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CHAPTER 1

Overview

This habilitation thesis represents the outcome of six extensive research projects I have

been involved in since taking up my postdoc position at the University of Hamburg in the

fall of 2015. The first three of these projects fall into the area of structural infinite graph

theory displaying connections to infinite combinatorics and logic. The other three fall

into the area of infinite topological graph theory with various connections to topology and

geometry. The results presented here are based on thirteen papers [31, 32, 33, 35, 36,

37, 66, 70, 76, 77, 78, 101, 134] conceived and written together with varying groups

of collaborators.

The first part of this thesis on structural infinite graph theory contains results and

solutions to the following three problems:

The reconstruction problem for locally finite graphs. (Chapters 2 & 3). The

reconstruction problem asks whether local information about a graph determines its global

isomorphism type. In these two chapters we construct examples showing that, perhaps

surprisingly, this question for infinite, locally finite graphs is to be answered in the negative.

These results summarily solve a group of seven problems in the literature, which were open

for more than 50 years. This construction is joint work with N. Bowler, J. Erde, P. Heinig

and F. Lehner [36, 35], published in the Bulletin of the London Mathematical Society and

Journal of Combinatorial Theory Series B.

The main idea of our construction relies on the same principle that lies behind the

proof of the completeness theorem for first-order logic: In each step, we can arrange for one

additional requirement – while paying the price of simultaneously introducing countably

many new future tasks still to be solved. However, by a suitable book-keeping procedure,

one can satisfy all requirements in an ω-length recursion.

The ubiquity problem. (Chapters 4, 5 & 6). A graph G is called ubiquitous if

whenever some graph Γ contains arbitrarily many disjoint copies of G, then Γ must contain

a family of infinitely many disjoint copies of G. The Ubiquity Conjecture, due to Andreae,

suggests that every locally finite connected graph is ubiquitous. While proven for certain

well-behaved classes of graphs, the general case remains a challenging open problem with

connections to the theory of well- and better-quasi orderings of graphs.

Our results include the solution of the ubiquity problem for trees in Chapter 4, solving

a 40-year-old problem raised by Halin and Andreae, as well as the solution of the ubiquity

7



8 1. OVERVIEW

problem for locally finite graphs of finite tree-width in Chapter 6. This is joint work

with N. Bowler, C. Elbracht, J. Erde, P. Gollin, K. Heuer and M. Teegen [31, 32, 33],

submitted for publication.

Forbidden minors for normal spanning trees. (Chapter 7). This chapter contains

the solution of two 15-year-old problems due to Diestel and Leader about the existence of

normal spanning trees in infinite graphs. This is joint work with N. Bowler and S. Geschke

[37], published in Fundamenta Mathematicae.

Normal spanning trees are amongst the most useful objects governing the structure of

finite and infinite connected graphs. While every countable connected graph has a normal

spanning tree, not all uncountable graphs do, and a challenging problem is to characterise

the existence of normal spanning trees by a small list of forbidden minors. Our main

result is that two natural questions by Diestel and Leader about these forbidden minors

are independent of the usual ZFC-axioms of set theory: For one direction we prove a

strong structural result under Martin’s axiom, and for the other we present a construction

under CH that takes advantage of an Aronszajn tree.

The second part of this thesis on infinite topological graph theory contains the following

Hamiltonicity and Eulerianity results:

Hamiltonicity results for infinite graphs with ends. (Chapters 8 & 9). We

present an affirmative solution to Alspach’s problem about decompositions of infinite Cay-

ley graphs into Hamiltonian double rays, for a large class of abelian groups: Every Cayley

graph of a one-ended abelian group generated by a finite set of non-torsion elements has

such a Hamilton decomposition. This is joint work with J. Erde und F. Lehner [66], to

appear in the Journal of Combinatorial Theory Series B.

We then investigate a problem by Mohar whether there exist infinite cubic graphs

that are uniquely Hamitonian (by a theorem of Thomason, every finite Hamiltonian cubic

graph contains at least three distinct Hamilton cycles). We show that in the one-ended

case, there always exists a second Hamilton cycle (and construct an example showing that

there might not be a third), while constructing examples of uniquely Hamiltonian cubic

graphs as soon as there are at least two ends. This paper is single authored [134] and

published in the Electronic Journal of Combinatorics.

Circuits, paths and cycles containing prescribed edges and points. (Chapters

10, 11 & 12). First for a given n ∈ N, we characterise the finite graphs in which any n

edges lie on a common circuit (a closed walk that repeats no edges). This is joint work with

P. Knappe, [101], submitted for publication. Next, we characterise for which graphs any

n topological points (i.e. vertices or interior points of edges) lie on a common topological

path or cycle, respectively. Finally, we extend this characterisation to locally finite graphs
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with ends, and describe the jump in complexity for this problem when considering graph-

like continua. The finite case is joint work with P. Gartside and A. Mamatelashvili,

[76], submitted for publication, and the infinite case is joint work with P. Gartside [78],

published in Topology and its Applications.

The Eulerian problem for topological spaces. (Chapters 13 & 14). We first

generalise Diestel and Kühn’s theory of topological Euler tours from locally finite graphs

with ends to graph-like continua. This is joint work with B. Espinoza and P. Gartside

[70], submitted for publication. The abstract viewpoint of graph-like spaces allows us to

simplify also other results by Georgakopoulos [79], Bruhn & Stein [39], and Berger &

Bruhn [20] about locally finite graphs with ends.

Finally, we generalise the theory of topological Euler tours further to geometric struc-

tures such as hyperbolic graphs with Gromov boundary, and finally to arbitrary topological

spaces. This is joint work with P. Gartside [77], submitted for publication. In the process

we uncover a connection to a 90-year-old problem in topology: characterising the irre-

ducible images of the circle. Our first main result is that these irreducible images of the

circle are precisely the Eulerian spaces, the proof of which relies on a Baire Category func-

tion space argument. This new viewpoint makes it possible to apply combinatorial tools

to study such topological spaces. In particular, we define a natural notion of edge-cuts

in topological spaces and conjecture that a space is Eulerian if and only if it is a Peano

continuum where all edge-cuts have even size. As our second main result, we confirm this

conjecture for a variety of topological spaces, in particular for all one-dimensional ones.

This subsumes and extends all known results about the Eulerianity of infinite graphs and

continua to date.

This paper marks a new point in the combinatorial theory of topological graphs with

ends, in the sense that its cycle space theory, topological spanning trees, and fundamental

cycles and -cuts are here for the first time applied to help solving a natural, longstanding

open problem arising outside of combinatorics.

Acknowledgements. I would like to thank my collaborators in the above projects,

especially Nathan Bowler, Joshua Erde, Paul Gartside and Florian Lehner: Working to-

gether on these problems has been inspiring, exciting and rewarding. It has also been a

joy to work in Hamburg during the past four years, and I would like to thank Reinhard

Diestel for his guidance and inspiration about all things related to infinite graphs.
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CHAPTER 2

A counterexample to the reconstruction conjecture for locally

finite trees

Two graphs G and H are hypomorphic if there exists a bijection ϕ : V (G) →
V (H) such that G − v ∼= H − ϕ(v) for each v ∈ V (G). A graph G is recon-

structible if H ∼= G for all H hypomorphic to G.

It is well known that not all infinite graphs are reconstructible. However,

the Harary-Schwenk-Scott Conjecture from 1972 suggests that all locally finite

trees are reconstructible.

In this paper, we construct a counterexample to the Harary-Schwenk-Scott

Conjecture. Our example also answers four other questions of Nash-Williams,

Halin and Andreae on the reconstruction of infinite graphs.

2.1. Introduction

We say that two graphs G and H are (vertex-)hypomorphic if there exists a bijection ϕ

between the vertices of G and H such that the induced subgraphs G− v and H−ϕ(v) are

isomorphic for each vertex v of G. Any such bijection is called a hypomorphism. We say

that a graph G is reconstructible if H ∼= G for every H hypomorphic to G. The following

conjecture, attributed to Kelly and Ulam, is perhaps one of the most famous unsolved

problems in the theory of graphs.

Conjecture 2.1.1 (The Reconstruction Conjecture). Every finite graph with at least

three vertices is reconstructible.

For an overview of results towards the Reconstruction Conjecture for finite graphs

see the survey of Bondy and Hemminger [29]. Harary [90] proposed the Reconstruction

Conjecture for infinite graphs, however Fisher [73] found a counterexample, which was

simplified to the following counterexample by Fisher, Graham and Harary [74]: consider

the infinite tree G in which every vertex has countably infinite degree, and the graph H

formed by taking two disjoint copies of G, which we will write as G tG. For each vertex

v of G, the induced subgraph G − v is isomorphic to G t G t · · · , a disjoint union of

countably many copies of G, and similarly for each vertex w of H, the induced subgraph

H −w is isomorphic to GtGt · · · as well. Therefore, any bijection from V (G) to V (H)

is a hypomorphism, but G and H are clearly not isomorphic. Hence, the tree G is not

reconstructible.

13



14 2. NON-RECONSTRUCTIBLE LOCALLY FINITE TREES

These examples, however, contain vertices of infinite degree. Regarding locally finite

graphs, Harary, Schwenk and Scott [91] showed that there exists a non-reconstructible

locally finite forest. However, they conjectured that the Reconstruction Conjecture should

hold for locally finite trees.

Conjecture 2.1.2 (The Harary-Schwenk-Scott Conjecture). Every locally finite tree

is reconstructible.

This conjecture has been verified in a number of special cases. Kelly [100] showed

that finite trees on at least three vertices are reconstructible. Bondy and Hemminger [28]

showed that every tree with at least two but a finite number of ends is reconstructible, and

Thomassen [151] showed that this also holds for one-ended trees. Andreae [12] proved

that also every tree with countably many ends is reconstructible.

A survey of Nash-Williams [127] on the subject of reconstruction problems in infinite

graphs gave the following three main open problems in this area, which have remained

open until now.

Problem 2.1.3 (Nash-Williams). Is every locally finite connected infinite graph re-

constructible?

Problem 2.1.4 (Nash-Williams). If two infinite trees are hypomorphic, are they also

isomorphic?

Problem 2.1.5 (Halin). If G and H are hypomorphic, do there exist embeddings

G ↪→ H and H ↪→ G?

Problem 2.1.4 has been emphasized in Andreae’s [14], which contains partial affirma-

tive results on Problem 2.1.4. A positive answer to Problem 2.1.3 or 2.1.4 would verify

the Harary-Schwenk-Scott Conjecture. In this paper we construct a pair of trees which

are not only a counterexample to the Harary-Schwenk-Scott Conjecture, but also answer

the three questions of Nash-Williams and Halin in the negative. Our counterexample will

in fact have bounded degree.

Theorem 2.1.6. There are two (vertex)-hypomorphic infinite trees T and S with max-

imum degree three such that there is no embedding T ↪→ S or S ↪→ T .

Our example also provides a strong answer to a question by Andreae [13] about edge-

reconstructibility. Two graphs G and H are edge-hypomorphic if there exists a bijection

ϕ : E(G) → E(H) such that G − e ∼= H − ϕ(e) for each e ∈ E(G). A graph G is edge-

reconstructible if H ∼= G for all H edge-hypomorphic to G. In [13] Andreae constructed

countable forests which are not edge-reconstructible, but conjectured that no locally finite

such examples can exist.

Problem 2.1.7 (Andreae). Is every locally finite graph with infinitely many edges

edge-reconstructible?
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Our example answers Problem 2.1.7 in the negative: the trees T and S we construct for

Theorem 2.1.6 will also be edge-hypomorphic. Besides answering Problem 2.1.7, this ap-

pears to be the first known example of two non-isomorphic graphs that are simultaneously

vertex- and edge-hypomorphic.

The Reconstruction Conjecture has also been considered for general locally finite

graphs. Nash-Williams [126] showed that any locally finite graph with at least three,

but a finite number of ends is reconstructible, and in [128], he established the same result

for two-ended graphs. The following problems, also from [127], remain open:

Problem 2.1.8 (Nash-Williams). Is every locally finite graph with exactly one end

reconstructible?

Problem 2.1.9 (Nash-Williams). Is every locally finite graph with countably many

ends reconstructible?

In a paper in preparation [36], we will extend the methods developed in the present

paper to also construct counterexamples to Problems 2.1.8 and 2.1.9.

This paper is organised as follows. In the next section we will give a short, high-level

overview of our counterexample to the Harary-Schwenk-Scott Conjecture. In Section 2.3,

we will develop the technical tools necessary for our construction, and in Section 2.4, we

will prove Theorem 2.1.6.

For standard graph theoretical concepts we follow the notation in [54].

2.2. Sketch of the construction

In this section we sketch the main ideas of the construction. For the sake of simplicity

we only indicate how to ensure that the trees T and S are vertex-hypomorphic and non-

isomorphic, but not that they are edge-hypomorphic as well, nor that neither embeds into

the other.

Our plan is to build the trees T and S recursively, where at each step of the construction

we ensure for some vertex v already chosen for T that there is a corresponding vertex w of

S with T − v ∼= S−w, or vice versa. This will ensure that by the end of the construction,

the trees we have built are hypomorphic.

More precisely, at step n we will construct subtrees Tn and Sn of our eventual trees,

where some of the leaves of these subtrees have been coloured in two colours, say red and

blue. We will only further extend the trees from these coloured leaves, and we will extend

from leaves of the same colour in the same way.

That is, the plan is that there should be two further rooted trees R and B such that

T can be obtained from Tn by attaching copies of R at all red leaves and copies of B at

all blue leaves, and S can be obtained from Sn in the same way. At step n, however, we

do not yet know what these trees R and B will eventually be.
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Nevertheless, we can ensure that the induced subgraphs, T − v and S − w, of the

vertices we have dealt with so far really will match up. More precisely, by step n we have

vertices x1, . . . , xn of Tn and y1, . . . , yn of Sn for which we intend that T − xj should be

isomorphic to S − yj for each j. We ensure this by arranging that for each j there is an

isomorphism from Tn − xj to Sn − yj which preserves the colours of the leaves.

The Tn will be nested, and we will take T to be the union of all of them; similarly the

Sn will be nested and we take S to be the union of all of them.

There is a trick to ensure that T and S do not end up being isomorphic. First we

ensure, for each n, that there is no isomorphism from Tn to Sn. We also ensure that the

part of T or S beyond any coloured leaf of Tn or Sn begins with a long non-branching path

(called a bare path), longer than any such path appearing in Tn or Sn. Call the length of

these long paths kn+1.

Suppose now for a contradiction that there is an isomorphism from T to S. Then

there must exist some large n such that the isomorphism sends some vertex t of Tn to a

vertex s of Sn. However, Tn is the component of T containing t after all bare paths of

length kn+1 have been removed1, and so it must map isomorphically onto the component

of S containing s after all bare paths of length kn+1 have been removed, namely onto Sn.

However, there is no isomorphism from Tn onto Sn, so we have the desired contradiction.

r b̂

Tn Ŝn

br̂

T̂n Sn

Figure 2.1. A first approximation of Tn+1 on the left, and Sn+1 on the

right. All dotted lines are non-branching paths of length kn+1.

Suppose now that we have already constructed Tn and Sn and wish to construct Tn+1

and Sn+1. Suppose further that we are given a vertex v of Tn for which we wish to find a

partner w in Sn+1 so that T − v and S − w are isomorphic. We begin by building a tree

T̂n 6∼= Tn which has some vertex w such that Tn− v ∼= T̂n−w. This can be done by taking

the components of Tn − v and arranging them suitably around the new vertex w.

We will take Sn+1 to include Sn and T̂n, with the copies of red and blue leaves in T̂n

also coloured red and blue respectively. As indicated on the right in Figure 2.1, we add

paths of length kn+1 to some blue leaf b of Sn and to some red leaf r̂ of T̂n and join these

paths at their other endpoints by some edge en. We also join two new leaves y and g to

the endvertices of en. We colour the leaf y yellow and the leaf g green (to avoid confusion

1Here and throughout this section we will omit minor technical details for brevity.
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with the red and blue leaves from step n, we take the two colours applied to the leaves in

step n+ 1 to be yellow and green).

To ensure that Tn+1 − v ∼= Sn+1 −w, we take Tn+1 to include Tn together with a copy

Ŝn of Sn, coloured appropriately and joined up in the same way, as indicated on the left

in Figure 2.1.

The only problem up to this point is that we have not been faithful to our intention

of extending in the same way at each red or blue leaf of Tn and Sn. Thus, we now copy

the same subgraph appearing beyond r in Fig. 2.1, including its coloured leaves, onto all

the other red leaves of Sn and Tn. Similarly we copy the subgraph appearing beyond the

blue leaf b of Sn onto all other blue leaves of Sn and Tn.

Figure 2.2. A sketch of Tn+1 and Sn+1 after countably many steps.

At this point, we would have kept our promise of adding the same thing behind every

red and blue leaf of Tn and Sn, and hence would have achieved Tn+1 − xj ∼= Sn+1 − yj for

all j 6 n. However, by gluing the additional copies to blue and red leaves of Tn and Sn,

we now have ruined the isomorphism between Tn+1 − v and Sn+1 − w. In order to repair

this, we also have to copy the graphs appearing beyond r and b in Fig. 2.1 respectively

onto all red and blue leaves of Ŝn and T̂n. This repairs Tn+1 − v ∼= Sn+1 − w, but again

violates our initial promises. In this way, we keep adding, step by step, further copies of

the graphs appearing beyond r and b in Fig. 2.1 respectively onto all red and blue leaves

of everything we have constructed so far.

At every step we preserved the colours of leaves in all newly added copies, so we get

new red leaves and blue leaves, and we continue the process of copying onto those new

leaves as well. After countably many steps we have dealt with all red or blue leaves. We

take these new trees to be Sn+1 and Tn+1. They are non-isomorphic, since after removing

all long bare paths, Tn+1 contains Tn as a component, whereas Sn+1 does not.

Figure 2.2 shows how Tn+1 and Sn+1 might appear. We have now fulfilled our intention

of sticking the same thing onto all red leaves and the same thing onto all blue leaves, but

we have also ensured that Tn+1 − v ∼= Sn+1 − w, as desired.
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2.3. Closure with respect to promises

In this section, we formalise the ideas set forth in the proof sketch of how to extend a

graph so that it looks the same beyond certain sets of leaves.

Given a directed edge ~e = ~xy in some forest G = (V,E), we denote by G(~e) the unique

component of G− e containing the vertex y. We think of G(~e) as a rooted tree with root

y. As indicated in the previous section, in order to make T and S hypomorphic at the

end, we will often have to guarantee S(~e) ∼= T (~f) for certain pairs of edges ~e and ~f .

Definition 2.3.1 (Promise structure). A promise structure P =
(
G, ~P ,L

)
consists

of:

• a forest G,

• ~P = {~pi : i ∈ I} a set of directed edges ~P ⊆ ~E(G), and

• L = {Li : i ∈ I} a set of pairwise disjoint sets of leaves of G.

Often, when the context is clear, we will not make a distinction between L and the set⋃
i Li, for notational convenience.

We will call an edge ~pi ∈ ~P a promise edge, and leaves ` ∈ Li promise leaves. A

promise edge ~pi ∈ ~P is called a placeholder-promise if the component G(~pi) consists of a

single leaf ci ∈ Li, then called a placeholder-leaf. We write

Lp = {Li : i ∈ I, ~pi a placeholder-promise} and Lq = L \ Lp.

Given a leaf ` in G, there is a unique edge q` ∈ E(G) incident with `, and this edge has

a natural orientation ~q` towards `. Informally, we think of the ‘promise’ ` ∈ Li as saying

that if we extend G to a graph H ⊃ G, we will do so in such a way that H(~q`) ∼= H(~pi).

Given a promise structure P =
(
G, ~P ,L

)
, we would like to construct a graph H ⊃ G

which satisfies all the promises in P . This will be done by the following kind of extension.

Definition 2.3.2 (Leaf extension). Given an inclusion H ⊇ G of forests and a set L

of leaves of G, H is called a leaf extension, or more specifically an L-extension, of G, if:

• every component of H contains precisely one component of G, and

• for every vertex h ∈ H \G and every vertex g ∈ G in the same component as h,

the unique g − h path in H meets L.

In the remainder of this section we describe a construction of a forest cl(G) which has

the following properties.

Proposition 2.3.3. Let G be a forest and let
(
G, ~P ,L

)
be a promise structure. Then

there is a forest cl(G) such that:

(cl.1) cl(G) is an Lq-extension of G, and

(cl.2) for every ~pi ∈ ~P and all ` ∈ Li,

cl(G)(~pi) ∼= cl(G)(~q`)
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are isomorphic as rooted trees.

We first describe the construction of cl(G), and then verify the properties asserted in

Proposition 2.3.3. Let us define a sequence of promise structures
(
H(i), ~P ,L(i)

)
as follows.

We set
(
H(0), ~P ,L(0)

)
=
(
G, ~P ,L

)
. We construct a sequence of graphs

G = H(0) ⊆ H(1) ⊆ H(2) ⊆ · · · ,

and each H(n) will get a promise structure whose set of promise edges is equal to ~P

again, yet whose set of promise leaves depends on n as follows: given
(
H(n), ~P ,L(n)

)
,

we construct H(n+1) by gluing, for each i, at every promise leaf ` ∈ L
(n)
i a rooted copy

of G(~pi). As promise leaves for H(n+1) we take all promise leaves from the newly added

copies of G(~pi). That is, if a leaf ` ∈ G(~pi) was such that ` ∈ Lj, then every copy of that

leaf will be in L
(n+1)
j .

Formally, suppose that
(
G, ~P ,L

)
is a promise structure. For each ~pi ∈ ~P let Ci = G(~pi)

and let ci be the root of this tree. If U is a set and H is a graph, then we denote by U ×H
the graph whose vertices are pairs (u, v) with u ∈ U and v a vertex of H, and with an

edge from (u, v) to (u,w) whenever vw is an edge of H. Let
(
H(0), ~P ,L(0)

)
=
(
G, ~P ,L

)
and given

(
H(n), ~P ,L(n)

)
let us define:

• H(n+1) to be the quotient of H(n) t
⊔
i∈I(L

(n)
i × Ci) w.r.t. the relation

l ∼ (l, ci) for l ∈ L(n)
i ∈ L(n).

• L(n+1) =
{
L

(n+1)
i : i ∈ I

}
with L

(n+1)
i =

⋃
j∈I L

(n)
j × (Cj ∩ Li).

There is a sequence of natural inclusions G = H(0) ⊆ H(1) ⊆ · · · and we define cl(G)

to be the direct limit of this sequence.

Definition 2.3.4 (Promise-respecting map). Let G be a forest, F (1) and F (2) be

leaf extensions of G, and P(1) =
(
F (1), ~P ,L(1)

)
and P(2) =

(
F (2), ~P ,L(2)

)
be promise

structures with ~P ⊆ ~E(G). Suppose X(1) ⊆ V (F (1)) and X(2) ⊆ V (F (2)).

A bijection ϕ : X(1) → X(2) is ~P -respecting (with respect to P(1) and P(2)) if the image

of L
(1)
i ∩X(1) under ϕ is L

(2)
i ∩X(2) for all i.

Since both promise structures P(1) and P(2) refer to the same edge set ~P , we can think

of them as defining a |~P |-colouring on some sets of leaves. Then a mapping is ~P -respecting

if it preserves leaf colours.

Lemma 2.3.5. Let
(
G, ~P ,L

)
be a promise structure and let G = H(0) ⊆ H(1) ⊆ · · · be

as defined above. Then the following statements hold:

• H(n) is an Lq-extension of G for all n,

• ∆(H(n+1)) = ∆(H(n)) for all n, and
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• For each ` ∈ Li ∈ L there exists a sequence of ~P -respecting rooted isomorphisms

ϕ`,n : H(n)(~pi)→ H(n+1)(~q`) such that ϕ`,n+1 extends ϕ`,n for all n ∈ N.

Proof. The first two statements are clear. We will prove the third by induction on n.

To construct H(1) from G, we glued a rooted copy of G(~pi) to each ` ∈ Li, keeping all copies

of promise leaves. Hence, for any given ` ∈ Li, the natural isomorphism ϕ`,0 : G(~pi) →
H(1)(~q`) is ~P -respecting as desired.

Now suppose that ϕ`,n exists for all ` ∈ L. To form H(n+1)(~pi), we glued on a copy of

G(~pi) to each ` ∈ L(n)
i ∩H(n)(~pi), and to construct H(n+2)(~q`), we glued on a copy of G(~pi)

to each ` ∈ L(n+1)
i ∩H(n+1)(~q`), in both cases keeping all copies of promise leaves.

Therefore, since ϕ`,n was a ~P -respecting rooted isomorphism fromH(n)(~pi) toH(n+1)(~q`),

we can combine the individual isomorphisms between the newly added copies of G(~pi) with

ϕ`,n to form ϕ`,n+1. �

We can now complete the proof of Proposition 2.3.3.

Proof of Proposition 2.3.3. First, we note that G ⊆ cl(G), and since each H(n)

is an Lq-extension of G for all n, so is cl(G). Also, since each H(n) is a forest it follows

that cl(G) is a forest.

Let us show that cl(G) satisfies property (cl.2). Since we have the sequence of in-

clusions G = H(0) ⊆ H(1) ⊆ . . ., it follows that cl(G)(~q`) is the direct limit of the se-

quence H(0)(~q`) ⊆ H(1)(~q`) ⊆ · · · and also cl(G)(~pi) is the direct limit of the sequence

H(0)(~pi) ⊆ H(1)(~pi) ⊆ · · · . By Lemma 2.3.5 there is a sequence of rooted isomorphisms

ϕ`,n : H(n)(~pi)→ H(n+1)(~q`) such that ϕ`,n+1 extends ϕ`,n, so ϕ` =
⋃
n ϕ`,n is the required

isomorphism. �

We remark that it is possible to show that cl(G) is in fact determined, uniquely up to

isomorphism, by the properties (cl.1) and (cl.2). Also we note that since each H(n) has

the same maximum degree as G, it follows that ∆(cl(G)) = ∆(G).

There is a natural promise structure on cl(G) given by the placeholder promises in ~P

and their corresponding promise leaves. In the construction sketch from Section 2.2, these

leaves corresponded to the yellow and green leaves. We now show how to keep track of

the placeholder promises when taking the closure of a promise structure.

Note that if ~pi is a placeholder promise, then for each
(
H(n),P ,L(n)

)
we have L

(n)
i ⊇

L
(n−1)
i . Indeed, for each leaf in L

(n−1)
i we glue a copy of the component ci together with the

associated promises on the leaves in this component. However, ci is just a single vertex,

with a promise corresponding to ~pi, and hence L
(n)
i ⊇ L

(n−1)
i . For every placeholder

promise ~pi ∈ ~P we define cl(Li) =
⋃
n L

(n)
i .

Definition 2.3.6 (Closure of a promise structure). The closure of the promise struc-

ture (G,P ,L) is the promise structure cl(P) =
(

cl(G), cl(~P ), cl(L)
)

, where:
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• cl(~P ) =
{
~pi : ~pi ∈ ~P is a placeholder-promise

}
, and

• cl(L) = {cl(Li) : ~pi ∈ ~P is a placeholder-promise}.

We note that, since each isomorphism ϕ`,n from Lemma 2.3.5 was ~P -respecting, it is

possible to strengthen Proposition 2.3.3 in the following way.

Proposition 2.3.7. Let G be a forest and let
(
G, ~P ,L

)
be a promise structure. Then

the forest cl(G) satisfies:

(cl.3) for every ~pi ∈ ~P and every ` ∈ Li,

cl(G)(~pi) ∼= cl(G)(~q`)

are isomorphic as rooted trees, and this isomorphism is cl(~P )-respecting with re-

spect to cl(P).

Proof. Since each isomorphism ϕ`,n : H(n)(~pi) → H(n+1)(~q`) in Proposition 2.3.5 is
~P -respecting, we have

ϕ`,n

(
L

(n)
i ∩H(n)(~pi)

)
= L

(n+1)
i ∩H(n+1)(~q`).

For each placeholder promise we have that cl(Li) =
⋃
n L

(n)
i , and so it follows that

cl(Li) ∩ cl(G)(~q`) =
⋃
n

(
L

(n)
i ∩H(n)(~q`)

)
and

cl(Li) ∩ cl(G)(~pi) =
⋃
n

(
L

(n)
i ∩H(n)(~pi)

)
.

From this it follows that ϕ` =
⋃
n ϕl,n is a cl(~P )-respecting isomorphism between cl(G)(~pi)

and cl(G)(~q`) as rooted trees. �

It is precisely this property (cl.3) of the promise closure that will allow us, in Claim 8

below, to maintain partial hypomorphisms during our recursive construction.

2.4. The construction

In this section we construct two hypomorphic locally finite trees neither of which embed

into the other, establishing our main theorem announced in the introduction.

2.4.1. Preliminary definitions.

Definition 2.4.1 (Bare path). A path P = v0, v1, . . . , vn in a graph G is called a bare

path if degG(vi) = 2 for all internal vertices vi for 0 < i < n. The path P is a maximal

bare path (or maximally bare) if in addition degG(v0) 6= 2 6= degG(vn). An infinite path

P = v0, v1, v2, . . . is maximally bare if degG(v0) 6= 2 and degG(vi) = 2 for all i > 1.
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Lemma 2.4.2. Let T be a tree and e ∈ E(T ). If every maximal bare path in T has

length at most k ∈ N, then every maximal bare path in T − e has length at most 2k.

Proof. We first note that every maximal bare path in T − e has finite length, since

any infinite bare path in Tn − e would contain a subpath which is an infinite bare path

in T . If P = {x0, x1, . . . , xn} is a maximal bare path in T − e which is not a subpath

of any maximal bare path in T , then there is at least one 1 6 i 6 n − 1 such that e is

adjacent to xi, and since T was a tree, xi is unique. Therefore, both {x0, x1, . . . , xi} and

{xi, xi+1, . . . , xn} are maximal bare paths in T . By assumption both i and n − i are at

most k, and so the length of P is at most 2k, as claimed. �

Definition 2.4.3 (Bare extension). Given a forest G, a subset B of leaves of G, and

a component T of G, we say that a tree T̂ ⊃ T is a bare extension of T at B to length

k if T̂ can be obtained from T by adjoining, at each vertex l ∈ B ∩ V (T ), a new path of

length k starting at l and a new leaf whose only neighbour is l.

T

A tree T with designated leaf set B.

T

A bare extension of T at B.

Figure 2.3. Building a bare extension of a tree T at B to length k. All

dotted lines are maximal bare paths of length k.

Note that the new leaves attached to each l ∈ B ensure that the paths of length k are

indeed maximal bare paths.

Definition 2.4.4 (k-ball). For G a subgraph of H, the k-ball BallH(G, k) is the

induced subgraph of H on the set of vertices within distance k of some vertex of G.

Definition 2.4.5 (Binary tree). For k > 1, the binary tree of height k is the unique

rooted tree on 2k − 1 = 1 + 2 + · · · + 2k−1 vertices such that the root has degree 2, there

are 2k−1 leaves, and all other vertices have degree 3. By a binary tree we mean a binary

tree of height k for some k ∈ N.

2.4.2. The back-and-forth construction. We prove the following theorem.

Theorem 2.4.6. There are two (vertex-)hypomorphic infinite trees T and S with max-

imum degree 3 such that there is no embedding T ↪→ S or S ↪→ T .
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Figure 2.4. The binary tree of height 3.

To do this we shall recursively construct, for each n ∈ N,

• disjoint (possibly infinite) rooted trees Tn and Sn,

• disjoint (possibly infinite) sets Rn and Bn of leaves of the forest Tn t Sn,

• finite sets Xn ⊆ V (Tn) and Yn ⊆ V (Sn), and bijections ϕn : Xn → Yn,

• a family of isomorphisms Hn = {hn,x : Tn − x→ Sn − ϕn(x) : x ∈ Xn},
• strictly increasing sequences of integers kn > 2 and bn > 3,

such that (letting all objects indexed by −1 be the empty set) for all n ∈ N:

(†1) Tn−1 ⊆ Tn and Sn−1 ⊆ Sn as induced subgraphs,

(†2) the vertices of Tn and Sn all have degree at most 3,

(†3) the root of Tn is in Rn and the root of Sn is in Bn,

(†4) all binary trees appearing as subgraphs of Tn t Sn are finite and have height at

most bn,

(†5) all bare paths in Tn t Sn are finite and have length at most kn,

(†6) BallTn(Tn−1, kn−1 +1) is a bare extension of Tn−1 at Rn−1∪Bn−1 to length kn−1 +1

and does not meet Rn ∪Bn,

(†7) BallSn(Sn−1, kn−1 +1) is a bare extension of Sn−1 at Rn−1∪Bn−1 to length kn−1 +1

and does not meet Rn ∪Bn,

(†8) there is no embedding from Tn into any bare extension of Sn at Rn ∪ Bn to any

length, nor from Sn into any bare extension of Tn at Rn ∪Bn to any length,

(†9) any embedding of Tn into a bare extension of Tn at Rn ∪ Bn to any length fixes

the root of Tn and has image Tn,

(†10) any embedding of Sn into a bare extension of Sn at Rn ∪ Bn to any length fixes

the root of Sn and has image Sn,

(†11) there are enumerations V (Tn) = {tj : j ∈ Jn} and V (Sn) = {sj : j ∈ Jn} such that

• Jn−1 ⊆ Jn ⊆ N,

• {tj : j ∈ Jn} extends the enumeration {tj : j ∈ Jn−1} of V (Tn−1), and simi-

larly for {sj : j ∈ Jn},
• |N \ Jn| =∞,

• {0, 1, . . . , n} ⊆ Jn,

(†12) {tj, sj : j 6 n} ∩ (Rn ∪Bn) = ∅,
(†13) the finite sets of vertices Xn and Yn satisfy |Xn| = n = |Yn|, and

• Xn−1 ⊆ Xn and Yn−1 ⊆ Yn,

• ϕn � Xn−1 = ϕn−1,

• {tj : j 6 n} ⊆ X2n+1 and {sj : j 6 n} ⊆ Y2(n+1),
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• (Xn ∪ Yn) ∩ (Rn ∪Bn) = ∅,
(†14) the families of isomorphisms Hn satisfy

• hn,x � (Tn−1 − x) = hn−1,x for all x ∈ Xn−1,

• the image of Rn ∩ V (Tn) under hn,x is Rn ∩ V (Sn), and

• the image of Bn ∩ V (Tn) under hn,x is Bn ∩ V (Sn) for all x ∈ Xn.

2.4.3. The construction yields the desired non-reconstructible trees. By prop-

erty (†1), we have T0 ⊆ T1 ⊆ T2 ⊆ · · · and S0 ⊆ S1 ⊆ S2 ⊆ · · · . Let T and S be the union

of the respective chains. It is clear that T and S are trees, and that as a consequence of

(†2), both trees have maximum degree 3.

We claim that the map ϕ =
⋃
n ϕn is a hypomorphism between T and S. Indeed, it

follows from (†11) and (†13) that ϕ is a well-defined bijection from V (T ) to V (S). To see

that ϕ is a hypomorphism, consider any vertex x of T . This vertex appears as some tj in

our enumeration of V (T ), so by (†14) the map

hx :=
⋃
n>2j

hn,x : T − x→ S − ϕ(x)

is an isomorphism between T − x and S − ϕ(x).

Now suppose for a contradiction that f : T ↪→ S is an embedding of T into S. Then

f(t0) is mapped into Sn for some n ∈ N. Properties (†5) and (†6) imply that after deleting

all maximal bare paths in T of length > kn, the connected component of t0 is a bare

extension of Tn to length 0. Further, by (†7), BallS(Sn, kn + 1) is a bare extension of Sn at

Rn∪Bn to length kn+1. But combining the fact that f(Tn)∩Sn 6= ∅ and the fact that Tn
does not contain long maximal bare paths, it is easily seen that f(Tn) ⊆ BallS(Sn, kn + 1),

contradicting (†8).2

The case S ↪→ T yields a contradiction in a symmetric fashion, completing the proof.

2.4.4. The base case: there are finite rooted trees T0 and S0 satisfying re-

quirements (†1)–(†14). Choose a pair of non-isomorphic, equally sized trees T0 and S0

of maximum degree 3, and pick a leaf each as roots r(T0) and r(S0) for T0 and S0, subject

to conditions (†8)–(†10) with R0 = {r(T0)} and B0 = {r(S0)}. A possible choice is given

in Fig. 2.5. Here, (†8) is satisfied, because any embedding of T0 into a bare extension of S0

has to map the binary tree of height 3 in T0 to the binary tree in S0, making it impossible

to embed the middle leaf. Properties (†9) and (†10) are similar.

Let J0 = {0, 1, . . . , |T0| − 1} and choose enumerations V (T0) = {tj : j ∈ J0} and V (S0) =

{sj : j ∈ J0} with t0 6= r(T0) and s0 6= r(S0). This takes care of (†11) and (†12). Finally,

(†13) and (†14) are satisfied for X0 = Y0 = H0 = ϕ0 = ∅. Set k0 = 2 and b0 = 3.

2To get the non-embedding property, we have used (†5)–(†8) at every step n. While at the first

glance, properties (†4), (†9) and (†10) do not seem to be needed at this point, they are crucial during the

construction to establish (†8) at step n+ 1. See Claim 5 below for details.
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r(T0) r(S0)

Figure 2.5. A possible choice for finite rooted trees T0 and S0.

2.4.5. The inductive step: set-up. Now, assume that we have constructed trees

Tk and Sk for all k 6 n such that (†1)–(†14) are satisfied up to n. If n = 2m is even, then

we have {tj : j 6 m− 1} ⊆ Xn, so in order to satisfy (†13) we have to construct Tn+1 and

Sn+1 such that the vertex tm is taken care of in our partial hypomorphism. Similarly, if

n = 2m+1 is odd, then we have {sj : j 6 m− 1} ⊆ Yn and we have to construct Tn+1 and

Sn+1 such that the vertex sm is taken care of in our partial hypomorphism. Both cases

are symmetric, so let us assume in the following that n = 2m is even.

Now let v be the vertex with the least index in the set {tj : j ∈ Jn} \Xn, i.e.

v = ti for i = min {` : t` ∈ V (Tn) \Xn}.(1)

Then by assumption (†13), v will be tm, unless tm was already in Xn anyway. In any

case, since |Xn| = |Yn| = n, it follows from (†11) that i 6 n, so by (†12), v does not lie in

our leaf sets Rn ∪Bn, i.e.

v /∈ Rn ∪Bn.(2)

In the next sections, we will demonstrate how to to obtain trees Tn+1 ⊃ Tn and

Sn+1 ⊃ Sn with Xn+1 = Xn ∪ {v} and Yn+1 = Yn ∪ {ϕn+1(v)} satisfying (†1)—(†10) and

(†13)–(†14).

After we have completed this step, since |N \ Jn| = ∞, it is clear that we can extend

our enumerations of Tn and Sn to enumerations of Tn+1 and Sn+1 as required, making sure

to first list some new elements that do not lie in Rn+1 ∪ Bn+1. This takes care of (†11)

and (†12) and completes the recursion step n 7→ n+ 1.

2.4.6. The inductive step: construction. Given the two trees Tn and Sn, we

extend each of them through their roots as indicated in Figure 2.6 to trees T̃n and S̃n

respectively. The trees Tn+1 and Sn+1 will be obtained as components of the promise

closure of the forest Gn = T̃n t S̃n with respect to the coloured promise edges.

Since v is not the root of Tn, there is a first edge e on the unique path in Tn from v to

the root.

This edge we also call e(v).(3)
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Then Tn − e has two connected components: one that contains the root of Tn which we

name Tn(r), and one that contains v which we name Tn(v).

Since every maximal bare path in Tn has length at most kn by (†5), it follows from

Lemma 2.4.2 that all maximal bare paths in Tn − e, and so all bare paths in Tn(r) and

Tn(v), have bounded length. Let k = k̃n be twice the maximum of the length of bare paths

in Tn, Sn, Tn(r) and Tn(v), which exists by (†5).

r(Tn)

Tn

Dnv

Ŝn

r(Tn+1) g

(a) tree T̃n

r(Sn)

T̂n(r)

v̂

T̂n(v̂)D̂n

Sn

r(Sn+1)y

The tree S̃n.

Figure 2.6. All dotted lines are maximal bare paths of length at least

k = k̃n. The trees Dn are binary trees of height bn + 3, hence Dn 6↪→ Tn and

Dn 6↪→ Sn by ((†4)).

To obtain T̃n, we extend Tn through its root r(Tn) ∈ Rn by a path

r(Tn) = u0, u1, . . . , up−1, up = r
(
Ŝn

)
of length p = 4(k̃n + 1) + 3, where at its last vertex up we glue a rooted copy Ŝn of Sn (via

an isomorphism ŵ ↔ w), identifying up with the root of Ŝn.

Next, we add two additional leaves at u0 and up, so that deg(r(Tn)) = 3 = deg
(

r
(
Ŝn

))
.

Further, we add a leaf r(Tn+1) at u2k+2, which will be our new root for the next tree Tn+1;

and another leaf g at u2k+5. Finally, we take a copy Dn of a rooted binary tree of height

bn + 3 and connect its root via an edge to u2k+3. This completes the construction of T̃n.

The construction of S̃n is similar, but with a twist. For its construction, we extend Sn
through its root r(Sn) ∈ Bn by a path

r(Sn) = vp, vp−1, . . . , v1, v0 = r
(
T̂n(r)

)
of length p, where at its last vertex v0 we glue a copy T̂n(r) of Tn(r), identifying v0 with

the root of T̂n(r). Then, we take a copy T̂n(v̂) of Tn(v) and connect v̂ via an edge to vk+1.

This edge we call e(v̂).(4)

Finally, as before, we add two leaves at v0 and vp so that deg
(

r
(
T̂n(r)

))
= 3 =

deg (r(Sn)). Next, we add a leaf r(Sn+1) to v2k+5, which will be our new root for the

next tree Sn+1; and another leaf y to v2k+2. Finally, we take another copy D̂n of a rooted
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binary tree of height bn + 3 and connect its root via an edge to v2k+3. This completes the

construction of S̃n.

By the induction hypothesis, certain leaves of Tn have been coloured with one of the

two colours Rn ∪ Bn, and also some leaves of Sn have been coloured with one of the two

colours Rn ∪ Bn. In the above construction, we colour leaves of Ŝn, T̂n(r) and T̂n(v̂)

accordingly:

R̃n =
(
Rn ∪

{
ŵ ∈ Ŝn ∪ T̂n(r) ∪ T̂n(v̂) : w ∈ Rn

})
\
{

r(Tn), r
(
T̂n(r)

)}
,

B̃n =
(
Bn ∪

{
ŵ ∈ Ŝn ∪ T̂n(r) ∪ T̂n(v̂) : w ∈ Bn

})
\
{

r(Sn), r
(
Ŝn

)}
.

(5)

Now put Gn := T̃n t S̃n and consider the following promise structure P =
(
Gn, ~P ,L

)
on Gn, consisting of four promise edges ~P = {~p1, ~p2, ~p3, ~p4} and corresponding leaf sets

L = {L1, L2, L3, L4}, as follows:

• ~p1 pointing in Tn towards the root r(Tn), with L1 = R̃n,

• ~p2 pointing in Sn towards the root r(Sn), with L2 = B̃n,

• ~p3 pointing in T̃n towards the root r(Tn+1), with L3 = {r(Tn+1), y},

• ~p4 pointing in S̃n towards the root r(Sn+1), with L4 = {r(Sn+1), g}.

(6)

Note that our construction so far has been tailored to provide us with a ~P -respecting

isomorphism

h : T̃n − v → S̃n − v̂.(7)

Consider the closure cl(Gn) with respect to the promise structure P defined above.

Since cl(Gn) is a leaf-extension of Gn, it has two connected components, just as Gn. We

now define

Tn+1 = the component containing Tn in cl(Gn), and

Sn+1 = the component containing Sn in cl(Gn).
(8)

It follows that cl(Gn) = Tn+1 t Sn+1 and v̂ ∈ V (Sn+1). Further, since ~p3 and ~p4 are

placeholder promises, cl(G) carries a corresponding promise structure, see Definition 2.3.6.

We define

Rn+1 = cl(L3) and Bn+1 = cl(L4).(9)

Lastly, we set

Xn+1 = Xn ∪ {v},

Yn+1 = Yn ∪ {v̂}, and

ϕn+1 = ϕn ∪ {(v, v̂)},
(10)
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and put

kn+1 = 2k̃n + 3 and bn+1 = bn + 3(11)

The construction of trees Tn+1 and Sn+1, coloured leaf sets Rn+1 and Bn+1, the bijection

ϕn+1 : Xn+1 → Yn+1, and integers kn+1 and bn+1 is now complete. In the following, we

verify that (†1)–(†14) are indeed satisfied for the (n+ 1)th instance.

2.4.7. The inductive step: verification.

Claim 1. Tn+1 and Sn+1 extend Tn and Sn. Moreover, they are rooted trees of max-

imum degree 3 such that their respective roots are contained in Rn+1 and Bn+1. Hence,

(†1)–(†3) are satisfied.

Proof. Property (†1) follows from (cl.1), i.e. that cl(Gn) is a leaf-extension of Gn.

Thus, Tn+1 is a leaf extension of T̃n, which in turn is a leaf extension of Tn, and similar

for Sn. This shows (†1).

As noted after the proof of Proposition 2.3.3, taking the closure does not affect the

maximum degree, i.e. ∆(cl(Gn)) = ∆(Gn) = 3. This shows (†2).

Finally, (9) implies (†3), as r(Tn+1) ∈ Rn+1 and r(Sn+1) ∈ Bn+1. �

Claim 2. All binary trees appearing as subgraphs of Tn+1 t Sn+1 have height at most

bn+1, and every such tree of height bn+1 is some copy Dn or D̂n. Hence, Tn+1 and Sn+1

satisfy (†4).

Proof. We first claim that all binary trees appearing as subgraphs of T̃n t S̃n which

are not contained in Dn or D̂n have height at most bn + 1. Indeed, note that any binary

tree appearing as a subgraph of Tn, T̂n(r), T̂n(v), Ŝn or Sn has height at most bn by the

inductive hypothesis. Since the paths we added to the roots of Tn and Ŝn to form T̃n were

sufficiently long, any binary tree appearing as a subgraph of T̃n can only meet one of Tn,

Ŝn or Dn. Since the roots of Tn and Ŝn are adjacent to two new vertices in T̃n, one of

degree 1, any such tree meeting Tn or Ŝn must have height at most bn + 1. By Figure 2.6

we see that any binary tree in T̃n which meets Dn but whose root lies outside of Dn has

height at most 3 6 bn + 1. Consider then a binary tree whose root lies inside Dn, but

that is not contained in Dn. Again, by Figure 2.6 we see that the root of Dn must lie in

one of the bottom three layers of this binary tree. Hence, if the root of this tree lies on

the kth level of Dn, then the tree can have height at most min{bn + 3 − k, k + 2}, and

hence the tree has height at most bn/2 + 2 6 bn + 1. Any other binary tree meeting Dn is

then contained in Dn. It follows that the only binary tree of height bn + 3 appearing as a

subgraph of T̃n is Dn, and a similar argument holds for S̃n and D̂n.

Recall that Tn+1 and Sn+1 are the components of cl(T̃n t S̃n) containing T̃n and S̃n
respectively. If we refer back to Section 2.3 we see that Tn+1 can be formed from T̃n by

repeatedly gluing components isomorphic to T̃n(~p1) or S̃n(~p2) to leaves. Consider a binary
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tree appearing as a subgraph of Tn+1 which is contained in T̃n or one of the copies of

T̃n(~p1) or S̃n(~p2). By the previous paragraph, this tree has height at most bn + 3, and if

it has height bn + 3 it is a copy Dn or D̂n. Suppose then that there is a binary tree, of

height b, whose root is in T̃n, but is not contained in T̃n. Such a tree must contain some

vertex ` ∈ T̃n which is adjacent to a vertex not in T̃n. Hence, ` must have been a leaf

in T̃n at which a copy of T̃n(~p1) or S̃n(~p2) was glued on. However, the roots of each of

these components are adjacent to just two vertices, one of degree 1, and hence this leaf

` must either be in the bottom, or second to bottom layer of the binary tree. Therefore,

b 6 bn + 2. A similar argument holds when the root lies in some copy of T̃n(~p1) or S̃n(~p2),

and also for Sn+1.

Therefore, all binary trees appearing as subgraphs of Tn+1 t Sn+1 have height at most

bn + 3, and every such tree is some copy Dn or D̂n. Hence, since bn+1 = bn + 3, it follows

that bn+1 > bn and Tn+1 and Sn+1 satisfy (†4). �

Claim 3. Every maximal bare path in Tn+1 t Sn+1 has length at most kn+1. Hence,

Tn+1 and Sn+1 satisfy (†5).

Proof. We first claim that all maximal bare paths in T̃n t S̃n have length at most

2k̃n + 3. Firstly, we note that any maximal bare path which is contained in Tn or Ŝn has

length at most kn 6 k̃n by the induction hypothesis. Also, since the roots of Tn and Ŝn
have degree 3 in T̃n, any maximal bare path is either contained in Tn or Ŝn, or does not

contain any interior vertices from Tn or Ŝn. However, it is clear from the construction that

any maximal bare path in T̃n that does not contain any interior vertices from Tn or Ŝn
has length at most 2k̃n + 3. Similarly, any maximal bare path which is contained in T̂n(r),

T̂n(v), or Sn has length at most k̃n by definition. By the same reasoning as above, any

maximal bare path in S̃n not contained in T̂n(r), T̂n(v), or Sn has length at most 2k̃n + 3.

Again, recall that Tn+1 can be formed from T̃n by repeatedly gluing components iso-

morphic to T̃n(~p1) or S̃n(~p2) to leaves. Any maximal bare path in Tn+1 which is contained

in T̃n or one of the copies of T̃n(~p1) or S̃n(~p2) has length at most 2k̃n + 3 by the previous

paragraph. However, since every interior vertex in a maximal bare path has degree two,

and the vertices in Tn+1 at which we, at some point in the construction, stuck on copies

of T̃n(~p1) or S̃n(~p2) have degree 3, any maximal bare path in Tn+1 must be contained in

T̃n or one of the copies of T̃n(~p1) or S̃n(~p2). Again, a similar argument holds for Sn+1.

Hence, all maximal bare paths in Tn+1 t Sn+1 have length at most 2k̃n + 3. Therefore,

since kn+1 = 2k̃n + 3, it follows that kn+1 > kn and Tn+1 and Sn+1 satisfy (†5). �

Claim 4. BallTn+1(Tn, kn + 1) is a bare extension of Tn at Rn ∪ Bn to length kn + 1

and does not meet Rn+1 ∪Bn+1 and similarly for Sn+1. Hence, Tn+1 and Sn+1 satisfy (†6)

and (†7) respectively.
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Proof. We will show that Tn+1 satisfies (†6), the proof that Sn+1 satisfies (†7) is

analogous. By Proposition 2.3.3, the tree Tn+1 is an
(

(R̃n ∪ B̃n) ∩ V (T̃n)
)

-extension of

T̃n. Hence Tn+1 is an((
(R̃n ∪ B̃n) ∩ V (Tn)

)
∪ r(Tn)

)
=
(
(Rn ∪Bn) ∩ V (Tn)

)
-extension of Tn.(12)

By looking at the construction of cl(G) from Section 2.3, we see that Tn+1 is also an

L′-extension of the supertree T ′ ⊇ Tn formed by gluing a copy of T̃n(~p1) to every leaf in

Rn ∩ V (Tn) and a copy of S̃n(~p2) to every leaf in Bn ∩ V (Tn), where the leaves in L′ are

the inherited promise leaves from the copies of T̃n(~p1) and S̃n(~p2).

However, we note that every promise leaf in T̃n(~p1) and S̃n(~p2) is at distance at

least k̃n + 1 from the respective root, and so BallTn+1(Tn, k̃n) = BallT ′(Tn, k̃n). How-

ever, BallT ′(Tn, k̃n) can be seen immediately to be a bare extension of Tn at Rn ∪ Bn to

length k̃n, and since k̃n > kn + 1 it follows that BallTn+1(Tn, kn + 1) is a bare extension of

Tn at Rn ∪Bn to length kn + 1 as claimed.

Finally, we note that Rn+1 ∪ Bn+1 is the set of promise leaves cl(Ln). By the same

reasoning as before, BallTn+1(Tn, kn + 1) contains no promise leaf in cl(Ln), and so does

not meet Rn+1 ∪Bn+1 as claimed. �

Claim 5. Let Un+1 be a bare extension of cl(Gn) = Tn+1tSn+1 at Rn+1∪Bn+1 to any

length. Then any embedding of Tn+1 or Sn+1 into Un+1 fixes the respective root. Hence,

Tn+1 and Sn+1 satisfy (†8).

Proof. Recall that the promise closure was constructed by recursively adding copies

of rooted trees Ci and identifying their roots with promise leaves. For the promise structure

P =
(
Gn, ~P ,L

)
on Gn we have C1 = T̃n(~p1) and C2 = S̃n(~p2).

Note that by (†5), the image of any embedding Tn ↪→ Un+1 cannot contain a bare path

of length kn + 1. Also, by construction, every copy of Tn, Sn, T̂n(r), or T̂n(v̂) in Tn+1 has

the property that its (kn + 1)-ball in Tn+1 is a bare extension to length kn + 1 of this copy.

Hence, if the root of Tn embeds into some copy of Tn, Sn, T̂n(r), or T̂n(v̂), then the whole

tree embeds into a bare extension of this copy. The same is true for Sn.

By (†8), there are no embeddings of Tn into a bare extension of Sn, or of Sn into a

bare extension of Tn. Moreover, since both T̂n(r) and T̂n(v̂) are subtrees of Tn, there is no

embedding of Tn or Sn into bare extensions of them by (†8) and (†9).

Thus, only the following embeddings are possible:

• Tn embeds into a bare extension of a copy of Tn, or Sn embeds into a bare

extension of a copy of Sn. In both cases, the root must be preserved, as otherwise

we contradict (†9) or (†10).

Let f : Tn+1 ↪→ Un+1 be an embedding. By Claim 2, Un+1 contains no binary trees of

height bn + 3 apart from Dn, D̂n, and the copies of those two trees that were created by

adding copies of C1 and C2. Consequently f maps Dn to one of these copies, mapping
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the root to the root. The neighbours of r(Tn+1) and g must map to vertices of degree

3 at distance two and three from the image of the root of Dn respectively, which forces

f(r(Tn+1)) ∈ Rn+1. If f(r(Tn+1)) = r(Tn+1) then we are done.

Otherwise there are two possibilities for f(r(Tn+1)). If f(r(Tn+1)) is contained in a

copy of C1, then r(Tn) maps to a promise leaf other than the root in a copy of Tn, Sn,

T̂n(r), or T̂n(v̂). If f(r(Tn+1)) = y or f(r(Tn+1)) is contained in a copy of C2, then r(Tn)

maps to a copy of r
(
T̂n(r)

)
or some vertex of T̂n(v̂). In both cases the root of Tn does not

map to the root of a copy of Tn, which is impossible by the first bullet point.

Finally, let f : Sn+1 ↪→ Un+1 be an embedding. By the same arguments as above

f(r(Sn+1)) ∈ Bn+1. If f fixes r(Sn+1), we are done.

Otherwise we have again two cases. If f(r(Sn+1)) = g, or f(r(Sn+1)) is contained in a

copy of C1, then vk+1 (the neighbour of v̂ on the long path) would have to map to a vertex

of degree 2, giving an immediate contradiction. If f(r(Sn+1)) is contained in a copy of C2,

then r(Sn) maps to a promise leaf other than the root in a copy of Tn, Sn, T̂n(r), or T̂n(v̂)

which is also impossible by the observations in the bullet points. �

Claim 6. Let Un+1 be as in Claim 5. Then there is no embedding of Tn+1 or Sn+1 into

Un+1 whose image contains vertices outside of cl(Gn), i.e. vertices that have been added

to form the bare extension.

Since a root-preserving embedding of a locally finite tree into itself must be an auto-

morphism, this together with the previous claim implies (†9)and (†10).

Proof. We prove this claim for Tn+1, the proof for Sn+1 is similar. Assume for a

contradiction that there is a vertex w of Tn+1 and an embedding f : Tn+1 ↪→ Un+1 such

that f(w) /∈ cl(Gn). By definition of bare extension, removing f(w) from Un+1 splits the

component of f(w) into at most two components, one of which is a path.

Note first that w does not lie in a copy of Dn or D̂n, because these must map to

binary trees of the same height by Claim 2. Furthermore, all vertices in Rn+1 ∪Bn+1 have

a neighbour of degree 3 whose neighbours all have degree > 2, thus w /∈ Rn+1 ∪ Bn+1.

Finally, only one component of Tn+1 − w can contain vertices of degree 3. Consequently,

w must lie in a copy C of Tn, Sn, T̂n(r), or T̂n(v̂).

All maximal bare paths in the image f(C) have length at most k = k̃n, so f(C) cannot

intersect any copies of Tn, Sn, T̂n(r), or (T̂n(v̂) + vk+1). Let r be the root of C (where

r = v̂ in the last case). Now f(r) must have the following properties: it is a vertex of

degree 3, and the root of a nearest binary tree of height bn+1 not containing f(r) lies at

distance d from f(r), where 5 6 d 6 2k + 4.

But the only vertices with these properties are contained in copies of Tn, Ŝn, T̂n(r),

or (T̂n(v̂) + vk+1). This contradicts the fact that f(C) does not intersect any of these

copies. �
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Claim 7. The function ϕn+1 is a well-defined bijection extending ϕn, such that its do-

main and range do not intersectRn+1∪Bn+1. Hence, property (†13) holds for ϕn+1 : Xn+1 →
Yn+1.

Proof. By the choice of x in (1) and the definition of ϕn+1 : Xn+1 → Yn+1 in (10),

the first three items of property (†13) hold.

Since v does not lie in Rn ∪ Bn by (2), it follows by our construction of the promise

structure P =
(
Gn, ~P ,L

)
in (5) and (6) that neither v nor v̂ = ϕn+1(v) appear as promise

leaves in L. Furthermore, by the induction hypothesis, (Xn ∪ Yn) ∩ (Rn ∪ Bn) = ∅, so no

vertex in (Xn ∪ Yn) appears as a promise leaf in L either. Thus, in formulas,

(Xn+1 ∪ Yn+1) ∩
⋃
L∈L

L = ∅.(13)

In particular, since

(Rn+1 ∪Bn+1) ∩Gn = (cl(L3) ∪ cl(L4)) ∩Gn = L3 ∪ L4,

and Xn+1 ∪ Yn+1 ⊆ Gn, we get (Xn+1 ∪ Yn+1) ∩ (Rn+1 ∪ Bn+1) = ∅. Thus, also the last

item of (†13) is verified. �

Claim 8. There is a family of isomorphisms Hn+1 = {hn+1,x : x ∈ Xn+1} witnessing

that Tn+1−x and Sn+1−ϕn+1(x) are isomorphic for all x ∈ Xn+1, such that hn+1,x extends

hn,x for all x ∈ Xn. Hence, property (†14) holds.

Proof. There are four things to be verified for this claim. Firstly, we need an iso-

morphism hn+1,v witnessing that Tn+1 − v and Sn+1 − v̂ are isomorphic. Secondly, we

need to extend all previous isomorphisms hn,x between Tn− x and Sn−ϕn(x) to Tn+1− x
and Sn+1 − ϕn(x). This will take care of the first item of (†14). To also comply with the

remaining two items, we need to make sure that each isomorphism in

Hn+1 = {hn+1,x : x ∈ Xn+1}

maps leaves in Rn+1 ∩ V (Tn+1) bijectively to leaves in Rn+1 ∩ V (Sn+1), and similarly for

Bn+1.

To find the first isomorphism, note that by construction of the promise structure

P =
(
Gn, ~P ,L

)
on Gn in (5), and properties (cl.1) and (cl.3) of the promise closure, the

trees Tn+1 and Sn+1 are obtained from T̃n and S̃n by attaching at every leaf r ∈ R̃n a copy

of the rooted tree cl(Gn)(~p1), and by attaching at every leaf b ∈ B̃n a copy of the rooted

tree cl(Gn)(~p2).

By (13), neither v nor ϕn+1(v) are mentioned in L. As observed in (7), there is a
~P -respecting isomorphism

h : T̃n − v → S̃n − ϕn+1(v).

In other words, h maps promise leaves in Li ∩ V (T̃n) bijectively to the promise leaves

in Li ∩ V (S̃n) for all i = 1, 2, 3, 4. Our plan is to extend h to an isomorphism between
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Tn+1−v and Sn+1−ϕn(v) by mapping the corresponding copies of cl(Gn)(~p1) and cl(Gn)(~p2)

attached to the various red and blue leaves to each other.

Formally, by (cl.3) there is for each ` ∈
(
R̃n ∪ B̃n

)
∩ V (T ) a cl(~P )-respecting isomor-

phism of rooted trees

cl(Gn)(~q`) ∼= cl(Gn)(~qh(`)).

Therefore, by combining the isomorphism h between T̃n − v and S̃n − ϕn+1(v) with these

isomorphisms between each cl(Gn)(~q`) and cl(Gn)(~qh(`)) we get a cl(~P )-respecting isomor-

phism

hn+1,v : Tn+1 − v → Sn+1 − ϕn+1(v).

And since Rn+1 and Bn+1 have been defined in (9) to be the promise leaf sets of cl(P),

by definition of cl(~P )-respecting (Def. 2.3.4), the image of Rn+1 ∩ V (Tn+1) under hn+1,v is

Rn+1 ∩ V (Sn+1), and similarly for Bn+1.

It remains to extend the old isomorphisms in Hn. As argued in (12), both trees Tn+1

and Sn+1 are leaf extensions of Tn and Sn at Rn ∪ Bn respectively. By property (cl.3),

these leaf extensions are obtained by attaching at every leaf r ∈ Rn a copy of the rooted

tree cl(Gn)(~p1), and similarly by attaching at every leaf b ∈ Bn a copy of the rooted tree

cl(Gn)(~p2).

By induction assumption (†14), for each x ∈ Xn the isomorphism

hn,x : Tn − x→ Sn − ϕn(x)

maps the red leaves of Tn bijectively to the red leaves of Sn, and the blue leaves of Tn
bijectively to the blue leaves of Sn. Thus, by property (cl.3), there are cl(~P )-respecting

isomorphisms of rooted trees

cl(Gn)(~q`) ∼= cl(Gn)(~qhn,x(`))

for all ` ∈ (Rn ∪ Bn) ∩ V (Tn). By combining the isomorphism hn,x between Tn − x and

Sn−ϕn(x) with these isomorphisms between each cl(Gn)(~q`) and cl(Gn)(~qhn,x(l)), we obtain

a cl(~P )-respecting extension

hn+1,x : Tn+1 − x→ Sn+1 − ϕn(x).

As before, by definition of cl(~P )-respecting, the image of Rn+1 ∩ V (Tn+1) under hn+1,x is

Rn+1 ∩ V (Sn+1), and similarly for Bn+1.

Finally, by construction we have hn+1,x � (Tn − x) = hn,x for all x ∈ Xn as desired.

The proof is complete. �

2.5. The trees are also edge-hypomorphic

In this final section, we briefly indicate why the trees T and S yielded by our strategy

above are automatically edge-hypomorphic: we claim the correspondence

ψ : e(x) 7→ e(ϕ(x))
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as introduced in (3) and (4) is an edge-hypomorphism between T and S. For this, we need

to verify that

(a) ψ is a bijection between E(T ) and E(S), and that

(b) the maps hx ∪ {〈x, ϕ(x)〉} : G− e(x)→ H − e(ϕ(x)) are isomorphisms.

Regarding (b), observe that the map h as defined in (7) yields, by construction, also a
~P -respecting isomorphism

h ∪ {(v, v̂)} : T̃n − e(v)→ S̃n − e(v̂),

and from there, the arguments are entirely the same as in the previous section.

For (a), we use the canonical bijection between the edge set of a rooted tree, and

its vertices other than the root; namely the bijection mapping every such vertex to the

first edge on its unique path to the root. Thus, given the enumeration of V (Tn) and

V (Sn) in (†11), we obtain corresponding enumerations of E(Tn) and E(Sn), and since

the rooted trees Tn and Sn are order-preserving subtrees of the rooted trees Tn+1 and

Sn+1 (cf. Figure 2.6), it follows that also our enumerations of E(Tn) and E(Sn) extend

the enumerations of E(Tn−1) and E(Sn−1) respectively. But now it follows from (†13)

and the definition of ψ that by step 2(n + 1) we have dealt with the first n edges in our

enumerations of E(T ) and E(S) respectively.



CHAPTER 3

Non-reconstructible locally finite graphs

Two graphs G and H are hypomorphic if there exists a bijection ϕ : V (G) →
V (H) such that G − v ∼= H − ϕ(v) for each v ∈ V (G). A graph G is recon-

structible if H ∼= G for all H hypomorphic to G.

Nash-Williams proved that all locally finite graphs with a finite number

> 2 of ends are reconstructible, and asked whether locally finite graphs with

one end or countably many ends are also reconstructible.

In this paper we construct non-reconstructible graphs of bounded maxi-

mum degree with one and countably many ends respectively, answering the two

questions of Nash-Williams about the reconstruction of locally finite graphs

in the negative.

3.1. Introduction

Two graphs G and H are hypomorphic if there exists a bijection ϕ between their vertex

sets such that the induced subgraphs G− v and H − ϕ(v) are isomorphic for each vertex

v of G. We say that a graph G is reconstructible if H ∼= G for every H hypomorphic to

G. The Reconstruction Conjecture, a famous unsolved problem attributed to Kelly and

Ulam, suggests that every finite graph with at least three vertices is reconstructible.

For an overview of results towards the Reconstruction Conjecture for finite graphs see

the survey of Bondy and Hemminger [29]. The corresponding reconstruction problem for

infinite graphs is false: the countable regular tree T∞, and two disjoint copies of it (written

as T∞ ∪ T∞) are easily seen to be non-homeomorphic reconstructions of each other. This

example, however, contains vertices of infinite degree. Regarding locally finite graphs,

Harary, Schwenk and Scott [91] showed that there exists a non-reconstructible locally

finite forest. However, they conjectured that the Reconstruction Conjecture should hold

for locally finite trees. This conjecture has been verified for locally finite trees with at

most countably many ends in a series of paper [12, 28, 151]. However, very recently, the

present authors have constructed a counterexample to the conjecture of Harary, Schwenk

and Scott.

Theorem 3.1.1 (Bowler, Erde, Heinig, Lehner, Pitz [36]). There exists a non-recon-

structible tree of maximum degree three.

35
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The Reconstruction Conjecture has also been considered for general locally finite

graphs. Nash-Williams [126] showed that if p > 3 is an integer, then any locally fi-

nite graph with exactly p ends is reconstructible; and in [128] he showed the same is true

for p = 2. The case p = 2 is significantly more difficult. Broadly speaking this is because

every graph with p > 3 ends has some identifiable finite ‘centre’, from which the ends

can be thought of as branching out. A two-ended graph however can be structured like a

double ray, without an identifiable ‘centre’.

The case of 1-ended graphs is even harder, and the following problems from a survey

of Nash-Williams [127], which would generalise the corresponding results established for

trees, have remained open.

Problem 3.1.2 (Nash-Williams). Is every locally finite graph with exactly one end

reconstructible?

Problem 3.1.3 (Nash-Williams). Is every locally finite graph with countably many

ends reconstructible?

In this paper, we extend our methods from [36] to construct examples showing that

both of Nash-Williams’ questions have negative answers. Our examples will not only be

locally finite, but in fact have bounded degree.

Theorem 3.1.4. There is a connected one-ended non-reconstructible graph with bounded

maximum degree.

Theorem 3.1.5. There is a connected countably-ended non-reconstructible graph with

bounded maximum degree.

Since every locally finite graph has either finitely many, countably many or continuum

many ends, Theorems 3.1.1, 3.1.4 and 3.1.5 together with the results of Nash-Williams

provide a complete picture about what can be said about number of ends versus recon-

struction:

• A locally finite tree with at most countably many ends is reconstructible; but

there are non-reconstructible locally finite trees with continuum many ends.

• A locally finite graph with at least two, but a finite number of ends is recon-

structible; but there are non-reconstructible locally finite graphs with one, count-

ably many, and continuum many ends respectively.

This paper is organised as follows: In the next section we give a short, high-level

overview of our constructions which answer Nash-Williams’ problems. In Sections 3.3 and

3.4, we develop the technical tools necessary for our construction, and in Sections 3.5 and

3.6, we prove Theorems 3.1.4 and 3.1.5.

For standard graph theoretical concepts we follow the notation in [54].
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3.2. Sketch of the construction

In this section we sketch the main ideas of the construction in three steps. First, we

quickly recall our construction of two hypomorphic, non-isomorphic locally finite trees

from [36]. We will then outline how to adapt the construction to obtain a one-ended-,

and a countably-ended counterexample respectively.

3.2.1. The tree case. This section contains a very brief summary of the much more

detailed sketch from [36]. The strategy is to build trees T and S recursively, where at

each step of the construction we ensure for some new vertex v already chosen for T that

there is a corresponding vertex w of S with T − v ∼= S−w, or vice versa. This will ensure

that by the end of the construction, the trees we have built are hypomorphic.

More precisely, at step n we will construct subtrees Tn and Sn of our eventual trees,

where some of the leaves of these subtrees have been coloured in two colours, say red

and blue. We will only further extend the trees from these coloured leaves, and we will

extend from leaves of the same colour in the same way. We also make sure that earlier

partial isomorphisms between Tn − vi ∼= Sn − wi preserve leaf colours. Together, these

requirements guarantee that earlier partial isomorphisms always extend to the next step.

The Tn will be nested, and we will take T to be the union of all of them; similarly the

Sn will be nested and we take S to be the union of all of them. To ensure that T and S

do not end up being isomorphic, we first ensure, for each n, that there is no isomorphism

from Tn to Sn. Our second requirement is that T or S beyond any coloured leaf of Tn or

Sn begins with a long non-branching path, longer than any such path appearing in Tn or

Sn. Together, this implies that T and S are not isomorphic.

r

Tn Ŝn

b

T̂n Sn

Figure 3.1. A first approximation of Tn+1 on the left, and Sn+1 on the

right. All dotted lines are long non-branching paths.

Algorithm Stage One: Suppose now that we have already constructed Tn and Sn and

wish to construct Tn+1 and Sn+1. Suppose further that we are given a vertex v of Tn for

which we wish to find a partner w in Sn+1 so that T − v and S − w are isomorphic. We

begin by building a tree T̂n 6∼= Tn which has some vertex w such that Tn − v ∼= T̂n − w.

This can be done by taking the components of Tn−v and arranging them suitably around

the new vertex w.

We will take Sn+1 to include Sn and T̂n, with the copies of red and blue leaves in T̂n
also coloured red and blue respectively. As indicated on the right in Figure 3.1, we add
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long non-branching paths to some blue leaf b of Sn and to some red leaf r of T̂n and join

these paths at their other endpoints by some edge en. We also join two new leaves y and g

to the endvertices of en. We colour the leaf y yellow and the leaf g green. To ensure that

Tn+1 − v ∼= Sn+1 − w, we take Tn+1 to include Tn together with a copy Ŝn of Sn, with its

leaves coloured appropriately, and joined up in the same way, as indicated on the left in

Figure 3.1. Note that, whilst Ŝn and Sn are isomorphic as graphs, we make a distinction

as we want to lift the partial isomorphisms between Tn−vi ∼= Sn−wi to these new graphs,

and our notation aims to emphasize the natural inclusions Tn ⊆ Tn+1 and Sn ⊆ Sn+1.

Algorithm Stage Two: We now have committed ourselves to two targets which are

seemingly irreconcilable: first, we promised to extend in the same way at each red or blue

leaf of Tn and Sn, but we also need that Tn+1− v ∼= Sn+1−w. The solution is to copy the

same subgraph appearing beyond r in Fig. 3.1, including its coloured leaves, onto all the

other red leaves of Sn and Tn. Similarly we copy the subgraph appearing beyond the blue

leaf b of Sn onto all other blue leaves of Sn and Tn. In doing so, we create new red and

blue leaves, and we will keep adding, step by step, further copies of the graphs appearing

beyond r and b in Fig. 3.1 respectively onto all red and blue leaves of everything we have

constructed so far.

Figure 3.2. A sketch of Tn+1 and Sn+1 after countably many steps.

After countably many steps we have dealt with all red and blue leaves, and it can be

checked that both our targets are achieved. We take these new trees to be Sn+1 and Tn+1.

They are non-isomorphic, as after removing all long non-branching paths, Tn+1 contains

Tn as a component, whereas Sn+1 does not.

3.2.2. The one-ended case. To construct a one-ended non-reconstructible graph,

we initially follow the same strategy as in the tree case and build locally finite graphs

Gn and Hn and some partial hypomorphisms between them. Simultaneously, however, we

will also build one-ended locally finite graphs of a grid-like form Fn × N (the Cartesian

product of a locally finite tree Fn with a ray) which share certain symmetries with Gn

and Hn. These will allow us to glue Fn × N onto both Gn and Hn, in order to make
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G0Ĝ0Ĝ0 Ĥ0 Ĥ0

H0Ĝ0Ĝ0 Ĥ0 Ĥ0

Figure 3.3. A sketch of G1 (above) and H1 (below).

them one-ended, without spoiling the partial hypomorphisms. Let us illustrate this idea

by explicitly describing the first few steps of the construction.

We start with two non-isomorphic graphs G0 and H0, such that G0 and H0 each have

exactly one red and one blue leaf. After stage one of our algorithm, our approximations

to G1 and H1 as in Figure 3.1 contain, in each of G0, Ĥ0, Ĝ0 and H0, one coloured leaf. In

stage two, we add copies of these graphs recursively. It follows that the resulting graphs

G′1 and H ′1 have the global structure of a double ray, along which parts corresponding to

copies of G0, Ĥ0, Ĝ0 and H0 appear in a repeating pattern. Crucially, however, each graph

G′1 and H ′1 has infinitely many yellow and green leaves, which appear in an alternating

pattern extending to infinity in both directions along the double ray.

Consider the minor F1 of G′1 obtained by collapsing every subgraph corresponding to

G0, Ĥ0, Ĝ0 and H0 to a single point. Write ψG : G′1 → F1 for the quotient map. Then F1

is a double ray with alternating coloured leaves hanging off it. Note that we could have

started with H ′1 and obtained the same F1. In other words, F1 approximates the global

structures of both G′1 and H ′1. Consider the one-ended grid-like graph F1 × N, where we

let F1 × {0} inherit the colours from F1. We now form G1 and H1 by gluing F1 × N onto

G′1, by identifying corresponding coloured vertices y and ψG(y), and similarly for H ′2. 1

Since the coloured leaves contained both ends of our graphs in their closure, the graphs

G1 and H1 are now one-ended.

It remains to check that our partial isomorphism h1 : G′1 − v1 → H ′1 − w1 guaranteed

by step two can be extended to G1− v1 → H1−w1. This can be done essentially because

of the following property: let us write L(·) for the set of coloured leaves. It can be checked

that there is an automorphism π1 : F1 → F1 such that the diagram

1For technical reasons, in the actual construction we identify ψG(y) with the corresponding base

vertex of the leaf y in G′1. In this way the coloured leaves of G′1 remain leaves, and we can continue our

recursive construction.
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L(G′1) L(H ′1)

L(F1) L(F1)

ψG

h1 � L(G1)

π1 � L(F1)

ψH

is colour-preserving and commutes. Hence, π1 × id is an automorphism of F1 × N which

is compatible with our gluing procedure, so it can be combined with h1 to give us the

desired isomorphism.

We are now ready to describe the general step. Instead of describing Fn as a minor of

Gn, which no longer works näıvely at later steps, we will directly build Fn by recursion,

so that it satisfies the properties of the above diagram.

Suppose at step n we have constructed locally finite graphs Gn and Hn, and also a

locally finite tree Fn where some leaves are coloured in one of two colours. Furthermore,

suppose we have a family of isomorphisms

Hn = {hx : Gn − x→ Hn − ϕ(x) : x ∈ Xn},

for some subset Xn ⊆ V (Gn), a family of isomorphisms Πn = {πx : Fn → Fn : x ∈ Xn},
and colour-preserving bijections ψGn : L(Gn) → L(Fn) and ψHn : L(Hn) → L(Fn) such

that the corresponding commutative diagram from above holds for each x. We construct

G′n+1 and H ′n+1 according to stages one and two of the previous algorithm. As before our

isomorphisms hx will lift to isomorphisms between G′n+1 − x and H ′n+1 − ϕ(x).

ψGn(r) ψHn(b)

FG
n FH

n

Figure 3.4. The auxiliary graph F̃n.

Algorithm Stage Three. As indicated in Figure 3.4, we take two copies FG
n and GH

n of

Fn, and glue them together mimicking stage one of the algorithm, i.e. connect ψGn(r) in

FG
n by a path of length three to ψHn(b) in FH

n , and attach two new leaves coloured yellow

and green in the middle of the path. Call the resulting graph F̃n. We then apply stage

two of the algorithm to this graph, gluing again and again onto every blue vertex a copy

of the graph of F̃n behind ψHn(b), and similarly for every red leaf, to obtain a tree Fn+1.

Since this procedure is, in structural terms, so similar to the construction of G′n+1 and

H ′n+1, it can be shown that we do obtain a colour-preserving commuting diagram of the

form
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L(G′n+1) L(H ′n+1)

L(Fn+1) L(Fn+1)

ψGn+1

hx � L(G′n+1)

πx � L(Fn+1)

ψHn+1

As before, this means that we can indeed glue together G′n+1 and Fn+1×N, and H ′n+1

and Fn+1 × N to obtain one-ended graphs Gn+1 and Hn+1 as desired.

At the end of our construction, after countably many steps, we have built two graphs

G and H which are hypomorphic, and for the same reasons as in the tree case the two

graphs will not be isomorphic. Further, since all Gn and Hn are one-ended, so will be G

and H.

3.2.3. The countably-ended case. In order to produce hypomorphic graphs with

countably many ends we follow the same procedure as for the one-ended case, except that

we start with one-ended (non-isomorphic) graphs G0 and H0.

After the first and second stage of our algorithm, the resulting graphs G′1 and H ′1 will

again consist of infinitely many copies of G0 and H0 glued together along a double ray.

After gluing F1 ×N to these graphs as before, we obtain graphs with one thick end, with

many coloured leaves tending to that end, as well as infinitely many thin ends, coming from

the copies of G0 and H0, each of which contained a ray. These thin ends will eventually

be rays, and so have no coloured leaves tending towards them. This guarantees that in

the next step, when we glue F2 × N onto G′2 and H ′2, the thin ends will not be affected,

and that all the other ends in the graph will be amalgamated into one thick end.

Then, in each stage of the construction, the graphs Gn and Hn will have exactly

one thick end, again with many coloured leaves tending towards it, and infinitely many

thin ends each of which is eventually a ray. This property lifts to the graphs G and H

constructed in the limit: they will have one thick end and infinitely many ends which are

eventually rays. However, since G and H are countable, there can only be countably many

of these rays. Hence the two graphs G and H have countably many ends in total, and as

before they will be hypomorphic but not isomorphic.

3.3. Closure with respect to promises

A bridge in a graph G is an edge e = {x, y} such that x and y lie in different components

of G − e. Given a directed bridge ~e = ~xy in some graph G = (V,E), we denote by G(~e)

the unique component of G − e containing the vertex y. We think of G(~e) as a rooted

graph with root y.

Definition 3.3.1 (Promise structure). A promise structure P =
(
G, ~P ,L

)
is a triple

consisting of:
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• a graph G,

• ~P = {~pi : i ∈ I} a set of directed bridges ~P ⊆ ~E(G), and

• L = {Li : i ∈ I} a set of pairwise disjoint sets of leaves of G.

We insist further that, if the component G(~pi) consists of a single leaf c ∈ Lj, then i = j.

Often, when the context is clear, we will not make a distinction between L and the set⋃
i Li, for notational convenience.

We call an edge ~pi ∈ ~P a promise edge, and leaves ` ∈ Li promise leaves. A promise

edge ~pi ∈ ~P is called a placeholder-promise if the component G(~pi) consists of a single leaf

c ∈ Li, which we call a placeholder-leaf. We write

Lp = {Li : ~pi a placeholder-promise} and Lq = L \ Lp.

Given a leaf ` in G, there is a unique edge q` ∈ E(G) incident with `, and this edge

has a natural orientation ~q` towards `. Informally, we think of ` ∈ Li as the ‘promise’ that

if we extend G to a graph H ⊃ G, we will do so in such a way that H(~q`) ∼= H(~pi).

Definition 3.3.2 (Leaf extension). Given an inclusion H ⊇ G of graphs and a set L

of leaves of G, H is called a leaf extension, or more specifically an L-extension, of G, if:

• every component of H contains precisely one component of G, and

• every component of H − G is adjacent to a unique vertex l of G, and we have

l ∈ L.

In [36], given a promise structure P =
(
G, ~P ,L

)
, it is shown how to construct a graph

cl(G) ⊃ G which has the following properties.

Proposition 3.3.3 (Closure w.r.t a promise structure, cf. [36, Proposition 3.3]). Let

G be a graph and let
(
G, ~P ,L

)
be a promise structure. Then there is a graph cl(G), called

the closure of G with respect to P, such that:

(cl.1) cl(G) is an Lq-extension of G,

(cl.2) for every ~pi ∈ ~P and all ` ∈ Li,

cl(G)(~pi) ∼= cl(G)(~q`)

are isomorphic as rooted graphs.

Since the existence of cl(G) is crucial to our proof, we briefly remind the reader how

to construct such a graph. As a first approximation, in order to try to achieve ((cl.2)), we

glue a copy of the component G(~pi) onto each leaf ` ∈ Li, for each i ∈ I. We call this the

1-step extension G(1) of G. If there were no promise leaves in the component G(~pi), then

the promises in Li would be satisfied. However, if there are, then we have grown G(~pi) by

adding copies of various G(~pj)s behind promise leaves appearing in G(~pi).

However, remembering all promise leaves inside the newly added copies of G(~pi) we

glued behind each ` ∈ Li, we continue this process indefinitely, growing the graph one step
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at a time by gluing copies of (the original) G(~pi) to promise leaves `′ which have appeared

most recently as copies of ` ∈ Li. After a countable number of steps the resulting graph

cl(G) satisfies Proposition 3.3.3. We note also that the maximum degree of cl(G) equals

that of G.

Definition 3.3.4 (Promise-respecting map). Let G be a graph, P =
(
G, ~P ,L

)
be a

promise structure on G, and let T1 and T2 be two components of G.

Given x ∈ T1 and y ∈ T2, a bijection ϕ : T1 − x→ T2 − y is ~P -respecting (with respect

to P) if the image of Li ∩ T1 under ϕ is Li ∩ T2 for all i.

We can think of P as defining a |~P |-colouring on some sets of leaves. Then a mapping

is ~P -respecting if it preserves leaf colours.

Suppose that ~pi is a placeholder promise, and G = H(0) ⊆ H(1) ⊆ · · · is the sequence

of 1-step extensions whose direct limit is cl(G). Then, if we denote by L
(n)
i the set of

promise leaves associated with ~pi in H(n), it follows that L
(n)
i ⊇ L

(n−1)
i since G(~pi) is just

a single vertex ci ∈ Li. For every placeholder promise ~pi ∈ ~P , we define cl(Li) =
⋃
n L

(n)
i .

Definition 3.3.5 (Closure of a promise structure). The closure of the promise struc-

ture
(
G, ~P ,L

)
is the promise structure cl(P) =

(
cl(G), cl(~P ), cl(L)

)
, where:

• cl(~P ) =
{
~pi : ~pi ∈ ~P is a placeholder-promise

}
,

• cl(L) = {cl(Li) : ~pi ∈ ~P is a placeholder-promise}.

Proposition 3.3.6 ([36, Proposition 3.3]). Let G be a graph and let
(
G, ~P ,L

)
be a

promise structure. Then cl(G) satisfies:

(cl.3) for every ~pi ∈ ~P and every ` ∈ Li,

cl(G)(~pi) ∼= cl(G)(~q`)

are isomorphic as rooted graphs, and this isomorphism is cl(~P )-respecting with

respect to cl(P).

It is precisely this property (cl.3) of the promise closure that will allow us to maintain

partial hypomorphisms during our recursive construction.

The last two results of this section serve as preparation for growing Gn+1, Hn+1

and Fn+1 ‘in parallel’, as outlined in the third stage of the algorithm in §3.2.2. If

L = {Li : i ∈ I} and L′ = {L′i : i ∈ I}, we say a map ψ :
⋃
L →

⋃
L′ is colour-preserving

if ψ(Li) ⊆ L′i for every i.

Lemma 3.3.7. Let
(
G, ~P ,L

)
and

(
G′, ~P ′,L′

)
be promise structures, and let G =

H(0) ⊆ H(1) ⊆ · · · and G′ = H ′(0) ⊆ H ′(1) ⊆ · · · be 1-step extensions approximating their

respective closures.
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Assume that ~P = {~p1, . . . , ~pk} and ~P ′ = {~r1, . . . , ~rk}, and that there is a colour-

preserving bijection

ψ :
⋃
L →

⋃
L′

such that (recall that L(·) is the set of leaves of a graph that are in L)

ψ � G(~pi) : L(G(~pi))→ L′(G′(~ri))

is still a colour-preserving bijection for all ~pi ∈ ~P .

Then for each i 6 k there is a sequence of colour-preserving bijections

αin : L
(
H(n)(~pi)

)
→ L′

(
H ′(n)(~ri)

)
such that αin+1 extends αin.

Proof. Fix i. We proceed by induction on n. Put αi0 := ψ � G(~pi).

Now suppose that αin exists. To form H(n+1)(~pi), we glued a copy of G(~pj) to each

` ∈ L(n)
j ∩H(n)(~pi) for all j 6 k, and to construct H ′(n+1)(~ri), we glued a copy of G′(~rj) to

each `′ ∈ L′(n)
j ∩H ′(n)(~ri) for all j 6 k, in both cases keeping all copies of promise leaves.

By assumption, the second part can be phrased equivalently as: we glued on a copy

of G′(~rj) to each αin(`) for ` ∈ L(n)
j ∩H(n)(~ri). Thus, we can now combine the bijections

αin(`) with all the individual bijections ψ between all newly added G(~pj) and G′(~rj) to

obtain a bijection αin+1 as desired. �

Corollary 3.3.8. In the above situation, for each i there is a colour-preserving bijec-

tion αi between L(cl(G)(~pi)) and L′(cl(G′)(~ri)) with respect to the promise closures cl(P)

and cl(P ′).

Proof. Put αi =
⋃
n α

i
n. Because all αin respected all colours, they respect in partic-

ular the placeholder promises which make up cl(P) and cl(P ′). �

3.4. Thickening the graph

In this section, we lay the groundwork for the third stage of our algorithm, as outlined

in §3.2.2. Our aim is to clarify how gluing a one-ended graph F onto a graph G affects

automorphisms and the end-space of the resulting graph.

Definition 3.4.1 (Gluing sum). Given two graphs G and F , and a bijection ψ with

dom(ψ) ⊆ V (G) and ran(ψ) ⊆ V (F ), the gluing sum of G and F along ψ, denoted by

G⊕ψ F , is the quotient graph (G ∪ F )/ ∼ where v ∼ ψ(v) for all v ∈ dom(ψ).

Our first lemma of this section explains how a partial isomorphism from Gn − x to

Hn−ϕ(x) in our construction can be lifted to the gluing sum of Gn and Hn with a graph

F respectively.
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Lemma 3.4.2. Let G, H and F be graphs, and consider two gluing sums G ⊕ψG F
and H ⊕ψH F along partial bijections ψG and ψH . Suppose there exists an isomorphism

h : G− x→ H − y that restricts to a bijection between dom(ψG) and dom(ψH).

Then h extends to an isomorphism (G⊕ψG F )− x→ (H ⊕ψH F )− y provided there is

an automorphism π of F such that π ◦ ψG(v) = ψH ◦ h(v) for all v ∈ dom(ψG).

Proof. We verify that the map

ĥ : (G⊕ψG F )− x→ (H ⊕ψH F )− y, v 7→

h(v) if v ∈ G− x, and

π(v) if v ∈ F

is a well-defined isomorphism. It is well-defined, since if v ∼ ψG(v) in G⊕ψGF , then ĥ(v) ∼
ĥ(ψG(v)) in H ⊕ψH F by assumption on π. Moreover, since h and π are isomorphisms, it

follows that ĥ is an isomorphism, too. �

For the remainder of this section, all graphs are assumed to be locally finite. A ray

in a graph G is a one-way infinite path. Given a ray R, then for any finite vertex set

S ⊆ V (G) there is a unique component C(R, S) of G− S containing a tail of R. An end

in a graph is an equivalence class of rays under the relation

R ∼ R′ ⇔ for every finite vertex set S ⊆ V (G) we have C(R, S) = C(R′, S).

We denote by Ω(G) the set of ends in the graph G, and write C(ω, S) := C(R, S) with

R ∈ ω. Let Ω(ω, S) = {ω′ : C(ω′, S) = C(ω, S)}. The singletons {v} for v ∈ V (G)

and sets of the form C(ω, S)∪Ω(ω, S) generate a compact metrizable topology on the set

V (G)∪Ω(G), which is known in the literature as |G|.2 This topology allows us to talk about

the closure of a set of vertices X ⊆ V (G), denoted by X. Write ∂(X) = X \X = X∩Ω(X)

for the boundary of X: the collection of all ends in the closure of X. Then an end ω ∈ Ω(G)

lies in ∂(X) if and only if for every finite vertex set S ⊆ V (G), we have |X ∩ C(ω, S)| =∞.

Therefore Ω(G) = ∂(X) if and only if for every finite vertex set S ⊆ V (G), every infinite

component of G − S meets X infinitely often. In this case we say that X is dense for

Ω(G).

Finally, an end ω ∈ Ω(G) is free if for some S, the set Ω(ω, S) = {ω}. Then Ω′(G)

denotes the non-free (or limit-)ends. Note that Ω′(G) is a closed subset of Ω(G).

Lemma 3.4.3. For locally finite connected graphs G and F , consider the gluing sum

G⊕ψ F for a partial bijection ψ. If F is one-ended and dom(ψ) is infinite, then Ω(G⊕ψ
F ) ∼= Ω(G)/∂(dom(ψ)).

2Normally |G| is defined on the 1-complex of G together with its ends, but for our purposes it will

be enough to just consider the subspace V (G) ∪ Ω(G). See the survey paper of Diestel [53] for further

details.



46 3. NON-RECONSTRUCTIBLE LOCALLY FINITE GRAPHS

Proof. Note first that for locally finite graphs G and F , also G⊕ψ F is locally finite.

Observe further that all rays of the unique end of F are still equivalent in G⊕ψ F , and so

G⊕ψ F has an end ω̂ containing the single end of F .

We are going to define a continuous surjection f : Ω(G)→ Ω(G⊕ψF ) with the property

that f has precisely one non-trivial fibre, namely f−1(ω̂) = ∂(dom(ψ)). It then follows

from definition of the quotient topology that f induces a continuous bijection from the

compact space Ω(G)/∂(dom(ψ)) to the Hausdorff space Ω(G ⊕ψ F ), which, as such, is

necessarily a homeomorphism.

The mapping f is defined as follows. Given an end ω ∈ Ω(G) \ ∂(dom(ψ)), there is a

finite S ⊆ V (G) such that C(ω, S)∩dom(ψ) = ∅, and so C = C(ω, S) is also a component

of (G⊕ψ F )− S, which is disjoint from F . Define f to be the identity between Ω(G)∩C
and Ω(G⊕ψ F ) ∩ C, while for all remaining ends ω ∈ Ω(G) ∩ dom(ψ), we put f(ω) = ω̂.

To see that this assignment is continuous at ω ∈ Ω(G) ∩ dom(ψ), it suffices to show

that C := C(ω, S) ⊆ G− S is a subset of C ′ := C(ω̂, S) ⊆ (G⊕ψ F )− S for any finite set

S ⊆ G⊕ψ F . To see this inclusion, note that by choice of ω, we have |dom(ψ) ∩ C| =∞.

At the same time, since F is both one-ended and locally finite, F − S has precisely one

infinite component D and F −D is finite, so as ψ is a bijection, there is v ∈ dom(ψ) ∩ C
with ψ(v) ∈ D (in fact, there are infinitely many such v). Since v and ψ(v) get identified in

G⊕ψF , we conclude that C∪D is connected in (G⊕ψ F )−S, and hence that C∪D ⊆ C ′

as desired.

Finally, to see that f is indeed surjective, note first that the fact that dom(ψ) is

infinite implies that dom(ψ) ∩ Ω(G) 6= ∅, and so ω̂ ∈ ran(f). Next, consider an end

ω ∈ Ω(G ⊕ψ F ) different from ω̂. Find a finite separator S ⊆ V (G ⊕ψ F ) such that

C(ω, S) 6= C(ω̂, S). It follows that dom(ψ) ∩ C(ω, S) is finite. So there is a finite S ′ ⊇ S

such that C := C(ω, S ′) 6= C(ω̂, S ′) and dom(ψ)∩C = ∅. So by definition, f is a bijection

between Ω(G) ∩ C and Ω(G⊕ψ F ) ∩ C, so ω ∈ ran(f). �

Corollary 3.4.4. Under the above assumptions, if dom(ψ) is dense for Ω(G), then

G⊕ψ F is one-ended.

Corollary 3.4.5. Under the above assumptions, if dom(ψ) ∩ Ω(G) = Ω′(G), then

G⊕ψ F has at most one non-free end.

We remark that more direct proofs for Corollaries 3.4.4 and 3.4.5 can be given that do

not need the full power of Lemma 3.4.3.

3.5. The construction

3.5.1. Preliminary definitions. In the precise statement of our construction in

§3.5.2, we are going to employ the following notation.
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Definition 3.5.1 (Mii-path). A path P = v0, v1, . . . , vn in a graph G is called inter-

nally isolated if degG(vi) = 2 for all internal vertices vi for 0 < i < n. The path P is

maximal internally isolated (or mii for short) if in addition degG(v0) 6= 2 6= degG(vn). An

infinite path P = v0, v1, v2, . . . is mii if degG(v0) 6= 2 and degG(vi) = 2 for all i > 1.

Definition 3.5.2 (Mii-spectrum). The mii-spectrum of G is

Σ(G) := {k ∈ N : G contains an mii-path of length k}.

If Σ(G) is finite, we let σ0(G) = max Σ(G) and σ1(G) = max (Σ(G) \ {σ0(G)}).

Lemma 3.5.3. Let e be an edge of a locally finite graph G. If Σ(G) is finite, then

Σ(G− e) is finite.

Proof. Observe first that every vertex of degree 6 2 in any graph can lie on at most

one mii-path.

We now claim that for an edge e = xy, there are at most two finite mii-paths in G− e
which are not subpaths of finite mii-paths of G.

Indeed, if deg x = 3 in G, then x can now be the interior vertex of one new finite

mii-path in G− e. And if deg x = 2 in G, then x can now be end-vertex of one new finite

mii-path in G− e (this is relevant if x lies on an infinite mii-path of G). The argument is

for y is the same, so the claim follows. �

Definition 3.5.4 (Spectrally distinguishable). Given two graphsG and H, we say that

G and H are spectrally distinguishable if there is some k > 3 such that k ∈ Σ(G)4Σ(H) =

Σ(G) \ Σ(H) ∪ Σ(H) \ Σ(G).

Note that being spectrally distinguishable is a strong certificate for being non-isomorphic.

Definition 3.5.5 (k-ball). For G a subgraph of H, and k > 0, the k-ball BallH(G, k)

is the induced subgraph of H on the set of vertices at distance at most k of some vertex

of G.

Definition 3.5.6 (proper Mii-extension; infinite growth). Let G be a graph, B a

subset of leaves of G, and H a component of G.

• A graph Ĝ ⊃ H is an mii-extension of H at B to length k if BallĜ(H, k) can be

obtained from H by adjoining, at each vertex l ∈ B∩V (H), a new path of length

k starting at l, and a new leaf whose only neighbour is l.3

• A leaf l in a graph G is proper if the unique neighbour of l in G has degree > 3.

An mii-extension is called proper if every leaf in B is proper.

• An mii-extension Ĝ of G is of infinite growth if every component of Ĝ − G is

infinite.

3We note that this is a slightly different definition of an mii-extension to that in [36].
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3.5.2. The back-and-forth construction. Our aim in this section is to prove our

main theorem announced in the introduction.

Theorem 2.1.6. There are two hypomorphic connected one-ended infinite graphs G

and H with maximum degree five such that G is not isomorphic to H.

To do this we shall recursively construct, for each n ∈ N,

• disjoint rooted connected graphs Gn and Hn,

• disjoint sets Rn and Bn of proper leaves of the graph Gn ∪Hn,

• trees Fn,

• disjoint sets R′n and B′n of leaves of Fn,

• bijections ψGn : V (Gn) ∩ (Rn ∪Bn)→ R′n ∪B′n and

ψHn : V (Hn) ∩ (Rn ∪Bn)→ R′n ∪B′n,

• finite sets Xn ⊆ V (Gn) and Yn ⊆ V (Hn), and bijections ϕn : Xn → Yn,

• a family of isomorphisms Hn = {hn,x : Gn − x→ Hn − ϕn(x) : x ∈ Xn},
• a family of automorphisms Πn = {πn,x : Fn → Fn : x ∈ Xn},
• a strictly increasing sequence of integers kn > 2,

such that for all n ∈ N:4

(†1) Gn−1 ⊆ Gn and Hn−1 ⊆ Hn as induced subgraphs,

(†2) the vertices of Gn and Hn all have degree at most 5,

(†3) the vertices of Fn all have degree at most 3,

(†4) the root of Gn is in Rn and the root of Hn is in Bn,

(†5) σ0(Gn) = σ0(Hn) = kn,

(†6) Gn and Hn are spectrally distinguishable,

(†7) Gn and Hn have at most one end,

(†8) Ω(Gn ∪Hn) ⊆ Rn ∪Bn,

(†9) (a) Gn is a (proper) mii-extension of infinite growth of Gn−1 at

Rn−1 ∪Bn−1 to length kn−1 + 1, and

(b) BallGn(Gn−1, kn−1 + 1) does not meet Rn ∪Bn,

(†10) (a) Hn is a (proper) mii-extension of infinite growth of Hn−1 at

Rn−1 ∪Bn−1 to length kn−1 + 1, and

(b) BallHn(Hn−1, kn−1 + 1) does not meet Rn ∪Bn,

(†11) there are enumerations V (Gn) = {tj : j ∈ Jn} and V (Hn) = {sj : j ∈ Jn} such

that

• Jn−1 ⊆ Jn ⊆ N,

• {tj : j ∈ Jn} extends the enumeration {tj : j ∈ Jn−1} of V (Gn−1), and simi-

larly for {sj : j ∈ Jn},
• |N \ Jn| =∞,

4If the statement involves an object indexed by n− 1 we only require that it holds for n > 1.
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• {0, 1, . . . , n} ⊆ Jn,

(†12) {tj, sj : j 6 n} ∩ (Rn ∪Bn) = ∅,
(†13) the finite sets of vertices Xn and Yn satisfy |Xn| = n = |Yn|, and

• Xn−1 ⊆ Xn and Yn−1 ⊆ Yn,

• ϕn � Xn−1 = ϕn−1,

• {tj : j 6 b(n− 1)/2c} ⊆ Xn and {sj : j 6 bn/2c − 1} ⊆ Yn,

• (Xn ∪ Yn) ∩ (Rn ∪Bn) = ∅,
(†14) the families of isomorphisms Hn satisfy

• hn,x � (Gn−1 − x) = hn−1,x for all x ∈ Xn−1,

• the image of Rn ∩ V (Gn) under hn,x is Rn ∩ V (Hn),

• the image of Bn ∩ V (Gn) under hn,x is Bn ∩ V (Hn) for all x ∈ Xn.

(†15) the families of automorphisms Πn satisfy

• πn,x � R′n is a permutation of R′n for each x ∈ Xn,

• πn,x � B′n is a permutation of B′n for each x ∈ Xn,

• for each x ∈ Xn, the following diagram commutes:

L(Gn) L(Hn)

L(Fn) L(Fn)

ψGn

hn,x � L(Gn)

πn,x � L(Fn)

ψHn

I.e. for every ` ∈ L(Gn) := V (Gn)∩(Rn ∪Bn) we have πn,x(ψGn(`)) = ψHn(hn,x(`)).

3.5.3. The construction yields the desired non-reconstructible one-ended

graphs. By property (†1), we have G0 ⊆ G1 ⊆ G2 ⊆ · · · and H0 ⊆ H1 ⊆ H2 ⊆ · · · . Let

G and H be the union of the respective sequences. Then both G and H are connected,

and as a consequence of (†2), both graphs have maximum degree 5.

We claim that the map ϕ =
⋃
n ϕn is a hypomorphism between G and H. Indeed, it

follows from (†11) and (†13) that ϕ is a well-defined bijection from V (G) to V (H). To see

that ϕ is a hypomorphism, consider any vertex x of G. This vertex appears as some tj in

our enumeration of V (G), so the map

hx =
⋃
n>2j

hn,x : G− x→ H − ϕ(x),

is a well-defined isomorphism by (†14) between G− x and H − ϕ(x).

Now suppose for a contradiction that there exists an isomorphism f : G → H. Then

f(t0) is mapped into Hn for some n ∈ N. Properties (†5) and (†9) imply that after

deleting all mii-paths in G of length > kn, the connected component C of t0 is a leaf

extension of Gn adding one further leaf to every vertex in V (Gn) ∩ (Rn ∪Bn). Similarly,

properties (†5) and (†10) imply that after deleting all mii-paths in H of length > kn, the

connected component D of f(t0) is a leaf-extension of Hn adding one further leaf to every
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vertex in V (Hn) ∩ (Rn ∪Bn). Note that f restricts to an isomorphism between C and

D. However, since C and D are proper extensions, we have Σ(C)4Σ(Gn) ⊆ {1, 2} and

Σ(D)4Σ(Hn) ⊆ {1, 2}. Hence, since Gn and Hn are spectrally distinguishable by (†6),

so are C and D, a contradiction. We have established that G and H are non-isomorphic

reconstructions of each other.

Finally, for G being one-ended, we now show that for every finite vertex separator

S ⊆ V (G), the graph G − S has only one infinite component (the argument for H is

similar). Suppose for a contradiction G − S has two infinite components C1 and C2.

Consider n large enough such that S ⊆ V (Gn). Since Gk is one-ended for all k by (†7),

we may assume that C1 ∩Gk falls apart into finite components for all k > n. Since C1 is

infinite and connected, it follows from (†9)(b) that C1 intersects Gn+1−Gn. But since Gn+1

is an mii-extension of Gn of infinite growth by (†9)(a), we see that that C1 ∩ (Gn+1 −Gn)

contains an infinite component, a contradiction.

3.5.4. The base case: there are finite rooted graphs G0 and H0 satisfying re-

quirements (†1)–(†15). Choose a pair of spectrally distinguishable, equally sized graphs

G0 and H0 with maximum degree 6 5 and σ0(G0) = σ0(H0) = k0. Pick a proper leaf each

as roots r(G0) and r(H0) for G0 and H0, and further proper leaves `b ∈ G0 and `r ∈ H0.

r(G0)
`b

r(H0)
`r

Figure 3.5. A possible choice for the finite rooted graphs G0 and H0.

Define R0 = {r(G0), `r} and B0 = {r(H0), `b}. We take F0 to be two vertices x and y

joined by an edge, with R′0 = {x} and B′0 = {y} and take ψG0 to be the unique bijection

sending R0 ∩G0 to R′0 and B0 ∩G0 to B′0, and similarly for ψH0 .

yx

Figure 3.6. F0.

Let J0 = {0, 1, . . . , |G0| − 1} and choose enumerations V (G0) = {tj : j ∈ J0} and

V (H0) = {sj : j ∈ J0} with t0 6= r(G0) and s0 6= r(H0). Finally we let X0 = Y0 = H0 = ∅.
It is a simple check that conditions (†1)–(†15) are satisfied.

3.5.5. The inductive step: set-up. Now, assume that we have constructed graphs

Gk and Hk for all k 6 n such that (†1)–(†15) are satisfied up to n. If n = 2m is even, then

we have {tj : j 6 m− 1} ⊆ Xn and in order to satisfy (†13) we have to construct Gn+1

and Hn+1 such that the vertex tm is taken care of in our partial hypomorphism. Similarly,
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if n = 2m+ 1 is odd, then we have {sj : j 6 m− 1} ⊆ Yn and we have to construct Gn+1

and Hn+1 such that the vertex sm is taken care of in our partial hypomorphism. Both

cases are symmetric, so let us assume in the following that n = 2m is even.

Now let v be the vertex with the least index in the set {tj : j ∈ Jn} \Xn, i.e.

v = ti for i = min {j : tj ∈ V (Gn) \Xn}.(14)

Then by assumption (†13), v will be tm, unless tm was already in Xn anyway. In any

case, since |Xn| = |Yn| = n, it follows from (†11) that i 6 n, so by (†12), v does not lie in

our leaf sets Rn ∪Bn, i.e.

v /∈ Rn ∪Bn.(15)

In the next sections, we will demonstrate how to obtain graphs Gn+1 ⊃ Gn, Hn+1 ⊃ Hn

and Fn+1 with Xn+1 = Xn ∪ {v} and Yn+1 = Yn ∪ {ϕn+1(v)} satisfying (†1)—(†10) and

(†13)–(†15).

After we have completed this step, since |N \ Jn| = ∞, it is clear that we can extend

our enumerations of Gn and Hn to enumerations of Gn+1 and Hn+1 as required, making

sure to first list some new elements that do not lie in Rn+1 ∪ Bn+1. This takes care of

(†11) and (†12) and completes the step n 7→ n+ 1.

3.5.6. The inductive step: construction. We will construct the graphs Gn+1 and

Hn+1 in three steps. First, in §3.5.6.1 we construct graphs G′n+1 ⊃ Gn and H ′n+1 ⊃ Hn

such that there is a vertex ϕn+1(v) ∈ H ′n+1 with G′n+1 − v ∼= H ′n+1 − ϕn+1(v). This first

step essentially follows the argument from [36, §4.6]. We will also construct a graph Fn+1

via a parallel process.

Secondly, in §3.5.6.2 we will show that there are well-behaved maps from the coloured

leaves of G′n+1 and H ′n+1 to Fn+1 × N, such that analogues of (†14) and (†15) hold for

G′n+1, H ′n+1 and Fn+1, giving us control over the corresponding gluing sum.

Lastly, in §3.5.6.3, we do the actual gluing process and define all objects needed for

step n+ 1 of our inductive construction.

3.5.6.1. Building the auxiliary graphs. Given the two graphs Gn and Hn, we extend

each of them through their roots as indicated in Figure 3.7 to graphs G̃n and H̃n respec-

tively.

Since v is not the root of Gn, there is a unique component of Gn − v containing the

root, which we call Gn(r). Let Gn(v) be the induced subgraph of Gn on the remaining

vertices, including v. We remark that if v is not a cutvertex of Gn, then Gn(v) is just

a single vertex v. Since σ0(Gn) = kn by (†5) and deg(v) 6 5 by (†2), it follows from

an iterative application of Lemma 3.5.3 that Σ (Gn(r)) and Σ (Gn(v)) are finite. Let

k = k̃n = max{σ0(Gn), σ0 (Gn(r)) , σ0 (Gn(v)) , σ0(Hn)}+ 1.
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r(Gn)

Gn

v

Ĥn

r
(
G′n+1

)
g

The graph G̃n.

r(Hn)

Ĝn(r)

v̂

Ĝn(v̂)

Hn

r
(
H ′n+1

)
y

The graph H̃n.

Figure 3.7. All dotted lines are mii-paths of length at least k + 1 = k̃n + 1.

To obtain G̃n, we extend Gn through its root r(Gn) ∈ Rn by a path

r(Gn) = u0, u1, . . . , up−1, up = r
(
Ĥn

)
of length p = 4(k̃n + 1) + 1, where at its last vertex up we glue a rooted copy Ĥn of Hn

(via an isomorphism ẑ ↔ z), identifying up with the root of Ĥn.

Next, we add two additional leaves at u0 and up, so that deg(r(Gn)) = 3 = deg
(

r
(
Ĥn

))
.

Further, we add a leaf r
(
G′n+1

)
at u2k+2, which will be our new root for the next tree G′n+1;

and another leaf g at u2k+3. This completes the construction of G̃n.

The construction of H̃n is similar, but not entirely symmetric. For its construction, we

extend Hn through its root r(Hn) ∈ Bn by a path

r(Hn) = vp, vp−1, . . . , v1, v0 = r
(
Ĝn(r)

)
of length p, where at its last vertex v0 we glue a copy Ĝn(r) of Gn(r), identifying v0 with

the root of Ĝn(r). Then, we take a copy Ĝn(v̂) of Gn(v) and connect v̂ via an edge to

vk+1.

Finally, as before, we add two leaves at v0 and vp so that deg
(

r
(
Ĝn(r)

))
= 3 =

deg (r(Hn)). Next, we add a leaf r
(
H ′n+1

)
to v2k+3, which will be our new root for the next

tree H ′n+1; and another leaf y to v2k+2. This completes the construction of H̃n.

By the induction assumption, certain leaves of Gn have been coloured with one of the

two colours in Rn∪Bn, and also some leaves of Hn have been coloured with one of the two

colours in Rn ∪ Bn. In the above construction, we colour leaves of Ĥn, Ĝn(r) and Ĝn(v̂)

accordingly:

R̃n =
(
Rn ∪

{
ẑ ∈ Ĥn ∪ Ĝn(r) ∪ Ĝn(v̂) : z ∈ Rn

})
\
{

r(Gn), r
(
Ĝn(r)

)}
,

B̃n =
(
Bn ∪

{
ẑ ∈ Ĥn ∪ Ĝn(r) ∪ Ĝn(v̂) : z ∈ Bn

})
\
{

r(Hn), r
(
Ĥn

)}
.

(16)

Now put Mn := G̃n∪H̃n and consider the following promise structure P =
(
Mn, ~P ,L

)
on Mn, consisting of four promise edges ~P = {~p1, ~p2, ~p3, ~p4} and corresponding leaf sets
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L = {L1, L2, L3, L4}, as follows:

• ~p1 pointing in Gn towards r(Gn), with L1 = R̃n,

• ~p2 pointing in Hn towards r(Hn), with L2 = B̃n,

• ~p3 pointing in G̃n towards r
(
G′n+1

)
, with L3 =

{
r
(
G′n+1

)
, y
}
,

• ~p4 pointing in H̃n towards r
(
H ′n+1

)
, with L4 =

{
r
(
H ′n+1

)
, g
}
.

(17)

Note that our construction so far has been tailored to provide us with a ~P -respecting

isomorphism

h : G̃n − v → H̃n − v̂.(18)

Consider the closure cl(Mn) with respect to the above defined promise structure P .

Since cl(Mn) is a leaf-extension of Mn, it has two connected components, just as Mn. We

now define

G′n+1 = the component containing Gn in cl(Mn),

H ′n+1 = the component containing Hn in cl(Mn).
(19)

It follows that cl(Mn) = G′n+1 ∪H ′n+1. Further, since ~p3 and ~p4 are placeholder promises,

cl(Mn) carries a corresponding promise structure, cf. Def. 3.3.5. We define

Rn+1 = cl(L3) and Bn+1 = cl(L4).(20)

Lastly, set

Xn+1 = Xn ∪ {v},

Yn+1 = Yn ∪ {v̂},

ϕn+1 = ϕn ∪ {(v, v̂)},

kn+1 = 2(k̃n + 1).

(21)

We now build Fn+1 in a similar fashion to the above procedure. That is, we take

two copies of Fn and join them pairwise through their roots as indicated in Figure 3.7 to

form a graph F̃n. We consider the graph Nn = F̃n ∪ ˆ̃Fn, and take Fn+1 to be one of the

components of cl(Nn) (unlike for cl(Mn), both components of cl(Nn) are isomorphic).

ψGn(r(Gn)) ψHn(r(Hn))

FG
n FH

n

x y

The graph F̃n.

̂ψGn(r(Gn)) ̂ψHn(r(Hn))

F̂G
n F̂H

n

x̂ ŷ

The graph ˆ̃Fn.

Figure 3.8. The graph Nn = F̃n ∪ ˆ̃Fn.
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More precisely we take two copies of Fn, which we will denote by FG
n and FH

n . We

extend FG
n through the image of the r(Gn) under the bijection ψGn by a path

ψGn(r(Gn)) = u0, u1, u2, u3 = ψHn(r(Hn))

of length three, where ψGn(r(Gn)) is taken in FG
n and ψHn(r(Hn)) is taken in FH

n . Further,

we add a leaf x at u1, and another leaf y at u2. We will consider the graph Nn = F̃n ∪ ˆ̃Fn
as in Figure 3.8 formed by taking two disjoint copies of F̃n.

By the induction assumption, certain leaves of Fn have been coloured with one of the

two colours in R′n ∪ B′n. In the above construction, we colour leaves of FG
n , F

H
n , F̂

G
n and

F̂H
n accordingly:

R̃′n =
{
w ∈ FG

n ∪ FH
n ∪ F̂G

n ∪ F̂H
n : w ∈ R′n

}
\
{
ψGn(r(Gn)), ̂ψGn(r(Gn))

}
B̃′n =

{
w ∈ FG

n ∪ FH
n ∪ F̂G

n ∪ F̂H
n : w ∈ B′n

}
\
{
ψHn(r(Hn)), ̂ψHn(r(Hn))

}
.

(22)

Now consider the following promise structure P ′ =
(
Nn, ~P

′,L′
)

on Nn, consisting of

four promise edges ~P ′ = {~r1, ~r2, ~r3, ~r4} and corresponding leaf sets L′ = {L′1, L′2, L′3, L′4},
as follows:

• ~r1 pointing in FG
n towards ψGn(r(Gn)), with L′1 = R̃′n,

• ~r2 pointing in F̂H
n towards ψHn(r(Hn)), with L′2 = B̃′n,

• ~r3 pointing in F̃n towards x, with L′3 = {x, x̂},

• ~r4 pointing in ˆ̃Fn towards ŷ, with L′4 = {y, ŷ}.

(23)

Consider the closure cl(Nn) with respect to the promise structure P ′ defined above.

Since cl(Nn) is a leaf-extension of Nn, it has two connected components, and we define Fn+1

to be the component containing FG
n in cl(Nn). Since ~r3 and ~r4 are placeholder promises,

cl(Nn) carries a corresponding promise structure, cf. Def. 3.3.5. We define

R′n+1 = cl(L′3) ∩ Fn+1 and B′n+1 = cl(L′4) ∩ Fn+1.(24)

3.5.6.2. Extending maps. In order to glue Fn+1 ×N onto G′n+1 and H ′n+1 we will need

to show that that analogues of (†14) and (†15) hold for G′n+1, H ′n+1 and Fn+1. Our next

lemma is essentially [36, Claim 4.13], and is an analogue of (†14). We briefly remind the

reader of the details, as we need to know the nature of our extensions in our later claims.

Lemma 3.5.7. There is a family of isomorphisms H′n+1 =
{
h′n+1,x : x ∈ Xn+1

}
witness-

ing that G′n+1 − x and H ′n+1 − ϕn+1(x) are isomorphic for all x ∈ Xn+1, such that h′n+1,x

extends hn,x for all x ∈ Xn.

Proof. The graphs G′n+1 and H ′n+1 defined in (19) are obtained from G̃n and H̃n by

attaching at every leaf in R̃n a copy of the rooted graph cl(Mn)(~p1), and by attaching at

every leaf in B̃n a copy of the rooted graph cl(Mn)(~p2) by (cl.2).
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From (18) we know that there is a ~P -respecting isomorphism

h : G̃n − v → H̃n − ϕn+1(v).

In other words, h maps promise leaves in Li ∩ V (G̃n) bijectively to the promise leaves in

Li ∩ V (H̃n) for all i = 1, 2, 3, 4.

There is for each ` ∈ R̃n∪B̃n∪{r(Gn), r(Hn)} a cl(~P )-respecting isomorphism of rooted

graphs

f` : cl(Mn)(~q`) ∼= cl(Mn)(~pi)(25)

given by (cl.3) for ` ∈ (R̃n ∪ B̃n), where i equals blue or red depending on whether ` ∈ R̃n

or B̃n, and for the roots of Gn and Hn we have ~qr = ~pi and the isomorphism is the identity.

Hence, for each `,

f−1
h(`) ◦ f` : cl(Mn)(~q`) ∼= cl(Mn)(~qh(`))

is a cl(~P )-respecting isomorphism of rooted graphs. By combining the isomorphism h

between G̃n − v and H̃n − ϕn+1(v) with these isomorphisms between each cl(Mn)(~q`) and

cl(Mn)(~qh(`)) we get a cl(~P )-respecting isomorphism

h′n+1,v : G′n+1 − v → H ′n+1 − ϕn+1(v).

To extend the old isomorphisms hn,x (for x ∈ Xn), note that G′n+1 and H ′n+1 are

obtained from Gn and Hn by attaching at every leaf in Rn a copy of the rooted graph

cl(Mn)(~p1), and similarly by attaching at every leaf in Bn a copy of the rooted graph

cl(Mn)(~p2). By induction assumption (†14), for each x ∈ Xn the isomorphism

hn,x : Gn − x→ Hn − ϕn(x)

maps the red leaves of Gn bijectively to the red leaves of Hn, and the blue leaves of Gn

bijectively to the blue leaves of Hn. Thus, by (25),

f−1
hn,x(`) ◦ f` : cl(Mn)(~q`) ∼= cl(Mn)(~qhn,x(`))

are cl(~P )-respecting isomorphisms of rooted graphs for all ` ∈ (Rn ∪ Bn) ∩ V (Gn). By

combining the isomorphism hn,x between Gn−x and Hn−ϕn(x) with these isomorphisms

between each cl(Mn)(~q`) = G′n+1(~q`) and cl(Mn)(~qhn,x(l)) = H ′n+1(~qhn,x(l)), we obtain a

cl(~P )-respecting extension

h′n+1,x : G′n+1 − x→ H ′n+1 − ϕn(x). �

Our next claim should be seen as an approximation to property (†15). Recall that

cl(Nn) has two components Fn+1
∼= F̂n+1.

Lemma 3.5.8. There are colour-preserving bijections

ψG′n+1
: V (G′n+1) ∩ (Rn+1 ∪Bn+1)→ R′n+1 ∪B′n+1,

ψH′n+1
: V (H ′n+1) ∩ (Rn+1 ∪Bn+1)→ R̂′n+1 ∪ B̂′n+1,
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and a family of isomorphisms

Π̂n+1 =
{
π̂n+1,x : Fn+1 → F̂n+1 : x ∈ Xn+1

}
such that for each x ∈ Xn+1 the following diagram commutes.

L(G′n+1) L(H ′n+1)

L′(Fn+1) L′(F̂n+1)

ψG′
n+1

h′n+1,x � L(G′n+1)

π̂n+1,x � L′(Fn+1)

ψH′
n+1

Proof. Defining ψG′n+1
and ψH′n+1

. By construction, we can combine the maps ψGn
and ψHn to obtain a natural colour-preserving bijection

ψ : L(Mn)→ L′(Nn),

which satisfies the assumptions of Lemma 3.3.7. Thus, by Corollary 3.3.8, there are

bijections

αi : L(cl(Mn)(~pi))→ L′(cl(Nn)(~ri))

which are colour-preserving with respect to the promise structures cl(P) and cl(P ′) on

cl(Mn) and cl(Nn), respectively.

We now claim that ψ extends to a colour-preserving bijection (w.r.t. cl(P))

cl(ψ) : L(cl(Mn))→ L′(cl(Nn)).

Indeed, by (cl.3), for every ` ∈ R̃′n ∪ B̃′n, there is a ~P ′-respecting rooted isomorphism

g` : cl(Nn)(~q`)→ cl(Nn)(~ri),(26)

where i equals blue or red depending on whether ` ∈ R̃′n or B̃′n. As in the case of (25)

we define the maps gr with ~qr = ~ri for the roots of FG
n and F̂H

n respectively to be the

identity. Together with the rooted isomorphisms f` from (25), it follows that for each

` ∈ R̃n ∪ B̃n ∪ {r(Gn), r(Hn)}, the map

ψ` = g−1
ψ(`) ◦ α

i ◦ f` : L(cl(Mn)(~q`))→ L
(
cl(Nn)(~qψ(`))

)
is a colour-preserving bijection. Now combine ψ with the individual ψ` to obtain cl(ψ).

We then put

ψG′n+1
= cl(ψ) � G′n+1 and ψH′n+1

= cl(ψ) � H ′n+1.

Defining isomorphisms Π̂n+1. To extend the old isomorphisms πn,x, given by the in-

duction assumption, note that by (cl.2), Fn+1 is obtained from Fn by attaching at every

leaf in R′n a copy of the rooted graph Fn+1(~r1), and similarly by attaching at every leaf in

B′n a copy of the rooted graph Fn+1(~r2). For each x ∈ Xn let us write π̂n,x for the map
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sending each z ∈ FG
n to the copy of πn,x(z) in F̂H

n . By the induction assumption (†15), for

each x ∈ Xn the isomorphism

π̂n,x : FG
n → F̂H

n

preserves the colour of red and blue leaves. Thus, using the maps g` from (26), the

mappings

g−1
π̂n,x(`) ◦ g` : cl(Nn)(~q`) ∼= cl(Nn)(~qπ̂n,x(`))

are cl( ~P ′)-respecting isomorphisms of rooted graphs for all ` ∈ R′n ∪ B′n. By combining

the isomorphism πn,x with these isomorphisms between each Fn+1(~q`) and F̂n+1(~qπ̂n,x(`)),

we obtain a cl(~P ′)-respecting extension

π̂n+1,x : Fn+1 → F̂n+1.

For the new isomorphism π̂n+1,v : Fn+1 → F̂n+1, we simply take the ‘identity’ map which

extends the map sending each z ∈ F̃n to ẑ ∈ ˆ̃Fn.

The diagram commutes. To see that the new diagram above commutes, for each x ∈ Xn

it suffices to check that for all ` ∈ (Rn ∪Bn) ∩ V (Gn) we have

π̂n+1,x ◦ ψG′n+1
� L
(
G′n+1(~q`)

)
= ψH′n+1

◦ h′n+1,x � L
(
G′n+1(~q`)

)
,

which by construction of cl(ψ) above is equivalent to showing that

π̂n+1,x ◦ ψ` = ψhn,x(`) ◦ h′n+1,x.

By definition of ψ` this holds if and only if

π̂n+1,x ◦ g−1
ψ(`) ◦ α

i ◦ f` = g−1
ψ(hn,x(`)) ◦ α

i ◦ fhn,x(`) ◦ h′n+1,x.

Now by construction of π̂n+1,x and h′n+1,x, we have

π̂n+1,x ◦ g−1
ψ(`) = g−1

π̂n,x(ψ(`)) and fhn,x(`) ◦ h′n+1,x = f`.

Hence, the above is true if and only if

g−1
π̂n,x(ψ(`)) ◦ α

i ◦ f` = g−1
ψ(hn,x(`)) ◦ α

i ◦ f`.

Finally, this last line holds since ψ(`) = ψGn(`) and ψ(hn,x(`)) = ψHn(hn,x(`)) by definition

of ψ, and because

π̂n,x ◦ ψGn(`) = ψHn ◦ hn,x(`)

by the induction assumption.

For π̂n+1,v we see that, as above, it will be sufficient to show that for all ` ∈ (R̃n ∪
B̃n) ∩ V (G̃n) we have

π̂n+1,v ◦ ψ` = ψh′n+1,v(`) ◦ h′n+1,v,

which reduces as before to showing that,

g−1
π̂n+1,v(ψ(`)) ◦ α

i ◦ f` = g−1
ψ(h′n+1,v(`)) ◦ α

i ◦ f`.
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Recall that, π̂n+1,v sends each v to v̂ and also, since h′n+1,v � G̃n = h, the image of every

leaf ` ∈ (R̃n ∪ B̃n) ∩ V (G̃n) is simply l̂ ∈ Ĝn(v) ∪ Ĝn(r). Hence we wish to show that

g−1
ˆ(ψ(`))
◦ αi ◦ f` = g−1

ψ(l̂)
◦ αi ◦ f`,

that is,
ˆ(ψ(`)) = ψ(l̂),

which follows from the construction of ψ. �

3.5.6.3. Gluing the graphs together. Let us take the cartesian product of Fn+1 with a

ray, which we simply denote by Fn+1×N. If we identify Fn+1 with the subgraph Fn+1×{0},
then we can interpret both ψG′n+1

and ψH′n+1
as maps from L(G′n+1) and L(H ′n+1) to a set

of vertices in Fn+1 × N, under the natural isomorphism between F̂n+1 and Fn+1.

Instead of using the function ψG′n+1
directly for our gluing operation, we identify, for

every leaf l in L(G′n+1) the unique neighbour of l with ψG′n+1
(l). Formally, define a bijection

χGn+1 between the neighbours of L(G′n+1) and L′(Fn+1) via

χGn+1 =
{

(z1, z2) : ∃l ∈ L(G′n+1) s.t. z1 ∈ N(`) and ψG′n+1
(l) = z2

}
,(27)

and similarly

χHn+1 =
{

(z1, z2) : ∃l ∈ L(H ′n+1) s.t. z1 ∈ N(`) and ψH′n+1
(l) = z2

}
.(28)

Since two promise leaves in G′n+1 or H ′n+1 are never adjacent to the same vertex, χGn+1 and

χHn+1 are indeed bijections. Moreover, since all promise leaves were proper, the vertices

in the domain of χGn+1 and χHn+1 have degree at least 3. Using our notion of gluing-sum

(see Def. 3.4.1), we now define

Gn+1 := G′n+1 ⊕χGn+1
(Fn+1 × N) and Hn+1 := H ′n+1 ⊕χHn+1

(Fn+1 × N).(29)

We consider Rn+1, Bn+1, Xn+1 and Yn+1 as subsets of Gn+1 and Hn+1 in the natural

way. Then ψGn+1 and ψHn+1 can be taken to be the maps ψG′n+1
and ψH′n+1

, again identifying

F̂n+1 with Fn+1 in the natural way. We also take the roots of Gn+1 and Hn+1 to be the

roots of G′n+1 and H ′n+1 respectively

This completes the construction of graphs Gn+1, Hn+1, and Fn+1, the coloured leaf

sets Rn+1, Bn+1, R
′
n+1, and B′n+1, the bijections ψGn+1 and ψHn+1 , as well as ϕn+1 : Xn+1 →

Yn+1, and kn+1 = 2(k̃n + 1). In the next section, we show the existence of families

of isomorphisms Hn+1 and Πn+1, and verify that (†1)–(†15) are indeed satisfied for the

(n+ 1)th instance.

3.5.7. The inductive step: verification.

Lemma 3.5.9. We have Gn ⊆ Gn+1, Hn ⊆ Hn+1, ∆(Gn+1),∆(Hn+1) 6 5, ∆(Fn+1) 6

3, and the roots of Gn+1 and Hn+1 are in Rn+1 and Bn+1 respectively.
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Proof. We note that Gn ⊆ G′n+1 by construction. Hence, it follows that

Gn ⊆ G′n+1 ⊆ G′n+1 ⊕χGn+1
(Fn+1 × N) = Gn+1,

and similarly for Hn. Since we glued together degree 3 and degree 2 vertices, and

∆(Gn),∆(Hn) 6 5 and ∆(Fn) 6 3, it is clear that the same bounds hold for n + 1.

Finally, since the root of G̃n was a placeholder promise, and Rn+1 was the corresponding

set of promise leaves in cl(G̃n), it follows that the root of G′n+1 is in Rn+1, and hence so is

the root of Gn+1. A similar argument shows that the root of Hn+1 is in Bn+1. �

Lemma 3.5.10. We have σ0(Gn+1) = σ0(Hn+1) = kn+1.

Proof. By construction we have that σ0(G̃n) = σ0(H̃n) = kn+1. Since G′n+1 and H ′n+1

are realised as components of the promise closure of Mn, and this was a proper extension,

it is a simple check that σ0(G′n+1) = σ0(H ′n+1) = kn+1. Also note that Fn+1 × N has

no mii-paths of length bigger than two, since the vertices of degree two in Fn+1 × N are

precisely those of the form (`, 0) with ` a leaf of Fn+1.

Since G′n+1⊕χGn+1
(Fn+1×N) is formed by gluing a set of degree-two vertices of Fn+1×N

to a set of degree-three vertices in G′n+1, it follows that σ0(Gn+1) = kn+1 as claimed. A

similar argument shows that σ0(Hn+1) = kn+1. �

Lemma 3.5.11. The graphs Gn+1 and Hn+1 are spectrally distinguishable.

Proof. Since in G̃n we have that all long mii-paths except for those of length kn+1 are

contained inside Gn or Ĥn, it follows from our induction assumption (†5) that σ1(G̃n) = kn.

However, in H̃n, we attached Ĝn(v̂) to generate an mii-path of length k̃n + 1 in H̃n (see

Fig. 3.7), implying that

σ1(H̃n) = k̃n + 1 > kn = σ1(G̃n).

As before, since the promise closures G′n+1 and H ′n+1 are proper extensions of G̃n and H̃n,

they are spectrally distinguishable. Lastly, since Fn+1×N has no leaves and no mii-paths

of length bigger than two, the same is true for Gn+1 and Hn+1. �

Lemma 3.5.12. The graphs Gn+1 and Hn+1 have exactly one end, and Ω(Gn+1 ∪
Hn+1) ⊆ Rn+1 ∪Bn+1.

Proof. By the induction assumption (†8), we know that Ω(Gn ∪Hn) ⊆ Rn ∪Bn.

Claim. The set Rn+1 ∪Bn+1 is dense for G′n+1.

Consider a finite S ⊆ V (G′n+1). We have to show that any infinite component C of

G′n+1 − S has non-empty intersection with Rn+1 ∪Bn+1.

Let us consider the global structure of G′n+1 as being roughly that of an infinite regular

tree, as in Figure 3.2. Specifically, we imagine a copy of Gn at the top level, at the next

level are the copies of Gn and Hn that come from a blue or red leaf in the top level, at the

next level are the copies attached to blue or red leaves from the previous level, and so on.
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With this in mind, it is evident that either C contains an infinite component from some

copy of Hn − S or Gn − S, or C contains an infinite ray from this tree structure. In the

first case, we have |C ∩ (Rn ∪Bn)| =∞ by induction assumption. Since any vertex from

Rn∪Bn has a leaf from Rn+1∪Bn+1 within distance kn+1+1 (cf. Figure 3.7), it follows that

C also meets Rn+1∪Bn+1 infinitely often. In the second case, the same conclusion follows,

since between each level of our tree structure, there is a pair of leaves in Rn+1 ∪ Bn+1.

This establishes the claim.

Claim. The set Rn+1 ∪Bn+1 is dense for H ′n+1.

The proof of the second claim is entirely symmetric to the first claim.

To complete the proof of the lemma, observe that Fn+1 × N is one-ended, and with

Rn+1 ∪ Bn+1, also dom(χGn+1) ∪ dom(χHn+1) is dense for G′n+1 ∪H ′n+1 by our claims. So

by Corollary 3.4.4, the graphs Gn+1 and Hn+1 have exactly one end. Moreover, since

Rn+1 ∪ Bn+1 meets both graphs infinitely, it follows immediately that it is dense for

Gn+1 ∪Hn+1. �

Lemma 3.5.13. The graph Gn+1 is a proper mii-extension of infinite growth of Gn at

Rn ∪Bn to length kn + 1, and BallGn+1(Gn, kn + 1) does not meet Rn+1 ∪Bn+1. Similarly,

Hn+1 is a proper mii-extension of infinite growth of Hn at Rn ∪ Bn to length kn + 1, and

BallHn+1(Hn, kn + 1) does not meet Rn+1 ∪ Bn+1. Hence, (†9) and (†10) are satisfied at

stage n+ 1.

Proof. We will just prove the statement for Gn+1, as the corresponding proof for

Hn+1 is analogous.

Since G′n+1 is an
(

(R̃n ∪ B̃n) ∩ V (G̃n)
)

-extension of G̃n, it follows that G′n+1 is an((
(R̃n ∪ B̃n) ∩ V (Gn)

)
∪ r(Gn)

)
=
(
(Rn ∪Bn) ∩ V (Gn)

)
-extension of Gn.(30)

However, from the construction of the closure of a graph it is clear that that G′n+1

is also an L′-extension of the supergraph K of Gn formed by gluing a copy of G̃n(~p1) to

every leaf in Rn ∩ V (Gn) and a copy of H̃n(~p2) to every leaf in Bn ∩ V (Gn), where L′ is

defined as the set of inherited promise leaves from the copies of G̃n(~p1) and H̃n(~p2).

However, we note that every promise leaf in G̃n(~p1) and H̃n(~p2) is at distance at

least k̃n + 1 from the respective root, and so BallG′n+1
(Gn, k̃n) = BallK(Gn, k̃n). However,

BallK(Gn, k̃n) can be seen immediately to be an mii-extension of Gn at Rn ∪Bn to length

k̃n, and since k̃n > kn + 1 it follows that BallG′n+1
(Gn, kn + 1) is an mii-extension of Gn at

Rn ∪Bn to length kn + 1 as claimed.

Finally, we note that Rn+1 ∪ Bn+1 is the set of promise leaves cl(Ln). By the same

reasoning as before, BallG′n+1
(Gn, kn+1) contains no promise leaf in cl(Ln), and so does not

meet Rn+1∪Bn+1 as claimed. Furthermore, it doesn’t meet any neighbours of Rn+1∪Bn+1.
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Recall that Gn+1 is formed by gluing a set of vertices in (Fn+1 × N) to neighbours of

vertices in Rn+1 ∪Bn+1. However, by the above claim, BallG′n+1
(Gn, kn + 1) does not meet

any of the neighbours of Rn+1 ∪Bn+1 and so BallGn+1(Gn, kn + 1) = BallG′n+1
(Gn, kn + 1),

and the claim follows.

Finally, to see that Gn+1 is a leaf extension of Gn of infinite growth, it suffices to

observe that Gn+1−Gn consists of one component only, which is a superset of the infinite

graph Fn × N. �

Lemma 3.5.14. There is a family of isomorphisms

Hn+1 = {hn+1,x : Gn+1 − x→ Hn+1 − ϕn+1(x) : x ∈ Xn+1},

such that

• hn+1,x � (Gn − x) = hn,x for all x ∈ Xn,

• the image of Rn+1 ∩ V (Gn+1) under hn+1,x is Rn+1 ∩ V (Hn+1),

• the image of Bn+1 ∩ V (Gn+1) under hn+1,x is Bn+1 ∩ V (Hn+1) for all x ∈ Xn+1.

Proof. Recall that Lemma 3.5.7 shows that the there exists such a family of isomor-

phisms between G′n+1 and H ′n+1. Furthermore, we have that

Gn+1 := G′n+1 ⊕χGn+1
(Fn+1 × N) and Hn+1 := H ′n+1 ⊕χHn+1

(Fn+1 × N).

where it is easy to check that χGn+1 and χHn+1 satisfy the assumptions of Lemma 3.4.2,

since the functions ψG′n+1
and ψH′n+1

do by Lemma 3.5.8.

More precisely, given x ∈ Xn+1 and h′n+1,x, it follows from Lemma 3.5.8 that

χHn+1 ◦ h′n+1,x ◦ χGn+1

extends to an isomorphism πn+1,x of Fn+1. Hence, by Lemma 3.4.2, h′n+1,x extends to

an isomorphism hn+1,x from Gn+1 − x to Hn+1 − y. That this isomorphism satisfies the

three properties claimed follows immediately from Lemma 3.5.7 and the fact that hn+1,x �

(Gn − x) = h′n+1,x � (Gn − x). �

Lemma 3.5.15. There exist bijections

ψGn+1 : V (Gn+1) ∩ (Rn+1 ∪Bn+1)→ R′n+1 ∪B′n+1

and

ψHn+1 : V (Hn+1) ∩ (Rn+1 ∪Bn+1)→ R′n+1 ∪B′n+1,

and a family of isomorphisms

Πn+1 = {πn+1,x : Fn+1 → Fn+1 : x ∈ Xn+1},

such that

• πn+1,x � R′n+1 is a permutation of R′n+1 for each x,

• πn+1,x � B′n+1 is a permutation of B′n+1 for each x, and
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• for each x ∈ Xn+1, the corresponding diagram commutes:

L(Gn+1) L(Hn+1)

L(Fn+1) L(Fn+1)

ψGn+1

hn+1,x � L(Gn+1)

πn+1,x � L(Fn+1)

ψHn+1

I.e. for every ` ∈ V (Gn+1)∩(Rn+1 ∪Bn+1) we have πn+1,x(ψGn+1(`)) = ψHn+1(hn+1,x(`)).

Proof. Since Rn+1, Bn+1 ⊆ G′n+1∪H ′n+1, and hn+1,x extends h′n+1,x for each x ∈ Xn+1,

this follows immediately from Lemma 3.5.8 after identifying F̂n+1 with Fn+1. �

This completes our recursive construction, and hence the proof of Theorem 3.1.4 is

complete.

3.6. A non-reconstructible graph with countably many ends

In this section we will prove Theorem 3.1.5. Since the proof will follow almost exactly

the same argument as the proof of Theorem 3.1.4, we will just indicate briefly here the

parts which would need to be changed, and how the proof is structured.

The proof follows the same back and forth construction as in Section 3.5.2, however

instead of starting with finite graphs G0 and H0 we will start with two infinite graphs,

each containing one free end. For example we could start with the graphs in Figure 3.9.

r(G0)
b

r(H0)
r

. . .

. . .

Figure 3.9. A possible choice for G0 and H0, where the dots indicate a ray.

The induction hypotheses remain the same, with the exception of (†7) and (†8) which

are replaced by

(†7’) Gn and Hn have exactly one limit end and infinitely many free ends when n > 1,

and

(†8’) Rn ∪Bn ∩ Ω(Gn ∪Hn) = Ω′(Gn ∪Hn).

The arguments of Section 3.5.5 will then go through mutatis mutandis: for the proof

of the analogue of Lemma 3.5.12, use Corollary 3.4.5 instead of Corollary 3.4.4.

To show that the construction then yields the desired non-reconstructible pair of graphs

with countably many ends, we have to check that (†7’) holds for the limit graphs G and

H. It is clear that since Rn ∪Bn ∩ Ω(Gn ∪Hn) = Ω′(Gn ∪Hn), every free end in a graph

Gn or Hn remains free in the limit. Moreover, a similar argument to that in Section 3.5.3
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shows that any pair of rays in G or H which were not in a free end in some Gn or Hn are

equivalent in G or H, respectively.

However, since the end space of a locally finite connected graph is a compact metrizable

space, and therefore has a countable dense subset, such a graph has at most countably

many free ends, since they are isolated in Ω(G). Hence, both G and H have at most

countably many free ends, and one limit end, and so both graphs have countably many

ends.





CHAPTER 4

Topological ubiquity of trees

Let C be a relation between graphs. We say a graph G is C-ubiquitous if

whenever Γ is a graph with nG C Γ for all n ∈ N, then one also has ℵ0G C Γ,

where αG is the disjoint union of α many copies of G.

The Ubiquity Conjecture of Andreae, a well-known open problem in the

theory of infinite graphs, asserts that every locally finite connected graph is

ubiquitous with respect to the minor relation.

In this paper, which is the first of a series of papers making progress

towards the Ubiquity Conjecture, we show that all trees are ubiquitous with

respect to the topological minor relation, irrespective of their cardinality. This

answers a question of Andreae from 1979.

4.1. Introduction

Let C be a relation between graphs, for example the subgraph relation ⊆, the topo-

logical minor relation 6 or the minor relation 4. We say that a graph G is C-ubiquitous

if whenever Γ is a graph with nG C Γ for all n ∈ N, then one also has ℵ0G C Γ, where

αG is the disjoint union of α many copies of G.

Two classic results of Halin [85, 86] say that both the ray and the double ray are ⊆-

ubiquitous, i.e. any graph which contains arbitrarily large collections of disjoint (double)

rays must contain an infinite collection of disjoint (double) rays. However, even quite

simple graphs can fail to be ⊆ or 6-ubiquitous, see e.g. [9, 168, 109], examples of which,

due to Andreae [16], are depicted in Figures 4.1 and 4.2 below.

. . .

Figure 4.1. A graph which is not ⊆-ubiquitous.

. . .

Figure 4.2. A graph which is not 6-ubiquitous.

65
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However, for the minor relation, no such simple examples of non-ubiquitous graphs are

known. Indeed, one of the most important problems in the theory of infinite graphs is the

so-called Ubiquity Conjecture due to Andreae [15].

The Ubiquity Conjecture. Every locally finite connected graph is 4-ubiquitous.

In [15], Andreae constructed a graph that is not 4-ubiquitous. However, this con-

struction relies on the existence of a counterexample to the well-quasi-ordering of infinite

graphs under the minor relation, for which counterexamples are only known with very

large cardinality [148]. In particular, it is still an open question whether or not there

exists a countable connected graph which is not 4-ubiquitous.

In his most recent paper on ubiquity to date, Andreae [16] exhibited infinite families of

locally finite graphs for which the ubiquity conjecture holds. The present paper is the first

in a series of papers [32, 33, 34] making further progress towards the ubiquity conjecture,

with the aim being to show that all graphs of bounded tree-width are ubiquitous.

As a first step towards this, we in particular need to deal with infinite trees, for which

one even gets affirmative results regarding ubiquity under the topological minor relation.

Halin showed in [87] that all trees of maximum degree 3 are 6-ubiquitous. Andreae

improved this result to show that all locally finite trees are 6-ubiquitous [10], and asked if

his result could be extended to arbitrary trees [10, p. 214]. Our main result of this paper

answers this question in the affirmative.

Theorem 4.1.1. Every tree is ubiquitous with respect to the topological minor relation.

The proof will use some results about the well-quasi-ordering of trees under the topo-

logical minor relation of Nash-Williams [125] and Laver [111], as well as some notions

about the topological structure of infinite graphs [55]. Interestingly, most of the work in

proving Theorem 4.1.1 lies in dealing with the countable case, where several new ideas are

needed. In fact, we will prove a slightly stronger statement in the countable case, which

will allow us to derive the general result via transfinite induction on the cardinality of the

tree, using some ideas from Shelah’s singular compactness theorem [143].

To explain our strategy, let us fix some notation. When H is a subdivision of G we

write G 6∗ H. Then, G 6 Γ means that there is a subgraph H ⊆ Γ which is a subdivision

of G, that is, G 6∗ H. If H is a subdivision of G and v a vertex of G, then we denote by

H(v) the corresponding vertex in H. More generally, given a subgraph G′ ⊆ G, we denote

by H(G′) the corresponding subdivision of G′ in H.

Now, suppose we have a rooted tree T and a graph Γ. Given a vertex t ∈ T , let Tt
denote the subtree of T rooted in t. We say that a vertex v ∈ Γ is t-suitable if there is some

subdivision H of Tt in Γ with H(t) = v. For a subtree S ⊆ T we say that a subdivision

H of S in Γ is T -suitable if for each vertex s ∈ V (S) the vertex H(s) is s-suitable, i.e. for

every s ∈ V (S) there is a subdivision H ′ of Ts such that H ′(s) = H(s).
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An S-horde is a sequence (Hi : i ∈ N) of disjoint suitable subdivisions of S in Γ. If S ′ is

a subtree of S, then we say that an S-horde (Hi : i ∈ N) extends an S ′-horde (H ′i : i ∈ N)

if for every i ∈ N we have Hi(S
′) = H ′i.

In order to show that an arbitrary tree T is 6-ubiquitous, our rough strategy will be

to build, by transfinite recursion, S-hordes for larger and larger subtrees S of T , each

extending all the previous ones, until we have built a T -horde. However, to start the

induction it will be necessary to show that we can build S-hordes for countable subtrees

S of T . This will be done in the following key result of this paper:

Theorem 4.1.2. Let T be a tree, S a countable subtree of T and Γ a graph such that

nT 6 Γ for every n ∈ N. Then there is an S-horde in Γ.

Note that Theorem 4.1.2 in particular implies 6-ubiquity of countable trees.

We remark that whilst the relation 4 is a relaxation of the relation 6, which is itself

a relaxation of the relation ⊆, it is not clear whether ⊆-ubiquity implies 6-ubiquity,

or whether 6-ubiquity implies 4-ubiquity. In the case of Theorem 4.1.1 however, it is

true that arbitrary trees are also 4-ubiquitous, although the proof involves some extra

technical difficulties that we will deal with in a later paper [34]. We note, however, that it

is surprisingly easy to show that countable trees are 4-ubiquitous, since it can be derived

relatively straightforwardly from Halin’s grid theorem, see [32, Theorem 1.7].

This paper is structured as follows: In Section 4.2, we provide background on rooted

trees, rooted topological embeddings of rooted trees (in the sense of Kruskal and Nash-

Williams), and ends of graphs. In our graph theoretic notation we generally follow the

textbook of Diestel [54]. Next, Sections 4.3 to 4.5 introduce the key ingredients for our

main ubiquity result. Section 4.3, extending ideas from Andreae’s [10], lists three useful

corollaries of Nash-Williams’ and Laver’s result that (labelled) trees are well-quasi-ordered

under the topological minor relation, Section 4.4 investigates under which conditions a

given family of disjoint rays can be rerouted onto another family of disjoint rays, and

Section 4.5 shows that without loss of generality, we already have quite a lot of information

about how exactly our copies of nG are placed in the host graph Γ.

Using these ingredients, we give a proof of the countable case, i.e. of Theorem 4.1.2,

in Section 4.6. Finally, Section 4.7 contains the induction argument establishing our main

result, Theorem 4.1.1.

4.2. Preliminaries

Definition 4.2.1. A rooted graph is a pair (G, v) where G is a graph and v ∈ V (G)

is a vertex of G which we call the root. Often, when it is clear from the context which

vertex is the root of the graph, we will refer to a rooted graph (G, v) as simply G.

Given a rooted tree (T, v), we define a partial order ≤, which we call the tree-order,

on V (T ) by letting x ≤ y if the unique path between y and v in T passes through x.
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See [54, Section 1.5] for more background. For any edge e ∈ E(T ) we denote by e− the

endpoint closer to the root and by e+ the endpoint further from the root. For any vertex

t we denote by N+(t) the set of children of t in T , the neighbours s of t satisfying t ≤ s.

The subtree of T rooted at t is denoted by (Tt, t), that is, the induced subgraph of T on

the set of vertices {s ∈ V (T ) : t ≤ s}.
We say that a rooted tree (S,w) is a rooted subtree of a rooted tree (T, v) if S is a

subgraph of T such that the tree order on (S,w) agrees with the induced tree order from

(T, v). In this case we write (S,w) ⊆r (T, v).

We say that a rooted tree (S,w) is a rooted topological minor of a rooted tree (T, v) if

there is a subgraph S ′ of T which is a subdivision of S such that for any x ≤ y ∈ V (S),

S ′(x) ≤ S ′(y) in the tree-order on T . We call such an S ′ a rooted subdivision of S. In this

case we write (S,w) 6r (T, v), cf. [54, Section 12.2].

Definition 4.2.2 (Ends of a graph, cf. [54, Chapter 8]). An end in an infinite graph

Γ is an equivalence class of rays, where two rays R and S are equivalent if and only if

there are infinitely many vertex disjoint paths between R and S in Γ. We denote by Ω(Γ)

the set of ends in Γ. Given any end ε ∈ Ω(Γ) and a finite set X ⊆ V (Γ) there is a unique

component of Γ−X which contains a tail of every ray in ε, which we denote by C(X, ε).

A vertex v ∈ V (Γ) dominates an end ω if there is a ray R ∈ ω such that there are

infinitely many vertex disjoint v –R -paths in Γ.

Definition 4.2.3. For a path or ray P and vertices v, w ∈ V (P ), let vPw denote the

subpath of P with endvertices v and w. If P is a ray, let Pv denote the finite subpath of

P between the initial vertex of P and v, and let vP denote the subray (or tail) of P with

initial vertex v.

Given two paths or rays P and Q which are disjoint but for one of their endvertices,

we write PQ for the concatenation of P and Q, that is the path, ray or double ray P ∪Q.

Since concatenation of paths is associative, we will not use parentheses. Moreover, if we

concatenate paths of the form vPw and wQx, then we omit writing w twice and denote

the concatenation by vPwQx.

4.3. Well-quasi-orders and κ-embeddability

Definition 4.3.1. Let X be a set and let C be a binary relation on X. Given an

infinite cardinal κ we say that an element x ∈ X is κ-embeddable (with respect to C) in

X if there are at least κ many elements x′ ∈ X such that x C x′.

Definition 4.3.2 (well-quasi-order). A binary relation C on a set X is a well-quasi-

order if it is reflexive and transitive, and for every sequence x1, x2, . . . ∈ X there is some

i < j such that xi C xj.
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Lemma 4.3.3. Let X be a set and let C be a well-quasi-order on X. For any infinite

cardinal κ the number of elements of X which are not κ-embeddable with respect to C in

X is less than κ.

Proof. For x ∈ X let Ux = {y ∈ X : x C y}. Now suppose for a contradiction that

the set A ⊆ X of elements which are not κ-embeddable with respect to C in X has size

at least κ. Then, we can recursively pick a sequence (xn ∈ A)n∈N such that xm 6C xn for

m < n. Indeed, having chosen all xm with m < n it suffices to choose xn to be any element

of the set A \
⋃
m<n Uxm , which is nonempty since A has size κ but each Uxm has size < κ.

By construction we have xm 6C xn for m < n, contradicting the assumption that C is

a well-quasi-order on X. �

We will use the following theorem of Nash-Williams on well-quasi-ordering of rooted

trees, and its extension by Laver to labelled rooted trees.

Theorem 4.3.4 (Nash-Williams [125]). The relation 6r is a well-quasi order on the

set of rooted trees.

Theorem 4.3.5 (Laver [111]). The relation 6r is a well-quasi order on the set of rooted

trees with finitely many labels, i.e. for every finite number k ∈ N, whenever (T1, c1), (T2, c2), . . .

is a sequence of rooted trees with k-colourings ci : Ti → [k], there is some i < j such that

there exists a subdivision H of Ti with H ⊆r Tj and ci(t) = cj(H(t)) for all t ∈ Ti.1

Together with Lemma 4.3.3 these results give us the following three corollaries:

Definition 4.3.6. Let (T, v) be an infinite rooted tree. For any vertex t of T and

any infinite cardinal κ, we say that a child t′ of t is κ-embeddable if there are at least κ

children t′′ of t such that Tt′ is a rooted topological minor of Tt′′ .

Corollary 4.3.7. Let (T, v) be an infinite rooted tree, t ∈ V (T ) and T = {Tt′ : t′ ∈
N+(t)}. Then for any infinite cardinal κ, the number of children of t which are not κ-

embeddable is less than κ.

Proof. By Theorem 4.3.4 the set T = {Tt′ : t′ ∈ N+(t)} is well-quasi-ordered by 6r
and so the claim follows by Lemma 4.3.3 applied to T , 6r, and κ. �

Corollary 4.3.8. Let (T, v) be an infinite rooted tree, t ∈ V (T ) a vertex of infinite

degree and (ti ∈ N+(t) : i ∈ N) a sequence of countably many of its children. Then there

exists Nt ∈ N such that for all n > Nt,

{t} ∪
⋃
i>Nt

Tti 6r {t} ∪
⋃
i>n

Tti

(considered as trees rooted at t) fixing the root t.
1In fact, Laver showed that rooted trees labelled by a better-quasi-order are again better-quasi-ordered

under 6r respecting the labelling, but we shall not need this stronger result.
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Proof. Consider a labelling c : Tt → [2] mapping t to 1, and all remaining vertices of

Tt to 2. By Theorem 4.3.5, the set T = {{t} ∪
⋃
i>n Tti : n ∈ N} is well-quasi-ordered by

6r respecting the labelling, and so the claim follows by applying Lemma 4.3.3 to T and

6r with κ = ℵ0. �

Definition 4.3.9 (Self-similarity). A ray R = r1r2r3 . . . in a rooted tree (T, v) which

is upwards with respect to the tree order displays self-similarity of T if there are infinitely

many n such that there exists a subdivision H of Tr0 with H ⊆r Trn and H(R) ⊆ R.

Corollary 4.3.10. Let (T, v) be an infinite rooted tree and let R = r1r2r3 . . . be a

ray which is upwards with respect to the tree order. Then there is a k ∈ N such that rkR

displays self-similarity of T .2

Proof. Consider a labelling c : T → [2] mapping the vertices on the ray R to 1, and

labelling all remaining vertices of T with 2. By Theorem 4.3.5, the set T = {(Tri , ci) : i ∈
N}, where ci is the natural restriction of c to Tri , is well-quasi-ordered by 6r respecting

the labellings. Hence by Lemma 4.3.3, the number of indices i such that Tri is not ℵ0-

embeddable in T is finite. Let k be larger than any such i. Then, since Trk is ℵ0-

embeddable in T , there are infinitely many rj ∈ rkR such that Trk 6r Trj respecting the

labelling, i.e. mapping the ray to the ray, and hence rkR displays the self similarity of

T . �

4.4. Linkages between rays

In this section we will establish a toolkit for constructing a disjoint system of paths

from one family of disjoint rays to another.

Definition 4.4.1 (Tail of a ray). Given a ray R in a graph Γ and a finite set X ⊆ V (Γ)

the tail of R after X, denoted by T (R,X), is the unique infinite component of R in Γ−X.

Definition 4.4.2 (Linkage of families of rays). Let R = (Ri : i ∈ I) and S = (Sj : j ∈
J) be families of vertex disjoint rays, where the initial vertex of each Ri is denoted xi.

A family of paths P = (Pi : i ∈ I), is a linkage from R to S if there is an injective function

σ : I → J such that

• each Pi joins a vertex x′i ∈ Ri to a vertex yσ(i) ∈ Sσ(i);

• the family T = (xiRix
′
iPiyσ(i)Sσ(i) : i ∈ I) is a collection of disjoint rays.

We say that T is obtained by transitioning from R to S along the linkage P . Given a

finite set of vertices X ⊆ V (Γ), we say that P is after X if x′i ∈ T (Ri, X) and x′iPiyσ(i)Sσ(i)

avoids X for all i ∈ I.

2A slightly weaker statement, without the additional condition that H(R) ⊆ R appeared in [10,

Lemma 1].
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Lemma 4.4.3 (Weak linking lemma). Let Γ be a graph and ε ∈ Ω(Γ). Then for any

families R = (Ri : i ∈ [n]) and S = (Sj : j ∈ [n]) of vertex disjoint rays in ε and any finite

set X of vertices, there is a linkage from R to S after X.

Proof. Let us write xi for the initial vertex of each Ri and let x′i be the initial vertex

of the tail T (Ri, X). Furthermore, let X ′ = X ∪
⋃
i∈[n] Rix

′
i. For i ∈ [n] we will construct

inductively finite disjoint connected subgraphs Ki ⊆ Γ for each i ∈ [n] such that

• Ki meets T (Sj, X
′) and T (Rj, X

′) for every j ∈ [n];

• Ki avoids X ′.

Suppose that we have constructed K1, . . . , Km−1 for some m ≤ n. Let us write Xm =

X ′ ∪
⋃
i<m V (Ki). Since R1, . . . , Rn and S1, . . . , Sn lie in the same end ε, there exist

paths Qi,j between T (Ri, Xm) and T (Sj, Xm) avoiding Xm for all i 6= j ∈ [n]. Let Km =

F ∪
⋃
i 6=j∈[n] Qi,j, where F consists of an initial segment of each T (Ri, Xm) sufficiently

large to make Km connected. Then it is clear that Km is disjoint from all previous Ki and

satisfies the claimed properties.

Let K =
⋃n
i=1 Ki and for each j ∈ [n], let yj be the initial vertex of T (Sj, V (K)). Note

that by construction T (Sj, V (K)) avoids X for each j, since K1 meets T (Sj, X) and so

T (Sj, V (K)) ⊆ T (Sj, X).

We claim that there is no separator of size < n between {x′1, . . . , x′n} and {y1, . . . , yn}
in the subgraph Γ′ ⊆ Γ where Γ′ = K∪

⋃n
j=1 T (Rj, X

′)∪T (Sj, X
′). Indeed, any set of < n

vertices must avoid at least one ray Ri, at least one graph Km and one ray Sj. However,

since Km is connected and meets Ri and Sj, the separator does not separate x′i from yj.

Hence, by a version of Menger’s theorem for infinite graphs [54, Proposition 8.4.1],

there is a collection of n disjoint paths Pi from x′i to yσ(i) in Γ′. Since Γ′ is disjoint from

X and meets each Rix
′
i in x′i only, it is clear that P = (Pi : i ∈ [n]) is as desired. �

In some cases we will need to find linkages between families of rays which avoid more

than just a finite subset X. For this we will use the following lemma, which is stated in

slightly more generality than needed in this paper. Broadly the idea is that if we have a

family of disjoint rays (Ri : i ∈ [n]) tending to an end ε and a number a ∈ N, then there

is some fixed number N = N(a, n) such that if we have N disjoint graphs Hi, each with a

specified ray Si tending to ε, then we can ‘re-route’ the rays (Ri : i ∈ [n]) to some of the

rays (Sj : j ∈ [N ]), in such a way that we totally avoid a of the graphs Hi.

Lemma 4.4.4 (Strong linking lemma). Let Γ be a graph and ε ∈ Ω(Γ). Let X be a

finite set of vertices, a, n ∈ N, and R = (Ri : i ∈ [n]) a family of vertex disjoint rays in ε.

Let xi be the initial vertex of Ri and let x′i the initial vertex of the tail T (Ri, X).

Then there is a finite number N = N(R, X, a) with the following property: For every

collection (Hj : j ∈ [N ]) of vertex disjoint subgraphs of Γ, all disjoint from X and each

including a specified ray Sj in ε, there is a set A ⊆ [N ] of size a and a linkage P = (Pi : i ∈
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[n]) from R to (Sj : j ∈ [N ]) which is after X and such that the family

T =
(
xiRix

′
iPiyσ(i)Sσ(i) : i ∈ [n]

)
avoids

⋃
k∈AHk.

Proof. Let X ′ = X ∪
⋃
i∈[n] Rix

′
i and let N0 = |X ′|. We claim that the lemma holds

with N = N0 + n3 + a.

Indeed suppose that (Hj : j ∈ [N ]) is a collection of vertex disjoint subgraphs as in the

statement of the lemma. Since the Hj are vertex disjoint, we may assume without loss of

generality that the family (Hj : j ∈ [n3 + a]) is disjoint from X ′.

For each i ∈ [n2] we will build inductively finite, connected, vertex disjoint subgraphs

K̂i such that

• K̂i contains x′i (mod n),

• K̂i meets exactly n of the Hj, that is |{ j ∈ [n3 + a] : K̂i ∩Hj 6= ∅}| = n, and

• K̂i avoids X ′.

Suppose we have done so for all i < m. Let Xm = X ′ ∪
⋃
i<m V (K̂i). We will build

inductively for t = 0, . . . , n increasing connected subgraphs K̂t
m that meet Ri (mod n), meet

exactly t of the Hj, and avoid Xm.

We start with K̂0
m = ∅. For each t = 0, . . . n−1, if T (Rm (mod n), Xm) meets some Hj not

met by K̂t
m then there is some initial vertex zt ∈ T (Rm (mod n), Xm) where it does so and

we set K̂t+1
m := K̂t

m ∪ T (Rm (mod n), Xm)zt. Otherwise we may assume T (Rm (mod n), Xm)

does not meet any such Hj. In this case, let j ∈ [n3 + a] be such that K̂t
m ∩ Hj =

∅. Since Rm (mod n) and Sj belong to the same end ε, there is some path P between

T (Rm (mod n), Xm) and T (Sj, Xm) which avoids Xm. Since this path meets some Hk with

k ∈ [n3 + a] which K̂t
m does not, there is some initial segment P ′ which meets exactly

one such Hk. To form K̂t+1
m we add this path to K̂t

m together with an appropriately large

initial segment of T (Rm (mod n), Xm) such that K̂t+1
m is connected and contains x′m (mod n).

Finally we let K̂m = K̂n
m.

Let K =
⋃
i∈[n2] K̂i. Since each K̂i meets exactly n of the Hj, the set

J = {j ∈ [n3 + a] : Hj ∩K 6= ∅}

satisfies |J | 6 n3. For each j ∈ J let yj be the initial vertex of T (Sj, V (K)).

We claim that there is no separator of size < n between {x′1, . . . x′n} and {yj : j ∈ J}
in the subgraph Γ′ ⊆ Γ where Γ′ = K ∪

⋃
j∈[n] T (Rj, X

′) ∪
⋃
j∈J Hj. Suppose for a

contradiction that there is such a separator S. Then S cannot meet every Ri, and hence

avoids some Rq. Furthermore, there are n distinct K̂i such that i = q (mod n), all of

which are disjoint. Hence there is some K̂r with r = q (mod n) disjoint from S. Finally,

|{j ∈ J : K̂r∩Hj 6= ∅}| = n and so there is some Hs disjoint from S such that K̂r∩Hs 6= ∅.
Since K̂r meets T (Rq, X

′) and Hs, there is a path from x′q to ys in Γ′, contradicting our

assumption.
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Hence, by a version of Menger’s theorem for infinite graphs [54, Proposition 8.4.1],

there is a family of disjoint paths P = (Pi : i ∈ [n]) in Γ′ from x′i to yσ(i). Furthermore,

since |J | 6 n3 there is some subset A ⊆ [n3 + a] of size a such that Hk is disjoint from K

for each k ∈ A.

Therefore, since Γ′ is disjoint from X ′ and meets each Rix
′
i in x′i only, the family P is

a linkage from R to (Sj)j∈[n3+a] which is after X such that

T =
(
xiRix

′
iPiyσ(i)Sσ(i) : i ∈ [n]

)
avoids

⋃
k∈AHk. �

We will also need the following result, which allows us to work with paths instead of

rays if the end ε is dominated by infinitely many vertices.

Lemma 4.4.5. Let Γ be a graph and ε an end of Γ which is dominated by infinitely

many vertices. Let x1, x2, . . . , xk be distinct vertices. If there are disjoint rays from the xi
to ε then there are disjoint paths from the xi to distinct vertices yi which dominate ε.

Proof. We argue by induction on k. The base case k = 0 is trivial, so let us assume

k > 0.

Consider any family of disjoint rays Ri, each from xi to ε. Let yk be any vertex

dominating ε. Let P be a yk –
⋃k
i=1Ri -path. Without loss of generality the endvertex

u of P in
⋃k
i=1Ri lies on Rk. Then by the induction hypothesis applied to the graph

Γ − RkuP we can find disjoint paths in that graph from the xi with i < k to vertices yi
which dominate ε. These paths together with RkuP then form the desired collection of

paths. �

To go back from paths to rays we will use the following lemma.

Lemma 4.4.6. Let Γ be a graph and ε an end of Γ which is dominated by infinitely many

vertices. Let y1, y2, . . . , yk be vertices, not necessarily distinct, dominating Γ. Then there

are rays Ri from the respective yi to ε which are disjoint except at their initial vertices.

Proof. We recursively build for each n ∈ N paths P n
1 , . . . , P

n
k , each P n

i from yi to

a vertex yni dominating ε, disjoint except at their initial vertices, such that for m < n

each P n
i properly extends Pm

i . We take P 0
i to be a trivial path. For n > 0, build the P n

i

recursively in i: To construct P n
i , we start by taking Xn

i to be the finite set of all the

vertices of the P n
j with j < i or P n−1

j with j > i. We then choose a vertex yni outside of

Xn
i which dominates ε and a path Qn

i from yn−1
i to yni internally disjoint from Xn

i . Finally

we let P n
i := P n−1

i yn−1Q
n
i .

Finally, for each i 6 k, we let Ri be the ray
⋃
n∈N P

n
i . Then the Ri are disjoint except

at their initial vertices, and they are in ε, since each of them contains infinitely many

dominating vertices of ε. �
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4.5. G-tribes and concentration of G-tribes towards an end

For showing that a given graph G is ubiquitous with respect to a fixed relation C,

we shall assume that nG C Γ for every n ∈ N and need to show that this implies that

ℵ0G C Γ. Since each subgraph witnessing that nG C Γ will be a collection of n disjoint

subgraphs each being a witness for G C Γ, it will be useful to introduce some notation for

talking about these families of collections of n disjoint witnesses for each n.

To do this formally, we need to distinguish between a relation like the topological minor

relation and the subdivision relation. Recall that we write G 6∗ H if H is a subdivision

of G and G 6 Γ if G is a topological minor of Γ. We can interpret the topological minor

relation as the composition of the subdivision relation and the subgraph relation.

Given two relations R and S, let their composition S ◦ R be the relation defined by

x(S ◦R)z if and only if there is a y such that xRy and ySz.

Hence we have that G (⊆ ◦ 6∗) Γ if and only if there exists H such that G 6∗ H ⊆ Γ,

that is, if and only if G 6 Γ.

While in this paper we will only work with the topological minor relation, we will state

the following definition and lemmas in greater generality, so that we may apply them in

later papers in this series [32, 33, 34].

In general, we want to consider a pair (C, J) of binary relations of graphs with the

following properties.

(R1) C = (⊆ ◦ J);

(R2) Given a set I and a family (Hi : i ∈ I) of pairwise disjoint graphs with G J Hi

for all i ∈ I, then |I| ·G J
⋃
{Hi : i ∈ I}.

We call a pair (C,J) with these properties compatible.

Other examples of compatible pairs are (⊆,∼=), where ∼= denotes the isomorphism

relation, as well as (4,4∗), where G 4∗ H if H is an inflated copy of G.

Definition 4.5.1 (G-tribes). Let G and Γ be graphs, and let (C,J) be a compatible

pair of relations between graphs.

• A G-tribe in Γ (with respect to (C,J)) is a collection F of finite sets F of disjoint

subgraphs H of Γ such that G J H for each member of F H ∈
⋃
F .

• A G-tribe F in Γ is called thick, if for each n ∈ N there is a layer F ∈ F with

|F | > n; otherwise, it is called thin.3

• A G-tribe F ′ in Γ is a G-subtribe of a G-tribe F in Γ, denoted by F ′ C F , if

there is an injection Ψ: F ′ → F such that for each F ′ ∈ F ′ there is an injection

3A similar notion of thick and thin families was also introduced by Andreae in [10] (in German) and

in [16]. The remaining notions, and in particular the concept of a concentrated G-tribe, which will be the

backbone of essentially all our results in this series of papers, is new.
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ϕF ′ : F
′ → Ψ(F ′) such that V (H ′) ⊆ V (ϕF ′(H

′)) for each H ′ ∈ F ′. The G-

subtribe F ′ is called flat, denoted by F ′ ⊆ F , if there is such an injection Ψ

satisfying F ′ ⊆ Ψ(F ′).

• A thick G-tribe F in Γ is concentrated at an end ε of Γ, if for every finite vertex

set X of Γ, the G-tribe FX = {FX : F ∈ F} consisting of the layers FX = {H ∈
F : H 6⊆ C(X, ε)} ⊆ F is a thin subtribe of F .

Hence, for a given compatible pair (C,J), if we wish to show that G is C-ubiquitous,

we will need to show that the existence of a thick G-tribe in Γ with respect to (C,J)

implies ℵ0G C Γ. We first observe that removing a thin G-tribe from a thick G-tribe

always leaves a thick G-tribe.

Lemma 4.5.2 (cf. [10, Lemma 3] or [16, Lemma 2]). Let F be a thick G-tribe in Γ and

let F ′ be a thin subtribe of F , witnessed by Ψ: F ′ → F and (ϕF ′ : F
′ ∈ F ′). For F ∈ F ,

if F ∈ Ψ(F ′), let Ψ−1(F ) = {F ′F} and set F̂ = ϕF ′F (F ′F ). If F /∈ Ψ(F ′), set F̂ = ∅. Then

F ′′ := {F \ F̂ : F ∈ F}

is a thick flat G-subtribe of F .

Proof. F ′′ is obviously a flat subtribe of F . As F ′ is thin, there is a k ∈ N such that

|F ′| ≤ k for every F ′ ∈ F ′. Thus |F̂ | ≤ k for all F ∈ F . Let n ∈ N. As F is thick, there

is a layer F ∈ F satisfying |F | ≥ n+ k. Thus |F \ F̂ | ≥ n+ k − k = n. �

Given a thick G-tribe, the members of this tribe may have different properties, for

example, some of them contain a ray belonging to a specific end ε of Γ whereas some of

them do not. The next lemma allows us to restrict onto a thick subtribe, in which all

members have the same properties, as long as we consider only finitely many properties.

E.g. we find a subtribe in which either all members contain an ε-ray, or none of them

contain such a ray.

Lemma 4.5.3 (Pigeon hole principle for thick G-tribes). Suppose for some k ∈ N, we

have a k-colouring c :
⋃
F → [k] of the members of some thick G-tribe F in Γ. Then there

is a monochromatic, thick, flat G-subtribe F ′ of F .

Proof. Since F is a thick G-tribe, there is a sequence (ni : i ∈ N) of natural numbers

and a sequence (Fi ∈ F : i ∈ N) such that

n1 6 |F1| < n2 6 |F2| < n3 6 |F3| < · · · .

Now for each i, by pigeon hole principle, there is one colour ci ∈ [k] such that the subset

F ′i ⊆ Fi of elements of colour ci has size at least ni/k. Moreover, since [k] is finite, there

is one colour c∗ ∈ [k] and an infinite subset I ⊆ N such that ci = c∗ for all i ∈ I. But this

means that F ′ := {F ′i : i ∈ I} is a monochromatic, thick, flat G-subtribe. �
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In this series of papers we will be interested in graph relations such as ⊆, 6 and 4.

Given a connected graph G and a compatible pair of relations (C,J) we say that a G-tribe

F w.r.t (C,J) is connected if every member H of F is connected. Note that for relations

J like ∼=,≤∗,4∗, if G is connected and G J H, then H is connected. In this case, any

G-tribe will be connected.

Lemma 4.5.4. Let G be a connected graph (of arbitrary cardinality), (C,J) a compat-

ible pair of relations of graphs and Γ a graph containing a thick connected G-tribe F w.r.t.

(C,J). Then either ℵ0G C Γ, or there is a thick flat subtribe F ′ of F and an end ε of Γ

such that F ′ is concentrated at ε.

Proof. For every finite vertex set X ⊆ V (Γ), only a thin subtribe of F can meet X,

so by Lemma 4.5.2 a thick flat subtribe F ′′ is contained in the graph Γ −X. Since each

member of F ′′ is connected, any member H of F ′′ is contained in a unique component

of Γ − X. If for any X, infinitely many components of Γ − X contain a J-copy of G,

the union of all these copies is a J-copy of ℵ0G in Γ by (R2), hence ℵ0G C Γ. Thus, we

may assume that for each X, only finitely many components contain elements from F ′′,
and hence, by colouring each H with a colour corresponding to the component of Γ−X
containing it, we may assume by the pigeon hole principle for G-tribes, Lemma 4.5.3, that

at least one component of Γ−X contains a thick flat subtribe of F .

Let C0 = Γ and F0 = F and consider the following recursive process: If possible, we

choose a finite vertex set Xn in Cn such that there are two components Cn+1 6= Dn+1 of

Cn −Xn where Cn+1 contains a thick flat subtribe Fn+1 ⊆ Fn and Dn+1 contains at least

one J-copy Hn+1 of G. Since by construction all Hn are pairwise disjoint, we either find

infinitely many such Hn and thus, again by (R2), an ℵ0G C Γ, or our process terminates

at step N say. That is, we have a thick flat subtribe FN contained in a subgraph CN such

that there is no finite vertex set XN satisfying the above conditions.

Let F ′ := FN . We claim that for every finite vertex set X of Γ, there is a unique

component CX of Γ − X that contains a thick flat G-subtribe of F ′. Indeed, note that

if for some finite X ⊆ Γ there are two components C and C ′ of Γ − X both containing

thick flat G-subtribes of F ′, then since every G-copy in F ′ is contained in CN , it must be

the case that C ∩ CN 6= ∅ 6= C ′ ∩ CN . But then XN = X ∩ CN 6= ∅ is a witness that our

process could not have terminated at step N .

Next, observe that whenever X ′ ⊇ X, then CX′ ⊆ CX . By a theorem of Diestel and

Kühn, [55], it follows that there is a unique end ε of Γ such that C(X, ε) = CX for all finite

X ⊆ Γ. It now follows easily from the uniqueness of CX = C(X, ε) that F ′ is concentrated

at this ε. �

We note that concentration towards an end ε is a robust property in the following

sense:
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Lemma 4.5.5. Let G be a connected graph (of arbitrary cardinality), (C,J) a compat-

ible pair of relations of graphs and Γ a graph containing a thick connected G-tribe F w.r.t.

(C,J) concentrated at an end ε of Γ. Then the following assertions hold:

(1) For every finite set X, the component C(X, ε) contains a thick flat G-subtribe

of F .

(2) Every thick subtribe F ′ of F is concentrated at ε, too.

Proof. Let X be a finite vertex set. By definition, if the G-tribe F is concentrated

at ε, then F is thick, and the subtribe FX consisting of the sets FX = {H ∈ F : H 6⊆
C(X, ε)} ⊆ F for F ∈ F is a thin subtribe of F , i.e. there exists k ∈ N such that |FX | 6 k

for all FX ∈ FX .

For (1), observe that the G-tribe F ′ = {F \ FX : F ∈ F} is a thick flat subtribe of F
by Lemma 4.5.2, and all its members are contained in C(X, ε) by construction.

For (2), observe that if F ′ is a subtribe of F , then for every F ′ ∈ F ′ there is an

injection ϕF ′ : F
′ → F for some F ∈ F . Therefore, |ϕ−1

F ′ (FX)| 6 k for FX ⊆ F as defined

above, and so only a thin subtribe of F ′ is not contained in C(X, ε). �

4.6. Countable subtrees

In this section we prove Theorem 4.1.2. Let S be a countable subtree of T . Our aim is

to construct an S-horde (Qi : i ∈ N) of disjoint suitable subdivisions of S in Γ inductively.

By Lemma 4.5.4, we may assume without loss of generality that there are an end ε of Γ

and a thick T -tribe F concentrated at ε.

In order to ensure that we can continue the construction at each stage, we will require

the existence of additional structure for each n. But the details of what additional structure

we use will vary depending on how many vertices dominate ε. So, after a common step of

preprocessing, in Section 4.6.1, the proof of Theorem 4.1.2 splits into two cases according

to whether the number of ε-dominating vertices in Γ is finite (Section 4.6.2) or infinite

(Section 4.6.3).

4.6.1. Preprocessing. We begin by picking a root v for S, and also consider T as a

rooted tree with root v. Let V∞(S) be the set of vertices of infinite degree in S.

Definition 4.6.1. Given S and T as above, define a spanning locally finite forest

S∗ ⊆ S by

S∗ := S \
⋃

t∈V∞(S)

{tti : ti ∈ N+(t), i > Nt},

where Nt is as in Corollary 4.3.8. We will also consider every component of S∗ as a rooted

tree given by the induced tree order from T .

Definition 4.6.2. An edge e of S∗ is an extension edge if there is a ray in S∗ starting

at e+ which displays self-similarity of T . For each extension edge e we fix one such a ray

Re. Write Ext(S∗) ⊆ E(S∗) for the set of extension edges.
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Consider the forest S∗ − Ext(S∗) obtained from S∗ by removing all extension edges.

Since every ray in S∗ must contain an extension edge by Corollary 4.3.10, each component

of S∗ − Ext(S∗) is a locally finite rayless tree and so is finite (this argument is inspired

by [10, Lemma 2]). We enumerate the components of S∗ − Ext(S∗) as S∗0 , S
∗
1 , . . . in such

a way that for every n > 0, the set

Sn := S

[⋃
i6n

V (S∗i )

]
is a finite subtree of S containing the root r. Let us write ∂(Sn) = ES∗(Sn, S

∗ \ Sn), and

note that ∂(Sn) ⊆ Ext(S∗). We make the following definitions:

• For a given T -tribe F and ray R of T , we say that R converges to ε according to

F if for all members H of F the ray H(R) is in ε. We say that R is cut from ε

according to F if for all members H of F the ray H(R) is not in ε. Finally we say

that F determines whether R converges to ε if either R converges to ε according

to F or R is cut from ε according to F .

• Similarly, for a given T -tribe F and vertex t of T , we say that t dominates ε

according to F if for all members H of F the vertex H(t) dominates ε. We say

that t is cut from ε according to F if for all members H of F the vertex H(t) does

not dominate ε. Finally we say that F determines whether t dominates ε if either

t dominates ε according to F or t is cut from ε according to F .

• Given n ∈ N, we say a thick T -tribe F agrees about ∂(Sn) if for each extension

edge e ∈ ∂(Sn), it determines whether Re converges to ε. We say that it agrees

about V (Sn) if for each vertex t of Sn, it determines whether t dominates ε.

• Since ∂(Sn) and V (Sn) are finite for all n, it follows from Lemma 4.5.3 that given

some n ∈ N, any thick T -tribe has a flat thick T -subtribe F such that F agrees

about ∂(Sn) and V (Sn). Under these circumstances we set

∂ε(Sn) := {e ∈ ∂(Sn) : Re converges to ε according to F} ,

∂¬ε(Sn) := {e ∈ ∂(Sn) : Re is cut from ε according to F} ,

Vε(Sn) := {t ∈ V (Sn) : t dominates ε according to F} , and

V¬ε(Sn) := {t ∈ V (Sn) : t is cut from ε according to F} .

• Also, under these circumstances, let us write S¬εn for the component of the forest

S − ∂ε(Sn) − {e ∈ ES(Sn, S \ Sn) : e− ∈ Vε(Sn)} containing the root of S. Note

that Sn ⊆ S¬εn .

The following lemma contains a large part of the work needed for our inductive con-

struction.

Lemma 4.6.3 (T -tribe refinement lemma). Suppose we have a thick T -tribe Fn concen-

trated at ε which agrees about ∂(Sn) and V (Sn) for some n ∈ N. Let f denote the unique
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edge from Sn to Sn+1 \ Sn. Then there is a thick T -tribe Fn+1 concentrated at ε with the

following properties:

(i) Fn+1 agrees about ∂(Sn+1) and V (Sn+1).

(ii) Fn+1 ∪ Fn agree about ∂(Sn) \ {f} and V (Sn).

(iii) S¬εn+1 ⊇ S¬εn .

(iv) For all H ∈ Fn+1 there is a finite X ⊆ Γ such that H(S¬εn+1) ∩ (X ∪ CΓ(X, ε)) =

H(Vε(Sn+1)).

Moreover, if f ∈ ∂ε(Sn), and Rf = v0v1v2 . . . ⊆ S∗ (with v0 = f+) denotes the ray

displaying self-similarity of T at f , then we may additionally assume:

(v) For every H ∈ Fn+1 and every k ∈ N, there is H ′ ∈ Fn+1 with

• H ′ ⊆r H
• H ′(Sn) = H(Sn),

• H ′(Tv0) ⊆r H(Tvk), and

• H ′(Rf ) ⊆ H(Rf ).

Proof. Concerning (v), if f ∈ ∂ε(Sn) recall that according to Definition 4.6.2, the

ray Rf satisfies that for all k ∈ N we have Tv0 6r Tvk such that Rf gets embedded into

itself. In particular, there is a subtree T̂1 of Tv1 which is a rooted subdivision of Tv0 with

T̂1(Rf ) ⊆ Rf , considering T̂1 as a rooted tree given by the tree order in Tv1 . If we define

recursively for each k ∈ N T̂k = T̂k−1(T̂1) then it is clear that (T̂k : k ∈ N) is a family of

rooted subdivisions of Tv0 such that for each k ∈ N
• T̂k ⊆ Tvk ;

• T̂k ⊇ T̂k+1;

• T̂k(Rf ) ⊆ Rf

Hence, for every subdivision H of T with H ∈
⋃
Fn and every k ∈ N, the subgraph

H(T̂k) is also a rooted subdivision of Tv0 . Let us construct a subdivisionH(k) of T by letting

H(k) be the minimal subtree of H containing H(T \ Tv0) ∪H(T̂k), where H(k)(T \ Tv0) =

H(T \ Tv0) and H(k)(Tv0) = H(T̂k). Note that

H(k)(Tv0) = H(T̂k) ⊆r H(k−1)(Tv0) = H(T̂k−1) ⊆r . . . ⊆r H(Tvk).

In particular, for every subdivision H ∈
⋃
Fn of T and every k ∈ N, there is a

subdivision H(k) ⊆ H of T such that H(k)(S¬εn ) = H(S¬εn ), H(k)(Tv0) ⊆r H(Tvk), and

H(k)(Rf ) ⊆ H(Rf ). By the pigeon hole principle, there is an infinite index set KH =

{kH1 , kH2 , . . .} ⊆ N such that {{H(k)} : k ∈ KH} agrees about ∂(Sn+1). Consider the thick

subtribe F ′n = {F ′i : F ∈ Fn, i ∈ N} of Fn with

(†) F ′i := {H(kHi ) : H ∈ F}.

Observe that F ′n ∪ Fn still agrees about ∂(Sn) and V (Sn). (If f ∈ ∂¬ε(Sn), then skip this

part and simply let F ′n := Fn.)
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Concerning (iii), observe that for every H ∈
⋃
F ′n, since the rays H(Re) for e ∈ ∂¬ε(Sn)

do not tend to ε, there is a finite vertex set XH such that H(Re) ∩ C(XH , ε) = ∅ for all

e ∈ ∂¬ε(Sn). Furthermore, since XH is finite, for each such extension edge e there exists

xe ∈ Re such that

H(Txe) ∩ C(XH , ε) = ∅.

By definition of extension edges, cf. Definition 4.6.2, for each e ∈ ∂¬ε(Sn) there is a rooted

embedding of Te+ into H(Txe). Hence, there is a subdivision H̃ of T with H̃ 6 H and

H̃(Sn) = H(Sn) such that H̃(Te+) ⊆ H(Txe) for each e ∈ ∂¬ε(Sn).

Note that if e ∈ ∂¬ε(Sn) and g is an extension edge with e 6 g ∈ ∂(Sn+1) \ ∂(Sn), then

H̃(Rg) ⊆ H̃(Se+) ⊆ H(Sxe), and so

(‡) H̃(Rg) doesn’t tend to ε.

Define F̃n to be the thick T -subtribe of F ′n consisting of the H̃ for every H in
⋃
F ′n.

Now use Lemma 4.5.3 to chose a maximal thick flat subtribe F∗n of F̃n which agrees

about ∂(Sn+1) and V (Sn+1), so it satisfies (i) and (ii). By (‡), the tribe F∗n satisfies (iii),

and by maximality and (†), it satisfies (v).

In our last step, we now arrange for (iv) while preserving all other properties. For each

H ∈
⋃
F∗n. Since H(Sn+1) is finite, we may find a finite separator YH such that

H(Sn+1) ∩ (YH ∪ C(YH , ε)) = H(Vε(Sn+1)).

Since YH is finite, for every vertex t ∈ V¬ε(Sn+1), say with N+(t) = (ti)i∈N, there exists

nt ∈ N such that C(YH , ε) ∩ H(Ttj) = ∅ for all j > nt. Using Corollary 4.3.8, for every

such t there is a rooted embedding

{t} ∪
⋃
j>Nt

Ttj 6r {t} ∪
⋃
j>nt

Ttj .

fixing the root t. Hence there is a subdivision H’ of T with H ′ 6 H such that H ′(T \S) =

H(T \ S) and for every t ∈ V¬ε(Sn+1)

H ′

[
{t} ∪

⋃
j>Nt

Ttj

]
∩ C(YH , ε) = ∅.

Moreover, note that by construction of F̃n, every such H ′ automatically satisfies that

H(Se+) ∩ C(XH ∪ YH , ε) = ∅

for all e ∈ ∂¬ε(Sn+1). Let Fn+1 consist of the set of H ′ as defined above for all H ∈ F∗n.

Then XH ∪ YH is a finite separator witnessing that Fn+1 satisfies (iv). �
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4.6.2. Only finitely many vertices dominate ε. We first note as in Lemma 4.5.4,

that for every finite vertex set X ⊆ V (Γ) only a thin subtribe of F can meet X, so a thick

subtribe is contained in the graph Γ −X. By removing the set of vertices dominating ε,

we may therefore assume without loss of generality that no vertex of Γ dominates ε.

Definition 4.6.4 (Bounder, extender). Suppose that some thick T -tribe F which is

concentrated at ε agrees about Sn for some given n ∈ N, and Qn
1 , Q

n
2 , . . . , Q

n
n are disjoint

subdivisions of S¬εn (note, S¬εn depends on F).

• A bounder for the (Qn
i : i ∈ [n]) is a finite set X of vertices in Γ separating all the

Qi from ε, i.e. such that

C(X, ε) ∩
n⋃
i=1

Qn
i = ∅.

• An extender for the (Qn
i : i ∈ [n]) is a family En = (En

e,i : e ∈ ∂ε(Sn), i ∈ [n]) of

rays in Γ tending to ε which are disjoint from each other and also from each Qn
i

except at their initial vertices, and where the start vertex of En
e,i is Qn

i (e−).

To prove Theorem 4.1.2, we now assume inductively that for some n ∈ N, with r :=

bn/2c and s := dn/2e we have:

(1) A thick T -tribe Fr in Γ concentrated at ε which agrees about ∂ (Sr), with a

boundary ∂ε (Sr) such that S¬εr−1 ⊆ S¬εr .4

(2) a family (Qn
i : i ∈ [s]) of s pairwise disjoint T -suitable subdivisions of S¬εr in Γ

with Qn
i (S¬εr−1) = Qn−1

i for all i 6 s− 1,

(3) a bounder Xn for the (Qn
i : i ∈ [s]), and

(4) an extender En = (En
e,i : e ∈ ∂ε (S¬εr ) , i ∈ [s]) for the (Qn

i : i ∈ [s]).

The base case n = 0 it easy, as we simply may choose F0 6r F to be any thick

T -subtribe in Γ which agrees about ∂(S0), and let all other objects be empty.

So, let us assume that our construction has proceeded to step n > 0. Our next

task splits into two parts: First, if n = 2k − 1 is odd, we extend the already existing k

subdivisions (Qn
i : i ∈ [k]) of S¬εk−1 to subdivisions (Qn+1

i : i ∈ [k]) of S¬εk . And secondly, if

n = 2k is even, we construct a further disjoint copy Qn+1
k+1 of S¬εk .

Construction part 1: n = 2k−1 is odd. By assumption, Fk−1 agrees about ∂(Sk−1).

Let f denote the unique edge from Sk−1 to Sk \Sk−1. We first apply Lemma 4.6.3 to Fk−1

in order to find a thick T -tribe Fk concentrated at ε satisfying properties (i)–(v). In

particular, Fk agrees about ∂(Sk) and S¬εk−1 ⊆ S¬εk
We first note that if f /∈ ∂ε(Sk−1), then S¬εk−1 = S¬εk , and we can simply take Qn+1

i := Qn
i

for all i ∈ [k], En+1 := En and Xn+1 := Xn.

4Note that since ε is undominated, every thick T -tribe agrees about the fact that Vε(Si) = ∅ for all

i ∈ N.
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Otherwise, we have f ∈ ∂ε(Sk−1). By Lemma 4.5.5(2) Fk is concentrated at ε, and so

we may pick a collection {H1, . . . , HN} of disjoint subdivisions of T from some F ∈ Fk,
all of which are contained in C(Xn, ε), where N = |En|. By Lemma 4.4.3 there is some

linkage P ⊆ C(Xn, ε) from

En to (Hj(Rf ) : j ∈ [N ]),

which is after Xn. Let us suppose that the linkage P joins a vertex xe,i ∈ En
e,i to yσ(e,i) ∈

Hσ(e,i)(Rf ) via a path Pe,i ∈ P . Let zσ(e,i) be a vertex in Rf such that yσ(e,i) 6 Hσ(e,i)(zσ(e,i))

in the tree order on Hσ(e,i)(T ).

By property (v) of Fk in Lemma 4.6.3, we may assume without loss of generality that

for each Hj there is a another member H ′j ⊆ Hj of Fk such that H ′j(Tf+) ⊆r Hj(Tzj). Let

P̂j ⊆ H ′j denote the path from Hj(yj) to H ′j(f
+).

Now for each i ∈ [k], define

Qn+1
i = Qn

i ∪ En
f,ixf,iPf,iyσ(f,i)P̂σ(f,i) ∪H ′σ(f,i)(S

¬ε
k \ S¬εk−1).

By construction, each Qn+1
i is a T -suitable subdivision of S¬εk .

By Lemma 4.6.3(iv) we may find a finite set Xn+1 ⊆ Γ with Xn ⊆ Xn+1 such that

C(Xn+1, ε) ∩
( ⋃
i∈[k]

Qn+1
i

)
= ∅.

This set Xn+1 will be our bounder.

Define an extender En+1 = (En+1
e,i : e ∈ ∂ε(Sk), i ∈ [k]) for the Qn+1

i as follows:

• For e ∈ ∂ε(Sk−1) \ {f}, let En+1
e,i := En

e,ixe,iPe,iyσ(e,i)Hσ(e,i)(Rf ).

• For e ∈ ∂ε(Sk) \ ∂(Sk−1), let En+1
e,i := H ′σ(e,i)(Re).

Since each Hσ(e,i), H
′
σ(e,i) ∈

⋃
Fk, and Fk determines that Rf converges to ε, these

are indeed ε rays. Furthermore, since H ′σ(e,i) ⊆ Hσ(e,i) and {H1, . . . , HN} are disjoint, it

follows that the rays are disjoint.

Construction part 2: n = 2k is even. If ∂ε(Sk) = ∅, then S¬εk = S, and so picking

any element Qn+1
k+1 from Fk with Qn+1

k+1 ⊆ C(Xn, ε) gives us a further copy of S disjoint from

all the previous ones. Using Lemma 4.6.3(iv), there is a suitable bounder Xn+1 ⊇ Xn for

Qn+1
k+1 , and we are done. Otherwise, pick e0 ∈ ∂ε(Sk) arbitrary.

Since Fk is concentrated at ε, we may pick a collection {H1, . . . , HN} of disjoint sub-

divisions of T from Fk all contained in C(Xn, ε), where N is large enough so that we may

apply Lemma 4.4.4 to find a linkage P ⊆ C(Xn, ε) from

En to (Hi(Re0) : i ∈ [N ]),

after Xn, avoiding say H1. Let us suppose the linkage P joins a vertex xe,i ∈ En
e,i to

yσ(e,i) ∈ Hσ(e,i)(Re0) via a path Pe,i ∈ P . Define

Qn+1
k+1 = H1(S¬εk ).
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Note that Qn+1
k+1 is a T -suitable subdivision of S¬εk .

By Lemma 4.6.3(iv) there is a finite set Xn+1 ⊆ Γ with Xn ⊆ Xn+1 such that

C(Xn+1, ε) ∩Qn+1
k+1 = ∅. This set Xn+1 will be our new bounder.

Define the extender En+1 = (En+1
e,i : e ∈ ∂ε(Sk+1), i ∈ [k + 1]) of ε-rays as follows:

• For i ∈ [k], let En+1
e,i := En

e,ixe,iPe,iyσ(e,i)Hσ(e,i)(Re0).

• For i = k + 1, let En+1
e,k+1 := H1(Re) for all e ∈ ∂ε(Sk+1).

Once the construction is complete, let us define Hi :=
⋃
n>2i−1Q

n
i .

Since
⋃
n∈N S

¬ε
n = S, and due to the extension property (2), the collection (Hi)i∈N is

an S-horde. �

We remark that our construction so far suffices to give a complete proof that countable

trees are 6-ubiquitous. Indeed, it is well-known that an end of Γ is dominated by infinitely

many distinct vertices if and only if Γ contains a subdivision of Kℵ0 [54, Exercise 19,

Chapter 8], in which case proving ubiquity becomes trivial:

Lemma 4.6.5. For any countable graph G, we have ℵ0 ·G ⊆ Kℵ0.

Proof. By partitioning the vertex set of Kℵ0 into countably many infinite parts, we

see that ℵ0·Kℵ0 ⊆ Kℵ0 . Also, clearly G ⊆ Kℵ0 . Hence, we have ℵ0·G ⊆ ℵ0·Kℵ0 ⊆ Kℵ0 . �

4.6.3. Infinitely many vertices dominate ε. The argument in this case is very

similar to that in the previous subsection. We define bounders and extenders just as

before. We once more assume inductively that for some n ∈ N, with r := bn/2c, we have

objects given by (1)–(4) as in the last section, and which in addition satisfy

(5) Fr agrees about V (Sr).

(6) For any t ∈ Vε(Sr) the vertex Qn
i (t) dominates ε.

The base case is again trivial, so suppose that our construction has proceeded to step

n > 0. The construction is split into two parts just as before, where the case n = 2k, in

which we need to refine our T -tribe and find a new copy Qn+1
k+1 of S¬εk , proceeds just as in

the last section.

If n = 2k − 1 is odd, and if f ∈ ∂¬ε(Sk−1) or ∂ε(Sk−1), then we proceed as in the last

subsection. But these are no longer the only possibilities. It follows from the definition of

S¬εk that there is one more option, namely that f− ∈ Vε(Sk). In this case we modify the

steps of the construction as follows:

We first apply Lemma 4.6.3 to Fk−1 in order to find a thick T -tribe Fk−1 which agrees

about ∂(Sk) and V (Sk).

Then, by applying Lemma 4.4.5 to tails of the rays En
e,i in CΓ(Xn, ε), we obtain a

family Pn+1 of paths P n+1
e,i which are disjoint from each other and from the Qn

i except at

their initial vertices, where the initial vertex of P n+1
e,i is Qn

i (e−) and the final vertex yn+1
e,i

of P n+1
e,i dominates ε.
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Since Fk is concentrated at ε, we may pick a collection {H1, . . . , Hk} of disjoint subdi-

visions of T from Fk all contained in C(Xn ∪
⋃
Pn+1, ε).

Now for each i ∈ [k], define

Q̂n+1
i = Qn

i ∪Hi(f
−) ∪Hi(S

¬ε
k \ S¬εk−1).

These are almost T -suitable subdivisions of S¬εk , except we need to add a path between

Qn
i (f−) and Hi(f

−).

By applying Lemma 4.4.5 to tails of the rays Hi(Re) inside C(Xn ∪
⋃
Pn+1, ε) with

e ∈ ∂ε(Sk+1)\∂(Sk) we can construct a family P ′n+1 := {P n+1
e,i : e ∈ ∂ε(Sk+1)\∂ε(Sk), i 6 k}

of paths which are disjoint from each other and from the Q̂n+1
i except at their initial

vertices, where the initial vertex of P n+1
e,i is Hi(e

−) and the final vertex yn+1
e,i of P n+1

e,i

dominates ε. Therefore the family

Pn+1 ∪ P ′n+1 = (P n+1
e,i : e ∈ ∂ε(Sk+1), i ∈ [k])

is a family of disjoint paths, which are also disjoint from the Q̂n+1
i except at their initial

vertices, where the initial vertex of P n+1
e,i is Hi(e

−) or Qn
i (e−) and the final vertex yn+1

e,i of

P n+1
e,i dominates ε.

Since Qn
i (f−) and Hi(f

−) both dominate ε for all i, we may recursively build a sequence

P̂n+1 = {P̂i : 1 6 i 6 k} of disjoint paths P̂i from Qn
i (f−) to Hi(f

−) with all internal

vertices in C(Xn+1 ∪
(⋃
P ′n+1 ∪

⋃
Pn+1

)
, ε). Letting Qn+1

i = Q̂n+1
i ∪ P̂i, we see that each

Qn+1
i is a T -suitable subdivision of S¬εk in Γ.

Our new bounder will be Xn+1 := Xn ∪
⋃
P̂n+1 ∪

⋃
P ′n+1 ∪

⋃
Pn+1.

Finally, let us apply Lemma 4.4.6 to Y := {yn+1
e,i : e ∈ ∂ε(Sn+1), i 6 k} in Γ[Y ∪

C(Xn+1, ε)]. This gives us a family of disjoint rays

Ên+1 = (Ên+1
e,i : e ∈ ∂ε(Sk+1), i ∈ [k])

such that Ên+1
e,i has initial vertex yn+1

e,i . Let us define our new extender En+1 given by

• En+1
e,i = Qn

i (e−)P n+1
e,i yn+1

e,i Ê
n+1
e,i if e ∈ ∂ε(Sk), i ∈ [k];

• En+1
e,i = Hi(e

−)P n+1
e,i yn+1

e,i Ê
n+1
e,i if e ∈ ∂ε(Sk+1) \ ∂(Sk), i ∈ [k].

This concludes the proof of Theorem 4.1.2. �

4.7. The induction argument

We consider T as a rooted tree with root r. In Section 4.6 we constructed an S-horde

for any countable subtree S of T . In this section we will extend an S-horde for some

specific countable subtree S to a T -horde, completing the proof of Theorem 4.1.1.

Recall that for a vertex t of T and an infinite cardinal κ we say that a child t′ of t is

κ-embeddable if there are at least κ children t′′ of t such that Tt′ is a (rooted) topological

minor of Tt′′ (Definition 4.3.6). By Corollary 4.3.7, the number of children of t which are

not κ-embeddable is less than κ.
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Definition 4.7.1 (κ-closure). Let T be an infinite tree with root r.

• If S is a subtree of T and S ′ is a subtree of S, then we say that S ′ is κ-closed

in S if for any vertex t of S ′ all children of t in S are either in S ′ or else are

κ-embeddable.

• The κ-closure of S ′ in S is the smallest κ-closed subtree of S including S ′.

Lemma 4.7.2. Let S ′ be a subtree of S. If κ is a uncountable regular cardinal and S ′

has size less than κ, then the κ-closure of S ′ in S also has size less than κ.

Proof. Let S ′(0) := S ′ and define inductively S ′(n + 1) to consist of S ′(n) together

with all non-κ-embeddable children contained in S for all vertices of S ′(n). It is clear that⋃
n∈N S

′(n) is the κ-closure of S ′. If κn denotes the size of S ′(n), then κn < κ by induction

with Corollary 4.3.7. Therefore, the size of the κ-closure is bounded by
∑

n∈N κn < κ,

since κ has uncountable cofinality. �

We will construct the desired T -horde via transfinite induction on the cardinals µ 6 |T |.
Our first lemma illustrates the induction step for regular cardinals.

Lemma 4.7.3. Let κ be an uncountable regular cardinal. Let S be a rooted subtree of

T of size at most κ and let S ′ be a κ-closed rooted subtree of S of size less than κ. Then

any S ′-horde (Hi : i ∈ N) can be extended to an S-horde.

Proof. Let (sα : α < κ) be an enumeration of the vertices of S such that the parent

of any vertex appears before that vertex in the enumeration, and for any α let Sα be the

subtree of T with vertex set V (S ′)∪ {sβ : β < α}. Let S̄α denote the κ-closure of Sα in S,

and observe that |S̄α| < κ by Lemma 4.7.2.

We will recursively construct for each α an S̄α-horde (Hα
i : i ∈ N) in Γ, where each of

these hordes extends all the previous ones. For α = 0 we let H0
i = Hi for each i ∈ N. For

any limit ordinal λ we have S̄λ =
⋃
β<λ S̄β, and so we can take Hλ

i =
⋃
β<λH

β
i for each

i ∈ N.

For any successor ordinal α = β + 1, if sβ ∈ S̄β, then S̄α = S̄β, and so we can take

Hα
i = Hβ

i for each i ∈ N. Otherwise, S̄α is the κ-closure of S̄β + sβ, and so S̄α − S̄β is a

subtree of Tsβ . Furthermore, since sβ is not contained in S̄β, it must be κ-embeddable.

Let s be the parent of sβ. By suitability of the Hβ
i , we can find for each i ∈ N some

subdivision Ĥi of Ts with Ĥi(s) = Hβ
i (s). We now build the Hα

i recursively in i as follows:

Let ti be a child of s such that Tti has a rooted subdivision K of Tsβ , and such that

Ĥi(Tti + s)− Ĥi(s) is disjoint from all Hα
j with j < i and from all Hβ

j . Since there

are κ disjoint possibilities for K, and all Hα
j with j < i and all Hβ

j cover less than κ

vertices in Γ, such a choice of K is always possible. Then let Hα
i be the union of Hβ

i with

Ĥi(K(S̄α − S̄β) + sti).

This completes the construction of the (Hα
i : i ∈ N). Obviously, each Hα

i for i ∈ N is

a subdivision of S̄α with Hα
i (S̄γ) = Hγ

i for all γ < α, and all of them are pairwise disjoint



86 4. TOPOLOGICAL UBIQUITY OF TREES

for i 6= j ∈ N. Moreover, Hα
i is T -suitable since for all vertices Hα

i (t) whose t-suitability

is not witnessed in previous construction steps, their suitability is witnessed now by the

corresponding subtree of Ĥi. Hence (
⋃
α<κH

α
i : i ∈ N) is the desired S-horde extending

(Hi : i ∈ N). �

Our final lemma will deal with the induction step for singular cardinals. The crucial

ingredient will be to represent a tree S of singular cardinality µ as a continuous increasing

union of <µ-sized subtrees (S% : % < cf(µ)) where each S% is |S%|+-closed in S. This type

of argument is based on Shelah’s singular compactness theorem, see e.g. [143], but can be

read without knowledge of the paper.

Definition 4.7.4 (S-representation). For a tree S with |S| = µ, we call a sequence

S = (S% : % < cf(µ)) of subtrees of S with |S%| = µ% an S-representation if

• (µ% : % < cf(µ)) is a strictly increasing continuous sequence of cardinals less than

µ which is cofinal for µ,

• S% ⊆ S%′ for all % < %′, i.e. S is increasing,

• for every limit λ < cf(µ) we have
⋃
%<λ S% = Sλ, i.e. S is continuous,

•
⋃
%<cf(µ) S% = S, i.e. S is exhausting,

• S% is µ+
% -closed in S for all % < cf(µ), where µ+

% is the successor cardinal of µ%.

Moreover, for a tree S ′ ⊆ S we say that S is an S-representation extending S ′ if additionally

• S ′ ⊆ S% for all % < cf(µ).

Lemma 4.7.5. For every tree S of singular cardinality and every subtree S ′ of S with

|S ′| < |S| there is an S-representation extending S ′.

Proof. Let |S| = µ be singular, and let |S ′| = κ. Let (sα : α < µ) be an enumeration

of the vertices of S. Let γ be the cofinality of µ and let (µ% : % < γ) be a strictly increasing

continuous cofinal sequence of cardinals less than µ with µ0 > γ and µ0 > κ. By recursion

on i we choose for each i ∈ N a sequence (Si% : % < γ) of subtrees of S of cardinality µ%,

where the vertices of each Si% are enumerated as (si%,α : α < µ%), such that:

(1) Si% is µ+
% -closed.

(2) S ′ is a subtree of Si%.

(3) Si%′ is a subtree of Si% for %′ < %.

(4) sα ∈ Si% for α < µ%.

(5) sj%′,α ∈ Si% for any j < i, % 6 %′ < γ and α < µ%

This is achieved by recursion on % as follows: For any given % < γ, let X i
% be the set of

all vertices which are forced to lie in Si% by conditions 2–5, that is, all vertices of S ′ or of

Si%′ with %′ < %, all sβ with β < µ% and all sj%′,α with j < i, % 6 %′ < γ and α < µ%. Then

X i
% has cardinality µ% and so it is included in a subtree of S of cardinality µ%. We take Si%

to be the µ+
% -closure of this subtree in S. Note that, since µ+

% is regular, it follows from

Lemma 4.7.2 that Si% has cardinality µ%.
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For each % < γ, let S% :=
⋃
i∈N S

i
%. Then each S% is a union of µ+

% -closed trees and so

is µ+
% -closed itself. Furthermore, each S% clearly has cardinality µ%.

It follows from 4 that S =
⋃
%<γ S%. Thus, it remains to argue that our sequence

is indeed continuous, i.e. that for any limit ordinal λ < γ we have Sλ =
⋃
%<λ S%. The

inclusion
⋃
%<λ S% ⊆ Sλ is clear from 3. For the other inclusion, let s be any element of Sλ.

Then there is some i ∈ N with s ∈ Siλ and so there is some α < µα with s = siλ,α. Then

by continuity there is some σ < λ with α < µσ and so s ∈ Si+1
σ ⊆ Sσ ⊆

⋃
%<λ S%. �

Lemma 4.7.6. Let µ be a cardinal. Then for any rooted subtree S of T of size µ and

any uncountable regular cardinal κ 6 µ, any S ′-horde (Hi : i ∈ N) of a κ-closed rooted

subtree S ′ of S of size less than κ can be extended to an S-horde.

Proof. The proof is by transfinite induction on µ. If µ is regular, we let S ′′ be the µ-

closure of S ′ in S. Thus S ′′ has size less than µ. So by the induction hypothesis (Hi : i ∈ N)

can be extended to an S ′′-horde, which by Lemma 4.7.3 can be further extended to an

S-horde.

So let us assume that µ is singular, and write γ = cf(µ). By Lemma 4.7.5, fix an

S-representation S = (S% : % < cf(µ)) extending S ′ with |S ′| < |S0|.
We now recursively construct for each % < γ an S%-horde (H%

i : i ∈ N), where each of

these hordes extends all the previous ones and (Hi : i ∈ N). Using that each S% is µ+
% -closed

in S, we can find (H0
i : i ∈ N) by the induction hypothesis, and if % is a successor ordinal

we can find (H%
i : i ∈ N) by again using the induction hypothesis. For any limit ordinal λ

we set Hλ
i =

⋃
%<λH

%
i for each i ∈ N, which yields an Sλ-horde by the continuity of S.

This completes the construction of the H%
i . Then (

⋃
%<γ H

%
i : i ∈ N) is an S-horde

extending (Hi : i ∈ N). �

Finally, with the right induction start we obtain the following theorem and hence a

proof of Theorem 4.1.1.

Theorem 4.7.7. Let T be a tree and Γ a graph such that nT 6 Γ for every n ∈ N.

Then there is a T -horde, and hence ℵ0T 6 Γ.

Proof. By Theorem 4.1.2, we may assume that T is uncountable. Let S ′ be the

ℵ1-closure of the root {r} in T . Then S ′ is countable by Lemma 4.7.2 and so there is an

S ′-horde in Γ by Theorem 4.1.2. This can be extended to a T -horde in Γ by Lemma 4.7.6

with µ = |T |. �





CHAPTER 5

Ubiquity of graphs with non-linear end structure

A graph G is said to be 4-ubiquitous, where 4 is the minor relation between

graphs, if whenever Γ is a graph with nG 4 Γ for all n ∈ N, then one also

has ℵ0G 4 Γ, where αG is the disjoint union of α many copies of G. A well-

known conjecture of Andreae is that every locally finite connected graph is

4-ubiquitous.

In this paper we give a sufficient condition on the structure of the ends

of a graph G which implies that G is 4-ubiquitous. In particular this implies

that the full grid is 4-ubiquitous.

5.1. Introduction

This paper is the second in a series of papers making progress towards a conjecture of

Andreae on the ubiquity of graphs. Given a graph G and some relation C between graphs

we say that G is C-ubiquitous if whenever Γ is a graph such that nG C Γ for all n ∈ N,

then ℵ0G C Γ, where αG denotes the disjoint union of α many copies of G. For example,

a classic result of Halin [85] says that the ray is ⊆-ubiquitous, where ⊆ is the subgraph

relation.

Examples of graphs which are not ubiquitous with respect to the subgraph or topo-

logical minor relation are known (see [16] for some particularly simple examples). In [15]

Andreae initiated the study of ubiquity of graphs with respect to the minor relation 4.

He constructed a graph which is not 4-ubiquitous, however the construction relied on the

existence of a counterexample to the well-quasi-ordering of infinite graphs under the minor

relation, for which only examples of very large cardinality are known [148]. In particular,

the question of whether there exists a countable graph which is not 4-ubiquitous remains

open. Most importantly, however, Andreae [15] conjectured that at least all locally finite

graphs, those with all degrees finite, should be 4-ubiquitous.

The Ubiquity Conjecture. Every locally finite connected graph is 4-ubiquitous.

In [16] Andreae proved that his conjecture holds for a large class of locally finite

graphs. The exact definition of this class is technical, but in particular his result implies

the following.

Theorem 5.1.1 (Andreae, [16, Corollary 2]). Let G be a connected, locally finite graph

of finite tree-width such that every block of G is finite. Then G is 4-ubiquitous.

89
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Note that every end in such a graph G must have degree1 one.

Andreae’s proof employs deep results about well-quasi-orderings of labelled (infinite)

trees [110]. Interestingly, the way these tools are used does not require the extra condition

in Theorem 5.1.1 that every block of G is finite and so it is natural to ask if his proof can

be adapted to remove this condition. And indeed, it is the purpose of the present and

subsequent paper in our series, [33], to show that this is possible, i.e. that all connected,

locally finite graphs of finite tree-width are 4-ubiquitous.

R

S

P
Figure 5.1. A linkage between R and S.

The present paper lays the groundwork for this extension of Andreae’s result. The

fundamental obstacle one encounters when trying to extend Andreae’s methods is the

following: Let [n] = {1, 2, . . . , n}. In the proof we often have two families of disjoint rays

R = (Ri : i ∈ [n]) and S = (Sj : j ∈ [m]) in Γ, which we may assume all converge1 to a

common end of Γ, and we wish to find a linkage between R and S, that is, an injective

function σ : [n] → [m] and a set P of disjoint finite paths Pi from xi ∈ Ri to yσ(i) ∈ Sσ(i)

such that the walks

T = (RixiPiyσ(i)Sσ(i) : i ∈ [n])

formed by following each Ri along to xi, then following the path Pi to yσ(i), then following

the tail of Sσ(i), form a family of disjoint rays (see Figure 5.1). Broadly, we can think of

this as ‘re-routing’ the rays R to some subset of the rays in S. Since all the rays in R and

S converge to the same end of Γ, it is relatively simple to show that, as long as n 6 m,

there is enough connectivity between the rays in Γ so that such a linkage always exists.

1A precise definitions of rays, the ends of a graph, their degree, and what it means for a ray to

converge to an end can be found in Section 5.2.
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However, in practice it is not enough for us to be guaranteed the existence of some

injection σ giving rise to a linkage, but instead we want to choose σ in advance, and be

able to find a corresponding linkage afterwards.

In general, however, it is quite possible that for certain choices of σ no suitable linkage

exists. Consider for example the case where Γ is the half grid (briefly denoted by Z�N),

which is the graph whose vertex set is Z× N and where two vertices are adjacent if they

differ in precisely one co-ordinate and the difference in that co-ordinate is one. If we

consider two sufficiently large families of disjoint rays R and S in Γ, then it is not hard

to see that both R and S inherit a linear ordering from the planar structure of Γ, which

must be preserved by any linkage between them.

Analysing this situation gives rise to the following definition: We say that an end ε

of a graph G is linear if for every finite set R of at least three disjoint rays in G which

converge to ε we can order the elements of R as R = {R1, R2, . . . , Rn} such that for each

1 6 k < i < ` 6 n, the rays Rk and R` belong to different ends of G− V (Ri).

Thus the half grid has a unique end and it is linear. On the other end of the spectrum,

let us say that a graph G has nowhere-linear end structure if no end of G is linear. Since

ends of degree at most two are automatically linear, every end of a graph with nowhere-

linear end structure must have degree at least three.

Our main theorem in this paper is the following.

Theorem 5.1.2. Every locally finite connected graph with nowhere-linear end structure

is 4-ubiquitous.

Roughly, if we assume that every end of G has nonlinear structure, then the fact that

nG 4 Γ for all n ∈ N allows us to deduce that Γ must also have some end with a sufficiently

complicated structure that we can always find suitable linkages for all σ as above. In fact,

this property is so strong that we do not need to follow Andreae’s strategy for such graphs.

We can use the linkages to directly build a Kℵ0-minor of Γ, and it follows that ℵ0G 4 Γ.

In later papers in the series, we shall need to make more careful use of the ideas

developed here. We shall analyse the possible kinds of linkages which can arise between

two families of rays converging to a given end. If some end of Γ admits many different

kinds of linkages, then we can again find a Kℵ0-minor. If not, then we can use the results

of the present paper to show that certain ends of G are linear. This extra structure allows

us to carry out an argument like that of Andreae, but using only the limited collection

of these maps σ which we know to be present. This technique will be key to extending

Theorem 5.1.1 in [33].

Independently of these potential later developments, our methods already allow us to

establish new ubiquity results for many natural graphs and graph classes.

As a first concrete example, let G be the full grid, a graph not previously known to

be ubiquitous. The full grid (briefly denoted by Z�Z) is analogously defined as the half
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grid but with Z× Z as vertex set. The grid G is one-ended, and for any ray R in G, the

graph G− V (R) still has at most one end. Hence the unique end of G is non-linear, and

so Theorem 5.1.2 has the following corollary:

Corollary 5.1.3. The full grid is 4-ubiquitous.

Using an argument similar in spirit to that of Halin [87], we also establish the following

theorem in this paper:

Theorem 5.1.4. Any connected minor of the half grid N�Z is 4-ubiquitous.

Since every countable tree is a minor of the half grid, Theorem 5.1.4 implies that all

countable trees are 4-ubiquitous, see Corollary 5.7.4. We remark that while all trees are

ubiquitous with respect to the topological minor relation, [31], the problem whether all

uncountable trees are 4-ubiquitous has remained open, and we hope to resolve this in a

paper in preparation [34].

In a different direction, if G is any locally finite connected graph, then it is possible

to show that G�Z or G�N either have nowhere-linear end structure, or are a subgraph

of the half grid respectively. Hence, Theorems 5.1.2 and 5.1.4 together have the following

corollary.

Theorem 5.1.5. For every locally finite connected graph G, both G�Z and G�N are

4-ubiquitous.

Finally, we will also show the following result about non-locally finite graphs. For

k ∈ N, we let the k-fold dominated ray be the graph DRk formed by taking a ray together

with k additional vertices, each of which we make adjacent to every vertex in the ray. For

k 6 2, DRk is a minor of the half grid, and so ubiquitous by Theorem 5.1.4. In our last

theorem, we show that DRk is ubiquitous for all k ∈ N.

Theorem 5.1.6. The k-fold dominated ray DRk is 4-ubiquitous for every k ∈ N.

The paper is structured as follows: In Section 5.2 we introduce some basic terminology

for talking about minors. In Section 5.3 we introduce the concept of a ray graph and

linkages between families of rays, which will help us to describe the structure of an end.

In Sections 5.4 and 5.5 we introduce a pebble-pushing game which encodes possible linkages

between families of rays and use this to give a sufficient condition for an end to contain a

countable clique minor. In Section 5.6 we re-introduce some concepts from [31] and show

that we may assume that the G-minors in Γ are concentrated towards some end ε of Γ. In

Section 5.7 we use the results of the previous section to prove Theorem 5.1.4 and finally

in Section 5.8 we prove Theorem 5.1.2 and its corollaries.
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5.2. Preliminaries

In our graph theoretic notation we generally follow the textbook of Diestel [54]. Given

two graphs G and H the cartesian product G�H is a graph with vertex set V (G)×V (H)

with an edge between (a, b) and (c, d) if and only if a = c and (b, d) ∈ E(H) or (a, c) ∈ E(G)

and b = d.

Definition 5.2.1. A one-way infinite path is called a ray and a two-way infinite path

is called a double ray.

For a path or ray P and vertices v, w ∈ V (P ), let vPw denote the subpath of P with

endvertices v and w. If P is a ray, let Pv denote the finite subpath of P between the

initial vertex of P and v, and let vP denote the subray (or tail) of P with initial vertex v.

Given two paths or rays P and Q which are disjoint but for one of their endvertices,

we write PQ for the concatenation of P and Q, that is the path, ray or double ray P ∪Q.

Moreover, if we concatenate paths of the form vPw and wQx, then we omit writing w

twice and denote the concatenation by vPwQx.

Definition 5.2.2 (Ends of a graph, cf. [54, Chapter 8]). An end of an infinite graph

Γ is an equivalence class of rays, where two rays R and S are equivalent if and only if

there are infinitely many vertex disjoint paths between R and S in Γ. We denote by Ω(Γ)

the set of ends of Γ.

We say that a ray R ⊆ Γ converges (or tends) to an end ε of Γ if R is contained in ε.

In this case we call R an ε-ray.

Given an end ε ∈ Ω(Γ) and a finite set X ⊆ V (Γ) there is a unique component of

Γ−X which contains a tail of every ray in ε, which we denote by C(X, ε).

For an end ε ∈ Γ we define the degree of ε in Γ as the supremum of all sizes of sets

containing vertex disjoint ε-rays. If an end has finite degree, we call it thin. Otherwise,

we call it thick.

A vertex v ∈ V (Γ) dominates an end ε ∈ Ω(Γ) if there is a ray R ∈ ω such that there

are infinitely many v –R -paths in Γ that are vertex disjoint except from v.

We will use the following two basic facts about infinite graphs.

Proposition 5.2.3. [54, Proposition 8.2.1] An infinite connected graph contains either

a ray or a vertex of infinite degree.

Proposition 5.2.4. [54, Exercise 8.19] A graph G contains a subdivided Kℵ0 as a

subgraph if and only if G has an end which is dominated by infinitely many vertices.

Definition 5.2.5 (Inflated graph, branch set). Given a graph G we say that a pair

(H,ϕ) is an inflated copy of G, or an IG, if H is a graph and ϕ : V (H)→ V (G) is a map

such that:
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• For every v ∈ V (G) the branch set ϕ−1(v) induces a non-empty, connected sub-

graph of H;

• There is an edge in H between ϕ−1(v) and ϕ−1(w) if and only if (v, w) ∈ E(G)

and this edge, if it exists, is unique.

When there is no danger of confusion we will simply say that H is an IG instead of

saying that (H,ϕ) is an IG, and denote by H(v) = ϕ−1(v) the branch set of v.

Definition 5.2.6 (Minor). A graph G is a minor of another graph Γ, written G 4 Γ,

if there is some subgraph H ⊆ Γ such that H is an inflated copy of G.

Definition 5.2.7 (Extension of inflated copies). Suppose G ⊆ G′ as subgraphs, and

that H is an IG and H ′ is an IG′. We say that H ′ extends H (or that H ′ is an extension

of H) if H ⊆ H ′ as subgraphs and H(v) ⊆ H ′(v) for all v ∈ V (G) ∩ V (G′).

Note that since H ⊆ H ′, for every edge (v, w) ∈ E(G), the unique edge between the

branch sets H ′(v) and H ′(w) is also the unique edge between H(v) and H(w).

Definition 5.2.8 (Tidiness). An IG (H,ϕ) is called tidy if

• H[ϕ−1(v)] is a tree for all v ∈ V (G);

• H(v) is finite if dG(v) is finite.

Note that every IG H contains a subgraph H ′ such that (H ′, ϕ � V (H ′)) is a tidy IG,

although this choice may not be unique. In this paper we will always assume without loss

of generality that each IG is tidy.

Definition 5.2.9 (Restriction). Let G be a graph, M ⊆ G a subgraph of G, and

let (H,ϕ) be an IG. The restriction of H to M , denoted by H(M), is the IG given by

(H(M), ϕ′) where ϕ′−1(v) = ϕ−1(v) for all v ∈ V (M) and H(M) consists of union of the

subgraphs of H induced on each branch set ϕ−1(v) for each v ∈ V (M) together with the

edge between ϕ−1(u) and ϕ−1(v) for each (u, v) ∈ E(M).

Note that if H is tidy, then H(M) will be tidy. Given a ray R ⊆ G and a tidy IG

H in a graph Γ, the restriction H(R) is a one-ended tree, and so every ray in H(R) will

share a tail. Later in the paper we will want to make this correspondence between rays in

G and Γ more explicit, with use of the following definition:

Definition 5.2.10 (Pullback). Let G be a graph, R ⊆ G a ray, and let H be a tidy IG.

The pullback of R to H is the subgraph H↓(R) ⊆ H where H↓(R) is subgraph minimal

such that (H↓(R), ϕ � V (H↓(R))) is an IM .

Note that, since H is tidy, H↓(R) is well defined. As well shall see, H↓(R) will be a

ray.
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Lemma 5.2.11. Let G be a graph and let H be a tidy IG. If R ⊆ G is a ray, then the

pullback H↓(R) is also a ray.

Proof. Let R = x1x2 . . .. For each integer i > 1 there is a unique edge (vi, wi) ∈ E(H)

between the branch sets H(xi) and H(xi+1). By the tidiness assumption, H(xi+1) induces

a tree in H, and so there is a unique path Pi ⊆ H(xi+1) from wi to vi+1 in H.

By minimality of H↓(R), it follows that H↓(R)(x1) = {v1} and H↓(R)(xi+1) = V (Pi)

for each i > 1. Hence H↓(R) is a ray. �

5.3. The Ray Graph

Definition 5.3.1 (Ray graph). Given a finite family of disjoint rays R = (Ri : i ∈ I)

in a graph Γ the ray graph RGΓ(R) = RGΓ(Ri : i ∈ I) is the graph with vertex set I and

with an edge between i and j if there is an infinite collection of vertex disjoint paths from

Ri to Rj in Γ which meet no other Rk. When the host graph Γ is clear from the context

we will simply write RG(R) for RGΓ(R).

The following lemmas are simple exercises. For a family R of disjoint rays in G tending

to the same end and H ⊆ Γ being an IG the aim is to establish the following: if S is a

family of disjoint rays in Γ which contains the pullback H↓(R) of each R ∈ R, then the

subgraph of the ray graph RGΓ(S) induced on the vertices given by {H↓(R) : R ∈ R} is

connected.

Lemma 5.3.2. Let G be a graph and let R = (Ri : i ∈ I) be a finite family of disjoint

rays in G. Then RGG(R) is connected if and only if all rays in R tend to a common end

ω ∈ Ω(G).

Lemma 5.3.3. Let G be a graph, R = (Ri : i ∈ I) be a finite family of disjoint rays in

G and let H be an IG. If R′ = (H↓(Ri) : i ∈ I) is the set of pullbacks of the rays in R in

H, then RGG(R) = RGH(R′).

Lemma 5.3.4. Let G be a graph, H ⊆ G, R = (Ri : i ∈ I) be a finite disjoint family of

rays in H and let S = (Sj : j ∈ J) be a finite disjoint family of rays in G− V (H), where

I and J are disjoint. Then RGH(R) is a subgraph of RGG(R ∪ S)
[
I
]
. In particular, if

all rays in R tend to a common end in H, then RGG(R∪ S)
[
I
]

is connected.

Recall that an end ω of a graph G is called linear if for every finite set R of at least

three disjoint ω-rays in G we can order the elements of R as R = {R1, R2, . . . , Rn} such

that for each 1 6 k < i < ` 6 n, the rays Rk and R` belong to different ends of G−V (Ri).

Lemma 5.3.5. An end ω of a graph G is linear if and only if the ray graph of every

finite family of disjoint ω-rays is a path.
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Proof. For the forward direction suppose ω is linear and {R1, R2, . . . , Rn} converge

to ω, with the order given by the definition of linear. It follows that there is no 1 6 k <

i < ` 6 n such that (k, `) is an edge in RG(Rj : j ∈ [n]). However, by Lemma 5.3.2

RG(Rj : j ∈ [n]) is connected, and hence it must be the path 12 . . . n.

Conversely, suppose that the ray graph of every finite family of ω-rays is a path. Then,

every such family R can be ordered as {R1, R2, . . . , Rn} such that RG(R) is the path

12 . . . n. It follows that, for each i, (k, `) 6∈ E(RG(R)) whenever 1 6 k < i < ` 6 n − 1,

and so by definition of RG(R) there is no infinite collection of vertex disjoint paths from

Rk to R` in G− V (Ri). Therefore Rk and R` belong to different ends of G− V (Ri). �

Definition 5.3.6 (Tail of a ray after a set). Given a ray R in a graph G and a finite

set X ⊆ V (G) the tail of R after X, denoted by T (R,X), is the unique infinite component

of R in G−X.

Definition 5.3.7 (Linkage of families of rays). Let R = (Ri : i ∈ I) and S = (Sj : j ∈
J) be families of disjoint rays of Γ, where the initial vertex of each Ri is denoted xi. A

family P = (Pi : i ∈ I) of paths in Γ is a linkage from R to S if there is an injective

function σ : I → J such that

• Each Pi goes from a vertex x′i ∈ Ri to a vertex yσ(i) ∈ Sσ(i);

• The family T = (xiRix
′
iPiyσ(i)Sσ(i) : i ∈ I) is a collection of disjoint rays.

We say that T is obtained by transitioning from R to S along the linkage. We say the

linkage P induces the mapping σ. Given a vertex set X ⊆ V (G) we say that the linkage

is after X if X ∩ V (Ri) ⊆ V (xiRix
′
i) for all i ∈ I and no other vertex in X is used by

T . We say that a function σ : I → J is a transition function from R to S if for any finite

vertex set X ⊆ V (G) there is a linkage from R to S after X that induces σ.

We will need the following lemma from [31], which asserts the existence of linkages.

Lemma 5.3.8 (Weak linking lemma). Let Γ be a graph, ω ∈ Ω(Γ) and let n ∈ N. Then

for any two families R = (Ri : i ∈ [n]) and S = (Sj : j ∈ [n]) of vertex disjoint ω-rays and

any finite vertex set X ⊆ V (G), there is a linkage from R to S after X.

5.4. A pebble-pushing game

Suppose we have a family of disjoint rays R = (Ri : i ∈ I) in a graph G and a subset

J ⊆ I. Often we will be interested in which functions we can obtain as transition functions

between (Ri : i ∈ J) and (Ri : i ∈ I). We can think of this as trying to ‘re-route’ the rays

(Ri : i ∈ J) to a different set of |J | rays in (Ri : i ∈ I).

To this end, it will be useful to understand the following pebble-pushing game on a

graph.
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Definition 5.4.1 (Pebble-pushing game). Let G = (V,E) be a finite graph. For any

fixed positive integer k we call a tuple (x1, x2, . . . , xk) ∈ V k a game state if xi 6= xj for all

i, j ∈ [k] with i 6= j.

The pebble-pushing game (on G) is a game played by a single player. Given a game state

Y = (y1, y2, . . . , yk), we imagine k labelled pebbles placed on the vertices (y1, y2, . . . , yk).

We move between game states by moving a pebble from a vertex to an adjacent vertex

which does not contain a pebble, or formally, a Y -move is a game state Z = (z1, z2 . . . , zk)

such that there is an ` ∈ [k] such that y`z` ∈ E and yi = zi for all i ∈ [k] \ {`}.
Let X = (x1, x2 . . . , xk) be a game state. The X-pebble-pushing game (on G) is a

pebble-pushing game where we start with k labelled pebbles placed on the vertices (x1, x2 . . . , xk).

We say a game state Y is achievable in theX-pebble-pushing game if there is a sequence

(Xi : i ∈ [n]) of game states for some n ∈ N such that X1 = X, Xn = Y and Xi+1 is an

Xi-move for all i ∈ [n − 1], that is, if it is a sequence of moves that pushes the pebbles

from X to Y .

A graph G is k-pebble-win if Y is an achievable game state in the X-pebble-pushing

game on G for every two game states X and Y .

The following lemma shows that achievable game states on the ray graph RG(R) yield

transition functions from a subset of R to itself. Therefore, it will be useful to understand

which game states are achievable, and in particular the structure of graphs on which there

are unachievable game states.

Lemma 5.4.2. Let Γ be a graph, ω ∈ Ω(Γ), m > k be positive integers and let (Sj : j ∈
[m]) be a family of disjoint rays in ω. For every achievable game state Z = (z1, z2, . . . , zk)

in the (1, 2, . . . , k)-pebble-pushing game on RG(Sj : j ∈ [m]), the map σ defined via σ(i) :=

zi for every i ∈ [k] is a transition function from (Si : i ∈ [k]) to (Sj : j ∈ [m]).

Proof. We first note that if σ is a transition function from (Si : i ∈ [k]) to (Sj : j ∈
[m]) and τ is a transition function from (Si : i ∈ σ([k])) to (Sj : j ∈ [m]), then clearly τ ◦σ
is a transition function from (Si : i ∈ [k]) to (Sj : j ∈ [m]).

Hence, it will be sufficient to show the statement holds when σ is obtained from

(1, 2, . . . , k) by a single move, that is, there is some t ∈ [k] and a vertex σ(t) 6∈ [k] such

that σ(t) is adjacent to t in RG(Sj : j ∈ [m]) and σ(i) = i for i ∈ [k] \ {t}.
So, let X ⊆ V (G) be a finite set. We will show that there is a linkage from (Si : i ∈ [k])

to (Sj : j ∈ [m]) after X that induces σ. By assumption there is an edge (t, σ(t)) ∈
E(RG(Sj : j ∈ [m])). Hence, there is a path P between T (St, X) and T (Sσ(t), X) which

avoids X and all other Sj.

Then the family P = (P1, P2, . . . , Pk) where Pt = P and Pi = ∅ for each i 6= t is a

linkage from (Si : i ∈ [k]) to (Sj : j ∈ [m]) after X that induces σ. �
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We note that this pebble-pushing game is sometimes known in the literature as “per-

mutation pebble motion” [102] or “token reconfiguration” [43]. Previous results have

mostly focused on computational questions about the game, rather than the structural

questions we are interested in, but we note that in [102] the authors give an algorithm

that decides whether or not a graph is k-pebble-win, from which it should be possible to

deduce the main result in this section, Lemma 5.4.9. However, since a direct derivation

was shorter and self contained, we will not use their results. We present the following

simple lemmas without proof.

Lemma 5.4.3. Let G be a finite graph and X a game state.

• If Y is an achievable game state in the X-pebble-pushing game on G, then X is

an achievable game state in the Y -pebble-pushing game on G.

• If Y is an achievable game state in the X-pebble-pushing game on G and Z is an

achievable game state in the Y -pebble-pushing game on G, then Z is an achievable

game state in the X-pebble-pushing game on G.

Definition 5.4.4. Let G be a finite graph and let X = (x1, x2, . . . , xk) be a game

state. Given a permutation σ of [k] let us write Xσ = (xσ(1), xσ(2), . . . , xσ(k)). We define

the pebble-permutation group of (G,X) to be the set of permutations σ of [k] such that

Xσ is an achievable game state in the X-pebble-pushing game on G.

Note that by Lemma 5.4.3, the pebble-permutation group of (G,X) is a subgroup of

the symmetric group Sk.

Lemma 5.4.5. Let G be a graph and let X be a game state. If Y is an achievable game

state in the X-pebble-pushing game and σ is in the pebble-permutation group of Y , then σ

is in the pebble-permutation group of X.

Lemma 5.4.6. Let G be a finite connected graph and let X be a game state. Then G

is k-pebble-win if and only if the pebble-permutation group of (G,X) is Sk.

Proof. Clearly, if the pebble-permutation group is not Sk then G is not k-pebble-win.

Conversely, since G is connected, for any game states X and Y there is some τ such that Y τ

is an achievable game state in the X-pebble-pushing game, since we can move the pebbles

to any set of k vertices, up to some permutation of the labels. We know by assumption

that Xτ−1
is an achievable game state in the X-pebble-pushing game. Therefore, by

Lemma 5.4.3 Y is an achievable game state in the X-pebble-pushing game. �

Lemma 5.4.7. Let G be a finite connected graph and let X = (x1, x2, . . . , xk) be a game

state. If G is not k-pebble-win, then there is a two colouring c : X → {r, b} such that

both colour classes are non trivial and for all i, j ∈ [k] with c(xi) = r and c(xj) = b the

transposition (ij) is not in the pebble-permutation group.
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Proof. Let us draw a graph H on {x1, x2, . . . , xk} by letting (xi, xj) be an edge if and

only if (ij) is in the pebble-permutation group of (G,X). It is a simple exercise to show

that the pebble-permutation group of (G,X) is Sk if and only if H has a single component.

Since G is not k-pebble-win, we therefore know by Lemma 5.4.6 that there are at least

two components in H. Let us pick one component C1 and set c(x) = r for all x ∈ V (C1)

and c(x) = b for all x ∈ X \ V (C1). �

Definition 5.4.8. Given a graph G, a path x1x2 . . . xm in G is a bare path if dG(xi) = 2

for all 2 6 i 6 m− 1.

Lemma 5.4.9. Let G be a finite connected graph with vertex set V which is not k-

pebble-win and with |V | > k + 2. Then there is a bare path P = p1p2 . . . pn in G such that

|V \ V (P )| 6 k. Furthermore, either every edge in P is a bridge in G, or G is a cycle.

Proof. Let X = (x1, x2, . . . , xk) be a game state. Since G is not k-pebble-win, by

Lemma 5.4.7 there is a two colouring c : {xi : i ∈ [k]} → {r, b} such that both colour

classes are non trivial and for all i, j ∈ [k] with c(xi) = r and c(xj) = b the transposition

(ij) is not in the pebble permutation group. Let us consider this as a three colouring

c : V → {r, b, 0} where c(v) = 0 if v 6∈ {x1, x2, . . . , xk}.
For every achievable game state Z = (z1, z2, . . . , zk) in the X-pebble-pushing game we

define a three colouring cZ given by cZ(zi) = c(xi) for all i ∈ [k] and by cZ(v) = 0 for all

v /∈ {z1, z2, . . . , zk}. We note that, for any achievable game state Z there is no zi ∈ c−1
Z (r)

and zj ∈ c−1
Z (b) such that (ij) is in the pebble permutation group of (G,Z). Indeed, if

it were, then by Lemma 5.4.3 X(ij) is an achievable game state in the X-pebble-pushing

game, contradicting the fact that c(xi) = r and c(xj) = b.

Since G is connected, for every achievable game state Z there is a path P = p1p2 . . . pm
in G with cZ(p1) = r, cZ(pm) = b and cZ(pi) = 0 otherwise. Let us consider an achievable

game state Z for which G contains such a path P of maximal length.

We first claim that there is no v 6∈ P with cZ(v) = 0. Indeed, suppose there is such a

vertex v. Since G is connected there is some v–P path Q in G and so, by pushing pebbles

towards v on Q, we can achieve a game state Z ′ such that cZ′ = cZ on P and there is

a vertex v′ adjacent to P such that cZ′(v
′) = 0. Clearly v′ cannot be adjacent to p1 or

pm, since then we can push the pebble on p1 or pm onto v′ and achieve a game state Z ′′

for which G contains a longer path than P with the required colouring. However, if v′ is

adjacent to p` with 2 6 ` 6 m − 1, then we can push the pebble on p1 onto p` and then

onto v′, then push the pebble from pm onto p1 and finally push the pebble on v′ onto p`
and then onto pm.

However, if Z ′ = (z′1, z
′
2, . . . , z

′
k) with p1 = z′i and pm = z′j, then above shows that

(ij) is in the pebble-permutation group of (G,Z ′). However, cZ′(z
′
i) = cZ(p1) = r and

cZ′(z
′
j) = cZ(pm) = b, contradicting our assumptions on cZ′ .
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Next, we claim that each pi with 3 6 i 6 m − 2 has degree 2. Indeed, suppose first

that pi with 3 6 i 6 m− 2 is adjacent to some other pj with 1 6 j 6 m such that pi and

pj are not adjacent in P . Then it is easy to find a sequence of moves which exchanges the

pebbles on p1 and pm, contradicting our assumptions on cZ .

Suppose then that pi is adjacent to a vertex v not in P . Then, cZ(v) 6= 0, say without

loss of generality cZ(v) = r. However then, we can push the pebble on pm onto pi−1, push

the pebble on v onto pi and then onto pm and finally push the pebble on pi−1 onto pi and

then onto v. As before, this contradicts our assumptions on cZ .

Hence P ′ = p2p3 . . . pm−1 is a bare path in G, and since every vertex in V − V (P ′) is

coloured using r or using b, there are at most k such vertices.

Finally, suppose that there is some edge in P ′ which is not a bridge of G, and so no

edge of P ′ is a bridge of G. We wish to show that G is a cycle. We first make the following

claim:

Claim 9. There is no achievable game state W = (w1, w2, . . . , wk) such that there is

a cycle C = c1c2 . . . crc1 and a vertex v 6∈ C such that:

• There exist distinct positive integers i, j, s and t such that cW (ci) = r, cW (cj) = b

and cW (cs) = cW (ct) = 0;

• v adjacent to some cv ∈ C.

Proof of Claim 9. Suppose for a contradiction there exists such an achievable game

state W . Since C is a cycle we may assume without loss of generality that ci = c1, cs =

c2 = cv, ct = c3 and cj = c4. If cW (v) = b, then we can push the pebble at v to c2 and

then to c3, push the pebble at c1 to c2 and then to v, and then push the pebble at c3 to

c1. This contradicts our assumptions on cW . The case where cW (v) = r is similar. Finally

if cW (v) = 0, then we can push the pebble at c1 to c2 and then to v, then push the pebble

at c4 to c1, then push the pebble at v to c2 and then to c4. Again this contradicts our

assumptions on cW . �

Since no edge of P ′ is a bridge, it follows that G contains a cycle C containing P ′. If

G is not a cycle, then there is a vertex v ∈ V \ C which is adjacent to C. However by

pushing the pebble on p1 onto p2 and the pebble on pm onto pm−1, which is possible since

|V | > k + 2, we achieve a game state Z ′ such that C and v satisfy the assumptions of the

above claim, a contradiction. �

5.5. Pebbly ends

Definition 5.5.1 (Pebbly). Let Γ be a graph and ω an end of Γ. We say ω is pebbly

if for every k ∈ N there is an n > k and a family R = (Ri : i ∈ [n]) of disjoint rays in ω

such that RG(R) is k-pebble-win. If for some k there is no such family R, we say ω is not

k-pebble-win.
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The following is an immediate corollary of Lemma 5.4.9.

Corollary 5.5.2. Let ω be an end of a graph Γ which is not k-pebble-win and let

R = (Ri : i ∈ [m]) be a family of m > k + 2 disjoint rays in ω. Then there is a bare path

P = p1p2 . . . pn in RG(Ri : i ∈ [m]) such that |[m] \ V (P )| 6 k. Furthermore, either each

edge in P is a bridge in RG(Ri : i ∈ [m]), or RG(Ri : i ∈ [m]) is a cycle.

Hence, if an end in Γ is not pebbly, then we have some constraint on the behaviour of

rays towards this ends. In a later paper [33] we will investigate more precisely what can

be said about the structure of the graph towards this end. For now, the following lemma

allows us to easily find any countable graph as a minor of a graph with a pebbly end.

Lemma 5.5.3. Let Γ be a graph and let ω ∈ Ω(Γ) be a pebbly end. Then Kℵ0 4 Γ.

Proof. By assumption, there exists a sequence R1,R2, . . . of families of disjoint ω-

rays such that, for each k ∈ N, RG(Rk) is k-pebble-win. Let us suppose that

Ri = (Ri
1, R

i
2, . . . , R

i
mi

) for each i ∈ N.

Let us enumerate the vertices and edges ofKℵ0 by choosing some bijection σ : N∪N(2) →
N such that σ(i, j) > σ(i), σ(j) for every {i, j} ∈ N(2) and also σ(1) < σ(2) < · · · . For

each k ∈ N let Gk be the graph on vertex set Vk = {i ∈ N : σ(i) 6 k} and edge set

Ek = {{i, j} ∈ N(2) : σ(i, j) 6 k}.
We will inductively construct subgraphs Hk of Γ such that Hk is an IGk extending

Hk−1. Furthermore for each k ∈ N if V (Gk) = [n] then there will be tails T1, T2, . . . , Tn
of n distinct rays in Rn such that for every i ∈ [n] the tail Ti meets Hk in a vertex of

the branch set of i, and is otherwise disjoint from Hk. We will assume without loss of

generality that Ti is a tail of Rn
i .

Since σ(1) = 1 we can take H1 to be the initial vertex of R1
1. Suppose then that

V (Gn−1) = [r] and we have already constructed Hn−1 together with appropriate tails Ti
of Rr

i for each i ∈ [r]. Suppose firstly that σ−1(n) = r + 1 ∈ N.

Let X = V (Hn−1). There is a linkage from (Ti : i ∈ [r]) to (Rr+1
1 , Rr+1

2 , . . . , Rr+1
r ) after

X by Lemma 5.3.8, and, after relabelling, we may assume this linkage induces the identity

on [r]. Let us suppose the linkage consists of paths Pi from xi ∈ Ti to yi ∈ Rr+1
i .

Since X ∪
⋃
i Pi ∪

⋃
i Tixi is a finite set, there is some vertex yr+1 on Rr+1

r+1 such that

the tail yr+1R
r+1
r+1 is disjoint from X ∪

⋃
i Pi ∪

⋃
i Tixi.

To form Hn we add the paths Tixi ∪ Pi to the branch set of each i 6 r and set yr+1 as

the branch set for r + 1. Then Hn is an IGn extending Hn−1 and the tails yjR
r+1
j are as

claimed.

Suppose then that σ−1(n) = {u, v} ∈ N(2) with u, v 6 r. We have tails Ti of Rr
i for

each i ∈ [r] which are disjoint from Hn−1 apart from their initial vertices. Let us take tails

Tj of Rr
j for each j > r which are also disjoint from Hn−1. Since RG(Rr) is r-pebble-win,
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it follows that RG(Ti : i ∈ [mr]) is also r-pebble-win. Furthermore, since by Lemma 5.3.2

RG(Ti : i ∈ [mr]) is connected, there is some neighbour w ∈ [mr] of u in RG(Ti : i ∈ [mr]).

Let us first assume that w /∈ [r]. Since RG(Ti : i ∈ [mr]) is r-pebble-win, the game

state (1, 2, . . . , v−1, w, v+1, . . . , r) is an achievable game state in the (1, 2, . . . , r)- pebble-

pushing game and hence by Lemma 5.4.2 the function ϕ1 given by ϕ1(i) = i for all

i ∈ [r] \ {v} and ϕ1(v) = w is a transition function from (Ti : i ∈ [r]) to (Ti : i ∈ [mr]).

Let us take a linkage from (Ti : i ∈ [r]) to (Ti : i ∈ [mr]) inducing ϕ1 which is after

V (Hn−1). Let us suppose the linkage consists of paths Pi from xi ∈ Ti to yi ∈ Ti for i 6= v

and Pv from xv ∈ Tv to yv ∈ Tw. Let

X = V (Hn−1) ∪
⋃
i∈[r]

Pi ∪
⋃
i∈[r]

Tixi

Since u is adjacent to w in RG(Ti : i ∈ [mr]) there is a path P̂ between T (Tu, X) and

T (Tw, X) which is disjoint from X and from all other Ti, say P̂ is from x̂ ∈ Tu to ŷ ∈ Tw.

Finally, since RG(Ti : i ∈ [mr]) is r-pebble-win, the game state (1, 2, . . . , r) is an achiev-

able game state in the (1, 2, . . . , v − 1, w, v + 1, . . . , r)-pebble-pushing game and hence by

Lemma 5.4.2 the function ϕ2 given by ϕ2(i) = i for all i ∈ [r] \ {v} and ϕ2(w) = v is a

transition function from (Ti : i ∈ [r] \ {v} ∪ {w}) to (Ti : i ∈ [mr]).

Let us take a further linkage from (Ti : i ∈ [r] \ {v} ∪ {w}) to (Ti : i ∈ [mr]) inducing

ϕ2 which is after X ∪ P̂ ∪ Tux̂ ∪ yvTwŷ. Let us suppose the linkage consists of paths P ′i
from x′i ∈ Ti to y′i ∈ Ti for i ∈ [r] \ {v} and P ′v from x′v ∈ Tw to y′v ∈ Tv.

In the case that w ∈ [r], w < v, say, the game state

(1, 2, . . . , w − 1, v, w + 1, . . . , v − 1, w, v + 1, . . . r)

is an achievable game state in the (1, 2, . . . , r)-pebble pushing-game and we get, by a

similar argument, all Pi, xi, yi, P
′
i , x
′
i, y
′
i and P̂ .

We build Hn from Hn−1 by adjoining the following paths:

• for each i 6= v we add the path TixiPiyiTix
′
iP
′
iy
′
i to Hn−1, adding the vertices to

the branch set of i;

• we add P̂ to Hn−1, adding the vertices of V (P̂ ) \ {ŷ} to the branch set of u;

• we add the path TvxvPvyvTwx
′
vP
′
vy
′
v to Hn−1, adding the vertices to the branch

set of v.

We note that, since ŷ ∈ yvTwx′v the branch sets for u and v are now adjacent. Hence

Hn is an IGn extending Hn−1. Finally the rays y′iTi for i ∈ [r] are appropriate tails of the

used rays of Rr. �

As every countable graph is a subgraph of Kℵ0 , a graph with a pebbly end contains

every countable graph as a minor. Thus, as ℵ0G is countable, if G is countable, we obtain

the following corollary:
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Corollary 5.5.4. Let Γ be a graph with a pebbly end ω and let G be a countable

graph. Then ℵ0G 4 Γ.

5.6. G-tribes and concentration of G-tribes towards an end

To show that a given graph G is 4-ubiquitous, we shall assume that nG 4 Γ holds for

every n ∈ N an show that this implies ℵ0G 4 Γ. To this end we use the following notation

for such collections of nG in Γ, most of which we established in [31].

Definition 5.6.1 (G-tribes). Let G and Γ be graphs.

• A G-tribe in Γ (with respect to the minor relation) is a family F of finite collections

F of disjoint subgraphs H of Γ such that each member H of F is an IG.

• A G-tribe F in Γ is called thick, if for each n ∈ N there is a layer F ∈ F with

|F | > n; otherwise, it is called thin.

• A G-tribe F ′ in Γ is a G-subtribe 1 of a G-tribe F in Γ, denoted by F ′ 4 F , if

there is an injection Ψ: F ′ → F such that for each F ′ ∈ F ′ there is an injection

ϕF ′ : F
′ → Ψ(F ′) such that V (H ′) ⊆ V (ϕF ′(H

′)) for each H ′ ∈ F ′. The G-

subtribe F ′ is called flat, denoted by F ′ ⊆ F , if there is such an injection Ψ

satisfying F ′ ⊆ Ψ(F ′).

• A thick G-tribe F in Γ is concentrated at an end ε of Γ, if for every finite vertex

set X of Γ, the G-tribe FX = {FX : F ∈ F} consisting of the layers FX = {H ∈
F : H 6⊆ C(X, ε)} ⊆ F is a thin subtribe of F . It is strongly concentrated at ε if

additionally, for every finite vertex set X of Γ, every member H of F intersects

C(X, ε).

We note that, every thick G-tribe F contains a thick subtribe F ′ such that every

H ∈
⋃
F is a tidy IG. We will use the following lemmas from [31].

Lemma 5.6.2 (Removing a thin subtribe, [31, Lemma 5.2]). Let F be a thick G-tribe

in Γ and let F ′ be a thin subtribe of F , witnessed by Ψ: F ′ → F and (ϕF ′ : F
′ ∈ F ′).

For F ∈ F , if F ∈ Ψ(F ′), let Ψ−1(F ) = {F ′F} and set F̂ = ϕF ′F (F ′F ). If F /∈ Ψ(F ′), set

F̂ = ∅. Then

F ′′ := {F \ F̂ : F ∈ F}
is a thick flat G-subtribe of F .

Lemma 5.6.3 (Pigeon hole principle for thick G-tribes, [31, Lemma 5.3]). Suppose for

some k ∈ N, we have a k-colouring c :
⋃
F → [k] of the members of some thick G-tribe F

in Γ. Then there is a monochromatic, thick, flat G-subtribe F ′ of F .

Note that, in the following lemma, it is necessary that G is connected, so that every

member of the G-tribe is a connected graph.

1When G is clear from the context we will often refer to a G-subtribe as simply a subtribe.
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Lemma 5.6.4 ([31, Lemma 5.4]). Let G be a connected graph and Γ a graph containing

a thick G-tribe F . Then either ℵ0G 4 Γ, or there is a thick flat subtribe F ′ of F and an

end ε of Γ such that F ′ is concentrated at ε.

Lemma 5.6.5 ([31, Lemma 5.5]). Let G be a connected graph and Γ a graph containing

a thick G-tribe F concentrated at an end ε of Γ. Then the following assertions hold:

(1) For every finite set X, the component C(X, ε) contains a thick flat G-subtribe

of F .

(2) Every thick subtribe F ′ of F is concentrated at ε, too.

Lemma 5.6.6. Let G be a connected graph and Γ a graph containing a thick G-tribe F
concentrated at an end ε ∈ Ω(Γ). Then either ℵ0G 4 Γ, or there is a thick flat subtribe of

F which is strongly concentrated at ε.

Proof. Suppose that no thick flat subtribe of F is strongly concentrated at ε. We

construct an ℵ0G 4 Γ by recursively choosing disjoint IGs H1, H2, . . . in Γ as follows:

Having chosen H1, H2, . . . , Hn such that for some finite set Xn we have

Hi ∩ C(Xn, ε) = ∅

for all i ∈ [n], then by Lemma 5.6.5(1), there is still a thick flat subtribe F ′n of F contained

in C(Xn, ε). Since by assumption, F ′n is not strongly concentrated at ε, we may pick

Hn+1 ∈ F ′n and a finite set Xn+1 ⊇ Xn with Hn+1 ∩C(Xn+1, ε) = ∅. Then the union of all

the Hi is an ℵ0G 4 Γ. �

The following lemma will show that we can restrict ourself to thick G-tribes which are

concentrated at thick ends.

Lemma 5.6.7. Let G be a connected graph and Γ a graph containing a thick G-tribe F
concentrated at an end ε ∈ Ω(Γ) which is thin. Then ℵ0G 4 Γ.

Proof. Since ε is thin, we know by Proposition 5.2.4 that only finitely many vertices

dominate ε. Deleting these yields a subgraph of Γ in which there is still a thick G-tribe

concentrated at ε. Hence we may assume without loss of generality that ε is not dominated

by any vertex in Γ.

Let k ∈ N be the degree of ε. By [82, Corollary 5.5] there is a sequence of vertex sets

(Sn : n ∈ N) such that:

• |Sn| = k,

• C(Sn+1, ε) ⊆ C(Sn, ε), and

•
⋂
n∈NC(Sn, ε) = ∅.

Suppose there is a thick subtribe F ′ of F which is strongly concentrated at ε. For any

F ∈ F ′ there is an NF ∈ N such that H \C(SNF , ε) 6= ∅ for all H ∈ F by the properties of
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the sequence. Furthermore, since F ′ is strongly concentrated, H ∩ C(SNF , ε) 6= ∅ as well

for each H ∈ F .

Let F ∈ F ′ be such that |F | > k. Since G is connected, so is H, and so from the above

it follows that H ∩ SNF 6= ∅ for each H ∈ F , contradicting the fact that |SNF | = k < |F |.
Thus ℵ0G 4 Γ by Lemma 5.6.6. �

Note that, whilst concentration is hereditary for subtribes, strong concentration is not.

However if we restrict to flat subtribes, then strong concentration is a hereditary property.

Let us show see how ends of the members of a strongly concentrated tribe relate to

ends of the host graph Γ. Let G be a connected graph and H ⊆ Γ an IG. By Lemmas 5.3.2

and 5.3.4, if ω ∈ Ω(G) and R1 and R2 ∈ ω then the pullbacks H↓(R1) and H↓(R2) belong

to the same end ω′ ∈ Ω(Γ). Hence, H determines for every end ω ∈ G a pullback end

H(ω) ∈ Ω(Γ). The next lemma is where we need to use the assumption that G is locally

finite.

Lemma 5.6.8. Let G be a locally finite connected graph and Γ a graph containing a

thick G-tribe F strongly concentrated at an end ε ∈ Ω(Γ) where every member is a tidy

IG. Then either ℵ0G 4 Γ, or there is a flat subtribe F ′ of F such that for every H ∈
⋃
F ′

there is an end ωH ∈ Ω(G) such that H(ωH) = ε.

Proof. Since G is locally finite and every H ∈
⋃
F is tidy, the branch sets H(v) are

finite for each v ∈ V (G). If ε is dominated by infinitely many vertices, then we know by

Proposition 5.2.4 that Γ contains a topological Kℵ0 minor, in which case ℵ0G 4 Γ, since

every locally finite connected graph is countable. If this is not the case, then there is some

k ∈ N such that ε is dominated by k vertices and so for every F ∈ F at most k of the

H ∈ F contain vertices which dominate ε in Γ. Therefore, there is a thick flat subtribe

F ′ of F such that no H ∈
⋃
F ′ contains a vertex dominating ε in Γ. Note that F ′ is still

strongly concentrated at ε, and every branch set of every H ∈
⋃
F ′ is finite.

Since F ′ is strongly concentrated at ε, for every finite vertex set X of Γ every H ∈
⋃
F ′

intersects C(X, ε). By a standard argument, since H as a connected infinite graph does

not contain a vertex dominating ε in Γ, instead H contains a ray RH ∈ ε.
Since each branch set H(v) is finite, RH meets infinitely many branch sets. Let us

consider the subgraph K ⊆ G consisting of all the edges (v, w) such that RH uses an edge

between H(v) and H(w). Note that, since there is a edge in H between H(v) and H(w)

if and only if (v, w) ∈ E(G), K is well-defined and connected.

K is then an infinite connected subgraph of a locally finite graph, and as such contains

a ray SH in G. Since the edges between H(v) and H(w), if they exist, were unique, it

follows that the pullback H↓(SH) of SH has infinitely many edges in common with RH ,

and so tends to ε in Γ. Therefore, if SH tends to ωH in Ω(G), then H(ωH) = ε.

�
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5.7. Ubiquity of minors of the half grid

Here, and in the following, we denote by H the infinite, one-ended, cubic hexagonal

half grid (see Figure 5.2). The following theorem of Halin is one of the cornerstones of

infinite graph theory.

Figure 5.2. The hexagonal half grid H.

Theorem 5.7.1 (Halin, see [54, Theorem 8.2.6]). Whenever a graph Γ contains a thick

end, then H 6 Γ. �

In [87], Halin used this result to show that every topological minor of H is ubiquitous

with respect to the topological minor relation 6. In particular, trees of maximum degree 3

are ubiquitous with respect to 6.

However, the following argument, which is a slight adaptation of Halin’s, shows that

every connected minor of H is ubiquitous with respect to the minor relation. In particular,

the dominated ray, the dominated double ray, and all countable trees are ubiquitous with

respect to the minor relation.

The main difference to Halin’s original proof is that, since he was only considering

locally finite graphs, he was able to assume that the host graph Γ was also locally finite.

Lemma 5.7.2 ([87, (4) in Section 3]). ℵ0H is a topological minor of H.

Theorem 5.1.4. Any connected minor of the half grid N�Z is 4-ubiquitous.

Proof. Suppose G 4 N�Z is a minor of the half grid, and Γ is a graph such that

nG 4 Γ for each n ∈ N. By Lemma 5.6.4 we may assume there is an end ε of Γ and a

thick G-tribe F which is concentrated at ε. By Lemma 5.6.7 we may assume that ε is

thick. Hence H 6 Γ by Theorem 5.7.1, and with Lemma 5.7.2 we obtain

ℵ0G 4 ℵ0(N�Z) 4 ℵ0H 6 H 6 Γ. �

Lemma 5.7.3. H contains every countable tree as a minor.
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Proof. It is easy to see that the infinite binary tree T2 embeds into H as a topological

minor. It is also easy to see that countably regular tree T∞ where every vertex has infinite

degree embeds into T2 as a minor. And obviously, every countable tree T is a subgraph

of T∞. Hence we have

T ⊆ T∞ 4 T2 6 H

from which the result follows. �

Corollary 5.7.4. All countable trees are ubiquitous with respect to the minor relation.

Proof. This is an immediate consequence of Lemma 5.7.3 and Theorem 5.1.4. �

5.8. Proof of main results

Lemma 5.8.1. Let ε be a non-pebbly end of Γ and let F be a G-tribe such that for every

H ∈
⋃
F there is an end ωH ∈ Ω(G) such that H(ωH) = ε. Then there is a thick flat

subtribe F ′ such that ωH is linear for every H ∈
⋃
F ′ .

Proof. Let F ′ be the flat subtribe of F given by F ′ = {F ′ : F ∈ F} with

F ′ = {H : H ∈ F and ωH is not linear}.

Suppose for a contradiction that F ′ is thick. Then, there is some F ∈ F which contains

k + 2 disjoint IGs, H1, H2, . . . , Hk+2, where k is such that ε is not k-pebble-win. By

assumption ωHi is not linear for each i, and so for each i there is a family of disjoint rays

{Ri
1, R

i
2, . . . , R

i
mi
} in G tending to ωHi whose ray graph in G is not a path. Let

S = (H↓i (Ri
j) : i ∈ [k + 2], j ∈ [mi]).

By construction S is a disjoint family of rays which tend to ε in Γ and by Lemma 5.3.3

and Lemma 5.3.4 RGΓ(S) contains disjoint subgraphs K1, K2, . . . , Kk+2 such that Ki
∼=

RGG(Ri
j : j ∈ [mi]). However, by Corollary 5.5.2, there is a set X of vertices of size at

most k such that RGΓ(S)−X is a bare path P . However, then some Ki ⊆ P is a path, a

contradiction.

Since F is the union of F ′ and F ′′ where F ′′ = {F ′′ : F ∈ F} with

F ′′ = {H : H ∈ F and ωH is linear},

it follows that F ′′ is thick. �

Theorem 5.1.2. Every locally finite connected graph with nowhere-linear end structure

is 4-ubiquitous.

Proof. Let Γ be a graph such that nG 4 Γ holds for every n ∈ N. Hence, Γ

contains a thick G-tribe F . By Lemmas 5.6.4 and 5.6.6 we may assume that F is strongly

concentrated at an end ε of Γ and so by Lemma 5.6.8 we may assume that for every

H ∈
⋃
F there is an end ωH ∈ Ω(G) such that H(ωH) = ε.
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Since ωH is not linear for each H ∈
⋃
F , it follows by Lemma 5.8.1 that ε is pebbly,

and hence by Corollary 5.5.4 ℵ0G 4 Γ. �

Figure 5.3. The ray graphs in the full grid are cycles.

Corollary 5.1.3. The full grid is 4-ubiquitous.

Proof. Let G be the full grid. Since G− R has at most one end for any ray R ∈ G,

by Lemma 5.3.2 the ray graph RG(R) is 2-connected for any finite family of three or more

rays. Hence, by Theorem 5.1.2 G is 4-ubiquitous �

Remark 5.8.2. In fact, every ray graph in the full grid is a cycle (see Figure 5.3).

Theorem 5.1.5. For every locally finite connected graph G, both G�Z and G�N are

4-ubiquitous.

Proof. If G is a path or a ray, then G�Z is a subgraph of the half grid N�Z and thus

4-ubiquitous by Theorem 5.1.4. If G is a double ray then G�Z is the full grid and thus

4-ubiquitous by Corollary 5.1.3. Otherwise let G′ be a finite connected subgraph of G

which is not a path. For any end ω of G�Z there is a ray R of Z such that all rays of the

form {v}�R for v ∈ V (G) go to ω. But then G′ is a subgraph of RGG�Z(({v}�R)v∈V (G′)),

so this ray-graph is not a path, hence by Lemma 5.3.5 G�Z has nowhere-linear end

structure and is therefore 4-ubiquitous by Theorem 5.1.2. �

Finally let us prove Theorem 5.1.6. Recall that for k ∈ N let DRk denote the graph

formed by taking a ray R together with k vertices v1, v2, . . . , vk adjacent to every vertex

in R. We shall need the following strengthening of Proposition 5.2.3.
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A comb is a union of a ray R with infinitely many disjoint finite paths, all having

precisely their first vertex on R. The last vertices of these paths are the teeth of the comb.

Proposition 5.8.3. [54, Proposition 8.2.2] Let U be an infinite set of vertices in a

connected graph G. Then G either contains a comb with all teeth in U or a subdivision of

an infinite star with all leaves in U .

Theorem 5.1.6. The k-fold dominated ray DRk is 4-ubiquitous for every k ∈ N.

Proof. Note that if k 6 2 then DRk is a minor of the half grid, and hence ubiquity

follows from Theorem 5.1.4.

Suppose then that k > 3 and Γ is a graph which contains a thick DRk-tribe F each

of whose members is tidy. By Lemma 5.6.6 we may assume that there is an end ε of

Γ such that F is concentrated at ε. If there are infinitely many vertices dominating ε,

then ℵ0DRk 4 Kℵ0 6 Γ holds by Proposition 5.2.4. So we may assume that only finitely

many vertices dominate ε. By taking a thick subtribe if necessary, we may assume that

no member of F contains such a vertex.

As before, if we can show that ε is pebbly, then we will be done by Corollary 5.5.4. So

suppose for a contradiction that ε is not r-pebble-win for some r ∈ N.

Let R be the ray as stated in the definition of DRk and let v1, v2, . . . , vk ∈ V (DRk) be

the vertices adjacent to each vertex of R. For each H ∈
⋃
F and each i ∈ [k] we have the

H(vi) is a connected subgraph of Γ. Let U be the set of all vertices in H(vi) which are the

endpoint of some edge in H between H(vi) and H(w) with w ∈ R. Since vi dominated

R, U is infinite, and so by Proposition 5.8.3 H(vi) either contains a comb with all teeth

in U or a subdivision of an infinite star with all leaves in U . However in the latter case

the centre of the star would dominate ε, and so each H(vi) contains such a comb, whose

spine we denote by RH,i. Let RH = H↓(R) be the pullback of the ray R in H. Now we

set RH = (RH,1, RH,2, . . . , RH,k, RH).

Since RH,i is the spine of a comb, all of whose leaves are in U , it follows that in the

graph RGH(RH) each RH,i is adjacent to RH . Hence RGH(RH) contains a vertex of

degree k > 3.

There is some layer F ∈ F of size ` > r+ 1, say F = (Hi : i ∈ [`]). For every i ∈ [r+ 1]

we set RHi = (RHi,1, RHi,2, . . . , RHi,k, RHi). Let us now consider the family of disjoint rays

R =
r+1⋃
i=1

RHi .

By construction R is a family of disjoint rays which tend to ε in Γ and by Lemma 5.3.3

and Lemma 5.3.4 RGΓ(R) contains r+1 vertices whose degree is at least k > 3. However,

by Corollary 5.5.2, there is a vertex set X of size at most r such that RGΓ(R) −X is a

bare path P . But then some vertex whose degree is at least 3 is contained in the bare

path, a contradiction. �





CHAPTER 6

Ubiquity of locally finite graphs with extensive tree

decompositions

A graph G is said to be 4-ubiquitous, where 4 is the minor relation between

graphs, if whenever Γ is a graph with nG 4 Γ for all n ∈ N, then one also

has ℵ0G 4 Γ. A well-known conjecture of Andreae is that every locally finite

graph is 4-ubiquitous.

In this paper we show that locally finite graphs admitting a certain type of

tree-decomposition, which we call extensive tree decomposition, are4-ubiquitous.

In particular this includes all locally finite graphs of finite tree-width and lo-

cally finite graphs with finitely many ends, all of which are thin.

6.1. Introduction

Given a graph G and some relation C between graphs we say that G is C-ubiquitous

if whenever Γ is a graph such that nG C Γ for all n ∈ N, then ℵ0G C Γ, where αG is the

disjoint union of α many copies of G. A classic result of Halin [85, Satz 1] says that the

ray is ⊆-ubiquitous, where ⊆ is the subgraph relation. That is, any graph which contains

arbitrarily large collections of vertex-disjoint rays must contain an infinite collection of

vertex-disjoint rays. Later, Halin showed that the double ray is also ⊆-ubiquitous [86].

However, not all graphs are ⊆-ubiquitous, and in fact even trees can fail to be ⊆-

ubiquitous (see for example [168]). The question of ubiquity for classes of graphs has also

been considered for other graph relations. In particular, whilst there are still reasonably

simple examples of graphs which are not 6-ubiquitous (see [109, 9]), where 6 is the

topological minor relation, it was shown by Andreae that all rayless countable graphs [11]

and all locally finite trees [10] are 6-ubiquitous. The latter result was recently extended

to the class of all trees by the authors [31].

In [15] Andreae initiated the study of ubiquity of graphs with respect to the minor

relation, 4. He constructed a graph which was not 4-ubiquitous, however the construction

relied on the existence of a counterexample to the well-quasi-ordering of infinite graphs

under the minor relation, for which only examples of very large cardinality are known

[148]. In particular, the question whether there exists a countable graph which is not

4-ubiquitous remains open.

Andreae conjectured that at least all locally finite graphs, those with all degrees finite,

should be 4-ubiquitous.

111
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The Ubiquity Conjecture. Every locally finite connected graph is 4-ubiquitous.

In [16] Andreae proved that his conjecture holds for a large class of locally finite

graphs. The exact definition of this class is technical, but in particular his result implies

the following.

Theorem 6.1.1 (Andreae, [16, Corollary 1]). Let G be a locally finite, connected graph

with finitely many ends such that every block of G is finite. Then G is 4-ubiquitous.

Theorem 6.1.2 (Andreae, [16, Corollary 2]). Let G be a locally finite, connected graph

of finite tree-width such that every block of G is finite. Then G is 4-ubiquitous.

Note, in particular, that if G is such a graph, then the degree of every end in G must

be one.1 In this paper we will extend Andreae’s approach to prove that an even larger

class of locally finite graphs is 4-ubiquitous, removing the assumption of finite blocks.

Again, the exact definition of this class will be technical, but in particular it will imply

the following results, extending Theorems 6.1.1 and 6.1.2:

Theorem 6.1.3. Let G be a locally finite, connected graph with finitely many ends such

that every end of G has finite degree. Then G is 4-ubiquitous.

Theorem 6.1.4. Every locally finite, connected graph of finite tree-width is 4-ubiquitous.

The proof uses in an essential way some known results about the well-quasi-ordering of

graphs under the minor relation, including Thomas’ result [149] that graphs of bounded

tree width are well-quasi-ordered under the minor relation. Our methods, building on

Andreae’s, give a blueprint by which stronger results about the well-quasi-ordering of

graphs can be used to prove the ubiquity of larger classes of graphs. A more precise

discussion of this connection will be given in Section 6.10.

In Section 6.2 we will give a sketch of the key ideas in the proof, at the end of which

we will provide a more detailed overview of the structure and the different sections of this

paper.

6.2. Proof sketch

To give a flavour of the main ideas involved in the proof, let’s begin by considering the

case of a locally finite connected graph G with a single end ω, where ω has finite degree

d (this means that there is a family (Ai : 1 6 i 6 d) of d disjoint rays in ω, but no family

of more than d such rays). Our construction will exploit the fact that graphs of this kind

have a very particular structure. More precisely, there is a tree-decomposition (S,V) of

G, where S = s0s1s2 . . . is a ray and such that, if we denote Vsn by Vn and
⋃
l>n Vl by Gn

for each n, the following holds:

1A precise definitions of the ends of a graph and their degree can be found in Section 6.3.
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(1) each Vn is finite;

(2) every vertex of G appears in only finitely many Vn;

(3) all the Ai begin in V0, and

(4) for each m > 1 there are infinitely many n > m such that Gm is a minor of Gn,

in such a way that for any edge e of Gm and any i 6 d, e is an edge of Ai if and

only if the edge representing it in this minor is.

Property 4 seems rather strong, and the reason it can always be achieved has to do

with the well-quasi-ordering of finite graphs. For details of how this works, see Section 6.5.

The skeptical reader who does not yet see how to achieve this may consider the argument

in this section as showing ubiquity simply for graphs G with a decomposition of the above

kind.

Now we suppose that we are given some graph Γ such that nG 4 Γ for each n, and

we wish to show that ℵ0G 4 Γ. Consider a G-minor H in Γ. Any ray R of G can then be

expanded to a ray H(R) in the copy H of G in Γ, and since G only has one end, all rays

H(R) go to the same end εH of Γ; we shall say that H goes to the end εH .

We now show that we can suppose without loss of generality that all G-minors go to

the same end ε of Γ. For suppose that there are two G-minors H and H ′ with εH 6= εH′ .

Since G is locally finite, we may assume that all branch sets of H and H ′ are finite. Thus

there is a finite set X such that each of H and H ′ only uses vertices from one component

of Γ−X. In any (|X|+ 2n)G-minor of Γ, only at most |X| of the G-minors involved can

meet X, and each of the remaining 2n must be included in some component of G − X.

Without loss of generality at most n of them are in the component that meets H, and so

Γ−H has an nG-minor.

Thus there is a G-minor H0 of Γ such that Γ1 := Γ−H0 still has an nG-minor for each

n. If there are two G-minors going to different ends of Γ1 then we may as above find a

G-minor H1 of Γ1 such that Γ2 := Γ1−H1 has an nG-minor for any n. Proceeding in this

way we either find infinitely many disjoint G-minors H0, H1, H2, . . ., giving an ℵ0G-minor,

or else after finitely many steps we find a subgraph Γk of Γ which has an nG-minor for

any n and in which all G-minors go to the same end ε.

So from now on we will assume that all G-minors of Γ go to the same end ε. From any

G-minor H we obtain rays H(Ai) corresponding to our marked rays Ai in G. We will call

this collection of rays the bundle of rays given by H.

Our aim now is to build up an ℵ0G-minor of Γ recursively. At stage n we hope to

construct n disjoint G[
⋃
m6n Vm]-minors Hn

1 , H
n
2 , . . . H

n
n , such that for each such Hn

m there

is a family (Rn
m,i : i 6 k) of disjoint rays to ε, where the path in Hn

m corresponding to

the initial segment of the ray Ai in
⋃
m6nGm is an initial segment of Rn

m,i, but these rays

are otherwise disjoint from the various Hn
l and from each other. We aim to do this in

such a way that each Hn
m extends all previous H l

m for l 6 n, so that at the end of our

construction we can obtain infinitely many disjoint G-minors as (
⋃
n>mH

n
m : m ∈ N). The
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rays chosen at later stages need not bear any relation to those chosen at earlier stages; we

just need them to exist so that there is some hope of continuing the construction.

We will again refer to the families (Rn
m,i : i 6 k) of rays starting at the various Hn

m as

the bundles of rays from those Hn
m.

bundleHn
1

Rn1,1
Rn1,2
Rn1,3

Hn
2

Rn2,1
Rn2,2
Rn2,3

Hn
3

Rn3,1
Rn3,2
Rn3,3

Hn
4

Rn4,1
Rn4,2
Rn4,3

...

The rough idea for getting from the nth to the n+ 1st stage of this construction is now

as follows: we choose a very large family H of disjoint G-minors in Γ. We throw away all

those which meet any previous Hn
m and we consider the family of rays corresponding to the

Ai in the remaining minors. Then it is possible to find a collection of paths transitioning

from the Rn
m,i from stage n onto these new rays. Precisely what we need is captured in

the following definition, which also introduces some helpful terminology for dealing with

such transitions:

Definition 6.2.1 (Linkage of families of rays). Let R = (Ri : i ∈ I) and S = (Sj : j ∈
J) be families of disjoint rays, where the initial vertex of each Ri is denoted xi. A family of

paths P = (Pi : i ∈ I), is a linkage from R to S if there is an injective function σ : I → J

such that

• Each Pi goes from a vertex x′i ∈ Ri to a vertex yσ(i) ∈ Sσ(i);

• The family T = (xiRix
′
iPiyσ(i)Sσ(i) : i ∈ I) is a collection of disjoint rays.2 We

write R◦P S for the family T as well Ri ◦P S for the ray in T with initial vertex

xi.

We say that T is obtained by transitioning from R to S along the linkage. We say the

linkage P induces the mapping σ. We further say that P links R to S. Given a set X we

say that the linkage is after X if X ∩Ri ⊆ xiRix
′
i for all i ∈ I and no other point in X is

used by T .

2Where we use the notation as in [54], see also Definition 6.3.3.
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Thus our aim is to find a linkage from the Rn
m,i to the new rays after all the Hn

m. That

this is possible is guaranteed by the following lemma from [31]:

Lemma 6.2.2 (Weak linking lemma [31, Lemma 4.3]). Let Γ be a graph and ω ∈ Ω(Γ).

Then for any collections R = (R1, . . . , Rn) and S = (S1, . . . , Sn) of vertex disjoint rays in

ω and any finite set X of vertices, there is a linkage from R to S after X.

The aim is now to use property 4 of our tree decomposition of G to find copies of

Vn+1 sufficiently far along the new rays that we can stick them on to our Hn
m to obtain

suitable Hn+1
m . There are two difficulties at this point in this argument. The first is that,

as well as extending the existing Hn
m to Hn+1

m we also need to introduce Hn+1
n+1 . To achieve

this, we ensure that one of the G-minors in H is disjoint from all the paths in the linkage,

so that we may take an initial segement of it as Hn+1
n+1 . This is possible because of a

slight strengthening of the linking lemma above; see [31, Lemma 4.4] or 4.4.4 for a precise

statement.

A more serious difficulty is that in order to stick the new Vn+1 onto Hn
m we need the

following property:

(∗)

For each of the bundles corresponding to an Hn
m, the rays in the

bundle are linked precisely to the rays in the bundle coming from

some H ∈ H. This happens in such a way that each Rn
m,i is linked

to H(Ai).

Thus we need a great deal of control over which rays get linked to which. We can keep

track of which rays are linked to which as follows:

Definition 6.2.3 (Transition function). Let R = (Ri : i ∈ I) and S = (Sj : j ∈ J) be

families of disjoint rays, where the initial vertex of each Ri is denoted xi. We say that a

function σ : I → J is a transition function from R to S if for any finite set X of vertices

there is a linkage from R to S after X that induces σ.

So our aim is to find a transition function assigning new rays to the Rn
m so as to achieve

(∗). One reason for expecting this to be possible is that the new rays all go to the same

end, and so they are joined up by many paths. We might hope to be able to use these

paths to move between the rays, allowing us some control over which rays are linked to

which. The structure of possible jumps is captured by a graph whose vertex set is the set

of rays:

Definition 6.2.4 (Ray graph). Given a finite family of disjoint rays R = (Ri : i ∈ I)

in a graph Γ the ray-graph, RGΓ(R) = RGΓ(Ri : i ∈ I) is the graph with vertex set I and

with an edge between i and j if there is an infinite collection of vertex disjoint paths from

Ri to Rj which meet no other Rk. When the host graph Γ is clear from the context we

will simply write RG(R) for RGΓ(R).
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Unfortunately, the collection of possible transition functions can be rather limited.

Consider, for example, the case of families of disjoint rays in the grid. Any such family

has a natural cyclic order, and any transition function must preserve this cyclic order.

This paucity of transition functions is reflected in the sparsity of the ray graphs, which

are all just cycles.

In Sections 6.6 and 6.7 we therefore carefully analyse the possibilities for how the ray

graphs and transition functions associated to a given thick3 end may look. We find that

there are just 3 possibilities.

The easiest case is that in which the rays to the end are very joined up, in the sense

that any injective function between two families of rays is a transition function. This case

was already dealt with in [32]. The second possibility is that which we saw above for

the grid: all ray graphs are cycles, and all transition functions between them preserve the

cyclic order. The third possibility is that all ray graphs consist of a path together with

a bounded number of further junk vertices, where these junk vertices are hanging at the

ends of the paths (formally: all interior vertices on this central paths have degree 2 in the

ray graph). In this case, the transition functions must preserve the linear order along the

paths.

The second and third cases can be dealt with using similar ideas, so we will focus on

the third one here.

The structure of the ray graphs and transition functions can be used to get around the

problem discussed above, by slightly strengthening the properties required of the rays in

the recursive construction. More precisely, we want that the ray graph of a slightly larger

family R of disjoint rays, consisting of the Rn
m,i and some extra ‘junk’ rays, should have

all the Rn
m,i on the central path, arranged in such a way that for each n and m the Rn

m,i

are consecutive in order from Rn
m,1 to Rn

m,k.

Of course, in order that this is possible we must first ensure that the Ai are arranged

in order so that for every n we can find n disjoint G-minors H such that there is some ray

graph in which, for each H, the rays H(Ai) appear in order along the central path. Since

there are only finitely many possible orders, there must be an order with this property.

Then our extra order assumptions ensure that, by transitioning between rays using

edges of the ray graph, we can modify the linkage so that (∗) holds.

There is one last subtle difficulty which we have to address, once more relating to

the fact that we want to introduce a new Hn+1
n+1 together with its private bundle of rays

corresponding to its copies of Ai’s, disjoint from all the other Hn+1
m and their bundles.

Recall that the strong linking lemma allows us to find a linkage which avoids one of

the G-minors in H, but this linkage may not have property (∗). We can modify it to

one satisfying (∗) by diverting the rays along some of the paths between the new rays.

3An end is thick if there are infinitely many disjoint rays to it.
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But then some of the rays through which we divert may be forced to intersects the rays

emanating from Hn+1
n+1 , if these rays from Hn+1

n+1 lie between rays from the same bundle of

some Hn
m.

Hn
m

Hn+1
n+1

However, we can get around this by using the paths between the rays in R to jump

between them before the linkage, so as to rearrange which bundles make use of (the tails

of) which rays. More precisely, we first take a large but finite set of paths between the

rays which is rich enough to allow us to rearrange which bundles end up where as much as

possible. We collect these together in a transition box. Only then do we choose the linkage

from R to the rays from H, and we make sure that this linkage is after the transition

box. Then, when we later see how the bundles should be arranged in order that the rays

emanating from Hn+1
n+1 do not appear between rays from the same bundle, we can go back

and perform a suitable rearrangement within the transition box, see Figure 6.1.

This completes the sketch of the proof that locally finite graphs with a single end of

finite degree are ubiquitous. Our results in this paper are for a more general class of

graphs, but one which is chosen to ensure that arguments of the kind outlined above will

work for them. Hence we still need a tree-decomposition with properties similar to (1)-(4)

from our ray-decomposition above. Tree decompositions with these properties are called

extensive, and the details can be found in Section 6.4.

However, certain aspects of the sketch above must be modified to allow for the fact

that we are now dealing with graphs G with multiple, indeed possibly infinitely many,

ends. For any end δ of G and any G-minor H of Γ, all rays H(R) with R in δ belong to

the same end H(δ) of Γ. But for different values of δ, the ends H(δ) may well be different.

So there is no hope of finding a single end ε of Γ to which all rays in all G-minors

converge. Nevertheless, we can still find an end ε towards which the G-minors are concen-

trated, in the sense that for any finite X there are arbitrarily large families of G-minors

in the same component of G − X as ε. See Section 5.6 for details. In that section we

introduce the term tribe for a collection of arbitrarily large families of disjoint G-minors.
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...

...

transition box

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

linkage

· · ·

· · ·

Figure 6.1. The transitioning strategy between the old and new bundles.

The recursive construction will work pretty much as before, in that at each step n we

will again have embedded Gn-minors for some large finite part Gn of G, together with a

number of rays to ε corresponding to some canonical rays going to certain ends δ of G.

In order for this to work, we need some consistency about which H(δ) are equal to ε

and which are not. It is clear that for any finite set ∆ of ends of G there is some subset

∆′ such that there is a tribe of G-minors H converging to ε with the property that the

set of δ in ∆ with H(δ) = ε is ∆′. This is because there are only finitely many options for

this set. But if G has infinitely many ends, there is no reason why we should be able to

do this for all ends of G at once.

Our solution is to keep track of only finitely many ends of G at any stage in the con-

struction, and to maintain at each stage a tribe concentrated towards ε which is consistent

for all these finitely many ends. Thus in our construction consistency of questions such

as which ends δ of G converge to ε or of the proper linear order in the ray graph of the

families of canonical rays to those ends is achieved dynamically during the construction,

rather than being fixed in advance. The ideas behind this dynamic process have already
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been used successfully in our earlier paper [31], where they appear in slightly simpler

circumstances.

The paper is structured as follows. In Section 5.2 we give precise definitions of some

of the basic concepts we will be using, and prove some of their fundamental properties.

In Section 6.4 we introduce extensive tree decompositions and in Section 6.5 we illustrate

that many locally finite graphs can be given such decompositions. Sections 6.6 and 6.7 are

devoted to the possible collections of ray graphs and transition functions between them

which can occur in a thick end. In Section 5.6 we introduce the notion of tribes and of

their concentration towards an end and begin building some tools for the main recursive

construction, which is given in Section 4.6. We conclude with a discussion of the future

outlook in Section 6.10.

6.3. Preliminaries

In this paper we follow the convention that 0 is not an element of the set N of natural

numbers.

For a graph G = (V,E) and W ⊆ V we write G[W ] for the induced subgraph. For two

vertices v, w of a connected graph G, we write dist(v, w) for the edge-length of a shortest

v − w path. A path P = v0v1 . . . vn in a graph G is called a bare path if degG(vi) = 2 for

all inner vertices vi for 0 < i < n.

6.3.1. Rays and ends.

Definition 6.3.1 (Rays and initial vertices of rays). A one-way infinite path is called

a ray and a two-way infinite path is called a double ray. For a ray R let init(R) denote

the initial vertex of R, that is the unique vertex of degree 1 in R. For a set R of rays let

init(R) denote the set of initial vertices of the rays in R.

Definition 6.3.2 (Tail of a ray). Given a ray R in a graph G and a finite set X ⊆ V (G)

the tail of R after X, T (R,X), is the unique infinite component of R in G−X.

Definition 6.3.3 (Concatenation of paths and rays). For a path or ray P and vertices

v, w ∈ V (P ), let vPw denote the subpath of P with endvertices v and w, and v̊P ẘ for

the subpath strictly between v and w. If P is a ray, let Pv denote the finite subpath of

P between the initial vertex of P and v, and let vP denote the subray (or tail) of P with

initial vertex v. Similarly, we write P v̊ and v̊P for the corresponding paths without the

vertex v.

Given two paths or rays P and Q which which intersect in a single vertex only, which

is an endvertex in both P and Q, we write PQ for the concatenation of P and Q, that is

the path, ray or double ray P ∪ Q. Moreover, if we concatenate paths of the form vPw

and wQx, then we omit writing w twice and denote the concatenation by vPwQx.
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For a ray R = r0r1 . . . let R− denote the tail r1R of R starting at r1. Given a set R of

rays let R− denote the set {R− : R ∈ R}

Definition 6.3.4 (Ends of a graph, cf. [54, Chapter 8]). An end of an infinite graph

Γ is an equivalence class of rays, where two rays R and S are equivalent if and only if

there are infinitely many vertex disjoint paths between R and S in Γ. We denote by Ω(Γ)

the set of ends of Γ.

We say that a ray R ⊆ Γ converges (or tends) to an end ε of Γ if R is contained in ε.

In this case we call R an ε-ray.

Given an end ε ∈ Ω(Γ) and a finite set X ⊆ V (Γ) there is a unique component of

Γ−X which contains a tail of every ray in ε, which we denote by C(X, ε).

For an end ε ∈ Γ we define the degree of ε in Γ, denoted by deg(ε) ∈ N ∪ {∞}, as

the largest cardinality of a collection of vertex disjoint ε-rays. An end with finite/infinite

degree is called thin/thick.

6.3.2. Inflated copies of graphs.

Definition 6.3.5 (Inflated graph, branch set). Given a graph G we say that a pair

(H,ϕ) is an inflated copy of G or an IG if H is a graph and ϕ : V (H) → V (G) is a map

such that:

• For every v ∈ V (G) the branch set ϕ−1(v) induces a non-empty, connected sub-

graph of H;

• There is an edge in H between ϕ−1(v) and ϕ−1(w) if and only if (v, w) ∈ E(G)

and this edge, if it exists, is unique.

When there is no danger of confusion we will simply say that H is an IG instead of

saying that (H,ϕ) is an IG, and denote by H(v) = ϕ−1(v) the branch set of v.

Definition 6.3.6 (Minor). A graph G is a minor of another graph Γ, written G 4 Γ,

if there is some subgraph H ⊆ Γ such that H is an inflated copy of G.

Definition 6.3.7 (Extension of inflated copies). Suppose G ⊆ G′ as subgraphs, and

that H is an IG and H ′ is an IG′. We say that H ′ extends H (or that H ′ is an extension

of H) if H ⊆ H ′ as subgraphs and H(v) ⊆ H ′(v) for all v ∈ V (G) ∩ V (G′).

If H ′ is an extension of H and X ⊆ V (G) is such that H ′(x) = H(x) for every x ∈ X
then we say H ′ is an extension of H fixing X.

Note that since H ⊆ H ′, for every edge (v, w) ∈ E(G), the unique edge between the

branch sets H ′(v) and H ′(w) is also the unique edge between H(v) and H(w).

Definition 6.3.8 (Tidiness). An IG (H,ϕ) is called tidy if

• H[ϕ−1(v)] is a tree for all v ∈ V (G);

• H(v) is finite if dG(v) is finite.
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Note that every IG H contains a subgraph H ′ such that (H ′, ϕ � V (H ′)) is a tidy IG,

although this choice may not be unique. In this paper we will always assume without loss

of generality that each IG is tidy.

Definition 6.3.9 (Restriction). Let G be a graph, M ⊆ G a subgraph of G, and

let (H,ϕ) be an IG. The restriction of H to M , denoted by H(M), is the IG given by

(H(M), ϕ′) where ϕ′−1(v) = ϕ−1(v) for all v ∈ V (M) and H(M) consists of union of the

subgraphs of H induced on each branch set ϕ−1(v) for each v ∈ V (M) together with the

edge between ϕ−1(u) and ϕ−1(v) for each (u, v) ∈ E(M).

Note that if H is tidy, then H(M) will be tidy. Given a ray R ⊆ G and a tidy IG

H in a graph Γ, the restriction H(R) is a one-ended tree, and so every ray in H(R) will

share a tail. Later in the paper we will want to make this correspondence between rays in

G and Γ more explicit, with use of the following definition:

Definition 6.3.10 (Pullback). Let G be a graph, R ⊆ G a ray, and let H be a tidy IG.

The pullback of R to H is the subgraph H↓(R) ⊆ H where H↓(R) is subgraph minimal

such that (H↓(R), ϕ � V (H↓(R))) is an IM .

Note that, since H is tidy, H↓(R) is well defined. As well shall see, H↓(R) will be a

ray.

Lemma 6.3.11. Let G be a graph and let H be a tidy IG. If R ⊆ G is a ray, then the

pullback H↓(R) is also a ray.

Proof. Let R = x1x2 . . .. For each integer i > 1 there is a unique edge (vi, wi) ∈ E(H)

between the branch sets H(xi) and H(xi+1). By the tidiness assumption, H(xi+1) induces

a tree in H, and so there is a unique path Pi ⊆ H(xi+1) from wi to vi+1 in H.

By minimality of H↓(R), it follows that H↓(R)(x1) = {v1} and H↓(R)(xi+1) = V (Pi)

for each i > 1. Hence H↓(R) is a ray. �

Definition 6.3.12. Let G be a graph, R be a family of disjoint rays in G and let H

be a tidy IG. We will write H↓(R) for the family (H↓(R) : R ∈ R).

Definition 6.3.13. For an end ω of G and H ⊆ Γ a tidy IG, we denote by H(ω) the

unique end of Γ containing all rays H↓(R) for R ∈ ω.

It is an easy check that if two rays R and S in G are equivalent, then also H↓(R) and

H↓(S) are rays (Lemma 6.3.11) which are equivalent in H, and hence also equivalent in

Γ.

6.3.3. Transitional linkages and the strong linking lemma.

Definition 6.3.14. We say a linkage is transitional if the function which it induces

between the corresponding ray graphs is a transition function.
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Lemma 6.3.15. Let Γ be a graph and ε ∈ Ω(Γ). Then for any collections R =

(R1, . . . , Rn) and S = (S1, . . . , Sn) of ε-rays in Γ there is a finite set X such that ev-

ery linkage after X is transitional.

Proof. By definition, for every function σ : [n]→ [n] which is not a transition function

from R to S there is a finite set Xσ ⊆ V (Γ) such that there is no linkage from R to S
after Xσ which induces σ. If we let Φ be the set of σ which are not transition functions

then the set X :=
⋃
σ∈Φ Xσ satisfies the conclusion of the lemma. �

In addition to Lemma 6.2.2 we will also need the following stronger linking lemma,

which is a slight modification of [31, Lemma 4.4]:

Lemma 6.3.16 (Strong linking lemma). Let Γ be a graph and ω ∈ Ω(Γ). Let X be a

finite set of vertices, n ∈ N, and R = (Ri : i ∈ [n]) a family of vertex disjoint rays in ω.

Let xi = init(Ri) and x′i = init(T (Ri, X)). Then there is a finite number N = N(R, X)

with the following property: For every collection (Hj : j ∈ [N ]) of vertex disjoint subgraphs

of Γ, all disjoint from X and each including a specified ray Sj in ω, there is a j ∈ [N ]

and a transitional linkage P = (Pi : i ∈ [n]) from R to (Sj : j ∈ [N ]) which is after X and

such that the family

T =
(
xiRix

′
iPiyσ(i)Sσ(i) : i ∈ [n]

)
avoids Hj.

Proof. Let Y ⊆ V (Γ) be a finite set as in Lemma 6.3.15. We apply the strong linking

lemma established in [31, Lemma 4.4] to the set X ∪Y to obtain this version of the strong

linking lemma. �

Lemma and Definition 6.3.17. Let Γ be a graph, ε ∈ Ω(Γ), X ⊆ V (Γ) be finite, and

let R = (Ri : i ∈ I1), S = (Si : i ∈ I2) be two finite families of disjoint ε-rays with |I1| 6
|I2|. Then there is a finite subgraph Y ⊆ C(X, ε) such that for any transition function σ

between R and S there is a linkage Pσ from R to S inducing σ with
⋃
Pσ ⊆ Γ[Y ].

We call such a set Y a transition box between R and S (after X).

Proof. Let σ : I1 → I2 be a transition function between R and S. By definition there

is a linkage Pσ from R to S after X which induces σ. Note that, since Pσ is after X, it

follows that
⋃
Pσ ⊆ C(X, ε).

Let Φ be the set of all transition functions between R and S and let Y =
⋃
σ∈ΦPσ.

Then Y is a transition box between R and S (after X). �

Remark and Definition 6.3.18. Let Γ be a graph and ε ∈ Ω(Γ). Let R1, R2, R3

be finite families of disjoint ε-rays, P1 a transitional linkage from R1 to R2 and P2 a

transitional linkage from R2 to R3 after
⋃
P2.

(1) P2 is also a transitional linkage from (R1 ◦P1 R2) to R3.
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(2) The linkage from R1 to R3 yielding the rays (R1 ◦P1 R2) ◦P2 R3, which we call

the concatenation P1 + P2 of P1 and P2 is transitional.

The following lemmas are simple exercises.

Lemma 6.3.19. Let (Ri : i ∈ I) be a disjoint finite family of ε-rays, then the ray graph

RG(Ri : i ∈ I) is connected. Also, if R′i is a tail of Ri for each i ∈ I, then RG(Ri : i ∈
I) = RG(R′i : i ∈ I). �

Lemma 6.3.20 ([32, Lemma 3.4]). Let G be a graph, H ⊆ G, R = (Ri : i ∈ I) be a finite

disjoint family of rays in H and let S = (Sj : j ∈ J) be a finite disjoint family of rays in

G−V (H), where I and J are disjoint. Then RGH(R) is a subgraph of RGG(R∪S)
[
I
]
. �

6.4. Extensive tree-decompositions and self minors

The purpose of this section is to explain the extensive tree decompositions mentioned in

the proof sketch. Some ideas motivating this definition are already present in Andreae’s

proof that locally finite trees are ubiquitous under the topological minor relation [10,

Lemma 2].

6.4.1. Separations and tree-decompositions of graphs.

Definition 6.4.1. Let T be a tree with a root v ∈ V (T ). Given nodes x, y ∈ V (T )

let us denote by xTy the unique path in T between x and y, by Tx denote the component

of T − E(vTx) containing x, and by Tx the tree T − Tx.
Given an edge e = tt′ ∈ E(T ), we say that t is the lower vertex of e, denoted by e−, if

t ∈ vT t′. In this case, t′ is the higher vertex of e, denoted by e+.

If S is a subtree of a tree T let us write ∂(S) = E(S, T \ S) for the edge cut between

S and its complement in T .

Definition 6.4.2. Let G = (V,E) be a graph. A separation of G is a pair (A,B) of

subsets of vertices such that A ∪ B = V and such that there is no edge between B \ A
and A \ B. Given a separation (A,B) we write G[B] for the graph obtained by deleting

all edges in the separator A ∩B from G[B].

A reader unfamiliar with tree-decompositions may also consult [54, §12.3].

Definition 6.4.3 (Tree-decomposition). Given a graphG = (V,E) a tree-decomposition

of G is a pair (T,V) consisting of a rooted tree T , together with a collection of subsets of

vertices V = (Vt ⊆ V (G) : t ∈ V (T )) such that:

• V (G) =
⋃
V ;

• For every edge e ∈ E(G) there is a t ∈ V (T ) such that e lies in G[Vt];

• Vt1 ∩ Vt3 ⊆ Vt2 whenever t2 ∈ V (t1Tt3).

The vertex sets Vt for t ∈ V (T ) are called the parts of the tree-decomposition (T,V).
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Definition 6.4.4 (Tree-width). Suppose (T,V) is a tree-decomposition of a graph G.

The width of (T,V) is the number sup {|Vt| − 1: t ∈ V (T )} ∈ N ∪ {∞}. The tree-width of

a graph G is the least width of any tree-decomposition of G.

Definition 6.4.5 (Separations induced by tree-decompositions). Given a tree-decomposition

(T,V) of a graph G, and an edge e ∈ E(T ), let

• A(e) :=
⋃
{Vt′ : t′ /∈ V (Te+)},

• B(e) :=
⋃
{Vt′ : t′ ∈ V (Te+)}, and

• S(e) := A(e) ∩B(e) = Ve− ∩ Ve+ .

Then (A(e), B(e)) is a separation of G (cf. [54, 12.3.1]). We call B(e) the bough of

(T,V) rooted in e and S(e) the separator of B(e). When writing G[B(e)] it is implicitly

understood that this refers to the separation (A(e), B(e)) (cf. Definition 6.4.2.)

Definition 6.4.6. Let (T,V) be a tree-decomposition of a graph G. For a subtree

S ⊆ T let us write

G(S) = G

 ⋃
t∈V (S)

Vt


and if H is an IG we write H(S) = H(G(S)) for the restriction of H to G(S).

Definition 6.4.7 (Self-similar bough). Let (T,V) be a tree-decomposition of a graph

G. Given e ∈ E(T ), the bough B(e) is called self-similar (towards an end ω of G), if there

is a set {Re,s : s ∈ S(e)} of disjoint ω-rays in G such that for all n ∈ N there is an edge

e′ ∈ E(Te+) with dist(e, e′) > n such that

• for each s ∈ S(e) the ray Re,s starts in s and meets S(e′);

• there is a subgraph W ⊆ G[B(e′)] which is an inflated copy of G[B(e)];

• for each s ∈ S(e), we have V (Re,s) ∩ S(e′) ⊆ W (s).

Such an W is called a witness for the self-similarity of B(e) of distance at least n.

Definition 6.4.8 (Extensive tree-decomposition). A tree-decomposition (T,V) of G

is extensive if

• T is a locally finite, rooted tree;

• each part of (T,V) is finite;

• every vertex of G appears in only finitely many parts of V , and

• for each e ∈ E(T ), the bough B(e) is self-similar towards some end ωe of G.

The following is the main result of this paper.

Theorem 6.4.9. Every locally finite connected graph admitting an extensive tree-

decomposition is 4-ubiquitous.
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6.4.2. Self minors and push-outs. The existence of an extensive tree-decomposition

of a graph G will imply the existence of many self-minors of G, which will be essential to

our proof.

Throughout this subsection, let G denote a locally finite, connected graph with an

extensive tree-decomposition (T,V).

Definition 6.4.10. Let (A,B) be a separation of G with A ∩ B = {v1, v2, . . . , vn}.
Suppose H1, H2 are subgraphs of a graph Γ where H1 is an inflated copy of G[A], H2 is an

inflated copy of G[B] and for all vertices x, y ∈ G, H1(x) ∩H2(y) 6= ∅ only if x = y = vi

for some i. Suppose further that P is a family of disjoint paths (Pi : i ∈ [n]) in Γ such that

each Pi is a path from H1(vi) to H2(vi) which is otherwise disjoint from H1 ∪ H2. Note

that Pi may be a single vertex if H1(vi) ∩H2(vi) 6= ∅.
We write H1 ⊕P H2 for the IG given by (H,ϕ) where H =

⋃
i∈[n] Pi ∪H1 ∪H2 and

H(v) = ϕ−1(v) :=


H1(vi) ∪ V (Pi) ∪H2(vi) if v = vi ∈ A ∩B,
H1(v) if v ∈ A \B,
H2(v) if v ∈ B \ A.

Definition 6.4.11 (Push-out). A self minor G′ ⊆ G (meaning G′ is an IG) is called a

push-out of G along e to depth n for some e ∈ E(T ) if there is an edge e′ ∈ Re such

that dist(e−, e′−) > n and a subgraph W ⊆ B(e′) which is an IG[B(e)] such that

G′ = G[A(e)]⊕P W , where P = (Ps : s ∈ S(e)) is defined as the family of paths where Ps
is the initial segment of Re,s up to the first point it meets W (s).

Similarly, if H is an IG then a subgraph H ′ of H is a push-out of H along e to depth n

for some e ∈ E(T ) if there is an edge e′ ∈ Re such that dist(e−, e′−) > n and a subgraph

W ⊆ H(B(e′)) which is an IG[B(e)] such that

H ′ = H(G[A(e)])⊕P W

where P = (Ps : s ∈ S(e)) is defined as the family of paths where Ps is the initial segment

of H↓(Re,s) up to the first point it meets W (s).

Note that, if G′ is a push-out of G along e to depth n then H(G′) has a subgraph

which is a push-out of H along e to depth n.

Lemma 6.4.12. For each e ∈ E(T ), each n ∈ N and each witness W of the self-

similarity of B(e) of distance at least n there is a corresponding push-out GW := G[A(e)]⊕P W
of G along e to depth n, where P = (Ps : s ∈ S(e)) is defined as the family of paths where

Ps is the initial segment of Re,s up to the first point it meets W (s).

Proof. Given an edge e ∈ E(T ), by Definition 6.4.7 for every n ∈ N there is a witness

W for the self-similarity of B(e) of distance at least n along the ray Re.
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Explicitly there is a family of rays (Re,s : s ∈ S(e)) such that for every n ∈ N there is

an edge e′ ∈ E(Te+) of distance at least n from e, and a subgraph W ⊆ G[B(e′)], such

that

• for each s ∈ S(e) the ray Re,s starts in s and meets S(e′);

• W is an inflated copy of G[B(e)];

• for each s ∈ S(e), we have V (Re,s) ∩ S(e′) ⊆ W (s).

Since (A(e), B(e)) and (A(e′), B(e′)), and W ⊆ B(e′) it is clear that W ∩ G[A(e)] ⊆
S(e), and since

Let us define P = (Ps : s ∈ S(e)) as in the statement of the lemma. It is clear that

each Ps is from G[A(e)](s) to W (s), and is otherwise disjoint from G[A(e)] ∪W .

Furthermore, since (A(e), B(e)) and (A(e′), B(e′)) are nested separations of G, A(e)∩
V (W ) ⊆ S(e)∩S(e′). Hence if W (s)∩G[A(e)](s′) 6= ∅ it follows that s′ ∈ S(e)∩S(e′), and

hence s′ ∈ V (Re,s′)∩S(e′) ⊆ W (s′), by Definition 6.4.7. In particular, W (s)∩G[A(e)](s′) 6=
∅ only if s = s′ ∈ S(e).

Hence, by Definitions 6.4.10 and 6.4.11, G[A(e)]⊕P W is well-defined and is indeed a

push-out of G along e to depth n. �

The existence of push-out of G along e to arbitrary depths is in some sense the essence

of extensive tree-decompositions, and lies at the heart of our inductive construction in

Section 6.9.

6.5. Existence of extensive tree-decompositions

The purpose of this section is to examine two classes of locally finite connected graphs

that have extensive tree-decompositions: Firstly, the class of graphs with finitely many

ends, all of which are thin, and secondly the class of graphs of finite tree-width. We will

deduce the existence of such tree-decompositions using some results about the well-quasi-

ordering of certain classes of graphs.

A quasi-order is a a reflexive and transitive binary relation, such as the minor relation

between graphs. A quasi-order 4 on a set X is a well-quasi-order if for all sequences

x1, x2, . . . ∈ X there exists an i < j such that xi 4 xj. The following two alternative

characterisations will be useful.

Remark 6.5.1. A simple Ramsey type argument shows that if 4 is a well-quasi-order

on X, then every sequence x1, x2, . . . ∈ X contains an increasing subsequence xi1 , xi2 , . . . ∈
X. That is, an increasing sequence i1 < i2 < . . . such that xij 4 xik for all j < k.

Also, it is simple to show that if 4 is a well-quasi-order on X and x1, x2, . . . ∈ X, then

there is an i0 ∈ N such that for every i > i0 there are infinitely many j ∈ N with xi 4 xj.

A famous result of Robertson and Seymour [136], proved over a series of 20 papers,

shows that finite graphs are well-quasi-ordered under the minor relation. Thomas [149]
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showed that for any k ∈ N the class of graphs with tree-width 6 k is well-quasi-ordered

by the minor relation.

We will use slight strengthenings of both of these result, Lemma 6.5.3 and Lemma

6.5.11, to show that our two classes of graphs admit extensive tree-decompositions.

In Section 6.10 we will discuss in more detail the connection between our proof and

well-quasi-ordering, and indicate how stronger well-quasi-ordering results could be used to

prove the ubiquity of larger classes of graphs.

6.5.1. Finitely many thin ends. We will consider the following strengthening of

the minor relation.

Definition 6.5.2. Given ` ∈ N an `-pointed graph is a graph G together with a point

function π : [`] → V (G). For `-pointed graphs (G1, π1) and (G2, π2), we say (G1, π1) 4p
(G2, π2) if G1 4 G2 and this can be arranged in such a way that π2(i) is contained in the

branch set of π1(i) for every i ∈ [`].

Lemma 6.5.3. The set of `-pointed finite graphs is well-quasi-ordered under the relation

4p.

Proof. This follows from a stronger statement Robertson and Seymour proved in

[137, 1.7]. �

We will also need the following structural characterisation of locally finite one-ended

graphs with a thin end due to Halin.

Lemma 6.5.4. Every one-ended, locally finite connected graph G with a thin end of

degree k ∈ N has a tree-decomposition (R,V) of G such that R = t0t1t2 . . . is a ray, and

for every i ∈ N:

• |Vti | is finite;

• |S(ti−1ti)| = k;

• S(ti−1ti) ∩ S(titi+1) = ∅.

Proof. See [85, Satz 3′]. �

Note that in the above lemma, for a given finite set X ⊆ V (G), by taking the union

over an initial segment of parts, one may always assume that X ⊆ Vt0 . Moreover, note

that since S(ti−1ti) ∩ S(titi+1) = ∅, it follows that every vertex of G is contained in at

most two parts of the tree-decomposition.

Lemma 6.5.5. Every one-ended, locally finite connected graph G with a thin end has

an extensive tree decomposition (R,V) where R = t0t1t2 . . . is a ray with root t0.

Proof. Let k ∈ N be the degree of the thin end of G, and let R = {Rj : j ∈ [k]} be

a maximal collection of disjoint rays in G. Let (R′,W) be the tree-decomposition of G

given by Lemma 6.5.4 where R′ = t′0t
′
1 . . . a ray.
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Without loss of generality (taking the union over the first few parts, and considering

tails of rays if necessary) we may assume that each ray in R starts in S(t′0t
′
1). Note that

each ray in R meets the separator S(t′i−1t
′
i) for each i ∈ N. Since R is a disjoint family of

k rays and |S(t′i−1t
′
i)| = k for each i ∈ N, each vertex in S(t′i−1t

′
i) is contained in a unique

ray in R.

Let ` = 2k and consider a sequence (Gi, πi)i∈N of `-pointed finite graphs defined by

Gi := G[Wt′i
] and

πi : [`]→ V (Gi), j 7→

 the unique vertex in S(t′i−1t
′
i) ∩ V (Rj) for 1 ≤ j ≤ k,

the unique vertex in S(t′it
′
i+1) ∩ V (Rj−k) for k < j ≤ 2k = `.

By Lemma 6.5.3 and Remark 6.5.1 there is an n0 such that for every n > n0 there are

infinitely many m > n with (Gn, πn) 4p (Gm, πm).

Let Vt0 :=
⋃n0

i=0Wt′i
and Vti := Wt′n0+i

for all i ∈ N. We claim that (R, (Vti : i ∈ N)) is

the desired extensive tree-decomposition of G where R = t0t1t2 . . . is a ray with root t0.

The ray R is a locally finite tree and all the parts are finite. Moreover, every vertex of

G is contained in at most two parts. It remains to show that for every i ∈ N, the bough

B(ti−1ti) is self-similar.

Let e = ti−1ti. Let us label R = {Re,s : s ∈ S(e)} where Re,s is the unique ray in

R containing s. We wish to show there is a witness W for the self-similarity of B(e) of

distance at least n for each n ∈ Nbb. Note that B(e) =
⋃
j>0Gn0+i+j. By the choice of n0

in Remark 6.5.1, there exists m > i + n such that (Gn0+i, πn0+i) 4p (Gn0+m, πn0+m). Let

e′ = tm−1tm. We will show that there exists a W ⊆ G[B(e′)] witnessing the self-similarity

of B(e).

Recursively, for each j > 0 we can find m = m0 < m1 < m2 < · · · with

(Gn0+i+j, πn0+i+j) 4p (Gn0+mj , πn0+mj).

In particular there are subgraphs Hmj ⊆ Gn0+mj which are inflated copies of Gn0+i+j, all

compatible with the point-functions. In particular, S(t′n0+mj−1t
′
n0+mj

)∪S(t′n0+mj
t′n0+mj+1) ⊆

Hmj for each j > 0.

Hence for, for every j ∈ N there is a unique Hmj−1
−Hmj subpath Pp,j of Rp. We claim

that

W ′ :=
⋃
j>0

Hmj ∪
⋃
j∈N

⋃
p∈[k]

Pp,j

is a subgraph of G[B(e′)] that is an IG[B(e)].

To prove this claim, for each j ∈ N and each s ∈ S(tj−1tj), let Rp(s) ∈ R be the unique

ray with s ∈ Rp(s). Then W ′(s) = Hmj−1
(s) ∪ Pp(s),j ∪Hmj(s) is a connected branch set.

Indeed, by construction, every Pp,j is a path from πn0+mj−1
(k+p) to πn0+mj(p). And since

the Hmj are pointed minors of Gn0+mj , it follows that πn0+mj−1
(k + p(s)) ∈ Hmj−1

(s) and

πn0+mj(p(s)) ∈ Hmj(s) are as desired.
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Finally, since (Gn0+i, πn0+i) 4p (Gn0+m, πn0+m) as witnessed by Hm0 , the branch set

of each s ∈ S(ti−1ti) must indeed include V (Re,s) ∩ S(e′). �

Lemma 6.5.6. If G is a locally finite connected graph with finitely many ends, each of

which is thin, then G has an extensive tree-decomposition.

Proof. Let Ω(G) = {ω1, . . . , ωn} be the set of the ends of G. Pick a finite set X ⊆ V

of vertices separating the ends of G, i.e. so that all Ci = C(X,ωi) are pairwise disjoint.

Without loss of generality we may assume that V (G) = X ∪
⋃
i∈[n] Ci.

Let Gi := G[Ci ∪ S]. Then each Gi is a locally finite connected one-ended graph,

with a thin end ωi, and hence by Lemma 6.5.5 each of the Gi admits an extensive tree-

decomposition (Ri,V i) with root ri ∈ V (Ri). Without loss of generality, X ⊆ V i
ri for each

i ∈ [n].

Let T be the tree formed by identifying the family of rays (Ri : i ∈ [n]) at their

roots, let r be the root of T , and let (T,V) be the tree-decompositions whose root part is⋃
i∈[n] V

i
ri , and which otherwise agrees with the (Ri,V i). It is a simple check that (T,V) is

an extensive tree-decomposition of G. �

6.5.2. Finite tree-width.

Definition 6.5.7. A rooted tree-decomposition (T,V) of G is lean if for any k ∈ N,

any two nodes t1, t2 ∈ V (T ) and any Xt1 ⊆ Vt1 , Xt2 ⊆ Vt2 such that |Xt1 |, |Xt2| ≥ k there

are either k disjoint paths in G, between X1 and X2, or there is a vertex t on the path in

T between tl and t2 such that |Vt| < k.

Remark 6.5.8. Kř́ı̌z and Thomas [105] showed that if G has tree-width ≤m for some

m ∈ N, then G has a lean tree-decomposition of width ≤m.

Lemma 6.5.9. If G is a connected locally finite graph and (T, (Vt : t ∈ T )) a lean tree-

decomposition of G such that every Vt is finite, then there is a locally finite subtree S of

T such that (S, (Vt : t ∈ S)) is also a lean tree-decomposition of G.

Proof. Pick a arbitrary root r of T . We will build recursively finite subtrees of T

whose union will be the desired locally finite tree. Let S0 = L0 = {r}. For each n ∈ N let

Ln be the set of leaves of Sn.

Consider some t ∈ Ln. Since Vt is finite and G is locally finite, the set Ct of components

of G−Vt is finite. Then, for each edge e leaving Tn with t = e− we have, by the definition

of a tree-decomposition, that there is some subset Ce ⊆ Ct such that⋃
Ce ⊆ B(e) ⊆

⋃
Ce ∪ Vt.

For each of the finitely may sets C ⊆ Ct appearing as some Ce pick an arbitrary e which

witnesses this. Let Et ⊆ E(T ) be the set of all e chosen in this way, note that Et is finite.

Let Sn+1 be Sn ∪ Et.
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Finally, we let S :=
⋃
n∈N Sn. It is simple to check that S is a locally finite tree and

that (S, {Vt | t ∈ S}) is indeed a lean tree-decomposition of G. �

Lemma 6.5.10. Let G be a locally finite, connected graph, and let (T,V) be a lean tree-

decomposition of G with root r and width ≤m, with T locally finite. Then there exists a

lean tree-decomposition of G with width ≤m such that every bough is connected, and the

decomposition tree is locally finite. Moreover, we may assume that every vertex appears in

only finitely many parts.

Proof. Let D0 := {r} and (T0,V0) := (T,V). For i ∈ N let

Di := {e ∈ E(Ti−1) : distTi(r, e
−) = i}.

Construct (Ti,Vi) from (Ti−1,Vi−1) by performing the following operation for each edge

e ∈ Di:

Let t = t+e and let C1, . . . , Cn be the connected components of B(e). Replace the

subtree Tt with nTt. For each s ∈ Tt there are k copies of s in nTt which we will call

s1, . . . , sk. For each s ∈ Tt and k ∈ [n] let Vsk := Ck ∩ Vs. Finally, let T̂ =
⋃
i∈N Ti[{t ∈

Ti | dTi(r, t) ≤ i}] and V̂ = (Vt | t ∈ T̂ ).

It is simple to check that (T̂ , V̂) is a tree-decomposition of width ≤m, that T̂ is locally

finite, and by construction B(e) is connected for each e ∈ E(T ). Furthermore, suppose

k ∈ N, t1, t2 ∈ T̂ and Xt1 ⊆ V̂t1 , Xt2 ⊆ V̂t2 are such that |Xt1|, |Xt2 | ≥ k. By construction,

there are nodes t′1 and t′2 of T such that Xt1 ⊆ V̂t1 ⊆ Vt′1 , Xt2 ⊆ V̂t2 ⊆ Vt′2 . Thus, since

(T,V) is lean, either there is a vertex t′ of T between t′1, t
′
2 such that |Vt′| < k or there are

k disjoint paths between Xt1 and Xt2 in G. However, in the first case, by construction,

there also is a node t of T̂ between t1 and t2 such that V̂t ⊆ Vt′ . Thus, (T̂ , V̂) is indeed

lean.

Suppose there is an edge e = st ∈ T̂ , such that B(e) if finite, but T̂t is infinite. Since

V̂x ⊆ B(e) for any vertex x ∈ V (T̂t), the set {V̂x : x ∈ V (T̂t)} is finite. Hence, there is

a finite subtree T t ⊆ T̂t which contains at least one node for each of these bags. Let us

replace, for each minimal e ∈ E(T ) with B(e) finite, the subtree T̂t with T t, to give a

tree T , and let V = (V̂t : t ∈ V (T )). Then, (T ,V) is a lean-tree decomposition with width

≤m such that T is locally finite and every bough B(e) is connected. Moreover it has the

following property

(†) For every t ∈ V (T ), if T t is infinite, then so is B(e).

Finally, suppose for a contradiction that there are vertices which appear in infinitely

many parts of (T ,V). Let X be a ⊆-maximal set of vertices appearing as a subset in

infinitely many parts of (T ,V). Note that X is finite, since every part has size at most

m. Since T is locally finite and (T ,V) is a tree-decomposition, there is a ray R in T such

that X appears as a subset in every part corresponding to a node of R. We may assume

without loss of generality that R ⊆ T r where r = init(R). Since for each t ∈ R the subtree
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T t contains a tail of R, it is infinite, and hence by (†) B(e) is infinite and X ⊆ B(e) for

every e ∈ R,. Since B(e) is connected, X has a neighbour in B(e) \ X. However, since

G is locally finite, X has only finitely many neighbours, and by ⊆-maximality of X each

neighbour appears in only finitely many parts of (T ,V), and so in only finitely many sets

B(e) with e ∈ R. This contradicts the fact that X has a neighbour in every B(e) \X. �

Lemma 6.5.11. For all k, ` ∈ N the class of `-pointed graphs with tree-width ≤k is

well-quasi-ordered under the relation 4p.

Proof. This is a consequence of a result of Thomas [149]. �

Lemma 6.5.12. Every locally finite connected graph of finite tree-width has an extensive

tree-decomposition.

Proof. Let G be a locally finite connected graph of tree-width m ∈ N. By Lemma

6.5.9 there is a lean tree-decomposition (T,V) of G with width m, such that T is a locally

finite tree with root r. By Lemma 6.5.10 we may assume that every vertex is contained

in only finitely many parts of this tree-decomposition.

Let ε be an end of T and let R be the unique ε-ray starting at the root of T . Let

dε = lim infe∈R |S(e)|, and fix a tail tε0t
ε
1 . . . of R such that |S(tεi−1t

ε
i)| > dε for all i ∈ N.

Note that |S(tεik−1t
ε
ik

)| = dε for an infinite sequence i1 < i2 < · · · of indices.

Since (T,V) is lean, there are dε disjoint paths between S(tωik−1t
ω
ik

) and S(tωik+1−1t
ω
ik+1

)

for every k ∈ N. Moreover, since each S(tωik−1t
ω
ik

) is a separator of size dε, these paths are

all internally disjoint. Hence, since every vertex appears in only finitely many parts, by

concatenating these paths, we get a family of dε many disjoint rays in G.

Fix one such family of rays (Rε
j : j ∈ [dε]). We claim that there is an end ω of G such

that Rε
j ∈ ω for all j ∈ [dε]. Indeed, if not then there is a finite set X separating some pair

of rays R and R′. However, since each vertex appears in only finitely many parts, there is

some k ∈ N such that X ∩ Vt = ∅ for all t ∈ Ttεik−1
. By construction R and R′ have tails

in B(tωik+1−1t
ω
ik+1

)) which is connected, and disjoint from X, contradicting the fact that X

separates R and R′.

For every k ∈ N we define a point-function πεik : [dε]→ S(tεik−1t
ε
ik

) by letting πεik(j) be

the unique vertex in Rε
j ∩ S(tεik−1t

ε
ik

).

By Lemma 6.5.11 and Remark 6.5.1, the sequence (G[B(tεik−1t
ε
ik

)], πεik)k∈N>0 has an

increasing subsequence (G[B(tεi−1t
ε
i)], π

ε
i )i∈Iε , i.e. for any k, j ∈ Iε, k < j we have

(G[B(tεk−1t
ε
k)], π

ε
k) 4p (G[B(tεj−1t

ε
j)], π

ε
j).

Let us define Fε = {tεk−1t
ε
k : k ∈ Iε} ⊆ E(T ).

Consider T− = T −
⋃
ε∈Ω(T ) Fε, and let us write C(T−) for the components of T−. We

claim that every component C ∈ C(T−) is a locally finite rayless tree, and hence finite.

Indeed, if C contains a ray R ⊆ T then R is in an end ε of T and hence Fε ∩ R 6= ∅, a

contradiction. Consequently, also each set
⋃
t∈C Vt is finite.
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Let us define a tree decomposition (T ′,V ′) on T ′ = T/C(T−) where V ′t′ =
⋃
t∈t′ Vt. We

claim this is an extensive tree-decomposition.

Clearly, T ′ is a locally finite tree, and each part of (T ′,V ′) is finite, and every vertex

of G in contained in only finitely many parts of the tree-decomposition. Give e ∈ E(T ′)

there is some ε ∈ Ω(T ) such that e ∈ Fε. Consider the family of rays (Re,j : j ∈ [dε]) given

by Re,j = Rε
j ∩B(e). Let ωe be the end of G in which the rays Re,j lie.

There is some k ∈ N such that e = tεk−1t
ε
k. Given n ∈ N let k′ ∈ Iε be such that

there are at least n indices ` ∈ Iε with k < ` < k′, and let e′ = tεk′−1t
ε
k′ . Note that

e′ ∈ Fε and hence e′ ∈ E(T ′). Furthermore, by construction e′ has distance at least

n from e in T ′. Since G[B(e)] = G[B(tεk−1t
ε)] and G[B(e′)] = G[B(tεk′−1t

ε
k′)] we have

(G[B(e)], πεk) 4p (G[B(e′)], πεk′), witnessing the self-similarity of B(e) towards ωe with the

rays (Re,j : j ∈ [dε]). �

Remark 6.5.13. If for every ` ∈ N the class of `-pointed locally finite graphs without

thick ends is well-quasi-ordered under 4p, then every locally finite graph without thick

ends has an extensive tree-decomposition. This follows by a simple adaptation of the proof

above.

6.5.3. Special graphs. We note that, whilst Lemmas 6.5.6 and 6.5.12 show that

a large class of locally finite graphs have extensive tree-decompositions, for many other

graphs it is possible to construct an extensive tree-decomposition ‘by hand’. In particular,

the fact that no graph in these classes has a thick end is an artefact of the method of

proof, rather than a necessary condition for the existence of such a tree-decomposition, as

is demonstrated by the following examples:

Remark 6.5.14. The grid Z × Z has an extensive tree-decomposition, as can be seen

in Figure 6.2. More explicitly, we can take a ray decomposition of the grid given by a

sequence of increasing diamond shaped regions around the origin. It is easy to check that

every bough will self similar.

A similar argument shows that the half-grid has an extensive tree-decomposition. How-

ever, we note that both of these graphs were already be shown to be ubiquitous in [32].

In fact, we do not know of any construction of a locally finite graph which does not

admit an extensive tree-decomposition.

Question 6.5.15. Do all locally finite graphs admit an extensive tree-decomposition?

6.6. The structure of non-pebbly ends

We will need a structural understanding of how the arbitrarily large families of IGs

(for some fixed graph G) can be arranged inside of some host graph Γ. In particular we are

interested in how the rays of these minors occupy a given end ε of Γ. In [32] we established

the distinction between pebbly and non-pebbly ends, cf. Definition 6.6.4. We showed that
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Figure 6.2. In the grid the boughs are self-similar.

the existence of a pebbly end of Γ already guarantees the existence of a Kℵ0-minor in Γ,

and therefore the following corollary holds:

Corollary 6.6.1 ([32, Corollary 6.4]). Let Γ be a graph with a pebbly end ω and let

G be a countable graph. Then ℵ0G 4 Γ.

We will now analyse the structure of non-pebbly ends and give a description of their

shape. For a fixed set of start vertices we will consider the possible families of disjoint

rays with these start vertices. This shall be made precise in the definition of polypods, cf.

Definition 6.6.7 below. We will investigate how these rays relate in terms of connecting

paths between them and see that, due to the non-pebbly structure of the end, the structure

of possible connections between the rays is somewhat restricted.

6.6.1. Pebble Pushing. Given a path P with end-vertices s and t we say the orien-

tation of P from s to t to mean the total order on the vertices of P where a ≤ b if and

only if a lies on sPb, in this case we say that a lies before b. Note that every path with at

least one edge has precisely two orientations.

Given a cycle C a cyclic orientation of C is an orientation of the graph C which does

not have any sink. Note that any cycle has precisely two cyclic orientations. Given a

cyclic orientation and 3 distinct vertices x, y, z we say that they appear consecutively in

the order (x, y, z) if y lies on the unique directed path from x to z. Given two cycles C,C ′,

each with a cyclic orientation, we say that an injection f : V (C) → V (C ′) preserves the
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cyclic orientation if whenever three distinct vertices x, y and z appear on C in the order

(x, y, z) then their images appear on C ′ in the order (f(x), f(y), f(z)).

A permutation of a finite set X is a bijection ν : X → X. A sequence (x1 . . . xn)

of distinct elements of X is called a cycle of ν if ν(xn) = x1 and ν(xi) = xi+1 for all

i ∈ {1, . . . , n − 1}. In this case n is called the length of the cycle, a cycle of length 1 is

called trivial. The term (x1 . . . xn) is also used to denote the bijection ν which contains

the cycle (x1 . . . xn) and otherwise is the identity on X \ {x1, . . . , xn}. It is a well-known

fact that every bijection can be written as a product of (disjoint) cycles.

We utilise the following results and definitions from [32].

Definition 6.6.2 (Pebble-pushing game). Let G = (V,E) be a graph. We call a tuple

(x1, . . . , xk) ∈ V k a game state (of order k) if xi 6= xj for all i, j ∈ [k] with i 6= j.

The pebble-pushing game (on G) is a game played by a single player. Given a game

state Y = (y1, . . . , yk), we imagine k labelled pebbles placed on the vertices (y1, . . . , yk).

A move for a game state in the pebble-pushing game consists of moving a pebble from a

vertex to an adjacent vertex which does not contain a pebble, or formally, a Y -move is

a game state Z = (z1, . . . , zk) such that there is an ` ∈ [k] such that y`z` ∈ E and yi = zi
for all i ∈ [k] \ {`}.

Let X = (x1, . . . , xk) be a game state. The X-pebble-pushing game (on G) is a pebble-

pushing game where we start with k labelled pebbles placed on the vertices (x1, . . . , xk).

We say a game state Y is achievable in theX-pebble-pushing game if there is a sequence

(Xi : i ∈ [n]) of game states for some n ∈ N such that X1 = X, Xn = Y and Xi+1 is a

Xi-move for all i ∈ [n− 1], that is if there is a sequence of moves that pushes the pebbles

from X to Y .

A graph G is k-pebble-win if Y is an achievable game state in the X-pebble-pushing

game on G for every two game states X and Y of order k.

Lemma 6.6.3 ([32, Lemma 4.2]). Let Γ be a graph, ω ∈ Ω(Γ), m > k be positive

integers and let (Sj : j ∈ [m]) be a family of disjoint rays in ω. For every achievable game

state Z = (z1, z2, . . . , zk) in the (1, 2, . . . , k)-pebble-pushing game on RG(Sj : j ∈ [m]), the

map σ defined via σ(i) := zi for every i ∈ [k] is a transition function4 from (Si : i ∈ [k])

to (Sj : j ∈ [m]).

Definition 6.6.4 (Pebbly ends). Let Γ be a graph and ω an end of Γ. We say ω is

pebbly if for every k there is an n > k and a family R = {R1, . . . , Rn} of disjoint rays in

ω such that RG(Ri : i ∈ [n]) is k-pebble-win. If for some k there is no such family R we

say ω is not k-pebble-win.

Lemma 6.6.5 ([32, Lemma 6.3]). Let Γ be a graph and let ω ∈ Ω(Γ) be a pebbly end.

Then Kℵ0 4 Γ.

4See Definition 6.2.3.
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Recall that a path P = v0v1 . . . vn in a graph G is called a bare if all its inner vertices

have degree 2 in G.

Corollary 6.6.6 ([32, Corollary 5.2]). Let ω be an end of Γ which is not k-pebble-win

and let R = (Ri : i ∈ [m]) be a family of m > k + 2 disjoint rays in ω. Then there is a

bare path P = p1 . . . pn in RG(Ri : i ∈ [m]) such that n > m−k. Furthermore, either each

edge in P is a bridge, or RG(Ri : i ∈ [m]) is a cycle.

6.6.2. Polypods.

Definition 6.6.7. Given an end ω of a graph Γ, a polypod (for ω in Γ) is a pair (X, Y )

of disjoint finite sets of vertices of Γ such that there is at least one family (Ry : y ∈ Y )

of disjoint rays to ω, where Ry begins at y and all the Ry are disjoint from X. Such a

family (Ry) is called a family of tendrils for (X, Y ). The order of the polypod is |Y |. The

connection graph KX,Y of a polypod (X, Y ) is a graph with vertex set Y . It has an edge

between vertices v and w if and only if there is a family (Ry : y ∈ Y ) of tendrils for (X, Y )

such that there is an Rv–Rw-path in Γ disjoint from X and from every other Ry.

Note that the ray graph of any family of tendrils for a polypod must be a subgraph of

the connection graph of that polypod.

Definition 6.6.8. We say that a polypod (X, Y ) for ω in Γ is tight if its connection

graph is minimal amongst connection graphs of polypods for ω in Γ with respect to the

spanning isomorphic subgraph relation, i.e. for no other polypod (X ′, Y ′) for ω in Γ of

order |Y ′| = |Y | is the graph KX′,Y ′ isomorphic to a proper subgraph of KX,Y . (Let us

write H ⊆∼ G if H is isomorphic to a subgraph of G.) We say that a polypod attains its

connection graph if there is some family of tendrils for that polypod whose ray graph is

equal to the connection graph.

Lemma 6.6.9. Let (X, Y ) be a tight polypod, (Ry : y ∈ Y ) a family of tendrils and for

every y ∈ Y let vy be a vertex on Ry. Let X ′ be a finite vertex set disjoint from all vyRy

and including X as well as each of the initial segments Ryv̊y. Let Y ′ = {vy : y ∈ Y }. Then

(X ′, Y ′) is a tight polypod with the same connection graph as (X, Y ).

Proof. The family (vyRy : y ∈ Y ) witnesses that (X ′, Y ′) is a polypod. Moreover

every family of tendrils for (X ′, Y ′) can be extended by the paths Ryvy to obtain a family

of tendrils for (X, Y ). Hence if there is an edge vyvz in KX′Y ′ then there must also be the

edge yz in KX,Y . Thus KX′,Y ′ ⊆∼ KX,Y . But since (X, Y ) is tight we must have equality.

Therefore (X ′, Y ′) is tight as well. �

Lemma 6.6.10. Any tight polypod (X, Y ) attains its connection graph.

Proof. We must construct a family of tendrils for (X, Y ) whose ray graph is KX,Y .

We will recursively build larger and larger initial segments of the rays, together with

disjoint paths between them.
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Precisely this means that, after partitioning N into infinite sets Ae, one for each edge

e of KX,Y , we will construct, for each n ∈ N, a family (P n
y : y ∈ Y ) of paths and a path

Qn such that:

• Each P n
y starts at y.

• Each P n
y has length at least n.

• For m 6 n, the path P n
y extends Pm

y .

• If n ∈ Avw then Qn is a path from P n
v to P n

w .

• If n ∈ Avw then Qn meets no Pm
y with y 6∈ {v, w}.

• All the Qn are disjoint.

• All the P n
y and all the Qn are disjoint from X.

• For any n there is a family (Rn
y : y ∈ Y ) of tendrils for (X, Y ) such that each P n

y

is an initial segment of the corresponding Rn
y , and the Rn

y only meet the Qm with

m 6 n in inner vertices of the P n
y .

It is clear that if we can do this then we will obtain a family of tendrils by letting Ry

be the union of all the P n
y . Furthermore, for any edge e of KX,Y the family (Qn : n ∈ Ae)

will witness that e is in the ray graph of this family. So that ray graph will be the whole

of KX,Y , as required.

So it remains to explain how to carry out this recursive construction. Let vw be the

edge of KX,Y with 1 ∈ Avw. By the definition of the connection graph there is a family

(R1
y : y ∈ Y ) of tendrils for (X, Y ) such that there is a path Q1 from R1

v to R1
w, disjoint

from all other R1
y and from X. For each y ∈ Y let P 1

y be an initial segment of R1
y of length

at least 1 and containing all vertices of Q1 ∩ R1
y. This choice of the P 1

y and of Q1 clearly

satisfies the conditions above.

Now suppose that we have constructed suitable Pm
y and Qm for all m 6 n. For each

y ∈ Y , let yn be the endvertex of P n
y . Let Yn be {yn : y ∈ Y } and

Zn = X ∪
⋃
m6n

⋃
y∈Y

(
V (Pm

y ) ∪ V (Qm)
)
.

Let Xn be Zn \ Yn, and note that every V (Qm) ⊆ Xn for every m. Then by Lemma 6.6.9

(Xn, Yn) is a tight polypod with the same connection graph as (X, Y ).

In particular, letting vw be the edge of KX,Y with n+ 1 ∈ Avw, we have that vnwn is

an edge of KXn,Yn . So there is a family (Sn+1
yn : yn ∈ Yn) of tendrils for (Xn, Yn) together

with a path Qn+1 from Sn+1
vn to Sn+1

wn disjoint from all other Sn+1
yn and from Xn. Now

for any y ∈ Y we let Rn+1
y be the ray yP n

y ynS
n+1
yn and let P n+1

y be an initial segement of

Rn+1
y long enough to include P n

y , of length at least n + 1, and containing all vertices of

Qn+1 ∩Rn+1
y as inner vertices. This completes the recursion step, and so the construction

is complete. �

Lemma 6.6.11. If (X, Y ) is a polypod of order n for ω in Γ with connection graph

KX,Y then for any set of n disjoint ω-rays (Ri : i ∈ [n]) in Γ, RG(Ri : i ∈ [n]) ⊆∼ KX,Y .
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Proof. If we apply the Weak Linking Lemma 6.2.2 to the rays (Ri : i ∈ [n]) and a

family of tendrils for (X, Y ), together with the finite set X, we obtain a family of tendrils

for (X, Y ) whose tails coincide with that of (Ri : i ∈ [n]). Hence, the ray graph of these

tendrils is RG(Ri : i ∈ [n]) and so RG(Ri : i ∈ [n]) ⊆∼ KX,Y . �

Corollary and Definition 6.6.12. Any two polypods for ω in Γ of the same order

which attain their connection graphs have isomorphic connection graphs.

We will refer to the graph arising in this way for polypods of order n for ω in Γ as the

nth shape graph of the end ω. �

6.6.3. Frames. Akin to the transition boxes defined in Lemma 6.3.17 we want to

consider frames, finite subgraphs which are just large enough to include a linkage which,

say, induces a transition function of the family of tendrils of some polypod. This will allow

us to reason about transition functions in terms of graph automorphisms.

Definition 6.6.13. Let Y be a finite set. A Y -frame (L, α, β) consists of a finite graph

L together with two injections α and β from Y to V (L). The set A = α(Y ) is called the

source set and the set B = β(Y ) is called the target set. A weave of the Y -frame is a

family Q = (Qy : y ∈ Y ) of disjoint paths in L from A to B, where the initial vertex of Qy

is α(y) for each y ∈ Y . The weave pattern πQ of Q is the bijection from Y to itself sending

y to the inverse image under β of the endvertex of Qy. In order words, πQ is the function

so that every Qy is an α(y) − β(πQ(y)) path. The weave graph KQ of Q has vertex set

Y and an edge joining distinct vertices u and v of Y precisely when there is a path from

Qu to Qv in L disjoint from all other Qy. We call the Y -frame strait if it has at most one

weave graph and at most one weave pattern. For a graph K with vertex set Y , we say

that the Y -frame is K-spartan if all its weave graphs are subgraphs of K and all its weave

patterns are automorphisms of K.

Connection graphs of polypods and weave graphs of frames are closely connected:

Lemma 6.6.14. Let (X, Y ) be a polypod for ω in Γ attaining its connection graph KX,Y

and let R = (Ry : y ∈ Y ) be a family of tendrils for (X, Y ). Let L be any finite subgraph

of Γ disjoint from X but meeting all the Ry. For each y ∈ Y let α(y) be the first vertex of

Ry in L and β(y) the last vertex of Ry in L. Then the Y -frame (L, α, β) is KX,Y -spartan.

Proof. Since there is some family of tendrils (Sy : y ∈ Y ) attaining KX,Y and there

is by Lemma 6.2.2 a linkage from (Ry : y ∈ Y ) to (Sy : y ∈ Y ) after X and V (L), we may

assume without loss of generality that RG(Ry : y ∈ Y ) is isomorphic to KX,Y .

For a given weave Q = (Qy : y ∈ Y ), applying the definition of the connection graph

to the rays Ryα(y)Qyβ(πQ(y))RπQ(y) shows that KQ is a subgraph of KX,Y and that the

inverse image of any edge of KX,Y under πQ is again an edge of KX,Y , from which it follows

that πQ is an automorphism of KX,Y . �



138 6. UBIQUITY OF GRAPHS WITH EXTENSIVE TREE DECOMPOSITIONS

Corollary 6.6.15. Let (X, Y ) be a polypod for ω in Γ attaining its connection graph

KX,Y and let R = (Ry : y ∈ Y ) be a family of tendrils for (X, Y ). Then for any transition

function σ from R to itself there is a KX,Y -spartan Y -frame for which both σ and the

identity are weave patterns.

Proof. Pick a linkage (Py : y ∈ Y ) from R to itself after X inducing σ. Let L be a

finite subgraph graph of Γ containing all Py as well as a finite segment of each Ry, such

that each Py is a path between two such segments. Then the frame on L which exists by

Lemma 6.6.14 has the desired properties. �

Lemma 6.6.16. Let (X, Y ) be a polypod for ω in Γ attaining its connection graph KX,Y

and let R = (Ry : y ∈ Y ) be a family of tendrils for (X, Y ). Then there is a KX,Y -spartan

Y -frame for which both KX,Y and RG(Ry : y ∈ Y ) are weave graphs.

Proof. By adding finitely many vertices to X if necessary, we may obtain a superset

X ′ of X such that for any two of the Ry if there is any path between them disjoint from

all the other rays and X ′, then there are infinitely many such paths. Let (Sy : y ∈ Y ) be

any family of tendrils for (X, Y ) with connection graph KX,Y .

For each edge e = uv of RG(Ry : y ∈ Y ) let Pe be a path from Ru to Rv disjoint from

all the other Ry and from X ′. Similarly for each edge f = uv of KX,Y let Qf be a path

from Su to Sv disjoint from all the other Sy and from X ′. Let (P ′y : y ∈ Y ) be a linkage

from the Sy to the Ry after

X ′ ∪
⋃

e∈E(RG(Ry : y∈Y ))

Pe ∪
⋃

f∈E(KX,Y )

Qf .

Let the initial vertex of P ′y be γ(y) and the end vertex be β(y). Let π(y) be the element

of Y with β(y) on Rπ(y). Let L be the subgraph of Γ containing all paths of the forms

Syγ(y), Rπ(Y )β(y), P ′y, Pe and Qf .

Letting α be the identity function on Y , it follows from Lemma 6.6.14 that (L, α, β)

is a KX,Y -spartan Y -frame. The paths Qf witness that the weave graph for the paths

Syγ(y)P ′y includes KX,Y and so, by KX,Y -spartanness, must be equal to KX,Y . The paths

Pe witness that the weave graph for the paths Ryβ(y) includes the ray graph of the Ry.

The two must be equal since whenever for two of the Ry there is any path between them,

disjoint from all the other Ry and from X ′, then there are infinitely many disjoint such

paths. �

Hence to understand ray graphs and the transition functions between them it is useful

to understand the possible weave graphs and weave patterns of spartan frames. Their

structure can be captured in terms of automorphisms and cycles:

Definition 6.6.17. Let K be a finite graph. An automorphism σ of K is called local

if it is a cycle (z1 . . . zt) where, for any i 6 t, there is an edge from zi to σ(zi) in K. If
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t > 3 this means that z1 . . . ztz1 is a cycle of K, and we call such cycles turnable. If t = 2

then we call the edge z1z2 of K flippable. We say that an automorphism of K is locally

generated if it is a product of local automorphisms.

Remark 6.6.18. A cycle C in K is turnable if and only if all its vertices have the same

neighbourhood in K−C, and whenever a chord of length ` ∈ N is present in K[C], then all

chords of length ` are present. Similarly an edge e of K is flippable if and only if its two

endvertices have the same neighbourhood in K−e. Thus, if K contains at least 3 vertices,

no vertex of degree one or cutvertex of K can lie on a turnable cycle or a flippable edge. So

vertices of degree one and cutvertices are preserved by locally generated automorphisms.

Lemma 6.6.19. Let (L, α, β) be a Y -frame which is K-spartan but not strait. Then

each of its weave graphs includes a turnable cycle or a flippable edge of K and for any two

of its weave patterns π and π′ the automorphism π−1 · π′ of K is locally generated.

Proof. Suppose not for a contradiction, and let (L, α, β) be a counterexample in

which |E(L)| is minimal. Note that, as L is not strait, there are either at least two weave

patterns for L or there are at least two weave graphs for L. Thus, we can find weaves

P = (Py : y ∈ Y ) and Q = (Qy : y ∈ Y ) such that either KP 6= KQ or πP 6= πQ and

such that either KQ includes no turnable cycle or flippable edge or π−1
P · πQ is not locally

generated. Furthermore, by exchanging P and Q if necessary, we may assume that KP is

not a proper subgraph of KQ.

Each edge of L is in one of P or Q since otherwise we could simply delete it. Similarly

no edge appears in both P and Q since otherwise we could simply contract it. No vertex

appears on just one of Py or Qy since otherwise we could contract one of the two incident

edges. Vertices appearing in neither P nor Q are isolated and so may be ignored. Thus

we may suppose that each edge appears in precisely one of P or Q, and that each vertex

appears in both.

Let Z be the set of those y ∈ Y such that α(y) 6= β(y). For any z ∈ Z let γ(z) be the

second vertex of Pz and let f(z) ∈ Y be chosen such that γ(z) lies on Qf(z). Then since

γ(z) 6= α(f(z)) we have f(z) ∈ Z for all z ∈ Z. Furthermore, Z is nonempty as P and Q
are distinct. Let z be any element of Z. Then since Z is finite there must be i < j with

f i(z) = f j(z), which means that f i(z) = f j−i(f i(z)). Let t > 0 be minimal such that

there is some z1 ∈ Z with z1 = f t(z1).

If t = 1 then we may delete the edge α(z1)γ(z1) and replace the path Pz1 with

α(z1)Qz1γ(z1)Pz1 . This preserves all of πP , πQ and KQ and can only make KP bigger,

contradicting the minimality of our counterexample. So we must have t > 2.

For each i 6 t let zi be f i−1(z1) and let σ be the bijection (z1z2 . . . zt) on Y . Let L′ be

the graph obtained from L by deleting all vertices of the form α(zi). Let α′ be the injection

from Y to V (L′) sending zi to γ(zi) for i 6 n and sending any other y ∈ Y to α(y). Then

(L′, α′, β) is a Y -frame. For any weave (P̂y : y ∈ Y ) in this Y -frame, (α(y)γ(y)P̂y)y∈Y is a
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weave in (L, α, β) with the same weave pattern and whose weave graph includes that of

(P̂y : y ∈ Y ). Thus (L′, α′, β) is K-spartan.

Let P ′y be α′(y)Py and Q′yi be α′(yi)Qσ(yi) for any y ∈ Y . Then we have πQ′ = πQ · σ
and so σ = π−1

Q ·πQ′ is an automorphism of K. For any i 6 t the edge α(zi)γ(zi) witnesses

that ziσ(zi) is an edge of KQ and so σ is local. Hence KQ includes a turnable cycle or a

flippable edge. By the minimality of |E(L)| we know that π−1
P ′ · πQ′ is locally generated

and hence so is π−1
P · πQ = π−1

P ′ · πQ′ · σ−1. This is the desired contradiction. �

Finally, the following two lemmas are the main outcomes of this section:

Lemma 6.6.20. Let (X, Y ) be a polypod attaining its connection graph KX,Y such that

KX,Y is a cycle of length at least 4. Then for any family of tendrils R for this polypod the

ray graph is KX,Y . Furthermore, any transition function from R to itself preserves each

of the cyclic orientations of KX,Y .

Proof. By Lemma 6.6.16 there is some KX,Y -spartan Y -frame for which both KX,Y

and the ray graph are weave graphs. Since KX,Y is a cycle of length at least 4 and hence

has no flippable edges, the ray graph must include a cycle by Lemma 6.6.19 and so since

it is a subgraph of KX,Y it must be the whole of KX,Y . Similarly Lemma 6.6.19 together

with Corollary 6.6.15 shows that all transition functions must be locally generated and so

must preserve the orientation. �

Lemma 6.6.21. Let (X, Y ) be a polypod attaining its connection graph KX,Y such that

KX,Y includes a bare path P whose edges are bridges. Let R be a family of tendrils for

(X, Y ) whose ray graph is KX,Y . Then for any transition function σ from R to itself, the

restriction of σ to P is the identity.

Proof. By Lemmas 6.6.15 and 6.6.19 any transition function must be a locally gen-

erated automorphism of KX,Y , and so by Remark 6.6.18 it cannot move the vertices of the

bare path, which are vertices of degree one or cutvertices. �

6.7. Grid-like and half-grid-like ends

We are now in a position to analyse the different kinds of thick ends which can arise

in a graph in terms of the possible ray graphs and the transition functions between them.

We fix a graph Γ together with a thick end ω of Γ. If ω is pebbly then Kℵ0 4 Γ by Lemma

6.6.5, and every locally finite graph G satisfies ℵ0G 4 Kℵ0 4 Γ.

So in the following we further restrict ourselves to the case that ω is not pebbly; for

this section we fix a number N such that there is no family (Ri : i ∈ [n]) of disjoint rays

with n > N such that RG(Ri : i ∈ [n]) is N -pebble win. Under these circumstances we

get nontrivial restrictions on the ray graphs and the transition functions between them.

There are two essentially different cases, corresponding to the two cases in Corollary 6.6.6:

The grid-like and the half-grid-like case.
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6.7.1. Grid-like ends. The first case is ends which behave like that of the infinite

grid. In this case, all large enough ray graphs are cycles and all transition functions

between them preserve the cyclic order.

Formally, we say that the end ω is grid-like if the (N + 2)nd shape graph for ω is a

cycle. For the rest of this subsection we will assume that ω is grid-like. Let us fix some

polypod (X, Y ) of order N+2 attaining its connection graph. Let (Sy : y ∈ Y ) be a family

of tendrils for (X, Y ) whose ray graph is the cycle CN+2 = KX,Y .

Lemma 6.7.1. Any ray graph K for a set (Ri : i ∈ I) of ω-rays in Γ with |I| > N + 2

is a cycle.

Proof. Let (Ty : y ∈ Y ) be a family of tendrils for (X, Y ) obtained by transitioning

from the Sy to the Ri after X along a linkage, and let σ : Y → I be the function induced

by this linkage. Then by Lemma 6.6.20 the ray graph of the Ty is the cycle KX,Y . We

know by Corollary 6.6.6 that K includes a bare path P such that |V (P )| > |V (K)| −N .

Thus there are distinct vertices y1, y2 ∈ Y with σ(y1), σ(y2) ∈ P and no other vertex in

the image of σ between them on P . Then for any other vertex y of Y there are paths from

y to y1 avoiding y2 and from y to y2 avoiding y1 in KX,Y . Hence there are paths from σ(y)

to each of σ(y1) and σ(y2) avoiding σ(y1)Pσ(y2). Thus none of the edges of σ(y1)Pσ(y2)

is a bridge, so by Corollary 6.6.6 again K is a cycle. �

We will now choose cyclic orientations of all these cycles such that the transition

functions preserve the cyclic orders corresponding to those orientations. To that end, we

fix a cyclic orientation of KX,Y . We say that a cyclic orientation of the ray graph for a

family (Ri : i ∈ I) of at least N+3 disjoint ω-rays is correct if there is a transition function

σ from the Sy to the Ri which preserves the cyclic orientation of KX,Y .

Lemma 6.7.2. For any such family (Ri : i ∈ I) of at least N + 3 disjoint ω-rays there

is precisely one correct cyclic orientation of its ray graph.

Proof. That there is at least one is clear by Lemma 6.2.2. Suppose for a contra-

diction that there are two, and let σ and σ′ be transition functions witnessing that both

orientations of the ray graph are correct. By Lemma 6.6.3 we may assume without loss of

generality that the images of σ and σ′ are the same. Call this common image I ′. Since the

ray graphs of (Ri : i ∈ I) and (Ri : i ∈ I ′) are both cycles, the former is obtained from the

latter by subdivision of edges. Since this doesn’t affect the cyclic order, we may assume

without loss of generality that I ′ = I. By Lemma 6.2.2 again, there is some transition

function τ from the Ri to the Sy. By Lemma 6.6.20 both τ ·σ and τ ·σ′ must preserve the

cyclic order, which is the desired contradiction. �

It therefore makes sense to refer to the correct orientation of a ray graph.
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Corollary 6.7.3. Any transition function between ray graphs on at least N + 3 rays

preserves the correct orientations of the cycles. �

6.7.2. Half-grid-like ends. In this subsection we suppose that ω is thick but neither

pebbly nor grid-like. We shall call such ends half-grid-like, since as we shall shortly see

in this case the ray graphs and the transition functions between them behave similarly to

those for the unique end of the half grid.

We will need to carefully consider how the ray graphs are divided up by their cutver-

tices. In particular, for a graph K and vertices x and y of K we will denote by Cxy(K)

the union of all components of K − x which do not contain y, and we will denote by Kxy

the graph K −Cxy(K)−Cyx(K). We will refer to Kxy as the part of K between x and y.

As in the last subsection, let (X, Y ) be a polypod of order N+2 attaining its connection

graph and let (Sy : y ∈ Y ) be a family of tendrils for (X, Y ) with ray graph KX,Y , which

by assumption is not a cycle. By Corollary 6.6.6 there is a bare path of length at least 2

in KX,Y of which all edges are bridges. Let y1y2 be any edge of that path. Without loss

of generality we have Cy1y2(KX,Y ) 6= ∅.
Let (Ri : i ∈ I) be a family of disjoint rays with |I| > N+3 and let K be its ray graph.

Remark 6.7.4. For any transition function σ from the Sy to the Ri we have σ[Cy1y2(KX,Y )] ⊆
Cσ(y1)σ(y2)(K) and σ[Cy2y1(KX,Y )] ⊆ Cσ(y2)σ(y1)(K). Thus σ[KX,Y ] and Kσ(y1)σ(y2) meet

precisely in σ(y1) and σ(y2).

Lemma 6.7.5. For any transition function σ from the Sy to the Ri the graph Kσ(y1)σ(y2)

is a path from σ(y1) to σ(y2). This path is a bare path in K and all of its edges are bridges.

Proof. Since K is connected, Kσ(y1)σ(y2) must include a path P from σ(y1) to σ(y2).

If it is not equal to that path then it follows from Lemma 6.6.3 that the function σ′, which

we define to be just like σ except for σ′(y1) = σ(y2) and σ′(y2) = σ(y1), is a transition

function from the Sy to the Ri. But then by Remark 6.7.4 we have σ[Cy1y2(KX,Y )] ⊆
Cσ(y1)σ(y2)(K)∩Cσ′(y1)σ′(y2)(K) = Cσ(y1)σ(y2)(K)∩Cσ(y2)σ(y1)(K) = ∅. So this is impossible,

and Kσ(y1)σ(y2) = P . The last sentence of the lemma now follows from the definition of

Kσ(y1)σ(y2). �

Now we fix a transition function σmax so that the path P := Kσmax(y1)σmax(y2) is as

long as possible. If σmax[Cy1y2(KX,Y )] were a proper subset of Cσmax(y1)σmax(y2)(K) then

we would be able to use Lemma 6.6.3 to produce a transition function in which this

path is longer. So we must have σmax[Cy1y2(KX,Y )] = Cσmax(y1)σmax(y2)(K) and similarly

σmax[Cy2y1(KX,Y )] = Cσmax(y2)σmax(y1)(K).

We call P the central path of K and the orientation from σmax(y1) to σmax(y2) the

correct orientation. In the following lemma we use this orientation to determine which

vertices appear before which along P .
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Lemma 6.7.6. For any two vertices v1 and v2 of K, there is a transition function

σ : KX,Y → K with σ(y1) = v1 and σ(y2) = v2 if and only if v1 and v2 both lie on P , with

v1 before v2.

Proof. The ‘if’ direction is clear by applying Lemma 6.6.3 to σmax. For the ‘only if’

direction, we begin by setting c1 = |Cy1y2(KX,Y )| and c2 = |Cy2y1(KX,Y )|. We enumerate

Cy1y2(KX,Y ) as y3 . . . yc1+2 and Cy2y1(KX,Y ) as yc1+3 . . . yc1+c2+2. Then for any N + 2-

tuple (x1 . . . xN+2) of distinct vertices achievable in the (σmax(y1), . . . , σmax(yN+2)) pebble

pushing game must have the following 3 properties, since they are preserved by any single

move:

• x1 and x2 lie on P , with x1 before x2.

• {x3, . . . , xc1+2} ⊆ Cx1x2(K).

• {xc1+3, . . . , xc1+c2+2} ⊆ Cx2x1(K).

Now let σ be any transition function from the Sy to the Ri. Let (x1, . . . , xN+2) be

an N + 2-tuple achievable in the (σmax(y1), . . . , σmax(yN+2)) pebble pushing game such

that {x1, . . . , xN+1} = σ[Y ]. By Lemma 6.6.3 the function σ′ sending yi to xi for each

i 6 N + 2 is also a transition function and σ′[Y ] = σ[Y ]. Let τ be a transition function

from (Ri : i ∈ σ[Y ]) to the Sy. Then by Lemma 6.6.21 both τ · σ and τ · σ′ keep both y1

and y2 fixed. Thus σ(y1) = σ′(y1) = x1 and σ(y2) = σ′(y2) = x2. As noted above, this

means that σ(y1) and σ(y2) both lie on P with σ(y1) before σ(y2), as desired. �

Thus the central path and the correct orientation depend only on our choice of y1 and

y2. Hence we get

Corollary 6.7.7. Each ray graph contains a unique central path with a correct ori-

entation and all transition functions between ray graphs send vertices of the central path

to vertices of the central path and preserve the correct orientation.

We note that, in principle, this trichotomy that an end of a graph is either pebbly, grid-

like or half-grid-like, and the information that this implies about its finite rays graphs,

could be derived from earlier work of Diestel and Thomas [60], who gave a structural

characterisation of graphs without a Kℵ0-minor. However, to introduce their result and

derive what we needed from it would have been at least as hard, if not more complicated,

and so we have opted for a straightforward and self-contained presentation.

6.7.3. Core rays in the half-grid-like case.

Definition 6.7.8. Given a graph G, an end ω and three rays R, S, T in ω such that

R, S, T have disjoint tails, we say that S separates R from T if the tails of R and T disjoint

from S belong to different ends of G− S.

For the following, recall the definition of ray graph in Definition 6.2.4.
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Lemma 6.7.9. Let G be a graph, ω an end of G and (Ri)i∈I a finite family of disjoint

ω-rays. If, for some i1, i2, j ∈ I, the vertices i1 and i2 belong to different components of

RG((Ri)i∈I)− j, then Rj separates Ri1 from Ri2.

Proof. If Ri1 and Ri2 belong to the same end of G−V (Rj), there are infinitely many

disjoint paths between Ri1 and Ri2 in G−V (Rj). Hence, by the pigeonhole principle there

are indices j1 and j2 belonging to different components of RG((Ri)i∈I)−j, such that these

disjoint paths induce infinitely many disjoint paths from Rj1 to Rj2 all disjoint from all

other Ri. Thus there is an edge from j1 to j2 in RG((Ri)i∈I) contradicting the assumption

that i disconnects j1 from j2. �

Lemma 6.7.10. Consider three rays R, S, T belonging to the same end ω of some graph

G. If S separates R from T , then T does not separate R from S and R does not separate

S from T .

Proof. As R and T both belong to ω, there are infinitely many disjoint paths between

them. As S separates R from T , S must meet infinitely many of these paths. Hence, there

are infinitely many disjoint paths from S to R, all disjoint from T . Similarly, there are

infinitely many disjoint paths from S to T , all disjoint from R. Hence T does not separate

R from S and R does not separate S from T . �

Definition 6.7.11. Given a graph G and two (possibly infinite) vertex-sets X and Y ,

we say that an end ω of G−X is a sub-end of an end ω′ of G− Y if every ray in ω has a

tail in ω′.

Definition 6.7.12. Let ω be a half-grid-like end, let R be an ω-ray. We say R is a

core ray (of ω) if there is a finite family R = (Ri : i ∈ I) of disjoint ω-rays with R = Rc

for some c ∈ I such that c lies on, but is not an endpoint, of the central path of R.

Lemma 6.7.13. Let R be a core ray of ω. Then in G−R the end ω splits into precisely

two different ends. (That is, there are two ends ω′ and ω′′ of G−R such that every ω-ray

in G \ V (R) is in ω′ or ω′′.)

Proof. Let R = (Ri : i ∈ I) be a family witnessing that R = Rc for some c ∈ I

is a core ray. Then there are exactly two ends in G \ V (R) which contain rays in R,

since connected components of RG(R) when we delete the vertex corresponding to R are

equivalent sets of rays in G \ V (R) and more over, no two of these connected components

can belong to the same end of G \ V (R) by Lemma 6.7.9.

Suppose there is a third end in G\V (R) that contains an ω-ray S. We first claim that

there is a tail of S which is disjoint from R. Indeed, clearly S is disjoint from R, and if S

met
⋃
R infinitely often then it would meet some Ri ∈ R infinitely often, and hence lie

in the same end of G \ V (R) as Ri. Let us assume then that S is disjoint from R.
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Let us consider the ray graph RG(R∪{S}). Again, if S is adjacent to any ray except

R in the ray graph, it would lie in the same end as some ray in RJ in G \ V (R).

Since S is an ω-ray the ray graph is connected, and hence S is adjacent to R, and R

is still connected to its neighbours in RG(R). However, R ∪ {S} is also a family that

witnesses that R = Rc is a core ray and hence c has degree two in RG(R ∪ {S}), a

contradiction. �

Given a family of rays (Ri)i∈I witnessing that R = Rc is a core ray, we denote

by >(R, (Ri)i∈I) the end of G − V (R) containing rays Ri satisfying i < c and with

⊥(R, (Ri)i∈I) the end containing rays Ri satisfying i > c.

Lemma 6.7.14. Let R and S be disjoint core rays of ω. Let us suppose that ω splits in

G−S in ω′S and ω′′S and in G−R in ω′R and ω′′R. If R belongs to ω′S and S belongs to ω′R,

then ω′′S is a sub-end of ω′R and ω′′R is a sub-end of ω′S.

Proof. Let T be a ray in ω′′S. As R belongs to a different end of G−S than T , there

is a tail of T which is disjoint from R. Thus, we may assume that T and R are disjoint. As

S separates R from T , by Lemma 6.7.10, R does not separate S from T , hence T belongs

to ω′R. �

Lemma and Definition 6.7.15. Let R1 = (Ri : i ∈ I1), R2 = (Ri : i ∈ I2) be two

finite families of disjoint ω-rays both witnessing that for some c ∈ I1 ∩ I2 the ray Rc is a

core ray in ω. Then >(R, (Ri)i∈I1) = >(R, (Ri)i∈I2) and ⊥(R, (Ri)i∈I1) = ⊥(R, (Ri)i∈I2).

We therefore write >(ω,R) for the end >(R, (Ri)i∈I1) and ⊥(ω,R) respectively, i.e

>(ω,R) is the end of G − R containing rays that appear on the central path of some

ray graph before R according to the correct orientation and ⊥(ω,R) is the end of G − R
containing rays that appear on the central path of some ray graph after R according to the

correct orientation. Note that >(ω,R) ∩ ⊥(ω,R) = ∅.

Proof. Suppose, this is not the case, hence ω1 := >(Rc, (Ri)i∈I1) = ⊥(Rc, (Ri)i∈I2)

and ω2 := ⊥(Rc, (Ri)i∈I1) = >(Rc, (Ri)i∈I2). Let RI1ω1 be the set of rays in R1 belonging

to ω1. Let RI1ω2 ,RI2ω1 and RI2ω2 be defined accordingly. If |RI1ω1| > |RI2ω1 | we define

Rω1 to be RI1ω1 , otherwise Rω1 = RI2ω1 . Let Rω2 be defined similarly.

Let us consider R := Rω1 ∪ Rω2 ∪ {Rc}. After replacing some of the rays with tails,

this is a collection of disjoint rays, so let us assume that R itself is a family of disjoint

rays. There is a transition function from RI1 to R mapping Rc to itself, every ray in RI1ω1

to a ray in Rω1 and every ray in RI1ω2 to a ray in Rω2 :

Consider a finite separator X separating ω1 from ω2 in G− V (Rc). Consider linkages

after X in G− V (Rc) from Rω1 to Rω1 and from Rω2 to Rω2 . Pairs of such linkages can

be combined to suitable linkages on G, inducing a transition function which is as desired.

Similarly there is a transition function from RI2 to R mapping Rc to itself, every ray

in RI2ω1 to a ray in Rω1 and every ray in RI2ω2 to a ray in Rω2 .
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These transition functions preserve the central path, thus c lies on the central path

of RG(R). Moreover, R also witness that Rc is a core ray. However, the first transition

function shows that ω1 = >(Rc,R) whereas the second one shows that ω2 = >(Rc,R),

contradicting the assumption that ω1 6= ω2. �

Lemma and Definition 6.7.16. Let core(ω) denote the set of core rays in ω. We

define a partial order 6ω on core(ω) by

R 6ω S if and only if either R = S,

or R and S have disjoint tails xR and yS and xR ∈ >(ω, yS)

for R, S ∈ core(ω).

Proof. For the anti-symmetry let us suppose that R and S are disjoint rays such that

R 6ω S and S 6ω R. Hence, R ∈ >(ω, S) as well as S ∈ >(ω,R). Let RS be a family

of rays witnessing that S is a core ray and RR a family witnessing that R is a core ray.

By Lemma 6.7.14, ⊥(ω, S) is a sub-end of >(ω,R) and ⊥(ω,R) is a sub-end of >(ω, S).

Let R⊥(S) be the subset of RS of rays, which belong to ⊥(ω, S). Let R⊥(R) be defined

accordingly. After replacing rays with tails all rays in R := R⊥(S)∪R⊥(R)∪{R}∪{S} are

pairwise disjoint. More over, R and S both lie on the central path of RG(R) and are both

not endpoints of this central path. Thus either S ∈ ⊥(ω,R) or R ∈ ⊥(ω, S) contradicting

Lemma 6.7.15.

For the transitivity, let us suppose that R, S, T are rays, such that R 6ω S and S 6ω T .

We may assume that R and S, and S and T are disjoint. As 6ω is anti-symmetric, it is

T 66ω S, hence T ∈ ⊥(ω, S). Thus, R and T belong to different ends of G − S, thus we

may assume that they are also disjoint. As S therefore separates R from T , by Lemma

6.7.10, T does not separate S from R. Thus, R and S belong to the same end of G− T .

Hence R ∈ >(ω, T ). �

Remark 6.7.17. Let R, S ∈ core(ω) and let R be a finite family of disjoint ω-rays.

(1) Any ray which shares a tail with R is also a core ray of ω.

(2) If R and S are disjoint, then R and S are comparable under 6ω.

(3) If R and S are on the central path of R, then R 6ω S if and only if R appears

before S in the correct orientation of RG(R).

(4) The maximum number of disjoint rays in ω \ core(ω) is bounded by 2 · (pω + 1).

Lemma 6.7.18. Let R, S ∈ core(ω). Let Z ⊆ V (G) be a finite set such that >(ω, S)

and ⊥(ω, S) are separated by Z in G − V (S). Let H ⊆ G − Z be a connected subgraph

which is disjoint to S and contains R, and let T ⊆ H be some core ω-ray. Then S is in

the same relative 6ω-order to T as to R.

Proof. Assume S 6ω R and hence R ∈ >(ω, S). Since H is connected, we obtain

that T ∈ >(ω, S) as well and hence S 6ω T . The other case is analogous. �
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Lemma and Definition 6.7.19. Let R be a finite family of disjoint core ω-rays. Then

there exists a family R′ of disjoint ω-rays such that RG(R) is precisely the inner vertices

of the central path of RG(R). Even though such a family is not unique, we denote by R
an arbitrary such family.

Definition 6.7.20. If P is a linkage from R to S then a sub-linkage of P is just a

subset of P , considered as a linkage from the corresponding subset of R to S.

Remark 6.7.21. A sub-linkage of a transitional linkage is transitional.

Proof. By Remark 6.7.17(2) the rays in R are linearly ordered by 6ω. Let R de-

note the 6ω-smallest and S denote the 6ω-greatest element of R. As in the proof

of Lemma 6.7.16, consider the sets R⊥(R) and R>(S), which are without loss of gen-

erality minimal with respect to their defining property. Now R⊥(R) ⊆ ⊥(ω,R) and

R′ ∈ >(ω,R) for every R′ ∈ R \ {R} and hence tails of R⊥(R) are disjoint to
⋃
R. Analo-

gously, R>(S) ⊆ >(ω, S) and R′ ∈ ⊥(ω, S) for every R′ ∈ R \ {S} and hence tails of R⊥(R)

are disjoint to
⋃
R. Finally, R>(S) ⊆ >(ω,R) and R⊥(R) ⊆ ⊥(ω, S) by Lemma 6.7.14,

yielding that tails of R>(S) are necessarily disjoint from tails in R⊥(R). Their the union of

those tails with R yields a set R as desired. �

Definition 6.7.22. Let R, S be finite families of disjoint ω-rays and let R′ be a

subfamily of R consisting of core rays. A linkage P between R and S is preserving on R′

if P links R′ to core rays and preserves the order 6ε.

The following remarks are a direct consequence of the definitions and Corollary 6.7.7.

Remark 6.7.23. Let R, S, T be finite families of disjoint ω-rays, let R′ ⊆ R be a

subfamily of core rays, and let P1, P2 be a linkages from R to S and from (R◦P1 S) to T
respectively.

(1) If P1 is transitional and R′ is on the central path of R, then it is preserving on

R′.
(2) If P1 is preserving on R′, then the sub-linkage of P1 from R′ to the respective

subfamily of S is transitional.

(3) If P1 is preserving on R′, then any P ′1 ⊆ P1 as a linkage between the respective

subfamilies is preserving on the respective subfamily of R′.
(4) If P1 is preserving on R′ and P2 is preserving on R′ ◦P1 S, then the concatenation

P1 + P2 is preserving on R′.

Lemma 6.7.24. Let R and S be finite families of disjoint core rays of ω, and let S ′ ⊆ S
be a subfamily of S with |R| = |S ′|. Then there is a transitional linkage from R to S which

is preserving on R and links the rays in R to rays in S ′.

Proof. Consider T := (S \ S) ∪ S ′ ⊆ S. Take a transitional linkage from R to T .

This linkage can be viewed as a linkage fromR to S, is preserving onR by Remark 6.7.23(1),
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and hence the sub-linkage from R to S ′ is also preserving on R by Remark 6.7.23(3) as

well as transitional by Remark 6.7.21. �

6.8. G-tribes and concentration of G-tribes towards an end

To show that a given graph G is 4-ubiquitous, we shall assume that nG 4 Γ for every

n ∈ N and need to show that this implies ℵ0G 4 Γ. To this end we use the following

notation for such collections of nG in Γ which is established in [31] and [32] .

Definition 6.8.1 (G-tribes). Let G and Γ be graphs.

• A G-tribe in Γ (with respect to the minor relation) is a family F of finite col-

lections F of disjoint subgraphs H of Γ such that each member H of F is an

IG.

• A G-tribe F in Γ is called thick, if for each n ∈ N there is a layer F ∈ F with

|F | > n; otherwise, it is called thin.

• A G-tribe F is connected if every member H of F is connected. Note that this is

the case precisely if G is connected.

• A G-tribe F ′ in Γ is a G-subtribe 5 of a G-tribe F in Γ, denoted by F ′ 4 F , if

there is an injection Ψ: F ′ → F such that for each F ′ ∈ F ′ there is an injection

ϕF ′ : F
′ → Ψ(F ′) with V (H ′) ⊆ V (ϕF ′(H

′)) for every H ′ ∈ F ′. The G-subtribe

F ′ is called flat, denoted by F ′ ⊆ F , if there is such an injection Ψ satisfying

F ′ ⊆ Ψ(F ′).

• A thick G-tribe F in Γ is concentrated at an end ε of Γ, if for every finite vertex

set X of Γ, the G-tribe FX = {FX : F ∈ F} consisting of the layers FX = {H ∈
F : H 6⊆ C(X, ε)} ⊆ F is a thin subtribe of F .

We note that, if G is connected, every thick G-tribe F contains a thick subtribe F ′

such that every H ∈
⋃
F is a tidy IG. We will use the following lemmas from [31].

Lemma 6.8.2 (Removing a thin subtribe, [31, 5.2]). Let F be a thick G-tribe in Γ and

let F ′ be a thin subtribe of F , witnessed by Ψ: F ′ → F and (ϕF ′ : F
′ ∈ F ′). For F ∈ F ,

if F ∈ Ψ(F ′), let Ψ−1(F ) = {F ′F} and set F̂ = ϕF ′F (F ′F ). If F /∈ Ψ(F ′), set F̂ = ∅. Then

F ′′ := {F \ F̂ : F ∈ F}

is a thick flat G-subtribe of F .

Lemma 6.8.3 (Pigeon hole principle for thick G-tribes, [31, 5.3]). Suppose for some

k ∈ N, we have a k-colouring c :
⋃
F → [k] of the members of some thick G-tribe F in Γ.

Then there is a monochromatic, thick, flat G-subtribe F ′ of F .

5When G is clear from the context we will often refer to a G-subtribe as simply a subtribe.
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Lemma 6.8.4 ([31, 5.4]). Let G be a connected graph and Γ a graph containing a thick

connected G-tribe F . Then either ℵ0G 4 Γ, or there is a thick flat subtribe F ′ of F and

an end ε of Γ such that F ′ is concentrated at ε.

Lemma 6.8.5 ([31, 5.5]). Let G be a connected graph and Γ a graph containing a thick

connected G-tribe F concentrated at an end ε of Γ. Then the following assertions hold:

(1) For every finite set X, the component C(X, ε) contains a thick flat G-subtribe

of F .

(2) Every thick subtribe F ′ of F is concentrated at ε, too.

The following lemma from [32] shows that we can restrict ourself to thick G-tribes

which are concentrated at thick ends.

Lemma 6.8.6 ([32, 6.7]). Let G be a connected graph and Γ a graph containing a thick

G-tribe F concentrated at an end ε ∈ Ω(Γ) which is thin. Then ℵ0G 4 Γ.

Given an extensive tree decomposition (T,V) of G, broadly, our strategy will be to

obtain a family of disjoint IGs by choosing a sequence of trees T0 ⊆ T1 ⊆ . . . such that⋃
Ti = T and to construct inductively a family of finitely many IG[Tk+1]s which extend the

IG[Tk]s built previously (cf. Definition 6.4.6). The extensiveness of the tree-decomposition

ensures that, at each stage, there will be some edges in ∂(Ti) = E(Ti, T \Ti), each of which

has in G a family of rays Re along which the graph displays self-similarity.

In order to extend our IG[Tk] at each step, we will want to assume that the IGs in F
lie in a ‘uniform’ manner in the graph Γ in terms of these rays Re.

More specifically, for each edge e ∈ ∂(Ti) the rays Re tend to a common end ωe in G,

and for each H ∈
⋃
F , the corresponding rays in H converge to an end H(ωe) ∈ Ω(Γ) (cf.

Definition 6.3.13) which might either be ε, or another end of Γ. We would like that our

G-tribe F makes a consistent choice of whether H(ωe) is ε, for each e ∈ ∂(Ti).

Furthermore, if H(ωe) = ε for every H ∈
⋃
F then this imposes some structure on the

end ωe of G. More precisely with [32, Lemma 9.1] we may assume that RGH(H↓(Re)) is

a path for each H in the G-tribe F .

By moving to a thick subtribe, we may assume that every ray in every H ∈
⋃
F is core,

in which case 6ε imposes a linear order on every family of rays H↓(Re), which induces

one of the two distinct orientations of the path RGH(H↓(Re)) (reference to make this

clear/precise). We will also want that our tribe F induces this orientation in a consistent

manner.

Let us make the preceding discussion precise with the following definitions:

Definition 6.8.7. Let G be a connected locally finite graph with a extensive tree-

decomposition (T,V), S be an initial subtree of T . Let H ⊆ Γ be an IG, H be a set of

tidy IGs in Γ and ε an end of Γ.
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• Given an end ω of G, we say that ω converges to ε according to H if for every

ray R ∈ ω we have H↓(R) ∈ ε. The end ω converges to ε according to H if it

converges to ε according to every element of H.

We say that ω is cut from ε according to H if for every ray R ∈ ω we have

H↓(R) /∈ ε. The end ω is cut from ε according to H if it is cut from ε according

to every element of H.

Finally we say thatH determines whether ω converges to ε if either ω converges

to ε according to H or ω is cut from ε according to H.

• Given E ⊆ E(T ), we say H weakly agrees about E if for each e ∈ E, H determines

whether ωe converges to ε. If H weakly agrees about ∂(S) we let

∂ε(S) := {e ∈ ∂(S) : ωe converges to ε according to H} ,

∂¬ε(S) := {e ∈ ∂(S) : ωe is cut from ε according to H} ,

and write

S¬ε for the component of the forest T − ∂ε(S) containing the root of T ,

Sε for the component of the forest T − ∂¬ε(S) containing the root of T .

Note that S = S¬ε ∩ Sε.
• We say that H is well-separated from ε at S, if H weakly agrees about ∂(S) and

H(S¬ε) can be separated from ε in Γ for all elements H ∈ H, i.e. for every H

there is a finite X ⊆ V (Γ) such that H(S¬ε) ∩ CΓ(X, ε) = ∅.
In the case that ε is half-grid-like, we say that H strongly agrees about ∂(S) if

• it weakly agrees about ∂(S);

• for each H ∈ H every ε-ray R ⊆ H is in core(ε); and

• for every e ∈ ∂ε(S) there is a linear order 6F ,e on S(e) such that the order induced

on H↓(Re) by 6F ,e) agrees with 6ε on H↓(Re) for all H ∈ H.

If F is a thick G-tribe concentrated at an end ε, we use these terms in the following way:

• Given E ⊆ E(T ), we say that F weakly agrees about E if
⋃
F weakly agrees

about E w.r.t. ε.

• We say that F is well-separated from ε at S if
⋃
F is.

• We say that F strongly agrees about ∂(S) if
⋃
F does.

Remark 6.8.8. We note that the properties of weakly agreeing about E, being well

separated from ε and strongly agreeing about ∂(S) are all preserved under taking subsets,

and hence under taking flat subtribes.

Note that by the pigeon hole principle for G-tribes, given a finite edge set E ⊆ E(T ),

any thick G-tribe F concentrated at ε has a thick (flat) subtribe which weakly agrees

about E.
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The next few lemmas show that, with some slight modification, we may restrict to a

further subtribe which strongly agrees about E and is also well-separated from ε.

Definition 6.8.9 ([32]). Let ω be an end of a graph G. We say ω is linear if RG(R)

is a path for every finite family R of disjoint ω-rays.

Lemma 6.8.10 ([32, 8.1]). Let ε be a non-pebbly end of Γ and let F be a G-tribe such

that for every H ∈
⋃
F there is an end ωH ∈ Ω(G) such that H(ωH) = ε. Then there is

a thick flat subtribe F ′ such that ωH is linear for every H ∈
⋃
F ′.

Corollary 6.8.11. Let G be a connected locally finite graph with an extensive tree-

decomposition (T,V), S be an initial subtree of T , and let F be a thick G-tribe which is

concentrated at a non-pebbbly end ε of a graph Γ and weakly agrees about S. Then ωe is

linear for every e ∈ ∂ε(S).

Proof. For any e ∈ ∂ε(S) apply Lemma 6.8.10 to F with ωH = ωe for each H ∈⋃
F . �

Lemma 6.8.12. Let G be a connected locally-finite graph with a tree-decomposition

(T,V). Let F be a thick G-tribe in Γ concentrated at ε which weakly agrees about some

finite ∂(S) ⊆ E(T ). Then F has a flat thick subtribe F ′ so that F ′ strongly agrees about

∂(S).

Proof. Clear. �

Lemma 6.8.13. Let G be a connected locally-finite graph with an extensive tree-decom-

position (T,V). Let H ⊆ Γ be an IG and ε an end of Γ. Let e be an edge of T , such that

H(ωe) 6= ε. There is a finite set X ⊆ V (G) such that for every finite X ′ ⊇ X there exists

a push-out He of H along e so that CΓ(X ′, G(ωe)) 6= CΓ(X ′, ε) and

(1) He(G[B(e)]) ⊆ CΓ(X ′, G(ωe)),

(2) He(G[B(e)]) \X ⊆ H(G[B(e′)]) for an edge e′ on Re, and

(3) He(G[A(e)]) extends H(G[A(e)]) fixing A(e) \ S(e).

Proof. Let X1 ⊆ V (Γ) be a finite vertex set such that CΓ(X,G(ωe)) 6= CΓ(X, ε), then

given any finite X ′ ⊇ X1, surely CΓ(X ′, G(ωe)) 6= CΓ(X ′, ε). Since X1 is finite, there are

only finitely many v ∈ G whose branch sets H(v) meet X1. By extensiveness, every vertex

of G is contained in only finitely many parts of the tree-decomposition, and so there exists

an edge e1 on Re with

H(G[B(e1)]) ∩X1 = ∅.
For each s ∈ S(e) let Ps be the initial segment of Re,s up to the first time it meets S(e1).

Let

X = X1 ∪
⋃

v∈V (Ps),s∈S(e)

H(v).
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Then, given any X ′ ⊇ X, as before there is an edge e′ on Re such that

H(G[B(e′)]) ∩X ′ = ∅.

Since (T,V) is an extensive tree-decomposition there is a witness W of the self-similarity of

B(e) at distance at least max{dist(e−, e−1 ), dist(e−, e′−)} := n. Then by Definition 6.4.11

and Lemma 6.4.12 there is a push-out He of H along e to depth n.

By Definition 6.4.11 V (He(G[B(e)]) ⊆ V (He(W ))∪X and hence (1) and (2) hold, and

also He([A(e)]) extends H(G[A(e)]) fixing A(e) \ S(e). �

Lemma 6.8.14. Let G be a connected locally finite graph with an extensive tree-decom-

position (T,V) with root r. Let Γ be a graph and F a thick G-tribe concentrated at a

half-grid-like end ε of Γ. Then there is a thick sub-tribe F ′ of F such that

(1) F ′ is concentrated at a half-grid-like end ε.

(2) F ′ strongly agrees about ∂({r}).

(3) F ′ is well-separated from ε at {r}.

Proof. Since d(r) is finite, by choosing a thick flat subtribe of F , we may assume

that F weakly agrees about ∂({r}). Moreover, by Lemma 6.8.12, we may even assume

that F strongly agrees about ∂({r}).
For every member H of F , and for every e ∈ ∂¬ε({r}) there exists by Lemma 6.8.13

a finite set Xe such that for every finite X ′ ⊇ Xe there is a push-out He of H along e so

that CΓ(X ′, G(ωe)) 6= CΓ(X ′, ε) and

(1) He(G[B(e)]) ⊆ CΓ(X ′, G(ωe)),

(2) He(G[B(e)]) \Xe ⊆ H(G[B(e′)]) for an edge e′ on Re, and

(3) He(G[A(e)]) extends H(G[A(e)]) fixing A(e) \ S(e).

Let X be the union of all these Xe together with H({r}). For each e ∈ ∂¬ε({r}) let He be

the push-out whose existence is guaranteed by the above with respect to this set X.

Let us define an IG

H ′ :=
⋃

e∈∂¬ε({r})

He ({r}ε ∪ Te+) .

It is straightforward, although not quick, to check that this is indeed an IG and so we will

not do this in detail. Briefly, this can be deduced from multiple applications of Defintion

6.4.10 and by (3) all that we need to check is that the extra vertices added to the branch

sets of vertices in S(e) are distinct for each edge e. However, this follows from Definition

6.4.11, since these vertices come from H(Re) and the rays Re,s and Re′,s′ are disjoint

except in their initial vertex when s = s′. Let F ′ be the tribe given by {F ′ : F ∈ F}
where F ′ = {H ′ : H ∈ F} for each F ∈ F . We claim that F ′ satisfies the conclusion of

the lemma.

Firstly, we claim thatH strongly agrees withH ′ about ∂({r}) for every memberH of F .

Indeed, by construction for each e ∈ ∂¬ε({r}), H ′(G[B(e)]) ⊆ CΓ(X ′, G(ωe)), and hence ωe
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is cut from ε according toH ′. Furthermore, by constructionH({r}ε)\X = H ′({r}ε)\X and

so ωe is converges to ε according to H ′ for every e ∈ ∂¬ε({r}). In fact, H↓(Re) = H ′↓(Re)

for every e ∈ ∂¬ε({r}). Finally, since H ′ ⊆ H, and F strongly agrees about ∂({r}) it

follows that every ε-ray in H ′ is in core(ε).

Then, since F is strongly concentrated at ε and strongly agrees about ∂({r}) it follows

that (1) and (2) hold for F ′. It remains to show that F ′ is well-separateed from ε at {r}.
However, we claim that for each member H of F the set X defined above separates

H ′({r}¬ε) from ε in Γ. Indeed,

H ′({r}¬ε) = H ′({r}) ∪
⋃

e∈∂¬ε({r})

H ′(G[B(e)]),

and so H ′({r}¬ε) ∩ CΓ(X, ε) = ∅. It follows that F ′ satisfies the conclusion of the lemma.

�

Lemma 6.8.15 (Well-separated push-out). Let G be a connected locally-finite graph

with an extensive tree-decomposition (T,V). Let H ⊆ Γ be an IG and ε an end of Γ. Let

S be a finite subtree of T such that {H} is well-separated from ε at S and let f ∈ ∂ε(S).

Then there exists exists a push-out H ′ of H along f to depth 0 (see Definition 6.4.11) such

that {H ′} is well-separated from ε at S̃ = S ∪ {f}.

Proof. Let X ′ ⊆ V (Γ) be a finite set with H(S¬ε)∩CΓ(X ′, ε) = ∅. If ∂¬ε(S̃)\∂(S) = ∅
then H ′ = H satisfies the conclusion of the lemma, hence we may assume that ∂¬ε(S̃)\∂(S)

is non-empty.

By applying Lemma 6.8.13 to every e ∈ ∂¬ε(S̃) \ ∂(S), we obtain a finite set X ⊇ X ′

and a family (He : e ∈ ∂¬ε(S̃) \ ∂(S)) where each He is a push out of H along e such that

(1) He(G[B(e)]) ⊆ CΓ(X,H(ωe)),

(2) He(G[B(e)]) ⊆ H(G[B(e′)]) for some edge e′ on Re, and

(3) He(G[A(e)]) extends H(G[A(e)]) fixing A(e) \ S(e).

Let

H ′ :=
⋃

e∈∂¬ε(S̃)\∂(S)

He (Sε ∪ Te+) .

As before it is straightforward to check that H ′ is an IG, and that H ′ is a push out

of H along f to depth 0. We claim that H ′ is well-separated from ε at S̃. Since H is

well-separated from ε at S there is a finite set X such that H(S¬ε) ∩ CΓ(X, ε) = ∅. Let

X = X ∪
⋃

e∈∂¬ε(S̃)\∂(S)

V (He(S(e))) ,

note that X is finite.

It is sufficient to show that X separates H ′(G[B(e)]) from ε in Γ for each e ∈ ∂¬ε(S̃),

since then X together with H ′(S) separates H ′(S¬ε) from ε in Γ. Given an edge e ∈ ∂¬ε(S̃)
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either e ∈ ∂¬ε(S) or e ∈ ∂¬ε(S̃) \ ∂(S). In the first case, since

H ′(G[B(e)]) ⊆
⋃

e′∈∂¬ε(S̃)\∂(S)

He′(G[B(e)]) ⊆ H(G[B(e)]) ∪
⋃

e′∈∂¬ε(S̃)\∂(S)

He′(S(e′)),

by (3), it follows that H ′(G[B(e)]) ∩ CΓ(X, ε) = ∅.
In the second case e ∈ ∂¬ε(S̃) \ ∂(S), and so again it follows from (3) that

H ′(G[B(e)]) ⊆ He(G[B(e)]) ∪
⋃

e6=e′∈∂¬ε(S̃)\∂(S)

He′(S(e)).

Hence, H ′(G[B(e)]) ∩ CΓ(X, ε) = ∅.
�

The following lemma contains a large part of the work needed for our inductive con-

struction. The idea behind the statement is the following: At step n in our construction

we will have a G-tribe Fn which agrees about ∂(Tn), which will allows us to extend our

IG[Tn]s to IG[Tn+1]s. In order to perform the next stage of our construction we will need

to ‘refine’ Fn to a G-tribe Fn+1 which agrees about the boundary of Tn+1.

This would be a relatively simple application of the pigeon hole principle for G-tribes,

Lemma 6.8.3, except that in our construction we cannot extend by a member of Fn+1

naively. Indeed, suppose we wish to use an IG, say H, to extend an IG[Tn] to an IG[Tn+1].

There is some subgraph, H(Tn+1 \ Tn), of H which is an IG[Tn+1 \ Tn], however in order

to use this to extend the IG[Tn] we first have to link the branch sets of the boundary

vertices to this subgraph, and there may be no way to do so without using other vertices

of H(Tn+1 \ Tn).

For this reason we ensure the existence of an ‘intermediate G-tribe’ F∗, which has

the property that for each member H of F∗, there are push-outs at arbitrary depth of H

which are members of Fn+1. This allows us to first link our IG[Tn] to some H ∈ F∗ and

then choose a push-out H ′ ∈ Fn+1 of H such that H ′(Tn+1 \ Tn) avoids the vertices we

used to link.

Lemma 6.8.16 (G-tribe refinement lemma). Let G be a connected locally finite graph

with an extensive tree-decomposition (T,V), let S be a subtree of T with ∂(S) finite, and

let F be a thick G-tribe of a graph Γ such that

(1) F is concentrated at a half-grid-like end ε.

(2) F strongly agrees about ∂(S).

(3) F is well-separated from ε at S.

Suppose f ∈ ∂ε(S) and let S̃ = S ∪ {f}. Then there is a thick flat subtribe F∗ of F and a

thick G-tribe F ′ in Γ with the following properties:

(i) F ′ is concentrated at ε.

(ii) F ′ strongly agrees about ∂(S̃).
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(iii) F ′ is well-separated from ε at S̃.

(iv) F ′ ∪ F strongly agrees about ∂(S) \ {f}.
(v) S¬ε w.r.t. F is a subtree of S̃¬ε w.r.t. F ′.

(vi) For every F ∈ F∗ and every m ∈ N, there is F ′ ∈ F ′ such that for all H ∈ F
there is an H ′ ∈ F ′ which is a push-out of H to depth m along f .

Proof. For every member H of F consider a sequence (H(i) : i ∈ N) where H(i) is a

push-out of H along f to depth at least i. After choosing a subsequence of (H(i) : i ∈ N)

and relabelling (monotonically), we may assume that for each H, the set {H(i) : i ∈ N}
weakly agrees on ∂(S̃), i.e. for every e ∈ ∂(S̃) either H(i)(R) ∈ ε for every R ∈ ωe and all

i or H(i)(R) /∈ ε for every R ∈ ωe and all i. Note that a monotone relabelling preserves

the property of H(i) being a push-out of H along f to depth at least i.

This uniform behaviour of (H(i) : i ∈ N) on ∂(S̃) for each member H of F gives rise to

a finite colouring c :
⋃
F → 2∂(S̃). By Lemma 6.8.3 we may choose a thick flat subtribe

F1 ⊆ F such that c is constant on
⋃
F1.

Recall that by Corollary 6.8.11 for every e ∈ ∂ε(S̃) (w.r.t. F1) the ray graph RGG(Re)

is a path. We pick an arbitrary orientation of this path and denote by ≤e the corresponding

linear order on Re.

Again for every member H ∈
⋃
F1 define

dH : {H(i) : i ∈ N} → {−1, 0, 1}∂ε(S̃)

where

dH(H(i))e =


0 if H(i)(Re) are not all core rays,

+1 if H(i)(Re) are all core rays and 6ε agrees with 6e,

−1 if H(i)(Re) are all core rays and 6ε agrees with >e.

Since dH has finite range we may assume as above, after choosing a subsequence and

relabelling, that dH is constant on {H(i) : i ∈ N} and that H(i) is still a push-out of H

along f to depth at least i.

Now consider d :
⋃
F1 → {−1, 0, 1}∂ε(S̃) with d(H) = dH(H(1)) (= dH(H(i)) for all i).

Again, we may choose a thick flat subtribe F2 ⊆ F1 such that d is constant on F2.

Note that no coordinate of d takes the value 0. Indeed, for e ∈ ∂ε(S̃) and every layer

F ∈ F2 the rays in (H(1)(Re) : H ∈ F ) are disjoint, and for large enough F it cannot be

the case that there is a non-core ray in every H(1)(Re).

We can now apply Lemma 6.8.15 to each H(i) to obtain H ′(i), the collection of which

is well-separated from ε at S̃. Note that H ′(i) is still a push-out of H along f to depth i.

Now let F∗ = F2 and F ′ = {{H ′(i) : H ∈ F} : i ∈ N, F ∈ F∗}. Let us verify that

these satisfy (i)–(vi). F∗ is concentrated at ε because it is a thick flat subtribe of F by
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Lemma 6.8.5. By a comparison, layer by layer, since all members of F ′ are push-outs of

members of F∗ along f , the tribe F ′ is also concentrated at ε, satisfying (i).

(ii) is satisfied: Since c and d are constant on
⋃
F2 the collection of the H(i) (for

H ∈
⋃
F2) strongly agrees on ∂(S̃), since we have chosen an appropriate subsequence in

which dH(H(i)) is constant. The H ′(i) are constructed such that this property is preserved.

Property (iii) is immediate from the choice of H ′(i). Properties (iv) & (v) follow from (2)

and the fact that every member of F ′ is a push-out of a member of F along f . Property (vi)

is immediate from the construction of F ′. �

6.9. The inductive argument

In this section we prove Theorem 6.4.9. Given a connected, locally finite graph G which

admits an extensive tree-decomposition (T,V) and a graph Γ which contains a thick G-

tribe F , our aim is to construct an infinite family (Qi : i ∈ N) of disjoint G-minors in Γ

inductively.

Our work so far will allow us to make certain assumptions about F . For example, by

Lemma 6.8.4 we may assume that F is concentrated at some end ε of Γ, which by Lemma

6.8.6 we may assume is a thick end, and by Lemma 6.6.5 we may assume is not pebbly.

Hence, by the work of Section 6.7 we may assume that ε is either half-grid-like or grid-like.

At this point our proof will split into two different cases, depending on the nature of ε.

However, the two cases are very similar, with the grid-like case being significantly simple.

Therefore we will first prove Theorem 6.4.9 in the case where ε is half-grid-like, and then

in Section 6.9.2 we will briefly sketch the differences for the grid-like case.

So, to briefly recap, in the following section we will be working under the standing

assumptions that there is a thick G-tribe F in Γ and an end ε of Γ such that

– F is concentrated at ε;

– ε is thick;

– ε is not pebbly;

– ε is half-grid-like.

6.9.1. The half-grid-like case. As explained in Section 6.2, our strategy will be

to take some sequence of subtrees S1 ⊆ S2 ⊆ S3 . . . of T , such that
⋃
i Si = T , and to

inductively build a collection of n inflated copies of G(Sn), at each stage extending the

previous copies. However, in order to ensure that we can continue the construction at

each stage, we will require the existence of additional structure.

Let us pick an enumeration {ti : i > 0} of V (T ) such that t0 is the root of T and

Tn := T [{ti : 0 6 i 6 n}] is connected for every n ∈ N. We will not take the Sn above

to be the subtrees Tn, but instead the subtrees T¬εn with respect to some tribe Fn which

weakly agrees about ∂(Tn). This will ensure that every edge in the boundary ∂(Sn) will

be in ∂ε(Tn). For every edge e ∈ E(T ) let us fix a family Re = (Re,s : s ∈ S(e)) of
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disjoint rays witnessing the self-similarity of the bough B(e) towards an end ωe of G

where init(Re,s) = s. By taking Sn = T¬εn we guarantee that for each edge in e ∈ ∂(Sn),

s ∈ S(e) and every H ∈
⋃
Fn the ray H↓(Re,s) is an ε-ray.

Furthermore, since ∂(Tn) is finite, we may assume by Lemma 6.8.12 that Fn strongly

agrees about ∂(Tn). We can now describe the additional structure that we require for the

induction hypothesis.

At each stage of our construction we will have built some inflated copies of G(Sn),

which we wish to extend in the next stage. However, Sn will not in general be a finite

subtree, and so we will need some control over where these copies lie in Γ to ensure we

have not ‘used up’ all of Γ. The control we will want is that there is a finite set of vertices

X, which we call a bounder which separates all we have built so far from the end ε. This

will guarantee, since F is concentrated at ε, that we can find arbitrarily large layers of F
which are disjoint from what we’ve built so far.

Furthermore, in order to extend these copies in the next set we will need to be able to

link the boundary of our inflated copies of G(Sn) to this large layer of F . To this end we

will also want to keep track of some structure which allows us to do this, which we call an

extender. Let us make the preceding discussion precise.

Definition 6.9.1 (Bounder, extender). Let F be a thick G-tribe which is concen-

trated at ε and strongly agrees about ∂(S) for some subtree S of T , and let k ∈ N. Let

Q = (Qi : i ∈ [k]) be a family of disjoint inflated copies of G(S¬ε) in Γ (note, S¬ε depends

on F).

• A bounder for Q is a finite set X of vertices in Γ separating each Qi in Q from ε,

i.e. such that

C(X, ε) ∩
k⋃
i=1

Qi = ∅.

• For A ⊆ E(T ),let I(A, k) denote the set {(e, s, i) : e ∈ A, s ∈ S(e), i ∈ [k]}.
• An extender for Q is a family E = (Ee,s,i : (e, s, i) ∈ I(∂ε(S), k)) of ε-rays in Γ such

that the graphs in E− ∪Q are pairwise disjoint and such that init(Ee,s,i) ∈ Qi(s).

• Given an extender E , an edge e ∈ ∂ε(S) and i ∈ [k] we let

Ee,i := (Ee,s,i : s ∈ S(e)).

Recall that, since ε is half-grid like, there is a partial order 6ε defined on the core

rays of ε, see Lemma 6.7.16. Furthermore, if F strongly agrees about ∂(S) then, as in

Definition 6.8.7, for each e ∈ ∂ε(S) there is a linear order 6F ,e on S(e).

Definition 6.9.2 (Extension scheme). Under the conditions above, we call a tuple

(X, E) an extension scheme for Q if the following holds:

(ES1) X is a bounder for Q and E is an extender for Q;

(ES2) E is a family of core rays;
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(ES3) the order 6ε on Ee,i (and thus on E−e,i) agrees with the order induced by 6F ,e on

E−e,i for all e ∈ ∂ε(S) and i ∈ [k];

(ES4) the sets E−e,i are intervals with respect to 6ε on E− for all e ∈ ∂ε(S) and i ∈ [k].

We will in fact split our inductive construction into two types of extensions, which we

will do on odd and even steps respectively.

In an even step n = 2k, starting with a G-tribe Fk, k disjoint inflated copies of G(T¬εk )

and an appropriate extension scheme, we will construct Qn
k+1, a further disjoint inflated

copy of G(T¬εk ), and an appropriate extension scheme for everything we built so far.

In an odd step n = 2k − 1 (for k > 1), starting with the same G-tribe Fk−1 from the

previous step, k disjoint inflated copies of G(T¬εk−1) and an appropriate extension scheme,

we will refine to a new G-tribe Fk which strongly agrees on ∂(Tk), extend each copy Qn
i

of G(T¬εk−1) to a copy Qn+1
i of G(T¬εk ) for i ∈ [k], and construct an appropriate extension

scheme for everything we built so far.

So, we will assume inductively that for some n ∈ N, with r := bn/2c and s := dn/2e
we have:

(I1) a thick G-tribe Fr in Γ which

• is concentrated at ε;

• strongly agrees about ∂(Tr);

• is well-separated from ε at Tr; and

• whenever l < k ≤ r, T¬εk with respect to Fk is a sub-tree of T¬εl with respect

to Fl.
(I2) a family Qn = (Qn

i : i ∈ [s]) of s pairwise disjoint inflated copies of G(T¬εr ) (where

T¬εr is considered with respect to Fr) in Γ;

if n > 1, we additionally require that Qn
i extends Qn−1

i for all i 6 s− 1;

(I3) an extension scheme (Xn, En) for Qn;

(I4) if n is even and ∂ε(Tr) 6= ∅, we require that there is a set Jr of disjoint core ε-rays

disjoint to En with |Jr| > (|∂ε(Tr)|+ 1) · |En|.

Suppose we have inductively constructed Qn for all n ∈ N. Let us define Hi :=⋃
n>2i−1Q

n
i . Since T¬εk with respect to Fk is a sub-tree of T¬εl with respect to Fl for

all k < l, we have
⋃
n∈N T

¬ε
n = T (where we considered T¬εn w.r.t. Fn), and due to the

extension property (I2), the collection (Hi : i ∈ N) is an infinite family of disjoint G-minors,

as required.

So let us start the construction. To see that our assumptions for the case n = 0 we

first note that since T0 = t0, by Lemma 6.8.14 there is a thick subtribe F0 of F which

satisfies (I1). Let us further take

• Q0 = E0 = X0 = ∅;
• J0 be any suitably large set of disjoint core rays of ε.
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The following notation will be useful throughout the construction. Given e ∈ E(T )

and some inflated copy H of G, recall that H↓(Re) denotes the family (H↓(Re,s) : s ∈
S(e)). Given a G-tribe F , a layer F ∈ F and a family of rays R in G we will write

F ↓(R) = (H↓(R) : H ∈ F,R ∈ R).

Construction part 1: n = 2k is even

Case 1: ∂ε(Tk) = ∅.
In this case T¬εk = T and so picking any member H ∈ Fk with H ⊆ C(Xn, ε) and

setting Qn+1
k+1 = H(T¬εk ) gives us a further inflated copy of G(T¬εk ) disjoint from all the

previous ones. We set Qn+1
i = Qn

i for all i ∈ [k] and Qn+1 = (Qn+1
i : i ∈ [k + 1]). Using

that Fk is well-separated from ε at Tk, there is a suitable bounder Xn+1 ⊇ Xn for Qn+1.

Then (Xn+1, ∅) is an extension scheme for Qn+1 while Fk remains unchanged.

Case 2: ∂ε(Tk) 6= ∅. (See Figure 6.9.1)

Consider the family R− :=
⋃
{R−e : e ∈ ∂ε(Tk)}. Moreover, set C := E−n ∪ Jk and

consider C as in Definition 6.7.19. Let Y ⊆ C(Xn, ε) be a finite set which is a transition

box between E−n and C as in Lemma 6.3.17. Let F ′ be a flat thick G-subtribe of Fk such

that each member of F ′ is contained in C(Xn ∪ Y, ε), which exists by Lemma 6.8.5 since

both Xn and Y are finite.

Let R be an arbitrary element of R. Let F ∈ F ′ be large enough such that we may

apply Lemma 6.3.16 to find a transitional linkage P ⊆ C(Xn ∪ Y, ε) from C to F ↓(R−)

after Xn ∪ Y avoiding some member H ∈ F . Note that, since Xn is a bounder and

P ⊆ C(Xn ∪ Y, ε), P is disjoint from all Qn and Y .

Let

Qn+1
k+1 := H(T¬εk ).

Note that Qn+1
k+1 is an inflated copy of G(T¬εk ). Moreover let Qn+1

i := Qn
i for all i ∈ [k] and

Qn+1 := (Qn+1
i : i ∈ [k + 1]), yielding property (I2).

Since Fk is well-separated from ε at Tk, and H ∈
⋃
Fk, there is a finite set Xn+1 ⊆ Γ

containing Xn ∪ Y such that C(Xn+1, ε)∩Qn+1
k+1 = ∅. This set Xn+1 is a bounder for Qn+1.

Since P is transitional, Remark 6.7.23(1) implies that the linkage is preserving on C.
Since all rays in F ↓(R−) are core rays, ≤ is a linear order on F ↓(R−). Moreover, for each

e ∈ ∂ε(Tk), the rays in H↓(Re) correspond to an interval in this order. Thus, deleting

these intervals from F ↓(R−) leaves behind at most |∂ε(Tk)|+ 1 intervals in F ↓(R−) (with

respect to ≤) which do not contain any rays in H↓(R). Since |Jk| > (|∂ε(Tk)|+ 1) · |En|,
by the pigeonhole principle there is such an interval on F ↓(R−) that

– does not contain rays in H↓(R); and

– where a subset P ′ ⊆ P of size |E−n | links a corresponding subset A′ ⊆ A of C to

rays B in that interval.
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By Lemma 6.7.24 and Remark 6.7.23(1 and 3), and Lemma 6.3.17 there is a linkage P ′′

from E−n to A contained in Γ[Y ] which is preserving on E−n .

For e ∈ ∂ε(Tk) and s ∈ S(e) define

En+1
e,s,k+1 = H↓(Re,s) for the corresponding ray Re,s ∈ Re.

and moreover for each i ∈ [k], we define

En+1
e,s,i = init(En

e,s,i)(E
−
e,s,i ◦P ′′ A) ◦P ′ B

By construction, all these rays are, except for their first vertex, disjoint from Qn+1. More-

over, En+1 := (En+1
e,s,i : (e, s, i) ∈ I(∂ε(Tk), k + 1)) is an extender for Qn+1. Note that each

ray in En+1 shares a tail with a ray in F ↓(R−).

We claim that (Xn+1, En+1) is an extension scheme for Qn+1 and hence property (I3)

is satisfied. Since every ray in En+1 has a tail which is also a tail of a ray in F ↓(R−),

property (ES2) is satisfied by Remark 6.7.171. Since P ′ is preserving on A′ and P ′′ is

preserving on E−n , Remark 6.7.23(4) implies that the linkage P ′′ +P ′ is preserving on E−n .

Hence property (ES3) holds for each i ∈ [k]. Furthermore, since En+1
e,s,k+1 = H↓(Re,s) for

each e ∈ ∂ε(Tk) and s ∈ S(e), it is clear that property (ES3) holds for i = k + 1. Finally,

property (ES4) holds for i = k + 1 since for each e ∈ ∂ε(Tk), the rays in H↓(Re) are an

interval with respect to 6ε on F ↓(R−), and it holds for i ∈ [k] by the fact that P ′′ +P ′ is

preserving on E−n together with the fact that P ′′ + P ′ is preserving on E−n links E−n to an

interval of F ↓(R−) containing no ray in H↓(R).

Finally note that (I1) is still satisfied by Fk and Tk, and (I4) is vacuously satisfied.
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Construction part 2: n = 2k − 1 is odd (for k > 1).

Let f denote the unique edge of T between Tk−1 and Tk \ Tk−1.

Case 1: f /∈ ∂ε(Tk−1).

Let Fk := Fk−1. Since Fk−1 is well separated from ε at Tk it follows that e ∈ ∂¬ε(Tk)
for every e ∈ ∂(Tk) \ ∂(Tk−1). Hence T¬εk = T¬εk−1 and ∂ε(Tk−1) = ∂ε(Tk), and so we can

simply take Qn+1 := Qn, En+1 := En, Jk := Jk−1 and Xn+1 := Xn to satisfy (I1), (I2), (I3)

and (I4).

Case 2: f ∈ ∂ε(Tk−1). (See Figure 6.9.1)

By (I1) we can apply Lemma 6.8.16 to Fk−1 in order to find a thick G-tribe Fk and a

thick flat sub-tribe F∗ of Fk−1, both concentrated at ε, satisfying properties (i)–(vi) from

that lemma. It follows that Fk satisfies (I1) for the next step.

Let F ∈ F∗ be a layer of F∗ such that

|F | > (∂ε(Tk) + 2) · |I(∂ε(Tk), k)|

and consider the rays F ↓(Rf ). Consider the rays in the extender corresponding to the

edge f , that is Ef := (En
f,s,i : i ∈ [k], s ∈ S(f)). By Lemma 6.7.24, there is, for every subset

S of F ↓(Rf ) of size |E−f | a transitional linkage P ⊆ C(Xn, ε) from E−n to F ↓(Rf ) after

Xn ∪ init(En) such that P links Ef to S, if we view it as a linkage from En to F ↓(Rf ).

Since all rays in Ef and in F ↓(Rf ) are core rays, any such linkage is preserving on Ef .
Let us choose H1, H2, . . . , Hk ∈ F and let S =

(
H↓i (Rf,s) : i ∈ [k], s ∈ S(f)

)
. Let P be

the linkage given by the previous paragraph, which we recall is preserving on Ef . Since for

every i ≤ k the family
(
En
f,s,i : s ∈ S(f)

)
forms an interval in En and the set H↓(Rf ) forms

an interval in F ↓(Rf ) it follows that, after perhaps relabelling the Hi, for every i ∈ [k]

and s ∈ S(f), P links En
f,s,i to H↓i (Rf,s).

Let Z ⊆ V (Γ) be a finite set such that >(ω,R) and ⊥(ω,R) are separated by Z

in Γ− V (R) for all R ∈ F ↓(Rf ) (cf. Lemma 6.7.18).

Since |F | is finite and (T,V) is an extensive tree-decomposition there exists an m ∈ N
such that if e ∈ Rf with dist(f−, e−) = m then H(B(e)) ∩ (Xn ∪ Z ∪ V (

⋃
P)) = ∅. Let

~F ∈ Fk be as in Lemma 6.8.16(vi) for F with such an m.

Hence, by definition, for each Hi ∈ F there is some subgraph Wi ⊆ H(B(e)) which is

an IG[B(f)] such that for each s ∈ S(f), Wi(s) contains the first point of Wi on H↓i (Rf,s).

For each i ∈ [k] we construct Qn+1
i from Qn

i as follows. Consider the part of G that

we want to add G(T¬εk−1) to obtain G(T¬εk ), namely

D := G[B(f)]

Vf+ ∪ ⋃
e∈∂¬ε(Tk)\∂¬ε(Tk−1)

B(e)

.
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Let Ki := Wi(D). Note that, this is an inflated copy of D and for each s ∈ S(f) and each

i ∈ [k] the branch set Ki(s) contains the first point of Ki on H↓i (Rf,s).

Note further that by the choice of m, all the Ki are disjoint to Qn. Let xf,s,i denote

the first vertex on the ray H↓i (Rf,s) in Ki, and let

Os,i := (En
f,s,i ◦P F (Rf ))xf,s,i.

Then, if we let Oi := (Os,i : s ∈ S(f)) and O = (Os,i : s ∈ S(f), i ∈ [k]), we see that

Qn+1
i := Qn

i ⊕Oi Ki

(see Definition 6.4.10) is an inflated copy of G(T¬εk ) extending Qn
i . Hence,

Qn+1 := (Qn+1
i : i ∈ [k])

is a family satisfying (I2).

Since Fk is well-separated from ε at Tk, and each Ki is a subgraph of the restriction

of ~Hi to D, for each Ki there is a finite set X̂i separating Ki from ε, and hence the set

Xn+1 := Xn ∪
⋃
i∈[k]

X̂i ∪ V
(⋃
O
)

is a bounder for Qn+1.

For e ∈ ∂ε(Tk−1) \ {f}, s ∈ S(e) and i ∈ [k] we set

En+1
e,s,i = En

e,s,i ◦P F ↓(Rf ),

and set

E ′ :=
(
En+1
e,s,i : (e, s, i) ∈ I (∂ε(Tk−1) \ {f}, k)

)
Moreover, for e ∈ ∂ε(Tk) \ ∂ε(Tk−1), s ∈ S(e) and i ∈ [k] we set

En+1
e,s,i = ~H↓i (Re,s),

and set

E ′′ :=
(
En+1
e,s,i : (e, s, i) ∈ I (∂ε(Tk) \ ∂ε(Tk−1), k)

)
.

Note that, by construction, such a ray has its initial vertex in the branch set Qn+1
i (s) and

is otherwise disjoint to
⋃
Qn+1. We set En+1 := E ′ ∪ E ′′. It is easy to check that this is an

extender for Qn+1.

We claim that (Xn+1, En+1) is an extension scheme. Property (ES1) is apparent. Since

the G-tribes Fk and F∗ both strongly agree about ∂(Tk), and every ray in En+1 shares a

tail with a ray in a member of Fk or F∗ it follows that all rays in En+1 are core rays, and

so (ES2) holds.

For any e ∈ ∂ε(Tk−1)\{f} and i ∈ [k] the rays (En+1)e,i are a subfamily of E ′, obtained

by transitioning from the family (En)e,i to F ↓(Rf ) along linkage P . By the induction

hypothesis 6ε agreed with the order induced by 6Fk−1,e on (En)e,i, and since Fk ∪ Fk−1

strongly agrees about ∂ε(Tk−1) \ {f}, this is also the order induced by 6Fk,e. Hence, since
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P is preserving, by Remark 6.7.23(1) it follows that the order induced by 6Fk,e on (En+1)e,i
agrees with 6ε.

For for e ∈ ∂ε(Tk) \ ∂ε(Tk−1) and i ∈ [k] the rays (En+1)e,i are ( ~H↓i (Re,s) : s ∈ S(e)).

Since ~Hi ∈ ~F ∈ Fk and Fk strongly agrees about ∂(Tk), it follows that the order induced

by 6Fk,e on (En+1)e,i agrees with 6ε. Hence Property (ES3) holds.

Finally, by Lemma 6.3.20 it is clear that for any e ∈ ∂ε(Tk−1)\{f} and i ∈ [k] the rays

(E−n+1)e,i form an interval with respect to 6ε on E−n+1, since they are each contained in a

connected subgraph ~Hi to which the tails of the rest of E−n+1 are disjoint. Furthermore,

by choice of Z and Lemma 6.7.18 it it clear that, since P is preserving on E−n , for each

e ∈ ∂ε(Tk) \ ∂ε(Tk−1) and i ∈ [k] the rays (E−n+1)e,i also form an interval with respect to 6ε
on E−n+1. Hence property (ES4) holds and therefore (I3) is satisfied for the next step.

For property (I4) we note that every ray in En+1 has a tail in some H ∈ F ∈ F∗.
Since there is at least one core ε-ray in each H ∈ F ∈ F∗, we can find family of at least

|F | − |En+1| such rays. However since

|F | > (∂ε(Tk) + 2) · |En+1|

it follows that we can find a suitable family |Jk|.
This concludes the induction step. �
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6.9.2. The grid-like case. In this section we will give a brief sketch of how the

argument differs in the case where the end ε, towards which we may assume our G-tribe

F is concentrated, is grid-like.

In the case where ε is half-grid-like we showed that the end ε had a roughly linear

structure, in the sense that there is a global partial order 6ε which is defined on almost

all of the ε-rays, namely the core ones, such that every pair of disjoint core rays are

comparable, and that this order determines the relative structure of any finite family of

disjoint core rays, since it determines the ray graph.

Since, by Corollary 6.8.11, RGG(Re) is a path whenever e ∈ ∂ε(Tk), there are only two

ways that 6ε can order H↓(Re), and, since ∂ε(Tk) is finite, by various pigeon-hole type

arguments we can assume that it does so consistently for each H ∈
⋃
Fk and each Ee,i.

We use this fact crucially in part 2 of the construction, where we wish to extend the

graphs (Qn
i : i ∈ [k]) from inflated copies of G(T¬εk−1) to inflated copies of G(T¬εk ) along an

edge e ∈ ∂(Tk−1). We wish to do so by constructing a linkage from the extender En to

some layer F ∈ Fk, using the self-similarity of G to find an inflated copy of G(e+) which

is ‘rooted’ on the rays H↓(Re) and extending each Qn
i by such a subgraph.

However, for this step to work it is necessary that the linkage from En to F is such

that for each i ∈ [k] there is some H ∈ F such that ray Ee,s,i is linked to H↓(Re,s) for

each s ∈ S(e). However, since any transitional linkage we construct between E and a layer

F ∈ Fn will respect 6ε, we can use a transition box to ‘re-route’ our linkage such that the

above property holds.

In the case where ε is grid-like we would like to say that the end has a roughly cyclic

structure, in the sense that there is a global ‘partial cyclic order’ Cε, defined again on

almost all of the ε-rays which will again determine the relative structure of any finite

family of disjoint ‘core’ rays.

As before, since RGG(Re) is a path whenever e ∈ ∂ε(Tn), there are only two ways that

Cε can order H↓(Re) (‘clockwise’ or ‘anti-clockwise’) and so we can use similar arguments

to assume that it does so consistently for each H ∈
⋃
Fk and each Ee,i, which allows us

as before to control the linkages we build.

To this end, suppose ε is a grid-like end, and that N is a number such that no family

of disjoint ε-rays has a ray graph which is N -pebble win. We say that an ε-ray R is a core

ray (of ε) if there is some finite family (Ri : i ∈ [n]) of n > N + 3 disjoint ε-rays such that

R = Ri for some i ∈ [n]6.

Every large enough ray graph is a cycle, which has a correct orientation by Lemma

6.7.2 and we would like to say that this orientation is induced by a global ‘partial cyclic

order’ defined on the core rays of ε.

By a similar argument as in Section 6.7.3 one can show the following:

6We note that it is possible to show that, if ε is grid-like, then in fact N = 3.
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Lemma 6.9.3. Let R and R′ be disjoint core rays of ε. Then in G − (V (R) ∪ V (R′))

the end ε splits into precisely two different ends.

Definition 6.9.4. Let R and R′ be a core ray of ε. We denote by >(ε, R,R′) the end

of G− (V (R) ∪ V (R′)) containing rays which appear between R and R′ according to the

correct orientation of some ray graph and by ⊥(ε, R,R′) the end of G − (V (R) ∪ V (R′))

containing rays which appear between R′ and R in the correct orientation of some ray

graph.

We will model our global ‘partial cyclic order’ as a ternary relation on the set of core

rays of ε. That is, a partial cyclic order on a set X is a relation C ⊆ X3 written [a, b, c]

satisfying the following axioms:

• If [a, b, c] then [b, c, a].

• If [a, b, c] then not [c, b, a].

• If [a, b, c] and [a, c, d] then [a, b, d].

Lemma and Definition 6.9.5. Let core(ε) denote the set of core rays of ε. We define

a partial cyclic order Cε on core(ε) as follows:

[R, S, T ] if and only if R, S, T have disjoint tails xR, yS, zT and yS ∈ >(ε, xR, zT ).

Then, for any disjoint family of at least N + 3 ε-rays (Ri : i ∈ [n]) the cyclic order

induced on (Ri : i ∈ [n]) by Cε agrees with the correct orientation.

Again by a similar argument as in Section 6.7.3 on can show that this relation is in

fact a partial cyclic order and that it always agrees with the correction orientation of large

enough ray graphs. Furthermore, by Lemma 6.7.3, given two families R and S of at least

N + 3 disjoint ε-rays, every transitional linkage between R and S preserves Cε, for the

obvious definition of preserving.

Given a disjoint family of ω-rays R = (Ri : i ∈ [n]) with a linear order 6 on R we say

that 6 agrees with Cε if [Ri, Rj, Rk] whenever Ri < Rj < Rk.

Recall that, given a family F = (fi : i ∈ I) and a linear order 6 on I we denote by

F (6) the linear order on F induced by 6, i.e. the order defined by fiF (6)fj if and only

if i 6 j.

We say F strongly agrees about ∂(Tn) if

• it weakly agrees about ∂(Tn);

• for each H ∈
⋃
F every ε-ray R ⊆ H is in core(ε); and

• for every e ∈ ∂ε(Tn) there is a linear order 6F ,e on S(e) such that H↓(Re)(6F ,e)

agrees with Cε on H↓(Re) for all H ∈
⋃
F .

Using this definition the G-tribe refinement lemma (Lemma 6.8.16) can also be shown

to hold in the case where ω is a grid-like-end.
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Furthermore we modify the definition of an extension scheme for a family of disjoint

inflated copies of G(T¬εn ).

Definition 6.9.6 (Extension scheme). Let Q = (Qi : i ∈ [k]) be a family of disjoint

inflated copies of G(S¬ε) and F be a G-tribe which strongly agrees about ∂(S). We call

a tuple (X, E) an extension scheme for Q if the following holds:

(ES1) X is a bounder for Q and E is an extender for Q;

(ES2) E is a family of core rays;

(ES3) the order Cε agrees with E−e,i(6F ,e) for every e ∈ ∂ε(S);

(ES4) the sets E−s,i are intervals of Cε on E− for all e ∈ ∂ε(S) and i ∈ [k].

The we can then proceed by induction as before, with the same induction hypotheses.

For the most part the proof will follow verbatim, apart from one slight technical issue.

Recall that, in the case where n is even, we use the existence of the family of rays C to

find a linkage from C to F ↓(R−) which is preserving on C and similarly, in the case where

n is odd, we do the same for E−n . In the grid-like case we don’t have to be so careful,

since every transitional linkage from C to F ↓(R−) will preserve Cε, as long as |C| is large

enough.

However, in order to ensure that |C| and |E−n | are large enough in each step, we should

start by building N + 3 inflated copies of G(T¬ε0 ) in the first step, which can be done

relatively straightforwardly. Indeed, in the case n = 0 most of the argument in the

construction is unnecessary, since a large part of the construction is constructing a new

copy whilst re-routing the the rays En to avoid this new copy, but E0 is empty. Therefore

it is enough to choose a layer F ∈ F0 with |F | > N + 3, with say H1, . . . , HN ∈ F and to

take

Q1
i =: H(T¬εk )

for each i ∈ [N + 3] and to take E1
e,s,i = H↓i (Re,s) for each e ∈ ∂ε(T0), s ∈ S(e) and

i ∈ [N +3]. One can then proceed as before, extending the copies in odd steps and adding

a new copy in even steps.

6.10. Outlook: connections with well-quasi-ordering and

better-quasi-ordering

Our aim in this section is to sketch what we believe to be the limitations of the

techniques of this paper. We will often omit or ignore technical details in order to give a

simpler account of the relationship of the ideas involved.

Our strategy for proving ubiquity is heavily reliant on well-quasi-ordering results. The

reason is that they are the only known tool for finding extensive tree-decompositions for

broad classes of graphs.

To more fully understand this, let’s recall how well-quasi-ordering was used in the

proofs of Lemmas 6.5.6 and 6.5.12. Lemma 6.5.6 states that any locally finite connected
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graph with only finitely many ends, all of them thin, has an extensive tree decomposition.

The key idea of the proof was as follows: for each end, there is a sequence of separators

converging towards that end. The graphs between these separators are finite, and so are

well-quasi-ordered by the Graph Minor Theorem. This well-quasi-ordering guarantees the

necessary self-similarity.

Lemma 6.5.12, where infinitely many ends are allowed but the graph must have finite

tree-width, is similar: once more, for each end there is a sequence of separators converging

towards that end. The graphs between these separators are not necessarily finite, but they

have bounded tree-width and so they are again well-quasi-ordered.

Note that the Graph Minor Theorem is not needed for this latter result. Instead,

the reason it works can be expressed in the following slogan, which will motivate the

considerations in the rest of this section:

Trees of wombats are well-quasi-ordered precisely when wombats them-

selves are better-quasi-ordered.

Here better-quasi-ordering is a strengthening of well-quasi-ordering introduced by Nash-

Williams in [125] essentially in order to make this slogan be true. Since graphs of bounded

tree-width can be encoded as trees of graphs of bounded size, what is used here is that

graphs of bounded size are better-quasi-ordered.

What if we wanted to go a little further, for example by allowing infinite tree-width

but requiring that all ends should be thin? In that case, all we would know about the

graphs between the separators would be that all their ends are thin. Such graphs are

essentially trees of finite graphs. So, by the slogan above, to show that such trees are well-

quasi-ordered we would need the statement that finite graphs are better-quasi-ordered.

Indeed, this problem arises even if we restrict our attention to the following natural

common strengthening of Theorems 6.1.1 and 6.1.2:

Conjecture 6.10.1. Any locally finite connected graph in which all blocks are finite

is ubiquitous.

In order to attack this conjecture with our current techniques we would need better-

quasi-ordering of finite graphs.

Thomas has conjectured that countable graphs are well-quasi-ordered with respect to

the minor relation. If this were true, it could allow us to resolve problems like those

discussed above for countable graphs at least, since all the graphs appearing between

the separators are countable. But this approach does not allow us to avoid the issue

of better-quasi-ordering of finite graphs. Indeed, since countable trees of finite graphs

can be coded as countable graphs, well-quasi-ordering of countable graphs would imply

better-quasi-ordering of finite graphs.

Thus until better-quasi-ordering of finite graphs has been established, the best that we

can hope for – using our current techniques – is to drop the condition of local finiteness
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from the main results of this paper, something which we hope to do in the next paper in

this series [34].



CHAPTER 7

Minimal obstructions for normal spanning trees

Diestel and Leader have characterised connected graphs that admit a nor-

mal spanning tree via two classes of forbidden minors. One class are Halin’s

(ℵ0,ℵ1)-graphs: bipartite graphs with bipartition (A,B) such that |A| = ℵ0,

|B| = ℵ1 and every vertex of B has infinite degree.

Our main result is that under Martin’s Axiom and the failure of the Contin-

uum Hypothesis, the class of forbidden (ℵ0,ℵ1)-graphs in Diestel and Leader’s

result can be replaced by one single instance of such a graph.

Under CH, however, the class of (ℵ0,ℵ1)-graphs contains minor-incom-

parable elements, namely graphs of binary type, and U-indivisible graphs.

Assuming CH, Diestel and Leader asked whether every (ℵ0,ℵ1)-graph has an

(ℵ0,ℵ1)-minor that is either indivisible or of binary type, and whether any two

U-indivisible graphs are necessarily minors of each other. For both questions,

we construct examples showing that the answer is in the negative.

7.1. Introduction

A (graph theoretic) tree is a connected, acyclic graph. A subgraph H of a graph G is

called spanning if H has the same vertex set as G. Thus, a spanning tree T of a connected

graph G is a connected, acyclic subgraph containing every vertex of G. A tree is rooted

if it has one designated vertex, called the root. Fixing a root of a graph-theoretic tree

T induces a natural tree order on its vertex set V (T ) with the root as unique minimal

element.

A rooted spanning tree T of a graph G is called normal if the end-vertices of any edge

of G are comparable in the natural tree order of T , see e.g [54, §1.5]. Intuitively, all the

edges of G run ‘parallel’ to branches of T , but never ‘across’. Every countable connected

graph has a normal spanning tree, but uncountable graphs might not, as demonstrated by

complete graphs on uncountably many vertices [54, 8.2.3].

Halin [89, 7.2] observed that as a consequence of a theorem of Jung, the property of

having a normal spanning tree is minor-closed, i.e. preserved under taking (connected)

minors. Here, a graph H is a minor of another graph G, written H 4 G, if to every vertex

x ∈ H we can assign a (possibly infinite) connected set Vx ⊆ V (G), called the branch

set of x, so that these sets Vx are disjoint for different x and G contains a Vx − Vy edge

whenever xy is an edge of H.

171
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Halin’s observation opens up the possibility of a forbidden minor characterisation for

the property of admitting normal spanning trees. In the universe of finite graphs, the fa-

mous Seymour-Robertson Theorem asserts that any minor-closed property of finite graphs

can be characterised by finitely many forbidden minors, see e.g. [54, §12.7]. Whilst for

infinite graphs, we generally need an infinite list of forbidden minors, Diestel and Leader

have shown that for the property of having a normal spanning tree, the forbidden minors

come in two structural types.

Following Halin, a bipartite graph with bipartition (A,B) is called an (ℵ0,ℵ1)-graph if

|A| = ℵ0, |B| = ℵ1, and every vertex in B has infinite degree.

Theorem (Diestel and Leader, [58]). A connected graph admits a normal spanning

tree if and only if it does not contain an (ℵ0,ℵ1)-graph or an AT-graph (a certain kind of

graph whose vertex set is an order-theoretic Aronszajn tree) as a minor.

In the same paper, they ask how one might further describe the minor-minimal graphs

within the class of (ℵ0,ℵ1)-graphs.

One family of possibly minimal (ℵ0,ℵ1)-graphs suggested by Diestel and Leader are

the binary trees with tops, also called (ℵ0,ℵ1)-graphs of binary type: Let A be a binary tree

of countable height, and let B index ℵ1-many branches of A. We form an (ℵ0,ℵ1)-graph

with bipartition (A,B) by connecting every vertex b ∈ B to infinitely many points on its

branch. Details on these graphs can be found in Section 7.2. We can now state our main

result as follows.

Theorem 7.1.1. Let T be an arbitrary binary tree with tops. Under Martin’s Axiom

and the failure of the Continuum Hypothesis, the graph T embeds into any other (ℵ0,ℵ1)-

graph as a subgraph.

Answering a question by Diestel and Leader, it follows that it is consistent with the

usual axioms of set theory ZFC that there is a minor-minimal graph without a normal

spanning tree. As a second consequence, we can extend Diestel and Leader’s result as

follows.

Theorem 7.1.2. Let T be an arbitrary binary tree with tops. Under Martin’s Axiom

and the failure of the Continuum Hypothesis, a graph has a normal spanning tree if and

only if it does not contain T , or an AT-graph as a minor.

However, under the Continuum Hypothesis (CH) the situation is different. Now, there

exist indivisible (ℵ0,ℵ1)-graphs, i.e. graphs (N, B) where for every partition N = A1∪̇A2,

only one of the induced graphs (A1, B) and (A2, B) contains an (ℵ0,ℵ1)-subgraph. Note

that for every indivisible graph (N, B) there is a corresponding (non-principal) ultrafilter U
consisting of all subsets A ⊆ N such that (A,B) contains an (ℵ0,ℵ1)-subgraph. Indivisible

graphs with associated ultrafilter U are also called U-indivisible.
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In [58, 8.1], Diestel and Leader proved that binary trees with tops and indivisible

graphs form two minor-incomparable classes of (ℵ0,ℵ1)-graphs. Further, they mention

the following two problems involving indivisible graphs:

Question 1 (Diestel and Leader). Assuming CH, does every (ℵ0,ℵ1)-graph have an

(ℵ0,ℵ1)-minor that is either indivisible or of binary type?

Question 2 (Diestel and Leader). Assuming CH, are any two U -indivisible (ℵ0,ℵ1)-

graphs necessarily minors of each other?

One particular property of (ℵ0,ℵ1)-graphs of binary type is that they are almost disjoint

(AD): neighbourhoods of any two distinct B-vertices intersect only finitely (see Section 7.2

for further details). Of course, not every (ℵ0,ℵ1)-graph has this property, as complete

bipartite graphs show. However, our first result in this paper is that we can always

restrict our attention to almost disjoint (ℵ0,ℵ1)-graphs: In Theorem 7.3.3 below, we show

that every (ℵ0,ℵ1)-graph has an AD-(ℵ0,ℵ1)-subgraph.

Once we have made this reduction, we turn towards Questions 1 and 2. In Theo-

rem 7.5.1, we show that Question 1 has a negative answer. Our construction refines a

strategy developed by Roitman and Soukup for the combinatorical analysis of almost dis-

joint families. We then construct in Theorem 7.6.2 two U -indivisible graphs that are not

minor-equivalent, answering Question 2 in the negative.

7.2. Collections of infinite subsets of N, and (ℵ0,ℵ1)-graphs

The following connection between collections of infinite subsets of N and (ℵ0,ℵ1)-graphs

will be used frequently in this paper. Let G be an (ℵ0,ℵ1)-graph with bipartition (A,B),

and enumeration B = {bα : α < ω1}. Identifying A with the integers N, we can encode

G as (multi-)set 〈N(bα) : α < ω1〉 of infinite subsets of N. Conversely, given any multiset

〈Nα : α < ω1〉 of infinite subsets of N, we can form an (ℵ0,ℵ1)-graph with bipartition (N, B)

by setting N(bα) := Nα.

This correspondence allows us to translate graph-theoretic problems about (ℵ0,ℵ1)-

graphs to the realm of infinite combinatorics. Let A and B be subsets of N. If A \ B is

finite, we say that A is almost contained in B, or A is contained in B mod finite, and write

A ⊆∗ B. Consequently, A and B are almost equal, A =∗ B, if A ⊆∗ B and B ⊆∗ A (which

means their symmetric difference is finite).

Given any collection P of infinite subsets of N, we say that an infinite set A ⊆ N is a

pseudo-intersection for P if A ⊆∗ P for all P ∈ P . Every countable P that is directed by

⊆∗ has a pseudo-intersection.

A collection A of infinite subsets of N is an almost disjoint family (AD-family) if

A∩A′ =∗ ∅ for all A,A′ in A (in other words, if the pairwise intersection of elements of A
is always finite). By a diagonalisation argument, every infinite AD-family can be extended

to an uncountable AD-family.
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The simplest example of an (ℵ0,ℵ1)-graph is the complete bipartite graph Kℵ0,ℵ1 .

Binary trees with tops as introduced above are strictly smaller (with respect to the minor

relation4) examples of (ℵ0,ℵ1)-graphs, as they have the property that |N(b) ∩N(b′)| <∞
for all b 6= b′ ∈ B. Changing our perspective, we see that in this case, the collection

〈N(bα) : α < ω1〉 forms an almost disjoint family on N. Let us call any (ℵ0,ℵ1)-graph with

this last property an almost disjoint (ℵ0,ℵ1)-graph, or for short an AD-(ℵ0,ℵ1)-graph.

A tree T = (T,<) in the order-theoretic sense is a partially ordered set T with a

smallest element such that all predecessor sets t↓ = {s ∈ T : s < t} are well-ordered by <.

The order type of t↓ is called the height of t, and denoted by ht(t). The set of all elements

of T of height α is denoted by T (α), and called the αth level of T . A subset S ⊆ T of a

tree T = (T,<) is an initial subtree if t↓ ⊆ S for all t ∈ S. By T (6 α) =
⋃
β6α T (β) we

mean the initial subtree of T consisting of all elements of T of height at most α.

A linearly ordered subset of T is also called a chain. A branch of a tree T is an

inclusion-maximal chain. The collection of branches is also denoted by B(T ). For b a

branch and α an ordinal, b � α denotes the unique element of b ∩ T (α). An Aronszajn

tree is an uncountable tree such that all levels and all branches are countable. The binary

tree of countable height is the tree 2<ω, the set of all finite binary sequences, ordered by

extension. Similarly, a binary tree of finite height is a tree isomorphic to 2<ω(6n) for some

n ∈ N.

In the following, we list some special types of (ℵ0,ℵ1)-graphs (suggested by Diestel and

Leader [58]), and some well-known types of almost disjoint families (studied by Roitman

and Soukup [138]), all of which will play a role in this paper.

Graph-theoretic perspective (Diestel & Leader).

• T tops2 : Let A = 2<ω be a binary tree of height ω, and B be a set of ℵ1-many

branches of A. Any graph isomorphic to some (ℵ0,ℵ1)-graph formed on the

vertex set A∪̇B by connecting every vertex b ∈ B to infinitely many points on its

branch is called a T tops2 , or an (ℵ0,ℵ1)-graph of binary type.

• full T tops2 : As above, but now connect every vertex b ∈ B to all points on its

branch.

• divisible: An (ℵ0,ℵ1)-graph with bipartition (A,B) is divisible if there are parti-

tions A = A1∪̇A2 and B = B1∪̇B2 such that both (A1, B1) and (A2, B2) contain

(ℵ0,ℵ1)-subgraphs.

• U-indivisible: For a non-principal ultrafilter U , an (ℵ0,ℵ1)-graph with bipartition

(N, B) is called U -indivisible if for all A ∈ U we have N(b) ⊆∗ A for all but

countably many b ∈ B.
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Set-theoretic perspective (Roitman & Soukup).

• tree-family: An uncountable AD-family A on N is a tree-family if there is a tree-

ordering T of countable height on N so that for every A ∈ A there is a branch of

T which almost equals A.

• weak tree-family: As above, but now it is only required that there is an injective

assignment from A to branches of T such that every A ∈ A is almost contained

in its assigned branch.

• hidden (weak) tree-family: A is a hidden (weak) tree family if for some countable

tree T , {T ∩ a : a ∈ A} a (weak) tree family.

• anti-Luzin: An AD-family A is anti-Luzin if for all uncountable B ⊆ A there are

uncountable C,D ⊆ B such that
⋃
C ∩

⋃
D is finite.

Comparing the different notions. There are striking similarities between the graph-

theoretic and the set-theoretic perspective. We gather dependencies between the above

concepts in the following diagram. All these implications are straightforward from the

definitions.

tree family → weak tree

family
→

hidden

weak tree

family

→ containing T tops2

subgraph

↑ ↑ ↘ ↓
full T tops2 → T tops2 anti-Luzin → divisible

A little less straightforward is the fact that none of the arrows in the above diagram

can generally be reversed. This is witnessed by the following examples.

Observation 7.2.1. Under CH, there is a binary tree with tops which is not a tree

family.

Construction sketch. Consider a binary tree order T on N and, using CH, enu-

merate its branches B(T ) = {bα : α < ω1}. In order to diagonalize against all possible

tree families, enumerate all tree orders of countable height on N as {Tα : α < ω1}. Now if

|bα ∩ b| =∞ for some branch b of Tα, then choose Nα ⊆ bα such that Nα (∗ b. Otherwise,

put Nα = bα. Then (Nα : α < ω1) is as desired. �

Hence, the implications ‘tree family→ weak tree family’ and ‘full T tops2 → T tops2 ’ cannot

be reversed.

Next, if in a full T tops2 one additionally makes all tops adjacent to one special node of

the tree, one obtains a tree family which cannot be a T tops2 , because in a T tops2 without

isolated points on the countable side, only the root of the tree can be simultaneously

adjacent to all tops. In particular, the implications ‘T tops2 → weak tree family’ and ‘full

T tops2 → tree family’ cannot be reversed.
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Hidden weak tree families need not be anti-Luzin, see [138, p.58]. In particular, the

implications ‘weak tree family → hidden weak tree family’ and ‘anti-Luzin → divisible’

cannot be reversed. In Theorem 7.5.1 below, we construct under CH an anti-Luzin family

which contains no T tops2 subgraph, so the implications ‘weak tree family → anti-Luzin’

and ‘containing T tops2 subgraph → divisible’ cannot be reversed. Finally, the implication

‘hidden weak tree family → containing a T tops2 subgraph’ cannot be reversed:

Observation 7.2.2. Under CH, there is an AD-family (Nα : α < ω1) containing a

T tops2 subgraph but which is not a hidden weak tree family.

Construction Sketch. Consider a binary tree order T on N and enumerate its

branches B(T ) = {bα : α < ω1}. Enumerate all tree orders of countable height with

groundset some infinite subset of N as {Tα : α < ω1}. Every Nα will be the union of at

most two bβ1(α) and bβ2(α). At step α < ω1, we have β = sup
{
bβ1(γ), bβ2(γ) : γ < α

}
< ω1.

If there is bδ with δ > β such that bδ is not almost contained in a single branch of Tα,

put Nα = bδ. If all bδ with δ > β are almost contained in the same branch of Tα, put

Nα = bβ+1. Otherwise, there are β1(α) > β and β2(α) > β such that bβ1(α) and bβ2(α) are

almost contained in different branches of Tα. Put Nα = bβ1(α) ∪ bβ2(α). Then it is easily

checked that (Nα : α < ω1) is as desired. �

However, under MA+¬CH, every < c-sized AD family is a hidden weak tree family

[138, 4.4], so the last construction cannot be done in ZFC alone.

7.3. Finding almost disjoint (ℵ0,ℵ1)-subgraphs

Almost disjoint (ℵ0,ℵ1)-graphs are natural candidates for smaller obstruction sets in

Diestel and Leader’s result. In this section, we prove that indeed, every (ℵ0,ℵ1)-graph

contains an almost disjoint (ℵ0,ℵ1)-subgraph.

We say that a collection F of infinite subsets of some countably infinite set has an

almost disjoint refinement if there is a choice of infinite subsets AF ⊆ F such that A =

{AF : F ∈ F} is an almost disjoint family.

Theorem 7.3.1 (Baumgartner, Hajnal and Mate; Hechler). Every < c-sized collection

of infinite subsets of N has an almost disjoint refinement.

The theorem is due to Baumgartner, Hajnal and Mate [18, 2.1], and independently

due to Hechler [94, 2.1]. For convenience, we will indicate the proof below.

Corollary 7.3.2. Assume ¬CH. Every (ℵ0,ℵ1)-graph has a spanning AD-(ℵ0,ℵ1)-

subgraph.

Proof. An almost disjoint refinement corresponds, in the graph-theoretic perspective,

to a subgraph obtained by deleting, at every vertex on the B-side, co-infinitely many
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incident edges. Since we did not remove any vertices, we obtain indeed a spanning AD-

(ℵ0,ℵ1)-subgraph. �

Theorem 7.3.1 does not hold for families of size c (consider the collection of all infinite

subsets of N). Still, we can prove that the corresponding result for subgraphs is true

nonetheless (but we can no longer guarantee spanning subgraphs).

Theorem 7.3.3. Every (ℵ0,ℵ1)-graph has an AD-(ℵ0,ℵ1)-subgraph.

First, a piece of notation. Let F be a collection of infinite subsets of N, and A be

an almost disjoint family. Following Hechler, [94], we say that A covers F if for every

F ∈ F , the collection {A ∈ A : |F ∩ A| =∞} is of size |A|.
Hechler showed that a collection F of infinite subsets of N has an almost disjoint

refinement if and only if there is an almost disjoint family of size |F| covering F [94,

2.3]. We shall only make use of the backwards implication, the proof of which is nicely

illustrated in the claim below.

Proof of Theorem 7.3.3. Suppose we are given an (ℵ0,ℵ1)-graph G with biparti-

tion (N, B), an enumeration B = {bα : α < ω1} and neighbourhoods Nα = N(bα).

Claim. If {Nα : α < ω1} forms an uncountable decreasing chain mod finite (i.e. Nβ ⊆∗

Nα for all α < β), then G has an AD-(ℵ0,ℵ1)-subgraph.

For the claim, consider two alternatives. Either, N = {Nα : α < ω1} has an infinite

pseudo-intersection A, in which case any uncountable AD-family A = {Aα : α < ω1} on A

covers {Nα : α < ω1}. Picking N ′α = Nα∩Aα readily provides an almost disjoint refinement

of N . And if N does not have an infinite pseudo-intersection, then moving to a subgraph,

we may assume that Cα = Nα \ Nα+1 is infinite for all α < ω1. Now if α < β then

Cα∩Cβ ⊆ Nα \Nα+1∩Nβ is finite, as Nβ \Nα+1 is finite by assumption. So {Cα : α < ω1}
gives rise to an AD-(ℵ0,ℵ1)-subgraph of G, establishing the claim.

Now suppose there exists an infinite set A ⊆ N with the property that for every infinite

C ⊆ A there is an uncountable set KC = {β < ω1 : |Nβ ∩ C| =∞}. Let us construct, by

recursion,

(1) a faithfully indexed set {Nµα : α < ω1} ⊆ N , and

(2) infinite subsets Cα ⊆ Nµα ∩ A such that Cα ⊆∗ Cβ for all α > β.

First, let µ0 = minKA and put C0 = A∩Nµ0 , an infinite subset of A. Next, let α < ω1

and suppose µβ and Cβ have been defined according to (1) and (2) for all β < α. Let

C̃α be an infinite pseudo-intersection of the countable collection {Cβ : β < α}. We may

assume that C̃α ⊆ A and let µα = min
(
KC̃α

\ {µβ : β < α}
)
. Then Cα = C̃α ∩ Nµα is as

required.

Once the recursion is completed, we can move to the subgraph on (A, {µα : α < ω1})
with neighbourhoods N(µα) given by Cα. By property (2), the claim applies and we obtain

an AD-(ℵ0,ℵ1)-subgraph.
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Thus, we can assume that every infinite subset of N, and in particular every Nα contains

an infinite subset Cα such that KCα is countable. Recursively, pick an increasing transfinite

subsequence {να : α < ω1} of ω1, defined recursively by ν0 = 0 and

να = sup

(
{νβ : β < α} ∪

⋃
β<α

KCνβ

)
+ 1 < ω1.

We claim that {Cνα : α < ω1} gives rise to an AD-(ℵ0,ℵ1)-subgraph of G. It is a subgraph,

since by construction, we have Cνα ⊆ N(να). And it is almost disjoint, since given two

arbitrary neighbourhoods Cνα and Cνβ with say να < νβ, we have Cνα ∩Cνβ ⊆ Cνα ∩Nνβ ,

which is finite since νβ /∈ Kνα by construction. �

For completeness, we provide the proof of Theorem 7.3.1.

Proof of Theorem 7.3.1. Let F = {Fα : α < κ} be a κ < c sized family of infinite

subsets of N. We want to find an almost disjoint family B = {Bα : α < κ} such that

Bα ⊆ Fα for all α < κ.

Step 1: Split each Fα into an almost disjoint family Sα =
{
Sαξ : ξ < κ+

}
, i.e. all Sαξ

are infinite subsets of Fα, and Sαξ ∩ Sαζ is finite whenever ξ 6= ζ < κ+. As κ+ 6 c, this is

always possible. Note that κ+ is a regular cardinal.

Step 2: From our definition of ‘covering’ after Theorem 7.3.3, it follows that a κ+-sized

AD-family Sα covers {Fβ} iff
{
Sαξ ∩ Fβ :

∣∣Sαξ ∩ Fβ∣∣ =∞
}

is a κ+-sized AD-family on Fβ.

For all α < κ we use

Yα = {β < κ : Sα covers {Fβ}}

to build a partition of κ into (possibly empty) sets {Xα : α < κ}, defined by X0 = Y0 and

Xα = Yα \
⋃
β<α Yβ.

Step 3: For all α /∈ Yβ there is κ(α, β) < κ+ such that
∣∣∣Fα ∩ Sβξ ∣∣∣ <∞ for all ξ > κ(α, β).

Define

η = sup {κ(α, β) : β < κ, α /∈ Yβ} < κ+.

Step 4: Here, we pick the almost disjoint refinement. For all β there is α(β) such that

β ∈ Xα(β). For all β ∈ Xα we choose different ξ(β) > η and define Bβ = S
α(β)
ξ(β) ∩Fβ. Since

the Xα form a partition of κ, this is a well-defined assignment. Now consider β < γ. We

need to show that Bβ ∩Bγ is finite.

• If α(β) = α = α(γ) then Bβ ∩ Bγ ⊆ Sαξ(β) ∩ Sαξ(γ) which is finite, since both sets

are elements of the same AD-family Sα.

• Otherwise, if say α(β) < α(γ), then γ /∈ Yα(β), so Bβ ∩ Bγ ⊆ S
α(β)
ξ(β) ∩ Fγ is finite

since ξ(β) > η > κ(γ, α(β)). �
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7.4. The situation under Martin’s Axiom

In this section we prove that under MA+¬CH, any binary tree with tops serves as a

one-element obstruction set for the class of (ℵ0,ℵ1)-graphs. For background on Martin’s

Axiom, see [106, III.3]. We begin with a sequence of lemmas.

Lemma 7.4.1. Under MA+¬CH, every (ℵ0,ℵ1)-graph contains a spanning subgraph

isomorphic to a binary tree with tops.

Proof. Let (A,B) be an (ℵ0,ℵ1)-graph. We want to find an infinite set T ⊆ A

plus a tree order ≺ on T such that T = (T,≺) is isomorphic to 2<ω, and an injective

map h : B → B(T ) (assigning to each element b ∈ B a unique branch of T ) such that

N(b)∩h(b) is infinite for all b ∈ B. Once we have achieved this, we delete for every b ∈ B
all edges from b to A \ h(b) to obtain a binary tree with tops with bipartition (T,B). The

remaining vertices in A \T can be easily interweaved with T as isolated vertices to obtain

a spanning such subgraph.

To build this tree T , we consider finite approximations (Tp,≺p) to T (which will be

finite initial segments of T ), and then use Martin’s Axiom to find a consistent way to

build the desired full binary tree. Formally, consider the partial order (P,6) consisting of

tuples p = (Tp,≺p, Bp, hp) such that

• Tp ⊆ A finite, and ≺p a tree-order on Tp such that (Tp,≺p) is a binary tree of

some finite height,

• Bp ⊆ B finite, and

• hp : Bp → B((Tp,≺p)) an injective assignment of branches,

and p 6 q if

• (Tq,≺q) is an initial subtree of (Tp,≺p),
• Bq ⊆ Bp, and

• hp extends hq in the sense hp(b) ⊇ hq(b) for all b ∈ Bq.

To see that (P,6) is ccc, consider an uncountable collection

{pα = (Tα,≺α, Bα, hα) : α < ω1} ⊆ P.

By the ∆-System Lemma [106, III.2.6], there is a finite root R ⊆ B and an uncountable

K ⊆ ω1 such that Bα ∩ Bβ = R for all α 6= β ∈ K. And since there are only countably

many finite subsets of A, each with only finitely many possible tree-orders and branch-

assignments for R, there is an uncountable K ′ ⊆ K such that (Tα,≺α) = (Tβ,≺β) and

hα � R = hβ � R for all α 6= β ∈ K ′. But then for any α 6= β ∈ K ′, q = (Tα,≺α
, Bα ∪Bβ, hα ∪ hβ) is a condition below pα and pβ (where we possibly have to increase Tα
by one level so a suitable extension of hα ∪ hβ can be injective).

Next we claim that for all b ∈ B and n ∈ ω, the set

Db,n = {p ∈ P : b ∈ Bp and |hp(b) ∩N(b)| > n}
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is dense. To see this, consider any condition q ∈ P and suppose (Tq,≺q) has height k.

Choose any subset of Fb ⊆ N(b) \ Tq of size n, and extend Tq to a full binary tree Tp of

height k + n, making sure that Fb ⊆ hp(b).

Finally, by Martin’s Axiom there is a filter G meeting each of our ℵ1 < c many dense

sets in D = {Db,n : b ∈ B, n ∈ ω}. Then

T = (T,≺) =

(⋃
p∈G

Tp,
⋃
p∈G

≺p

)
is a countable binary tree, and

h : B → B(T ), b 7→
⋃
p∈G

hp(b)

is an injective function witnessing that N(b)∩h(b) is infinite, for our dense sets make sure

it has cardinality at least n for all n ∈ N. �

We remark that it has been shown in either of [144, Thm. 6], [160, 2.3] or [138,

4.4] (in historical order) that under MA+¬CH, every almost disjoint family of size < c

contains a hidden tree family, which together with our Theorem 7.3.3 and the observations

in Section 7.2 implies the result of Lemma 7.4.1.

However, we will now strengthen the claim of Lemma 7.4.1 to hold for full binary trees

with tops. Clearly, binary trees with tops have fewer edges, and are therefore easier to

find as subgraphs than full binary trees with tops. But under Martin’s Axiom, it turns

out that the additional leeway is not needed. Note though that in the previous theorem,

we could find a spanning binary tree with tops. In the next theorem, we can obtain full

binary trees with tops as subgraphs, but can no longer guarantee that they are spanning.

Lemma 7.4.2. Under MA+¬CH, every (ℵ0,ℵ1)-graph contains a full binary tree with

tops as a subgraph.

Proof. Let (A,B) be an (ℵ0,ℵ1)-graph. We want to find an infinite set T ⊆ A plus a

tree order ≺ on T such that T = (T,≺) is isomorphic to 2<ω, and an uncountable BT ⊆ B

plus an injective map h : BT → B(T ) (assigning to each element b ∈ BT a unique branch

of T ) such that h(b) ⊆ N(b) for all b ∈ BT . Once we have achieved this, we delete for

every b ∈ BT all edges from b to T \ h(b) to obtain the desired full binary tree (T,BT )

with tops.

To find this tree T , we build countably many such trees in parallel, which together take

care of all b ∈ B. Consider the partial order (P,6) consisting of tuples p = (Tp,≺p, Bp, hp)

such that

• Tp ⊆ A finite, and ≺p a tree-order on Tp such that (Tp,≺p) is a binary tree of

some finite height,

• Bp ⊆ B finite,
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• hp : Bp → B((Tp,≺p)) an injective assignment of branches, and

• hp(b) ⊆ N(b) for all b ∈ Bp

and p 6 q if

• (Tq,≺q) is an initial subtree of (Tp,≺p),
• Bq ⊆ Bp, and

• hp extends hq in the sense hp(b) ⊇ hq(b) for all b ∈ Bq.

As in the proof of Lemma 7.4.1, this partial order is ccc, and hence so is the finite support

product
fin∏
n<ω

P := {~p ∈ Pω : |{n : ~pn 6= 1}| <∞}

by [106, III.3.43].

We claim that for all b ∈ B, the set Db = {~p : ∃n ∈ ω s.t. b ∈ B~pn} is dense in
∏fin

n<ω P.

And indeed, to any condition ~p which does not yet mention b we can simply add b to a

free coordinate, even using the empty tree.

So by Martin’s Axiom, there is a filter G meeting every one of our ℵ1 < c many dense

sets in D = {Db : b ∈ B}. It follows that(Tn, Bn) =

⋃
~p∈G

T~pn ,
⋃
~p∈G

B~pn

 : n ∈ N


is a countable collection of binary trees with tops, such that B =

⋃
n∈NBn. Thus, at least

one of them, say Bn, is uncountable. It follows that in (T,BT ) = (Tn, Bn) we have found

our full binary tree with tops embedded as a subgraph as desired. �

We now proceed to showing that under MA, any two binary trees with tops embed

into each other. Consider the binary tree T = 2<ω. A subset B ⊆ B(T ) of branches is

called dense (or ℵ1-dense) if for every t ∈ T the set B(t) = {b ∈ B : t ∈ b} has size at least

ℵ0 (or ℵ1 respectively).

It is well known that the Cantor set 2ω is countable dense homogeneous, i.e. for every

two countable dense subsets A,B ⊆ 2ω there is a self-homeomorphism f of 2ω such that

f(A) = B. It is also known that under MA+¬CH, this assertion can be strengthened to ℵ1-

dense subsets of 2ω, see for example [17, 3.2] and [145]. In the following, we shall see that

a mild refinement of this approach, namely adding condition (d) to the partial order below,

also works for (ℵ0,ℵ1)-graphs of binary type. In this condition (d) below, a level T (α) of

a tree T is said to separate a collection of branches B ⊆ B(T ) if B(t) = {b ∈ B : t ∈ b}
has size at most one for all t ∈ T (α).

Lemma 7.4.3. Under MA+¬CH, any two full ℵ1-dense binary trees with tops are iso-

morphic.



182 7. MINIMAL OBSTRUCTIONS FOR NORMAL SPANNING TREES

Proof. Suppose G = (TA, A) and H = (TB, B) are two full ℵ1-dense binary trees

with tops. For convenience, we treat a ∈ A as branch of the tree TA. Recall that a � n

denotes the unique node of the branch a of height n.

It is clear that A and B can be partitioned into ℵ1 many disjoint countable dense sets

{Aα : α < ω1} and {Bα : α < ω1} respectively. Consider the partial order (P,6) consisting

of tuples p = (fp, gp) such that

(a) fp is a finite injection with dom(fp) ⊆ A and ran(fp) ⊆ B,

(b) if x ∈ Aα then fp(x) ∈ Bα,

(c) gp is an order isomorphism between TA(6np) and TB(6np) for some np ∈ N,

(d) TA(np) separates dom(fp) and TB(np) separates ran(fp),

(e) for all a ∈ dom(fp) we have gp(a � np) = fp(a) � np,

and define p 6 q if

• fp ⊇ fq, and

• gp ⊇ gq.

To see that (P,6) is ccc, consider an uncountable collection

{pα = (fα, gα) : α < ω1} ⊆ P.

Applying the ∆-System Lemma to all sets of the form Iα = {γ : Aγ ∩ dom(fα) 6= ∅} (for

α < ω1), we obtain a finite root R and an uncountable K ⊆ ω1 such that Iα ∩ Iβ = R for

all α 6= β ∈ K.

Since there are only countably many different finite subsets of A′ =
⋃
α∈RAα, we

may assume that dom(fα) ∩ A′ = S = dom(fβ) ∩ A′ for all α 6= β ∈ K. And since

(b) implies that there are only countably many choices for fα � S, we may assume that

fα � S = fβ � S for all α 6= β ∈ K. Finally, since there are only countably many different

gα, we may assume that all gα : TA(6 n)→ TB(6 n) agree.

But now any two conditions in {pα : α ∈ K} are compatible. By (b) and the definition

of R, the map f = fα ∪ fβ is a well-defined injective partial map. Extend gα to an order

isomorphism g : TA(6 m)→ TB(6 m) for some sufficiently large m > n, making sure that

(d) and (e) are satisfied. Then (f, g) is a condition below fα and fβ, so (P,6) is ccc.

As our dense sets, we will consider

(1) Dn = {p ∈ P : TA(6 n) ⊆ dom(gp)}, for n ∈ N,

(2) Da = {p ∈ P : a ∈ dom(fp)} for a ∈ A, and

(3) Db = {p ∈ P : b ∈ ran(fp)} for b ∈ B.

To see that sets in (1) are dense, consider any condition q = (fq, gq) ∈ P and assume

that dom(gq) = TA(6 m) for some m < n. Since for every t ∈ T (m) there is at most

one a ∈ dom(fq) such that t ∈ a by (d), it is clear that we can extend gq to a function

gp defined on TA(6 n) by mapping the upset t↑ in TA(6 n) to the corresponding upset of
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gq(t)
↑ of TB(6 n) such that the branch a � t↑ is mapped to fq(a) � gq(t)↑. For fp = fq we

have p = (fp, gp) is a condition in Dn below q.

To see that sets in (2) are dense, consider any condition q ∈ P and assume that

a /∈ dom(fq). Say dom(gq) = TA(6 n) for a given n ∈ N. By (1) we may assume that

TA(n) separates dom(fq) ∪ {a}. Find t ∈ TA(n) such that t ∈ a. Note that a ∈ Aα for

some α < ω1. By density of Bα, we may pick b ∈ Bα extending gq(t). Then fp = fq∪〈a, b〉
and gp = gq gives a condition in Da below q. The argument for (3) is similar.

Finally, Martin’s Axiom gives us a filter G meeting all specified dense sets. But then

(2) and (3) force that f =
⋃
p∈G fp : A → B is a bijection, and (1) forces that g =⋃

p∈G gp : TA → TB is an isomorphism of trees. In combination with property (e), we have

g[a] = f(a) for all a ∈ A, and this means, since G and H were full binary trees with tops,

that f ∪ g : G→ H is an isomorphism of graphs. �

Theorem 7.4.4. Under MA+¬CH, any binary tree with tops embeds into all other

(ℵ0,ℵ1)-graphs as a subgraph.

Proof. Suppose G = (TA, A) is a binary tree with tops, and H an arbitrary (ℵ0,ℵ1)-

graph. Our task is to embed G into H as a subgraph. By Lemma 7.4.2, we may assume

that H = (TB, B) is a full binary tree with tops.

Our plan is (a) to extend G to a full ℵ1-dense binary tree with tops G′, and (b) to find

in H a full ℵ1-dense binary tree with tops H ′ as a subgraph. Then Lemma 7.4.3 implies

that

G ↪→ G′ ∼= H ′ ↪→ H,

establishing the theorem.

Only item (b) requires proof. For this, we observe that every uncountable set of

branches X of a binary tree T contains at least one complete accumulation point, i.e. a

branch x ∈ X such that for every t ∈ x, the set B(t) = {y ∈ X : t ∈ y} is uncountable.

Indeed, otherwise for every x ∈ X there is tx such that B(tx) is countable, and hence

X ⊆
⋃
tx∈T B(tx) is countable, a contradiction.

It follows that in fact all but at most countably many points of X are complete accu-

mulation points, so without loss of generality, we may assume that every point of B is a

complete accumulation point. Consider T ′B =
⋃
b∈B b ⊆ TB. Then T ′B is a (subdivided)

binary tree, so after deleting all non-splitting nodes from T ′B, we obtain a full ℵ1-dense

binary tree with tops H ′ as desired. The proof is complete. �

7.5. A third type of (ℵ0,ℵ1)-graph

In this section we present a counterexample to the main open question from [58, §8],

which is our Question 1 from the beginning.

Theorem 7.5.1. Under CH, there is an almost disjoint (ℵ0,ℵ1)-graph which contains

no (ℵ0,ℵ1)-minor that is indivisible or of binary type.
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Our proof is inspired by the proof strategy of the following result due to Roitman &

Soukup: Under CH plus the existence of a Suslin tree, there is an uncountable anti-Luzin

AD-family containing no uncountable hidden weak tree families [138, 4.6]. Note though,

that not containing a binary (ℵ0,ℵ1)-graph as a minor or just as a subgraph are stronger

assertions than not containing an uncountable hidden weak tree family.

We shall make use of the following lemma.

Lemma 7.5.2. Whenever T ∗ is Aronszajn, and B an uncountable set of branches of T ∗

such that no two elements of B have the same order type, there are incompatible elements

s, t ∈ T ∗ both contained in uncountably many branches of B.

Proof. The proof follows [138, 4.7]. Consider an Aronszajn tree T ∗, and let B be

an uncountable set of branches of T ∗ such that no two elements of B have the same order

type.

Suppose for a contradiction that whenever s and t are incompatible, then either

B(s) = {b ∈ B : s ∈ b} is countable or B(t) = {b ∈ B : t ∈ b} is countable. Then S =

{s : B(s) is uncountable} forms a chain, hence is countable. So there is α < ω1 with

T ∗(α) ∩ S = ∅. But now all but countably many elements of B are contained in the

countable set
⋃
s∈T ∗(α) B(s), a contradiction. �

Proof of Theorem 7.5.1. Consider an Aronszajn tree T ∗, and let B be an un-

countable set of branches of T ∗ such that no two elements of B have the same order

type.

Using CH, let {Tα = (Tα, <α) : α < ω1} enumerate all trees of countable height whose

underlying set is an infinite family of non-empty disjoint subsets of N. For a subset C ⊆ N
we define C(Tα) = {t ∈ Tα : C ∩ t 6= ∅}.

Let us construct, by recursion on α < ω1,

• families {Ct : t ∈ T ∗(α)} of infinite subsets of N, and

• countable families Bα of branches of Tα,

such that

(a) for all s, t ∈ T ∗ we have Ct ⊆∗ Cs if s < t, and Cs ∩ Ct =∗ ∅ if s and t are

incomparable,

(b) for all s 6= t ∈ T ∗(α), we have Cs(Tα) ∩ Ct(Tα) =∗ ∅, and

(c) for all t ∈ T ∗(α), if Ct(Tα) contains an infinite chain in Tα, then there is b ∈ Bα

such that Ct(Tα) ⊆∗ b.
For the construction, suppose for some α < w1 that we have already constructed

infinite sets Ct ⊆ N for all t ∈ T ∗ of height strictly less than α. By (a), we may pick for

every t ∈ T ∗(α) an infinite pseudo-intersection Dt of the family {Cs : s < t}. Using that

every level T ∗(α) of our Aronszajn tree T ∗ is countable, find an almost disjoint refinement

{D′t : t ∈ T ∗(α)} of {Dt : t ∈ T ∗(α)}. This can be done either by hand, or by invoking
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Theorem 7.3.1. Similarly, we can find a further refinement {D′′t : t ∈ T ∗(α)} such that

D′′s (Tα) ∩D′′t (Tα) =∗ ∅ for all s 6= t ∈ T ∗(α). This takes care of property (b).

For (c), we use the Aronszajn property to enumerate T ∗(α) = {tn : n ∈ N}. For n ∈ N,

if D′′tn(Tα) has infinite intersection with some branch of Tα, we pick one such branch bn
and pick an infinite subset Ctn ⊆ D′′tn such that Ctn(Tα) ⊆ bn. Otherwise, we simply put

Ctn = D′′tn (and let bn be an arbitrary branch). This final refinement preserves (a) and

(b), and after putting Bα = {bn : n ∈ N}, we see that also (c) is satisfied.

Having completed the construction, we may pick, by (a), for every branch b ∈ B an

infinite pseudo-intersection N(b) along the branch b, i.e. N(b) ⊆∗ Ct for all t ∈ b. It follows

from (a) that {N(b) : b ∈ B} is an almost disjoint family of size ω1.

Let G be the almost disjoint (ℵ0,ℵ1)-graph with bipartition (N, B) where the neigh-

bourhood of b ∈ B is N(b).

Claim. Property (c) implies that no (ℵ0,ℵ1)-minor of G is of binary type.

To see the claim, suppose that H = (T , X) is an (ℵ0,ℵ1)-minor of G of binary type.

Since any non-trivial branch set of the bipartite graph G must contain a vertex from N, we

may assume, without loss of generality, that X ⊆ B, and that every branch set Xt ⊆ V (G)

corresponding to a vertex of t ∈ T intersects N. Further, there is an injective function

h : X → Br(T ) mapping points in X to branches of T such that NG(x)(T ) ∩ h(x) is

infinite for all x ∈ X.

However, the tree T = Tα appears in our enumeration. Without loss of generality,

X ⊆ {b ∈ B : ht(b) > α}. But then (c) implies that ran(h) ⊆ Bα, which is countable,

contradicting that X is uncountable and h injective.

Claim. Property (b) implies that every (ℵ0,ℵ1)-minor of G is divisible.

Suppose that H = (A,X) is an (ℵ0,ℵ1)-minor of G. As before, we may assume

that X ⊆ B and that the branch sets Xa ⊆ V (G) for a ∈ A intersect N. Note that

X = {Xa ∩ N : a ∈ A} is the underlying set of uncountably many of our trees Tα.

Now by Lemma 7.5.2, there are incomparable s, t ∈ T ∗ each contained in uncountably

many branches of X. Find α > ht(s), ht(t) such that X = Tα, and find s′, t′ ∈ T ∗(α)

extending s and t respectively such that C = {b ∈ X : s′ ∈ b} and D = {b ∈ X : t′ ∈ b} are

both uncountable.

But then (b) implies that Cs′(Tα) and its complement witness that H is divisible.

Indeed, each b ∈ C has co-finitely many of its neighbours in Cs′(Tα), since N(b) ⊆∗ Cs′ for

all b ∈ C, and similarly, each b ∈ D has co-finitely many of its neighbours in Ct′(Tα), as

N(b) ⊆∗ Ct′ for all b ∈ D. �

Since every AD-family built in the above way satisfying (a) is anti-Luzin [138, 4.10],

we obtain the following corollary.
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Corollary 7.5.3. Under CH, there is an uncountable anti-Luzin AD-family which

contains no uncountable hidden weak tree families.

This improves the corresponding result from [138, 4.6], where it was proved under the

additional assumption of the existence of a Suslin tree.

7.6. More on indivisible graphs

In this final section, we investigate indivisible graphs in more detail. Our aim is

to construct a counterexample to Question 2 from the introduction. First however, we

consider the question of when precisely indivisible graphs exist.

We recall two cardinal invariants in infinite combinatorics. The ultrafilter number u

is the least cardinal of a collection U of infinite subsets of N that form a base of some

non-principal ultrafilter on N. In formulas,

u = min {|U| : U ⊆ [N]ω is a base for a non-principal ultrafilter on N}.

(Recall that U is a base for an ultrafilter V if U ⊆ V and for all V ∈ V there is U ∈ U such

that U ⊆ V .) We call R ⊆ [N]ω a reaping family if for all A ∈ [N]ω there is R ∈ R such

that either |A ∩R| or |R \ A| is finite. The reaping number r is the least size of a reaping

family. In formulas,

r = min {|R| : R ⊆ [N]ω and ∀A ∈ [N]ω∃R ∈ R(A ∩R =∗ ∅ ∨R \ A =∗ ∅}.

Theorem 7.6.1. The equality u = ω1 implies that indivisible (ℵ0,ℵ1)-graphs exist,

whereas r > ω1 implies they do not exist.

Proof. Let V be a non-principal ultrafilter and let {Uα : α < ω1} be a base for V .

We will build an indivisible (ℵ0,ℵ1)-graph with bipartition (N, B) as follows. Let B =

{bα : α < ω1}. For every bα we let N(bα) be an infinite pseudo-intersection of the family

(Uβ)β<α. It is easy to check that this yields a graph as desired.

Conversely, if (N, B) is indivisible, then for every A ⊆ N, all but countably many

elements of {N(b) : b ∈ B} are almost contained in A or almost disjoint from A. It follows

that {N(b) : b ∈ B} is a reaping family and therefore r = ω1. �

In particular, it is well-known (see [159]) that we have ω1 6 r = πu 6 u 6 c, where

πu is the least cardinal of a local π-base of some non-principal ultrafilter on N. Since

it is consistent that w1 = u < c, it follows that CH is independent of the existence of

indivisible (ℵ0,ℵ1)-graphs. However, we do not know whether indivisible graphs exist in

the Bell-Kunen model where ω1 = πu < u, [19].

Lastly, we observe the following connection between indivisible graphs and π-bases:

The neighbourhoods N(bα) of an U -indivisible (ℵ0,ℵ1)-graph form a π-base for U . And

conversely, if a family {Nα : α < ω1} of infinite subsets of N forms a π-base for a unique

ultrafilter U , then the corresponding (ℵ0,ℵ1)-graph is indivisible.
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We are now ready to answer Question 2 in the negative.

Theorem 7.6.2. Assume CH. Let U be a non-principal ultrafilter on the natural

numbers. For every U-indivisible (ℵ0,ℵ1)-graph G there exists an U-indivisible (ℵ0,ℵ1)-

graph H such that G 64 H.

Proof. Using CH, let {Uα : α < ω1} be an enumeration of the elements of U , and let

{Xα : α < ω1} be an enumeration of all infinite sequences of non-empty disjoint subsets of

N. For α < ω1 write Xα = (Xα
n : n ∈ N) ∈ P(N)N.

Suppose G is a U -indivisible (ℵ0,ℵ1)-graph with bipartition (N, B). We write B =

{bα : α < ω1}. Our graph H will be an (ℵ0,ℵ1)-graph with bipartition (N, C) where C =

{cα : α < ω1}. Our task is to define suitable neighbourhoods N(cα) for all α < ω1. We

will do this as follows. At step α < ω1, choose a neighbourhood N(cα) ⊆ N such that

(1) N(cα) ⊆∗ Uβ for all β 6 α, and

(2) for any γ, δ 6 α there is n ∈ N(bγ) such that N(cα) ∩Xδ
n = ∅.

To build the neighbourhoodN(cα) = {mk : k ∈ N} recursively, enumerate the set {Uβ : β 6 α}
as {Un : n ∈ N} and {(β, γ) : β, γ 6 α} as {(βn, γn) : n ∈ N}.

To choose mk, note that since the collection {Xγk
n : n ∈ N(bβk)} is infinite and disjoint,

there is an index nk ∈ N(bβk) such that Xγk
nk
/∈ U and Xγk

nk
∩ {ml : l < k} = ∅. Now pick

mk ∈
⋂
l6k

(
U l \Xγl

nl

)
∈ U .

This choice of N(cα) = {mk : k ∈ N} clearly satisfies (1). To see that it satisfies (2), note

that Xγk
nk
∩ {ml : l < k} = ∅ by our choice of nk, and Xγk

nk
∩ {ml : l > k} = ∅ by our choice

of the ml for l > k. This completes the recursive construction of the graph H.

Claim. H is U -indivisible.

This is immediate from (1).

Claim. G is not a minor of H.

Suppose for contradiction that it is. Without loss of generality, we may assume that

every vertex on the N-side of G has uncountable degree. Write Vn,Wα ⊆ V (H) (n ∈ N,

α < ω1) for the branch sets of the vertices in N and B respectively. By our assumption

on the degrees of the vertices on the N-side of G, it follows that Vn ∩N 6= ∅ for all n ∈ N.

Thus, (Vn ∩ N : n ∈ N) = Xγ for some γ < ω1.

Also, since only countably many branch sets can intersect N, there is some δ < ω1 such

that Wα =
{
cβ(α)

}
for all α > δ. Also, since branch sets must be disjoint, the function

β : α 7→ β(α) is injective.

Let η = max {γ, δ}. We claim that for all α > η, we have β(α) < α. Indeed, Wα

needs to have an edge to all Vn for n ∈ N(bα), which requires that cβ(α) has an edge to
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Xγ
n for all n ∈ N(bα). However, if α 6 β(α), then this is impossible, as (2) implies that

N(cβ(α)) ∩Xγ
n0

= ∅ for at least one n0 ∈ N(bα).

Thus, we have β(α) < α for all α > η. By Fodor’s Lemma [106, III.6.14], however,

this implies that the map β is constant on an uncountable subset of ω1, contradicting its

injectivity. �

Question 3. Assume CH. Is it true that for every U -indivisible (ℵ0,ℵ1)-graph G

there exists a U -indivisible (ℵ0,ℵ1)-graph H such that both G 64 H and H 64 G?
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CHAPTER 8

Hamilton decompositions of one-ended Cayley graphs

We prove that any one-ended, locally finite Cayley graph G(Γ, S), where Γ

is an abelian group and S is a finite generating set of non-torsion elements,

admits a decomposition into edge-disjoint Hamiltonian (i.e. spanning) double-

rays. In particular, the n-dimensional grid Zn admits a decomposition into n

edge-disjoint Hamiltonian double-rays for all n ∈ N.

8.1. Introduction

A Hamiltonian cycle of a finite graph is a cycle which includes every vertex of the graph.

A finite graph G = (V,E) is said to have a Hamilton decomposition if its edge set can

be partitioned into disjoint sets E = E1∪̇E2∪̇ · · · ∪̇Er such that each Ei is a Hamiltonian

cycle in G.

The starting point for the theory of Hamilton decompositions is an old result by Walecki

from 1890 according to which every finite complete graph of odd order has a Hamilton

decomposition (see [4] for a description of his construction). Since then, this result has

been extended in various different ways, and we refer the reader to the survey of Alspach,

Bermond and Sotteau [5] for more information.

Hamiltonicity problems have also been considered for infinite graphs, see for example

the survey by Gallian and Witte [167]. While it is sometimes not obvious which objects

should be considered the correct generalisations of a Hamiltonian cycle in the setting of

infinite graphs, for one-ended graphs the undisputed solution is to consider double-rays,

i.e. infinite, connected, 2-regular subgraphs. Thus, for us a Hamiltonian double-ray is then

a double-ray which includes every vertex of the graph, and we say that an infinite graph

G = (V,E) has a Hamilton decomposition if we can partition its edge set into edge-disjoint

Hamiltonian double-rays.

In this paper we will consider infinite variants of two long-standing conjectures on

the existence of Hamilton decompositions for finite graphs. The first conjecture concerns

Cayley graphs: Given a finitely generated abelian group (Γ,+) and a finite generating set

S of Γ, the Cayley graph G(Γ, S) is the multi-graph with vertex set Γ and edge multi-set

{(x, x+ g) : x ∈ Γ, g ∈ S}.

191
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Conjecture 8.1.1 (Alspach [2, 3]). If Γ is an abelian group and S generates G, then

the simplification of G(Γ, S) has a Hamilton decomposition, provided that it is 2k-regular

for some k.

Note that if S ∩ −S = ∅, then G(Γ, S) is automatically a 2|S|-regular simple graph.

If G(Γ, S) is finite and 2-regular, then the conjecture is trivially true. Bermond, Favaron

and Maheo [22] showed that the conjecture holds in the case k = 2. Liu [113] proved

certain cases of the conjecture for finite 6-regular Cayley graphs, and his result was further

extended by Westlund [164]. Liu [114, 115] also gave some sufficient conditions on the

generating set S for such a decomposition to exist.

Our main theorem in this paper is the following affirmative result towards the corre-

sponding infinite analogue of Conjecture 8.1.1:

Theorem 8.1.2. Let Γ be an infinite, finitely generated abelian group, and let S be

a generating set such that every element of S has infinite order. If the Cayley graph

G = G(Γ, S) is one-ended, then it has a Hamilton decomposition.

We remark that under the assumption that elements of S are non-torsion, the sim-

plification of G(Γ, S) is always isomorphic to a Cayley graph G(Γ, S ′) with S ′ ⊆ S and

S ′∩−S ′ = ∅, and so our theorem implies the corresponding version of Conjecture 8.1.1 for

non-torsion generators, in particular for Cayley graphs of Zn with arbitrary generators.

In the case when G = G(Γ, S) is two-ended, there are additional technical difficulties

when trying to construct a decomposition into Hamiltonian double-rays. In particular,

since each Hamiltonian double-ray must meet every finite edge cut an odd number of

times, there can be parity reasons why no decomposition exists. One particular two-ended

case, namely where Γ ∼= Z, has been considered by Bryant, Herke, Maenhaut and Webb

[40], who showed that when G(Z, S) is 4-regular, then G has a Hamilton decomposition

unless there is an odd cut separating the two ends.

The second conjecture about Hamiltonicity that we consider concerns Cartesian prod-

ucts of graphs: Given two graphs G and H the Cartesian product (or product) G�H is the

graph with vertex set V (G)× V (H) in which two vertices (g, h) and (g′, h′) are adjacent

if and only if either

• g = g′ and h is adjacent to h′ in H, or

• h = h′ and g is adjacent to g′ in G.

Kotzig [103] showed that the Cartesian product of two cycles has a Hamilton decompo-

sition, and conjectured that this should be true for the product of three cycles. Bermond

extended this conjecture to the following:

Conjecture 8.1.3 (Bermond [21]). If G1 and G2 are finite graphs which both have

Hamilton decompositions, then so does G1�G2.
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Alspach and Godsil [6] showed that the product of any finite number of cycles has a

Hamilton decomposition, and Stong [147] proved certain cases of Conjecture 8.1.3 under

additional assumptions on the number of Hamilton cycles in the decomposition of G1 and

G2 respectively.

Applying techniques we developed to prove Theorem 8.1.2, we show as our second

main result of this paper that Conjecture 8.1.3 holds for countably infinite multi-graphs.

Theorem 8.1.4. If G and H are countable multi-graphs which both have Hamilton

decompositions, then so does their product G�H.

Note that the restriction to countable multi-graphs, i.e multi-graphs with countably

many vertices and edges, is necessary. Indeed the existence of a spanning double ray

implies that G and H have countable vertex sets. But then if G contains a countable

edge cut, then so does G�H. However, if H has uncountably many edges, then any

Hamilton decomposition of G�H must consist of uncountably many edge-disjoint double-

rays, contradicting the existence of a countable edge cut.

The paper is structured as follows: In Section 8.2 we mention some group theoretic

results and definitions we will need. In Section 8.3 we state our main lemma, the Covering

Lemma, and show that it implies Theorem 8.1.2. The proof of the Covering Lemma will be

the content of Section 8.4. In Section 8.5 we apply our techniques to prove Theorem 8.1.4.

Finally, in Section 8.6 we list open problems and possible directions for further work.

8.2. Notation and preliminaries

If G = (V,E) is a graph, and A,B ⊆ V , we denote by E(A,B) the set of edges between

A and B, i.e. E(A,B) = {(x, y) ∈ E : x ∈ A, y ∈ B}. For A ⊆ V or F ⊆ E we write G[A]

and G[F ] for the subgraph of G induced by A and F respectively.

For A,B ⊆ Γ subsets of an abelian group Γ we write −A := {−a : a ∈ A} and A +

B := {a+ b : a ∈ A, b ∈ B} ⊆ Γ. If ∆ is a subgroup of Γ, and A ⊆ Γ a subset, then

A∆ = {a+ ∆: a ∈ A} denotes the family of corresponding cosets. If g ∈ Γ we say that

the order of g is the smallest k ∈ N such that k ·g = 0. If such a k exists, then g is a torsion

element. Otherwise, we say the order of g is infinite and g is a non-torsion element. For

k ∈ N we write [k] = {1, 2, . . . , k}.
The following terminology will be used throughout.

Definition 8.2.1. Given a graph G, an edge-colouring c : E(G) → [s] and a colour

i ∈ [s], the i-subgraph is the subgraph of G induced by the edge set c−1(i), and the

i-components are the components of the i-subgraph.

Definition 8.2.2 (Standard and almost-standard colourings of Cayley graphs). Let

Γ be an infinite abelian group, S = {g1, g2, . . . , gs} a finite generating set for Γ such that

every gi ∈ S has infinite order, and let G be the Cayley graph G(Γ, S).
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• The standard colouring of G is the edge colouring cstd : E(G) → [s] such that

cstd

(
(x, x+ gi)

)
= i for each x ∈ Γ, gi ∈ S.

• Given a subset X ⊆ V (G) we say that a colouring c is standard on X if c agrees

with cstd on G[X]. Similarly if F ⊆ E(G) we say that c is standard on F if c

agrees with cstd on F .

• A colouring c : E(G)→ [s] is almost-standard if the following are satisfied:

– there is a finite subset F ⊆ E(G) such that c is standard on E(G) \ F ;

– for each i ∈ [s] the i-subgraph is spanning, and each i-component is a double-

ray.

Definition 8.2.3 (Standard squares and double-rays). Let Γ and S be as above. Given

x ∈ Γ and gi 6= gj ∈ S, we call

�(x, gi, gj) := {(x, x+ gi), (x, x+ gj), (x+ gi, x+ gi + gj), (x+ gj, x+ gi + gj)}

an (i, j)-square with base point x, and

!(x, gi) := {(x+ ngi, x+ (n+ 1)gi) : n ∈ Z}

an i-double-ray with base point x.

Moreover, given a colouring c : E(G(Γ, S)) → [s] we call �(x, gi, gj) and !(x, gi)

an (i, j)-standard square and i-standard double-ray if c is standard on �(x, gi, gj) and

!(x, gi) respectively.

Since Γ is an abelian group, every �(x, gi, gj) is a 4-cycle in G(Γ, S) (provided gi 6=
−gj), and since S contains no torsion elements of Γ, !(x, gk) really is a double-ray in

the Cayley graph G(Γ, S).

Let Γ be a finitely generated abelian group. By the Classification Theorem for finitely

generated abelian groups (see e.g. [75]), there are integers n, q1, . . . , qr such that Γ ∼=
Zn⊕

⊕r
i=1 Zqi , where Zq is the additive group of the integers modulo q. In particular, for

each Γ there is an integer n and a finite abelian group Γfin such that Γ ∼= Zn ⊕ Γfin.

The following structural theorem for the ends of finitely generated abelian groups is

well-known:

Theorem 8.2.4. For a finitely generated group Γ ∼= Zn⊕ Γfin, the following are equiv-

alent:

• n > 2,

• there exists a finite generating set S such that G(Γ, S) is one-ended, and

• for all finite generating sets S, the Cayley graph G(Γ, S) is one-ended.

Proof. See e.g. [141, Proposition 5.2] for the fact the number of ends of G(Γ, S)

is independent of the choice of the generating set S, and [141, Theorem 5.12] for the

equivalence with the first item. �
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A group Γ satisfying one of the conditions from Theorem 8.2.4 is called one-ended.

Corollary 8.2.5. Let Γ be an abelian group, S = {g1, . . . , gs} be a finite generating

set such that the Cayley graph G(Γ, S) is one-ended. Then, for every gi ∈ S of infinite

order, there is some gj ∈ S such that 〈gi, gj〉 ∼= (Z2,+).

Proof. Suppose not. It follows that in Γ/〈gi〉 every element has finite order, and

since it is also finitely generated, it is some finite group Γf such that Γ ∼= Z⊕ Γf . Thus,

by Theorem 8.2.4, G is not one-ended, a contradiction. �

8.3. The covering lemma and a high-level proof of the main theorem

Every Cayley graph G(Γ, S) comes with a natural edge colouring cstd, where we colour

an edge (x, x+ gi) with x ∈ Γ and gi ∈ S with the index i of the corresponding generating

element gi. If every element of S has infinite order, then every i-subgraph of G(Γ, S) con-

sists of a spanning collection of edge-disjoint double-rays, see Definitions 8.2.1 and 8.2.2.

So, it is perhaps a natural strategy to try to build a Hamiltonian decomposition by com-

bining each of these monochromatic collections of double-rays into a single monochromatic

spanning double-ray.

Rather than trying to do this directly, we shall do it in a series of steps: given any

colour i ∈ [s] where s = |S| and any finite set X ⊆ V (G), we will show that one can

change the standard colouring at finitely many edges, in particular only edges outside of

X, so that there is a single double-ray in the colour i which covers X. Moreover, we

can ensure that the resulting colouring maintains enough of the structure of the standard

colouring that we can repeat this process inductively: it should remain almost-standard,

i.e. all monochromatic components are still double-rays, see Definition 8.2.2. By taking an

appropriate sequence of sets X1 ⊆ X2 ⊆ · · · exhausting the vertex set of G, and varying

which colour i we consider, we can ensure that in the limit, each colour class consists of a

single spanning double-ray, giving us the desired Hamilton decomposition.

In this section, we formulate our key lemma, namely the Covering Lemma 8.3.1, which

allows us to do each of these steps. We will then show how Theorem 8.1.2 follows from

the Covering Lemma. The proof of the Covering Lemma is given in Section 8.4.

Lemma 8.3.1 (Covering lemma). Let Γ be an infinite, one-ended abelian group, S =

{g1, g2, . . . , gs} a finite generating set such that every gi ∈ S has infinite order, and G =

G(Γ, S) the corresponding Cayley graph.

Then for every almost-standard colouring c of G, every colour i and every finite subset

X ⊆ V (G), there exists an almost-standard colouring ĉ of G such that

• ĉ = c on E(G[X]), and

• some i-component in ĉ covers X.
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Proof of Theorem 8.1.2 given Lemma 8.3.1. Fix an enumeration V (G) = {vn : n ∈ N}.
Let X0 = D′0 = D′−1 = . . . = D′−s+1 = {v0} and c0 = cstd. For each n > 1 we will recur-

sively construct almost-standard colourings cn : E(G)→ [s], finite subsets Xn ⊆ V (G), (n

mod s)-components Dn of cn and finite paths D′n ⊆ Dn such that for every n ∈ N
(1) Xn−1 ∪ {vn} ⊆ Xn,

(2) V (D′n−1) ⊆ Xn,

(3) Xn ⊆ V (D′n),

(4) D′n properly extends the path D′n−s (the ‘previous’ path of colour n mod s) in

both endpoints of D′n−s, and

(5) cn agrees with cn−1 on E(G[Xn]).

Suppose inductively for some n ∈ N that cn, Xn, Dn and D′n have already been defined.

Choose some Xn+1 ⊇ Xn∪{vn} large enough such that (1) and (2) are satisfied. Applying

Lemma 8.3.1 with input cn and Xn+1 provides us with a colouring cn+1 such that (5) is

satisfied and some (n + 1 mod s)-component Dn+1 covers Xn+1. Since cn+1 is almost-

standard, Dn+1 is a double-ray. Furthermore, since cn+1 agrees with cn on E(G[Xn+1]),

by the inductive hypothesis it agrees with ck on E(G[Xk+1]) for each k 6 n.

Therefore, since D′n+1−s ⊆ Xn−s+2 is a path of colour (n + 1 mod s) in cn+1−s, it

follows that D′n+1−s ⊆ Dn+1 and so we can extend D′n+1−s to a sufficiently long finite path

D′n+1 ⊆ Dn+1 such that (3) and (4) are satisfied at stage n+ 1.

Once the construction is complete, we define T1, . . . , Ts ⊆ G by

Ti =
⋃

n≡i mod s

D′n

and claim that they form a decomposition of G into edge-disjoint Hamiltonian double-rays.

Indeed, by (4), each Ti is a double-ray. That they are edge-disjoint can be seen as follows:

Suppose for a contradiction that e ∈ E(Ti) ∩ E(Tj). Choose n(i) and n(j) minimal such

that e ∈ E(D′n(i)) ⊆ E(Ti) and e ∈ E(D′n(j)) ⊆ E(Tj). We may assume that n(i) < n(j),

and so e ∈ E(G[Xn(i)+1]) by (2). Furthermore, by (5) it follows that cn(j) agrees with cn(i)

on E(G[Xn(i)+1]). However by construction cn(j)(e) = j 6= i = cn(i)(e) contradicting the

previous line.

Finally, to see that each Ti is spanning, consider some vn ∈ V (G). By (1), vn ∈ Xn.

Pick n′ > n with n′ ≡ i mod s. Then by (3), D′n′ ⊆ Ti covers Xn′ which in turn contains

vn, as vn ∈ Xn ⊆ Xn′ by (1). �

8.4. Proof of the Covering Lemma

8.4.1. Blanket assumption. Throughout this section, let us now fix

• a one-ended infinite abelian group Γ with finite generating set S = {g1, . . . , gs}
such that every element of S has infinite order,

• an almost-standard colouring c of the Cayley graph G = G(Γ, S),
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• a finite subset X ⊆ Γ such that c is standard on V (G) \X,

• a colour i, say i = 1, and corresponding generator g1 ∈ S, for which we want to

show Lemma 8.3.1, and finally

• a second generator in S, say g2, such that ∆ := 〈g1, g2〉 ∼= (Z2,+), see Corol-

lary 8.2.5.

8.4.2. Overview of proof. We want to show Lemma 8.3.1 for the Cayley graph G,

colouring c, generator g1 and finite set X. The cosets of 〈g1, g2〉 in Γ cover V (G), and in

the standard colouring the edges of colour 1 and 2 form a grid on 〈g1, g2〉. So, since c is

almost-standard, on each of these cosets the edges of colour 1 and 2 will look like a grid,

apart from some finite set.

Our aim is to use the structure in these grids to change the colouring c to one satisfying

the conclusions of Lemma 8.3.1. It will be more convenient to work with large finite grids,

which we require, for technical reasons, to have an even number of rows. This is the reason

for the slight asymmetry in the definition below.

Notation 8.4.1. Let gi, gj ∈ Γ. For N,M ∈ N we write

〈gi, gj〉N,M := {ngi +mgj : n,m ∈ Z, −N 6 n 6 N, −M < m 6M} ⊆ 〈gi, gj〉 ⊆ Γ.

The structure of our proof can be summarised as follows. First, in Section 8.4.3,

we will show that there is some N0 and some ‘nice’ finite set P of representatives of

cosets of 〈g1, g2〉 such that P + 〈g1, g2〉N0,N0 covers X. We will then, in Section 8.4.4 pick

sufficiently large numbers N0 < N1 < N2 < N3 and consider the grids P + 〈g1, g2〉N3,N1 .

Using the structure of the grids we will make local changes to the colouring inside P +

(〈g1, g2〉N3,N1 \ 〈g1, g2〉N0,N0) to construct our new colouring ĉ. This new colouring ĉ will

then agree with c on the subgraph induced by P + 〈g1, g2〉N0,N0 ⊇ X, and be standard on

V (G) \
(
P + 〈g1, g2〉N3,N1

)
, and hence, as long as we ensure all the colour components are

double-rays, almost-standard.

These local changes will happen in three steps. First, in Step 1, we will make local

changes inside x` + (〈g1, g2〉N3,N1 \ 〈g1, g2〉N2,N1) for each x` ∈ P , in order to make every

i-component meeting P + 〈g1, g2〉N2,N1 a finite cycle.

Next, in Step 2, we will make local changes inside x` + (〈g1, g2〉N2,N1 \ 〈g1, g2〉N1,N1) for

each x` ∈ P , in order to combine the cycles meeting this translate of the grid into a single

cycle.

Finally, in Step 3, we will make local changes inside P + (〈g1, g2〉N1,N1 \ 〈g1, g2〉N0,N0),

in order to join the cycles for different x` into a single cycle covering P + 〈g1, g2〉N0,N0 . We

then make one final local change to turn this finite cycle into a double-ray.

8.4.3. Identifying the relevant cosets.

Lemma 8.4.2. There exist N0 ∈ N and a finite set P = {x0, . . . , xt} ⊆ Γ such that
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• P∆ = {x0 + ∆, . . . , xt + ∆} is a path in G(Γ/∆, (S \ {g1, g2})∆), and

• X ⊆ P + 〈g1, g2〉N0,N0.

Proof. Since X is finite, there is a finite set Y = {y1, . . . , yk} ⊆ Γ such that the

cosets in Y ∆ = {y1 + ∆, . . . , yk + ∆} are all distinct and cover X. Moreover, since every

(y` + ∆) ∩X is finite, there exists N0 ∈ N such that

(y` + 〈g1, g2〉) ∩X = (y` + 〈g1, g2〉N0,N0) ∩X

for all 1 6 ` 6 k. Then X ⊆ Y + 〈g1, g2〉N0,N0 .

Next, by a result of Nash-Williams [122], every Cayley graph of a countably infinite

abelian group has a Hamilton double-ray, and it is a folklore result (see [167]) that every

Cayley graph of a finite abelian group has a Hamilton cycle. So in particular, the Cayley

graph of (Γ/∆, (S \ {g1, g2})∆), has a Hamilton cycle or double-ray, say H. Let P ⊇ Y

be a finite set of representatives of the cosets of ∆ such that P∆ is the set of vertices of a

subpath of H. It is clear that P is as required. �

• For the rest of this section let us fix N0 ∈ N and P = {x0, . . . , xt} ⊆ Γ to be as

given by Lemma 8.4.2.

8.4.4. Picking sufficiently large grids. In order to choose our grids large enough to

be able to make all the necessary changes to our colouring, we will first need the following

lemma, which guarantees that we can find, for each k 6= 1, 2 and x ∈ Γ, many distinct

standard k-double-rays which go between the cosets x+ ∆ and (x+ gk) + ∆.

Lemma 8.4.3. For any gk ∈ S \ {g1, g2} and any pair of distinct cosets x + ∆ and

(gk + x) + ∆, there are infinitely many distinct standard k-double-rays R for the colouring

c with E(R) ∩ E(x+ ∆, (gk + x) + ∆) 6= ∅.

Proof. It clearly suffices to prove the assertion for c = cstd. We claim that either

R1 = {!(x+mg1, gk) : m ∈ Z} or R2 = {!(x+mg2, gk) : m ∈ Z}

is such a collection of disjoint standard k-double-rays.

Suppose that R1 is not a collection of disjoint double-rays. Then there are m 6= m′ ∈ Z
and n, n′ ∈ Z such that

mg1 + ngk = m′g1 + n′gk.

Since g1 has infinite order, it follows that n 6= n′, too, and so we can conclude that there

are `, `′ ∈ Z \ {0} such that `g1 = `′gk. Similarly, if R2 is not a collection of disjoint

double-rays, then we can find q, q′ ∈ Z \ {0} such that qg2 = q′gk. However, it now follows

that

q′`g1 = q′(`′gk) = `′(q′gk) = `′qg2,

contradicting the fact that 〈g1, g2〉 ∼= (Z2,+). This establishes the claim.
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Finally, observe that if sayR1 is a disjoint collection, then for everyRm =!(x+mg1, gk) ∈
R1 we have (x+mg1, x+mg1 + gk) ∈ E(Rm) ∩ E(x+ ∆, (gk + x) + ∆) as desired. �

We are now ready to define our numbers N0 < N1 < N2 < N3. Recall that N0 and

P = {x0, . . . , xt} are given by Lemma 8.4.2. For each ` ∈ [t], let gn(`) be some generator

in S \ {g1, g2} that induces the edge between x`−1 + ∆ and x` + ∆ on the path P∆. Note

that n(`) ∈ [s] \ {1, 2} for all `.

By Lemma 8.4.3, we may find t2 many disjoint standard double-rays

R =
{
Rk
` : 1 6 k, ` 6 t

}
such that for every `, the double-rays in

{
Rk
` =!

(
yk` , gn(`)

)
: k ∈ [t]

}
are standard n(`)-

double-rays containing an edge

ek` = (yk` , y
k
` + gn(`)) ∈ E(Rk

` ) ∩ E(x`−1 + ∆, x` + ∆)

so that all T k` = �
(
yk` , g1, gn(`)

)
are (1, n(`))-standard squares for c which have empty in-

tersection with {x`−1, x`}+ 〈g1, g2〉N0,N0 . Furthermore we may assume that these standard

squares are all edge-disjoint. Then

• letN1 > N0 be sufficiently large such that the subgraph induced by P+〈g1, g2〉N1−3,N1−3

contains all standard squares T k` mentioned above.

• Let N2 be arbitrary with N2 > 5N1.

• Let N3 be arbitrary with N3 > N2 + 2N1.

8.4.5. The cap-off step. Our main tool for locally modifying our colouring is the

following notion of ‘colour switchings’, which is also used in [113]. Informally, given a

four cycle on which the edge colouring alternates between two colours, to perform a colour

switching on this square we exchange the colours of the edges.

Definition 8.4.4 (Colour switching of standard squares). Given an edge colouring

c : E(G(Γ, S)) → [s] and an (i, j)-standard square �(x, gi, gj), a colour switching on

�(x, gi, gj) changes the colouring c to the colouring c′ such that

• c′ = c on E \�(x, gi, gj),

• c′
(
(x, x+ gi)

)
= c′

(
(x+ gj, x+ gi + gj)

)
= j,

• c′
(
(x, x+ gj)

)
= c′

(
(x+ gi, x+ gi + gj)

)
= i.

It would be convenient if colour switchings maintained the property that a colouring

is almost-standard. Indeed, if c is standard on E(G) \ F then c′ is standard on E(G) \
(F ∪ �(x, gi, gj)). Also, it is a simple check that if the i and j-subgraphs of G for c are

2-regular and spanning, then the same is true for c′. However, some i or j-components

may change from double-rays to finite cycles, and vice versa.

Step 1 (Cap-off step). There is a colouring c′ obtained from c by colour switchings of

finitely many (1, 2)-standard squares such that
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• c′ = c on E(G[X]);

• every 1-component in c′ meeting P+〈g1, g2〉N2,N1 is a finite cycle intersecting both

P + (〈g1, g2〉N3,N1 \ 〈g1, g2〉N2,N1) and P + 〈g1, g2〉N1,N1 ;

• every other 1-component, and all other components of all other colour classes of

c′ are double-rays;

• c′ is standard outside of P+〈g1, g2〉N3,N1 and inside of P+(〈g1, g2〉N2,N1\〈g1, g2〉N0,N0);

• for each x` ∈ P , the set of vertices

{xl + ng1 +mg2 : N1 6 |n| 6 N2,m ∈ {N1, N1 − 1}}

is contained in a single 1-component of c′.

Proof. For ` ∈ [t] and q ∈ [N1] let R`
q = �

(
v`q, g1, g2

)
and L`q = �

(
w`q, g1, g2

)
be

the (1, 2)-squares with base point v`q = x` + (N3 + 1 − 2q) · g1 + (N1 + 1 − 2q) · g2 and

w`q = x` − (N3 + 2− 2q) · g1 + (N1 + 1− 2q) · g2 respectively. The square L`q is the mirror

image of R`
q with respect to the y-axis of the grid x` + 〈g1, g2〉, however the base points

are not mirror images, accounting for the slight asymmetry in the definitions.

Since N3 > N2 + 2N1, it follows that

R`
q ∪ L`q ⊆ E(x` + (〈g1, g2〉N3,N1 \ 〈g1, g2〉N2,N1))

for all q ∈ [N1], and so by assumption on c, all R`
q and L`q are indeed standard (1, 2)-

squares. We perform colour switchings on R`
q and L`q for all ` ∈ [t] and q ∈ [N1], and call

the resulting edge colouring c′. It is clear that c′ = c on E(G[X]) and that c′ is standard

outside of P + 〈g1, g2〉N3,N1 and inside of P + (〈g1, g2〉N2,N1 \ 〈g1, g2〉N0,N0). Let C ⊆ G

〈g1, g2〉N1,N1

〈g1, g2〉N2,N1

〈g1, g2〉N3,N1

x` + 〈g1, g2〉N0,N0

x`

x

x

x

x

x

x

x

x

x

x

Figure 8.1. Performing colour switchings of standard squares at positions

indicated by ‘x’ in a copy x` + 〈g1, g2〉N3,N1 of a finite grid.

denote the region consisting of all vertices that lie in x` + (〈g1, g2〉N3,N1 for some ` between

a pair L`q and R`
q for some q, i.e.

C =
t⋃

`=1

N1⋃
q=1

2⋃
m=1

{x` + ng1 + (N1 +m− 2q)g2 : |n| 6 N3 + 1− 2q}.
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Then P + 〈g1, g2〉N2,N1 ⊆ C. By construction, there are no edges of colour 1 in c′ leaving

C, that is, E(C, V (G) \ C) ∩ c′−1(1) = ∅. In particular, since the 1-subgraph of G under

c′ remains 2-regular and spanning, as remarked above, all 1-components under c′ inside C

are finite cycles, whose union covers C.

Also, since each 1-component of c is a double-ray, it must leave the finite set P +

〈g1, g2〉N3,N1 and hence meets some R`
q or L`q. Therefore, by construction each 1-component

of c′ inside C meets some R`
q or L`q and so, since c′ is standard outside of P + 〈g1, g2〉N0,N0

except at the squares R`
q or L`q, each such 1-component meets both P + (〈g1, g2〉N3,N1 \

〈g1, g2〉N2,N1) and P + 〈g1, g2〉N1,N1 .

Moreover, all other colour components remain double-rays. This is clear for all k-

components of G if k 6= 1, 2 (as the colours switchings of (1, 2)-standard squares did not

affect these other colours). However, it is also clear for the 1-coloured double-rays outside

of C and also for all 2-coloured components, as we chose our standard squares R`
q and L`q

‘staggered’, so as not to create any finite monochromatic cycles, see Figure 8.1 (recall that

every x` + ∆ is isomorphic to the grid).

Finally, since N1 > N0, the edge set

{(x` + ng1 +N1g2, x` + (n+ 1)g1 +N1g2) : −N3 6 |n| < N3 − 1}

∪
{

(v`1, v
`
1 + g2), ((w`1 + g1, w

`
1 + g1 + g2))

}
∪ {(x` + ng1 + (N1 − 1)g2, x` + (n+ 1)g1 + (N1 − 1)g2)} : −N3 6 n < −N1

∪ {(x` + ng1 + (N1 − 1)g2, x` + (n+ 1)g1 + (N1 − 1)g2)} : N1 6 n < N3

meets only R`
1 and L`1 and therefore is easily seen to be part of the same 1-component

of c′. In Figure 8.1, these edges correspond to the red line at the top, and the two lines

below it on either side of x` + 〈g1, g2〉N1,N1 . �

8.4.6. Combining cycles inside each coset of ∆. In the previous step we chose

the (1, 2)-standard squares at which we performed colour switchings in a staggered manner

in the grids xl + 〈g1, g2〉N3,N1 , so that we could guarantee that all the 2-components were

still double-rays afterwards. In later steps we will no longer be able to be as explicit

about which standard squares we perform colour switchings at, and so we will require the

following definitions to be able to say when it is ‘safe’ to perform a colour switching at a

standard square.

Definition 8.4.5 (Crossing edges). Suppose R = {(vi, vi+1) : i ∈ Z} is a double-ray

and e1 = (vj1 , vj2) and e2 = (vk1 , vk2) are edges with j1 < j2 and k1 < k2. We say that e1

and e2 cross on R if either j1 < k1 < j2 < k2 or k1 < j1 < k2 < j2.

Lemma 8.4.6. For an edge-colouring c : E(G(Γ, S)) → [s], suppose that �(x, gi, gk)

is an (i, k)-standard square with gi 6= −gk, and further that the two k-coloured edges
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(x, x + gk) and (x + gi, x + gi + gk) of �(x, gi, gk) lie on the same standard k-double-ray

R =!(x, gk). Then the two i-coloured edges of �(x, gi, gk) cross on R.

Proof. Write e1 = (x, x + gi) and e2 = (x + gk, x + gk + gi) for the two i-coloured

edges of �(x, gi, gk). The assumption that (x, x + gk) and (x + gi, x + gi + gk) both

lie on !(x, gk) implies that gi = rgk for some r ∈ Z \ {−1, 0, 1}. If r > 1, we have

x < x+ gk < x+ gi < x+ gk + gi (where < denotes the natural linear order on the vertex

set of the double-ray), and if r < −1, we have x + gi < x + gk + gi < x < x + gk, and so

the edges e1 and e2 indeed cross on R. �

Definition 8.4.7 (Safe standard square). Given an edge colouring c : E(G(Γ, S)) →
[s] we say an (i, k)-standard square T = �(x, gi, gk) is safe if gi 6= −gk and either

• the k-components for c meeting T are distinct double-rays, or

• there is a unique k-component for c meeting T , which is a double-ray on which

(x, x+ gi) and (x+ gk, x+ gi + gk) cross.

The following lemma tells us, amongst other things, that if we perform a colour switch-

ing at a safe (1, k)-standard square then the k-components in the resulting colouring meet-

ing that square will still be double-rays.

Lemma 8.4.8. Let c : E(G(Γ, S)) → [s] be an edge colouring, T = �(x, gi, gk) be an

(i, k)-standard square with gi 6= −gk, and c′ be the colouring obtained by performing a

colour switching on T . Then the following statements are true:

• If there are two distinct i-components C1 and C2 for c meeting T which are both

2-regular, at least one of which is a finite cycle, then there is a single i-component

for c′ meeting T which is 2-regular and whose vertex set is V (C1) ∪ V (C2);

• If the k-components for c meeting T are distinct double-rays then the k-components

for c′ meeting T are distinct double-rays;

• If there is a unique k-component for c meeting T , which is a double-ray on which

(x, x+ gi) and (x+ gk, x+ gi + gk) cross, then there is unique k-component for c′

meeting T , which is a double-ray.

Proof. Let us write ei = (x, x + gi), ek = (x, x + gk), e
′
i = (x + gk, x + gi + gk) and

e′k = (x+ gi, x+ gi + gk), so that �(x, gi, gj) = {ei, ek, e′i, e′k}.
For the first item, let the i-components for c be ei ∈ C1 and e′i ∈ C2, where without

loss of generality C2 is a finite cycle. Then C2− e′i is a finite path, and C1− ei has at most

2 components, one containing x and one containing x+ gi. Hence, the i-component for c′

meeting T , (C1 ∪C2)−{ei, e′i}+ {ek, e′k}, is connected and has vertex set V (C1)∪ V (C2).

For the second item, let the k-components for c be ek ∈ D1 and e′k ∈ D2. Then D1−ek
has two components, a ray starting at x and a ray starting at x + gk. Similarly, D2 − e′k
has two components, a ray starting at x+ gi and a ray starting at x+ gi + gk. Hence, the
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e′k
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. . .

. . .

Figure 8.2. The two situations in Lemma 8.4.8 with i in red and k in blue.

k-components for c′ meeting T , which are the components of (D1∪D2)−{ek, e′k}+{ei, e′i},
are distinct double-rays.

Finally, if there is a single k-component D for c meeting T such that D is a double-ray,

then D − {ek, e′k} consist of three components. Since ei and e′i cross on D there are two

cases as to what these components are. Either the components consist of two rays, starting

at x and x+ gi + gk and a finite path from x+ gk to x+ gi, or the components consist of

two rays, starting at x + gi and x + gk, and a finite path from x + gi + gk to x. In either

case, the k-component for c′ meeting T , namely D−{ek, e′k}+{ei, e′i}, is a double-ray. �

Lemma 8.4.8 is also useful as the first item allows us to use (1, k) colour switchings to

combine two 1-components into a single 1-component which covers the same vertex set.

Step 2 (Combining cycles step). We can change c′ from Step 1 via colour switchings

of finitely many (1, 2)-standard squares to a colouring c′′ satisfying

• c′′ = c′ = c on E(G[X]);

• every 1-component in c′′ meeting P + 〈g1, g2〉N2,N1 is a finite cycle intersecting

both P + (〈g1, g2〉N3,N1 \ 〈g1, g2〉N2,N1) and P + 〈g1, g2〉N1,N1 ;

• every other 1-component, and all other components of all other colour classes of

c′′ are double-rays;

• every 1-component in c′′ meeting some xk + (〈g1, g2〉N2,N1 \ 〈g1, g2〉N0,N0) covers

xk + (〈g1, g2〉N2,N1 \ 〈g1, g2〉N0,N0);

• c′′ is standard outside of P+〈g1, g2〉N3,N1 and inside of P+(〈g1, g2〉N1,N1\〈g1, g2〉N0,N0).

Proof. Our plan will be to go through the ‘grids’ xk + 〈g1, g2〉N2,N1 in order, from

k = 0 to t, and use colour switchings to combine all the 1-components which meet xk +

(〈g1, g2〉N2,N1 \ 〈g1, g2〉N0,N0) into a single 1-component. We note that, since c′ is not

standard on X, it may be the case that these 1-components also meet xk′ + 〈g1, g2〉N2,N1

for k′ 6= k.

We claim inductively that there exists a sequence of colourings c′ = c0, c1, . . . , ct = c′′

such that for each 0 6 ` 6 t:

• c` = c′ = c on E(G[X]);
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• every 1-component in c` meeting P + 〈g1, g2〉N2,N1 is a finite cycle intersecting

both P + (〈g1, g2〉N3,N1 \ 〈g1, g2〉N2,N1) and P + 〈g1, g2〉N1,N1 ;

• for every k 6 `, every 1-component in c` meeting xk +(〈g1, g2〉N2,N1 \〈g1, g2〉N0,N0)

covers xk + (〈g1, g2〉N2,N1 \ 〈g1, g2〉N0,N0);

• for every k > `, c` = c′ on xk + 〈g1, g2〉N2,N1

• every other 1-component, and all other components of all other colour classes of

c` are double-rays;

• c` is standard outside of P+〈g1, g2〉N3,N1 and inside of P+(〈g1, g2〉N1,N1\〈g1, g2〉N0,N0).

In Step 1 we constructed c0 = c′ such that this holds. Suppose that 0 < ` 6 t, and

that we have already constructed ck for k < `.

For q ∈ [4N1 − 2] we define Tq = �(vq, g1, g2) to be the (1, 2)-square with base point

vq =

x` + (N2 + 2− 2q)g1 + (N1 − q)g2 if q 6 2N1 − 1, and

x` − (N2 + 3− 2q′)g1 + (N1 − q′)g2 if q′ = q − (2N1 − 1) > 1.

With these definitions, T2N1−1+q is the mirror image of Tq for all q ∈ [2N1 − 1] along

the y-axis. Moreover, since N2 > 5N1, each Tq is contained within xk + (〈g1, g2〉N2,N1 \
〈g1, g2〉N1,N1), see Figure 8.3.

We will combine the 1-components in c`−1 which meet x`+(〈g1, g2〉N2,N1 \ 〈g1, g2〉N0,N0)

into a single component by performing colour switchings at some of the (1, 2)-squares Tq.

Let us show first that most of the induction hypotheses are maintained regardless of the

subset of the Tq we make switchings at.

〈g1, g2〉N1,N1

〈g1, g2〉N2,N1

x` + 〈g1, g1〉N0,N0

x`

x
x

x
x

x
x

x
x

x

x
x

x
x

x
x

x
x

x

Figure 8.3. The standard squares Tq, with a colour switching performed at T2.

We note that, since c`−1 is standard inside of x` + (〈g1, g1〉N2,N1 \ 〈g1, g2〉N0,N0) and

outside of P + 〈g1, g2〉N3,N1 , and g1 6= −g2, each Tq is a safe (1, 2)-standard square for c`−1.

Furthermore, by construction, even if we perform colour switchings at any subset of the

Tq, the remaining squares remain standard and safe.

Hence, by Lemma 8.4.8 and the induction assumption, after performing colour switch-

ings at any subset of the standard squares Tq all 2-components of the resulting colouring

will be double-rays. Secondly, these colour switchings will not change the colouring out-

side of P + 〈g1, g2〉N2,N1 and inside of P + 〈g1, g2〉N1,N1 , or in any xk + 〈g1, g2〉N2,N1 with
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k 6= `. In particular, every 1-component not meeting P + 〈g1, g2〉N2,N1 will still be a

double-ray. Finally, again by Lemma 8.4.8, every 1-component of the resulting colouring

meeting P + 〈g1, g2〉N2,N1 will be a finite cycle which covers the vertex set of some union of

1-components in c`−1, and hence will intersect both P + (〈g1, g2〉N3,N1 \ 〈g1, g2〉N2,N1) and

P + 〈g1, g2〉N1,N1 .

Let us write eq = (vq, vq+g1) for each q ∈ [4N1−2]. Since c`−1 = c′ on x`+〈g1, g2〉N2,N1 ,

and by Step 1 c′ is standard on x` + (〈g1, g2〉N2,N1 \ 〈g1, g2〉N0,N0), each 1-component of c`−1

that meets x` + (〈g1, g2〉N2,N1 \ 〈g1, g2〉N0,N0) contains at least one eq. Also, e1 and e2N1

belong to the same 1-component by the last claim in Step 1. Let us write C for the

collection of such cycles, and consider the map

α : C → {1, . . . , 4N1 − 1}, C 7→ min {q : eq ∈ E(C)},

which maps each cycle to the first eq that it contains. Since C is a disjoint collection of

cycles, the map α is injective. Now let c` be the colouring obtained from c`−1 by switching

all standard squares in

T = {Tq : q ∈ im(α)} \ {T1}.

We claim that c` satisfies our induction hypothesis for `. By the previous comments it

will be sufficient to show

Claim 10. Every 1-component in c` meeting x` + (〈g1, g2〉N2,N1 \ 〈g1, g2〉N0,N0) covers

x` + (〈g1, g2〉N2,N1 \ 〈g1, g2〉N0,N0).

To see this, we index C = {C1, . . . , Cr} such that u < v implies α(Cu) < α(Cv), and

consider the sequence of colourings {cz : z ∈ [r]} where c1 = c`−1 and each cz is obtained

from cz−1 by switching the standard square Tα(Cz).

Let us show by induction that for every z ∈ [r] there is a 1-component of cz which

covers
⋃
y6z Cy. For z = 1 the claim is clearly true. So, suppose z > 1. Since α(Cz) is

minimal in {α(Cy) : y > z} it follows that eq ∈
⋃
y<z Cy for every q < α(Cz). Note that,

since c`−1 = c′ on x` + 〈g1, g2〉N2,N1 , it follows from the final claim in the Cap-off step that

C1 contains both e1 and e2N1 , and so α(Cz) 6= 2N1.

Consider the standard square Tα(Cz). Since c`−1 = c′ on x` + 〈g1, g2〉N2,N1 , by construc-

tion the edge ‘opposite’ to eα(Cz) in Tα(Cz), that is, eα(Cz) + gj, is in the same 1-component

in c`−1 as eα(Cz)−1, and hence is contained in
⋃
y<z Cy.

Therefore, by Lemma 8.4.8, after performing an (1, 2)-colour switching at Tα(Cz), the

1-component in cz contains
⋃
y6z Cy.

Hence, there is a 1-component of c` = cr which covers
⋃
y6r Cy, and so there is a unique

1-component of c` meeting x` + (〈g1, g2〉N2,N1 \ 〈g1, g2〉N0,N0) which covers it, establishing

the claim. �
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8.4.7. Combining cycles across different cosets of ∆. In the third and final step

we join the finite cycles covering each x` + (〈g1, g2〉N1,N1 \ 〈g1, g2〉N0,N0) into a single finite

cycle, and then make one final switch to absorb this cycle into a double-ray. The resulting

colouring will then satisfy the conditions of Lemma 8.3.1.

Step 3 (Combining cosets step). We can change c′′ from the previous lemma to an

almost-standard colouring ĉ such that

• ĉ = c′′ = c′ = c on E(G[X]);

• Some component in colour 1 covers P + 〈g1, g2〉N1,N1 .

Proof. Recall that P = {x0, . . . , xt} is such that P∆ = {x0 + ∆, . . . , xt + ∆} is a

finite, graph-theoretic path in the Cayley graph of the quotient Γ/∆ with generating set

(S \ {g1, g2})∆. Moreover, recall from Section 8.4.4 that N1 > N0 was chosen so that for

the initial colouring c there were t2 many disjoint standard double-rays

R =
{
Rk
` : 1 6 k, ` 6 t

}
such that for every `, the double-rays in

{
Rk
` =!

(
yk` , gn(`)

)
: k ∈ [t]

}
are standard n(`)-

double-rays containing an edge

ek` = (yk` , y
k
` + gn(`)) ∈ E(Rk

` ) ∩ E(x`−1 + ∆, x` + ∆)

so that all T k` = �
(
yk` , g1, gn(`)

)
are edge-disjoint (1, n(`))-standard squares for the colour-

ing c contained in the subgraph induced by P + 〈g1, g2〉N1−3,N1−3 which have empty inter-

section with {x`−1, x`}+ 〈g1, g2〉N0,N0 . However, since we only altered the (1, 2)-subgraphs

of G in Step 1 and 2, it is clear that all these standard double-rays and standard squares

for c remain standard also for the colourings c′ and in particular c′′.

We claim that there exists a function k : [t]→ [t]∪{⊥} such that iteratively switching

T
k(`)
` (or not doing anything at all if k(`) = ⊥) results in a sequence of colourings c′′ =

c0, c1, . . . , ct such that for each 0 6 ` 6 t,

(1) a single finite 1-component in c` covers {x0, . . . , x`}+(〈g1, g2〉N1,N1 \〈g1, g2〉N0,N0),

(2) for every k, every 1-component in c` meeting xk + (〈g1, g2〉N1,N1 \ 〈g1, g2〉N0,N0) is

a finite cycle covering xk + (〈g1, g2〉N1,N1 \ 〈g1, g2〉N0,N0), and

(3) every other 1-component, and all other components of all other colour classes in

c` are double-rays.

In Step 2 we constructed a colouring c0 = c′′ for which properties (1)–(3) are satisfied.

Now suppose that ` > 1, and that the colouring c`−1 obtained by switching the standard

squares
{
T
k(`′)
`′ : `′ ∈ [`− 1], k(`′) 6= ⊥

}
satisfies (1)–(3). By construction, each such stan-

dard square T
k(`′)
`′ is has an edge in common with the ray R

k(`′)
`′ and potentially one further

n(`′)-component. But since we had reserved more that ` − 1 different rays R1
` , . . . , R

t
`, it

follows that some ray RK
` remains a standard n(`)-coloured component for c`−1.
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Figure 8.4. Using (1, n(`))-standard squares to join up different cosets.

For this picture, we assume wlog that x`+1 = x` + gn(`+1).

Both edges (yK` , y
K
` + gi) and (yK` + gn(`), y

K
` + gn(`) + gi) of TK` are contained in

{x`−1, x`} + (〈g1, g2〉N1,N1 \ 〈g1, g2〉N0,N0), and hence are, by assumption (2), covered by

finite 1-cycles in c`−1. If both edges lie in the same finite 1-cycle, there is nothing to do

and we set k(`) := ⊥, so that c` = c`−1. However, if they lie on different finite cycles,

set k(`) := K. Then, in our procedure we perform a colour switching on the standard

square T
k(`)
` and claim that the resulting c` is as required. By Lemma 8.4.8, the two finite

1-components merge into a single finite cycle, and so (1) and (2) are certainly satisfied for

c`.

To see (3), we need to verify that T
k(`)
` is, when we perform the switching, safe. How-

ever, T
k(`)
` was chosen so that the edge (y

k(`)
` , y

k(`)
` + gn(`)) ∈ T

k(`)
` lies on a standard

double-ray R = R
k(`)
` of c`−1. Also, by the inductive assumption (3), the second n(`)-

coloured edge (y
k(`)
` + gi, y

k(`)
` + gi + gn(`)) ∈ T k(`)

` lies on an n(l)-coloured double-ray R′

in c`−1. If R and R′ are distinct, then T
k(`)
` is safe, and if R = R′ then, since R is a

standard n(`)-double-ray, Lemma 8.4.6 implies that T
k(`)
` is safe. Hence c` satisfies (3).

This completes the induction step.

Thus, by (1) and (3), we obtain an edge-colouring ct for G such that a single fi-

nite 1-component covers P + (〈g1, g2〉N1,N1 \ 〈g1, g2〉N0,N0), and all other 1-components

and all other components of other colour classes in ct are double-rays. Furthermore,

since every 1-component which meets P + 〈g1, g2〉N0,N0 must meet P + (〈g1, g2〉N1,N1 \
〈g1, g2〉N0,N0), it follows that the 1-component in fact covers P + 〈g1, g2〉N0,N0 . More-

over, since T
k(`)
` ⊆ P + 〈g1, g2〉N1−3,N1−3 for all ` ∈ [t], it follows that ct is standard on

x0 + (〈g1, g2〉N1,∞ \ 〈g1, g2〉N1−3,N1−3), and that it is standard outside of P + 〈g1, g2〉N3,N1 .
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Hence, the square �(x, g1, g2) with base point x = x0 + (N1 − 2)g1 + N1g2 is a standard

(1, 2)-square such that

• the edge (x, x+ g1) lies on the finite 1-cycle of ct,

• the edge (x+ g2, x+ g2 + g1) lies on a standard 1-double-ray!(x+ g2, g1) (lying

completely outside of P + 〈g1, g2〉N3,N1) of ct, and

• the edges (x, x+g2) and (x+g1, x+g2 +g1) lie on distinct standard 2-double-rays

!(x, g2) and !(x+ g1, g2) ⊆ x0 + (〈g1, g2〉N1,∞ \ 〈g1, g2〉N1−3,N1−3).

Therefore, we may perform a colour switching on�(x, g1, g2), which results, by Lemma 8.4.8,

in an almost-standard colouring ofG such that a single 1-component covers P+〈g1, g2〉N1,N1 ,

and hence X. �

8.5. Hamiltonian decompositions of products

The techniques from the previous section can also be applied to give us the following

general result about Hamiltonian decompositions of products of graphs.

Theorem 8.1.4. If G and H are countable multi-graphs which both have Hamilton

decompositions, then so does their product G�H.

Proof. Suppose that {Ri : i ∈ I} and {Sj : j ∈ J} form decompositions of G and H

into edge-disjoint Hamiltonian double-rays, where I, J may be finite or countably infinite.

Note that, for each i ∈ I, j ∈ J , Ri�Sj is a spanning subgraph of G�H, and is isomorphic

to the Cayley graph of (Z2,+) with the standard generating set.

Let πG : G�H → G and πH : G�H → H the projection maps from G�H onto the

respective coordinates. As our standard colouring for G�H we take the map

c : E(G�H)→ I∪̇J, e 7→

i if e ∈ π−1
G (E(Ri)),

j if e ∈ π−1
H (E(Sj)).

Then each Ri�Sj is 2-coloured (with colours i and j), and this colouring agrees with the

standard colouring of CZ2 = G((Z2,+), {(1, 0), (0, 1)}) from Section 8.3. We also define

an almost-standard colouring of G�H as in Definition 8.2.2.

We may suppose that V (G) = N = V (H). Fix a surjection f : N → I ∪ J such that

every colour appears infinitely often.

By starting with c0 = c and applying Lemma 8.3.1 recursively inside the spanning

subgraphs Rf(k)�S1, if f(k) ∈ I, or inside R1�Sf(k), for f(k) ∈ J , we find a sequence of

almost-standard edge-colourings ck : G�H → I∪J and natural numbers Mk 6 Nk < Mk+1

such that

• ck+1 agrees with ck on the subgraph of G�H induced by [0,Mk+1]2,

• there is a finite path Dk of colour f(k) in ck covering [0, Nk]
2, and

• Mk+1 is large enough such that Dk ⊆ [0,Mk+1]2.
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To be precise, suppose we already have a finite path Dk of colour f(k) in ck covering

[0, Nk]
2, and at stage k+1 we have say f(k+1) ∈ I, and so we are considering Rf(k+1)�S1

∼=
CZ2 . We choose

• Mk+1 > Nk large enough such that Dk ⊆ [0,Mk+1]2 ⊆ G�H, and

• Nk+1 > Mk+1 large enough such that Q1 = [0, Nk+1]2 ⊆ G�H contains all edges

where ck differs from the standard colouring c.

Next, consider an isomorphism h : Rf(k+1)�S1
∼= CZ2 . Pick a ‘square’ Q2 ⊆ Rf(k+1)�S1

with Q1 ⊆ Q2, i.e. a set Q2 such that h restricted to Q2 is an isomorphism to the subgraph

of CZ2 induced by [−Ñk+1, Ñk+1]2 ⊆ Z2 for some Ñk+1 ∈ N, and then apply Lemma 8.3.1

to Rf(k+1)�S1 and Q2 to obtain a finite path Dk+1 of colour f(k+ 1) in ck+1 covering Q2.

It follows that the double-rays {Ti : i ∈ I} ∪ {Tj : j ∈ J} with T` =
⋃
k∈f−1(`) Dk give

the desired decomposition of G�H. �

8.6. Open Problems

As mentioned in Section 8.2, the finitely generated abelian groups can be classified as

the groups Zn ⊕
⊕r

i=1 Zqi , where n, r, q1, . . . , qr ∈ Z. Theorem 8.1.2 shows that Alspach’s

conjecture holds for every such group with n > 2, as long as each generator has infinite

order. The question however remains as to what can be said about Cayley graphs G(Γ, S)

when S contains elements of finite order.

Problem 8.6.1. Let Γ be an infinite, finitely-generated, one-ended abelian group and

S be a generating set for Γ which contains elements of finite order. Show that G(Γ, S) has

a Hamilton decomposition.

Alspach’s conjecture has also been shown to hold when n = 1, r = 0, and the generating

set S has size 2, by Bryant, Herke, Maenhaut and Webb [40]. In a paper in preparation

[65], the first two authors consider the general case when n = 1 and the underlying Cayley

graph is 4-regular. Since the Cayley graph is 2-ended, it can happen for parity reasons

that no Hamilton decomposition exists. However, this is the only obstruction, and in all

other cases the Cayley graphs have a Hamilton decomposition. Together with the result

of Bermond, Favaron and Maheo [22] for finite abelian groups, and the case Γ ∼= (Z2,+)

of Theorem 8.1.2, this fully characterises the 4-regular connected Cayley graphs of finite

abelian groups which have Hamilton decompositions. A natural next step would be to

consider the case of 6-regular Cayley graphs.

Problem 8.6.2. Let Γ be a finitely generated abelian group and let S be a generating

set of Γ such that C(Γ, S) is 6-regular. Characterise the pairs (Γ, S) such that G(Γ, S)

has a decomposition into spanning double-rays.





CHAPTER 9

Hamilton cycles in infinite cubic graphs

Investigating a problem of B. Mohar, we show that every one-ended Hamil-

tonian cubic graph with end degree 3 contains a second Hamilton cycle. We

also construct two examples showing that this result does not extend to give

a third Hamilton cycle, nor that it extends to the two-ended case.

9.1. Introduction

In this note we investigate whether results about the Hamiltonicity of finite cubic

graphs extend to the infinite setting. The term ‘graph’ in this paper is reserved for simple

graphs; when allowing parallel edges or loops, we explicitly use the term ‘multi-graph’.

Our terminology follows [54].

9.1.1. Hamiltonicity in finite regular graphs. The starting point of this paper

are the following results and conjectures for finite regular graphs.

Theorem 9.1.1 (Smith ’46, see [156]). Every Hamiltonian finite cubic graph has at

least two Hamilton cycles.

Here, a graph is Hamiltonian if it contains a Hamilton cycle. A graph with precisely

one Hamilton cycle is also called uniquely Hamiltonian. Sheehan conjectured that finite

cycles are the only examples of uniquely Hamiltonian regular graphs.

Conjecture 9.1.2 (Sheehan ’75, [142]). Every d-regular Hamiltonian finite graph

with d > 3 has at least two Hamilton cycles.

For more details on Sheehan’s conjecture, we refer the reader to [152]. Using a nice

parity argument, the so-called “lollypop technique”, Thomason extended Smith’s result

in a different direction as follows:

Theorem 9.1.3 (Thomason ’78, [150]). Every edge in a finite graph with odd degrees

only lies on an even number of Hamilton cycles. Hence, every Hamiltonian such graph

has at least three Hamilton cycles.

In particular, every finite Hamiltonian cubic graph contains at least three Hamilton

cycles.

211
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9.1.2. Infinite Hamilton circles. For a locally finite graph G, which can be consid-

ered as a topological space using the 1-complex topology, we let |G| denote its Freudenthal

compactification. Extending the notion of cycles, one defines circles in |G| as homeomor-

phic images of the unit circle in |G|, see [54, §8]. A circle of |G| containing all vertices

(and all ends) of G is a Hamilton circle. A Hamilton cycle is a subgraph of G given by

the edge set of a Hamilton circle of |G|.
In one-ended graphs, Hamilton cycles correspond to spanning double rays. In a two-

ended graph G, a Hamilton cycle consists of two vertex-disjoint double rays R1 and R2

which together span G, such that the two tails of each Ri belong to different ends of G. For

example, the 2-ended double ladder in Figure 9.1 has a unique Hamilton cycle comprised

of all horizontal edges.

Figure 9.1. The infinite double ladder and its unique Hamilton cycle.

9.1.3. Questions on Hamiltonicity in infinite regular graphs. In 2007, Mohar

asked to what extent the above results about Hamiltonicity in finite regular graphs gener-

alise to the infinite setting. While the infinite double ladder in Figure 9.1 witnesses that

Theorem 9.1.1 fails to extend verbatim to the infinite case, Mohar suggested two possible

solutions.

First, we might restrict our attention to one-ended graphs, and second, we might say

that the double ladder is not truly regular, as its ends have degree 2. Here, we take the

degree of an end to be the maximum number of edge-disjoint rays leading to that end, see

[39] or Section 9.2 below for details.

Question 9.1.4 (Mohar ’07, [119]). Does there exist a uniquely Hamiltonian, one-

ended, d-regular graph for d > 3?

Question 9.1.5 (Mohar ’07, [119]). Does there exist a uniquely Hamiltonian, d-

regular graph for d > 3 where also all ends have degree d?

K. Heuer [95] has recently constructed a uniquely Hamiltonian cubic graph with con-

tinuum many ends where all ends have degree 3, thus answering Question 9.1.5. He left

open the natural question whether simultaneously restricting the number of ends plus the

end-degrees allows us to extend finite theorems to the infinite setting.

9.1.4. Results. In this note, we establish the following extension of Smith’s Theo-

rem 9.1.1 about second Hamilton cycles to the infinite setting, providing a partial answer

to Mohar’s questions.
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Theorem 9.1.6. Every Hamiltonian one-ended cubic graph with end degree at most 3

has at least two Hamilton cycles.

Our proof of Theorem 9.1.6 combines the stronger of the finite results, namely Thoma-

son’s Theorem 9.1.3, and a sequence of parity arguments. Interestingly, Thomason’s Theo-

rem 9.1.3 itself does not extend to the above setting: we construct one-ended cubic graphs

with end-degree 2 or 3 that have precisely two Hamilton cycles, see Examples 9.4.1 and

9.4.3.

Improving on Heuer’s example, we also construct in Example 9.4.4 a two-ended,

uniquely Hamiltonian, cubic graph where both ends have degree 3. This shows that

in general, it is only in the one-ended case where one could hope for an affirmative result

about second Hamilton circles in cubic graphs.

Finally, we remark that we do not know whether every Hamiltonian one-ended cubic

graph with end-degree 4 has a second Hamilton cycle—this seems to be the next crucial

case in attacking Question 9.1.4.

9.2. Two facts about end degrees

In our proofs below we need two facts about end degrees in locally finite graphs. Given

a graph G = (V,E) and a set of vertices S ⊆ V , we denote by E(S, V \ S) ⊆ E the set

of edges of G with one endvertex in S and the other in the complement of S. We also

abbreviate E(v) = E({v}, V \ {v}).
Following [39], for an end ω of some locally finite graph G we take its degree (to be

precise: its edge-degree) to be the maximum number of edge disjoint rays in G leading to

ω, and its vertex-degree to be the maximum number of vertex-disjoint rays in G leading

to ω.

Lemma 9.2.1 ([39, Lemma 10]). Let ω be an end of a locally finite graph G and

S ⊆ V (G) a finite vertex set. Then the maximal number of edge-disjoint rays to ω starting

in S equals the minimum cardinality of an edge cut separating S from ω.

Lemma 9.2.2. In cubic graphs, edge- and vertex-degree of ends coincide.

Proof. In any locally finite graph, the vertex-degree of a given end is at most its

edge-degree. Conversely, any family {Ri : i ∈ I} of edge disjoint rays in a cubic graph

have to be internally vertex-disjoint, as otherwise there would be a vertex of degree > 4.

Thus, if R′i denotes the ray Ri minus its initial vertex, then {R′i : i ∈ I} is a family of

vertex-disjoint rays of the same cardinality as our initial family. �

9.3. Affirmative results for second Hamilton cycles

In this section, we present our positive results about the existence of additional Hamil-

ton cycles in one-ended cubic graph with end-degree 2 or 3.
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Theorem 9.3.1. Every Hamiltonian one-ended cubic graph with end-degree 2 has at

least two Hamilton cycles.

Proof. Let C be a Hamilton cycle of G. Since the end of G has degree 2, by

Lemma 9.2.1 there is a finite vertex set S ⊆ V with |E(S, V \ S)| = 2.

Consider the minor Ĝ of G where we contract V \S to a single ‘dummy’ vertex. Then

C � Ĝ witnesses that Ĝ is a finite Hamiltonian graph. Moreover, Ĝ is nearly-cubic, that is

all vertices of Ĝ have degree 3, with the exception of the dummy vertex, which has degree

2. By [64, Theorem 1], every nearly cubic Hamiltonian graph has a second Hamilton

cycle. By combining the two Hamilton cycles of Ĝ with C \ E(Ĝ), we have found two

distinct Hamilton cycles of G. �

`x

ex
x

`y

ey
y

v
a

b

cfa
fb

fc

`z

ez

z

Figure 9.2. The Tutte fragment T .

For the end-degree 3 case, we employ the following auxiliary multi-graph which encodes

how Hamilton cycles choose incident edges of certain vertices of a graph.

Definition 9.3.2 (Hamilton incidence multi-graph). Let v and w be distinct vertices

of a Hamiltonian graph G. The Hamilton incidence multi-graph H = H(G, v, w) of G with

respect to v and w is the bipartite multi-graph with bipartition

V (H) = [E(v)]2 t [E(w)]2

where the multiplicity of an edge pq ∈ E(H) corresponds to the number of Hamilton cycles

D of G with p ∪ q ⊆ D.

As a concrete example of a Hamilton incidence multi-graph (which we shall meet again

in Section 9.4 below), consider the Tutte fragment T (invented by Tutte in [156]) with

leaves `x, `y and `z as depicted in Figure 9.2.
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Figure 9.3. The six Hamilton cycles of T ′.

Let T ′ = T/{`x = `y = `z} be the graph obtained from T by identifying its three leaves.

Then T ′ is a cubic graph with precisely six Hamilton cycles (see [48, 95, 156]), which we

may visualise as follows:

The first two Hamilton cycles use the edge pair ex = `xx and ez = `zz, and the

other four Hamilton cycles use the edge pair ey = `yy and ez. In particular, there are no

Hamilton cycles of T ′ using the edge pair {ex, ey}. Writing w for the contracted vertex

{`x = `y = `z} in T ′, and letting v and its incident edges fa, fb and fc be as indicated in

Figure 9.2, we see that the Hamilton incidence graph H = H(T ′, w, v) as in Definition 9.3.2

is given by the multigraph in Figure 9.4.

{ex, ey}

{ex, ez}

{ey, ez}

{fa, fb}

{fa, fc}

{fb, fc}

Figure 9.4. The Hamilton incidence multi-graph H(T ′, w, v).

Note that all vertices of our example H(T ′, w, v) have even degree. In the following

two lemmas, we show that this parity condition holds in general.

Lemma 9.3.3. Let v and w be distinct vertices of a finite cubic graph G. Then the sum

of the degrees of any pair of vertices in the Hamilton incidence multi-graph H(G, v, w)

from the same side of its vertex bipartition is always even.

Proof. Indeed, if say p 6= q ∈ [E(v)]2, we have p ∩ q = {e} for some edge e ∈ E(v),

as G is cubic. So the sum of degrees d(p) + d(q) equals the number of Hamilton cycles in

G using the edge e, which is even by Theorem 9.1.3. �

Lemma 9.3.4. If v and w are distinct vertices of a finite cubic graph G, then all vertex

degrees in H(G, v, w) are of the same parity.

Proof. Suppose one vertex in [E(v)]2 has odd (even) degree. Since |[E(v)]2| = 3,

we can apply Lemma 9.3.3 twice to conclude that all degrees on the [E(v)]2 side of our
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bipartite graph H = H(G, v, w) are odd (even). Hence,∑
p∈[E(v)]2

dH(p) = |E(H)| =
∑

p∈[E(w)]2

dH(p)

is odd (even). Applying Lemma 9.3.3 twice again, we see that also all degrees on the

[E(w)]2 side of our bipartite graph H must be odd (even). Thus, all vertex degrees in

H(G, v, w) are of the same parity. �

Theorem 9.3.5. Every Hamiltonian one-ended cubic graph with end-degree 3 has at

least two Hamilton cycles.

Proof. Let C be a Hamilton cycle (i.e. a spanning double ray) of G. By assumption

on the degree of our end together with Lemma 9.2.1, there is a sequence of pairwise disjoint

edge cuts Fn = E(Sn, V \ Sn) with Sn finite, |Fn| = 3, Sn ( Sn+1, and
⋃
n∈N Sn = V (G).

Let Fn = {en, fn, gn}. As every double ray in a one-ended locally finite graph intersects

each finite cut in a positive, even number of edges, we may suppose that en, fn ∈ E(C)

and gn /∈ E(C) for all n ∈ N. Let Gn be the minor of G where we identify V \ Sn to

a single dummy vertex xn, and let Gn,n+1 be the minor of G where we identify Sn and

V \ Sn+1 to dummy vertices vn and wn respectively.

While a priori, Gn and Gn,n+1 are multi-graphs (with possibly parallel edges at dummy

vertices), we may assume they are simple: By Lemma 9.2.2, there are three vertex-disjoint

rays R1, R2 and R3 leading to the single end ω. Choose N ∈ N such that E(Ri) ∩ Fn 6= ∅
for all n > N and all i. Since the Ri are vertex-disjoint, it follows that all xn, vn and wn
have three distinct neighbours for all n > N .

So by moving to a suitable subsequence, we may assume that all our minors Gn and

Gn,n+1 are simple cubic graphs. Moreover, in all cases, the corresponding restriction of C

witnesses that these minors are in fact Hamiltonian.

Now, if some Gn has two distinct Hamilton cycles both using the edge set {en, fn}, then,

following the same strategy as in Theorem 9.3.1, we may combine both with C � (V \ Sn)

to obtain two distinct Hamilton cycles of G. Hence, we may assume for the remainder of

the proof that for all n ∈ N, the restriction C � Gn is the only Hamilton cycle of Gn that

uses {en, fn}. In particular, we are in the case where the assumptions of the following

claim are satisfied for all n ∈ N:

Claim. If Gn and Gn+1 have unique Hamilton cycles using the edge set {en, fn} and

{en+1, fn+1} respectively, then every Hamilton cycle of Gn extends to a Hamilton cycle of

Gn+1.

To see why the claim implies the theorem, note that by Theorem 9.1.3, the edge e0

is contained in an even number of Hamilton cycles of G0, and hence there must be a

second Hamilton cycle A0 of G0 which uses the edge set say {e0, g0}. Applying the claim

recursively, we obtain a sequence of Hamilton cycles An of Gn such that An+1 extends
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An for all n ∈ N. Then A =
⋃
n∈NAn a Hamilton cycle of G, which is distinct from C

witnessed by g0 ∈ E(A) \ E(C).

It remains to prove the claim. Assume that Gn and Gn+1 have unique Hamilton cycles

using the edge sets {en, fn} and {en+1, fn+1} respectively, and consider the Hamilton

incidence graph Hn = H(Gn,n+1, vn, wn) of Gn,n+1 with respect to its two dummy vertices.

Step 4. We have dHn({en+1, fn+1}) = 1.

This is where we use the assumption that Gn and Gn+1 have unique Hamilton cycles

using the edge sets {en, fn} and {en+1, fn+1} respectively. Indeed, note first that C �

Gn,n+1 witnesses that dHn({en+1, fn+1}) > 1. Next, since there is a unique Hamilton

cycle A of Gn that uses {en, fn}, Theorem 9.1.3 implies that Gn must have two further

Hamilton cycles B and C using the edge sets {en, gn} and {fn, gn} respectively. Thus, if

dHn({en+1, fn+1}) > 2, i.e. if there are two distinct Hamilton cycles of Gn,n+1 using the

edge set {en+1, fn+1}, then we can combine them suitably with either A, B or C to obtain

two distinct Hamilton cycles of Gn+1 both using the edge set {en+1, fn+1}, a contradiction.

Step 5. Every vertex of Hn has odd degree.

Since Step 4 implies in particular that dHn({en+1, fn+1}) is odd, Step 5 is immediate

from Lemma 9.3.4.

Step 6. Every Hamilton cycle of Gn extends to a Hamilton cycle of Gn+1.

Suppose we have a Hamilton cycle A of Gn using the edge set p ∈ [Fn]2. By Step 5, we

know that in particular dHn(p) > 1, which means there is a Hamilton cycle B of Gn,n+1

using the edge set p. Then A∪B is a Hamilton cycle of Gn+1 extending A. This completes

the proof of the final step of the claim, and so the theorem follows. �

9.4. Examples witnessing optimality

In the previous section, we have seen that Smith’s Theorem 9.1.1 extends to the one-

ended cubic case where the end has degree at most 3. In this section, we show that

Theorem 9.1.1 does not extend to the two-ended case, and that Thomason’s Theorem 9.1.3

does not extend to the infinite case at all.

9.4.1. Ends with degree two.

Example 9.4.1. There is a one-ended cubic graph with end degree 2 that has precisely

two Hamilton cycles. In particular, there are edges which do not lie on an even number

of Hamilton circles.

Construction. Consider the cubic, one-way infinite ladder as in Figure 9.5. Clearly,

it has precisely one end, which has degree 2. Moreover, it is not hard to check that this

graph has precisely two Hamilton cycles. In particular, there are edges which do not lie
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e1

e2

f1

f2

Figure 9.5. The infinite cubic ladder.

on an even number of Hamilton circles. In our example, these are the edges e1, e2, f1 and

f2. �

For completeness, we record again:

Example 9.4.2. The double ladder is a uniquely Hamiltonian, two-ended cubic graph

with both ends of degree 2.

9.4.2. Ends with degree three.

Example 9.4.3. There is a one-ended cubic graph with end degree 3 that has precisely

two Hamilton cycles. In particular, there are edges which do not lie on an even number

of Hamilton circles.

Construction. Let {Tn : n ∈ N} be a family of disjoint graphs such that T0
∼= T ′

and Tn ∼= T for all n > 1. Here, T is the Tutte fragment from Figure 9.2, and T ′ is its

cubic quotient. We use the same of vertices in T and T ′ as above, and by vn, an, bn, cn ∈ Tn
etc. we refer to the respective copies of the vertices v, a, b, c ∈ T .

We now construct a sequence {Gn : n ∈ N} of finite cubic graphs as follows: Put G0 =

T0, and define

G1 = (G0 − v0 t T1)/ ∼ where a0 ∼ `x1 , b0 ∼ `y1 , c0 ∼ `z1 .

We think of this operation as replacing the vertex v0 and its incident edges by a new copy

of T , where the leaves of the new T are suitably identified with the old neighbours of v0.

Similarly, assuming Gn has already been defined, let

Gn+1 = (Gn − vn t Tn+1)/ ∼ where an ∼ `xn+1 , bn ∼ `yn+1 , cn ∼ `zn+1 .

In other words, in every step, we replace the most recent copy of the vertex v by a new

copy of T .

Note that Gn− vn ⊆ Gn+1− vn+1 for all n, so we may denote by G be the direct limit

of these graphs. (Alternatively, |G| can be viewed as the inverse limit of the Gn under

natural minor relation Gn 4 Gn+1, cf. [54, §8.8], and so G as a 1-complex is given by the

space |G| minus its unique end).

Since T ′ is 3-edge connected, it follows that G is a one-ended cubic graph with end-

degree 3. Writing Sn = V (Gn) \ {vn}, we see that the end-degree of G is witnessed by the

3-edge cuts

Fn = E(Sn, V (G) \ Sn).
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{ex0 , ey0}

{ex0 , ez0}

{ey0 , ez0}

{fa0 , fb0} ∼ {ex1 , ey1}

{fa0 , fc0} ∼
∼ {ex1 , ez1}

{fb0 , fc0} ∼ {ey1 , ez1}

{fa1 , fb1} ∼ {ex2 , ey2}

{fa1 , fc1} ∼
∼ {ex2 , ez2}

{fb1 , fc1} ∼ {ey2 , ez2}

{fa2 , fb2} ∼ {ex3 , ey3}

{fa2 , fc2} ∼
∼ {ex3 , ez3}

{fb2 , fc2} ∼ {ey3 , ez3}

Figure 9.6. The incidence multi-graph for Hamilton cycles of G.

Moreover, if we define, as in the proof of Theorem 9.3.5, the graphs Gn,n+1 to be the minors

of G where we identify Sn and V (G) \ Sn+1 to dummy vertices αn and βn respectively,

then our construction of G guarantees the existence of isomorphisms

ϕn : T ′ → Gn,n+1 such that ϕn(w) = αn and ϕn(v) = βn

such that, due to our choice of the quotient patterns ∼,

(†) ϕn(fa) = ϕn+1(ex), ϕn(fb) = ϕn+1(ey) and ϕn(fc) = ϕn+1(ez)

for all n ∈ N.

Next, recall that every Hamilton cycle C of G restricts, for any n ∈ N, to a Hamilton

cycle of Gn,n+1, and therefore looks locally like one of the six Hamilton cycles of Figure 9.3.

Pasting together the individual Hamilton incidence graphs of Gn,n+1 (cf. Figure 9.4) using

the identities provided in (†) gives the picture of Figure 9.6. And since for every Hamilton

cycle C of G we have

E(C � Gn,n+1) ∩ E(βn) = E(C � Gn+1,n+2) ∩ E(αn+1)

we see that Hamilton cycles of G are in 1-1 correspondence with those rays in the multi-

graph in Figure 9.6 that pick a single edge from each level.

{fb, fc}

{fa, fc}

{fa, fb}

{ey, ez} ∼ {ex0
, ey0}

{ex, ez} ∼
∼ {ex0 , ez0}

{ex, ey} ∼ {ey0 , ez0}

Figure 9.7. The incidence multi-graph for Hamilton cycles of H.

To complete the construction of Example 9.4.3, we now consider the graph

H = (T tG− w0)/ ∼ where `x ∼ z0, `y ∼ y0, `z ∼ x0.
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Figure 9.7 shows the analogue of Figure 9.6 for our new graph H.

By the same reasoning as above, Hamilton cycles of H are in 1-1 correspondence with

those rays in the multi-graph in Figure 9.7 that pick a single edge from each level. But

this means that H has precisely two Hamilton cycles: Only the two left-most red edges

can be extended to a ray through the Hamilton incidence multi-graph using a single edge

from each level, and both these extensions are unique. �

Example 9.4.4. There is a uniquely Hamiltonian, two-ended cubic graph with both

ends of degree 3.

Construction. For the construction, take a disjoint copy G′ of G from the graph as

constructed in the previous construction (cf. Figure 9.6). By w′0, x
′
0, y
′
0, z
′
0 ∈ G′ etc. we

refer to the respective copies of the vertices w0, x0, y0, z0 ∈ G. Now consider the graph

H ′ = (G′ − w′0 tG− w0) with three added edges x′0z0, y
′
0y0, and z′0x0.

Then H ′ is a 2-ended cubic graph with both ends of degree 3. Figure 9.8 shows the

analogue of Figure 9.7 for our new graph H ′.

{ey′0 , ez′0} ∼ {ex0
, ey0}

{ex′
0
, ez′0} ∼

∼ {ex0 , ez0}

{ex′
0
, ey′0} ∼ {ey0 , ez0}

Figure 9.8. The incidence graph for Hamilton cycles of H ′.

By the same reasoning as before, Hamilton cycles of H ′ correspond in a 1-1 fashion

to those double rays in the multi-graph in Figure 9.8 that pick a single edge from each

level. But then it is obvious that H ′ has a unique Hamilton cycle, which corresponds to

the double ray formed by the middle horizontal edges. �



CHAPTER 10

Circuits through prescribed edges

We prove that a connected graph contains a circuit—a closed walk that repeats

no edges—through any k prescribed edges if and only if it contains no odd cut

of size at most k.

10.1. Introduction

Finding a cycle1 containing certain prescribed vertices or edges of a graph is a classical

problem in graph theory. When specifying vertices, already Dirac [61, Satz 9] observed

that, in a k-connected graph, any k vertices lie on a common cycle, and that this is not

necessarily true for k + 1 distinct vertices. Dirac’s results marked the starting point for a

number of results giving conditions under which a set of vertices lies on a common cycle,

and we refer the reader to Gould’s survey [83] for a detailed overview of results in this

direction.

When trying to find a cycle containing some specified edges, research has been driven

by a number of conjectures due to Lovász [116] (1973) and Woodall [169] (1977). The

strongest of these is the following:

Conjecture 10.1.1 (Lovász-Woodall Conjecture). Let S be a set of k independent

edges in a k-connected graph G. If k is even or G− S is connected, then there is a cycle

in G containing S.

Building on earlier work by Woodall, in particular on a technique of Woodall from [169]

called the Hopping Lemma, Häggkvist and Thomassen [84] (1982) and Kawarabayashi [99,

Theorem 2] (2002) established the following variants of the Lovász-Woodall Conjecture.

First, in the case of Häggkvist and Thomassen, by setting out from the stronger assumption

of (k+1)-connectedness, and second, in the case of Kawarabayashi, by obtaining a weaker

conclusion, namely, two cycles instead of one.

Theorem 10.1.2 (Häggkvist and Thomassen). For any set S of k independent edges

in a (k + 1)-connected graph, there is a cycle in G containing S.

Theorem 10.1.3 (Kawarabayashi). Let S be a set of k independent edges in a k-

connected graph G. If k is even or G − S is connected, then S is contained in one or a

union of two vertex disjoint cycles of G.

1This paper follows the notation in Bollobás’ Graph theory, [27].
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In the present paper, we are interested in a further variant of the problem, where

instead of a cycle we aim to find a circuit—a closed walk that repeats no edges (but

may repeat vertices)—containing a set of prescribed edges. Clearly, for this variant, it

is no longer necessary to assume our edges to be independent. If one aims for results

similar in spirit to the cycle case above, it seems natural to consider edge-connectivity

instead of vertex connectivity. But whereas in the above cases, vertex connectivity is

a far-from necessary condition, the corresponding version for circuits admits a complete

characterisation in terms of edge cuts, which is the main result of our paper.

Theorem 10.1.4. A connected graph contains a circuit through any k prescribed edges

if and only if it contains no odd cut of size at most k.

Corollary 10.1.5. If for some k ∈ N a connected graph contains a circuit through

any 2k−1 prescribed edges, then it also contains a circuit through any 2k prescribed edges.

While all the graphs treated in this paper are simple, one can easily derive the same

characterisation for multigraphs, since subdividing every edge of a multigraph once does

not give rise to new odd cuts.

To see that the condition in Theorem 10.1.4 is necessary, recall that the graph given by

the vertices and edges of a circuit is Eulerian, i.e. even and connected, and so a necessary

requirement for finding a circuit through a set of edges is that it can be extended to an

even subgraph. The latter has been characterised by Jaeger [97] in 1979.

Theorem 10.1.6 (Jaeger). A set of edges in a graph G is contained in an even subgraph

of G if and only if it contains no odd cut of G.

However, while Jaeger’s theorem immediately shows the necessity of our characterising

condition in Theorem 10.1.4, it does not yield its sufficiency, as Jaeger’s even subgraph is

not necessarily connected (even if G is). This issue was also overlooked by Lai [108]. See

Section 10.5 for further discussion when Jaeger’s condition does give rise to a circuit.

Example 10.1.7 (Counterexample to [108, Theorem 1.1 & 4.1]). Let k > 3, let G be

the ladder with k + 1 rungs, and S be a set of rungs of G of size 3 6 |S| 6 k. Then S

extends to an even subgraph of G, but every such even subgraph has at least d |S|
2
e > 2

components.

Proof. Since G−S is connected, the set S does not contain any cut of G (regardless

of its parity), and so S extends to an even subgraph by Theorem 10.1.6.

Now let e1, e2, e3 ∈ S be three edges ordered from left to right (cf. Figure 10.1),

and suppose for a contradiction there is an even, connected subgraph H of G containing

e1, e2, e3. Let C and C ′ be the edge cuts consisting of the two incident edges to the left

and to the right of e2 respectively (cf. Figure 10.1). Since H is connected and contains e1
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e1 e2 e3 ekC C ′C C ′C C ′

Figure 10.1. A ladder with specified rungs S = {e1, . . . , ek}.

and e3, H meets both cuts C and C ′. Since H is even, it meets every cut of G in an even

number of edges, and so C ∪ C ′ ⊆ E(H). But then both end vertices of e2 have degree

three in H, a contradiction to H being even.

In particular, if H is an even subgraph containing S, then every component of H

contains at most two rungs from S, and so H has at least d |S|
2
e components. �

So instead of referring to Jaeger’s theorem for proving the sufficiency of the charac-

terising condition in Theorem 10.1.4, we once more build on the technique of Woodall’s

hopping lemma.

Finally, let us mention the survey by Catlin [45] for related research on the existence

of spanning circuits in a graph. Lai [108, Theorem 3.3] established the following sufficient

condition for a graph to contain a spanning circuit through any k prescribed edges:

Theorem 10.1.8 (Lai). For k ∈ N let f(k) be the smallest even integer > max(k, 4).

If G is f(k)-edge-connected, then G contains a spanning circuit through any k prescribed

edges.

A related variant is to find spanning trails (not necessarily closed) containing a given

set of edges, see e.g. [170] and the references therein.

10.2. Preliminaries

All graphs in this paper are finite and simple. We let N = {0, 1, 2, . . .} and use

[n] = {1, 2, . . . , n} and [0, n] = {0, 1, . . . , n}. For our use of the terms cycle, walk, trail

and circuit, we follow [27]. Let us clarify the use of technical terms now.

Definition 10.2.1. Let G = (V,E) be a graph. For a set of vertices A ⊆ V , we write

• ∂GA := {uv ∈ E : u ∈ A, v /∈ A} for the edge boundary of A in G.

For F ⊆ E, we call

• F a cut of G, if there is an A ⊆ V such that ∂GA = F , and

• a cut F odd, if |F | is odd. Otherwise, we call F even.

Recall that all cuts of some graph are even if and only if all its vertices have even

degree.
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Definition 10.2.2. Let G = (V,E) be a graph, and let T = v0 . . . vr a walk in G.

• T is a trail in G, if all of its edges are distinct. Further, v0 is the start vertex and

vr is the end vertex of T , and all other vertices are called inner vertices of T .

• T is closed, if its start and end vertex agree. A closed trail is also called circuit.

• V (T ) and E(T ) denote the vertices and edges of the underlying subgraph of T .

Definition 10.2.3. Let G = (V,E) be a graph. For x, y ∈ V , X, Y ⊆ V and trails

P = p0 . . . pr and Q = q0 . . . qw in G, we define

• PQ or p0PprQqw is the concatenated trail p0 . . . prq1 . . . qw (only when P and Q

are edge-disjoint and pr = q0),

• P is an X−Y trail, if p0 ∈ X, pr ∈ Y and no inner vertex is in X or Y . For

singletons write x−y trail instead of {x}−{y} trail,

• P is a subtrail of Q with witnessing interval IP = {tP , . . . tP + r} ⊆ [0, w], if

ph = qtP+h for every h ∈ [0, r] or ph = qtP+r−h for every h ∈ [0, r], and

• Q̄ = qw . . . q0 is the reversed trail of Q.

Fact 10.2.4. If P is a subtrail of Q and P uses at least one edge, then the witnessing

interval IP of P in Q is unique.

Proof. Let P = p0 . . . pr and Q = q0 . . . qw with r > 1. Note that while for a single

vertex pi there might be several qj with pi = qj, for every edge pi−1pi there is a unique

j = j(i) ∈ [w] with pi−1pi = hj−1hj (since our graphs are simple). From this, it follows

that IP =
⋃
i∈[r]{j(i)− 1, j(i)}, and so the witnessing interval IP of P in Q is unique. �

Definition 10.2.5. Let (X,<X) be a finite linear order. For a 6X b ∈ X, we define

• [a, b]<X :=
{
` ∈ X : a 6X ` 6X b} as the closed interval from a to b.

Further, for a subset Y ⊆ X, we write

• max<X Y for the greatest element of Y with respect to <X , and

• min<X Y for the smallest element of Y with respect to <X .

10.3. A reduction to the bridge case

The proof of our characterisation theorem of graphs containing a circuit through any

k prescribed edges will proceed via induction on k. For the induction step, suppose we

have k + 1 edges e1, . . . , ek+1 of G and may assume inductively that any k edges lie on a

common circuit in G. Let H be such a circuit through e1, . . . , ek in G. Our task is then

to also incorporate the last edge ek+1 into a circuit.

As our first result, we will show that it suffices to consider the case where ek+1 is

a bridge in G − E(H). More precisely, we claim that it suffices to prove the following

theorem:
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Theorem 10.3.1. Let G be a graph containing no odd cut of size at most k + 1, let

{e1, . . . , ek+1} be a collection of k+1 edges in G, and H be a circuit in G through e1, . . . , ek

such that ek+1 is a bridge in G− E(H).

Then there exists a circuit H ′ in G through e1, . . . , ek+1. Moreover, if an end vertex of

ek+1 is not in V (H), then we may assume that H ′ passes it exactly once.

We defer the proof of Theorem 10.3.1 until the next section, and first show how to

complete the proof of the Characterisation Theorem 10.1.4 given Theorem 10.3.1.

Proof of Theorem 10.1.4 given Theorem 10.3.1. As announced, the proof of

the sufficiency of the characterisation in Theorem 10.1.4 will go via induction on k. The

base case is easy: A connected graph without odd cuts of size at most k = 1 is evidently

the same as a bridgeless connected graph. But any edge in such a graph lies on a circuit.

Now assume inductively that Theorem 10.1.4 holds for some integer k ∈ N. To prove

Theorem 10.1.4 in the case k + 1, let G be a graph containing no odd cut of size at most

k + 1, and S = {e1, . . . , ek+1} a collection of k + 1 edges in G. By induction, we may find

a circuit H in G through e1, . . . , ek. If ek+1 ∈ E(H), we are done.

So assume that ek+1 /∈ E(H). If ek+1 is a bridge of G − E(H), then we are done by

Theorem 10.3.1 (the moreover-part is not needed in this case). Otherwise, ek+1 is not a

bridge in G − E(H), and we may pick D as the maximal 2-edge-connected subgraph of

G− E(H) containing ek+1.

Note that D and H are edge-disjoint, but might share vertices. If they do, choose

v ∈ V (D)∩V (H) arbitrarily. To see that there is a circuit H∗ in D containing v and ek+1,

construct an auxiliary graph D′ from D by subdividing ek+1 by a new vertex w. Since

D is 2-edge-connected, so is D′. By Menger’s theorem, there are two edge-disjoint w−v
paths in D′ translating to the desired circuit H∗ in D. Since H and H∗ are edge-disjoint

and intersect in v, it is clear that E(H) ∪ E(H∗) is the edge set of a circuit covering S.

Thus, we may assume that V (D) ∩ V (H) = ∅. Let F := ∂G(V (D)) ⊆ E \ E(H) and

observe that every edge in F is a bridge in G−E(H). Since G is connected, F is non-empty,

and we choose eF ∈ F arbitrarily. Write eF = uw with u ∈ V (D). Next, we contract D

in G. Let G′ be the resulting graph and vD ∈ V (G′) be the vertex corresponding to the

contracted D.

Observe that H is still a circuit through e1, . . . , ek in G′, that vD is not contained

in V (H) and that G′ is simple. Furthermore, every cut of G′ is also a cut in G (after

uncontracting vD), and so G′ contains no odd cut of size at most k + 1. Hence, we may

apply Theorem 10.3.1 to G′, H and eF to find a circuit H ′ ⊆ G′ through e1, . . . , ek and eF ,

such that H ′ passes vD exactly once (by the moreover-part). Let e = u′w′ with u′ ∈ V (D)

be the edge in F corresponding to the other edge in H ′ incident with vD. The circuit H ′

in G′ corresponds to an u′−u trail H∗ in G− E(D). By subdividing ek+1 in D once and

using Menger’s theorem in the resulting 2-edge-connected graph D′, we find an u−u′ trail
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Q in D trough ek+1. Since Q and H∗ are edge-disjoint, it follows that uQu′H∗u is the

desired circuit in G through e1, . . . , ek+1. �

10.4. Proving the bridge case

In this section, we prove Theorem 10.3.1, completing the proof of the characterisation

stated in Theorem 10.1.4. As indicated in the introduction, our proof of Theorem 10.3.1

is based on the so-called Hopping Lemma due to Woodall [169].

Throughout this section, when describing our set-up and stating our auxiliary results,

we work in a fixed 2-edge connected graph G = (V,E), with S = {e1, . . . , ek+1} a collec-

tion of k + 1 edges of G, and H a shortest circuit through e1, . . . , ek in G. Any remaining

assumptions featuring in Theorem 10.3.1 will only be used in the final proof of Theo-

rem 10.3.1 itself at the very end of this section.

If e1, . . . , ek lie on a cycle C, then C−{e1, . . . , ek} naturally falls apart into components,

each of which is a path. If as in our situation e1, . . . , ek lie on a common circuit H, then

H −{e1, . . . , ek} also falls apart into segments: subtrails H1, . . . , Hk of H such that (after

relabelling our edges) we have H = H1e1H2e2 . . . ek−1Hkek. Note, however, that different

segments of H − {e1, . . . , ek} are no longer vertex-disjoint (and so do not correspond to

components of the subgraph H − {e1, . . . , ek}, cf. Figure 10.2).

Definition 10.4.1. Given the circuit H = H1e1H2e2 . . . ek−1Hkek, we call Hj the j-th

segment of H. Since H is shortest possible, every segment Hj is a path. We let <j denote

the path order on V (Hj) induced by the circuit H.

>e3

>
H1

<

<

<

<

<

> >

< <
H2

> e1

<
<

<

<

<
H3

>
e2

>
>

>

Figure 10.2. A circuit H = H1e1H2e2H3e3 with segments H1, H2, H3.

Definition 10.4.2. Given the circuit H with segments {Hj : j ∈ [k]}, for U ⊆ V and

j ∈ [k], we define (cf. Definition 10.2.5)

(1) Onj(U) := U ∩ V (Hj) as the vertices of U on the j-th segment of H,

(2) Clj(U) := [min<j Onj(U),max<j Onj(U)]<j as the closure of U on the j-th seg-

ment of H,

(3) Cl(U) :=
⋃
`∈[k] Cl`(U) as the closure of U in H,
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(4) Frj(U) := {min<j Onj(U),max<j Onj(U)} as the frontier of U on the j-th segment

of H and

(5) Fr(U) :=
⋃
`∈[k] Fr`(U) as the frontier of U in H.

Note that due to the fact that different segments can intersect, the set inclusions

Cl(U) ⊆ Cl(Cl(U)), Clj(U) ⊆ Onj(Cl(U)) and Frj(U) ⊆ Onj(Fr(U)) might be proper.

Fact 10.4.3. For j ∈ [k] and U ⊆ V , we have Clj(U) is a subtrail of Hj.

Definition 10.4.4. For x, y ∈ V (G) and X ⊆ V , we say

(1) an x−y trail P is admissible, if it is in G−E(H)−ek+1 and V (P )∩V (H) ⊆ {x, y},
and

(2) R(X) := {y′ ∈ V (H) : ∃x′ ∈ X ∃ admissible x′−y′ trail} as reach of X after H.

We stress that the inner vertices of an admissible x−y trail are not in V (H).

Definition 10.4.5. We define an increasing sequence (Ai)i∈N recursively by

(1) A0 := ∅,
(2) A1 := R({a}), and

(3) if Ai is already defined for some i > 1, then Ai+1 := R(Cl(Ai)).

Further, we set A :=
⋃
i∈NAi. Analogously, we define an increasing sequence (Bi)i∈N and

B by interchanging a with b.

The idea behind this definition is the simple observation that if A1 and B1 intersect

the same segment of H, then we clearly would be done. This will not always be possible,

and so we iterate this procedure again and again, until we do find one vertex in A and one

vertex in B that are contained in the same segment of H, as Lemma 10.4.6 below shows.

We remark that Definition 10.4.5 of (Ai)i∈N differs from Woodall’s in that Woodall’s

admissible paths (see x ? y in [169]) from Ai to new vertices of Ai+1 are not allowed to

start from the frontier of Ai.

Lemma 10.4.6. If Onj(A) = ∅ or Onj(B) = ∅ for every j ∈ [k], then G contains an

odd cut of size at most k + 1.

Proof. First of all, since G is 2-edge-connected, both A and B are non-empty: Since

G−ek+1 is connected, any a−V (H) path in G−ek+1 is an admissible trail which witnesses

the non-emptiness of A1 ⊆ A, and similarly for B.

Since A,B ⊆ V (H) and Onj(A) = ∅ or Onj(B) = ∅ for every j ∈ [k], A and B are

disjoint. Further, from the pigeonhole principle it follows without loss of generality, that

|{j ∈ [k] : Onj(A) 6= ∅}| 6
⌊
k
2

⌋
. Then

|∂HA| = |
⋃
j∈[k]

∂(ej−1Hjej) Onj(A)| 6
∑
j∈[k]

|∂(ej−1Hjej) Onj(A)| = 2 ·
⌊
k
2

⌋
,
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and since H induces an even subgraph, |∂HA| is even. Thus, C := ∂HA ∪ {ek+1} is odd

and has size |C| 6 2 ·
⌊
k
2

⌋
+ 1 6 k + 1.

To complete the proof, it remains to show that C is a cut in G. For this, we consider

D = {v ∈ V (G) : ∃a′ ∈ A ∪ {a} ∃ admissible a′−v trail},

and claim that ∂GD = C.

To see C ⊆ ∂GD, note that ∂HA ⊆ ∂GD by definition of A. For ek+1 ∈ ∂GD, suppose

to the contrary that b ∈ D. Then there exists an admissible b−(A ∪ {a}) trail T . Since

B 6= ∅, T combined with an admissible b−B trail witnesses that A∩B 6= ∅, a contradiction.

To prove ∂GD ⊆ C, let us suppose for a contradiction that there exists some edge

e = uv ∈ (∂GD) \ C with say u ∈ D and v /∈ D. Since u ∈ D, we can pick an admissible

trail T starting in some a′ ∈ A ∪ {a} and ending in u. If e ∈ E(H), then u ∈ V (H) and

thus u ∈ A by Definition 10.4.5. Now e ∈ ∂H(A), which contradicts e /∈ C. So, we assume

e /∈ E(H). If u ∈ V (H), then u ∈ A and the trail uv is a witness for v ∈ D. Otherwise,

Tuv is a witness. In any case, this contradicts v /∈ D. �

Now that we know that A and B intersect the same segment Hj of H, it is clear

that there is a natural trail in H starting at a vertex of A, ending at a vertex of B,

and containing all of the edges e1, . . . , ek. If we consider the ‘first time’ that An and Bm

intersect a given segment Hj, then this trail has the following three crucial properties of

Definition 10.4.7, as Lemma 10.4.8 shows.

Definition 10.4.7. For n,m ∈ N, we say a trail Q = q0 . . . qw is An−Bm−coherent, if

(C1) e1, . . . , ek ∈ E(Q), q0 ∈ An+1 and qw ∈ Bm+1,

(C2) for every s ∈ [w] with qs−1qs ∈ E\E(H), there exist r, t ∈ [0, w] with qr, qt ∈ V (H)

and r < s 6 t such that qrQqt is an admissible qr−qt trail and each of the sets

An+1 and Bm+1 contains at most one of qr and qt, and

(C3) for every j ∈ [k], Clj(An) and Clj(Bm) are subtrails of Q with witnessing intervals

IAn,j and IBm,j such that IX,j ∩ IY,j′ = ∅ for every X, Y ∈ {An, Bm} and every

two distinct j 6= j′ ∈ [k].

Lemma 10.4.8. If Clj(An∗) 6= ∅ 6= Clj(Bm∗) for some j ∈ [k], then there exists an

An−Bm− coherent trail for some n < n∗, m < m∗.

Proof. Let j be in [k] such that Clj(An∗) 6= ∅ 6= Clj(Bm∗). Choose n < n∗ and

m < m∗ minimal such that Clj(An+1) 6= ∅ 6= Clj(Bm+1) and pick an+1 ∈ Onj(An+1) and

bm+1 ∈ Onj(Bm+1).2 We claim that the trail Q with start vertex an+1 and end vertex

2One could make a stronger minimality assumption by choosing n,m minimal so that Clj(An) 6= ∅ 6=
Clj(Bn) for some j ∈ [k]. Following the same proof, this gives rise to a trail Q which satisfies the following

stronger variant of (C3), namely IX,j∩IY,j′ = ∅ for every X,Y ∈ {An, Bm} and every two (not necessarily

distinct) j, j′ ∈ [k]. However, we do not need this stronger conclusion for the remainder of our proof.
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bm+1 along the circuit H through e1, . . . , ek and Hj′ as subtrail for every j′ ∈ [k] \ {j} is

An−Bm−coherent as desired.

Indeed, (C1) holds by construction and (C2) is an empty condition. Lastly, since

Clj(An) = ∅ = Clj(Bm), and all other segments Hj′ for j′ ∈ [k] \ {j} are subtrails of Q

with pairwise disjoint witnessing intervals by construction, also (C3) holds for Q. �

While conditions (C1) and (C2) are straightforward adaptions from Woodall’s notion

of coherence [169, §III] from paths to trails, a word on (C3) might be in order. Given the

‘time-minimal’ subtrail Q of H constructed in Lemma 10.4.8, we aim to modify Q while

preserving as much structure of Q, and hence of H, as possible. Since segments of H may

intersect, the correct notion of ‘structure preserving’ is to think about the trail in terms

of time: Our initial trail Q constructed in Lemma 10.4.8 spends disjoint time intervals

to cover the different segments of H that contain vertices from Cl(An) ∪ Cl(Bn). When

modifying Q, however, we can no longer require to completely cover all these segments. So

instead, we only preserve the property that if T and S are subpaths of distinct segments

Hj and Hj′ of the form T ∈ {Clj(An),Clj(Bm)} and S ∈ {Clj′(An),Clj′(Bm)}, then we

continue to spend disjoint time intervals to cover T and S.

Theorem 10.4.9. If there exists an An−Bm−coherent trail for some n,m ∈ N, then

there also exists an A0−B0−coherent trail.

For the proof, we need two easy lemmas.

Lemma 10.4.10. Let n,m ∈ N and Q = q0 . . . qw be an An−Bm−coherent trail. If

n > 1 and q0 ∈ An, then Q is An−1−Bm−coherent, and if m > 1 and qw ∈ Bm, then Q is

An−Bm−1−coherent.

Proof. Due to the symmetry of the statements, we just check the conditions for Q

being An−1−Bm−coherent for n > 1. Property (C1) is clear, and (C2) is immediate from

the fact that (Ai)i∈N is an increasing sequence.

Finally, (C3) follows from the fact that since (Ai)i∈N is increasing, Clj(An−1) is a

subtrail of Clj(An), and hence we have IAn−1,j ⊆ IAn,j for the respective witnessing intervals

for all j ∈ [k]. Since IX,j∩IY,j′ = ∅ for every X, Y ∈ {An, Bm} and every two distinct j, j′ ∈
[k] holds by assumption, it follows that the same holds for every X, Y ∈ {An−1, Bm}. �

Lemma 10.4.11. Let n,m ∈ N and v ∈ (Cl(An)∪{a})∪(Cl(Bm)∪{b}). If Q = q0 . . . qw

is an An−Bm−coherent trail and P is an admissible v−V (H) trail, then Q and P are edge-

disjoint.

Proof. By symmetry we may assume that v ∈ Cl(An) ∪ {a}. Suppose for a contra-

diction that P and Q are not edge-disjoint. Choose s ∈ [w] such that qs−1qs is the first

edge of P that is also in E(Q). Since qs−1qs ∈ E(P ) ⊆ E \ E(H) by Definition 10.4.4, it

follows from property (C2) of An−Bm−coherent that there are r, t ∈ [0, w] with r < s 6 t



230 10. CIRCUITS THROUGH PRESCRIBED EDGES

and qr, qt ∈ V (H) such that qrQqt is an admissible qr−qt trail and each set An+1 and Bm+1

contains at most one of qr and qt. But since qs−1qs is the first edge of P in E(Q), both

vPqs−1Q̄qr and vPqs−1Qqt are admissible trails witnessing that qr, qt ∈ An+1 (cf. Defini-

tion 10.4.5(3)), a contradiction. �

Proof of Theorem 10.4.9. Let n,m be minimal such that there is anAn−Bm−coherent

trail Q = q0 . . . qw with start vertex q0 = an+1 ∈ An+1 and end vertex qw = bm+1 ∈ Bm+1.

We claim that n = m = 0. Otherwise, without loss of generality we may assume n > 1.

By Lemma 10.4.10 and the minimality assumption, we have an+1 ∈ An+1 \ An. We write

Q as an+1QqcQqdQbm+1 where c, d ∈ [0, w] are defined as follows:

(a) Since an+1 ∈ An+1\An and by Definition 10.4.5(3) of An+1, there is an x ∈ Cl(An)

such that there exists an admissible x−an+1 trail P (which might be trivial).

From Definition 10.4.2(3) of the closure it follows that there is an j ∈ [k] such

that x ∈ Clj(An). By property (C3) of An−Bm−coherent, Clj(An) is a subtrail of

Q with witnessing interval IAn,j ⊆ [0, w]. Now, we choose d ∈ IAn,j as the unique

index with qd = x.

(b) Next, choose c := max{r ∈ [0, w] : qr ∈
⋃
i∈[n] Frj(Ai) ∧ r 6 d}. If r := min IAn,j,

then qr ∈ Frj(An) and obviously r 6 d. Hence, c exists.

an+1 qmin IAn,j qc qd bm+1

< [ < >
Q′

>
Q

]

Clj(An)

>
P

Figure 10.3. Obtaining the rerouted trail Q′ from Q.

Further, we set n′ := min{i ∈ [n] : qc ∈ Frj(Ai+1)} and observe

(1) IAn′,j ∩ [c, d] = ∅,
(2) if IBm,j ∩ [c, d] 6= ∅, then Clj(An) ∩ Clj(Bm+1) 6= ∅,
(3) if qd ∈ Bm+1, then Clj(An) ∩ Clj(Bm+1) 6= ∅, and

(4) P and Q are edge-disjoint.

Proof of (1). We assume for a contradiction that IAn′,j ∩ [c, d] 6= ∅. Then, either

choosing r as min(IAn′,j ∩ [c, d]) or max(IAn′,j ∩ [c, d]) will lead to qr ∈ Frj(An′), which is

a contradiction to the choice of c or n′ because c 6 r 6 d.

Proof of (2). Let IBm,j ∩ [c, d] 6= ∅. So, IAn,j ∩ IBm,j 6= ∅ because [c, d] ⊆ IAn,j.

Further, Clj(An)∩Clj(Bm) ⊆ Clj(An)∩Clj(Bm+1) implies then that Clj(An)∩Clj(Bm+1) 6=
∅.

Proof of (3). If qd ∈ Bm+1, then, qd ∈ Clj(An) ∩ Clj(Bm+1) 6= ∅.
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Proof of (4). Since qd ∈ Clj(An) ⊆ Cl(An) and Q is An−Bm−coherent, this follows

from Lemma 10.4.11.

If IBm,j ∩ [c, d] 6= ∅ or qd ∈ Bm+1, then (2) or (3) imply that Clj(An) ∩Clj(Bm+1) 6= ∅,
which by Lemma 10.4.8 gives rise to a coherent trail that contradicts the minimality of n

and m. Hence, we assume IBm,j ∩ [c, d] = ∅ and qd /∈ Bm+1.

Now we reroute Q and obtain Q′ := qcQ̄an+1P̄ qdQbm+1, see Figure 10.3. From (4)

it follows that Q′ is a trail. We show that Q′ is An′−Bm−coherent, contradicting the

minimality of n and m:

(C1) Since E(qc . . . qd) ⊆ E(Hj) and since all our edges satisfy ei /∈ E(Hj), the fact

that Q satisfied (C1) implies that Q′ uses e1, . . . , ek. Also, the start vertex qc is

in Frj(An′+1) ⊆ An′+1 and the end vertex bm+1 is still in Bm+1.

(C2) Because an+1 /∈ An ⊇ An′+1 and qd /∈ Bm+1, each of the sets An′+1 and Bm+1

contains at most the start or the end vertex of P . Also, the qd−an+1 trail P is

admissible. This implies that (C2) is true for edges that are in P . For edges that

are not in P , it follows directly from Q’s (C2) and qc, qd ∈ V (H).

(C3) Due to (1) and IBm,j ∩ [c, d] = ∅, the trails Clj′(An′) and Clj′(Bm) are subtrails

of q1 . . . qc or qd . . . qw for every j′ ∈ [k]. Hence, Q′ inherits property (C3) from

Q. �

We are now ready to complete the proof of Theorem 10.3.1.

Proof of Theorem 10.3.1. Since G contains no odd cut of size at most k + 1,

Lemma 10.4.6 implies that Onj(A) 6= ∅ 6= Onj(B) for some j ∈ [k]. By Lemma 10.4.8

there is an An−Bm−coherent trail in G−ek+1 for some n,m ∈ N, and so by Theorem 10.4.9

there also exists an A0−B0−coherent trail Q from a vertex a1 ∈ A1 to a vertex b1 ∈ B1 in

G− ek+1.

By Definition 10.4.5(2) of A1 and B1, there is an admissible a−a1 trail Pa and an

admissible b−b1 trail Pb. Since ek+1 is a bridge in G − E(H),3 the trails Pa and Pb

are vertex-disjoint. Thus, Pa, Pb, Q and ek+1 are edge-disjoint by Lemma 10.4.11 and

Definition 10.4.4(1). Together with property (C1) of Q, it follows that H ′ := baPaa1Qb1P̄bb

is the desired circuit in G through e1, . . . , ek+1.

To see the moreover-part of Theorem 10.3.1, observe that if a /∈ V (H), then a /∈ V (Q)

due to (C2) and Definition 10.4.5(2) of A1. Thus, the circuit H ′ passes a once, since Pa
and Pb are vertex disjoint. The same holds for b. �

10.5. Concluding remarks and an open question

To find a circuit through any k prescribed edges we employed a global property by

forbidding all odd cuts of bounded size. However, if we are only interested in one specific

3We remark that this is the only place in our argument where we use that ek+1 is a bridge in G−E(H).
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edge set, forbidding all bounded sized odd cuts seems unnecessarily strong: For example,

if our k edges are contained in a (k + 1)-edge-connected subgraph, then it is irrelevant

whether the whole graph contains some further small odd cuts. Hence, the following

natural question arises:

Question 4. When can a given edge set of a graph G be covered by a circuit in G?

One line of investigation could be whether a condition similar to the one in Jaeger’s

theorem 10.1.6 could be of additional help:

Definition 10.5.1. For any k ∈ N, let g(k) be the smallest integer such that a set of

at most k edges in a g(k)-edge-connected graph G is covered by a circuit in G if and only

if it contains no odd cut of G.

Lemma 10.5.2. For any k ∈ N,

(1) g(k) 6 m 6 k + 1, where m is the smallest even integer >k, and

(2) for k > 4, g(k) > `, where ` is the greatest odd integer 61
2
(
√

8k − 7 + 1).

Proof. The first part follows directly from Theorem 10.1.4.

For the lower bound of g(k), let ` is the greatest odd integer 61
2
(
√

8k − 7 + 1), and

considerHi to be aK` with V (H) = {vi,1, . . . , vi,`} for i ∈ [2]. Further, we define G := H1+

H2 +{v1,jv2,j : j ∈ [`]}. We remark that G is `-connected. Now, we pick S := E(H1)∪{e}
where e is some edge of E(H2). We calculate

|S| =
(
`

2

)
+ 1 =

`(`− 1)

2
+ 1 6 k

where the inequality holds for ` 6 1
2
(
√

8k − 7 + 1). By Theorem 10.1.6, S contains no odd

cut of G, because S is contained in the even subgraph H1 + H2. But clearly there exists

no circuit H ′ in G that covers S. �

Fact 10.5.3. We have

g(1) = 0, g(2) = 2, g(3) = 3 and g(4) = 4.

Proof. To see g(1) = 0, observe that any edge not being a bridge of its component

must lie on a cycle.

For g(2) = 2, note that g(2) 6 2 by Lemma 10.5.2, and g(2) > 1 by considering two

disjoint cycles connected by an edge, and letting S consist of one edge from each cycle.

Next, Example 10.1.7 shows g(3) > 2. For g(3) 6 3, let G be a 3-edge-connected

graph and S be a 3-set of edges which contains no odd cut of size at most three. By

Theorem 10.1.6, there exists an even subgraph H of G. We choose H subgraph-minimal,

and so H has at most three components.
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First, we assume that H has three components C1, C2, C3, and reduce it to the case

where H has two components by considering the three edge-disjoint V (C1)−V (C2 + C3)

paths in G which exist by Menger’s theorem.

Now, we assume that H has two components C1, C2 where without loss of generality

|E(C1) ∩ S| = 1. Again there are three edge-disjoint V (C1)−V (C2) paths in G. At least

two of them meet the same segment of C2 such that we can construct a cycle in G which

goes through all three edges.

Finally, g(4) = 4 follows from Lemma 10.5.2. �

Thus, by adding Jaeger’s condition, for odd |S| it appears we need less edge connec-

tivity than before. It might be an interesting problem to find the precise values for the

function f , or at least to improve any of the bounds given in Lemma 10.5.2. In particular,

we were not able to find an example witnessing g(5) > 4.





CHAPTER 11

n-Arc connected graphs

Given a graph G, of arbitrary size and unbounded vertex degree, denote by

|G| the one-complex associated with G. The topological space |G| is n-arc

connected (n-ac) if every set of no more than n points of |G| are contained in

an arc (a homeomorphic copy of the closed unit interval).

For any graph G, we show the following are equivalent: (i) |G| in 7-ac, (ii)

|G| is n-ac for all n, and (iii) G is a subdivision of one of nine graphs. A graph

G has |G| 6-ac if and only if either G is one of the nine 7-ac graphs, or, after

suppressing all degree-2-vertices, the graph G is 3-regular, 3-connected, and

removing any 6 edges does not disconnect G into 4 or more components.

Similar combinatorial characterizations of graphs G such that |G| is n-

ac for n = 3, 4 and 5 are given. Together these results yield a complete

classification of n-ac graphs, for all n.

11.1. Introduction

Graphs are typically considered as combinatorial objects: a set of vertices, along with

a set of un-ordered pairs of vertices, forming edges abstractly connecting the vertices; but

it is equally natural to consider graphs as geometric objects with a set of vertices and some

pairs of vertices literally connected by an arc (a homeomorphic copy of the closed unit

interval). Indeed right at the birth of graph theory, with Euler’s solution of the Königsberg

Bridges problem – asking for a particular kind of physical path – and a little later with

Hamilton’s solution of his Icosian problem – requesting an arc, or circle, in the skeleton

of a dodecahedron, containing all vertices – the geometric view is the most immediate.

When we think of a graph geometrically (a 1-complex), then the points on edges become

first class citizens, and this change in perspective opens up new classes of problems. In

this paper we always consider a given combinatorial graph as a geometric graph with the

natural underlying set, topologized in any way so that each arc forming an edge has its

usual topology as a subspace (the exact topology on the graph will not turn out to be

important here).

A natural extension of Hamilton’s problem is to ask, for some n, which graphs G

are n-arc Hamilton (respectively, n-Hamilton) that for any choice of at most n vertices

there is an arc (respectively, a circle) in G containing the specified points. For example,

a classical theorem in graph theory of Dirac [61, Satz 9] says that a n-connected graphs

are n-Hamilton. (Recall that a combinatorial graph is k-connected if deleting at most

235
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k− 1 vertices does not result in a disconnection.) However, high connectivity isn’t always

necessary, indeed every cycle is n-Hamilton, for all n, despite it being only 2-connected.

Dirac also noted in [61] that n-connected graphs are not necessarily (n + 1)-Hamilton.

A characterization was found in [163]: let G be an n-connected graph, n > 3, then G

is (n + 1)-Hamilton if and only if no set T of vertices of G of size n separates G into

more than n components. As is well-known, despite the existence of simple sufficient

conditions, there is still no characterization of Hamiltonicity. Let us also note that Egawa,

Glas & Locke [163] gave a sufficient condition for an n-connected graph to be (n+ 1)-arc

Hamilton, but the authors are not aware of characterizations of the (n+ 1)-arc Hamilton,

n-connected graphs.

Taking the geometric viewpoint we are led to consider connecting arbitrary points in

a graph by arcs or circles. Let G be a graph, considered as a topological space, and S

a subset of G, then (S,G) is n-arc connected (or, S is n-ac in G) if for any choice of at

most n elements of S there is an arc in G containing the specified points, while (S,G) is

n-circle connected (or, S is n-cc in G) if for any choice of at most n elements of S there

is a simple closed curve in G containing the specified points. Further, we say S is ω-ac

(respectively, ω-cc) in X if it is n-ac (n-cc) in X for all integers n ∈ N. Observe that a

graph G with vertices V has a Hamiltonian path (respectively, cycle) if and only if V is

|V |-ac (respectively, |V |-cc) in G, and is n-arc Hamilton (respectively, n-Hamilton) if and

only if V is n-ac (respectively, n-cc) in G.

Define a graph G to be n-ac (resp., n-cc) if G is n-ac (resp., n-cc) in G – in other words,

for any choice of at most n points of G there is an arc (resp., circle) in G containing the

specified points. In this paper we give a complete solution to the problem of characterizing

which graphs are n-ac or n-cc. By ‘complete’ we mean for any n, and for any graph,

without restriction on the number of vertices, or edges, or the degree of any vertex. Our

characterizations give tests for a graph to be n-ac or n-cc which are combinatorial in

nature, only referring to vertices and edges, and which are polynomial in the number of

vertices for finite graphs. The proofs largely rely on Menger-type results, and arguments

based on (and in some cases, extending) the theory of alternating walks.

In describing our results, we should start by stating that it is straightforward to see

that a graph is 2-cc if and only if it is 2-connected, while the only 3-cc graphs are cycles

(see Theorem 11.3.1 and preceding discussion). Hence our focus is on n-ac graphs, for some

n. It is also clear that a graph G is 2-ac if and only if it is connected (combinatorially).

In [69] it was shown that a non-degenerate finite connected graph G is 7-ac if and only

if it is ω-ac if and only if G is homeomorphic to one of 6 graphs (arc, circle, lollipop,

ϑ-curve, figure-of-eight, dumbbell). Extending that argument shows that this behaviour

occurs also for arbitrary graphs. Indeed (see Theorem 11.3.15), a non-degenerate graph G

is 7-ac if and only if it is n-ac for all n, and if and only G is homeomorphic to a finite list
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of graphs, namely homeomorphic to one of the six finite 7-ac graphs, or one of the finite

7-ac graphs with some endpoints removed (giving three more possibilities).

It remains, then, to characterize the n-ac graphs for n = 3, 4, 5 and 6. In [69] infinite

families of finite graphs which are n-ac but not (n + 1)-ac were given for all 2 ≤ n ≤ 6,

and the problem of characterizing finite n-ac graphs for n = 3, 4, 5 and 6 was raised.

Theorems 11.3.1 and 11.3.2, 11.3.3 and 11.3.5, 11.3.6 and 11.3.7, and 11.3.10 solve that

problem for arbitrary graphs. As a sample: a graph G is 6-ac if and only if either G is

one of the nine 7-ac graphs mentioned above, or, after suppressing all degree-2-vertices,

the combinatorial graph G is 3-regular, 3-connected, and removing any 6 edges does not

disconnect G into 4 or more components.

11.2. Preliminaries

In this paper, the term graph refers to a combinatorial graph G = (V,E) where V is

a (possibly infinite) set and E ⊆ [V ]2. However, to every combinatorial graph G = (V,E)

we associate the topological space, |G|, which is the 1-complex of G, namely the quotient

space
(
V ⊕

⊕
e∈E[0, 1]e

)
/ ∼ where V carries the discrete topology and for an edge e =

{v, w} ∈ E we identify v in V with the 0 ∈ [0, 1]e and w with 1 ∈ [0, 1]e. In fact our results

hold whenever the set |G| is given a topology in which the image under the quotient of

each [0, 1]e is homeomorphic to [0, 1]. (For example, the metric topology induced by vertex

distance, extended to interior points of edges in the natural manner, would work equally

well. The quotient topology is simply the finest one satisfying this property.) Where no

confusion can arise – when we discuss purely topological notions, for example – we abuse

notation and simply write G for |G|.

11.2.1. Notation and Conventions. Let G = (V,E) be a graph. An edge, e =

{v, w} is often abbreviated, e = vw. By convention we label fixed vertices by a, b, . . ., and

general vertices as v, w et cetera. Let V = A∪̇B a partition of its vertex set. The set

E(A,B) of edges of G with one endpoint in A and the other in B is called an edge-cut of

G.

For A ⊆ V or F ⊆ E we write G[A] and G[F ] for the induced subgraph of G.

A subset e of |G| is called a closed edge if it is the image under the quotient map of

some [0, 1]e, and is called an edge if it is a closed edge minus its endpoints. In particular

note that edges are open sets. If e = vw ∈ E(G) then e = {v, w} ∪ e ⊆ |G| is the closed

edge in |G| naturally associated with the combinatorial edge e in G. By convention we

label points in the space |G| by x, y, . . ..

11.2.2. Background from graph theory. Our main tools from graph theory will

be the block-cutvertex decomposition of (possibly infinite) connected graphs, and certain

variants of Menger’s theorem, especially the ones involving the concept of alternating
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walks. A good overview of these techniques is given, for example, in the chapter on

connectivity of Diestel’s book, [54, § 3.1 & 3.3].

A graph G = (V,E) is cyclically connected if every two vertices lie on a cycle, and,

recall, is 2-connected if removing any single vertex does not disconnect the graph. Note

that a graph is cyclically connected if, in our terminology, the vertices are 2-cc in the

graph. Observe that, according to this definition, the complete graph on two vertices is

2-connected but not cyclically connected. However, by Menger’s theorem stated below,

any 2-connected graph with at least 3 vertices is cyclically connected.

11.2.2.1. Block-cutvertex decomposition. Let G be a connected graph. A block of G

is an inclusion-maximal 2-connected subgraph. Every edge is contained in a block, and

by their maximality, different blocks overlap in at most one vertex, which then must be

a cut-vertex of G. Therefore, the blocks form an edge-disjoint decomposition of G. Let

C ⊆ V denote the set of cut-vertices of G = (V,E) and B the collection of blocks. The

block graph B(G) of G is the bipartite graph formed on the vertex set C∪̇B with an edge

cB ∈ E(B(G)) if and only if c ∈ B. For the proof of the next lemma see [54, Lemmas 3.1.3

& 3.1.4].

Lemma 11.2.1. The block graph of a (possibly infinite) connected graph is a (possibly

infinite) graph-theoretic tree.

11.2.2.2. Chain graphs and cycle graphs. A connected graph is called a chain graph if

it is a linearly ordered union (possibly just one) of subgraphs (called links) such that only

consecutive graphs meet, and their intersection consists of a single vertex only (called the

linking vertex ). Thus, a connected graph G is a chain graph of 2-connected links if and

only if its block graph B(G) is a finite path, a ray, or a double ray.

Similarly, a connected graph G is a cycle graph if G is a union of graphs L0, L1, . . . , Ln−1

(called links) for some n ∈ N where (a) Li ∩Lj = ∅ if |i− j| > 1 mod n and (b) Li meets

Lj at a single vertex (called the linking vertex ) if |i− j| = 1 mod n.

11.2.2.3. Menger’s theorem and alternating walks. We say a graph G = (V,E) is k-

connected for some k ∈ N if the induced subgraph G−W is connected for all W ⊆ V with

|W | < k. We note that even if a graph G is k-connected for some large k, the underlying

topological 1-complex |G| is never 3-connected in the topological sense, as removing two

endpoints of an edge disconnects the interior of that edge from the rest of the graph.

Given sets A,B of vertices, we call a path [walk] P = x0, . . . , xn an A−B path [walk ]

if V (P ) ∩ A = {x0} and V (P ) ∩ B = {xn}, i.e. if the path [walk] starts in A, ends in B

and is otherwise disjoint from A∪B. Two or more paths are independent if none of them

contains an inner vertex of another. If A,B ⊆ V and X ⊆ V is such that every A − B
path in G contains a vertex from X, then we say that X separates the vertex set A from

B. This implies A ∩B ⊆ X, i.e. X does not have to be disjoint from A or B.
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Theorem 11.2.2 (Menger’s Theorem). Let G = (V,E) be a (potentially infinite) graph

and A,B ⊆ V . Then the minimum number of vertices separating A from B in G is equal

to the maximum number of disjoint A−B paths in G.

Proof. See [54, Theorem 3.3.1 & Prop 8.4.1] respectively for the proof for finite

graphs and its infinite extension. �

However, at several points in this paper we shall employ the following more algorithmic

version of Menger’s theorem using the notion of alternating walks. Recall that for given sets

A,B of vertices and P a collection of disjoint A−B paths, a walk W = x0e0x1e1 . . . en−1xn

in G with no repeated edges (but possibly repeated vertices) is alternating with respect

to P if

• W starts in A \
⋃
P ,

• the only repeated vertices of W lie on paths in P ,

• whenever W hits a vertex of some path Q ∈ P (meaning say ei /∈ Q but xi+1 ∈ Q)

then P follows Q back towards the direction of A for at least one edge of Q, and

• whenever W uses an edge e from a path Q ∈ P , then W traverses this edge

backwards.

We refer the reader to [54, Fig. 3.3.2] and the surrounding discussion for further informa-

tion. The following two lemmas list the two crucial properties of alternating paths in the

context of Menger’s theorem. For the proof of the first see [54, Lemma 3.3.3].

Lemma 11.2.3. If no alternating walk ends in B \
⋃
P, then G contains an A − B

separator X on P with |X| = |P|.

Lemma 11.2.4. If an alternating walk W ends in B \
⋃
P, then G contains a set of

disjoint paths P ′ with |P ′| = |P| + 1. Moreover, the alternating walk W can be chosen

such that

(1) E(P ′) is precisely the symmetric difference E(P)4E(W ), and

(2) every path P ′ ∈ P ′ traverses the edges of E(P ′)∩E(W ) in the same order as W .

Proof. The first assertion of the lemma is proved in [54, Lemma 3.3.2]. However, in

order to see the moreover-part, we need to recall the main idea of [54, Lemma 3.3.2]. First,

the definition of an alternating walk ensures that after taking the symmetric difference

∆ = E(P)4E(W ) :=
⋃
P∈P E(P )4E(W ), every vertex outside A ∪ B will have degree 0

or 2 in G[∆], and vertices in A or B lying on P of W will continue to have degree 1. Thus,

every component of G[∆] containing a vertex a ∈ A will have to be a finite path starting

at a and ending at A ∪B. To see that any such path in fact has to end at a vertex of B,

one proves the additional fact that the path traverses an edge in the symmetric difference

always in the forward direction with respect to P or W . This, clearly, yields the first

assertion of the lemma.
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However, there might be further components ofG[∆] which are finite cycles not incident

with A ∪ B. To eliminate the occurrence of such finite cycles (and hence to establish

property (1)), we choose an alternating walk W ending in B \
⋃
P such that |E(W ) \⋃

P∈P E(P )| is minimal. Now suppose for a contradiction that there is a cycle C in G[∆].

By the argument above, we know that traversing the edges of C in the forward direction

with respect to P or W induces a cyclic order < on E(C). Observe that since (C,<) is a

cyclic order, there are edges ek, ek+i for i > 0 of E(W ) such that ek+i < f1 < f1 < · · · <
f` < ek is a segment of (E(C), <), where ` > 0 and f0, . . . , f` is a subpath of some path

P ∈ P (here, ` = 0 allows for the possibility that ek+i < ek are successors in (E(C), <)).

If ` > 0, then the walk W ′ = x0e0 . . . ek−1xkf` . . . f1xk+i+1ek+i+1 . . . en−1xn is an alter-

nating walk contradicting the minimality of W . Otherwise, if ` = 0 (so i > 0), write x for

the vertex incident with both ek+i and ek. Then by definition of alternating, there is a path

Q ∈ P with Q = y0f0y1f1 . . . fm−1ym such that ek+i+1 = fr, ek−1 = fr+1 and x = yr+1. But

then the walk W ′ = x0e0 . . . ek−1xek+i+1 . . . en−1xn is an alternating walk contradicting the

minimality of W . This contradiction shows that ∆ is cycle-free, establishing (1).

It remains to argue that by choosing |E(W ) \
⋃
P∈P E(P )| minimal, we also have

property (2). But if (2) fails for some path P ′ ∈ P ′, there a segment on the path P ′ of the

form ek+i < f1 < f1 < · · · < f` < ek where ` > 0 and f0, . . . , f` is a subpath of some path

P ∈ P , which yields a contradiction to the minimality of W as before. �

From Lemmas 11.2.3 and 11.2.4 we immediately deduce:

Theorem 11.2.5. Let G = (V,E) be a (potentially infinite) k-connected graph, A,B ⊆
V be disjoint sets of vertices each of size at least k, and P a collection of disjoint A− B
paths with |P| = i < k. Then there exists an alternating A − B walk W such that the

symmetric difference E(P)4E(W ) is precisely the edge set of a collection of i + 1 many

disjoint A−B paths.

11.2.3. Background on n-arc connectedness.

Lemma 11.2.6 ([69, Lemma 2.6 ]). Let v be a vertex of a graph G of degree at least

3. If x0, x1, x2 are interior points of distinct edges of G incident with v, then any arc α

containing {x0, x1, x2} satisfies v ∈ int(α), and one of its endpoints lies in [v, x0]∪ [v, x1]∪
[v, x2]. �

The next lemma can be seen as a partial extension of the previous lemma:

Lemma 11.2.7. Let G be a graph, and E(A,B) = {e1 = a1b1, . . . , en = anbn} be an

edge cut of G with ai ∈ A and bi ∈ B. Suppose that xi ∈ ei are interior points.

Then any arc containing x1, . . . , xn with endpoints x1 and xn contains either both

[a1, x1] and [an, xn] or both [x1, b1] and [xn, bn] if n is even, and it contains [a1, x1] and

[xn, bn] or vice versa if n is odd.
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Proof. From the given arc, fix an embedding α : [0, 1] → G such that α(0) = x1,

α(1) = xn and x2, . . . , xn−1 are in α([0, 1]). For concreteness let us suppose that n is even

and the arc α travels from x1 along the edge e1 to a1 (rather than b1), and so the given

arc contains [a1, x1]. We show the arc also contains [an, xn]. The other cases are similar.

After a1, which is in A, the arc α passes through the even number of points x2, . . . , xn−1

in some order, before ending at xn. As it does so the arc must cross backwards and forwards

between A and B an even number of times. Hence α must enter en from A, in other words

by passing through an, and thus the arc contains [an, xn], as claimed. �

Note that when picking an arc witnessing that points x0, x1, . . . , xn−1 ∈ X lie on a

common arc, we may assume that endpoints of the arc are among x0, x1, . . . , xn−1.

Lemma 11.2.8. Let X be a topological space. If there exists A ⊆ X such that |A| 6
n ∈ N and X\A has at least n+ 2 components, then X is not (n+ 2)-ac.

Proof. Pick n + 2 points x0, x1, . . . , xn+1 each belonging to a distinct component of

X\A. Suppose there is an arc containing x0, x1, . . . , xn+1. Relabeling x0, x1, . . . , xn+1 if

necessary, we can fix an embedding α : I → X and 0 = t0 < t1 < · · · < tn+1 = 1 such

that xi = α(ti) for each i. Then α((ti, ti+1)) ∩ A 6= ∅ for each i = 0, 1, . . . , n, which is a

contradiction since |A| 6 n and α is injective. �

Lemma 11.2.9. Let G be a graph. If for some n ∈ N, the condition

(?n) no n points of |G| cut |G| into at least n+ 2 components

holds, then (?n) implies (?m) for all 1 6 m 6 n.

Proof. Let A ⊆ |G| be finite of size m > 1 witnessing the failure of (?m). Then

|G| \ A contains at least one half-open edge, i.e. an open set U such that U ∼= (0, 1) and

U ∼= [0, 1). By picking n − m many points from U and adding them to the set A, we

obtain a set A′ witnessing the failure of (?n). �

Our last lemma in this section says that when verifying whether a graph G is n-ac, it

suffices to consider points on the interior of edges of |G|.

Lemma 11.2.10. For n ∈ N, a graph G is n-ac if and only if (|G| \ V, |G|) is n-ac.

Proof. Only the backwards implication requires proof. Assume that (|G| \ V, |G|) is

n-ac and let x0, x1, . . . , xn ∈ G be arbitrary. Pick y0, y1, . . . , yn ∈ |G|\V as follows: if xi lies

on the interior of an edge, then yi = xi; otherwise, if xi ∈ V , let yi be a point on the interior

of some edge incident with xi. By assumption, there is an arc α containing y0, y1, . . . , yn
which we may assume to have endpoints y0 and yn. Therefore, x1, x2, . . . , xn−1 ∈ α. We

will show that α can be extended to include x0 and the same argument will work for xn
as well. If y0 = x0 we are done. If y0 6= x0 then x0 is an endpoint of the edge containing

y0, say e. The arc α contains one of these endpoint and if x0 ∈ α we are done. Otherwise,

α ∪ e ∪ {x0} is also an arc and contains x0. �
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11.3. Characterizing n-ac Graphs

11.3.1. Characterizing 2-ac, 2-cc, 3-ac and 3-cc graphs. A graph G is n-strongly

arc connected, abbreviated n-sac (see [68]) if for any list of no more than n elements of |G|
there is an arc in G containing the points in the specified order. We note that no graph is

4-sac (pick four points x1, x3, x2, x4 in that order along any edge). It is evident that the

following are equivalent for a graph G: (i) G is 2-ac, (ii) G is 2-sac, (iii) |G| is connected,

and (iv) G is connected (combinatorially).

It is also clear that a graph is 3-cc if and only if it is a cycle. Indeed a graph G is

not 3-cc if (i) it contains a vertex of degree one (that vertex is not in any circle), or (ii) a

vertex of degree at least 3 (consider three points from the interior of three edges exiting

the vertex), or (iii) is a chain.

We characterize 3-sac and 2-cc graphs. The equivalence of (1) through (4) below for

finite graphs was established in [68, Prop. 6].

Theorem 11.3.1. For a (possibly infinite) graph G, the following are equivalent:

(1) G is 3-sac,

(2) G is cyclically connected,

(3) any three points of |G| lie on a circle or a ϑ-curve,

(4) G 6= K2 is 2-connected, and

(5) G is 2-cc.

Proof. The equivalence of (2) ⇔ (4) follows from Menger’s Theorem 11.2.2.

For (2) ⇒ (3), pick three points x0, x1, x2 ∈ G. Now for every each 2-element subset

Ai of {x0, x1, x2}, use the fact that G is cyclically connected to find a (finite) cycle Ci ⊆ G

containing the two points of Ai. Then consider the finite connected subgraph H =
⋃
iCi

of G. By construction, any two points of H lie on a cycle, so H is cyclically connected.

By the finite case, the three points x0, x1, x2 of H lie on a circle or a ϑ-curve in H, and

hence in also G.

The implication (3) ⇒ (1) follows from the finite case (see [68, Prop. 6]), and to see

(1) ⇒ (4), note that if a topological space has a cut-point, then it fails to be 3-sac, [68,

Lemma 1].

Finally, evidently 2-cc graphs are cyclically connected, while (3)⇒ (5) since the circle

and ϑ-curve are clearly 2-cc. �

Thus cyclically connected graphs are (strongly) 3-ac, and this extends naturally to a

characterization of 3-ac graphs.

Theorem 11.3.2. A (potentially infinite) graph G is 3-ac if and only if it is a chain

graph of 2-connected links, or, equivalently, if and only if its block graph is connected and

contains no vertex of degree at least 3.
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Proof. To see that the conditions are necessary, consider the block-cutvertex decom-

position of G and its associated block graph B(G), which is a (potentially infinite) tree

by Lemma 11.2.1. To prove that G is a chain graph of 2-connected links, it suffices to

show every vertex of B(G) has degree at most 2. It follows from Lemma 11.2.8 that no

cut-vertex of G can have degree strictly bigger than 2 in T . And if there is a block B of

G with contains at least three cut vertices c0, c1, c2, then picking three points xi each on

the interior of edges ei ∈ G \ E(B) incident with ci easily shows that G cannot be 3-ac.

For the converse direction, suppose G is a chain graph of 2-connected graphs. Pick

x0, x1, x2 in G. Then there is a minimal finite ‘convex’ part of that chain, say L0, . . . , Ln
with Li ∩ Li+1 = vi, covering x0, x1, x2.

If all x0, x1, x2 lie in the same link L0, we are done by Theorem 11.3.1, as L0 is 2-

connected. If x0, x1 lie in same link, say L0, and x2 lies in Ln, then we may find

• an arc α0 in L0 that picks up {x0, x1, v0} ending at v0 (clear if L0 = K2, and by

Theorem 11.3.1 otherwise),

• arcs αi in Li with endpoints vi−1 and vi for 0 < i < n, and

• an arc αn in Ln with endpoints vn−1 and x3.

It is then clear that the concatenation of the αi is an arc though our three points x0, x1, x2.

Finally, in the case where x0 ∈ L0, x1 ∈ Li for 0 < i < n and x2 ∈ Ln, the same approach

extends straightforwardly. �

11.3.2. Characterizing 4-ac graphs. Let us say that a graph G is a basic 4-ac

graph if G is (a subdivision of) a circle, a ϑ-curve, a cycle graph of two circles and an arc

(‘happy-face curve’), or if it is (a subdivision of) a cycle graph of alternating two circles

and two arcs (‘baguette curve’). See the following sketch for the latter two basic 4-ac

graphs.

As any four edges of these graphs either lie on a common ϑ-curve, a figure-8-curve or

a dumbbell, these graphs are indeed 4-ac. The purpose of our next theorem is to prove a

‘converse’ of this observation for cyclically connected 4-ac graphs.

Theorem 11.3.3. For a cyclically connected graph G, the following are equivalent:

(1) G is 4-ac,

(2) no two vertices cut G into 4 or more components, and

(3) any four edges of G are contained in a basic 4-ac subgraph of G.
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Proof. The implication (1)⇒ (2) is Lemma 11.2.8, and (3)⇒ (1) is clear.

For (2) ⇒ (3), let G be a 4-ac cyclically connected graph such that no two point set

cuts it into at least 4 components. Let x0, . . . , x3 ∈ G. To show that G is 4-ac, we may

assume, by Lemma 11.2.10, that all xi are interior points of edges.

By Theorem 11.3.1, the three points x0, x1, x2 lie on a common circle or a common

ϑ-curve X. In the first case, Menger’s Theorem 11.2.2—applied with the two endvertices

of the edge containing x3 against V (X)—shows that there are two disjoint x3 − X arcs,

and so there is a ϑ-curve contain {x0, . . . , x3} and we are done.

Otherwise, let us write a and b for the two degree-3-vertices of the ϑ-curve X, and

e0, e1, e2 for its three edges. Further, as x0, x1, x2 do not lie on a common cycle, we

may label the edges of X such that xi ∈ ei. Since G is cyclically connected, it follows

from Menger’s Theorem 11.2.2 as before that there is an arc α such that x3 ∈ α and

X ∩ α = {α(0), α(1)}. Up to symmetry, the following cases can occur:

(1) α(0), α(1) ∈ e0, (2) α(0) ∈ e0, α(1) ∈ e1,

(3) α(0) = a, α(1) ∈ e0, or (4) α(0) = a, α(1) = b.

In the first case, Y = X ∪α is homeomorphic to a baguette curve. In the second case,

Y is homeomorphic to a K4, where removing any edge not containing a point xi reduces

it to a ϑ-curve. In the third case, Y is a happy-face-curve. Finally, in the last case, Y

consists of the vertices a and b with four parallel edges e0, . . . , e3 between them. Since by

assumption, |G|\{a, b} consists of at most three components, there is an arc δ in G\{a, b}
internally disjoint from Y with say δ(0) ∈ e0 and δ(1) ∈ e1. One checks that any four

points in Z = Y ∪ δ lie on either a ϑ-curve or on a happy-face-curve, which completes the

proof. �

Next, we extend our characterization of 4-ac graphs to graphs which are no longer

necessarily cyclically connected. For this, the following lemma gives us additional control

over arcs in our four basic 4-ac graphs.

Lemma 11.3.4. Let G be one of our basic 4-ac graphs. If w is a point in the interior of

an edge of G, then for any three further points in G, there exists an arc in G that contains

those three points and has w as an endpoint.

Proof. If G is either a circle or a ϑ curve, then it is easy to see that the assertion of

the lemma holds.

So let G be the happy-face curve with cycles C1, C2, degree-4 vertex a ∈ C1 ∩ C2,

degree-3-vertices b ∈ C1 \C2 and c ∈ C2 \C1 and edges {e0, e1} = E(C1), {e2, e3} = E(C2)

and e4 = bc. Pick points w, x0, x1, x2 ∈ G. Since removing one of e0, . . . , e3 reduces G to a

ϑ-curve, we only have to consider the case when one of w, x0, x1, x2 belongs to the interior

of each ei for 0 6 i 6 3. But now, since G \ e4 is a figure-8-curve, the assertion of the

lemma is clear.
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Finally, assume G is the baguette curve with cycles C1, C2, degree-3 vertices a, b ∈ C1

and c, d ∈ C2 and edges {e0, e1} = E(C1), {e2, e3} = E(C2) and e4 = ac, e5 = bd between

C1 and C2. Pick points w, x0, x1, x2 ∈ G. Since removing one of e0, . . . , e3 reduces G to a

ϑ-curve, we only have to consider the case when one of w, x0, x1, x2 belongs to the interior

of each ei for 0 6 i 6 3. But now, since G \ e5 is a dumbbell with w lying on one of its

cycles, the assertion of the lemma is again clear. �

Theorem 11.3.5. A graph G is 4-ac if and only if it is a chain graph such that

(1) all links are 2-connected and 4-ac,

(2) all interior links are edges,

(3) if v is a cut vertex and L a link of G with v ∈ L, then degL(v) 6 2.

Proof. SupposeG is a 4-ac graph. ThenG is 3-ac, and so a chain graph of 2-connected

links by Theorem 11.3.2. Item (1) is now clear.

For (2), suppose for a contradiction, there is a chain graph G of 2-connected links with

decomposition {Ln : n ∈ J} for J ⊆ Z with |J | > 3 that is 4-ac but one of the interior links,

say L0, is not an arc. Consider the subgraph G′ = L−1∪L0∪L1 where L−1∩L0 = {u} and

L0 ∩ L1 = {v}. Pick x0 in L−1 \ {u} and x3 in L1 \ {v}. Observe that any arc containing

x0 and x3 and any two further points in L0 must (without loss of generality) start at x0

and end at x3. So it suffices to show that we can choose x1, x2 in L0 \ {u, v} so that there

is no arc in L0 starting at u, ending at v and containing both x1 and x2. Consider u in L0.

By 2-connectedness of L0 and the fact that L0 is not an arc, we must have degL0
(u) > 2.

Pick x1 and x2 from the interior of distinct edges of L0 incident with u. Now it is clear

that no arc in L0 starting at u and containing x1 and x2, can end at v, a contradiction.

For (3), suppose there are links L0 and L1 with L0∩L1 = {v} and degL0
(v) > 3. Then

picking three vertices on the interior of different edges incident with v in L0, and picking

a fourth vertex on the interior of an edge incident with v in L1 shows that G is not 4-ac,

a contradiction.

For the converse, assume that G is a chain graph satisfying properties (1)–(3). We

may suppose that G contains a non-trivial link L not isomorphic to K2. If the block graph

of G is infinite, it follows from (2) that G is isomorphic to L with a one-way infinite ray

R attached to a vertex v of L. But then it is clear that it suffices to show that L with

a single extra edge attached at v is 4-ac. Thus we may assume, by (1) and the foregoing

discussion, that G consists of finite number > 2 of links. So let L1, . . . , Ln with n > 2

and Li∩Li+1 = {vi} be the decomposition of G into links according to properties (1)–(3).

Pick four points x0, . . . , x3 ∈ G. If all four points are contained in the same link, then we

are done by (1). Otherwise, find basic 4-ac subgraphs H and H ′ in L1 and Ln containing

v1 ∪ ({x0, . . . , x3} ∩ L1) and vn−1 ∪ ({x0, . . . , x3} ∩ Ln) respectively. Since by (3), v1 and

vn−1 have degree 2 in H and H ′ respectively, it follows from Lemma 11.3.4 that there are

arcs α and α′ in H and H ′ picking up all vertices {x0, . . . , x3} ∩ L1 and {x0, . . . , x3} ∩ Ln
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and starting at v1 and vn−1 respectively. Since all middle links are arcs by (2), the arc

α ∪ L2 ∪ . . . ∪ Ln−1 ∪ α′ witnesses that G is 4-ac. �

11.3.3. Characterizing 5-ac graphs. Our first theorem reduces the problem of

characterizing all 5-ac graphs to the cyclically connected case.

Theorem 11.3.6. Let G be a graph which is not cyclically connected. Then G is 5-ac

if and only if G is homeomorphic to one of the following graphs:

(a) a finite path (equivalently, an arc), a ray or a double ray; (b) a lollipop with or

without the endpoint; (c) the dumbbell graph, or (d) the figure-of-eight-graph.

See the following diagram for sketches of the lollipop graph, the dumbbell graph, and

the figure-of-eight graph.

Proof. It is straightforward to check that each of the listed graphs is indeed 5-ac.

So suppose G is a non-cyclically connected but 5-ac graph. By Theorem 11.3.5, G is a

chain graph with multiple links such that all interior links are arcs. If G is not a double

ray, then we may suppose that G has a block decomposition {Ln : n ∈ J} where J is an

interval in {0} ∪ N containing 0. We show that L0 is either an arc or circle, for then any

end-link of the block decomposition of G is a circle or an arc, and all interior links are

arcs – and the theorem follows immediately.

Claim: L0 is either a circle or an arc. Indeed, let v0 be the linking vertex L0 ∩ L1.

By Theorem 11.3.5 (3), if L0 is not an arc, v0 has degree 2 in L0. Let e0 and e1 be the

two edges of L0 incident with v0. If L0 is not a circle, we may suppose without loss of

generality that e0 = v0w where w has degree 3 in L0. Write e2, e3 for the other two edges

incident with w. Pick four points x0, . . . , x3 with xi on the interior of ei for 0 6 i 6 3

and pick x4 on the interior of an edge e4 in L1 incident with v0. Then these five points

witness that G is not 5-ac: By Lemma 11.2.7, any arc would need to start and end on

the same side of the edge cut {e0, e1} = E(L0 \ {v0}, G \ L0), but also needs to start and

end in a neighbourhood of w and a neighbourhood of v0 respectively by Lemma 11.2.6, a

contradiction. �

Thus, we may concentrate on cyclically connected graphs. Here, we have the following

characterization.

Theorem 11.3.7. A cyclically connected graph G is 5-ac if and only if

(1) G has maximum degree 4,

(2) no 3, or fewer, vertices of G cut |G| into 5 or more components,
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(3) G is not a cycle graph of three (non-trivial) links L0, L1, L2 such that the linking

vertex v ∈ L0 ∩ L1 has both degL0
(v) = 2 = degL1

(v), and

(4) G is not the union of three (edge-disjoint) connected subgraphs L0, L1, L2 with

two linking vertices v, a such that L0 ∩ L1 = L0 ∩ L2 = L1 ∩ L2 = {v, a} and

degL2
(v) = 2.

Note that the combinatorial condition (2) is equivalent to the topological statement

(2′) ‘no 3 points of |G| cut |G| into 5 or more components’, and this is what we use below.

(To see this equivalence, observe that (2′) is automatically stronger than (2), and for the

converse, replace any point of |G| in the interior of an edge with one of the vertices at

the ends of the edge.) We also remark that the three graphs sketched below witness that

even given (1), conditions (2)–(4) are mutually independent. A K−5 , i.e. a K5 with one

of the edges removed, violates (2) but satisfies (3) and (4). Similarly, the second graph

is a non-5-ac graph which fails (3) (as the diagram shows, it is a cycle graph of the type

excluded by (3)) but satisfies (2) and (4). Finally, the third graph below satisfies (2)

and (3) but not condition (4). (To see that (4) is violated, consider the decomposition as

shown in the diagram, where the restriction imposed by (4) on degrees fails.)

We split the proof of Theorem 11.3.7 into two parts. First, in Proposition 11.3.8, we

will show that the four conditions listed in the characterization are necessary (replacing

(2) with (2′) where convenient). In Proposition 11.3.9 further below, we will then show

the converse direction.

Proposition 11.3.8. Any cyclically connected 5-ac graph satisfies properties (1)–(4)

above.

Proof. For (1), suppose that v is a vertex of degree at least 5, and x0, . . . , x4 are

chosen from the interior of distinct edges of G incident with v. Suppose for a contradiction

that there is an arc α in G though all five points. Applying Lemma 11.2.6 to [v, x0] ∪
[v, x1]∪ [v, x2], we know that v is an interior point of α and may assume that one endpoint

of α lies say on (v, x0]. Next, applying Lemma 11.2.6 with [v, x1]∪ [v, x2]∪ [v, x3] we may

assume that the second endpoint of α lies say on (v, x1]. But applying Lemma 11.2.6 once

again with [v, x2] ∪ [v, x3] ∪ [v, x4], we see that α is forced to have a third endpoint, a

contradiction.

Condition (2) follows from Lemma 11.2.8.
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For (3), suppose G is a cycle graph of three (non-trivial) links L0, L1, L2 with L0∩L1 =

{v}, L0 ∩ L2 = {v1} and L1 ∩ L2 = {v2} such that the linking vertex v ∈ L0 ∩ L1 say has

both degL0
(v) = 2 = degL1

(v). Pick points x0, x1 on the interior of the distinct edges in

L0 incident with v, points x2, x3 on the interior of the distinct edges in L1 incident with v,

and x4 on the interior of some edge in L2. We claim that these five points witness that G

cannot be 5-ac. To see this, observe first that Lemma 11.2.6 implies that any potential arc

α : [0, 1]→ G containing x0, . . . , x4 has to start and end inside [v, x0]∪[v, x1]∪[v, x2]∪[v, x3].

In particular, x4 lies on the interior of α, and so also v1 and v2 lie on the interior of α.

Without loss of generality, let 0 < t1 < t2 < 1 be the points where α(ti) = v1 for i = 1, 2.

Now following the arc α � [0, t1] backwards in time, we will first encounter say x0 at time

0 6 s0 < t1. Similarly, following the arc α � [t2, 1] forwards in time, we will first encounter

say x2 at time t2 < s2 6 1. Now, however, the points x0, . . . , x3 are contained in the

space Y = G \ α � (s0, s2). But v is a 4-cut point of Y with all xi contained in different

components of Y − v. As in Lemma 11.2.8, it follows that the set {x1, . . . , x4} cannot be

covered by the two disjoint arcs α � [0, s0] and α � [s2, 1], a contradiction.

For (4), the argument is somewhat similar to the previous case. Pick points x0, x1 on

the interior of the edges incident with v in L0 and L1 respectively, points x2, x3 on the

interior of the distinct edges in L2 incident with v, and x4 on the interior of some edge

e = ab in L2 incident with a (where, without loss of generality, we assume that b 6= v).

We claim that these five points witness that G cannot be 5-ac. To see this, observe first

that Lemma 11.2.6 implies that any potential arc α : [0, 1]→ G containing x0, . . . , x4 has

to start and end inside [v, x0]∪ [v, x1]∪ [v, x2]∪ [v, x3]. In particular, x4 lies on the interior

of α, and so also a and b lie on the interior of α, too. Without loss of generality, let

0 < t1 < t2 < 1 be the points where α(ti) = v1 for i = 1, 2. Now following the arc

α � [0, t1] backwards in time, if α continues in L0 or in L1, we can argue similar to the

previous case. If, however, α stays in L2, then without loss of generality there are s2, s3

with 0 < s2 < t1 < t2 < s3 < 1 with α(s2) = x2 and α(s3) = x3, and again we can argue

that v is a 4-cut point of Y = G\α � (s0, s2) with all xi contained in different components

of Y − v, and we get a contradiction as before. �

Proposition 11.3.9. Let G be a cyclically connected graph such that

(1) G has maximum degree 4,

(2) no 3 points of |G| cut |G| into 5 or more components,

(3) G is not a cycle graph of three (non-trivial) links L0, L1, L2 such that the linking

vertex v ∈ L0 ∩ L1 has both degL0
(v) = 2 = degL1

(v), and

(4) G is not the union of three (edge-disjoint) connected subgraphs L0, L1, L2 with

two linking vertices v, a such that L0 ∩ L1 = L0 ∩ L2 = L1 ∩ L2 = {v, a} and

degL2
(v) = 2.

Then |G| is 5-ac.
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Proof. Consider x0, . . . , x4 ∈ |G|. By Lemma 11.2.10, to show that G is 5-ac, it

suffices to consider points xi which lie on the interior of edges of G. Applying Lemma 11.2.9

and Theorem 11.3.3, we see that condition (2) implies in particular that x0, . . . , x3 lie on

a basic 4-ac space X, i.e. either on a cycle, a ϑ-curve, a baguette- or a happy-face-curve.

Using 2-connectedness, we may connect x4 to X via to internally disjoint paths α1, α2, i.e.

paths with αi(0) = x4, αi(1) ∈ X, and α � [0, 1) ∩X = ∅. If X was a cycle, then all five

points lie on a ϑ-curve, so in particular they lie on a common arc, and we are done. Thus,

only the three cases remain where X is a ϑ-curve, a baguette-curve, or a happy-face-curve.

We now analyze each case separately.

Case 1. X a ϑ-curve.

Write a and b for the two degree-3-vertices of the ϑ-curve, and e0, e1, e2 for the three

edges of the ϑ-curve. As we may suppose that no 4 vertices of {x0, . . . , x4} lie on a cycle,

we may label the edges of our ϑ-curve such that x0 ∈ e0, x1 ∈ e1 and x2, x3 ∈ e2. Since

vertices in G have degree at most 4, the following cases for how that arcs α1 and α2 connect

up to X can occur:

(i) α1(1) = a and α2(1) = b,

(ii) α1(1) = a and α2(1) ∈ ei, or

(iii) both α1 and α2 hit X on interior points of edges.

In (iii), either α1(1) and α2(1) lie on the same edge ei ⊆ X, in which case Y =

X ∪α1 ∪α2 is a baguette-curve containing {x0, . . . , x4}, or, by symmetry, we may assume

that α1(1) ∈ (a, x0) ⊆ e0 and α2(1) ∈ e1 ∪ e2, in which case Y = (X \ (a, α1(1)))∪α1 ∪α2

is a ϑ-curve containing {x0, . . . , x4}. In both cases, our five points x0, . . . , x5 lie on a 5-ac

subspace, and we are done.

Next, we claim that–similar to the proof of Theorem 11.3.3–case (i) reduces to case

(ii). Indeed, suppose that α1(1) = a and α2(1) = b. Then Y = X ∪ α1 ∪ α2 is a graph

with vertices a and b and four parallel edges e0, . . . , e3 with x0 ∈ e0, x1 ∈ e1, x2, x3 ∈ e2

and x4 ∈ e3. By assumption (2) and Lemma 11.2.9, the points a and b do not cut G

into 4 or more components, and hence there is an arc δ in G between two different edges

of Y . By symmetry, we may assume that δ(0) ∈ (a, x0) ⊆ e0. But then Y \ (a, δ(0)) is

homeomorphic to a ϑ-curve X ′ = {a, b} ∪ e1 ∪ e2 ∪ e3 with the point x0 joined to X ′ via

two arcs attaching to δ(1) and b, i.e. the configuration of subcase (ii).

Thus, it remains to work through case (ii). By symmetry, the following possibilities

can occur:

α2(1) ∈ (a, x0) ⊆ e0 ⊆ X, α2(1) ∈ (x0, b) ⊆ e0 ⊆ X, α2(1) ∈ (a, x2) ⊆ e2 ⊆ X,

α2(1) ∈ (x2, x3) ⊆ e2 ⊆ X, or α2(1) ∈ (x3, b) ⊆ e2 ⊆ X.
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Write Y = X ∪ α1 ∪ α2. In the first and third case,

Y \ (a, α2(1)) is a ϑ-curve containing {x0, . . . , x4}, and in the

second and fourth case, Y \(α2(1), b) is a figure-8-curve contain-

ing {x0, . . . , x4}. Thus, in the first four cases, our five points

x0, . . . , x5 lie on a common ω-ac subspace, and we are done. In

the fifth case, we see that Y is a happy-face curve, i.e. a cycle

graph consisting of two cycles and an arc with a point xi on

every single edge. For convenience, let us relabel all edges and

points of Y as in the picture.

a b

t

x1

x2 x3

x4

x5

e1 e2 e3
e4

e5

By condition 2, the three points a, b, t do not disconnect G into 5 or more components,

and therefore there is an arc δ internally disjoint from Y connecting some pair of edges ei
and ej for i 6= j. Again we differentiate several subcases (up to symmetry) depending on

the attaching points of δ.

(a) δ(0) ∈ (a, x1) and δ(1) ∈ (a, x2),

(b) δ(0) ∈ (a, x1) and δ(1) ∈ (x2, t),

(c) δ(0) ∈ (a, x2) and δ(1) ∈ (x3, t),

(d) δ(0) ∈ (a, x2) and δ(1) ∈ (b, x3),

(e) δ(0) ∈ (x2, t) and δ(1) ∈ (x3, t),

(f) δ(0) ∈ (a, x2) and δ(1) ∈ (a, x5),

(g) δ(0) ∈ (a, x2) and δ(1) ∈ (x5, b),

(h) δ(0) ∈ (x2, t) and δ(1) ∈ (a, x5),

(i) δ(0) ∈ (x2, t) and δ(1) ∈ (x5, b).

Note in case (a), for example, we additionally know that (a, x1) ⊆ e1 and (a, x2) ⊆ e2),

and similarly for all the cases. Write Z = Y ∪ δ. Now in (b) and (c), {x0, . . . , x4} lie on

the common ϑ-curve Z \ ((a, δ(0)) ∪ (δ(1), t)) respectively. In (d), Z \ ((a, δ(0)) ∪ (b, δ(1)))

is a figure-8-curve containing {x0, . . . , x4}. In (e), Z \ ((δ(0), t) ∪ (δ(1), t)) is a figure-8-

curve containing {x0, . . . , x4}. In (g), {x0, . . . , x4} lie on the common figure-8-curve Z \
((a, δ(0)) ∪ (δ(1), b)). In (h), {x0, . . . , x4} lie on the common ϑ-curve Z\((δ(0), t) ∪ (a, δ(1))).

And in (i), Z \ ((δ(0), t) ∪ (δ(1), b)) is a dumbbell containing {x0, . . . , x4}.
Thus, it remains to check cases (a) and (f). Note first these cases are isomorphic

(after relabeling a := δ(1) in (f), and so forth). So without loss of generality, we may

assume we are in case (a). Note that by assumption 3, there must exist some additional

arcs connecting different parts of the subgraph. Let us work in the (connected) space

G′ = |G| \ {t}. First, assume there is no cut-vertex separating A = e1 ∪ {a} ∪ e2 from

B = e3 ∪ {b} ∪ e4 in G′ (in particular, we assume b is not such a cut-vertex). Then by

Menger, there exists an A−B walk β in G− t which is alternating with respect to e5 such

that a, b /∈ β.

Claim 1: If β ∩ (x5, b) 6= ∅, then we are done.

To see the claim, let t ∈ (0, 1) be minimal such that β(t) ∈ e5. Since we have excluded

(h) and (i) above, we may assume that β(0) ∈ (a, x2) ⊆ e2. Next, let t′ ∈ (0, 1) be

minimal such that x = β(t′) ∈ (x5, b), and consider the arc β′ = β � [0, t′]. Then β′

is an A − x walk disjoint from B and alternating with respect to [a, x] ⊆ e5 such that
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x5 /∈ β′ (this follows from the definition of ‘alternating’), and so we find two independent

A− x-paths γ1 and γ2 in the symmetric difference of β′ and [a, x] with starting vertices a

and β(0) respectively such that x5 ∈ γi for precisely one i, see Lemma 11.2.4. But then

[Y \ ((a, β(0)) ∪ e5)] ∪ γ1 ∪ γ2 is a figure-8-curve containing {x0, . . . , x4}.
Claim 2: If β ∩ (x5, b) = ∅, then we are also done.

To see this, note that β ∩ (x5, b) = ∅ implies, by the definition of alternating, that

x5 /∈ β. Therefore, by taking the symmetric sum of e5 and β, we obtain two disjoint A−x-

paths γ1 and γ2 with starting vertices a and β(0) respectively such that x ∈ γi for precisely

one i (if we choose the walk β according to the moreover-part of Lemma 11.2.4). Next, since

we have excluded cases (c), (d) and (e) above, we may assume that β∩(a, x5) 6= ∅, and since

we have excluded cases (h) and (i) above, we may further assume that β(0) ∈ (a, x2) ⊆ e2.

Thus, up to symmetry, the following four arrangements can occur:

(1) γ1(1) = b, γ2(1) ∈ (b, x3) ⊆ e3,

(2) γ1(1) = b, γ2(1) ∈ (x3, t) ⊆ e3,

(3) γ2(1) = b, γ1(1) ∈ (b, x3) ⊆ e3,

(4) γ2(1) = b, γ1(1) ∈ (x3, t) ⊆ e3.

In the first case, (Y \ [e5 ∪ (a, γ2(0)) ∪ (b, γ2(1))]) ∪ γ1 ∪ γ2 is a figure-8-curve con-

taining {x0, . . . , x4}. In the second case, (Y \ [e5 ∪ (a, γ2(0)) ∪ (γ2(1), t)]) ∪ γ1 ∪ γ2 is

a ϑ-curve containing {x0, . . . , x4}. In the third case, (Y \ [e5 ∪ (a, γ2(0)) ∪ (b, γ1(1))]) ∪
γ1 ∪ γ2 is a figure-8-curve containing {x0, . . . , x4}. And in the last case, the subgraph

(Y \ [e5 ∪ (a, γ2(0)) ∪ (γ1(1), t)]) ∪ γ1 ∪ γ2 is a ϑ-curve containing {x0, . . . , x4}.
This completes the case checks for when there was no cut-vertex between A and B in

G′. So now, we may assume that some vertex v ∈ e5 ∪ {b} is a cut-vertex of G′. Without

loss of generality, v is chosen as close to a on e5 as possible.

Claim 3: If v ∈ (a, x5), then we are done.

Indeed, the existence of a further cut point v′ separating x5 from B in G − {t, v}
would contradict condition (3). Therefore, by Menger (cf. Corollary 11.2.5), there exists

an x5 − B walk β in G − {t, v} which is alternating with respect to [x5, b] ⊆ e5. Write z

for the endpoint of β on e3 ∪ e4. By the excluded cases (h) and (i) above, we may assume

that β(1) ∈ (b, x3) ⊆ e3. By taking the symmetric difference of [x5, b] and β, we see as in

Claim 1 above that our set {x0, . . . , x4} lies on a figure-8-curve.

Claim 4: If v ∈ (x5, b), then then we are also done. This case follows as in Claim 1

(using the fact that v was chosen left-most).

Claim 5: Can deal with the case v = b.

Again, since v was chosen left-most, our paths β and e5 witness that b has degree 2 in

L2 := G \ (e3 ∪ e4). Now at this point, {t, b, w} would give rise to a decomposition of G

into

L0 = e3, L1 = e4, and L2 = G \ (e3 ∪ e4),

contradicting condition (4). Therefore, since v = b was assumed to be a cut-vertex,

we are forced to conclude there there must be an additional arc δ′ between e3 and e4.
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As we have excluded (b) and (c) above, we may assume that δ′(0) ∈ (b, x3) ⊆ e3 and

δ′(1) ∈ (b, x4) ⊆ e4.

Finally, since we have dealt with Claim 1 already, we may assume that x5 /∈ β. Taking

the symmetric difference of β and e5 gives us two disjoint A − b paths γ1 and γ2 such

that x ∈ γi for precisely one i (again assuming that we choose the walk β according

to the moreover part of Lemma 11.2.4), with say γ1(0) = a and γ2(0) ∈ (a, x2). But

then [Y \ (e5 ∪ (a, γ2(0)) ∪ (b, δ′(0)) ∪ (b, δ′(1)))] ∪ γ1 ∪ γ2 is a figure-8-curve containing

{x0, . . . , x4}, and we are done.

Case 2. X a baguette-curve.

This case is fairly easy in comparison. If X is a baguette curve with cycles C1, C2,

degree-3-vertices a, b ∈ C1 and c, d ∈ C2 and edges {e0, e1} = E(C1), {e2, e3} = E(C2)

and e4 = ac, e5 = bd between C1 and C2, we may assume that xi ∈ ei for 0 6 i 6 3,

as otherwise we are back in the ϑ-curve case. Now consider where the arcs α1 and α2

attaching x4 hit X. Note first that if say αi(1) ∈ Ci, then {x0, . . . , x4} lie on a common

dumbbell, and we are done. Thus, up to symmetry, the following cases remain:

(a) α1(1) ∈ e3 ∪ e4,

(b) α1(1) ∈ e4, α2(1) = c,

(c) α1(1) ∈ e4, α2(1) ∈ e5 ∪ {d}, or

(d) α1(1) = c, α2(1) = d.

In case (a), we may assume by symmetry that α1(1) ∈ (c, x3). Then (X ∪ α1) \
((c, α1(1) ∪ e5) is a lollipop containing {x0, . . . , x4}. Next, let Y = X ∪ α1 ∪ α2. In

case (b), Y \ (α1(1), α2(1)) is a baguette-curve containing {x0, . . . , x4}. In case (c), Y \
(α1(1), c) ∪ (b, α2(1)) is a lollipop containing {x0, . . . , x4}. Thus, it remains to analyze

case (d) more closely. In this case, the subgraph Y = X ∪α1 ∪α2 is the baguette curve X

with an extra edge e6 with endpoints c and d. In particular, removing the vertices c and

d from |Y | would leave 4 connected components.

Thus, using the condition that no two vertices split |G| into 4 different components (by

condition (2) and Lemma 11.2.9), we know that there must be a further arc δ internally

disjoint from Y and connecting different components of |Y | \ {a, b}. Up to symmetry

(as there is no structural difference between e2, e3 and e6), we may assume that δ(0) ∈
(x2, d) ⊆ e2. Then for the other endpoint of δ, the following cases can occur:

(i) δ(1) ∈ e4,

(ii) δ(1) ∈ e5,

(iii) δ(1) = a,

(iv) δ(1) = b,

(v) δ(1) ∈ (x3, d) ⊆ e3,

(vi) δ(1) ∈ (c, x3) ⊆ e3,

(vii) δ(1) ∈ (a, x0) ⊆ e0,

(viii) δ(1) ∈ (x0, b) ⊆ e0.

In all cases, it is straightforward to see to verify that our five points x0, . . . , x4 lie on

a common dumbbell. This completes the proof of Case 2.

Case 3. X a happy-face-curve.

Again, this case is fairly easy in comparison. If X is a happy face curve with cycles

C1, C2, degree-4 vertex a ∈ C1 ∩ C2, degree-3-vertices b ∈ C1 \ C2 and c ∈ C2 \ C1 and
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edges {e0, e1} = E(C1), {e2, e3} = E(C2) and e4 = bc, we may assume that xi ∈ ei for

0 6 i 6 3, as otherwise we are back in the ϑ-curve case. Now consider where the arcs α1

and α2 attaching x4 hit X. Note that the αi cannot hit on any xj (as they were chosen to

lie on the interior of edges of G), nor on the center vertex a, by condition (1).

If α1 and α2 hit the same segment of Ci \ {a, xj, xk}, then ignoring the edge e4, we see

that all our 5 points lie on a figure-8-curve.

Next, if α1 hits C1 say, and α2 doesn’t, then it’s easy to see that we are back in the

discussion as in Case 1, where all our five points lie on the different edges of a happy face

curve, so we are done, as we have solved this arrangement already.

Lastly, we assume that α1 and α2 hit different segments of say C1 \ {a, x0, x1}. Let us

view C1 as a cycle aex0fx1ga with vertices a, x0, x1 and three edges. After removing the

edge e5, we see that up to symmetry, the following three cases can occur: (i) α1(1) ∈ e
and α2(1) ∈ f , (ii) α1(1) ∈ e and α2(1) ∈ g, or (iii) α1(1) ∈ f and α2(1) ∈ g. In all three

cases, we see that X \ (e5 ∪ (a, α1(1))) is a dumbbell containing our five points x0, . . . , x4.

This completes the proof. �

11.3.4. Characterizing 6-ac graphs. Our characterization of 6-ac graphs, the main

result of this section, is as follows.

Theorem 11.3.10. A graph G is 6-ac if and only if either G is one of the nine 7-

ac graphs of Theorem 11.3.15 or, after suppressing all degree-2-vertices, the graph G is

3-regular, 3-connected, and removing any 6 edges does not disconnect G into 4 or more

components.1

Note that the last condition in particular implies that G must be triangle-free. How-

ever, the stronger condition we chose is necessary for the characterization, as demonstrated

by the following 3-regular 3-connected, triangle-free graphs, which both fail to be 6-ac (in

both cases consider the six points labeled ).

w

v

w

v

1Equivalently, if G is 3-regular, 3-connected and not an inflated K4: there is no partition of V (G)

into four non-empty subsets V1, . . . , V4 such that each Gi = G[Vi] is connected and there is precisely one

Gi −Gj edge in G for every pair i 6= j.
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We split the proof of Theorem 11.3.10 into two parts. First, in Proposition 11.3.11,

we will show that the three conditions mentioned in the characterization are necessary. In

Proposition 11.3.14 further below, we will then show the converse direction.

Proposition 11.3.11. Let G be a 6-ac graph which different from the nine 7-ac graphs.

Then G is 3-regular, 3-connected, and removing any 6 edges does not disconnect G into 4

or more components.

Proof. Let G be a 6-ac graph which different from the nine 7-ac graphs.

To see that G is 3-regular, note that G contains no vertices of degree 1, since The-

orem 11.3.6 implies that G is cyclically connected. We suppress vertices of degree 2.

Suppose for a contradiction that v is a vertex of G of degree > 4. Since G is cyclically

connected, it follows that G must have another branch point. Then one of the edges in-

cident with v have a branch point as its other endpoint, say u. Let this edge be e. Pick

arcs α1, α2, α3 interior-disjoint from each other and e with {v} = αi ∩ αj, such that for

each i, αi \ {v} contains no branch points of G. Also pick arcs β1, β2 interior-disjoint from

the αi, each other and e, β1 ∩ β2 = {u} and βi \ {u} contain no branch points of G. Pick

one point from the interior of each of αi, βj and e. Then, by Lemma 11.2.6, there is no

arc going through these points.

To see that G is 3-connected, it suffices to show, since G is 3-regular, that it is 3-edge

connected, i.e. that there is no partition V (G) = A∪̇B with |E(A,B)| 6 2. Note that

cyclical connectedness implies that |E(A,B)| > 2. So suppose for a contradiction that

there is a 2-edge cut E(A,B) = {e1, e2}. Let ei = aibi with ai ∈ A and bi ∈ B. Note that

since G is cyclically connected and 3-regular, all four endpoints of e1 and e2 are distinct. In

particular, a1 is incident with two further edges e3, e4 which both have all their endpoints

in A, and b2 is with two further edges e5, e6 which both have all their endpoints in B.

Pick six points xi ∈ ei. Since any arc α picking up x1 and x2 has to have, without loss

of generality, both its endpoints on the A-side of G \ {x1, x2} by Lemma 11.2.7, it follows

that it cannot pick up x5 and x6 without violating Lemma 11.2.6.

Finally, suppose deleting edges e1, . . . , e6 from G leaves components C1, . . . , Ck. We

claim that k 6 3. First, observe that every edge ei is incident with at most 2 different

components, and by 3-connectedness, every component Ci is incident with at least 3

distinct edges. By double counting, it follows k 6 4.

So assume that k = 4. Then every component must be incident with precisely 3 of the

6 edges. We claim that the four components and the 6 edges are arranged like a K4. For

this, it suffices to show that for any two components there is only one edge incident with

both components. If there were two components that share three incident edges, then

G would be disconnected, a contradiction. And if there are two components that share

two incident edges, then the other two components must also share two further incident
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edges, from which we conclude that the remaining two edges form a disconnection of the

G, contradicting once again 3-connectedness.

Thus, the 4 components together with the 6 edges are arranged like a K4. But then it

follows from Lemma 11.2.7 that if we choose an interior point xi on each of the six edges

ei for 1 6 i 6 6, there is no arc α in the graph picking up these 6 points. Indeed, suppose

that the arc α starts at x1, traverse x2 up to x5 in the given order and ends and x6. Write

v for the first vertex on α and assume v ∈ V (C1).

If e6 is not incident with C1, consider the cut E(C1, G \ C1) = {e1, ei, ej} of G with

1 < i < j < 6. Let β := α � [0, α−1(xj)] and γ = α � [α−1(xj), 1] denote the subarcs of α

from x1 to xj and from xj to x6 respectively. By Lemma 11.2.7, it follows that [xj, w] with

w ∈ Cj ⊆ β is the final segment of β. Pick y ∈ (xj, w). Then {x1, xi, y} is a separation of

G separating xj from x6, contradicting the fact that γ is an arc in G \ {x1, xi, y} between

these very two points. Finally, if e6 is also incident with C1, then say C2 is incident with

edges ei, ej, e` with 1 < i < j < ` < 6. Considering the arcs β := α � [α−1(xi), α
−1(x`)]

and γ = α � [α−1(x`), 1], we may arrive at a similar contradiction as before. �

Before we start proving the converse, we need the following two lemmas. Note also

that the properties 3-connected and 3-regular imply that our graph is simple, i.e. (even

after suppressing all degree-2-vertices) it contains no loops or parallel edges.

Lemma 11.3.12. Any four points of a 3-regular, 3-connected graph lie on a circle or a

ϑ-curve.

Proof. Let G be a 3-regular, 3-connected graph. It is easy to check that 3-regularity

and 2-connectedness imply that any 4 points x1, . . . , x4 of |G| lie on a circle, a theta curve,

or a baguette curve.

In the first two cases, we are done, so it remains to show that if our four vertices lie

on a baguette curve, they also lie on a ϑ-curve. Let C1 and C2 be the two cycles of the

baguette curve. Note that we may assume that x1, x2 lie on C1 and x3, x4 on C2. Now

by Menger’s theorem (using 3-connectedness of G and the fact that |V (Ci)| > 3), there

are 3 vertex disjoint paths α1, α2, α3 from C1 to C2, each meeting C1 ∪ C2 only in their

endpoints. Note that C1 \ {x1, x2} consists of two segments, so one of these segments

meets both say α1 and α2. But then the cycle C2 together with α1, then walking around

C1 picking up x1 and x2, and then following back along α2 gives us a ϑ-curve containing

the four points x1, . . . , x4. �

Lemma 11.3.13. Any five points of a 3-regular, 3-connected graph lie on a circle or a

ϑ-curve.

Proof. Let G be a 3-regular, 3-connected graph and consider five points x1, . . . , x5 of

|G|. If any four of them lie on a circle, then we are done.
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Thus, by the previous lemma, we may assume that x1, . . . , x4 lie on a ϑ-curve with

edges e1, e2, e3 and vertices a and b. By symmetry, we may assume that x1, x2 ∈ e1, x3 ∈ e2

and x4 ∈ e3. Connect the last point x5 to the ϑ-curve via two new independent arcs α1

and α2. Since G is 3-regular, the two arc α1 and α2 cannot hit the ϑ-curve in a or b. If

the two arcs connect to different edges of the ϑ-curve, then in particular either e2 or e3 is

hit, and by deleting a suitable part of e2 or e3 not containing x3 or x4 we have found a

ϑ-curve containing x1, . . . , x5. Thus, we may assume that the two arcs hit the same edge

ei, and then we have found a baguette curve of G containing all five points x1, . . . , x5. We

will show that in this case, they also lie on a ϑ-curve.

Let C1 and C2 be the two cycles of the baguette curve. Up to symmetry, the following

cases can occur:

(1) x4, x5 /∈ C1 ∪ C2, (2) x1, x2, x3 ∈ C1, x4 ∈ C2 and x5 /∈ C1 ∪ C2,

(3) x1, x2 ∈ C1 and x3, x4, x5 ∈ C2, or

(4) x1, x2 ∈ C1, x3, x4 ∈ C2 and x5 /∈ C1 ∪ C2,

In case (1), if two vertices lie outside of C1 ∪ C2, then it’s easy to find a circle inside

the baguette curve containing four of the vertices. In case (2), we may again find a circle

inside the baguette curve picking up x4, x5 and two of the remaining three vertices on C1.

In case (3) we follow a strategy similar to the previous lemma. By Menger and 3-

connectedness, there are 3 vertex disjoint paths α1, α2, α3 from C1 to C2, each meeting

C1 ∪ C2 only in their endpoints. Note that C1 \ {x1, x2} has two components, so one of

these segments meets say α1 and α2. But then we can follow α1, then walking around C1

picking up x1 and x2, and then following α2 and then walk around C2 back to the endpoint

of α1 in the correct direction so as to pick up two out of the three vertices on C2. So we

have found four points on a circle.

In case (4), let us denote by β the C1 − C2-edge of our baguette curve containing x5.

As before, by Menger and 3-connectedness, there are three vertex disjoint C1 − C2 paths

α1, α2 and α3.

Subcase (4a). If it is possible to choose arcs α1, α2, α3 such that one of them contains

x5, then we do so. Assume that α1 contains x5. If a second path say α2 hits C1 \ {x1, x2}
in the same segment as α1, then first using α1, then picking up x1, x2 on C1, then using

α2, and then returning to α1 on C2 picking up at least one more point say x4 gives a circle

containing four of our points, and we are done. Otherwise, by symmetry and pigeon hole

principle, we may assume that α2 and α3 both hit C1 \ {x1, x2} as well as C2 \ {x3, x4}
in the same segments, and so it is easy finding a circle containing x1, . . . , x4 and we are

again done.

Subcase (4b). No path system between C1 and C2 contains x5. By construction (and

the fact that we have excluded subcase 3a) there is a subarc β′ ⊆ β such that x5 ∈ β′ and

say β′(0) ∈ α1, β′(1) ∈ α2 and which is otherwise disjoint from C1 ∪ C2 ∪ α1 ∪ α2 ∪ α3.
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Now if say α2 hits C1 \ {x1, x2} in the same segment as α3, then by following α3, picking

up x1, x2 on C1, then following along α2 until we can turn into β′ to pick up x5, and then

following α1 into C2, and back to the beginning of α3 picking up one more point say x4

on C2, we have found a circle containing four of our points, and are done. Otherwise, by

symmetry and pigeon hole principle, we may assume that α1 and α2 both hit C1 \{x1, x2}
as well as C2 \ {x3, x4} in the same segments, and so it is easy finding a circle containing

x1, . . . , x4 and we are again done. �

We are now ready to prove the converse direction of our main characterization theorem.

Proposition 11.3.14. Let G be a simple 3-regular, 3-connected graph such that re-

moving any 6 edges does not disconnect G into 4 or more components. Then G is 6-ac.

Proof. Pick six points x1, . . . , x6 from G which we may assume, by Lemma 11.2.10,

to be interior points of edges. By Lemma 11.3.13, there is a ϑ-curve Θ containing the first

five points x1, . . . , x5. Write e, f, g for the edges of Θ and a, b, for the vertices of Θ. We

may assume that every edge of e, f, g is incident with a point xi, and so up to symmetry

there are two cases to consider, namely

(A) x1 < x2 < x3 ∈ e (ordered from a to b), x4 ∈ f and x5 ∈ g, or

(B) x1, x2 ∈ e, x3, x4 ∈ f and x5 ∈ g.

We may assume that x6 /∈ Θ. Pick two independent x6 − Θ arcs α1 and α2. By

3-regularity, the arcs cannot hit Θ in a or b.

In case (A), if one of the arcs hits Θ on a segment of Θ\{x1, . . . , x5} incident with a or b,

then it’s easy to see that all 6 points lie on a theta curve or on a dumbbell. Similarly, if the

two arcs hit the same segment of Θ\{a, b, x1, . . . , x5} then all 6 points lie on a theta curve.

Hence, it remains to investigate the case where α1 hits on the segment (x1, x2) ⊆ e and

α2 hits on the segment (x2, x3) ⊆ e. In this situation, we have a baguette curve consisting

of two cycles C1 and C2 and disjoint C1−C2 arcs β1 and β2 with x1, x2 ∈ C1, x3, x4 ∈ C2,

x5 ∈ β1 and x6 ∈ β2 (i.e. one point xi on every edge of the baguette curve).

By 3-connectedness, and the fact that |V (Ci)| > 3, there exists a C1 − C2 path β3

which is alternating with respect to β1 and β2. Indeed, by Lemma 11.2.4 and the fact that

in a 3-regular graph, every alternating walk is automatically a path, we may choose an

alternating path β3 such that the symmetric difference β14β24β3 yields 3 disjoint C1−C2

paths γ1, γ2 and γ3 traversing the shared edges with β3 in the same order as β3. Three

subcases arise.

(1) If there exists a C1−C2 path containing x5 and x6, then our 6 points lie on a dumbbell.

So may assume that β3 does not contain both x5 and x6.

(2) If β3 contains none of x5 and x6, then
⋃
γi covers both x5 and x6, so either, a single

γi contains both x5 and x6 and we are back in (1), or we have say x5 ∈ γ1 and x6 ∈ γ2,

and the following subcases arise.
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• If γ1, γ2 hit the same segment of C1 \ {x1, x2}, then find a cycle picking up 5 of our

6 points, and we are done, and similarly, if γ1, γ2 hit the same segment of C2 \ {x3, x4}.
• Otherwise, note that the unique segment δi on Ci \ γ3 between the endpoints of α1

and α2 contains precisely one point xj. Thus, α1 ∪ α2 ∪ δ1 ∪ δ2 is a circle containing 4 of

our points, and it is then easy to see that using α3 and suitable segments of Ci \ δi, we

can find a ϑ-curve containing all 6 of our points.

(3) In the final subcase, we may assume that β3 covers x5 but not x6. Then x6 ∈ γ1 say,

and note that by construction of the symmetric difference, there is an arc δ 3 x5 which is

internally disjoint from C1 ∪ C2 ∪
⋃
γi and has its endpoints at interior vertices of some

γi and γj. Note that it follows from Lemma 11.2.4(2) that i 6= j. If i = 1 and j 6= 1 then

we are back in case (1). And if say i = 2 and j = 3, then γ1 and say γ2 hit the same

segment of C1 \ {x1, x2}, and so by starting with γ1, picking up x1, x2 on C1, following γ2,

switching to δ, then following γ3 to C2, and move on C2 back to γ1 picking up at least

one more vertex of x3 and x4, we have found a cycle containing 5 of our points, so we are

again done. This completes the argument for case (A).

In case (B), we may use the same arguments as at

the beginning of (A) to see that the only critical case is

where α1 hits on the segment (x1, x2) ⊆ e and α2 hits

on the segment (x3, x4) ⊆ f . Then x1, . . . , x6 lie on

the 6 edges of a K4, where we label points and edges

as in the figure.

Now consider |G| \ {x1, . . . , x6}. By the third-listed

assumption on G, this space has at most 3 compo-

nents, and hence there must exist an arc δ internally

disjoint from K4 between two vertices v, w of G with

say v ∈ (a, x6) and w /∈ [x5, a] ∪ [x4, a] ∪ [x6, a].

a

be1

c

e2

d

e3

x1 x3

x2

x4

e4

x5 x6

By symmetry, there are five cases to consider for the position of w, namely

(a) w ∈ (d, x6) ⊆ e6, (b) w ∈ (d, x3) ⊆ e3, (c) w ∈ (b, x3) ⊆ e3,

(d) w ∈ (b, x4) ⊆ e4, and (e) w ∈ (b, x1) ⊆ e1.

By inspection, one checks that in cases (b)–(e) there is an arc contained in K4 ∪ δ which

contains all our 6 points. Thus, it remains to deal with case (a).

Let β1, β2 be the two disjoint {v} − {a, d} paths in K4. Since G is 3-connected, it

follows from Corollary 11.2.5 that there is a further v−{a, d} path β3 which is alternating

with respect to {β1, β2} (where again we use that any alternating walk must be a path by

3-regularity). Note that by 3-regularity, if h denotes the third edge incident with v, then

β3 and δ agree on h. Starting from v, let z be the first vertex on β3 which lies one K4 \ e6,

and let y be the vertex before z on β3. Note that we may assume that

(1) either y ∈ (x6, d) ⊆ e6 and z ∈ (x2, d) ∪ (d, x3), or
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(2) y ∈ (a, x6) ⊆ e6 and z ∈ (x5, a) ∪ (a, x4),

as otherwise the arc β3 between y and z witnesses (up to symmetry) that we are in one of

the cases (b) – (f). Now by the fact that β3 has been chosen according to Corollary 11.2.5,

taking the symmetric difference of {β1, β2, β3} yields three internally disjoint {v}−{a, d, z}
paths γ1, γ2, γ3.

Claim: In case (1), there are two independent {x6} − {d, z} paths internally

disjoint from K4 − e6. This follows from Menger’s Theorem 11.2.2 once we show that

inside the subgraph β1∪β2∪β3 no single point separates x6 from the set {z, d}. So suppose

for a contradiction that there is such a separating point s. Since β2 is a x6 − d path, we

must have s ∈ (x6, d). But also walking from x6 along the edge e3 to v and then along β3

to z is a x6 − z path, it follows that s ∈ (x6, d) ∩ β3, and so s /∈ γ1 ∪ γ2 ∪ γ3. But then

going from x6 to v on e3, and then taking a suitable γi to {d, z} shows that s cannot have

been a separator.

Claim: In case (2), there are two independent {x6} − {a, z} paths internally

disjoint from K4 − e6. Once again this will follow from Menger’s Theorem 11.2.2 once

we show that inside the subgraph β1 ∪ β2 ∪ β3 no single point separates x6 from the set

{z, a}. So suppose for a contradiction that there is such a separating point s. Again, we

must have s ∈ (a, x6). But also walking from x6 along the edge e3 to w and then along

δ− h and β3 − h to z is a x6 − z path, it follows that s ∈ (a, x6)∩ (β3 − h). In particular,

we have s 6= v and s /∈ γ1 ∪ γ2 ∪ γ3. So either s ∈ (a, v) or s ∈ (v, x6). In the first case,

we can walk from x6 to v on e6, and then take a suitable γi to reach {a, z}. In the second

case, we can walk from x6 to w on e6, then to v on δ, and then take a suitable γi to {a, z}.
Thus, it follows that by substituting that segment [a, z] or [d, z] of K4 \ e6 with those

two disjoint paths, we see that all of our 6 points lie on a ϑ-curve. �

Some examples of small 6-ac graphs. By checking against a list of simple, 3-regular

graphs of small order2, we see that the only graph on 6 vertices satisfying our character-

ization is K3,3, and that the only two graphs on 8 vertices satisfying our assumption are

K3,3 with an extra edge connecting the midpoints of two, non-adjacent edges of K3,3 (the

so-called Wagner graph), and the 3-dimensional hypercube.

11.3.5. Characterizing 7-ac and ω-ac Graphs.

Theorem 11.3.15. Let G be a non-degenerate graph. Then the following are equivalent:

(a) G is 7-ac, (b) G is ω-ac, and (c)

• G is homeomorphic to one of the 6 finite graphs which are 7-ac, or

• G is homeomorphic to one of the finite 7-ac graphs minus possibly some endpoints.

Proof. Since the graphs mentioned in part (c) are all ω-ac, it suffices to show (a)

implies (c). So suppose G is 7-ac. The proof of Theorem 2.12 of [69] shows that G can

2See e.g. https://en.wikipedia.org/wiki/Table_of_simple_cubic_graphs

https://en.wikipedia.org/wiki/Table_of_simple_cubic_graphs
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have at most two vertices of degree 3 or higher. If all vertices have degree two, then G is

either homeomorphic to (0, 1) or S1. If all vertices have degree no more than 2, but not

all are degree 2, then G is either homeomorphic to [0, 1] or [0, 1). Otherwise, extending

from the (at most two) vertices of degree at least 3, there will be a finite family of: (finite)

cycles, closed intervals (i.e. finite paths) or half-open intervals (i.e. one-way infinite paths).

The half-open intervals give rise to the objects mentioned in the second bullet point. �



CHAPTER 12

n-Arc and n-circle connected graph-like spaces

A space X is n-arc connected (respectively, n-circle connected) if for any choice

of at most n points there is an arc (respectively, a circle) in X containing the

specified points. We study n-arc connectedness and n-circle connectedness in

compactifications of locally finite graphs and the slightly more general class

of graph-like continua, uncovering a striking difference in their behaviour re-

garding n-arc and -circle connectedness.

12.1. Introduction

A topological space X is n-arc connected, abbreviated n-ac, if for any choice of at most

n points there is an arc (a homeomorph of the closed unit interval) in X containing the

specified points. Similarly, X is n-circle connected (abbreviated, n-cc) if for any choice

of at most n points there is a simple closed curve (homeomorph of the unit circle) in X

containing the specified points. Note that a space is arc connected if and only if it is 2-ac.

A space which is n-ac (respectively, n-cc) for all n is called ω-ac (respectively, ω-cc).

Every graph is a topological space when considered as a 1-complex, and recently the au-

thors together with A. Mamatelashvili, developing results from [69], have given a complete

combinatorial characterization of which graphs (without any restriction on the number of

vertices, or edges, or the degree of any vertex) are n-ac or n-cc for any n ∈ N, see [76].

In particular, a non-degenerate graph G is 7-ac if and only if it is ω-ac if and only if G

is homeomorphic to one of nine distinct graphs [76, Theorem 3.5.1]. For n 6 6 there are

infinitely many n-ac graphs (even finite), but effective characterizations are now known.

For example [76, Theorem 3.4.1]: a graph G is 6-ac if and only if either G is one of the

nine 7-ac graphs mentioned above, or, after suppressing all degree-2-vertices, the combina-

torial graph G is 3-regular, 3-connected, and removing any 6 edges does not disconnect G

into 4 or more components. When considering n-cc graphs, the situation is even simpler:

the only 3-cc graphs are the finite cycles, while 2-cc graphs are those that contain no cut

vertices.

Finite graphs are extremely simple continua (a continuum is a compact, metric and

connected space), and for arbitrary continua the problem of characterizing which are n-ac

or n-cc is difficult. Indeed, using ideas from descriptive set theory, it is shown in [68] that

there is no characterization of n-ac rational continua simpler than the definition of n-ac

261
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(here n is in N ∪ {ω}, and a continuum is rational if it has a base of open sets whose

boundaries are countable).

It is natural to investigate where the transition between the results for graphs – ‘7-ac

implies ω-ac’ and effective characterizations for n ≤ 6 – and the provable complexity for

rational continua occurs. In [72], for each n, a regular continuum is constructed which

is n-ac but not (n + 1)-ac (a continuum is regular if it has a base of open sets whose

boundaries are finite). So, in this context, regular continua are too complex.

In the present paper it is shown that the transition takes place precisely between

the Freudenthal compactification of locally finite graphs and graph-like continua. Graph-

like continua were introduced by Thomassen & Vella [153] as a natural abstraction of the

Freudenthal compactification of locally finite graphs. They defined a graph-like continuum

to be a continuum X which contains a closed zero-dimensional subset V , such that for

some discrete index set E we have that X \ V is homeomorphic to E × (0, 1). (Note that,

unfortunately, this definition of ‘graph-like’ is not the one usually used in continua theory,

but this terminology is now standardized among graph theorists.) Up until now all results

about the Freudenthal compactification of locally finite graphs have extended naturally to

graph-like continua. Thus, it was entirely unanticipated that the n-ac property behaves so

differently between the Freudenthal compactification of locally finite graphs and graph-like

continua.

12.1.1. Freudenthal compactification of locally finite graphs. Let G be a lo-

cally finite, countable, connected graph. Its Freudenthal compactification, denoted zG, is

the maximal compactification of G with zero-dimensional remainder, zG \ G. (See the

discussion immediately preceding Theorem 12.2.3 below for an alternative, constructive

description of the Freudenthal compactification of a locally finite graph.) A space is zero-

dimensional if it has a basis of open sets whose boundaries are empty, i.e. a basis of set

which are simultaneously closed and open (clopen).

In the last two decades, Diestel and his students have shown that many combinatorial

theorems about paths and cycles in finite graphs extend verbatim to the Freudenthal

compactification of infinite, locally finite graphs if one exchanges finite paths and cycles for

topological arcs and simple closed curves respectively, see [54, Chapter 8] and [53, 52, 59].

Given this evidence, it might not come as a surprise that the property of n-arc con-

nectedness also lifts nicely to the Freudenthal compactification. Indeed, as our first main

result of this paper, we show in Theorem 12.2.3 that for a locally finite, connected graph G

and some n ∈ N, its Freudenthal compactification zG is n-ac [n-cc] if and only if G itself

is n-ac [n-cc], allowing us to lift all our characterizations from [76]. However, we also give

examples that this is not generally true for all compactifications with zero-dimensional

remainder, and it remains an open problem, for example, to characterize for which locally

finite graphs the one-point compactification is n-ac. What remains true, though, is the
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fact that there are only six different 7-ac graph compactifications, all of which all are again

even ω-ac. So there is no jump in complexity happening at this point yet. These results

are in Section 12.2.

12.1.2. Graph-like continua. As mentioned above, a graph-like continuum is a con-

tinuum X which contains a closed zero-dimensional subset V , such that for some discrete

index set E we have that X \ V is homeomorphic to E × (0, 1). The sets V and E are

the vertices and edges of X respectively. Clearly a compactification of a connected, lo-

cally finite graph is graph-like if and only if the remainder is zero-dimensional. Thus the

Freudenthal compactification is graph-like. The points in the remainder of a Freudenthal

compactification are called ends.

In fact, graph-like spaces were introduced by Thomassen and Vella as a natural abstrac-

tion of the Freudenthal compactification of a graph, in order to eliminate the necessity for

distinct treatments of vertices and ends in arguments about zG. Papers in which graph-

like spaces have played a key role include [153] where several Menger-like results are given,

and [49] where algebraic criteria for the planarity of graph-like spaces are presented. In

[30], aspects of the matroid theory for graphs have been generalized to infinite matroids

on graph-like spaces.

We now know from [70, Theorem A] that graph-like continua had earlier been studied

by topologists under the name completely regular continua (continua in which every non-

degenerate subcontinuum has non-empty interior), and are much closer both to finite

graphs and the Freudenthal compactification of graphs than their definition ‘by analogy’

might suggest. Indeed a continuum is graph-like if and only if it the inverse image of finite

graphs under edge-contraction bonding maps (see Section 12.3.1 for details), if and only

if it is a (standard) subcontinuum of a Freudenthal compactification of a graph.

Even though the graph-like continua are in complexity just a small step above com-

pactifications of locally finite graphs, it turns out that this is already enough to give rise

to completely new and surprising examples of n-ac and n-cc graph-like continua for all

n ≥ 2 and ω. For n-circle connectedness, our main result is as follows: while there is

topologically a unique 3-cc graph compactification, namely the circle (which is even ω-

cc), we show in Theorem 12.4.3 that there are in fact continuum, 2ℵ0 , many pairwise

non-homeomorphic ω-cc graph-like continua. For n-arc connectedness, our main result is:

while there are only six different 7-ac graph compactifications (which all are even ω-ac),

we show in Theorem 12.4.10 that for every n ≥ 2 there are continuum many n-ac [n-cc]

graph-like continua which are not (n+ 1)-ac [(n+ 1)-cc].

These examples are presented in Section 12.4. In Section 12.3 we develop the necessary

machinery to construct graph-like continua, and to check whether they are n-ac or n-

cc. In addition – and as an exception to the rule – the 2-cc graph-like continua are
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characterized, just like graphs, as being those without cut points, and as having inverse

limit representations by finite 2-cc graphs.

12.2. Locally finite graphs, and their Freudenthal compactification

The fundamental result of this section is Theorem 12.2.3 stating that the Freudenthal

compactification zG of a locally finite graph G is n-ac precisely when G is n-ac. Since

the problem of determining when a graph is n-ac, or n-cc, is completely solved, so is the

problem for Freudenthal compactifications of locally finite graphs.

Parts of these results can be extended to arbitrary graph-like compactifications of

locally finite graphs. But examples demonstrate that Theorem 12.2.3 does not extend in

full generality to graph-like compactifications of locally finite graphs.

12.2.1. Some notation. Trails and walks in graphs, and paths and arcs in graph-

like continua, all start and end at points (typically vertices). It is convenient to turn this

around, and given vertices v and w, by a v−w-trail, path or arc we mean a trail, path or

arc (respectively) starting at v and ending at w. More generally, given sets R and S, of

vertices by an R−S-trail (path or arc) we mean a trail (path or arc, respectively) starting

at some element of R and ending at some member of S.

12.2.2. Restricting to points on edges. We begin with the following extension of

[76, Lemma 2.3.5] to the class of regular continua. Since graph-like continua are regular

[70, Lemma 7], its critical corollary is that in order to check whether a graph-like contin-

uum is n-ac, it is sufficient to assume the points lie on edges. It is convenient also to extend

our definitions. Let X be a space and S a subset. Then (S,X) is n-ac (respectively, n-cc)

if for any choice of at most n points from S there is an arc (resp., simple closed curve) in

X containing the specified points.

Lemma 12.2.1. Let X be a regular continuum, D ⊆ X an arbitrary dense subset of X,

and n ∈ N. Then X is n-ac [n-cc] if and only if (D,X) is n-ac [n-cc].

Proof. Only the backwards implication requires proof. Assume that (D,X) is n-ac

and let x0, x1, . . . , xn ∈ X be arbitrary (with n > 1). Since X is regular, there are open

neighbourhoods Ui 3 xi such that

• Ui ∩ Uj = ∅ for all 0 6 i < j 6 n, and such that

• |∂Ui| = ki ∈ N is minimal with respect to all open neighbourhoods V of xi with

V ⊆ Ui for all i.

Pick points yi ∈ Ui ∩ D. By assumption, there is an arc [closed curve] α going through

y0, y1, . . . , yn, having two of these points as its endpoints. We are now going to argue that

we can modify α inside each Ui as so to pick up xi but still remain an arc [closed curve]

in X. It suffices to give this argument for i = 0, so write x = x0, U = U0 and k = k0.
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Let us assume that ∂U = {u1, . . . , uk}. Without loss of generality, α passes through

u1, . . . , ui in the given linear [cyclic] order (for 1 6 i 6 k), and doesn’t use ui+1, . . . , uk.

If k = 1, it is clear how to use local arc-connectedness of X to add x1 to our arc α [in

the n-cc case, k = 1 cannot occur]. Otherwise, since at least one of the endpoints of α

lies outside of U [and trivially in the n-cc case], we see that U ∩ α consists of at most

i− 1 6 k − 1 connected arcs (and at least one, as y0 ∈ U ∩ α).

Next, by the fact that |∂U | = k ∈ N was minimal with respect to all neighbourhoods

of x contained in U , it follows from Menger’s n-od Theorem that there is a k-fan F with

center x and leaves in α contained in U , see [118, Theorem §I] or [131, Der verschärfte

n-Beinsatz]. By the pigeon hole principle, two leaves of the fan F must lie on the same

connected component of U ∩ α, and so it is clear how to include x into our arc [closed

curve] α. As this procedure can be repeated for all i = 1, . . . , n, the proof is complete. �

12.2.3. Freudenthal compactification of locally finite connected graphs. In

the proof of the next theorem, we need the following standard lemma bounding the number

of edges in a graph leaving a certain vertex set. For a subset A ⊆ V (G) write ∂A =

E(A, V \ A) for the induced edge cut (we write ∂GA for ∂A when we want to emphasize

we are working inside the graph G), and A{ for V (G) \ A.

Lemma 12.2.2. Let G be a graph, A,A′ ⊆ V (G). Then

|∂A|+ |∂A′| > max {|∂(A ∩ A′)|+ |∂(A ∪ A′)|, |∂(A \ A′)|+ |∂(A′ \ A)|}.

Proof. We indicate the short argument of this folklore lemma: We have to verify

that every edge e that is counted on the right will also be counted on the left, and if it is

counted say in both ∂(A ∩ A′) and ∂(A ∪ A′) on the right, it is also counted in both sums

on the left.

If e ∈ ∂(A ∩ A′), then e joins a vertex v ∈ A∩A′ to a vertex w that fails to lie in A or

which fails to lie in A′. In the first case, e ∈ ∂A, and in the second case we have e ∈ ∂A′.
Since ∂(A ∪ A′) = ∂

(
A{ ∩ A′{

)
, the same holds for edges in ∂(A ∪ A′): every such edge

lies in ∂
(
A{
)

= ∂A or in ∂
(
A′{
)

= ∂A′.

Finally, if e is counted twice on the left, i.e., if e ∈ ∂(A ∩ A′) and e ∈ ∂(A ∪ A′) =

∂
(
A{ ∩ A′{

)
, then e joins a vertex v ∈ A ∩A′ to some other vertex, and it also joins some

w ∈ A{ ∩ A′{ to some other vertex. As A ∩ A′ and A{ ∩ A′{ are disjoint, we have e = vw.

But this means that e ∈ ∂A as well as e ∈ ∂A′, so e is counted twice also on the left.

The other inequality, |∂A| + |∂A′| > |∂(A \ A′)| + |∂(A′ \ A)|, now follows from the

first one by applying the fact that |∂B| =
∣∣∂(B{)∣∣. �

The final ingredient for our key Theorem 12.2.3 is an alternative, and more explicit,

description of the Freudenthal compactification of a locally finite graph in terms of ends.

Let G be a locally finite connected graph. A 1-way infinite path is called a ray, a

2-way infinite path is a double ray. Two rays R and S in G are equivalent if no finite
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set of vertices separates them. Alternatively, we may say that G contains infinitely many

disjoint R − S-paths. The corresponding equivalence classes of rays are the ends of G.

The set of ends of a graph G is denoted by Ω = Ω(G).

Recall that topologically, we view G as a cell complex with the usual 1-complex topol-

ogy. Adding its ends compactifies it, with the topology on G ∪ Ω generated by the open

sets of G and neighbourhood bases for ends ω ∈ Ω defined as follows: Given any finite

subset S of V (G), let C(S, ω) denote the unique component of G− S that contains a co-

final tail of some (and hence every) ray in ω, and let Ĉ(S, ω) denote the union of C(S, ω)

together with all ends of G with a ray in C(S, ω). As our neighbourhood basis for ω we

take all sets of the form Ĉ(S, ω)∪ E̊(S,C(S, ω)), where S ranges over the finite subsets of

V (G) and E̊(S,C(S, ω)) denotes the interior of the edges with one endpoint in S and the

other in C(S, ω). Note that in this topology, we have C(S, ω) ∩ Ω = Ĉ(S, ω) ∩ Ω.

It is well known that this process of adding the ends does indeed yield the Freudenthal

compactification, i.e. zG = G ∪ Ω. In particular it is locally connected at ends, and

has neighbourhoods which restrict to zero-dimensional sets on the end space. For further

details and proofs see Chapter 8 of [54].

Theorem 12.2.3. For the Freudenthal compactification zG of a locally finite connected

graph G the following are equivalent for each n ∈ N:

(1) zG is n-ac, (2) (G,zG) is n-ac, and (3) G is n-ac.

Proof. The equivalence (1)⇔ (2) is a special instance of Lemma 12.2.1. The impli-

cation (3) ⇒ (2) is trivial. For (2) ⇒ (3) consider n points x1, . . . , xn ∈ G and find, by

assumption, an arc α in zG going through the specified points. Our task is to modify this

arc α so that it still contains x1, . . . , xn but does not use ends of G anymore.

Without loss of generality we may assume that start- and end-point of α are amongst

the xi. Then it follows from [39, Prop. 3] that every end ω ∈ α∩ (zG \G) has degree 2 in

α, meaning that for every finite set of vertices S ⊆ V (G) there is a bipartition (Aω, Bω)

of V (G) such that: (i) the induced subgraph G[Aω] is connected, (ii) ω ∈ A, (iii) S ⊆ Bω,

and (iv) |E(α) ∩ ∂Aω| = 2 (i.e. the arc α uses precisely two edges from the edge cut

E(Aω, Bω)).

Let us call such a set Aω with |E(α) ∩ ∂Aω| = 2 a 2-neighbourhood of ω. Moreover,

note that |E(α)∩ ∂A| > 2 whenever ω ∈ A and A ⊆ Aω (?). Next, let S = {x1, . . . , xn}
and choose for every end ω ∈ α ∩ (zG \ G) a bipartition (Aω, Bω) with the above four

properties. Since α ∩ (zG \ G) is compact, there are finitely many ends ω1, . . . , ω` such

that α ∩ (zG \ G) ⊆ Aω1 ∪ · · · ∪ Aω` . We may assume that this cover is minimal, i.e. for

every i 6 ` there is an end εi ∈ α ∩ (zG \G) such that εi ∈ Ai \
⋃
{Aj : j 6= i} (??).

Claim: Every minimal cover of α ∩ (zG \ G) consisting of 2-neighbourhoods has a

disjoint refinement consisting of 2-neighbourhoods.
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The proof of the claim is via induction on the size of the cover. Let us make the

convention that ∂αA := E(α) ∩ ∂A consists of those boundary edges of A that are used

by α. If the cover consists of a single element only, there is nothing to show. So we may

assume ` > 2 and consider our cover {A1, . . . , A`}. Let Ã1 := A1 and Ãi := Ai \A1 for all

1 < i 6 `. From (?) and (??) it follows that
∣∣∣∂αÃi∣∣∣ > 2 for all i 6 `.

We shall use Lemma 12.2.2 to see that
∣∣∣∂αÃi∣∣∣ 6 2 for all i 6 ` as well. This is clear

for Ã1. For i > 2, Lemma 12.2.2 applied to the graph (V,E(α)) implies

4 = |∂αA1|+ |∂αAi| > |∂α(A1 \ Ai)|+ |∂α(Ai \ A1)| > 2 +
∣∣∣∂αÃi∣∣∣,

where ∂α(A1 \ Ai) > 2 follows again from (?) and (??). Thus, we have
∣∣∣∂αÃi∣∣∣ = 2

for all i 6 `. Applying the induction assumption to the collection
{
Ã2, . . . , Ã`

}
we

obtain a disjoint refinement of 2-neighbourhoods, which together with A1 forms the desired

refinement of our original collection. This establishes the claim.

Next, we argue that for each Ãi, there is a finite edge path Pi in G[Ãi] from one edge

in ∂αÃi to the other. Let αi ⊆ α be the subarc of α that lies in the closure of Ãi in zG.

By definition of the topology of the Freudenthal compactification, for every end ω in αi,

there is a finite subset T ⊆ V (G) such that C(T, ω) ⊆ Ãi. By compactness, finitely many

such C(Tj, ωj) for j 6 N say cover the ends used by αi. Now since every C(Tj, ωj) is by

definition a connected graph, we may recursively in j find a finite edge-path in C(Tj, ωj)

connecting the first and last point of αi ∩C(Tj, ωj). By doing so, we obtain a finite edge-

walk in G[Ãi] from one edge in ∂αÃi to the other, which includes the desired finite edge

path Pi.

But now we are done: for each i 6 `, replace αi by Pi. Since each replacement took

place in the disjoint subsets Ãi, this gives rise to an arc completely inside the graph G

containing all n points x1, . . . , xn as desired. �

12.2.4. Graph-like compactification of locally finite connected graphs. Since

every 7-ac graph is one, up to homeomorphism, of a finite family, we easily deduce from

Theorem 12.2.3 that the Freudenthal compactification of a locally finite graph is 7-ac only

in very limited cases. However, this holds for arbitrary graph-like compactifications (i.e.

for compactifications with zero-dimensional remainders).

Proposition 12.2.4. Let G be a countable, locally finite graph. Let γG be a graph-like

compactification of G.

If γG is 7-ac then γG is (homeomorphic to) a finite graph (and is one of the 6 finite

graphs which are 7-ac, or equivalently ω-ac).

Proof. The proof of Theorem 2.12 of [69] shows that the graph G can have at most

two vertices of degree 3 or higher. If all vertices have degree two, then as above γG is
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either an arc or a circle. If all vertices have degree no more than 2, but not all are degree 2,

then G is either a finite chain, or an infinite one-way chain. In either case γG is an arc or a

circle. Otherwise, extending from the (at most two) vertices of degree at least 3, there will

be a finite family of: (finite) cycles, finite chains or infinite one-way chains. The infinite

chains have either one or two endpoints in γG. In all scenarios, γG is homeomorphic to a

finite graph. �

Although Theorem 12.2.3, as stated, only applies to n-arc connectedness, and not n-

circle connectedness, the n-cc property is completely dealt with via the next two lemmas.

Indeed, as in the previous result, these apply to arbitrary graph-like compactifications of

locally finite graphs.

Lemma 12.2.5. Let γG be a graph-like compactification of a countable, locally finite

graph G. Then the following are equivalent: (a) γG is 2-cc, (b) γG has no cut points, (c)

G has no cut points, (d) G is 2-cc, and (e) G is cyclically connected.

Proof. Since γG is graph-like, the equivalence of (a) and (b) follows from Proposi-

tion 12.3.5 below. Since no point of the remainder, γG \ G, can be a cut point of γG;

while every cut point of G is a cut point of γG, we see that (b) and (c) are equivalent.

Finally, the characterization of 2-cc graphs (Theorem 3.1.1 of [76]) yields the remaining

equivalences. �

Lemma 12.2.6. Let γG be a graph-like compactification of a countable, locally finite

graph G. Then the following are equivalent: (a) γG is 3-cc, (b) γG is a circle, and (c) G

is either a cycle, or a double ray and γG is its one-point compactification.

Proof. Suppose γG is 3-cc. The corresponding argument for finite graphs shows that

every vertex of G has degree 2. So G is either a finite cycle, or a double ray. In the latter

case, there are only two different graph-like compactifications: γG is either a circle, or an

arc – but in the latter case, γG is not 3-cc. �

However, Theorem 12.2.3, stating that a locally finite, countable graph G is n-ac if

and only if zG is n-ac, does not extend to general graph-like compactifications for n ≤ 6.

Example 12.2.7.

(a) The infinite ladder, D, is 5-ac but not 6-ac, while αD is 6-ac.

(b) The graph C below is 4-ac but not 5-ac, while its one-point compactification, αC, is

6-ac.
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C αC

Proof. For (a): Let D be the usual double ladder, i.e. V (D) = {0, 1} × Z in which two

vertices (m,n) and (m′, n′) are adjacent if and only if |m−m′|+ |n− n′| = 1. Using the

characterizations from [76], it follows that D is 5-ac but not 6-ac.

We focus on showing αD is 6-ac. Since we may assume our six points x1, . . . , x6 lie on

edges, we may find n > 5 large enough such that x1, . . . , x6 ∈ D [{0, 1} × [−n, n]].

Set G1 = D [{0, 1} × [−n, n]]. Take a disjoint copy of G1, and modify it to form a

graph G2 as follows: first, remove the edge corresponding to {(0, 0), (0, 1)}, and second,

subdivide the edges {(0,−2), (0,−3)} and {(0, 3), (0, 4)} by vertices a and b, and, finally,

add new edges from a to (0, 0) and (0, 1) to b. Let us write e = {(1, 0), (1, 1)} for the unique

bridge of G2, and G+
2 := G2[{0, 1} × {1, . . . , n}] and G−2 := G2[{0, 1} × {0,−1, . . . ,−n}]

for the two components of G2 − e.
Now consider the auxiliary graph G = G1 t G2 where we additionally add four new

edges: (1) f+ between the copies of (0, n), (2) f− between the copies of (0,−n), (3) g+

between the copies of (1, n), and (4) g− between the copies of (1,−n).

e

G1

G+
2G−2

g+ f+
g−f−

It follows from [76, Theorem 3.4.1] that G is 6-ac,

and so there is an arc α in G containing x1, . . . , x6 and,

without loss of generality, starting and ending in points

xi 6= xj. In particular, α starts and ends outside of G2.

Moreover, note that ∂GG
+
2 = {e, f+, g+} is a 3-edge cut,

and so if α contains points from G+
2 then α will cross this

cut in precisely two edges, and so β+ = α ∩G+
2 will be a

subarc of α. Similarly, β− = α ∩ G−2 will be a subarc of

α. But then it is clear that by replacing β+ and β− with

suitable arcs in the corresponding connected components

of αD \G1 (where say an e− f+ arc will be replaced by an ∞− f+-arc in αD), we may

lift α to an arc in αD witnessing 6-ac.

For (b): That αC is 6-ac can be directly checked by a case-by-case analysis.

To see that C is 4-ac but not 5-ac we can apply the characterizations of [76] as follows.

First note that removing the middle edge disconnects C into two components C+, C−

which are isomorphic. Since C± is cyclically connected, and no two vertices cut it into 4

or more components, it is 4-ac by [76, Theorem 3.2.1]. As C is 3-regular it follows from
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[76, Theorem 3.2.3] that C is 4-ac. On the other hand, since removing the middle edge

disconnects C, it is not cyclically connected. Now [76, Theorem 3.3.1] states that for C

to be 5-ac it must be homeomorphic to one of: an arc, ray, double ray, lollipop with or

without end point, dumbbell or figure-eight, and it is clearly not homeomorphic to any of

these spaces. �

The argument given that αD is 6-ac is straightforward, but follows from an ad hoc

reduction to the combinatorial graph characterization of 6-ac. The direct check that αC

is 6-ac is lengthy and tedious, in sharp contrast to the simple arguments, from the combi-

natorial characterizations, that C is 4-ac but not 5-ac. These two examples demonstrate

some of the difficulties in determining when a graph-like compactification of a locally finite,

connected graph G is n-ac, and also the value in having a combinatorial characterization.

Problem 12.2.8. Find a combinatorial characterisation for when a graph-like com-

pactification of a locally finite, connected graph G is n-ac.

A place to start would be to discover when the one-point compactification of a graph

is 6-ac.

12.3. General graph-like continua

In this section we first develop some machinery for graph-like spaces with the aim

of connecting them, via inverse limits with ‘nice’ bonding maps, to finite graphs. This

machinery then yields tests for a graph-like continuum to be, or not to be, n-ac or n-cc.

In Proposition 12.3.5 these tests are refined to characterize 2-cc graph-like continua. In

the next section our machinery and tests for graph-likes are applied to construct various

examples.

12.3.1. Graph-like spaces as inverse limits. Here we develop techniques of Es-

pinoza and the present authors in [70], to detect when a continuum is graph-like, and

characterize when a graph-like continuum is Eulerian.

For convenience let us say that a map π from one graph-like continuum, X, to another,

Y , is nice if it is surjective, monotone (fibres, π−1{v}, are connected) and maps vertices

to vertices, and edges either homeomorphically to another edge, or to a vertex.

Let X be a graph-like continuum with vertex set V . By subdividing edges once, if

necessary, we may assume that every edge of X has two distinct endpoints in V , i.e. that

the graph-like continuum is simple.

For a clopen subsets U,U ′ ⊆ V , not necessarily different, E(U,U ′) denotes the set of

edges with one endpoint in U and the other endpoint in U ′. It is not hard to see, [70,

Lemma 1], that E(U, V \U) is always finite. A multi-cut is a partition U = {U1, U2, . . . , Un}
of V into pairwise disjoint clopen sets such that for each i, the induced subspace X[Ui] of X,

i.e. the closed graph-like subspace with vertex set Ui and edge set E(Ui, Ui), is connected.
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The multigraph associated with U is the quotient GX(U) = G(U) = X/{X[U ] : U ∈ U}.
Let pU : X → G(U) denote the quotient mapping from X to the multigraph associated

with U . We note that G(U) is indeed a finite, connected multi-graph, and that pU is nice.

Conversely, if p is a nice map of X to a finite, connected graph G, then there is a multi-cut

U such that G = G(U) and pU realizes p in the sense that they are identical on the vertices

of X, and they carry the same edges of X to the same edges of G.

A sequence, (Un)n, of multi-cuts of X is cofinal if for every multi-cut U there is an

Un which refines it. According to Theorem 13 of [70], for any cofinal sequence, (Un)n,

of multi-cuts, the graph-like continuum X is naturally homeomorphic to an inverse limit

lim←−GX(Un), where the bonding maps are all nice. Conversely, if a space X is homeomor-

phic to an inverse limit, lim←−Gn, where the Gn are finite, connected graphs, and all bonding

maps are nice, then (Theorem 14 of [70]) X is a graph-like continuum. Note that in this

case, for every m, the projection map, typically denoted, pm, from lim←−Gn to Gm is nice,

and so is realized as a pUm for some multi-cut Um.

12.3.2. Sufficient conditions. The following lemma – a special case of Lemma 12.2.1

– records that as in the case with graphs, also for graph-like continua we may choose our

points x1, . . . , xn without loss of generality to be interior points of edges.

Lemma 12.3.1. Let X be a graph-like continuum with vertex set V . Let n ∈ N. Then

X is n-ac [n-cc] if and only if (X \ V,X) is n-ac [n-cc].

Lemma 12.3.2. Let U be a multi-cut of a graph-like continuum X. Then every arc

[simple closed curve] in G = GX(U) lifts to an arc [simple closed curve] in X.

Proof. Since the quotient mapping pU : X → G(U) is nice, it follows that for every

vertex v of G, its fibre p−1
U (v) = X[U ] for some U ∈ U is an connected, and hence arc-

connected subcontinuum of X, see [70, Lemma 2]. Thus, we may lift any arc [simple closed

curve] α in G = GX(U) by filling in suitable subarcs inside each fibre p−1
U (v) = X[U ] for

every vertex v ∈ α. �

Corollary 12.3.3. Let X be a graph-like continuum. If GX(U) is n-ac [n-cc] for

every multicut U of X, then X is n-ac [n-cc].

Proof. By Lemma 12.3.1 it suffices to consider points x1, . . . , xn lying on edges of X,

say xi ∈ ei. Since lim←−GX(Un) ∼= X, there is a multicut U of X such that e1, . . . , en are all

displayed in the finite graph G = GX(U). By assumption, GX(U) is n-ac [n-cc], and so

there is an arc [simple closed curve] in G containing the distinct points pU(x1), . . . , pU(xn).

The assertion is then immediate by Lemma 12.3.2. �

12.3.3. Necessary conditions. Call a graph G n-E (n-Eulerian) if for every n or

fewer points in G there is an edge disjoint closed trail in G containing the points. Equiv-

alently, we may say that every n edges of G lie on a common Eulerian subgraph of G.
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Observe that a finite graph is Eulerian if and only if it is n-E for all n. Call a graph

G n-oE (n-open Eulerian) if for every n or fewer points in G there is an edge disjoint

(possibly not closed) trail in G containing the points.

Proposition 12.3.4. Let X be a graph-like continuum.

(a) If X is n-cc, then for every multi-cut U of X the graph G(U) is n-E.

(b) If X is n-ac, then for every multi-cut U of X the graph G(U) is n-oE.

Proof. We prove (a). So suppose X is n-cc. Write X as an inverse limit X = lim←−Gk

of graphs, with nice bonding maps. We verify that each Gk is n-E.

Fix k. Let pk be the nice projection from X to Gk. Take no more than n points from

Gk, say x1, . . . , xn. Pick y1, . . . , yn in X, such that pk(yi) = xi, for i = 1, . . . , n. As X

is n-cc, there is a simple closed curve S in X containing these points. The projection of

S under pk into Gk is an edge-disjoint closed trail in Gk which contains all the xi. This

shows that Gk is n-E.

The proof of (b) is very similar. In place of a circle we get an arc α containing y1, . . . , yn.

Its projection in Gk is an edge-disjoint trail which may or may not be closed, but definitely

contains the points x1, . . . , xn. Thus Gk is n-oE. �

12.3.4. 2-cc Graph-like Continua. A space X is 3-sac if given any three points,

x1, x2, x3 of X, there is an arc in X starting at x1, passing through x2, and ending at x3.

The main result here is the following one showing that in graph-like continua being 2-cc

is equivalent to being 3-sac, and characterizing these properties in terms of the standard

properties of the graph-like continuum and, also, its inverse limit representation.

Proposition 12.3.5. For a graph-like continuum X, the following are equivalent:

(1) X is 3-sac, (2) X is 2-cc, (3) X has no cut points,

(4) for every representation X = lim←−Gm, where each Gm is a finite, connected graph

and each bonding map is nice, there is a m such that Gm has no cut-point,

(5) X can be represented as X = lim←−Gn, where each Gn is a finite, 2-cc graph and

each bonding map is nice.

The next lemma shows the equivalence of (1), (2) and (3) even among all Peano con-

tinua. Lemma 12.3.6 also shows that (5) is equivalent to (5′) where ‘2-cc’ is replaced by ‘no

cut points’. Then the equivalence of (3), (4) and (5′) is the k = 2 case of Proposition 12.3.7.

Lemma 12.3.6. For a Peano continuum X, the following are equivalent:

(1) X is 3-sac, (2) X is 2-cc, and (3) X has no cut points.

Proof. The equivalence of (1) and (2) for any continuum X was established in [68,

Prop. 7], and was shown in [68, Thm. 5], evoking a result by Bellamy and Lum, to be

equivalent to (3′) X is arc connected, has no arc-cut point, and has no arc end points (x
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is an arc end point if there are not two arcs intersecting only at x). Clearly (3′) implies

(3) (cut points are arc-cut points).

Suppose X is Peano. Then it is arc connected. We show if X contains an arc-cut point

or an arc end point then it contains a cut point, and so (3) implies (3′).

First, assume that X has an arc end point x. Recall the result by Nöbling [131]

that if a point x in a Peano continuum X has order at least n (i.e. any small enough

neighbourhood of x has boundary at least of size n) then X contains an n-od with center

x, i.e. a union of n many arcs with only the point x in common. Thus, an arc end point

must necessarily have order 1, and so we have found many cut-points.

Second, it is not hard to show that every arc-cut point x of a Peano continuum X

must necessarily be a cut point. Indeed, suppose X \ {x} has at least 2 arc-components.

Let Y be an arc-component. Using local connectedness, it is easy to show that Y must be

closed in X \ {x}, and further, that the collection {Y ⊆ X \ {x} : Y arc-component} is a

locally finite collection of sets. Thus, one arc component against the union of the rest is

a partition of X \ {x} into non-empty closed sets. �

In analogy to graphs, call a graph-like continuum k-connected if the deletion of any

k − 1 vertices never disconnects it. Note that a graph-like continuum is 2-connected if

and only if it has no cut points (if removing a point on an edge disconnects, then so does

removing either of the end points of the edge).

A k-pre-cutting is a triple (Y,A,B) where Y is a set of vertices with |Y | < k, and

A,B are subcontinua with A ∪ B = X and A ∩ B = Y . A k-cutting of X is a non-trivial

k-pre-cutting, (Y,A,B) where by non-trivial we mean that A\Y and B\Y are non-empty.

Observe that if (Y,A,B) is a k-cutting then X \ Y is disconnected. Conversely, if Y is a

set of vertices of size < k, and removing Y from X disconnects X, say X \ Y = U ∪ V
where U are disjoint, open and non-empty, then (Y,A,B) is a k-cutting, where A = U ∪Y
and B = V ∪ Y .

If f : Z → W is a nice map from Z to another graph-like continuum, W , and (Y,A,B)

is a k-pre-cutting in Z, then (f(Y ), f(A), f(B)) is a k-pre-cutting in W .

Proposition 12.3.7. For a graph-like continuum X, the following are equivalent:

(a) X is k-connected,

(b) for every representation X = lim←−Gm, where each Gm is a finite, connected graph

and each bonding map is nice, there is an m such that Gm is k-connected, and

(c) X can be represented, X = lim←−Gn, where each Gn is a finite, k-connected graph

and each bonding map is nice.

Proof. Suppose (b) holds. Fix a representation X = lim←−Gm. For any n, we have

X = lim←−m≥nGm, so, by (b), for some mn ≥ n we know Gmn is k-connected. Letting

Hn = Gmn , we have a representation X = lim←−Hn where all the graphs involved are

k-connected. Thus (c) follows from (b).
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Next suppose (a) fails, we show (c) also fails, and so (c) implies (a). Fix a k-cutting

(Y,A,B) of X. Take any representation X = lim←−Gm, where each Gm is a connected, finite

graph, and each bonding map is nice. Denote, as usual, the projection map of lim←−Gm to

Gm by pm, and recall it is nice. Pick x in A \ Y , and b ∈ B \ Y . Find m sufficiently

large that in Gm the points pm(a) and pm(b) are distinct and not contained in pm(Y ).

Then, as pm is nice, (pm(Y ), pm(A), pm(B)) is a k-cutting of Gm, which, therefore, is not

k-connected.

Finally we show if (b) is false then so is (a). Fix a representation X = lim←−Gm, where

each Gm is a finite, connected graph which is not k-connected, and each bonding map,

πm : Gm+1 → Gm, is nice. Let T be the set of all finite sequences 〈(Y1, A1, B1), . . .,(Yn, An, Bn)〉
where each (Ym, Am, Bm) is a k-pre-cutting of Gm, Ym = πm(Ym+1), Am = πm(Am+1),

Bm = πm(Bm+1), and some term in the sequence is non-trivial (i.e. a k-cutting, and note

all subsequent terms of the sequence are also non-trivial).

Order T by extension to get a tree. Observe that every sequence in T has only

finitely many immediate successors (indeed there are only finitely many k-pre-cuttings,

(Ym, Am, Bm), of Gm, since Ym is a set of vertices of the finite graph Gm). Further T
is infinite. To see this fix n. We show there is a sequence in T of length n. Well,

by hypothesis, Gn is not k-connected, and so contains a k-cutting (Yn, An, Bn). Then

〈(Y1, A1, B1), . . . , (Ym, Am, Bm), . . . (Yn, An, Bn)〉 is in T where

(Ym, Am, Bm) = (πm(Ym+1), πm(Am+1), πm(Bm+1)) for m = n− 1, . . . , 1.

By König’s Lemma, see e.g. [54, Lemma 8.1.2], the tree T has an infinite branch,

σ1, σ2, . . . , σm, . . .. So we get an infinite sequence of k-pre-cuttings 〈(Ym, Am, Bm)〉m which

are mutually compatible: (Ym, Am, Bm) = (πm(Ym+1), πm(Am+1), πm(Bm+1)), for all m ≥
1. Let A = lim←−Am, B = lim←−Bm and Y = A ∩ B. Then, by compatibility, A and B are

subcontinua of X, X = A ∪ B and Y is a set of vertices. But some term of the branch

is non-trivial, and so from that point on, all the k-pre-cuttings are non-trivial. Further

the sets Ym must stabilize. Thus (Y,A,B) is a non-trivial k-pre-cutting, and X is not

k-connected. �

12.3.5. Distinguishing graph-like continua. Let X be a graph-like continuum.

For distinct vertices v and w from X define kX(v, w), the edge connectivity between v and

w, to be the minimal number of edges whose removal separates v and w (i.e. which form

an edge-cut between v, w). Note that kX(v, w) is well-defined, and by Menger’s theorem

for graph-like continua, [70, Theorem 22], k = kX(v, w) equals the maximum size of a

family of edge-disjoint v − w-paths.

Lemma 12.3.8. Let X be a graph-like continuum containing distinct vertices v and w.

If Y is another graph-like continuum and f is a nice map of X to Y then kX(v, w) ≤
kY (f(v), f(w)) provided f(v) 6= f(w).
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Proof. Pick edges e1, . . . , ek that separate f(v) from f(w) in Y . Then, as f is nice,

those same edges exist in X and separate v ∈ f−1{f(v)} from w ∈ f−1{f(w)}. �

Lemma 12.3.9. Let X,X ′ 6= S1 be graph-like continua with standard representations

X = (V,E) and X ′ = (V ′, E ′). Then every homeomorphism f : X → X ′ is a nice isomor-

phism of graph-like spaces.

Proof. Since the degree of a point is a topological property, and hence preserved

under homeomorphisms, it follows that any homeomorphism f : X → X ′ must map V

homeomorphically to V ′ and therefore, by considering complements, edges to edges. Since

it is bijective, it is trivially monotone. �

In particular, the previous two lemmas allow us to use combinatorial information to

show that two graph-like continua X and Z are non-homeomorphic. Indeed, it suffices to

find distinct v and w in X such that kX(v, w) 6= kZ(v′, w′) for all distinct v′, w′ in Z. This

is specified explicitly by the next lemma.

Lemma 12.3.10. Let X = (V,E) be a graph-like continuum, with representation X =

lim←−Gk, of connected graphs, with nice bonding maps. Let v and w be distinct vertices of

X and define s = s(v, w) to be minimal such that ps(v) 6= ps(w).

Then kX(v, w) = min{kGt(pt(v), pt(w)) : t ≥ s} =: k.

Further, the sequence (kGt(pt(v), pt(w)) : t ≥ s) is decreasing and eventually constant.

It stabilizes, so kX(v, w) = kGt(pt(v), pt(w)), at the minimal t for which there is a set E of

edges in X of size kX(v, w) separating v and w such that all members of E exist in Gt.

Proof. Note that k ≥ kX(v, w) if and only if for all t ≥ s we have kGt(pt(v), pt(w)) ≥
kX(v, w). Now, for each t ≥ s, apply Lemma 12.3.8 to the nice map pt : X → Gt.

Conversely, note kX(v, w) ≥ k if and only if for some t ≥ s we have kX(v, w) ≥
kGt(pt(v), pt(w)). Fix open edges e1, . . . , ek in X separating v from w. Specifically, say v

is in C, w is in D, where C,D form of a clopen partition of X \
⋃
i ei.Pick t sufficiently

large that t ≥ s and pt is a homeomorphism on each of the fixed edges (so, we can suppose

e1, . . . , ek are edges in Gt). We claim that in Gt removing e1, . . . , ek separates pt(v) from

pt(w). Otherwise, there is a pt(v) − pt(w) path P in Gt − {e1, . . . , ek}. But then, due

to the monotonicity of pt, the subspace p−1
t (P ) is a connected subset of X − {e1, . . . , ek}

containing both v and w, a contradiction.

Since every bonding map, πn from Gn to Gn−1 is nice, it follows from Lemma 12.3.8

that (kGn(pn(v), pn(w)))n≥s is indeed decreasing. So it must stabilize at some t, with

value kX(v, w). It follows that in X there are open edges E1, . . . , Ek, where k = kX(v, w),

separating v from w, such that these same edges exist in Gt. From the argument above

we see that – as claimed – t is minimal for which there is a set E of edges in X of size

kX(v, w) separating v and w such that all members of E exist in Gt. �
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12.4. The graph-like examples

In this section we construct families of examples which demonstrate that – with the sole

exception of the characterization of 2-cc graph-like continua given in Proposition 12.3.5 –

none of our positive results of Section 12.2 for n-ac and n-cc Freudenthal compactifications

of locally finite graphs extend to arbitrary graph-like continua. Indeed we give continuum-

sized families of examples which help demonstrate the difficulties involved in classifying

n-ac and n-cc graph-like continua. Below we write Km for the complete graph on m

vertices.

12.4.1. A procedure for constructing graph-like continua.

Every graph-like continuum, X say, can be represented as an inverse limit, lim←−Gk, of

connected graphs, with nice bonding maps. The kth bonding map, πk, determines how to

transition from Gk+1 to Gk.

For the purposes of constructing a graph-like continuum, however, it is more convenient

to have a rule for building Gk+1 from Gk, and then specifying the bonding map. For our

present purposes the following method is simple but effective.

The input data for the construction process are: (1) the first graph, G1, and (2) rules,

one for each n, specifying how to replace a vertex, v, of degree n in a graph by a connected

subgraph, Gv. Then to construct the inverse sequence, recursively apply the rules to the

vertices of Gk to get Gk+1, and define the bonding map πk to be the map which collapses

each connected subgraph, Gv, in Gk+1 to v in Gk. Clearly this map is nice.

By convention, if no rule is specified for vertices of degree n, then the rule is to leave

the vertex alone. A typical rule for vertices of degree four is depicted below. Here each

vertex of degree four is to be replaced with the complete graph on four vertices, and the

four original edges are connected to one new vertex of the complete graph each. The

bonding map collapses the new complete graph to the single old vertex.

12.4.2. Non-trivial ω-ac and ω-cc graph-like continua.

Example 12.4.1. There is a graph-like continuum which is ω-cc but is not a graph (in

particular, not the circle).
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G1

G2

G3

Construction. For each k we define recursively, 4-regular

(multi) graphs Gk, following the procedure outlined above. The

graph-like continuum X = lim←−Gk will be ω-cc, but not a graph.

Let G1 be any 4-regular connected multi-graph, for example the

figure-eight graph (one vertex, two loops). The rules for construct-

ing Gk+1 from Gk are always the same: uncontract every vertex of

Gk to a complete graph on four vertices, K4, in the natural manner

(as above). This will have the effect that Gk+1 will still be 4-regular,

and so the recursion can be continued. The first three steps of the

algorithm are depicted right.

It is obvious that X is not a graph. To see that X = lim←−Gk

is ω-cc, let n ∈ N be arbitrary, and note that by Lemma 12.3.1 it

suffices to consider points x1, . . . , xn lying on (different) edges of X.

Find k ∈ N sufficiently large such that x1, . . . , xn lie on different

edges of Gk. Since Gk is 4-regular, it has an Eulerian cycle α. Since

in Gk+1, every vertex of Gk is expanded into a K4, is is easy to see

that the cycle α lifts to a simple closed curve α′ of Gk+1, containing all vertices x1, . . . , xn.

By Lemma 12.3.2, α′ lifts to a simple closed curve α′′ of X containing all vertices x1, . . . , xn,

and so the proof is complete. �

Note: for the above construction to produce an ω-cc graph-like continuum it suffices

that (1) every Gk is Eulerian and (2) each vertex v in some Gk is uncontracted to Gv

in Gk+1 so that every edge in Gk incident to v is incident to distinct vertices in Gv, and

those vertices are contained in a complete subgraph of Gv. (That each Gk is dk-regular,

and (dk)k is constant, simplifies defining the expansion rules, but neither constraint is

necessary.)

Example 12.4.2. There is a graph-like continuum X, not a graph, which is ω-ac but

not 2-cc.

Construction. Indeed, such examples can easily be constructed by considering a

figure-eight-curve, a dumbbell, or a lollypop-curve, and replacing one of the circles in

these graphs by a copy of the ω-cc graph-like continuum from the previous example. �

Theorem 12.4.3.

(a) There are 2ℵ0 many pairwise non-homeomorphic ω-cc graph-like continua.

(b) There are 2ℵ0 many pairwise non-homeomorphic ω-ac, but not 2-cc, graph-like

continua.

Proof. From Example 12.4.2 it is clear that (b) follows from (a).
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Let G1 be the graph on a single vertex with a single loop. Take any function f ∈ NN

which is strictly increasing, and for every n we have f(n) divisible by 2. DefineXf = lim←−G
f
k

where the graphs Gf
k are given recursively by:

• Gf
1 = G1, and

• Gf
k+1 is obtained from Gf

k by uncontracting every vertex v of Gf
k to a K̃f(k) ⊇

Kf(k), where the edges incident with v are incident with distinct vertices of K̃f(k)

and the remaining vertices of Kf(k) get paired up, and get an additional parallel

edge between each pair as to satisfy the even degree condition.

Note that, inductively, each Gf
k+1 is a connected, f(k)-regular graph (hence, as f(k) is

even, Eulerian), and this combined with the fact that f is strictly increasing and has even

values ensures that Gf
k+1 is well-defined from Gf

k .

The graphs Gf
k satisfy properties (1) and (2) noted after Example 12.4.1, from which

it follows that the graph-like continuum Xf is ω-cc.

Claim 1: If v and w are distinct vertices of Gf
k+1 which are projected to the same

vertex x of Gf
k, then f(k)− 1 6 kGfk+1

(v, w) 6 f(k).

By f(k)-regularity of Gf
k+1, the edge-connectivity is at most f(k). The first inequality

holds since the complete graph Kf(k) has edge-connectivity f(k)− 1.

Claim 2: If v and w are vertices of Gf
k+1 such that their projections v′ = pk(v) and

w′ = pk(w) are distinct in Gf
k, then kGfk+1

(v, w) = kGfk
(v′, w′).

By Lemma 12.3.8, it suffices to show kGfk+1
(v, w) ≥ kGfk

(v′, w′) = k. To see this, note

that kGfk
(v′, w′) = k implies, by Menger’s theorem [54, §3.3], that there is a collection of k-

many edge-disjoint v′−w′-paths in Gf
k . These paths lift, by the fact that we uncontracted

vertices to complete graphs and by property (2), to a collection of k-many edge-disjoint

v − w-paths in Gf
k+1, establishing the claim.

Next, define Cf =
{
kXf (v, w) : v 6= w ∈ V (Xf )

}
, the spectrum of all edge-connectivities

between pairs of distinct vertices of Xf . From Claims 1 and 2, along with Lemma 12.3.10

we deduce:

Claim 3:

(1) Cf ⊆ {f(n)− 1: n ∈ N} ∪ {f(n) : n ∈ N}, and

(2) for each n ∈ N we have {f(n)− 1, f(n)} ∩ Cf 6= ∅.

Now define F =
{
f ∈ NN : f is strictly increasing and ∀n f(n) is even

}
. Then |F| = 2ℵ0 .

For each f ∈ F we know Xf = lim←−G
f
k is an ω-cc graph-like continuum, and we now show

these are pairwise non-homeomorphic.

Claim 4: For distinct f 6= g ∈ F , the graph-like continua Xf and Xg are non-

homeomorphic.

To see this, let k ∈ N be minimal such that f(k) 6= g(k), and without loss of generality

assume that f(k) < g(k). Note that k ≥ 2 (since Gf
1 = Gg

1). As f, g are strictly increasing

and have even values, we have f(k − 1) = g(k − 1) < f(k)− 1 < f(k) < g(k)− 1 < g(k).
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Hence, from Claim 3, one of f(k)− 1 and f(k) is in Cf but neither is in Cg, so Cf \ Cg 6= ∅,
and so we deduce Xf 6∼= Xg by Lemma 12.3.9. �

12.4.3. Graph-like continua which are n- but not (n + 1)- ac or cc. In this

section, we construct interesting graph-like continua which are n-ac but not (n + 1)-ac,

and others which are n-cc but not (n + 1)-cc. For these, we present two fundamentally

different constructions.

The first construction uses knowledge about certain closed or open Eulerian paths in

finite minors of the graph-like space. In some sense, this first construction is all about

controlling the edge-cuts in the space. The second construction starts with several copies

of a graph-like space, in which we have a lot of control over which arcs we may use to pick

up our favorite edge set. We then glue together these copies by identifying some finite set

of vertices. In some sense, this second construction is all about controlling the vertex-cuts

in the space.

12.4.3.1. Technique 1: Using open and closed Eulerian paths in finite graphs. For our

next examples, we need the following auxiliary result. Recall that a matching in a graph

is a collection of pairwise non-adjacent edges.

Lemma 12.4.4. For every n ≥ 2, the complete graph on N > 4n + 4 vertices has the

property that given (i) any matching M in KN , (ii) any edges e1, . . . , ek of KN −M with

k 6 n, and (iii) any two vertices v, w in KN , there is a non-edge-repeating trail from v to

w in KN −M containing the selected edges.

Proof. To see the claim, note that after removing the matching M , every vertex has

degree at least N − 2 in the subgraph H0 = KN −M , and so any two vertices have at

least N − 4 common neighbours in H0. Write ei = xiyi. Since v and x1 have a common

neighbour, there is a path P1 from v to y1 with e1 ∈ E(P1). Next, considerH1 = H0−E(P1)

and note that every vertex in H1 has degree at least N − 4, and so any two vertices have

at least N−8 > 4n−4 > 0 common neighbours in H1. If e2 isn’t yet covered by P1, find a

path P2 in H1 from y1 to y2 containing the edge e2. If we continue in this manner, then in

Hk = H0 \
⋃
i6k E(Pi), every vertex has degree at least N −2−2k > N/2. Hence, any two

vertices in Hk are either connected by an edge, or have a common neighbour. Thus, there

is a path Pk+1 in Hk from yk to v. It is clear that
⋃
i6k+1 Pi is the desired edge trail. �

Example 12.4.5. For each n ≥ 2 there is a graph-like continuum which is n-ac but

not (n+ 1)-ac.

Construction. Fix n ≥ 2. We define a sequence of graphs, Gn
k , by giving the first,

Gn
1 , then Gn

2 , and a rule defining Gn
k+1 from Gn

k , for k ≥ 2. This naturally gives an inverse

limit Xn = X = lim←−G
n
k which is graph-like.

Case 1: n = 2m + 1 is odd where m ≥ 1. The graph Gn
1 has four vertices, v1, w1, w2

and v2. There is an edge connecting vi to wi for i = 1, 2; and 2m edges connecting w1 and
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w2. Thus Gn
1 has n + 1 edges, two vertices of degree 1 and two of degree n. It is easy to

check that Gn
1 is n-oE. But Gn

1 is not (n+ 1)-oE, and so by Proposition 12.3.4(b) X is not

(n + 1)-ac. Next, let N = N(n) be large enough as to satisfy Lemma 12.4.4. To define

Gn
2 from Gn

1 leave the two vertices of degree 1 alone, and uncontract the two vertices of

degree n to a KN , such that all vertices of G1
2 are either of degree 1, N − 1, or N . To

define Gn
k+1 from Gn

k leave the (two) vertices of degree 1 alone, and replace all vertices of

degree N − 1 or N by a complete graph on N new vertices. Since all vertices of G1
k are

either of degree 1, N −1 or N , inductively, the same is true for Gn
k , and then Gn

k+1. Hence

the definition is complete.

We now show by induction on k that for all k the graph Gn
k is n-oE. Then the proof that

X is n-ac then follows as in the previous examples. Fix k ≥ 2. Let π = πk : Gn
k+1 → Gn

k

be the bonding map. Take any subset S of Gn
k+1 containing no more than n points. Then,

inductively, in Gn
k there is an edge-disjoint trail containing π(S). The edges in this trail

pull back to an edge-disjoint sequence of (directed) edges in Gn
k+1 so that successive edges

have end and start points (respectively) mapping to the same vertex in Gn
k . We explain

how to add edges in fibers of vertices of Gn
k so as to form an edge-disjoint trail in Gn

k+1

containing the points of S.

It suffices to consider one vertex v of Gn
k , and add edges in π−1{v} so as to connect

together successive edges in the edge-disjoint sequence while preserving edge-disjointness

and ensuring that all points in S which happen to lie in π−1{v} are contained in the

resulting trail. If π−1{v} is just one point then there is nothing to do. Otherwise π−1{v}
is a complete graph on N vertices. If no edges in the edge-disjoint sequence meet π−1{v}
there is nothing to do. List all successive pairs entering and exiting π−1{v} as e0

1, e
0
2,

e1
1, e

1
2, . . . , e

p
1, e

p
2, where p ≥ 0. Let f1, . . . , fq be the edges in π−1{v} containing points of

S. Note q 6 n.

For i = 1, . . . , p − 1 add the edge in π−1v connecting the end of ei1 to the start of ei2.

By construction, this edge set is a matching M . If at this point, some of the edges fi are

yet uncovered, we may add, by Lemma 12.4.4, a trail from the end of ep1 to the start of ep2
disjoint from M in π−1v containing all uncovered edges of f1, . . . , fq. Otherwise, simply

add the edge in π−1v connecting the end of ep1 to the start of ep2. Now we are done.

Case 2: n = 2m is even where m ≥ 1. The graph Gn
1 has four vertices, v1, w1, w2, v2.

There are n− 1 edges connecting w1 and w2, and one edge from each of v1 and v2 to w1.

Then Gn
1 has n+ 1 edges, two vertices of degree 1, one of degree n+ 1 and one of degree

n− 1. It is easy to check that Gn
1 is n-oE but not (n+ 1)-oE.

Let N = N(n+ 1) be large enough as to satisfy Lemma 12.4.4 for n+ 1. Define Gn
2 by

replacing the single vertex of degree n + 1 with N new vertices connected by a complete

graph, but leaving the other vertices alone. To define Gn
k+1 from Gn

k leave the two vertices

of degree 1 alone, leave the vertex of degree n−1 alone, and replace all vertices of degree N
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or N − 1 with N new vertices and a complete graph connecting them. Now the argument

that X = lim←−G
n
k is as required is very similar to that given above in Case 1. �

Example 12.4.6. For each even n there is a graph-like continuum which is n-cc but

not (n+ 1)-cc.

Construction. The argument is similar to that given above for graph-like continua

which are n-ac but not (n+ 1)-ac. So we give a sketch only, highlighting differences.

Fix even n. Let Gn
1 be the (multi-)graph with two vertices and n + 1 parallel edges

connecting them. Note that the vertices have degree n + 1, and it is easy to check Gn
1

is n-E (given any n points there is a closed edge-disjoint trail containing them). Pick

N = N(n + 1) be large enough as to satisfy Lemma 12.4.4 for n + 1. Recursively define

Gn
k+1 from Gn

k by uncontracting each vertex to a KN . By induction one can check that

every Gn
k is n-E.

Define X = lim←−G
n
k . Then X is a graph-like continuum, and arguing as before it can

be verified to be n-cc. But picking a point from the interior of each edge easily shows Gn
1

is not (n+ 1)-E. Hence, by Proposition 12.3.4, X is not (n+ 1)-cc. �

Our strategy from above is bound to fail when trying to build an example for a graph-

like continuum which is n-cc but not (n+ 1)-cc for odd n. Indeed, given odd n we would

need graphs which are n-E but not (n+1)-E, however the second author and Knappe have

shown that this is impossible – any graph which is n-E, where n is odd, is automatically

(n + 1)-E, see [101]. Hence, a fundamentally different approach is required to construct,

for odd n, graph-like continua which are n-cc but not (n + 1)-cc. This is the purpose of

our next and final section.

12.4.3.2. Technique 2: Using small vertex cuts in graph-like spaces. Recall that in an

n+1-ac graph-like continuum, deleting n−1 vertices creates at most n distinct connected

components, [76, Lemma 2.3.3]

A similar result holds for (n + 1)-cc graphs: Recall that a connected graph, or a

graph-like continuum G is called k-tough, if for any finite, non-empty set of vertices S, the

number of components of G−S is at most |S|/k. Adapting this notion slightly, let us say

that a graph-like continuum G is (k, n)-tough if for any set of vertices S with 1 6 |S| 6 n,

the number of components of G− S is at most |S|/k.

The standard notion of toughness plays a well-known role in the theory of Hamilton

cycles, as a necessary condition for a finite graph to be Hamiltonian is that it is 1-tough,

[50, Prop. 2.1]. The straightforward adaptation of this result to our use case gives the

following observation.

Lemma 12.4.7. Every (n+ 1)-cc graph-like continuum is (1, n)-tough.

Proof. Suppose X is an n-cc graph-like continuum and, for a contradiction, S ⊆
V (X) is a finite vertex set with 1 6 |S| = s 6 n whose removal leaves strictly more than
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s components. Pick s + 1 edges in different components of X − S. As s + 1 6 n + 1, by

assumption, there is a simple closed curve α in X picking up the edges. But then α \ S
consists of at most s components. Hence, there are two edges in the same component of

α \ S, contradicting the fact that they lie in different components of X − S. �

As our building blocks, we will use the following class of graphs.

Example 12.4.8. For each n > 2 there is a graph-like continuum X containing vertices

v1, v2, . . . , vn such that (i) whenever an edge set F ⊆ E(X) with |F | 6 n is chosen, and (ii)

any two vertices vi 6= vj from our list are chosen, there is an vi− vj arc α in X containing

F but not vk for all k 6= i, j.

Proof. Let n ∈ N be fixed and consider N = N(n) from Lemma 12.4.4. We will

construct X as an inverse limit of finite graphs Gn where we start with G1 = KN , and

uncontract in each step every vertex v of Gk to a new KN . It follows recursively that

every vertex of Gk has degree N or N − 1.

Let pk : X → Gk denote the quotient map. Choose v1, . . . , vn ∈ V (X) subject to the

condition that the degree of pk(vi) equals N − 1 for each k ∈ N. Now pick any edge set F

with |F | 6 n. We will demonstrate that there is an v1 − v2 arc α in X with F ⊆ α and

vi /∈ α for all i > 3.

By Lemma 12.4.4, there is a p1(v1) − p1(v2)-trail T1 in G1 containing F ∩ E(G1).

Recursively, using again Lemma 12.4.4, extend this to an pk(v1) − pk(v2)-trail Tk in Gk

containing F ∩ E(Gk) until F ∩ E(Gk) = F . Next, using the fact that pk+1(vi) equals

N − 1, extend Tk to an pk+1(v1) − pk+1(v2)-path Tk+1 in Gk+1 missing all pk+1(vi) for all

i > 3. Extending this path Tk+1 recursively, it is clear that we end up with the desired

v1 − v2-arc. �

Example 12.4.9. For each n ≥ 2 there is a graph-like continuum which is n-cc but

not (n+ 1)-cc.

Construction. LetX be the space from Example 12.4.8 with special points v1, . . . , vn.

Now take n+1 many disjoint copies X(1), . . . , X(n+1) of the space X with the special points

denoted by v
(i)
1 , . . . , v

(i)
n ∈ V (X(i)).

We claim the graph-like continuum

Z =
(
X(1) ⊕ · · · ⊕X(n+1)

)
/∼ where v

(1)
k ∼ v

(2)
k ∼ · · · ∼ v

(n+1)
k for each k,

is n-cc but not (n+1)-cc. Let us write [vk] ∈ Z for the vertex corresponding to the equiva-

lence class of v
(1)
k . Then it is clear from the construction that deleting S = {[v1], . . . , [vn]}

from Z leaves n+1 many components. Therefore, Z is not (1, n)-tough, and hence cannot

be (n+ 1)-cc by Lemma 12.4.7.

To see that Z is n-cc, consider any collection F = {e1, e2, . . . , en} of n edges of Z (which

is sufficient because of Lemma 12.3.1). We may assume that the edges are contained in the
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first i spaces X(1)∪· · ·∪X(i) where i 6 n. By the properties guaranteed by example 12.4.8,

we can find v
(j)
j − v

(j)
j+1 arcs α(j) (where i+ 1 ≡ 1) in X(j) missing all other special vertices

and containing F ∩E(X(j)). It is then clear that α :=
⋃
j6i α

(j) ⊆ Z is the desired simple

closed curve in Z containing F (as each αj and αj+1 end and start at the same vertex

[vj+1] ∈ Z respectively, and αj and α` are disjoint for |(j − ` (mod n))| > 2). �

Theorem 12.4.10. For every n ≥ 2:

(a)n there are 2ℵ0 many non-homeomorphic graph-like continua which are n-ac but not

(n+ 1)-ac, and

(b)n there are 2ℵ0 many non-homeomorphic graph-like continua which are n-cc but not

(n+ 1)-cc.

Proof. This follows by the same method as we derived Theorem 12.4.3 (a) from

Example 12.4.1 with some small adjustments that we show here.

Fix n. Both techniques to construct ‘n-ac not (n + 1)-ac’ and ‘n-cc not (n + 1)-cc’

graph-like continua used Lemma 12.4.4 to replace vertices by a big enough KN where N

depended on n.

As in Theorem 12.4.3, let F = {f ∈ NN : f is strictly increasing, ∀n f(n) is divisble by

4, and f(1) > N}. Then |F| = 2ℵ0 . To define the sequence of graphs, Gf
k , at step k + 1

uncontract vertices in the kth step into a Kf(k).

Then Xf = lim←−G
f
k is a graph-like continuum with the requisite combination of strong

connection properties (‘n-ac not (n + 1)-ac’ or ‘n-cc not (n + 1)-cc’). And, as in the

proof of Theorem 12.4.3, for distinct f and g from F the spaces Xf and Xg have different

edge-connection spectra, and so are non-homeomorphic.

In all cases except for the construction of an n-cc not (n+ 1)-cc graph-like continuum

where n is odd, these Xf are as needed. But for ‘odd n, n-cc not (n + 1)-cc’ we require

an extra step as in Example 12.4.9, to get Zf for f from F . So it remains to show that

for distinct f and g from F the spaces Zf and Zg are non-homeomorphic.

However Zf is obtained by gluing (n + 1) copies of Xf together over an n-point set,

call it Sf , so this set is a vertex separator of size n in Zf . From Proposition 12.3.7 we

know that each Xf has vertex connectivity ≥ f(1) > N > n, hence Sf is the unique vertex

separator of Zf of size n. Since this separator must be preserved by any homeomorphism

we see that indeed distinct f and g yield topologically distinct Zf and Zg. �





CHAPTER 13

Graph-like compacta: characterizations and Eulerian loops

A compact graph-like space is a triple (X,V,E) where X is a compact, metriz-

able space, V ⊆ X is a closed zero-dimensional subset, and E is an index

set such that X \ V ∼= E × (0, 1). New characterizations of compact graph-

like spaces are given, connecting them to certain classes of continua, and to

standard subspaces of Freudenthal compactifications of locally finite graphs.

These are applied to characterize Eulerian graph-like compacta.

13.1. Introduction

Locally finite graphs can be compactified, to form the Freudenthal compactification,

by adding their ends. This topological setting provides what appears to be the ‘right’

framework for studying locally finite graphs. Indeed, many classical theorems from finite

graph theory that involve paths or cycles have been shown to generalize to locally finite

infinite graphs in this topological setting, while failing to extend in a purely graph the-

oretic setting. See the survey series [53]. More recently, compact graph-like spaces were

introduced by Thomassen and Vella, [153], as a natural class encompassing graphs, and

in particular containing the standard subspaces of Freudenthal compactification of locally

finite graphs.

A compact graph-like space is a triple (X, V,E) where: X is a compact, metrizable

space, V ⊆ X is a closed zero-dimensional subset, and E is a discrete index set such that

X \ V ∼= E × (0, 1). The sets V and E are the vertices and edges of X respectively.

More generally, a topological space X is compact graph-like, if there exists V ⊆ X and a

set E such that (X, V,E) is a compact graph-like space. Recall that connected compact

metrizable spaces are called continua, and so a graph-like continuum is a continuum which

is graph-like.

Papers in which graph-like spaces have played a key role include [153] where several

Menger-like results are given, and [49] where algebraic criteria for the planarity of graph-

like continua are presented. In [30], aspects of the matroid theory for graphs have been

generalized to infinite matroids on graph-like spaces.

In this paper we present two groups of new results. The first group consists of charac-

terizations of compact graph-like spaces and continua. These connect graph-like continua

to certain classes of continua which have been intensively studied by continua theorists.

We also establish that compact graph-like spaces are not simply ‘like’ the Freudenthal

285
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compactifications of locally finite graphs, but in fact are standard subspaces of the lat-

ter. Our second group of results consists of various characterizations of when a graph-like

continuum is Eulerian. These naturally extend classical results for graphs.

13.1.1. The Main Theorems. In Section 13.2 we give various characterizations and

representations of compact graph-like spaces, and graph-like continua, which demonstrate

that graph-like continua form a class of continua which are also of considerable interest

from the point of view of continua theory. These results can be summarized as follows.

Theorem (A). The following are equivalent for a continuum X:

(i) X is graph-like,

(ii) X is regular and has a closed zero-dimensional subset V such that all points

outside of V have order 2,

(iii) X is completely regular,

(iv) X is a countable inverse limit of finite connected multi-graphs with onto, mono-

tone, simplicial bonding maps with non-trivial fibres at vertices only,

(iv)′ X is a countable inverse limit of finite connected multi-graphs with onto, monotone

bonding maps that project vertices onto vertices, and

(v) X is homeomorphic to a connected standard subspace of a Freudenthal compacti-

fication of a locally finite graph.

Here a continuum is regular if it has a base all of whose members have finite boundary,

and completely regular if all non-trivial subcontinua have non-empty interior. A map is

monotone if all fibres are connected, while a map between graph-like spaces is simplicial

if it maps vertices to vertices, and edges either homeomorphically to another edge, or

to a vertex. A standard subspace of a compact graph-like space is a closed subspace that

contains all edges it intersects. The equivalence of (i) and (ii) is analogous to a well-known

topological characterization of finite graphs, namely a continuum is a graph if and only if

every point has finite order, and all but finitely many points have order 2, [121, Theorem

9.10 & 9.13]. The equivalence of (i) and (iv) provides a powerful tool to lift results in

finite graph theory to graph-like continua. Indeed this is key to our results on Eulerian

paths and loops below. It also is key to the equivalence of (i) and (v). The equivalence

of (i) and (iii) yields a purely internal topological characterization of graph-like continua,

without any reference to distinguished points, ‘vertices’, or subsets, ‘edges’.

We prove all of Theorem (A) taking ‘compact graph-like space’ as the basic notion.

Because ‘compact graph-like’ takes a middle ground between topology and graph theory,

our proofs are clean and efficient. However it is important to note that the equivalence

of (i) and (iii) follows, modulo some basic lemmas, from a result of Krasinkiewicz, [104],

while the implication (iii) implies (iv) is essentially shown by Nikiel in [130]. Nikiel

also claimed, without proof, the converse implication. Regarding (v), Bowler et al. have
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claimed, without proof, the weaker assertion that every compact graph-like space is a

minor (essentially: a quotient) of a Freudenthal compactification of some locally finite

graph, [30, p. 6].

In Sections 13.3 and 13.4 we extend some well-known characterizations of Eulerian

graphs to graph-like continua. Let G be a (multi-)graph. A trail in G is an edge path

with no repeated edges. It is open if the start and end vertices are distinct, and closed if

they coincide. We also call closed trails circuits. A segment is a trail which does not cross

itself. A cycle is a circuit which never crosses itself. A trail is Eulerian if it contains all

edges of the graph. (Note that an Eulerian circuit is a closed Eulerian trail.) The graph G

is Eulerian (respectively, closed Eulerian) if it has an open (respectively, closed) Eulerian

trail; and Eulerian if it either open or closed Eulerian. Call a vertex v of a graph G even

(respectively, odd if the degree of v in G is even (respectively, odd).

Classical results of Euler and Veblen characterize multi-graphs with closed, and re-

spectively, open, Eulerian trails as follows. Let G be a connected multi-graph with vertex

set V , then the following are equivalent: (i) G is closed [open] Eulerian, (ii) every vertex

is even [apart from precisely two vertices which are odd], (iii) [there are vertices x 6= y

such that] for every bi-partition of V , the number of cross edges is even [if and only if x

and y lie in the same part], and (iv) the edges of G can be partitioned into edge disjoint

cycles [and a non-trivial segment]. We extend these results to compact graph-like spaces,

and prove the following result.

Theorem (B). Let X be a graph-like continuum with vertices V . The following are

equivalent:

(i) X is closed [open] Eulerian,

(ii) every vertex is even [apart from precisely two vertices which are odd],

(ii)′ every vertex has strongly even degree [apart from precisely two vertices which have

strongly odd degree],

(iii) [there are vertices x 6= y such that] for every partition of V into two clopen pieces,

the number of cross edges is even [if and only if x and y lie in the same part],

and

(iv) the edges of X can be partitioned into edge-disjoint circles [and a non-trivial arc].

Further, if X is closed [open] Eulerian then either X has continuum many distinct

Eulerian loops [Eulerian paths], or has a finite number of distinct Eulerian loops [Eulerian

paths], which occurs if and only if X is homeomorphic to a finite closed [open] Eulerian

graph.

Let X be a compact graph-like space with set of vertices V . A subspace of X is called

an arc if it is homeomorphic to I = [0, 1], and a circle if it is homeomorphic to the circle,

S1. A (standard) path is a continuous map f : I → X such that f(0) and f(1) are vertices,
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f is injective on the interior of every edge and f−1(V ) has empty interior. Note that every

continuous map f : I → X with f(0), f(1) as vertices is homotopy equivalent (with fixed

endpoints) to a path. Also note that if X is a graph (with usual topology), then every

path yields a corresponding trail, and every trail corresponds to a path. A path, f , is

open if f(0) 6= f(1), and closed if f(0) = f(1). Closed paths are called loops. A path (or

loop) is Eulerian if its image contains every edge. Note that in a graph with the usual

topology there is a natural correspondence between Eulerian paths and Eulerian trails,

and Eulerian circuits and Eulerian loops. We abbreviate ‘closed and open’ to ‘clopen’. A

vertex v is odd (resp. even) if and only if there exists a clopen subset A of V containing

v, such that for every clopen subset C of the vertices V with v ∈ C ⊆ A the number of

edges between C and V \ C is odd (resp. even).

The equivalence of (i), (ii), (iii) and (iv) in Theorem (B) is established in Section 13.3.1.

At the heart of our proof is our representation of compact graph-like spaces as inverse

limits, and an induced inverse limit representation of all Eulerian loops (possibly empty,

of course). The ‘further’ part of Theorem (B) follows in Section 13.3.2 from topological

considerations of the space of all Eulerian loops.

Our definition of ‘even’ and ‘odd’ vertices is natural within the context of Theorem (B).

An alternative approach to degree, due to Bruhn and Stein [39], leads to the notions of

‘strongly even degree’ and ‘strongly odd degree’ appearing in item (ii)′ of Theorem (B).

See Section 13.4 for details and the proof that ‘(ii) implies (ii)′’ and ‘(ii)′ implies (i)’.

Alternative Paths. Theorem (A) shines an unexpected light on connections between

concepts from continua theory (completely regular continua and inverse limits of graphs),

and concepts arising from infinite graph theory (graph-like continua, Freudenthal com-

pactifications of graphs, and their standard subspaces). As a result we discover that the

various parts of Theorem (B) generalize numerous results in the literature, and–with the

considerable assistance of the machinery developed here–Theorem (B) can be derived from

older work.

For Freudenthal compactification of graphs, the equivalence of (i), (iii) and (iv) is due

to Diestel & Kühn, [56, Theorem 7.2], while the equivalence with (ii)′ is due to Bruhn

& Stein, [39, Theorem 4]. For standard subspaces of Freudenthal compactification of

graphs, the equivalence of (iii) and (iv) is due to Diestel & Kühn, [57, Theorem 5.2], the

equivalence of (i) and (iv) is due to Georgakopoulos, [80, Theorem 1.3], and the equivalence

(ii)′ and (iii) is due to Berger & Bruhn, [20, Theorem 5]. It should also be noted that

the method of lifting Eulerian paths and loops via inverse limits, used by Georgakopolous,

was previously introduced by Bula et al. in [41, Theorem 5].

Thus an alternative path to proving Theorem (B) is as follows. Let X be a graph-like

continuum. According to the equivalence of (i) and (v) in Theorem (A), which depends on

the equivalence of (i) and (iv), X is homeomorphic to a standard subspace of a Freuden-

thal compactification of a graph. Now equivalence of (i), (ii)′, (iii) and (iv) follows from
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the results cited immediately above. To add equivalence of (ii) apply Theorem 13.4.1

(which uses Theorem (A) (i)⇐⇒ (iv), and a non-trivial inverse limit argument) and Lem-

mas 13.3.4 and 13.4.2. Although this alternative path exists, the direct proofs given here

in Sections 13.3 and 13.4, using compact graph-like spaces as the basic notion, are–in the

authors’ view–much shorter and more natural.

13.1.2. Examples. Before proving our results on graph-like continua, we now intro-

duce some examples. With these examples we have three objectives. First show a little

of the variety of graph-like continua. Second elucidate some of the less familiar terms in

Theorem (B), in particular ‘even’ and ‘odd’ vertices. Third demonstrate the remarkable

complexity of Eulerian loops and paths in graph-like continua. This complexity highlights

the hidden depths of Theorem (B).

Example 1. The two-way infinite ladder with single diagonals, which is the infinite

graph G shown below. Notice that all its vertices are even, but it has no Eulerian loop.

The Freudenthal compactification, γG, of G adds two ends. Then, as shown in the

diagram, γG has an open Eulerian path from one end to the other.

It follows from Theorem (B) that the two ends are odd. We now demonstrate that the

left end is odd from the definition. For the clopen neighborhood A take the left end along

with all vertices to the left of some rung of the ladder. Now consider an arbitrary clopen C

containing the left end and contained in A (depicted by the green vertices in the diagram

below). Then C is the disjoint union of a C0 which contains the end and all vertices to

the left of a rung, and a C1 which is a finite subset of A \ C0. In the diagram we see that

the number of edges from C to V \C is 9, which is odd. In general, if we identify C0 (and

all edges between members of C0) to a vertex v and identify V \ A to a vertex w, then

we get a finite graph with exactly two odd vertices (namely, v and w, both of degree 3).

Hence from the equivalence of (ii) and (iii) of the graph version of Theorem (B), we see

that the number of edges from C to V \C is odd – as required for the left end to be odd.
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A V \ A
C0

For the next two examples let C denote the standard ‘middle thirds’ Cantor subset of

I.

Example 2. The Cantor bouquet of semi-circles, CBS. The vertices are C × {0} in

the plane, along with semi-circular edges centered at the midpoint of each removed open

interval. Note that CBS is not a Freudenthal compactification of graph.

1

2

The vertex 0 = (0, 0) is neither odd nor even, and hence CBS is not Eulerian. Indeed, as

indicated on the diagram, there is one (odd) edge connecting all the vertices in the ‘left

half’ of the vertices to its complement (the ‘right half’), but two (even) edges connecting

the ‘left quarter’ to its complement. Similarly we see that every clopen neighborhood of

0 contains two clopen neighborhoods of 0 of which one has an odd number of edges to its

complement, and the other an even number.

Example 3. The Cantor bouquet of circles, CBC, can be obtained from the Cantor

bouquet of semi-circles by reflecting it in the real axis. One can check that all vertices are

even. The diagram illustrates an Eulerian loop in CBC.
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I

CBC

Suppose f : I → X is a standard path in a graph-like continuum X with vertices

V and (open) edges (en)n. Then f−1(V ) is a closed nowhere dense subset of I, and its

complement, f−1 (
⋃
n en) is dense and a disjoint union of open intervals. This countable

family, {f−1(en) : n ∈ N} inherits an order from the order on I. So to every path f we

can associate a countable linear order Lf , which we informally call the shape of f .

To illustrate this, consider L = Lf where f is the Eulerian loop in the Cantor bouquet

of circles diagrammed above. Then f traverses the top edge from left to right, covers the

right-hand copy of CBC, traverses the bottom edge from right to left, and then covers the

left-hand copy of CBC. So L satisfies the equation L = 1 + L + 1 + L. It follows that L

is an infinite ordinal. Thus L = 1 + L, and we see L = L + L. The first infinite ordinal

which is a fixed point under addition of linear orders is the ordinal ωω. Hence L = ωω.

We now see how to construct for each countable linear order L a graph-like continuum

XL with an Eulerian loop f so that Lf = L. To do so recall: every countable linearly

ordered set L can be realized (is order isomorphic to) a countable family of disjoint open

subintervals of I, with dense union. For further material on the interaction of linear orders

and graph-like compacta, see [30, §4].

Given a line segment, S, in the plane the ‘circle with diameter S’ is the circle with

center the midpoint of the line segment, and radius half the length of the segment.

Example 4. Let L be a countable linear order. Fix a family U of pairwise disjoint open

subintervals of I, with dense union, which is order isomorphic to L. Define XL to be the

subspace of the plane obtained by starting with X = I×{0}, and for each U in U , remove

U × {0} from X and add the circle with diameter U × {0}.
The Eulerian loops on XL are naturally bijective with all functions % : L→ {±1}. To

see this take any % : L → {±1}. Since U and L are isomorphic we can think that the

domain of % is actually U . Define g% : [0, 1]→ XL by requiring (i) g(t) = t on I \
⋃
U , and

(ii) on U in U the path g traverses the top (resp. bottom) semi-circle in XL corresponding

to U if %(U) = +1 (resp. %(U) = −1). Now define f% – the desired Eulerian loop – by

f%(t) = g%(2t) on [0, 1/2] and f%(t) = g−%(2 − 2t) on [1/2, 1]. Informally, on [0, 1/2] the



292 13. GRAPH-LIKE COMPACTA: CHARACTERIZATIONS AND EULERIAN LOOPS

path f% travels from left to right along XL crossing the circles by either taking the upper

or lower semi-circles depending on %; and then on [1/2, 1] it travels across XL from right to

left taking the opposite upper/lower semi-circles than before. Every Eulerian loop arises

in this way, and observe that they all have the same shape, L.

The following diagram depictsXQ whereQ is the linearly ordered set of dyadic rationals

in (0, 1). Recall that Q is order isomorphic to the rationals, Q.

Q

XQ

1
2

1
22

3
22

1
23

3
23

5
23

7
23

The graph-like continuum XQ provides an example of the difficulties involved in näıvely

trying to lift arguments for graphs to graph-like continua. In the standard proof of Theo-

rem (B) for graphs one moves from (iv) ‘the edges of the graph can be decomposed into

disjoint cycles’ to (i) ‘there is an Eulerian circuit’ by amalgamating the cycles, one after

another to form the circuit. Notice that in XQ there is a canonical decomposition of XQ

into edge disjoint circles – namely the circles in the definition of XQ. But these circles

are pairwise disjoint. Hence there is no natural method of amalgamating them into an

Eulerian loop for XQ.

Example 5. The Hawaiian earring, H, is also Eulerian. Unlike the XL examples above,

every countable linear order can be realized as the Lf of an Eulerian loop.

Write H as 0 = (0, 0) (the sole vertex) and the union of circles in

the plane Cn, for n ∈ N, where Cn has radius 1/n and is tangential

at 0 to the x-axis.

We can identify the Eulerian loops in the Hawaiian earring as

follows. For any countable linear order L and function % : L →
N×{±1} such that π1◦% : L→ N is a bijection, there is a naturally

corresponding Eulerian loop f% of H. Indeed, given L and %, let U
be a family of pairwise disjoint open subintervals of I, with dense

union, which is order isomorphic to L (and identify them). Define

f% to have value 0 on the complement of
⋃
U , and on U in U , writing %(U) = (n, i), it

should traverse Cn clockwise (respectively, anticlockwise) if i = +1 (respectively, i = −1).

One can check all Eulerian loops arise this way.
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13.2. Properties and characterizations of graph-like continua

13.2.1. Basic Properties. Most of the following basic properties of graph-like spaces

are well-known, see e.g. [153]. Nonetheless, it might be helpful to give a self-contained

outline of the most important properties we use.

Let (X, V,E) be a compact graph-like space. We often identify the label, e, of an

edge, with the subspace e× (0, 1) of X. Note that since V is zero-dimensional, for every

edge e, the closure, e, of e adds at most two vertices – the ends of the edge – and e is

homeomorphic to the circle, S1, or I = [0, 1]. With this in mind, our definition of compact

graph-like space is the same as the original in [153].

A separation (A,B) of a graph like space X is a partition of V (X) into two disjoint

clopen subsets. The cut induced by the separation (A,B) is set of edges with one end

vertex in A and the other in B, denoted by E(A,B). More generally, we call a subset

F ⊆ E a cut if there is a separation (A,B) of X such that F = E(A,B). A multi-cut

is a partition U = {U1, U2, . . . , Un} of V (X) into pairwise disjoint clopen sets. For each

two Ui, Uj, not necessarily different, E(Ui, Uj) denotes the set of edges with one endpoint

in Ui and the other endpoint in Uj. By X[Ui] we denote the induced subspace of X, i.e.

the closed graph-like subspace with vertex set Ui and edge set E(Ui, Ui). Finally, a clopen

subset U ⊆ V (X) is called a region if the induced subspace X[U ] is connected.

Lemma 13.2.1. In a compact graph-like space, all cuts are finite.

Proof. Suppose there is an infinite cut F = {fn : n ∈ N} induced by a separation

(A,B) of a graph-like space X. Then A and B are disjoint closed subsets of X, so by

normality there are disjoint open subsets U ⊇ A and V ⊇ B. Since edges are connected,

there exist xn ∈ fn \ (U ∪ V ) for all n. It follows that {xn : n ∈ N} is an infinite closed

discrete subset, contradicting compactness. �

Lemma 13.2.2. Let X be a compact graph-like space. For every vertex v of X and any

open neighborhood U of v, there is a clopen C ⊆ V (X) such that v ∈ C and X[C] ⊆ U .

Moreover, if X is connected, then C can be chosen to be a region.

Proof. Since V (X) is totally disconnected we have

{v} =
⋂
{X[A] : (A,B) a separation of X, v ∈ A}.

Now
⋂
X[A] ⊆ U and compactness implies that there is a finite subcollection A1, . . . , An

such that for the clopen set B = A1 ∩ · · · ∩ An we have

v ∈ X[B] = X[A1] ∩ · · · ∩X[An] ⊆ U.

For the moreover part, since E(B, V \ B) is finite by Lemma 13.2.1, it follows from con-

nectedness of X that X[B] consists of finitely many connected components, say X[B] =

X[C1]⊕ · · ·⊕X[Ck], one of which contains the vertex v. This is our desired region C. �
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Definition 13.2.3. Let X be a graph-like space and U be a multi-cut of X. The

multi-graph associated with U is the quotient space G(U) = X/{X[U ] : U ∈ U}. The map

πU : X → G(U) denotes the corresponding quotient map.

We remark that G(U) is indeed a finite multi-graph. The identified X[U ] form a finite

collection of vertices, which are connected by finitely many edges (see Lemma 13.2.1). The

degree of πU(Ui) in G(U) is given by |E(Ui, V \ Ui)| < ∞. Our next proposition gathers

properties of graphs associated with multi-cuts.

Proposition 13.2.4. Let X be a graph-like compact space. Then

(1) X is connected if and only if G(U) is connected for all multi-cuts U of X.

(2) All cuts of X are even if and only if all vertices in G(U) have even degrees for all

multi-cuts U of X.

Proof. (1) If X is connected, then connectedness of G(U) follows from the fact that

it is the continuous image of X. Conversely, a disconnection of X gives rise to a G(U)

which is the empty graph on two vertices.

(2) If every cut of X is even, then the above degree considerations show that every

vertex in G(U) has even degree. And conversely, any odd cut of X gives rise to a graph

G(U) on two vertices of odd degree. �

Recall that a standard subspace Y of a graph-like space X is a closed subspace that

contains all edges it intersects (i.e. whenever e ∩ Y 6= ∅ then e ⊆ Y ). Standard subspaces

of graph-like spaces are again graph-like. Write E(Y ) for the collection of edges of Y .

Lemma 13.2.5. Let X be a graph-like space and C ⊆ X a copy of a topological circle.

Then C is a standard subspace.

Proof. Assume, by contradiction, that there exists e ∈ E(X) such that e ∩ C 6= ∅
and that e 6⊆ C. Let y ∈ e \ C. Then there exist x0 ∈ C with the properties that the arc

[x0, y] is a subset of e and [x0, y] ∩C = {x0}. Observe that x0 6∈ V . Let U be an open set

containing x0 such that U ∩ V = ∅. Let α be the component in [x0, y] of x0 contained in

U and β be the component in C of x0 contained in U . Then α ∪ β contains a triod and

α ∪ β ⊆ X \ V which is a contradiction to the fact that X \ V ∼= E × (0, 1) contains no

triods. �

Lemma 13.2.6. Let X be a graph-like space and C ⊆ X a copy of a topological circle.

Then E(C) ∩ F is finite and even for all cuts F = E(A,B) of X.

Proof. By Lemma 13.2.5 we may assume X = C. Let F = E(A,B). That F is finite

is immediate from Lemma 13.2.1, so we only need to prove that |F | is even.

Let C[A] (resp. C[B]) be the standard subspace containing A (resp. B) and all edges

with both endpoints in A (resp. B). Observe that
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(a) C = C[A] ∪ F ∪ C[B], and

(b) C[A] and C[B] have finitely many components.

Let A1, . . . , Ar be the components of C[A] and B1, . . . , Bs be the components of C[B].

These components induce a multi-cut, U = {UA1 , . . . , UAr , UB1 , . . . , UBs}, of the vertices

of C where UAi (resp. UBi) consists of all vertices contained in Ai (resp. Bi). Then G(U),

the multi-graph associated with U , is a cycle whose edges are the elements of F and whose

vertices are the equivalence classes containing the sets UA1 , . . . , UBs . Observe that the sets

A = {UA1 , . . . , UAr} and B = {UB1 , . . . , UBs} give a 2-coloring of the vertices of G(U).

Hence G(U) has an even number of edges, i.e. |F | is even. �

13.2.2. Characterizations and Representations. In this section we prove Theo-

rem (A). The equivalence of (i) and (iii) is given by Proposition 13.2.10, the equivalence

of (i) and (ii) is Theorem 13.2.11, while the equivalence of (i), (iv) and (iv)’ follows

from Theorems 13.2.13 and 13.2.14. Compact graph-like spaces were explicitly defined to

include standard subspaces of the Freudenthal compactification of locally finite graphs.

Theorem 13.2.15 provides the converse, establishing equivalence of (i) and (v).

Recall that a continuum X is regular if it has a basis of open sets, each with finite

boundary, and it is called completely regular if each non-degenerate subcontinuum of X

has non-empty interior in X, see [41, Page 1176]. A continuum is hereditarily locally

connected (hlc) if every subcontinuum is locally connected, and finitely Souslian if each

sequence of pairwise disjoint subcontinua forms a null-sequence, i.e. the diameters of the

subcontinua converge to zero. It is known that for continua

(‡) completely regular ⇒ regular ⇒ finitely Souslian ⇒ hlc ⇒ arc-connected.

For the first three implications, see [104, Proposition 1.1].

Lemma 13.2.7. Every compact graph-like space is regular.

Proof. Let X be a compact graph-like space, p ∈ X, and U be an open of X set

such that p ∈ U . We will show that there is an open set O with finite boundary such that

p ∈ O ⊆ U .

The case when p is in the interior of an edge follows from the fact that the set of edges is

discrete. So we may assume p ∈ V . For this case let X[B] as in the proof of Lemma 13.2.2,

then p ∈ X[B] ⊆ U . Now for each e ∈ E(B, V \ B), let (v, xe) be a subarc of e such that

(v, xe) ⊆ U and such that v ∈ B. Since cuts are finite, then there are only finitely many

of these arcs. The desire open set O is then X[B] ∪ {(v, xe) : e ∈ E(B, V \ B)} as its

boundary is the set {xe : e ∈ E(B, V \B)}. �

Corollary 13.2.8. Every graph-like continuum is finitely Souslian, hereditarily locally

connected and arc-connected.

Proof. By Lemma 13.2.7 and (‡), this is a consequence of regular.
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For a direct proof that graph-like continua are finitely Souslian, suppose for a contradic-

tion that {Ai : i ∈ N} forms a sequence of disjoint subcontinua of X with non-vanishing di-

ameter. It follows from the sequential compactness of the hyperspace of subcontinua, [121,

Corollary 4.18], that there is a subsequence Aij such that A = limj→∞Aij =
⋃
j Aij \

⋃
j Aij

is a non-trivial subcontinuum of X. But since edges are open, we also have that A ⊆ V (X),

so is totally disconnected, a contradiction.

For a direct proof that graph-like continua are hlc, see Lemma 13.2.2. �

In particular, noting that a compact graph-like space has at most countably many

edges (as they form a collection of disjoint open subsets), it follows that the edges of X

form a null-sequence, i.e. limn→∞ diam(en) = 0. Here, for a subset A of a metric space,

we denote by diam(A) the diameter of A.

In the next theorem we use the following notation. For a subspace A ⊆ X we denote

by Bd(A) its boundary. A subarc A ⊆ X is called free if A removed its endpoints is open

in X.

Theorem 13.2.9 ([104, Theorem 1.3]). A continuum X is completely regular if and

only if there exists a 0-dimensional compact subset F of X and a finite or countable null

sequence of free arcs A1, A2, . . . in X such that

X = F ∪
(⋃
{An : n > 1}

)
and Aj ∩ F = Bd(Aj)

for each j > 1

Observe that Theorem 13.2.9 implies that every completely regular continuum is a

graph-like space. Conversely, if X is a graph-like continuum, then the set of vertices V

is zero-dimensional. Also by Corollary 13.2.8, E(X) forms a null sequence. By Theo-

rem 13.2.9, X is a completely regular continuum.

Proposition 13.2.10. Let X be a continuum. Then X is completely regular if and

only if X is a graph-like space.

Recall that a graph can be characterized in terms of order: a continuum is a graph

if and only if every point has finite order, and all but finitely many points have order 2,

[121, Theorem 9.10 & 9.13].

Theorem 13.2.11 (Graph-like Characterization). A continuum is graph-like if and

only if it is regular and has a closed zero-dimensional subset V such that all points outside

of V have order 2.

Proof. Sufficiency follows from the definition of graph-like and Lemma 13.2.7.

For the necessity, first observe that regular implies local connectedness. Let V ⊆ X

be a closed zero-dimensional collection of points in X such that all points outside of V

have order 2. By local connectedness, all components of X \ V are open subsets of X.
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In particular, we have at most countably many components, and each component is non-

trivial, non-compact, and consists exclusively of points of order 2. So each component is

homeomorphic to an open interval. So all that remains to show for graph-like is that the

closure of each edge is compact, which is automatic. �

Corollary 13.2.12 (Canonical Representation of Graph-like Spaces). Let X 6∼= S1 be

a graph-like continuum. Then there is a unique minimal set V ⊆ X which witnesses that

X is a graph-like space. We call (X, V,E) the standard representation of X.

Proof. Let {Vs : s ∈ S} be the collection of all subsets of X which witness that X is

graph-like. We claim that V =
⋂
s∈S Vs is also a vertex set.

Clearly, V is closed and zero-dimensional. Further, if x /∈ V , then x /∈ Vs for some

s ∈ S, so x has order 2. So either V is empty, in which case X ∼= S1; or V is non-empty,

in which case every component of X \ V is non-compact, open, and consists of points of

order 2, so is homeomorphic to an open interval. �

Our next theorem has been proved, for completely regular continua, by Nikiel, [130,

3.8]. We reprove his theorem here (and extend it to graph-like compacta), phrased for

convenience in the language of graph-like continua.

Theorem 13.2.13 (Inverse Limit Representation). Every graph-like compact space X

can be represented as an inverse limit of multi-graphs Gn (n ∈ N) with onto simplicial

bonding maps that have non-trivial fibres at vertices only, such that

(1) X connected if and only if Gn is connected for all n, and

(2) all cuts E(A,B) in X are even ⇔ all vertices in Gn are even for all n.

Moreover, if X is connected, then the bonding maps can additionally be chosen monotone.

Proof. Let X be a graph-like compactum with vertex set V and edge set E. Without

loss of generality, X contains no loops, as otherwise we can subdivide each edge once (this

does not change the homeomorphism type of X, and the new edge set is still a dense open

subset, so the new vertex set is a compact, zero-dimensional subspace as required).

Since V is a compact, zero-dimensional metrizable space, we can find, as in Lemma 13.2.2,

a sequence of multi-cuts {Un : n ∈ N} such that

(a) Un+1 is a refinement of Un,

(b)
⋃
n∈N Un forms a basis for V (X), and

Writing Un = {Un
1 , U

n
2 , . . . , U

n
i(n)} we observe that every v ∈ V has a unique description in

terms of {v} =
⋂
n∈N U

n
l(v) and that conversely, for every nested sequence of cut elements,

there is precisely one vertex in
⋂
n∈N U

n
ln

by compactness and (b).

The inverse system: Let {Un : n ∈ N} be as above. To simplify notation, let qn stand

for πUn . For each n ∈ N let fn : G(Un+1)→ G(Un) be defined as

fn(x) = qn
(
q−1
n+1(x)

)
for all x ∈ G(Un+1).
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Observe that if Un+1
i , Un+1

j ⊆ Un
s ,

(i) then f
(
qn+1(Un+1

i )
)

= f
(
qn+1(Un+1

j )
)

= qn(Un
s );

(ii) and if e ∈ E(Un+1
i , Un+1

j ); in particular e ∈ E(Un
s , U

n
s ), then fn(e) = qn(Un

s ).

In particular, each fn is an onto simplicial map with non-trivial fibres only at vertices of

G(Un). Then {G(Un), fn}n∈N is an inverse sequence of multi-graphs. Hence, its inverse

limit is compact and nonempty. We will show that there is a continuous bijection

f : X → lim←−−
n∈N

G(Un).

For x ∈ X, we define f(x) = (q1(x), q2(x), . . .). By the product topology, this is a

continuous map into the product
∏

nG(Un), as all coordinate maps qn are continuous.

Moreover, it is straightforward from the definition of fn to check that f(x) ∈ lim
←−

G(Un).

That the map f is surjective follows from the fact that each qn is continuous and X

is compact (see [121, 2.22]). Finally, f is injective because of the neighborhood bases

requirement (b) on Un. Since X is compact and lim
←−

G(Un) is Hausdorff, it follows that f

is a homeomorphism as desired, and properties (1) and (2) now follow from Proposition

13.2.4.

For the moreover part, simply require that besides (a) and (b), our sequence of multi-

cuts {Un : n ∈ N} also satisfies

(c) every multi-cut Un partitions V (X) into regions.

That this is possible follows from Lemma 13.2.2; and clearly, property (c) implies that

each fn as defined above will be a monotone map. �

In fact, a converse of the above theorem holds. This has been mentioned, for completely

regular continua, by Nikiel, [130, 3.10(i)], though without proof. We provide the proof in

the language of graph-like continua.

Theorem 13.2.14. Let X be a countable inverse limit of connected multi-graphs Xn

with finite vertex sets V (Xn) and onto monotone bonding maps fn : Xn+1 → Xn satisfying:

(+) fn(V (Xn+1)) ⊆ V (Xn). Then X is a graph-like continuum.

Proof. By Theorem 13.2.11, every regular continuum with the property that all but

a closed zero-dimensional subset of points are of order 2 is a graph-like continuum.

That X is regular follows from [130, 3.6]. For sake of completeness, we provide the

argument. Let πn : X → Xn denote the projection maps, and for m > n write fm,n =

fn ◦ fn+1 ◦ · · · ◦ fm−1 ◦ fm : Xm+1 → Xn.

Claim: For every n ∈ N, the set Pn = {y ∈ Xn : |π−1
n (y)| > 1} is countable.

This holds, because for every m > n, the set Qm =
{
y ∈ Xn :

∣∣f−1
m,n(y)

∣∣ > 1
}

is count-

able: By assumption, all bonding maps fm are monotone, and hence so is fm,n. Thus,

the collection of non-degenerate f−1
m,n(y) from a disjoint collections of subcontinua of Xm,
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all with non-empty interior. It follows that Pn =
⋃
m>nQm is countable, completing the

proof of the claim.

To conclude that X is regular, let x ∈ X and let U be an open neighborhood of x ∈ X.

Then there is k ∈ N and an open subset W ⊆ Xk with x ∈ π−1
k (W ) ⊆ U . Note that since

Xk is a graph, and Pk is countable by the claim, we may choose W with finite boundary

such that Bd(W ) ∩ Pk = ∅. It follows that π−1
k (W ) has finite boundary, as well.

Our candidate for the vertex set of X is V (X) =
⋂
n∈N π

−1
n (V (Xn)). By (+), the family

{(V (Xn), fn) : n ∈ N} gives a well-defined inverse limit, which is identical with our vertex

set, i.e. V (X) = lim← {V (Xn), fn}. Since all V (Xn) are finite discrete sets, it follows that

V (X) is a compact zero-dimensional metric space, as desired.

To see that elements y ∈ X \V (X) have order 2, note that y /∈ V (X) means there is an

index N ∈ N such that πn(y) is an interior point of an edge of Xn for all n > N . Consider

an open neighborhood U with y ∈ U ⊆ X. As before, there is an index k > N and an

open subset W ⊆ Xk with y ∈ π−1
k (W ) ⊆ U . Since πk(y) ∈ Xk is an interior point of

an edge, and Pk is countable by the claim, we may assume that W has 2-point boundary

with Bd(W ) ∩ Pk = ∅. It follows that π−1
k (W ) has a 2-point boundary, as well. �

In fact, the class of continua, which can be represented as countable monotone inverse

limits of finite connected multi-graphs are precisely the so-called totally regular continua,

[42] – for each countable P ⊆ X, there is a basis B of open sets for X so that for each

B ∈ B, P ∩ Bd(B) = ∅ and B has finite boundary. These continua have also been

studied under the name continua of finite degree. The class of totally regular continua is

strictly larger than the class of completely regular continua. In particular, the condition

in Theorem 13.2.14 on fn having nontrivial fibers only at vertices cannot be omitted. For

example, the universal dendrite Dn of order n can be obtained as the inverse limit of finite

connected graphs, see [47, Section 3], and Dn has a dense set of points of order 6= 2.

In [49] the graph-like continuum depicted on the left side of the diagram below served

to show that graph-like continua form a wider class than Freudenthal compactifications

of locally finite graphs. Note that the two black nodes simultaneously act as ends for the

blue double ladder, and as vertices for the red edge.

↪→
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However, after subdividing the red edge appropriately – turning it into a double ray –

we see from the right side that it can be realized as a standard subspace of the Freudenthal

compactification of the triple ladder. We now show that every graph-like continuum has

the same property.

Theorem 13.2.15. Every graph-like continuum can be embedded as a standard subspace

of a Freudenthal compactification of a locally finite graph.

We remark that Theorem 13.2.15 can be rephrased as saying that every graph-like

continuum has a subdivision, turning each edge into a double ray, which is a standard

subspace of a Freudenthal compactification of a locally finite graph.

In the proof of Theorem 13.2.15, we use the following notation. Let G be a finite,

connected graph with vertex set V , and let L(G) be its (connected) line graph, both

considered as 1-complexes. For every edge e ⊆ G, let me ∈ e be the mid-point of that

edge. Then by G~ we denote the graph

G~ = (G⊕ L(G))/∼, where me ∼ e for me ∈ G and e ∈ V (L).

Geometrically, we subdivide each edge of G in its mid-point, and connect two new such

vertices if and only if their underlying edges share a common vertex.

Proof of Theorem 13.2.15. Let X be a graph-like continuum. Represent X as a

monotone inverse limit of finite multi-graphs Gn with onto, monotone simplicial bonding

maps fn : Gn+1 → Gn having non-trivial fibres at vertices only.

Recall first that the Freudenthal compactification of a locally finite graph can be real-

ized as an inverse limit: Let L be a locally finite graph with vertex set V (L) = {vk : k ∈ N}
say. Let kn be an increasing sequence of integers, and consider for each n the induced sub-

graph Ln = L[v0, . . . , vkn ]. Let Ln denote the multi-graph quotient of L where we contract

every connected component of the induced subgraph L[V (L) \ V (Ln)], deleting all arising

loops. Since L was locally finite, it is easy to check that Ln is a finite multi-graph. Then

{Ln : n ∈ N} forms an inverse system under that natural projection maps gn : Ln+1 → Ln,

such that the resulting inverse limit lim← L
n ∼= γL is the Freudenthal compactification of

L; moreover, this holds independently of the sequence kn.

Now our proof strategy is as follows. We plan to find a locally finite graph L as above

such that there are subgraphs Tn ⊆ Ln such that

(i) ĝn = gn � V (Tn+1) → V (Tn) restricts to a surjection (so that the Tn form a

subsystem of the inverse limit with bonding maps ĝn), and

(ii) for each n ∈ N, the graph Tn witnesses that Gn is a topological minor of Ln, mean-

ing there are homeomorphisms hn : Gn → Tn of the underlying 1-complexes which

map V (Gn) ↪→ V (Tn), and map distinct edges vw and xy of Gn to independent

hn(v)hn(w)- and hn(x)hn(y)-paths in Tn, and

(iii) we have ĝn ◦ hn+1 = hn ◦ fn for all n, i.e. the following diagram commutes:
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Tn Tn+1

Gn Gn+1

hn

ĝn

fn

hn+1

Under these assumptions, it follows that X = lim←Gn is homeomorphic to the inverse

limit lim← Tn, which in turn, as it was constructed as a subsystem, embeds into the inverse

limit lim← L
n = γL, which equals the Freudenthal compactification of L by the foregoing

discussion. Thus, it remains to find a locally finite graph L subject to requirements (i)–

(iii).

We will build this locally finite graph L by geometric considerations as a direct limit

of finite connected graphs Fn, so that Fn = L[V (Fn)] = Ln. More precisely, we will define

finite connected 1-complexes Fn such that

(1) F0 ↪→ F1 ↪→ F2 ↪→ · · · forms a direct limit such that for all n > 0, no vertex of

Fn+1 \ Fn is incident with a vertex of Fn−1, and

(2) Fn is embedded together with Gn in some ambient 1-complex Hn = Fn∪Gn such

that

(a) no vertex of Gn lies in Fn,

(b) every vertex of Fn lies on an edge of Gn,

(c) every open edge of Fn is either disjoint from Gn, or completely contained in

an edge of Gn, and

(d) every edge of Gn intersects with Fn in a non-trivial path P ⊆ Fn such that

the end-vertices of P are vertices of V (Fn) \ V (Fn−1).

To begin, put H0 = G~0 , and let F0 denote the subgraph L(G0) ⊆ G~0 . Then (2) is satisfied

since vertices of F0 are mid-points of edges of G0, and every open edge of F0 is disjoint

from G0; and (1) is trivially true.

x y

z v

f0←−

x y

z v1

v2

v3

Figure 13.1. Depicts the first bonding map f0 between graphs G1 and G0

in black, where f({v1, v2, v3}) = {v}. Further, the figure on the left shows

F0 ⊆ G~0 in red, and on the right F1 ⊆ H1 as the union of F̃0 in red,
⋃
v Lv

in blue, and edges induced by F̃0 and
⋃
v Lv in green.
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Now inductively, suppose we have already defined Hn = Gn ∪ Fn for some n ∈ N
according to (1) and (2). First, consider the natural pull-back F̃n ⊆ Gn+1 of Fn under fn.

More precisely, by (2), the preimage f−1
n (Fn) ⊆ Gn+1 is isomorphic to a subgraph of Fn.

Let F̃n be an isomorphic copy of Fn on the vertex set f−1
n (V (Fn)) obtained by adding all

edges missing from f−1
n (Fn) so that they are disjoint from Gn+1.

For every component Cv of the topological subspace Hn \ Fn (which by (2)(a) and

(b) will be a vertex v of Gn incident with finitely many half-open edges), consider the

subcontinuum Kv = f−1
n (Cv) ⊆ Gn+1. Then Kv is a finite connected graph. For each

v, consider K~v , and Lv = L(Kv) ⊆ K~v , and define Fn+1 to be the induced subgraph

Fn+1 = F̃n ∪
⋃
{Lv : v ∈ V (Gn)}.

Claim 1: Fn+1 is a connected graph.

By induction on n. If Fn is connected, then so is its isomorphic copy F̃n. As line graphs

of connected graphs, every Lv is connected. Since by construction, every Lv is connected

via an induced edge to F̃n, it follows that Fn+1 is connected.

Claim 2: Property (2) holds for Fn+1 and Gn+1.

(a) No vertex v of Gn+1 lies on F̃n, as otherwise fn(v) would be a vertex of Gn on Fn.

Also, since all Lv are partial line graphs of Gn+1, we see that (a) holds at step n+ 1.

(b) Similar.

(c) By construction, this holds for all edges of F̃n. Further, all edges of Lv are disjoint

from Gn+1, and all edges of Fn+1 induced F̃n and Lv are completely contained in one edge

of Gn+1 be definition.

(d) Let e = vw be an edge of Gn+1. If e /∈ E(Gn) then Fn+1∩e = Lv∩e is a trivial path

consisting of one new vertex. Otherwise, if e ∈ E(Gn), then by construction and induction

assumption, F̃n intersects e in a non-trivial path P ⊆ F̃n such that the end-vertices of P

have been added only at the previous step. But now, we see that Fn+1 ∩ G is a path P ′

which is one edge longer on either side than P , because we added two edges induced by

Lv and Lw. In particular, the end vertices of P ′ are vertices of Lv and Kv, and so have

only been added at this step.

Claim 3: Property (1) holds.

Since Fn ∼= F̃n ⊆ Fn+1 it is clear how to choose the embedding Fn ↪→ Fn+1. The

second part of the claim now follows from (2)(d) as follows: Every vertex of Fn+1 \ Fn is

a vertex of some Lv. By construction, any such vertex is connected at most to one of the

end vertices on some path P , which is, by (2)(d), a vertex of Fn \ Fn−1.

This completes the recursive construction. As indicated above, the graphs F0 ↪→
F1 ↪→ F2 ↪→ · · · give rise to a direct limit, which we call L. Let V (L) = {vk : k ∈ N} be

an enumeration of the vertices of L, first listing all vertices of F0, then all (remaining)

vertices of F1 etc. It is clear that there is an increasing sequence of integers kn such that

Ln = L[{v0, . . . , vkn}] = Fn.

Claim 4: L is a locally finite connected graph.
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To see that L is locally finite, note that any vertex v ∈ L is contained in some Fn
for some n, and then (1) implies that degL(v) = degFn+1(v) < ∞. And since every Ln is

connected, so is L.

Claim 5: There are isomorphisms ϕn : Hn → Ln. It suffices to show that Ln ∼=
Fn+1/{Lv : v ∈ V (Gn)}. Indeed, (1) implies that the connected components of L \Fn cor-

respond bijectively to the connected components of Fn+1 \Fn, which are, by construction,

precisely the Lv indexed by the different v ∈ V (Gn). In particular, ϕn is a bijection be-

tween V (Gn) and the dummy vertices of Ln that commutes with the respective bonding

maps, i.e.

(†) gn−1 ◦ ϕn(v) � V (Gn) = ϕn−1 ◦ fn−1(v) � V (Gn).

Claim 6: For Tn = ϕn(Gn) ⊆ LN the subgraph of Ln which is the image of 1-complex

Gn ⊆ Hn subdivided by the vertices of Ln, satisfies (i)–(iii). Everything is essentially set

up by construction; (iii) follows by (†) with hn = ϕn � Gn. �

Note that our embedding of X into γL has the property that every vertex of the graph-

like continuum X is represented by a compactification point (an end) of γL. By exercising

some extra care in the above construction, one could arrange for isolated vertices of V (X)

to be mapped to vertices of L.

Remark. Theorem 13.2.15 has the following notable consequence. Diestel asked in [51]

whether every connected subspace of the Freudenthal compactification of a locally finite

graph is automatically arc-connected. In 2007, Georgakopoulos gave a negative answer,

[79]. However, the analogous problem for arbitrary continua is a well-studied problem.

Indeed, a continuum is said to be in class A if every connected subset is arc-wise connected.

Continua in class A have been characterized by Tymchatyn in 1976, [157]. Even earlier,

in 1933, Whyburn gave an example of a completely regular continuum which is not in

class A, [165, Example 4]. Applying Theorem 13.2.15, Whyburn’s example shows at once

that Freudenthal compactifications of locally finite graphs are not necessarily in class A.

13.3. Eulerian graph-like continua

13.3.1. Characterizing Eulerian Graph-Like Continua. We now prove the equiv-

alence of (i), (ii), (iii) and (iv) of Theorem (B) in the case of closed paths, and then deduce

the same equivalences in Theorem (B) for open paths. To start note that (iv) ⇒ (iii) and

(i) ⇒ (iii) of Theorem (B) follow from Lemma 13.2.6. The next lemma takes care of (iii)

⇒ (iv).

Lemma 13.3.1. A graph-like continuum such that every topological cut is even can be

decomposed into edge-disjoint topological cycles.

Proof. We adapt the proof from [123] as follows. Let G be a graph-like continuum,

and E(G) = {e0, e1, . . .} an enumeration of its edges. Note that G−e0 is not disconnected:
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If G − e0 = A ⊕ B then (A,B) would be a separation in G with E(A,B) = {e}, so odd,

a contradiction. Since G is arc-connected by Corollary 13.2.8, there is an arc in G − e0

connecting x and y. Together with e0 that gives a topological circle C0.

Now let ei = xiyi be the first edge not on C0. We claim that there is a path connecting

xi to yi in G\ (E(C0)∪{ei}). Otherwise, there is a cut (A,B) of G′ = G\E(C0) such that

EG′(A,B) = {ei}. But then the same cut viewed in G would be odd by Lemma 13.2.6. A

contradiction.

It is clear that we can continue in this fashion until all edges are covered. �

To establish the equivalence of clauses (i), (iii) and (iv) of Theorem (B), it remains to

show (iii) implies (i), which is established by the next result.

Proposition 13.3.2. Let X be a graph-like continuum. If all topological cuts of X

have even size then X has an Eulerian loop.

Proof. By Theorem 13.2.13 (2), X can be written as an inverse limit of graphs Gn,

which are all closed Eulerian. Let fn denote the bonding map fn : Gn+1 → Gn.

For each n, let En be the collection of all Euler cycles of Gn. Since Gn is finite,

so is En. For each n ∈ N, let f̂n : En+1 → En be the map induced by fn. That is, if

E = (v0e0v1e1v2e2 · · · vkekv0), then

f̂n(E) = (fn(v0)fn(e0)fn(v1)fn(e1) · · · fn(ek)fn(v0)).

Observe that from the proof of Theorem 13.2.13 some of the edges in E get contracted to

a vertex. So f̂n(E) is an Eulerian circuit in Gn. Now, {En, f̂n}n∈N forms an inverse system,

and since each En is compact, we see lim← En 6= ∅.
Let (En) ∈ lim← En. For each n ∈ N, fix an Eulerian loop ϕn : S1 → Gn following

the pattern given by En. Now observe that since the (En)n∈N are compatible, there are

monotone continuous maps gn : S1 → S1 (n ∈ N) such that the diagram

G1
f1←− G2

f2←− G3
f3←− · · ·

↑ ϕ1 ↑ ϕ2 ↑ ϕ3

S1 g1←− S1 g2←− S1 g3←− · · ·

commutes. As an inverse limit of circles under monotone bonding maps, we have lim
←−

S1 ∼=
S1, [44, 4.11], and so the map

g : lim
←−

S1 → lim
←−

Gn, (xn)n∈N 7→ (ϕn(xn))n∈N

is our desired Eulerian loop. �

The proof of the equivalence of (i), (ii), (iii) and (iv) in Theorem (B), for closed loops,

is completed by Lemma 13.3.4 showing the equivalence of (ii) and (iii). A preliminary

lemma is needed.
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Lemma 13.3.3. Let X be a graph-like continuum, (A,B) be a separation of V, and

U = {A1, . . . , An} be a multi-cut of A. If the cut E(A,B) is odd, then E(Aj, V \ Aj) is

odd for some 1 6 j 6 n.

Proof. Consider the contraction graph induced by the multi-cut (B,A1, . . . , An).

By assumption, the vertex {B} has odd degree. Since by the Handshaking Lemma,

the number of odd-degree vertices in a finite graph is even, there must be some further

vertex {Aj} with odd degree, so E(Aj, V \ Aj) is odd. �

Lemma 13.3.4. Let X be a graph-like continuum. All topological cuts of X are even if

and only if every vertex of X is even.

Proof. If all cuts are even, then from the definition every vertex is even. We prove

the converse by contrapositive. Assume there exists a separation (A0, B0) of V such that

E(A0, B0) is odd. Let U0 = {U10 , . . . , Un0} be a separation of A0 into sets with diameter

< 1
2
diam(A0). By Lemma 13.3.3 there exists 1 6 j0 6 n0 such that E(Uj0 , V \Uj0) is odd.

Denote Uj0 by A1 and V \ Uj0 by B1. Let U1 = {U11 , . . . , Un1} be a separation of A1 into

sets with diameter < 1
2
diam(A1). Again by Lemma 13.3.3 there exists 1 6 j1 6 n1 such

that E(Uj1 , V \ Uj1) is odd. Denote Uj1 by A2 and V \ Uj1 by B2. Continuing with this

procedure we obtain a nested sequence of nonempty cut elements {Ai}i∈N. By construction⋂
i∈NAi = {v} ∈ V and E(Ai, Bi) is odd for every i ∈ N, hence v is not even. �

It remains to deduce the equivalence of (i), (ii), (iii) and (iv) in Theorem (B) for the

case of open paths from that of closed paths. This can be achieved with a simple trick.

Suppose, to start, that item (i) for open paths of Theorem (B), holds for a graph-like

continuum X. So in X there is an open Eulerian path starting at a vertex v and ending

at another vertex w. Create a new graph-like continuum Z by adding one edge to X with

endpoints at v and w. Then Z is a graph-like continuum with an Eulerian loop. So, by

Theorem (B) applied to Z, each of (ii)-(iv) (for closed paths) of that theorem hold for

Z. But now it easily follows from the definitions that each of (ii)-(iv) (for open paths) of

Theorem (B) hold for X.

Now let X be a graph-like continuum for which one of items (ii)-(iv) for open paths in

Theorem (B) holds. To complete the deduction we show (i) holds for open paths. Each

of these items highlights two distinct vertices (the two odd vertices in (ii) and the ends of

the arc in (iv)). Call them v and w. Create a new graph-like continuum Z by adding one

edge to X with endpoints at v and w. Then Z is a graph-like continuum and it is easily

verified from the definitions that it satisfies one of (ii)-(iv) for closed paths in Theorem (B).

Hence (i) for closed paths of Theorem (B) holds, and there is a closed Eulerian path in Z.

Removing the added edge yields an open Eulerian path in X.

13.3.2. Counting All Eulerian Loops and Paths. In this section we aim to count

the number of distinct Eulerian loops and paths in a given graph-like continuum. To do
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so we must decide what it means for two paths to be equivalent. This is a well-studied

problem in combinatorial group theory, and we adopt the approach taken there. Two

maps f, g : I → X are equivalent if v = f(0) = g(0), w = f(1) = g(1), v and w are

vertices, and f is homotopy equivalent to g relative to v, w. As noted in the Introduction,

every map f : I → X with vertices for endpoints is equivalent to a standard path.

Let X be a graph-like continuum. By Theorem 13.2.13 (2), X can be written as an

inverse limit of graphs Gn, via bonding maps fn : Gn+1 → Gn. As in Proposition 13.3.2,

for each n, let En be the collection of all Eulerian cycles in Gn, and let f̂n : En+1 → En be the

map induced by fn. Recall, (En, f̂n)n forms an inverse system, and set E = E(X) = lim← En.

As in Proposition 13.3.2, every (En)n in E(X) gives rise to an Eulerian loop in X. It is

straightforward to check that distinct members of E(X) gives rise to inequivalent Eulerian

loops. The converse is also true, although we do not need that for our counting result. In

any case we consider E(X) to be the space of Eulerian loops in X.

Theorem 13.3.5. A closed Eulerian graph-like continuum has either finitely many

distinct Eulerian loops in which case it is a graph, or it has continuum many Eulerian

loops.

Proof. Since every E(Gn) is finite discrete, the inverse limit is a compact subspace

of a Cantor set. As compact subspaces of a Cantor set without isolated points have size

continuum, the result follows from the next claim.

Claim: If E(X) contains an isolated point, then X is homeomorphic to a graph.

Fix an isolated element (En)n in E(X). Fix an Eulerian loop f : I → X of X corre-

sponding to (En)n (as in Proposition 13.3.2). To witness that f is isolated, find coordi-

nate graph Gn induced by a multi-cut U = (U1, . . . , Un) of X such that the the quotient

map q : X → G acting on the set of (distinct) Euler cycles E(X) → E(Gn) satisfies

q−1(q(f)) = {f}. We claim that every X[Ui] (the subspace of X induced by the vertex

set Ui) is a graph. This would show that X itself is also a graph.

Without loss of generality, f(0) /∈ X[Ui]. The map f induces a linear order on E(Ui, V \
Ui), say (e0, . . . , e2k−1). For all 0 6 l < 2k write xl for the end vertex of el in Ui (of course,

the xl need not be distinct). Let fm be the arc between x2m and x2m+1 induced by f . We

claim that the arcs {fm : 0 6 m < k} witness that X[Ui] is a graph.

First of all, X[Ui] =
⋃
m<k fm since f(0) /∈ X[Ui] implies fm ⊆ X[Ui], and f Eulerian

implies that all edges in E(Ui, Ui) are hit. As the edges are dense, all of X[Ui] is covered.

To complete the proof, it remains to show that our arcs intersect pairwise only finitely.

Indeed, we claim that |f̊m ∩ f̊p| 6 1. Otherwise, suppose that y 6= z are two vertices

lying in the interior of both arcs. Denote by em = fm � [y, z] and ep = fp � [y, z] (or

em = fm � [z, y] depending on which vertex comes first). Since fm, fp are edge disjoint,

em 6= ep. Then replace

• fm by fm � [x2m, y] ∪ ep ∪ fm � [y, x2m+1], and
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• fp by fp � [x2p, y] ∪ em ∪ fp � [y, x2p+1].

This change gives rise to an Eulerian loop f ′ of X distinct from f , with q−1(q(f)) ⊃ {f, f ′},
a contradiction. �

We can deduce the analogous result for the number of open Eulerian paths by the

same trick used to derive the open version of Theorem (B) from the closed version. Let

X be an open Eulerian graph-like continuum, and let v, w be the two odd vertices of X.

Add an edge connecting v and w, to get a closed Eulerian graph-like continuum Z. Apply

the preceding result to deduce Z has either finitely many distinct Eulerian loops in which

case it is a graph, or it has continuum many Eulerian loops. Removing the added edge

yields either that X is a graph or has continuum many open Eulerian paths.

Theorem 13.3.6. An open Eulerian graph-like continuum has either finitely many

distinct open Eulerian paths in which case it is a graph, or it has continuum many open

Eulerian paths.

13.4. Bruhn & Stein Parity

Let X be a graph-like continuum with vertex set V . Let v be a vertex of X. Then we

say that v has strongly even degree (respectively, strongly odd degree) if there is a clopen

neighborhood C of v such that for every clopen neighborhood A of v contained in C the

maximal number of edge-disjoint arcs from V \ A to v is even (respectively, odd). By

Lemma 13.2.1, this is well-defined. We further say that v has weakly even degree (resp.,

weakly odd degree) if v does not have strongly odd (resp. even) degree. Equivalently, v has

weakly even degree if v has a neighborhood base of clopen sets, C, so that the maximal

number of edge-disjoint arcs from V \C to v is even. And similarly for weakly odd degree.

Bruhn & Stein [39] use the same terminology for ‘strongly odd’ and ‘weakly even’ degrees,

but use ‘even’ for our ‘strongly even’ and ‘odd’ for our ‘weakly odd’.

Note that isolated vertices have finite degree by Lemma 13.2.1, so for them being even

and having strongly even degree coincide (and similarly for odd). In general, our notion

of ‘even’ and ‘odd’ vertices implies those of Bruhn & Stein. To see this, we shall need

a version of Menger’s theorem in the edge-disjoint version. That Menger-like theorems

hold for graph-like continua is not surprising, and vertex-disjoint versions of Menger have

been proved in [153]. We complement their results by the following theorem. Note that

in finite graph theory, the edge disjoint version follows from the vertex disjoint version

by applying the latter theorem to the line graph. As it is unclear, what a line-graph for

graph-like spaces should be, we need a different proof.

Theorem 13.4.1 (Menger for Graph-like Continua—Edge Disjoint Version). Let X be

a graph-like continuum. For disjoint closed sets A and B of vertices of X, the maximum

number of edge-disjoint A−B paths equals the minimum cut separating A from B.
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Proof. Let k be the size of a smallest cut separating A from B. Note that since A

and B are closed disjoint, it follows from compactness that such a cut exists, and hence

k is finite by Lemma 13.2.1. It is clear that the maximum number of edge-disjoint A−B
paths is bounded by k.

Conversely, write X as an inverse limit X = lim←Gn with simplicial bonding maps

fn : Gn+1 → Gn and simplicial projection maps πn : X → Gn. Without loss of generality,

πn(A) ∩ πn(B) = ∅ for all n. Let Tn be the (finite) space of all k-tuples of edge-disjoint

connected subgraphs of Gn that intersect both πn(A) and πn(B). By Menger’s theorem for

finite graphs, Tn 6= ∅ for all n, so Tn with natural bonding maps f̂n form their own inverse

system, which is non-empty. Taking the inverse limit in each coordinate, we obtain k edge-

disjoint subcontinua of X each intersecting both A and B. By Corollary 13.2.8, we can find

A−B paths inside each subcontinuum, which are then edge-disjoint by construction. �

Lemma 13.4.2. Let X be a graph-like continuum and v an even (resp. odd) vertex in

X. Then v has strongly even (resp. odd) degree.

Proof. Let v be an even vertex and let C be a clopen neighborhood of v such that if

A is a clopen neighborhood of v contained in C, then E(V (X)\A,A) is even. Observe that

E(V (X)\A,A) is the minimum cut separating V (X)\A from v. Hence by Theorem 13.4.1,

the maximum number of edge-disjoint paths from V (X)\A to v is equal |E(V (X) \ A,A)|
which is even. This shows that v is strongly even. �

However, in general, strongly even degree vertices need not be even.

Example. The right hand vertex in the graph-like continuum illustrated below is nei-

ther even nor odd but has strongly even degree.

If each simple circle, , in the above example is replaced with a copy of , then in the

resulting graph-like continuum the right hand vertex has strongly odd degree.

Our aim is to prove the following theorem, generalizing corresponding results of Bruhn

& Stein [39] and Berger & Bruhn [20] for Freudenthal compactifications of graphs, and

their Eulerian subspaces. Observe that this theorem can be rephrased as saying that

although not every vertex of strongly even degree must be even, if all vertices of a graph-

like continuum have strongly even degree then they are all even.

Theorem 13.4.3. A graph-like continuum is closed Eulerian if and only if all its ver-

tices have strongly even degree.
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It is an interesting open problem, whether the same conclusion holds under the assump-

tion that all vertices have weakly even degree. The forward implication of Theorem 13.4.3

follows from Lemma 13.4.2, Lemma 13.3.4 and Proposition 13.3.2. Theorem 13.4.12 es-

tablishes the converse. The plan for the proof of Theorem 13.4.12 is to establish the

contrapositive: if X is a graph-like continuum which is not closed Eulerian then it con-

tains a vertex without strongly even degree (i.e. of weakly odd degree). Lemma 13.4.5

shows how a certain sequence of regions leads to such a vertex. Now if X is a graph-like

continuum which is not closed Eulerian, then by Theorem (B) (iii) =⇒ (i), there must

be an odd cut in X. This provides the starting point for the sequence needed to apply

Lemma 13.4.5. Theorem 13.4.6 then provides the ‘Contraction Machine’ required to create

the remaining elements of the sequence.

If v and w are distinct vertices in a graph-like continuum X, and they both have

strongly odd degree, then after connecting them with a new edge they will both have

strongly even degree. Conversely if they both have strongly even degree, then after remov-

ing an edge connecting them, they will have strongly odd degree. Hence, as we deduced

the open version of Theorem (B) from the closed version, we now derive the following

characterization of open Eulerian graph-like continua.

Theorem 13.4.4. A graph-like continuum is open Eulerian if and only if it has exactly

two strongly odd degree vertices, and the rest have strongly even degree.

13.4.1. The odd-end lemma. For a clopen subset U ⊆ V (X), consider the induced

graph-like space X[U ]. We say that a clopen subset U ⊆ V (X) is a region if X[U ] is

connected. By ∂U ⊆ E(X) we denote the set of edges between the separation (U, V \ U).

This set is finite for regions U . Let us call a region U of X a k-region if |∂U | = k, and an

even or an odd region depending on whether k is even or odd.

The following lemma generalizes the corresponding lemma of Bruhn & Stein for locally

finite graphs, [39, p.7f], to graph-like continua.

Lemma 13.4.5. Let X be a graph-like continuum, and let E(X) = {e0, e1, . . .} be an

enumeration of its edges. Assume there exists a sequence of regions U0, U1, . . . of X with

the following properties:

(1) |∂Un| is odd for all n ∈ N,

(2) Un ⊃ Un+1,

(3) if D is a region of X with Un ⊃ D ⊃ Un+1 then |∂Un| 6 |∂D| for all n ∈ N, and

(4) en /∈ E[Un+1].

Then X has a vertex which has weakly odd degree.

Proof. Since A =
⋂
n∈NX[Un] is a nested intersection of continua by (2), it is non-

empty and connected. It follows from (4) that A ⊆ V (X), so A = {v} for some vertex v,
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since V (X) is totally disconnected. Furthermore, compactness implies that {Un : n ∈ N}
is a neighborhood base for v in V (X).

Property (3) together with Theorem 13.4.1 shows that for all Un the maximal number

of edge disjoint arcs from V \ Un to v equals |∂Un|, so is odd by (1). Since the Un form a

neighborhood base, it follows that v has weakly odd degree. �

13.4.2. The contraction machine. Suppose we have an odd region U0. We want

to construct a sequence as in Lemma 13.4.5. If we recursively choose an odd region

Un+1 of minimal |∂Un+1| amongst all odd regions contained in Un, then (1) and (2) are

fine, and property (3) is satisfied at least for all odd regions D nested between Un and

Un+1. Following Bruhn & Stein’s idea [39], our plan for evading all even regions D with

|∂D| < |∂Un| nested between Un and Un+1 is roughly as follows: first, we contract all even

regions D ⊆ Un with boundary smaller than |∂Un| to single points. Only then do we pick

our region Un+1. After uncontracting, this means that every small even region lies either

behind Un+1, or is completely disjoint from Un+1.

The next result formalizes this idea for contracting regions.

Theorem 13.4.6 (Contraction Theorem). Let X be a graph-like continuum such that

all isolated vertices are even. Suppose further that U ⊆ X is an odd region of X such that

for some even m > 0, there is no infinite k-region with k < m of X contained in U .

Then there is a collection M of disjoint regions of U such that after contracting every

element of M to a single point, the graph-like continuum X/M, with associated (mono-

tone) quotient map π : X → X/M, has the property that

(i) all isolated vertices of X/M are even,

(ii) there are no infinite k regions with k 6 m contained in the region π(U) ⊆ X/M,

and

(iii) if D ⊆ U is an `-region of X, then there is an 6 `-region D′ ⊆ π(U) such that

|π(D) \D′| <∞.

We divide the proof into a sequence of lemmas. For two subsets A,B ⊆ X, say that

A splits B, or B is split by A, if A ∩B 6= ∅ 6= B \ A.

Lemma 13.4.7. Let X be a graph-like continuum, and U ⊆ X a region. Let R, S1, . . . , Sn
be infinite m-regions contained in U , where S1, . . . , Sn are pairwise disjoint and |R \⋃
i6n Si| =∞.

If there is no infinite k-region with k < m of X contained in U , then there is an

m-region R̃ which doesn’t split any Si such that |R \ (
⋃
i6n Si ∪ R̃)| <∞.

For the proof we need the following lemma, which can be proven, as for graphs, by a

simple double-counting argument.



13.4. BRUHN & STEIN PARITY 311

Lemma 13.4.8. Let X be a graph-like space, and Y, Z ⊆ V (X) clopen subsets. Then

|∂Y |+ |∂Z| > max {|∂(Y ∩ Z)|+ |∂(Y ∪ Z)|, |∂(Y \ Z)|+ |∂(Z \ Y )|}.

Proof of Lemma 13.4.7. Without loss of generality, assume that S1 is split by R,

i.e. that R∩S1 6= ∅ 6= S1 \R. We claim that one of S1 ∪R or R \S1 is an m-region. They

are clearly clopen subsets of vertices of X.

Otherwise, since S1∪R and R\S1 are infinite, we have |∂S1 ∪R| > m and |∂R \ S1| >
m. Thus, Lemma 13.4.8 implies that |S1 \R| < m and |S1 ∩R| < m, so both regions are

are finite, contradicting that S1 is infinite.

Hence, one of S1 ∪R or R \ S1 is has a boundary of size m, and they can’t be discon-

nected, as otherwise their components had to be finite. Now put R′ to be either one of

them, whichever was the m-region. Then R′ splits strictly fewer Si than R, but covers the

same set together with the Si. Thus, we may pick R̃ to be such that it splits the fewest

number of Si, subject to the condition that |R \ (
⋃
i6n Si ∪ R̃)| < ∞. By the preceding

argument, it follows that R̃ does not split any of the Si. �

Let X be a graph-like continuum, and U ⊆ X a region. Assume there is no infinite

k-region with k < m of G contained in U . Let R = {Rn : n ∈ N} be an enumeration of all

infinite m-regions of G contained in U . Since each Ri is faithfully represented by the finite

cut ∂Ri ⊆ E, and E is countable, there are indeed at most countably many such regions.

Below we write S 4 S ′ if S is a refinement of S ′, i.e. for all S ∈ S there is S ′ ∈ S ′ such

that S ⊆ S ′.

Lemma 13.4.9. For every n ∈ N there are finite collections Sn ⊆ R of disjoint m-

regions of U such that

(1) for all Rj with j 6 n we have |Rj \
⋃
Sn| <∞, and (2) Sn 4 Sn+1.

Construction. We begin with S0 = {R0}. Suppose Sn ⊆ R has been found satis-

fying the above properties. Applying Lemma 13.4.7 with Rn+1 and the collection Sn, we

obtain an infinite m-region R̃n+1. We claim that Sn+1 = {R̃n+1}∪{S ∈ Sn : S∩R̃n+1 = ∅}
is as desired. Indeed, by construction, Sn+1 covers Rn+1 up to finitely many vertices; and⋃
Sn ⊆

⋃
Sn+1, so we preserved the covering properties of earlier stages. �

We would like to contract the ‘maximal’ m-regions (with respect to inclusion) contained

in S =
⋃
Sn. However, for graph-like continua, there can be infinite non-trivial chains in

S. Still, for any such chain S0 ( S1 ( S2 ( · · · of m-regions, we can contract a suitable

collection of disjoint even regions such that after contraction, all Sn are finite. Our plan

is to contract S0, and each component of Sn+1 \ Sn, to a single point for all n ∈ N. Our

next lemma provides the details for the second case.

Lemma 13.4.10. Let X be a graph-like continuum, and U ⊆ X a region. Assume there

is no infinite k-region with k < m of G contained in U .
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If S ( R are infinite m-regions contained in U , then X[R\S] has at most m connected

components, and every such component is an even region of X.

Proof. Note that since X[R] is path-connected, it follows that every component of

X[R \ S] has to limit onto an end vertex of some e ∈ ∂S. Thus, X[R \ S] has at most

|∂S| = m components. In particular, every component is clopen in X[R \ S], and hence a

region of X.

To see that ∂(R \ S) is even, consider the graph induced by the multi-cut (S,R\S, V \
R). This graph has two even vertices, namely {S} and {V \R}. So by the Handshaking

Lemma, also the last vertex is even, i.e. R \ S induces an even cut. Moreover, since in

the contraction graph, both {S} and {V \R} have degree m, it follows that the third

vertex has the same number of edges to {S} and to {V \R}. In other words, we have

|∂(R \ S) ∩ ∂R| = |∂(R \ S) ∩ ∂S|.
Let C denote the vertex set of one such component. It follows that in order to establish

that C is an even region, it suffices to show that

|∂C ∩ ∂R| > |∂C ∩ ∂S|.(31)

Indeed, once we know that (31) holds for every component C, then |∂R| = m = |∂S| gives

equality in (31). To see that (31) holds, note that if |∂C ∩ ∂R| < |∂C ∩ ∂S|, then we see

that |∂(S ∪ C)| < m, so this is a finite region, contradicting that S was infinite. �

We now collapse all maximal m-regions in S =
⋃
Sn, and for every infinite proper

chain in S we perform the above contractions. Write M for the disjoint collection of

even regions we contract. Write qM : V (X) → V (X/M), which extends to a continuous

(monotone) quotient map on X → X/M (where we also contract all potential loops),

which we also call qM. Note that since we contracted regions of a compact space, the map

qM : X → X/M is a closed, monotone map. In particular, this implies that preimages of

regions are regions, see Theorem 9 of [107].

Proof of Theorem 13.4.6. First, to see that X/M is still a graph-like continuum,

note that our countable familyM forms a null-sequence of clopen sets by Corollary 13.2.8.

It follows from the fact that if X is separable metrizable, and A = {An : n ∈ N} a null-

sequence of non-empty compact subsets of X, then X/A is separable metrizable, [158,

A.11.6], that X/M is a continuum. Further, it is graph-like, because its vertex set

V (X)/M is totally disconnected: If there was any non-trivial connected set C ⊆ V (X/M),

then C cannot contain contracted vertices (they are isolated), so C ⊆ V (X) is non-trivial

connected, contradiction.

Item (i), that every isolated vertex of X/M is even, follows from Lemma 13.4.10, as

we only contracted even regions.

For (ii), that all m-regions of X/M contained in π(U) are finite, note that for any

such m-region D of X/M, the clopen vertex set D′ = π−1(D) is an m-region of X. If D′



13.4. BRUHN & STEIN PARITY 313

was infinite, then D′ appears in our list, so is covered by some finite Sn. Consider S ∈ Sn.

Note that S either gets contracted to a single point, or S appears in an infinite chain with

at most n predecessors, in which case we contract S to at most (m · n + 1)-many points.

It follows that D′ gets contracted to finitely many points, i.e. D is finite.

For (iii), letD be an `-region ofX. There are at most `many elementsM1, . . . ,M` ∈M
such that ∂D ∩ E[Mi] 6= ∅. Now if D ⊆ Mi for some i then it is clear that π(D) is finite.

Otherwise, choose disjoint m-regions Si ⊃ Mi in S. We claim that either D̃ = D ∪ S1 or

D̃ = D\S1 is an6 `-region. Otherwise, it follows from Lemma 13.4.8 that |∂(D ∩ S1)| < m

and |∂(S1 \D)| < m. So S1 is finite, a contradiction. Continue with the other Si. This

gives us an 6 `-region D′, which differs from D by finitely many S ∈ S. �

13.4.3. Chasing odd regions. After having established Theorem 13.4.6, the proof

now proceeds essentially as in [39]. We need one more simple lemma.

Lemma 13.4.11. A graph-like continuum in which all isolated vertices are even does

not contain finite odd regions.

Proof. If A = {v1, . . . , vn} ⊆ V (X) is a finite region, consider the finite graph induced

by the multi-cut (V \A, {v1}, . . . , {vn}). Since all vertices vi are even, it follows from the

Handshaking Lemma that also {V \ A} must be even. �

Theorem 13.4.12. A graph-like continuum is Eulerian if all its vertices have strongly

even degree.

Proof. Assume X is not Eulerian. To prove the contrapositive we show X contains

a vertex without strongly even degree. If some isolated vertex does not have (strongly)

even degree then we are done. So assume all isolated vertices of X are even. We construct

a sequence of graph-like continua X = X0, X1, . . . such that

(a) X0
π1−→ X1

π2−→ X2
π3−→ · · · are successive quotients with monotone open quotient

maps πn, and write fn = πn ◦ πn−1 ◦ · · · ◦ π1,

(b) all Xn have the property that all isolated vertices are even,

(c) there are regions Vn ⊆ Xn such that

(1)′ |∂Vn| is odd for all n ∈ N,

(2)′ πn+1(Vn) ⊃ Vn+1,

(3)′ any `-region of X gets contracted to a 6 `-region of Xn modulo finitely many

isolated vertices; and any k-region of Xn contained in Vn with k < |∂Vn| gets

contracted to finitely many vertices in Xn+1,

(4)′ en /∈ E[Vn+1].

Before describing the construction, let us see that that Un = f−1
n (Vn) defines regions

satisfying the requirements of Lemma 13.4.5, and so X has a vertex which does not have

strongly even degree, as desired.
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Indeed, as inverse images under monotone closed maps, they are connected, and hence

regions in X. Next, it is easy to check that (1)′ ⇒ (1), (2)′ ⇒ (2) and (4)′ ⇒ (4). Finally,

to see (3), i.e. that Un+1 does not lie behind some region D of Un with small |∂D|, note

that by (3)′, this region D would have been contracted to finitely many points in Xn+1,

and hence Vn+1 would be finite, which is a contradiction by (b) and Lemma 13.4.11.

Now towards the construction of our sequence X0, X1, . . . with (a)–(c). First, since

X = X0 is not Eulerian, it has an odd cut. By choosing V0 = U0 to be an odd region of X

such that |∂U0| is minimal, we see that V0 is as desired. Now suppose we have constructed

Vn ⊆ Xn according to (a)–(c). Put mn+1 = |∂Vn| − 1.

Recursively, apply Theorem 13.4.6 with graph-like continuum X(k) and region qk ◦ · · · ◦
q1(Un) to obtain graph-like continua Xn = X(mn) � X(mn+1) � · · · � X(mn+1) = Xn+1

with corresponding monotone quotient maps qk : X(k−1) → X(k) for all even 0 < k 6 m.

Define πn+1 = qmn+1 ◦ · · · ◦ qmn+1 : Xn → Xn+1.

Note that Theorem 13.4.6(i) implies (b), and (ii) and (iii) imply (c)(3)′. We now want

to find an odd cut V ⊆ πn+1(Vn) such that en /∈ E(V ). Towards this, note that fn+1(en) is

either an isolated vertex v of Xn+1, or fn+1(en) is an edge with end vertices say x and y in

Xn+1. Find a multi-cut V of πn+1(Vn) into regions which either displays v as a singleton,

or contains x and y in different partition elements. By Lemma 13.3.3, there is an odd

region V ∈ V . Since isolated vertices of Xn+1 are even, V is not the singleton {v}. In the

other situation, note that in the induced graph G(V), the edge fn+1(en) is displayed as

cross edge. In either case, we have en /∈ E(V ).

Finally, amongst all odd regions of Xn contained in V pick any odd region Vn+1 ⊆ V

such that |∂Vn+1| is minimal. This choice satisfies items (1)′, (2)′ and (4)′. �



CHAPTER 14

Eulerian spaces

We develop a unified theory of Eulerian spaces by combining the combinatorial

theory of infinite, locally finite Eulerian graphs as introduced by Diestel and

Kühn with the topological theory of Eulerian continua defined as irreducible

images of the circle, as proposed by Bula, Nikiel and Tymchatyn.

First, we clarify the notion of an Eulerian space and establish that all com-

peting definitions in the literature are in fact equivalent. Next, responding to

an unsolved problem of Treybig and Ward from 1981, we formulate a combi-

natorial conjecture for characterising the Eulerian spaces, in a manner that

naturally extends the characterisation for finite Eulerian graphs. Finally, we

present far-reaching results in support of our conjecture which together sub-

sume and extend all known results about the Eulerianity of infinite graphs and

continua to date. In particular, we characterise all one-dimensional Eulerian

spaces.

14.1. Introduction

14.1.1. The Eulerian Problem. An old, well-known quest in graph theory is to find

a natural generalisation for the concept of Eulerian walks to infinite graphs. An equally

old problem in topology is to find a theory that allows additional control over space-filling

curves from the circle in the form of strongly irreducible maps. We show in this paper

that these seemingly unrelated strands of research represent two sides of the same coin,

and develop a general theory of Eulerian spaces that combines these combinatorial and

topological research efforts into a single, unified framework.

There are two main motivations for investigating generalised Eulerian spaces. First,

the combinatorial one: recall that a finite multi-graph is Eulerian if it admits a combi-

natorial Euler tour, a closed walk that contains every edge of the graph precisely once.

Euler showed, in what is commonly considered the first theorem of graph theory and fore-

shadowing topology, that a finite connected multi-graph is Eulerian if and only if every

vertex has even degree. See [23] for a historical account of Euler’s work on this problem.

An equivalent characterisation of connected Eulerian graphs, the importance of which was

first realised by Nash-Williams [123], is that every edge cut is even. An edge cut of a

graph G = (V,E) is a set of edges F ⊆ E crossing a bipartition (A, V \A) of the vertices

V , in other words, the set of edges with one endvertex in A and the other outside A.

315
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There have been numerous attempts to generalise these results to infinite graphs, see

for example [67, 123, 124, 140, 139, 112]. Since combinatorial Euler tours are inherently

finite objects, these attempts focused rather on constructing decompositions of such graphs

into cycles or collections of two-way infinite walks, sacrificing the intuitive appeal that

an Euler tour should return to its start vertex. However, for locally finite graphs, an

alternative solution has recently been found by Diestel & Kühn in 2004 [56] which elegantly

restores this intuitive appeal: recall that every graph G naturally turns into a topological

space by interpreting each edge as an arc between its endpoints, and each combinatorial

Euler tour corresponds naturally to a continuous surjection from the circle S1 to the

space G which continuously traverses through the edge-arcs in the order prescribed by the

combinatorial walk, henceforth called an edge-wise Eulerian map. Diestel and Kühn now

call an infinite, locally finite (multi-)graph Eulerian, if there is such an edge-wise Eulerian

surjection from S1 onto the Freudenthal compactification of the graph (formalising the

idea that if the Euler tour disappears in some direction towards infinity, then it should

again return from that very direction). In this setting, they were able to show that a

connected multi-graph is Eulerian if and only if each of its finite edge cuts is even, thus

generalising the second of the characterising conditions from the finite case to infinite,

locally finite graphs.

Looking at this result, it seems natural to wonder about Eulerianity in other naturally

occurring compactifications of locally finite graphs, which give a more refined meaning

for a ‘direction towards infinity’, for example Gromov compactifications of locally finite

hyperbolic graphs, or metric completions of edge-length graphs [81], and the work pre-

sented here started out investigating whether for instance compactifications of locally finite

graphs with a circle as boundary at infinity are Eulerian in this sense.

Figure 14.1. Three hyperbolic Eulerian structures.

Here we meet our second, topological motivation: by the Hahn-Mazurkiewicz Theo-

rem, a space is the continuous image of the circle if and only if it is a Peano continuum –

a compact, metrisable, connected and locally connected space. Originating with Hilbert’s

observation (1891) [96] that the square is a continuous image of the circle so that each
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point is visited at most three times, the natural question arises which properties beyond

‘Peano’ are needed to guarantee the existence of well-behaved such continuous surjections.

Achieving additional control over the surjections from the circle, however, is a notorious

open problem in continuum theory discussed, for example, in Nöbling (1933) [132], Har-

rold (1940, 1942) [92, 93], Ward (1977) [162], Treybig & Ward (1981) [155, §4], Treybig

(1983) [154], and Bula, Nikiel & Tymchatyn (1994) [41]. The latter six authors were

particularly interested in the existence of strongly irreducible maps from the circle, con-

tinuous surjections g : S1 → X such that for any proper closed subset A ( S1 we have

g(A) ( g(S1). It may not be immediately clear how the property of being strongly irre-

ducible is related to Eulerianity. But using the intermediate value theorem, it is an easy

exercise to verify that a strongly irreducible map from S1 onto a finite multi-graph G must

sweep through each edge of the graph precisely once without stopping or turning. Hence,

a finite graph is Eulerian if and only if it is a strongly irreducible image of the circle. This

suggests a second natural candidate for calling an arbitrary Peano continuum Eulerian,

namely if it is the strongly irreducible image of the circle.

In this paper we achieve the following goals:

(1) formalise the notion of an Eulerian continuum – all competing definitions in the

literature are fortunately shown to be equivalent;

(2) formulate a conjecture for characterising the Eulerian Peano continua, in a manner

that naturally extends Nash-Williams’s condition, and which can be extended to

a characterisation in the spirit of Euler; and

(3) present far-reaching results in support of our conjecture, confirming it in particular

for all one-dimensional Peano continua.

14.1.1.1. Eulerianity. Taking our cue from Bula, Nikiel and Tymchatyn [41], we say

a space X is Eulerian if it is a strongly irreducible image of the circle, so there is a

continuous surjection g : S1 → X such that for any proper closed subset A ( S1, we have

g(A) ( g(S1) = X. We also refer to such a map as an Eulerian map.

Extending Diestel & Kühn’s definition [56], let us say a space X is edge-wise Eulerian

if there is a continuous map of S1 onto X which sweeps through each free arc of X exactly

once. Here a free arc is any inclusion-maximal open subset homeomorphic to (0, 1), and

by ‘sweeps once through a free arc’ we mean a map such that the preimage of every point

in a free arc is a singleton. We also refer to such a map as an edge-wise Eulerian map.

As remarked earlier, every Eulerian map from S1 onto a space X is edge-wise Eulerian.

The converse, however, does not hold on the level of individual functions. Still, as our

main result in Chapter 14.2, we establish that a space is edge-wise Eulerian if and only

if it is Eulerian. The added flexibility of edge-wise Eulerian over Eulerian maps is conve-

nient for constructions, and Chapter 14.3 continues with the development of a versatile

framework to establish their existence, which we call approximating sequences of Eulerian
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decompositions. Overall, our main results on the different concepts of Eulerian spaces can

be summarised as follows.

Theorem 14.1.1. For a Peano continuum X, the following are equivalent:

(i) X is Eulerian,

(ii) X is edge-wise Eulerian, and

(iii) X admits an approximating sequence of Eulerian decompositions.

The first equivalence (i) ⇔ (ii) is the topic of Chapter 14.2, and relies on a function

space Baire category argument. The second equivalence (ii)⇔ (iii) is the topic of Chap-

ter 14.3, and combines the classical strategy of the Hahn-Mazurkiewicz Theorem with

inverse limit methods developed by Espinoza and the authors in [70].

14.1.1.2. The conjecture. Let X be a Peano continuum. As above a free arc is an

inclusion-maximal open subset of X homeomorphic to (0, 1). We think of free arcs as

being the ‘edges’ of X. Write E = E(X) for the collection of edges of X. For a subset

F ⊆ E, we write for brevity X − F := X \
⋃
F . The ground-space of X is the (compact

metrisable) space G(X) := X −E. Every edge of a Peano continuum has two end points,

which may agree, in which case the edge is a loop. An edge cut of a Peano continuum

X is a non-empty set F ⊆ E(X) of edges crossing a partition A ⊕ B of G(X) into two

disjoint clopen subsets A and B. In this case, we also write F = E(A,B). Every edge cut

of a Peano continuum is finite. (See Section 14.1.3.1 for a record of basic results on edge

cuts.) With this set-up, we conjecture that Nash-Williams’s edge cut characterisation of

finite Eulerian graphs extends to all Peano continua:

Conjecture 14.1.2 (The Eulerianity Conjecture).

A Peano continuum X is Eulerian if and only if every edge cut of X is even.

We also say that X satisfies the even-cut condition or has the even-cut property. The

condition that an Eulerian continuum has the even-cut property is clearly necessary: if g

is an (edge-wise) Eulerian map for X, and F is the set of edges crossing a disconnection

A⊕B of G(X), then consider g as a ‘path’ with start and end point in A, and observe that

g must sweep through the edges of F in pairs, from A to B and then back. Also note that

an affirmative answer to the conjecture implies the truth of (i)⇔ (ii) in Theorem 14.1.1.

When X is the space underlying a finite multi-graph G, then, suppressing vertices of

degree two, the edges of X (free arcs) correspond to edges of G, and the ground space of

X corresponds to the vertex set of G. Hence our conjecture naturally encompasses the

second characterisation for finite Eulerian graphs. Also, Diestel and Kühn’s Eulerianity

result [56, Theorem 7.2] for the Freudenthal compactification FG of a connected, locally

finite graph G mentioned above falls under the scope of Conjecture 14.1.2: the ground

space of FG consists of all vertices and ends of G, and edge cuts of FG correspond precisely



14.1. INTRODUCTION 319

to the finite edge cuts of G.1 The same holds for Georgakopoulos’s [80] extension of this

result to standard subspaces of Freudenthal compactifications of locally finite graphs.

For Peano continua, Harrold [92] showed in 1940 that every Peano continuum without

free arcs is Eulerian,2 and in 1994, Bula, Nikiel and Tymchatyn [41, Theorem 3, Example 2]

showed that every Peano continuum obtained by adding a dense collection of free arcs to

a Peano continuum is Eulerian.3 Both results are are in line with Conjecture 14.1.2, as

with connected ground spaces, these examples have no edge cuts whatsoever, and so the

even-cut condition is trivially satisfied. In the same paper, Bula, Nikiel and Tymchatyn

settled when so-called ‘completely regular’ continua are Eulerian. Call a continuum graph-

like4 if its ground space is zero-dimensional, see [30, 49, 153]. In [70], Espinoza and the

authors showed that a continuum is graph-like if and only if it is completely regular, and

equivalently, if and only if it is a standard subspace of the Freudenthal compactification

of a locally finite, connected graph. Hence, also these spaces fall under Conjecture 14.1.2.

14.1.1.3. Towards the Eulerianity conjecture. All previously known cases for Conjec-

ture 14.1.2 fall under the dichotomy that there are either no free arcs at all, or the free

arcs are dense. Our first result towards Conjecture 14.1.2, which we call the ‘reduction

theorem’, clears the middle ground: the problem of establishing the Eulerianity Conjec-

ture for a given space can always be reduced to a space with the same ground space in

which the edges are dense. For brevity, such a Peano continuum in which the edges are

dense will also be called a Peano graph. Note that Peano graphs are precisely the spaces

that can be obtained as Peano compactifications of countable, locally finite graphs.

Theorem 14.1.3 (Reduction Result). If the Conjecture 14.1.2 holds for all [loopless ]

Peano graphs, then it holds in general.

This result is proved in Theorems 14.2.12 and 14.2.14. The class of Peano graphs is

still surprisingly complex: in Theorem 14.2.5 we observe that there is no restriction on

the possible ground spaces of an (Eulerian) Peano graph. Our remaining results establish

Conjecture 14.1.2 for three large classes of Peano continua, which together subsume and

extend every result known about the Eulerianity of infinite graphs and of continua to date.

Theorem 14.1.4. Conjecture 14.1.2 holds for every Peano continuum whose ground

space

1For every finite edge cut E(A, V \ A) of the graph G, the properties of the Freudenthal compactifi-

cation guarantee that A and V \A have disjoint closures in FG, and so EG(A, V \A) = EFG(A, V \A).
2To be precise, Harrold has shown in [92] that Peano continua in which the non-local separating points

are dense are strongly irreducible images of I and S1. However, this condition is equivalent to not having

free arcs, as remarked in Harrold’s later paper [93].
3As stated, [41, Theorem 3] excludes edges which are loops, but this assumption is unnecessary.
4This notion of ‘graph-like’, by now firmly established in graph theory, is not to be confused with the

notion of arc-like, tree-like and graph-like in continuum theory, which we shall not use in this paper.
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(A) consists of finitely many Peano continua, or

(B) is homeomorphic to a product V ×P , where V is zero-dimensional and P a Peano

continuum, or

(C) is at most one-dimensional.5

Indeed, the main results of Harrold [92] and Bula-Nikiel-Tymchatyn [41, Theorem 3]

follow either from (A) (where the ground space is a single Peano component, and the free

arcs are either absent or dense) or (B) (by taking V to be a singleton). Diestel and Kühn’s

results for Freudenthal compactifications of graphs, and the results about graph-like spaces

from [70] are covered either by (B) (by taking P to be a singleton) or indeed (C).

However, (C) goes significantly beyond these results. Consider for example hyperbolic

groups with one-dimensional boundaries, whose Gromov boundaries, provided the groups

are one-ended, are either homeomorphic to S1, the Sierpinski carpet, or to the Menger

curve [98, Theorem 4]. Interestingly, ‘generic’ finitely presentable groups are hyperbolic

and have the Menger curve as boundary [46], thus falling once again under (C). A geo-

metrically interesting class of spaces with S1 boundary is given by the regular tessellations

T (n, k) of the hyperbolic plane where precisely k regular n-gons surround each vertex (for
1/k + 1/n < 1/2). Since S1 is connected, edge cuts in these spaces can only contain finitely

many vertices on one side, so (C) implies that T (n, k) is Eulerian if and only if k is even.

Figure 14.2. The spaces X and Y with ground-space in black and edges in red.

Our result (B) answers an open question in the literature, namely (a variant of) [41,

Problem 3]. Its strength lies in supporting Conjecture 14.1.2 by providing non-trivial

affirmative examples in all dimensions. To illustrate (B), consider the ‘fractal’ spaces X

and Y with ground-space G(X) = G(Y ) = C × [0, 1] in Figure 14.2. Both spaces X

and Y clearly satisfy the even-cut condition and so are Eulerian by (B). Alternatively,

due to the fractal nature of these specific examples, it is possible in both cases to give

a geometric, recursive definition of an (edge-wise) Eulerian map in the spirit of Hilbert

[96]. For a different example in which the free arcs are not necessarily dense, consider a

Peano continuum X with ground-space a convergent sequence of unit squares, G(X) =

(ω + 1)× I2, satisfying the even-cut condition.

5Equivalently: the Eulerianity Conjecture holds for all one-dimensional Peano continua.
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. . .

Figure 14.3. A Peano continuum satisfying the even-cut condition with

ground space a convergent sequence of squares. Local connectedness implies

that endpoints of edges are dense in the right limit square.

All three results in Theorem 14.1.4 rely on our earlier equivalences for Eulerianity given

in Theorem 14.1.1. First, (A) follows from an appealing application of the equivalence

(i)⇔ (ii) in Theorem 14.1.4, and will be given, after introducing a modicum of notation,

right at the end of the introduction in Section 14.1.3.3.

The other two results, (B) and (C), utilise the implication (iii)⇒ (i) of Theorem 14.1.1,

and, being rather more involved, occupy the final two chapters of this paper, Chapter 14.4

and 14.5. As indicated, for both cases the objective is, relying on nothing but the even-

cut property, to construct an approximating sequence of Eulerian decompositions for these

spaces, in other words, to show that the even-cut condition implies property (iii). Carrying

out this program requires a combination of powerful techniques from both topology and

graph theory. Topologically, we rely on Bing’s [24, 25, 26] and Anderson’s [7] theory of

brick partitions, widely regarded as the single most effective structural tool in the theory

of Peano continua. Combinatorially, we rely on the the cycle space theory for locally

finite graphs developed in the past 15 years by Diestel et al., see [53] for a survey, and its

extension to graph-like spaces developed in [30, 70]. Roughly, these ingredients are then

combined as follows: first, brick partitions are used to supply a preliminary decomposition

of our spaces, whose parts are then carefully modified using combinatorial tools in order

to gain control over the edge cuts of the individual parts.

(4) Open problems. The main open problem is to establish Conjecture 14.1.2 for all

Peano continua. Motivated by the naturally occurring examples of hyperbolic boundaries,

interesting partial results may be about Peano compactifications of locally finite graphs

with remainder homeomorphic to S2, S3 and generally Sn, and we hope that these ex-

amples can also be approached using our theory of approximating sequences of Eulerian

decompositions. Slightly more general, a result saying that all 2-dimensional Peano graphs

satisfy Conjecture 14.1.2 would be welcome, and might be in reach once the S2 case has

been settled.
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14.1.2. Related Conjectures for the Eulerian Problem.

14.1.2.1. Equivalent conjectures. While calling the free arcs of a Peano continuum X

‘edges’, the points of G(X) = X−E(X) should generally not be considered the ‘vertices’ of

X. Instead the ‘vertices’ of X correspond to the connected components of G(X). Let X∼
denote the quotient of X where we collapse, one by one, each component of the ground

space G(X) to a point. Note that X∼ is a continuum with E(X∼) = E(X) and has

zero-dimensional ground-space. In other words, the continuum X∼ is a graph-like Peano

continuum. Moreover, every edge cut of X corresponds to an edge cut of X∼ and vice

versa. Since we know from [70] that graph-like continua are Eulerian if and only if they

satisfy the even-cut condition, the following is equivalent to the Conjecture 14.1.2:

Conjecture 14.1.5.

A Peano continuum X is Eulerian if and only if X∼ is Eulerian.

Since points in a Peano continuum other than a finite graph may have infinite order,

the definition of when a point has ‘even degree’ is problematic. Note that these difficulties

for generalising Euler’s characterisation of Eulerian graphs occur already in the case of

locally finite graphs, cf. [39, Fig. 2] and [20]. Nevertheless, from [70] we know that a

graph-like continuum Y is Eulerian if and only if every point y ∈ G(Y ) has even degree

in the sense that there exists a clopen neighbourhood A of y in G(Y ) such that for every

clopen subset B of G(Y ) with y ∈ B ⊆ A, the edge cut E(B,G(Y ) \ B) is even. Thus

another equivalent version of Conjecture 14.1.2 is that:

Conjecture 14.1.6.

A Peano continuum X is Eulerian if and only if every vertex of X∼ has even degree.

14.1.2.2. Circle decompositions. Recall that another classical characterisation of finite

Eulerian multi-graphs, due to Veblen, is that the edge set of the graph can be decomposed

into edge-disjoint cycles, see [54, 1.9.1]. Accordingly, let us say that the edge set of a Peano

continuum X can be decomposed into edge-disjoint circles if there is a collection of edge-

disjoint copies of S1 contained in X such that each edge of X is contained in precisely one of

them. Generalising the corresponding equivalence for graphs due to Nash-Williams [123],

we shall prove in Theorem 14.5.15 that a Peano continuum has the even-cut property

if and only if its edge set can be decomposed into edge-disjoint circles. Consequently,

another equivalent version of Conjecture 14.1.2 is that:

Conjecture 14.1.7. A Peano continuum is Eulerian if and only if its edge set can

be decomposed into edge-disjoint circles.

14.1.2.3. Open Eulerian spaces. A finite multi-graph is open Eulerian if there is a

walk starting and ending at distinct vertices, using every edge of the graph precisely once.

The open Eulerian multi-graphs are precisely the connected graphs for which all but two
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vertices have even degree. A Peano continuum X is open Eulerian if it is the strongly

irreducible image of a map from the unit interval I = [0, 1]. Let x 6= y ∈ X, and let Xxy

denote the Peano continuum where we add a new free arc from x to y. Then X is open

Eulerian from x to y if and only if Xxy is Eulerian. Thus, Conjecture 14.1.2 may be used

to characterise open Eulerian spaces. Moreover, applying the degree characterisation from

[70] when a graph-like continuum is open Eulerian, the following is again equivalent, via

the Xxy construction, to Conjecture 14.1.2:

Conjecture 14.1.8.

A Peano continuum X is open Eulerian if and only if all but two vertices of X∼ have

even degree.

To our knowledge, this conjecture is the first attempt to put forward a proposal for

the characterisation of open Eulerian continua and, if correct, would provide a complete

answer to [155, Problem 3]. Interestingly, if a Peano continuum X is open Eulerian from x

to y for x, y ∈ G(X), then Conjecture 14.1.2 predicts that X is also open Eulerian from x′

to y′ for all x′ (respectively y′) that lie in the same component of G(X) as x (respectively

y).

14.1.2.4. The Bula-Nikiel-Tymchatyn conjecture. Our conjecture is not the only con-

tender to characterise Eulerian continua. Bula et al [41] have proposed an alternative,

which is, however, difficult to verify in concrete cases, and implied by Conjecture 14.1.2.

A point x of a Peano continuum X is said to be locally separating if there is a connected

open subset U of X such that U \ {x} is disconnected. The set N(X) denotes the set of

all x in X such that x is not locally separating in X. By YX denote the quotient of X

where we collapse every component of N(X) to a single point. By [41, Theorem 2], if

YX is non-trivial then it is a (cyclically completely regular) Peano continuum, and if X is

Eulerian then so is YX . The following is from [41, Problem 1]:

Conjecture 14.1.9 (Bula, Nikiel & Tymchatyn).

A Peano continuum X is Eulerian if and only if YX is Eulerian.

Since interior points of edges are locally separating, and G(X) is closed, we have

N(X) ⊆ G(X), and hence (YX)∼ = X∼. In particular, edge cuts of YX are in bijective

correspondence with edge cuts of X, and hence the truth of Conjecture 14.1.5 implies the

truth of Conjecture 14.1.9. Furthermore, the difference between the two conjectures is

not simply formal, as the two quotient spaces YX and X∼ may differ: fix a finite tree T

and add to it a dense, zero-sequence of loops. Denote the resulting Peano continuum by

X, and note that G(X) = T . Since T is connected, X∼ is a Hawaiian earring. However,

as every point of T apart from the finitely many leaves remains locally separating in X,

we have X = YX . For a more interesting example where YX and X∼ differ, consider a

topological sine curve Z. Form a Peano continuum X with G(X) = Z by first adding a
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dense collection of loops to Z (to guarantee G(X) = Z), and then also adding a nowhere

dense collection of free arcs between points on the sine function-graph and points on the

y-axis of Z (to make X locally connected). Again, X∼ is the Hawaiian earring, but YX is

an interval with a dense collection of free arcs, since N(X) corresponds precisely to the

y-axis of Z.

14.1.2.5. Further consequences. Harrold has shown, generalising a result by Nöbling

[132], that every Peano continuum X is the image of a map g : S1 → X that sweeps

through every free arc at most twice, [93, Theorem 1 ff.]. We observe here that this result

is implied by Conjecture 14.1.2: for an arbitrary Peano continuum X, let X̂ denote the

space where we add for each edge e of X one additional parallel edge ê. Then X̂ is again a

Peano continuum (compare with Lemma 14.1.13 below) which now satisfies the even-cut

condition. Hence, there is an Eulerian map ĝ : S1 → X̂ that sweeps through every free arc

of X̂ precisely once. But then it is clear that ĝ naturally induces a map g : S1 → X that

uses the original edge e a second time instead of ê for each e ∈ E(X). By construction, g

has the desired property that it sweeps through every free arc of X precisely twice.

14.1.3. Notation and Essentials. Throughout this paper, all topological spaces are

metrisable, and all maps are continuous. A continuum is a compact connected metrisable

space, a Peano continuum is a continuum which is locally connected, and a Peano graph

is a Peano continuum in which the edges are dense. We write N = {0, 1, 2, . . .} and

[n] = {1, 2, . . . , n} for n ∈ N. If A is a subset of the domain of a function g, then we

denote by g � A the restriction of g to A.

Let (X, d) be a metric space, and A,B ⊆ X and A a family of subsets of X. We use

A t B to denote disjoint union. A clopen partition of a space V is a partition of V into

pairwise disjoint clopen subsets. If V is compact, then any clopen partition is finite, and

we denote by Π(V ) the collection of clopen partitions of V . For ε > 0, let Bε(x) denote

the open ε ball around x. Further, we write dist(A,B) = inf {d(a, b) : a ∈ A, b ∈ B},
diam(A) := sup {d(a, b) : a, b ∈ A}, and mesh(A) := sup {diam(A) : A ∈ A}. Let X be a

metrisable compactum. Then A is said to be a null-family, if for any ε > 0, the collection

{A ∈ A : diam(A) > ε} is finite. By compactness, this does not depend on the metric for

X. Any null-family A contains only countably many non-singleton sets. A countable

null-family A is said to be a zero-sequence. This is equivalent to saying that whenever an

enumeration A = {A1, A2, . . .} is chosen, then diam(An)→ 0 as n→∞.

Let A,B ⊆ X be disjoint closed subsets. An A−B-arc in X is an arc whose first

endpoint lies in A, whose last end-point lies in B, and which is otherwise disjoint from

A ∪B. Finally, a subset A ⊆ X is regular closed if A = int(A).

14.1.3.1. Edge cuts in Peano continua. Free arcs in Peano continua behave much the

same as edges in finite graphs, and statements to this effect can be found for example

in [41] or [129]. To make this paper accessible for readers with more of a combinatorial



14.1. INTRODUCTION 325

background, we offer brief indications how to prove these basic facts with a minimal

topological background, relying only on the fact that Peano continua are (locally) arc-

connected.

If e is an edge of X, then any point in ∂e = e \ e is called an endpoint of e.

Moreover, with some fixed homeomorphism e ∼= (0, 1) in mind, we write e(x) ∈ e for

x ∈ (0, 1) to mean the corresponding interior point on e, and also write [a, b]e for the set

{e(x) : x ∈ [a, b]} and similar for other subsets of the interval.

Lemma 14.1.10. Edges of a Peano continuum X are pairwise disjoint, unless X = S1.

Proof. Suppose e and f are two distinct free arcs which intersect. Since each free

arc is maximal with respect to set-inclusion, this amounts to the statement that all e \ f ,

f \ e and e ∩ f are non-empty. Let A be a component of e ∩ f . Then A is a proper

subinterval of e, and so one endpoint a of A lies in e \ f . Now if there was a half-open

interval [a, a+ ε)e ⊆ e \ f , then this contradicts maximality of f . But then connectedness

of f implies that e\{a} ⊆ f . However, it follows that e∪f = f = f∪{a} is homeomorphic

to S1, and is clopen in X. So by connectedness, X = S1. �

For the remainder of this paper, when investigating Conjecture 14.1.2 for a space X

we always implicitly assume that X is not a simple closed curve, implying that the edge

set E(X) consists of disjoint open sets and that G(X) is non-empty.

Lemma 14.1.11. Let X be a Peano continuum.

(a) Every edge (free arc) in X contains at most two endpoints.

(b) Removing an edge from X creates at most two connected components which are

again Peano continua. Thus, removing k edges from a Peano continuum results

in at most k + 1 components, all of which are again Peano.

(c) If X 6= S1, the edges E(X) form a zero-sequence of disjoint open subsets.

(d) Every edge cut of X is finite.

Proof. (a) Consider a free arc e ∼= (0, 1) of a Peano continuum X. Write for the

moment e(0) = (0, 1
2
] \ e and e(1) = [1

2
, 1) \ e. By symmetry, it suffices to show that

e(0) is a singleton. By compactness, it is certainly non-empty. Next, since X is locally

arc-connected, there exists an
{

1
2

}
− e(0)-arc α in X so that (0, 1

2
] ⊆ α, and so α \ (0, 1

2
]

is precisely the second end-point of α. However, compactness of α gives (0, 1
2
] ⊆ α, from

which it is clear that e(0) consists of at most one point.6

(b) Otherwise, for some edge e the space X − e has a partition into three non-empty,

pairwise disjoint compact subsets A,B,C. By (a), it follows that one of them, say A, does

6The assumption on local connectedness in (a) is necessary, as witnessed by the unique free arc of the

topological sine curve, [121, 1.5].
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not contain an endpoint of e. But then A against B ∪ C ∪ e forms a partition of X into

two non-empty, pairwise disjoint compact subsets, contradicting connectedness of X.7

(c) As a collection of disjoint open subsets (Lemma 14.1.10) in a compact metrisable

space, E(X) must be countable, [63, 4.1.15]. Now if E(X) does not form a zero-sequence,

then there is ε > 0 and infinitely many distinct edges {e1, e2, e3, . . .} ⊆ E(X) each contain-

ing three successive points x1
n < x2

n < x3
n ∈ en such that d(xin, x

j
n) > ε for all i 6= j ∈ [3]

and n ∈ N. By moving to convergent subsequences and relabelling, we may assume that

xin → xi for all i ∈ [3] as n → ∞, and so d(xi, xj) > ε for all i 6= j ∈ [3]. However, by

local arc-connectedness, for large enough n there exist arcs from x2 to x2
n of diameter less

that ε, a contradiction.8

(d) Trivial for X = S1. Otherwise, the assertion follows from (c) since the sets of any

topological disconnection A⊕B of G(X) are disjoint compact, so have dist(A,B) > 0.9 �

From now on, if e is an edge in a Peano continuum X, let e(0), e(1) ∈ G(X) denote

the two endpoints of that edge. If x is an end-point of an edge e, we also write x ∼ e, or

write e = xy to mean that e(i) = x and e(1 − i) = y for i = 0 or i = 1. It is convenient

to write e(x) for x ∈ (0, 1) to mean the corresponding interior point on e, where we

choose our parametrisation so that e(x) is continuous for x ∈ [0, 1]. Next, recall from

the introduction that for a subset F ⊆ E(X), we write for brevity X − F := X \
⋃
F ,

and so G(X) := X − E(X). If F = {f} is a singleton, we write X − f instead of

X − {f}. Let X[F ] =
⋃
F ⊆ X be the subspace of X induced by F . Similarly, for

U ⊆ G(X), write E(U) = {e = xy ∈ E(X) : {x, y} ⊆ U} for the induced edge set of U ,

and set X[U ] = U ∪ E(U). Finally, an edge set F ⊆ E(X) is called sparse (in X) if

X[F ] is a graph-like compactum. This notion will be of crucial importance in the final

two chapters. Note that if F is sparse, then so is every F ′ ⊆ F .

A subspace Y of a Peano continuum X is a standard subspace if Y contains every edge

from X it intersects. Finally, two standard subspaces Y1, Y2 of X are edge-disjoint if every

edge of X is contained in at most one Yi.

14.1.3.2. Waiting times for maps from the circle. A map g : I → X or g : S1 → X

which is nowhere constant is also called light. The first part of the next lemma is about

‘avoiding waiting times’: given a map g : I → X, by contracting all non-trivial intervals in

g−1(x) for each x ∈ X, one obtains an associated map that traces out the same path but

is, by construction, nowhere constant. The second part describes, in a sense, the converse

operation, and says that given a map g : I → X, we may add a countable list of waiting

intervals, so that the resulting map still traces out the same path.

7Alternatively, assertion (b) can be concluded from the boundary bumping lemma [121, 5.7].
8Alternatively, assertion (c) follows from compactness of the hyperspace [121, 4.14].
9Alternatively, for a proof that does not rely on (c), use normality to find disjoint open sets U, V ⊆ X

separating A from B, forming together with E(A,B) an open cover of the compact X.
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Lemma 14.1.12. Let X be a non-trivial Peano continuum.

(a) For every continuous surjection g : I → X, there is a continuous light surjection

ĝ : I → X and a monotonically increasing m : I → I such that g = ĝ ◦m.

(b) For every surjection g : I → X and any sequence (x0, x1, . . .) in X, there is a zero-

sequence (J0, J1, . . .) of non-trivial disjoint closed intervals of I and monotonically

increasing m : I → I such that g̃ = g ◦m : I → X maps each Jn to xn.

Furthermore, the same assertions hold mutatis mutandis for maps g : S1 → X.

Proof. Assertion (a) follows from the monotone-light-factorisation [121, 13.3], and

relies on the fact that a quotient of I over closed intervals and points is again homeomorphic

to I, cf. [121, 13.4 & 8.22]. For (b), pick points yn ∈ g−1(xn) and construct a uniformly

converging sequence of monotone surjections mn : I → I such that m−1
n (yi) contains a non-

trivial interval Ji for i ∈ [n]. The furthermore-part follows by viewing maps g : S1 → X

as maps g : I → X with f(0) = f(1). �

We first illustrate the use of Lemma 14.1.12(b) in following well-known fact.

Lemma 14.1.13. Suppose X is a compact metrisable space, and Y, Y1, Y2, . . . a zero-

sequence of Peano subcontinua of X such that Y ∩ Yn 6= ∅ for all n ∈ N. Then Y ′ :=

Y ∪
⋃
n∈N Yn ⊆ X is a Peano continuum.

Proof. Pick yn ∈ Yn ∩ Y for each n ∈ N. By Lemma 14.1.12(b), there is a surjection

h : I → Y and non-trivial disjoint closed intervals Jn ⊆ I such that h(Jn) = {yn}. Fix

surjections hn : I → Yn such that hn(0) = hn(1) = yn. Construct surjections gn : I →
Y ∪

⋃
i∈[n] Yi by replacing h � Ji by hi for i ∈ [n]. Then gn converges uniformly to a

continuous surjection g : I → Y ′ as desired. �

Our second illustration of Lemma 14.1.12(b) lets us combine edge-wise Eulerian maps:

Lemma 14.1.14. Let X be a Peano continuum and suppose that Y, Y1, Y2, . . . is a zero-

sequence of edge-disjoint standard Peano subcontinua of X with X = Y ∪
⋃
n∈N Yn such

that Yn ∩ Y 6= ∅. If Y and all Yn are edge-wise Eulerian, then so is X.

Proof. Follow the same proof as in Lemma 14.1.13, but start with edge-wise Eulerian

surjections h : S1 → Y and hn : I → Yn. �

14.1.3.3. An application of the equivalence for edge-wise Eulerianity. We conclude

our introduction with a proof of Theorem 14.1.4(A). Indeed, given (ii) ⇒ (i) of Theo-

rem 14.1.1, the proof of (A) reduces to the observation that for these types of spaces,

there is a simple procedure for finding an edge-wise Eulerian surjection.

Proof of Theorem 14.1.4(A) from Theorem 14.1.1. Let X be a Peano con-

tinuum such that for its ground space we have G(X) = Z1 ⊕ Z2 ⊕ · · · ⊕ Z` where each Zi

is a Peano continuum. Assume further that X has the even-cut property. By (i) ⇔ (ii)
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of Theorem 14.1.1, to complete the proof it suffices to show the existence of an edge-wise

Eulerian surjection onto X.

Partition the edge set E(X) = E ′ t E ′′ where E ′ =
⋃
i∈[`] E(Zi, Z \ Zi) consists of the

finitely many cross edges between the components of G(X), and E ′′ = E \ E ′ consists of

all the edges that have both endpoints attached to the same component of G(X).

Since X satisfies the even-cut condition, X∼[E ′] is a finite Eulerian multi-graph. Take

any Eulerian walk W on X∼[E ′] and extend to an edge-wise Eulerian surjection onto

Y = G(X)∪
⋃
E ′ by inserting, between any two successive edges eZie

′ on W in (X[E ′])∼
a surjection onto Zi from the end vertex of e to the end vertex of e′ in Zi.

Now by Lemma 14.1.11, the set E ′′ = {en = xnyn : n ∈ K} for K ⊆ N is either finite,

or a zero-sequence of edges. Since Peano continua are uniformly locally arc-connected,

[107, Ch. VI, §50,II Theorem 4], for each n ∈ K there is an xn − yn arc αn in G(X) such

that diam(αn) → 0. Then Yn = en ∪ αn forms a zero-sequence of simple closed curves.

Since Y and each Yn are pairwise edge-disjoint standard subspaces which are all edge-wise

Eulerian, it follows from Lemma 14.1.14 that X = Y ∪
⋃
n∈K Yn is edge-wise Eulerian,

too. �

14.2. Eulerian maps and Peano graphs

14.2.1. Overview. Recall from the introduction that we had two, seemingly com-

peting notions for generalised Euler tours in a Peano continuum X. First, the notion of

an Eulerian map, a continuous surjection g from the circle that is strongly irreducible: no

proper closed subset A of the circle satisfies g(A) = g(S1). And second the notion of an

edge-wise Eulerian map, a continuous surjection from the circle that sweeps through every

edge of X exactly once. In this chapter we show that both notions for an Eulerian space

are in fact equivalent, and thus establish (i)⇔ (ii) of Theorem 14.1.1: a Peano continuum

is Eulerian if and only if it is edge-wise Eulerian. One implication, namely (i) ⇒ (ii), is

straightforward.

Lemma 14.2.1. Every Eulerian map is edge-wise Eulerian.

Proof. Let us first note that by the intermediate value theorem, every strongly irre-

ducible map g : I → I is injective. Otherwise, there are a < b such that g(a) = x = g(b).

Since g being constant on [a, b] results in an immediate contradiction, there exists a < c < b

such that say g(c) > x. By the intermediate value theorem, the interval [x, g(c)] is covered

by both g � [a, c] and g � [c, b]. But then it is clear that for some non-trivial open interval

U ⊆ [a, c] with g(U) ⊆ [x, g(c)] we have that g(I \ U) = g(I), a contradiction.

To prove the lemma, suppose then there is a strongly irreducible map g : S1 → X

onto some Peano continuum X, an edge e ∈ E(X) and an interior point x ∈ e such that

g−1(x) contains at least two distinct points a and b. By continuity, there are disjoint closed

subintervals A and B ⊆ S1 containing respectively a and b in their interior such that g(A)
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Figure 14.4. Admissible trace of an edge-wise Eulerian map on the left,

and an Eulerian map on the right.

and g(B) ⊆ e. By the first part, both g � A and g � B are injective embeddings, and so

g(A) and g(B) are subintervals of e containing x in their interior. Thus, there is an open

interval V ⊆ e with x ∈ V ⊆ g(A) ∩ g(B). But then for some non-trivial open interval

U ⊆ A with g(U) ⊆ V we have that g(S1 \ U) = X, a contradiction. �

The converse of Lemma 14.2.1, however, does not hold in general, and so the equiv-

alence of Eulerian and edge-wise Eulerian spaces cannot hold function-wise: we already

observed that edge-wise Eulerian maps are allowed to pause at points in the ground space.

Much more significantly, however, consider for example the hyperbolic 4-regular tree Y

from the introduction, where an edge-wise Eulerian map is allowed to trace out non-trivial

paths on the boundary circle of Y , whereas an Eulerian map is not, as in the following

Figure 14.4. Indeed, if say g � [a, b] stays on the boundary for a non-trivial time interval

[a, b] ⊆ S1, then g(S1 \ (a, b)), being closed and covering (the closure of) all edges of Y ,

must be the whole space (as E(Y ) is dense in Y ), contradicting the defining property of

an Eulerian map. Instead, to establish (ii)⇒ (i) in Theorem 14.1.1, we prove that if there

exists an edge-wise Eulerian map g for X, then there also exists an Eulerian map h for

X. First, in Section 14.2.2 we establish a number of equivalent definitions for ‘strongly

irreducible’. Most importantly, in the context of Peano graphs (Peano continua whose

edges are dense) we can add to the equivalent descriptions that a map g from S1 onto

a Peano graph X is Eulerian if and only if it is edge-wise Eulerian and never spends a

positive time interval in the ground space of X (meaning that g−1(G(X)) does not contain

a non-empty open interval), Theorem 14.2.3. In other words, this behaviour of Eulerian

maps that we have seen above is not only necessary, but also sufficient. This natural

geometric formulation of ‘Eulerian map’ will be the key to our proof of (ii)⇒ (i).

In order to harness this geometric intuition, our next step in Section 14.2.3 is to estab-

lish our reduction result mentioned in the introduction so that we may restrict ourselves

to Peano graphs. More explicitly, given a Peano continuum X define a Peano graph X ′ by

attaching to X a zero-sequence of loops to a countable dense subset of the interior of the
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ground space of X. It is immediate that X satisfies the even-cut condition if and only if

X ′ does. Crucially we show that X has an Eulerian map if and only if X ′ has one. Going

forward we may always restrict ourselves to Peano graphs, and thus rely on the geometric

intuition of an Eulerian map as described above.

Now the strategy is clear: given an edge-wise Eulerian map g, we need to modify it so

that it remains edge-wise Eulerian, but no longer spends non-trivial time intervals in the

ground space. For the problem that edge-wise Eulerian maps may pause at points of the

ground space, there is an easy remedy: given any surjection g : S1 → X onto a non-trivial

Peano continuum, by contracting all non-trivial intervals in g−1(x) for each x ∈ X, one

obtains an induced edge-wise Eulerian map ĝ : S1 → X which is, by construction, nowhere

constant, see Lemma 14.1.12(a). This observation already establishes (ii) ⇒ (i) for the

class of all graph-like continua, and hence in particular for Freudenthal compactifications

of locally finite connected graphs, simply because of the fact that their ground spaces,

being totally disconnected, do not contain non-trivial arcs. In fact, this argument shows

that for every Peano continuum X whose ground space G(X) contains no non-trivial arcs

– if G(X) is totally disconnected, but also if it is for example a pseudoarc or any other

hereditarily indecomposable continuum [121, 1.23] – every nowhere constant edge-wise

Eulerian map for X is Eulerian. Finally, the harder case, where the ground space does

contain non-trivial arcs, will be dealt with in Section 14.2.4.

14.2.2. Equivalent Definitions for Eulerian Maps. We begin by recalling the

following well-studied classes of continuous functions. Let g : X → Y be a continuous

map between continua X and Y . Then:

• g is almost injective if the set {x : g−1(g(x)) = {x}} is dense in X;10

• g is irreducible if for all proper subcontinua K ( X, we have g(K) ( g(X);

• g is hereditarily irreducible if for every subcontinuum K of X we have that g � K

is irreducible (equivalently, for every pair of subcontinua A ( B in X, we have

g(A) ( g(B));

• g is strongly irreducible if for all closed subsets A ( X, we have g(A) ( g(X);

• g is arcwise increasing if for every pair of arcs A ( B in X we have g(A) ( g(B).

In this section we relate these different types of maps, particularly when X is I or S1.

The arguments are elementary, and in most cases known or at least folklore. As the results

are important for us, and for completeness, we provide brief proofs. For discussions on

hereditarily irreducible and arc-wise increasing images of finite graphs see [1, 71].

Lemma 14.2.2. Let g : I → Y be a continuous surjection. Then the following are

equivalent: (a) g is arcwise increasing; (b) g is hereditarily irreducible; (c) g is strongly

irreducible; and (d) g is almost injective.

10The set of points of injectivity for an almost injective function between compact spaces is not just

dense but a dense Gδ, and so large (co-meager) in the sense of Baire category, [166, Theorem VIII.10.1].
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Proof. Clearly, (b)⇔ (a). For (a)⇒ (c), show the contrapositive. So suppose there

is a proper closed subset A of I whose image is g(A) = Y . Without loss of generality,

A = I \ (s, t) where 0 < s < t < 1. If g([0, s]) = g([0, t]) then certainly g is not arcwise

increasing. Otherwise there is an r in (s, t) such that g(r) ∈ U := Y \ g([0, s]). By

continuity of g at r there is a closed neighbourhood [a, b] of r such that g([a, b]) ⊆ U .

Since Y = g(I) = g(A) = g([0, s]) ∪ g([t, 1]), we see that g maps [a, b] into g([t, 1]). Now

g([b, 1]) = g([a, 1]) and g is not arcwise increasing.

For (c)⇒ (d) show that if g is not almost injective then it is not strongly irreducible.11

So assume that {x : g−1(g(x)) = {x}} misses an open interval (s, t) ⊆ I. This means for

all x ∈ (s, t) there exists yx 6= x such that g(x) = g(yx). By the Baire Category Theorem,

there is n ∈ N and (s′, t′) ( (s, t) such that X := {x ∈ (s, t) : |x − yx| > 1/n} is dense

in (s′, t′). Without loss of generality, |t′ − s′| < 1/n. But now g(I \ (s′, t′)) = Y , since

g(I \ (s′, t′)) is closed in Y and contains the set g(X), which was dense in g(s′, t′).

For (d)⇒ (a) suppose f is almost injective, and pick subarcs A ( B in I. Then B \A
contains a non-empty open interval which must meet the dense set {x : g−1(g(x)) = {x}}
say in x′. But then g(x′) ∈ g(B) \ g(A), as required for arcwise increasing. �

Turning to the case of maps from the circle, we deduce that an Eulerian map satisfies

all of the following equivalent conditions.

Theorem 14.2.3. For a continuous surjection g : S1 → X onto a Peano continuum X,

the following are equivalent: (a) g is arcwise increasing; (b) g is hereditarily irreducible;

(c) g is strongly irreducible; (d) g is almost injective; and (e) g is irreducible.

If, additionally, X is a Peano graph, then the preceding are also equivalent to: (f) g is

edge-wise Eulerian and g−1(G(X)) is zero-dimensional in S1.

Proof. The equivalence of (a) through (e) follows from Lemma 14.2.2 and the fact

that for S1, every proper closed subset is contained in a proper subcontinuum, giving

(c)⇔ (e). Now additionally assume X is a Peano graph.

(c)⇒ (f). Suppose g is strongly irreducible. By Lemma 14.2.1, g is edge-wise Eulerian.

Suppose for a contradiction that g−1(G(X)) is not zero-dimensional. Then there is a non-

trivial interval [a, b] ⊆ S1 such that g([a, b]) ⊆ G(X). However, then g(S1 \ (a, b)) ⊇⋃
E(X) = X, contradicting that g is strongly irreducible.

(f) ⇒ (d). For any non-trivial open interval J ⊆ S1, we have J \ g−1(G(X)) is non-

empty, so contains a point x which is mapped under g onto an interior point of some edge

of X. Since g is edge-wise Eulerian, x is a point of injectivity of g. Since J was arbitrary,

g is almost injective. �

As mentioned above, the converse to Lemma 14.2.1 is false, and we may not add ‘g

is edge-wise Eulerian’ to our list of equivalences, even when restricting to Peano graphs.

11See [166, Theorem VIII.10.2] for a generalisation of this implication.
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Since edge-wise Eulerian maps have, by definition, the geometrically natural property of

an ‘Eulerian path’ of sweeping through every edge exactly once, why do we take strongly

irreducible as the primary definition of Eulerian?

The answer is twofold. First, consider, for example, the Gromov compactification

of a locally finite hyperbolic graph G with Gromov boundary ∂G. By property (f), an

Eulerian map onG is not allowed to spend any non-trivial time in the boundary ∂G. Hence,

Eulerian maps therefore satisfy the natural property that if a subpath of the Eulerian map

in G ‘disappears’ in some direction x ∈ ∂G towards infinity along some ray, then it must

also return from that very direction x into the graph G.

Our second, equally important reason is that for Peano graphs, Eulerian maps – unlike

edge-wise Eulerian maps – can essentially be characterised purely combinatorially in terms

of a cyclic order and orientation of the edge set, as follows.

First, fix a Peano graph X and an Eulerian map g : S1 → X. Note that the edges, E, of

X inherit from g a natural cyclic order. Of course the circle, S1 = {(cos(2πt), sin(2πt)) : t ∈
[0, 1)}, has a natural cyclic order and (anticlockwise) orientation. Then any family of open

intervals in the circle have an induced cyclic order (pick one point in each interval and use

the sub-order). We have just seen that g is edge-wise Eulerian and g−1(G(X)) is closed,

nowhere dense. But this means that the edges, E, are in bijective correspondence with

the family U = {g−1(e) : e ∈ E} of open intervals in S1, which, we note, has dense union.

Then E inherits a cyclic order from U .

Second, it is also intuitively clear that, through the natural orientation on S1, any

(edge-wise) Eulerian map on a Peano graph crosses each edge once in a certain direction,

and so induces an orientation of every edge. We make this precise as follows. For any

spaces A and B let H(A,B) be the (possibly empty) set of all homeomorphisms from A

to B, and define H(A) = H(A,A) to be the set of all autohomeomorphisms of A. Every

autohomeomorphism of (0, 1) (respectively S1) either preserves or reverses the (cyclic)

order. For e ∈ E(X) define an equivalence relation, ∼o, on H((0, 1), e) by h1 ∼o h2 if and

only if there is an order-preserving σ in H((0, 1)) such that h2 = h1 ◦ σ. Then H((0, 1), e)

has two equivalence classes under ∼o, corresponding to the two different directions for

crossing e. Fix a bijection, oe, between H((0, 1), e)/∼o and {±1}. (So oe randomly assigns

a ‘positive’ (+1) and ‘negative’ (−1) direction to the edge e.) Now suppose we also have

an Eulerian map, g : S1 → X. Fix an edge e. Fix an order-preserving bijection, τ , between

(0, 1) and g−1(e), and define o∗g(e) to be [g � g−1(e) ◦ τ ]∼o . (Note that og(e) is independent

of the choice of τ .) This gives a function og : E → {±1} via og(e) = oe(o
∗
g(e)), the

orientation of e induced by g.

In summary: for a fixed Peano graph X with edge set E = E(X) choose (randomly) a

direction +1 or −1 for each edge, then for any edge-wise Eulerian map g derive combina-

torial data of a cyclic order ≤g on E and a function og : E → {±1} so that g crosses the

edges in the order given by ≤g and in the direction given by og.
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Let us say that another map g′ : S1 → X is cyclically equivalent to g if and only if

there is an order-preserving autohomeomorphism, % say, of S1 such that g′ = g ◦ %. Then

it can be shown that g and g′ give the same combinatorial data – ≤g isomorphic to ≤g′ ,
and og = og′ – if and only if they are cyclically equivalent.

Now we see how to get from combinatorial data to a function. Fix a Peano graph X

with fixed direction for each edge. Let ≤ be a cyclic order on the edges, E = E(X), and

o any function from E into {±1}. Define g≤,o a function from S1 to X as follows.

First select U = U≤,o, a dense family of open intervals in S1, which – in the induced

cyclic order – is isomorphic to (E,≤) (it is well-known that every countable cyclic order

can be realised in this fashion), say via ϕ : U → E. For each U in U , from the randomly

assigned direction, ±1, to the edge ϕ(U) compared to the value of o(ϕ(U)) we get a ∼o
equivalence class in H((0, 1), ϕ(U)) – let g∗U be any element of this class. Now select an

order preserving bijection, τ between U and (0, 1), and define gU = g∗U ◦ τ . Define g≤,o to

be gU on each U in U , and extend, if possible, to a (unique, if it exists) continuous map

from S1 to X (and otherwise extend randomly).

Theorem 14.2.4. If X is a Peano graph, with edges E = E(X) and fixed direction

for each edge, then the following condition on a continuous surjection g : S1 → X is also

equivalent to it being an Eulerian map:

(g) there is a cyclic order 6 on E and a function o : E → {±1} such that g is

cyclically equivalent to g≤,o.

Proof. For (f)⇒ (g), let g be as in (f). Let≤=≤g and o = og. Let Ug = {g−1(e) : e ∈
E} be as above, with the induced cyclic order. Let U = U≤,o be the dense family of

open intervals used in the definition of g≤,o. It is well-known that since U and Ug are

dense collections of open intervals which are order-isomorphic, there is an order-preserving

autohomeomorphism %∗ ∈ H(S1) inducing that order-isomorphism.

Now chasing the definitions, we see that the difference between g and g≤,o◦%∗ is caused

by choosing the ‘wrong’ class representative on some (possibly, many) intervals U in U .

But we can modify %∗ to get % which is still an order-preserving autohomeomorphism and

which ‘corrects’ the mistakes, so g = g≤,o ◦ %, as required.

For (g)⇒ (f) note that a function cyclically equivalent to an Eulerian map is Eulerian.

So suppose g = g≤,o, and U = Ug = U≤,o. By construction, g is edge-wise Eulerian, and

g−1(G(X) = S1 \
⋃
U is zero-dimensional, since U is dense in S1. �

Finally, we note that Theorem 14.2.3(f) has the following interesting consequence: it

says that if a Peano graph X is Eulerian via an Eulerian map g, then X ∼= S1/≈ is a

quotient of the circle where ≈ is the decomposition of S1 into fibres {g−1(x) : x ∈ G(X)}
and points, [63, 3.2.11]. Turning this procedure around, we can engineer (open) Eulerian

Peano graphs with prescribed ground spaces as follows:
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Theorem 14.2.5. For any compact metrizable space Z there is a Peano graph X with

G(X) = Z. Moreover, for all x, y ∈ Z, the space X can be chosen so that

(1) X is Eulerian, or

(2) X is open Eulerian from x to y.

Proof. Such a construction can be quickly achieved using the adjunction space con-

struction, see [158, A.11.4] or [63, 2.4.12f]. Let Z be arbitrary. For (2), consider the

Cantor middle third set C ⊆ I, and fix a surjection h : C → Z onto Z with h(0) = x

and h(1) = y [121, 7.7]. Set X = I ∪h Z, where I ∪h Z is the quotient of I given by the

decomposition into fibres of h and points of I \C. By [158, A.11.4], if g : S1 → X denotes

the quotient map, then g � I \ C is a homeomorphism (onto the edge set of X) and g(C)

is homeomorphic to Z. Thus, G(X) = Z and by Theorem 14.2.3(f), g is an open Eulerian

map from x to y.12

For (1), add one further free arc e = xy to the space X constructed so far. �

14.2.3. Reduction to Peano Graphs. The main purpose of this section is to show

that in order to prove the Eulerianity conjecture, it suffices to always restrict our attention

to the case of Peano graphs, in other words, to Peano continua where the free arcs are

dense. This will be done in Section 14.2.3.3. In preparation we introduce some background

material on Peano continua, Bing’s partition theory, and a technical result on almost

injective maps from the circle in Section 14.2.3.2.

In Section 14.2.4 the reduction result is used to show the equivalence of Eulerianity

and edge-wise Eulerianity, first in Peano graphs, and then in general Peano continua.

14.2.3.1. Tools for Peano continua. In the following we shall need Bing’s notion of a

partition of a Peano continuum – originally from [24, 25], but we use it in the form of

[117].

Definition 14.2.6 (ε-Peano covers and partitions). Let X be a Peano continuum. A

Peano cover of X is a finite collection U of Peano subcontinua of X such that U covers X.

A Peano cover consisting of regular closed Peano subcontinua additionally satisfying that

int(U) is connected and int(U)∩ int(V ) = ∅ for all U 6= V ∈ U is called a Peano partition.

If ε > 0, then a Peano cover (partition) U is called an ε cover (partition) if mesh(U) 6 ε.

Theorem 14.2.7 (Bing’s Partitioning Theorem, [24]). Every Peano continuum admits

a decreasing sequence, Un, of 1/n Peano partitions.

14.2.3.2. Controlling almost injective maps from the circle. Harrold, in [92], showed

that every Peano continuum without free arcs is the strongly irreducible (equivalently,

almost injective) image of the circle, and so is Eulerian. We extend this result – and also

one of Espinoza & Matsuhashi, see [71] – so as to give more control of the map.

12For a more explicit construction, we refer the reader to the technique in [120, Lemma 2.2].
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For this, we introduce the following notation. Let A and B be spaces. Denote by

C(A,B) the set of all continuous maps from A to B. Let K and L be subsets of A and

B, respectively. Write S(A,B;K,L) for all elements of C(A,B) taking K onto L, and

abbreviate S(A,B;A,B) by S(A,B). If X is a Peano continuum, then both C(I,X) and

S(I,X) endowed with the supremum metric d∞ are (non-empty) complete metric spaces.

If in addition K is closed, then S(I,X;K,L) is a closed subspace of C(I,X) and hence

also a complete metric space under the sup-metric. For sets T ⊆ I and g ∈ S(I,X), we

put S(I,X, g, T ) = {h ∈ S(I,X) : h � T = g � T}. Note that S(I,X, g, T ) is a non-empty

closed subspace of S(I,X), so it is itself a complete metric space under the sup-metric.

Lastly, for F ⊆ I and δ > 0 we put

AF,δ(I,X) =
{
h ∈ S(I,X) : h−1(h(x)) ⊆ Bδ(x) for each x ∈ F

}
and

AF (I,X) =
⋂
n∈N

AF,1/n(I,X) =
{
h ∈ S(I,X) : h−1(h(x)) = {x} for each x ∈ F

}
.

Lemma 14.2.8. Let X be a non-trivial Peano continuum. For each a ∈ I and δ > 0,

the set A{a},δ(I,X) is open in S(I,X).

Proof. This result is well-known, and was stated for example (though without proof)

in [146, Lemma 2.3] and in [92]. We briefly sketch the argument.

We show that the complement of A{a},δ(I,X) is closed. Suppose that {gn : n ∈ N}
is a sequence of functions in the complement, so for each n there are xn, yn ∈ I with

|xn − yn| > δ and gn(xn) = a = gn(yn), such that gn → g uniformly. By moving to

subsequences and relabeling, we may assume that xn → x and yn → y. But then |x−y| > δ

and g(x) = a = g(y). Hence, g /∈ A{a},δ(I,X), i.e. the complement is closed. �

Theorem 14.2.9. Let X be a non-trivial Peano continuum. Let T, T ′ ⊆ I and g ∈
S(I,X) such that

(1) I = T ∪ T ′,
(2) T ′ is closed in I,

(3) Q := g(T ′) ⊆ X is a Peano subcontinuum of X without free arcs, and

(4) Q ∩ int(g(T )) = ∅.
Then for each countable subset F ⊆ I with

(5) F ∩ T = ∅,
the set S(I,X, g, T ) ∩ S(I,X;T ′, Q) ∩ AF (I,X) is a dense Gδ-subset of S(I,X, g, T ) ∩
S(I,X;T ′, Q) = {h ∈ S(I,X, g, T ) : h(T ′) = g(T ′)}, and hence non-empty.

Proof. As S(I,X, g, T )∩S(I,X;T ′, Q) is a closed, non-empty subspace of S(I,X) it

is complete under the supremum metric. So the claim that S(I,X, g, T )∩S(I,X;T ′, Q)∩
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AF (I,X) is non-empty follows by the Baire Category Theorem once we show that it is a

dense Gδ-subset of S(I,X, g, T ) ∩ S(I,X;T ′, Q).

Since AF (I,X) =
⋂
a∈F

⋂
m∈NA{a},1/m(I,X), is a countable intersection of open (see

Lemma 14.2.8) sets, it suffices to prove that for each a ∈ F and each m ∈ N, the

set A{a},1/m(I,X) ∩ S(I,X, g, T ) ∩ S(I,X;T ′, Q) is a dense subset of S(I,X, g, T ) ∩
S(I,X;T ′, Q).

So fix some a ∈ F and m ∈ N and consider any map k ∈ S(I,X) such that k

coincides with g on T , and k(T ′) = Q. Take any ε > 0. We have to find a map h in

A{a},1/m(I,X) ∩ S(I,X, g, T ) ∩ S(I,X;T ′, Q) with d∞(h, k) < ε.

From k(T ) = g(T ), k(T ′) = g(T ′), and (3), (4) and (5), it is straightforward to find

a k′ ∈ S(I,X, g, T ) ∩ S(I,X;T ′, Q) with d∞(k′, k) < ε/3 and k′(a) /∈ k(T ). Next, find

a small Peano subcontinuum P ⊆ X with k′(a) ∈ int(P ) ⊆ P ⊆ Q and diam(P ) < ε/3

such that k′−1(P ) ∩ T = ∅. After suitably reparameterising k′ on k′−1(P ) (so that it will

be nowhere constant with value k′(a)) we obtain a k′′ ∈ S(I,X, g, T )∩S(I,X;T ′, Q) such

that: d∞(k′′, k′) < ε/3, k′′(a) = k′(a) /∈ g(T ) = k(T ) = k′(T ) = k′′(T ), and k′′−1(k′′(a)) is

nowhere dense in I.

Since X is Peano, there is a basis at k′′(a) consisting of Peano subcontinua, in other

words, there is a nested sequence of connected, open subsets Un, for n ∈ N, such that:

Pn = Un is a Peano subcontinuum of X, Pn+1 ⊆ Un for all n ∈ N,
⋂
n∈N Un =

⋂
n∈N Pn =

{k′′(a)}, P0 ⊆ P , and k′′−1(U0) ∩ T = ∅.
We now claim that for some n, the compact set k′′−1(Pn+1) is covered by finitely

many connected components (an1 , b
n
1 ), . . . , (anN(n), b

n
N(n)) of the open set k′′−1(Un) such that

|bni − ani | < 1/m for all 1 6 i 6 N(n). Indeed, if not, then by König’s Infinity Lemma [54,

Lemma 8.1.2], there is a choice of intervals (anj(n), b
n
j(n)) such that: |bnj(n) − anj(n)| > 1/m,

and (an+1
j(n+1), b

n+1
j(n+1)) ⊆ (anj(n), b

n
j(n)) for all n ∈ N. But then (a, b) =

⋂
n∈N(anj(n), b

n
j(n))

is an interval of length at least 1/m with (a, b) =
⋂
n∈N(anj(n), b

n
j(n)) ⊆

⋂
n∈N k

′′−1(Un) =

k′′−1(k′′(a)) contradicting the fact that k′′−1(k′′(a)) is nowhere dense in I.

So let us fix an n ∈ N as in the claim and consider Pn+1 ⊆ Un ⊆ Pn. Without loss

of generality, assume a ∈ (anN(n), b
n
N(n)). Pick arcs αi : [ani , b

n
i ] → Pn for 1 6 i < N(n)

from k′′(ani ) to k′′(bni ) inside Pn, and note that since Un+1 contains no free arcs by (3), the

space
⋃
αi is nowhere dense in Un+1. In particular, there is a point x ∈ Un+1 which is not

yet covered by any of the αi. Using the Hahn-Mazurkiewicz Theorem, pick a space filling

curve αN(n) : [anN(n), b
n
N(n)] → Pn from k′′(anN(n)) to k′′(bnN(n)), which we may parameterise

such that αN(n)(a) = x.

Finally, the map h obtained from k′′ by replacing each k′′ � [ani , b
n
i ] with αi for i ∈ [N(n)]

is as desired. Clearly, h is onto by construction, and h−1(h(a)) = h−1(x) ⊆ [anN(n), b
n
N(n)],

so has diameter < 1/m has desired. Further, k′′ and h differ only within Pn, and so

d∞(h, k′′) 6 diam(Pn) 6 diam(P0) < ε/3. Next, since k′′−1(U0) ∩ T = ∅, we have h � T =
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k′′ � T = k � T and h(T ′) = k′′(T ′) = k(T ′). Finally, we have

d∞(h, k) 6 d∞(h, k′′) + d∞(k′′, k′) + d∞(k′, k) < ε/3 + ε/3 + ε/3 = ε

and so we have found our surjection h ∈ A{a},1/m(I,X) ∩ S(I,X, g, T ) ∩ S(I,X;T ′, Q)

with d∞(h, k) < ε, completing the proof. �

Corollary 14.2.10. Let X be a non-trivial Peano continuum without free arcs. Let

T ⊆ I be nowhere dense, and let g ∈ S(I,X) such that g(T ) is nowhere dense in X. Then

there is an almost injective map h : I → X with h � T = g � T .

Proof. As T is nowhere dense, we can find a dense countable subset F ⊆ I with

F ∩ T = ∅. Since g(T ) is nowhere dense by hypothesis, applying Theorem 14.2.9 with

T ′ = S1, we obtain an almost injective map h with h � T = g � T . �

Remark 14.2.11. All the results above on almost-injective maps from the closed unit

interval, I, extend naturally (with the obvious notational changes) to maps from the circle,

S1. To see this, note that maps ĝ : S1 → X naturally correspond to maps g : I → X such

that g(0) = g(1) and in applying the results, always add 0 and 1 to T .

14.2.3.3. The reduction result. We now show we can reduce the general case the Eu-

lerianity conjecture (for Peano continua, possibly with some free arcs) to the special case

where the free arcs are dense, in other words, to the case of Peano graphs.

Indeed, let X be a Peano continuum with free arcs indexed by E. Define X ′ = X ∪ L
to be the space obtained by attaching a zero-sequence of loops, L, to points in a countable

dense subset of the part X \E of the ground space where the free arcs are not dense. Then

X ′ is a Peano graph by Lemma 14.1.13. It is immediate that X ′ satisfies the even-cut

condition if and only if X does. And the next theorem says that X ′ is Eulerian if and only

if X is Eulerian, and so, if the Eulerianity Conjecture holds for X ′, then it holds for X.

Theorem 14.2.12 (Reduction Result). Let X be a Peano continuum, and D a count-

able dense subset of X \E. Define a Peano graph X ′ by attaching a zero-sequence of loops

L = {`d : d ∈ D} to points in D.

Then X ′ is Eulerian if and only if X is Eulerian.

Proof. Enumerate D = {dn : n ∈ N}. First, if X is a Peano continuum, then so is

X ′ = X ∪
⋃
n∈N `dn by Lemma 14.1.13. Moreover, if X is Eulerian, then so is X ′, as

any almost injective map g : S1 → X lifts to an almost injective map g′ : S1 → X ′ by

incorporating the loops `dn into g using the results from Section 14.1.3.2.

Conversely, assuming that X ′ is Eulerian, we show X is also Eulerian. To this end, fix

an almost injective map g : S1 → X ′. Pick a sequence of decreasing 1/n-Peano partitions

Pn for X (see Definition 14.2.6 and Theorem 14.2.7). Let P ′n+1 ⊆ Pn+1 be the collection

of all P ∈ Pn+1 such that P is disjoint from E, but the unique Q in Pn containing P
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meets E. Let {Pj : j ∈ N} be an enumeration of
⋃
n∈NP ′n such that εj = diam(Pj) is

monotonically decreasing to 0 as j →∞. Note that int(Pi) ∩ Pj = ∅ whenever i 6= j and

that D ⊆
⋃
j∈N Pj. Indeed, for the last statement note that every d ∈ D by construction

has positive distance from E, so when the mesh of Pn is smaller than that distance, there

is P ∈ Pn such that d ∈ P and P ∩ E = ∅. Finally, observe that each Pj is a Peano

subcontinuum of X without free arcs, and so may play the rôle of the set Q in item (3) of

the previous theorem.

We now define a countable dense set F ⊆ S1 and a sequence of continuous surjections

gi : S
1 → Xi where Xi = X ′ \

{
`d : d ∈

⋃
j<i Pj

}
such that for all i ∈ N

• the set F witnesses that gi is almost injective,

• gi(F ) ∩ ∂Pj = ∅ for all j ∈ N,

• gi+1 agrees with gi on S1 \ int
(
g−1
i (Pi[Xi])

)
, and

• gi+1(g−1
i (Pi[Xi]) = Pi.

[Where for a subcontinuum P ⊆ X we denote by P [Xi] = P ∪ {`d ∈ E(Xi) : d ∈ P}, in

other words, P with all loops from L that are still present in the space Xi.]

Once the construction is complete, we claim that h = lim gi is the desired, almost

injective surjection from S1 onto X =
⋂
i∈NXi. Indeed, as we change our function value for

each point of S1 at most once, and do so inside the target sets Pi[Xi] which are decreasing

in size, the sequence is Cauchy and converges to a surjection onto X. Moreover, since

the sequence (gi)i∈N is pointwise eventually constant, it is immediate from the first bullet

point that F witnesses that also h is almost injective.

It remains to complete the construction. Define g1 = g and let F ⊆ g−1
1 (E(X ′)) be

a countable dense subset of S1 witnessing that g is almost injective (possible by The-

orem 14.2.3(f)). Next, suppose recursively that gi has already been defined. Consider

T ′i := g−1
i (Pi[Xi]) ⊆ S1, a closed, compact subspace with non-empty interior (as a positive

amount of time is needed to cover the loops `d with d ∈ int(Pi)). Let {[am, bm] : m ∈ N}
be an enumeration of the maximal non-trivial intervals contained in g−1

i (Pi[Xi]). Then

clearly, gi(am), gi(bm) ∈ ∂Pi = ∂Pi[Xi]. Consider the natural quotient map qi : Xi → Xi+1

which collapses every loop `d in Pi[Xi] onto its base point d. Let g′i = qi ◦ gi : S1 → Xi+1.

We then may apply Theorem 14.2.9 for maps on S1 (see Remark 14.2.11) to the map

g′i ∈ S(S1, Xi+1) in order to find a surjection gi+1 ∈ S(S1, Xi+1, g
′
i, Ti)∩S(S1, Xi+1;T ′i , Qi)∩

AFi(S1, Xi+1) where Ti = S1 \
⋃
m∈N(am, bm), T ′i = g−1

i (Pi[Xi]), Qi = g′i(T
′
i ) = Pi and

Fi =
⋃
m∈N(am, bm) ∩ F .

We claim that gi+1 is as desired. That it satisfies the properties of the third and

forth bullet points follows from the fact that it is an element of S(S1, Xi+1, g
′
i, Ti) and of

S(S1, Xi+1;T ′i , Qi) respectively. For the first bullet point, we verify that all points of F are

points of injectivity of gi+1. Since gi+1 ∈ AFi(S1, Xi+1), this is clear for points of Fi ⊆ F .

Suppose for a contradiction that some x ∈ F \ Fi is no longer a point of injectivity for
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gi+1. Since gi+1 � Ti = g′i � Ti = gi � Ti and x was a point of injectivity for gi, it must

be the case that there is x′ ∈ (am, bm) for some m ∈ N such that gi+1(x) = gi+1(x′).

This, however, implies that gi+1(x) ∈ ∂Pi, but since gi+1(x) = gi(x), this contradicts the

property of the second bullet for gi. Lastly, it remains to verify that gi+1(F )∩ ∂Pj = ∅ for

all j ∈ N. This is clear for points in F \ Fi as their values are unchanged, and follows for

points in Fi from the fact that gi+1 ∈ AFi(S1, Xi+1) ∩ S(S1, Xi+1, gi+1, Ti) readily implies

that gi+1(Fi) ⊆ int(Pi). �

14.2.4. Equivalence of Eulerianity and Edge-Wise Eulerianity. Recall we have

defined a Peano continuum X to be edge-wise Eulerian if there is a surjection g : S1 → X

such that g sweeps through every free arc of X precisely once, and we have seen that every

Eulerian continuum is edge-wise Eulerian. We now establish the converse, the proof of

which establishes the assertion for Peano graphs first, and then, utilizing the reduction

result, for general Peano continua.

Theorem 14.2.13. A space is Eulerian if and only if it is edge-wise Eulerian.

Proof. By Lemma 14.2.1, only the backwards implication requires proof. We first

prove this implication for Peano graphs, in other words, when the edges are dense.

The circle has a natural cyclic order where x ≤ y ≤ z if we visit y as we travel

anticlockwise around the circle starting at x and ending at z. Then we say a surjection

g : S1 → X is edge-wise monotone if for every edge e of X its inverse image, g−1(e) is a

single open interval in S1 (so g crosses e exactly once) and, after orienting e appropriately,

g is monotone (if x ≤ y ≤ z in g−1(e) then g(x) ≤ g(y) ≤ g(z) in e) from g−1(e) and

e (so g may pause when crossing e, but does not backtrack). Clearly edge-wise Eulerian

maps are edge-wise monotone, but observe, also, that if g is edge-wise monotone then, as

explained in Lemma 14.1.12(a), we can eliminate the waiting times to get an edge-wise

Eulerian map with nowhere dense fibres. In any case, it suffices to show that if X has an

edge-wise Eulerian map with nowhere dense fibres then it has an Eulerian map. We do

this in two steps.

First of all, let us write M(S1, X) ⊆ S(S1, X) for the space of edge-wise monotone

maps with the sup-metric. We will show that this is a closed subspace, and hence a

Gδ set. Let us write W(S1, X) ⊆ S(S1, X) for the space of edge-wise Eulerian maps

which have all fibres nowhere dense, with the sup-metric. Fix a countable subset D

of S1. Noting that a map g from S1 onto X has nowhere dense fibres if and only if

for every distinct d and d′ from D and every x strictly between them (d < x < d′)

either g(x) 6= g(d) or g(x) 6= g(d′), we see that W(S1, X) = M(S1, X) ∩
⋂
d 6=d′∈D Ud,d′

where Ud,d′ =
⋃
d<x<d′{g ∈ S(S1, X) : g(d) 6= g(x) or g(d′) 6= g(x)} is an open set.

Thus W(S1, X) is a non-empty Gδ subset of S(S1, X), which is complete, and so itself

is complete, [63, 4.3.23]. Hence – by the Baire Category Theorem – dense Gδ subsets of

W(S1, X) are non-empty.
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Now to show thatM(S1, X) is indeed closed, suppose we have a sequence (gn : n ∈ N)

inM(S1, X) and g ∈ S(S1, X) with d∞(gn, g)→ 0. We need to show that g ∈M(S1, X),

which in turn means we need to show that for every edge e ∈ E(X), we have g is monotone

on the interval g−1(e). Fix an edge e. It can be oriented in one of two ways. Since the

gn’s converge uniformly to g, and every gn is monotone on the interval g−1
n (e) for some

orientation of e, eventually the orientations must all be the same. So without loss of

generality, let us assume e is oriented the same way for all n in N. Take any x, z in g−1(e)

and any y between them, x ≤ y ≤ z. Then again by uniform convergence of the gn’s to

g and the intermediate value theorem, if g does not respect the order, so we do not have

g(x) ≤ g(y) ≤ g(z), then for some large enough n, gn will also not respect the order -

contradicting gn being edge-wise monotone. Now it follows both that y is in g−1(e), which

is therefore an interval, and that g is monotone on that interval. Hence, g ∈ M(S1, X)

and we have established that M(S1, X) is closed.

The second step (for X a Peano graph) is to show that for every a in S1 and δ > 0, the

set A{a},δ(S1, X)∩W(S1, X) = {g ∈ W(S1, X) : g−1(g(a)) ⊆ Bδ(a)} (where A{a},δ(S1, X)

is as defined in Section 14.2.3.2) is dense inW(S1, X). Since it is open, see Lemma 14.2.8,

taking any countable dense subset F ⊆ S1, by Baire Category, there is a function in⋂
n∈N

⋂
a∈F A{a},1/n(S1, X)∩W(S1, X). This function is then almost injective, so Eulerian

by Theorem 14.2.3, as desired.

So it remains to check for density. For this, let g ∈ W(S1, X), a in S1 and ε > 0

be arbitrary. Our task is to find h ∈ A{a},δ(S1, X) ∩W(S1, X) with d∞(g, h) < ε. Since

X is Peano, there is a basis at g(a) consisting of Peano subcontinua, so in particular

there are connected, open subsets U0 and U1 such that: diam(U0) < ε/2, P1 = U1 is a

Peano subcontinuum of X, and a ∈ U1 ⊆ P1 ⊆ U0. Clearly, the compact set g−1(P1)

is covered by finitely many connected components (a1, b1), . . . , (ak, bk) of the open set

g−1(U0). Relabelling if necessary, assume a ∈ (a1, b1). Let us write gi for g � [ai, bi] where

1 ≤ i ≤ k. We deal with two cases depending on whether or not g1 crosses an edge of X.

Case 1. Suppose g1 crosses an edge of X. Then we can reparameterise g1 to get g′1 so

that g′1(a) is in e. Now define the map h on the circle to be g′1 on [a1, b1] and g elsewhere.

Then h is as desired, indeed d∞(g, h) < ε/2, h−1(h(a)) = {a} and as g is never constant

on a non-trivial interval, by construction of h, it too has nowhere dense fibres.

Case 2. Otherwise, by the boundary bumping lemma we know that the image, ran g1, of

g1 is a non-trivial subcontinuum of G(X) ∩ U0. In particular, let us fix distinct points

x1, . . . , x2k−1 ∈ ran g1, and – this is where we assume X is a Peano graph, and the edges

are dense – for each of them a sequence of edges ein ∈ U1 such that ein → xi as n → ∞.

Now, as g is edge-wise Eulerian, each edge ein must be crossed by precisely one function

gj for 2 6 j 6 k. By the pigeon hole principle we see that for each i, at least one function

gj(i) crosses infinitely many of {ein : n ∈ N}. Moreover, since we have 2k− 1 = 2(k− 1) + 1

many points xi, but only k − 1 functions, by the pigeon hole principle again, there is
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one function, say (relabelling if necessary) g2, that is used at least three times, say (after

relabelling) for x1, x2, x3.

Now by construction, there are points y1, y2, y3 ∈ (a2, b2) and (zim : m ∈ N) for i ∈ [3]

such that such: g2(yi) = xi, g2(zim) ∈ einm and zim → yi as m→∞.

Relabelling if necessary, let us assume that y1 < y2 < y3, and further, for all m ∈ N we

have y1 < z2
m < y2. This means, in particular, that g2 � [y1, y2] starts and ends in ran(g1)

and crosses an edge. Pick x 6 y ∈ [a1, b1] such that g1(x) = x1 and g1(y) = x2. Then

define g′ on S1 to be g except swap g1 � [x, y] with g2 � [y1, y2]. Clearly g′ is edge-wise

Eulerian, has nowhere dense fibres (by construction, given that g has the same property)

and has distance < ε/2 from g. Now apply the argument of Case 1 to g′ to get the map

h. This h is as required: d∞(g, h) ≤ d∞(g, g′) + d∞(g′, h) < ε/2 + ε/2 = ε, and h is in

A{a},δ(S1, X) ∩W(S1, X).

To complete the proof, consider now an arbitrary Peano continuum X which is edge-

wise Eulerian. Let g : S1 → X be a surjection that sweeps through every free arc of X

precisely once. Let X ′ be the Peano continuum where we attached a dense zero-sequence

of loops of the ground space of X, as in Theorem 14.2.12. Then X ′ is a Peano graph,

and g clearly lifts to a surjection g′ : S1 → X ′ that sweeps through every free arc of X ′

precisely once by Lemma 14.1.14. Hence X ′ is edge-wise Eulerian, and so Eulerian by the

first part of this proof. By Theorem 14.2.12, it follows that X is Eulerian, as well. �

Finally, we conclude this chapter with a further reduction result reducing to the case

where we do not have loops.

Theorem 14.2.14 (Loopless reduction result). It suffices to prove the Eulerianity con-

jecture for Peano graphs without loops. More precisely, Conjecture 14.1.2 holds for a

Peano continuum X provided it holds for all loopless Peano graphs Z with G(Z) = G(X).

Proof. By the first reduction result, is suffices to consider Peano graphs X only.

Since the Eulerianity conjecture holds for spaces X where G(X) is a singleton (in which

case X is either a circle, a wedge of finitely many circles, or a Hawaiian earring), we may

assume that |G(X)| > 1. So consider such a Peano graph X with |G(X)| > 1 satisfying

the even-cut condition, and let L = {e ∈ E(X) : e(0) = e(1)} ⊆ E(X) be the collection of

loops in X. Then Y = X−L is a Peano continuum, but may no longer be a Peano graph.

Let U = int
(⋃

L
)
∩ G(X). If U = ∅, set F := ∅. Otherwise, let D = {d1, d2, . . .} be a

countable dense subset of U . Since X 6= S1, no dn is isolated in G(X). For each dn consider

a small Peano continuum neighbourhood Pn ⊆ X with dn ∈ int(Pn) ⊆ Pn ⊆ int
(⋃

L
)

.

Then Pn − L ⊆ G(X) is a non-trivial Peano continuum. Hence, there exists a small non-

trivial arc αn ⊆ G(X) from dn to say xn of diameter 6 2−n. Add a new edge / free arc fn
from dn to xn of length dist(dn, xn) 6 2−n, and set F = {fn : n ∈ N}. Then Z = Y + F is

a Peano graph with G(Z) = G(X). Moreover, Z inherits the even-cut condition from X,
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since loops in L and edges in F each have both their end points in the same component of

G(X) = G(Z), and hence to not appear in any finite edge cut. By assumption, there exists

an edge-wise Eulerian map gZ for Z. This turns naturally into an edge-wise Eulerian map

gY for Y , by replacing every newly added edge fn by αn. But using Lemma 14.1.14, we

may incorporate the zero-sequence of loops in L into gY in order to obtain an edge-wise

Eulerian map gX for X. By Theorem 14.2.13, it follows that X is Eulerian. �

14.3. Approximating by Eulerian decompositions

From the introduction we know that the key task facing us is the construction of

Eulerian maps for Peano continua with the even-cut condition. From the last chapter,

we know that we may restrict our attention to constructing edge-wise Eulerian maps.

The goal for this chapter is then to provide one such construction. In order to do so,

we introduce a versatile framework which we call ‘approximating sequences of Eulerian

decompositions’, and then show that these can indeed be used to give an edge-wise Eulerian

map, thus completing the proof (ii)⇔ (iii) announced in Theorem 14.1.1. The implication

(ii)⇒ (iii) is proved in Theorem 14.3.6 and (iii)⇒ (ii) is proved in Theorem 14.3.12.

The idea behind this framework of Eulerian decompositions lies in the observation that

any edge-wise Eulerian map induces a countable cyclic order on the edge set E(X) of our

Peano continuum X. As in the case of graph-like spaces [70], we want to approximate

such a cyclic order on a finitary version of X, and then choose a sequence of compatible

approximations that ‘converge’ to the desired cyclic order on X. In this chapter, we

formalise this idea. We describe what we understand about finite approximations and lay

down a set of rules that these have to satisfy in order to make the ideas of ‘compatible’ and

‘converging’ mathematically sound, and then state and prove our main mapping result,

Theorem 14.3.12, for constructing edge-wise Eulerian maps.

14.3.1. Eulerian Decompositions. An important tool in structural graph theory

is the notion of a tree-decomposition, due to Halin [88], and rediscovered and made widely

known by Robertson and Seymour in their graph-minors project [135]. Roughly, a tree

decomposition (T, τ) of a graph G consists of a tree T and a map τ such that τ(t) is a sub-

graph of G for every t ∈ V (T ), such that the various subgraphs (‘parts’) {τ(t) : t ∈ V (T )}
form a cover of the graph G whose elements are roughly arranged like T , see also [54,

§12.3].

In analogy, we will now consider Eulerian decompositions: covers of a Peano continuum

X by finitely many parts which are arranged roughly like an Eulerian graph.

14.3.1.1. Setup and definitions.

Definition 14.3.1. Let X be a Peano continuum. A subspace Y ⊆ X is called

standard if Y contains all edges of X it intersects.
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Recall that for an edge e of a finite multi-graph or a Peano continuum, we write e(0)

and e(1) for the two end vertices of e (if e is a loop, then e(0) = e(1)), see Lemma 14.1.11.

Definition 14.3.2 (Eulerian decomposition). Let X be a Peano continuum, G be a

finite multi-graph with bipartitioned edge set E(G) = F tD, and η be a map with domain

V (G) ∪ E(G) such that

(E1) η(v) is a non-empty standard Peano subcontinuum of X for all v ∈ V (G),

(E2) η(f) ∈ E(X) for all f ∈ F , and

(E3) η(d) ⊆ G(X) is a (possibly trivial) arc for all d ∈ D.

The pair (G, η) is called a decomposition13 of X if it satisfies the following four conditions:

(E4) the family {η(x) : x ∈ V ∪ F} forms a cover of X,

(E5) the elements of {η(x) : x ∈ V ∪ F} are pairwise E(X)-edge-disjoint,14

(E6) (η(f))(j) ∈ η(f(j)) for all f ∈ F and j ∈ {0, 1}, and

(E7) (η(d))(j) ∈ η(d(j)) for all d ∈ D and j ∈ {0, 1}.
The width of a decomposition is w(G, η) := max {diam(η(v)) : v ∈ V }. The edges in F

are also called real or displayed edges, and the edges in D are the dummy edges of G.

The elements {η(v) : v ∈ V } are called tiles of the decomposition. A decomposition (G, η)

where G is Eulerian, is called an Eulerian decomposition of X.

Dummy edges d between vertices v, w of G represent the possibility of moving from tile

η(v) to η(w) through a common point in their overlap (if η(d) is a singleton) or through

an arc contained in the ground space of X (if η(d) is a non-trivial arc). As an illustration,

consider two Eulerian decompositions of the hyperbolic 4-regular tree X.

δ1

δ2

x
v

G

d1

d2

v2

v1

G′

d1

d2

Figure 14.5. Two Eulerian decompositions (G, η) and (G′, η′) for X with

tiles in pink and black (single vertices), displayed edges in blue, dummy

edges η(di) = {δi} = η′(di) in red, and η(v) = {x} = η′(vi).

13Note that due to (E2) and (E3), the information E(G) = F tD is encoded in η.
14This implies that η � F is injective; however, for distinct vertices v and w of G, η(v) = η(w) could

be the same tile, which must then be contained in the ground space. Note also that η(v) could contain

free arcs which are not free in X. These don’t play a role for the requirement of edge-disjoint.
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Recall that an edge-contraction is the combinatorial analogue of collapsing the closure

of an edge in a topological graph to a single point. Formally, given an edge e = xy in a

multi-graph G = (V,E) (with parallel edges and loops allowed), the contraction G/e is

the graph with vertex set V \ {x, y} t {ve} and edge set E \ {e}, and every edge formally

incident with x or y of G is now incident with ve. Note that all edges parallel to e are now

loops in G/e. If e was a loop in G, then G/e = G− e. The contraction of more than one

edge is denoted by G/〈e1, . . . , ek〉. The order in which we contract edges does not matter.

Any such graph G′ which can be obtained by a sequence of contractions from G is called

a contraction minor of G, denoted by G′ 4 G.

Lemma 14.3.3 (Contractions on Eulerian decompositions.). Suppose D = (G, η) is an

[Eulerian] decomposition of X with edge partition E = E(G) = F t D. Then for an

arbitrary edge e = xy ∈ E, there is an [Eulerian] decomposition D/e := (G′, η′) where

G′ = G/e, E ′ = E − e with induced partition F ′ tD′, and the function η′ given by

(C1) η′(ve) = η(x) ∪ η(e) ∪ η(y),

(C2) η′(v) = η(v) for all v 6= ve, and

(C3) η′(e′) = η(e′) for all e′ ∈ E ′.

Proof. By property (E6) and (E7) for D (depending on whether e ∈ F or e ∈
D respectively), we have that η′(ve) is a standard subcontinuum of X. The remaining

properties are easily verified.

Finally, it is clear that if G is Eulerian, then so is G′. �

Definition 14.3.4. For two decompositions D1 = (G1, η1) and D2 = (G2, η2) of X, we

say that D2 extends D1, in symbols D1 4 D2, if there is a sequence of edges e1, . . . , ek ∈
E(G2) such that D1 = D2/〈e1, . . . , ek〉.

In particular, D1 4 D2 implies that G1 4 G2, and conversely, every contraction minor

G2/〈e1, . . . , ek〉 gives rise to a corresponding Eulerian decomposition which is extended by

G2. For illustration, consider the following decompositions of the hyperbolic tree X.

Definition 14.3.5. A sequence of [Eulerian] decompositions (Dn : n ∈ N) for a Peano

continuum X is called an approximating sequence of [Eulerian] decompositions for X, if

(A1) Dn 4 Dn+1 for all n ∈ N, and

(A2) w(Dn)→ 0 as n→∞.

14.3.1.2. From Eulerian maps to Eulerian decompositions. One motivation behind the

definition of an Eulerian decomposition is they can be generated from every (edge-wise)

Eulerian map g : S1 → X. In fact, any such map yields a surprising simple approximating

sequence as follows:

Theorem 14.3.6. Every edge-wise Eulerian space admits an approximating sequence

((Gn, ηn) : n ∈ N) of Eulerian decompositions, where each Gn is a cycle of length n.
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δ1

δ2

δ3

δ4

δ5

δ6
G1

d1

d2
G2

d1

d2

d3

d4

d5

d6

Figure 14.6. Eulerian decompositions (G1, η1) 4 (G2, η2) with dummy

edges satisfying η1(di) = δi for i ∈ [2] and η2(di) = δi for i ∈ [6]. Note that

G1 4 G2 by contracting all edges inside the dotted subgraphs of G2.

Proof. Suppose that g : S1 → X is an edge-wise Eulerian map. Then the preimages

Ie := g−1(e) ⊆ S1 for edges e ∈ E(X) form a collection of disjoint open intervals on S1.

Let E(X) = {ej : j ∈ J} for some (possibly finite) J ⊆ N be an enumeration of the edge

set of X, and let ∆ = {δ1, δ2, . . .} be a countable dense subset of S1 \
⋃
{Ie : e ∈ E(X)}.

Set En = {ei : i ∈ [n]} and ∆n = {δi : i ∈ [n]} (if ∆ is empty, ∆n is empty, too).

For n ∈ N, let Cn =
{
Jn1 , . . . , J

n
kn

}
denote the set of connected components of

S1 \ (∆n ∪
⋃
{Ie : e ∈ En}). Let Vn = {vJ : J ∈ Cn}, Fn = {fe : e ∈ En} and Dn =

{dδ : δ ∈ ∆n} be duplicate sets of Cn, En and ∆n respectively. In our Eulerian decomposi-

tion (Gn, ηn), the graph Gn will be a cycle with vertex set Vn and edge set E(Gn) = FntDn.

Define ηn(vJ) := g(J) for each v ∈ Vn. By construction, ηn(v) is a standard Peano

subcontinuum of X, giving (E1). Set ηn(fe) := e and ηn(dδ) := δ for (E2)–(E5). Since

every interval in {Ie : e ∈ En} and every point in ∆n is incident with the closure of precisely

two components of Cn, transferring this assignment to Gn satisfies (E6) and (E7) (formally,

if Ie ∩ J 6= ∅ we put fe ∼ vJ , and similarly, if δ ∈ J , put dδ ∼ vJ). Hence, all properties

of Definition 14.3.2 are satisfied, and so (Gn, ηn) is an Eulerian decomposition of X.

To see that ((Gn, ηn) : n ∈ N) is an approximating sequence, note that for (A1), it is

easily verified that (Gn+1, ηn+1)/〈en+1, dn+1〉 = (Gn, ηn). For (A2), note that by our density

assumption on ∆, it follows that mesh(Vn) → 0. By elementary topological arguments,

this implies that also mesh({ηn(v) : v ∈ Vn})→ 0, i.e. w(Gn, ηn)→ 0. �

14.3.1.3. A link between even-cut property and Eulerian decompositions. Our second

motivation for Eulerian decompositions is that by permitting the model graph G to be

Eulerian, and not necessarily only a cycle, such decompositions can be built assuming

just the even-cut condition, as demonstrated by the following observation which forms the

blueprint for the more intricate constructions in the later chapters.

For the construction, we recall the following notion:
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Definition 14.3.7 (Intersection graph). For U a family of subsets of X, the associated

intersection graph GU is the graph with vertex set U , and an edge UV for U 6= V ∈ U
whenever U ∩ V 6= ∅.

If U is a finite cover of a Peano continuum X, it follows from the connectedness of X

that GU is a finite connected graph.15

Blueprint 14.3.8. Suppose X satisfies the even-cut condition. Then any Peano parti-

tion of X into standard subspaces gives rise to an Eulerian decomposition for some suitable

choice of dummy edges.

Proof. Let U be a (finite) Peano partition of X into standard subspaces. Let F ⊆ U
denote the collection of standard subspaces consisting of a single edge, and put V =

(U \ F ) ∪ S where S is the finite collection of isolated points of X − F .

Now let G′ be any graph with vertex set V and edge set F satisfying (E4), (E5) and

(E6) of Definition 14.3.2. Our task is to add some new dummy edges D to G′ to form a

supergraph G that will be the desired Eulerian decomposition satisfying (E7).

Towards this, consider the auxiliary graph H = (V,EH) given by the intersection

graph GV on V associated with the cover V of X − F . We shall prove that we can find a

multi-subset D ⊆ EH as desired.

As a first step, we claim that for each component C of H, the number of odd-degree

vertices of G′ in C is even. To see the claim, note first that X − F has finitely many

connected components, Lemma 14.1.11, and for every component C of H, the underlying

subset
⋃
C is a connected component of X−F by (E1). Thus, the bipartition (C,D) with

D = V − C of V = V (H) = V (G′) induces a bipartition of G(X), and hence an edge cut

B := E(
⋃
C,
⋃
D) ⊆ F of X, which must be even by assumption. However, property (E6)

of G′ implies that E(C,D) = B is also an edge cut of G′ containing the same edges. In

particular, the quotient graph G′C of G′ where we collapse D to a single vertex vD has the

property that vD has even degree, as vD is adjacent precisely to the evenly many edges in

B, plus possibly some loops (which do not affect the parity of the vertex degree). By the

Handshaking Lemma, the number of odd-degree vertices in G′C is even. Since vD has even

degree, it follows that the number of odd-degree vertices of G′C in C (and hence also of G′

in C) is even, and thus the claim follows.

Hence, we may pair up the odd-degree vertices of G′ such that pairs lie in the same

component of H. For each such pair {u, v}, consider a u − v path in H. By taking the

mod-2 sum over the edge sets of all these paths, we obtain an edge set D1 ⊆ EH such that

by adding D1 to G′, one obtains an even graph G′′.

Since the intersection graph H is connected, we may find an edge set D2 ⊆ EH such

that adding D2 to G′′ results in a connected graph. Then define G := G′′ ∪ 2 ·D2, i.e. for

15For a cover U , the intersection graph GU is sometimes also called the nerve of the cover.
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every edge in D2 we add two parallel dummy edges to G, in order to ensure connectedness

without affecting the degree parity conditions.

Finally, to make sure that property (E7) of Definition 14.3.2 is satisfied, note that by

definition of the intersection graph H, for every d = xy ∈ EH , the sets x, y ∈ V intersect,

and hence we may choose a point (i.e. a trivial arc) η(d) contained in x∩y ⊆ X, satisfying

property (E7) as required. �

14.3.2. Obtaining an Edge-Wise Eulerian Map.

14.3.2.1. Translating combinatorial information to topolopy. For the benefit of clarity,

and because we will need to jump between combinatorial and topological graphs, we denote

for a combinatorial multi-graph G by |G| the underlying topological space. Recall that

for an edge e of a finite multi-graph or a Peano continuum, we write e(0) and e(1) for the

two end vertices of e, and e(x) for x ∈ (0, 1) for the corresponding interior point on e.

Definition 14.3.9 (Usc function, covering function). For a topological space X let

2X = {A ⊆ X : A nonempty, closed}. A function g : Y → 2X is upper semi-continuous

(usc) if for all y ∈ Y and all open sets U ⊃ f(y) there is an open neighbourhood V of y

such that
⋃
y′∈V g(y′) ⊆ U . The function g is said to cover X if X =

⋃
{g(y) : y ∈ Y }.

Lemma 14.3.10. Suppose (G, η) is an Eulerian decomposition of some Peano contin-

uum X. Then the map η̂ : |G| → 2X given by

• η̂(v) := η(v) for all v ∈ V , and

• η̂(e(y)) := {(η(e))(y)} for all e ∈ E(G) and y ∈ (0, 1)

defined on the 1-complex |G| of G is upper semi-continuous, covers X, and is injective

and acts as identity for points on real edges.16 Moreover, diam(η̂(y)) 6 w(G, η) for all

y ∈ |G|.

Proof. First, it is immediate from property (E4) that η̂ covers X. Next, the usc-

condition for η̂ is evidently satisfied for interior points on edges of G. So consider a vertex

v ∈ G and an open set U ⊆ X with P = η(v) ⊆ U . To simplify notation, let us write

fX := η(f) for every edge f ∈ F , and similarly dX := η(d) for every edge d ∈ D.

By (E6), every edge f ∈ F incident with v in G, say f(j) = v, satisfies that fX(j) ∈
η(v), and hence fX ∩ U is an open neighbourhood of fX(j) ∈ fX ⊆ X. Since η̂ acts as

the identity between f and fX , there is an open neighbourhood Vf of v in f such that⋃
y′∈Vf η̂(y′) = fX ∩ U . By (E7), we similarly obtain an open set Vd for every d ∈ D.

Together, this yields that

V = {v} ∪
⋃
{Vf : f ∈ F, f ∼ v} ∪

⋃
{Vd : d ∈ D, d ∼ v}

is an open neighbourhood in |G| of the vertex v satisfying that
⋃
x′∈V η̂(x′) ⊆ U , which

establishes that η̂ is upper semi-continuous.

16Interior points of a dummy edge d for which η(d) is trivial are mapped constantly to that singleton.
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That η̂ is injective and acts as identity for points on real edges follows from (E5).

Finally, that diam(η̂(y)) 6 w(G, η) for all y ∈ |G| is clear from construction. �

Lastly, we record how the usc-maps corresponding to two comparable Eulerian decom-

positions relate to each other:

Lemma 14.3.11. Let X be a Peano continuum. For two Eulerian decompositions D1 =

(G1, η1) and D2 = (G2, η2) of X with D1 4 D2, let % : |G2| → |G1| denote the edge-

contraction map corresponding to G1 4 G2. Then the associated usc-maps η̂1 and η̂2

satisfy η̂2(y) ⊆ η̂1(%(y)) for all y ∈ |G2|.

Proof. It suffices to prove the lemma in the case where we contract a single edge, say

D1 = D2/e with e = ab. In this case,

% : |G2| → |G1|, z 7→

z for all z ∈ |G2| \ e, and

ve for all z ∈ e = {a} ∪ e ∪ {b}.

Also, according to Lemma 14.3.3, we have G1 = G2/e and η1 is given by

• η1(ve) = η2(a) ∪ η2(e) ∪ η2(b),

• η1(v) = η2(v) for all v 6= ve, and

• η1(f) = η2(f) for all f ∈ E(G2) \ {e}.
To verify the assertion of the lemma, consider some z ∈ |G2|. If z is an interior point

of some edge f 6= e, then it follows from the statement in the third bullet point that

η̂1(%(z)) = η̂1(z) = η̂2(z). Similarly, if z is a vertex other than a or b, then it follows

from the second bullet point that η̂1(%(z)) = η̂1(z) = η̂2(z). Finally, if z is an end vertex

or interior point of e, then it follows from the first bullet point that η̂1(%(z)) = η̂1(ve) =

η2(a) ∪ η2(e) ∪ η2(b) ⊇ η̂2(z). �

14.3.2.2. Construction of edge-wise Eulerian maps. We now prove our main theorem

of this chapter that every approximating sequence of Eulerian decompositions gives rise

to an edge-wise Eulerian map, completing the proof of (iii)⇒ (ii).

Theorem 14.3.12 (Mapping Theorem). Any Peano continuum X admitting an ap-

proximating sequence of Eulerian decompositions is edge-wise Eulerian.

Proof. Let (Dn : n ∈ N) with Dn = (Gn, ηn) be an approximating sequence of Euler-

ian decompositions for X, each Gn with edge bipartition En = Fn t Dn into real and

dummy edges. Note that by property (A1) and Definition 14.3.4, we have Gn is a contrac-

tion minor of Gn+1 for all n ∈ N, and hence the sequence (Gn : n ∈ N) forms an inverse

system of finite Eulerian multi-graphs under contraction bonding maps. Hence, the inverse

limit Γ = lim←−Gn is an Eulerian graph-like continuum, see [70, Thm. 13, Prop. 17]. Write

F =
⋃
Fn and D =

⋃
Dn. Then E(Γ) = F t D. Note that there is a natural bijection

between F and E(X) via η(f) := ηn(f) if f ∈ Fn, which is well defined by property (C3).



14.3. APPROXIMATING BY EULERIAN DECOMPOSITIONS 349

Further, it is readily checked that (A2) and (E4) imply that η is onto, while (E5) implies

that η is injective.

We now construct a continuous surjection η̂ : |Γ| → X such that η̂ is injective for

interior points on f ∈ F and η̂ � f : f → η(f) is a homeomorphism for interior points on

f ∈ F ⊆ E(Γ) to its associated edge η(f) ∈ E(X) for all f ∈ F . For the construction of

η̂, consider first for each n ∈ N the function

qn : |Γ| → 2X , z = (zi : i ∈ N) 7→ η̂n(zn),

which, by Lemma 14.3.10, is upper semi-continuous, covering, and is injective and acts as

identity for points on edges f ∈ F . Moreover, Lemma 14.3.11 shows that

(‡) qn+1(z) ⊆ qn(z)

for all n ∈ N and x ∈ |Γ|. Thus,
⋂
n∈N qn(z) ⊆ X is a nested intersection of non-

empty closed subsets of X, and so it follows from compactness of X that this intersection

is non-empty. At the same time, however, we have diam(qn(z)) 6 w(Gn, ηn) → 0 by

Lemma 14.3.10 and (A2), and so this intersection must be a singleton for each z ∈ |Γ|.
Hence, there is a function

η̂ : |Γ| → X defined by {η̂(z)} =
⋂
n∈N

qn(z) for all z ∈ |Γ|.

As the image of each qn is an upper semi-continuous function that covers X and satisfies

(‡), it follows from [121, General Mapping Theorem 7.4] that the map η̂ : |Γ| → X is a

continuous surjection as desired. Further, it is clear by the definition of η̂ that for every

real edge f ∈ F we have η̂−1(η(f)) = f and η̂ � f acts a identity from f ∈ F onto

η(f) ∈ E(X).

In order to complete the proof, note that since Γ is an Eulerian graph-like continuum,

there is an Eulerian map h : S1 → |Γ|. In particular, h is a continuous surjection with

the property that for every open edge f ∈ E(Γ) (dummy and real edges alike) we have

If := h−1(f) is an interval on S1 and h � If is a homeomorphism from If onto f .

We now claim that g = η̂ ◦ h : S1 → X is the desired edge-wise Eulerian map. Clearly,

as the composition of surjective functions, g is itself a surjection from the circle onto X.

To see that g is edge-wise Eulerian, we need to check that g sweeps through each edge of

X precisely once. So let e ∈ E(X) be arbitrary. By our considerations above, there is a

unique f ∈ F with η(f) = e. But g−1(e) = h−1 ◦ η̂−1(e) = If . Since hf = h � If is a

homeomorphism from If onto f , and η̂f = η̂ � f acts as identity between interior points of

f and e, it follows that g � If is as the composition of the homeomorphisms η̂f ◦ hf itself

a homeomorphism from If onto η(f) = e. Thus, we have verified that g is an edge-wise

Eulerian map, and hence that X is edge-wise Eulerian. �
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14.3.3. Simplicial Maps. In this last section on Eulerian decompositions, we de-

scribe an equivalent condition to Definition 14.3.4 about compatible Eulerian decomposi-

tions, which lends itself better to the constructions in the next two chapters.

Definition 14.3.13 (Contraction map, edge-contraction map). We call a surjective

map % : G2 → G1 between two graphs Gi = (Vi, Ei) a contraction map if

(Q1) %(V2) = V1,

(Q2) % restricts to a bijection between E2 \ %−1(V1) and E1,

(Q3) %(e(j)) = (%(e))(j) for all e ∈ E2 \ %−1(V1) and j ∈ {0, 1}, and

(Q4) %(e(j)) = %(e) for all e ∈ E2 ∩ %−1(V1) and j ∈ {0, 1}.
If additionally,

(Q5) %−1(v) is a connected subgraph of G2 for all v ∈ V (G1),

then the map % is called an edge-contraction map.

Thus, an edge-contraction map % : G2 → G1 is precisely a map witnessing that G1 4

G2, whereas a contraction map may identify vertices that are not necessarily connected

by an edge.

Definition 14.3.14. Let D1 = (G1, η1) and D2 = (G2, η2) be decompositions of a

Peano continuum X. A contraction map % : G2 → G1 is called η-compatible if

η1(x) =
⋃{

η2(y) : y ∈ %−1(x)
}

for all x ∈ V (G1) ∪ E(G1).

Lemma 14.3.15. Suppose D1 = (G1, η1) and D2 = (G2, η2) are both decompositions

of a Peano continuum X. Then D1 4 D2 if and only if there is an η-compatible edge-

contraction map % : G2 → G1.

Proof. This follows from the observation that G1
∼= G2/〈e1, . . . , ek〉 if and only if

there is an edge contraction map % : G2 → G1 such that %−1(V1) = {e1, . . . , ek}. �

14.4. Product-structured ground spaces

14.4.1. Introduction. In this chapter we establish that the Eulerianity conjecture

holds for Peano continua X whose ground space has a product structure, in other words,

where G(X) = V ×P is the product of a (compact) zero-dimensional space V with a Peano

continuum P , thereby proving the second case (B) of our main result Theorem 14.1.4 stated

in the introduction.

Theorem 14.4.1. Let X be a Peano continuum with ground space G(X) = V × P

where V is a compact zero-dimensional space and P a Peano continuum. Then X is

Eulerian if and only if it satisfies the even-cut condition.
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Bula, Nikiel and Tymchatyn have asked whether the Eulerianity Conjecture holds for

spaces with ground set C ×K, where C is the Cantor set and K is any continuum (not

necessarily Peano), [41, Problem 3]. For this question, our Theorem 14.4.1 gives a strong

answer in the case where P = K is a Peano continuum. For our result, the assumption that

P is Peano is crucial. To demonstrate this, recall that Bula, Nikiel and Tymchatyn have

also asked whether a Peano continuum X with ground space a continuum (not necessarily

Peano) satisfies the Eulerian conjecture [41, Problem 2]. We believe that this question

is, maybe unexpectedly so, at least as hard as the situation discussed in Theorem 14.4.1:

indeed, with the techniques from this chapter one can establish the Eulerianity conjecture

for spaces X with ground space a Cantor fan, or even a generalised fan of the form

G(X) = (V × P )/{(v, p) : v ∈ V } for some p ∈ P .

14.4.1.1. Blanket assumptions. Given our work in Chapter 14.2, for our proof of The-

orem 14.4.1, we may assume throughout this chapter, without any loss of generality, that

our Peano continuum X satisfies the following additional assumptions:

• X is a Peano graph without loops by the second reduction result, Theorem 14.2.14.

• X has diameter bounded by 1.

• P is not a singleton (as otherwise, X is a graph-like continuum, a class for which

the Eulerianity conjecture is already known to hold [70]).

14.4.1.2. Proof strategy. After having established Theorem 14.1.1, by (iii) ⇒ (i) we

need to construct an approximating sequence of Eulerian decompositions for X. The first

ingredient to construct this approximation is the observation that every Peano graph X

with ground space G(X) = V × P exhibits a fractal-like behaviour as follows: for every

point (v, p) ∈ V ×P and every ε > 0 there exists V ′×P ′ ⊆ V ×P such that v ∈ V ′ ⊆ V is

clopen, p ∈ int(P ′) ⊆ P ′ ⊆ P and P ′ is a regular subcontinuum of P , and X ′ := X[V ′×P ′]
is again a Peano graph of the same form as in the theorem, see Lemma 14.4.16. Let us call

such a space X ′ a tile of X. Utilising this fractal-like behaviour, our main technical result

in this chapter is the so-called decomposition theorem, Theorem 14.4.21, which says roughly

that any Peano-continuum with product-structured ground space can be decomposed into

edge-disjoint tiles all of arbitrarily small diameter plus some finitely many cross edges that

go between tiles, such that most of the tiles now satisfy the even-cut condition.

Crucially, to control all edge cuts simultaneously, we borrow and extend in Sec-

tion 14.4.2 the techniques of topological spanning trees, fundamental circuits and infinite

thin sums from recently developed infinite graph and infinite matroid theory, see [54, §8.7]

and [30, 38].

In the final section of this chapter, Section 14.4.5, we then demonstrate how this

decomposition theorem can be used, now using the assumption that the original space X

satisfied the even-cut condition for the first time, to construct an approximating sequence

of Eulerian decompositions for X.
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14.4.2. Spanning Trees and the Even-Cut Condition. Before we embark on

our proof, we need some preliminary results about spanning trees in graph-like continua.

These notions are by now standard in the theory of infinite graphs (see e.g. [54, §8] and

[53]) and they do generalise nicely to graph-like continua. Indeed, this is not by accident

and could be seen as a corollary to the general theory of infinite matroids and matroids

induced by graph-like spaces, see [30, 38]. However, as there are direct proofs for the

results we need, and so as to make it easier for the reader, we simply state and prove what

we need.

Lemma 14.4.2. The following are equivalent for a standard subspace T of a graph-like

continuum Z:

(1) T is edge-minimally connected,

(2) T is uniquely arc-connected,

(3) T is connected and does not contain a non-trivial cycle, and

(4) T is a dendrite.

Proof. Recall that a graph-like continuum is hereditarily locally connected, so every

subcontinuum of Z is automatically Peano [70, Corollary 8]. The equivalence of (3) and

(4) holds by the definition of dendrite (see [121, 10.1]). The equivalence of (2) and (3) is

easy. To see that (1) and (3) are equivalent, note that if T contains a cycle, then deleting

an edge on that cycle does not disconnect T , and conversely, if deleting an edge e = xy

does not disconnect T , then for any x− y arc P in T − e, we have P ∪ e is a cycle. �

Definition 14.4.3 (Spanning tree). A subspace Y of a graph-like continuum (X, V,E)

is called spanning if V ⊆ Y . A spanning standard subspace T of a graph-like continuum

Z is called a spanning tree of Z provided it satisfies one (and therefore every) condition

in Lemma 14.4.2.

Spanning trees of graph-like continua are easy to construct, because connectivity is

preserved under nested intersections—so in order to obtain a standard subspace with

property (1), one only needs to enumerate all edges from a graph-like continuum, and

then delete the next edge in line as long as it is not a bridge at that current stage.

Definition 14.4.4 (Fundamental cuts; fundamental cycles). Let T be a spanning tree

of a graph-like continuum Z.

• If f ∈ E(T ), then by Lemma 14.1.11 and property (1) in Lemma 14.4.2, the space

T − f has two connected components with vertex sets say A and B which form

a clopen partition of V (T ) = V (Z). The corresponding edge cut E(A,B) of Z is

also called the fundamental cut of f , denoted by Df .

• If e /∈ E(T ), then T contains a unique standard arc A between the endpoints of e.

The fundamental cycle Ce is given by the edge set E(A) ∪ {e}. Note that Z[Ce]

is indeed homeomorphic to S1.
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Observe that for f ∈ E(T ) and e /∈ E(T ) one has e ∈ Df if and only if f ∈ Ce.

Definition 14.4.5 (Thin family). Let E be a set. A multi-set (Cj : j ∈ J) of subsets

of E is called thin if for all e ∈ E, we have |{j ∈ J : e ∈ Cj}| <∞.

Definition 14.4.6 (Thin sum). For a thin family (Cj : j ∈ J), the sum

C =
∑
j∈J

Cj := {e ∈ E : |{j ∈ J : e ∈ Cj}| is odd}

is well-defined. We say that C is the thin sum over the (Cj : j ∈ J).

The following theorem is in some sense a natural generalisation of the corresponding

theorem for finite and infinite graphs [54, Theorems 1.9.5 and 8.7.1] respectively.

Theorem 14.4.7. Let X = (V,E) be a graph-like continuum, and D ⊆ E. Then all

topological cuts of X[D] are even if and only if D is a thin sum of fundamental cycles of

any spanning tree of X.

Proof. Compare to [54, 8.7.1], where this statement is proved for Freudenthal com-

pactifications of locally finite graphs (which form a proper subclass of the class of graph-like

continua). For additional background, see [56].

To see that a thin sum of cycles satisfies the even-cut condition, recall that by [70,

Lemma 6], any single cycle C intersects any topological cut of X in an even number of

edges. This extends immediately to finite symmetric differences, as is easily verified. But

then this also extends to thin sums of cycles: since cuts are finite, only finitely many cycles

in our thin sum can meet the cut, and so the result follows.

For the converse implication, suppose X[D] satisfies the even-cut condition and fix

any spanning tree T of X. We show that D =
∑

e∈D\E(T ) Ce. To see that this sum

is well-defined, observe that f ∈ Ce if and only if e ∈ Df . Since fundamental cuts

are finite, the above is the sum over a thin family. To prove the equality, we claim

that D′ := D +
∑

e∈D\E(T ) Ce = ∅. First, it is clear that D′ ⊆ E(T ), since every edge

e ∈ D \ E(T ) has been eliminated by the corresponding Ce (and all other edges in Ce lie

in E(T ) by construction).

Second, the existence of an edge f ∈ D′ leads to a contradiction as follows: since

f ∈ D′ ⊆ E(T ), it follows that f ∈ Df ∩D′ ⊆ Df ∩ E(T ) = {f}.
Thus, Df is a topological cut meeting D′ in an odd number of edges. This contradicts

the fact that both D (by assumption) and the thin sum
∑

e∈D\E(T )Ce (by virtue of the

first proven implication) meet every cut in an even number of edges. �

14.4.3. Sparse Edge Sets.
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14.4.3.1. Properties of sparse edge sets. Given a Peano graph X with ground set

G(X) = V × P , we will now investigate under which conditions certain (infinite) edge

sets can be removed without harming local connectedness or density. Recall from Sec-

tion 14.1.3.1 that a subset F ⊆ E(X) of edges is called sparse (in X) if X[F ] is a

graph-like compactum (i.e. if
⋃
F \

⋃
F is zero-dimensional). Note that the property of

an edge set F being sparse is inherited by subsets of F .

Lemma 14.4.8. Let X be a Peano continuum [Peano graph] X and F ⊆ E(X) a sparse

edge set. Then the following assertions hold.

(i) The non-trivial components of X − F form a zero-sequence of standard Peano

continua [Peano graphs ].

(ii) If G(X) contains no 1-point components, then G(X − F ) = G(X).

(iii) If for some δ > 0 all components of G(X) have diameter at least δ, then X − F
consists of finitely many Peano continua [Peano graphs ], so is locally connected.

Proof. Let D denote the collection of components of X − F . It is clear that each

element of D is a standard subcontinuum. We first show that D forms a null-family.

Otherwise, for some ε > 0 there are infinitely Dn ∈ D with diam(Dn) > ε for all n ∈ N. By

sequential compactness of the hyperspace [121, 4.18], we may assume thatDn → D, i.e.Dn

converges to a continuum D in the Hausdorff metric [121, 4.2]. And since diam(Dn) > ε

for all n ∈ N, we have – by the properties of the Hausdorff metric – that diam(D) > ε,

too. Moreover, since edges are open, we necessarily have D ⊆ G(X). But now, since

D is a non-trivial continuum and
⋃
F \

⋃
F is zero-dimensional, there is x ∈ D and a

connected neighbourhood U of x in X with U ∩X[F ] = ∅. However, since Dn → D there

exists N ∈ N such that Dn ∩ U 6= ∅ for all n > N . Therefore, D ∪ U ∪DN is a connected

subset of X − F , contradicting that DN was a component. This contradiction establishes

that D forms a null-family, and hence that the subfamily D′ ⊆ D of non-trivial elements

of D forms a zero-sequence.

To see that each D ∈ D′ is a Peano continuum, note that by construction, D \ F is

open, so hence locally connected, and moreover dense in D. It follows that the interior

of D is locally connected with zero-dimensional boundary (as the boundary is a subset

of the zero-dimensional X[F ] ∩ G(X), and so D must be a Peano continuum, since if a

continuum fails to be locally connected at some point, then it fails to be locally connected

at all points of a non-trivial subcontinuum, [121, 5.13].

Finally, if X is a Peano graph, then each D ∈ D′ is a Peano graph too, i.e. has dense

edge set. Suppose to the contrary that for some non-trivial component D, its edge set

E(D) = {e ∈ E(X) : e ⊆ D} is not dense in D. Since F \ F is zero-dimensional, there is

x ∈ D and a connected open neighbourhood U of x in X with U ∩
⋃

(E(D) ∪ F ) = ∅.
Since by assumption E(X) is dense in X and forms a zero-sequence by Lemma 14.1.11,
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there is an edge e ∈ E(X) completely contained in U . But since U ⊆ D, this implies

e ∈ E(D), a contradiction.

For (ii), note that the inclusion G(X − F ) ⊆ G(X) holds for all edge sets F ⊆ E(X)

and all X, as free edges in E(X) \ F remain free in X − F . For the converse inclusion

to hold, however, the additional assumptions of the statement are necessary. So suppose

there was x ∈ G(X) \ G(X − F ). Then there is a free arc α in X − F with x ∈ α. But

then α ∪ X[F ] is a compact graph-like space in X forming a neighbourhood of x in X,

from which it follows that x forms a singleton component in X.

For (iii), it now follows from the previous step that every componentX−F has diameter

at least δ, and so by (i), X − F must consist of finitely many Peano continua. �

14.4.3.2. Sparse spanning trees. The purpose of this section is to give a fairly general

procedure how to find non-trivial sparse edge sets.

Lemma 14.4.9. Let X be a Peano continuum. For every zero-dimensional compact set

Y ⊆ G(X), there exists a standard graph-like continuum Z ⊆ X with Y ⊆ Z.

Proof. The proof modifies an idea by Ward of approximating a Peano continuum by

finite trees, see [161] and [162].

Let (Un : n ∈ N) be a refining sequence of finite 2−n Peano covers of X where U0 =

{X} is the trivial cover. For a subset A ⊆ X, define Un � A := {U ∈ Un : U ∩ A 6= ∅}.
Recursively, we will define finite, i.e. compact trees Tn ⊆ X and finite vertex sets Vn ⊆ Tn
such that for all n ∈ N,

(1) Tn ⊆ Tn+1 as topological subspaces,

(2) Vn ⊆ Vn+1,

(3) Vn is the set of branch- and end-vertices of Tn,

(4) Un � Y ⊆ Un � Tn, and

(5) Un � Y covers Tn+1 \ Tn, and

(6) Un � Y covers Vn+1 \ Vn.

Let T0 = V (T0) = {t0} be an arbitrary singleton tree. Since U0 = {X}, this satisfies

(4). All other conditions are trivial or vacuous at this point. This completes the base case.

For the recursion step, suppose that T0, . . . , Tn are already defined according to (1)− (6),

and pick finitely many points points A = {a1, . . . , ak} such that Un+1 � Y = Un+1 � A.

Let S0 := Tn, V (S0) := Vn and suppose we already have constructed a sequence of finite

tree S0 ⊆ S1 ⊆ · · · ⊆ Si for i < k such that Si contains {a1, . . . , ai} and such that Si \ Tn
is covered by Un � Y . Consider ai+1. Again, if ai+1 ∈ Si, set Si+1 := Si. Otherwise,

pick U ∈ Un such that ai+1 ∈ U , and also pick t ∈ Tn ∩ U (possible by (4)). Pick an

arc α : I → U from t to ai+1. Since Si is compact, there is a maximal xi+1 < 1 such

that α(xi+1) ∈ Si. Define Si+1 = Si ∪ α([xi+1, 1]), and V (Si+1) = V (Si) ∪ {α(xi+1), ai+1}.
Since α was an arc completely contained in U , we have Si+1 \ Tn is covered by Un � Y .
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In the end, put Tn+1 := Sk and Vn+1 = V (Sk). Clearly, Tn+1 is a finite tree with vertex

set Vn+1. Moreover, by choice of A, it satisfies (4). Finally, (5) and (6) follow since all Si
satisfied that Si \ Tn is covered by Un � Y , and so then does Sk = Tn+1. This completes

the recursive construction.

Define T =
⋃
n∈N Tn, and V =

⋃
Vn. Our aim is to show that Z = T is a graph-like

continuum containing Y . Clearly, T is connected, and hence Z is compact connected. To

see that Z covers Y , note that for any y ∈ Y , since Wn :=
⋃

(Un � {y}) has vanishing

diameter for n→∞, the family {Wn : n ∈ N} forms a neighbourhood base of y in X. By

property (4), every Wn intersects T , and so y ∈ T . Since y ∈ Y was arbitrary, this shows

Y ⊆ T = Z. Finally, the proof that Z is graph-like essentially relies on the following

observation:

Claim: For every p /∈ Y there is a open set U ⊆ X with p ∈ U such that for some

n ∈ N we have U ∩ T ⊆ Tn and U ∩ V ⊆ Vn.

To see the claim, note that if p /∈ Y , then ε = dist (p, Y ) > 0, and so there is n large

enough such that 2−n < ε. Let W :=
⋃

(Un � Y ) and U = X \W . Then U is open and

p ∈ U . Moreover, T ∩ U = T \W =
(
Tn ∪ T \ Tn

)
\W ⊆ Tn = Tn by property (5), and

the fact that Tn is compact. Similarly, V ∩ U = V \W ⊆ Vn = Vn by property (6), and

the fact that Vn is finite. This establishes the claim.

Finally, we argue that the set V (Z) := Y ∪V is a vertex set for Z witnessing that Z is

graph-like. First, by the claim, V (Z) is closed in X and hence compact. Moreover, since

each Vn is finite and Y is zero-dimensional, also V (Z) is zero-dimensional by the countable

sum theorem for dimension, [62, Thm. 1.5.2].

Finally, we need to show that each p ∈ Z\V (Z) has a neighbourhood homeomorphic to

an open interval. So let p ∈ Z \V (Z). Let U be as in the claim, i.e. U is a neighbourhood

of p such that U ∩ Z = U ∩ T ⊆ Tn. Then U \ Vn is open, and (U \ Vn) ∩ Z ⊆ Tn \ Vn
consists of finitely many connected components, each homeomorphic to an open interval.

Finally, to make Z standard, define Z ′ = Z \
⋃
{e : e ∩ Z 6= ∅ 6= Z \ e}. Since Y ⊆

G(X), we still have Y ⊆ Z ′, and further, Z ′ is still connected, as no half edge is needed

for connectivity in Z. �

Definition 14.4.10 (Sparse spanning tree). Let X be a Peano continuum. A spanning

tree T of X∼ is sparse if its edge set E(T ) is sparse in X.

Lemma 14.4.11 (Existence of sparse spanning trees). Every Peano continuum X with

G(X) = V × P admits a sparse spanning tree.

Proof. Pick p ∈ P , and put Y := V × {p}, a compact zero-dimensional subset of

G(X). By Lemma 14.4.9, there exists a standard graph-like continuum Z ⊆ X with

Y ⊆ Z. Let π : X → X∼ be the quotient map. Since Y intersects every component of
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G(X), it follows that π(Z) is a spanning graph-like subcontinuum of X∼. Let T ⊆ π(Z)

be a spanning tree of X∼. Then E(T ) ⊆ E(X∼) = E(X), and since Z was graph-like, it

is evident that E(T ) ⊆ Z is a graph-like compactum, i.e. E(T ) is sparse in X. �

14.4.4. Tiles in Peano Graphs with Product-Structured Ground Spaces. We

discuss fractal properties of Peano continua X with ground space G(X) = V × P .

14.4.4.1. Tiles via horizontal restriction. First, we discuss tiles that result by restrict-

ing to well-behaved subsets of V .

Lemma 14.4.12. Every locally connected compactum X with ground set G(X) = V ×P
[and dense edge set ] is of the form X =

⊕
A∈AXA, where A is a (finite) clopen partition

of V and XA ⊆ X is a standard Peano continuum [Peano graph] with ground space

G(XA) = A× P .

Proof. As a locally connected compactum, X has finitely many components, [107,

VI §49, II Theorem 7]. Moreover, since P is connected, each component C is of the form

C = X[AC × P ] with A ⊆ V . Since C is closed, if follows from compactness and the

continuity of projection maps that AC ⊆ V is closed. Moreover, for distinct components

C 6= C ′ we clearly have AC∩AC′ = ∅. Therefore, every AC is a clopen subset of V . Hence,

the collection A of such clopen AC ⊆ V is the desired (finite) clopen partition of V . �

Corollary 14.4.13. If X is a Peano graph with G(X) = V ×P , and F ⊆ E is sparse,

then there is a (finite) clopen partition A of V such that X − F =
⊕

A∈AXA where each

XA ⊆ X is a standard Peano graph with ground space G(XA) = A× P .

Proof. By Lemma 14.4.8(iii), the space X−F is locally connected with ground space

G(X) = V × P , so the assertion follows from Lemma 14.4.12. �

Corollary 14.4.14. If X is a Peano graph with G(X) = V ×P and B ⊆ V is clopen,

then there is a (finite) clopen partition B of B such that X[B × P ] =
⊕

B∈BXB where

each XB ⊆ X is a standard Peano graph with ground space G(XB) = B × P .

Proof. Since F = E(B × P, (V \B)× P ) is a (finite) edge cut of X, the edge set F

is sparse, and so the result follows from the previous Corollary 14.4.13, by taking B to be

the subcollection of A of elements that intersect B. �

14.4.4.2. Tiles via vertical restriction. Next, we discuss tiles that result by restricting

to well-behaved subsets of P .

Lemma 14.4.15. Let X be a Peano graph, x ∈ G(X), and U ⊆ X a connected set such

that U ∩G(X) is a neighbourhood of x in G(X). Then for every ε > 0 there is a connected

neighbourhood V of x in X such that V ⊆ Bε(U).
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Proof. If y is an endpoint of some edge e, write Be
δ(y) (where 0 < δ 6 1) for the

half-open interval with end-point y of diameter δ on e. Then put

V := U ∪ {Be
ε(y) : e ∈ E and y ∈ e ∩ U} ⊆ X.

Then V is connected, and it is a neighbourhood of x in X (as almost all edges in E have

diameter < ε), and by construction, we have V ⊆ Bε(U). �

Lemma 14.4.16. For every Peano graph X with ground set G(X) = V × P , every

W ⊆ P a regular closed Peano subcontinuum and for every ε > 0, there is a (finite)

clopen partition A of V with mesh(A) 6 ε such that X[A ×W ] is a Peano graph for all

A ∈ A.

Proof. By Lemma 14.4.12 it suffices to show that the induced subspace XW = X[V ×
W ] inherits local connectedness from X. This is trivial for points in the interior of XW ,

i.e. interior points of edges, and points in V × int(W ). So consider an arbitrary point

x = (v, w) for v ∈ V and w ∈ ∂W , and fix δ > 0. Our task is to find a connected

open neighbourhood V of x in XW of diameter at most δ. First, pick a connected open

neighbourhood U of w in W with diam(U) < δ/3. Then V × (U ∩ int(W )) is a non-

empty open subset of X, and so it follows from local connectedness of X that there are

A ⊆ V clopen with v ∈ A, B ⊆ U ∩ int(W ) open, and a connected open set Y ⊆ X with

diam(Y ) < δ/3, Y ⊆ U and X[A×B] ⊆ Y .

But then Y ′ = Y ∪X[A× U ] is connected, and restricts to a neighbourhood of (v, w)

in G(XW ) of diameter diam(Y ′) 6 δ/3. So applying Lemma 14.4.15 to Y ′ with ε = δ/3

provides a connected neighbourhood as desired. �

14.4.4.3. Ground-space covering tiles.

Lemma 14.4.17. Suppose for a Peano continuum P with edges E = E(P ) and ground

space Z = Z(P ), we have a set of edges F such that Z ∪
⋃
F is locally connected. Then

Z ∪
⋃
F ′ is locally connected for all F ⊆ F ′ ⊆ E.

Proof. Let Y = Z∪
⋃
F . By local connectedness, all components of Y are open, and

so it follows from compactness that Y has finitely many components. Moreover, since the

edges in F ′ \F form a zero-sequence of Peano subcontinua, the result now follows from (a

natural adaption of) Lemma 14.1.13. �

Relying on the results established above about sparse spanning trees, our aim for this

short section is to prove the following theorem.

Theorem 14.4.18. The edge set E(X) of every Peano graph X with ground space

G(X) = V × P (with P non-degenerate) admits a bipartition E(X) = E1 t E2 into two

edge sets both dense for G(X) such that both Xi = X[Ei] are locally connected.
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Proof. Let (Un : n ∈ N) be a decreasing sequence of 2−n partitions for P with U0 =

{P}. Let R = (R,6) be the corresponding refinement tree, that is R(n), the nth level of

R, indexes the elements of Un, so Un = {Ur : r ∈ R(n)}, and r 6 r′ if and only if Ur ⊇ Ur′ .

Recall that each Un is finite, and so R is a locally finite tree. Write R(6n) :=
⋃
i6nR(i)

and similarly R(<n) :=
⋃
i<nR(i).

We now recursively construct

• a family of finite multicuts {Ar : r ∈ R} of V , and

• subtrees Tr,A ⊆ X∼ for r ∈ R and A ∈ Ar
such that

(1) r 6 r′ ∈ R implies Ar < Ar′ ,
(2) mesh(Ar) 6 2−n for r ∈ R(n),

(3) for each r ∈ R(n) and A ∈ Ar, the space

Xr,A = X[A× Ur] \
⋃
{E(TA′,s) : s ∈ R(<n), A′ ∈ As}

is a Peano graph,

(4) Tr,A is a sparse spanning tree for Xr,A for all r ∈ R and A ∈ Ar (unless (Xr,A)∼
has a single vertex, in which case Tr,A consists of an arbitrary edge from Xr,A).

For n = 0, and r ∈ R(0) the unique root of R, the trivial (finite) clopen partition

Ar = {V } is clearly sufficient. Now let n ∈ N and suppose we have already defined finite

multicuts {Ar : r ∈ R(6n)} of V , and subtrees Tr,A ⊆ X∼ for r ∈ R(6n) and A ∈ Ar
according to (1)–(4). Consider r ∈ R(n). Since Xr,A is a Peano graph by (3), we may use

Lemma 14.4.11 to find sparse spanning trees Tr,A for Xr,A for each A ∈ Ar, unless A is a

singleton, in which case we let Tr,A consist of an arbitrary edge from Xr,A. Then property

(4) is satisfied. By Corollary 14.4.13, each

X ′r,A := Xr,A \
⋃
{E(TA′,s) : s ∈ R(n), A′ ∈ As}

remains locally connected. Consider an arbitrary successor s of r, i.e. some s ∈ R(n+ 1)

with r < s. By Corollary 14.4.14 and Lemma 14.4.16, there is a (finite) clopen partition

BA,s of A with mesh(Bs,A) 6 2−(n+1) such that X ′r,A[B×Us] is a Peano continuum for each

B ∈ Bs,A. Then As :=
⋃
{Bs,A : A ∈ Ar} satisfies (1), (2) and (3).

Once the recursion is complete, let us write Ln :=
⋃
{E(Tr,A) : r ∈ R(n), A ∈ Ar} for

the edge set of all trees on level n ∈ N, and note that it follows from properties (3) and

(4) that Ln ∩ Lm = ∅ for all n 6= m ∈ N. Thus, by defining

E ′1 =
⋃
n∈N

L2n and E ′2 =
⋃
n∈N

L2n+1

we obtain two disjoint edge sets of E. So it remains to check that E ′1 and E ′2 each are

dense in V × P and induce a locally connected subspace of X. This will complete the

proof, as then by Lemma 14.4.17, any partition E = E1 t E2 with E1 ⊇ E ′1 and E2 ⊇ E ′2
satisfies the assertion of the lemma.
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Indeed, to see that X[E ′1] is locally connected and dense, pick (v, p) ∈ V ×P and δ > 0

arbitrarily, and let k = 2n large enough so that mesh(Ak) < δ/2 and mesh(Uk) < δ/4 by

(1). Pick A ∈ Ak with v ∈ A and let U =
⋃
{U ′ ∈ Uk : p ∈ U ′}. Then diam(U) < δ/2 and

p ∈ int(U). By choice of Tr,A in (4) (where r ∈ R(k) is the index of an element Ur ⊆ U)

we have (A×U)∪Tr,A ⊆ X[E ′1] is connected, of diameter at most δ, and contains at least

one edge. Using Lemma 14.4.15, and the fact that δ was arbitrary, this establishes local

connectedness and density for E ′1. The case E ′2 is similar after choosing k to be odd. �

14.4.4.4. A decomposition theorem. The following result combines the combinatorial

techniques from Section 14.4.2 with the topological techniques from the previous Sec-

tions 14.4.3 and 14.4.4. It will be used to prove our main decomposition theorem below.

Recall that ∂A denotes the boundary operator.

Lemma 14.4.19. Let Q1 and Q2 be Peano subcontinua of some non-degenerate Peano

continuum P such that (a) Q1 ∪Q2 = P , (b) Q1 \Q2 and Q2 \Q1 are non-empty regular

closed subcontinua with connected interior, and (c) Q1 ∩ Q2 = W = W1 ⊕ · · · ⊕Wk is a

finite disjoint union of regular closed Peano continua Wi each with connected interior such

that int(W ) separates Q1 from Q2.17 Then for any locally connected compactum X with

dense edge set and G(X) = V × P , there is a partition E(X) = E1 t E2 t F such that

(1) X[Ei] is locally connected, and ∂Ei = V ×Qi for i = 1, 2,

(2) |F | <∞,

(3) X[E2] satisfies the even-cut condition.

Proof. We may assume that X[V × W1] is connected – as otherwise, by (c) and

Lemma 14.4.16, there is a clopen partition B of V such that X[B × W1] is a Peano

continuum for all B ∈ B. Assign the finitely many cross-edges of the clopen partition

associated with B to F and apply the following argument to each X[B × P ] individually.

Hence we may find, by Lemma 14.4.11, a sparse spanning tree T ⊆ X∼ such that for

any edge e ∈ E(T ), both its endpoints lie in V × W1. By Lemma (iii), the remaining

space X ′ := X[V ×P ]−E(T ) is a locally connected, metrisable compactum with a dense

collection of edges.

Hence, by Lemma 14.4.16 and Theorem 14.4.18, we can partition each edge set of

X ′[V ×Wi] into Ei
1 and Ei

2 such that both (V ×Wi) ∪ Ei
j are locally connected with Ei

j

being a dense collection of edges for all i ∈ [k] and j ∈ [2]. Let

E ′1 =
⋃{

Ei
1 : i ∈ [k]

}
∪ {e = xy ∈ E(X) : x ∈ V × (Q1 \Q2), y ∈ V ×Q1}

and

E ′2 =
⋃{

Ei
2 : i ∈ [k]

}
∪ {e = xy ∈ E(X) : x ∈ V × (Q2 \Q1), y ∈ V ×Q2}.

17For a typical example let P = S1, and Q1 a clockwise arc on P from 8 to 4 o’clock, and Q2 a

clockwise arc on P from 2 to 10 o’clock.
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We claim that ∂E ′j = V × Qj and (V × Qj) ∪ E ′j is locally connected for j = 1, 2.

Consider the case j = 1 (the other case is similar). By (b) and Lemma 14.4.16, it fol-

lows that X[V × (Q1 \ int(Q2))] is locally connected. And by construction, we also have

(V ×W ) ∪
⋃
{Ei

1 : i ∈ [k]} is locally connected. Hence, it follows that their union is a

locally connected space with ground set V × Q1 whose edge set is a subset of E ′1. But

then it follows from Lemma 14.4.17 that we may add all remaining edges from E ′1 without

harming local connectedness or density. The claim is established.

By this point, we have accounted for all edges in E(X) apart from edges of T , and edges

of F := E(V × (Q1 \Q2), V × (Q2 \Q1)). Note that F is finite: since int(W ) separates

Q1 from Q2, the sets (Q1 \Q2) and (Q2 \Q1) have positive distance from another, and so

since E(X) forms a zero-sequence, only edges of sufficiently large diameter can be in F .

Thus, it remains to distribute the edges of T between E ′1 and E ′2. We will do this as

to make sure that X[E2] satisfies the even-cut condition, and let E2 =
∑
{Ce : e ∈ E ′2},

i.e. consider the thin sum of fundamental cycles of edges in E ′2 with respect to T , Defini-

tions 14.4.4 and 14.4.6. Note that E ′2 ⊆ E2 ⊆ E ′2 ∪ E(T ), so ∂E2 = V × Q2. Moreover,

since E2 is the thin sum of circuits, it follows from Theorem 14.4.7 that X[E2] satisfies the

even-cut condition. Finally, let E1 := E(X) \ (E2 ∪D). Then also E ′1 ⊆ E1 ⊆ E ′1 ∪E(T ),

so ∂E1 = V × Q1. Moreover, as E1 and E2 are supersets of E ′1 and E ′2 respectively, so

both (V ×Qi) ∪ Ei are locally connected by Lemma 14.4.17. �

Recall the definition of a Peano partition from Definition 14.2.6. We can visualize

the way the different elements of a partition U interact by its intersection graph GU , see

Definition 14.3.7. Note that if U is a finite cover of a Peano continuum X, it follows from

the connectedness of X that GU is a finite connected graph.

Lemma 14.4.20. Let U be a finite Peano partition of a connected set X, GU its asso-

ciated intersection graph, and U ∈ U . If we denote by N(U) all neighbours of U in GU ,

then U and
⋃
V (GU) \ (U ∪N(U)) are disjoint closed sets in X, and therefore have some

positive distance.

Proof. They are disjoint by the definition of intersection graph and neighborhood,

and they are closed as a finite union of closed sets. �

Theorem 14.4.21 (Decomposition Theorem). For every ε > 0 and every Peano contin-

uum P , there exists a finite cover P = {P1, . . . , Pk} of P consisting of Peano subcontinua

with mesh(P) < ε such that every locally connected compactum X = (V × P ) ∪ E admits

a finite partition E = E1 t · · · t Ek t F such that

(1) |F | <∞,

(2) ∂Ei = V × Pi,
(3) Xi := X[Ei] is locally connected for all i ∈ [k],

(4) Xi satisfies the even-cut condition for all i 6= 1.
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Note that while {P1, . . . , Pk} is not a Peano partition of P , but only a cover (i.e.

Pi∩Pj may have non-empty interior), the resulting tiles {X1, . . . , Xk} of the decomposition

theorem together with the finitely many edges from F do form a Peano partition of X:

for all these tiles and edges are edge-disjoint, and as the edges of X are dense, this means

they all have pairwise disjoint interiors.

Proof. Suppose for a contradiction that the statement is false for some ε > 0, and

consider the class C of all Peano continua that witness the failure of ε. For each P ∈ C let

kP ∈ N denote the minimum size over all ε/3 Peano partitions of P , and fix P ∈ C such

that k = kP is minimal. Let U be a ε/3 Peano partition of P with |U | = k, which exists

by Theorem 14.2.7.

Clearly, we must have k > 3, as otherwise, diam(P ) < ε and there is nothing to do. Now

pick a spanning tree T for its associated intersection graph G = GU (see Definition 14.3.7),

and let U be a leaf of this tree, and denote by NG(U) the neighbourhood of U in GU . Set

P ′ := U ∪
⋃
N(U) and P ′′ =

⋃
V (T )\{U}. Since U was a leaf of T , the induced subgraph

GU − {U} is connected, P ′ and P ′′ are both Peano subcontinua of P together covering P

such that int(P ′ ∩ P ′′) = int(
⋃
N(v)) consists of finitely many Peano subcontinua of P

separating P ′ from P ′′, see Lemma 14.4.20. Also note that diam(P ′) 6 ε.

Further, note that U ′ := U \{U} is an ε/3 Peano partition for the Peano continuum P ′′.

By minimality of kP , it follows that P ′′ /∈ C and so there is a finite cover Q = {P1, . . . , P`}
of P ′′ satisfying the conclusion of the theorem. To obtain the final contradiction, we show

that the finite cover P = {P1, . . . , P`, P
′} of P witnesses that P could not have been a

counterexample. Clearly, mesh(P ) < ε.

To see the other assertions, consider an arbitrary locally connected compactum X =

(V × P ) ∪ E with V compact zero-dimensional and the collection of free arcs E being

dense. By construction of P ′ and P ′′ we may apply Lemma 14.4.19 to find a partition

E = E ′ t E ′′ t F ′ of the edge set E of X such that

• ∂E ′ = V × P ′ and X ′ = (V × P ′) ∪ E ′ is locally connected and satisfies the

even-cut condition,

• ∂E ′′ = V × P ′′ and (V × P ′′) ∪ E ′′ is locally connected, and

• |F ′| <∞.

Next, by the assumptions on the cover Q of P ′′, we may find a further partition E ′′ =

E1 t · · · t E` t F ′′ such that

• |F ′′| <∞,

• Ei is dense in V × Pi,
• Xi := V × Pi ∪ Ei is locally connected for all i ∈ [`],

• Xi satisfies the even-cut condition for all i 6= 1.

But then we see that the edge partition E = E1 t · · · t E` t E ′ t F for F := F ′ ∪ F ′′

witnesses that P does satisfy the assertion of the theorem after all. �
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14.4.5. Approximating Sequences of Eulerian Decompositions.

14.4.5.1. Covering the ground-set by tiles. The plan is now to apply the decomposition

Theorem 14.4.21 recursively, in order to construct an approximating sequence of Eulerian

decompositions for X as in Theorem 14.3.12. So let us fix a Peano graph X with ground

space G(X) = V × P and edge set E = E(X) throughout this section, satisfying the

blanket assumptions of Section 14.4.1.1 explained at the beginning of this chapter.

First, we recursively construct a sequence (Pn : n ∈ N) of finite covers of P and a

locally finite tree R with levels R(n) such that for all n ∈ N we have

(COVER) (a) P0 = {P} = {Pr} for {r} = R(0) the root of R,

(b) mesh(Pn) 6 2−n, and

(c) Pn+1 4 Pn witnessed by the refinement tree R, i.e. for all r < r′ with

r ∈ R(n) and r′ ∈ R(n+ 1) we have Pr ∈ Pn, Pr′ ∈ Pn+1 and Pr ⊆ Pr′ ,

(d) For r ∈ R(n) writing r+ := {s ∈ R(n+ 1): r < s}, we have that {Ps : s ∈ r+}
is a finite cover of Pr satisfying the assertions of Theorem 14.4.21 for Pr.

The base case is given in (a). Now whenever Pn is already constructed, pick for each Q ∈
Pn a cover PQ of mesh(PQ) 6 2−(n+1) according to the Decomposition Theorem 14.4.21

for Q, and let Pn+1 :=
⋃
{PQ : Q ∈ Pn}. Moreover let R = (R,6) be the corresponding

refinement tree, that is R(n), the nth level of R, indexes the elements of Pn, so Pn =

{Pr : r ∈ R(n)}, and r < r′ for r ∈ R(n) and r′ ∈ R(n+ 1) if and only if Pr′ ∈ PPr .
To formulate our next properties, we use the following piece of notation: if r ∈ R(n),

then r− denotes the unique node in R(n−1) with r− < r. In fact, note that R embeds

into the tree N<N of finite natural sequence ordered by extension. Thus, without loss of

generality, we assume from now on that R ⊆ N<N. In particular, the root of R will be

denoted by ∅, each level R(n) = R∩Nn consists of the n-element sequences in R, and for

every r ∈ R we may assume that r+ = {r_0, r_1, . . . , r_kr} for some suitable kr ∈ N,

with r_i denoting the extension of the finite sequence r by a new last element i.

We now construct by recursion on n ∈ N

• a family {Ar : r ∈ R(n)} of (finite) clopen partitions of V ,

• a family {Er,A : r ∈ R(n), A ∈ Ar} of pairwise disjoint subsets of E, and

• a family {Fr,A : r ∈ R(n), A ∈ Ar} of pairwise disjoint, finite subsets of E,

such that for all r ∈ R the following holds:

(CUT) (a) Ar = {V } for the unique node r ∈ R(0),

(b) mesh(Ar) 6 2−n for all r ∈ R(n),

(c) r 6 r′ ∈ R implies Ar < Ar′ ,
(EDGE) (a) Er,V = E for the unique node r ∈ R(0),

(b) Er,A = Fr,A t
⊔
{Es,A′ : s ∈ r+, A′ ∈ As} for all A ∈ Ar,

(TILE) (a) Xr,A = X[Er,A] is a Peano graph with G(Xr,A) = A× Pr for all A ∈ Ar,
(b) all tiles XA,s for s ∈ r+ \ {r_0} and A ∈ As satisfy the even-cut condition.
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Construction. By recursion on n ∈ N. The base case is clear as for the unique node

r ∈ R(0) we have X = (V × P ) ∪ E = (A× Pr) ∪ Er,A = Xr,A for A ∈ Ar = {V }. Now

suppose the construction has progressed up to some tile Xr,A with r ∈ R(n) and A ∈ Ar,
which is a Peano graph with ground space A×Pr by TILE(a). By Corollary 14.4.14 there is

a (finite) clopen partition BA of A with mesh(BA) 6 2−(n+1) such that Xr,B = Xr,A[B×Pr]
is a Peano graph with ground space B×Pr for each B ∈ BA. Let F (BA) denote the finite

set of cross-edges the clopen partition BA induces in Xr,A.

By property COVER(d) for Pr, the Decomposition Theorem 14.4.21 applied to Xr,B

returns a finite partition

Er,B = Er_0,B t · · · t Er_kr,B t Fr,B

so that the corresponding tiles Yi,B := (B × Pr_i) ∪ Er_i,B are locally connected with a

dense collection of edges for all i 6 kr, and so that Yi,B satisfies the even-cut condition

for all i 6= 0. By Lemma 14.4.12, for each Yi,B there is a (finite) clopen partition Ar_i,B
of B so that Yi,B =

⊕
A′∈Ar_i,B

Xr_i,A′ where Xr_i,A′ ⊆ Yi,B is a standard Peano graph

with ground space G(Xr_i,A′) = A′ × Pr_i and edge set say Er_i,A′ , giving TILE(a), ,

and Fr,A = F (BA) ∪
⋃
B∈BA Fr,B is finite, satisfying EDGE(b). Further, by the moreover-

part of Lemma 14.4.12, each Xr_i,A′ for A ∈ Ar_i,B with i 6= 0 satisfies the even cut

condition, giving TILE(b). Now for each i 6 kr define Ar_i =
⋃
A∈Ar

⋃
B∈BA Ar_i,B,

which is a (finite) clopen partition of V satisfying CUT(b) and (c). Then by construction,

for all A′ ∈ Ar_i we have Xr_i,A′ = X[Er_i,A′ ] is a Peano graph. The construction is

complete. �

We need the following elementary results, the proofs of which are evident.

Lemma 14.4.22. X =
⋃
i∈[n]Xi. Then X satisfies the even-cut condition if and only if

each Xi satisfies the even-cut condition. �

Lemma 14.4.23. Let Z be a compact graph-like space satisfying the even-cut condition.

Suppose that E(Z) = E0 t · · · tEk such that Z[Ei] satisfies the even-cut condition for all

1 6 i 6 k. Then also Z[E0] satisfies the even-cut condition. �

For k ∈ N and s ∈ NN, write s_0k := s_0_0_ · · ·_ 0︸ ︷︷ ︸
k times

. When using this notation, we

usually require that s does not end on 0.

For r ∈ R, let Er :=
⋃
A∈Ar Er,A, Fr :=

⋃
A∈Ar Fr,A and Xr = X[Er]. Then Xr =⊕

A∈Ar Xr,A, and hence it follows by property TILE(b) and Lemma 14.4.22 that whenever

r does not end on 0, then Xr satisfies the even cut condition.

The following simple observation is the key for constructing an Eulerian decomposition.

Lemma 14.4.24. For every t ∈ NN, and s not ending on 0 with t = s_0n, the graph-like

space Zt := X∼[Et t
⊔n−1
k=0 Fs_0k ] has the even-cut property.
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Proof. First, if n = 0, then Zt = X∼[Et] has the even-cut property by assumption

if t = ∅, and otherwise by TILE(b) and Lemma 14.4.22. Now consider t = s_0n+1, let

r = s_0n and assume inductively that Zr has the even-cut property. Recall that by

EDGE(b), we have Er = Fr t
⊔
{Es : s ∈ r+}. Since each s 6= r_0 has the even-cut

property, it follows from Lemma 14.4.23 that also the complement of these sets in Zr
has the even-cut property. But clearly, the edge-complement of {Es : s ∈ r+} is precisely

Zt. �

14.4.5.2. Three auxiliary graphs. To build an approximating sequence of Eulerian de-

compositions, we will now construct suitable Eulerian multi-graphs (Gn, ηn) approximating

the decomposition constructed above in TILE(a). We will do this in three stages reminis-

cent of the steps in the blueprint from Observation 14.3.8.

• First, construct a sequence of auxiliary multi-graphs (G′n : n ∈ N) each living on

the tiles at stage n and has as edge set Fn of all remaining edges of X at stage n.

• Second, we form a sequence of even18 multi-graphs (G′′n : n ∈ N), where each G′′n
is a supergraph of G′n formed by adding some type-E dummy edges. This step is

the critical part of the argument, relying on the even-cut properties in TILE(b).

• Finally, form a sequence of even, connected multi-graphs (Gn : n ∈ N), where each

Gn is a super-graph of G′′n formed by adding some type-C dummy edges to G′′n,19

making sure in all steps that we always have compatible inverse limits lim←−G
′
n ↪→ lim←−G

′′
n ↪→

lim←−Gn, each with contraction maps (Definition 14.3.13) as bonding maps. The reader may

picture this process as in the following two figures, Figures 14.7 and 14.8.

V

P0

P1

P

A1 A2 A3 ∈ A0

A′1 A′2 A′3 ∈ A1

G′1

Figure 14.7. A sketch of E∅ = E0 t F∅ t E1 and the corresponding tiles

on the left. On the right, the first auxiliary graph G′1 with edge set F∅.

18A finite graph is called even if all its vertices have even degree.
19The purpose of type-E edges will be to make all degrees of Gn+1 even, and the purpose of type-C

edges is to make Gn+1 connected.
20We remark that for ease of formalisation, our algorithm will add additional type-C edges not drawn

in this picture.
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V

P0

P1

P

A1 A2 A3 ∈ A0

A′1 A′2 A′3 ∈ A1

G1

Figure 14.8. Type-E dummy edges in blue turn G′1 into an even graph,

with their η1 images drawn as dotted arcs. Type-C dummy edges in green

make G1 connected, with their common η1 image being a trivial arc.20

Building the first auxiliary graph. For every n ∈ N we recursively construct

decompositions (G′n, η
′
n) with G′n a finite multi-graph encoding the edge patterns between

the tiles at step n. So formally, the graph G′n has vertex set Vn and edge set Fn where

• Vn = {vr,A : r ∈ R(n), A ∈ Ar} and

• Fn :=
⋃
{Fr,A : r ∈ R(<n), A ∈ Ar}.21

and η′n is defined by η′n � Fn = id and ηn(vr,A) := Xr,A for all vertices in Vn. Note

that on our way to build a decomposition, (G′n, ηn) satisfies (E1), (E2), (E4) and (E5) of

a decomposition according to Definition 14.3.2. Edge-vertex incidence in G′n is defined

recursively in n22 so as to satisfy (E6) and Definition 14.3.4 for Fn. For this, observe that

for every n ∈ N there is a natural (surjective) contraction map

%′n : G′n+1 → G′n, vr,A 7→ vr−,A′ and f 7→

f if f ∈ Fn,
vr,A if f ∈ Fn+1 \ Fn, f ∈ Fr,A.

which clearly corresponds to the relation Xr,A ⊆ Xr−,A′ where A′ is the unique element of

Ar− satisfying A′ ⊇ A. Indeed, it is straightforward to check that properties (Q1) – (Q4)

in Definition 14.3.13 for a contraction map are satisfied.

Since G′0 is the unique edge-less graph on a single vertex, there is nothing to do.

Suppose that G′n has already been defined so that (E6) and Definition 14.3.4 are satisfied

for the finite sequence (G′i : i 6 n). Consider f ∈ E(G′n+1) = Fn+1. If f ∈ Fn, and say

fG′n(0) = vr,A for some r ∈ R(n) and A ∈ Ar, then by our recursive assumptions we have

f(0) := (x, y) ∈ A×Pr. Choose any s ∈ r+ such that y ∈ Ps ⊆ Pr and let A′ be the unique

21Fn should not be confused with F(n) where (n) is a one-element sequence on the first level of R.
22If one such displayed free arc f ∈ Fn has an endpoint (x, y) ∈ V ×P in X, then all vertices vr,A ∈ Vn

with y ∈ Pr and x ∈ A are potential candidates for the corresponding endvertex of f in G′n. This is where

we make a recursive choice.
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element of As satisfying A′ ⊆ A, and define fG′n+1
(0) = vs,A′ . Similarly, if f ∈ Fn+1 \ Fn,

i.e. f ∈ Fr,A for some r ∈ R(n) and A ∈ Ar, then if say f(0) := (x, y) ∈ V × P choose

any s ∈ r+ such that y ∈ Ps and let A′ be the unique element of As satisfying A′ ⊆ A,

and define fG′n+1
(0) = vs,A′ , and similarly for f(1) := (x′, y′) ∈ V × P .

Summary: Each D′n = (G′n, η
′
n) forms a decomposition of X (cf. Definition 14.3.2), and

%′n : G′n+1 → G′n is an η-compatible contraction map (cf. Definition 14.3.13 and 14.3.14).

Building the second auxiliary graph. For our second auxiliary graph G′′n, for each

edge e of G′n, we will add two corresponding type-E dummy edges de(0) and de(1) to G′n,

making sure that (E3) and (E7) are satisfied for each (G′′n, η
′′
n). We also make sure that %′n

extends to a contraction map %′′n : G′′n+1 → G′′n.

Definition 14.4.25. For e ∈ E(X), write e(i) = (xe(i), ye(i)) ∈ V ×P for its endpoints

e(0) and e(1) in X. For every e ∈ E(X), there is a unique index m = m(e) such that

e ∈ Fm+1 \ Fm, and so there is a unique s = se ∈ R(m) such that e ∈ Es,A for some

A ∈ As. For every k > m, let se(k) = s_0k−m ∈ R(k). Note that for every edge e, the

set
{
Pse(k) : k > m(e)

}
is a nested zero-sequence of subcontinua of P , and hence there is a

unique point contained in the intersection
⋂
k>m(e) Pse(k) which we denote by σ(e). Further,

for k > m and i ∈ {0, 1}, let Ae(i)(k) ∈ Ase(k) be the unique element with xe(i) ∈ Ae(i)(k).

For e ∈ E, and k > m(e) we write ve(i)(k) := vse(k),Ae(i)(k) ∈ Vk, and call this vertex the root

vertex associated with the endpoint e(i) at stage k. Finally, fix arcs αe(i) ⊆
{
xe(i)

}
× Pse

from e(i) = (xe(i), ye(i)) to (xe(i), σ(e)) for each e ∈ Fn and i ∈ {0, 1}.

Define (G′′n, η
′′
n) by adding to G′n a set of dummy edges D′′n =

{
de(0), de(1) : e ∈ Fn

}
,

and extend η′n to a map η′′n by defining η′′n(de(i)) = αe(i) on the newly added dummy

edges. By construction of the arcs α, this assignment satisfies (E7) for η′′n. Further,

edge-vertex incidence for type-E dummy edges in G′′n is given by d
e(i)
Gn

(0) := eGn(i) and

d
e(i)
Gn

(1) := ve(i)(n), that is to say, the edge d(e(i)) connects an endpoint of e in Gn to the

root vertex associated with the endpoint at stage n.

Moreover, we extend the map %′n to a contraction map %′′n : G′′n+1 → G′′n by defining

%′′n(de(i)) =

%′(e) if de(i) ∈ Dn+1 \Dn

de(i) if de(i) ∈ Dn.

Theorem 14.4.26. Each G′′n+1 is an even multi-graph, D′′n = (G′′n, η
′′
n) forms a decom-

position of X, and %′′n : G′′n+1 → G′′n is an η-compatible contraction map.

Proof. It is routine to check that D′′n = (G′′n, η
′′
n) forms a decomposition of X. More-

over, the map %′′n : G′′n+1 → G′n is a contraction map, because we added new dummy edges

only between vertices in the same fibre of %′. Hence, (Q4) of a contraction map is still

satisfied, and the other properties are inherited from %′n. To see that G′′n+1 is even, we

make use of the following observation, which is immediate from the construction.
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Observation: For every n ∈ N, the edge set of G′′n can be partitioned into a family of

edge-disjoint trails23 {Tn(e) : e ∈ Fn} whose vertex-edge sequence is given by

Tn(e) = ve(0)(n), de(0), eGn(0), e, eGn(1), de(1), ve(1)(n).

We are now ready to calculate the parity of vertex degrees in G′′n, relying on the elementary

fact that every inner vertex of a trail T has even degree in the subgraph induced by T ,

and every end-vertex of an open trail T (i.e. a trail with distinct start and end-vertices)

has odd degree in the subgraph induced by T . So consider some vertex v = vt,A ∈ V (Gn).

Write t = s_0j where s does not end on zero and j ∈ N. By Lemma 14.4.24, A induces

an even edge cut C in Zt := X∼[Et t
⊔j−1
k=0 Fs_0k ]. Furthermore, since Xt,A with ground

set A× Pt is a connected component of X[Et], it follows that C ⊆
⊔j−1
k=0 Fs_0k .

Claim: The vertex v has odd degree in Tn(e) if and only if e ∈ C.

The claim implies the theorem, since the number of trails in which v has odd degree

is even. To prove the claim, note that e ∈ C if and only if xe(0) ∈ A and xe(1) /∈ A (or vice

versa), which happens – since C ⊆
⊔j−1
k=0 Fs_0k – if and only if ve(0)(n) = v and ve(1)(n) 6= v

(or vice versa), i.e. if and only if v has odd degree in Tn(e). �

Building the Eulerian decompositions. To build Eulerian (i.e. even and con-

nected) graphs Gn from G′′n so that the maps %n become edge-contractions, it now suffices

to recursively add further dummy edges to G′′n+1 only between vertices of the same fibre

%′′−1
n (v) such that every such fibre becomes connected. By induction, this will imply that

each Gn is connected.

The Eulerian decompositions (Gn, ηn) are built recursively. Since 20 = 1, both G0 = G′′0
are the unique graph on a single vertex without loops. Now suppose Gn has already been

defined. Assume inductively that

(‡1) every dummy edge d = vt,Avt′,A′ ∈ E(Gn) \E(G′n) has an associated point η(d) =

(qV (d), qP (d)) ∈ V ×P which is contained in the intersection of the corresponding

tiles Xt,A ∩Xt′,A′ .

(‡2) Moreover, assume there is an equivalence relation ∼ on the dummy edges in

E(Gn)\E(G′′n) such that every equivalence class consists of precisely two dummy

edges which are parallel in Gn.

To build Gn+1, first obtain a graph G∗∗n+1 by displaying all dummy edges of Gn such

that (‡1) and (‡2) are satisfied, and so that %n : G∗∗n+1 → G′′n is a contraction map (when

ambiguous, make an arbitrary choice). Note in particular that (‡2) and the fact that G′′n+1

was even imply that G∗∗n+1 is an even graph.

To obtain a connected even graph Gn+1 from G∗∗n+1, first of all, for each r ∈ R(n), let

us pick a spanning tree Sr for the intersection graph formed by the cover {Pr′ : r′ ∈ r+}

23Recall that a trail is a walk without repeated edges.
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on Pr. Next, for each edge PsPs′ of Sr fix an arbitrary point yss′ ∈ Ps ∩ Ps′ . We now add

type-C dummy edges to G∗∗n+1 according to the following rule:

(C) Fix a vertex vr,A ∈ Vn with A ∈ Ar. Let B denote the finite partition of V

which is the least common refinement of the family {Ar′ : r′ ∈ r+}. Pick a vertex

xB ∈ B for each B ∈ B. Now for every xB and every edge PsPs′ of Sr, we

add two parallel type-C dummy edges d1 ∼ d2 with the same associated point

ηn+1(d1) = ηn+1(d2) := (xB, yss′) ∈ V × P between the two vertices vs,As and

vs′,As′ where As and As′ are the unique elements of As and As′ respectively with

B ⊆ As and B ⊆ As′ . Finally, we extend the map %n to these newly inserted

edges by defining %n(d1) = %n(d2) := vr,A. This arrangement for d1 and d2 satisfies

(‡1) and (‡2).

Theorem 14.4.27. Each Gn+1 is a finite Eulerian multi-graph, Dn = (Gn, ηn) is an

Euler decomposition of X, and %n : Gn+1 → Gn is an η-compatible edge-contraction map.

Thus, (Dn : n ∈ N) is an approximating sequence of Eulerian decompositions for X.

Proof. We first show that %n : Gn+1 → Gn is an edge-contraction map, i.e. that it

has connected fibres, see (Q5) of Definition 14.3.13. Interpreted as a continuous map,

this translates to the fact that %n is monotone. In particular, this will imply inductively

that each Gn is connected: Indeed, G0 is trivially connected, and if Gn is connected, then

it follows from the fact that since %n : Gn+1 → Gn is a continuous, monotone surjective

map from a compact spaces onto a connected space, then also the domain Gn+1 must be

connected, see e.g. [63, Theorem 6.1.29].

To see that %n has connected fibres, fix some vr,A ∈ Vn, and consider H := %−1
n (vr,A),

a subgraph of Gn+1. By definition, the vertex set of H is precisely the set

VH =
{
vs,A′ : s ∈ r+, A′ ∈ As

}
.

Let C ⊆ VH be the vertex set of a component of the graph H. We have to show C = VH .

For this, note that if vs,A′ ∈ C and vt,A′′ ∈ VH with A′ ∩ A′′ 6= ∅, then vt,A′′ ∈ C. Indeed,

let P ⊆ Sr denote the unique PsPt path in the tree Sr. Fix xB ∈ B ⊆ A′ ∩ A′′. Then the

dummy edges in η−1
n ({(xB, yuu′) : uu′ ∈ E(P )}) ⊆ H which have been added according to

rule (C) witness connectivity between vs,A′ and vt,A′′ .

Therefore,

AC :=
⋃
{A′ : vs,A′ ∈ C} and A¬C :=

⋃
{A′ : vs,A′ ∈ VH \ C}

gives rise to a clopen bipartition (AC , A¬C) of A. We claim that A¬C = ∅. This would

imply that C = VH , proving that H is connected. Otherwise, (AC , A¬C) is a non-trivial

clopen bipartition of A, and so since Xr,A = (A× Pr) ∪ Er,A was a Peano continuum

by (TILE)(a), it follows that Er,A(AC , A¬C) is a non-empty edge cut of Xr,A. Pick f in

Er,A(AC , A¬C) arbitrarily. Then f ∈ Fr,A ⊆ Fn+1 by (EDGE)(b), and hence f ∈ E(H).
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However, it now follows from (E6) that f ∈ EH(C, VH \ C), witnessing that C was not

maximally connected, a contradiction.

That the %n are η-compatible is easily verified, and so it follows from Lemma 14.3.15

that (Dn : n ∈ N) is indeed an approximating sequence of Eulerian decompositions for

X. Note that w((Dn, ηn)) → 0 follows from COVER(b), CUT(b), and the fact that we

assumed that X contained no loops, implying that diam(Xr,A)→ 0 as |r| → ∞. �

The proof of our main result is now complete:

Proof of Theorem 14.4.1. Let X be a Peano continuum with G(X) = V ×P . We

may assume that X is a Peano graph without loops with the even-cut property, such that

P is non-trivial. Then by Theorem 14.4.27, the space X has an approximating sequence

of Eulerian decompositions, and hence X is Eulerian by Theorem 14.1.1. �

14.5. One-dimensional spaces

14.5.1. Overview. The purpose of this final chapter is to prove the following theo-

rem.

Theorem 14.5.1. A one-dimensional Peano continuum is Eulerian if and only if it

satisfies the even-cut condition.

More precisely, using (iii) ⇒ (i) of Theorem 14.1.1, what we will show here is that

every one-dimensional Peano continuum satisfying the even-cut condition admits an ap-

proximating sequence of Eulerian decompositions.

Let us briefly remark that for n > 1, the dimension of a Peano continuum X is n if

and only if the ground space G(X) has dimension n. This is a consequence of the well-

known sum theorem for dimension, [62, Thm. 1.5.2], by applying it to X considered as a

countable union of G(X) and one-cells e for e ∈ E(X). In particular, Theorem 14.1.4(C)

is indeed equivalent to Theorem 14.5.1.

14.5.1.1. Proof strategy. Consider a one-dimensional Peano continuum X for which

we aim to construct an approximating sequence of Eulerian decompositions. As described

in the Blueprint 14.3.8, any Peano partition U for X into standard subspaces gives rise

to a corresponding Eulerian decomposition for X, provided that X satisfies the even-cut

condition. Note that the even-cut assumption on X is a necessary one, for if U displays

an odd edge cut of X, then no such corresponding Eulerian decomposition can exist. Now

if we could find a Peano partition U such that each partition element U ∈ U individually

still has the even-cut property, we could continue this procedure recursively to construct

an extending sequence of Eulerian decompositions (cf. Definition 14.3.4).

Recall, however, that there is a second objective for constructing an approximating

sequence of Eulerian decompositions: Not only should the Eulerian decompositions extend

each other (property (A1) of Definition 14.3.5), but their widths should also decrease to
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zero (property (A2) of Definition 14.3.5). This second requirement, however, is at odds

with our earlier idea that partition elements of U individually always continue to have the

even-cut property, as the even-cut property generally prohibits single edges to be displayed

(cf. Blueprint 14.3.8), and so the width of our recursively constructed decompositions will

be bounded from below by the diameter of the largest edge.

We resolve these issues by the following approach: given X, we construct in Theo-

rem 14.5.20 a Peano partition U into standard subspaces of X such that each partition

element U ∈ U individually still has the even-cut property, and so that each U contains a

finite set of edges FU such that each component of U −FU has somewhat smaller diameter

than X. Then the partition U ′ consisting of the components of U − FU for U ∈ U and

individual edges in
⋃
U∈U FU gives rise to an Eulerian decomposition of smaller width as

desired. And the fact that each U satisfied the even-cut condition leaves enough traces in

U − FU (almost all vertices of U∼ − FU have even degree) so that we may continue the

recursive construction, see Theorem 14.5.4.

Before we come to these results, we gather in Section 14.5.2 a number of auxiliary

results whose purpose is first to set up the language for arranging the even-cut property

in terms of inverse limits, and second to deal with the fact that edges of some partition

element U ∈ U are not a priori edges of X, which requires us to generalise our concept of

ground space and edges.

14.5.2. Admissible Vertex Sets and Combinatorial Alignment.

14.5.2.1. Admissible vertex sets. In the introduction, we stated in Sections 14.1.1.2

and 14.1.3.1 the even-cut condition for the class of Peano continua X in terms of their

ground spaces G(X). For this chapter we generalise these notions in two directions: first,

we generalise the notion of ground space to that of admissible vertex sets, and second

we extend the class of spaces X we consider from Peano continua to a broad class of

(metrisable) compacta – which we call component-wise aligned compacta.

To justify our first generalisation, recall that there is a standard fuzziness in the transi-

tion between combinatorial and topological graphs in the sense that degree-two vertices in

combinatorial graphs are disregarded in the corresponding topological graph. This fuzzi-

ness is even more pronounced in the case of graph-like spaces: note that for example, both

V = {0, 1} and V the middle third Cantor set can function as vertex set of a graph-like

continuum homeomorphic to the unit interval I. In this chapter, we set up the language for

eliminating this imprecision, for the following reason: if H = (VH , EH) and G = (VG, EG)

are combinatorial graphs such that H is a subgraph of G, then their combinatorial struc-

tures are naturally aligned in the sense that VH ⊆ VG and EH ⊆ EG. However, viewing H

and G as topological spaces, the free arcs of H might be strict supersets of the free arcs

of G, with the undesirable consequence that E(H) might not be a subset of E(G).
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Definition 14.5.2 (Admissible vertex set). A compact subset V ⊆ X of a Peano

continuum X is an admissible vertex set provided that G(X) ⊆ V and V \G(X) is zero-

dimensional. For an admissible vertex set V , the space X\V is homeomorphic to a disjoint

sum of open intervals, which we call the edges of X associated with V , written E(X, V ).

This definition is equivalent to saying that G(X) is a subset of V , and for every free

arc e of X, we have that e is a graph-like space homeomorphic to an interval with zero-

dimensional vertex set (V ∩ e).
For a Peano continuum X with admissible vertex set V , the edges E(X, V ) are the

connected components of X \ V . Since G(X) ⊆ V and V is closed, it follows that every

edge is homeomorphic to an open interval. Moreover, if X is a Peano graph (so E(X)

is dense in X), then also (X, V ) is a Peano graph in the sense that the edges E(X, V )

are dense in X. Moreover, we may generalise the notion of edge cuts from (X,G(X)) to

(X, V ): an edge cut of (X, V ) is the set of edges crossing a clopen partition V = A⊕B. It

is straightforward to check that all results about edge cuts from Section 14.1.3.1 still apply

in this slightly generalised setting. Finally, we also extend Definition 14.3.1 of a standard

subspace to this generalised setting, and call a subspace Y ⊆ X standard in (X, V ) if for

every e ∈ E(X, V ), the fact e ∩ Y 6= ∅ implies e ⊆ Y .

Lemma 14.5.3. Let V ⊆ X be an admissible vertex set of a Peano continuum X. Then

X satisfies the even-cut condition if and only if (X, V ) does.

Proof. Note that the graph-like continuum (X, V )∼ is a subdivision of the graph-like

continuum X∼ (see the discussion in Section 14.5.3.1). In particular, they are homeomor-

phic. Thus, X has the even-cut property if and only if X∼ is Eulerian if and only if (X, V )∼
is Eulerian if and only if (X, V ) has the even-cut property, where the first and last equiv-

alence follows from [70] (and see also the discussion leading up to Conjecture 14.1.5). �

Lemma 14.5.4. If X is a Peano continuum and V ⊆ X an admissible vertex set for

X, then any non-trivial Peano subcontinuum Y ⊆ X satisfying the even-cut condition is

standard in (X, V ).

Proof. Note first that if Y satisfies the even-cut condition, then any free arc of Y lies

on a simple closed curve of Y (cf. [70, Lemma 16]), and second, that any simple closed

curve in X is necessarily a standard subspace of X (cf. [70, Lemma 5]). �

14.5.2.2. Combinatorial alignment. To facilitate comparing edges across different spaces,

from now on we will work with admissible vertex sets instead of ground sets.

Definition 14.5.5 (Combinatorial alignment). Suppose that Y ⊆ X are Peano con-

tinua, and that VX and VY are admissible vertex sets for X and Y respectively. We say that

(Y, VY ) is combinatorially aligned in (X, VX) if for every e ∈ E(Y, VY ), either e ∈ E(X, VX)

or e ⊆ VX . In this situation, write E(Y, VY ) = Ereal
Y t Efake

Y with Ereal
Y := EY ∩ E(X, VX)
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for the bipartition into real and fake edges. Finally, we say a combinatorially aligned con-

tinuum (Y, VY ) ⊆ (X, VX) is faithfully aligned if E(Y, VY ) ⊆ E(X, VX), i.e. if Efake
Y = ∅.

As an example for combinatorial alignment, consider again the two simple closed curves

C1 and C2 inside the hyperbolic tree Y from Figure 14.4 in Chapter 14.2. In both cases,

the red simple closed curves enter and leave the hyperbolic boundary circle fairly often, so

need to be subdivided accordingly, in order to ensure that their combinatorial structure

matches up. Note further that G(Y ) ∩ C1 is not an admissible vertex set for C1, as free

arcs in C1 intersect G(Y ) in non-trivial intervals.

Lemma 14.5.6. Suppose X is a Peano continuum and V ⊆ X an admissible vertex set

for X. Suppose Y ⊆ X is a standard Peano subcontinuum. Then there is an admissible

vertex set W for Y such that (Y,W ) is combinatorially aligned in (X, V ).

Proof. Consider an edge e ∈ E(Y,G(Y )), that is to say, a free arc in Y . We show

that we can subdivide e by a compact zero-dimensional vertex set We such that every

segment of e \We is either an edge of (X, V ) or is completely contained in V .

Consider Ie := {f ∈ E(X, V ) : f ∩ e 6= ∅} = {f ∈ E(X, V ) : f ⊆ e}, by the fact that

Y is standard in (X, V ). So Ie is a collection of disjoint open intervals on e. Define

We = {e(0), e(1)} ∪
⋃
Ie \

⋃
Ie. It is easy to verify that We is as desired.

Finally, let W := G(Y ) ∪
⋃
{We : e ∈ E(Y,G(Y ))}. Since {We : e ∈ E(Y,G(Y ))} is

a zero-sequence of closed sets all intersecting the closed set G(Y ), it follows from stan-

dard arguments (see, for example, the proof of [158, A.11.6]) that W is closed in Y ,

hence compact. By the sum theorem of dimension, [62, Thm. 1.5.2], W \ G(Y ) ⊆⋃
{We : e ∈ E(Y,G(Y ))} is zero-dimensional, and so W is admissible. �

Corollary 14.5.7. Suppose X is a Peano continuum and V ⊆ X an admissible

vertex set for X. Suppose Y ⊆ X is a non-trivial Peano subcontinuum satisfying the

even-cut condition. Then there is an admissible vertex set W for Y such that (Y,W ) is

combinatorially aligned in (X, V ).

Proof. Combine Lemmas 14.5.4 and 14.5.6. �

Finally, we prove a lemma giving a necessary condition when the even-cut condition is

preserved under unions. This lemma can be seen as the dual statement to Lemma 14.1.14.

A word of explanation and warning about the term ‘edge-disjoint’. Given a Peano con-

tinuum (X, V ) and two combinatorially aligned subspaces (Y, VY ) and (Z, VZ) of X, we

say that (Y, VY ) and (Z, VZ) are edge-disjoint, or more precisely E(X)-edge-disjoint, if

Ereal
Y ∩ Ereal

Z = ∅, that is to say if each edge of (X, V ) is contained in at most one of Y or

Z. In particular, note it may happen that fake edges of Y and Z meet non-trivially.

Lemma 14.5.8. Let (Xn)n∈N be a zero-sequence of non-trivial E(P )-edge disjoint Peano

subcontinua of a Peano continuum P such that P =
⋃
n∈NXn. If each Xn satisfies the

even-cut condition, then so does P .
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Proof. By Corollary 14.5.7, we may assume without loss of generality that each Xn

is combinatorially aligned with (P,G(P )). Since the Xn are pairwise E(P )-edge disjoint,

the sets in
{
Ereal(Xn) : n ∈ N

}
are pairwise disjoint. We claim that

E(P ) =
⊔

Ereal(Xn).(32)

Well, ⊇ is immediate from the definition of being combinatorially aligned. For the reverse

direction, consider any edge e ∈ E(P ). Since P =
⋃
n∈NXn we may assume without loss

of generality that e∩X0 6= ∅, and so e ⊆ X0, and so e has non-trivial intersection with an

edge e′ ∈ E(X0). But since X0 was combinatorially aligned with P , it follows that e = e′.

Next, note that quite similarly, one obtains

G(Xn) ⊆ G(P )(33)

for all n ∈ N. Indeed, the previous argument shows that if x is an interior point of some

edge e ∈ E(P ) and x ∈ Xn then e ∈ E(Xn).

Now in order to show that also P satisfies the even-cut condition, consider an arbitrary

separation A ⊕ B of G(P ). Our task is to show that EP (A,B) is even. First, note that

by (33), the separation A ⊕ B induces separations of G(Xn) for each n ∈ N. Moreover,

since |EP (A,B)| is finite, it follows from (32) that there is N ∈ N such that

EP (A,B) = Ereal
X1

(A,B) t Ereal
X2

(A,B) t · · · t Ereal
XN

(A,B).

Next, we claim that Ereal
Xn

(A,B) = EXn(A,B) for all n ∈ N. Indeed, since any fake edge

d ∈ E(Xn) is a subset of G(P ), by the property of being combinatorially aligned, it follows

from d’s connectedness that d is contained completely on one side of the separation A⊕B
of G(P ), and so d /∈ EXn(A,B), establishing the claim. Thus, we have

EP (A,B) = EX1(A,B) t EX2(A,B) t · · · t EXN (A,B),

and so EP (A,B) is the disjoint union of finitely many sets of even cardinality, and hence

is an even edge cut. (Recall that by Lemma 14.5.3, the even-cut property is independent

of the choice of admissible vertex sets.) Since EP (A,B) was arbitrary, we have established

that P satisfies the even-cut condition. �

14.5.2.3. Combinatorially aligned spanning trees. Form Lemma 14.4.9 we know that

in a Peano continuum X, for every zero-dimensional compact set Y ⊆ G(X), there exists

a standard graph-like continuum Z ⊆ X with Y ⊆ Z. Suppose V is an admissible vertex

set of X. Then the same proof shows that for every zero-dimensional compact set Y ⊆ V ,

there exists a standard graph-like continuum Z ⊆ (X, V ) with Y ⊆ Z.

A natural question is whether there also is a faithfully aligned graph-like continuum

Z = (VZ , EZ) spanning Y . To see that this is not always possible, consider a Peano

graph X consisting of a dense zero-sequence of loops attached to ground space I. If

Y = {0, 1} ⊆ I = G(X) say, then it is not possible to find a graph-like continuum
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Z = (VZ , EZ) with Y ⊆ Z and EX ⊆ E(X). However, if we only insist on combinatorially

aligned, then the answer is in the affirmative.

Lemma 14.5.9. Suppose X is a Peano continuum and V ⊆ X an admissible vertex

set for X. For every zero-dimensional compact set Y ⊆ V , there exists a combinatorially

aligned graph-like tree T = (VT , ET ) such that Y ⊆ VT .

Proof. By Lemma 14.4.9, there exists at least one standard graph-like continuum in

X covering Y . Take an inclusion-minimal such graph-like continuum T – by Lemma 14.4.2,

this will be a standard graph-like tree. By Lemma 14.5.6, for the standard subspace T

there is an admissible vertex set VT such that (T, VT ) is combinatorially aligned with

(X, V ). Note that in this case we necessarily have Y ⊆ VT . �

14.5.2.4. Component-wise aligned compacta and sparse edge sets. We now come to

the second of our extensions where we extend the class of space we consider from Peano

continua to so-called component-wise aligned compacta. Observe that the ground space

G(X) := X − E(X) defined as the complement of all free arcs is well-defined for an

arbitrary (metrisable) compactum X.

Definition 14.5.10. A compact space X is said to be component-wise aligned if the

components of X form a null-family of Peano continua, and VY := G(X) ∩ Y is an

admissible vertex set for every component Y of X.

For a component-wise aligned compactum X, note that by definition, we have E(X) =⊔
{E(Y, VY ) : Y a component of X}. In particular, we have G(X) =

⋃
VY . Next, the def-

inition of an admissible vertex set generalises naturally to component-wise aligned com-

pacta X: V ⊆ X is admissible if G(X) ⊆ V and V \G(X) is zero-dimensional. As before,

this allows us to define edge-cuts for (X, V ) in terms of edges crossing a clopen partition

of V for all component-wise aligned compacta X and admissible vertex sets V of X. It is

straightforward to check that all results about edges and edge-cuts from Section 14.1.3.1

still apply in this slightly generalised setting. In particular, it follows from the fact that

each E(Y, VY ) is a zero-sequence and the fact that the components Y of X form a null-

family, that E(X) is a zero-sequence, and so all edge-cuts in a component-wise aligned

compactum are finite.

Lemma 14.5.11. A component-wise aligned compactum has the even cut property if

and only if every component of it has the even cut property.

Proof. The forward implication follows as in Lemma 14.5.8.

Conversely, suppose that X is a component-wise aligned compactum which has the

even-cut property and let Y be a component of X. So let (A,B) be a closed partition of

G(Y ) and consider the corresponding finite edge cut D = EY (A,B). Then X[A] = Y [A]

and X[B] = Y [B] are disjoint compact subsets of X−D, and each a union of components



376 14. EULERIAN SPACES

of X −D. By the Šura-Bura Lemma, there is a clopen partition U ⊕W of X −D such

that X[A] ⊆ U and X[B] ⊆ W . But this means that D = EX [U ∩G(X),W ∩G(X)], and

so D is even by assumption on X. �

Finally, let us see three natural examples of component-wise aligned compacta X.

Lemma 14.5.12. Every graph-like compactum is component-wise aligned.

Proof. The fact that the components of a graph-like compactum form a null-sequence

is tantamount to saying that graph-like continua are finitely Souslian, which is well-known,

cf. [70, §2.2]. Moreover, since the ground-space of a compact graph-like continuum is zero-

dimensional, each VY is zero-dimensional, and it follows readily that (Y, VY ) is a graph-like

continuum with vertex set VY . �

Lemma 14.5.13. Every locally connected compactum is component-wise aligned. �

Recall that an edge set is sparse if it induces a graph-like subspace.

Lemma 14.5.14. Let X be a Peano continuum with admissible vertex set V , and F ⊆
E(X, V ) be a sparse edge set. Then Y = X − F is a component-wise aligned compactum.

More precisely:

(1) V is an admissible vertex set for Y , and (Y, V ) is faithfully aligned in (X, V ), and

(2) for every component Z of Y , we have that (Z, VZ) for VZ := V ∩ Z is faithfully

aligned in (Y, V ), and hence in (X, V ).

Proof. (1) Clearly, we have G(Y ) ⊆ G(X) ⊆ V . Hence, it remains to show that

V ∩ e is compact zero-dimensional for every e ∈ E(Y ). Suppose not. Then there is a free

arc e ∈ E(Y ) such that e ∩ V is not zero-dimensional, so there exists a non-trivial subarc

α ⊆ e ∩ V . Since F is sparse, F ∩ V is zero-dimensional, α \ F is an open subset of X

consisting of intervals. But then any such interval is open in X but completely contained

in V , a contradiction that V was admissible for X.

In particular, E(Y, V ) = E(X, V ) \F , and hence (Y, V ) is faithfully aligned in (X, V ).

(2) Let Z be a component of Y . The argument that VZ = V ∩ Z is an admissible

vertex set for Z is analogous to the previous case. To see that each (Z, VZ) is faithfully

aligned in (Y, V ), consider an edge e ∈ E(Z, VZ). We need to show that e is open in Y .

Otherwise, there is a sequence of points zn ∈ Y \ Z such that zn → z ∈ e. Without loss

of generality, we may assume that zn ∈ Zn is contained in components Zn of Y which are

pairwise distinct. Let xn ∈ V ∩ Zn arbitrary. Since by Lemma 14.4.8(i) the non-trivial

components of Y form a zero-sequence, it follows that xn → z as well. However, since

z /∈ V , this contradicts the fact that V is closed. �

14.5.2.5. Circle decompositions. Recall that the edge set of a Peano continuum X can

be decomposed into edge-disjoint circles if there is a collection of edge-disjoint copies of
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S1 contained in X such that each edge of X is contained in precisely one such circle. We

stress that this collection of copies of S1 is not required to cover all of X, as this may

be impossible even for graph-like continua, see [70, Example 4]. This example also shows

that any two circles in such a circle decomposition may be disjoint in X.

Applying the results previously obtained in this section, we are now ready to prove the

following result announced in Section 14.1.2.2 of the introduction:

Theorem 14.5.15. A Peano continuum has the even-cut property if and only if its

edge set can be decomposed into edge-disjoint circles.

Proof. Our proof generalises the corresponding proof for countable graphs due to

Nash-Williams [123]. For the reverse implication, let {Sn : n ∈ N} be a collection of edge-

disjoint simple closed curves in X together covering all edges of X, each of which we may

assume to be combinatorially aligned in X by Corollary 14.5.7. Then each Sn satisfies the

even-cut condition, and the assertion now follows as in the proof of Lemma 14.5.8.

For the forward implication, fix an enumeration of the edge set of X which is possible

by Lemma 14.1.11(c). We will find the circle decomposition recursively in countably many

steps. Suppose inductively that we have already selected edge-disjoint, combinatorially

aligned simple closed curves S1, . . . , Sn in X so that the first n edges in our enumera-

tion of E(X) are covered. Since Fn =
⋃
i∈[n] E

real(Si) is sparse, the space X − Fn is a

component-wise aligned compactum by Lemma 14.5.14. Now consider the first edge e in

our enumeration of E(X) not already covered by the previously selected simple closed

curves (if there is no such edge, we are done). Otherwise, e is an edge of some faithfully

aligned component Z of X − Fn. Since each Si for i ∈ [n] meets each edge cut of X in an

even number of edges, it follows that X−Fn has the even-cut property, and hence so does

the Peano continuum Z by Lemma 14.5.11. Therefore, removing e does not disconnect

Z, and we may select an e(0) − e(1)-arc αe in Z − e. Then Sn+1 = αe ∪ e is a simple

closed curve covering e, which we may assume to be combinatorially aligned in X by

Corollary 14.5.7. Moreover, Sn+1 is edge-disjoint to all previously selected simple closed

curves, completing the induction step. After countably many steps no uncovered edges of

X remain, and we have found a circle decomposition of X. �

14.5.3. Ensuring the Even-Cut Condition.

14.5.3.1. Inverse limit representations of graph-like compacta. In this section, we briefly

recall inverse limit techniques to deal with graph-like compacta and the even-cut condition

from [70]. For an extensive discussion of inverse limits of finite multi-graphs, the reader

may consult [54, §8.8] and [70].

For general background on inverse limits of compact Hausdorff spaces over directed

sets, see [63, §2.5 and 3.2.13ff]. For an introduction to inverse limit sequences, that is to

say, inverse limits where the underlying directed set is (N, <), see [121, Chapter II].
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Let X be a component-wise aligned compactum with admissible vertex set V . By sub-

dividing edges once, if necessary, we may assume that every edge of X has two distinct end-

points in V , so that X is simple. A clopen partition of V is a partition U = {U1, U2, . . . , Un}
of V into pairwise disjoint clopen sets. Write

E(U) =
⋃
i∈[n]

E(Ui, V \ Ui)

for the (finite) set of all cross edges of the finite partition U . Recall that X[Ui] denotes

the space Ui together with all edges from X that have both their end points in Ui.

Next let Π = Π(V ) be the set of all clopen partitions of V . The refinement relation

naturally turns (Π,4) into a directed set. Now given (X, V ) and U ∈ Π(V ), the multigraph

associated with U for some U ∈ Π is the finite graph XU with vertex set U and edge set

E(U) of all cross edges of the finite partition with the natural edge-vertex incidence.

Formally, we set XU = X/{X[U ] : U ∈ U}. If πU : X → XU denotes the quotient mapping

from X to the multigraph associated with U , then πU is a contraction map (however, if

some X[Ui] is not connected, then πU is not an edge–contraction map).

Whenever p > q ∈ Π(V ), there are natural bonding maps fpq = πq ◦ π−1
p : Xp → Xq.

These maps send vertices of Xp to the vertices of Xq that contain them as subsets; they

are the identity on the edges of Xp that are also edges of Xq; and they send any other

edge of Xp to that dummy vertex in Xq containing both its endpoints. In other words,

each bonding map is a contraction map. Also, these maps are compatible in the inverse

limit sense (whenever p > q > r then fpr = fpq ◦ fqr), and hence (Xp : p ∈ Π) forms an

inverse system.

We now have the following facts (compare to [70, Theorem 13].)

• For any component-wise aligned compactum X, we have X∼ ∼= lim←− (Xp : p ∈ Π).

• X (or equivalently X∼) satisfies the even-cut condition if and only if every Xp

satisfies the even-cut condition if and only if every Xp is an even graph.

Indeed, to see this, note that for any admissible vertex set V of X there is a natural

surjection f : X → Y := lim←− (Xp : p ∈ Π(V )) defined by f(x) := (πp(x) : p ∈ Π(V )). By

[63, 3.2.11], it follows that Y is homeomorphic to the quotient X/{f−1(y) : y ∈ Y }. But

the non-trivial fibres of f correspond precisely to the non-trivial components of G(X),

and hence X∼ ∼= lim←− (Xp : p ∈ Π) as desired.

We conclude this brief recap with an alternative description for component-wise aligned

compacta X with only finitely many components (which is equivalent to saying they are

locally connected). So let X be a locally connected compactum, and V an admissible

vertex set for X. Let E = ([E(X, V )]<∞,⊆) denote the collection of finite edge sets of

(X, V ), directed by inclusion. For F ∈ E , the space X −F has finitely many components,

listed as say VF = {C1, . . . , Ck} by Lemma 14.1.11. The contraction of X onto F , denoted

by X.F , is the finite multi-graph with vertex set VF and edge set F , where an edge in
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F goes between those components in VF that contain its end points in X. Formally,

X.F = X/VF is defined as the topological quotient of X into the finitely many closed sets

of VF and points of
⋃
F . Note that if πF : X → X.F denotes the quotient mapping from

X to the multigraph X.F , then πF is an edge-contraction map. The notation X.F is taken

from the same concept in matroid theory, see for example [133, Chapter 3]. Contrary to

the graphs XU from above, the graphs X.F may also contain loops.

• For any locally connected compactum X, we have X∼ = lim←− (X.F : F ∈ E).

• X (or equivalently X∼) satisfies the even-cut condition if and only if every X.F

satisfies the even-cut condition if and only if every X.F is an even graph.

The proof of the first fact can be derived from the previous inverse limit description

as follows: if X is locally connected, and V an admissible vertex set for U , then pick a

cofinal, refining sequence (Un : n ∈ N) ⊆ Π(V ) such that X[U ] is connected for all U ∈ Un
and n ∈ N. Then (E(Un) : n ∈ N) is cofinal in E , and furthermore, it is clear from the

definitions that XUn = X.E(Un) and that the bonding maps agree. Thus, using the

fact that inverse limits of cofinal subsystems agree, it follows that for locally connected

compacta X, we have

X = lim←− (Xp : p ∈ Π) = lim←− (XUn : n ∈ N) = lim←− (X.E(Un) : n ∈ N) = lim←− (X.F : F ∈ E) .

When X is a locally connected compactum, and E(X) = {e1, e2, . . .} is any enumeration

of its edges, then for En = {ei : i ∈ [n]}, we obviously have that (En : n ∈ N) is cofinal in

E . Hence, also lim←−(X.En : n ∈ N) is a compact graph-like space homeomorphic to X∼.

14.5.3.2. Inverse limits and sparse edge sets. It will be important to understand how

the even-cut condition changes when deleting or adding certain edge sets. For this, we

shall need the following lemmas, which say that the inverse limit operation commutes with

deletion of edges.

Lemma 14.5.16. Let X be a Peano continuum with admissible vertex set V , and

E(X, V ) = {e1, e2, . . .} be any enumeration of its edges. For sparse F ⊆ E(X, V ) write

Fn := F ∩En. Then (X − F )∼ = lim←− ((X.En)− Fn). In particular, if F is such that each

(X.En) − Fn is an even graph, then X − F is a component-wise aligned compactum that

has the even-cut property.

Proof. Consider a sparse edge set F ⊆ E(X, V ). By Lemma 14.5.14 we know that

Y = X − F is a component-wise aligned compactum with admissible vertex set V . Now

for any D ∈ E , let us write FD := F ∩ D (so Fn = FEn) and consider the inverse limit

Y = lim←− (X.D − FD : D ∈ E). Now clearly, (En : n ∈ N) is cofinal in E , and we have

Y = lim←− ((X.En)− Fn).

At the same time, for any cofinal sequence (Un : n ∈ N) for Π(V ) we have Y =

lim←−
(
XUn − FE(Un) : n ∈ N

)
. However, given any clopen partition U ∈ Π(V ), we have
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YU = XU − FE(U). Therefore, we have

Y∼ = lim←− (YUn : n ∈ N) = lim←−
(
XUn − FE(Un) : n ∈ N

)
= Y = lim←− ((X.En)− Fn),

and the first assertion of the lemma is proven.

The second part now follows now from the previous discussion about inverse limits and

the even-cut property: if (X.En)−Fn is even for each n ∈ N, then Y , and hence Y∼, have

the even-cut property, too. �

14.5.3.3. Bipartite Peano partitions. Recall Definition 14.3.7 for the definition of an

intersection graph.

Definition 14.5.17 (Bipartite Peano cover, zero-dimensional overlap). A Peano cover

/ partition U is called bipartite, if its intersection graph GU is bipartite.

For a bipartite Peano cover U we also write U = {K1, K2, . . . , K`, U1, U2, . . . , Uk} and

mean that the K’s form one partition class, and the U ’s form the other partition class of

the bipartite graph GU . Even briefer, we say that (K,U) forms a bipartite Peano cover

of some Peano continuum X if X = K ∪ U and both K and U are locally connected

compacta (note that this is indeed a bipartite cover).

Finally, a bipartite Peano cover (K,U) is said to have zero-dimensional overlap if K∩U
is zero-dimensional.

Lemma 14.5.18. Let X be a Peano continuum with admissible vertex set V . Then for

every ε > 0 there is finite edge set F ⊆ E(X, V ) such that for each component D of X−F
there is a component C of V with D ⊆ Bε(C).

Proof. Suppose for a contradiction the assertion is false for some ε > 0. Enumerate

E(X, V ) = {e1, e2, e3, . . .} and let Fn = {e1, . . . , en}. Then for each n ∈ N, there is at least

one bad component D of X−Fn for which there is no component C of V with D ⊆ Bε(C).

Further, every bad component of X − Fn+1 is contained in a bad component of X − Fn.

Since X − Fn has only finitely many components, Lemma 14.1.11, it follows from Königs

Infinity Lemma [54, Lemma 8.1.2] that there is a decreasing sequence (Dn : n ∈ N) of bad

components Dn of X − Fn.

Since
⋃
n Fn = E(X, V ), it follows that C :=

⋂
nDn is a component of V . However,

since all Cn are closed in X and
⋂
nCn ⊆ Bε(D), it follows from topological compactness

that there is N ∈ N with DN ⊆ Bε(C), contradicting that DN was bad. �

Theorem 14.5.19. Let X be a Peano continuum, and suppose that X = K ∪ U such

that K = K1⊕K2⊕· · ·⊕K` consists of finitely many Peano components and the non-trivial

components of U form a zero-sequence of Peano continua U1, U2, , . . .. Suppose further that

every edge of K intersects at most one Ui. Let V be an admissible vertex set of K.
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Then for every ε > 0 there is N ∈ N such that K ′ = K ∪
⋃
n>N Un admits a finite edge

set FK ⊆ E(K,V ) so that for each component D′ of K ′ − FK there is a component C of

V with D ⊆ Bε(C).

Proof. Apply Lemma 14.5.18 to find FK ⊆ E(K,V ) finite such that components of

K − FK are ε/2-close to V . The components of K − FK are finitely many disjoint closed

subsets of X, so some pair has minimal distance from each other. Denote that minimal

distance by δ > 0. Let η := min {ε/2, δ/3}.
Now choose N ∈ N large enough such that diam(Un) < η and Un ∩ (

⋃
FK) = ∅ for all

n > N . We claim that N is as desired. First, note that since X is connected, every Un
has non-empty intersection with K. Therefore, it follows that K ′ = K ∪

⋃
n>N Un still has

at most ` components, which are all Peano by Lemma 14.1.13.

Moreover, any two components of K ′ − FK have, by choice of η and N , distance at

least δ − 2η > 0. In particular, no two components of K − FK fuse together by adding⋃
n>N Un. Hence, for any component D′ of K ′ − FK there is a component D of K − FK

such that D′ ⊆ Bη(D). And by choice of FK , there is a component C of V such that

D ⊆ Bε/2(C). Thus, D′ ⊆ Bη+ε/2(C) ⊆ Bε(C), which completes the proof. �

14.5.3.4. Modifying Peano partitions with zero-dimensional boundaries. Consider a Peano

graph X for which we have a bipartite Peano partition (K,U) with zero-dimensional over-

lap. In this subsection, we demonstrate how to modify the elements of K and U to obtain

a new bipartite partition K ′, U ′ as to guarantee that the resulting K ′, U ′ satisfy the even-

cut condition. Moreover, we will do these changes so that K ′ and U ′ are arbitrarily close

to the original K and U .

Theorem 14.5.20. Let X be a Peano continuum satisfying the even-cut condition that

has a bipartite Peano partition U = (K,U) with zero-dimensional overlap. Then for every

ε > 0 there is a bipartite Peano cover U ′ = (K ′, U ′) such that

(A1) K ⊆ K ′ and U ′ ⊆ U ,

(A2) there is a finite edge set FK ⊆ E(K ′), so that each component of K ′ − FK either

has diameter <ε or is ε-close to a component of G(K), and

(A3) all elements of U ′ satisfy the even-cut condition.

Proof. Since K ∩ U is compact zero-dimensional, the set V := G(X) ∪ (K ∩ U) is

an admissible vertex set for X. Then every element of U with the naturally induced

admissible vertex set is faithfully aligned with (X, V ). Write K = K1⊕K2⊕· · ·⊕K` and

U = U1⊕U2⊕· · ·⊕Uk for the Peano components of the two sides (K,U). Since Ui∩K ⊆ Ui
is zero-dimensional and contained in the vertex set of Ui for each i ∈ [k], by Lemma 14.5.9

there are combinatorially aligned graph-like trees Ti ⊆ Ui with Ui ∩ K ⊆ V (Ti). Define

T =
⋃
i∈[k] Ti, a graph-like forest with k components. Note that T is combinatorially
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aligned with (X, V ) but may contain fake edges (edges contained in the ground space of

X). However, as T ∩K = U ∩K ⊆ V (T ), no edge of T intersects K.

In order to arrange for (A3), our aim is to find a subset F ⊆ E(T ) such that by adding

F to K, denoted by K+F := K∪T [F ], and removing F real = F ∩Ereal
T from U , denoted by

U − F real, we obtain an edge-disjoint cover
{
K + F,U − F real

}
of X such that both sides

satisfy the even-cut condition. In order to find this set F , we use logical compactness as

follows. First, let E(X)∪E(T ) = {e1, e2, e3, . . .} be an enumeration of the countably many

edges of (X, V ) together with the fake edges of T . Put En := {e1, . . . , en}. Define K∗ =

K∪T , which is a Peano continuum. Now define (using the notation Y.F := Y.(E(Y )∩F ),

called contracting onto F , as introduced in Section 14.5.3.1 above)

Xn := X.En, K
∗
n := K∗.En, Kn := K.En, Un := U.En, and Sn := T.En.

We reiterate that not all edges of En are edges of X. So Xn − En stands for X −
(En ∩ E(X)), Xn = X.En stands for X.(En ∩ E(X)), and so E(Xn) = En ∩ E(X), and

similarly in the other cases. By the results from Section 14.5.3.1, we have X∼ = lim←−Xn,

and similarly in the other cases. Note also that since X is connected and satisfies the

even-cut condition, every finite graph Xn is Eulerian.

Definition 14.5.21. Let κ : K → K∗, σ∗ : T → K∗ and σ : T → U be the (injective)

inclusion maps. For every n ∈ N, let πn be the (surjective) projection maps corresponding

to the operation of contracting onto the edge set En, and define

• κn := πn ◦ κ ◦ π−1
n : Kn → K∗n,

• σ∗n := πn ◦ σ∗ ◦ π−1
n : Sn → K∗n, and

• σn := πn ◦ σ ◦ π−1
n : Sn → Un.

We may visualise these maps in a commuting diagram as follows:

K K∗ T U

Kn K∗n Sn Un

κ

πn πn

σ∗ σ

πn πn

κn σ∗n σn

Lemma 14.5.22. The following facts about the above diagram are true:

(1) The maps κn, σ∗n and σn are well-defined (i.e. single valued) contraction maps,

and the diagram commutes.

(2) κn � E(Kn), σ∗n � E(Sn) and σn � Ereal(Sn) act as identity, whereas σn(Efake(Sn)) ⊆
V (Un),

(3) κ(K) and σ∗(T ) form a decomposition of K∗ into connected subgraphs, and hence

κn(Kn) and σ∗n(Sn) form a decomposition of K∗n into connected subgraphs,

(4) If P ⊆ T is a standard arc with end-vertices a and b, then

• Q = πn(P ) forms a path in Sn with edge set F := E(P ) ∩ E(Sn),
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• σ∗n(Q) forms a trail24 in K∗n with edge set F from πn(σ∗(a)) to πn(σ∗(b)),

• σn(Q) forms a trail in Un with edge set F real
n from πn(σ(a)) to πn(σ(b)).

Proof. (1) and (2). To see that κn is a well-defined contraction map and acts as

identity on E(K), note that since En ∩ E(K) ⊆ En ∩ E(K∗), it follows that every edge

e ∈ E(K), we have π−1
n (e) = e, and hence κn(e) = πn ◦ κ ◦ π−1

n (e) = e. For a vertex

v ∈ V (Kn), note that by definition π−1
n (v) is a connected component of K − En. Hence,

κ(π−1
n (v)) is a connected subspace of K∗−En, and hence belongs to a connected component

of K∗ − En. Thus, πn(κ(π−1
n (v))) = κn(v) is a vertex of K∗n.25 The proof for σ∗n is the

same. The third case of σn is almost the same, with the difference that while σn is the

identity on real edges of Sn, for every fake edge e of Sn, we have σ(π−1
n (e)) ⊆ G(U), and

hence belongs do a connected component of U − En, so σn(e) = πn(σ(π−1
n (e))) ∈ V (Un).

Next, assertion (3) is clear by construction and the fact that κn � E(Kn), σ∗n � E(Sn)

act as identity. Finally, (4) follows from the fact that since all maps are contraction maps,

trails get mapped to trails. �

Let us call a subset Fn ⊆ E(Sn) semi-good if Un − σn(Fn) = Un − F real
n is an even

subgraph of Un. A semi-good set is called good, if also κ(Kn) + σ∗n(Fn) = K∗n[E(Kn)∪Fn]

is an even subgraph of K∗n.

Main claim: For each n ∈ N there exists at least one good subset of E(Sn).

We will prove our main claim in two steps, first constructing a semi-good set, which

we modify in a second step to a good set.

Step 1: There exists a semi-good subset F ′n ⊆ E(Sn). To see this, note that

each graph Un has precisely k connected components, and by the handshaking lemma, the

number of odd-degree vertices of Un inside each component is even, so come in pairs. Let

≈ denote the corresponding equivalence relation, where each equivalence class consists of

one such pair. Now for each vertex u ∈ V (Un), the preimage π−1
n (u) induces a clopen

subset of the vertex set V ∩U of U . If u has odd degree, then necessarily π−1
n (u)∩K 6= ∅,

as otherwise the edge-cut of π−1
n (u) induced in U equals the edge-cut of π−1

n (u) induced

in X, contradicting the even-cut property of X. By construction of T , there is a point

vu ∈ π−1
n (u) ∩K ∩ V (T ), and this point must satisfy u = πn(σ(vu)). Next, for each pair

u ≈ u′ of odd-degree vertices of Un, vu and vu′ lie in the same connected component of T ,

so there exists a unique path Pvu,vu′ in T from vu to vu′ . By Lemma 14.5.22(4), if we let

Qu,u′ = πn(Pvu,vu′ ) be the corresponding path in Sn, then σn(Qu,u′) is a trail in Un from

σn(πn(vu)) = πn(σ(vu)) = u to σn(πn(vu′)) = πn(σ(vu′)) = u′, where the respectively first

equalities hold since the above diagram commutes, and the respective second equalities

24A trail is a walk without repeated edges
25Note, however, that distinct vertices v 6= v′ ∈ V (Kn) may be mapped onto the same vertex in

V (K∗n), as π−1n (v) and π−1(v′) are distinct components of K −En, but as subspaces might belong to the

same component of K∗ − En.
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hold by choice of vu and vu′ . In particular, all vertices, apart from the end-vertices have

even degree in that trail. Define F ′n :=
∑

u≈u′ E(Qu,u′). Then σn(F ′n) =
∑

u≈u′ σn(Qu,u′)

is the mod-2 sum over these trails, and so it is precisely the odd degree vertices of Un
that have odd parity in Un[σn(F ′n)]. Thus, Un − σn(F ′n) is an even graph, and so F ′n is

semi-good.

Step 2: There exists a good subset Fn ⊆ E(Sn). First, fix a semi-good subset

F ′n ⊆ E(Sn), let F ′n
{ = E(Sn) \ F ′n and define K ′n = K∗n − σ∗n(F ′n

{) and U ′n = Un − σn(F ′n).

As before, for each vertex k ∈ V (K∗n) = V (K ′n), the set π−1
n (k) is a connected component

of K∗−En, and hence a subcontinuum of X−En. Similarly, for each vertex u ∈ V (Un) =

V (U ′n), the set π−1
n (u) is a connected component of U−En, and hence also a subcontinuum

of X−En. Hence, for U = {π−1
n (v) : v ∈ V (K∗n) t V (Un)} we may consider the intersection

graph G = GU of U in X − En. For ease of notation, relabel

V (G) = V (K∗n) t V (Un) and E(G) =
{
vw : π−1

n (v) ∩ π−1
n (w) 6= ∅

}
.

Observe that G is a bipartite graph with vertex bipartition V (G) = V (K∗n) t V (Un),

as whenever k 6= k′ are distinct vertices in K∗n, then π−1
n (k) and π−1

n (k′) are distinct

components of K∗ − En, and hence do not intersect, and similarly for u 6= u′ ∈ V (Un).

Subclaim 1. Whenever ku ∈ E(G), then π−1
n (k) ∩ π−1

n (u) ∩ V (T ) 6= ∅.

Proof of Subclaim 1. Since K∗ ∩ U = (K ∩ U) ∪ T , the fact that ku ∈ E(G)

implies π−1
n (k) ∩ π−1

n (u) ⊆ (K ∩ U) ∪ T . Since K ∩ U ⊆ V (T ), we only have to consider

the case where π−1
n (k) ∩ π−1

n (u) intersect in an edge e of E(T ), in which case e(0), e(1) ∈
π−1
n (k)∩π−1

n (u)∩V (T ), as π−1
n (k) and π−1

n (u) are standard subcontinua, and if e is a fake

edge, then e ⊆ G(U), so contained in a single component of U − En. ♦

Next, for every connected component C of the graph graph G, the set
⋃
π−1
n (C) is a

subspace of X − En. Write C(G) := {
⋃
π−1
n (C) : C a connected component of G}.

Subclaim 2. We have {π−1
n (x) : x ∈ V (Xn)} = C(G).

Proof of Subclaim 2. This will follow once we show that C(G) forms a partition of

X − En into subcontinua. First, each π−1
n (C) is a subcontinuum of X − En. This follows

easily by induction on |C|, since for every edge ku ∈ E(G), the two subcontinua π−1
n (k)

and π−1
n (u) intersect by definition, so π−1

n (k) ∪ π−1
n (u) is again a subcontinuum. Next,

for components C 6= C ′ of A, if
⋃
π−1
n (C) ∩

⋃
π−1
n (C ′) 6= ∅, there would be v ∈ C and

w ∈ C ′ such that π−1
n (v) ∩ π−1

n (w) 6= ∅, and so vw ∈ E(G), contradicting that v and w

belong to distinct components of G. Finally, X −En ⊆ (K∗−En)∪ (H −En) yields that⋃
π−1
n (V (G)) = X − En. ♦

Now a component C of G can be viewed as a single vertex of Xn, and hence induces

an edge cut in Xn. Similarly, by the nature of G, a component C also induces edge cuts in
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K ′n and in U ′n: write EK′n(C,C{) as shorthand for the edge cut of K ′n with sides V (K ′n)∩C
versus V (K ′n) \ C.

Subclaim 3. We have EXn(C,C{) = EK′n(C,C{) t EU ′n(C,C{) for any component C

of G, and hence EK′n(C,C{) is always even.

Proof of Subclaim 3. To see this claim, note that EK′n(C,C{) cannot contain fake

edges of T , as any such edge lies in G(U), contradicting that C is a component of A.

Hence, all edge cuts are subsets of E(Xn). The equality of sets now follows from that fact

that K ′n and U ′n are E(Xn)-edge-disjoint, and together cover all edges of Xn. Now since

Xn and U ′n were even graphs by assumption, and so have the even-cut property, it follows

that EK′n(C,C{) is even for every component C of A. ♦

To complete the proof of the second step, and hence of our main claim, note that

by Subclaim 3 and the handshaking lemma, for any connected component C of G, the

number of vertices of K∗n which have odd-degree in K ′n in C is always even. Hence, we

can pair up odd degree vertices of K ′n such that for every pair k ≈ k′ there is a path

Ak,k′ in G say with vertices k0u1k1u1 . . . uj−1kj where k = k0, k′ = kj, ki ∈ V (K∗n),

ui ∈ V (Un) and edges {k0u1, u1k1, k1u2, . . . , uj−1kj} ⊆ E(G), using that G is bipartite.

By Subclaim 1, for every i ∈ [j] we may pick a point ai ∈ π−1
n (ki−1)∩ π−1

n (ui)∩ V (T ) and

a point bi ∈ π−1
n (ui) ∩ π−1

n (ki) ∩ V (T ), and let Pi be the unique path from ai to bi in the

forest T , which exists as π−1
n (ui) is contained in a unique component of U .

Now arguing as in Step 1, if we let Qi = πn(Pi) be the corresponding path in Sn, then

σn(Qi) is a trail in Un from πn(σ(ai)) = ui to πn(σ(bi)) = ui, i.e. σn(Qi) is a closed trail,

so all vertices of Un in σn(Qi) have even degree. Hence,
∑

i∈[j] σn(Qi) is an even subgraph

of Un. At the same time, however, every σ∗n(Qi) is a trail in K∗n from πn(σ∗(ai)) = ki−1

to πn(σ∗(bi)) = ki, and so
∑

i∈[j] σ
∗
n(Qi) induces a subgraph in K∗n in which all vertices,

apart from k = k0 to k′ = kn have even degree. Thus, if we let Fk,k′ =
∑

i∈[j] E(Qi), then

σn(Fk,k′) is an even subgraph of Un, and in the subgraph induced by σ∗n(Fk,k′) in K∗n, all

vertices have even parity apart from precisely k and k′. Hence, Fn := F ′n +
∑

k≈k′ Fk,k′ is

a good subset Fn ⊆ E(Sn). This completes the proof of Step 2.

Recall that we set out to show the existence of a set F ⊆ E(T ) such that by adding F to

K and removing F real = F∩Ereal
T from U , we obtain an edge-disjoint cover

{
K + F,U − F real

}
of X such that both sides satisfy the even-cut condition. We will now obtain such a set

F from the good edge sets of E(Sn) as follows. Since E(Sn) is finite, each E(Sn) has

only finitely many good subsets. Moreover, since Un = Un+1/en+1 and K∗n = K∗n+1/en+1

are obtained by edge-contraction, even subgraphs of Hn+1 and K∗n+1 restrict to even

subgraphs of Un and K∗n. Thus, every good choice Fn+1 ⊆ E(Sn+1) at step n + 1 in-

duces a good choice Fn = Fn+1 ∩ E(Sn) at step n. So by Königs Infinity Lemma [54,

Lemma 8.1.2], there is a sequence of good sets (Fn : n ∈ N) with Fn ⊆ E(Sn) such
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that Fn+1 ∩ E(Sn) = Fn for all n ∈ N. Now given such a sequence (Fn : n ∈ N), de-

fine F =
⋃
n∈N Fn ⊆ E(T ) and claim that F is as desired, i.e. that K + T [F ] and

U − F real have the even-cut property. Indeed, since F real ∩ E(Un) = F real
n it follows from

Lemma 14.5.16 that (U − F real)∼ = lim←−
(
Un − F real

n

)
has the even-cut property. Hence,

U − F real has the even-cut property. Similarly, also K ∪ T [F ] has the even cut property,

as K∗∼[E(K) ∪ F ] = lim←− (K∗n[E(Kn) ∪ Fn]) is the inverse limit of even graphs.

Moreover, since K ′′ = K ∪ T [F ] satisfies the even-cut condition, every leaf of T [F ]

must intersect K (as otherwise, there would be a vertex in (K ∪ T [F ])∼ of degree 1,

contradicting the even-cut property), and hence K ∪ T [F ] continues to have at most `

connected components. Moreover, since the non-trivial components of T [F ] form a zero-

sequence of graph-like continua, Lemma 14.5.12, each of the ` components of K ∪ T [F ]

remains a Peano continuum, Lemma 14.1.13. Since F is sparse, U ′′ = U − F real is a

component-wise aligned compactum such that every component of U ′′ is faithfully aligned

in (X, V ), Lemma 14.5.14. By Lemma 14.5.11, each component of U ′′ satisfies the even-cut

condition. To complete the proof of the theorem, we would like U ′′ be have only finitely

many components. We rectify this problem by reassigning all but finitely many of these

components of U ′′ back to K ′′, without violating property (A2). Indeed, we may construct

K ′ and U ′ as desired by applying Theorem 14.5.19 with ε, providing a finite edge set FK
as to satisfy (A3). Moreover, that by Lemma 14.5.8, this reassignment preserves the even-

cut condition of K ′′, and so K ′ and U ′ satisfy (A2). That it satisfies (A1) is clear from

construction, since we only ever added edge sets to K. �

14.5.4. Eulerian Decompositions of One-Dimensional Peano Continua.

14.5.4.1. The decomposition theorem.

Theorem 14.5.23 (2nd decomposition theorem). Every one-dimensional Peano con-

tinuum X ⊆ [0, 1]3 with admissible vertex set V satisfying the even-cut condition admits a

Peano cover {X1, . . . , Xs} into edge-disjoint standard connected, combinatorially aligned

Peano subgraphs with edge sets Vi each satisfying the even-cut condition, and for each

i ∈ [s] there is a edge vertex set Fi ⊆ E(Xi, Vi) such that every component C of Xi − Fi
either satisfies C ⊆ [0, 2

3
]× [0, 1]× [0, 1] ⊆ [0, 1]3 or C ⊆ [1

3
, 1]× [0, 1]× [0, 1] ⊆ [0, 1]3.

Our proof relies crucially on the fact that one-dimensional Peano continua have excep-

tionally nice Peano partitions (Def. 14.2.6) that reflect properties of dimension, announced

by Bing in [26, Theorem 11] and used crucially by Andersen as a step towards the topolog-

ical characterisation of the Menger universal curve in [7, 8]. See also [117] for a detailed

account, including a published proof in the one-dimensional case.



14.5. ONE-DIMENSIONAL SPACES 387

Theorem 14.5.24 ([117, Theorem 2.9]). A one-dimensional Peano continuum admits

a decreasing sequence of 1/n Peano partitions {Un : n ∈ N} with zero-dimensional bound-

aries.26

Proof of Theorem 14.5.23. For i ∈ [3] let πi : [0, 1]3 → [0, 1] denote the projection

map from the cube onto the ith coordinate. Let ε = 1/6. Pick an ε-brick-partition U of

X with zero-dimensional boundaries as in Theorem 14.5.24, and let Uu ⊆ U be the sub-

collection Uu =
{
U ∈ U : U ∩ π−1

1 [2/3, 1] 6= ∅
}

and let U` := U \ Uu. Next, let K =
⋃
Uu,

and similarly let U =
⋃
U`, giving rise to a bipartite Peano partition U = (K,U) of X

with zero-dimensional overlap by the sum theorem of dimension, [62, Thm. 1.5.2]. Apply

Theorem 14.5.20 to U with ε = 1/3 to obtain a bipartite Peano cover U ′ = (K ′, U ′) of X

with properties (A1), (A2) and (A3) of Theorem 14.5.20. For later use, let FK denote the

finite edge set of K ′ witnessing (A2). We claim that U ′ is as desired.

Clearly, by construction and property (A3), U ′ is a finite decomposition of X into

edge-disjoint standard Peano subgraphs each satisfying the even-cut condition. To see the

first bullet point, note that by (A1), U ′ ⊆ U and so every component of U ′ is contained

in a component of U , which by construction was almost contained in [0, 2
3
]× [0, 1]× [0, 1].

Lastly, we claim that FK from (A2) is a witness for the second bullet point. Indeed,

any component C of K ′ − FK either has diameter diam(C) 6 ε < 1/3, in which case we

have trivially

C ⊆ [0, 2
3
]× [0, 1]× [0, 1] ⊆ [0, 1]3 or C ⊆ [1

3
, 1]× [0, 1]× [0, 1] ⊆ [0, 1]3,

or C is contained in Bε(D) for some component D of G(K). In this case, since by

construction, we have D ⊆ K ⊆ [2
3
− ε, 1]× [0, 1]× [0, 1], the fact C ⊆ Bε(D) implies that

C ⊆ [2
3
− 2ε, 1]× [0, 1]× [0, 1] = [1

3
, 1]× [0, 1]× [0, 1],

completing the proof.

Note that by Corollary 14.5.7, given (X, V ) we may pick admissible vertex sets for K

and U such that they are combinatorially aligned with (X, V ). �

14.5.4.2. Eulerian decompositions of one-dimensional Peano continua. In this section

we finally prove Theorem 14.5.23. Let us fix a one-dimensional Peano continuum X which

satisfies the even-cut condition. By Nöbling’s embedding theorem [62, 1.11.4], every one-

dimensional continuum embeds into the unit cube [0, 1]3, and so for our purposes we

may assume that X is given as a subspace X ⊆ [0, 1]3. The goal is to show how the

decomposition theorem may be used to construct an approximating sequence of Eulerian

decompositions for X, thereby implying the Eulerianity conjecture for all one-dimensional

Peano continua.

26The Theorem proved in [117, Thm. 2.9] is stronger, but we shall not need these additional properties.
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First, recall that by [62, Thm. 1.8.13], since X is one-dimensional, the complement of

X in [0, 1]3 is connected, and since it is open, it must then be path-connected. Therefore,

given X ⊆ [0, 1]3, we may add any finite set of edges between specified points of X in

3-space to obtain a Peano continuum X ′ such such that X ⊆ X ′ ⊆ [0, 1]3.

Definition 14.5.25 (Truncation). Let D = (G, η) be a decomposition of a Peano

continuum X, and let v ∈ V (G). The truncation of D to v, denoted by τ(v), is a Peano

continuum with τ(v) ⊇ η(v) with additional edges E(τ(v))\E(η(v)) = {e ∈ E(G) : e ∼ v}
and ground set

G(τ(v)) =

G(η(v)) if EG(v,G− v) = ∅,
G(η(v))⊕ {?} otherwise,

where vertex-edge incidences for the new edges are given by

eτ (i) =

(η(e))(i) if e(i) = v

? otherwise.

for e ∼ v in G and i ∈ {0, 1}.

Truncating means first contracting the subgraph G[V (G− v] to a single vertex ?, and

then blowing up the ‘vertex’ v to its associated tile η(v), connecting all edges previously

incident with v in G to their correct endpoints in η(v). The case distinction ensures that

if ? was isolated, it is to be disregarded (there might still be loops attached to v in G).

From the above discussion we deduce the next lemma.

Lemma 14.5.26. Let D = (G, η) be a decomposition of a Peano continuum X. A

truncation τ(v) is always a connected Peano graph, and if η(v) ⊆ [0, 1]3, then we may

always assume that η(v) ⊆ τ(v) ⊆ [0, 1]3 for all v ∈ V (Γ).

As announced, let us see how the Decomposition Theorem 14.5.23 can be used to

construct an approximating sequence of Eulerian decompositions. For an example of an

approximating sequence of Eulerian decompositions that satisfies property (E9) in the next

proof, consider once more the hyperbolic 4-regular tree from Figure 14.6 in Chapter 14.3.

Proof of Theorem 14.5.1. We construct a sequence ((Gn, ηn) : n ∈ N) of Eulerian

decompositions for X with (G0, η0) 4 (G1, η1) 4 · · · by recursion on n, such that each

Eulerian decomposition (Gn, ηn) satisfies, besides its usual properties (E1)–(E7) from Def-

inition 14.3.2, the following extra two requirements:

(E8) each tile ηn(v) is combinatorially aligned with X,

(E9) each truncation τn(v) satisfies the even-cut condition for all vertices v of (Gn, ηn),

(E10) for every verticex v of (Gn, ηn), the tile ηn(v) is contained in a cube Iv with

ηn(v) ⊆ Iv = I1
v × I2

v × I3
v ⊆ [0, 1]3
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such that for r = n (mod 3) we have

diam
(
Ikv
)

=


(

2
3

)bn/3c+1
if k 6 r(

2
3

)bn/3c
otherwise.

For the base case, we can choose the trivial decomposition. So suppose for some n ∈ N
we have an Eulerian decomposition (Gn, ηn) with properties (E8),(E9) and (E10), and

write E(Gn) = Fn tDn for the implicit partition into displayed and dummy edges. Our

task is to construct an Eulerian decomposition (Gn+1, ηn+1) with properties (E8),(E9) and

(E10), so that (Gn+1, ηn+1) extends (Gn, ηn). In order to satisfy (E10) at step n+ 1, it is

clear that we have to cut our tiles apart along the unique coordinate i ∈ {1, 2, 3} where

n+1 = 3m+ i for some m ∈ N; without loss of generality, we may assume in the following

that i = 1.

Consider v ∈ V (Gn). For ease of notation, we rescale affinely in all coordinates so

that Iv = [0, 1]3. By Lemma 14.5.26, we may assume that η(v) ⊆ τn(v) ⊆ [0, 1]3. Then

in combination with property (E8) and (E9), we are allowed to apply Theorem 14.5.23 to

the truncation τn(v) and obtain a finite Peano cover

Sv =
{
X1, X2, . . . , Xs(v)

}
of τn(v) such that

(i) the elements are pairwise edge-disjoint,

(ii) each element satisfies the even-cut condition,

(iii) each element is combinatorially aligned τn(v),

(iv) for each i ∈ [s(v)] there is a finite edge set Fi ⊆ E(Xi) such that every component

C of Xi − Fi either satisfies C ⊆ [0, 2
3
] × [0, 1] × [0, 1] ⊆ [0, 1]3 or C ⊆ [1

3
, 1] ×

[0, 1]× [0, 1] ⊆ [0, 1]3.

Write Ev = E(τn(v))\E(ηn(v)) for the ‘artificial’ edges of τn(v). Write F ′i = Fi \Ev, Fv :=⋃
i∈[s(v)] F

′
i , and let us write Xi1, . . . , Xi`i for the finitely many components of Xi−(Ev∪F ′i )

other than ? (Lemma 14.1.11). Let us write Vv for the collection of all these Xik. We have

obtained a decomposition Pv = Vv ∪ Fv of η(v) into edge disjoint standard subspace Vv
and newly displayed edges Fv.

27 Repeat this procedure for each v ∈ V (Gn).

Our next task is to turn these partitions into an Eulerian decomposition (Gn+1, ηn+1) of

X. For this, we first define an auxiliary decomposition (G′n+1, η
′
n+1), where the underlying

graph G′n+1 has vertex and edge set E(G′n+1) := Fn+1 tDn as follows:

• V (Gn+1) :=
⊔
v∈V (Gn) Vv and

• Fn+1 := Fn t
⊔
v∈V (Gn) Fv.

For the map η′n+1 we take the natural candidate: for e ∈ Fn ∪Dn, define η′n+1(e) := ηn(e).

And for x ∈ Pv (vertices and newly displayed edges alike) define η′n+1(x) = x. Next, note

27Note that some Xik is allowed to consist of a single edge, which does not count as being displayed.
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that the map %′n : G′n+1 → Gn defined by %′n � (Fn ∪Dn) := id and %′−1
n (v) := Pv is a

surjective map satisfying (Q1) and (Q2) of a contraction map, cf. Definition 14.3.13. As

our next step, we need to define vertex-edge-incidences for G′n+1 so that

(a) (E6) and (E7) are satisfied, i.e. (G′n+1, η
′
n+1) is indeed a decomposition of X

according to Definition 14.3.2,

(b) (Q3) and (Q4) are satisfied for %′n, i.e. %′n is a contraction map from G′n+1 to Gn

according to Definition 14.3.13, and so that

(c) %′n is η-compatible according to Definition 14.3.14.

So let us consider an arbitrary edge f ∈ E(G′n+1). Suppose first that f ∈ Fn ∪Dn. Then

f ∈ E(Gn) where it is incident to fGn(0) = v and fGn(1) = w say (not necessarily distinct).

In order to define fGn+1(0), note that f ∈ τn(v), and hence there is a unique Xi ∈ Sv with

f ∈ E(Xi). Since f ∈ Ev, there is a unique component Xik of Xi − (Ev ∪ F ′i ) such that

f(0) ∈ Xik, and so we may define fG′n+1
(0) := Xik. This assignment satisfies (E6) or

(E7) respectively by construction, as well as (Q3). Suppose next that f ∈ Fn+1 \ Fn.

By definition of Fn+1, there is a unique v ∈ V (Gn) such that f ∈ Fv. This means in

turn, that f ∈ E(Xi) for some Xi ∈ Sv, and so there are unique components Xi,k, Kij of

Xi − (Ev ∪ F ′i ) such that f(0) ∈ Xi,k and f(1) ∈ Xi,j. Hence, by defining fG′n+1
(0) = Xi,k

and fG′n+1
(1) = Xi,j, we see that this assignment satisfies (E6) as well as (Q4). Hence, we

have verified (a) and (b), and now that %′n is indeed a contraction map, if is clear that it

also is η-compatible, for we have

ηn(x) =
⋃{

η′n+1(y) : y ∈ %′−1
n (v)

}
for all x ∈ V (Gn) ∪ E(Gn) by construction.

This completes the construction of G′n+1 and %′n : G′n+1 → Gn. Next, we claim that

every vertex inG′n+1 has even degree: indeed, for every vertex v ofG′n+1 with corresponding

tile η′n(v) = Xik with Xik ⊆ Xi ∈ S%′n(v), we have that the edges EG′n+1
(v) incident with v

in G′n+1 correspond precisely to the edges in (Ev∪Fv)∩E(Xi) incident with the component

Xik. However, since Xi satisfies the even-cut condition by (ii), it follows that this is an

even number of edges, and hence that v has even degree in G′n+1.

For later use, note that it follows from (iv) that (G′n+1, η
′
n+1) satisfies (E10). Moreover,

(G′n+1, η
′
n+1) also satisfies (E9): indeed, for every w ∈ Vn+1 with η′n+1(w) ⊆ Xi ∈ Sv it is

easy to verify that τ ′n+1(w) is a contraction of Xi; since Xi satisfied the even-cut condition

by (ii), so does τ ′n+1(w).

To turn G′n+1 into the final Eulerian multi-graph Gn+1, we now generously add parallel

dummy edges in Dn+1 \ Dn in order to make the graph connected,28 making sure that

(E7), (Q4) and (Q5) hold for these new dummy edges. Indeed, to achieve connectedness

of Gn+1 is it sufficient, since Gn was connected, to arrange for (Q5), i.e. to show that %n

28While dummy edges are introduced in parallel pairs when they emerge for the first time in Gn+1,

we do not (and cannot) require them to remain parallel in Gn+2.
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has connected fibres. Towards this, recall that every ηn(v) for v ∈ V (Gn) was connected

by definition. Let Uv be the family of components of {Y − Ev : Y ∈ Sv}. Then Uv is a

finite family of continua covering ηn(v), and hence its intersection graph GUv on ηn(v) is

connected. Pick a spanning tree Tv for GUv . For every edge g = ab ∈ E(Tv) pick a point

xg ∈ a ∩ b 6= ∅ in the overlap of the corresponding sets and then add two parallel dummy

edges d1, d2 to Gn+1 with associated point ηn+1(d1) = xg = ηn+1(d1) and incidences so

that d1(0) = d2(0) ⊆ a and d1(1) = d2(1) ⊆ b.

Then it is clear that Gn+1 is connected, and since we added new dummy edges in pairs,

Gn+1 is still even. Thus, we have verified that Gn+1 is Eulerian, and so (Gn+1, ηn+1) is an

Eulerian decomposition of X extending (Gn, ηn) and satisfying (E10). Finally, it remains

to check that also (E9) holds true for (Gn+1, ηn+1). But this now follows easily from the

fact that (G′n+1, η
′
n+1) satisfied (E9): indeed, since new dummy edges only occur in pairs,

it follows that for every w ∈ V (Gn+1) = V (G′n+1), the truncations τn+1 and τ ′n+1(w) differ

only by a finite family of edges, which come in parallel pairs between ? and (pairwise)

the same point on the ground set on ηn+1(w). It is clear that the even-cut condition is

unaffected by these changes.

But now, since (E10) implies that that w(Gn, ηn) 6
(

2
3

)bn/3c → 0, it follows that

(A1) and (A2) of Definition 14.3.5 are satisfied, i.e. ((Gn, ηn) : n ∈ N) is an approximating

sequence of Eulerian decompositions for X. This completes the proof. �

14.5.5. Outlook. The techniques introduced in this chapter for one-dimensional con-

tinua lead to an abstract framework and to a technical conjecture, the truth of which

implies the truth of the Eulerianity conjecture.

Definition 14.5.27. The core-size of a Peano continuumX is the real number core(X) =

sup {diam(C) : C a connected component of G(X)}. For a collection of Peano continua U ,

we write G-mesh(U) = sup {core(X) : X ∈ U}.

Definition 14.5.28. An even-cut decomposition of a Peano continuum X is a finite

cover U of X consisting of edge-disjoint standard subcontinua each of which has the even-

cut property. A class C of Peano continua is closed under even-cut decompositions if every

X ∈ A satisfies the even-cut property and admits even-cut decompositions U of arbitrarily

small G-mesh(U) such that U ∈ C for all U ∈ U .

The results of this Chapter 14.5 can then summarised as follows:

Theorem 14.5.29. The class of all one-dimensional Peano continua with the even-cut

property is closed under even-cut decompositions. �

Theorem 14.5.30. If C is a class of Peano continua closed under even-cut decompo-

sitions, then the Eulerianity conjecture holds for every X ∈ C . �
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Indeed, Theorem 14.5.29 follows by iterative applications of Theorem 14.5.23, and The-

orem 14.5.30 follows as in the proof of Theorem 14.5.1 above, noting that by Lemma 14.5.18,

for every Peano continuum X and every ε > 0 there is a finite edge set F ⊆ E(X) such

that diam(C) < core(X) + ε for every component C of X − F .

Conjecture 14.5.31. The class C of all Peano continua with the even-cut property

is closed under even-cut decompositions.

In other words, we conjecture that every Peano continuum X satisfying the even-cut

condition admits, for every ε > 0, a finite cover U of edge-disjoint standard subcontinua

of X all satisfying the even-cut condition with G-mesh(U) < ε.

By Theorem 14.5.30, the truth of Conjecture 14.5.31 implies the truth of Conjec-

ture 14.1.2.
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[84] R. Häggkvist and C. Thomassen. Circuits through specified edges. Discrete Math., 41(1):29–34,

1982.
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[131] G. Nöbling. Eine Verschärfung des n-Bein Satzes. Fundamenta Mathematicae, 18:23–28, 1931.
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