths 1,72 and ~3 traversing the shared edges with 83 in the same order as (3. Three
subcases arise.

(1) If there exists a C} — Cy path containing x5 and xg, then our 6 points lie on a dumbbell.

So may assume that 3 does not contain both x5 and xg.
(2) If B3 contains none of z5 and xg, then |Jv; covers both x5 and xg, so either, a single

~; contains both z5 and z¢ and we are back in (1), or we have say x5 € v, and xg € 7o,
and the following subcases arise.
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e If 1,7, hit the same segment of C; \ {1, x5}, then find a cycle picking up 5 of our
6 points, and we are done, and similarly, if 71, v2 hit the same segment of Cy \ {z3,z4}.

e Otherwise, note that the unique segment J; on C; \ 3 between the endpoints of o
and ay contains precisely one point z;. Thus, oy U @y U d; U 95 is a circle containing 4 of
our points, and it is then easy to see that using asz and suitable segments of C; \ ¢;, we
can find a vY-curve containing all 6 of our points.

(3) In the final subcase, we may assume that 3 covers x5 but not xg. Then zg € 71 say,
and note that by construction of the symmetric difference, there is an arc 0 3 x5 which is
internally disjoint from C; U Cy U |J; and has its endpoints at interior vertices of some
7v; and ~y;. Note that it follows from Lemma 11.2.4(2) that i # j. If i = 1 and j # 1 then
we are back in case (1). And if say ¢ = 2 and j = 3, then v, and say v, hit the same
segment of C \ {x1, 22}, and so by starting with 7, picking up x, x5 on C}, following s,
switching to §, then following v3 to Cs, and move on Cy back to 7, picking up at least
one more vertex of x3 and x4, we have found a cycle containing 5 of our points, so we are

again done. This completes the argument for case (A).

In case (B), we may use the same arguments as at
the beginning of (A) to see that the only critical case is
where oy hits on the segment (z1,z5) C e and ay hits
on the segment (x3,z4) C f. Then zy,..., x4 lie on
the 6 edges of a K4, where we label points and edges
as in the figure.

Now consider |G|\ {x1,...,26}. By the third-listed
assumption on G, this space has at most 3 compo-

nents, and hence there must exist an arc 0 internally

disjoint from K, between two vertices v, w of G with
say v € (a,x¢) and w & [x5,a] U [xy,a] U [zg,al.
By symmetry, there are five cases to consider for the position of w, namely
(a) w e (da xG) C €6, (b) w e (da .%’3) - €3, (C) w e (b, $3) - €3,
(d) we (byxy) Cey,and (e) w € (b,z1) C €.

By inspection, one checks that in cases (b)—(e) there is an arc contained in K, U ¢ which
contains all our 6 points. Thus, it remains to deal with case (a).

Let Bi, B2 be the two disjoint {v} — {a,d} paths in K,. Since G is 3-connected, it
follows from Corollary 11.2.5 that there is a further v — {a, d} path S5 which is alternating
with respect to {f1, f2} (where again we use that any alternating walk must be a path by
3-regularity). Note that by 3-regularity, if i denotes the third edge incident with v, then
Ps and § agree on h. Starting from v, let z be the first vertex on 5 which lies one K, \ eg,

and let y be the vertex before z on 3. Note that we may assume that

(1) either y € (zg,d) C eg and z € (22,d) U (d, x3), or
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(2) y € (a,x6) C eg and z € (x5,a) U (a, xy),
as otherwise the arc 3 between y and z witnesses (up to symmetry) that we are in one of
the cases (b) — (f). Now by the fact that 83 has been chosen according to Corollary 11.2.5,
taking the symmetric difference of {51, 2, B3} yields three internally disjoint {v} —{a,d, 2z}
paths 71,72, 7.

Claim: In case (1), there are two independent {z} — {d, 2z} paths internally
disjoint from K, — eg. This follows from Menger’s Theorem 11.2.2 once we show that
inside the subgraph /1 U ;U B3 no single point separates x¢ from the set {z,d}. So suppose
for a contradiction that there is such a separating point s. Since 5 is a ¢ — d path, we
must have s € (xg,d). But also walking from x¢ along the edge ez to v and then along (3
to z is a xg — z path, it follows that s € (xg,d) N B3, and so s ¢ 71 Uy, U y3. But then
going from x4 to v on e, and then taking a suitable v; to {d, z} shows that s cannot have
been a separator.

Claim: In case (2), there are two independent {zs} — {a, z} paths internally
disjoint from K, — eg. Once again this will follow from Menger’s Theorem 11.2.2 once
we show that inside the subgraph £y U 83 U 3 no single point separates xg from the set
{z,a}. So suppose for a contradiction that there is such a separating point s. Again, we
must have s € (a,z4). But also walking from x¢ along the edge e3 to w and then along
0 —h and B3 — h to z is a xg — z path, it follows that s € (a,xg) N (P35 — k). In particular,
we have s # v and s ¢ 73 U, U 3. So either s € (a,v) or s € (v,x6). In the first case,
we can walk from xg to v on eg, and then take a suitable 7; to reach {a, z}. In the second
case, we can walk from xg to w on eg, then to v on §, and then take a suitable ~; to {a, z}.

Thus, it follows that by substituting that segment [a, z] or [d, z] of K4 \ eg with those

two disjoint paths, we see that all of our 6 points lie on a ¥-curve. U

Some examples of small 6-ac graphs. By checking against a list of simple, 3-regular
graphs of small order’, we see that the only graph on 6 vertices satisfying our character-
ization is K33, and that the only two graphs on 8 vertices satisfying our assumption are
K3 3 with an extra edge connecting the midpoints of two, non-adjacent edges of K33 (the

so-called Wagner graph), and the 3-dimensional hypercube.
11.3.5. Characterizing 7-ac and w-ac Graphs.

THEOREM 11.3.15. Let G be a non-degenerate graph. Then the following are equivalent:
(a) G is T-ac, (b) G is w-ac, and (c)
e (G is homeomorphic to one of the 6 finite graphs which are 7-ac, or

e (G is homeomorphic to one of the finite T-ac graphs minus possibly some endpoints.

PROOF. Since the graphs mentioned in part (c) are all w-ac, it suffices to show (a)
implies (c). So suppose G is 7-ac. The proof of Theorem 2.12 of [69] shows that G can

2See e.g. https://en.wikipedia.org/wiki/Table_of_simple_cubic_graphs
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have at most two vertices of degree 3 or higher. If all vertices have degree two, then G is
either homeomorphic to (0,1) or S. If all vertices have degree no more than 2, but not
all are degree 2, then G is either homeomorphic to [0,1] or [0,1). Otherwise, extending
from the (at most two) vertices of degree at least 3, there will be a finite family of: (finite)
cycles, closed intervals (i.e. finite paths) or half-open intervals (i.e. one-way infinite paths).
The half-open intervals give rise to the objects mentioned in the second bullet point. [J



CHAPTER 12

n-Arc and n-circle connected graph-like spaces

A space X is n-arc connected (respectively, n-circle connected) if for any choice
of at most n points there is an arc (respectively, a circle) in X containing the
specified points. We study n-arc connectedness and n-circle connectedness in
compactifications of locally finite graphs and the slightly more general class
of graph-like continua, uncovering a striking difference in their behaviour re-

garding n-arc and -circle connectedness.

12.1. Introduction

A topological space X is n-arc connected, abbreviated n-ac, if for any choice of at most
n points there is an arc (a homeomorph of the closed unit interval) in X containing the
specified points. Similarly, X is n-circle connected (abbreviated, n-cc) if for any choice
of at most n points there is a simple closed curve (homeomorph of the unit circle) in X
containing the specified points. Note that a space is arc connected if and only if it is 2-ac.
A space which is n-ac (respectively, n-cc) for all n is called w-ac (respectively, w-cc).

Every graph is a topological space when considered as a 1-complex, and recently the au-
thors together with A. Mamatelashvili, developing results from [69], have given a complete
combinatorial characterization of which graphs (without any restriction on the number of
vertices, or edges, or the degree of any vertex) are n-ac or n-cc for any n € N, see [76].
In particular, a non-degenerate graph G is 7-ac if and only if it is w-ac if and only if G
is homeomorphic to one of nine distinct graphs [76, Theorem 3.5.1]. For n < 6 there are
infinitely many n-ac graphs (even finite), but effective characterizations are now known.
For example [76, Theorem 3.4.1]: a graph G is 6-ac if and only if either G is one of the
nine 7-ac graphs mentioned above, or, after suppressing all degree-2-vertices, the combina-
torial graph G is 3-regular, 3-connected, and removing any 6 edges does not disconnect GG
into 4 or more components. When considering n-cc graphs, the situation is even simpler:
the only 3-cc graphs are the finite cycles, while 2-cc graphs are those that contain no cut
vertices.

Finite graphs are extremely simple continua (a continuum is a compact, metric and
connected space), and for arbitrary continua the problem of characterizing which are n-ac
or n-cc is difficult. Indeed, using ideas from descriptive set theory, it is shown in [68] that
there is no characterization of n-ac rational continua simpler than the definition of n-ac
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(here n is in NU {w}, and a continuum is rational if it has a base of open sets whose
boundaries are countable).

It is natural to investigate where the transition between the results for graphs — ‘7-ac
implies w-ac’ and effective characterizations for n < 6 — and the provable complexity for
rational continua occurs. In [72], for each n, a regular continuum is constructed which
is n-ac but not (n + 1)-ac (a continuum is regular if it has a base of open sets whose
boundaries are finite). So, in this context, regular continua are too complex.

In the present paper it is shown that the transition takes place precisely between
the Freudenthal compactification of locally finite graphs and graph-like continua. Graph-
like continua were introduced by Thomassen & Vella [153] as a natural abstraction of the
Freudenthal compactification of locally finite graphs. They defined a graph-like continuum
to be a continuum X which contains a closed zero-dimensional subset V', such that for
some discrete index set E we have that X \ V' is homeomorphic to E x (0,1). (Note that,
unfortunately, this definition of ‘graph-like’ is not the one usually used in continua theory,
but this terminology is now standardized among graph theorists.) Up until now all results
about the Freudenthal compactification of locally finite graphs have extended naturally to
graph-like continua. Thus, it was entirely unanticipated that the n-ac property behaves so
differently between the Freudenthal compactification of locally finite graphs and graph-like

continua.

12.1.1. Freudenthal compactification of locally finite graphs. Let G be a lo-
cally finite, countable, connected graph. Its Freudenthal compactification, denoted FG, is
the maximal compactification of G' with zero-dimensional remainder, FG \ G. (See the
discussion immediately preceding Theorem 12.2.3 below for an alternative, constructive
description of the Freudenthal compactification of a locally finite graph.) A space is zero-
dimensional if it has a basis of open sets whose boundaries are empty, i.e. a basis of set
which are simultaneously closed and open (clopen).

In the last two decades, Diestel and his students have shown that many combinatorial
theorems about paths and cycles in finite graphs extend verbatim to the Freudenthal
compactification of infinite, locally finite graphs if one exchanges finite paths and cycles for
topological arcs and simple closed curves respectively, see [54, Chapter 8] and [53, 52, 59].

Given this evidence, it might not come as a surprise that the property of n-arc con-
nectedness also lifts nicely to the Freudenthal compactification. Indeed, as our first main
result of this paper, we show in Theorem 12.2.3 that for a locally finite, connected graph G
and some n € N, its Freudenthal compactification FG is n-ac [n-cc| if and only if G itself
is n-ac [n-cc], allowing us to lift all our characterizations from [76]. However, we also give
examples that this is not generally true for all compactifications with zero-dimensional
remainder, and it remains an open problem, for example, to characterize for which locally

finite graphs the one-point compactification is n-ac. What remains true, though, is the
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fact that there are only six different 7-ac graph compactifications, all of which all are again
even w-ac. So there is no jump in complexity happening at this point yet. These results
are in Section 12.2.

12.1.2. Graph-like continua. As mentioned above, a graph-like continuum is a con-
tinuum X which contains a closed zero-dimensional subset V', such that for some discrete
index set £ we have that X \ V' is homeomorphic to £ x (0,1). The sets V and E are
the vertices and edges of X respectively. Clearly a compactification of a connected, lo-
cally finite graph is graph-like if and only if the remainder is zero-dimensional. Thus the
Freudenthal compactification is graph-like. The points in the remainder of a Freudenthal
compactification are called ends.

In fact, graph-like spaces were introduced by Thomassen and Vella as a natural abstrac-
tion of the Freudenthal compactification of a graph, in order to eliminate the necessity for
distinct treatments of vertices and ends in arguments about FG. Papers in which graph-
like spaces have played a key role include [153] where several Menger-like results are given,
and [49] where algebraic criteria for the planarity of graph-like spaces are presented. In
[30], aspects of the matroid theory for graphs have been generalized to infinite matroids
on graph-like spaces.

We now know from [70, Theorem A] that graph-like continua had earlier been studied
by topologists under the name completely reqular continua (continua in which every non-
degenerate subcontinuum has non-empty interior), and are much closer both to finite
graphs and the Freudenthal compactification of graphs than their definition ‘by analogy’
might suggest. Indeed a continuum is graph-like if and only if it the inverse image of finite
graphs under edge-contraction bonding maps (see Section 12.3.1 for details), if and only
if it is a (standard) subcontinuum of a Freudenthal compactification of a graph.

Even though the graph-like continua are in complexity just a small step above com-
pactifications of locally finite graphs, it turns out that this is already enough to give rise
to completely new and surprising examples of n-ac and n-cc graph-like continua for all
n > 2 and w. For n-circle connectedness, our main result is as follows: while there is
topologically a unique 3-cc graph compactification, namely the circle (which is even w-
cc), we show in Theorem 12.4.3 that there are in fact continuum, 2%, many pairwise
non-homeomorphic w-cc graph-like continua. For n-arc connectedness, our main result is:
while there are only six different 7-ac graph compactifications (which all are even w-ac),
we show in Theorem 12.4.10 that for every n > 2 there are continuum many n-ac [n-cc]
graph-like continua which are not (n + 1)-ac [(n + 1)-cc].

These examples are presented in Section 12.4. In Section 12.3 we develop the necessary
machinery to construct graph-like continua, and to check whether they are n-ac or n-
cc. In addition — and as an exception to the rule — the 2-cc graph-like continua are
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characterized, just like graphs, as being those without cut points, and as having inverse

limit representations by finite 2-cc graphs.

12.2. Locally finite graphs, and their Freudenthal compactification

The fundamental result of this section is Theorem 12.2.3 stating that the Freudenthal
compactification FG of a locally finite graph G is n-ac precisely when G is n-ac. Since
the problem of determining when a graph is n-ac, or n-cc, is completely solved, so is the
problem for Freudenthal compactifications of locally finite graphs.

Parts of these results can be extended to arbitrary graph-like compactifications of
locally finite graphs. But examples demonstrate that Theorem 12.2.3 does not extend in

full generality to graph-like compactifications of locally finite graphs.

12.2.1. Some notation. Trails and walks in graphs, and paths and arcs in graph-
like continua, all start and end at points (typically vertices). It is convenient to turn this
around, and given vertices v and w, by a v — w-trail, path or arc we mean a trail, path or
arc (respectively) starting at v and ending at w. More generally, given sets R and S, of
vertices by an R — S-trail (path or arc) we mean a trail (path or arc, respectively) starting
at some element of R and ending at some member of S.

12.2.2. Restricting to points on edges. We begin with the following extension of
[76, Lemma 2.3.5] to the class of regular continua. Since graph-like continua are regular
[70, Lemma 7], its critical corollary is that in order to check whether a graph-like contin-
uum is n-ac, it is sufficient to assume the points lie on edges. It is convenient also to extend
our definitions. Let X be a space and S a subset. Then (S, X) is n-ac (respectively, n-cc)
if for any choice of at most n points from S there is an arc (resp., simple closed curve) in

X containing the specified points.

LEMMA 12.2.1. Let X be a reqular continuum, D C X an arbitrary dense subset of X,
and n € N. Then X is n-ac [n-cc] if and only if (D, X) is n-ac [n-cc].

PROOF. Only the backwards implication requires proof. Assume that (D, X) is n-ac
and let g, x1,...,x, € X be arbitrary (with n > 1). Since X is regular, there are open
neighbourhoods U; 3 x; such that

e U;NU; =0 for all 0 < i < j < n, and such that
e |0U;| = k; € N is minimal with respect to all open neighbourhoods V' of z; with
V C U, for all i.

Pick points y; € U; N D. By assumption, there is an arc [closed curve] a going through
Yo, Y1, - - - , Yn, having two of these points as its endpoints. We are now going to argue that
we can modify « inside each U; as so to pick up x; but still remain an arc [closed curve]
in X. It suffices to give this argument for ¢ = 0, so write x = x¢, U = Uy and k = k.
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Let us assume that OU = {uq,...,u;}. Without loss of generality, « passes through
u1,...,u; in the given linear [cyclic] order (for 1 < i < k), and doesn’t use i1, . .., Ug.
If £ =1, it is clear how to use local arc-connectedness of X to add z; to our arc « [in
the n-cc case, k = 1 cannot occur|. Otherwise, since at least one of the endpoints of «
lies outside of U [and trivially in the n-cc case], we see that U N «a consists of at most
i —1 < k— 1 connected arcs (and at least one, as o € U N a).

Next, by the fact that |OU| = k € N was minimal with respect to all neighbourhoods
of z contained in U, it follows from Menger’s n-od Theorem that there is a k-fan F' with
center x and leaves in a contained in U, see [118, Theorem §I| or [131, Der verschirfte
n-Beinsatz]. By the pigeon hole principle, two leaves of the fan F' must lie on the same
connected component of U N «, and so it is clear how to include x into our arc [closed

curve] . As this procedure can be repeated for all i = 1, ..., n, the proof is complete. [J

12.2.3. Freudenthal compactification of locally finite connected graphs. In
the proof of the next theorem, we need the following standard lemma bounding the number
of edges in a graph leaving a certain vertex set. For a subset A C V(G) write 0A =
E(A,V \ A) for the induced edge cut (we write dgA for A when we want to emphasize
we are working inside the graph G), and AC for V(G) \ A.

LEMMA 12.2.2. Let G be a graph, A, A’ C V(G). Then
|0A| + [0A"] 2 max {|0(ANA")| + [0(AU A", [0(A\ A")| + |0(A"\ A)|}.

PrOOF. We indicate the short argument of this folklore lemma: We have to verify
that every edge e that is counted on the right will also be counted on the left, and if it is
counted say in both 9(A N A’") and 9(A U A’) on the right, it is also counted in both sums
on the left.

If e € (AN A, then e joins a vertex v € AN A’ to a vertex w that fails to lie in A or
which fails to lie in A’. In the first case, e € JA, and in the second case we have e € 0A'.
Since (AU A’) = E)(AE N A’E), the same holds for edges in 9(A U A’): every such edge
lies in 8(AC) = 0A or in a(A’B) =0A'.

Finally, if e is counted twice on the left, i.e., if e € J(ANA") and e € J(AUA") =
0(AE N A’C), then e joins a vertex v € AN A’ to some other vertex, and it also joins some
w e AN A to some other vertex. As AN A’ and A® N AT are disjoint, we have e = vw.
But this means that e € 0A as well as e € 0A’, so e is counted twice also on the left.

The other inequality, [0A| + [0A'| > |0(A\ A')| + |0(A"\ A)|, now follows from the
first one by applying the fact that |0B| = ‘8(33) ‘ OJ

The final ingredient for our key Theorem 12.2.3 is an alternative, and more explicit,
description of the Freudenthal compactification of a locally finite graph in terms of ends.
Let G be a locally finite connected graph. A 1-way infinite path is called a ray, a
2-way infinite path is a double ray. Two rays R and S in G are equivalent if no finite
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set of vertices separates them. Alternatively, we may say that GG contains infinitely many
disjoint R — S-paths. The corresponding equivalence classes of rays are the ends of G.
The set of ends of a graph G is denoted by Q2 = Q(G).

Recall that topologically, we view G as a cell complex with the usual 1-complex topol-
ogy. Adding its ends compactifies it, with the topology on G U €2 generated by the open
sets of G and neighbourhood bases for ends w € ) defined as follows: Given any finite
subset S of V(G), let C'(S,w) denote the unique component of G — S that contains a co-
final tail of some (and hence every) ray in w, and let C'(S,w) denote the union of C'(S,w)
together with all ends of G with a ray in C(S,w). As our neighbourhood basis for w we
take all sets of the form C/(S,w) U E(S, C(S,w)), where S ranges over the finite subsets of
V(G) and E(S,C(S,w)) denotes the interior of the edges with one endpoint in S and the
other in C'(S,w). Note that in this topology, we have C/(S,w) N Q = C(S,w) N Q.

It is well known that this process of adding the ends does indeed yield the Freudenthal
compactification, i.e. FG = G U ). In particular it is locally connected at ends, and
has neighbourhoods which restrict to zero-dimensional sets on the end space. For further
details and proofs see Chapter 8 of [54].

THEOREM 12.2.3. For the Freudenthal compactification FG of a locally finite connected

graph G the following are equivalent for each n € N:
(1) FG is n-ac, (2) (G, FG) isn-ac, and (3) G is n-ac.

PROOF. The equivalence (1) < (2) is a special instance of Lemma 12.2.1. The impli-
cation (3) = (2) is trivial. For (2) = (3) consider n points xy,...,z, € G and find, by
assumption, an arc « in FG going through the specified points. Our task is to modify this
arc « so that it still contains 1, ..., x, but does not use ends of G anymore.

Without loss of generality we may assume that start- and end-point of o are amongst
the z;. Then it follows from [39, Prop. 3] that every end w € aN (FG\ G) has degree 2 in
a, meaning that for every finite set of vertices S C V(@) there is a bipartition (A, B,,)
of V(@) such that: (i) the induced subgraph G[A,] is connected, (ii) w € A4, (iii) S C B,,,
and (iv) |E(a) N 0A,| = 2 (i.e. the arc a uses precisely two edges from the edge cut
E(A., By)).

Let us call such a set A, with |E(«) N 0A,| = 2 a 2-neighbourhood of w. Moreover,
note that |E(a) NOA| > 2 whenever w € Aand A C A,  (%). Next, let S = {x1,...,2,}
and choose for every end w € a N (FG \ G) a bipartition (A, B,) with the above four
properties. Since a N (FG \ G) is compact, there are finitely many ends wy, ..., w, such
that a N (FG\ G) C A, U---UA,,. We may assume that this cover is minimal, i.e. for
every i < £ there is an end ¢; € N (FG'\ G) such that ¢, € A, \U{A4; : 7 #i} (3%).

Claim: FEvery minimal cover of a N (FG \ G) consisting of 2-neighbourhoods has a

disjoint refinement consisting of 2-neighbourhoods.
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The proof of the claim is via induction on the size of the cover. Let us make the
convention that d,A := E(a) N 0A consists of those boundary edges of A that are used
by «. If the cover consists of a single element only, there is nothing to show. So we may
assume ¢ > 2 and consider our cover {A,..., A;}. Let Ay = Ay and A, := A, \ A; for all
1 < i < /. From (%) and (xx) it follows that ‘8af~li) > 2 for all i < /4.

We shall use Lemma 12.2.2 to see that |9,A4;
for A;. For i > 2, Lemma 12.2.2 applied to the graph (V, E(«)) implies

< 2 for all 7 < ¢ as well. This is clear

4 = |0, A1] + |00 Ai| = [0a(A1\ Ai)| + [0a(A; \ A1) =2+ DuA;

Y

where 0,(A;1 \ A;) > 2 follows again from (%) and (x%). Thus, we have |9, 4;| = 2

for all ¢ < /. Applying the induction assumption to the collection {1212, e ,Ag} we
obtain a disjoint refinement of 2-neighbourhoods, which together with A; forms the desired
refinement of our original collection. This establishes the claim.

Next, we argue that for each A;, there is a finite edge path P; in G [/L] from one edge
in 80/11- to the other. Let a; C «a be the subarc of o that lies in the closure of /L in FG.
By definition of the topology of the Freudenthal compactification, for every end w in «,
there is a finite subset T C V(G) such that C(T,w) C A;. By compactness, finitely many
such C(T},w;) for j < N say cover the ends used by «;. Now since every C(7},w;) is by
definition a connected graph, we may recursively in j find a finite edge-path in C'(7},w;)
connecting the first and last point of a; N C(71},w;). By doing so, we obtain a finite edge-
walk in G [fll] from one edge in d,A; to the other, which includes the desired finite edge
path P;.

But now we are done: for each i < ¢, replace a; by P;. Since each replacement took
place in the disjoint subsets A;, this gives rise to an arc completely inside the graph G
containing all n points x4, ..., x, as desired. 0

12.2.4. Graph-like compactification of locally finite connected graphs. Since
every T-ac graph is one, up to homeomorphism, of a finite family, we easily deduce from
Theorem 12.2.3 that the Freudenthal compactification of a locally finite graph is 7-ac only
in very limited cases. However, this holds for arbitrary graph-like compactifications (i.e.

for compactifications with zero-dimensional remainders).

PROPOSITION 12.2.4. Let G be a countable, locally finite graph. Let vG be a graph-like
compactification of G.
If vG is T-ac then vG is (homeomorphic to) a finite graph (and is one of the 6 finite

graphs which are T-ac, or equivalently w-ac).

PRrROOF. The proof of Theorem 2.12 of [69] shows that the graph G can have at most
two vertices of degree 3 or higher. If all vertices have degree two, then as above vG is
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either an arc or a circle. If all vertices have degree no more than 2, but not all are degree 2,
then G is either a finite chain, or an infinite one-way chain. In either case vG is an arc or a
circle. Otherwise, extending from the (at most two) vertices of degree at least 3, there will
be a finite family of: (finite) cycles, finite chains or infinite one-way chains. The infinite
chains have either one or two endpoints in yG. In all scenarios, vG is homeomorphic to a
finite graph. OJ

Although Theorem 12.2.3, as stated, only applies to n-arc connectedness, and not n-
circle connectedness, the n-cc property is completely dealt with via the next two lemmas.
Indeed, as in the previous result, these apply to arbitrary graph-like compactifications of

locally finite graphs.

LEMMA 12.2.5. Let vG be a graph-like compactification of a countable, locally finite
graph G. Then the following are equivalent: (a) vG is 2-cc, (b) vG has no cut points, (c)
G has no cut points, (d) G is 2-cc, and (e) G is cyclically connected.

PROOF. Since 7G is graph-like, the equivalence of (a) and (b) follows from Proposi-
tion 12.3.5 below. Since no point of the remainder, yG' \ G, can be a cut point of YG;
while every cut point of G is a cut point of vG, we see that (b) and (c) are equivalent.
Finally, the characterization of 2-cc graphs (Theorem 3.1.1 of [76]) yields the remaining
equivalences. O

LEMMA 12.2.6. Let vG be a graph-like compactification of a countable, locally finite
graph G. Then the following are equivalent: (a) vG is 3-cc, (b) vG is a circle, and (¢) G
is either a cycle, or a double ray and vG is its one-point compactification.

PROOF. Suppose 7G is 3-cc. The corresponding argument for finite graphs shows that
every vertex of G has degree 2. So (G is either a finite cycle, or a double ray. In the latter
case, there are only two different graph-like compactifications: vG is either a circle, or an
arc — but in the latter case, 7G is not 3-cc. [

However, Theorem 12.2.3, stating that a locally finite, countable graph G is n-ac if

and only if FG is n-ac, does not extend to general graph-like compactifications for n < 6.

EXAMPLE 12.2.7.
(a) The infinite ladder, D, is 5-ac but not 6-ac, while aD is 6-ac.
(b) The graph C below is 4-ac but not 5-ac, while its one-point compactification, aC is
6-ac.
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c aC

Proof. For (a): Let D be the usual double ladder, i.e. V(D) = {0,1} x Z in which two
vertices (m,n) and (m/,n’) are adjacent if and only if |m — m/| + |n — n’| = 1. Using the
characterizations from [76], it follows that D is 5-ac but not 6-ac.

We focus on showing aD is 6-ac. Since we may assume our six points zy, ..., xs lie on
edges, we may find n > 5 large enough such that xy,...,2¢ € D[{0,1} x [—n,n]].

Set G; = D[{0,1} x [-n,n]]. Take a disjoint copy of G, and modify it to form a
graph Go as follows: first, remove the edge corresponding to {(0,0), (0,1)}, and second,
subdivide the edges {(0,—2), (0,—3)} and {(0,3), (0,4)} by vertices a and b, and, finally,
add new edges from a to (0,0) and (0, 1) to b. Let us write e = {(1,0), (1, 1)} for the unique
bridge of Gy, and G5 := G5[{0,1} x {1,...,n}] and G5 := G[{0,1} x {0,—1,...,—n}]
for the two components of G5 — e.

Now consider the auxiliary graph G = G; U G5 where we additionally add four new
edges: (1) f* between the copies of (0,n), (2) f~ between the copies of (0,—n), (3) g"
between the copies of (1,n), and (4) g~ between the copies of (1, —n).

It follows from [76, Theorem 3.4.1] that G is 6-ac,
and so there is an arc « in G containing x1, ..., xs and,
without loss of generality, starting and ending in points
x; # x;. In particular, o starts and ends outside of (.
Moreover, note that 95G5 = {e, f*, g7} is a 3-edge cut,
and so if a contains points from G5 then a will cross this
cut in precisely two edges, and so 37 = a NG5 will be a

subarc of a. Similarly, 8~ = a N G, will be a subarc of
a. But then it is clear that by replacing 8+ and 5~ with
suitable arcs in the corresponding connected components

of aD \ G; (where say an e — f* arc will be replaced by an oo — fT-arc in aD), we may
lift o to an arc in aD witnessing 6-ac.

For (b): That aC is 6-ac can be directly checked by a case-by-case analysis.

To see that C'is 4-ac but not 5-ac we can apply the characterizations of [76] as follows.
First note that removing the middle edge disconnects C into two components C,C_
which are isomorphic. Since CL is cyclically connected, and no two vertices cut it into 4
or more components, it is 4-ac by [76, Theorem 3.2.1]. As C' is 3-regular it follows from
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[76, Theorem 3.2.3] that C' is 4-ac. On the other hand, since removing the middle edge
disconnects C, it is not cyclically connected. Now [76, Theorem 3.3.1] states that for C
to be 5H-ac it must be homeomorphic to one of: an arc, ray, double ray, lollipop with or
without end point, dumbbell or figure-eight, and it is clearly not homeomorphic to any of
these spaces. O

The argument given that aD is 6-ac is straightforward, but follows from an ad hoc
reduction to the combinatorial graph characterization of 6-ac. The direct check that aC
is 6-ac is lengthy and tedious, in sharp contrast to the simple arguments, from the combi-
natorial characterizations, that C' is 4-ac but not 5-ac. These two examples demonstrate
some of the difficulties in determining when a graph-like compactification of a locally finite,

connected graph GG is n-ac, and also the value in having a combinatorial characterization.

PrOBLEM 12.2.8. Find a combinatorial characterisation for when a graph-like com-

pactification of a locally finite, connected graph G is n-ac.

A place to start would be to discover when the one-point compactification of a graph

1s 6-ac.

12.3. General graph-like continua

In this section we first develop some machinery for graph-like spaces with the aim
of connecting them, via inverse limits with ‘nice’ bonding maps, to finite graphs. This
machinery then yields tests for a graph-like continuum to be, or not to be, n-ac or n-cc.
In Proposition 12.3.5 these tests are refined to characterize 2-cc graph-like continua. In
the next section our machinery and tests for graph-likes are applied to construct various

examples.

12.3.1. Graph-like spaces as inverse limits. Here we develop techniques of Es-
pinoza and the present authors in [70], to detect when a continuum is graph-like, and
characterize when a graph-like continuum is Eulerian.

For convenience let us say that a map m from one graph-like continuum, X, to another,
Y, is nice if it is surjective, monotone (fibres, 7~!'{v}, are connected) and maps vertices
to vertices, and edges either homeomorphically to another edge, or to a vertex.

Let X be a graph-like continuum with vertex set V. By subdividing edges once, if
necessary, we may assume that every edge of X has two distinct endpoints in V', i.e. that
the graph-like continuum is simple.

For a clopen subsets U,U" C V', not necessarily different, E(U,U’) denotes the set of
edges with one endpoint in U and the other endpoint in U’. It is not hard to see, [70,
Lemma 1], that E(U, V\U) is always finite. A multi-cut is a partitiond = {Uy,Us, ..., U,}
of V' into pairwise disjoint clopen sets such that for each i, the induced subspace X[U;] of X,
i.e. the closed graph-like subspace with vertex set U; and edge set E(U;, U;), is connected.
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The multigraph associated with U is the quotient Gx(U) = G(U) = X/{X[U] : U € U}.
Let py: X — G(U) denote the quotient mapping from X to the multigraph associated
with U. We note that G(U) is indeed a finite, connected multi-graph, and that p, is nice.
Conversely, if p is a nice map of X to a finite, connected graph G, then there is a multi-cut
U such that G = G(U) and py realizes p in the sense that they are identical on the vertices
of X, and they carry the same edges of X to the same edges of G.

A sequence, (Uy),, of multi-cuts of X is cofinal if for every multi-cut U there is an
U,, which refines it. According to Theorem 13 of [70], for any cofinal sequence, (U, )n,
of multi-cuts, the graph-like continuum X is naturally homeomorphic to an inverse limit
1'&1 Gx(U,), where the bonding maps are all nice. Conversely, if a space X is homeomor-
phic to an inverse limit, m G, where the (7,, are finite, connected graphs, and all bonding
maps are nice, then (Theorem 14 of [70]) X is a graph-like continuum. Note that in this
case, for every m, the projection map, typically denoted, p,,, from @Gn to Gy, is nice,
and so is realized as a py,, for some multi-cut U,,.

12.3.2. Sufficient conditions. The following lemma — a special case of Lemma 12.2.1
— records that as in the case with graphs, also for graph-like continua we may choose our

points x1, ..., x, without loss of generality to be interior points of edges.

LEMMA 12.3.1. Let X be a graph-like continuum with vertex set V. Let n € N. Then
X is n-ac [n-cc] if and only if (X \ V,X) is n-ac [n-cc].

LEMMA 12.3.2. Let U be a multi-cut of a graph-like continuum X. Then every arc
[simple closed curve] in G = Gx(U) lifts to an arc [simple closed curve] in X.

PROOF. Since the quotient mapping py: X — G(U) is nice, it follows that for every
vertex v of G, its fibre p;,'(v) = X[U] for some U € U is an connected, and hence arc-
connected subcontinuum of X, see [70, Lemma 2]. Thus, we may lift any arc [simple closed
curve] o in G = Gx(U) by filling in suitable subarcs inside each fibre p;,'(v) = X[U] for

every vertex v € a. ([l

COROLLARY 12.3.3. Let X be a graph-like continuum. If Gx(U) is n-ac [n-cc] for
every multicut U of X, then X is n-ac [n-ccl.

Proor. By Lemma 12.3.1 it suffices to consider points x4, ..., z, lying on edges of X,
say r; € e;. Since l'glGX(Z/{n) >~ X, there is a multicut & of X such that eq,...,e, are all
displayed in the finite graph G = Gx(U). By assumption, Gx(U) is n-ac [n-cc], and so
there is an arc [simple closed curve] in G containing the distinct points py(z1), . .., pu(z,).
The assertion is then immediate by Lemma 12.3.2. U

12.3.3. Necessary conditions. Call a graph G n-E (n-Eulerian) if for every n or
fewer points in G there is an edge disjoint closed trail in G containing the points. Equiv-
alently, we may say that every n edges of G lie on a common Eulerian subgraph of G.
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Observe that a finite graph is Eulerian if and only if it is n-E for all n. Call a graph
G n-oF (n-open Eulerian) if for every n or fewer points in G there is an edge disjoint
(possibly not closed) trail in G containing the points.

PROPOSITION 12.3.4. Let X be a graph-like continuum.
(a) If X is n-cc, then for every multi-cut U of X the graph G(U) is n-E.
(b) If X is n-ac, then for every multi-cut U of X the graph G(U) is n-oE.

PROOF. We prove (a). So suppose X is n-cc. Write X as an inverse limit X = @ Gy
of graphs, with nice bonding maps. We verify that each Gy is n-E.

Fix k. Let py be the nice projection from X to Gj. Take no more than n points from
Gy, say x1,...,T,. Pick y1,...,y, in X, such that py(y;) = x;, for i = 1,...,n. As X
is n-cc, there is a simple closed curve S in X containing these points. The projection of
S under p, into Gy is an edge-disjoint closed trail in GG which contains all the x;. This
shows that G}, is n-E.

The proof of (b) is very similar. In place of a circle we get an arc o containing yi, . . ., Yn.
Its projection in Gy, is an edge-disjoint trail which may or may not be closed, but definitely
contains the points zy,...,x,. Thus G} is n-oE. O

12.3.4. 2-cc Graph-like Continua. A space X is 3-sac if given any three points,
x1,To,x3 of X, there is an arc in X starting at x;, passing through x5, and ending at .
The main result here is the following one showing that in graph-like continua being 2-cc
is equivalent to being 3-sac, and characterizing these properties in terms of the standard

properties of the graph-like continuum and, also, its inverse limit representation.

PROPOSITION 12.3.5. For a graph-like continuum X, the following are equivalent:

(1) X is 3-sac, (2) X is 2-cc, (3) X has no cut points,

(4) for every representation X = @Gm, where each G, is a finite, connected graph
and each bonding map is nice, there is a m such that G,, has no cut-point,

(5) X can be represented as X = l'&nGm where each G, is a finite, 2-cc graph and

each bonding map is nice.

The next lemma shows the equivalence of (1), (2) and (3) even among all Peano con-
tinua. Lemma 12.3.6 also shows that (5) is equivalent to (5") where ‘2-cc’ is replaced by ‘no
cut points’. Then the equivalence of (3), (4) and (5') is the & = 2 case of Proposition 12.3.7.

LEMMA 12.3.6. For a Peano continuum X, the following are equivalent:
(1) X is 3-sac, (2) X is 2-cc, and (8) X has no cut points.

PROOF. The equivalence of (1) and (2) for any continuum X was established in [68,
Prop. 7], and was shown in [68, Thm. 5|, evoking a result by Bellamy and Lum, to be
equivalent to (3') X is arc connected, has no arc-cut point, and has no arc end points (z
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is an arc end point if there are not two arcs intersecting only at ). Clearly (3') implies
(3) (cut points are arc-cut points).

Suppose X is Peano. Then it is arc connected. We show if X contains an arc-cut point
or an arc end point then it contains a cut point, and so (3) implies (3).

First, assume that X has an arc end point z. Recall the result by No6bling [131]
that if a point z in a Peano continuum X has order at least n (i.e. any small enough
neighbourhood of x has boundary at least of size n) then X contains an n-od with center
x, i.e. a union of n many arcs with only the point z in common. Thus, an arc end point
must necessarily have order 1, and so we have found many cut-points.

Second, it is not hard to show that every arc-cut point x of a Peano continuum X
must necessarily be a cut point. Indeed, suppose X \ {z} has at least 2 arc-components.
Let Y be an arc-component. Using local connectedness, it is easy to show that ¥ must be
closed in X \ {z}, and further, that the collection {Y C X \ {z}: Yarc-component} is a
locally finite collection of sets. Thus, one arc component against the union of the rest is
a partition of X \ {z} into non-empty closed sets. O

In analogy to graphs, call a graph-like continuum k-connected if the deletion of any
k — 1 vertices never disconnects it. Note that a graph-like continuum is 2-connected if
and only if it has no cut points (if removing a point on an edge disconnects, then so does
removing either of the end points of the edge).

A k-pre-cutting is a triple (Y, A, B) where Y is a set of vertices with |Y| < k, and
A, B are subcontinua with AUB =X and ANB =Y. A k-cutting of X is a non-trivial
k-pre-cutting, (Y, A, B) where by non-trivial we mean that A\Y and B\Y are non-empty.
Observe that if (Y, A, B) is a k-cutting then X \ Y is disconnected. Conversely, if Y is a
set of vertices of size < k, and removing Y from X disconnects X, say X \Y = U UV
where U are disjoint, open and non-empty, then (Y, A, B) is a k-cutting, where A = UUY
and B=V UY.

If f: Z — W is a nice map from Z to another graph-like continuum, W, and (Y, A, B)
is a k-pre-cutting in Z, then (f(Y), f(A), f(B)) is a k-pre-cutting in W.

PROPOSITION 12.3.7. For a graph-like continuum X, the following are equivalent:

(a) X is k-connected,

(b) for every representation X = l'&nGW where each G, is a finite, connected graph
and each bonding map is nice, there is an m such that G,, is k-connected, and

(¢c) X can be represented, X = @Gn, where each Gy, is a finite, k-connected graph

and each bonding map is nice.

PROOF. Suppose (b) holds. Fix a representation X = l'gle. For any n, we have
X = @m>n Gm, so, by (b), for some m, > n we know G,,, is k-connected. Letting
H, = G,,,, we have a representation X = l'ngn where all the graphs involved are
k-connected. Thus (c) follows from (b).
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Next suppose (a) fails, we show (c¢) also fails, and so (c) implies (a). Fix a k-cutting
(Y, A, B) of X. Take any representation X = l&n G, where each (G,, is a connected, finite
graph, and each bonding map is nice. Denote, as usual, the projection map of I'LnGm to
Gm by pm, and recall it is nice. Pick z in A\ Y, and b € B\ Y. Find m sufficiently
large that in G,, the points p,,(a) and p,,(b) are distinct and not contained in p,,(Y).
Then, as p,, is nice, (pn(Y), pm(A), pm(B)) is a k-cutting of G,,, which, therefore, is not
k-connected.

Finally we show if (b) is false then so is (a). Fix a representation X = lim G, where
each G, is a finite, connected graph which is not k-connected, and each bonding map,
Tm: Gma1 — G, isnice. Let T be the set of all finite sequences (Y3, A1, By), .. .,(Yn, An, By))
where each (Y, Am, Bim) is a k-pre-cutting of G, Vi = (Y1), Am = T(Ami),
B, = m(Bima1), and some term in the sequence is non-trivial (i.e. a k-cutting, and note
all subsequent terms of the sequence are also non-trivial).

Order T by extension to get a tree. Observe that every sequence in 7 has only
finitely many immediate successors (indeed there are only finitely many k-pre-cuttings,
(Yo, Ay Bi), of Gy, since Y, is a set of vertices of the finite graph G,,). Further T
is infinite. To see this fix n. We show there is a sequence in T of length n. Well,
by hypothesis, G,, is not k-connected, and so contains a k-cutting (Y,,, A,,, B,). Then
(Y1,A1,B1), ..., (Yo, Ay Bi)y - -« (Yo, A, By)) is in T where

(Yo, Ay, Bi) = (T (Yons1), T (Ams1), Ton (By1))  form=n—1,... 1.

By Konig’s Lemma, see e.g. [54, Lemma 8.1.2], the tree 7 has an infinite branch,
01,02, ..., Om,.... S0 we get an infinite sequence of k-pre-cuttings ((Y,n, Am, Bm))m which
are mutually compatible: (Y, A, Bm) = (T (Yima1), Tm(Ams1), Tm(Bma1)), for all m >
1. Let A = @Am, B = lngm and Y = AN B. Then, by compatibility, A and B are
subcontinua of X, X = AU B and Y is a set of vertices. But some term of the branch
is non-trivial, and so from that point on, all the k-pre-cuttings are non-trivial. Further
the sets Y,, must stabilize. Thus (Y, A, B) is a non-trivial k-pre-cutting, and X is not
k-connected. 0

12.3.5. Distinguishing graph-like continua. Let X be a graph-like continuum.
For distinct vertices v and w from X define kx (v, w), the edge connectivity between v and
w, to be the minimal number of edges whose removal separates v and w (i.e. which form
an edge-cut between v, w). Note that kx(v,w) is well-defined, and by Menger’s theorem
for graph-like continua, [70, Theorem 22|, k = kx(v,w) equals the maximum size of a

family of edge-disjoint v — w-paths.

LEMMA 12.3.8. Let X be a graph-like continuum containing distinct vertices v and w.
If Y is another graph-like continuum and f is a nice map of X toY then kx(v,w) <

ky (f(v), f(w)) provided f(v) # f(w).
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PROOF. Pick edges ey, ..., e, that separate f(v) from f(w) in Y. Then, as f is nice,
those same edges exist in X and separate v € f~'{f(v)} from w € f~{f(w)}. O

LEMMA 12.3.9. Let X, X’ # St be graph-like continua with standard representations
X =(V,E) and X' = (V', E"). Then every homeomorphism f: X — X' is a nice isomor-
phism of graph-like spaces.

PROOF. Since the degree of a point is a topological property, and hence preserved
under homeomorphisms, it follows that any homeomorphism f: X — X’ must map V
homeomorphically to V'’ and therefore, by considering complements, edges to edges. Since
it is bijective, it is trivially monotone. 0

In particular, the previous two lemmas allow us to use combinatorial information to
show that two graph-like continua X and Z are non-homeomorphic. Indeed, it suffices to
find distinct v and w in X such that kx (v, w) # kz(v',w’) for all distinct v/, w" in Z. This
is specified explicitly by the next lemma.

LEMMA 12.3.10. Let X = (V, E) be a graph-like continuum, with representation X =
@Gk, of connected graphs, with nice bonding maps. Let v and w be distinct vertices of
X and define s = s(v,w) to be minimal such that ps(v) # ps(w).

Then kx (v, w) = min{keg, (p:(v), pr(w)) : t > s} =: k.

Further, the sequence (kg,(pi(v), p(w)): t > s) is decreasing and eventually constant.
It stabilizes, so kx(v,w) = ke, (pt(v), pt(w)), at the minimal t for which there is a set € of
edges in X of size kx(v,w) separating v and w such that all members of £ exist in G.

PROOF. Note that k > kx (v, w) if and only if for all t > s we have kg, (pi(v), pi(w)) >
kx(v,w). Now, for each t > s, apply Lemma 12.3.8 to the nice map p;: X — G;.

Conversely, note kx(v,w) > k if and only if for some t > s we have kx(v,w) >
kg, (pe(v), pr(w)). Fix open edges ey, ..., e, in X separating v from w. Specifically, say v
is in C, w is in D, where C, D form of a clopen partition of X \ |, e;.Pick ¢ sufficiently

large that t > s and p; is a homeomorphism on each of the fixed edges (so, we can suppose

e1,...,ex are edges in G;). We claim that in G; removing ey, ..., e, separates p;(v) from
pe(w). Otherwise, there is a p;(v) — pi(w) path P in Gy — {e1,...,ex}. But then, due
to the monotonicity of p;, the subspace p; '(P) is a connected subset of X — {ey,...,ex}

containing both v and w, a contradiction.

Since every bonding map, 7, from G, to G, _; is nice, it follows from Lemma 12.3.8
that (kg,, (pn(v), pn(w)))n>s is indeed decreasing. So it must stabilize at some ¢, with
value ky (v, w). It follows that in X there are open edges Ej, ..., Ey, where k = kx (v, w),
separating v from w, such that these same edges exist in G;. From the argument above
we see that — as claimed — ¢ is minimal for which there is a set £ of edges in X of size
kx (v, w) separating v and w such that all members of £ exist in G;. O
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12.4. The graph-like examples

In this section we construct families of examples which demonstrate that — with the sole
exception of the characterization of 2-cc graph-like continua given in Proposition 12.3.5 —
none of our positive results of Section 12.2 for n-ac and n-cc Freudenthal compactifications
of locally finite graphs extend to arbitrary graph-like continua. Indeed we give continuum-
sized families of examples which help demonstrate the difficulties involved in classifying
n-ac and n-cc graph-like continua. Below we write K, for the complete graph on m

vertices.

12.4.1. A procedure for constructing graph-like continua.

Every graph-like continuum, X say, can be represented as an inverse limit, l'LnGk, of
connected graphs, with nice bonding maps. The kth bonding map, 7, determines how to
transition from Gy, to Gy.

For the purposes of constructing a graph-like continuum, however, it is more convenient
to have a rule for building Gy, from Gy, and then specifying the bonding map. For our
present purposes the following method is simple but effective.

The input data for the construction process are: (1) the first graph, Gy, and (2) rules,
one for each n, specifying how to replace a vertex, v, of degree n in a graph by a connected
subgraph, G,. Then to construct the inverse sequence, recursively apply the rules to the
vertices of G, to get Gry1, and define the bonding map 7 to be the map which collapses
each connected subgraph, G, in G171 to v in Gg. Clearly this map is nice.

By convention, if no rule is specified for vertices of degree n, then the rule is to leave
the vertex alone. A typical rule for vertices of degree four is depicted below. Here each
vertex of degree four is to be replaced with the complete graph on four vertices, and the
four original edges are connected to one new vertex of the complete graph each. The
bonding map collapses the new complete graph to the single old vertex.

/

12.4.2. Non-trivial w-ac and w-cc graph-like continua.

EXAMPLE 12.4.1. There is a graph-like continuum which is w-cc but is not a graph (in
particular, not the circle).
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CONSTRUCTION. For each k£ we define recursively, 4-regular
(multi) graphs Gy, following the procedure outlined above. The
graph-like continuum X = 1&1 G will be w-cc, but not a graph.
Let GG be any 4-regular connected multi-graph, for example the 2
figure-eight graph (one vertex, two loops). The rules for construct-
ing Gy from Gy are always the same: uncontract every vertex of
G to a complete graph on four vertices, K4, in the natural manner
(as above). This will have the effect that Gy will still be 4-regular,
and so the recursion can be continued. The first three steps of the
algorithm are depicted right.
It is obvious that X is not a graph. To see that X = @Gk
is w-cc, let n € N be arbitrary, and note that by Lemma 12.3.1 it
suffices to consider points z1, ..., z, lying on (different) edges of X.
Find k € N sufficiently large such that xi,...,x, lie on different
edges of GGi. Since Gy, is 4-regular, it has an Eulerian cycle a.. Since
in Gy, every vertex of Gy, is expanded into a K}, is is easy to see
that the cycle « lifts to a simple closed curve o/ of G4, containing all vertices x1, ..., T,.
By Lemma 12.3.2, o lifts to a simple closed curve o’ of X containing all vertices x1, ..., .,
and so the proof is complete. 0

Note: for the above construction to produce an w-cc graph-like continuum it suffices
that (1) every Gy is Eulerian and (2) each vertex v in some G, is uncontracted to G,
in G411 so that every edge in Gy incident to v is incident to distinct vertices in G, and
those vertices are contained in a complete subgraph of G,. (That each Gy is dj-regular,
and (dy)r is constant, simplifies defining the expansion rules, but neither constraint is
necessary. )

ExXAMPLE 12.4.2. There is a graph-like continuum X, not a graph, which is w-ac but

not 2-cc.

CONSTRUCTION. Indeed, such examples can easily be constructed by considering a
figure-eight-curve, a dumbbell, or a lollypop-curve, and replacing one of the circles in
these graphs by a copy of the w-cc graph-like continuum from the previous example. [

THEOREM 12.4.3.
(a) There are 2% many pairwise non-homeomorphic w-cc graph-like continua.
(b) There are 2% many pairwise non-homeomorphic w-ac, but not 2-cc, graph-like

continua.

PROOF. From Example 12.4.2 it is clear that (b) follows from (a).
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Let G be the graph on a single vertex with a single loop. Take any function f € NN
which is strictly increasing, and for every n we have f(n) divisible by 2. Define X = Jim G,’:
where the graphs G£ are given recursively by:

e Gl =@y, and

° G£+1 is obtained from G£ by uncontracting every vertex v of G£ to a [N(f(k) )
K(ry, where the edges incident with v are incident with distinct vertices of K F(k)
and the remaining vertices of Ky get paired up, and get an additional parallel

edge between each pair as to satisfy the even degree condition.

Note that, inductively, each G£ +1 is a connected, f(k)-regular graph (hence, as f(k) is
even, Eulerian), and this combined with the fact that f is strictly increasing and has even
values ensures that G£ 41 is well-defined from Gi.

The graphs G{: satisfy properties (1) and (2) noted after Example 12.4.1, from which
it follows that the graph-like continuum X is w-cc.

Claim 1: If v and w are distinct vertices of G{:H which are projected to the same
vertex x of Gi, then f(k) — 1< kGﬁﬂ(U’w) < f(k).

By f(k)-regularity of G£ 1, the edge-connectivity is at most f(k). The first inequality
holds since the complete graph K has edge-connectivity f(k) — 1.

Claim 2: If v and w are vertices of G£+1 such that their projections v' = pi(v) and
w' = pp(w) are distinct in GI, then kGﬁﬂ(U’ w) = kG£ (v, w').

By Lemma 12.3.8, it suffices to show kG£+l(v,w) > kG£ (v/,w') = k. To see this, note
that kG{ (v/,w") = k implies, by Menger’s theorem [54, §3.3], that there is a collection of k-

many edge-disjoint v' — w’-paths in Gg. These paths lift, by the fact that we uncontracted
vertices to complete graphs and by property (2), to a collection of k-many edge-disjoint
v — w-paths in G£ .1, establishing the claim.

Next, define Cy = {k;Xf (v,w):v#w e V(Xf)}, the spectrum of all edge-connectivities
between pairs of distinct vertices of X¢. From Claims 1 and 2, along with Lemma 12.3.10
we deduce:

Claim 3:

(1) Cy C{f(n) —1:ne N}yU{f(n): n € N}, and
(2) for each n € N we have {f(n) — 1, f(n)} NCs # 0.

Now define F = {f € N¥: f is strictly increasing and Vn f(n) is even}. Then |F| = 2%.
For each f € F we know X; = an Gi is an w-cc graph-like continuum, and we now show
these are pairwise non-homeomorphic.

Claim 4: For distinct f # g € F, the graph-like continua X; and X, are non-
homeomorphic.

To see this, let k& € N be minimal such that f(k) # g(k), and without loss of generality
assume that f(k) < g(k). Note that k > 2 (since G = GY). As f, g are strictly increasing
and have even values, we have f(k—1) =g(k—1) < f(k) — 1 < f(k) < g(k) — 1 < g(k).



12.4. THE GRAPH-LIKE EXAMPLES 279

Hence, from Claim 3, one of f(k) —1 and f(k) is in C; but neither is in C,, so Cs \ C, # 0,
and so we deduce X; 2 X, by Lemma 12.3.9. O

12.4.3. Graph-like continua which are n- but not (n + 1)- ac or cc. In this
section, we construct interesting graph-like continua which are n-ac but not (n + 1)-ac,
and others which are n-cc but not (n 4 1)-cc. For these, we present two fundamentally
different constructions.

The first construction uses knowledge about certain closed or open Eulerian paths in
finite minors of the graph-like space. In some sense, this first construction is all about
controlling the edge-cuts in the space. The second construction starts with several copies
of a graph-like space, in which we have a lot of control over which arcs we may use to pick
up our favorite edge set. We then glue together these copies by identifying some finite set
of vertices. In some sense, this second construction is all about controlling the vertex-cuts
in the space.

12.4.3.1. Technique 1: Using open and closed Fulerian paths in finite graphs. For our
next examples, we need the following auxiliary result. Recall that a matching in a graph

is a collection of pairwise non-adjacent edges.

LEMMA 12.4.4. For every n > 2, the complete graph on N = 4n + 4 wvertices has the
property that given (i) any matching M in Ky, (ii) any edges ey, ... e, of Ky — M with
k < n, and (iii) any two vertices v,w in Ky, there is a non-edge-repeating trail from v to

w in Ky — M containing the selected edges.

PRrROOF. To see the claim, note that after removing the matching M, every vertex has
degree at least N — 2 in the subgraph Hy = Ky — M, and so any two vertices have at
least N — 4 common neighbours in Hy. Write e; = x;y;. Since v and x; have a common
neighbour, there is a path P, from v to y; with e; € E(P;). Next, consider H; = Hy—E(P;)
and note that every vertex in H; has degree at least N — 4, and so any two vertices have
at least N —8 > 4n —4 > 0 common neighbours in H;. If e; isn’t yet covered by Py, find a
path P, in Hy from y; to y, containing the edge e,. If we continue in this manner, then in
Hy = Ho\U;<;, E(F;), every vertex has degree at least N —2—2k > N/2. Hence, any two
vertices in Hj, are either connected by an edge, or have a common neighbour. Thus, there
is a path Pyyq in Hy from y; to v. It is clear that UNCJrl P; is the desired edge trail. [J

EXAMPLE 12.4.5. For each n > 2 there is a graph-like continuum which is n-ac but
not (n + 1)-ac.

CONSTRUCTION. Fix n > 2. We define a sequence of graphs, G}, by giving the first,
GT, then G, and a rule defining G, from G7, for £ > 2. This naturally gives an inverse
limit X,, = X = l&n G} which is graph-like.

Case 1: n = 2m + 1 is odd where m > 1. The graph G} has four vertices, vy, wy, wo
and vy. There is an edge connecting v; to w; for ¢ = 1,2; and 2m edges connecting w; and
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wo. Thus GT has n + 1 edges, two vertices of degree 1 and two of degree n. It is easy to
check that G is n-oE. But G} is not (n+ 1)-oE, and so by Proposition 12.3.4(b) X is not
(n + 1)-ac. Next, let N = N(n) be large enough as to satisfy Lemma 12.4.4. To define
G from G7 leave the two vertices of degree 1 alone, and uncontract the two vertices of
degree n to a Ky, such that all vertices of G} are either of degree 1, N — 1, or N. To
define G}, from G} leave the (two) vertices of degree 1 alone, and replace all vertices of
degree N — 1 or N by a complete graph on N new vertices. Since all vertices of G}, are
either of degree 1, N —1 or N, inductively, the same is true for G}, and then G7, ;. Hence
the definition is complete.

We now show by induction on £ that for all £ the graph G} is n-oE. Then the proof that
X is n-ac then follows as in the previous examples. Fix & > 2. Let 7 = m,: G}, — G},
be the bonding map. Take any subset S of G}, ; containing no more than n points. Then,
inductively, in G} there is an edge-disjoint trail containing m(S). The edges in this trail
pull back to an edge-disjoint sequence of (directed) edges in G}, so that successive edges
have end and start points (respectively) mapping to the same vertex in G}. We explain
how to add edges in fibers of vertices of G} so as to form an edge-disjoint trail in G},
containing the points of S.

It suffices to consider one vertex v of G7, and add edges in 7 '{v} so as to connect
together successive edges in the edge-disjoint sequence while preserving edge-disjointness
and ensuring that all points in S which happen to lie in 7='{v} are contained in the
resulting trail. If 7='{v} is just one point then there is nothing to do. Otherwise 7' {v}
is a complete graph on N vertices. If no edges in the edge-disjoint sequence meet 7~ {v}

there is nothing to do. List all successive pairs entering and exiting 7 '{v} as €?,¢3,

ei,es,...,e),eb where p > 0. Let fi,..., f, be the edges in 7 *{v} containing points of
S. Note ¢ < n.
Fori=1,...,p— 1 add the edge in 7~ 'v connecting the end of €} to the start of ej.

By construction, this edge set is a matching M. If at this point, some of the edges f; are
yet uncovered, we may add, by Lemma 12.4.4, a trail from the end of €} to the start of e}
disjoint from M in 7~ 'v containing all uncovered edges of fi,..., f,. Otherwise, simply
add the edge in 7~!v connecting the end of €} to the start of e). Now we are done.

Case 2: n = 2m s even where m > 1. The graph G7 has four vertices, vy, wy, wa, vo.
There are n — 1 edges connecting w; and ws, and one edge from each of v; and vy to wy.
Then G7 has n + 1 edges, two vertices of degree 1, one of degree n + 1 and one of degree
n — 1. It is easy to check that G} is n-oE but not (n + 1)-oE.

Let N = N(n+ 1) be large enough as to satisfy Lemma 12.4.4 for n+ 1. Define G by
replacing the single vertex of degree n + 1 with N new vertices connected by a complete
graph, but leaving the other vertices alone. To define G, from G} leave the two vertices
of degree 1 alone, leave the vertex of degree n—1 alone, and replace all vertices of degree N
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or N —1 with N new vertices and a complete graph connecting them. Now the argument

that X = 1£1 L is as required is very similar to that given above in Case 1. U

EXAMPLE 12.4.6. For each even n there is a graph-like continuum which is n-cc but
not (n + 1)-cc.

CONSTRUCTION. The argument is similar to that given above for graph-like continua
which are n-ac but not (n + 1)-ac. So we give a sketch only, highlighting differences.

Fix even n. Let G} be the (multi-)graph with two vertices and n + 1 parallel edges
connecting them. Note that the vertices have degree n + 1, and it is easy to check G
is n-E (given any n points there is a closed edge-disjoint trail containing them). Pick
N = N(n + 1) be large enough as to satisfy Lemma 12.4.4 for n + 1. Recursively define
G, from Gj by uncontracting each vertex to a Ky. By induction one can check that
every G} is n-E.

Define X = @Gz Then X is a graph-like continuum, and arguing as before it can
be verified to be n-cc. But picking a point from the interior of each edge easily shows G}
is not (n + 1)-E. Hence, by Proposition 12.3.4, X is not (n + 1)-cc. O

Our strategy from above is bound to fail when trying to build an example for a graph-
like continuum which is n-cc but not (n + 1)-cc for odd n. Indeed, given odd n we would
need graphs which are n-E but not (n+ 1)-E, however the second author and Knappe have
shown that this is impossible — any graph which is n-E, where n is odd, is automatically
(n + 1)-E, see [101]. Hence, a fundamentally different approach is required to construct,
for odd n, graph-like continua which are n-cc but not (n + 1)-cc. This is the purpose of
our next and final section.

12.4.3.2. Technique 2: Using small vertex cuts in graph-like spaces. Recall that in an
n + 1-ac graph-like continuum, deleting n — 1 vertices creates at most n distinct connected
components, [76, Lemma 2.3.3]

A similar result holds for (n + 1)-cc graphs: Recall that a connected graph, or a
graph-like continuum G is called k-tough, if for any finite, non-empty set of vertices S, the
number of components of G — S is at most |S|/k. Adapting this notion slightly, let us say
that a graph-like continuum G is (k,n)-tough if for any set of vertices S with 1 < |S| < n,
the number of components of G — S is at most |S|/k.

The standard notion of toughness plays a well-known role in the theory of Hamilton
cycles, as a necessary condition for a finite graph to be Hamiltonian is that it is 1-tough,
[50, Prop. 2.1]. The straightforward adaptation of this result to our use case gives the
following observation.

LEMMA 12.4.7. Every (n+ 1)-cc graph-like continuum is (1, n)-tough.

PROOF. Suppose X is an n-cc graph-like continuum and, for a contradiction, S C
V(X) is a finite vertex set with 1 < |S| = s < n whose removal leaves strictly more than
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s components. Pick s + 1 edges in different components of X —S. Ass+1<n+1, by
assumption, there is a simple closed curve a in X picking up the edges. But then o\ S
consists of at most s components. Hence, there are two edges in the same component of
a\ S, contradicting the fact that they lie in different components of X — S. O

As our building blocks, we will use the following class of graphs.

EXAMPLE 12.4.8. For each n > 2 there is a graph-like continuum X containing vertices
U1, Vg, . . ., Uy such that (i) whenever an edge set F' C F(X) with |F'| < n is chosen, and (ii)
any two vertices v; # v; from our list are chosen, there is an v; — v; arc a in X containing
F but not v, for all k& # 1, j.

PROOF. Let n € N be fixed and consider N = N(n) from Lemma 12.4.4. We will
construct X as an inverse limit of finite graphs G, where we start with G; = Ky, and
uncontract in each step every vertex v of Gy to a new Ky. It follows recursively that
every vertex of Gy has degree N or N — 1.

Let pr: X — G}, denote the quotient map. Choose vy, ...,v, € V(X) subject to the
condition that the degree of pi(v;) equals N — 1 for each k € N. Now pick any edge set F'
with |F| < n. We will demonstrate that there is an v; — vg arc a in X with /' C « and
v; ¢ o for all ¢ > 3.

By Lemma 12.4.4, there is a pi(vy) — p1(vg)-trail Ty in G; containing F' N E(G1).
Recursively, using again Lemma 12.4.4, extend this to an pg(vi) — pg(ve)-trail Ty in Gy,
containing F' N E(Gy) until F'N E(Gy) = F. Next, using the fact that pgi;(v;) equals
N — 1, extend T}, to an pyy1(v1) — prr1(ve)-path Tyyq in Gyyq missing all pyyq(v;) for all
¢t > 3. Extending this path T}, recursively, it is clear that we end up with the desired
VU1 — Ug-arc. O

EXAMPLE 12.4.9. For each n > 2 there is a graph-like continuum which is n-cc but
not (n + 1)-cc.

CONSTRUCTION. Let X be the space from Example 12.4.8 with special points vy, ..., v,.
Now take n+4 1 many disjoint copies XM ... X+ of the space X with the special points
denoted by UY), Lo e VX)),

We claim the graph-like continuum

Z=(XYe - a&Xx"V)/, where o o oo for each k,

is n-cc but not (n+1)-cc. Let us write [v;] € Z for the vertex corresponding to the equiva-

). Then it is clear from the construction that deleting S = {[v1], - [vn]}

lence class of v,(gl
from Z leaves n+ 1 many components. Therefore, Z is not (1,n)-tough, and hence cannot
be (n 4+ 1)-cc by Lemma 12.4.7.

To see that Z is n-cc, consider any collection F' = {eq, e, ..., e,} of n edges of Z (which

is sufficient because of Lemma 12.3.1). We may assume that the edges are contained in the
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first 7 spaces X (DU---UX® where i < n. By the properties guaranteed by example 12.4.8,
we can find "U](-j ) _ Ug(‘j+)1 arcs o) (where i +1 = 1) in X ) missing all other special vertices
and containing F'N E(XW). Tt is then clear that a := |J;; ¥ C Z is the desired simple
closed curve in Z containing F (as each o/ and /! end and start at the same vertex

[v;11] € Z respectively, and o/ and of are disjoint for |(j — ¢ (mod n))| = 2). O

THEOREM 12.4.10. For every n > 2:

(a), there are 2% many non-homeomorphic graph-like continua which are n-ac but not
(n+1)-ac, and

(b), there are 2% many non-homeomorphic graph-like continua which are n-cc but not
(n+1)-cc.

ProoF. This follows by the same method as we derived Theorem 12.4.3 (a) from
Example 12.4.1 with some small adjustments that we show here.

Fix n. Both techniques to construct ‘n-ac not (n + 1)-ac’ and ‘n-cc not (n + 1)-cc’
graph-like continua used Lemma 12.4.4 to replace vertices by a big enough Ky where N
depended on n.

As in Theorem 12.4.3, let F = {f € NV : f is strictly increasing, Vn f(n) is divisble by
4, and f(1) > N}. Then |F| = 2%. To define the sequence of graphs, G, at step k + 1
uncontract vertices in the kth step into a K.

Then X; = I&H G£ is a graph-like continuum with the requisite combination of strong
connection properties (‘n-ac not (n + 1)-ac’ or ‘n-cc not (n + 1)-c¢’). And, as in the
proof of Theorem 12.4.3, for distinct f and g from F the spaces X; and X, have different
edge-connection spectra, and so are non-homeomorphic.

In all cases except for the construction of an n-cc not (n + 1)-cc graph-like continuum
where n is odd, these Xy are as needed. But for ‘odd n, n-cc not (n + 1)-cc’” we require
an extra step as in Example 12.4.9, to get Z; for f from F. So it remains to show that
for distinct f and g from F the spaces Z; and Z, are non-homeomorphic.

However Z; is obtained by gluing (n + 1) copies of X together over an n-point set,
call it S¢, so this set is a vertex separator of size n in Zy. From Proposition 12.3.7 we
know that each X has vertex connectivity > f(1) > N > n, hence Sy is the unique vertex
separator of Z; of size n. Since this separator must be preserved by any homeomorphism
we see that indeed distinct f and g yield topologically distinct Z; and Z,. 0






CHAPTER 13

Graph-like compacta: characterizations and Eulerian loops

A compact graph-like space is a triple (X, V, F) where X is a compact, metriz-
able space, V C X is a closed zero-dimensional subset, and E is an index
set such that X \ V = E x (0,1). New characterizations of compact graph-
like spaces are given, connecting them to certain classes of continua, and to
standard subspaces of Freudenthal compactifications of locally finite graphs.

These are applied to characterize Eulerian graph-like compacta.

13.1. Introduction

Locally finite graphs can be compactified, to form the Freudenthal compactification,
by adding their ends. This topological setting provides what appears to be the ‘right’
framework for studying locally finite graphs. Indeed, many classical theorems from finite
graph theory that involve paths or cycles have been shown to generalize to locally finite
infinite graphs in this topological setting, while failing to extend in a purely graph the-
oretic setting. See the survey series [53]. More recently, compact graph-like spaces were
introduced by Thomassen and Vella, [153], as a natural class encompassing graphs, and
in particular containing the standard subspaces of Freudenthal compactification of locally
finite graphs.

A compact graph-like space is a triple (X, V) E) where: X is a compact, metrizable
space, V C X is a closed zero-dimensional subset, and E is a discrete index set such that
X\V = E x(0,1). The sets V and E are the vertices and edges of X respectively.
More generally, a topological space X is compact graph-like, if there exists V' C X and a
set E such that (X, V, E) is a compact graph-like space. Recall that connected compact
metrizable spaces are called continua, and so a graph-like continuum is a continuum which
is graph-like.

Papers in which graph-like spaces have played a key role include [153] where several
Menger-like results are given, and [49] where algebraic criteria for the planarity of graph-
like continua are presented. In [30], aspects of the matroid theory for graphs have been
generalized to infinite matroids on graph-like spaces.

In this paper we present two groups of new results. The first group consists of charac-
terizations of compact graph-like spaces and continua. These connect graph-like continua
to certain classes of continua which have been intensively studied by continua theorists.
We also establish that compact graph-like spaces are not simply ‘like’ the Freudenthal

285
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compactifications of locally finite graphs, but in fact are standard subspaces of the lat-
ter. Our second group of results consists of various characterizations of when a graph-like
continuum is Eulerian. These naturally extend classical results for graphs.

13.1.1. The Main Theorems. In Section 13.2 we give various characterizations and
representations of compact graph-like spaces, and graph-like continua, which demonstrate
that graph-like continua form a class of continua which are also of considerable interest
from the point of view of continua theory. These results can be summarized as follows.

THEOREM (A). The following are equivalent for a continuum X :

(i) X is graph-like,
(i) X is regular and has a closed zero-dimensional subset V' such that all points
outside of V' have order 2,
(iii) X is completely regular,
(iv) X is a countable inverse limil of finite connected multi-graphs with onto, mono-
tone, simplicial bonding maps with non-trivial fibres at vertices only,
(1v)" X is a countable inverse limit of finite connected multi-graphs with onto, monotone
bonding maps that project vertices onto vertices, and
(v) X is homeomorphic to a connected standard subspace of a Freudenthal compacti-

fication of a locally finite graph.

Here a continuum is regular if it has a base all of whose members have finite boundary,
and completely regular if all non-trivial subcontinua have non-empty interior. A map is
monotone if all fibres are connected, while a map between graph-like spaces is simplicial
if it maps vertices to vertices, and edges either homeomorphically to another edge, or
to a vertex. A standard subspace of a compact graph-like space is a closed subspace that
contains all edges it intersects. The equivalence of (i) and (ii) is analogous to a well-known
topological characterization of finite graphs, namely a continuum is a graph if and only if
every point has finite order, and all but finitely many points have order 2, [121, Theorem
9.10 & 9.13]. The equivalence of (i) and (iv) provides a powerful tool to lift results in
finite graph theory to graph-like continua. Indeed this is key to our results on Eulerian
paths and loops below. It also is key to the equivalence of (i) and (v). The equivalence
of (i) and (iii) yields a purely internal topological characterization of graph-like continua,
without any reference to distinguished points, ‘vertices’, or subsets, ‘edges’.

We prove all of Theorem (A) taking ‘compact graph-like space’ as the basic notion.
Because ‘compact graph-like’ takes a middle ground between topology and graph theory,
our proofs are clean and efficient. However it is important to note that the equivalence
of (i) and (iii) follows, modulo some basic lemmas, from a result of Krasinkiewicz, [104],
while the implication (iii) implies (iv) is essentially shown by Nikiel in [130]. Nikiel
also claimed, without proof, the converse implication. Regarding (v), Bowler et al. have
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claimed, without proof, the weaker assertion that every compact graph-like space is a
minor (essentially: a quotient) of a Freudenthal compactification of some locally finite
graph, [30, p. 6].

In Sections 13.3 and 13.4 we extend some well-known characterizations of Eulerian
graphs to graph-like continua. Let G be a (multi-)graph. A trail in G is an edge path
with no repeated edges. It is open if the start and end vertices are distinct, and closed if
they coincide. We also call closed trails circuits. A segment is a trail which does not cross
itself. A cycle is a circuit which never crosses itself. A trail is Fulerian if it contains all
edges of the graph. (Note that an Fulerian circuit is a closed Eulerian trail.) The graph G
is Fulerian (respectively, closed Eulerian) if it has an open (respectively, closed) Eulerian
trail; and Eulerian if it either open or closed Eulerian. Call a vertex v of a graph G even
(respectively, odd if the degree of v in G is even (respectively, odd).

Classical results of Euler and Veblen characterize multi-graphs with closed, and re-
spectively, open, Eulerian trails as follows. Let G be a connected multi-graph with vertex
set V, then the following are equivalent: (i) G is closed [open| Eulerian, (ii) every vertex
is even [apart from precisely two vertices which are odd], (iii) [there are vertices x # y
such that] for every bi-partition of V', the number of cross edges is even [if and only if x
and y lie in the same part|, and (iv) the edges of G can be partitioned into edge disjoint
cycles [and a non-trivial segment]. We extend these results to compact graph-like spaces,

and prove the following result.

THEOREM (B). Let X be a graph-like continuum with vertices V. The following are
equivalent:
(i) X is closed [open] Eulerian,

(ii) every vertex is even [apart from precisely two vertices which are odd],

(i1) every vertex has strongly even degree [apart from precisely two vertices which have
strongly odd degree],

(1ii) [there are vertices © # y such that] for every partition of V' into two clopen pieces,
the number of cross edges is even [if and only if x and y lie in the same part],
and

(iv) the edges of X can be partitioned into edge-disjoint circles [and a non-trivial arc].

Further, if X is closed [open] Eulerian then either X has continuum many distinct
FEulerian loops [Eulerian paths/, or has a finite number of distinct FEulerian loops [Eulerian
paths/], which occurs if and only if X is homeomorphic to a finite closed [open] Eulerian

graph.

Let X be a compact graph-like space with set of vertices V. A subspace of X is called
an arc if it is homeomorphic to I = [0, 1], and a circle if it is homeomorphic to the circle,
St. A (standard) path is a continuous map f: I — X such that f(0) and f(1) are vertices,
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f is injective on the interior of every edge and f~!(V') has empty interior. Note that every
continuous map f: I — X with f(0), f(1) as vertices is homotopy equivalent (with fixed
endpoints) to a path. Also note that if X is a graph (with usual topology), then every
path yields a corresponding trail, and every trail corresponds to a path. A path, f, is
open if f(0) # f(1), and closed if f(0) = f(1). Closed paths are called loops. A path (or
loop) is Eulerian if its image contains every edge. Note that in a graph with the usual
topology there is a natural correspondence between Eulerian paths and Eulerian trails,
and Eulerian circuits and Eulerian loops. We abbreviate ‘closed and open’ to ‘clopen’. A
vertex v is odd (resp. even) if and only if there exists a clopen subset A of V' containing
v, such that for every clopen subset C' of the vertices V' with v € C' C A the number of
edges between C' and V' \ C'is odd (resp. even).

The equivalence of (i), (ii), (iii) and (iv) in Theorem (B) is established in Section 13.3.1.
At the heart of our proof is our representation of compact graph-like spaces as inverse
limits, and an induced inverse limit representation of all Eulerian loops (possibly empty,
of course). The ‘further’ part of Theorem (B) follows in Section 13.3.2 from topological
considerations of the space of all Eulerian loops.

Our definition of ‘even’ and ‘odd’ vertices is natural within the context of Theorem (B).
An alternative approach to degree, due to Bruhn and Stein [39], leads to the notions of
‘strongly even degree’ and ‘strongly odd degree’ appearing in item (ii)’ of Theorem (B).
See Section 13.4 for details and the proof that ‘(ii) implies (ii)"” and ‘(i) implies (i)’

Alternative Paths. Theorem (A) shines an unexpected light on connections between
concepts from continua theory (completely regular continua and inverse limits of graphs),
and concepts arising from infinite graph theory (graph-like continua, Freudenthal com-
pactifications of graphs, and their standard subspaces). As a result we discover that the
various parts of Theorem (B) generalize numerous results in the literature, and—with the
considerable assistance of the machinery developed here-Theorem (B) can be derived from
older work.

For Freudenthal compactification of graphs, the equivalence of (i), (iii) and (iv) is due
to Diestel & Kiihn, [56, Theorem 7.2], while the equivalence with (ii)" is due to Bruhn
& Stein, [39, Theorem 4]. For standard subspaces of Freudenthal compactification of
graphs, the equivalence of (iii) and (iv) is due to Diestel & Kiihn, [57, Theorem 5.2], the
equivalence of (i) and (iv) is due to Georgakopoulos, [80, Theorem 1.3], and the equivalence
(ii)" and (iii) is due to Berger & Bruhn, [20, Theorem 5]. It should also be noted that
the method of lifting Eulerian paths and loops via inverse limits, used by Georgakopolous,
was previously introduced by Bula et al. in [41, Theorem 5].

Thus an alternative path to proving Theorem (B) is as follows. Let X be a graph-like
continuum. According to the equivalence of (i) and (v) in Theorem (A), which depends on
the equivalence of (i) and (iv), X is homeomorphic to a standard subspace of a Freuden-

thal compactification of a graph. Now equivalence of (i), (ii)’, (iii) and (iv) follows from
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the results cited immediately above. To add equivalence of (ii) apply Theorem 13.4.1
(which uses Theorem (A) (i) <= (iv), and a non-trivial inverse limit argument) and Lem-
mas 13.3.4 and 13.4.2. Although this alternative path exists, the direct proofs given here
in Sections 13.3 and 13.4, using compact graph-like spaces as the basic notion, are—in the
authors’ view—much shorter and more natural.

13.1.2. Examples. Before proving our results on graph-like continua, we now intro-
duce some examples. With these examples we have three objectives. First show a little
of the variety of graph-like continua. Second elucidate some of the less familiar terms in
Theorem (B), in particular ‘even’ and ‘odd’ vertices. Third demonstrate the remarkable
complexity of Eulerian loops and paths in graph-like continua. This complexity highlights
the hidden depths of Theorem (B).

FExample 1. The two-way infinite ladder with single diagonals, which is the infinite
graph G shown below. Notice that all its vertices are even, but it has no Eulerian loop.

The Freudenthal compactification, vG, of G adds two ends. Then, as shown in the

diagram, vG has an open Eulerian path from one end to the other.

e N R

w

It follows from Theorem (B) that the two ends are odd. We now demonstrate that the
left end is odd from the definition. For the clopen neighborhood A take the left end along
with all vertices to the left of some rung of the ladder. Now consider an arbitrary clopen C'
containing the left end and contained in A (depicted by the green vertices in the diagram
below). Then C' is the disjoint union of a Cy which contains the end and all vertices to
the left of a rung, and a C} which is a finite subset of A\ Cp. In the diagram we see that
the number of edges from C to V' \ C'is 9, which is odd. In general, if we identify Cy (and
all edges between members of Cp) to a vertex v and identify V \ A to a vertex w, then
we get a finite graph with exactly two odd vertices (namely, v and w, both of degree 3).
Hence from the equivalence of (ii) and (iii) of the graph version of Theorem (B), we see
that the number of edges from C to V '\ C' is odd — as required for the left end to be odd.
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VA
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For the next two examples let C' denote the standard ‘middle thirds” Cantor subset of

Ezample 2. The Cantor bouquet of semi-circles, CBS. The vertices are C' x {0} in
the plane, along with semi-circular edges centered at the midpoint of each removed open

interval. Note that CBS is not a Freudenthal compactification of graph.

The vertex 0 = (0,0) is neither odd nor even, and hence CBS is not Eulerian. Indeed, as
indicated on the diagram, there is one (odd) edge connecting all the vertices in the ‘left
half’ of the vertices to its complement (the ‘right half’), but two (even) edges connecting
the ‘left quarter’ to its complement. Similarly we see that every clopen neighborhood of
0 contains two clopen neighborhoods of 0 of which one has an odd number of edges to its
complement, and the other an even number.

Ezxample 3. The Cantor bouquet of circles, CBC, can be obtained from the Cantor
bouquet of semi-circles by reflecting it in the real axis. One can check that all vertices are
even. The diagram illustrates an Eulerian loop in CBC.
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Suppose f: I — X is a standard path in a graph-like continuum X with vertices
V and (open) edges (e,),. Then f~'(V) is a closed nowhere dense subset of I, and its
complement, f~' (U, e,) is dense and a disjoint union of open intervals. This countable
family, {f~!(e,) : n € N} inherits an order from the order on I. So to every path f we
can associate a countable linear order L, which we informally call the shape of f.

To illustrate this, consider L = Ly where f is the Eulerian loop in the Cantor bouquet
of circles diagrammed above. Then f traverses the top edge from left to right, covers the
right-hand copy of CBC, traverses the bottom edge from right to left, and then covers the
left-hand copy of CBC. So L satisfies the equation L =1+ L + 1+ L. It follows that L
is an infinite ordinal. Thus L = 1+ L, and we see L = L + L. The first infinite ordinal
which is a fixed point under addition of linear orders is the ordinal w“. Hence L = w®.

We now see how to construct for each countable linear order L a graph-like continuum
X1, with an Eulerian loop f so that Ly = L. To do so recall: every countable linearly
ordered set L can be realized (is order isomorphic to) a countable family of disjoint open
subintervals of I, with dense union. For further material on the interaction of linear orders
and graph-like compacta, see [30, §4].

Given a line segment, S, in the plane the ‘circle with diameter S’ is the circle with
center the midpoint of the line segment, and radius half the length of the segment.

Example 4. Let L be a countable linear order. Fix a family U of pairwise disjoint open
subintervals of I, with dense union, which is order isomorphic to L. Define X}, to be the
subspace of the plane obtained by starting with X = I x {0}, and for each U in U, remove
U x {0} from X and add the circle with diameter U x {0}.

The Eulerian loops on X, are naturally bijective with all functions o : L — {£1}. To
see this take any o : L — {£1}. Since U and L are isomorphic we can think that the
domain of p is actually U. Define g, : [0,1] — X, by requiring (i) g(¢t) =t on I\ |JU, and
(ii) on U in U the path g traverses the top (resp. bottom) semi-circle in X, corresponding
to U if o(U) = +1 (resp. o(U) = —1). Now define f, — the desired Eulerian loop — by
fo(t) = go(2t) on [0,1/2] and f,(t) = g—,(2 — 2t) on [1/2,1]. Informally, on [0,1/2] the
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path f, travels from left to right along X crossing the circles by either taking the upper
or lower semi-circles depending on g; and then on [1/2, 1] it travels across X, from right to
left taking the opposite upper/lower semi-circles than before. Every Eulerian loop arises
in this way, and observe that they all have the same shape, L.

The following diagram depicts X where () is the linearly ordered set of dyadic rationals
in (0,1). Recall that @ is order isomorphic to the rationals, Q.

8=
.
N e
N =
e
s
N~

Xq

The graph-like continuum X¢ provides an example of the difficulties involved in naively
trying to lift arguments for graphs to graph-like continua. In the standard proof of Theo-
rem (B) for graphs one moves from (iv) ‘the edges of the graph can be decomposed into
disjoint cycles’ to (i) ‘there is an Eulerian circuit’ by amalgamating the cycles, one after
another to form the circuit. Notice that in Xy there is a canonical decomposition of X
into edge disjoint circles — namely the circles in the definition of Xg. But these circles
are pairwise disjoint. Hence there is no natural method of amalgamating them into an
Eulerian loop for Xg.

Ezxample 5. The Hawaiian earring, H, is also Eulerian. Unlike the X examples above,
every countable linear order can be realized as the Ly of an Eulerian loop.
Write H as 0 = (0,0) (the sole vertex) and the union of circles in
the plane C,,, for n € N, where C,, has radius 1/n and is tangential
at 0 to the x-axis.

We can identify the Eulerian loops in the Hawaiian earring as
follows. For any countable linear order L and function ¢: L —

Nx {41} such that mo0p: L — Nis a bijection, there is a naturally

corresponding Eulerian loop f, of H. Indeed, given L and p, let U n

be a family of pairwise disjoint open subintervals of I, with dense e

union, which is order isomorphic to L (and identify them). Define

f, to have value 0 on the complement of | JU, and on U in U, writing o(U) = (n, i), it
should traverse C,, clockwise (respectively, anticlockwise) if i = +1 (respectively, i = —1).
One can check all Eulerian loops arise this way.
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13.2. Properties and characterizations of graph-like continua

13.2.1. Basic Properties. Most of the following basic properties of graph-like spaces
are well-known, see e.g. [153]. Nonetheless, it might be helpful to give a self-contained
outline of the most important properties we use.

Let (X,V,E) be a compact graph-like space. We often identify the label, e, of an
edge, with the subspace e x (0,1) of X. Note that since V' is zero-dimensional, for every
edge e, the closure, €, of e adds at most two vertices — the ends of the edge — and € is
homeomorphic to the circle, S*, or I = [0, 1]. With this in mind, our definition of compact
graph-like space is the same as the original in [153].

A separation (A, B) of a graph like space X is a partition of V(X)) into two disjoint
clopen subsets. The cut induced by the separation (A, B) is set of edges with one end
vertex in A and the other in B, denoted by E(A, B). More generally, we call a subset
F C FE a cut if there is a separation (A, B) of X such that F' = E(A, B). A multi-cut
is a partition U = {U;,Us,...,U,} of V(X) into pairwise disjoint clopen sets. For each
two U;, Uj, not necessarily different, E(U;, U;) denotes the set of edges with one endpoint
in U; and the other endpoint in U;. By X[U;] we denote the induced subspace of X, i.e.
the closed graph-like subspace with vertex set U; and edge set F(U;, U;). Finally, a clopen
subset U C V(X)) is called a region if the induced subspace X[U] is connected.

LEMMA 13.2.1. In a compact graph-like space, all cuts are finite.

PROOF. Suppose there is an infinite cut F' = {f,,: n € N} induced by a separation
(A, B) of a graph-like space X. Then A and B are disjoint closed subsets of X, so by
normality there are disjoint open subsets U O A and V' O B. Since edges are connected,
there exist z, € f,, \ (UUV) for all n. It follows that {x,: n € N} is an infinite closed
discrete subset, contradicting compactness. 0

LEMMA 13.2.2. Let X be a compact graph-like space. For every vertex v of X and any
open neighborhood U of v, there is a clopen C' C V(X)) such that v € C and X[C] C U.
Moreover, if X is connected, then C can be chosen to be a region.

PROOF. Since V(X)) is totally disconnected we have
{v} = ﬂ {X[A]: (A, B) a separation of X, v € A}.

Now () X[A] C U and compactness implies that there is a finite subcollection Ay, ..., A,
such that for the clopen set B = A; N---N A, we have

v € X[B] = X[A]]N---NX[A,] CU.

For the moreover part, since E(B,V \ B) is finite by Lemma 13.2.1, it follows from con-
nectedness of X that X[B] consists of finitely many connected components, say X|[B] =
X[C1]® - - - ® X[Cy], one of which contains the vertex v. This is our desired region C. [
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DEFINITION 13.2.3. Let X be a graph-like space and U be a multi-cut of X. The
multi-graph associated with U is the quotient space G(U) = X/{X[U]: U € U}. The map
mu: X — G(U) denotes the corresponding quotient map.

We remark that G(U) is indeed a finite multi-graph. The identified X[U] form a finite
collection of vertices, which are connected by finitely many edges (see Lemma 13.2.1). The
degree of m,(U;) in G(U) is given by |E(U;, V \ U;)| < 0o. Our next proposition gathers

properties of graphs associated with multi-cuts.

PROPOSITION 13.2.4. Let X be a graph-like compact space. Then

(1) X is connected if and only if G(U) is connected for all multi-cuts U of X.
(2) All cuts of X are even if and only if all vertices in G(U) have even degrees for all
multi-cuts U of X.

ProoF. (1) If X is connected, then connectedness of G(U) follows from the fact that
it is the continuous image of X. Conversely, a disconnection of X gives rise to a G(U)
which is the empty graph on two vertices.

(2) If every cut of X is even, then the above degree considerations show that every
vertex in G(U) has even degree. And conversely, any odd cut of X gives rise to a graph
G(U) on two vertices of odd degree. O

Recall that a standard subspace Y of a graph-like space X is a closed subspace that
contains all edges it intersects (i.e. whenever e NY # () then e C Y). Standard subspaces
of graph-like spaces are again graph-like. Write E(Y") for the collection of edges of Y.

LEMMA 13.2.5. Let X be a graph-like space and C' C X a copy of a topological circle.

Then C' is a standard subspace.

PROOF. Assume, by contradiction, that there exists e € E(X) such that e N C # ()
and that e  C. Let y € e\ C. Then there exist xy € C' with the properties that the arc
[z0,y] is a subset of e and [xg,y] N C = {xo}. Observe that zo ¢ V. Let U be an open set
containing xy such that U NV = (). Let a be the component in [zg,y] of xy contained in
U and (8 be the component in C' of zy contained in U. Then o U 3 contains a triod and
aUf C X\ V which is a contradiction to the fact that X \ V' = E x (0,1) contains no
triods. OJ

LEMMA 13.2.6. Let X be a graph-like space and C C X a copy of a topological circle.
Then E(C)N F is finite and even for all cuts F = E(A, B) of X.

PROOF. By Lemma 13.2.5 we may assume X = C. Let F' = E(A, B). That F is finite
is immediate from Lemma 13.2.1, so we only need to prove that |F| is even.

Let C[A] (resp. C[B]) be the standard subspace containing A (resp. B) and all edges
with both endpoints in A (resp. B). Observe that
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(a) C =C[A]UFUC[B], and

(b) C[A] and C[B] have finitely many components.
Let Ay,..., A, be the components of C[A] and By, ..., Bs be the components of C[B].
These components induce a multi-cut, Y = {Ua,,...,Ua,,Up,,...,Up.}, of the vertices
of C' where Uy, (resp. Up,) consists of all vertices contained in A; (resp. B;). Then G(U),

the multi-graph associated with U, is a cycle whose edges are the elements of F' and whose

vertices are the equivalence classes containing the sets Uy, , ..., Up,. Observe that the sets
A ={Uys,...,Ua} and B = {Ug,,...,Up.} give a 2-coloring of the vertices of G(U).
Hence G(U) has an even number of edges, i.e. |F| is even. O

13.2.2. Characterizations and Representations. In this section we prove Theo-
rem (A). The equivalence of (i) and (iii) is given by Proposition 13.2.10, the equivalence
of (i) and (ii) is Theorem 13.2.11, while the equivalence of (i), (iv) and (iv)’ follows
from Theorems 13.2.13 and 13.2.14. Compact graph-like spaces were explicitly defined to
include standard subspaces of the Freudenthal compactification of locally finite graphs.
Theorem 13.2.15 provides the converse, establishing equivalence of (i) and (v).

Recall that a continuum X is regular if it has a basis of open sets, each with finite
boundary, and it is called completely regular if each non-degenerate subcontinuum of X
has non-empty interior in X, see [41, Page 1176]. A continuum is hereditarily locally
connected (hlc) if every subcontinuum is locally connected, and finitely Souslian if each
sequence of pairwise disjoint subcontinua forms a null-sequence, i.e. the diameters of the

subcontinua converge to zero. It is known that for continua
(1) completely regular = regular = finitely Souslian = hlc = arc-connected.

For the first three implications, see [104, Proposition 1.1].
LEMMA 13.2.7. Every compact graph-like space is reqular.

ProOOF. Let X be a compact graph-like space, p € X, and U be an open of X set
such that p € U. We will show that there is an open set O with finite boundary such that
peOCU.

The case when p is in the interior of an edge follows from the fact that the set of edges is
discrete. So we may assume p € V. For this case let X[B] as in the proof of Lemma 13.2.2,
then p € X[B] C U. Now for each e € E(B,V \ B), let (v, x.) be a subarc of e such that
(v,2.) € U and such that v € B. Since cuts are finite, then there are only finitely many
of these arcs. The desire open set O is then X[B] U {(v,z.) : e € E(B,V \ B)} as its
boundary is the set {z.:e € E(B,V \ B)}. O

COROLLARY 13.2.8. Every graph-like continuum is finitely Souslian, hereditarily locally
connected and arc-connected.

PROOF. By Lemma 13.2.7 and (1), this is a consequence of regular.
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For a direct proof that graph-like continua are finitely Souslian, suppose for a contradic-
tion that {A;: i € N} forms a sequence of disjoint subcontinua of X" with non-vanishing di-
ameter. It follows from the sequential compactness of the hyperspace of subcontinua, [121,
Corollary 4.18], that there is a subsequence A;; such that A = lim;_,o, A;; = m\u k Ay,
is a non-trivial subcontinuum of X. But since edges are open, we also have that A C V(X),
so is totally disconnected, a contradiction.

For a direct proof that graph-like continua are hlc, see Lemma 13.2.2. [

In particular, noting that a compact graph-like space has at most countably many
edges (as they form a collection of disjoint open subsets), it follows that the edges of X
form a null-sequence, i.e. lim,_, diam(e,) = 0. Here, for a subset A of a metric space,
we denote by diam(A) the diameter of A.

In the next theorem we use the following notation. For a subspace A C X we denote
by Bd(A) its boundary. A subarc A C X is called free if A removed its endpoints is open
in X.

THEOREM 13.2.9 ([104, Theorem 1.3]). A continuum X is completely reqular if and
only if there exists a 0-dimensional compact subset F' of X and a finite or countable null
sequence of free arcs Ay, As, ... in X such that

X=FU (U{An ‘n > 1}) and A; N F = Bd(4A;)
for each j > 1

Observe that Theorem 13.2.9 implies that every completely regular continuum is a
graph-like space. Conversely, if X is a graph-like continuum, then the set of vertices V'
is zero-dimensional. Also by Corollary 13.2.8, E(X) forms a null sequence. By Theo-
rem 13.2.9, X is a completely regular continuum.

PrROPOSITION 13.2.10. Let X be a continuum. Then X is completely regular if and
only if X is a graph-like space.

Recall that a graph can be characterized in terms of order: a continuum is a graph
if and only if every point has finite order, and all but finitely many points have order 2,
[121, Theorem 9.10 & 9.13].

THEOREM 13.2.11 (Graph-like Characterization). A continuum is graph-like if and
only if it s reqular and has a closed zero-dimensional subset V' such that all points outside
of V' have order 2.

PrOOF. Sufficiency follows from the definition of graph-like and Lemma 13.2.7.

For the necessity, first observe that regular implies local connectedness. Let V C X
be a closed zero-dimensional collection of points in X such that all points outside of V
have order 2. By local connectedness, all components of X \ V' are open subsets of X.
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In particular, we have at most countably many components, and each component is non-
trivial, non-compact, and consists exclusively of points of order 2. So each component is
homeomorphic to an open interval. So all that remains to show for graph-like is that the
closure of each edge is compact, which is automatic. O

COROLLARY 13.2.12 (Canonical Representation of Graph-like Spaces). Let X % S be
a graph-like continuum. Then there is a unique minimal set V C X which witnesses that
X is a graph-like space. We call (X, V| E) the standard representation of X.

PROOF. Let {V;: s € S} be the collection of all subsets of X which witness that X is
graph-like. We claim that V' = (1,4 V; is also a vertex set.

Clearly, V is closed and zero-dimensional. Further, if x ¢ V| then z ¢ V; for some
s € S, so x has order 2. So either V is empty, in which case X = S'; or V is non-empty,
in which case every component of X \ V' is non-compact, open, and consists of points of

order 2, so is homeomorphic to an open interval. O

Our next theorem has been proved, for completely regular continua, by Nikiel, [130,
3.8].  We reprove his theorem here (and extend it to graph-like compacta), phrased for

convenience in the language of graph-like continua.

THEOREM 13.2.13 (Inverse Limit Representation). Every graph-like compact space X
can be represented as an inverse limit of multi-graphs G, (n € N) with onto simplicial
bonding maps that have non-trivial fibres at vertices only, such that

(1) X connected if and only if G, is connected for all n, and
(2) all cuts E(A, B) in X are even < all vertices in G,, are even for all n.

Moreover, if X is connected, then the bonding maps can additionally be chosen monotone.

PRrOOF. Let X be a graph-like compactum with vertex set V' and edge set £/. Without
loss of generality, X contains no loops, as otherwise we can subdivide each edge once (this
does not change the homeomorphism type of X, and the new edge set is still a dense open
subset, so the new vertex set is a compact, zero-dimensional subspace as required).

Since V' is a compact, zero-dimensional metrizable space, we can find, as in Lemma 13.2.2,
a sequence of multi-cuts {U,: n € N} such that

(a) Up+1 is a refinement of U,

(b) U,en U forms a basis for V/(X), and
Writing U,, = {U}",UY, ..., Uf(ln)} we observe that every v € V has a unique description in

terms of {v} =(,cn
there is precisely one vertex in ()

Ul’(lv) and that conversely, for every nested sequence of cut elements,
nen Ul by compactness and (b).
The inverse system: Let {U,: n € N} be as above. To simplify notation, let ¢, stand

for my,. For each n € Nlet f,,: G(U,11) — G(U,) be defined as
fa(@) = qn (g1 (2)) for all © € G(Unt).
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Observe that if U™, UM C U,
(i) then f(gas1(US™) = f@ura(UF)) = g (U);
(ii) and if e € E(U;*, UM); in particular e € E(U7, U, then fu(e) = ¢.(U7).
In particular, each f, is an onto simplicial map with non-trivial fibres only at vertices of
G(Uy,). Then {G(U,), fn}nen is an inverse sequence of multi-graphs. Hence, its inverse
limit is compact and nonempty. We will show that there is a continuous bijection
f: X — lim GU,).
neN
For z € X, we define f(z) = (q1(z),¢2(x),...). By the product topology, this is a
continuous map into the product [[, G(U,), as all coordinate maps ¢, are continuous.
Moreover, it is straightforward from the definition of f, to check that f(z) € lim G(U,).
%
That the map f is surjective follows from the fact that each ¢, is continuous and X
is compact (see [121, 2.22]). Finally, f is injective because of the neighborhood bases
requirement (b) on U,,. Since X is compact and lim G(U,,) is Hausdorff, it follows that f
—
is a homeomorphism as desired, and properties (1) and (2) now follow from Proposition
13.2.4.

For the moreover part, simply require that besides (a) and (b), our sequence of multi-
cuts {U,,: n € N} also satisfies

(c) every multi-cut U, partitions V' (X) into regions.

That this is possible follows from Lemma 13.2.2; and clearly, property (c) implies that
each f, as defined above will be a monotone map. O

In fact, a converse of the above theorem holds. This has been mentioned, for completely
regular continua, by Nikiel, [130, 3.10(i)], though without proof. We provide the proof in
the language of graph-like continua.

THEOREM 13.2.14. Let X be a countable inverse limit of connected multi-graphs X,
with finite vertex sets V(X,,) and onto monotone bonding maps f,,: X1 — X, satisfying:
(+) fu(V(Xnt1)) CV(X,). Then X is a graph-like continuum.

ProOF. By Theorem 13.2.11, every regular continuum with the property that all but
a closed zero-dimensional subset of points are of order 2 is a graph-like continuum.

That X is regular follows from [130, 3.6]. For sake of completeness, we provide the
argument. Let m,: X — X, denote the projection maps, and for m > n write f,,, =
fonofar10-- 0 fno10 frn: X1 — X,

Claim: For every n € N, the set P, = {y € X,,: |7, ' (y)| > 1} is countable.

This holds, because for every m > n, the set Q,, = {y € X,: |frg}n(y)‘ > 1} is count-
able: By assumption, all bonding maps f,, are monotone, and hence so is f,, . Thus,

the collection of non-degenerate f,! (y) from a disjoint collections of subcontinua of X,
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all with non-empty interior. It follows that P, = J (@, is countable, completing the

m>n
proof of the claim.

To conclude that X is regular, let x € X and let U be an open neighborhood of x € X.
Then there is £ € N and an open subset W C X, with x € 7T,;1(W) C U. Note that since
Xk is a graph, and Py is countable by the claim, we may choose W with finite boundary
such that BA(W) N P, = 0. It follows that 7, ' (W) has finite boundary, as well.

Our candidate for the vertex set of X is V/(X) = (,cx ™ ' (V(X,)). By (+), the family
{(V(X,), fn): n € N} gives a well-defined inverse limit, which is identical with our vertex
set, i.e. V(X) =lim, {V(X,), fn}. Since all V(X,,) are finite discrete sets, it follows that
V(X) is a compact zero-dimensional metric space, as desired.

To see that elements y € X \ V(X)) have order 2, note that y ¢ V(X) means there is an
index N € N such that 7,(y) is an interior point of an edge of X,, for all n > N. Consider
an open neighborhood U with y € U C X. As before, there is an index £ > N and an
open subset W C X with y € m,'(W) C U. Since m(y) € Xj is an interior point of
an edge, and P is countable by the claim, we may assume that W has 2-point boundary
with Bd(W) N P, = 0. It follows that 7, ' (W) has a 2-point boundary, as well. O

In fact, the class of continua, which can be represented as countable monotone inverse
limits of finite connected multi-graphs are precisely the so-called totally reqular continua,
[42] — for each countable P C X, there is a basis B of open sets for X so that for each
B € B, PN Bd(B) = 0 and B has finite boundary. These continua have also been
studied under the name continua of finite degree. The class of totally regular continua is
strictly larger than the class of completely regular continua. In particular, the condition
in Theorem 13.2.14 on f,, having nontrivial fibers only at vertices cannot be omitted. For
example, the universal dendrite D,, of order n can be obtained as the inverse limit of finite
connected graphs, see [47, Section 3], and D,, has a dense set of points of order # 2.

In [49] the graph-like continuum depicted on the left side of the diagram below served
to show that graph-like continua form a wider class than Freudenthal compactifications
of locally finite graphs. Note that the two black nodes simultaneously act as ends for the
blue double ladder, and as vertices for the red edge.
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However, after subdividing the red edge appropriately — turning it into a double ray —
we see from the right side that it can be realized as a standard subspace of the Freudenthal
compactification of the triple ladder. We now show that every graph-like continuum has
the same property.

THEOREM 13.2.15. Every graph-like continuum can be embedded as a standard subspace
of a Freudenthal compactification of a locally finite graph.

We remark that Theorem 13.2.15 can be rephrased as saying that every graph-like
continuum has a subdivision, turning each edge into a double ray, which is a standard
subspace of a Freudenthal compactification of a locally finite graph.

In the proof of Theorem 13.2.15, we use the following notation. Let G be a finite,
connected graph with vertex set V, and let L(G) be its (connected) line graph, both
considered as 1-complexes. For every edge e C G, let m. € e be the mid-point of that
edge. Then by G® we denote the graph

GY=(G® L(G))/~, where m, ~ ¢ for m, € G and e € V(L).

Geometrically, we subdivide each edge of G in its mid-point, and connect two new such

vertices if and only if their underlying edges share a common vertex.

PrROOF OF THEOREM 13.2.15. Let X be a graph-like continuum. Represent X as a
monotone inverse limit of finite multi-graphs G,, with onto, monotone simplicial bonding
maps f,: Gpi1 — G, having non-trivial fibres at vertices only.

Recall first that the Freudenthal compactification of a locally finite graph can be real-
ized as an inverse limit: Let L be a locally finite graph with vertex set V(L) = {vy: k € N}
say. Let k, be an increasing sequence of integers, and consider for each n the induced sub-
graph L, = L|vg, ..., v, |. Let L™ denote the multi-graph quotient of L where we contract
every connected component of the induced subgraph L[V (L) \ V(L,)], deleting all arising
loops. Since L was locally finite, it is easy to check that L" is a finite multi-graph. Then
{L™: n € N} forms an inverse system under that natural projection maps g,: L™ — L",
such that the resulting inverse limit lim, L™ = v L is the Freudenthal compactification of
L; moreover, this holds independently of the sequence k,,.

Now our proof strategy is as follows. We plan to find a locally finite graph L as above
such that there are subgraphs 7;,, C L™ such that

(1) gn = gn | V(Ths1) — V(T,) restricts to a surjection (so that the 7, form a
subsystem of the inverse limit with bonding maps ¢, ), and
(ii) for each n € N, the graph T,, witnesses that GG}, is a topological minor of L", mean-
ing there are homeomorphisms h,,: G,, = T,, of the underlying 1-complexes which
map V(G,) — V(T,), and map distinct edges vw and xy of G,, to independent
hpn(v)hy(w)- and h,(x)h,(y)-paths in T),, and
(iii) we have g, o hy,y1 = hy, o f, for all n, i.e. the following diagram commutes:
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~

T, (9771 T

hn /I\ W\ hn+1
Jn

Gn A — Gn+1

Under these assumptions, it follows that X = lim, G,, is homeomorphic to the inverse
limit lim,_ 7;,, which in turn, as it was constructed as a subsystem, embeds into the inverse
limit lim, L™ = L, which equals the Freudenthal compactification of L by the foregoing
discussion. Thus, it remains to find a locally finite graph L subject to requirements (i)—
(iii).

We will build this locally finite graph L by geometric considerations as a direct limit
of finite connected graphs F,,, so that F,, = L[V (F,,)] = L,. More precisely, we will define
finite connected 1-complexes F}, such that

(1) Fy — Fy — Iy — --- forms a direct limit such that for all n > 0, no vertex of
Foi1\ F, is incident with a vertex of F},_1, and
(2) F, is embedded together with G,, in some ambient 1-complex H,, = F,, UG, such
that
(a) no vertex of G, lies in F,,,
(b) every vertex of F,, lies on an edge of G,
(c) every open edge of F), is either disjoint from G,,, or completely contained in
an edge of GG, and
(d) every edge of G,, intersects with F,, in a non-trivial path P C F;, such that
the end-vertices of P are vertices of V(F,) \ V(F,—1).

To begin, put Hy = G§, and let Fy denote the subgraph L(Gy) C G¢. Then (2) is satisfied
since vertices of F{, are mid-points of edges of GGy, and every open edge of Fj is disjoint
from Go; and (1) is trivially true.

@' ‘@

FI1GURE 13.1. Depicts the first bonding map fy between graphs Gy and G
in black, where f({vy,vq9,v3}) = {v}. Further, the figure on the left shows
Fy C GY in red, and on the right F; C H; as the union of ]:"0 in red, {J, Ly
in blue, and edges induced by Fy and U, Lo in green.
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Now inductively, suppose we have already defined H,, = G, U F,, for some n € N
according to (1) and (2). First, consider the natural pull-back E, C Gp41 of E, under f,.
More precisely, by (2), the preimage f,'(F,) C G, is isomorphic to a subgraph of F,.
Let E, be an isomorphic copy of F, on the vertex set f.'(V(F,)) obtained by adding all
edges missing from f,1(F,) so that they are disjoint from G, ;.

For every component C, of the topological subspace H, \ F,, (which by (2)(a) and
(b) will be a vertex v of GG, incident with finitely many half-open edges), consider the
subcontinuum K, = m C Gpi1- Then K, is a finite connected graph. For each
v, consider K¥  and L, = L(K,) C K?,
Foy = E,UU{L, : v € V(G,)}.

Claim 1: F),, is a connected graph.

and define F, i to be the induced subgraph

By induction on n. If F), is connected, then so is its isomorphic copy F,. As line graphs
of connected graphs, every L, is connected. Since by construction, every L, is connected
via an induced edge to Fn, it follows that F;,; is connected.

Claim 2: Property (2) holds for F, 1 and Gp1.

(a) No vertex v of G, 41 lies on F,, as otherwise fn(v) would be a vertex of G,, on F,.
Also, since all L, are partial line graphs of G, 1, we see that (a) holds at step n + 1.

(b) Similar.

(¢) By construction, this holds for all edges of F,. Further, all edges of L, are disjoint
from G411, and all edges of F},,; induced F, and L, are completely contained in one edge
of G,41 be definition.

(d) Let e = vw be an edge of G,,11. If e ¢ E(G,,) then F,,,1Ne = L,Ne is a trivial path
consisting of one new vertex. Otherwise, if e € E(G,,), then by construction and induction
assumption, F), intersects e in a non-trivial path P C F,, such that the end-vertices of P
have been added only at the previous step. But now, we see that F,,,; NG is a path P’
which is one edge longer on either side than P, because we added two edges induced by
L, and L,. In particular, the end vertices of P’ are vertices of L, and K,, and so have
only been added at this step.

Claim 3: Property (1) holds.

Since F,, = ﬁn C F,41 it is clear how to choose the embedding F,, — F}, ;1. The
second part of the claim now follows from (2)(d) as follows: Every vertex of F,, ;1 \ F}, is
a vertex of some L,. By construction, any such vertex is connected at most to one of the
end vertices on some path P, which is, by (2)(d), a vertex of F,, \ F,,_1.

This completes the recursive construction. As indicated above, the graphs Fy —
F) — Fy < --- give rise to a direct limit, which we call L. Let V(L) = {v;: k € N} be
an enumeration of the vertices of L, first listing all vertices of Fy, then all (remaining)
vertices of F} etc. It is clear that there is an increasing sequence of integers k, such that
L, = Li{vo,... v, }] = F,.

Claim 4: L is a locally finite connected graph.
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To see that L is locally finite, note that any vertex v € L is contained in some F;,
for some n, and then (1) implies that degr(v) = degp, ., (v) < co. And since every L, is
connected, so is L.

Claim 5: There are isomorphisms ,: H, — L". 1t suffices to show that L™ =
Foi1/{L,: v € V(G,)}. Indeed, (1) implies that the connected components of L\ F}, cor-
respond bijectively to the connected components of F,, ;1 \ F,,, which are, by construction,
precisely the L, indexed by the different v € V(G,,). In particular, ¢, is a bijection be-
tween V(G,,) and the dummy vertices of L™ that commutes with the respective bonding

maps, i.e.
(T) gn—-10° @n(v) f V<Gn) = ¥p-10° fn—l(v) r V<Gn)
Claim 6: For T, = ©,(G,) C LY the subgraph of L"™ which is the image of 1-complex
G, C H, subdivided by the vertices of Ly, salisfies (i)—(iii). Everything is essentially set
up by construction; (iii) follows by (1) with h, = ¢, | G,. O

Note that our embedding of X into vL has the property that every vertex of the graph-
like continuum X is represented by a compactification point (an end) of yL. By exercising
some extra care in the above construction, one could arrange for isolated vertices of V(X))
to be mapped to vertices of L.

Remark. Theorem 13.2.15 has the following notable consequence. Diestel asked in [51]
whether every connected subspace of the Freudenthal compactification of a locally finite
graph is automatically arc-connected. In 2007, Georgakopoulos gave a negative answer,
[79]. However, the analogous problem for arbitrary continua is a well-studied problem.
Indeed, a continuum is said to be in class A if every connected subset is arc-wise connected.
Continua in class A have been characterized by Tymchatyn in 1976, [157]. Even earlier,
in 1933, Whyburn gave an example of a completely regular continuum which is not in
class A, [165, Example 4]. Applying Theorem 13.2.15, Whyburn’s example shows at once
that Freudenthal compactifications of locally finite graphs are not necessarily in class A.

13.3. Eulerian graph-like continua

13.3.1. Characterizing Eulerian Graph-Like Continua. We now prove the equiv-
alence of (i), (ii), (iii) and (iv) of Theorem (B) in the case of closed paths, and then deduce
the same equivalences in Theorem (B) for open paths. To start note that (iv) = (iii) and
(i) = (iii) of Theorem (B) follow from Lemma 13.2.6. The next lemma takes care of (iii)
= (iv).

LEMMA 13.3.1. A graph-like continuum such that every topological cut is even can be
decomposed into edge-disjoint topological cycles.

PrRoOOF. We adapt the proof from [123] as follows. Let G be a graph-like continuum,
and E(G) = {eg, e1, ...} an enumeration of its edges. Note that G — e is not disconnected:
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If G—ey =A@ B then (A, B) would be a separation in G with E(A, B) = {e}, so odd,
a contradiction. Since G is arc-connected by Corollary 13.2.8; there is an arc in G — ¢y
connecting x and y. Together with ey that gives a topological circle C.

Now let e; = x;y; be the first edge not on Cjy. We claim that there is a path connecting
z; to y; in G\ (E(Cy)U{e;}). Otherwise, there is a cut (A, B) of G = G\ E(C}) such that
Ec/(A, B) = {e;}. But then the same cut viewed in G would be odd by Lemma 13.2.6. A
contradiction.

It is clear that we can continue in this fashion until all edges are covered. U

To establish the equivalence of clauses (i), (iii) and (iv) of Theorem (B), it remains to
show (iii) implies (i), which is established by the next result.

PROPOSITION 13.3.2. Let X be a graph-like continuum. If all topological cuts of X

have even size then X has an Eulerian loop.

PROOF. By Theorem 13.2.13 (2), X can be written as an inverse limit of graphs G,
which are all closed Eulerian. Let f,, denote the bonding map f,: G,.1 — G,.

For each n, let &, be the collection of all Euler cycles of G,. Since G, is finite,
so is &,. For each n € N, let fn: Enr1 — &, be the map induced by f,. That is, if
E = (voeguieqvqes - - - vpegtyp), then

fn(E) = (fn(UO)fn(GO)fn(Ul)fn(61> o fn(ek)fn<v0))'
Observe that from the proof of Theorem 13.2.13 some of the edges in F get contracted to
a vertex. So fn(E) is an Eulerian circuit in G,,. Now, {&,, fn}neN forms an inverse system,
and since each &, is compact, we see lim_ &, # 0.

Let (E,) € lim, &,. For each n € N, fix an Eulerian loop ¢,: S — G, following
the pattern given by FE,. Now observe that since the (E,),en are compatible, there are
monotone continuous maps g,: S' — S' (n € N) such that the diagram

G, &G &g &
T ¢ T @2 T s
st & gt 2 gt &
commutes. As an inverse limit of circles under monotone bonding maps, we have lim S =
—
St [44, 4.11], and so the map

g: lim Sl — lim Gm ($n>n€N = (@n(xn»neN
— —
is our desired Eulerian loop. O

The proof of the equivalence of (i), (ii), (iii) and (iv) in Theorem (B), for closed loops,
is completed by Lemma 13.3.4 showing the equivalence of (ii) and (iii). A preliminary

lemma is needed.
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LEMMA 13.3.3. Let X be a graph-like continuum, (A, B) be a separation of V, and
U={A,..., A} be a multi-cut of A. If the cut E(A, B) is odd, then E(A;,V \ A;) is
odd for some 1 < 7 < n.

Proor. Consider the contraction graph induced by the multi-cut (B, Ay, ..., Ay,).
By assumption, the vertex {B} has odd degree. Since by the Handshaking Lemma,
the number of odd-degree vertices in a finite graph is even, there must be some further

vertex {A;} with odd degree, so E(A;,V \ 4;) is odd. O

LEMMA 13.3.4. Let X be a graph-like continuum. All topological cuts of X are even if

and only if every vertex of X is even.

Proor. If all cuts are even, then from the definition every vertex is even. We prove
the converse by contrapositive. Assume there exists a separation (Ao, By) of V' such that
E(Ao, By) is odd. Let Uy = {Uy,,...,Uy,} be a separation of Ay into sets with diameter
< idiam(Ayp). By Lemma 13.3.3 there exists 1 < jo < ng such that E(Uj,, V' \ Uj,) is odd.
Denote Uj, by A; and V' \ U, by By. Let Uy = {Uy,,...,U,, } be a separation of A; into
sets with diameter < idiam(A;). Again by Lemma 13.3.3 there exists 1 < j; < ny such
that E(U;,,V \ Uj,) is odd. Denote U;, by Ay and V' \ U, by By. Continuing with this
procedure we obtain a nested sequence of nonempty cut elements {4, };cn. By construction
Nien Ai = {v} € V and E(A;, B;) is odd for every i € N, hence v is not even. O

It remains to deduce the equivalence of (i), (ii), (iii) and (iv) in Theorem (B) for the
case of open paths from that of closed paths. This can be achieved with a simple trick.

Suppose, to start, that item (i) for open paths of Theorem (B), holds for a graph-like
continuum X. So in X there is an open Eulerian path starting at a vertex v and ending
at another vertex w. Create a new graph-like continuum Z by adding one edge to X with
endpoints at v and w. Then Z is a graph-like continuum with an FEulerian loop. So, by
Theorem (B) applied to Z, each of (ii)-(iv) (for closed paths) of that theorem hold for
Z. But now it easily follows from the definitions that each of (ii)-(iv) (for open paths) of
Theorem (B) hold for X.

Now let X be a graph-like continuum for which one of items (ii)-(iv) for open paths in
Theorem (B) holds. To complete the deduction we show (i) holds for open paths. Each
of these items highlights two distinct vertices (the two odd vertices in (ii) and the ends of
the arc in (iv)). Call them v and w. Create a new graph-like continuum Z by adding one
edge to X with endpoints at v and w. Then Z is a graph-like continuum and it is easily
verified from the definitions that it satisfies one of (ii)-(iv) for closed paths in Theorem (B).
Hence (i) for closed paths of Theorem (B) holds, and there is a closed Eulerian path in Z.
Removing the added edge yields an open Eulerian path in X.

13.3.2. Counting All Eulerian Loops and Paths. In this section we aim to count
the number of distinct Eulerian loops and paths in a given graph-like continuum. To do
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so we must decide what it means for two paths to be equivalent. This is a well-studied
problem in combinatorial group theory, and we adopt the approach taken there. Two
maps f,g: I — X are equivalent if v = f(0) = ¢(0), w = f(1) = ¢g(1), v and w are
vertices, and f is homotopy equivalent to g relative to v, w. As noted in the Introduction,
every map f: I — X with vertices for endpoints is equivalent to a standard path.

Let X be a graph-like continuum. By Theorem 13.2.13 (2), X can be written as an
inverse limit of graphs G,,, via bonding maps f, : G,11 — G,. As in Proposition 13.3.2,
for each n, let &, be the collection of all Eulerian cycles in GG,,, and let fn: Ent1 — &, be the
map induced by f,. Recall, (&,, fn)n forms an inverse system, and set £ = £(X) = lim,_ &,.
As in Proposition 13.3.2, every (E,), in £(X) gives rise to an Eulerian loop in X. It is
straightforward to check that distinct members of £(X) gives rise to inequivalent Eulerian
loops. The converse is also true, although we do not need that for our counting result. In

any case we consider £(X) to be the space of Eulerian loops in X.

THEOREM 13.3.5. A closed FEulerian graph-like continuum has either finitely many
distinct FEulerian loops in which case it is a graph, or it has continuum many Fulerian

loops.

PROOF. Since every £(G),) is finite discrete, the inverse limit is a compact subspace
of a Cantor set. As compact subspaces of a Cantor set without isolated points have size
continuum, the result follows from the next claim.

Claim: If £(X) contains an isolated point, then X is homeomorphic to a graph.

Fix an isolated element (E,), in £(X). Fix an Eulerian loop f: I — X of X corre-
sponding to (E,), (as in Proposition 13.3.2). To witness that f is isolated, find coordi-
nate graph G,, induced by a multi-cut U = (Uy,...,U,) of X such that the the quotient
map ¢: X — G acting on the set of (distinct) Euler cycles £(X) — &(G,) satisfies
q '(q(f)) = {f}. We claim that every X[U;] (the subspace of X induced by the vertex
set U;) is a graph. This would show that X itself is also a graph.

Without loss of generality, f(0) ¢ X[U;]. The map f induces a linear order on E(U;, V'\
U;), say (eq,...,e—1). Forall 0 < < 2k write x; for the end vertex of ¢; in U; (of course,
the z; need not be distinct). Let f,, be the arc between x5, and xs,,,; induced by f. We
claim that the arcs {f,,: 0 < m < k} witness that X[U;] is a graph.

First of all, X[U;] = U, fm since f(0) ¢ X[U;] implies f,, € X[U;], and f Eulerian
implies that all edges in E(U;, U;) are hit. As the edges are dense, all of X[U;] is covered.

To complete the proof, it remains to show that our arcs intersect pairwise only finitely.
Indeed, we claim that | fn 0 fp| < 1. Otherwise, suppose that y # z are two vertices
lying in the interior of both arcs. Denote by e, = fi | [y,2] and e, = f, | [y, 2] (or
em = fm | [#,y] depending on which vertex comes first). Since f,,, f, are edge disjoint,
em 7 €p. Then replace

® fm by fm r [meuy] Uepufm r [97I2m+1], and
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4 fp by fp r [IQpay] U €m U fp f [yame-‘rl}'
This change gives rise to an Eulerian loop f’ of X distinct from f, with ¢~ (¢(f)) D {f, f'},

a contradiction. O

We can deduce the analogous result for the number of open Eulerian paths by the
same trick used to derive the open version of Theorem (B) from the closed version. Let
X be an open Eulerian graph-like continuum, and let v, w be the two odd vertices of X.
Add an edge connecting v and w, to get a closed Eulerian graph-like continuum Z. Apply
the preceding result to deduce Z has either finitely many distinct Eulerian loops in which
case it is a graph, or it has continuum many Eulerian loops. Removing the added edge
yields either that X is a graph or has continuum many open Eulerian paths.

THEOREM 13.3.6. An open FEulerian graph-like continuum has either finitely many
distinct open FEulerian paths in which case it is a graph, or it has continuum many open
FEulerian paths.

13.4. Bruhn & Stein Parity

Let X be a graph-like continuum with vertex set V. Let v be a vertex of X. Then we
say that v has strongly even degree (respectively, strongly odd degree) if there is a clopen
neighborhood C' of v such that for every clopen neighborhood A of v contained in C' the
maximal number of edge-disjoint arcs from V \ A to v is even (respectively, odd). By
Lemma 13.2.1, this is well-defined. We further say that v has weakly even degree (resp.,
weakly odd degree) if v does not have strongly odd (resp. even) degree. Equivalently, v has
weakly even degree if v has a neighborhood base of clopen sets, C', so that the maximal
number of edge-disjoint arcs from V'\ C to v is even. And similarly for weakly odd degree.
Bruhn & Stein [39] use the same terminology for ‘strongly odd’” and ‘weakly even’ degrees,
but use ‘even’ for our ‘strongly even’ and ‘odd’ for our ‘weakly odd’.

Note that isolated vertices have finite degree by Lemma 13.2.1, so for them being even
and having strongly even degree coincide (and similarly for odd). In general, our notion
of ‘even’ and ‘odd’ vertices implies those of Bruhn & Stein. To see this, we shall need
a version of Menger’s theorem in the edge-disjoint version. That Menger-like theorems
hold for graph-like continua is not surprising, and vertex-disjoint versions of Menger have
been proved in [153]. We complement their results by the following theorem. Note that
in finite graph theory, the edge disjoint version follows from the vertex disjoint version
by applying the latter theorem to the line graph. As it is unclear, what a line-graph for
graph-like spaces should be, we need a different proof.

THEOREM 13.4.1 (Menger for Graph-like Continua—Edge Disjoint Version). Let X be
a graph-like continuum. For disjoint closed sets A and B of vertices of X, the mazimum

number of edge-disjoint A — B paths equals the minimum cut separating A from B.
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PROOF. Let k be the size of a smallest cut separating A from B. Note that since A
and B are closed disjoint, it follows from compactness that such a cut exists, and hence
k is finite by Lemma 13.2.1. It is clear that the maximum number of edge-disjoint A — B
paths is bounded by k.

Conversely, write X as an inverse limit X = lim. G,, with simplicial bonding maps
fn: Gny1 — G, and simplicial projection maps m,: X — G,. Without loss of generality,
mn(A) N, (B) = 0 for all n. Let 7T, be the (finite) space of all k-tuples of edge-disjoint
connected subgraphs of G,, that intersect both 7,(A) and m,(B). By Menger’s theorem for
finite graphs, 7, # 0 for all n, so 7,, with natural bonding maps fn form their own inverse
system, which is non-empty. Taking the inverse limit in each coordinate, we obtain k edge-
disjoint subcontinua of X each intersecting both A and B. By Corollary 13.2.8, we can find

A — B paths inside each subcontinuum, which are then edge-disjoint by construction. [J

LEMMA 13.4.2. Let X be a graph-like continuum and v an even (resp. odd) vertex in
X. Then v has strongly even (resp. odd) degree.

PROOF. Let v be an even vertex and let C' be a clopen neighborhood of v such that if
A is a clopen neighborhood of v contained in C', then E(V(X)\ A, A) is even. Observe that
E(V(X)\A, A) is the minimum cut separating V(X )\ A from v. Hence by Theorem 13.4.1,
the maximum number of edge-disjoint paths from V' (X)\ A to v is equal |E(V(X) \ A4, A)|
which is even. This shows that v is strongly even. 0

However, in general, strongly even degree vertices need not be even.
Ezxample. The right hand vertex in the graph-like continuum illustrated below is nei-
ther even nor odd but has strongly even degree.

If each simple circle, O, in the above example is replaced with a copy of @, then in the
resulting graph-like continuum the right hand vertex has strongly odd degree.

Our aim is to prove the following theorem, generalizing corresponding results of Bruhn
& Stein [39] and Berger & Bruhn [20] for Freudenthal compactifications of graphs, and
their Eulerian subspaces. Observe that this theorem can be rephrased as saying that
although not every vertex of strongly even degree must be even, if all vertices of a graph-

like continuum have strongly even degree then they are all even.

THEOREM 13.4.3. A graph-like continuum is closed Eulerian if and only if all its ver-

tices have strongly even degree.
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It is an interesting open problem, whether the same conclusion holds under the assump-
tion that all vertices have weakly even degree. The forward implication of Theorem 13.4.3
follows from Lemma 13.4.2, Lemma 13.3.4 and Proposition 13.3.2. Theorem 13.4.12 es-
tablishes the converse. The plan for the proof of Theorem 13.4.12 is to establish the
contrapositive: if X is a graph-like continuum which is not closed Eulerian then it con-
tains a vertex without strongly even degree (i.e. of weakly odd degree). Lemma 13.4.5
shows how a certain sequence of regions leads to such a vertex. Now if X is a graph-like
continuum which is not closed Eulerian, then by Theorem (B) (iii) == (i), there must
be an odd cut in X. This provides the starting point for the sequence needed to apply
Lemma 13.4.5. Theorem 13.4.6 then provides the ‘Contraction Machine’ required to create
the remaining elements of the sequence.

If v and w are distinct vertices in a graph-like continuum X, and they both have
strongly odd degree, then after connecting them with a new edge they will both have
strongly even degree. Conversely if they both have strongly even degree, then after remov-
ing an edge connecting them, they will have strongly odd degree. Hence, as we deduced
the open version of Theorem (B) from the closed version, we now derive the following
characterization of open Eulerian graph-like continua.

THEOREM 13.4.4. A graph-like continuum is open Eulerian if and only if it has exactly

two strongly odd degree vertices, and the rest have strongly even degree.

13.4.1. The odd-end lemma. For a clopen subset U C V(X), consider the induced
graph-like space X[U]. We say that a clopen subset U C V(X)) is a region if X[U] is
connected. By 0U C E(X) we denote the set of edges between the separation (U, V' \ U).
This set is finite for regions U. Let us call a region U of X a k-region if |0U| = k, and an
even or an odd region depending on whether £ is even or odd.

The following lemma generalizes the corresponding lemma of Bruhn & Stein for locally

finite graphs, [39, p.7f], to graph-like continua.

LEMMA 13.4.5. Let X be a graph-like continuum, and let E(X) = {eg,e1,...} be an
enumeration of its edges. Assume there exists a sequence of regions Uy, Uy, ... of X with
the following properties:

(1) |0U,| is odd for alln € N,

(2) Up D Upya,

(3) if D is a region of X with U, D D D U,y then |0U,| < |0D] for alln € N, and
(4) en & E[Uns].

Then X has a vertex which has weakly odd degree.

PROOF. Since A = [,y X[U,] is a nested intersection of continua by (2), it is non-
empty and connected. It follows from (4) that A C V(X), so A = {v} for some vertex v,
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since V(X)) is totally disconnected. Furthermore, compactness implies that {U,: n € N}
is a neighborhood base for v in V(X).

Property (3) together with Theorem 13.4.1 shows that for all U,, the maximal number
of edge disjoint arcs from V' \ U, to v equals |0U,|, so is odd by (1). Since the U, form a
neighborhood base, it follows that v has weakly odd degree. O

13.4.2. The contraction machine. Suppose we have an odd region U,. We want
to construct a sequence as in Lemma 13.4.5. If we recursively choose an odd region
Up+1 of minimal |0U, 11| amongst all odd regions contained in U, then (1) and (2) are
fine, and property (3) is satisfied at least for all odd regions D nested between U, and
Up+1. Following Bruhn & Stein’s idea [39], our plan for evading all even regions D with
|0D| < |0U,| nested between U,, and U, is roughly as follows: first, we contract all even
regions D C U,, with boundary smaller than |0U,,| to single points. Only then do we pick
our region U, ;. After uncontracting, this means that every small even region lies either
behind U, 1, or is completely disjoint from U, ;.

The next result formalizes this idea for contracting regions.

THEOREM 13.4.6 (Contraction Theorem). Let X be a graph-like continuum such that
all 1solated vertices are even. Suppose further that U C X is an odd region of X such that
for some even m > 0, there is no infinite k-region with k < m of X contained in U.

Then there is a collection M of disjoint regions of U such that after contracting every
element of M to a single point, the graph-like continuum X/ M, with associated (mono-
tone) quotient map w: X — X/ M, has the property that

(i) all isolated vertices of X/ M are even,
(i1) there are no infinite k regions with k < m contained in the region m(U) C X/ M,

and
(iii) if D C U is an L-region of X, then there is an < {-region D' C 7w(U) such that
|7(D)\ D'| < 0.

We divide the proof into a sequence of lemmas. For two subsets A, B C X, say that
A splits B, or B is split by A, if AN B #( # B\ A.

LEMMA 13.4.7. Let X be a graph-like continuum, and U C X a region. Let R,Sy,...,S,

be infinite m-regions contained in U, where Si,...,S, are pairwise disjoint and |R \
If there is no infinite k-region with k < m of X contained in U, then there is an
m-region R which doesn’t split any S; such that |R \ (Uicy, Si U R)| < .

For the proof we need the following lemma, which can be proven, as for graphs, by a

simple double-counting argument.
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LEMMA 13.4.8. Let X be a graph-like space, and Y, Z C V(X)) clopen subsets. Then
oY+ [0Z] Z max {|0(Y N Z)|+ |0(Y U Z)[,|0(Y \ Z)| +|0(Z \ Y)|}.

PrOOF OF LEMMA 13.4.7. Without loss of generality, assume that S; is split by R,
i.e. that RNS; # 0 # 51\ R. We claim that one of S;UR or R\ S; is an m-region. They
are clearly clopen subsets of vertices of X.

Otherwise, since S;UR and R\ S; are infinite, we have |0S; U R| > m and |OR \ S;| >
m. Thus, Lemma 13.4.8 implies that |S; \ R| < m and |S; N R| < m, so both regions are
are finite, contradicting that S; is infinite.

Hence, one of S; U R or R\ S; is has a boundary of size m, and they can’t be discon-
nected, as otherwise their components had to be finite. Now put R’ to be either one of
them, whichever was the m-region. Then R’ splits strictly fewer S; than R, but covers the
same set together with the S;. Thus, we may pick R to be such that it splits the fewest
number of S;, subject to the condition that R\ (U, S U R)| < co. By the preceding
argument, it follows that R does not split any of the S;. U

Let X be a graph-like continuum, and U C X a region. Assume there is no infinite
k-region with k& < m of G contained in U. Let R = {R,,: n € N} be an enumeration of all
infinite m-regions of G contained in U. Since each R; is faithfully represented by the finite
cut OR; C F, and FE is countable, there are indeed at most countably many such regions.
Below we write S < &’ if S is a refinement of &', i.e. for all S € S there is S’ € &’ such
that S C §’.

LEMMA 13.4.9. For every n € N there are finite collections S, C R of disjoint m-

regions of U such that
(1) for all R; with j < n we have |R; \ |JS,| < oo, and (2) S, < Sp+1-

CONSTRUCTION. We begin with Sy = {Ry}. Suppose S,, C R has been found satis-
fying the above properties. Applying Lemma 13.4.7 with R,,.; and the collection S,,, we
obtain an infinite m-region R,.1. We claim that S, = {finH}U {Ses,: SNRp41 = 0}
is as desired. Indeed, by construction, S, 11 covers R, .1 up to finitely many vertices; and
US, € USn+1, so we preserved the covering properties of earlier stages. O

We would like to contract the ‘maximal’ m-regions (with respect to inclusion) contained
in § = |JS,. However, for graph-like continua, there can be infinite non-trivial chains in
S. Still, for any such chain Sy € 57 € S C -+ of m-regions, we can contract a suitable
collection of disjoint even regions such that after contraction, all S,, are finite. Our plan
is to contract Sp, and each component of S, 41 \ S, to a single point for all n € N. Our

next lemma provides the details for the second case.

LEMMA 13.4.10. Let X be a graph-like continuum, and U C X a region. Assume there

s no infinite k-region with k < m of G contained in U.
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If S € R are infinite m-regions contained in U, then X[R\ S] has at most m connected

components, and every such component is an even region of X .

PROOF. Note that since X[R] is path-connected, it follows that every component of
X[R\ S] has to limit onto an end vertex of some e € 9S. Thus, X[R \ S] has at most
|0S| = m components. In particular, every component is clopen in X[R\ S|, and hence a
region of X.

To see that O(R \ ) is even, consider the graph induced by the multi-cut (S, R\ S, V'\
R). This graph has two even vertices, namely {S} and {V '\ R}. So by the Handshaking
Lemma, also the last vertex is even, i.e. R\ S induces an even cut. Moreover, since in
the contraction graph, both {S} and {V \ R} have degree m, it follows that the third
vertex has the same number of edges to {S} and to {V \ R}. In other words, we have
|O(R\ S)NOR| = |0(R\ S)NaS|.

Let C denote the vertex set of one such component. It follows that in order to establish
that C' is an even region, it suffices to show that

(31) 0C N OR| > [0C N 8S).

Indeed, once we know that (31) holds for every component C, then |0R| = m = |0S] gives
equality in (31). To see that (31) holds, note that if |0C N OR| < |0C N 0S|, then we see
that |0(S U C)| < m, so this is a finite region, contradicting that S was infinite. O

We now collapse all maximal m-regions in & = (J&,,, and for every infinite proper
chain in & we perform the above contractions. Write M for the disjoint collection of
even regions we contract. Write gr: V(X) — V(X/M), which extends to a continuous
(monotone) quotient map on X — X/M (where we also contract all potential loops),
which we also call gxs. Note that since we contracted regions of a compact space, the map
gm: X — X/ M is a closed, monotone map. In particular, this implies that preimages of
regions are regions, see Theorem 9 of [107].

PROOF OF THEOREM 13.4.6. First, to see that X /M is still a graph-like continuum,
note that our countable family M forms a null-sequence of clopen sets by Corollary 13.2.8.
It follows from the fact that if X is separable metrizable, and A = {A,: n € N} a null-
sequence of non-empty compact subsets of X, then X/A is separable metrizable, [158,
A.11.6], that X/ M is a continuum. Further, it is graph-like, because its vertex set
V(X)/M is totally disconnected: If there was any non-trivial connected set C' C V(X/ M),
then C' cannot contain contracted vertices (they are isolated), so C' C V(X)) is non-trivial
connected, contradiction.

Item (i), that every isolated vertex of X/ M is even, follows from Lemma 13.4.10, as
we only contracted even regions.

For (ii), that all m-regions of X/M contained in 7(U) are finite, note that for any
such m-region D of X/M, the clopen vertex set D’ = 7~1(D) is an m-region of X. If D’
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was infinite, then D’ appears in our list, so is covered by some finite S,,. Consider S € S,,.
Note that S either gets contracted to a single point, or S appears in an infinite chain with
at most n predecessors, in which case we contract S to at most (m - n + 1)-many points.
It follows that D’ gets contracted to finitely many points, i.e. D is finite.

For (iii), let D be an ¢f-region of X. There are at most £ many elements M, ..., M, € M
such that 9D N E[M;] # (. Now if D C M; for some i then it is clear that (D) is finite.
Otherwise, choose disjoint m-regions S; D M; in S. We claim that either D = D U S; or
D = D\S; is an < f-region. Otherwise, it follows from Lemma 13.4.8 that [0(D N Sy)| < m
and |0(S1 \ D)| < m. So S; is finite, a contradiction. Continue with the other S;. This
gives us an < f-region D', which differs from D by finitely many S € S. Il

13.4.3. Chasing odd regions. After having established Theorem 13.4.6, the proof
now proceeds essentially as in [39]. We need one more simple lemma.

LEMMA 13.4.11. A graph-like continuum in which all isolated vertices are even does
not contain finite odd regions.

PRrROOF. If A = {vy,...,v,} C V(X) is afinite region, consider the finite graph induced
by the multi-cut (V' \ A, {v1},...,{v,}). Since all vertices v; are even, it follows from the
Handshaking Lemma that also {V \ A} must be even. O

THEOREM 13.4.12. A graph-like continuum is Fulerian if all its vertices have strongly
even degree.

PROOF. Assume X is not Eulerian. To prove the contrapositive we show X contains
a vertex without strongly even degree. If some isolated vertex does not have (strongly)
even degree then we are done. So assume all isolated vertices of X are even. We construct
a sequence of graph-like continua X = X, Xy, ... such that

(a) Xo = X1 > Xy, ™% ... are successive quotients with monotone open quotient
maps 7,, and write f, =m, 0om, 100wy,
(b) all X,, have the property that all isolated vertices are even,
(c) there are regions V,, C X, such that
(1) |0V,] is odd for all n € N,
(2)/ 7Tn+1<vn) ) Vn-i—la
(3)" any f-region of X gets contracted to a < ¢-region of X,, modulo finitely many
isolated vertices; and any k-region of X,, contained in V,, with k < |0V,,| gets
contracted to finitely many vertices in X, 11,
(4)" en & E[Vatal.
Before describing the construction, let us see that that U, = f.1(V,) defines regions
satisfying the requirements of Lemma 13.4.5, and so X has a vertex which does not have
strongly even degree, as desired.
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Indeed, as inverse images under monotone closed maps, they are connected, and hence
regions in X. Next, it is easy to check that (1)’ = (1), (2)' = (2) and (4)" = (4). Finally,
to see (3), i.e. that U,y does not lie behind some region D of U, with small |0D|, note
that by (3)’, this region D would have been contracted to finitely many points in X1,
and hence V,, 11 would be finite, which is a contradiction by (b) and Lemma 13.4.11.

Now towards the construction of our sequence Xy, X7,... with (a)—(c). First, since
X = X is not Eulerian, it has an odd cut. By choosing V;; = Uy to be an odd region of X
such that [0Uy| is minimal, we see that 1} is as desired. Now suppose we have constructed
V., C X, according to (a)—(c). Put m,; = |0V,| — 1.

Recursively, apply Theorem 13.4.6 with graph-like continuum X *) and region g o---o
q1(U,) to obtain graph-like continua X,, = Xm0 w Xmatl) o oo X)) — X
with corresponding monotone quotient maps g,: X* 9 — X®) for all even 0 < k < m.
Define mp41 = Gmn © 0 Gyttt X = X1

Note that Theorem 13.4.6(i) implies (b), and (ii) and (iii) imply (c)(3)". We now want
to find an odd cut V' C m,,41(V,,) such that e, ¢ E(V). Towards this, note that f,,1(e,) is
either an isolated vertex v of X,, .1, or f,11(e,) is an edge with end vertices say = and y in
Xpi1. Find a multi-cut V of m,41(V,,) into regions which either displays v as a singleton,
or contains x and y in different partition elements. By Lemma 13.3.3, there is an odd
region V' € V. Since isolated vertices of X, 1, are even, V is not the singleton {v}. In the
other situation, note that in the induced graph G(V), the edge f,.+1(e,) is displayed as
cross edge. In either case, we have e, ¢ E(V).

Finally, amongst all odd regions of X,, contained in V' pick any odd region V,,,; C V
such that |0V,,41| is minimal. This choice satisfies items (1)’, (2)" and (4)". O



CHAPTER 14

Eulerian spaces

We develop a unified theory of Eulerian spaces by combining the combinatorial
theory of infinite, locally finite Eulerian graphs as introduced by Diestel and
Kihn with the topological theory of Eulerian continua defined as irreducible
images of the circle, as proposed by Bula, Nikiel and Tymchatyn.

First, we clarify the notion of an Fulerian space and establish that all com-
peting definitions in the literature are in fact equivalent. Next, responding to
an unsolved problem of Treybig and Ward from 1981, we formulate a combi-
natorial conjecture for characterising the Eulerian spaces, in a manner that
naturally extends the characterisation for finite Eulerian graphs. Finally, we
present far-reaching results in support of our conjecture which together sub-
sume and extend all known results about the Eulerianity of infinite graphs and
continua to date. In particular, we characterise all one-dimensional Eulerian

spaces.

14.1. Introduction

14.1.1. The Eulerian Problem. An old, well-known quest in graph theory is to find
a natural generalisation for the concept of Eulerian walks to infinite graphs. An equally
old problem in topology is to find a theory that allows additional control over space-filling
curves from the circle in the form of strongly irreducible maps. We show in this paper
that these seemingly unrelated strands of research represent two sides of the same coin,
and develop a general theory of Eulerian spaces that combines these combinatorial and
topological research efforts into a single, unified framework.

There are two main motivations for investigating generalised Eulerian spaces. First,
the combinatorial one: recall that a finite multi-graph is Fulerian if it admits a combi-
natorial Euler tour, a closed walk that contains every edge of the graph precisely once.
Euler showed, in what is commonly considered the first theorem of graph theory and fore-
shadowing topology, that a finite connected multi-graph is Eulerian if and only if every
vertex has even degree. See [23] for a historical account of Euler’s work on this problem.
An equivalent characterisation of connected Eulerian graphs, the importance of which was
first realised by Nash-Williams [123], is that every edge cut is even. An edge cut of a
graph G = (V, E) is a set of edges F' C F crossing a bipartition (A, V \ A) of the vertices
V, in other words, the set of edges with one endvertex in A and the other outside A.

315
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There have been numerous attempts to generalise these results to infinite graphs, see
for example [67, 123, 124, 140, 139, 112]. Since combinatorial Euler tours are inherently
finite objects, these attempts focused rather on constructing decompositions of such graphs
into cycles or collections of two-way infinite walks, sacrificing the intuitive appeal that
an Euler tour should return to its start vertex. However, for locally finite graphs, an
alternative solution has recently been found by Diestel & Kiihn in 2004 [56] which elegantly
restores this intuitive appeal: recall that every graph G naturally turns into a topological
space by interpreting each edge as an arc between its endpoints, and each combinatorial
Euler tour corresponds naturally to a continuous surjection from the circle S* to the
space G which continuously traverses through the edge-arcs in the order prescribed by the
combinatorial walk, henceforth called an edge-wise Eulerian map. Diestel and Kiithn now
call an infinite, locally finite (multi-)graph Eulerian, if there is such an edge-wise Eulerian
surjection from S! onto the Freudenthal compactification of the graph (formalising the
idea that if the Euler tour disappears in some direction towards infinity, then it should
again return from that very direction). In this setting, they were able to show that a
connected multi-graph is Eulerian if and only if each of its finite edge cuts is even, thus
generalising the second of the characterising conditions from the finite case to infinite,
locally finite graphs.

Looking at this result, it seems natural to wonder about Eulerianity in other naturally
occurring compactifications of locally finite graphs, which give a more refined meaning
for a ‘direction towards infinity’, for example Gromov compactifications of locally finite
hyperbolic graphs, or metric completions of edge-length graphs [81], and the work pre-
sented here started out investigating whether for instance compactifications of locally finite

graphs with a circle as boundary at infinity are Eulerian in this sense.

FiGURE 14.1. Three hyperbolic Eulerian structures.

Here we meet our second, topological motivation: by the Hahn-Mazurkiewicz Theo-
rem, a space is the continuous image of the circle if and only if it is a Peano continuum —
a compact, metrisable, connected and locally connected space. Originating with Hilbert’s
observation (1891) [96] that the square is a continuous image of the circle so that each
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point is visited at most three times, the natural question arises which properties beyond
‘Peano’ are needed to guarantee the existence of well-behaved such continuous surjections.
Achieving additional control over the surjections from the circle, however, is a notorious
open problem in continuum theory discussed, for example, in Nébling (1933) [132], Har-
rold (1940, 1942) [92, 93], Ward (1977) [162], Treybig & Ward (1981) [155, §4], Treybig
(1983) [154], and Bula, Nikiel & Tymchatyn (1994) [41]. The latter six authors were
particularly interested in the existence of strongly irreducible maps from the circle, con-
tinuous surjections ¢g: S' — X such that for any proper closed subset A C S* we have
g(A) € g(SY). Tt may not be immediately clear how the property of being strongly irre-
ducible is related to Eulerianity. But using the intermediate value theorem, it is an easy
exercise to verify that a strongly irreducible map from S* onto a finite multi-graph G' must
sweep through each edge of the graph precisely once without stopping or turning. Hence,
a finite graph is Eulerian if and only if it is a strongly irreducible image of the circle. This
suggests a second natural candidate for calling an arbitrary Peano continuum Eulerian,
namely if it is the strongly irreducible image of the circle.

In this paper we achieve the following goals:

(1) formalise the notion of an Fulerian continuum — all competing definitions in the
literature are fortunately shown to be equivalent;

(2) formulate a conjecture for characterising the Eulerian Peano continua, in a manner
that naturally extends Nash-Williams’s condition, and which can be extended to
a characterisation in the spirit of Euler; and

(3) present far-reaching results in support of our conjecture, confirming it in particular

for all one-dimensional Peano continua.

14.1.1.1. Eulerianity. Taking our cue from Bula, Nikiel and Tymchatyn [41], we say
a space X is Fulerian if it is a strongly irreducible image of the circle, so there is a
continuous surjection ¢g: S — X such that for any proper closed subset A C S*, we have
g(A) € g(S*) = X. We also refer to such a map as an Fulerian map.

Extending Diestel & Kiihn’s definition [56], let us say a space X is edge-wise Eulerian
if there is a continuous map of S onto X which sweeps through each free arc of X exactly
once. Here a free arc is any inclusion-maximal open subset homeomorphic to (0, 1), and
by ‘sweeps once through a free arc’ we mean a map such that the preimage of every point
in a free arc is a singleton. We also refer to such a map as an edge-wise Fulerian map.

As remarked earlier, every Eulerian map from S* onto a space X is edge-wise Eulerian.
The converse, however, does not hold on the level of individual functions. Still, as our
main result in Chapter 14.2, we establish that a space is edge-wise Eulerian if and only
if it is Eulerian. The added flexibility of edge-wise Eulerian over Eulerian maps is conve-
nient for constructions, and Chapter 14.3 continues with the development of a versatile

framework to establish their existence, which we call approzimating sequences of Fulerian
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decompositions. Overall, our main results on the different concepts of Eulerian spaces can

be summarised as follows.

THEOREM 14.1.1. For a Peano continuum X, the following are equivalent:

(i) X is Eulerian,
(ii) X is edge-wise Eulerian, and

(i) X admits an approximating sequence of Eulerian decompositions.

The first equivalence (i) < (i7) is the topic of Chapter 14.2, and relies on a function
space Baire category argument. The second equivalence (ii) < (7i7) is the topic of Chap-
ter 14.3, and combines the classical strategy of the Hahn-Mazurkiewicz Theorem with
inverse limit methods developed by Espinoza and the authors in [70].

14.1.1.2. The conjecture. Let X be a Peano continuum. As above a free arc is an
inclusion-maximal open subset of X homeomorphic to (0,1). We think of free arcs as
being the ‘edges’ of X. Write £ = E(X) for the collection of edges of X. For a subset
F C E, we write for brevity X — F := X \ |JF. The ground-space of X is the (compact
metrisable) space &(X) := X — E. Every edge of a Peano continuum has two end points,
which may agree, in which case the edge is a loop. An edge cut of a Peano continuum
X is a non-empty set [ C F(X) of edges crossing a partition A @& B of &(X) into two
disjoint clopen subsets A and B. In this case, we also write F' = F(A, B). Every edge cut
of a Peano continuum is finite. (See Section 14.1.3.1 for a record of basic results on edge
cuts.) With this set-up, we conjecture that Nash-Williams’s edge cut characterisation of
finite Eulerian graphs extends to all Peano continua:

CONJECTURE 14.1.2 (The Eulerianity Conjecture).

A Peano continuum X s Eulerian if and only if every edge cut of X is even.

We also say that X satisfies the even-cut condition or has the even-cut property. The
condition that an Eulerian continuum has the even-cut property is clearly necessary: if g
is an (edge-wise) Eulerian map for X, and F' is the set of edges crossing a disconnection
A® B of (X), then consider g as a ‘path’ with start and end point in A, and observe that
g must sweep through the edges of F in pairs, from A to B and then back. Also note that
an affirmative answer to the conjecture implies the truth of (i) < (i7) in Theorem 14.1.1.

When X is the space underlying a finite multi-graph G, then, suppressing vertices of
degree two, the edges of X (free arcs) correspond to edges of GG, and the ground space of
X corresponds to the vertex set of (G. Hence our conjecture naturally encompasses the
second characterisation for finite Eulerian graphs. Also, Diestel and Kiihn’s Eulerianity
result [56, Theorem 7.2] for the Freudenthal compactification F'G of a connected, locally
finite graph G mentioned above falls under the scope of Conjecture 14.1.2: the ground
space of F'G consists of all vertices and ends of G, and edge cuts of F'G correspond precisely



14.1. INTRODUCTION 319

to the finite edge cuts of G." The same holds for Georgakopoulos’s [80] extension of this
result to standard subspaces of Freudenthal compactifications of locally finite graphs.
For Peano continua, Harrold [92] showed in 1940 that every Peano continuum without
free arcs is Eulerian,” and in 1994, Bula, Nikiel and Tymchatyn [41, Theorem 3, Example 2]
showed that every Peano continuum obtained by adding a dense collection of free arcs to
a Peano continuum is Eulerian.” Both results are are in line with Conjecture 14.1.2, as
with connected ground spaces, these examples have no edge cuts whatsoever, and so the
even-cut condition is trivially satisfied. In the same paper, Bula, Nikiel and Tymchatyn
settled when so-called ‘completely regular’ continua are Eulerian. Call a continuum graph-
like* if its ground space is zero-dimensional, see [30, 49, 153]. In [70], Espinoza and the
authors showed that a continuum is graph-like if and only if it is completely regular, and
equivalently, if and only if it is a standard subspace of the Freudenthal compactification
of a locally finite, connected graph. Hence, also these spaces fall under Conjecture 14.1.2.
14.1.1.3. Towards the Eulerianity conjecture. All previously known cases for Conjec-
ture 14.1.2 fall under the dichotomy that there are either no free arcs at all, or the free
arcs are dense. Our first result towards Conjecture 14.1.2, which we call the ‘reduction
theorem’, clears the middle ground: the problem of establishing the Eulerianity Conjec-
ture for a given space can always be reduced to a space with the same ground space in
which the edges are dense. For brevity, such a Peano continuum in which the edges are
dense will also be called a Peano graph. Note that Peano graphs are precisely the spaces

that can be obtained as Peano compactifications of countable, locally finite graphs.

THEOREM 14.1.3 (Reduction Result). If the Congjecture 14.1.2 holds for all [loopless]
Peano graphs, then it holds in general.

This result is proved in Theorems 14.2.12 and 14.2.14. The class of Peano graphs is
still surprisingly complex: in Theorem 14.2.5 we observe that there is no restriction on
the possible ground spaces of an (Eulerian) Peano graph. Our remaining results establish
Conjecture 14.1.2 for three large classes of Peano continua, which together subsume and
extend every result known about the Eulerianity of infinite graphs and of continua to date.

THEOREM 14.1.4. Conjecture 1/.1.2 holds for every Peano continuum whose ground
space

IFor every finite edge cut E(A,V \ A) of the graph G, the properties of the Freudenthal compactifi-

cation guarantee that A and V \ A have disjoint closures in FG, and so Eg(A,V \ A) = Epg(A,V \ A).
To be precise, Harrold has shown in [92] that Peano continua in which the non-local separating points

are dense are strongly irreducible images of I and S'. However, this condition is equivalent to not having
free arcs, as remarked in Harrold’s later paper [93].

3As stated, [41, Theorem 3] excludes edges which are loops, but this assumption is unnecessary.
4This notion of ‘graph-like’, by now firmly established in graph theory, is not to be confused with the

notion of arc-like, tree-like and graph-like in continuum theory, which we shall not use in this paper.
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(A) consists of finitely many Peano continua, or

(B) is homeomorphic to a product V x P, where V is zero-dimensional and P a Peano
continuum, or

(C) is at most one-dimensional.”

Indeed, the main results of Harrold [92] and Bula-Nikiel-Tymchatyn [41, Theorem 3]
follow either from (A) (where the ground space is a single Peano component, and the free
arcs are either absent or dense) or (B) (by taking V' to be a singleton). Diestel and Kiihn’s
results for Freudenthal compactifications of graphs, and the results about graph-like spaces
from [70] are covered either by (B) (by taking P to be a singleton) or indeed (C).

However, (C) goes significantly beyond these results. Consider for example hyperbolic
groups with one-dimensional boundaries, whose Gromov boundaries, provided the groups
are one-ended, are either homeomorphic to S*, the Sierpinski carpet, or to the Menger
curve [98, Theorem 4]. Interestingly, ‘generic’ finitely presentable groups are hyperbolic
and have the Menger curve as boundary [46], thus falling once again under (C). A geo-
metrically interesting class of spaces with S* boundary is given by the regular tessellations
T'(n, k) of the hyperbolic plane where precisely k regular n-gons surround each vertex (for
1k + 1/n < 1/2). Since S! is connected, edge cuts in these spaces can only contain finitely
many vertices on one side, so (C) implies that 7'(n, k) is Eulerian if and only if k is even.

o o o ~
- - - -
o o o ~
- - - -

F1GURE 14.2. The spaces X and Y with ground-space in black and edges in red.

Our result (B) answers an open question in the literature, namely (a variant of) [41,
Problem 3]. Its strength lies in supporting Conjecture 14.1.2 by providing non-trivial
affirmative examples in all dimensions. To illustrate (B), consider the ‘fractal’ spaces X
and Y with ground-space &(X) = &(Y) = C x [0,1] in Figure 14.2. Both spaces X
and Y clearly satisfy the even-cut condition and so are Eulerian by (B). Alternatively,
due to the fractal nature of these specific examples, it is possible in both cases to give
a geometric, recursive definition of an (edge-wise) Eulerian map in the spirit of Hilbert
[96]. For a different example in which the free arcs are not necessarily dense, consider a
Peano continuum X with ground-space a convergent sequence of unit squares, &(X) =
(w+ 1) x I?, satisfying the even-cut condition.

SEquivalently: the Eulerianity Conjecture holds for all one-dimensional Peano continua.
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$990 ¢

FIGURE 14.3. A Peano continuum satisfying the even-cut condition with

ground space a convergent sequence of squares. Local connectedness implies

that endpoints of edges are dense in the right limit square.

All three results in Theorem 14.1.4 rely on our earlier equivalences for Eulerianity given
in Theorem 14.1.1. First, (A) follows from an appealing application of the equivalence
(i) < (7i) in Theorem 14.1.4, and will be given, after introducing a modicum of notation,
right at the end of the introduction in Section 14.1.3.3.

The other two results, (B) and (C), utilise the implication (ii7) = (i) of Theorem 14.1.1,
and, being rather more involved, occupy the final two chapters of this paper, Chapter 14.4
and 14.5. As indicated, for both cases the objective is, relying on nothing but the even-
cut property, to construct an approximating sequence of Eulerian decompositions for these
spaces, in other words, to show that the even-cut condition implies property (ii7). Carrying
out this program requires a combination of powerful techniques from both topology and
graph theory. Topologically, we rely on Bing’s [24, 25, 26] and Anderson’s [7] theory of
brick partitions, widely regarded as the single most effective structural tool in the theory
of Peano continua. Combinatorially, we rely on the the cycle space theory for locally
finite graphs developed in the past 15 years by Diestel et al., see [53] for a survey, and its
extension to graph-like spaces developed in [30, 70]. Roughly, these ingredients are then
combined as follows: first, brick partitions are used to supply a preliminary decomposition
of our spaces, whose parts are then carefully modified using combinatorial tools in order

to gain control over the edge cuts of the individual parts.

(4) Open problems. The main open problem is to establish Conjecture 14.1.2 for all
Peano continua. Motivated by the naturally occurring examples of hyperbolic boundaries,
interesting partial results may be about Peano compactifications of locally finite graphs
with remainder homeomorphic to S?, S? and generally S™, and we hope that these ex-
amples can also be approached using our theory of approzimating sequences of FEulerian
decompositions. Slightly more general, a result saying that all 2-dimensional Peano graphs
satisfy Conjecture 14.1.2 would be welcome, and might be in reach once the S? case has
been settled.
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14.1.2. Related Conjectures for the Eulerian Problem.

14.1.2.1. FEquivalent conjectures. While calling the free arcs of a Peano continuum X
‘edges’, the points of &(X) = X — F(X) should generally not be considered the ‘vertices’ of
X. Instead the ‘vertices’ of X correspond to the connected components of &(X). Let X
denote the quotient of X where we collapse, one by one, each component of the ground
space B(X) to a point. Note that X. is a continuum with F(X.) = FE(X) and has
zero-dimensional ground-space. In other words, the continuum X is a graph-like Peano
continuum. Moreover, every edge cut of X corresponds to an edge cut of X and vice
versa. Since we know from [70] that graph-like continua are Eulerian if and only if they
satisfy the even-cut condition, the following is equivalent to the Conjecture 14.1.2:

CONJECTURE 14.1.5.

A Peano continuum X 1s Fulerian if and only if X is Fulerian.

Since points in a Peano continuum other than a finite graph may have infinite order,
the definition of when a point has ‘even degree’ is problematic. Note that these difficulties
for generalising Euler’s characterisation of Eulerian graphs occur already in the case of
locally finite graphs, cf. [39, Fig. 2] and [20]. Nevertheless, from [70] we know that a
graph-like continuum Y is Eulerian if and only if every point y € &(Y') has even degree
in the sense that there exists a clopen neighbourhood A of y in &(Y') such that for every
clopen subset B of (YY) with y € B C A, the edge cut E(B,&(Y) \ B) is even. Thus
another equivalent version of Conjecture 14.1.2 is that:

CONJECTURE 14.1.6.

A Peano continuum X 1s FEulerian if and only if every vertex of X has even degree.

14.1.2.2. Circle decompositions. Recall that another classical characterisation of finite
Eulerian multi-graphs, due to Veblen, is that the edge set of the graph can be decomposed
into edge-disjoint cycles, see [54, 1.9.1]. Accordingly, let us say that the edge set of a Peano
continuum X can be decomposed into edge-disjoint circles if there is a collection of edge-
disjoint copies of S! contained in X such that each edge of X is contained in precisely one of
them. Generalising the corresponding equivalence for graphs due to Nash-Williams [123],
we shall prove in Theorem 14.5.15 that a Peano continuum has the even-cut property
if and only if its edge set can be decomposed into edge-disjoint circles. Consequently,
another equivalent version of Conjecture 14.1.2 is that:

CONJECTURE 14.1.7. A Peano continuum is Eulerian if and only if its edge set can

be decomposed into edge-disjoint circles.

14.1.2.3. Open FEulerian spaces. A finite multi-graph is open FEulerian if there is a
walk starting and ending at distinct vertices, using every edge of the graph precisely once.
The open Eulerian multi-graphs are precisely the connected graphs for which all but two
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vertices have even degree. A Peano continuum X is open FEulerian if it is the strongly
irreducible image of a map from the unit interval / = [0,1]. Let x # y € X, and let X,
denote the Peano continuum where we add a new free arc from x to y. Then X is open
Eulerian from z to y if and only if X, is Eulerian. Thus, Conjecture 14.1.2 may be used
to characterise open Eulerian spaces. Moreover, applying the degree characterisation from
[70] when a graph-like continuum is open Eulerian, the following is again equivalent, via
the X, construction, to Conjecture 14.1.2:

CONJECTURE 14.1.8.
A Peano continuum X is open Eulerian if and only if all but two vertices of X have

even degree.

To our knowledge, this conjecture is the first attempt to put forward a proposal for
the characterisation of open Eulerian continua and, if correct, would provide a complete
answer to [155, Problem 3]. Interestingly, if a Peano continuum X is open Eulerian from x
to y for z,y € &(X), then Conjecture 14.1.2 predicts that X is also open Eulerian from a2’
to y for all 2’ (respectively ') that lie in the same component of &(X) as x (respectively
Y)-

14.1.2.4. The Bula-Nikiel-Tymchatyn conjecture. Our conjecture is not the only con-
tender to characterise Eulerian continua. Bula et al [41] have proposed an alternative,
which is, however, difficult to verify in concrete cases, and implied by Conjecture 14.1.2.

A point z of a Peano continuum X is said to be locally separating if there is a connected
open subset U of X such that U \ {z} is disconnected. The set N(X) denotes the set of
all z in X such that z is not locally separating in X. By Yx denote the quotient of X

where we collapse every component of N(X) to a single point. By [41, Theorem 2], if
Yx is non-trivial then it is a (cyclically completely regular) Peano continuum, and if X is
Eulerian then so is Yy. The following is from [41, Problem 1]:

CONJECTURE 14.1.9 (Bula, Nikiel & Tymchatyn).
A Peano continuum X is Eulerian if and only if Yx is Fulerian.

Since interior points of edges are locally separating, and &(X) is closed, we have
N(X) € &(X), and hence (Yx). = X.. In particular, edge cuts of Yy are in bijective
correspondence with edge cuts of X, and hence the truth of Conjecture 14.1.5 implies the
truth of Conjecture 14.1.9. Furthermore, the difference between the two conjectures is
not simply formal, as the two quotient spaces Yx and X. may differ: fix a finite tree T
and add to it a dense, zero-sequence of loops. Denote the resulting Peano continuum by
X, and note that &(X) = T. Since T is connected, X. is a Hawaiian earring. However,
as every point of T" apart from the finitely many leaves remains locally separating in X,
we have X = Yx. For a more interesting example where Yy and X differ, consider a
topological sine curve Z. Form a Peano continuum X with &(X) = Z by first adding a
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dense collection of loops to Z (to guarantee &(X) = Z), and then also adding a nowhere
dense collection of free arcs between points on the sine function-graph and points on the
y-axis of Z (to make X locally connected). Again, X is the Hawaiian earring, but Yy is

an interval with a dense collection of free arcs, since N(X) corresponds precisely to the
y-axis of Z.

14.1.2.5. Further consequences. Harrold has shown, generalising a result by Nobling
[132], that every Peano continuum X is the image of a map g: S* — X that sweeps
through every free arc at most twice, [93, Theorem 1 ff.]. We observe here that this result
is implied by Conjecture 14.1.2: for an arbitrary Peano continuum X, let X denote the
space where we add for each edge e of X one additional parallel edge é. Then X is again a
Peano continuum (compare with Lemma 14.1.13 below) which now satisfies the even-cut
condition. Hence, there is an Eulerian map g: S* — X that sweeps through every free arc
of X precisely once. But then it is clear that § naturally induces a map ¢g: S' — X that
uses the original edge e a second time instead of é for each e € E(X). By construction, g
has the desired property that it sweeps through every free arc of X precisely twice.

14.1.3. Notation and Essentials. Throughout this paper, all topological spaces are
metrisable, and all maps are continuous. A continuum is a compact connected metrisable
space, a Peano continuum is a continuum which is locally connected, and a Peano graph
is a Peano continuum in which the edges are dense. We write N = {0,1,2,...} and
n] = {1,2,...,n} for n € N. If A is a subset of the domain of a function g, then we
denote by ¢ [ A the restriction of g to A.

Let (X, d) be a metric space, and A, B C X and A a family of subsets of X. We use
A U B to denote disjoint union. A clopen partition of a space V is a partition of V into
pairwise disjoint clopen subsets. If V' is compact, then any clopen partition is finite, and
we denote by II(V') the collection of clopen partitions of V. For € > 0, let B.(z) denote
the open ¢ ball around z. Further, we write dist(A4, B) = inf{d(a,b): a € A, b € B},
diam(A) := sup{d(a,b): a,b € A}, and mesh(A) := sup {diam(A): A € A}. Let X be a
metrisable compactum. Then A is said to be a null-family, if for any ¢ > 0, the collection
{A € A: diam(A) > ¢} is finite. By compactness, this does not depend on the metric for
X. Any null-family A contains only countably many non-singleton sets. A countable
null-family A is said to be a zero-sequence. This is equivalent to saying that whenever an
enumeration A = {A;, Ay, ...} is chosen, then diam(A,) — 0 as n — oo.

Let A, B C X be disjoint closed subsets. An A—B-arc in X is an arc whose first
endpoint lies in A, whose last end-point lies in B, and which is otherwise disjoint from
AU B. Finally, a subset A C X is reqular closed if A = M

14.1.3.1. Edge cuts in Peano continua. Free arcs in Peano continua behave much the
same as edges in finite graphs, and statements to this effect can be found for example
in [41] or [129]. To make this paper accessible for readers with more of a combinatorial
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background, we offer brief indications how to prove these basic facts with a minimal
topological background, relying only on the fact that Peano continua are (locally) arc-
connected.

If e is an edge of X, then any point in de = €\ e is called an endpoint of e.
Moreover, with some fixed homeomorphism e = (0,1) in mind, we write e(z) € e for
x € (0,1) to mean the corresponding interior point on e, and also write [a, b], for the set
{e(x): x € [a,b]} and similar for other subsets of the interval.

LEMMA 14.1.10. Edges of a Peano continuum X are pairwise disjoint, unless X = S*.

PROOF. Suppose e and f are two distinct free arcs which intersect. Since each free
arc is maximal with respect to set-inclusion, this amounts to the statement that all e\ f,
f\eand en f are non-empty. Let A be a component of e N f. Then A is a proper
subinterval of e, and so one endpoint a of A lies in e \ f. Now if there was a half-open
interval [a,a+¢). C e\ f, then this contradicts maximality of f. But then connectedness
of f implies that e\ {a} C f. However, it follows that eUf = f = fU{a} is homeomorphic
to S1, and is clopen in X. So by connectedness, X = S*. O

For the remainder of this paper, when investigating Conjecture 14.1.2 for a space X
we always implicitly assume that X is not a simple closed curve, implying that the edge
set E(X) consists of disjoint open sets and that &(X) is non-empty.

LEMMA 14.1.11. Let X be a Peano continuum.

(a) Every edge (free arc) in X contains at most two endpoints.

(b) Removing an edge from X creates at most two connected components which are
again Peano continua. Thus, removing k edges from a Peano continuum results
in at most k+ 1 components, all of which are again Peano.

(c) If X # S, the edges E(X) form a zero-sequence of disjoint open subsets.

(d) Every edge cut of X is finite.

PROOF. (a) Consider a free arc e = (0,1) of a Peano continuum X. Write for the
moment e(0) = (T%] \ e and e(1) = [%,—1) \ e. By symmetry, it suffices to show that
e(0) is a singleton. By compactness, it is certainly non-empty. Next, since X is locally
arc-connected, there exists an {3} — e(0)-arc a in X so that (0,3] C a, and so a \ (0, 3]

1

,3) € a, from

is precisely the second end-point of . However, compactness of a gives (0
which it is clear that e(0) consists of at most one point.’
(b) Otherwise, for some edge e the space X — e has a partition into three non-empty,

pairwise disjoint compact subsets A, B, C. By (a), it follows that one of them, say A, does

6The assumption on local connectedness in (a) is necessary, as witnessed by the unique free arc of the

topological sine curve, [121, 1.5].
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not contain an endpoint of e. But then A against B U C' U € forms a partition of X into
two non-empty, pairwise disjoint compact subsets, contradicting connectedness of X.”

(c) As a collection of disjoint open subsets (Lemma 14.1.10) in a compact metrisable
space, E'(X) must be countable, [63, 4.1.15]. Now if E(X) does not form a zero-sequence,
then there is € > 0 and infinitely many distinct edges {eq, e, €3,...} C E(X) each contain-
ing three successive points z} < 22 < 23 € ¢, such that d(z%,27) > ¢ for all i # j € [3]
and n € N. By moving to convergent subsequences and relabelling, we may assume that
x! — x' for all i € [3] as n — oo, and so d(z',27) > ¢ for all i # j € [3]. However, by
local arc-connectedness, for large enough n there exist arcs from z? to 22 of diameter less
that ¢, a contradiction.®

(d) Trivial for X = S*. Otherwise, the assertion follows from (c) since the sets of any
topological disconnection A® B of &(X) are disjoint compact, so have dist(4, B) > 0. O

From now on, if e is an edge in a Peano continuum X, let €(0),e(1) € &(X) denote
the two endpoints of that edge. If x is an end-point of an edge e, we also write x ~ e, or
write e = zy to mean that e(i) = 2 and e(1 —4) = y for ¢ = 0 or ¢ = 1. It is convenient
to write e(z) for x € (0,1) to mean the corresponding interior point on e, where we
choose our parametrisation so that e(z) is continuous for z € [0,1]. Next, recall from
the introduction that for a subset F' C E(X), we write for brevity X — F := X \ JF,
and so B(X) := X — E(X). If F = {f} is a singleton, we write X — f instead of
X —{f}. Let X[F] = UF C X be the subspace of X induced by F. Similarly, for
U C &(X), write E(U) = {e =2y € E(X): {z,y} C U} for the induced edge set of U,
and set X[U] = U U E(U). Finally, an edge set F' C E(X) is called sparse (in X) if
X|[F] is a graph-like compactum. This notion will be of crucial importance in the final
two chapters. Note that if F' is sparse, then so is every [’ C F.

A subspace Y of a Peano continuum X is a standard subspace if Y contains every edge
from X it intersects. Finally, two standard subspaces Y7, Y5 of X are edge-disjoint if every
edge of X is contained in at most one Y;.

14.1.3.2. Waiting times for maps from the circle. A map g: I — X or g: S* — X
which is nowhere constant is also called light. The first part of the next lemma is about
‘avoiding waiting times’: given a map g: I — X, by contracting all non-trivial intervals in
g '(x) for each x € X, one obtains an associated map that traces out the same path but
is, by construction, nowhere constant. The second part describes, in a sense, the converse
operation, and says that given a map ¢g: I — X, we may add a countable list of waiting
intervals, so that the resulting map still traces out the same path.

" Alternatively, assertion (b) can be concluded from the boundary bumping lemma [121, 5.7).

8 Alternatively, assertion (c) follows from compactness of the hyperspace [121, 4.14].

9 Alternatively, for a proof that does not rely on (¢), use normality to find disjoint open sets U,V C X
separating A from B, forming together with E(A, B) an open cover of the compact X.
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LEMMA 14.1.12. Let X be a non-trivial Peano continuum.

(a) For every continuous surjection g: I — X, there is a continuous light surjection
g: I — X and a monotonically increasing m: I — I such that g = gom.

(b) For every surjection g: I — X and any sequence (xo, 1, ...) in X, there is a zero-
sequence (Jo, J1, . ..) of non-trivial disjoint closed intervals of I and monotonically
increasing m: I — I such that g = gom: I — X maps each J, to x,.

Furthermore, the same assertions hold mutatis mutandis for maps g: S* — X.

PROOF. Assertion (a) follows from the monotone-light-factorisation [121, 13.3], and
relies on the fact that a quotient of I over closed intervals and points is again homeomorphic
to I, cf. [121, 13.4 & 8.22]. For (b), pick points y, € g~'(z,) and construct a uniformly
converging sequence of monotone surjections m,,: I — I such that m_!(y;) contains a non-

trivial interval J; for ¢ € [n]. The furthermore-part follows by viewing maps g: S' — X
as maps g: I — X with f(0) = f(1). O

We first illustrate the use of Lemma 14.1.12(b) in following well-known fact.

LEMMA 14.1.13. Suppose X is a compact metrisable space, and Y,Y1,Ys,... a zero-
sequence of Peano subcontinua of X such that Y NY, # (0 for alln € N. Then Y’ :=
Yul

nen Yn © X 15 a Peano continuum.

PROOF. Pick y, € Y, NY for each n € N. By Lemma 14.1.12(h), there is a surjection
h: I — Y and non-trivial disjoint closed intervals J,, C I such that h(J,) = {y,}. Fix
surjections h,: I — Y, such that h,(0) = h,(1) = y,. Construct surjections g,: I —

continuous surjection ¢g: I — Y as desired. 0

1Y; by replacing h [ J; by h; for i € [n]. Then g, converges uniformly to a

Our second illustration of Lemma 14.1.12(b) lets us combine edge-wise Eulerian maps:

LEMMA 14.1.14. Let X be a Peano continuum and suppose that'Y,Y1,Ys, ... is a zero-
sequence of edge-disjoint standard Peano subcontinua of X with X =Y Ul _nYn such

that Y, NY # 0. If Y and all Y,, are edge-wise Eulerian, then so is X .

neN

PRrROOF. Follow the same proof as in Lemma 14.1.13, but start with edge-wise Eulerian
surjections h: S' — Y and h,: [ —Y,,. O

14.1.3.3. An application of the equivalence for edge-wise Eulerianity. We conclude
our introduction with a proof of Theorem 14.1.4(A). Indeed, given (ii) = (i) of Theo-
rem 14.1.1, the proof of (A) reduces to the observation that for these types of spaces,
there is a simple procedure for finding an edge-wise Eulerian surjection.

PROOF OF THEOREM 14.1.4(A) FROM THEOREM 14.1.1. Let X be a Peano con-
tinuum such that for its ground space we have &(X) =7, & Zy @ - - - & Z, where each Z;
is a Peano continuum. Assume further that X has the even-cut property. By (i) < (ii)
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of Theorem 14.1.1, to complete the proof it suffices to show the existence of an edge-wise
Eulerian surjection onto X.

Partition the edge set E(X) = E"U E” where E' =, E(Z;, Z \ Z;) consists of the
finitely many cross edges between the components of &(X), and E” = E \ E’ consists of
all the edges that have both endpoints attached to the same component of &(X).

Since X satisfies the even-cut condition, X [E’] is a finite Eulerian multi-graph. Take
any Eulerian walk W on X.[E'] and extend to an edge-wise Eulerian surjection onto
Y = &(X)U FE by inserting, between any two successive edges eZ;e’ on W in (X[E'])
a surjection onto Z; from the end vertex of e to the end vertex of ¢’ in Z;.

Now by Lemma 14.1.11, the set E” = {e,, = z,y,: n € K} for K C N is either finite,
or a zero-sequence of edges. Since Peano continua are uniformly locally arc-connected,
[107, Ch. VI, §50,IT Theorem 4], for each n € K there is an z,, — y,, arc «,, in &(X) such
that diam(c,) — 0. Then Y, = e, U «, forms a zero-sequence of simple closed curves.

~

Since Y and each Y, are pairwise edge-disjoint standard subspaces which are all edge-wise
Eulerian, it follows from Lemma 14.1.14 that X = Y U Une i Yy is edge-wise Eulerian,
too. [

14.2. Eulerian maps and Peano graphs

14.2.1. Overview. Recall from the introduction that we had two, seemingly com-
peting notions for generalised Euler tours in a Peano continuum X. First, the notion of
an Fulerian map, a continuous surjection g from the circle that is strongly irreducible: no
proper closed subset A of the circle satisfies g(A) = ¢g(S'). And second the notion of an
edge-wise FEulerian map, a continuous surjection from the circle that sweeps through every
edge of X exactly once. In this chapter we show that both notions for an Eulerian space
are in fact equivalent, and thus establish (i) < (i) of Theorem 14.1.1: a Peano continuum
is Eulerian if and only if it is edge-wise Eulerian. One implication, namely (i) = (i7), is
straightforward.

LEMMA 14.2.1. Every Eulerian map is edge-wise Eulerian.

PRrROOF. Let us first note that by the intermediate value theorem, every strongly irre-
ducible map g: I — [ is injective. Otherwise, there are a < b such that g(a) = x = g(b).
Since g being constant on [a, b] results in an immediate contradiction, there exists a < ¢ < b
such that say ¢g(c) > z. By the intermediate value theorem, the interval [z, g(c)] is covered
by both g | [a,c] and g | [¢, b]. But then it is clear that for some non-trivial open interval
U C[a,c] with g(U) C [z, g(c)] we have that g(I \ U) = g(I), a contradiction.

To prove the lemma, suppose then there is a strongly irreducible map g: S' — X
onto some Peano continuum X, an edge e € F(X) and an interior point = € e such that
g1 (x) contains at least two distinct points @ and b. By continuity, there are disjoint closed
subintervals A and B C S! containing respectively a and b in their interior such that g(A)



14.2. EULERIAN MAPS AND PEANO GRAPHS 329

FIGURE 14.4. Admissible trace of an edge-wise Eulerian map on the left,
and an Eulerian map on the right.

and g(B) C e. By the first part, both g [ A and ¢ | B are injective embeddings, and so
g(A) and g(B) are subintervals of e containing x in their interior. Thus, there is an open
interval V' C e with x € V' C g(A) N g(B). But then for some non-trivial open interval
U C A with g(U) C V we have that g(S'\ U) = X, a contradiction. O

The converse of Lemma 14.2.1, however, does not hold in general, and so the equiv-
alence of Eulerian and edge-wise Eulerian spaces cannot hold function-wise: we already
observed that edge-wise Eulerian maps are allowed to pause at points in the ground space.
Much more significantly, however, consider for example the hyperbolic 4-regular tree Y
from the introduction, where an edge-wise Eulerian map is allowed to trace out non-trivial
paths on the boundary circle of Y, whereas an Eulerian map is not, as in the following
Figure 14.4. Indeed, if say g | [a,b] stays on the boundary for a non-trivial time interval
[a,b] € S, then g(S'\ (a,b)), being closed and covering (the closure of) all edges of Y,
must be the whole space (as F(Y) is dense in Y'), contradicting the defining property of
an Eulerian map. Instead, to establish (i7) = (i) in Theorem 14.1.1, we prove that if there
exists an edge-wise Eulerian map ¢ for X, then there also exists an Eulerian map A for
X. First, in Section 14.2.2 we establish a number of equivalent definitions for ‘strongly
irreducible’. Most importantly, in the context of Peano graphs (Peano continua whose
edges are dense) we can add to the equivalent descriptions that a map g from S! onto
a Peano graph X is Eulerian if and only if it is edge-wise Eulerian and never spends a
positive time interval in the ground space of X (meaning that g~ (&(X)) does not contain
a non-empty open interval), Theorem 14.2.3. In other words, this behaviour of Eulerian
maps that we have seen above is not only necessary, but also sufficient. This natural
geometric formulation of ‘Eulerian map’ will be the key to our proof of (i7) = (7).

In order to harness this geometric intuition, our next step in Section 14.2.3 is to estab-
lish our reduction result mentioned in the introduction so that we may restrict ourselves
to Peano graphs. More explicitly, given a Peano continuum X define a Peano graph X’ by
attaching to X a zero-sequence of loops to a countable dense subset of the interior of the
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ground space of X. It is immediate that X satisfies the even-cut condition if and only if
X' does. Crucially we show that X has an Eulerian map if and only if X’ has one. Going
forward we may always restrict ourselves to Peano graphs, and thus rely on the geometric
intuition of an Eulerian map as described above.

Now the strategy is clear: given an edge-wise Eulerian map ¢, we need to modify it so
that it remains edge-wise Eulerian, but no longer spends non-trivial time intervals in the
ground space. For the problem that edge-wise Eulerian maps may pause at points of the
ground space, there is an easy remedy: given any surjection ¢g: S — X onto a non-trivial
Peano continuum, by contracting all non-trivial intervals in g~'(x) for each x € X, one
obtains an induced edge-wise Eulerian map §: S* — X which is, by construction, nowhere
constant, see Lemma 14.1.12(a). This observation already establishes (iz) = (i) for the
class of all graph-like continua, and hence in particular for Freudenthal compactifications
of locally finite connected graphs, simply because of the fact that their ground spaces,
being totally disconnected, do not contain non-trivial arcs. In fact, this argument shows
that for every Peano continuum X whose ground space &(X) contains no non-trivial arcs
— if &(X) is totally disconnected, but also if it is for example a pseudoarc or any other
hereditarily indecomposable continuum [121, 1.23] — every nowhere constant edge-wise
Eulerian map for X is Eulerian. Finally, the harder case, where the ground space does
contain non-trivial arcs, will be dealt with in Section 14.2.4.

14.2.2. Equivalent Definitions for Eulerian Maps. We begin by recalling the
following well-studied classes of continuous functions. Let g: X — Y be a continuous
map between continua X and Y. Then:

e g is almost injective if the set {z : g7*(g(x)) = {z}} is dense in X;'°

e g is irreducible if for all proper subcontinua K C X, we have g(K) C g(X);

e g is hereditarily irreducible if for every subcontinuum K of X we have that g [ K
is irreducible (equivalently, for every pair of subcontinua A C B in X, we have
9(A) S g(B));

e g is strongly irreducible if for all closed subsets A C X, we have g(A4) € g(X);

e g is arcwise increasing if for every pair of arcs A C B in X we have g(A) C g(B).

In this section we relate these different types of maps, particularly when X is I or S*.
The arguments are elementary, and in most cases known or at least folklore. As the results
are important for us, and for completeness, we provide brief proofs. For discussions on

hereditarily irreducible and arc-wise increasing images of finite graphs see [1, 71].

LEMMA 14.2.2. Let g: I — Y be a continuous surjection. Then the following are
equivalent: (a) g is arcwise increasing; (b) g is hereditarily irreducible; (c) g is strongly
irreducible; and (d) g is almost injective.

10The set of points of injectivity for an almost injective function between compact spaces is not just

dense but a dense Gy, and so large (co-meager) in the sense of Baire category, [166, Theorem VIII.10.1].
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PRrROOF. Clearly, (b) < (a). For (a) = (c), show the contrapositive. So suppose there
is a proper closed subset A of I whose image is g(A) = Y. Without loss of generality,
A =1\ (s,t) where 0 < s <t < 1. If ([0, s]) = ¢([0,t]) then certainly g is not arcwise
increasing. Otherwise there is an 7 in (s,t) such that g(r) € U := Y \ ¢([0,s]). By
continuity of g at r there is a closed neighbourhood [a,b] of r such that g([a,b]) C U.
Since Y = g(I) = g(A) = g([0, s]) U g([t, 1]), we see that g maps [a, b] into g([¢,1]). Now
g([b,1]) = g([a,1]) and g is not arcwise increasing.

For (¢) = (d) show that if g is not almost injective then it is not strongly irreducible."!
So assume that {x : g7'(g(z)) = {x}} misses an open interval (s,¢) C I. This means for
all = € (s,t) there exists y, # x such that g(x) = ¢g(y,). By the Baire Category Theorem,
there is n € N and (¢',t') C (s,t) such that X := {z € (s,t) : |z — y.| = 1/n} is dense
in (s',t). Without loss of generality, |[t' — s'| < 1/n. But now g(I \ (¢',t')) =Y, since
g(I'\ (s',t")) is closed in Y and contains the set g(X), which was dense in g(s,t').

For (d) = (a) suppose f is almost injective, and pick subarcs A C B in I. Then B\ A
contains a non-empty open interval which must meet the dense set {z : ¢7'(g(z)) = {z}}
say in «’. But then g(2) € g(B) \ g(A), as required for arcwise increasing. O

Turning to the case of maps from the circle, we deduce that an Eulerian map satisfies
all of the following equivalent conditions.

THEOREM 14.2.3. For a continuous surjection g: S* — X onto a Peano continuum X,
the following are equivalent: (a) g is arcwise increasing; (b) g is hereditarily irreducible;
(c) g is strongly irreducible; (d) g is almost injective; and (e) g is irreducible.

If, additionally, X is a Peano graph, then the preceding are also equivalent to: (f) g is
edge-wise Eulerian and g='(&(X)) is zero-dimensional in S?.

PRrROOF. The equivalence of (a) through (e) follows from Lemma 14.2.2 and the fact
that for S!, every proper closed subset is contained in a proper subcontinuum, giving
(¢) & (e). Now additionally assume X is a Peano graph.

(¢) = (f). Suppose g is strongly irreducible. By Lemma 14.2.1, g is edge-wise Eulerian.
Suppose for a contradiction that ¢~!(&(X)) is not zero-dimensional. Then there is a non-
trivial interval [a,b] C S! such that g([a,b]) € &(X). However, then g(S*\ (a,b)) 2
m = X, contradicting that ¢ is strongly irreducible.

(f) = (d). For any non-trivial open interval J C S', we have J \ ¢7'(&(X)) is non-
empty, so contains a point x which is mapped under g onto an interior point of some edge
of X. Since g is edge-wise Eulerian, z is a point of injectivity of ¢g. Since J was arbitrary,

g is almost injective. ([l

As mentioned above, the converse to Lemma 14.2.1 is false, and we may not add ‘g

is edge-wise Eulerian’ to our list of equivalences, even when restricting to Peano graphs.

HSee [166, Theorem VIII.10.2] for a generalisation of this implication.
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Since edge-wise Eulerian maps have, by definition, the geometrically natural property of
an ‘Eulerian path’ of sweeping through every edge exactly once, why do we take strongly
irreducible as the primary definition of Fulerian?

The answer is twofold. First, consider, for example, the Gromov compactification
of a locally finite hyperbolic graph G with Gromov boundary 0G. By property (f), an
Eulerian map on G is not allowed to spend any non-trivial time in the boundary 0G. Hence,
Eulerian maps therefore satisfy the natural property that if a subpath of the Eulerian map
in G ‘disappears’ in some direction z € 0G towards infinity along some ray, then it must
also return from that very direction x into the graph G.

Our second, equally important reason is that for Peano graphs, Eulerian maps — unlike
edge-wise Eulerian maps — can essentially be characterised purely combinatorially in terms
of a cyclic order and orientation of the edge set, as follows.

First, fix a Peano graph X and an Eulerian map g: S — X. Note that the edges, F, of
X inherit from g a natural cyclic order. Of course the circle, S* = {(cos(27t),sin(27t)): t €
[0,1)}, has a natural cyclic order and (anticlockwise) orientation. Then any family of open
intervals in the circle have an induced cyclic order (pick one point in each interval and use
the sub-order). We have just seen that g is edge-wise Eulerian and ¢! (®(X)) is closed,
nowhere dense. But this means that the edges, E, are in bijective correspondence with
the family & = {g~'(e) : ¢ € E} of open intervals in S, which, we note, has dense union.
Then F inherits a cyclic order from U.

Second, it is also intuitively clear that, through the natural orientation on S!, any
(edge-wise) Eulerian map on a Peano graph crosses each edge once in a certain direction,
and so induces an orientation of every edge. We make this precise as follows. For any
spaces A and B let H(A, B) be the (possibly empty) set of all homeomorphisms from A
to B, and define H(A) = H(A, A) to be the set of all autohomeomorphisms of A. Every
autohomeomorphism of (0,1) (respectively S!) either preserves or reverses the (cyclic)
order. For e € E(X) define an equivalence relation, ~,, on H((0,1),e) by hy ~, hs if and
only if there is an order-preserving o in H((0, 1)) such that hy = hy 0. Then H((0,1),e)
has two equivalence classes under ~,, corresponding to the two different directions for
crossing e. Fix a bijection, o, between H((0,1),¢e)/~, and {£1}. (So o, randomly assigns
a ‘positive’ (+1) and ‘negative’ (—1) direction to the edge e.) Now suppose we also have
an Eulerian map, ¢g: S' — X. Fix an edge e. Fix an order-preserving bijection, 7, between
(0,1) and g~'(e), and define o}(e) to be [g [ g~'(e) o 7],. (Note that o4(e) is independent
of the choice of 7.) This gives a function o, : £ — {£1} via o4(e) = o.(0;(e)), the
orientation of e induced by g.

In summary: for a fixed Peano graph X with edge set £ = E(X) choose (randomly) a
direction 4+1 or —1 for each edge, then for any edge-wise Eulerian map g derive combina-
torial data of a cyclic order <, on E and a function o,: E — {£1} so that g crosses the

edges in the order given by <, and in the direction given by o,.



14.2. EULERIAN MAPS AND PEANO GRAPHS 333

Let us say that another map ¢': S' — X is cyclically equivalent to g if and only if
there is an order-preserving autohomeomorphism, o say, of S! such that ¢’ = g o 0. Then
it can be shown that g and ¢’ give the same combinatorial data — <, isomorphic to <y,
and o, = oy — if and only if they are cyclically equivalent.

Now we see how to get from combinatorial data to a function. Fix a Peano graph X
with fixed direction for each edge. Let < be a cyclic order on the edges, F = F(X), and
o any function from E into {£1}. Define g<, a function from S* to X as follows.

First select U = U< ,, a dense family of open intervals in S*, which — in the induced
cyclic order — is isomorphic to (F, <) (it is well-known that every countable cyclic order
can be realised in this fashion), say via ¢ : Y — E. For each U in U, from the randomly
assigned direction, +1, to the edge ¢(U) compared to the value of o(p(U)) we get a ~,
equivalence class in H((0,1),o(U)) — let g; be any element of this class. Now select an
order preserving bijection, 7 between U and (0, 1), and define gy = g;; o 7. Define g<, to
be gy on each U in U, and extend, if possible, to a (unique, if it exists) continuous map

from S* to X (and otherwise extend randomly).

THEOREM 14.2.4. If X is a Peano graph, with edges E = E(X) and fized direction
for each edge, then the following condition on a continuous surjection g: S' — X is also

equivalent to it being an FEulerian map:

(g) there is a cyclic order < on E and a function o: E — {£1} such that g is

cyclically equivalent to g< .

PROOF. For (f) = (g),let gbeasin (f). Let <=<,and o = o,. LetU, = {g7*(e): e €
E} be as above, with the induced cyclic order. Let U = U<, be the dense family of
open intervals used in the definition of g<,. It is well-known that since & and U, are
dense collections of open intervals which are order-isomorphic, there is an order-preserving
autohomeomorphism o* € H(S!) inducing that order-isomorphism.

Now chasing the definitions, we see that the difference between g and g< ,0 0" is caused
by choosing the ‘wrong’ class representative on some (possibly, many) intervals U in U.
But we can modify ¢* to get ¢ which is still an order-preserving autohomeomorphism and
which ‘corrects’ the mistakes, so g = g<, © 0, as required.

For (¢g) = (f) note that a function cyclically equivalent to an Eulerian map is Eulerian.
S0 suppose g = g<,, and U = U, = U< ,. By construction, g is edge-wise Eulerian, and
g 1 (B(X) =S\ UU is zero-dimensional, since U is dense in S*. O

Finally, we note that Theorem 14.2.3(f) has the following interesting consequence: it
says that if a Peano graph X is Eulerian via an Eulerian map g, then X = S'/~ is a
quotient of the circle where ~ is the decomposition of S* into fibres {g~!(z): x € &(X)}
and points, [63, 3.2.11]. Turning this procedure around, we can engineer (open) Eulerian
Peano graphs with prescribed ground spaces as follows:
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THEOREM 14.2.5. For any compact metrizable space Z there is a Peano graph X with
&(X) = Z. Moreover, for all z,y € Z, the space X can be chosen so that
(1) X is Eulerian, or
(2) X is open Eulerian from x to y.

PROOF. Such a construction can be quickly achieved using the adjunction space con-
struction, see [158, A.11.4] or [63, 2.4.12f]. Let Z be arbitrary. For (2), consider the
Cantor middle third set C' C I, and fix a surjection h: C' — Z onto Z with h(0) = =
and h(1) =y [121, 7.7]. Set X = I Uy, Z, where I U, Z is the quotient of I given by the
decomposition into fibres of h and points of I\ C. By [158, A.11.4], if g: S — X denotes
the quotient map, then g [ I \ C is a homeomorphism (onto the edge set of X) and ¢(C)
is homeomorphic to Z. Thus, &(X) = Z and by Theorem 14.2.3(f), g is an open Eulerian
map from x to y."?

For (1), add one further free arc e = xy to the space X constructed so far. 0J

14.2.3. Reduction to Peano Graphs. The main purpose of this section is to show
that in order to prove the Eulerianity conjecture, it suffices to always restrict our attention
to the case of Peano graphs, in other words, to Peano continua where the free arcs are
dense. This will be done in Section 14.2.3.3. In preparation we introduce some background
material on Peano continua, Bing’s partition theory, and a technical result on almost
injective maps from the circle in Section 14.2.3.2.

In Section 14.2.4 the reduction result is used to show the equivalence of Eulerianity
and edge-wise Eulerianity, first in Peano graphs, and then in general Peano continua.

14.2.3.1. Tools for Peano continua. In the following we shall need Bing’s notion of a
partition of a Peano continuum — originally from [24, 25|, but we use it in the form of
[117].

DEFINITION 14.2.6 (e-Peano covers and partitions). Let X be a Peano continuum. A
Peano cover of X is a finite collection U of Peano subcontinua of X such that U covers X.
A Peano cover consisting of regular closed Peano subcontinua additionally satisfying that
int(U) is connected and int(U) Nint(V) = () for all U # V € U is called a Peano partition.
If € > 0, then a Peano cover (partition) U is called an € cover (partition) if mesh(U) < e.

THEOREM 14.2.7 (Bing’s Partitioning Theorem, [24]). Every Peano continuum admits

a decreasing sequence, U, of 1/n Peano partitions.

14.2.3.2. Controlling almost injective maps from the circle. Harrold, in [92], showed
that every Peano continuum without free arcs is the strongly irreducible (equivalently,
almost injective) image of the circle, and so is Eulerian. We extend this result — and also

one of Espinoza & Matsuhashi, see [71] — so as to give more control of the map.

1261 a more explicit construction, we refer the reader to the technique in [120, Lemma 2.2].
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For this, we introduce the following notation. Let A and B be spaces. Denote by
C(A, B) the set of all continuous maps from A to B. Let K and L be subsets of A and
B, respectively. Write S(A, B; K, L) for all elements of C(A, B) taking K onto L, and
abbreviate S(A, B; A, B) by S(A, B). If X is a Peano continuum, then both C(/, X) and
S(1, X) endowed with the supremum metric d., are (non-empty) complete metric spaces.
If in addition K is closed, then S(I, X; K, L) is a closed subspace of C(I, X) and hence
also a complete metric space under the sup-metric. For sets T'C [ and g € S(I, X), we
put S(I,X,9,T)={heS(,X): h [T =g [T} Notethat S(I,X,g,T) is a non-empty
closed subspace of S(I, X), so it is itself a complete metric space under the sup-metric.
Lastly, for FF C I and § > 0 we put

Aps(I,X) ={h € S(,X): h'(h(z)) C Bs(z) for each z € F}
and

Ap(I,X) = ﬂ Apin(I,X) ={h €S, X): h'(h(z)) = {z} for each z € F}.
neN
LEMMA 14.2.8. Let X be a non-trivial Peano continuum. For each a € I and § > 0,
the set Agay5(1,X) is open in S(I,X).

PROOF. This result is well-known, and was stated for example (though without proof)
in [146, Lemma 2.3] and in [92]. We briefly sketch the argument.

We show that the complement of Aqs(/, X) is closed. Suppose that {g,: n € N}
is a sequence of functions in the complement, so for each n there are z,,y, € I with
|z, — yn| = 0 and g,(x,) = a = gn(yn), such that g, — ¢ uniformly. By moving to
subsequences and relabeling, we may assume that z,, — = and y,, — y. But then |[x—y| > ¢
and g(z) = a = g(y). Hence, g ¢ Afqy,5(1, X), i.e. the complement is closed. O

THEOREM 14.2.9. Let X be a non-trivial Peano continuum. Let T,T" C I and g €

S(I, X)) such that

(1) I=TUT,

(2) T is closed in I,

(3) Q:=g(T") C X is a Peano subcontinuum of X without free arcs, and

(4) @Nint(g(T)) = 0.
Then for each countable subset I C I with

(5) FNT =0,
the set S(1,X,9, T)NS(I, X;T",Q) N Ap(I,X) is a dense Gs-subset of S(I,X,q9,T) N
S, X;T,Q)={heS(I,X,q,T): h(T") = g(T")}, and hence non-empty.

PrOOF. As S(1,X,9,T)NS(I, X;T",Q) is a closed, non-empty subspace of S(I, X) it
is complete under the supremum metric. So the claim that S(I, X, g9, T)NS(I, X;T',Q)N
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Ar(I, X) is non-empty follows by the Baire Category Theorem once we show that it is a
dense Gs-subset of S(I,X,¢9,T)NS(I, X;T",Q).

Since Ap(1,X) = (Nyer Nmen Afay,1/m (L, X), is a countable intersection of open (see
Lemma 14.2.8) sets, it suffices to prove that for each a € F and each m € N, the
set Aaya/m(L, X) NS, X,9,T) NS, X;T',Q) is a dense subset of S(I,X,9,7) N
S, X;T,Q).

So fix some @ € F and m € N and consider any map k& € S(I,X) such that k
coincides with g on 7', and k(7") = @. Take any € > 0. We have to find a map h in
Ay m(L,X)NS(1, X, 9. T) NS, X;T', Q) with du(h, k) < &

From k(T) = g(T), k(T") = g(1"), and (3), (4) and (5), it is straightforward to find
ak € S(I,X,9,T)NS(I,X;T",Q) with do(K', k) < €/3 and k'(a) ¢ k(T). Next, find
a small Peano subcontinuum P C X with £'(a) € int(P) C P C @ and diam(P) < ¢/3
such that ¥~'(P)NT = (). After suitably reparameterising k¥’ on k'~'(P) (so that it will
be nowhere constant with value &’(a)) we obtain a k" € S(I, X, ¢, T)NS(I,X;T",Q) such
that: do (K", k) < ¢e/3, k"(a) = K'(a) & g(T) = k(T) = K'(T) = k¥'(T), and k"~ (k"(a)) is
nowhere dense in /.

Since X is Peano, there is a basis at k”(a) consisting of Peano subcontinua, in other
words, there is a nested sequence of connected, open subsets U, for n € N, such that:
P, = U, is a Peano subcontinuum of X, P,.1 CU, for all n € N, ﬂneN ﬂneN P, =
{k"(a)}, Py C P, and K"~ Y (Uy) NT = 0.

We now claim that for some n, the compact set k”~'(P,,;) is covered by finitely
many connected components (af,b7), ..., (@ ). Uy () of the open set £~ 1(U,,) such that
|6 —a| < 1/mforall 1 <i< N(n). Indeed 1f not, then by Konig’s Infinity Lemma [54,
Lemma 8.1.2], there is a choice of intervals (af,,b7,,) such that: [, —aj,,| = 1/m,
and (afl ), 000 ) C (af,,00,) for all n € N. But then (a,b) = (,cn(a, Ui)
is an interval of length at least 1/m with (a,b) = (,cn(af(,, b)) S MNnen K'=YU,) =
E'=1(k"(a)) contradicting the fact that k”"~!(k”(a)) is nowhere dense in I.

So let us fix an n € N as in the claim and consider P,,; C U, C P,. Without loss
of generality, assume a € (ay (), Uy(,))- Pick arcs a;: [af, 0] — P, for 1 < i < N(n)
from k" (al') to k”(b}) inside P, and note that since U, 4; contains no free arcs by (3), the
space | J «; is nowhere dense in U, ;. In particular, there is a point « € U, 1 which is not
yet covered by any of the a;. Using the Hahn-Mazurkiewicz Theorem, pick a space filling
curve an() (Al O] = Po from k7 (aRy,) to k" (by(,)), which we may parameterise
such that oy, (a) = .

Finally, the map h obtained from k" by replacing each k" | [al, b}] with «; for i € [N (n)]
is as desired. Clearly, h is onto by construction, and h='(h(a)) = h™!(x) C [ (> Oy
so has diameter < 1/m has desired. Further, ¥’ and h differ only within P,, and so
doo(h, k") < diam(P,) < diam(P,) < /3. Next, since ¥~ (Uy) N T = (), we have h | T =
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E'|T=Fk|Tand h(T') =K"'(T') = k(T"). Finally, we have
doo(hy k) < doo (R K") + doo (K" k') + doo (K k) < €/3+¢/3+€/3=c¢

and so we have found our surjection h € Ay 1/m(I,X) NS, X,9,7) NS, X;T",Q)
with do(h, k) < €, completing the proof. O

COROLLARY 14.2.10. Let X be a non-trivial Peano continuum without free arcs. Let
T C I be nowhere dense, and let g € S(I,X) such that g(T') is nowhere dense in X. Then
there 1s an almost injective map h: I — X with h [T =g¢g | T.

PROOF. As T is nowhere dense, we can find a dense countable subset F' C [ with
FNT = (. Since g(T) is nowhere dense by hypothesis, applying Theorem 14.2.9 with
T' = S', we obtain an almost injective map h with h | T =g | T. 0]

REMARK 14.2.11. All the results above on almost-injective maps from the closed unit
interval, I, extend naturally (with the obvious notational changes) to maps from the circle,
S, To see this, note that maps G: S* — X naturally correspond to maps g: I — X such
that g(0) = g(1) and in applying the results, always add 0 and 1 to T.

14.2.3.3. The reduction result. We now show we can reduce the general case the FEu-
lerianity conjecture (for Peano continua, possibly with some free arcs) to the special case
where the free arcs are dense, in other words, to the case of Peano graphs.

Indeed, let X be a Peano continuum with free arcs indexed by E. Define X' = X U L
to be the space obtained by attaching a zero-sequence of loops, L, to points in a countable
dense subset of the part X \ E of the ground space where the free arcs are not dense. Then
X' is a Peano graph by Lemma 14.1.13. It is immediate that X’ satisfies the even-cut
condition if and only if X does. And the next theorem says that X’ is Eulerian if and only
if X is Eulerian, and so, if the Eulerianity Conjecture holds for X’, then it holds for X.

THEOREM 14.2.12 (Reduction Result). Let X be a Peano continuum, and D a count-
able dense subset of X \ E. Define a Peano graph X' by attaching a zero-sequence of loops
L ={ly4: d € D} to points in D.

Then X' is Eulerian if and only if X is Eulerian.

PROOF. Enumerate D = {d,,: n € N}. First, if X is a Peano continuum, then so is
X =XU UnGNE by Lemma 14.1.13. Moreover, if X is Eulerian, then so is X', as
any almost injective map ¢g: S' — X lifts to an almost injective map ¢': S* — X’ by
incorporating the loops ¢4, into g using the results from Section 14.1.3.2.

Conversely, assuming that X’ is Eulerian, we show X is also Eulerian. To this end, fix
an almost injective map g: S* — X’. Pick a sequence of decreasing 1/n-Peano partitions
P, for X (see Definition 14.2.6 and Theorem 14.2.7). Let P, ; € P,1 be the collection
of all P € P, such that P is disjoint from E, but the unique Q in P, containing P
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meets E. Let {P;: j € N} be an enumeration of J, P, such that ¢; = diam(F;) is
monotonically decreasing to 0 as j — oo. Note that int(P;) N P; = () whenever ¢ # j and
that D C | ien Py Indeed, for the last statement note that every d € D by construction
has positive distance from F, so when the mesh of P,, is smaller than that distance, there
is P € P, such that d € P and PN E = (. Finally, observe that each P; is a Peano
subcontinuum of X without free arcs, and so may play the role of the set @) in item (3) of
the previous theorem.

We now define a countable dense set F' C S* and a sequence of continuous surjections
gi: St — X; where X; = X'\ {éd: de UJQPJ} such that for all i € N

the set F' witnesses that g; is almost injective,
gi(F)NoP; =0 for all j € N,

gi41 agrees with g; on S* \ int(g; ' (P;[X;])), and
gi1 (g (P[X)]) = P

[Where for a subcontinuum P C X we denote by P[X;] = PU{{; € E(X;): d € P}, in
other words, P with all loops from L that are still present in the space X;.]

Once the construction is complete, we claim that h = limg; is the desired, almost
injective surjection from S* onto X = (), Xi. Indeed, as we change our function value for
each point of S! at most once, and do so inside the target sets P;[X;] which are decreasing
in size, the sequence is Cauchy and converges to a surjection onto X. Moreover, since
the sequence (g;);en is pointwise eventually constant, it is immediate from the first bullet
point that F' witnesses that also A is almost injective.

It remains to complete the construction. Define g, = g and let F C g;'(E(X’)) be
a countable dense subset of S! witnessing that g is almost injective (possible by The-
orem 14.2.3(f)). Next, suppose recursively that g; has already been defined. Consider
T! .= g7 (P[X;]) € S, a closed, compact subspace with non-empty interior (as a positive
amount of time is needed to cover the loops ¢4 with d € int(FP;)). Let {[am,b,]: m € N}
be an enumeration of the maximal non-trivial intervals contained in g; '(P[X;]). Then
clearly, g;(am), 9i(by) € OP; = OP,[X;]. Consider the natural quotient map ¢;: X; — X1
which collapses every loop ¢4 in P;[X;] onto its base point d. Let g/ = g; 0 g;: ST — Xj41.
We then may apply Theorem 14.2.9 for maps on S' (see Remark 14.2.11) to the map
gi € 8(S', X;,1) in order to find a surjection g; 11 € S(SY, X411, g5, T;)NS(SY, Xy 1; TV, Q)N
A (8%, Xe11) where Tp = U\ Uy (@ bn). 77 = g7 (PIXL), Qs = g(T)) = Py and
Fy = U, en(@m, b)) N F.

We claim that g;1; is as desired. That it satisfies the properties of the third and
forth bullet points follows from the fact that it is an element of S(S*, X, 1, ¢}, T;) and of
S(SY, X1 1; TY, Q;) respectively. For the first bullet point, we verify that all points of F' are
points of injectivity of g;11. Since gi+1 € Ar (S?, X;41), this is clear for points of F; C F.
Suppose for a contradiction that some z € F \ F; is no longer a point of injectivity for
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Giv1- Since giq [Ty = g, | T; = ¢; | T; and & was a point of injectivity for g;, it must
be the case that there is 2’ € (a,,b,,) for some m € N such that g;i1(x) = g1 (2').
This, however, implies that ¢;41(z) € 0F;, but since g;+1(x) = g;(z), this contradicts the
property of the second bullet for g;. Lastly, it remains to verify that g;1(F)NoP; = 0 for
all j € N. This is clear for points in F'\ F; as their values are unchanged, and follows for
points in Fj from the fact that g;11 € Ar (S, Xi11) NS(SY, Xii1, giv1, T;) readily implies
that g;+1(F;) C int(P). O

14.2.4. Equivalence of Eulerianity and Edge-Wise Eulerianity. Recall we have
defined a Peano continuum X to be edge-wise Eulerian if there is a surjection g: S' — X
such that g sweeps through every free arc of X precisely once, and we have seen that every
Eulerian continuum is edge-wise Eulerian. We now establish the converse, the proof of
which establishes the assertion for Peano graphs first, and then, utilizing the reduction

result, for general Peano continua.
THEOREM 14.2.13. A space is Eulerian if and only if it is edge-wise Fulerian.

ProoF. By Lemma 14.2.1, only the backwards implication requires proof. We first
prove this implication for Peano graphs, in other words, when the edges are dense.

The circle has a natural cyclic order where x < y < z if we visit y as we travel
anticlockwise around the circle starting at x and ending at z. Then we say a surjection
g: St — X is edge-wise monotone if for every edge e of X its inverse image, g '(e) is a
single open interval in S' (so g crosses e exactly once) and, after orienting e appropriately,
g is monotone (if z < y < z in g*(e) then g(z) < g(y) < g(2) in €) from g'(e) and
e (so g may pause when crossing e, but does not backtrack). Clearly edge-wise Eulerian
maps are edge-wise monotone, but observe, also, that if ¢ is edge-wise monotone then, as
explained in Lemma 14.1.12(a), we can eliminate the waiting times to get an edge-wise
Eulerian map with nowhere dense fibres. In any case, it suffices to show that if X has an
edge-wise Eulerian map with nowhere dense fibres then it has an Eulerian map. We do
this in two steps.

First of all, let us write M(S*, X) C S(S*, X) for the space of edge-wise monotone
maps with the sup-metric. We will show that this is a closed subspace, and hence a
Gs set. Let us write W(S', X) C S(S', X) for the space of edge-wise Eulerian maps
which have all fibres nowhere dense, with the sup-metric. Fix a countable subset D
of S'. Noting that a map ¢ from S!' onto X has nowhere dense fibres if and only if
for every distinct d and d from D and every z strictly between them (d < = < d')
either g(x) # g(d) or g(z) # g(d'), we see that W(S', X) = M(S', X) N Nyrpep Uda
where Uggy = Uyepeafg € S(ST,X) 1 g(d) # g(x) or g(d') # g(z)} is an open set.
Thus W(S!, X) is a non-empty G5 subset of S(S!, X), which is complete, and so itself
is complete, [63, 4.3.23]. Hence — by the Baire Category Theorem — dense G subsets of
W(S!, X) are non-empty.
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Now to show that M(S?, X) is indeed closed, suppose we have a sequence (g, : n € N)
in M(S*, X) and g € S(S*, X) with duo(gn, g) — 0. We need to show that g € M(S!, X),
which in turn means we need to show that for every edge e € F(X), we have g is monotone
on the interval g~'(e). Fix an edge e. It can be oriented in one of two ways. Since the
gn’s converge uniformly to g, and every g, is monotone on the interval g,'(e) for some
orientation of e, eventually the orientations must all be the same. So without loss of
generality, let us assume e is oriented the same way for all n in N. Take any x, z in g~*(e)
and any y between them, z < y < 2. Then again by uniform convergence of the g,’s to
g and the intermediate value theorem, if g does not respect the order, so we do not have
g(xz) < g(y) < g(z), then for some large enough n, g, will also not respect the order -
contradicting g, being edge-wise monotone. Now it follows both that y is in g~!(e), which
is therefore an interval, and that g is monotone on that interval. Hence, g € M (S, X)
and we have established that M(S*, X) is closed.

The second step (for X a Peano graph) is to show that for every a in S* and § > 0, the
set Agay,5(ST, X)NW(SY, X) = {g € W(S', X): g7*(g9(a)) € Bs(a)} (where Agqy (ST, X)
is as defined in Section 14.2.3.2) is dense in W(S!, X). Since it is open, see Lemma 14.2.8,
taking any countable dense subset F© C S!', by Baire Category, there is a function in
Muen Nucr Afar/n (S, X)NW(S!, X). This function is then almost injective, so Eulerian
by Theorem 14.2.3, as desired.

So it remains to check for density. For this, let ¢ € W(S', X), @ in S' and ¢ > 0
be arbitrary. Our task is to find h € Ay 5(S', X) N W(S?, X) with dw (g, h) < e. Since
X is Peano, there is a basis at g(a) consisting of Peano subcontinua, so in particular
there are connected, open subsets Uy and U; such that: diam(Uy) < /2, P, = U is a
Peano subcontinuum of X, and a € U; € P, C Uy. Clearly, the compact set g~ (P)
is covered by finitely many connected components (aq,b1), ..., (ax,by) of the open set
g7 (Up). Relabelling if necessary, assume a € (a1, ;). Let us write g; for g | [a;, b;] where
1 <17 < k. We deal with two cases depending on whether or not ¢g; crosses an edge of X.
Case 1. Suppose g; crosses an edge of X. Then we can reparameterise g; to get ¢} so
that ¢} (a) is in e. Now define the map h on the circle to be g] on [ay, b;] and g elsewhere.
Then h is as desired, indeed du.(g,h) < €¢/2, h™'(h(a)) = {a} and as g is never constant
on a non-trivial interval, by construction of h, it too has nowhere dense fibres.

Case 2. Otherwise, by the boundary bumping lemma we know that the image, ran g;, of
g1 is a non-trivial subcontinuum of &(X) N Uy. In particular, let us fix distinct points
x1,...,Tox_1 € ran g, and — this is where we assume X is a Peano graph, and the edges
are dense — for each of them a sequence of edges e/, € U; such that e’ — z; as n — oo.
Now, as ¢ is edge-wise Eulerian, each edge e!, must be crossed by precisely one function
g; for 2 < j < k. By the pigeon hole principle we see that for each 4, at least one function
;) crosses infinitely many of {e,: n € N}. Moreover, since we have 2k —1 =2(k—1)+1

many points x;, but only & — 1 functions, by the pigeon hole principle again, there is
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one function, say (relabelling if necessary) g, that is used at least three times, say (after
relabelling) for xy, x5, x3.

Now by construction, there are points 1, y2,y3 € (a2, bs) and (z¢,: m € N) for i € [3]
such that such: go(y;) = @, g2(2},) € €, and z,, = y; as m — 0.

Relabelling if necessary, let us assume that y; < y» < ys3, and further, for all m € N we
have y; < 22, < yo. This means, in particular, that g, | [y1,y2] starts and ends in ran(g;)
and crosses an edge. Pick z < y € [ay,b] such that ¢(x) = 27 and ¢1(y) = x3. Then
define ¢’ on S! to be g except swap g | [z,y] with g5 | [y1,52]. Clearly ¢ is edge-wise
Eulerian, has nowhere dense fibres (by construction, given that g has the same property)
and has distance < €/2 from g. Now apply the argument of Case 1 to ¢’ to get the map
h. This h is as required: doo(g,h) < doo(9,9’) + do(g’,h) < €/2 +€/2 = €, and h is in
Agars(ST, X) NnW(SH, X).

To complete the proof, consider now an arbitrary Peano continuum X which is edge-
wise Eulerian. Let g: S1 — X be a surjection that sweeps through every free arc of X
precisely once. Let X’ be the Peano continuum where we attached a dense zero-sequence
of loops of the ground space of X, as in Theorem 14.2.12. Then X’ is a Peano graph,
and g clearly lifts to a surjection ¢': S* — X' that sweeps through every free arc of X’
precisely once by Lemma 14.1.14. Hence X’ is edge-wise Eulerian, and so Eulerian by the
first part of this proof. By Theorem 14.2.12, it follows that X is Eulerian, as well. O

Finally, we conclude this chapter with a further reduction result reducing to the case
where we do not have loops.

THEOREM 14.2.14 (Loopless reduction result). It suffices to prove the Eulerianity con-
jecture for Peano graphs without loops. More precisely, Conjecture 1/.1.2 holds for a
Peano continuum X provided it holds for all loopless Peano graphs Z with &(Z) = &(X).

PrOOF. By the first reduction result, is suffices to consider Peano graphs X only.
Since the Eulerianity conjecture holds for spaces X where &(X) is a singleton (in which
case X is either a circle, a wedge of finitely many circles, or a Hawaiian earring), we may
assume that |&(X)| > 1. So consider such a Peano graph X with |&(X)| > 1 satisfying
the even-cut condition, and let L = {e € E(X): e(0) = e(1)} C E(X) be the collection of
loops in X. Then Y = X — L is a Peano continuum, but may no longer be a Peano graph.
Let U = int(ﬁ) N&(X). If U =10, set F := (. Otherwise, let D = {dy,ds,...} be a
countable dense subset of U. Since X # S no d, is isolated in &(X). For each d,, consider
a small Peano continuum neighbourhood P, C X with d,, € int(P,) C P, C int (W)
Then P, — L C &(X) is a non-trivial Peano continuum. Hence, there exists a small non-
trivial arc oy, C &(X) from d,, to say x, of diameter < 27". Add a new edge / free arc f,
from d,, to x,, of length dist(d,,z,) < 27", and set F' = {f,: n € N}. Then Z =Y + F'is
a Peano graph with &(Z) = &(X). Moreover, Z inherits the even-cut condition from X,
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since loops in L and edges in F' each have both their end points in the same component of
&(X) = &(Z), and hence to not appear in any finite edge cut. By assumption, there exists
an edge-wise Eulerian map gz for Z. This turns naturally into an edge-wise Eulerian map
gy for Y| by replacing every newly added edge f, by «,. But using Lemma 14.1.14, we
may incorporate the zero-sequence of loops in L into gy in order to obtain an edge-wise
Eulerian map ¢gx for X. By Theorem 14.2.13, it follows that X is Eulerian. OJ

14.3. Approximating by Eulerian decompositions

From the introduction we know that the key task facing us is the construction of
Eulerian maps for Peano continua with the even-cut condition. From the last chapter,
we know that we may restrict our attention to constructing edge-wise Eulerian maps.
The goal for this chapter is then to provide one such construction. In order to do so,
we introduce a versatile framework which we call ‘approximating sequences of Eulerian
decompositions’, and then show that these can indeed be used to give an edge-wise Eulerian
map, thus completing the proof (i7) < (ii7) announced in Theorem 14.1.1. The implication
(17) = (i7i) is proved in Theorem 14.3.6 and (iii) = (i7) is proved in Theorem 14.3.12.

The idea behind this framework of Eulerian decompositions lies in the observation that
any edge-wise Eulerian map induces a countable cyclic order on the edge set E(X) of our
Peano continuum X. As in the case of graph-like spaces [70], we want to approximate
such a cyclic order on a finitary version of X, and then choose a sequence of compatible
approximations that ‘converge’ to the desired cyclic order on X. In this chapter, we
formalise this idea. We describe what we understand about finite approximations and lay
down a set of rules that these have to satisfy in order to make the ideas of ‘compatible’ and
‘converging’” mathematically sound, and then state and prove our main mapping result,

Theorem 14.3.12, for constructing edge-wise Eulerian maps.

14.3.1. Eulerian Decompositions. An important tool in structural graph theory
is the notion of a tree-decomposition, due to Halin [88], and rediscovered and made widely
known by Robertson and Seymour in their graph-minors project [135]. Roughly, a tree
decomposition (7', 7) of a graph G consists of a tree T" and a map 7 such that 7(¢) is a sub-
graph of G for every ¢t € V(T'), such that the various subgraphs (‘parts’) {7(t): t € V(T)}
form a cover of the graph G whose elements are roughly arranged like T, see also [54,
§12.3].

In analogy, we will now consider Eulerian decompositions: covers of a Peano continuum
X by finitely many parts which are arranged roughly like an Eulerian graph.

14.3.1.1. Setup and definitions.

DEFINITION 14.3.1. Let X be a Peano continuum. A subspace Y C X is called
standard if Y contains all edges of X it intersects.
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Recall that for an edge e of a finite multi-graph or a Peano continuum, we write e(0)

and e(1) for the two end vertices of e (if e is a loop, then e(0) = e(1)), see Lemma 14.1.11.

DEFINITION 14.3.2 (Eulerian decomposition). Let X be a Peano continuum, G be a
finite multi-graph with bipartitioned edge set F(G) = F'U D, and n be a map with domain
V(G) U E(G) such that

(E1) n(v) is a non-empty standard Peano subcontinuum of X for all v € V(G),
(E2) n(f) € E(X) for all f € F, and
(E3) n(d) C &(X) is a (possibly trivial) arc for all d € D.

The pair (G, n) is called a decomposition™® of X if it satisfies the following four conditions:

(E4) the family {n(z): x € V U F'} forms a cover of X,

(E5) the elements of {n(x): x € V U F} are pairwise E(X)-edge-disjoint,"*

(E6) (n(£))() € n(f(5)) for all f € Fand j € {0,1}, and

(E7) (n(d))(j) € n(d(y)) for all d € D and j € {0,1}.
The width of a decomposition is w(G,n) := max {diam(n(v)): v € V}. The edges in F’
are also called real or displayed edges, and the edges in D are the dummy edges of G.
The elements {n(v): v € V'} are called tiles of the decomposition. A decomposition (G, n)
where GG is Eulerian, is called an Eulerian decomposition of X.

Dummy edges d between vertices v, w of G represent the possibility of moving from tile
n(v) to n(w) through a common point in their overlap (if 7(d) is a singleton) or through
an arc contained in the ground space of X (if n(d) is a non-trivial arc). As an illustration,

consider two Eulerian decompositions of the hyperbolic 4-regular tree X.

d

FIGURE 14.5. Two Eulerian decompositions (G,n) and (G',7’) for X with
tiles in pink and black (single vertices), displayed edges in blue, dummy

edges n(d;) = {6} = 1/(d;) in red, and n(v) = {2} = n'(v3).

13Note that due to (E2) and (E3), the information E(G) = F U D is encoded in 7.
14This implies that 7 | F is injective; however, for distinct vertices v and w of G, n(v) = n(w) could
be the same tile, which must then be contained in the ground space. Note also that n(v) could contain

free arcs which are not free in X. These don’t play a role for the requirement of edge-disjoint.
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Recall that an edge-contraction is the combinatorial analogue of collapsing the closure
of an edge in a topological graph to a single point. Formally, given an edge e = xy in a
multi-graph G = (V, E) (with parallel edges and loops allowed), the contraction G/e is
the graph with vertex set V' \ {z,y} U {v.} and edge set E \ {e}, and every edge formally
incident with x or y of GG is now incident with v.. Note that all edges parallel to e are now
loops in G/e. If e was a loop in G, then G/e = G — e. The contraction of more than one
edge is denoted by G/(e, ..., ex). The order in which we contract edges does not matter.
Any such graph G’ which can be obtained by a sequence of contractions from G is called
a contraction minor of G, denoted by G’ < G.

LEMMA 14.3.3 (Contractions on Eulerian decompositions.). Suppose D = (G, n) is an
[Eulerian] decomposition of X with edge partition E = E(G) = F U D. Then for an
arbitrary edge e = xy € E, there is an [Eulerian] decomposition D/e := (G',n') where
G' = G/e, E' = E — e with induced partition F' U D', and the function n' given by

(C1) 7' (ve) = n(x) Un(e) Un(y),
(C2) n'(v) =n(v) for all v # v, and
(C3) (') =n(€) for all e’ € E'.
PROOF. By property (E6) and (E7) for D (depending on whether e € F or e €
D respectively), we have that 7'(ve) is a standard subcontinuum of X. The remaining

properties are easily verified.
Finally, it is clear that if G is Eulerian, then so is G. Il

DEFINITION 14.3.4. For two decompositions Dy = (G1,1;1) and Dy = (Ga,12) of X, we

say that Dy extends D, in symbols D; < Ds, if there is a sequence of edges eq,..., e, €
E(Gs) such that Dy = Dy/ (e, ..., ex).

In particular, D; < D, implies that G; < G5, and conversely, every contraction minor
Ga/{e1, ..., ex) gives rise to a corresponding Eulerian decomposition which is extended by

(5. For illustration, consider the following decompositions of the hyperbolic tree X.

DEFINITION 14.3.5. A sequence of [Eulerian| decompositions (D,,: n € N) for a Peano
continuum X is called an approzimating sequence of [Eulerian] decompositions for X, if

(A1) D,, < D,y for all n € N, and

(A2) w(D,) — 0 as n — oo.

14.3.1.2. From Fulerian maps to Eulerian decompositions. One motivation behind the
definition of an Eulerian decomposition is they can be generated from every (edge-wise)
Eulerian map ¢: S* — X. In fact, any such map yields a surprising simple approximating
sequence as follows:

THEOREM 14.3.6. Every edge-wise Eulerian space admits an approximating sequence
((Gn,nn): n € N) of Eulerian decompositions, where each G, is a cycle of length n.



14.3. APPROXIMATING BY EULERIAN DECOMPOSITIONS 345

(11

FIGURE 14.6. Eulerian decompositions (Gy,7m1) < (Ga,72) with dummy
edges satisfying 7 (d;) = ¢; for ¢ € [2] and n9(d;) = 0; for ¢ € [6]. Note that
G, < G5 by contracting all edges inside the dotted subgraphs of Gj.

PROOF. Suppose that g: S' — X is an edge-wise Eulerian map. Then the preimages
I. := g~ '(e) C S* for edges e € F(X) form a collection of disjoint open intervals on S*.
Let E(X) = {e;: j € J} for some (possibly finite) J C N be an enumeration of the edge
set of X, and let A = {dy,09,...} be a countable dense subset of S'\ |J{I.: e € E(X)}.
Set B, = {e;: 1 € [n]} and A, = {0;: 7 € [n]} (if A is empty, A, is empty, t00).

For n € N, let C,, = {J{L,...,J,?n} denote the set of connected components of
S\ (A, UU{lc:e€E}). Let V,, = {v;: J€C,}, F, = {fe:e€E,} and D, =
{ds: 6 € A, } be duplicate sets of C,,, E, and A,, respectively. In our Eulerian decomposi-
tion (G, M,), the graph G,, will be a cycle with vertex set V,, and edge set E(G,) = F,UD,,.

Define 7, (vs) := g(J) for each v € V,,. By construction, 7,(v) is a standard Peano
subcontinuum of X, giving (E1). Set n,(f.) := e and 7n,(ds) := ¢ for (E2)—(E5). Since
every interval in {/.: e € E,} and every point in A,, is incident with the closure of precisely

two components of C,,, transferring this assignment to G, satisfies (E6) and (E7) (formally,
if I, NJ # 0 we put f. ~ vy, and similarly, if 6 € .J, put ds ~ v;). Hence, all properties
of Definition 14.3.2 are satisfied, and so (G,,,n,) is an Eulerian decomposition of X.

To see that ((G,,n,): n € N) is an approximating sequence, note that for (A1), it is
easily verified that (Gp11, n+1)/{€n+1, dni1) = (Gn,nn). For (A2), note that by our density
assumption on A, it follows that mesh(V,) — 0. By elementary topological arguments,
this implies that also mesh({n,(v): v € V,,}) = 0, i.e. w(G,,n,) — 0. O

14.3.1.3. A link between even-cut property and Eulerian decompositions. Our second
motivation for Eulerian decompositions is that by permitting the model graph G to be
Eulerian, and not necessarily only a cycle, such decompositions can be built assuming
just the even-cut condition, as demonstrated by the following observation which forms the
blueprint for the more intricate constructions in the later chapters.

For the construction, we recall the following notion:
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DEFINITION 14.3.7 (Intersection graph). For U a family of subsets of X, the associated
intersection graph Gy is the graph with vertex set U, and an edge UV for U # V e U
whenever U NV = ().

If U is a finite cover of a Peano continuum X, it follows from the connectedness of X
that Gy, is a finite connected graph.'”

BLUEPRINT 14.3.8. Suppose X satisfies the even-cut condition. Then any Peano parti-
tion of X into standard subspaces gives rise to an Eulerian decomposition for some suitable

choice of dummy edges.

PROOF. Let U be a (finite) Peano partition of X into standard subspaces. Let F' C U
denote the collection of standard subspaces consisting of a single edge, and put V =
(U \ F)U S where S is the finite collection of isolated points of X — F.

Now let G’ be any graph with vertex set V' and edge set F' satisfying (E4), (E5) and
(E6) of Definition 14.3.2. Our task is to add some new dummy edges D to G’ to form a
supergraph G that will be the desired Eulerian decomposition satisfying (7).

Towards this, consider the auxiliary graph H = (V| Ey) given by the intersection
graph Gy on V associated with the cover V' of X — F. We shall prove that we can find a
multi-subset D C Ey as desired.

As a first step, we claim that for each component C' of H, the number of odd-degree
vertices of G’ in C is even. To see the claim, note first that X — F' has finitely many
connected components, Lemma 14.1.11, and for every component C' of H, the underlying
subset | C is a connected component of X — F by (E1). Thus, the bipartition (C, D) with
D=V —-Cof V=V(H)=V(G) induces a bipartition of &(X), and hence an edge cut
B:=E(JC,|UD) C F of X, which must be even by assumption. However, property (E6)
of G’ implies that F(C, D) = B is also an edge cut of G’ containing the same edges. In
particular, the quotient graph G, of G’ where we collapse D to a single vertex vp has the
property that vp has even degree, as vp is adjacent precisely to the evenly many edges in
B, plus possibly some loops (which do not affect the parity of the vertex degree). By the
Handshaking Lemma, the number of odd-degree vertices in G, is even. Since vp has even
degree, it follows that the number of odd-degree vertices of G{ in C' (and hence also of G’
in C) is even, and thus the claim follows.

Hence, we may pair up the odd-degree vertices of G’ such that pairs lie in the same
component of H. For each such pair {u,v}, consider a w — v path in H. By taking the
mod-2 sum over the edge sets of all these paths, we obtain an edge set D; C Ey such that
by adding D; to G’, one obtains an even graph G”.

Since the intersection graph H is connected, we may find an edge set Dy C Ep such
that adding D, to G” results in a connected graph. Then define G := G”" U2 Dy, i.e. for

5For a cover U, the intersection graph Gy, is sometimes also called the nerve of the cover.
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every edge in Dy we add two parallel dummy edges to (G, in order to ensure connectedness
without affecting the degree parity conditions.

Finally, to make sure that property (E7) of Definition 14.3.2 is satisfied, note that by
definition of the intersection graph H, for every d = zy € Epg, the sets x,y € V intersect,
and hence we may choose a point (i.e. a trivial arc) n(d) contained in x Ny C X, satisfying
property (E7) as required. 0]

14.3.2. Obtaining an Edge-Wise Eulerian Map.

14.3.2.1. Translating combinatorial information to topolopy. For the benefit of clarity,
and because we will need to jump between combinatorial and topological graphs, we denote
for a combinatorial multi-graph G by |G| the underlying topological space. Recall that
for an edge e of a finite multi-graph or a Peano continuum, we write e(0) and e(1) for the
two end vertices of e, and e(z) for z € (0, 1) for the corresponding interior point on e.

DEFINITION 14.3.9 (Usc function, covering function). For a topological space X let
2X = {A C X: A nonempty, closed}. A function g: Y — 2% is upper semi-continuous
(usc) if for all y € Y and all open sets U D f(y) there is an open neighbourhood V' of y
such that (J,.c g(y') € U. The function g is said to cover X if X =J{g(y): y € Y'}.

LEMMA 14.3.10. Suppose (G,n) is an Eulerian decomposition of some Peano contin-
uwum X. Then the map 7: |G| — 2% given by
e 7)(v) :=n(v) for allv €V, and
o 7i(e(y)) == {(n(e))(y)} for all e € E(G) and y € (0,1)
defined on the 1-complex |G| of G is upper semi-continuous, covers X, and is injective

and acts as identity for points on real edges.'® Moreover, diam(7(y)) < w(G,n) for all
y € |Gl

PROOF. First, it is immediate from property (E4) that 7 covers X. Next, the usc-
condition for 7 is evidently satisfied for interior points on edges of G. So consider a vertex
v € G and an open set U C X with P = n(v) C U. To simplify notation, let us write
fx :=n(f) for every edge f € F, and similarly dx := n(d) for every edge d € D.

By (E6), every edge f € F incident with v in G, say f(j) = v, satisfies that fx(j) €
n(v), and hence fyx N U is an open neighbourhood of fx(j) € fx € X. Since 7 acts as
the identity between f and fx, there is an open neighbourhood V; of v in f such that
Uy'evf A(y') = fx NU. By (E7), we similarly obtain an open set V for every d € D.
Together, this yields that

V={o}u|J{V;: feF f~v}ul J{Vi:de D, d~v}
is an open neighbourhood in |G| of the vertex v satisfying that (J ., 7(2") € U, which

establishes that 7 is upper semi-continuous.

61nterior points of a dummy edge d for which n(d) is trivial are mapped constantly to that singleton.
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That 7 is injective and acts as identity for points on real edges follows from (E5).

Finally, that diam(7(y)) < w(G,n) for all y € |G| is clear from construction. O

Lastly, we record how the usc-maps corresponding to two comparable Eulerian decom-
positions relate to each other:

LEMMA 14.3.11. Let X be a Peano continuum. For two Eulerian decompositions D =
(G1,m) and Dy = (Ga,1m2) of X with Dy < Dy, let o: |Ga| — |G1| denote the edge-
contraction map corresponding to G; < Go. Then the associated usc-maps 7, and 1y
satisfy 12(y) € M1 (o(y)) for all y € |Gol.

PRrROOF. It suffices to prove the lemma in the case where we contract a single edge, say
Dy = Dy /e with e = ab. In this case,

z forall z € |Gy \€, and

0. |G2| — |G1|, Z =
ve forall z€e={a}UeU{b}.

Also, according to Lemma 14.3.3, we have G; = Gg/e and 1, is given by

o m(ve) = m2(a) Una(e) Unz(b),

e 11(v) = n2(v) for all v # v, and

o 1(f) = m(f) for all f € B(Gy)\ {e}.
To verify the assertion of the lemma, consider some z € |Gs|. If z is an interior point
of some edge f # e, then it follows from the statement in the third bullet point that
Mm(o(z)) = Mm(z) = M2(z). Similarly, if z is a vertex other than a or b, then it follows
from the second bullet point that 7;(0(2)) = 71(2) = 72(2). Finally, if z is an end vertex
or interior point of e, then it follows from the first bullet point that 7;(0(z)) = 71 (ve) =

n2(a) Una(e) Ura(b) 2 72(2)- =

14.3.2.2. Construction of edge-wise Fulerian maps. We now prove our main theorem
of this chapter that every approximating sequence of Eulerian decompositions gives rise
to an edge-wise Eulerian map, completing the proof of (ii7) = (i7).

THEOREM 14.3.12 (Mapping Theorem). Any Peano continuum X admitting an ap-
proximating sequence of Eulerian decompositions is edge-wise Fulerian.

PrOOF. Let (D, : n € N) with D,, = (G, n,) be an approximating sequence of Euler-
ian decompositions for X, each G, with edge bipartition E, = F,, U D,, into real and
dummy edges. Note that by property (A1) and Definition 14.3.4, we have G,, is a contrac-
tion minor of G, for all n € N, and hence the sequence (G, : n € N) forms an inverse
system of finite Eulerian multi-graphs under contraction bonding maps. Hence, the inverse
limit [' = @Gn is an Eulerian graph-like continuum, see [70, Thm. 13, Prop. 17]. Write
F=UF,and D =JD,. Then E(I') = F' U D. Note that there is a natural bijection
between F' and E(X) via n(f) :=n,(f) if f € F,,, which is well defined by property (C3).
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Further, it is readily checked that (A2) and (E4) imply that n is onto, while (E5) implies
that 7 is injective.

We now construct a continuous surjection 7: |I'| — X such that 7 is injective for
interior points on f € F and 7 | f: f — n(f) is a homeomorphism for interior points on
f € F C E(T) to its associated edge n(f) € E(X) for all f € F. For the construction of
7, consider first for each n € N the function

qn: |T| — 2% z= (zi: i € N) = 1,(20),

which, by Lemma 14.3.10, is upper semi-continuous, covering, and is injective and acts as
identity for points on edges f € F. Moreover, Lemma 14.3.11 shows that

(i) Qn+1<z> C Qn(z)

for all n € N and z € |I'|. Thus, (),cn@n(2) € X is a nested intersection of non-
empty closed subsets of X, and so it follows from compactness of X that this intersection
is non-empty. At the same time, however, we have diam(q,(z)) < w(Gpn,n,) — 0 by
Lemma 14.3.10 and (A2), and so this intersection must be a singleton for each z € |T'|.
Hence, there is a function

n: |T'| — X defined by {n(z)} = ﬂ qn(z) forall z € |I'].

neN

As the image of each ¢, is an upper semi-continuous function that covers X and satisfies
(1), it follows from [121, General Mapping Theorem 7.4] that the map 7: [I'| — X is a
continuous surjection as desired. Further, it is clear by the definition of 7 that for every
real edge f € F we have N7 (n(f)) = f and /) | f acts a identity from f € F onto
n(f) € B(X).

In order to complete the proof, note that since I' is an Eulerian graph-like continuum,
there is an Eulerian map h: S — |TI'|. In particular, h is a continuous surjection with
the property that for every open edge f € E(I') (dummy and real edges alike) we have
I; :=h7(f) is an interval on S* and h | I; is a homeomorphism from I onto f.

We now claim that g = o h: S — X is the desired edge-wise Eulerian map. Clearly,
as the composition of surjective functions, g is itself a surjection from the circle onto X.
To see that g is edge-wise Eulerian, we need to check that g sweeps through each edge of
X precisely once. So let e € E(X) be arbitrary. By our considerations above, there is a
unique f € F with n(f) =e. But g7'(e) = h ™t o7 '(e) = I;. Since hy = h | I; is a
homeomorphism from Iy onto f, and 7y =7 | f acts as identity between interior points of
f and e, it follows that g [ Iy is as the composition of the homeomorphisms 7); o hy itself
a homeomorphism from Iy onto n(f) = e. Thus, we have verified that g is an edge-wise
Eulerian map, and hence that X is edge-wise Eulerian. 0
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14.3.3. Simplicial Maps. In this last section on Eulerian decompositions, we de-
scribe an equivalent condition to Definition 14.3.4 about compatible Eulerian decomposi-
tions, which lends itself better to the constructions in the next two chapters.

DEFINITION 14.3.13 (Contraction map, edge-contraction map). We call a surjective
map ¢o: Go — G1 between two graphs G; = (V;, E;) a contraction map if

Q1) o(V2) = Vi,

1)
(Q2) o restricts to a bijection between E, \ o~'(V}) and Ej,
3)

(Q3) ole(s)) = (e(e))(j) for all e € By \ o™'(V1) and j € {0,1}, and
(Q4) o(e(4)) = o(e) for all e € B, N o' (V}) and j € {0, 1}.

If additionally,
(Q5) o '(v) is a connected subgraph of Gy for all v € V(G,),

then the map p is called an edge-contraction map.

Thus, an edge-contraction map ¢: Go — (G is precisely a map witnessing that G <
(G5, whereas a contraction map may identify vertices that are not necessarily connected

by an edge.

DEFINITION 14.3.14. Let Dy = (G1,m1) and Dy = (Ga,19) be decompositions of a
Peano continuum X. A contraction map o: Gy — (G is called n-compatible if

)= J{mw:yeo' (@)}

for all x € V(G1) U E(Gy).

LEMMA 14.3.15. Suppose D1 = (G1,m) and Dy = (Ga,1m2) are both decompositions
of a Peano continuum X. Then Dy < Do if and only if there is an n-compatible edge-
contraction map o: Gy — Gj.

PROOF. This follows from the observation that G; = Gy/(ey,...,e) if and only if
there is an edge contraction map g: Gy — Gy such that o7 (V}) = {e1,..., ex}. [

14.4. Product-structured ground spaces

14.4.1. Introduction. In this chapter we establish that the Eulerianity conjecture
holds for Peano continua X whose ground space has a product structure, in other words,
where &(X) = V x P is the product of a (compact) zero-dimensional space V' with a Peano
continuum P, thereby proving the second case (B) of our main result Theorem 14.1.4 stated

in the introduction.

THEOREM 14.4.1. Let X be a Peano continuum with ground space &(X) =V x P
where V' is a compact zero-dimensional space and P a Peano continuum. Then X is

Fulerian if and only if it satisfies the even-cut condition.
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Bula, Nikiel and Tymchatyn have asked whether the Eulerianity Conjecture holds for
spaces with ground set C' x K, where C' is the Cantor set and K is any continuum (not
necessarily Peano), [41, Problem 3]. For this question, our Theorem 14.4.1 gives a strong
answer in the case where P = K is a Peano continuum. For our result, the assumption that
P is Peano is crucial. To demonstrate this, recall that Bula, Nikiel and Tymchatyn have
also asked whether a Peano continuum X with ground space a continuum (not necessarily
Peano) satisfies the Eulerian conjecture [41, Problem 2]. We believe that this question
is, maybe unexpectedly so, at least as hard as the situation discussed in Theorem 14.4.1:
indeed, with the techniques from this chapter one can establish the Eulerianity conjecture
for spaces X with ground space a Cantor fan, or even a generalised fan of the form
&(X)=(VxP)/{(v,p): veV} for some p € P.

14.4.1.1. Blanket assumptions. Given our work in Chapter 14.2, for our proof of The-
orem 14.4.1, we may assume throughout this chapter, without any loss of generality, that
our Peano continuum X satisfies the following additional assumptions:

e X is a Peano graph without loops by the second reduction result, Theorem 14.2.14.

e X has diameter bounded by 1.

e P is not a singleton (as otherwise, X is a graph-like continuum, a class for which
the Eulerianity conjecture is already known to hold [70]).

14.4.1.2. Proof strategy. After having established Theorem 14.1.1, by (ii1) = (i) we
need to construct an approximating sequence of Eulerian decompositions for X. The first
ingredient to construct this approximation is the observation that every Peano graph X
with ground space B(X) = V x P exhibits a fractal-like behaviour as follows: for every
point (v,p) € V x P and every € > 0 there exists V' x P’ CV x P such that v € V' C V is
clopen, p € int(P") C P’ C P and P’ is a regular subcontinuum of P, and X’ := X[V’ x P']
is again a Peano graph of the same form as in the theorem, see Lemma 14.4.16. Let us call
such a space X’ a tile of X. Utilising this fractal-like behaviour, our main technical result
in this chapter is the so-called decomposition theorem, Theorem 14.4.21, which says roughly
that any Peano-continuum with product-structured ground space can be decomposed into
edge-disjoint tiles all of arbitrarily small diameter plus some finitely many cross edges that
go between tiles, such that most of the tiles now satisfy the even-cut condition.

Crucially, to control all edge cuts simultaneously, we borrow and extend in Sec-
tion 14.4.2 the techniques of topological spanning trees, fundamental circuits and infinite
thin sums from recently developed infinite graph and infinite matroid theory, see [54, §8.7]
and [30, 38].

In the final section of this chapter, Section 14.4.5, we then demonstrate how this
decomposition theorem can be used, now using the assumption that the original space X
satisfied the even-cut condition for the first time, to construct an approximating sequence

of Eulerian decompositions for X.
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14.4.2. Spanning Trees and the Even-Cut Condition. Before we embark on
our proof, we need some preliminary results about spanning trees in graph-like continua.
These notions are by now standard in the theory of infinite graphs (see e.g. [54, §8] and
[53]) and they do generalise nicely to graph-like continua. Indeed, this is not by accident
and could be seen as a corollary to the general theory of infinite matroids and matroids
induced by graph-like spaces, see [30, 38]. However, as there are direct proofs for the
results we need, and so as to make it easier for the reader, we simply state and prove what

we need.

LEMMA 14.4.2. The following are equivalent for a standard subspace T of a graph-like
continuum Z :
(1) T is edge-minimally connected,
(2) T is uniquely arc-connected,

(3) T is connected and does not contain a non-trivial cycle, and
(4) T is a dendrite.

PROOF. Recall that a graph-like continuum is hereditarily locally connected, so every
subcontinuum of Z is automatically Peano [70, Corollary 8]. The equivalence of (3) and
(4) holds by the definition of dendrite (see [121, 10.1]). The equivalence of (2) and (3) is
easy. To see that (1) and (3) are equivalent, note that if 7" contains a cycle, then deleting
an edge on that cycle does not disconnect T', and conversely, if deleting an edge e = xy

does not disconnect 7', then for any x —y arc P in T' — e, we have P U e is a cycle. 0

DEFINITION 14.4.3 (Spanning tree). A subspace Y of a graph-like continuum (X, V| F)
is called spanning if V' C Y. A spanning standard subspace T of a graph-like continuum
7 is called a spanning tree of Z provided it satisfies one (and therefore every) condition
in Lemma 14.4.2.

Spanning trees of graph-like continua are easy to construct, because connectivity is
preserved under nested intersections—so in order to obtain a standard subspace with
property (1), one only needs to enumerate all edges from a graph-like continuum, and

then delete the next edge in line as long as it is not a bridge at that current stage.

DEFINITION 14.4.4 (Fundamental cuts; fundamental cycles). Let T be a spanning tree
of a graph-like continuum Z.

o If f € E(T), then by Lemma 14.1.11 and property (1) in Lemma 14.4.2, the space
T — f has two connected components with vertex sets say A and B which form
a clopen partition of V(T') = V(Z). The corresponding edge cut F(A, B) of Z is
also called the fundamental cut of f, denoted by Dy.

o If e ¢ E(T), then T contains a unique standard arc A between the endpoints of e.
The fundamental cycle C, is given by the edge set E(A) U {e}. Note that Z[C,]
is indeed homeomorphic to S*.
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Observe that for f € E(T) and e ¢ E(T) one has e € Dy if and only if f € C..

DEFINITION 14.4.5 (Thin family). Let E be a set. A multi-set (C;: j € J) of subsets
of E is called thin if for all e € E, we have |{j € J: e € C}}| < o0.

DEFINITION 14.4.6 (Thin sum). For a thin family (C;: j € J), the sum

C:ZC]- ={ec E:|{jeJ:ec(C;}isodd}

jeJ
is well-defined. We say that C'is the thin sum over the (C;: j € J).

The following theorem is in some sense a natural generalisation of the corresponding
theorem for finite and infinite graphs [54, Theorems 1.9.5 and 8.7.1] respectively.

THEOREM 14.4.7. Let X = (V, E) be a graph-like continuum, and D C E. Then all
topological cuts of X[D] are even if and only if D is a thin sum of fundamental cycles of

any spanning tree of X.

PRrROOF. Compare to [54, 8.7.1], where this statement is proved for Freudenthal com-
pactifications of locally finite graphs (which form a proper subclass of the class of graph-like
continua). For additional background, see [56].

To see that a thin sum of cycles satisfies the even-cut condition, recall that by [70,
Lemma 6], any single cycle C' intersects any topological cut of X in an even number of
edges. This extends immediately to finite symmetric differences, as is easily verified. But
then this also extends to thin sums of cycles: since cuts are finite, only finitely many cycles
in our thin sum can meet the cut, and so the result follows.

For the converse implication, suppose X[D] satisfies the even-cut condition and fix
any spanning tree 7" of X. We show that D = ZQGD\E(T) Ce. To see that this sum
is well-defined, observe that f € C. if and only if e € D;. Since fundamental cuts
are finite, the above is the sum over a thin family. To prove the equality, we claim
that D' :== D + > p\ i) Ce = 0. First, it is clear that D’ C E(T), since every edge
e € D\ E(T) has been eliminated by the corresponding C, (and all other edges in C, lie
in E(T) by construction).

Second, the existence of an edge f € D’ leads to a contradiction as follows: since
feD CE(T), it follows that f € D;N D' C DyNE(T) ={f}.

Thus, Dy is a topological cut meeting D’ in an odd number of edges. This contradicts
the fact that both D (by assumption) and the thin sum > 5\ per) Ce (by virtue of the

first proven implication) meet every cut in an even number of edges. 0

14.4.3. Sparse Edge Sets.
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14.4.3.1. Properties of sparse edge sets. Given a Peano graph X with ground set
&(X) =V x P, we will now investigate under which conditions certain (infinite) edge
sets can be removed without harming local connectedness or density. Recall from Sec-
tion 14.1.3.1 that a subset F© C FE(X) of edges is called sparse (in X) if X[F] is a
graph-like compactum (i.e. if [JF \ |JF is zero-dimensional). Note that the property of
an edge set F' being sparse is inherited by subsets of F'.

LEMMA 14.4.8. Let X be a Peano continuum [Peano graph] X and FF C E(X) a sparse
edge set. Then the following assertions hold.

(i) The non-trivial components of X — F form a zero-sequence of standard Peano
continua [Peano graphs].
(i) If B(X) contains no 1-point components, then &(X — F) = &(X).
(iii) If for some § > 0 all components of &(X) have diameter at least 6, then X — F

consists of finitely many Peano continua [Peano graphs|, so is locally connected.

PROOF. Let D denote the collection of components of X — F. It is clear that each
element of D is a standard subcontinuum. We first show that D forms a null-family.
Otherwise, for some € > 0 there are infinitely D,, € D with diam(D,,) > ¢ for all n € N. By
sequential compactness of the hyperspace [121, 4.18], we may assume that D,, — D, i.e. D,
converges to a continuum D in the Hausdorff metric [121, 4.2]. And since diam(D,,) > ¢
for all n € N, we have — by the properties of the Hausdorff metric — that diam(D) > e,
too. Moreover, since edges are open, we necessarily have D C &(X). But now, since
D is a non-trivial continuum and [JF \ |J F is zero-dimensional, there is z € D and a
connected neighbourhood U of z in X with U N X[F] = (). However, since D,, — D there
exists N € N such that D, NU # () for all n > N. Therefore, D UU U Dy is a connected
subset of X — F, contradicting that Dy was a component. This contradiction establishes
that D forms a null-family, and hence that the subfamily D’ C D of non-trivial elements
of D forms a zero-sequence.

To see that each D € D’ is a Peano continuum, note that by construction, D \ F is
open, so hence locally connected, and moreover dense in D. It follows that the interior
of D is locally connected with zero-dimensional boundary (as the boundary is a subset
of the zero-dimensional X[F] N &(X), and so D must be a Peano continuum, since if a
continuum fails to be locally connected at some point, then it fails to be locally connected
at all points of a non-trivial subcontinuum, [121, 5.13].

Finally, if X is a Peano graph, then each D € D’ is a Peano graph too, i.e. has dense
edge set. Suppose to the contrary that for some non-trivial component D, its edge set
E(D) ={e € E(X): e C D} is not dense in D. Since F\ F is zero-dimensional, there is
x € D and a connected open neighbourhood U of z in X with UNJ(E(D)UF) = 0.
Since by assumption E(X) is dense in X and forms a zero-sequence by Lemma 14.1.11,
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there is an edge e € E(X) completely contained in U. But since U C D, this implies
e € E(D), a contradiction.

For (ii), note that the inclusion &(X — F') C &(X) holds for all edge sets F' C F(X)
and all X, as free edges in F(X) \ F remain free in X — F. For the converse inclusion
to hold, however, the additional assumptions of the statement are necessary. So suppose
there was © € B(X) \ &(X — F). Then there is a free arc « in X — F with € a. But
then @ U X[F] is a compact graph-like space in X forming a neighbourhood of z in X,
from which it follows that = forms a singleton component in X.

For (iii), it now follows from the previous step that every component X — F' has diameter
at least d, and so by (i), X — F must consist of finitely many Peano continua. OJ

14.4.3.2. Sparse spanning trees. The purpose of this section is to give a fairly general
procedure how to find non-trivial sparse edge sets.

LEMMA 14.4.9. Let X be a Peano continuum. For every zero-dimensional compact set
Y C &(X), there exists a standard graph-like continuum Z C X with Y C Z.

PRrOOF. The proof modifies an idea by Ward of approzimating a Peano continuum by
finite trees, see [161] and [162].

Let (U,: n € N) be a refining sequence of finite 27" Peano covers of X where Uy =
{X} is the trivial cover. For a subset A C X, define U, | A := {U e U,,: UN A # (}.
Recursively, we will define finite, i.e. compact trees T,, C X and finite vertex sets V,, C T,
such that for all n € N,

(1) T,, € T,,+1 as topological subspaces,

(2> V C Vn-&-la

(3) V,, is the set of branch- and end-vertices of T,,,
4 U, 1Yy cU, | T,, and

(5) U 'Y covers T,,11 \ Ty, and

(6) Un 'Y covers V11 \ V.

Let Ty = V(1) = {to} be an arbitrary singleton tree. Since Uy = {X}, this satisfies
(4). All other conditions are trivial or vacuous at this point. This completes the base case.
For the recursion step, suppose that Ty, ..., T, are already defined according to (1) — (6),
and pick finitely many points points A = {ay,...,ax} such that U1 [ Y = U1 | A.
Let So :=T,, V(Sy) := V,, and suppose we already have constructed a sequence of finite
tree Sp €51 C --- C S; for i < k such that S; contains {ay,...,a;} and such that S; \ T,,
is covered by U, | Y. Consider a;,1. Again, if a;41 € 5;, set S;1q := S;. Otherwise,
pick U € U, such that a;41 € U, and also pick t € T,, N U (possible by (4)). Pick an
arc a: [ — U from t to a;;1. Since S; is compact, there is a maximal z;;,; < 1 such
that a(z;41) € S;. Define S;11 = S; U a([zit1, 1]), and V(S;11) = V(S;) U {a(zis1), @ig1}-
Since o was an arc completely contained in U, we have S;y; \ T, is covered by U,, | Y.
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In the end, put T}, := Sk and V41 = V(Sk). Clearly, T, is a finite tree with vertex
set V,,11. Moreover, by choice of A, it satisfies (4). Finally, (5) and (6) follow since all .S;
satisfied that S; \ T), is covered by U,, [ Y, and so then does Sy = T,.;. This completes
the recursive construction.

Define T = |,y In, and V' = JV,,. Our aim is to show that Z = T is a graph-like
continuum containing Y. Clearly, T" is connected, and hence Z is compact connected. To
see that Z covers Y, note that for any y € Y, since W,, := (J (U, | {y}) has vanishing
diameter for n — oo, the family {W,,: n € N} forms a neighbourhood base of y in X. By
property (4), every W, intersects T, and so y € T. Since y € Y was arbitrary, this shows
Y C T = Z. Finally, the proof that Z is graph-like essentially relies on the following

observation:

Claim: For every p ¢ Y there is a open set U C X with p € U such that for some
neNwehawe UNT CT, andUNV CV,,.

To see the claim, note that if p ¢ Y, then ¢ = dist (p,Y) > 0, and so there is n large
enough such that 27" < e. Let W := U, | Y) and U = X \ W. Then U is open and
p € U. Moreover, TNU =T\ W = (Tnum) \ W C T, =T, by property (5), and
the fact that 7}, is compact. Similarly, V NU =V \ W C V,, = V,, by property (6), and
the fact that V,, is finite. This establishes the claim.

Finally, we argue that the set V(Z) := Y UV is a vertex set for Z witnessing that Z is
graph-like. First, by the claim, V(Z) is closed in X and hence compact. Moreover, since
each V,, is finite and Y is zero-dimensional, also V' (Z) is zero-dimensional by the countable
sum theorem for dimension, [62, Thm. 1.5.2].

Finally, we need to show that each p € Z\V(Z) has a neighbourhood homeomorphic to
an open interval. Solet p € Z\ V(Z). Let U be as in the claim, i.e. U is a neighbourhood
of psuch that UNZ =UNT C T,. Then U\ V, is open, and (U\V,)NZ C T, \ V,,
consists of finitely many connected components, each homeomorphic to an open interval.

Finally, to make Z standard, define 72/ = Z\ |J{e:eNZ #0 # Z\ e}. Since Y C
&(X), we still have Y C Z’, and further, Z’ is still connected, as no half edge is needed
for connectivity in Z. O

DEFINITION 14.4.10 (Sparse spanning tree). Let X be a Peano continuum. A spanning
tree T' of X is sparse if its edge set E(T) is sparse in X.

LEMMA 14.4.11 (Existence of sparse spanning trees). Every Peano continuum X with
&(X) =V x P admits a sparse spanning tree.

PROOF. Pick p € P, and put Y := V x {p}, a compact zero-dimensional subset of
®(X). By Lemma 14.4.9, there exists a standard graph-like continuum Z C X with
Y C Z. Let m: X — X. be the quotient map. Since Y intersects every component of
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&(X), it follows that 7(Z) is a spanning graph-like subcontinuum of X_. Let 7' C 7(Z)
be a spanning tree of X_. Then F(T) C E(X.) = E(X), and since Z was graph-like, it
is evident that E(T") C Z is a graph-like compactum, i.e. £(T') is sparse in X. O

14.4.4. Tiles in Peano Graphs with Product-Structured Ground Spaces. We
discuss fractal properties of Peano continua X with ground space &(X) =V x P.

14.4.4.1. Tiles via horizontal restriction. First, we discuss tiles that result by restrict-
ing to well-behaved subsets of V.

LEMMA 14.4.12. Every locally connected compactum X with ground set &(X) =V x P
land dense edge set] is of the form X = @, 4 Xa, where A is a (finite) clopen partition

of V.and X, C X is a standard Peano continuum [Peano graph| with ground space
®(XA) =AXxP.

PROOF. As a locally connected compactum, X has finitely many components, [107,
VI 8§49, IT Theorem 7]. Moreover, since P is connected, each component C'is of the form
C = X[Ac x P] with A C V. Since C is closed, if follows from compactness and the
continuity of projection maps that Ao C V is closed. Moreover, for distinct components
C # C" we clearly have AcNAc = ). Therefore, every Ac is a clopen subset of V. Hence,
the collection A of such clopen Ac C V' is the desired (finite) clopen partition of V. O

COROLLARY 14.4.13. If X is a Peano graph with &(X) =V x P, and F C F is sparse,
then there is a (finite) clopen partition A of V' such that X — F = @ ,. 4 Xa where each
X4 C X is a standard Peano graph with ground space &(X4) = A x P.

PROOF. By Lemma 14.4.8(iii), the space X — F is locally connected with ground space
&(X) =V x P, so the assertion follows from Lemma 14.4.12. O

COROLLARY 14.4.14. If X is a Peano graph with &(X) =V x P and B C V is clopen,
then there is a (finite) clopen partition B of B such that X[B x P| = @z Xp where
each Xp C X is a standard Peano graph with ground space &(Xp) = B x P.

PROOF. Since F = E(B x P,(V \ B) x P) is a (finite) edge cut of X, the edge set F’
is sparse, and so the result follows from the previous Corollary 14.4.13, by taking B to be
the subcollection of A of elements that intersect B. O

14.4.4.2. Tiles via vertical restriction. Next, we discuss tiles that result by restricting
to well-behaved subsets of P.

LEMMA 14.4.15. Let X be a Peano graph, x € &(X), and U C X a connected set such
that UN&(X) is a neighbourhood of x in &(X). Then for every e > 0 there is a connected
neighbourhood V' of x in X such that V C B.(U).
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PROOF. If y is an endpoint of some edge e, write BS(y) (where 0 < § < 1) for the
half-open interval with end-point y of diameter  on e. Then put

Vi=UU{B{(y):ec FandyecenU} C X.

Then V is connected, and it is a neighbourhood of z in X (as almost all edges in E have
diameter < €), and by construction, we have V' C B.(U). O

LEMMA 14.4.16. For every Peano graph X with ground set &(X) = V x P, every
W C P a regular closed Peano subcontinuum and for every € > 0, there is a (finite)
clopen partition A of V' with mesh(A) < € such that X[A x W] is a Peano graph for all
Ac A

PROOF. By Lemma 14.4.12 it suffices to show that the induced subspace Xy, = X[V x
W1 inherits local connectedness from X. This is trivial for points in the interior of Xy,
i.e. interior points of edges, and points in V' x int(W). So consider an arbitrary point
x = (v,w) for v € V and w € W, and fix 6 > 0. Our task is to find a connected
open neighbourhood V' of z in Xy, of diameter at most §. First, pick a connected open
neighbourhood U of w in W with diam(U) < §/3. Then V x (U Nint(V)) is a non-
empty open subset of X, and so it follows from local connectedness of X that there are
A CV clopen with v € A, B C U Nint(WW) open, and a connected open set Y C X with
diam(Y) < 6/3,Y CU and X[Ax B] CY.

But then Y/ =Y U X[A x U] is connected, and restricts to a neighbourhood of (v, w)
in (X ) of diameter diam(Y’) < 6/3. So applying Lemma 14.4.15 to Y’ with € = 6/3
provides a connected neighbourhood as desired. O

14.4.4.3. Ground-space covering tiles.

LEMMA 14.4.17. Suppose for a Peano continuum P with edges E = E(P) and ground
space Z = Z(P), we have a set of edges F such that Z U|J F is locally connected. Then
Z U F' is locally connected for all F C F' C E.

PROOF. Let Y = ZU|J F. By local connectedness, all components of Y are open, and
so it follows from compactness that Y has finitely many components. Moreover, since the
edges in F’\ F' form a zero-sequence of Peano subcontinua, the result now follows from (a
natural adaption of) Lemma 14.1.13. O

Relying on the results established above about sparse spanning trees, our aim for this

short section is to prove the following theorem.

THEOREM 14.4.18. The edge set E(X) of every Peano graph X with ground space
B(X) =V x P (with P non-degenerate) admits a bipartition E(X) = Ey U Ey into two
edge sets both dense for &(X) such that both X; = X[E;] are locally connected.
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PROOF. Let (U,: n € N) be a decreasing sequence of 27" partitions for P with Uy =
{P}. Let R = (R, <) be the corresponding refinement tree, that is R(n), the nth level of
R, indexes the elements of U,, soU,, = {U,: r € R(n)}, and r < ' if and only if U, D U,..
Recall that each U, is finite, and so R is a locally finite tree. Write R(<n) := {J,_, R(7)
and similarly R(<n) = J,_,, R(©).

We now recursively construct

e a family of finite multicuts {A,: r € R} of V, and
e subtrees 7,4 C X forr € R and A € A,
such that
(1) r <7 € R implies A, = A,
(2) mesh(A,) < 27" for r € R(n),
(3) for each r € R(n) and A € A,, the space

Xoa = X[Ax U\ |J{E(Tw.): s € R(<n), A€ A}

<n

is a Peano graph,
(4) T, 4 is a sparse spanning tree for X, 4 for all r € R and A € A, (unless (X, 4)~
has a single vertex, in which case T, 4 consists of an arbitrary edge from X, 4).

For n = 0, and » € R(0) the unique root of R, the trivial (finite) clopen partition
A, = {V} is clearly sufficient. Now let n € N and suppose we have already defined finite
multicuts {A,: 7 € R(<n)} of V, and subtrees T, 4 C X. for r € R(<n) and A € A4,
according to (1)—(4). Consider r € R(n). Since X, 4 is a Peano graph by (3), we may use
Lemma 14.4.11 to find sparse spanning trees T, 4 for X, 4 for each A € A,, unless A is a
singleton, in which case we let T, 4 consist of an arbitrary edge from X, 4. Then property
(4) is satisfied. By Corollary 14.4.13, each

ra =X\ J{E(Tw,): s € R(n), A" € A}

remains locally connected. Consider an arbitrary successor s of 7, i.e. some s € R(n + 1)
with » < s. By Corollary 14.4.14 and Lemma 14.4.16, there is a (finite) clopen partition
B of A with mesh(B, 4) < 27"V such that X/ 4[B x U] is a Peano continuum for 