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Introduction

It is quite well understood which graphs can be embedded in the plane. For
example, Kuratowski’s theorem from 1930 says that a graph can be embedded
in the plane if and only if it does not contain a graph from Figure 1 as a minor1.
In the first part of this thesis we prove a 3-dimensional analogue of Kuratowski’s

Figure 1: The graphs K5 (on the left) and K3,3 (on the right).

theorem. This answers questions of Lovász, Pardon and Wagner. The author
regards this as the main result of this thesis and refers the reader to Chapter 1
for a detailed introduction.

In addition to that first part, this thesis has two more parts. These consist
of seven chapters that each are self contained.

End boundaries of infinite graphs have proven to be an important tool in
Infinite Graph Theory. Here we prove a conjecture of Andreae from 1981 that
implies that end-degrees of infinite directed graphs exist.

For undirected 1-ended graphs, we construct tree-decompositions that dis-
play the end and respect the symmetries of the graph. This can be applied to
prove a conjecture of Halin from 2000 and solves a recent problem of Boutin
and Imrich.

Furthermore, we characterise the classes of infinite graphs with bounded
colouring number in terms of forbidden obstructions.

In a nutshell, matroids are common generalisations of graphs and vector
spaces. The connection between matchings in bipartite graphs, Menger’s the-
orem about vertex-disjoint paths and base packing and covering is transparent
from Edmonds’ theorem about the intersection of matroids. In 1990 Nash-
Williams proposed a possible extension of Edmonds’ theorem to infinite ma-

1In the context of planar graphs, the minor relation is just the subgraph relation combined
with planar duality.
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troids. We show that like Edmonds’ theorem, this conjecture is equivalent to
other natural problems such as base packing or matroid union. Furthermore it
implies the Erdős-Menger-Conjecture, which had been open for 50 years until
it was proved by Aharoni and Berger in 2009. Our new perspectives allow us to
prove Nash-Williams’ conjecture in various special cases.

A lot of matroid theory focuses on matroids representable over vector spaces.
We develop a compactness method that allows us to lift many of the foundational
theorems about such representable matroids to the infinite setting. A related
construction answers a question of Bruhn, Diestel, Kriesell, Pendavingh and
Wollan.

This thesis is based on the twelve papers [25], [26], [27], [28], [29], [19],
[72],[59], [18],[6],[14], [15]. Five of these are already published or are accepted
in journals: one in Combinatorica, one in Discrete Mathematics and three in
Journal of Combinatorial Theory.

The papers of the first part are single authored. The other parts are based
on joint work with various subsets of Elad Aigner-Horev, Nathan Bowler, Jan-
Oliver Fröhlich, Julian Pott, Péter Komjáth, Florian Lehner, Rögnvaldur Möller
and Christian Reiher. I am grateful to all these coauthors for fruitful coopera-
tion, in particular to Nathan Bowler.
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Chapter 1

A Kuratowski-type
characterisation

1.1 Abstract

We characterise the embeddability of simply connected locally 3-connected 2-
dimensional simplicial complexes in 3-space in a way analogous to Kuratowski’s
characterisation of graph planarity, by excluded minors. This answers questions
of Lovász, Pardon and Wagner.

1.2 Introduction

In 1930, Kuratowski proved that a graph can be embedded in the plane if and
only if it has none of the two non-planar graphs K5 or K3,3 as a minor1. The
main result of the first part of this thesis may be regarded as a 3-dimensional
analogue of this theorem.

Kuratowski’s theorem gives a way how embeddings in the plane could be un-
derstood through the minor relation. A far reaching extension of Kuratowski’s
theorem is the Robertson-Seymour theorem [82]. Any minor closed class of
graphs is characterised by the list of minor-minimal graphs not in the class.
This theorem says that this list always must be finite. The methods developed
to prove this theorem are nowadays used in many results in the area of structural
graph theory [35] – and beyond; recently Geelen, Gerards and Whittle extended
the Robertson-Seymour theorem to representable matroids by proving Rota’s
conjecture [42]. Very roughly, the Robertson-Seymour structure theorem estab-
lishes a correspondence between minor closed classes of graphs and classes of
graphs almost embeddable in 2-dimensional surfaces.

1A minor of a graph is obtained by deleting or contracting edges.
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In his survey on the Graph Minor project of Robertson and Seymour [66], in
2006 Lovász asked whether there is a meaningful analogue of the minor relation
in three dimensions. Clearly, every graph can be embedded in 3-space2.

One approach towards this question is to restrict the embeddings in question,
and just consider so called linkless embeddings of graphs, see [81] for a survey.
Instead of restricting embeddings, one could also put some additional structure
on the graphs in question. Indeed, Wagner asked how an analogue of the minor
relation could be defined on general simplicial complexes [95].

Unlike in higher dimensions, a 2-dimensional simplicial complex has a topo-
logical embedding in 3-space if and only if it has a piece-wise linear embedding
if and only if it has a differential embedding [11, 54, 71, 76]. In [67], Ma-
tous̆ek, Sedgewick, Tancer and Wagner proved that the embedding problem for
2-dimensional simplicial complexes in 3-space is decidable. In August 2017, de
Mesmay, Rieck, Sedgwick and Tancer complemented this result by showing that
this problem is NP-hard [33].

This might suggest that if we would like to get a structural characterisation
of embeddability, we should work inside a subclass of 2-dimensional simplicial
complexes. And in fact such questions have been asked: in 2011 at the internet
forum ‘MathsOverflow’ Pardon3 asked whether there are necessary and sufficient
conditions for when contractible 2-dimensional simplicial complexes embed in
3-space. The link graph at a vertex v of a simplicial complex is the incidence
graph between edges and faces incident with v. He notes that if embeddable
the link graph at any vertex must be planar. This leads to obstructions for
embeddability such as the cone over the complete graph K5, see Figure 1.1. –
But there are different obstructions of a more global character, see Figure 1.2.
All their link graphs are planar – yet they are not embeddable.

Figure 1.1: The cone over K5. Similarly as the graph K5 does not embed in
2-space, the cone over K5 does not embed in 3-space.

Addressing these questions, we introduce an analogue of the minor relation

2Indeed, embed the vertices in general position and embed the edges as straight lines.
3John Pardon confirmed in private communication that he asked that question as the user

‘John Pardon’.
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Figure 1.2: The octahedron obstruction, depicted on the right, is obtained from
the octahedron with its eight triangular faces by adding 3 more faces of size 4
orthogonal to the three axis. If we add just one of these 4-faces to the octahe-
dron, the resulting 2-complex is embeddable as illustrated on the left. A second
4-face could be added on the outside of that depicted embedding. However, it
can be shown that the octahedron with all three 4-faces is not embeddable.

for 2-complexes and we use it to prove a 3-dimensional analogue of Kuratowski’s
theorem characterising when simply connected 2-dimensional simplicial com-
plexes (topologically) embed in 3-space.

More precisely, a space minor of a 2-complex is obtained by successively
deleting faces, contracting edges that are not loops4 and contractions of faces of
size two, that is, identify the two edges of that face along the face, see Figure 1.3;
and Section 1.7 for details. Additionally we need two rather simple operations,
which we call ‘splitting vertices’ and ‘forgetting the incidences’ at an edge.

e
f b

a

f

Figure 1.3: The complex on the right is a space minor of the complex on the left.
If we delete the faces labelled a and b in the complex on the left and contract
the edge e and contract the face f , we obtain the complex on the right.

It is quite easy to see that space minors preserve embeddability in 3-space
and that this relation is well-founded. The operations of face deletion and face
contraction correspond to the minor operations in the dual matroids of simplicial

4Loops are edges that have only a single endvertex. While contraction of edges that are
not loops clearly preserves embeddability in 3-space, for loops this is not always the case.
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complexes in the sense of Chapter 4.
The main result of the first chapter is the following.

Theorem 1.2.1. Let C be a simply connected locally 3-connected 2-dimensional
simplicial complex. The following are equivalent.

� C embeds in 3-space;

� C has no space minor from the finite list Z.

The finite list Z is defined explicitly in Subsection 1.7.3 below. The mem-
bers of Z are grouped in six natural classes. Here a (2-dimensional) simplicial
complex is locally 3-connected if all its link graphs are connected and do not
contain separators of size one or two. In Chapter 5, we extend Theorem 1.2.1 to
simplicial complexes that need not be locally 3-connected. For general simpli-
cial complexes, not necessarily simply connected ones, the proof implies that a
locally 3-connected simplicial complex has an embedding into some 3-manifold
if and only if it does not have a minor from L.

We are able to extend Theorem 1.2.1 from simply connected simplicial com-
plexes to those whose first homology group is trivial.

Theorem 1.2.2. Let C be a locally 3-connected 2-dimensional simplicial com-
plex such that the first homology group H1(C,Fp) is trivial for some prime p.
The following are equivalent.

� C embeds in 3-space;

� C is simply connected and has no space minor from the finite list Z.

In general there are infinitely many obstructions to embeddability in 3-space.
Indeed, the following infinite family of obstructions appears in Theorem 1.2.2.

Example 1.2.3. Given a natural number q ≥ 2, the q-folded cross cap consists
of a single vertex, a single edge that is a loop and a single face traversing the
edge q-times in the same direction. It can be shown that q-folded cross caps
cannot be embedded in 3-space.

A more sophisticated infinite family is constructed in Chapter 4.

This part is subdivided into five chapters, which are self-contained except in
those few cases, where we point it out explicitly. In what follows we summarise
roughly the content of the other four chapters. The results of Chapter 2 give
combinatorial characterisations when simplicial complexes embed in 3-space,
which are used in the proofs of Theorem 1.2.1 and Theorem 1.2.2.

As mentioned above, the main result of Chapter 5 is an extension of Theo-
rem 1.2.1 to simply connected simplicial complexes. In Chapter 4, we prove an
extension of that theorem that goes beyond the simply connected case. Chap-
ter 3 is purely graph-theoretic and its results are used as a tool in Chapter 4.

12



Like Kuratowski’s theorem, Whitney’s theorem is a characterisation of pla-
narity of graphs. In Chapter 4 we prove a 3-dimensional analogue of that theo-
rem.

This chapter is organised as follows. Most of this chapter is concerned with
the proof of Theorem 1.2.2, which implies Theorem 1.2.1. In Section 1.3, we
introduce ‘planar rotation systems’ and state a theorem of Chapter 2 that relates
embeddability of simply connected simplicial complexes to existence of planar
rotation systems. In Section 1.4 we define the operation of ‘vertex sums’ and
use it to study rotation systems. In Section 1.5 we relate the existence of
planar rotation systems to a property called ‘local planarity’. In Section 1.6 we
characterise local planarity in terms of finitely many obstructions. In Section 1.7
we introduce space minors and prove Theorem 1.2.1 and Theorem 1.2.2.

For graphs5 we follow the notation of [35]. Beyond that a 2-complex is a
graph (V,E) together with a set F of closed trails6, called its faces. In this
part we follow the convention that each vertex or edge of a simplicial complex
or a 2-complex is incident with a face. The definition of link graphs naturally
extends from simplicial complexes to 2-complexes with the following addition:
we add two vertices in the link graph L(v) for each loop incident with v. We
add one edge to L(v) for each traversal of a face at v.

1.3 Rotation systems

Rotation systems of 2-complexes play a central role in our proof of Theo-
rem 1.2.1. In this section we introduce them and prove some basic properties
of them.

A rotation system of a graph G is a family (σv|v ∈ V (G)) of cyclic orienta-
tions7 σv of the edges incident the vertex v [70]. The orientations σv are called
rotators. Any rotation system of a graph G induces an embedding of G in an
oriented (2-dimensional) surface S. To be precise, we obtain S from G by gluing
faces onto (the geometric realisation of) G along closed walks of G as follows.
Each directed edge of G is in one of these walks. Here the direction ~a is directly
before the direction ~b in a face f if the endvertex v of ~a is equal to the starting
vertex of ~b and b is just after a in the rotator at v. The rotation system is planar
if that surface S is the 2-sphere.

A rotation system of a (directed8) 2-complex C is a family (σe|e ∈ E(C)) of
cyclic orientations σe of the faces incident with the edge e. A rotation system of
a 2-complex C induces a rotation system at each of its link graph by restricting

5In this thesis graphs are allowed to have loops and parallel edges.
6A trail is sequence (ei|i ≤ n) of distinct edges such that the endvertex of ei is the starting

vertex of ei+1 for all i < n. A trail is closed if the starting vertex of e1 is equal to the
endvertex of en.

7A cyclic orientation is a bijection to an oriented cycle.
8A directed 2-complex is a 2-complex together with a choice of direction at each of its edges

and a choice of orientation at each of its faces. All 2-complexes considered in this part are
directed. In order to simplify notation we will not always say that explicitly.
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to the edges that are vertices of the link graph L(v); here we take σ(e) if e is
directed towards v and the reverse of σ(e) otherwise.

A rotation system of a 2-complex is planar if all induced rotation systems
of link graphs are planar. In Chapter 2 we prove the following, which we use in
the proof of Theorem 1.2.1.

Theorem 1.3.1. A simply connected simplicial complex has an embedding in
S3 if and only if it has a planar rotation system.

Given a 2-complex C, its link graph L(v) is loop-planar if it has a planar
rotation system such that for every loop ` incident with v the rotators at the
two vertices e1 and e2 associated to ` are reverse – when we apply the following
bijection between the edges incident with e1 and e2. If f is an edge incident
with e1 whose face of C consists only of the loop `, then f is an edge between
e1 and e2 and the bijection is identical at that edge. If f is incident with more
edges than `, it can by assumption traverse ` only once. So there are precisely
two edges for that traversal, one incident with e1, the other with e2. These two
edges are in bijection.

A 2-complex C is locally planar if all its link graphs are loop-planar. Clearly,
a 2-complex that has a planar rotation system is locally planar. However, the
converse is not true.

Let C = (V,E, F ) be a 2-complex and let x be a non-loop edge of C, the
2-complex obtained from C by contracting x (denoted by C/x) is obtained from
C by identifying the two endvertices of x, deleting x from all faces and then
deleting x, formally: C/x = ((V,E)/x, {f − x|f ∈ F}).

Let C be a 2-complex and x be a non-loop edge of C, and Σ = (σe|e ∈ E(C))
be a rotation system of C. The induced rotation system of C/x is Σx = (σe|e ∈
E(C)− x). This is well-defined as the incidence relation between edges of C/x
and faces is the same as in C. Planarity of rotation systems is preserved under
contractions:

Lemma 1.3.2. If Σ is planar, then Σx is planar. Conversely, if Σx is planar,
there is a planar rotation system of C inducing Σx

9

Hence the class of 2-complexes that have planar rotation systems is closed
under contractions. As noted above it contains the class of locally planar 2-
complexes, which is clearly not closed under contractions. However, if we close
the later class under contractions, then they do agree – in the locally 3-connected
case.

Lemma 1.3.3. A locally 3-connected 2-complex has a planar rotation system if
and only if all contractions are locally planar. 10

We remark that by Lemma 1.4.4 below the class of locally 3-connected 2-
complexes is closed under contractions.

9This lemma is proved in Section 1.4.
10Lemma 1.3.3 will follow from Lemma 1.5.1 below.
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1.4 Vertex sums

In this short section we prove some elementary facts about an operation called
‘vertex sum’ which is used in the proof of Theorem 1.2.1.

Let H1 and H2 be two graphs with a common vertex v and a bijection ι
between the edges incident with v in H1 and H2. The vertex sum of H1 and H2

over v given ι is the graph obtained from the disjoint union of H1 and H2 by
deleting v in both Hi and adding an edge between any pair (v1, v2) of vertices
v1 ∈ V (H1) and v2 ∈ V (H2) such that v1v and v2v are mapped to one another
by ι, see Figure 1.4.

v v

Figure 1.4: The vertex sum of the two graphs on the left is the graph on the
right.

Let C be a 2-complex with a non-loop edge e with endvertices v and w.

Observation 1.4.1. The link graph of C/e at e is the vertex sum of the link
graphs L(v) and L(w) over the common vertex e.

Lemma 1.4.2. Let G be a graph that is a vertex sum of two graphs H1 and H2

over the common vertex v. Let (σix|x ∈ V (Hi)) be a planar rotation system of Hi

for i = 1, 2 such that σ1
v is the inverse of σ2

v. Then (σix|x ∈ V (Hi)− v, i = 1, 2)
is a planar rotation system of G.

Proof sketch. This is a consequence of the topological fact that the connected
sum of two spheres is the sphere.

Lemma 1.4.3. Let G be a graph that is a vertex sum of two graphs H1 and
H2 over the common vertex v. Assume that G has a planar rotation system Σ.
Then there are planar rotation systems of H1 and H2 that agree with Σ at the
vertices in V (G) ∩ V (Hi) and that are reverse at v.

Proof sketch. This is a consequence of the topological fact that the quotient of a
sphere by a closed disc is isomorphic to the sphere (as Hi = G/(E(Hi+1))).

Proof of Lemma 1.3.2. This is a consequence of Lemma 1.4.2 and Lemma 1.4.3.
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Lemma 1.4.4. Let G be a graph that is a vertex sum of two graphs H1 and H2

over the common vertex v. Let k ≥ 2. If H1 and H2 are k-connected11, then so
is G.

Proof. Suppose for a contradiction that there is a set of less than k vertices of
G such that G \X is disconnected. Let Y be the set of edges incident with v
(suppressing the bijection between the edges incident with v in H1 and H2 in
our notation). As H1 is k-connected, the set Y contains at least k edges. If
k > 2, then since no Hi has parallel edges, no two edges in Y share a vertex.
Thus in this case the set Y contains k edges that are vertex disjoint. If k = 2,
this is also true as Y considered as a subgraph of G is a bipartite graph with at
least two vertices on either side each having degree at least one.

Hence by the pigeonhole principle, there is an edge e in Y such that no
endvertex of e is in X. Let C be the component of G \X that contains e. Let
C ′ be a different component of G \X. Let i be such that Hi contains a vertex
w of C ′.

In Hi this vertex w and an endvertex of e are separated by X + v. As Hi

is k-connected, we deduce that all vertices of X are in Hi. Then the connected
graph Hi+1 is a subset of C. Hence the vertex w and an endvertex of e are
separated by X in Hi. This is a contradiction to the assumption that Hi is
k-connected.

In our proof we use the following simple fact.

Lemma 1.4.5. Let G be a graph with a minor H. Let v and w be vertices of
G contracted to the same vertex of H. Then there is a minor G′ of G such that
v and w are contracted to different vertices of G′ and their branch vertices are
joined by an edge e and H = G′/e.

1.5 Constructing planar rotation systems

The aim of this section is to prove the following lemma, which is used in the
proof of Theorem 1.2.1. This lemma roughly says that a 2-complex has a planar
rotation system if and only if certain contractions are locally planar. A chord
of a cycle o is an edge not in o joining two distinct vertices in o but not parallel
to an edge of o. A cycle that has no chord is chordless.

Lemma 1.5.1. Let C be a locally 3-connected 2-complex. Assume that the
following 2-complexes are locally planar: C, for every non-loop edge e the con-
traction C/e, and for every non-loop chordless cycle o of C and some e ∈ o the
contraction C/(o− e).

Then C has a planar rotation system.

11Given k ≥ 2, a graph with at least k + 1 vertices is k-connected if the removal of less
than k vertices does not make it disconnected. Moreover it is not allowed to have loops and
if k > 2, then it is not allowed to have parallel edges.
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First we show the following.

Lemma 1.5.2. Let C be a 2-complex with an edge e with endvertices v and
w. Assume that the link graphs L(v) and L(w) at v and w are 3-connected and
that the link graph L(e) of C/e at e is planar. Then for any two planar rotation
systems of L(v) and L(w) the rotators at e are reverse of one another or agree.

Proof. Let Σ = (σx|x ∈ (L(v)∪L(w))− e) be a planar rotation system of L(e).
By Lemma 1.4.3 there is a rotator τe at e such that (σx|x ∈ L(v)− e) together
with τe is a planar rotation system of L(v) and (σx|x ∈ L(w)− e) together with
the inverse of τe is a planar rotation system of L(w).

Since L(v) and L(w) are 3-connected, their planar rotation system are unique
up to reversing and hence the lemma follows.

Let C be a locally 3-connected 2-complex such that C and for every non-
loop e all contractions C/e are locally planar. We pick a planar rotation system
(σve |e ∈ V (L(v))) at each link graph L(v) of C. By Lemma 1.5.2, for every edge
e of C with endvertices v and w the rotators σve and σwe are reverse or agree.
We colour the edge e green if they are reverse and we colour it red otherwise.

A pre-rotation system is such a choice of rotation systems such that all edges
are coloured green. The following is an immediate consequence of the definitions.

Lemma 1.5.3. C has a pre-rotation system if and only if C has a planar
rotation system.

Lemma 1.5.4. Let o be a cycle of C and e an edge on o. Assume that the link
graph L[o, e] of C/(o− e) at e is loop-planar. Then the number of red edges of
o is even.

Proof. Since L[o, e] is loop-planar, by Lemma 1.4.3 there are planar rotation
systems of all link graphs of vertices of C on o such that for every edge x ∈ o
with endvertices v and w the rotators σvx and σwx are reverse. Hence there are
assignments of planar rotation systems to the link graphs at vertices of o such
the number of red edges on o is zero.

Since all link graphs are 3-connected, the planar rotation systems are unique
up to reversing. Reversing a rotation system flips the colours of all incident
edges. Hence for any assignment of planar rotation systems the number of red
edges of o must be even.

Proof of Lemma 1.5.1. By Lemma 1.5.3, it suffices to construct a pre-rotation
system, that is, to construct suitable rotation systems at each link graph of C.

We may assume that C is connected. We pick a spanning tree T of C with
root r. At the link graph at r we pick an arbitrary planar rotation system. Now
we define a rotation system (σve |e ∈ V (L(v))) at some vertex v assuming that
for the unique neighbour w of v nearer to the root in T we have already defined
a rotation system (σwe |e ∈ V (L(w))). Let e be the edge between v and w that
is in T . By Lemma 1.5.2, there is a planar rotation system (σve |e ∈ V (L(v)))
of the link graph L(v) such that the rotators σve and σwe are reverse. As C is
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connected, this defines a planar rotation system at every vertex of C. It remains
to show that every edge e of C is green with respect to that assignment. This
is true by construction if e is in T .

Lemma 1.5.5. Every edge e of C that is not in T and is not a loop is green.

Proof. Let oe be the fundamental cycle of e with respect to T . We prove by
induction on the number of edges of oe that e is green. The base case is that
oe is chordless. Then by assumption the link graph L[o, e] of C/(o − e) at e
is loop-planar. So the number of red edges on oe is even by Lemma 1.5.4. As
shown above all edges of oe except for possibly e are green. So e must be green.

Thus we may assume that oe has chords. By shortcutting along chords we
obtain a chordless cycle o′e containing e such that each edge x of o′e not in oe
is a chord of oe. Thus each such edge x is not in T and not a loop. Since no
chord x can be parallel to e, the corresponding fundamental cycles ox have each
strictly less edges than oe. Hence by induction all the edges x are green. Thus
all edges of o′e except for possibly e are green. Similarly as in the base case we
can now apply Lemma 1.5.4 to deduce that e is green.

Sublemma 1.5.6. Every loop ` of C is green.

Proof. Let v be the vertex incident with `. As the link graph L(v) is 3-connected
and loop-planar each of its (two) planar rotation systems must witness that L(v)
is loop-planar. Hence the rotation system we picked at L(v) witnesses that L(v)
is loop planar. Thus ` is green.

As all edges of C are green with respect to Σ, the family Σ is a pre-rotation
system of C. Hence C has a planar rotation system by Lemma 1.5.3.

1.6 Marked graphs

In this section we prove Lemma 1.6.9 and Lemma 1.6.16 which are used in
the proof of Theorem 1.2.1. More precisely, these lemmas characterise when a
2-complex is locally planar in terms of finitely many obstructions.

A marked graph is a graph G together with two of its vertices v and w and
three pairs ((ai, bi)|i = 1, 2, 3) of its edges, where the ai are incident with v and
the bi are incident with w. We stress that we allow ai = bi.

Given a 2-complex C, a link graph L(x) of C, a loop ` of C incident with x
and three distinct faces f1, f2, f3 of C traversing `, the marked graph associated
with (x, `, f1, f2, f3) is the graph L(x) together with the two vertices v and w
of L(x) corresponding to `. The traversal of each face fi of ` corresponds to
edges ai and bi incident with v and w, respectively. As fi is a closed trail in
C, each vertex of L(x) is incident with at most one edge corresponding to fi.
Hence ai and bi are defined unambiguously. Note that if fi consists only of
`, then ai = bi. This completes the definition of the associated marked graph
(G, v, w, ((ai, bi)|i = 1, 2, 3)).
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A marked graph (G, v, w, ((ai, bi)|i = 1, 2, 3)) is planar if there is a planar
rotation system (σx|x ∈ V (G)) of G such that σv restricted to (a1, a2, a3) is the
inverse permutation of σw restricted to (b1, b2, b3) – when concatenated with the
bijective map bi 7→ ai. The next lemma characterises loop-planarity.

Lemma 1.6.1. A 3-connected link graph L(x) is loop-planar if and only if it is
a planar graph and all its associated marked graphs are planar marked graphs.

Proof. Clearly, if L(x) is loop-planar, then all its link graphs and all their as-
sociated marked graphs are planar. Conversely assume that a link graph L(x)
and all its associated marked graphs are planar. Then L(v) has a planar ro-
tation system Σ. As L(x) is 3-connected, this rotation system is unique up to
reversing. Hence any planar rotation system witnessing that some associated
marked graph is planar is equal to Σ or its inverse. By reversing that rotation
system if necessary, we may assume that it is equal to Σ. Hence Σ is a planar
rotation system that witnesses that L(x) is loop-planar.

Corollary 1.6.2. A locally 3-connected 2-complex C is locally planar if and
only if all its link graphs and all their associated marked graphs are planar.

Proof. By definition, a 2-complex is locally planar if all its link graphs are loop-
planar.

A marked graph (G, v,w, ((ai, bi)|i = 1, 2, 3)) is 3-connected ifG is 3-connected.
We abbreviate A = {a1, a2, a3} and B = {b1, b2, b3}.

A marked minor of a marked graph (G, v,w, ((ai, bi)|i = 1, 2, 3)) is obtained
by doing a series of the following operations:

� contracting or deleting an edge not in A ∪B;

� replacing an edge ai ∈ A \ B and an edge bj ∈ B \ A that are in parallel
by a single new edge which is in that parallel class. In the reduced graph,
this new edge is ai and bj .

� the above with ‘serial’ in place of ‘parallel’.

� apply the bijective map (v,A) 7→ (w,B).

Lemma 1.6.3. Let Ĝ = (G, v, w, ((ai, bi)|i = 1, 2, 3)) be a marked graph such
that G is planar. Let Ĥ be a 3-connected marked minor of Ĝ. Then Ĝ is planar
if and only if Ĥ is planar.

Before we can prove this, we need to recall some facts about rotation systems
of graphs. Given a graph G with a rotation system Σ = (σv|v ∈ V (G)) and
an edge e. The rotation system induced by Σ on G − e is (σv − e|v ∈ V (G)).
Here σv − e is obtained from the cyclic ordering σv by deleting the edge e. The
rotation system induced by Σ on G/e is (σv|v ∈ V (G/e) − e) together with σe
defined as follows. Let v and w be the two endvertices of e. Then σe is obtained
from the cyclic ordering σv by replacing the interval e by the interval σw− e (in
such a way that the predecessor of e in σv is followed by the successor of e in
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σw). Summing up, Σ induces a rotation system at every minor of G. Since the
class of plane graphs12 is closed under taking minors, rotation systems induced
by planar rotation systems are planar.

Proof of Lemma 1.6.3. Let Σ be a planar rotation system of G. Let Σ′ be the
rotation system of the graph H of Ĥ induced by Σ. As mentioned above, Σ′ is
planar.

Moreover, Σ witnesses that Ĝ is a planar marked graph if and only if Σ′

witnesses that Ĥ is a planar marked graph. Hence if Ĝ is planar, so is Ĥ. Now
assume that Ĥ is planar. Since H is 3-connected, it must be that Σ′ witnesses
that the marked graph Ĥ is planar. Hence the marked graph Ĝ is planar.

Our aim is to characterise when 3-connected marked graphs are planar. By
Lemma 1.6.3 it suffices to study that question for marked-minor minimal 3-
connected marked graphs; we call such marked graphs 3-minimal.

It is reasonable to expect – and indeed true, see below – that there are only
finitely many 3-minimal marked graphs. In the following we shall compute them
explicitly.

Let Ĝ = (G, v,w, ((ai, bi)|i = 1, 2, 3)) be a marked graph. We denote by VA
the set of endvertices of edges in A different from v. We denote by VB the set
of endvertices of edges in B different from w.

Lemma 1.6.4. Let Ĝ = (G, v,w, ((ai, bi)|i = 1, 2, 3)) be 3-minimal. Unless G
is K4, every edge in E(G)\ (A∪B) has its endvertices either both in VA or both
in VB.

Proof. By assumption G is a 3-connected graph with at least five vertices such
that any proper marked minor of Ĝ is not 3-connected. Let e be an edge of
G that is not in A ∪ B. By Bixby’s Lemma [75, Lemma 8.7.3] either G −
e is 3-connected13 after suppressing serial edges or G/e is 3-connected after
suppressing parallel edges.

Sublemma 1.6.5. There is no 3-connected graph H obtained from G − e by
suppressing serial edges.

Proof. Suppose for a contradiction that there is such a graph H. As G is 3-
connected, every class of serial edges of G−e has size at most two. By minimality
of G, there is no marked minor of Ĝ with graph H. Hence one of these series
classes has to contain two edges in A or two edges in B. By symmetry, we may
assume that e has an endvertex x that is incident with two edges e1 and e2 in
A. As G is 3-connected these two incident edges of A can only share the vertex

12A plane graph is a graph together with an embedding in the plane.
13The notion of ‘3-connectedness’ used in [75, Lemma 8.7.3] is slightly more general than

the notion used here. Indeed, the additional 3-connected graphs there are subgraphs of K3

or subgraphs of U1,3 – the graph with two vertices and three edges in parallel. It is straight-
forward to check that these graphs do not come up here as they cannot be obtained from a
3-connected graph with at least 5 vertices by a single operation of deletion or contraction (and
simplification as above).
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v. Thus x = v. This is a contradiction to the assumption that e1 and e2 are in
series as v is incident with the three edges of A.

By Sublemma 1.6.5 and Bixby’s Lemma, we may assume that the graph H
obtained from G/e by suppressing parallel edges is 3-connected. By minimality
of G, there is no marked minor of Ĝ with graph H. Hence G/e has a nontrivial
parallel class. And it must contain two edges e1 and e2 that are both in A or
both in B. By symmetry we may assume that e1 and e2 are in A. Since G is
3-connected, the edges e, e1 and e2 form a triangle in G. The common vertex
of e1 and e2 is v. Thus both endvertices of e are in VA.

A consequence of Lemma 1.6.4 is that every 3-minimal marked graph has at
most most 12 edges. However, we can say more:

Corollary 1.6.6. Let Ĝ = (G, v,w, ((ai, bi)|i = 1, 2, 3)) be 3-minimal. Then G
has at most five vertices.

Proof. Let GA be the induced subgraph with vertex set VA + v. Let GB be the
induced subgraph with vertex set VB +w. Note that G = GA ∪GB . If GA and
GB have at least three vertices in common, then G has at most five vertices as
GA and GB both have at most four vertices. Hence we may assume that GA
and GB have at most two vertices in common. As G is 3-connected, the set of
common vertices cannot be a separator of G. Hence GA ⊆ GB or GB ⊆ GA.
Hence G has at most four vertices in this case.

An unlabelled marked graph is a graph G together with vertices v and w and
edge sets A and B of size three such that all edges of A are incident with v and
all edges in B are incident with w. The underlying unlabelled marked graph of
a marked graph (G, v,w, ((ai, bi)|i = 1, 2, 3)) is G together with v, w and the
sets A = {a1, a2, a3} and B = {b1, b2, b3}. Informally, an unlabelled marked
graph is a marked graph without the bijection between the sets A and B. For a
planar 3-connected unlabelled marked graph, there are three bijections between
A and B for which the associated marked graph is planar as a marked graph.
For the other three bijections it is not planar.

v w

w

v

w

v

w

v

Figure 1.5: The four unlabelled marked graphs in X . The edges in A are
depicted dotted, the ones in B are bold.

Marked graphs Ĝ = (G, v,w, ((ai, bi)|i = 1, 2, 3)) associated to link graphs
always have the property that the vertices v and w are distinct. 3-minimal
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marked graphs need not have this property. Of particular interest to us is the
class X depicted in Figure 1.5; indeed, they describe the 3-connected marked
graphs with the property that v 6= w that are marked minor minimal with G
planar, as shown in the following. We shall refer to the four members of X
in the linear ordering given by accessing Figure 1.5 from left to right (and say
things like ‘the first member of X ’).

Lemma 1.6.7. Let Ĝ = (G, v, w, ((ai, bi)|i = 1, 2, 3)) be a 3-connected marked
graph with v 6= w and G planar. Then Ĝ has a marked minor that has an
underlying unlabelled marked graph in X .

Proof. By Corollary 1.6.6, Ĝ has a marked minor minimal 3-connected marked
minor Ĥ = (H, v,w, ((ai, bi)|i = 1, 2, 3)), where H has at most five vertices.

Sublemma 1.6.8. The only 3-connected planar graphs with at most five vertices
are K4, the 4-wheel and K−5 .

Proof. Since K4 is the only 3-connected graph with less than five vertices, it
suffices to consider the case where the graph K in question has five vertices. As
five is an odd number and K has minimum degree 3, K has a vertex v of degree
4. Hence K − v is 2-connected. Hence it has to contain a 4-cycle. Thus K has
the 4-wheel as a subgraph. Thus K is the 4-wheel, K−5 or K5. As K is planar,
it cannot be K5.

By Sublemma 1.6.8, H is K4, the 4-wheel or K−5 . In the following we treat
these cases separately. As above we let A = {a1, a2, a3} and B = {b1, b2, b3}.

Case 1: H = K4. If the vertices v and w of H are distinct, then the
underlying unlabelled marked graph of Ĥ is the first member of X and the
lemma is true in this case. Suppose for a contradiction that v = w. Then each
edge incident with v is in A and B. Let H ′ be the marked graph obtained from
Ĥ by replacing each edge incident with v by two edges in parallel, one in A, one
in B. It is clear that H ′ is a marked minor of Ĝ. By applying Lemma 1.4.5 to
the graph of H ′, we deduce that G has K5 as a minor. This is a contradiction
to the assumption that G is planar.

Case 2A: H is the 4-wheel and v 6= w.
Subcase 2A1: v or w is the center of the 4-wheel. By applying the bijective

map (v,A) 7→ (w,B) if necessary, we may assume that w is the center. Our
aim is to show that the underlying unlabelled marked graph of Ĥ is the second
member of X . As v has degree three, A is as desired. By Lemma 1.6.4, the two
edges on the rim not in A must have both their endvertices in VB . Hence B
is as desired. Thus the underlying unlabelled marked graph of Ĥ is the second
member of X .

Subcase 2A2: v and w are adjacent vertices on the rim. We shall show
that this case is not possible. Suppose for a contradiction that it is possible.

We denote by e the edge on the rim not incident with v or w. One end-
vertex has distance two from v, the other has distance two from w. Hence the
endvertices of e cannot both be in VA or both be in VB . This is a contradiction
to Lemma 1.6.4.
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Subcase 2A3: v and w are opposite vertices on the rim. We shall show
that this case is not possible. Suppose for a contradiction that it is possible.

There is an edge incident with the center not incident with v or w. Deleting
that edge and suppressing the vertex of degree two gives a marked graph whose
graph is K4. Hence Ĥ is not minimal in that case, a contradiction. This
completes Case 2A.

Case 2B: H is the 4-wheel and v = w. By Lemma 1.6.4, every edge not in
A∪B must have both endvertices in VA or VB . Hence v can only be the center
of the 4-wheel. By the minimality of Ĥ and by Lemma 1.6.4, each edge of the
rim has both its endvertices in VA or in VB . At most two edges of the rim can
have all their endvertices in VA and in that case these edges are adjacent on the
rim. The same is true for VB .

We denote the vertices of the rim by (vi|i ∈ Z4), where vivi+1 is an edge.
By symmetry, we may assume that v1 is the unique vertex of the rim not in VA.
Then v3 must be the unique vertex of the rim not in VB . It follows that the
edges vv2 and vv4 are in A and B. Let H ′ be the marked graph obtained from
Ĥ by replacing each of vv2 and vv4 by two edges in parallel, one in A, one in
B. It is clear that H ′ is a marked minor of Ĝ. Let H ′′ be the marked graph
obtained from H ′ by applying Lemma 1.4.5. The underlying unlabelled marked
graph of H ′′ is the third member of X .

Case 3: H is K−5 .

We shall show that the underlying unlabelled marked graph of Ĥ is the forth
graph of X . H has three vertices of degree four, which lie one a common 3-cycle.
Removing any edge of that 3-cycle gives a graph isomorphic to the 4-wheel.
Hence by minimality of Ĥ, it must be that this 3-cycle is a subset of A ∪ B.
In particular, v and w are distinct vertices on that 3-cycle. Up to symmetry,
there is only one choice for v and w. By applying the map (v,A) 7→ (w,B) if
necessary, we may assume that A contains at least two edges of that 3-cycle.

We denote the two vertices of H of degree three by u1 and u2. We denote
the vertex of degree four different from v and w by x. By exchanging the roles
of u1 and u2 if necessary, we may assume that A = {vw, vx, vu1}.

Recall that wx ∈ B. The endvertex u2 of the edge vu2 is not in VA and this
edge cannot be in B. Hence by Lemma 1.6.4, both its endvertices must be in
VB . Hence vw ∈ B and wu2 ∈ B. Summing up B = {wx, vw,wu2}. Thus in
this case the underlying unlabelled graph of Ĥ is the forth graph of X .

By Y we denote the class of marked graphs that are not planar as marked
graphs and whose underlying unlabelled marked graphs are isomorphic to a
member of X – perhaps after applying the bijective map (v,A) 7→ (w,B). We
consider two marked graphs the same if they have the have the same graph and
the same bijection between the sets A and B (although the elements in A might
have different labels). Hence for each X ∈ X , there are precisely three marked
graphs in Y with underlying unlabelled marked graph X, one for each of the
three bijections between A and B that are not compatible with any rotation
system of the graph of X (which is 3-connected). Thus Y has twelve elements.

Summing up we have proved the following.

23



Lemma 1.6.9. A locally 3-connected 2-complex is locally planar if and only if
all its link graphs are planar and all their associated marked graphs do not have
a marked minor from Y.

Proof. Since no marked graph in Y is planar, it is immediate that if a 2-complex
is locally planar, then all its link graphs are planar and all their associated
marked graphs do not have a marked minor from Y.

For the other implication it suffices to show that any 3-connected link graph
L(x) that is planar but not loop-planar has an associated marked graph that
has a marked minor in Y. By Lemma 1.6.1, L(x) has an associated marked
graph Ĝ that is not planar. By Lemma 1.6.7, Ĝ has a marked minor Ĥ whose
underlying unlabelled marked graph is in X . By Lemma 1.6.3, Ĥ is not planar.
Hence Ĥ is in Y.

Lemma 1.6.9 has already the following consequence, which characterises em-
beddability in 3-space by finitely many obstructions.14

Corollary 1.6.10. Let C be a simply connected locally 3-connected 2-complex.
Let C ′ be a contraction of C to a single vertex v. Then C has an embedding
into S3 if and only if no marked graph associated to the link graph at v has a
marked minor in the finite set Y.

Proof. By Theorem 1.3.1, C is embeddable if and only if it has a planar rotation
system. By Lemma 1.3.3 C has a planar rotation system if and only if C ′ is
locally planar. Hence Corollary 1.6.10 follows from Lemma 1.6.9.

In the following we will deduce from Lemma 1.6.9 a more technical analogue.
A strict marked graph is a marked graph (G, v,w, ((ai, bi)|i = 1, 2, 3)) together
with a bijective map between the edges incident with v and the edges incident
with w that maps ai to bi. A strict marked minor is obtained by deleting or
contracting edges not incident with v or w or deleting an edge not in A ∪ B
incident with v and the edge it is bijected to. We also allow to apply the bijective
map (v,A) 7→ (w,B).

Remark 1.6.11. We call this relation the ‘strict marked minor relation’ as it
is more restrictive than the ‘marked minor relation’.

The proof of the next lemma is technical. We invite the reader to skip it
when first reading this chapter.

Lemma 1.6.12. There is a finite set Y ′ of strict marked graphs such that a
strict marked graph has a strict marked minor in Y ′ if and only if its marked
graph has a marked minor in Y.

14As turns out, Corollary 1.6.10 is too weak to be used directly in our proof of Theorem 1.2.1.
Indeed, in our proof it will not always be possible to contract C onto a single vertex but we
need to choose the edges we contract carefully (using the additional information provided in
Lemma 1.5.1).
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Proof. The underlyer of a strict marked graph Ŷ is the the underlying unlabelled
marked graph of the strict marked graph Ŷ . We define Y ′ and reveal the precise
definition in steps during the proof. Now we reveal that by Y ′ we denote the
class of strict marked graphs with underlyer in X3 – perhaps after applying
the bijective map (v,A) 7→ (w,B). The set X3, however, is revealed later. We
abbreviate ‘strict marked minor’ by 3-minor. We define 0-minors like ‘marked
minors’ but on the larger class of strict marked graphs where we additionally
allow that edges incident with v or w have no image under ι. (This is necessary
for this class to be closed under 0-minors). Let X0 = X .

Let Ŷ be a strict marked graph. In this language, it suffices to show that Ŷ
has a 0-minor with underlyer in X0 if and only if Ŷ has a 3-minor with underlyer
in X3. We will show this in three steps. In the n-th step we define n-minors and
a set Xn of unlabelled marked graphs and prove that Ŷ has an (n − 1)-minor
with underlyer in Xn−1 if and only if Ŷ has an n-minor with underlyer in Xn.

Starting with the first step, we define 1-minors like ‘0-minors’ where we do
not allow to contract edges incident with v or w. We define X1 and reveal it
during the proof of the following fact.

Sublemma 1.6.13. Ŷ has a 0-minor with underlyer in X0 if and only if Ŷ has
a 1-minor with underlyer in X1.

Proof. Assume that Ŷ has a 0-minor Ŷ0 with underlyer in X0. So there is a
1-minor Ŷ1 of Ŷ so that we obtain Ŷ0 from Ŷ1 by contracting edges incident
with v or w. We reveal that X1 is a superset of X0. Hence we may assume that
there is an edge of Ŷ1 that is not in Ŷ0. By symmetry, we may assume that it
is incident with v. We denote that edge by ev, see Figure 1.6.

ev e′v
v wu

Figure 1.6: The situtation of the proof of Sublemma 1.6.13.

We may assume that Ŷ1 is minimal, that is, it has no proper 1-minor that
has a 0-minor isomorphic to Ŷ0. Applying this to Ŷ1 − ev, yields that there
must be an edge e′v incident with v in Ŷ0 that in Ŷ1 is not incident with v but
the other endvertex of ev. In particular, the edge e′v is not in A. Let u be the
common vertex of ev and e′v.

Next we show that u is only incident with ev and e′v in Y1. By going through
the four unlabbeled marked graphs in X0 = X , we check that there is at most
one edge incident with v but not in A. Hence u can only be incident with edges
not in Ŷ0 − e′v. Moreover the connected component of Y1 \ Y0 containing u
can only contain v and vertices not incident with any edge of Y0. Thus by the
minimality of Ŷ1, this connected component only contains the edge ev. So u is
only incident with ev and e′v.
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Since u has degree 2, Ŷ1/e
′
v has a 0-minor isomorphic to Ŷ0. By the min-

imality of Ŷ1, it must be that Ŷ1/e
′
v is not 1-minor of it. Hence e′v has to be

incident with w.
Suppose for a contradiction that there is an edge ev and an edge ew defined

as ev with ‘w’ in place of ‘v’. Then as each member of X has at most one edge
between v and w, it must be that e′v = e′w. This is a contradiction as e′v is
incident with w but not with v in Ŷ1 and for e′w it is the other way round.

Summing up, we have shown that Ŷ1 is either equal to Ŷ0 or otherwise Ŷ0

has an edge e between v and w and Ŷ1 is obtained by subdividing that edge.
This edge e cannot be in A ∩B.

Now we reveal that we define X1 from X by adding two more unlabelled
marked graphs as follows, see Figure 1.7. The first we get from the second

v w

w

v

w

v
w

v
w

v

w

v

Figure 1.7: The six unlabelled marked graphs in X1. The edges in A are depicted
dotted, the ones in B are bold.

member by subdividing the edge between v and w and let the subdivision edge
incident with v remain in A. The second we get from the third member by
subdividing the edge between v and w.

From this construction it follows that if Ŷ has a 0-minor Ŷ0 with underlyer
in X0, then the 1-minor Ŷ1 of Ŷ defined above has an underlyer in X1. Hence Ŷ
has a 1-minor with underlyer in X1 if and only if it has a 0-minor with underlyer
in X0.

Starting with the second step, we define 2-minors like ‘1-minors’ where we
only allow to delete edges incident with v and w in the pairs given by the
bijection ι – and if they are not in A ∪ B. We obtain X2 from X1 by adding
the following unlabelled marked graphs. For each member of X1 such that all
edges incident with v or w are in A ∪ B we add no new member. There is one
member in X ∈ X1 that has an edge incident with w not in A ∪ B but every
edge incident with v is in A. We add new members obtained from X by adding
one more edge incident to v and one other vertex of X. All other members
of X ′ ∈ X1 have the property that they have exactly one edge incident with v
not in A ∪ B and exactly one edge incident with w not in A ∪ B. We add new
members to X2 obtained from such an X ′ by adding two more non-loop edges,
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one incident with v, the other incident with w.15 This completes the definition
of X2.

Sublemma 1.6.14. Ŷ has a 1-minor with underlyer in X1 if and only if Ŷ has
a 2-minor with underlyer in X2.

Proof. By construction, if Ŷ has a 2-minor with underlyer in X2, then it has a
1-minor with underlyer in X1. Now conversely assume that Ŷ has a 1-minor Ŷ1

with underlyer in X1. We define Ŷ2 like ‘Ŷ1’ except that we only delete edges
incident with v or w if also their image under ι is deleted. It remains to show
that the underlyer of Ŷ2 is in X2, that is, the graph Y2 has no loops. This is
true as the graph Y1 has no loops and the additional edges of Y2 are incident
with v or w. So they cannot be loops as no edge of Ŷ incident with v or w is
contracted by the definition of 1-minor.

Starting with the third step, we note that 3-minors are like ‘2-minors’ where
we do not allow to replace parallel or serial pairs of edges in A ∪ B as in the
second and third operation of marked minor. Each member of X2 has at most
one edge in A∩B. We obtain X3 from X2 by adding two new member for each
X ∈ X2 that has an edge e in A ∩ B. The first one we obtain by replacing
the edge e by two edges in parallel, one in A \ B and the other in B \ A. The
second member we construct the same with ‘parallel’ replaced by ‘serial’. The
following is immediate.

Sublemma 1.6.15. Ŷ has a 2-minor with underlyer in X2 if and only if Ŷ has
a 3-minor with underlyer in X3.

By Sublemma 1.6.13, Sublemma 1.6.14 and Sublemma 1.6.15, any strict
marked graph has a strict marked minor with underlyer in X3 if and only if its
marked graph has a marked minor with underlyer in X0. This completes the
proof.

The set Y ′ is defined explicitly in the proof of Lemma 1.6.12. We fix the set
Y ′ as defined in that proof. The following is analogue to Lemma 1.6.9 for strict
marked minors.

Lemma 1.6.16. A locally 3-connected 2-complex is locally planar if and only
if all its link graphs are planar and all their associated strict marked graphs do
not have a strict marked minor from Y ′.

Proof. This is a direct consequence of Lemma 1.6.9 and Lemma 1.6.12.

15There are some technical conditions we could further force these newly added edges to
satisfy. For example, there are ways in which we could add two edges to the forth member
of X such that the resulting unlabbeled marked graph has another member of X as a strict
marked minor. This would give rise to a slightly stronger version of Lemma 1.6.12 and thus
of Theorem 1.2.1. To simplify the presentation we do not do it here.
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1.7 Space minors

In this sections we introduce ‘space minors’ and prove Theorem 1.2.1 and The-
orem 1.2.2.

1.7.1 Motivation

Our approach towards Lovász question mentioned in the Introduction is based
on the following two lines of thought.

The first line is as follows. Suppose that a 2-complex C can be embedded in
S3 then we can define a dual graph G of the embedding as follows. Its vertices
are the components of S3 \C and its edges are the faces of C; each edge is
incident with the two components of S3 \C touched by its face. It would be nice
if the minor operations on the dual graph would correspond to minor operations
on C.

The operation of contraction of edges of G corresponds to deletion of faces.
But which operation corresponds to deletion of edges of G? If the face of C
corresponding to the edge of G is incident with at most two edges of C, then
this is the operation of contraction of faces (that is identify the two incident
edges along the face). For faces of size three, however, it is less clear how such
an operation could be defined.

The second line of thought is that we would like to define the minor operation
such that we can prove an analogue of Kuratowski’s theorem – at least in the
simply connected case.

Corollary 1.6.10 above is already a characterisation of embeddability in 3-
space by finitely many obstructions. However, the reduction operations are
not directly operations on 2-complexes (some are just defined on their link
complexes). But does Corollary 1.6.10 imply such a Kuratowski theorem? Thus
our aim is to define three operations on 2-complexes that correspond to

1. contraction of edges that are not loops16;

2. deletion of edges in link graphs;

3. contraction of edges in link graphs.

So we make our first operation to be just the first one: contraction of edges
that are not loops. A natural choice for the second operation is deletion of faces.
This very often corresponds to deletion of edges in the link graph. In some cases
however it may happen that a face corresponds to more than one edge in a link
graph. This is a technicality we will consider later. Also note that contraction of
edges and deletion of faces are ”dual”; that is, given a 2-complex C embedded
in 3-space and the dual complex D (this is the dual graph G defined above
with a face attached for every edge e of C to the edges of G incident with e),
contracting an edge in C results in deleting a face in D, and vice versa. This

16Contractions of loops do not preserve embeddability in general (as S3 / S1 6∼= S3).
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is analogous to the fact that deleting an edge in a plane graph corresponds to
contracting that edge in the plane dual.

For the third operation we have some freedom. One operation that corre-
sponds to 3 is the inverse operation of contracting an edge. However this would
not be compatible with the first line of thought and we are indeed able to make
such a compatible choice as follows.

If an edge of the link graph corresponds to a face of C that is incident with
only two edges of C, then contracting that face corresponds to contracting the
corresponding edge in the link graph. It is not clear, however, how that definition
could be extended to faces of size three (in particular if all edges incident with
that face are loops; which we have to deal with as we allow contractions of edges
of C).

Our solution is the following. Essentially, we are able to show that in order to
construct a bounded obstruction in any non-embeddable 2-dimensional simpli-
cial complex (which is the crucial step in a proof of a Kuratowski type theorem)
that is nice enough, we only need to contract faces incident with two edges but
not those of size three! Here ‘nice enough’ means simply connected and lo-
cally 3-connected. Both these conditions can be interpreted as face maximality
conditions on the complex, see Theorem 2.8.1. ‘Essentially’ here means that
additionally we have to allow for the following two (rather simple) operations.

If the link graph at a vertex v of a 2-complex C is disconnected, the 2-
complex obtained from C by splitting the vertex v is obtained by replacing v
by one new vertex for each connected component K of the link graph that is
incident with the edges and faces in K.

Given an edge e in a 2-complex C, the 2-complex obtained from C by for-
getting the incidences at e is obtained from C by replacing e by parallel edges
such that each new edge is incident with precisely one face.

1.7.2 Basic properties

A space minor of a 2-complex is obtained by successively performing one of the
five operations.

1. contracting an edge that is not a loop;

2. deleting a face (and all edges or vertices only incident with that face);

3. contracting a face of size one17 or two if its two edges are not loops;

4. splitting a vertex;

5. forgetting the incidences of an edge.

Remark 1.7.1. A little care is needed with contractions of faces. This can
create faces traversing edges multiple times. In this chapter, however, we do
not contract faces consisting of two loops and we only perform these operations

17Although we do not need it in our proofs, it seems natural to allow contractions of faces
of size one.
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on 2-complexes whose faces have size at most three. Hence it could only happen
that after contraction some face traverses an edge twice but in opposite direction.
Since faces have size at most three, these traversals are adjacent. In this case
we omit the two opposite traversals of the edge from the face. We delete faces
incident with no edge. This ensures that the class of 2-complexes with faces of
size at most three is closed under face contractions.

A 2-complex is 3-bounded if all its faces are incident with at most three
edges. The closure of the class of simplicial complexes by space minors is the
class of 3-bounded 2-complexes.

It is easy to see that the space minor operations preserve embeddability in
S3 (or in any other 3-dimensional manifold) and the first three commute when
defined.18

Lemma 1.7.2. The space minor relation is well-founded.

Proof. The face degree of an edge e is the number of faces incident with e. We
consider the sum S of all face degrees ranging over all edges. None of the five
above operations increases S. And 1, 2 and 3 always strictly decrease S. Hence
we can apply 1, 2 or 3 only a bounded number of times.

Since no operation increases the sizes of the faces, the total number of vertices
and edges incident with faces is bounded. Operation 4 increases the number of
vertices and preserves the number of edges. For operation 5 it is the other way
round. Hence we can also only apply19 4 and 5 a bounded number of times.

Lemma 1.7.3. If a 2-complex C has a planar rotation system, then all its space
minors do.

Proof. By Lemma 1.3.2 existence of planar rotation systems is preserved by
contracting edges that are not loops. Clearly the operations 2, 4 and 5 preserve
planar rotation systems as well. Since contracting a face of size two corresponds
to locally in the link graph contracting the corresponding edges, contracting
faces of size two preserves planar rotation systems as noted after Lemma 1.6.3.
The operation that corresponds to contracting a face of size one is explained in
Figure 1.8. It clearly preserves embeddings in the plane. Thus contracting a
face of size one also preserves planar rotation systems.

1.7.3 Generalised Cones

In this subsection we define the list Z of obstructions appearing in Theo-
rem 1.2.1 and prove basic properties of the related constructions.

Given a graph G without loops and a partition P of its vertex set into
connected sets, the generalised cone over G with respect to P is the following
(3-bounded) 2-complex C. Let H be the graph obtained from G by contracting

18In order for the contraction of a face to be defined we need the face to have at most two
edges. This may force contractions of edges to happen before the contraction of the face.

19We exclude applications of 4 to a vertex whose link graph is connected and applications
of 5 to edges incident with a single face.
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Figure 1.8: The operation that in the link graph corresponds to contracting a
face f only incident with a single edge `. The edge ` must be a loop. Hence in
the link graph we have two vertices for ` which are joined by the edge f . On
the left we depicted that configuration. Contracting f in the complex yields the
configuration on the right. Formally, we delete f and both its endvertices and
add for each face x of size at least two traversing ` an edge as follows. Before the
contraction, the link graph contains two edges corresponding to the traversal of
x of `. These edges have precisely two distinct endvertices that are not vertices
corresponding to `. We add an edge between these two vertices.

each class of P to a single vertex and then removing loops (but keeping parallel
edges). The vertices of C are the vertices of H together with one extra vertex,
which we call the top (of the cone). The edges of C are the edges of H together
with one edge for each vertex v of G joining the top with the vertex of H that
corresponds to the partition class containing v. We have one face for every edge
of G. If the two endvertices of that edge in G are in the same partition class, this
face is only incident with the two edges of C corresponding to these vertices. If
the vertices are in different partition classes, then the face is additionally incident
with the edge of H joining these two partition classes – that corresponds to the
edge of G of the face.

The generalised cone construction has as a special case the cone construc-
tion; indeed we can just pick P to consist only of singletons. However, this
construction has more flexibility, for example if G is connected and simple and
P just consists of a single class, the construction gives a 2-complex with only
two vertices such that G is the link graph at both vertices.
Lemma 1.7.4. Let C be a 3-bounded 2-complex with a vertex v. If C has no
loop, then C has a space minor that is a generalised cone whose link graph at
the top is L(v).

Proof. We obtain C1 from C by deleting all faces not incident with v. We obtain
C2 from C1 by forgetting all incidences at the edges not incident with v. We
obtain C3 from C2 by splitting all vertices different from v. It remains to prove
the following.

Sublemma 1.7.5. C3 is a generalised cone over L(v) with top v.

Proof. Let w be a vertex of C3 different from v. Since every face of C3 has size
two or three and is incident with v, there is an edge e with endvertices v and w.
Let P [w] be the set of those vertices e′ of L(v) such that there is a path from e
to e′ all of whose edges are faces of size two in C3. By construction, every edge

31



in P [w] is incident with w. Any edge in the link graph L(w) of C3 with only
one endvertex in P [w] must be a face of C3 of size three. As C and thus C3 has
no loop, the other endvertex of that edge of L(w) has degree one. As L(w) is
connected, P [w] is equal to the set of edges between v and w.

It is straightforward to check that C3 is (isomorphic to) the generalised cone
over L(v) with respect to the partition (P [w]|w ∈ V (C3)− v).

Lemma 1.7.6. Let C be a generalised cone and H be a minor of the link graph
at the top that has no loops. Then C has a space minor that is a generalised
cone over H.

Proof. We denote the top of the cone by v. Let f be a face of C. Clearly C − f
is a generalised cone such that the link graph at the top is L(v) − f . Hence it
suffices to show that C has a space minor that is a generalised cone over L′,
where we obtain L′ from L(v)/f by deleting all its loops.

If f is a face of size three, it is incident with an edge e not incident with
v. Note that C/e is a generalised cone with link graph L(v) at the top – with
some faces of size one whose loops are attached at the vertex e. These faces
are those in parallel with f in L(v). Hence by contracting such an edge e and
by afterwards deleting all faces of size one if existed, we may assume that f is
incident with only two edges.

We denote by C ′ the 2-complex obtained from C by contracting the face f .
Since all faces corresponding to loops of L(v)/f have the same edges as f in C,
they collapse when contracting f in C. Thus C ′ is a generalised cone and its
link graph at the top is L′.

In the following we introduce ‘looped generalised cones’ and prove for them
analogues of Lemma 1.7.4 and Lemma 1.7.6.

A looped generalised cone is obtained from a generalised cone by attaching a
loop at the top of the cone, adding some faces of size one only containing that
loop and adding the incidence with the loop to some existing faces of size two.
This is well-defined as all faces of a generalised cone are incident with the top.
The following is proved analogously to Lemma 1.7.420.

Lemma 1.7.7. Let C be a 3-bounded 2-complex and let v be a vertex. If C has
precisely one loop e and that loop is incident with v, then C has a space minor
that is a looped generalised cone whose link graph at the top is L(v).

We prove the following analogue of Lemma 1.7.6 for looped generalised cones.

20The statement analogue to Sublemma 1.7.5 is that ‘C3 is a looped generalised cone over
L(v) with top v’. By the proof of that sublemma it follows that C3/e is a generalised cone.
Using the definition of looped generalised cone, it follows that C3 is a looped generalised cone
with the desired property.
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Lemma 1.7.8. Let C be a looped generalised cone and let Ĥ be a strict marked
minor of some strict marked graph associated to the link graph at the top that
has no loops. Then C has a space minor that is a looped generalised cone such
that Ĥ is a strict marked graph associated to the link graph at the top.

Proof. Let Ĝ be a strict marked graph associated to the link graph at the top
of C that has Ĥ as a strict marked minor. That is, we obtain Ĥ from Ĝ by
contracting a set X1 of edges not incident with v or w, deleting a set X2 of
edges not incident with v or w, and deleting a set X3 of pairs of edges, where
any two edges in a pair are in the bijection of Ĝ.

We obtain G′ from Ĝ by contracting the edges in X1 and deleting the edges
in X2. As in the proof of Lemma 1.7.6 one shows that C has a space minor C ′

whose link graph at the top is G′. Any two edges in a pair in X3 correspond to
the same face; such faces correspond to no further edges as C has only one loop.
We obtain the final cone C ′′ by deleting the set of faces corresponding to pairs
in X3. It is straightforward to check that C ′′ has the desired properties.

Let Z1 be the set of generalised cones over the graphs K5 or K3,3. Let Z2

be the set of looped generalised cones such that some member of Y ′ is a strict
marked graph associated to the link graph at the top. Let Z be the union of
Z1 and Z2.

1.7.4 A Kuratowski theorem

In this subsection we prove Theorem 1.2.1. First we prove the following.

Theorem 1.7.9. Let C be a simply connected locally 3-connected 2-dimensional
simplicial complex. Then C has a planar rotation system if and only if C has
no space minor from the finite list Z.

Proof. If C has a planar rotation system, it cannot have a space minor in Z.
Indeed, every complex Z in Z has a link graph that is not loop planar. Hence no
Z in Z has a planar rotation system by Lemma 1.3.3. Since by Lemma 1.7.3 the
class of 2-complexes with planar rotation systems is closed under space minors,
C cannot have a space minor in Z.

Now conversely assume that the simplicial complex C has no space minor in
Z. Suppose for a contradiction that C has no planar rotation system. Then by
Lemma 1.5.1, there is a 3-bounded space minor C ′ that is not locally planar,
where C ′ is either C, or for some (non-loop) edge e the contraction C/e or there
is a (non-loop) chordless cycle o of C and some e ∈ o such that C ′ = C/(o− e).
We distinguish two cases.

Case 1: C or C/e are not locally planar. Since C has no parallel edges
or loops by assumption, in the first two cases C ′ has no loop. Hence C ′ has a
vertex v such that the link graph L(v) at v is not planar. By Lemma 1.7.4 C ′

has a space minor that is a generalised cone such that the link graph at the top
is L(v). By Kuratowski’s theorem, L(v) has a minor isomorphic to K5 or K3,3.
So by Lemma 1.7.6 C ′ has a space minor that is a generalised cone over K5 or
K3,3. So C has a space minor in Z1, which is the desired contradiction.
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Case 2: Not Case 1. So C ′ = C/(o − e). Let v be the vertex of C ′

corresponding to o− e. Since we are not in Case 1, all link graphs at vertices of
C are loop planar. In particular, it must be the link graph at v that is not loop
planar.

Sublemma 1.7.10. If the link graph L(v) is not planar, there is an edge e′ ∈
o− e such that the link graph at e′ in C/e′ is not planar.

Proof. We prove the contrapositive. So assume that for every edge e′ ∈ o − e
the link graph at e′ of C/e′ is planar. Since C is locally 3-connected, the planar
rotation systems of the link graphs L(w) at the vertices w of o are unique up to
reversing. By Lemma 1.5.2 these rotation systems are reverse or agree at any
rotator of a vertex in o− e.

Note that L(v) is the vertex sum of the link graphs L(w) along the set
o − e of gluing vertices. Thus by reversing some of these rotation systems if
necessary, we can apply Lemma 1.4.2 to build a planar rotation system of L(v).
In particular, L(v) is planar.

By Sublemma 1.7.10 and since we are not in Case 1, the link graph L(v) is
planar but not loop planar.

Since C has no loops and parallel edges and o is chordless, in this case C ′

can only have the loop e. Thus by Lemma 1.7.7 C ′ has a space minor that is a
looped generalised cone such that the link graph at the top is L(v).

Since C is locally 3-connected by assumption and by Lemma 1.4.4 the link
graph L(v) is 3-connected, by Lemma 1.6.1 there is a marked graph Ĝ associated
to L(v) that is not planar. Let G′ be a strict marked graph associated to L(v)
with marked graph Ĝ. By Lemma 1.6.16 G′ has a strict marked minor Ŷ in Y ′.
So by Lemma 1.7.8 C ′ has a space minor that is a looped generalised cone such
that Ŷ is a strict marked graph associated to the top. So C has a space minor
in Z2, which is the desired contradiction.

Proof of Theorem 1.2.1. By Theorem 1.3.1 a simply connected simplicial com-
plex is embeddable in S3 if and only if it has a planar rotation system. So
Theorem 1.2.1 is implied by Theorem 1.7.9.

Proof of Theorem 1.2.2. By a theorem of Chapter 2 a simplicial complex with
H1(C,Fp) = 0 is embeddable if and only if it is simply connected and it has a
planar rotation system. So Theorem 1.2.2 is implied by Theorem 1.7.9.

1.8 Concluding remarks

The proof of Theorem 1.2.1 yields that quite a few properties are equivalent.
This is summarised in the following.

Theorem 1.8.1. Let C be a simply connected locally 3-connected 2-dimensional
simplicial complex. The following are equivalent.

1. C has an embedding in the 3-sphere;
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2. C has an embedding in some 3-manifold;

3. C has a planar rotation system;

4. all contractions of C are locally planar;

5. no contraction has a link graph that has K5 or K3,3 as a minor or a
marked minor of the 12 marked graphs in the list Y defined in Section 1.6;

6. C has no space minor from the finite list Z defined in Subsection 1.7.3.

Proof. The equivalence between 1, 2 and 3 is proved in Chapter 2. The equiv-
alence between 3 and 4 is proved in Lemma 1.3.3. The equivalence between 1
and 5 is Corollary 1.6.10. Finally, the equivalence between 1 and 6 is Theo-
rem 1.2.1.

Theorem 1.2.2 is a structural characterisation of which locally 3-connected
2-dimensional simplicial complex C whose first homology group is trivial embed
in 3-space. Does this have algorithmic consequences? The methods of this
chapter give an algorithm that check in linear21 time whether it has a planar
rotation system. But how easy is it to check whether C is simply connected?
For simplicial complexes in general this is not decidable; indeed for every finite
presentation of a group one can build a 2-dimensional simplicial complex that
has that fundamental group. However, for simplicial complexes that embed in
some 3-manifold, that is, that have a planar rotation system, this problem is
known as the sphere recognition problem. Recently it was shown that sphere
recognition lies in NP [58, 83] and co-NP assuming the generalised Riemann
hypothesis [56, 102]. It is an open question whether there is a polynomial time
algorithm.
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Chapter 2

Rotation systems

2.1 Abstract

We prove that 2-dimensional simplicial complexes whose first homology group is
trivial have topological embeddings in 3-space if and only if there are embeddings
of their link graphs in the plane that are compatible at the edges and they are
simply connected.

2.2 Introduction

Here we give combinatorial characterisations for when certain simplicial com-
plexes embed in 3-space. This completes the proof of a 3-dimensional analogue
of Kuratowski’s characterisation of planarity for graphs, started in Chapter 1.

A (2-dimensional) simplicial complex has a topological embedding in 3-space
if and only if it has a piece-wise linear embedding if and only if it has a differential
embedding [11, 54, 76].1 Perelman proved that every compact simply connected
3-dimensional manifold is isomorphic to the 3-sphere S3 [78, 79, 80]. In this
chapter we use Perelman’s theorem to prove a combinatorial characterisation
of which simply connected simplicial complexes can be topologically embedded
into S3 as follows.

The link graph at a vertex v of a simplicial complex is the graph whose
vertices are the edges incident with v and whose edges are the faces incident with
v and the incidence relation is as in C, see Figure 2.1. Roughly, a planar rotation
system of a simplicial complex C consists of cyclic orientations σ(e) of the faces
incident with each edge e of C such that there are embeddings in the plane of
the link graphs such that at vertices e the cyclic orientations of the incident
edges agree with the cyclic orientations σ(e). It is easy to see that if a simplicial
complex C has a topological embedding into some 3-dimensional manifold, then

1However this is not equivalent to having a linear embedding, see [20], and [68] for further
references.

36



ev

Figure 2.1: The link graph at the vertex v is indicated in grey. The edge e
projects down to a vertex in the link graph. The faces incident with e project
down to edges.

it has a planar rotation system. Conversely, for simply connected simplicial
complexes the existence of planar rotation systems is enough to characterise
embeddability into S3:

Theorem 2.2.1. Let C be a simply connected simplicial complex. Then C has
a topological embedding into S3 if and only if C has a planar rotation system.

The main result of this chapter is the following extension of Theorem 2.2.1.

Theorem 2.2.2. Let C be a simplicial complex such that the first homology
group H1(C,Fp) is trivial for some prime p. Then C has a topological embedding
into S3 if and only if C is simply connected and it has a planar rotation system.

This implies characterisations of topological embeddability into S3 for the
classes of simplicial complexes with abelian fundamental group and simplicial
complexes in general, see Section 2.8 for details.

This chapter is organised as follows. After reviewing some elementary def-
initions in Section 2.3, in Section 2.4, we introduce rotation systems, related
concepts and prove basic properties of them. In Sections 2.5 and 2.6 we prove
Theorem 2.2.1. The proof of Theorem 2.2.2 in Section 2.7 makes use of Theo-
rem 2.2.1. Further extensions are derived in Section 2.8.

2.3 Basic definitions

In this short section we recall some elementary definitions that are important
for this chapter.

A closed trail in a graph is a cyclically ordered sequence (en|n ∈ Zk) of
distinct edges en such that the starting vertex of en is equal to the endvertex
of en−1. An (abstract) (2-dimensional) complex is a graph2 G together with
a family of closed trails in G, called the faces of the complex. We denote
complexes C by triples C = (V,E, F ), where V is the set of vertices, E the set
of edges and F the set of faces. We assume furthermore that every vertex of a

2In this part graphs are allowed to have parallel edges and loops.
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complex is incident with an edge and every edge is incident with a face. The
1-skeleton of a complex C = (V,E, F ) is the graph (V,E). A directed complex
is a complex together with a choice of direction at each of its edges and a choice
of orientation at each of its faces. For an edge e, we denote the direction chosen
at e by ~e. For a face f , we denote the orientation chosen at f by ~f .

Examples of complexes are (abstract) (2-dimensional) simplicial complexes.
In this part all simplicial complexes are directed – although we will not always
say it explicitly. A (topological) embedding of a simplicial complex C into a
topological space X is an injective continuous map from (the geometric reali-
sation of) C into X. In our notation we suppress the embedding map and for
example write ‘S3 \C’ for the topological space obtained from S3 by removing
all points in the image of the embedding of C.

In this part, a surface is a compact 2-dimensional manifold (without bound-
ary)3. Given an embedding of a graph in an oriented surface, the rotation
system at a vertex v is the cyclic orientation4 of the edges incident with v given
by ‘walking around’ v in the surface in a small circle in the direction of the
orientation. Conversely, a choice of rotation system at each vertex of a graph
G defines an embedding of G in an oriented surface as explained in Chapter 1.

A cell complex is a graph G together with a set of directed walks such that
each direction of an edge of G is in precisely one of these directed walk es. These
directed walks are called the cells. The geometric realisation of a cell complex
is obtained from (the geometric realisation of) its graph by gluing discs so that
the cells are the boundaries of these discs. The geometric realisation is always
an oriented surface. Note that cell complexes need not be complexes as cells
are allowed to contain both directions of an edge. The rotation system of a cell
complex C is the rotation system of the graph of C in the embedding in the
oriented surface given by C.

2.4 Rotation systems

In this section we introduce rotation systems of complexes and some related
concepts.

The link graph of a simplicial complex C at a vertex v is the graph whose
vertices are the edges incident with v. The edges are the faces incident5 with
v. The two endvertices of a face f are those vertices corresponding to the two
edges of C incident with f and v. We denote the link graph at v by L(v).

A rotation system of a directed complex C consists of for each edge e of C
a cyclic orientation6 σ(e) of the faces incident with e.

Important examples of rotation systems are those induced by topological
embeddings of complexes C into S3 (or more generally in some 3-manifold);
here for an edge e of C, the cyclic orientation σ(e) of the faces incident with e

3We allow surfaces to be disconnected.
4A cyclic orientation is a choice of one of the two orientations of a cyclic ordering.
5A face is incident with a vertex if there is an edge incident with both of them.
6If the edge e is only incident with a single face, then σ(e) is empty.
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is the ordering in which we see the faces when walking around some midpoint
of e in a circle of small radius7 – in the direction of the orientation of S3. It can
be shown that σ(e) is independent of the chosen circle if small enough and of
the chosen midpoint.

Such rotation systems have an additional property: let Σ = (σ(e)|e ∈ E(C))
be a rotation system of a simplicial complex C induced by a topological em-
bedding of C in the 3-sphere. Consider a ball of small radius around a vertex
v. We may assume that each edge of C intersects the boundary of that ball in
at most one point and that each face intersects it in an interval or not at all.
The intersection of the boundary of the ball and C is a graph: the link graph at
v. Hence link graphs of complexes with induced rotation systems must always
be planar. And even more: the cyclic orientations σ(e) at the edges of C form
– when projected down to a link graph to rotators at the vertices of the link
graph – a rotation system at the link graph, see Figure 2.2.

ee
e

Figure 2.2: On the left we depicted a cyclic orientation σ(e) at an edge e. On
the right we depicted the link graph L at an endvertex of e. The edge e is a
vertex of L and σ(e) is a rotator at L.

Next we shall define ‘planar rotation systems’ which roughly are rotation
systems satisfying such an additional property. The cyclic orientation σ(e) at
the edge e of a rotation system defines a rotation system r(e, v,Σ) at each
vertex e of a link graph L(v): if the directed edge ~e is directed towards v we
take r(e, v,Σ) to be σ(e). Otherwise we take the inverse of σ(e). As explained in
Section 2.3, this defines an embedding of the link graph into an oriented surface.
The link complex for (C,Σ) at the vertex v is the cell complex obtained from
the link graph L(v) by adding the faces of the above embedding of L(v) into the
oriented surface. By definition, the geometric realisation of the link complex is
always a surface. To shortcut notation, we will not distinguish between the link
complex and its geometric realisation and just say things like: ‘the link complex
is a sphere’. A planar rotation system of a directed simplicial C is a rotation
system such that for each vertex v all link graphs are a disjoint union of spheres.
The paragraph before shows the following.

7Formally this means that the circle intersects each face in a single point and that it can be
contracted onto the chosen midpoint of e in such a way that the image of one such contraction
map intersects each face in an interval.
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Observation 2.4.1. Rotation systems induced by topological embeddings of lo-
cally connected8 simplicial complexes in 3-manifolds are planar.

Next we will define the local surfaces of a topological embedding of a simplicial
complex C into S3. The local surface at a connected component of S3 \C is
the following. Pour concrete into this connected component. The surface of the
concrete is a 2-dimensional manifold. The local surface is the simplicial complex
drawn at the surface by the vertices, edges and faces of C. Note that if an edge
e of G is incident with more than two faces that are on the surface, then the
surface will contain at least two clones of the edge e, see Figure 2.3.

Figure 2.3: On the left we depicted the torus with an additional face attached
on a genus reducing curve in the inside. On the right we depicted the local
surface of its inside component. It is a sphere and contains two copies of the
newly added face (and its incident edges).

Now we will define local surfaces for a pair (C,Σ) consisting of a complex
C and one of its rotation systems Σ. Lemma 2.4.4 below says that under fairly
general circumstances the local surfaces of a topological embedding are the local
surfaces of the rotation system induced by that topological embedding. The set
of faces of a local surface will be an equivalence class of the set of orientations
of faces of C. The local-surface-equivalence relation is the symmetric transitive
closure of the following relation. An orientation ~f of a face f is locally related
via an edge e of C to an orientation ~g of a face g if f is just before g in σ(e) and

e is traversed positively by ~f and negatively by ~g and in σ(e) the faces f and g
are adjacent. Here we follow the convention that if the edge e is only incident
with a single face, then the two orientations of that face are related via e. Given
an equivalence class of the local-surface-equivalence relation, the local surface at
that equivalence class is the following complex whose set of faces is (in bijection
with) the set of orientations in that equivalence class. We obtain the complex
from the disjoint union of the faces of these orientations by gluing together two
of these faces f1 and f2 along two of their edges if these edges are copies of the
same edge e of C and f1 and f2 are related via e. Of course, we glue these
two edges in a way that endvertices are identified only with copies of the same

8 Observation 2.4.1 is also true without the assumption of ‘local connectedness’. In that
case however the link complex is disconnected. Hence it is no longer directly given by the
drawing of the link graph on a ball of small radius as above.

40



vertex of C. Hence each edge of a local surface is incident with precisely two
faces. Hence its geometric realisation is always a is a surface. Similarly as for
link complexes, we shall just say things like ‘the local surface is a sphere’.

Observation 2.4.2. Local surfaces of planar rotation systems are always con-
nected.

A (2-dimensional) orientation of a complex C such that each edge is in
precisely two faces is a choice of orientation of each face of C such that each
edge is traversed in opposite directions by the chosen orientation of the two
incident faces. Note that a complex whose geometric realisation is a surface has
an orientation if and only its geometric realisation is orientable.

Observation 2.4.3. The set of orientations in a local-surface-equivalence class
defines an orientation of its local surface.

In particular, local surfaces are cell complexes.

We will not use the following lemma in our proof of Theorem 2.2.1 However,
we think that it gives a better intuitive understanding of local surfaces. We say
that a simplicial complex C is locally connected if all link graphs are connected.

Lemma 2.4.4. Let C be a connected and locally connected complex embedded
into S3 and let Σ be the induced planar rotation system. Then the local surfaces
of the topological embedding are equal to the local surfaces for (C,Σ).

There is the following relation between vertices of local surfaces and faces of
link complexes.

Lemma 2.4.5. Let Σ be a rotation system of a simplicial complex C. There is
a bijection ι between the set of vertices of local surfaces for (C,Σ) and the set of
faces of link complexes for (C,Σ), which maps each vertex v′ of a local surface
cloned from the vertex v of C to a face f of the link complex at v such that the
rotation system at v′ is an orientation of f .

Proof. The set of faces of the link complex at v is in bijection with the set of
v-equivalence classes; here the v-equivalence relation on the set of orientations of
faces of C incident with v is the symmetric transitive closure of the relation ‘lo-
cally related’. Since we work in a subset of the orientations, every v-equivalence
class is contained in a local-surface-equivalence class. On the other hand the set
of all clones of a vertex v of C contained in a local surface S is in bijection with
the set of v-equivalence classes contained in the local-surface-equivalence class
of S. This defines a bijection ι between the set of vertices of local surfaces for
(C,Σ) and the set of faces of link complexes for (C,Σ).

It is straightforward to check that ι has all the properties claimed in the
lemma.

Corollary 2.4.6. Given a local surface of a simplicial complex C and one of
its vertices v′ cloned from a vertex v of C, there is a homeomorphism from a
neighbourhood around v′ in the local surface to the cone with top v′ over the
face boundary of ι(v′) that fixes v′ and the edges and faces incident with v′ in a
neighbourhood around v′.

41



The definitions of link graphs and link complexes can be generalised from
simplicial complexes to complexes as follows. The link graph of a complex C
at a vertex v is the graph whose vertices are the edges incident with v. For
any traversal of a face of the vertex v, we add an edge between the two vertices
that when considered as edges of C are in the face just before and just after
that traversal of v. We stress that we allow parallel edges and loops. Given a
complex C, any rotation system Σ of C defines rotation systems at each link
graph of C. Hence the definition of link complex extends.

2.5 Constructing piece-wise linear embeddings

In this section we prove Theorem 2.5.4 below, which is used in the proof of
Theorem 2.2.1.

Throughout this section we fix a connected and locally connected simplicial
complex C with a rotation system Σ. An associated topological space T (C,Σ)
is defined as follows. For each local surface S of (C,Σ) we take an embedding
into S3. Each local surface is oriented and we denote by Ŝ the topological space
obtained from S3 by deleting all points on the outside of S. We obtain T (C,Σ)
from the simplicial complex C by gluing onto each local surface S the topological
space Ŝ along S.

We remark that associated topological spaces may depend on the chosen
embeddings of the local surfaces S into S3. However, if all local surfaces are
spheres, then any two associated topological spaces are isomorphic and in this
case we shall talk about ‘the’ associated topological space.

Clearly, associated topological spaces T (C,Σ) are compact and connected as
C is connected.

Lemma 2.5.1. The rotation system Σ is planar if and only if the associated
topological space T (C,Σ) is a 3-dimensional manifold.

Proof. Observation 2.4.1 implies that if T (C,Σ) is a 3-dimensional manifold,
then Σ is planar. Conversely, now assume that Σ is a planar rotation system.
We have to show that there is a neighbourhood around any point x of T (C,Σ)
that is isomorphic to the closed 3-dimensional ball B3.

If x is a point not in C, this is clear. If x is an interior point of a face f ,
we obtain a neighbourhood of x by gluing together neighbourhoods of copies
of x in the local surfaces that contain an orientation of f . Each orientation of
f is contained in local surfaces exactly once. Hence we glue together the two
orientations of f and clearly x has a neighbourhood isomorphic to B3.

Next we assume that x is an interior point of an edge e. Some open neigh-
bourhood of x is isomorphic to the topological space obtained from gluing to-
gether for each copy of e in a local surface, a neighbourhood around a copy x′

of x on those edges. A neighbourhood around x′ has the shape of a piece of a
cake, see Figure 2.4

First we consider the case that x has several copies. As σ(e) is a cyclic
orientation, these pieces of a cake are glued together in a cyclic way along faces.
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x′

Figure 2.4: A piece of a cake. This space is obtained by taking the product
of a triangle with the unit interval. The edge e is mapped to the set of points
corresponding to some vertex of the triangle.

Since each cyclic orientation of a face appears exactly once in local surfaces, we
identify in each gluing step the two cyclic orientations of a face. Informally, the
overall gluing will be a ‘cake’ with x as an interior point. Hence a neighbourhood
of x is isomorphic to B3. If there is only one copy of x′, then the copy of e
containing x′ is incident with the two orientations of a single face. Then we
obtain a neighbourhood of x by identifying these two orientations. Hence there
is a neighbourhood of x isomorphic to B3.

It remains to consider the case where x is a vertex of C. We obtain a
neighbourhood of x by gluing together neighbourhoods of copies of x in local
surfaces. We shall show that we have one such copy for every face of the link
complex for (C,Σ) and a neighbourhood of x in such a copy is given by the cone
over that face with x being the top of the cone, see Figure 2.5. We shall show

x x

Figure 2.5: In this example the link complex of x is a tetrahedron. The three
faces visible in our drawing are highlighted in red, gold and grey. On the left
we see how the four cones over the faces of the link complex are pasted together
to form the cone over the link complex depicted on the right.

that the glued together neighbourhood is the cone over the link complex with
x at the top. Since Σ is planar and C is locally connected, the link complex
is isomorphic to the 2-sphere. Since the cone over the 2-sphere is a 3-ball, the
neighbourhood of x has the desired type.

Now we examine this plan in detail. By Lemma 2.4.5 and Corollary 2.4.6,
the copies are mapped by the bijection ι to the faces of the link complex at x
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and a neighbourhood around such a copy x′ is isomorphic to the cone with top
x′ over the face ι(x′). We glue these cones over the faces ι(x′) on their faces
that are obtained from edges of ι(x′) by adding the top x′.

The glued together complex is isomorphic to the cone over the complex S
obtained by gluing together the faces ι(x′) along edges, where we always glue
the edge the way round so that copies of the same vertex of the local incidence
graph are identified. Hence the vertex-edge-incidence relation and the edge-
face-incidence relation of S are the same as for the link complex at x. The
same is true for the cyclic orderings of edges on faces. So S is equal to the link
complex at x.

Hence a neighbourhood of x is isomorphic to a cone with top x over the link
complex at x. Since Σ is a planar rotation system, the link complex is a disjoint
union of spheres. As C is locally connected, it is a sphere. Thus its cone is
isomorphic to B3.

Lemma 2.5.2. If C is simply connected, then so is any associated topological
space T (C,Σ).

Proof. This is a consequence of Van Kampen’s Theorem [55, Theorem 1.20].
Indeed, we obtain T from T (C,Σ) by deleting all interior points of the sets Ŝ
for local surfaces S that are not in a small open neighbourhood of C. This can
be done in such a way that T has a deformation retract to C, and thus is simply
connected. Now we recursively glue the spaces Ŝ back onto T . In each step we
glue a single space Ŝ. Call the space obtained after n gluings Tn.

The fundamental group of Ŝ is a quotient of the fundamental group of the
intersection of Tn and Ŝ. And the fundamental group of Tn is trivial by induc-
tion. So we can apply Van Kampen’s Theorem to deduce that the gluing space
Tn+1 has trivial fundamental group. Hence the final gluing space T (C,Σ) has
trivial fundamental group. So it is simply connected.

The converse of Lemma 2.5.2 is true if all local surfaces for (C,Σ) are spheres.

Lemma 2.5.3. If all local surfaces for (C,Σ) are spheres and the associated
topological space T (C,Σ) is simply connected, then so is C.

Proof. Let ϕ an image of S1 in C. Since T (C,Σ) is simply connected, there is
a homotopy from ϕ to a point of C in T (C,Σ). We can change the homotopy
so that it avoids an interior point of each local surface of the embedding. Since
each local surface is a sphere, for each local surface without the chosen point
there is a continuous projection to its boundary. Since these projections are
continuous, the concatenation of them with the homotopy is continuous. Since
this concatenation is constant on C this defines a homotopy of ϕ inside C. Hence
C is simply connected.

We conclude this section with the following special case of Theorem 2.2.1.

Theorem 2.5.4. A locally connected simplicial complex C has a planar rotation
system Σ if and only if T (C,Σ) is a 3-manifold. And if C is simply connected,
then T (C,Σ) must be the 3-sphere.
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Proof. By treating different connected components separately, we may assume
that C is connected. The first part follows from Lemma 2.5.1. The second part
follows from Lemma 2.5.2 and Perelman’s theorem [78, 80, 79] that any compact
simply connected 3-manifold is isomorphic to the 3-sphere.

Remark 2.5.5. We used Perelman’s theorem in the proof of Theorem 2.5.4.
On the other hand it together with Moise’s theorem [71] that every compact 3-
dimensional manifold has a triangulation implies Perelman’s theorem: let M be
a simply connected 3-dimensional compact manifold. Let T be a triangulation
of M . And let C be the simplicial complex obtained from T by deleting the 3-
dimensional cells. Let Σ be the rotation system given by the embedding of C into
T . It is clear from that construction that T is equal to the triangulation given by
the embedding of C into T (C,Σ). Hence we can apply Lemma 2.5.3 to deduce
that C is simply connected. Hence by Theorem 2.5.4 the topological space
T (C,Σ), into which C embeds, is isomorphic to the 3-sphere. Since T (C,Σ) is
isomorphic to M , we deduce that M is isomorphic to the 3-sphere.

2.6 Cut vertices

In this section we deduce Theorem 2.2.1 from Theorem 2.5.4 proved in the last
section. Given a prime p, a simplicial complex C is p-nullhomologous if every
directed cycle of C is generated over Fp by the boundaries of faces of C. Note
that a simplicial complex C is p-nullhomologous if and only if the first homology
group H1(C,Fp) is trivial. Clearly, every simply connected simplicial complex
is p-nullhomologous.

A vertex v in a connected complex C is a cut vertex if the 1-skeleton of C
without v is a disconnected graph9. A vertex v in an arbitrary, not necessar-
ily connected, complex C is a cut vertex if it is a cut vertex in a connected
component of C.

Lemma 2.6.1. Every p-nullhomologous simplicial complex without a cut vertex
is locally connected.

Proof. We construct for any vertex v of an arbitrary simplicial complex C such
that the link graph L(v) at v is not connected and v is not a cut vertex a cycle
containing v that is not generated by the face boundaries of C.

Let e and g be two vertices in different components of L(v). These are edges
of C and let w and u be their endvertices different from v. Since v is not a cut
vertex, there is a path in C between u and w that avoids v. This path together
with the edges e and g is a cycle o in C that contains v.

Our aim is to show that o is not generated by the boundaries of faces of
C. Suppose for a contradiction that o is generated. Let F be a family of faces

9We define this in terms of the 1-skeleton instead of directly in terms of C for a technical
reason: The object obtained from a simplicial complex by deleting a vertex may have edges not
incident with faces. So it would not be a 2-dimensional simplicial complex in the terminology
of this part.
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whose boundaries sum up to o. Let Fv be the subfamily of faces of F that are
incident with v. Each face in Fv is an edge of L(v) and each vertex of L(v)
is incident with an even number (counted with multiplicities) of these edges
except for e and g that are incident with an odd number of these faces. Let X
be the connected component of the graph L(v) restricted to the edge set Fv that
contains the vertex e. We obtain X ′ from X by adding k − 1 parallel edges to
each edge that appears k times in Fv. Since X ′ has an even number of vertices
of odd degree also g must be in X. This is a contradiction to the assumption
that e and g are in different components of L(v). Hence o is not generated by
the boundaries of faces of C. This completes the proof.

Given a connected complex C with a cut vertex v and a connected component
K of the 1-skeleton of C with v deleted, the complex attached at v centered at
K has vertex set K + v and its edges and faces are those of C all of whose
incident vertices are in K + v.

Lemma 2.6.2. A connected simplicial complex C with a cut vertex v has a
piece-wise linear embedding into S3 if and only if all complexes attached at v
have a piece-wise linear embedding into S3.

Proof. If C has an embedding into S3, then clearly all complexes attached at v
have an embedding. Conversely suppose that all complexes attached at v have
an embedding into S3. Pick one of these complexes arbitrarily, call it X and
fix an embedding of it into S3. In that embedding pick for each component of
C remove v except that for X a closed ball contained in S3 that intersects X
precisely in v such that all these closed balls intersect pairwise only at v. Each
complex attached at v, has a piece-wise linear embedding into the 3-dimensional
unit ball as they have embeddings into S3 such that some open set is disjoint from
the complex. Now we attach these embeddings into the balls of the embedding
of X inside the reserved balls by identifying the copies of v. This defines an
embedding of C.

Recall that in order to prove Theorem 2.2.1 it suffices to show that any
simply connected simplicial complex C has a piece-wise linear embedding into
S3 if and only if C has a planar rotation system.

Proof of Theorem 2.2.1. Clearly if a simplicial complex is embeddable into S3,
then it has a planar rotation system. For the other implication, let C be a
simply connected simplicial complex and Σ be a planar rotation system. We
prove the theorem by induction on the number of cut vertices of C. If C has
no cut vertex, it is locally connected by Lemma 2.6.1. Thus it has a piece-wise
linear embedding into S3 by Theorem 2.5.4.

Hence we may assume that C has a cut vertex v. As C is simply connected,
every complex attached at v is simply connected. Hence by the induction hy-
pothesis each of these complexes has a piece-wise linear embedding into S3.
Thus C has a piece-wise linear embedding into S3 by Lemma 2.6.2.
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2.7 Local surfaces of planar rotation systems

The aim of this section is to prove Theorem 2.2.2. A shorter proof is sketched
in Remark 2.7.10 using algebraic topology. As a first step in that direction, we
first prove the following.

Theorem 2.7.1. Let C be a locally connected p-nullhomologous simplicial com-
plex that has a planar rotation system. Then all local surfaces of the planar
rotation system are spheres.

Before we can prove Theorem 2.7.1 we need some preparation. The complex
dual to a simplicial C with a rotation system Σ has as its set of vertices the
set of local surfaces of Σ. Its set of edges is the set of faces of C, and an edge
is incident with a vertex if the corresponding face is in the corresponding local
surface. The faces of the dual are the edges of C. Their cyclic ordering is as
given by Σ. In particular, the edge-face-incidence-relation of the dual is the
same as that of C but with the roles of edges and faces interchanged.

Moreover, an orientation ~f of a face f of C corresponds to the direction
of f when considered as an edge of the dual complex D that points towards
the vertex of D whose local-surface-equivalence class contains ~f . Hence the
direction of the dual complex C induces a direction of the complex D. By
ΣC = (σC(f)|f ∈ E(D)) we denote the following rotation system for D: for

σC(f) we take the orientation ~f of f in the directed complex C.
In this part we follow the convention that for edges of C we use the letter

e (with possibly some subscripts) while for faces of C we use the letter f . In
return, we use the letter f for the edges of a dual complex of C and e for its
faces.

Lemma 2.7.2. Let C be a connected and locally connected simplicial complex.
Then for any rotation system, the dual complex D is connected.

Proof. Two edges of C are C-related if there is a face of C incident with both
of them. And they are C-equivalent if they are in the transitive closure of
the symmetric relation ‘C-related’. Clearly, any two C-equivalent edges of C
are in the same connected component. If C however is locally connected, also
the converse is true: any two edges in the same connected component are C-
equivalent. Indeed, take a path containing these two edges. Any two edges
incident with a common vertex are C-equivalent as C is locally connected. Hence
any two edges on the path are C-equivalent.

We define D-equivalent like ‘C-equivalent’ with ‘D’ in place of ‘C’. Now let
f and f ′ be two edges of D. Let e and e′ be edges of C incident with f and
f ′, respectively. Since C is connected and locally connected the edges e and e′

are C-equivalent. As C and D have the same edge/face incidence relation, the
edges f and f ′ of D are D-equivalent. So any two edges of D are D-equivalent.
Hence D is connected.

First, we prove the following, which is reminiscent of euler’s formula.
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Lemma 2.7.3. Let C be a locally connected p-nullhomologous simplicial com-
plex with a planar rotation system and D the dual complex. Then

|V (C)| − |E|+ |F | − |V (D)| ≥ 0

Moreover, we have equality if and only if D is p-nullhomologous.

Proof. Let ZC be the dimension over Fp of the cycle space of C. Similarly we
define ZD. Let r be the rank of the edge-face-incidence matrix over Fp. Note
that r ≤ ZD and that r = ZC as H1(C,Fp) = 0. So ZD − ZC ≥ 0. Hence it
suffices to prove the following.

Sublemma 2.7.4.

|V (C)| − |E|+ |F | − |V (D)| = ZD − ZC

Proof. Let kC be the number of connected components of C and kD be the
number of connected components of D. Recall that the space orthogonal to the
cycle space (over Fp) in a graph G has dimension |V (G)| minus the number
of connected components of G. Hence ZC = |E| − |V (C)| + kC and ZD =
|F | − |V (D)|+ kD. Subtracting the first equation from the second yields:

|V (C)| − |E|+ |F | − |V (D)|+ (kD − kC) = ZD − ZC

Since the dual complex of the disjoint union of two simplicial complexes (with
planar rotation systems) is the disjoint union of their dual complexes, kC ≤ kD.
By Lemma 2.7.2 kC = kD. Plugging this into the equation before, proves the
sublemma.

This completes the proof of the inequality. We have equality if and only if
r = ZD. So the ‘Moreover’-part follows.

Our next goal is to prove the following, which is also reminiscent of euler’s
formula but here the inequality goes the other way round.

Lemma 2.7.5. Let C be a locally connected simplicial complex with a planar
rotation system Σ and D the dual complex. Then:

|V (C)| − |E|+ |F | − |V (D)| ≤ 0

with equality if and only if all link complexes for (D,ΣC) are spheres.

Before we can prove this, we need some preparation. By a we denote the
sum of the faces of link complexes for (C,Σ). By a′ we denote the sum over
the faces of link complexes for (D,ΣC). Before proving that a is equal to a′ we
prove that it is useful by showing the following.

Claim 2.7.6. Lemma 2.7.5 is true if a = a′ and all link complexes for (D,ΣC)
are connected.
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Proof. Given a face f of C, we denote the number of edges incident with f by
deg(f). Our first aim is to prove that

2|V (C)| = 2|E| −
∑
f∈F

deg(f) + a (2.1)

To prove this equation, we apply Euler’s formula [35] in the link complexes
for (C,Σ). Then we take the sum of all these equations over all v ∈ V (C). Since
Σ is a planar rotation system, all link complexes are a disjoint union of spheres.
Since C is locally connected, all link complexes are connected and hence are
spheres. So they have euler characteristic two. Thus we get the term 2|V (C)|
on the left hand side. By definition, a is the sum of the faces of link complexes
for (C,Σ).

The term 2|E| is the sum over all vertices of link complexes for (C,Σ).
Indeed, each edge of C between the two vertices v and w of C is a vertex of
precisely the two link complexes for v and w.

The term
∑
f∈F deg(f) is the sum over all edges of link complexes for (C,Σ).

Indeed, each face f of C is in precisely those link complexes for vertices on the
boundary of f . This completes the proof of (2.1).

Secondly, we prove the following inequality using a similar argument. Given
an edge e of C, we denote the number of faces incident with e by deg(e).

2|V (D)| ≥ 2|F | −
∑
e∈E

deg(e) + a′ (2.2)

To prove this, we apply Euler’s formula in link complexes for (D,ΣC), and
take the sum over all v ∈ V (D). Here we have ‘≥’ instead of ‘=’ as we just
know by assumption that the link complexes are connected but they may not
be a sphere. So we have 2|V (D)| on the left and a′ is the sum over the faces of
link complexes for (D,ΣC).

The term 2|F | is the sum over all vertices of link complexes for (D,ΣC).
Indeed, each edge of D between the two different vertices v and w of D is a
vertex of precisely the two link complexes for v and w. A loop gives rise to two
vertices in the link graph at the vertex it is attached to.

The term
∑
e∈E deg(e) is the sum over all edges of link complexes for (D,ΣC).

Indeed, each face e of D is in the link complex at v with multiplicity equal to
the number of times it traverses v. This completes the proof of (2.2).

By assumption, a = a′. The sums
∑
f∈F deg(f) and

∑
e∈E deg(e) both

count the number of nonzero entries of A, so they are equal. Subtracting (2.2)
from (2.1), rearranging and dividing by 2 yields:

|V (C)| − |E|+ |F | − |V (D)| ≤ 0

with equality if and only if all link complexes for (D,ΣC) are spheres.

Hence our next aim is to prove that a is equal to a′. First we need some
preparation.
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Two cell complexes C and D are (abstract) surface duals if the set of vertices
of C is (in bijection with) the set of faces of D, the set of edges of C is the set
of edges of D and the set of faces of C is the set of vertices of D. And these
three bijections preserve incidences.

Lemma 2.7.7. Let C be a simplicial complex and Σ be a rotation system and
let D be the dual. The surface dual of a local surface S for (C,Σ) is equal to
the link complex for (D,ΣC) at the vertex ` of D that corresponds to S.

Proof. It is immediate from the definitions that the vertices of the link complex
L̄ at ` are the faces of S. The edges of S are triples (e, ~f,~g), where e is an edge

of C and ~f and ~g are orientations of faces of C that are related via e and are in
the local-surface-equivalence class for S. Hence in D, these are triples (e, ~f,~g)

such that ~f and ~g are directions of edges that point towards ` and f and g are
adjacent in the cyclic ordering of the face e. This are precisely the edges of
the link graph L(`). Hence the link graph L(`) is the dual graph10 of the cell
complex S.

Now we will use the Edmonds-Hefter-Ringel rotation principle, see [70, The-
orem 3.2.4], to deduce that the link complex L̄ at ` is the surface dual of S.
We denote the unique cell complex that is a surface dual of S by S∗. Above
we have shown that L̄ and S∗ have the same 1-skeleton. Moreover, the rotation
systems at the vertices of the link complex L̄ are given by the cyclic orientations
in the local-surface-equivalence class for S. By Observation 2.4.3 these local-
surface-equivalence classes define an orientation of S. So L̄ and S∗ have the
same rotation systems. Hence by the Edmonds-Hefter-Ringel rotation principle
L̄ and S∗ have to be isomorphic. So L̄ is a surface dual of S.

Proof of Lemma 2.7.5. Let C be a locally connected simplicial complex and Σ
be a rotation system and let D be the dual. Let ΣC be as defined above. By
Observation 2.4.2 and Lemma 2.7.7 every link complex for (D,ΣC) is connected.
By Claim 2.7.6, it suffices to show that the sum over all faces of link complexes
of C with respect to Σ is equal to the sum over all faces of link complexes
for D with respect to ΣC . By Lemma 2.7.7, the second sum is equal to the
sum over all vertices of local surfaces for (C,Σ). This completes the proof by
Lemma 2.4.5.

Proof of Theorem 2.7.1. Let C be a p-nullhomologous locally connected simpli-
cial complex that has a planar rotation system Σ. Let D be the dual complex.
Then by Lemma 2.7.5 and Lemma 2.7.3, C and D satisfy Euler’s formula, that
is:

|V (C)| − |E|+ |F | − |V (D)| = 0

10 The dual graph of a cell complex C is the graph G whose set of vertices is (in bijection
with) the set of faces of C and whose set of edges is the set of edges of C. And the incidence
relation between the vertices and edges of G is the same as the incidence relation between the
faces and edges of C.
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Hence by Lemma 2.7.5 all link complexes for (D,ΣC) are spheres. By Lemma 2.7.7
these are dual to the local surfaces for (C,Σ). Hence all local surfaces for (C,Σ)
are spheres.

The following theorem gives three equivalent characterisations of the class
of locally connected simply connected simplicial complexes embeddable in S3.

Theorem 2.7.8. Let C be a locally connected simplicial complex embedded into
S3. The following are equivalent.

1. C is simply connected;

2. C is p-nullhomologous for some prime p;

3. all local surfaces of the planar rotation system induced by the topological
embedding are spheres.

Proof. Clearly, 1 implies 2. To see that 2 implies 3, we assume that C is p-
nullhomologous. Let Σ be the planar rotation system induced by the topological
embedding of C into S3. By Theorem 2.7.1 all local surfaces for (C,Σ) are
spheres.

It remains to prove that 3 implies 1. So assume that C has an embedding
into S3 such that all local surfaces of the planar rotation system induced by
the topological embedding are spheres. By treating different connected com-
ponents separately, we may assume that C is connected. By Lemma 2.4.4 all
local surfaces of the topological embedding are spheres. Thus 3 implies 1 by
Lemma 2.5.3.

Remark 2.7.9. Our proof actually proves the strengthening of Theorem 2.7.8
with ‘embedded into S3’ replaced by ‘embedded into a simply connected 3-
dimensional compact manifold.’ However this strengthening is equivalent to
Theorem 2.7.8 by Perelman’s theorem.

Recall that in order to prove Theorem 2.2.2, it suffices to show that every
p-nullhomologous simplicial complex C has a piece-wise linear embedding into
S3 if and only if it is simply connected and C has a planar rotation system.

Proof of Theorem 2.2.2. Using an induction argument on the number of cut
vertices as in the proof of Theorem 2.2.1, we may assume that C is locally
connected. If C has a piece-wise linear embedding into S3, then it has a pla-
nar rotation system and it is simply connected by Theorem 2.7.8. The other
direction follows from Theorem 2.2.1.

Remark 2.7.10. One step in proving Theorem 2.2.2 was showing that if a
simplicial complex whose first homology group is trivial embeds in S3, then it
must be simply connected. In this section we have given a proof that only uses
elementary topology. We use these methods again in Chapter 4.
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However there is a shorter proof of this fact, which we shall sketch in the
following. Let C be a simplicial complex embedded in S3 such that one local
surface of the embedding is not a sphere. Our aim is to show that the first
homology group of C cannot be trivial.

We will rely on the fact that the first homology group of X = S3 \ S1 is
not trivial. It suffices to show that the homology group of X is a quotient of
the homology group of C. Since here by Hurewicz’s theorem, the homology
group is the abelisation of the fundamental group, it suffices to show that the
fundamental group π1(X) of X is a quotient of the fundamental group π1(C).

We let C1 be a small open neighbourhood of C in the embedding of C in
S3. Since C1 has a deformation retract onto C, it has the same fundamental
group. We obtain C2 from C1 by attaching the interiors of all local surfaces
of the embedding except for one – which is not a sphere. This can be done by
attaching finitely many 3-balls. Similar as in the proof of Lemma 2.5.2, one
can use Van Kampen’s theorem to show that the fundamental group of C2 is
a quotient of the fundamental group of C1. By adding finitely many spheres if
necessary and arguing as above one may assume that remaining local surface is
a torus. Hence C2 has the same fundamental group as X. This completes the
sketch.

2.8 Embedding general simplicial complexes

There are three classes of simplicial complexes that naturally include the simply
connected simplicial complexes: the p-nullhomologous ones that are included in
those with abelian fundamental group that in turn are included in general simpli-
cial complexes. Theorem 2.2.2 characterises embeddability of p-nullhomologous
complexes. In this section we prove embedding results for the later two classes.
The bigger the class gets, the stronger assumptions we will require in order to
guarantee topological embeddings into S3.

A curve system of a surface S of genus g is a choice of at most g genus
reducing curves in S that are disjoint. An extension of a rotation system Σ is
a choice of curve system at every local surface of Σ. An extension of a rotation
system of a complex C is simply connected if the topological space obtained from
C by gluing11 a disc at each curve of the extension is simply connected. The
definition of a p-nullhomologous extension is the same with ‘p-nullhomologous’
in place of ‘simply connected’.

Theorem 2.8.1. Let C be a connected and locally connected simplicial complex
with a rotation system Σ. The following are equivalent.

1. Σ is induced by a topological embedding of C into S3.

2. Σ is a planar rotation system that has a simply connected extension.

11We stress that the curves need not go through edges of C. ‘Gluing’ here is on the level of
topological spaces not of complexes.
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3. We can subdivide edges of C, do baricentric subdivision of faces and add
new faces such that the resulting simplicial complex is simply connected
and has a topological embedding into S3 whose induced planar rotation
system Σ′ ‘induces’ Σ.

Here we define that ‘Σ′ induces Σ’ in the obvious way as follows. Let C be
a simplicial complex obtained from a simplicial complex C ′ by deleting faces.
A rotation system Σ = (σ(e)|e ∈ E(C)) of C is induced by a rotation system
Σ′ = (σ′(e)|e ∈ E(C)) of C ′ if σ(e) is the restriction of σ′(e) to the faces incident
with e. If C is obtained from contracting edges of C ′ instead, a rotation system Σ
of C is induced by a rotation system Σ′ of C ′ if Σ is the restriction of Σ′ to those
edges that are in C. If C ′ is obtained from C by a baricentric subdivision of a
face f we take the same definition of ‘induced’, where we make the identification
between the face f of C and all faces of C ′ obtained by subdividing f . Now in
the situation of Theorem 2.8.1, we say that Σ′ induces Σ if there is a chain of
planar rotation systems each inducing the next one starting with Σ′ and ending
with Σ.

Before we can prove Theorem 2.8.1, we need some preparation. The following
is a consequence of the Loop Theorem [77, 54].

Lemma 2.8.2. Let X be an orientable surface of genus g ≥ 1 embedded topo-
logically into R3, then there is a genus reducing circle12 γ of X and a disc D
with boundary γ and all interior points of D are contained in the interior of X.

Corollary 2.8.3. Let X be an orientable surface of genus g ≥ 1 embedded
topologically into R3, then there are genus reducing circles γ1,..., γg of X and
closed discs Di with boundary γi such that the Di are disjoint and the interior
points of the discs Di are contained in the interior of X.

Proof. We prove this by induction on g. In the induction step we cut of the
current surface along D. Then we the apply Lemma 2.8.2 to that new surface.

Proof of Theorem 2.8.1. 1 is immediately implied by 3.
Next assume that Σ is induced by a topological embedding of C into S3.

Then Σ is clearly a planar rotation system. It has a simply connected extension
by Corollary 2.8.3. Hence 1 implies 2.

Next assume that Σ is a planar rotation system that has a simply connected
extension. We can clearly subdivide edges and do baricentric subdivision and
change the curves of the curve system of the simply connected extension such
that in the resulting simplicial complex C ′ all the curves of the simply connected
extension closed are walks in the 1-skeleton of C ′. We define a planar rotation
system Σ′ of C ′ that induces Σ as follows. If we subdivide an edge, we assign
to both copies the cyclic orientation of the original edge. If we do a baricentric
subdivision, we assign to all new edges the unique cyclic orientation of size two.
Iterating this during the construction of C ′ defines Σ′ = (σ′(e)|e ∈ E(C)), which

12A circle is a topological space homeomorphic to S1.
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clearly is a planar rotation system that induces Σ. By construction Σ′ has a
simply connected extension such that all its curves are walks in the 1-skeleton
of C ′ .

Informally, we obtain C ′′ from C ′ by attaching a disc at the boundary of
each curve of the simply connected extension. Formally, we obtain C ′′ from C ′

by first adding a face for each curve γ in the simply connected extension whose
boundary is the closed walk γ. Then we do a baricentric subdivision to all these
newly added faces. This ensures that C ′′ is a simplicial complex. Since C is
locally connected, also C ′′ is locally connected. Since the geometric realisation
of C ′′ is equal to the geometric realisation of C, which is simply connected, the
simplicial complex C ′′ is simply connected.

Each newly added face f corresponds to a traversal of a curve γ of some
edge e of C ′. This traversal is a unique edge of the local surface S to whose
curve system γ belongs. For later reference we denote that copy of e in S by ef .

We define a rotation system Σ′′ = (σ′′(e)|e ∈ E(C)) of C ′′ as follows. All
edges of C ′′ that are not edges of C ′ are incident with precisely two faces. We
take the unique cyclic ordering of size two there.

Next we define σ′′(e) at edges e of C ′ that are incident with newly added
faces. If e is only incident with a single face of C ′, then e is only in a single
local surface and it only has one copy in that local surface. Since the curves at
that local surface are disjoint. We could have only added a single face incident
with e. We take for σ′′(e) the unique cyclic orientation of size two at e.

So from now assume that e is incident with at least two faces of C ′. In
order to define σ′′(e), we start with σ′(e) and define in the following for each
newly added face in between which two cyclic orientations of faces adjacent in
σ′(e) we put it. We shall ensure that between any two orientations we put at

most one new face. Recall that two cyclic orientations ~f1 and ~f2 of faces f1 and
f2, respectively, are adjacent in σ′(e) if and only if there is a clone e′ of e in

a local surface S for (C ′,Σ′) containing ~f1 and ~f2 such that e′ is incident with
~f1 and ~f2 in S. Let f be a face newly added to C ′′ at e. Let γf be the curve
from which f is build and let Sf be the local surface that has γf in its curve
system. Let ef be the copy of e in Sf that corresponds to f as defined above.
when we consider f has a face obtained from the disc glued at γf . We add f
to σ′(e) in between the two cyclic orientations that are incident with ef in Sf .
This completes the definition of Σ′′. Since the copies ef are distinct for different
faces f , the rotation system Σ′′ is well-defined. By construction Σ′′ induces Σ.
We prove the following.

Sublemma 2.8.4. Σ′′ is a planar rotation system of C ′′.

Proof. Let v be a vertex of C ′′. If v is not a vertex of C ′, then the link graph
at v is a cycle. Hence the link complex at v is clearly a sphere. Hence we may
assume that v is a vertex of C ′.

Our strategy to show that the link complex S′′ at v for (C ′′,Σ′′) is a sphere
will be to show that it is obtained from the link complex S′ for (C ′,Σ′) by
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adding edges in such a way that each newly added edge traverses a face of S′

and two newly added edges traverse different face of S′.
So let f be a newly added face incident with v of C ′. Let x and y be the

two edges of f incident with v. We make use of the notations γf , Sf , xf and yf
defined above. Let vf be the unique vertex of Sf traversed by γf in between xf
and yf . By Lemma 2.4.5 there is a unique face zf of S′ mapped by the map ι of
that lemma to vf . And x and y are vertices in the boundary of zf . The edges
on the boundary of zf incident with x and y are the cyclic orientations of the
faces that are incident with xf and yf in Sf . Hence in S′′ the edge f traverses
the face zf .

It remains to show that the faces zf of S′ are distinct for different newly
added faces f of C ′′. For that it suffices by Lemma 2.4.5 to show that the
vertices vf are distinct. This is true as curves for Sf traverse a vertex of Sf at
most once and different curves for Sf are disjoint.

Since Σ′′ is a planar rotation system of the locally connected simplicial com-
plex C ′′ and C ′′ is simply connected, Σ′′ is induced by a topological embedding
of C ′′ into S3 by Theorem 2.5.4. Hence 2 implies 3.

A natural weakening of the property that C is simply connected is that the
fundamental group of C is abelian. Note that this is equivalent to the condition
that every chain that is p-nullhomologous is simply connected.

Theorem 2.8.5. Let C be a connected and locally connected simplicial complex
with abelian fundamental group. Then C has a topological embedding into S3

if and only if it has a planar rotation system Σ that has a p-nullhomologous
extension.

In order to prove Theorem 2.8.5, we prove the following.

Lemma 2.8.6. A p-nullhomologous extension of a planar rotation system of
a simplicial complex C with abelian fundamental group is a simply connected
extension.

Proof. Let C ′ be the topological space obtained from C by gluing discs along the
curves of the p-nullhomologous extension. The fundamental group π′ of C ′ is a
quotient of the fundamental group π of C, see for example [55, Proposition 1.26].
Since π is abelian by assumption, also π′ is abelian. That is, it is equal to its
abelisation, which is trivial by assumption. Hence C ′ is simply connected.

Proof of Theorem 2.8.5. If C has a topological embedding into S3, then by The-
orem 2.8.1 it has a planar rotation system that has a p-nullhomologous exten-
sion. If C has a planar rotation system that has a p-nullhomologous extension,
then that extension is simply connected by Lemma 2.8.6. Hence C has a topo-
logical embedding into S3 by the other implication of Theorem 2.8.1.
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Chapter 3

Constraint minors

3.1 Abstract

We characterise the following property by six obstructions: given a graphic
matroid M and a set X of its elements, when is M the cycle matroid of a graph
G such that X is a connected edge set in G?

3.2 Introduction

For a purely graph-theoretic introduction read Section 3.3.
Tutte [92] proved that a matroid can be represented by a graph if and only

if it has no minor isomorphic to U2,4, the fano-plane, the dual fano-plane or the
dual matroids of the two nonplanar graphs K5 or K3,3. The topic of this chapter
is the following related reconstruction question: given a graphic matroid M and
a set X of its elements, when is M the cycle matroid of a graph G such that X
is a connected edge set in G? Our motivation for studying that question is that
in Chapter 4 it arises when characterising embeddability in 3-space of certain
2-complexes by excluded minors.

A constraint matroid is a pair (M,X), where M is a matroid and X is a set
of elements of M . A constraint matroid (M,X) is realisable if M is the cycle
matroid of a graph G such that X is a connected edge set in G. The class of
constraint matroids (M,X) that are realisable is closed under contracting arbi-
trary elements and deleting elements not in X. A constraint matroid obtained
by these operations from (M,X) is a constraint minor of (M,X). In this chap-
ter we characterise the class of the realisable (graphic) constraint matroids by
excluded constraint minors.

Theorem 3.2.1. A graphic constraint matroid is realisable if and only if it does
not have one of the six constraint minors depicted in Figure 3.1, Figure 3.2 or
Figure 3.3.
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All these six obstructions are 3-connected and graphic. So we just depict
their unique graphs. Theorem 3.2.1 can be restated in purely graph theoretic
terms, see Theorem 3.3.1 below.

Figure 3.1: The constraint K4. The edges in X are depicted grey.

Figure 3.2: The constraint wheel. The edges in X are depicted grey.

Figure 3.3: The four constraint prisms. The edges in X are depicted grey.

3.3 A graph theoretic perspective

Although Theorem 3.2.1 is about matroids, most of this chapter is about the
following equivalent graph theoretic version.

A constraint graph is a pair (G,X), where G is a graph and X is an edge set
of G. A constraint graph is constraint connected if X is a connected edge set in
G. The class of constraint graphs (G,X) that are constraint connected is closed
under contracting arbitrary edges and deleting edges not in X. A constraint
graph obtained by these operations from (G,X) is a constraint minor of (G,X).
It is straightforward to show that a 2-connected1 constraint graph (G,X) is
constraint connected if and only if it has no constraint minor isomorphic to the
4-cycle whose constraint consists of two opposite edges. The analogue question
for connected graphs is not much more interesting.

However, it turns out that the question gets nontrivial if we restrict our
attention to 3-connected graphs.

1A constraint graph (G,X) is k-connected if G is k-connected.
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Theorem 3.3.1. A 3-connected constraint graph (G,X) is constraint connected
if and only if it does not have one of the six (3-connected) constraint minors
depicted in Figure 3.1, Figure 3.2 or Figure 3.3.

It is straightforward to deduce Theorem 3.3.1 from Theorem 3.2.1 above.
However the converse is also true as follows.

Proof that Theorem 3.3.1 implies Theorem 3.2.1. Let (M,X) be a constraint
matroid. If M is 3-connected, then it is the cycle matroid of a unique graph
G by a theorem of Whitney [99]. In this case Theorem 3.2.1 for (M,X) is a
restatement of Theorem 3.3.1 for (G,X).

Now let (M,X) be a constraint matroid that has no constraint minor de-
picted in Figure 3.1, Figure 3.2 or Figure 3.3. It remains to show that (M,X)
is realisable. Since a constraint matroid is realisable if and only if each of its
2-connected components is, we may assume that M is 2-connected.

Now we prove by induction that (M,X) is realisable. The base case is that
M is 3-connected.

If M is not 3-connected, its Tutte-decomposition [93] has a non-trivial 2-
separation (A,B). Let M1 and M2 be the two matroids obtained by decompos-
ing M along the 2-separation (A,B). In particular, M1 and M2 both contain a
virtual element e and the 2-sum2 of M1 and M2 along e is M . Note that the Mi

can be obtained from M by contracting elements and replacing a parallel class
by the virtual element e. For i = 1, 2, let (Mi, Xi) be the constraint matroid,
where Xi is X ∩ E(Mi) plus possibly e if Mi+1 contains a circuit o such that
o − e ⊆ X. It is straightforward to check that the (Mi, Xi) are constraint mi-
nors of M . Hence by induction, they are realisable. Let Gi be a graph realising
(Mi, Xi).

Let G be the 2-sum of the graphs G1 and G2 along the virtual element e.
By construction M is the cycle matroid of G. If the virtual element e is in X1

or X2, it is straightforward to see that (G,X) is constraint connected. So M is
realisable. So we may assume that e is in no Xi. If one of the Xi is empty, then
(G,X) is constraint connected. So we may assume that both Xi are nonempty.

Then not only (M1, X1) but also (M1, X1+e) is a constraint minor of (M,X).
So by induction there is a graph G′1 realising (M1, X1 + e). In G′1 an element
of the set X1 is incident with an endvertex of e. Similarly, there is a graph G′2
realising (M2, X2 + e), and there is an element of the set X2 is incident with an
endvertex of e. Let G′ be the 2-sum of the graphs G′1 and G′2. By flipping3 the
2-separator given by the endvertices of e in G′ if necessary, we ensure that X is
connected in G′. Put another way, (G′, X) is constraint connected witnessing
that (M,X) is realisable.

Hence the rest of this chapter is dedicated to the proof of Theorem 3.3.1,
which is purely graph-theoretic. Before jumping into the proof, let us fix a
few lines of notation. In this chapter all graphs are simple. In particular, if we

2See [75] for a definition.
3By a theorem of Whitney, graphs represented by a 2-connected matroid are unique up to

flipping 2-separators [99].
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contract an edge, we afterwards delete all but one edge from every parallel class.
In the context of a constraint graph (G,X), we first delete edges in a parallel
classes that are not in X (so that constraint minors on simple graphs preserve
constraint connectedness). Throughout this chapter we follow the convention
that the empty set is a connected edge set in G. Beyond that we follow the
notation of [35]. Let’s get started with the proof.

3.4 Deleting and contracting edges outside the
constraint

In this section we prove Lemma 3.4.9 below, which is used in the proof of
Theorem 3.3.1.

Given a constraint graph (G,X), an edge e not in X is essential if neither
(G/e,X) nor (G\e,X) has a 3-connected constraint minor (G′, X ′) such that X ′

is disconnected. Informally, Lemma 3.4.9 below gives a structural description
of the constraint graphs (G,X) in which every edge not in X is essential.

Before we can prove Lemma 3.4.9 we need some preparation. Our first aim
is to prove the following.

Lemma 3.4.1. Let (G,X) be a 3-connected constraint graph that is not con-
straint connected. Assume that every edge not in X is essential. Then G[X]
has precisely two connected components or (G,X) is the weird prism (defined
in Example 3.4.2).

First we consider some particular examples that will come up in the proof
of Lemma 3.4.1.

Example 3.4.2. The weird prism is the pair (P,X), where P is the prism
and X consists of the three edges in the complement of the two triangles, see
Figure 3.4. Contracting any particular edge in X, gives the constraint wheel.

Figure 3.4: The weird prism. The edges in X are depicted grey.

Example 3.4.3. The constraint Wagner graph is the pair (W,X), where W is
the Wagner graph and X is the set of edges in the complement of one of its six-
cycles, see Figure 3.5. If we contract a single edge of X, we get the constraint
wheel. If we contract any two opposite edges on the six cycle, then we get a
constraint K4.
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Figure 3.5: The constraint Wagner graph. The edges in X are depicted grey.

Example 3.4.4. The Wagner prism is the pair (W ′, X ′), where W ′ is the prism
and X ′ contains one edge not in the two triangles of the prism. The two other
edges in X ′ are the only two edges of the prism in the triangles that are vertex-
disjoint to that edges, see Figure 3.6. There are two opposite edges on the six
cycle formed by the edges not in X ′ whose contraction gives the constraint K4.

Figure 3.6: The Wagner prism. The edges in X are depicted grey.

Lemma 3.4.5. Let (G,X) be a 3-connected constraint graph such that G[X] has
at least 3-connected components. Assume that G is not the constraint Wagner
graph, not the weird prism and not the Wagner prism. Then there is a 3-
connected constraint minor (G′, X ′) of (G,X) such that X ′ is disconnected in
G′ and such that E(G′) \X ′ is a proper subset of E(G) \X.

Proof that Lemma 3.4.5 implies Lemma 3.4.1. By Example 3.4.3, the constraint
Wagner graph has an edge not in X that is not essential. Thus (G,X) is not the
constraint Wagner graph. Similarly, (G,X) is not the Wagner prism by Exam-
ple 3.4.4. Hence by Lemma 3.4.5, G[X] has precisely two connected components
or is the weird prism.

Proof of Lemma 3.4.5. Let e be an arbitrary edge not in X. If the simple graph
G′ = G/e is 3-connected, then (G′, X ∩ E(G′)) is the desired constraint minor.
Otherwise by Bixby’s Lemma [75] the graphG\e is 3-connected after suppressing
edges of degree 2; note that G cannot be K4 as the disconnected set X contains
at least three edges. Let G′ be the graph obtained from G \ e by contracting all
but one edge from every serial class.

By construction, any vertex of degree 2 of G \ e must be an endvertex of
e. Hence every nontrivial serial class has size two and there are at most two of
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them. If a serial class contains an edge in X and an edge not in X, we contract
the edge of X in the construction of G′. This construction ensures that we never
contract all edges of a path in G that connects two components of G[X]. We let
X ′ = X ∩E(G′). Hence the components of G′[X ′] come from those components
of G[X] such that not all their edges got contracted.

Thus G′[X ′] is disconnected unless G[X] has precisely three components
and two of these components just consist of a single edge. Furthermore both
endvertices of e have degree 3 and each of them is incident with one of these
components consisting of a single edge. In this case we say that the edge e
H-shaped.

Since the edge e was arbitrary, we find the desired constraint graph (G′, X ′)
unless every edge of G not in X is H-shaped. Since G is connected, every
component of G[X] is incident with an edge not in X. Hence G[X] has precisely
three components and they all consist of single edges. Furthermore every vertex
of G is incident with one edge in X and two edges not in X. Thus G has precisely
six vertices. The edges not in X form a vertex-disjoint union of cycles. So as G
is a simple graph, they either form two vertex-disjoint triangles or a 6-cycle. In
the first case it is straightforward to check that (G,X) is the weird prism. In
the second case it is straightforward to check that (G,X) is isomorphic to the
constraint Wagner graph or the Wagner prism.

This completes the proof of Lemma 3.4.1. Our next step is to prove the
following.

Lemma 3.4.6. Let G be a 3-connected graph and let X be an edge set of G
such that G[X] has precisely two components. Let e ∈ E(G) \ X be essential.
Then one of the following holds.

1. e joins the two components of G[X]; or

2. there is a component C of G[X] that consists only of a single edge and e
has an endvertex v of degree three that is incident with that edge and the
third edge incident with v joins the two components of G[X]; or

3. there is a component C of G[X] that consists of precisely two edges, which
form a triangle together with e. The two endvertices of e have degree 3
and are each incident with an edge that joins the two components of G[X].

Proof. We assume that e does not join the two components ofG[X], in particular
G is not K4. If the simple graph G′ = G/e is 3-connected, then (G′, X ∩E(G′))
is a 3-connected constraint minor such that X ∩E(G′) is disconnected. Since e
is essential this is impossible. Hence by Bixby’s Lemma [75] the graph G \ e is
3-connected after suppressing edges of degree 2. Let G′ be the graph obtained
from G \ e by contracting all but one edge from every serial class.

By construction, any vertex of degree 2 of G \ e must be an endvertex of
e. Hence every nontrivial serial class has size two and there are at most two of
them. If a serial class contains an edge in X and an edge not in X, we contract
the edge of X in the construction of G′. This construction ensures that we never
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contract all edges of a path in G that connects two components of G[X]. We let
X ′ = X ∩E(G′). Hence the components of G′[X ′] come from those components
of G[X] such that not all their edges got contracted. Since G′ is 3-connected
and e is essential, the graph G′[X ′] is connected.

Hence there must be a component C of G[X] such that all its edges got
contracted. Hence C has at most two edges. We split into two cases.

Case 1: C has only a single edge f . Then e has an endvertex v of degree
3 that is incident with f . In this case we shall show that we have outcome
2; that is, the third edge g incident with v joins the two components of G[X].
Indeed, we construct G′′ like G′ but instead of f we contract g. Since G′′ is
isomorphic to G′, it is 3-connected. As e is essential, it must be that G′′[X ′+f ]
is connected. Since the component of G[X] different from C does not contain a
vertex incident with e, the edge g joins the two components of G[X].

Case 2: C has two edges f1 and f2. Then e has two endvertices v1 and
v2 of degree three such that vi is incident with fi. Since G is a simple graph
and C is connected, the three edges e, f1 and f2 form a triangle. Similar as in
Case 1 we prove for each i that the third edge incident with vi joins the two
components of G[X]. So we have outcome 3 in this case.

The following lemma deals with outcome 2 of Lemma 3.4.6.

Lemma 3.4.7. Let G be a 3-connected graph and X a disconnected edge set of
G. Assume that every edge not in X is essential. Assume that a component C
of G[X] consists only of a single edge and that there is an edge vw such that v
is a vertex of C and w is not in G[X]. Then (G,X) is the constraint wheel.

Proof. The constraint graph (G,X) is not the weird prism; indeed the weird
prisms has no edge vw as required in the assumptions. Hence by Lemma 3.4.1,
G[X] has only one connected component C ′ aside from C. The endvertex w of
e that is not in C is not incident with any edge of X. Since G is 3-connected, w
is incident with at least two edges f1 and f2 aside from e. By Lemma 3.4.6 the
endvertex of each fi different from w must be in C or C ′. Since C has only one
vertex aside from v, one of the fi must have an endvertex in C ′. By symmetry,
we may assume that this is true for f1. Since f1 has an endvertex that is in
neither C nor C ′, we can apply Lemma 3.4.6 to deduce that C ′ also consists of
a single edge.

Sublemma 3.4.8. The vertex set of G is (C ∪ C ′) + w.

Proof. By Lemma 3.4.6, each vertex of C∪C ′ that has a neighbour outside that
set has degree three and at most one neighbour outside that set. Let W be the
set of vertices of C ∪ C ′ that have a neighbour outside the set (C ∪ C ′) + w.
Since w has at least three neighbours in C ∪ C ′, the set W contains at most
one vertex. The set W together with w separates G if there are vertices not in
(C ∪ C ′) + w. Since G is 3-connected, this is not true. Hence (C ∪ C ′) + w is
the vertex set of G.
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Since w is adjacent to at least three vertices in C ∪C ′, at least three vertices
of C ∪C ′ have precisely two neighbours in C ∪C ′. Hence the graph G[C ∪C ′] is
a 4-cycle. Since G is 3-connected, each of its vertices has degree at least three.
Hence by 3-connectivity every vertex of C ∪C ′ is adjacent to w. Thus G is the
constraint wheel.

Given an edge set Z, by V (Z) we denote the set of endvertices of edges in
Z. Summing up, we have the following.

Lemma 3.4.9. Let (G,X) be a 3-connected constraint graph such that X is
disconnected. Assume that every edge not in X is essential and that (G,X) is
neither the constraint wheel nor the weird prism. Then G[X] has precisely two
connected components C1 and C2. All edges not in X have both their endvertices
in V (X).

Proof. By assumption and by Lemma 3.4.1, G[X] has precisely two connected
components, C1 and C2. By Lemma 3.4.6 and Lemma 3.4.7, every edge not in
X has both its endvertices in V (X).

3.5 Contracting edges in the constraint

In this section we prove Theorem 3.3.1.
First we need some preparation. Given a bond d in a graph G, then G − d

has two connected components which we call the sides of d. If we want to
specify them, we call them the left side and the right side.

Given a graph G and a bond d of G, we say that G is 3-connected along d if
G is 2-connected and there does not exist a separator consisting of two vertices
from either side of d.

For the rest of this section we fix a graph Q and a bond d of Q so that Q is
3-connected along d. We denote the set of edges on the left side of d by L, and
the set of edges on the right side of d by R. We assume throughout that L and
R are nonempty. A special contraction minor of (Q, d) is a pair (Q′, d′), where
Q′ is obtained from Q by contracting edges not in d, and d′ = d ∩E(Q′). Note
that d′ and d need not be equal as contractions might force us to delete edges
in parallel classes. Since any parallel class containing one edge of d is a subset
of d, the set d′ is independent of the choice of the deleted edges.

Example 3.5.1. The following pairs (Q, d) will be of particular interest in
this chapter. For any two bonds of K4 with both sides nonempty, there is
an isomorphism of K4 that induces a bijection between these two bonds. The
special K4 is the pair consisting of the graph K4 and a bond of size 4. The
special prism is the pair consisting of the prism and a bond whose complement
consists of the two triangles of the prism, see Figure 3.7.

Our aim in this section is to prove the following.
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(a) the special K4 (b) the special prism

Figure 3.7: The edges in the bond d are coloured grey.

Lemma 3.5.2. Let Q be a graph 3-connected along a bond d such that the two
sides of d contain edges. Then (Q, d) has a special contraction minor that is the
special K4 or the special prism.

Proof that Lemma 3.5.2 implies Theorem 3.3.1. Let (G,X) be a 3-connected
constraint graph such that X is disconnected. Our aim is to show that (G,X)
has the constraint K4, the constraint wheel or a constraint prism as a constraint
minor. By picking (G,X) minimal, we may assume that every edge not in X is
essential. By Example 3.4.2 we may assume that (G,X) is not the weird prism.
We may also assume that it is not the constraint wheel. Thus by Lemma 3.4.9,
G[X] has precisely two connected components C1 and C2. And all edges not
in X have both their endvertices in V (X). We take Q = G and d to be the
bond consisting of those edges with one endvertex in C1 and the other in C2.
Note that each Ci contains at least one edge. Since Q is 3-connected, (Q, d) is
3-connected along d.

By Lemma 3.5.2, (Q, d) has a special contraction minor (Q′, d′) that is the
special K4 or the special prism. Put another way, we can contract edges not
in d such that G is K4 or the prism. Let X ′ = X ∩ E(Q′). We recall that if
contractions force us to delete edges from a parallel class we first delete edges
not in X. Hence since X spans the two sides of d in G, also X ′ spans the
two sides of d′ in Q′. Thus if (Q′, d′) is a special K4, then (G,X) has the
constraint K4 as a constraint minor. Otherwise (Q′, d′) is the special prism. It
is straightforward to check that in this case (G,X) has a constraint prism as a
constraint minor.

The rest of this section is dedicated to the proof of Lemma 3.5.2. A pair
(Q, d) is irreducible if Q is 3-connected along d but there does not exist a proper4

special contraction minor (Q′, d′) such that both sides of d′ contain edges and
Q′ is 3-connected along d′. The first step in the proof of Lemma 3.5.2 will be
to show that the set of irreducible (Q, d) is bounded. Later we examine this
bounded set.

Given an edge set Z of Q, by Q[Z] we denote the subgraph of Q whose
vertices are those with at least one endvertex in Z and whose edges are those
in Z.

4non-identical
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Lemma 3.5.3. If the graph Q[L] is not 2-connected and has at least two edges,
then (Q, d) is not irreducible.

Proof. We consider the block-cutvertex-tree of Q[L] and take a leaf block b.
Recall that b is a 2-connected subgraph of Q[L] or a single edge attached at a
cutvertex v ∈ b to the rest of Q[L]. We obtain Q1 from Q by contracting all
edges of Q[L] not in b. Since by assumption there is an edge in Q[L] that is not
in b, Q1 is a nontrivial contraction of Q.

Next we consider the block-cutvertex-tree of Q[R]. Note that unlike that
for Q[L] this may consist of just a single node. We obtain Q2 from Q1 by
successively contracting leaf blocks b′ attached at a cutvertex v′ onto v′ if there
is no edge between b− v and b′ − v′.

In a slight abuse of notation we denote the contraction vertex of Q2 contain-
ing v by v. Similarly after contracting a leaf part on the right side, we denote
the contraction vertex containing v′ by v′. We let d2 = d ∩ E(Q2). We denote
the edges on the left of d2 by L2 and the edges on the right of d2 by R2.

Our aim is to show that Q2 is 3-connected along d2. By construction L2 is
nonempty.

Sublemma 3.5.4. The edge set R2 is nonempty.

Proof. In the construction of Q we only contract a leaf block b′ on the right
side attached with cutvertex v′ if there is no edge between b − v and b′ − v′.
In particular by contraction we never identify two vertices of Q[R] that have
neighbours in b− v.

If there was only a single vertex z in Q[R] that has a neighbour in b − v,
then Q − v − z would be disconnected, contrary to our assumption that Q is
3-connected along d. Hence there are at least two vertices in Q[R] that have
neighbours in b − v. Thus as explained above, the connected graph Q2[R2]
contains at least two vertices. Hence R2 contains an edge.

Sublemma 3.5.5. The graph Q2 is 2-connected.

Proof. Let x be an arbitrary vertex of Q2. We distinguish two cases.
Case 1: x = v.
By Sublemma 3.5.4, the connected graph Q2[R2] has a neighbour in the

connected set b− v. Hence Q2 − x is connected.
Case 2: x 6= v. If x is not a contraction vertex, then Q2 − x is connected

as Q−x is connected. So x is a vertex of Q2[R2]. Let K be a component of the
graph Q2[R2] − x. Let K ′ be the component of Q[R] − x containing K. Since
Q − x is connected, there is an edge from K ′ to Q[L]. Hence there is an edge
from K to b in Q2. Hence every component of the graph Q2[R2] − x sends an
edge to the connected set b. Hence Q2 − x is connected.

Sublemma 3.5.6. For any two vertices x ∈ Q2[L2] and y ∈ Q2[R2] the graph
Q2 − x− y is connected.
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Proof. We distinguish two cases.
Case 1: x = v.
Let K be a component of the graph Q2[R2] − y. Since K did not get con-

tracted, it has a neighbour in b− v. Thus every component of Q2[R2]− y has a
neighbour in the connected set b− v. Hence Q2 − x− y is connected.

Case 2: x 6= v.
Let K be a component of the graph Q2[R2] − y. Let K ′ be the component

of Q[R]− y containing K. Since Q− x− y is connected, there is an edge from
K ′ to Q[L] − x. Hence there is an edge from K to b − x in Q2. Hence every
component of the graph Q2[R2] − y sends an edge to the connected set b − x.
Hence Q2 − x− y is connected.

By Sublemma 3.5.5 and Sublemma 3.5.6, Q2 is 3-connected along d2. By
construction Q2 is obtained from Q by contracting at least one edge. By Sub-
lemma 3.5.4, the edge sets L2 and R2 are nonempty. Hence (Q2, d2) witnesses
that (Q, d) is not irreducible.

Lemma 3.5.7. If the graph Q[L] is 2-connected but not a triangle and the graph
Q[R] is 2-connected or consists of a single edge, then (Q, d) is not irreducible.

In the proof of Lemma 3.5.7 we shall use the following lemma. An edge e in
a 2-connected graph G is contractible if G/e is 2-connected.

Lemma 3.5.8. If G is a 2-connected graph that is not a triangle, then it has
four contractible edges, two of which do not share an endvertex.

Proof. If G is 3-connected or a cycle of length at least 4, every edge is con-
tractible and the lemma is true in this case. Hence the Tutte-decomposition
[93] of G has at least two leaf parts. The torsos of these parts are cycles or
3-connected. Let v be a vertex in a leaf part that is not in the separator. Then
any edge incident with v is contractible. Since there are at least two leaf parts,
we can pick vertices v in one of each. Each such vertex is incident with at least
two edges and no edge is incident with both these vertices. So there are at
least four contractible edges, and there are two of them that do not share an
endvertex.

Proof of Lemma 3.5.7. Suppose for a contradiction that (Q, d) is irreducible.
Let vw be a contractible edge of Q[L] (which exists by Lemma 3.5.8).

Sublemma 3.5.9. Q/vw is 2-connected.

Proof. As Q is 2-connected and Q/vw is a contraction, it suffices to show that
Q−v−w is connected. Since vw is a contractible edge ofQ[L], the setQ[L]−v−w
is connected. So either Q − v − w is connected or else the connected set Q[R]
can only have v or w as neighbours in Q[L].

Hence we may assume that we have the second outcome. Our aim is to
derive a contradiction in that case. More precisely, we show that (Q, d) is not
irreducible. We obtain Q̂ from Q by contracting a spanning tree of Q[L]−v−w
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and an edge from that set to one of v or w. Note that Q̂ is isomorphic to the
graph obtained from Q by deleting Q[L]− v − w. In our notation we suppress
this bijection and just say things like ‘v and w are vertices of Q̂’.

Our aim is to show that Q̂ is 3-connected along d. Suppose not for a contra-
diction. Then there is a separating set S witnessing that. Let a and b be two
vertices in different components of Q̂− S. Let P be a path in Q− S joining a
and b. If P contains a vertex of Q[L] − v − w, we can shortcut it by the edge
vw. Hence we may assume that P contains no vertex of Q[L] − v − w. So P
is a path in Q̂ − S. This is a contradiction to the assumption that a and b
are separated by S. Hence Q̂ is 3-connected along d. As both sides of d in Q̂
contain edges, (Q̂, d) witnesses that (Q, d) is not irreducible. This is the desired
contradiction.

We abbreviate Q′ = Q/vw. Let d′ = d∩E(Q′). Let L′ be the left side of d′.
The right side of d′ is R.

Sublemma 3.5.10. If Q′ is not 3-connected along d′, there is a vertex z of
Q[R] such that Q[L]− v − w can only have z as a neighbour in Q[R].

Proof. By Sublemma 3.5.9, there are vertices y of Q′[L′] and z of Q′[R] such
that Q′ − y − z is disconnected. Since Q is 3-connected along d and Q′ is a
contraction of Q, it must be that y or z is a contraction vertex. Hence y is
the vertex vw. Hence Q − v − w − z is disconnected. Since vw is contractible,
Q[L]−v−w is connected. By assumption Q[R]−z is connected. So Q[L]−v−w
has no neighbour in Q[R]− z.

By Lemma 3.5.8, Q[L] has three contractible edges a1a2, b1b2 and c1c2 such
that a1, a2, b1 and b2 are distinct vertices. Applying Sublemma 3.5.10 to a1a2

and b1b2 yields that there are at most two vertices of Q[R] that have neighbours
in Q[L]. There have to be two such vertices as Q is 2-connected. Call these
vertices z1 and z2. Sublemma 3.5.10 gives the further information that one of
them, say z1, can only be incident to a1 or a2 and z2 can only be to b1 or b2.
Now we apply Sublemma 3.5.10 to c1c2. Since c1c2 is distinct from a1a2 and
b1b2, there have to be vertices on these edges not in c1c2. By symmetry, we may
assume that a1 and b1 are not in c1c2. Applying Sublemma 3.5.10 to c1c2 yields
that there is a single zi such that a1 and b1 can only have zi as a neighbour in
Q[R]. By symmetry, we may assume that zi is equal to z1. Hence z2 can only
have the neighbour b2 in Q[L]. Hence Q − z1 − b2 is disconnected. This is a
contradiction to the assumption that Q is 3-connected along d. Thus (Q, d) is
not irreducible.

Lemma 3.5.11. If both graphs Q[L] and Q[R] consist of a single edge, then
(Q, d) is the special K4.

Proof. Since every vertex is in L or R, the graph Q has precisely four vertices.
Since no two vertices from different sides of d separate, Q must contain all four
edges joining the endvertices of these edges. Hence Q is a the special K4.
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Lemma 3.5.12. If both graphs Q[L] and Q[R] are triangles, then (Q, d) is the
special prism or has a (proper) special K4 as a special contraction minor.

Proof. If Q has only three edges between Q[L] and Q[R], then as Q is 3-
connected along d, these edges must form a matching. So (Q, d) is the special
prism.

Thus we may assume that Q has at least four edges between Q[L] and Q[R].
So Q[L] and Q[R] each contain a vertex that has at least two neighbours on
the other side. Call these vertices ` and r. Since ` and r do not separate,
there is an edge `′r′ between Q[L] and Q[R] that is not incident with ` and r.
By symmetry, we may assume that ` and `′ are in Q[L], and r and r′ are in
Q[R]. As r has two neighbours in Q[L], we can contract a single edge of Q[L]
different from ``′ such that r is adjacent to the two remaining vertices of Q[L].
Similarly, we contract an edge of Q[R] different from rr′ such that the vertex of
` is adjacent to the two remaining vertices of Q[R]. The resulting contraction
is a special K4.

Lemma 3.5.13. If Q[L] is a single edge and Q[R] is a triangle, then (Q, d) has
a special K4 as a (proper) special contraction minor.

Proof. We denote the edge in Q[L] by vw. Since Q is 2-connected, each of v and
w has a neighbour in Q[R]. If one of them has only a single neighbour in Q[R],
then that neighbour together with the other endvertex of vw is 2-separator.
This is impossible as Q is 3-connected along d.

Hence v and w have each at least two neighbours in Q[R]. So there is a
vertex x in Q[R] adjacent to v and w. Contracting the edge not incident with
x to a single vertex, yields a special K4 as a special contraction minor.

Proof of Lemma 3.5.2. By taking (Q, d) contraction-minimal, we may assume
that it is irreducible. We will show that (Q, d) is a special prism or a special K4.
If both graphs Q[L] and Q[R] are 2-connected, then by Lemma 3.5.7 (and the
same lemma applied with the roles of ‘L’ and ‘R’ interchanged) both of them
are triangles. In this case, by Lemma 3.5.12 (Q, d) is a special prism.

Otherwise one of Q[L] or Q[R] is not 2-connected. By Lemma 3.5.3 (and
the same lemma applied with the roles of ‘L’ and ‘R’ interchanged) it consists
of a single edge. Hence we may assume that one of the two graphs Q[L] and
Q[R] must be a single edge. By combining Lemma 3.5.3 with Lemma 3.5.7, we
deduce that the other graph must be a single edge or a triangle. It cannot be
a triangle by Lemma 3.5.13. Hence (Q, d) is a special K4 by Lemma 3.5.11 in
this case.

Proof of Theorem 3.3.1. We have just finished the proof of Lemma 3.5.2. And
just after the statement of that lemma we showed that it implies Theorem 3.3.1.
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3.6 Concluding remarks

There are various ways how Theorem 3.3.1 might be extended. First, can we
replace ‘constraint connectedness’ by the property that the set X has at most k
connected components for some natural number k? More precisely, a constraint
graph (G,X) has at most k islands if G[X] has at most k connected components.
Clearly, the class of constraint graph with at most k islands is closed under
taking constraint minors.

Conjecture 3.6.1. Let k > 1. The class of 3-connected constraint graphs with
at most k islands is characterised by a finite list of excluded constraint minors.

Can you explicitly compute the list of excluded minors in Conjecture 3.6.1?
Another extension is as follows. A double-constraint matroid (M,X, Y ) con-

sists of a matroid M and two sets X and Y of its elements. It is realisable if M
is the cycle matroid of a graph G such that both X and Y are connected in G.
Can you extend Theorem 3.2.1 from constraint matroids to double-constraint
matroids? Put another way: is a double-constraint matroid realisable if and
only if it does not have one of finitely many excluded double-constraint minors?
Although for 3-connected matroids, the answer to this question follows from
Theorem 3.2.1, for matroids that are not 3-connected new obstructions arise,
see Figure 3.8

Figure 3.8: The constraint X is depicted in grey, the constraint Y is dashed.
Although the matroid represented by this graph is realisable for each of X or
Y , it is not realisable for both of them at the same time.
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Chapter 4

Dual matroids

4.1 Abstract

We introduce dual matroids of 2-dimensional simplicial complexes. Under cer-
tain necessary conditions, duals matroids are used to characterise embeddability
in 3-space in a way analogous to Whitney’s planarity criterion.

We further use dual matroids to extend a 3-dimensional analogue of Ku-
ratowski’s theorem to the class of 2-dimensional simplicial complexes obtained
from simply connected ones by identifying vertices or edges.

4.2 Introduction

A well-known characterisation of planarity of graphs is Whitney’s theorem from
1932. It states that a graph can be embedded in the plane if and only if its dual
matroid is graphic (that is, it is the cycle matroid of a graph) [98].

In this chapter we define dual matroids of (2-dimensional) simplicial com-
plexes. We prove under certain necessary assumptions an analogue of Whitney’s
characterisation for embedding simplicial complexes in 3-space. More precisely,
under these assumptions a simplicial complex can be embedded in 3-space if
and only if its dual matroid is graphic.

Our definition of dual matroid is inspired by the following fact.

Theorem 4.2.1. Let C be a directed 2-dimensional simplicial complex embedded
into S3. Then the edge/face incidence matrix of C represents over the integers1 a
matroid M which is equal to the cycle matroid of the dual graph of the embedding.

Indeed, we define2. the dual matroid of a simplicial complex C to be the
matroid represented by the edge/face incidence matrix of C over the finite field
F3.

1See Section 4.3 for a definition.
2The choice of F3 is a bit arbitrary. Indeed any other field Fp with p a prime different from

2 works.
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Although the cone over K5 does not embed in 3-space3, its dual matroid just
consists of a bunch of loops, and thus is graphic. In order to exclude examples
like the cone over K5 we restrict our attention to simplicial complexes C whose
dual matroid captures the local structure at all vertices of C. We call such dual
matroids local, see Section 4.4 for a precise definition. Examples of simplicial
complex whose dual matroid is local are those where every edge is incident with
precisely three faces and the dual matroid has no loops. Another example is the
3-dimensional grid whose faces are the 4-cycles.

Furthermore matroids (of graphs and also of simplicial complexes) do not
depend on the orderings of edges on cycles. Hence it can be shown that dual
matroids cannot distinguish triangulations of homology spheres4 from triangu-
lations of the 3-sphere. While the later ones are always embeddable, this is
not true for triangulations of homology spheres in general. Thus we restrict
our attention to simply connected simplicial complexes. Under these neces-
sary restrictions we obtain the following 3-dimensional analogue of Whitney’s
theorem.

Theorem 4.2.2. Let C be a simply connected 2-dimensional simplicial complex
whose dual matroid M is local.

Then C is embeddable in 3-space if and only if M is graphic.

Tutte’s characterisation of graphic matroids [92] yields the following conse-
quence.

Corollary 4.2.3. Let C be a simply connected simplicial complex whose dual
matroid M is local.

Then C is embeddable in 3-space if and only if M has no minor isomorphic
to U2

4 , the fano plane, the dual of the fano plane or the duals of either M(K5)
or M(K3,3).

We further apply dual matroids to study embeddings in 3-space of – not
necessarily simply connected – simplicial complexes with locally small separators
as follows.

Given a 2-dimensional simplicial complex C, the link graph, denoted by L(v),
at a vertex v of C is the graph whose vertices are the edges incident with v and
whose edges are the faces incident with v and their incidence relation is as in C.
If the link graph at v is not connected, we can split v into one vertex for each
connected component. There is a similar splitting operation at edges of C. It
can be shown that no matter in which order one does all these splittings, one
always ends up with the same simplicial complex, the split complex of C.

It can be shown that if a simplicial complex embeds topologically into S3,
then so does its split complexes. However, the converse is not true. For an ex-
ample see Figure 4.1. Here we give a characterisation of when certain simplicial
complexes embed, where one of the conditions is that the split complex embeds.

3See for example Chapter 1.
4These are compact connected 3-manifolds whose homology groups are trivial. Unlike in

the 2-dimensional case, this does not imply that the fundamental group is trivial.
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Figure 4.1: The 4 × 2 × 1-grid whose faces are the 4-cycles. It can be shown
that the complex obtained by identifying the two edges coloured red cannot be
embedded in 3-space.

Theorem 4.2.4. Let C be a globally 3-connected simplicial complex and Ĉ be
its split complex. Then C embeds into S3 if and only if Ĉ embeds into S3 and
the dual matroid of C is the cycle matroid of a graph G and for any vertex or
edge of C the set of faces incident with it is a connected edge set of G.

Here a simplicial complex C is globally 3-connected5 if its dual matroid is
3-connected. For an extension of Theorem 4.2.4 to simplicial complexes that
are not globally 3-connected, see Theorem 4.5.19 below.

The condition that a given set of elements of the dual matroid is connected
(in some graph representing that matroid) can be characterised by a finite list
of obstructions as follows. Given a matroid M and a set X of its elements,
a constraint minor of (M,X) is obtained by contracting arbitrary elements or
deleting elements not in X. In Chapter 3, we prove for any 3-connected graphic
matroid M (that is a 3-connected graph) with an edge set X that X is connected
in M if and only if (M,X) has no constraint minor from the finite list depicted
in Figure 4.2.

Figure 4.2: The six obstructions characterising connectedness of X. In these
graphs we depicted the edge set X in grey.

In Chapter 1, we introduced space minors of simplicial complexes and proved
that a simply connected locally 3-connected simplicial complex C embeds in
3-space if and only if it does not have a space minor from a finite list L of
obstructions. Using Theorem 4.2.4 we can further extend this characterisation
from simply connected simplicial complexes to those whose split complex is
simply connected.

5In Section 4.7 we give an equivalent definition directly in terms of C.
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Theorem 4.2.5. Let C be a globally 3-connected simplicial complex such that
the split complex is simply connected and locally 3-connected6. Then C embeds
into S3 if and only if its split complex has no space minor from L and the dual
matroid has no constraint minor from the list of Figure 4.2.

If we do not require global 3-connectivity in Theorem 4.2.5, there are in-
finitely many obstructions to embeddability, see Section 4.6. We remark that
Theorem 4.2.2 can be extended from simply connected simplicial complexes to
those whose split complex is simply connected.

The chapter is structured as follows. In Section 4.3 we prove Theorem 4.2.1,
which is used in the proof of Theorem 4.2.2 and Theorem 4.2.4. In Section 4.4 we
prove Theorem 4.2.2. In Section 2.5 we prove Theorem 4.2.4 and Theorem 4.2.5.
Finally in Section 4.6 we construct infinitely many obstructions to embeddability
in 3-space (inside the class of simplicial complexes with a simply connected and
locally 3-connected split complex).

For graph we follow the notations of [35] and for matroids [75]. Beyond that
we rely on some definitions of Chapter 2.

4.3 Dual matroids

In this section we prove Theorem 4.2.1 and the fact that a simplicial complex
and its split complexes have the same dual matroid, which are used in the proofs
of Theorem 4.2.2 and Theorem 4.2.4.

A directed simplicial complex is a simplicial complex C together with an
assignment of a direction to each edge of C and together with an assignment of
a cyclic orientation to each face of C. A signed incidence vector of an edge e of
C has one entry for every face f ; this entry is zero if e is not incident with f , it
is plus one if f traverses e positively and minus one otherwise.

The matrix given by all signed incidence vectors is called the (signed) edge/face
incidence matrix. The dual matroid of a simplicial complex is the matroid rep-
resented by the edge/face incidence matrix of C over the finite field F3.

Although in this part we work with directed simplicial complexes, dual ma-
troids do not depend on the chosen directions. Indeed, changing a direction of
an edge or of a face of C changes the linear representation of the dual matroid
but not the matroid itself.

A matrix A is a regular representation (or representation over the integers)
of a matroid M if all its entries are integers and the columns are indexed with
the elements of M . Furthermore for every circuit o of M there is a {0,−1,+1}-
valued vector7 vo in the span over Z of the rows of A whose support is o. And
the vectors vo span over Z all row vectors of A.

6In Chapter 5 we discuss how this result can be extended to simplicial complexes whose
split complexes are not local 3-connected.

7A vector is an element of a vector space kS , where k is a field and S is a set. In a slight
abuse of notation, in this chapter we also call elements of modules of the form ZS vectors.
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4.3.1 Proof of Theorem 4.2.1

Let C be a directed simplicial complex embedded into S3, the dual digraph
of the embedding is the following. Its vertex set is the set of components of
S3 \C. It has one edge for every face of C. This face touches one or two
components of S3 \C. If it touches two components, the edge for that face
joins the vertices for these two components. The edge is directed from the
vertex whose complement touches the chosen orientation of the face to the other
component. If the face touches just one component, its edge is a loop attached
at the vertex corresponding to that component.

Let (σ(e)|e ∈ E(C)) be the planar rotation system of C induced by the
topological embedding of C. It is not hard to check that σ(e) is a closed trail8

in the dual graph. The dual complex of the embedding is the directed simplicial
complex obtained from the dual digraph by adding for each edge of C the cyclic
orderings of the cyclic orientations σ(e) as faces and we choose their orientations
to be σ(e).

Observation 4.3.1. Let C be a connected and locally connected9 simplicial
complex embedded in S3 with induced planar rotation system Σ. Then the dual
complex of the embedding is equal to the dual complex of (C,Σ).

Proof. By Lemma 2.4.4, the local surfaces for (C,Σ) agree with the local surfaces
of the embedding10. Hence these two complexes have the vertex set. As they
also have the same incidence relations between edges and vertices and edges and
faces, they must coincide.

By Observation 4.3.1 and the definition of ‘generated over the integers’ and
by Theorem 4.8.6, in order to prove Theorem 4.2.1 it suffices to show that the
dual complex for (C,Σ) is nullhomologous11.

First we prove this in the special case when C is nullhomologous and locally
connected.

Lemma 4.3.2. Let C be a nullhomologous locally connected simplicial complex
together with a planar rotation system Σ such that local surfaces for (C,Σ) are
spheres.12 Then the dual complex D of (C,Σ) is nullhomologous.

Proof. By Lemma 2.7.5, Lemma 2.7.7 and Lemma 2.7.3 the complexes C and
D satisfy euler’s formula, that is:

|V (C)| − |E|+ |F | − |V (D)| = 0

8A trail is sequence (ei|i ≤ n) of distinct edges such that the endvertex of ei is the starting
vertex of ei+1 for all i < n. A trail is closed if the starting vertex of e1 is equal to the
endvertex of en.

9A simplicial complex C is locally connected if all its link graphs are connected.
10Local surfaces of embeddings are defined in Chapter 2.
11A simplicial complex C is nullhomologous if the face boundaries of C generate all cycles

over the integers. This is equivalent to the condition that the face boundaries of C generate
all cycles over the field Fp for every prime p.

12This last property follows from the first two if we additionally assume that Σ is induced
by a topological embedding in S3 by Theorem 2.7.1.
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Hence we deduce that D nullhomologous by applying the ‘Moreover’-part of
Lemma 2.7.3 for every prime p.

Next we shall extend Lemma 4.3.2 to simplicial complexes that are only
locally connected.

Lemma 4.3.3. Let C be a locally connected simplicial complex together with
a planar rotation system Σ that is induced by a topological embedding ι in S3.
Then the dual complex D of (C,Σ) is nullhomologous.

Proof. By Theorem 2.8.1 there is a simplicial complex C ′ that is obtained from
C by subdividing edges, baricentric subdivisions of faces and adding faces along
closed trails. And C ′ is nullhomotopic and has an embedding ι′ into S3 that
induces13 ι. Let D′ be the dual of ι′. By Lemma 4.3.2, D′ is nullhomologous.

We shall deduce that D is nullhomologous by showing that reversing each of
the operations in the construction of C ′ from C preserves being nullhomologous
in the dual. We call such an operation preserving.

Sublemma 4.3.4. Subdividing an edge is preserving.

Proof. Subdividing an edge in the primal corresponds to adding a copy of a face
in the dual. Clearly, the deletion of the copy preserves being nullhomologous
for the dual.

Sublemma 4.3.5. A baricentric subdivision of a face is preserving.

Proof. It suffices to show that the subdivision by a single edge is preserving.
Subdividing a face by an edge in the primal corresponds to replacing an edge in
the dual by two edges in parallel and adding a face containing precisely these
two edges. Reversing this operation preserves being nullhomologous.

Sublemma 4.3.6. Adding a face is preserving.

Proof. Adding a face in the primal corresponds to coadding14 an edge in the
dual. Contracting that edge preserves being nullhomologous.

By Sublemma 4.3.4, Sublemma 4.3.5 and Sublemma 4.3.6, the fact that D′

is nullhomologous implies that D is nullhomologous.

It remains to prove Theorem 4.2.1 for simplicial complexes C that are not
locally connected. First we need some preparation.

Given a simplicial complex C, its vertical split complex is obtained from C
by replacing each vertex v by one vertex for each connected component of L(v),
where the edges and faces incident with that vertex are those in its connected
component. We refer to these new vertices as the clones of v.

13This means that we obtain ι from ι′ by deleting the newly added faces, contracting the
newly added subdivision edges and undoing the baricentric subdivisions.

14A complex A is obtained from a complex A′ by coadding an edge e if A′ is obtained from
A by contracting the edge e.
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Observation 4.3.7. The vertical split complex of any simplicial complex is
locally connected.

Observation 4.3.8. A simplicial complex and its vertical split complex have
the same dual matroid.

Proof. A simplicial complex and its vertical split complex have the same edge/face
incidence matrix.

Given an embedding ι of a simplicial complex C into S3, we will define what
an induced embedding of the vertical split complex is.

For that we need some preparation. Let v be a vertex of C whose link graph
is not connected. By changing ι a little bit locally (but not its induced planar
rotation system) if necessary, we may assume that there is a 2-ball B of small
radius around v such that firstly v is the only vertex of C contained in the inside
of B. And secondly its boundary ∂B intersects each edge incident with v in a
point and each face incident with v in a line. In other words, the intersection of
C with the boundary is the link graph at v. As the link graph is disconnected,
there is a circle (homeomorphic image of S1) γ in the boundary such that the
two components of B \ γ both contain vertices of the link graph, see Figure 4.3.

γ

Figure 4.3: The link graph at v embedded into ∂B.

The simplicial complex Cγ is obtained from C by replacing the vertex v by
two vertices, one for each connected component of ∂B \ γ that is incident with
the edges and faces whose vertices and edges, respectively, are in that connected
component.

The embedding ι induces15 the following embedding ιγ of Cγ into S3. We
pick a disc contained in B with boundary γ that intersects C only in v. We
replace v by its two clones – both with tiny distance from v and one above that
disc and the other below. We only need to change faces and edges incident with
v in a tiny neighbourhood around v. Faces and edges above and below do not
interfere.

15 The construction of ιC depends on the choice of B. Still we use the term ‘induced’ in
this context since in this chapter we consider topological embeddings equivalent if they have
the same planar rotation system.
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It is easy to see that ι and ιC have the same planar rotation system and that
C and Cγ have the same vertical split complex.

A topological embedding of the vertical split complex of C into S3 is (verti-
cally) induced by ι if it is obtained by applying the above procedure iteratively
until Cγ is equal to the vertical split complex of C. It is clear that if ι is a
topological embedding of a simplicial complex C into S3, then its vertical split
complex has a topological embedding into S3 that is induced by ι.

Observation 4.3.9. Let ι be an embedding of a simplicial complex into S3 and
let ι′ be an induced embedding of ι of the vertical split complex. Then ι and ι′

have the same dual complex.

Proof. In both embeddings, the incidence relation between the local surfaces and
the faces is the same. Hence both dual complexes have the same vertex/edge
incidence relation. They also have the same sets of faces as ι and ι′ have the
same rotation system.

A set S of vertices in a simplicial complex C is a vertex separator if C can be
obtained from two disjoint simplicial complexes that each have at least one face
by gluing them together at the vertex set S. As the empty set might also be a
vertex separator, any simplicial complex with no vertex separator is connected.

Lemma 4.3.10. Let C be a simplicial complex without a vertex separator. As-
sume that C has an embedding ι into S3. Then the dual complex D of ι is
nullhomologous.

Proof. Let C ′ be the vertical split complex of C. By Observation 4.3.7, C ′

is locally connected. By assumption C has no vertex separator. Thus C ′ is
connected. Let ι′ be the embedding of C ′ induced by ι. Let Σ′ be the planar
rotation system induced by ι′.

By Lemma 4.3.3, the dual D′ for (C ′,Σ′) is nullhomologous. By Observa-
tion 4.3.1, D′ is the dual complex of ι′. By Observation 4.3.9, D′ is equal to D.
So D is nullhomologous.

Lemma 4.3.11. Let C be a simplicial complex embedded into S3 that is obtained
from two simplicial complexes C1 and C2 by gluing them together at a set of
vertices. Assume that C2 has no separating vertex set. Let Gi be the dual
graph of the embedding restricted to Ci for i = 1, 2. Then the dual graph of the
embedding of C is equal to a graph obtained by gluing together G1 and G2 at a
single vertex.

Proof. We denote the embedding of C into S3 by ι and the restricted embedding
of C1 by ι1. Suppose for a contradiction that ι maps interior points of faces of
C2 to interior points of different local surfaces of ι1. Let ` be a local surface
of ι1 to which an interior point of a face of C2 is mapped by ι. Let C ′2 be the
subcomplex of C2 that contains all faces whose interior points are mapped to
interior points of `. Its edges and vertices are those of C2 that are incident with
these faces. Note that if one interior point of a face is mapped to `, then all
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are. Hence the subcomplex C ′′2 that contains all other faces and their incident
vertices and edges contains a face. The subcomplexes C ′2 and C ′′2 of C2 can only
intersect in points of C1. Hence they only can intersect in vertices. Thus C ′2
and C ′′2 witness that C2 has a separating vertex set contrary to our assumption.

Thus there is a single local surface of ι1 to which all interior points of faces
of C2 are mapped by ι. Hence the dual graph of ι is equal to the graph obtained
by gluing together G1 and G2 at that vertex.

Proof of Theorem 4.2.1. By applying Lemma 4.3.11 recursively, we may assume
that C has no separating vertex set. Recall that the dual graph of the embedding
is the 1-skeleton of the dual complex of the embedding. By Lemma 4.3.10, the
edge/face incidence matrix is a representation over the integers of the cycle
matroid of the dual graph of the embedding.

4.3.2 Split complexes

A naive way to define splittings of edges might be to consider the incidences at
one of their endvertices and split according to that. We shall show that when
using this notion of splitting, split complexes will not have all nice properties
we want them to have, see Section 4.7. A more refined definition takes into
account the incidences at both endvertices, defined as follows.

Given a simplicial complex C and an edge e with two endvertices v and w,
two faces incident with e are v-related if - when considered as edges of e, they
have endvertices in the same connected component of the link graph L(v) − e
with the vertex e removed. Analogously, we define w-related. Two faces f1 and
f2 incident with e are in the same connected component at e if there is a chain
of faces incident with e from f1 to f2 such that adjacent faces in the chain are v-
related or w-related. Note that ‘being in the same connected component at e’ is
the equivalence relation generated from the union of ‘v-related’ and ‘w’-related.

The simplicial complex obtained from C by splitting the edge e is obtained
from C by replacing the edge e by one copy eX for every connected component
X at e. The faces incident with eX are those in X.

We refer to the edges eX as the clones of e. If we apply several splittings,
we extend the notion of cloning iteratively so that each edge of the resulting
simplicial complex is cloned from a unique edge of C.

If we split an edge in a nontrivial way, then the resulting simplicial complex
has the same number of faces but at least one edge more. As in a simplicial
complex every edge is incident with a face, we can only split edges a bounded
number of times. A simplicial complex obtained from C by splitting edges such
that for every edge there is only one component at e is called an edge split
complex of C. As explained above, every simplicial complex has an edge split
complex.

Since splitting edges, does not change the 2-blocks of the link graphs, split-
tings of edges commute. In particular, edge split complexes are unique. In the
following we will talk about ‘the edge split complex’.
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The split complex of a simplicial complex C is the vertical split complex of
its edge split complex. Clearly, splitting a vertex does not change the edge split
complex.

Example 4.3.12. A simplicial complex, its vertical split complex and its edge
split complex have the same split complex. Locally 2-connected16 simplicial
complexes are equal to their split complex.

Lemma 4.3.13. A simplicial complex and its edge split complex have the same
dual matroid.

Proof. We shall show that a simplicial complex C and a simplicial complex C ′

have the same dual matroid, where we obtain C ′ from C by splitting an edge
e. Once this is shown, the lemma follows inductively as an edge split complex
is obtained by a sequence of edge splittings.

Clearly, C and C ′ have the same set of faces. Hence their dual matroids
have the same ground sets.

The vectors indexed by clones of the edge e of the edge/face incidence matrix
A′ of C ′ sum up to the vector indexed by e of the edge/face incidence matrix
A of C. Hence the vectors indexed by edges of A′ generate the vectors indexed
by edges of A. So it remains to show that any vector indexed by a clone e′ of e
of A′ is generated by the vectors indexed by edges of A.

Let v be an endvertex of e. Let K be the connected component of the link
graph L(v) of C at v that contains e. Let Y be the union of the components Y ′

of K − e such that faces incident with e′ – when considered as edges of L(v) –
have an endvertex in Y ′. The sum over all vectors indexed by edges y ∈ V (Y ) of
A is the vector indexed by e′ of A′. Since e′ was an arbitrary clone, the vectors
indexed by edges of A generate the vectors indexed by edges of A′.

We have shown that splitting a single edge preserves the dual matroid. Since
the edge split complex is obtained by splitting edges, it must have the same dual
matroid as the original complex.

Corollary 4.3.14. A simplicial complex and its split complex have the same
dual matroid.

Proof. A simplicial complex and its vertical split complex have the same in-
cidence relations between edges and faces. Hence this is a consequence of
Lemma 4.3.13.

4.4 A Whitney type theorem

In this section we prove Theorem 4.2.2.
In general the dual matroid of a simplicial complex C does not contain

enough information to decide whether C is embeddable in 3-space. For exam-
ple, the dual matroid of the cone over K5 consists of a bunch of loops. So it

16A simplicial complex is locally 2-connected if its link graphs are connected and have no
cutvertices.
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cannot distinguish this non-embeddable simplicial complex from other embed-
dable ones. The following fact gives an explanation of this phenomenon (in the
notation of that fact: from the graph G we can in general not reconstruct the
matroid M [v]). Given a vertex v of a simplicial complex, we denote the dual
matroid of the link graph at v by M [v].

Fact 4.4.1. Let C be a simplicial complex embedded in S3. Then the dual
matroid M restricted to the faces incident with v is represented by a graph G.
Moreover, G can be obtained from some graph representing M [v] by identifying
vertices.

Proof. By Theorem 4.2.1 M is the cycle matroid of the dual graph of the em-
bedding of C. So G is the restriction of that graph to the faces incident with
v.

By G′ be denote the ‘local dual graph’ of C at v. This is defined as the
‘dual graph’ but with ‘S3’ replaced by ‘a small neighbourhood U around v’ in
the embedding. Clearly, G′ represents M [v]. We obtain the vertices of G from
those of G′ by identifying those vertices for components of U \C that lie in the
same component of S3 \C. The ‘Moreover’-part follows.

To exclude the phenomenon described in Fact 4.4.1 we restrict our attention
to simplicial complexes C whose dual matroid captures the local structure at
all vertices of C, defined as follows. Given a simplicial complex C with dual
matroid M , we say that M is local if for every vertex v the matroid M [v] is
equal to M restricted to the faces incident with v.

Furthermore matroids (of graphs and also of simplicial complexes) do not
depend on the orderings of edges on cycles. Hence it can be shown that dual
matroids cannot distinguish triangulations of homology spheres17 from triangu-
lations of the 3-sphere. While the later ones are always embeddable, this is not
true for triangulations of homology spheres. Thus we restrict our attention to
simply connected simplicial complexes.

If we exclude these two phenomenons, Theorem 4.2.2, stated in the Intro-
duction, characterises when a simplicial complex is embeddable just in terms of
its dual matroid.

Remark 4.4.2. The assumptions of Theorem 4.2.2 can be interpreted as some
face maximality assumption. By Theorem 2.8.1 this is true for being simply
connected. For locality, let C be any embeddable simplicial complex embed-
dable. By Fact 4.4.1 we can add faces until for every vertex v the matroid M [v]
is equal to M restricted to the faces incident with v. This preserves being simply
connected.

Now we prepare for the proof of Theorem 4.2.2.

17These are compact connected 3-manifolds whose homology groups are trivial. Unlike in
the 2-dimensional case, this does not imply that the fundamental group is trivial.
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Lemma 4.4.3. Let H be a graph whose cycle matroid is the dual matroid M
of a simplicial complex C. There is a directed graph ~H with underlying graph
H such that for all edges e of C the signed vectors are 3-flows18.

Proof. First we consider the case when H is 2-connected. We start with an
arbitrarily directed graph ~H with underlying graph H some of whose directions
of the edges we might reverse later on in the argument. Since H is 2-connected,
the set of edges incident with a vertex is a bond of H, which is called the atomic
bond of v. By elementary properties of representations, there is a vector bv with
all entries −1, +1 or 0 that has the same support19 as the atomic bond at v.

Given an edge e of H and one of its endvertices v, we say that e is effectively
directed towards v with respect to a vector b with entries in Z if ~e is directed
towards v and b(e) is positive or ~e is directed away from v and b(e) is negative.

First we shall prove that we can modify the directions of the edges of ~H such
that all edges e of H are directed such that for some endvertex v they are
effectively directed towards v with respect to the at bv.

Let T be a spanning tree of H. Since T does not contain any cycle, we can
pick the bv such that if vw is an edge of T , then bv(vw) = −bw(vw). Hence
an edge vw of T is effectively directed towards v with respect to bv if and only
if it is effectively directed towards w with respect to bw. So by reversing the
direction of an edge if necessary20, we may assume that every edge vw of T
is effectively directed towards v with respect to bv and also effectively directed
towards w with respect to bw.

Next let xy be an edge not in T . By reversing the direction of xy if necessary
we may assume that xy is effectively directed towards x with respect to bx. Our
aim is to show that xy is effectively directed towards y with respect to by. Let
C be the fundamental circuit of xy with respect to T . By elementary properties
of representations, there is a vector vC with support C that is orthogonal over
F3 to all the vectors bz for vertices z on C. At all vertices z of C except possibly
y, the two edges on C incident with z are effectively directed towards z with
respect to the vector bz. Hence for vC to be orthogonal, precisely one of these
edges must be effectively directed towards z with respect to vC . Using this
property inductively along C, we deduce that of the two edges on C incident
with y also precisely one is effectively directed towards y with respect to vC .
Since by is orthogonal to vC and the edge incident with y that is on T and C
is effectively directed towards y with respect to by, also xy must be effectively
directed towards y with respect to by.

Hence our final directed graph ~H has the property that all edges e of H
are effectively directed towards any of their endvertices v with respect to bv.
Since signed vectors of edges e of C are orthogonal at to bv, it follows that it
accumulates 0 (mod 3) at all vertices v. So the signed vectors of C are 3-flows

18A 3-flow in a directed graph ~H is an assignment of integers to the edges of ~H that satisfies
Kirchhoff’s first law modulo three at every vertex of ~H.

19The support of a vector is the set of coordinates with nonzero values.
20To be very formal, we delete the edge from the graph and glue it back the other way

round. Note that we do not change the director.
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for ~H. This completes the proof if H is 2-connected. If H is not 2-connected, we
do the same construction independently in every 2-connected component and
the result follows.

First we prove Theorem 4.2.2 under the additional assumption that C is
locally 2-connected:

Lemma 4.4.4. Let C be a simply connected locally 2-connected simplicial com-
plex whose dual matroid is local.

Then C is embeddable in 3-space if and only if M is graphic.

Proof. Assume that C is embeddable and let D by its dual complex. Then
by Theorem 4.2.1 M is equal to the cycle matroid of the 1-skeleton of D. In
particular M is graphic.

Now conversely assume that C is a simply connected simplicial complex such
for every vertex v the matroid M [v] is equal to dual matroid M restricted to
the faces incident with v; and that there is a graph G whose cycle matroid is M .
We pick an arbitrary direction at each edge of C and an arbitrary orientation
at each face of C. Our aim is to construct a planar rotation system Σ of C and
apply Theorem 2.2.1 to deduce that C is embeddable.

By Lemma 4.4.3 there is a direction ~G of G such that the signed incidence
vector ve for each edge e of C is a 3-flow in ~G. As the link graph L(v) at each
vertex v is 2-connected, none of its vertices e is a cutvertex. Hence the edges
incident with e in L(v) form a bond. So they form a circuit in the dual matroid
M [v]. Thus by assumption the support of ve is a circuit in the matroid M .

By the construction of ~G, the signed vector ve is a directed cycle21 in ~G. This
directed cycle defines a cyclic orientation σ(e). In terms of C this is a cyclic
orientation of the oriented faces incident with the directed edge ~e. Put another
way Σ = (σ(e)|e ∈ E(C)) is a rotation system.

Our aim is to prove that Σ is planar. So let v be a vertex of C and let Σv be
the rotation system of the link graph L(v) induced by Σ. This rotation system
of L(v) defines an embedding of L(v) in a 2-dimensional oriented surface Sv in
the sense of [70]22. It remains to show the following.

Sublemma 4.4.5. Sv is a sphere.

Proof. As the graph L = L(v) is connected, Sv is connected. Thus it suffices to
show that it has Euler genus two, that is:

VL − EL + FL = 2 (4.1)

Here we abbreviate: |V (L)| = VL, |E(L)| = EL and FL denotes the faces of the
embedding of L(v) in Sv.

We denote the dual graph of the embedding of L in Sv by H. Our aim is to
show that H is equal to the restriction R of G to the faces incident with v. We

21A vector v whose entries are in {0,+1,−1} is a directed cycle if its support is a cycle and
it satisfies Kirchhoff’s first law at every vertex, see [35].

22This is explained in more detail in Chapter 2.

82



obtain S′ from R by gluing on each directed cycle ve the face σ(e). Similarly as
in Chapter 2 we use the Edmonds-Hefter-Ringel rotation principle [70, Theorem
3.2.4] to deduce that L is the surface dual of R with respect to the embedding
into S′. In particular S′ = S and R is equal to H.

Having shown that R is the surface dual of L, we conclude our proof of
Equation 4.1 as follows. We denote the dimension of the cycle space of L by
d. We have VL − EL = −d + 1 and FL = VR (where VR is the number of
vertices of VR). Hence in order to prove Equation 4.1 it suffices to show that
d = VR−1. This follows from the assumption that the cycle matroid of R is the
dual of the cycle matroid of L. Indeed, the cycle matroid of L is 2-connected
by assumption.

Proof of Theorem 4.2.2. As in the proof of Lemma 4.4.4, by Theorem 4.2.1 it
suffices to show that any simply connected simplicial complex C whose dual
matroid M is graphic and local can be embedded in 3-space.

We prove this in two steps. First we prove it for locally connected simplicial
complexes. We prove this by induction. The base case is when C is locally
2-connected and this is dealt with in Lemma 4.4.4. So now we assume that C
has a vertex v such that the link graph L(v) has a cut vertex23; and that we
proved the statement for every simplicial complex as above such that it has a
fewer number of cutvertices – summed over all link graphs. Let e be an edge of
C that is a cutvertex in L(v).

Sublemma 4.4.6. The simplicial complex C is obtained from a simplicial com-
plex C ′ by identifying two vertex-disjoint edges e1 and e2 onto e.

Proof. In the link graph L(v), let f1 and f2 be two edges incident with e that
are in different 2-blocks of L(v). Hence L(v) has a 1-separation (X1, X2) with
cutvertex e such that fi is in the side Xi for i = 1, 2.

Let w be the endvertex of e in C different from v. Our aim is to construct a
1-separation (Y1, Y2) with cutvertex e of L(w) such that Xi and Yi agree when
restricted to the edges incident with e for i = 1, 2. For that we have to show that
if two such edges are in different Xi then they do not lie in the same 2-block
of L(w). That is, in the matroid M [w] they do not lie in a common circuit
consisting of edges incident with e. By the assumption, this property is true in
M [w] if and only if it is true in M if and only if it is true in M [v], which it is
not true as (X1, X2) is a 1-separation.

We obtain C ′ from C by replacing v by two new vertices v1 and v2 and w
by two new vertices w1 and w2. A face or edge incident with v is in vi if and
only if it is in Xi. Similarly, a face or edge incident with w is incident with wi
if and only if it is in Yi. Thus every edge or face incident with v is incident
with precisely one of v1 and v2 except for the edge e for which we introduce two

23A vertex v of a graph is a cut vertex if the component of the graph containing v with v
removed is disconnected.
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copies, which we denote by e1 and e2. The same is holds with ‘w’ in place of ‘v’.
Clearly, the edge ei joins vi and wi. Hence C ′ has the desired properties.

Sublemma 4.4.7. The edges e1 and e2 lie in different connected components
of C ′.

Proof. The simplicial complex C/e is simply connected and obtained from C ′/{e1, e2}
by identifying the vertices e1 and e2 onto e. Since C/e is not locally connected
at e we can apply Lemma 2.6.1 to deduce that e has to be a cutvertex of C/e.

Since the link graph L(e) of C/e is a disjoint union of the connected link
graphs L(e1) and L(e2) of C ′/{e1, e2}, two faces incident with the same edge
ei in C ′ cannot be cut off by e in C/e. Hence the only way e can cut C/e is
that e1 and e2 are cut off from one another. Put another way, e1 and e2 lie in
different connected components of C ′.

For i = 1, 2, let Ci be the component of C ′ containing ei and Mi the dual
matroid of Ci. We may assume that C is connected. Hence C ′ is the disjoint
union of the Ci. By Sublemma 4.4.7 and Lemma 4.3.13, the dual matroid M of
S is the disjoint union of the matroids Mi. So we can apply the induction hy-
pothesis to each simplicial complex Ci. So all Ci are embeddable. Analogously
to Lemma 2.6.2 one proves that C is embeddable in 3-space24.

Finally, we prove the statement for arbitrary simplicial complexes. Again,
we prove it by induction. This time the locally connected case is the base case.
So now we assume that C has a vertex v such that the link graph L(v) is
disconnected; and that we proved the statement for every simplicial complex
as above such that the number of components of link graphs minus the total
number of link graphs is smaller. As C is simply connected, by Lemma 2.6.1
the vertex v is a cutvertex of C. That is, C is obtained from gluing together two
simplicial complexes C ′ and C ′′ at the vertex v. Since splitting vertices preserves
dual matroids, the dual matroid of C is the disjoint union of the dual matroid
of C ′ and the dual matroid of C ′′. Thus the simplicial complexes C ′ and C ′′ are
embeddable in S3 by induction. Hence by Lemma 2.6.2 C is embeddable.

Remark 4.4.8. The proof of Theorem 4.2.2 works also if we change the defi-
nition of dual matroid in that we replace ‘F3’ by ‘Fp with p prime and p > 2’.
By Theorem 4.2.1, if C is embeddable, the signed incidence vectors of the edges
of C generate the same matroid over any field Fp with p prime. So if C is
embeddable all these definitions of dual matroids coincide.

The special role of p = 2 is visible in Corollary 4.2.3, where we have to
exclude the matroid U2,4, which is representable over any field Fp with p prime
and p > 2 but not over F2.

24An alternative is the following: it is easy to see that a simplicial complex S is embeddable
if and only if S/e is embeddable for some nonloop e. So the Ci/ei are embeddable. Then by
Lemma 2.6.2 C/e is embeddable. So C is embeddable.
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4.5 Constructing embeddings from embeddings
of split complexes

In this section we prove Theorem 4.2.4. We subdivide this proof in four subsec-
tions.

4.5.1 Constructing embeddings from vertical split com-
plexes

Lemma 4.5.1. Let C be a simplicial complex obtained from a simplicial complex
C ′ by identifying two vertices v and w. Let ι′ be a topological embedding of C ′

into S3. Assume that there is a local surface of ι′ that contains both v and w.
Then there is a topological embedding of C into S3 that has the same dual graph
as ι′.

Proof. We join v and w by a copy of the unit interval I inside the local surface
of ι′ that contains them both. We may assume that there is an open cylinder
around I that does not intersect C ′. We obtain a topological embedding ι of C
from ι′ by moving v along I to w. We do this in such a way that we change the
edges and faces incident with v only inside the small cylinder. It is clear that ι′

and ι have the same dual graph.

Lemma 4.5.2. Let x be a vertex or edge of a simplicial complex C embedded
into S3. The set of faces incident with x is a connected edge set of the dual
graph of the embedding.

Proof. If x is an edge, then the set of faces incident with x is a closed trail,
and hence connected. Hence it remains to consider the case that x is a vertex.
Let Hx be the dual graph of the link graph at x with respect to the embedding
in the 2-sphere given by the embedding of C. The restriction Rx of the dual
graph of the embedding of C to the faces incident with x is obtained from
Hx by identifying vertices. Since Hx is connected, also Rx is connected. This
completes the proof.

Given a simplicial complex C and a topological embedding ι of its vertical
split complex into S3, we say that ι satisfies the vertical dual graph connectivity
constraints if for any vertex x of C, the set of faces incident with x is a connected
edge set of the dual graph of ι.

Theorem 4.5.3. Let C be a simplicial complex. Then C embeds into S3 if and
only if its vertical split complex Ĉ has an embedding into S3 that satisfies the
vertical dual graph connectivity constraints.

Proof. First assume that C has a topological embedding ι in S3. Let ι′ be the
embedding induced by ι of Ĉ. By Observation 4.3.9, ι and ι′ have the same dual
graph. Hence by Lemma 4.5.2, ι′ satisfies the vertical dual graph connectivity
constraints.
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Now conversely assume that ι′ is an embedding into S3 of Ĉ that satisfies
the vertical dual graph connectivity constraints. Let G be the dual graph of
ι′. We shall recursively construct a sequence (Cn) of simplicial complexes by
identifying vertices that belong to the same vertex of C that all have the vertical
split complex Ĉ and topological embeddings ιn of Cn into S3 that all have the
same dual graph G.

If Cn = C, we stop and are done. So there is a vertex v of C such that
Cn has at least two vertices cloned from v. The set of faces incident with v is
a connected edge set of G. So there are two distinct vertices v1 and v2 of Cn
cloned from v whose incident faces share a vertex when considered as edge sets
of G. Hence there is a local surface of ιn that contains v1 and v2. We obtain
Cn+1 from Cn by identifying v1 and v2. The existence of a suitable embedding
ιn+1 follows from Lemma 4.5.1.

Since this recursion cannot continue forever, we must eventually have that
Cn = C. Then ιn is the desired embedding of C and we are done.

4.5.2 Constructing embeddings from edge split complexes

Our next step is to prove the following lemma analogously to one of the im-
plications of Theorem 4.5.3. Given a simplicial complex C and a topological
embedding ι into S3 of any of its split complex Ĉ into S3, we say that ι satisfies
the dual graph connectivity constraints (with respect to C) if for any vertex or
edge x of C, the set of faces incident with x is a connected edge set of the dual
graph of ι.

Lemma 4.5.4. Let C be a locally connected simplicial complex. Assume that
the split complex of C has an embedding ι′ into S3 that satisfies the dual graph
connectivity constraints. Then C has an embedding in S3 that has the same dual
graph as ι′.

Working with a strip instead of a unit interval, one shows the following
analoguously to Lemma 4.5.1.

Lemma 4.5.5. Let C be a simplicial complex obtained from a simplicial complex
C ′ by identifying two edges e and e′ with disjoint sets of endvertices. Let ι′ be
a topological embedding of C ′ into S3. Assume that there is a local surface of ι′

that contains both e and e′. Then there is a topological embedding of C into S3

that has the same dual graph as ι′.

Proof of Lemma 4.5.4. Since the split complex is independent of the ordering in
which we do splittings, the split complex C ′ of C is obtained by a sequence of the
following operations: first we split an edge. Then we split the two endvertices of
that edge. After that the complex is again locally connected. So we eventually
derive at the split complex.

We make an inductive argument similary as in the proof of Theorem 4.5.3.
Thus it suffices to show that if a complex embeds and satisfies the dual graph
connectivity constraints at the clones of some edge, we can reverse the splitting
at that edge within the embedding.
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After such a splitting operation the original edge is split into a set of vertex-
disjoint edges. By the dual graph connectivity constraints, there are two of
these edges in a common local surface of the embedding. So we can apply
Lemma 4.5.5 to identify them. Arguing inductively, we can identify them all
recursively. This shows why one such splitting can be reversed. Hence we can
argue inductively as in the proof of Theorem 4.5.3 to complete the proof.

4.5.3 Embeddings induce embeddings of split complexes

The goal of this subsection is to prove the following.

Lemma 4.5.6. Let C be a locally connected simplicial complex with an embed-
ding ι in S3. Then its split complex has an embedding into S3 that satisfies the
dual graph connectivity constraints and has the same dual graph as ι.

Before we can prove this, we need some preparation. We start with the
following lemma very similar to Lemma 4.5.5. We define ‘detemined’ and reveal
the definition in the proof of the next lemma.

Lemma 4.5.7. Let C be a simplicial complex obtained from a simplicial complex
C ′ by identifying two edges e and e′ that only share the vertex v. Let ι′ be a
topological embedding of C ′ into S3. Assume that the embedding of L(v) in the
plane induced by ι′ has a region25 that contains both e and e′. Then there is
a topological embedding of C into S3 that has the same dual graph as ι′. The
cyclic orientation at the new edge is determined.

Proof. We image that the link graph at v is embedded in a small ball around
v. Then the region R containing e and e′ is included in a unique local surface
of ι′. We call that local surface `. We obtain C̄ from C ′ by adding a face f at
the edges e, e′ and one new edge. The embedding ι induces an embedding of C̄
as follows. We embed C ′ as prescribed by ι′ and embed f in `. It remains to
specify the faces just before or just after f at e and e′. The face f ′ just before
f at e corresponds to some edge of L(v) that has the region R on its left, when
directed towards e. Similarly, the face f ′′ just after f at e′ corresponds to some
edge of L(v) that has the region R on its right, when directed towards e′. This
embedding of C̄ induces some embedding of C by first contracting the third
edge of f , the one not equal to e or e′ and then contracting the face f , that is,
we identify e and e′ along f . Clearly this embedding has the same dual graph
as ι′.

It remains to show that the cyclic orientation of the incident faces induced by
the embedding at the new edge is determined. For that we reveal the definition
of determined. It means that the cyclic ordering at the new edge is obtained
by concatenating the cyclic orientations of e and e′ induced by ι′ so that f ′ is
followed by f ′′.

For the rest of this subsection we fix a topological embedding ι of a locally
connected simplicial complex C into S3. Our aim is to explain how ι gives rise

25Component of S2 without L(v)
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to an embedding of any split complex of C. First we need some preparation.
Let Σ = (σ(e)|e ∈ E(C)) be the combinatorial embedding induced by ι.

Let e be an edge of C and I a subinterval of σ(e). Let C̄ be the simplicial
complex obtained from C by replacing e by two edges, one that is incident with
the faces in I and the other that is incident with the faces incident with e but
not in I. We call C̄ the simplicial complex obtained from C by opening the
edge e along I. We refer to the two new edges as the opening clones of e. If
we apply several openings, we extend the notion of opening cloning iteratively
so that each edge of the resulting simplicial complex is opening cloned from a
unique edge of C.

Let C ′ be a simplicial complex obtained from a simplicial complex C by
splitting edges. Given a rotation system Σ of C, we obtain the induced rotation
system of C ′ by restricting for each e′ of C ′ cloned from an edge e of C the cyclic
ordering σ(e) to the faces incident with e′. We define also an induced rotation
system if C ′ is obtained from C by opening edges. This is as above with ‘clone’
replaced by ‘opening clone’.

Let C̄ be a simplicial complex obtained from C by opening an edge and let
Σ̄ be the rotation system induced by Σ.

Lemma 4.5.8. The simplicial complex C̄ has a topological embedding ῑ into S3

whose induced planar rotation system is Σ̄.
The dual graph of ῑ is obtained from the dual graph G of ι by identifying the

two endvertices of I when considered as a trail in G.

In particular, if I is a closed trail in G, then G is the dual graph of ῑ.

Proof of Lemma 4.5.8. We can modify the embedding of C such that there is
an open cylinder around e that does not intersect any edge except for e or any
face not incident with e. And all faces in I intersect that cylinder only in the left
half of the cylinder and the others only in the right half. Now we replace e by
two copies - one in the left half, the other in the right half. It is straightforward
to check that the dual graph of the embedding has the desired property.

We fix an edge e of C with endvertices v and w.

Lemma 4.5.9. There is an embedding ι′ of C in S3 that has the same dual graph
as ι such that there is some connected component X at e that is a subinterval of
the cyclic orientation σ′(e), where Σ′ = (σ′(e)|e ∈ E(C)) is the induced rotation
system of ι′.

Example 4.5.10. The following example demonstrates that in Lemma 4.5.9 we
cannot always pick ι′ = ι. In the embedding in 3-space indicated in Figure 4.4
no component at the edge e is a subinterval of the cyclic orientation of the faces
incident with e induced by the embedding.

Before we can prove Lemma 4.5.9, we need some preparation.
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e

Figure 4.4: This complex is obtained by gluing together two discs, each with
four faces, at the edge e.

Given a cyclic orientation σ and a subset X, we say that two elements y1

and y2 of σ separate X for σ if they are both not in X and the two intervals26

y1σy2 and y2σy1 both contain elements of X.

Lemma 4.5.11. Let σ be a cyclic orientation and (Pi|i ∈ [n]) be a partition of
the elements of σ such that no two elements of the same Pi separate some other
Pj. Then there is some Pk that is a subinterval of σ.

Proof. We pick an arbitrary element a of P1. We may assume that a partition
class P2 exists. For any Pi not containing a, we define its first element to first
element of Pi after a in σ, and its last element to first element of Pi before a in
σ. The closure of Pi consists of those elements of σ between its first and last
element (including the first and the last one). We denote the closure of Pi by
Pi.

By assumption any two such closures Pi and Pj are either disjoint or con-
tained in one another, that is, Pi ⊆ Pj or vice versa. Let Pk be such that its
closure is inclusion-wise minimal. Then Pk is equal to its closure and hence a
subinterval of σ.

Given e ∈ σ, we denote the element just before e by e − 1 and the element
just after e by e + 1. Given a cyclic orientation σ and four of its elements x1,
x2, x3, x4 such that (x1x2x3x4) is a cyclic subordering of σ, the exchange of
σ with respect to x1, x2, x3, x4 is the following cyclic orientation on the same
elements as σ. We concatenate the two cyclic orientations obtained from σ by
deleting x1σx3 − x1 − x3 and x3σx1 such that the immediate successor of x4 is
x2; see Figure 4.5, formally, it is

x3σx4(x2σx3 − x3)(x1σx2 − x1 − x2)(x4 + 1)σx3

Let (Pi|i ∈ I) be a partition of the elements of σ, the fluctuation of σ with
respect to (Pi|i ∈ I) is the number of adjacent elements of σ in different Pi.
Given a partition P = (Pi|i ∈ I) of σ, an exchange is P-improving if x2 and
x4 are in the same Pi but none of the following four pairs is in the same Pi:
(x4, x4 + 1), (x2, x2 − 1), (x1, x1 + 1), (x3, x3 − 1).

26By y1σy2 we denote the subinterval of σ starting at y1 and ending with y2.
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Figure 4.5: The cyclic orientation σ is depicted as a cycle. The four segments
between the element xi are labelled with the elements of Z4. This describes the
ordering in which these segments are travered by the exchanged cyclic orienta-
tion.

Lemma 4.5.12. A cyclic orientation σ′ obtained from σ by an exchange that
is P-improving has strictly smaller fluctuation.

Proof. The adjacent elements of σ and σ′ are the same except for four pairs
involving x1, x2, x3, x4. For σ these pairs are those mentioned in the definition of
‘P-improving’. All these four pairs contribute to the fluctuation by the definition
of P-improving. For σ′ the pair (x4, x2) does not contribute to the fluctuation.

One way to partition σ(e) is to put two elements of σ(e) in the same class if –
when considered as edges of L(v) – they have endvertices in the same component
of L(v)− e. An exchange is v-improving for σ(e) if it is P-improving for that
particular partition.

For the next lemma we fix the following notation. Let X be the set of edges
between e and a connected component of L(v) − e. Let Y be the set of edges
between e and a connected component of L(w)− e. Assume that no connected
component at e includes both X and Y .

Lemma 4.5.13. Assume that two elements of Y separate X in the cyclic ori-
entation σ(e). Then there is an embedding ι′ of C in S3 that has the same dual
graph as ι such that σ′(e) is obtained from σ(e) by a v-improving exchange,
where Σ′ = (σ′(e)|e ∈ E(C)) is the induced rotation system of ι′.

Proof. We abbreviate σ(e) by σ. We denote the connected component at e
including Y by c(Y ).

Sublemma 4.5.14. There are edges f1 and f3 of c(Y ) that separate X such
that the region of L(w) just after f1 is equal to the region just before f3. And
f1 + 1 and f3 − 1 are not in c(Y ).

Proof. Let f ′1 and f ′3 be two elements of Y that separate X. We fix two elements
x1 and x2 of X such that x1 is in f ′1σf

′
3 and x2 is in f ′3σf

′
1. By choosing f ′1 and

f ′3 as near to x1 as possible, we ensure that the region just after f ′1 is equal to
the region just before f ′3. We denote this region by R. Let Y ′ be the set of edges
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between e and a connected component of L(w)−e that is included in c(Y ). The
set of all such Y ′ is denoted by Y. By replacing Y by any Y ′ ∈ Y if necessary,
we may assume that no set Y ′ ∈ Y contains elements both before and after x1

on f ′1σf
′
3; indeed, by any such replacement f ′1σf

′
3 strictly decreases.

Sublemma 4.5.15. The interval f ′1σx1 contains some f1 ∈ c(Y ) such that the
region just after f1 is R and f1 + 1 is not in c(Y ).

Proof. We recursively define a sequence fn1 of elements of f ′1σx1. They are
strictly increasing and contained in c(Y ). We start with f1

1 = f ′1. Assume that
we already constructed fn1 . If fn1 + 1 is not in c(Y ) we stop and let f1 = fn1 .
Otherwise fn1 + 1 is in c(Y ). Let Y ′ ∈ Y so that fn1 + 1 ∈ Y ′.

We prove inductively during this construction that any set Y ′′ ∈ Y that
contains an element of (fn1 + 1)σx1 contains no element of f ′1σf

n
1 .

By the induction hypothesis, Y ′ is a subset of (fn1 + 1)σx1. Let fn+1
1 be the

maximal element of Y ′ in (fn1 + 1)σx1. By construction fn+1
1 ∈ c(Y ) and fn+1

1

is strictly larger than fn1 . The region R is just before fn1 + 1, the first element
of Y ′. Thus the region after fn+1

1 , the last element of Y ′, must also be R. The
induction step follows from the planarity of L(w) as there is a component of
L(w)− e that is adjacent to the set Y ′, and the induction hypothesis.

This process has to stop as f ′1σx1 is finite and the fn1 are strictly increasing.
Thus we eventually find an f1.

Similarly as Sublemma 4.5.15 one shows that the interval x1σf
′
3 contains

some f3 ∈ c(Y ) such that the region just before f3 is R and f3 − 1 is not in
c(Y ). So f1 and f3 have the desired properties.

We obtain C1 from C by opening the edge e at the subinterval f1σf3 of σ.
By ι1 we denote the embedding of C1 induced by ι. By the choice of f1 and f3,
the local surface just after f1 is equal to the local surface just before f3. Hence
by Lemma 4.5.8 the embeddings ι1 and ι have the same dual graph.

By Sublemma 4.5.14, the link graph at w of C1 has two connected compo-
nents. We obtain C2 from C1 by splitting the vertex w. By ι2 we denote the
embedding of C2 induced by ι1. As splitting vertices does not change the dual
graph by Observation 4.3.9, the embeddings ι2 and ι1 have the same dual graph.
Summing up, ι2 and ι have the same dual graph.

We denote the copy of e incident with f1 by e′ and the other copy by e′′.
Since e′ and e′′ are both incident with edges of X, the component of L(v) − e
adjacent to the edges of X has in the link graph of C2 the two vertices e′ and
e′′ in the neighbourhood. Thus the vertices e′ and e′′ share a face in the link
graph at v of C2.

By Lemma 4.5.7 ι2 induces an embedding ι′ of C in S3 that has the same
dual graph as ι2. Let Σ′ = (σ′(e)|e ∈ E(C)) is the induced rotation system of
ι′. We denote the element of X in f1σf3 nearest to f1 by f2. Similarly, by f4

we denote the element of X in f3σf1 nearest to f1. As σ′(e) is determined by
Lemma 4.5.7, it is obtained by concatenating the cyclic orientations at e′ and e′′
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so that f4 is followed by f2. That is, σ′(e) is obtained from σ(e) by exchanging
with respect to f1, f2, f3, f4.

It remains to check that this exchange is v-improving. Both f2 and f4 are
in X. On the other hand f1 and f3 are in c(Y ) but f1 + 1 and f3− 1 are not in
c(Y ). In particular, they are in different Pi. Whilst f2 and f4 are in X, the two
elements f2−1 and f4 +1 are not in X. Thus this exchange is v-improving.

Proof of Lemma 4.5.11. By (Rk|k ∈ K) we denote the partition of the faces
incident with e into the connected components at e. If no two elements of the
same Ra separate some other Rb, then by Lemma 4.5.11 there is some Ra that
is a subinterval of σ(e). In this case we can just pick ι′ = ι and are done.

We define the partition (Pi|i ∈ I) of the faces incident with e as follows. Two
faces incident with e are in the same partition if – when considered as edges
of L(v) – they have endvertices in the same component of L(v)− e. We define
the partition (Qj |j ∈ J) the same with ‘w’ in place of ‘v’. If some Pi contains
two elements separating some Qj for the cyclic orientation at e, we can apply
Lemma 4.5.13 to construct a new embedding of C. We do this until there are
no longer such pairs (Pi, Qj). This has to stop after finitely many steps as by
Lemma 4.5.12 the fluctuation – which is a non-negative constant only defined in
terms of (Pi|i ∈ I) – of the cyclic orientation at e strictly decreases in each step.
So there is an embedding ι′ of C in S3 such that no Pi contains two elements
separating some Qj for the cyclic orientation σ′(e) and such that ι′ has the
same dual graph as ι; here we denote by Σ′ = (σ′(e)|e ∈ E(C)) is the induced
rotation system of ι′. Hence by applying Lemma 4.5.11, it suffices to prove the
following.

Sublemma 4.5.16. For σ′(e), either there is some Pi containing two elements
separating some Qj or no two elements of the same Ra separate some other Rb.

Proof. We assume that there is some Ra that contains two elements r1 and r2

that separate some other Rb. The set Rb is a disjoint union of sets Pi. Either
r1 and r2 separate one of these Pi or by the definition of connected component
at e, there is some Qj included in Rb that contains elements of different Pi, one
included in r1σ

′(e)r2 and the other in r2σ
′(e)r1. Summing up there is some Pi

or Qj included in Rb that is separated by r1 and r2.
First we consider the case that there is a set Pi. So two elements of that set

Pi separate Ra. By an argument as above we conclude that there is some Pm
or Qn included in Ra that is separated by two elements of Pi.

Since the sets Pm are defined from components of L(v) − e and Σ′ induces
an embedding of L(v) in the plane, these components cannot attach at e in a
‘crossing way’, that no two elements of some Pi can separate some other Pm.
Thus there has to be such a set Qn.

Summing up, if there is a set Pi separated by r1 and r2, then it contains
two elements separating some Qn. Analogously one shows that otherwise the
set Qj separated by r1 and r2 contains two elements separating some Pn. But
then two elements of Pn separate Qj . This completes the proof.

92



By the construction of ι′, no two elements of the same Ra separate some other
Rb for σ′(e). Then by Lemma 4.5.11 there is some Ra that is a subinterval of
σ′(e), as desired.

Let C ′ be a simplicial complex obtained from the locally connected simplicial
complex C by splitting the edge e.

Lemma 4.5.17. There is a topological embedding ι′ of C ′ whose induced planar
rotation system is the rotation system induced by Σ.

Moreover ι and ι′ have the same dual graph.

Proof. We denote the dual graph of ι byG. We prove this lemma by induction on
the number of connected components at e. If there is only one such component,
then C ′ = C and the lemma is trivially true. So we may assume that there are at
least two components. By changing the embedding if necessary, by Lemma 4.5.9
we may assume that there is a component J at e that is a subinterval of σ(e).
As J is a subinterval of the closed trail σ(e) of G, it is a trail in G. Next we
show that it is a closed one:

Sublemma 4.5.18. The interval J is a closed trail in G.

Proof. We are to show that the local surface of the embedding just before the
first face f1 of J is the same as the local surface just after the last edge f2 of J .
For that it suffices to show that in the embedding of the link graph L(v) of v
induced by Σ, the region just before the edge f1 is the same as the region just
after the edge f2. This follows from the fact that J is the set of edges out of a
set of connected components of L(v)− e. Indeed, the first and last edge out of
every component are always in the same region.

We obtain C̄ from C by opening the edge e along J . By Lemma 4.5.8, C̄
has a topological embedding ῑ into S3 whose induced planar rotation system is
induced by Σ. By Sublemma 4.5.18 and Lemma 4.5.8, the dual graph of ῑ is G.

We observe that C ′ is obtained from C̄ by splitting the clone of e that
corresponds to the subinterval σ(e) \ J . Thus the lemma follows by applying
induction on C̄ and ῑ.

Proof of Lemma 4.5.6. The split complex of C is obtained from C by a sequence
of edge splittings and vertex splittings. By changing the order of the splittings
if necessary, we may assume that the complex is always locally connected before
we perform an edge splitting. Hence we can apply Lemma 4.5.17 and Theo-
rem 4.5.3 recursively to construct an embedding of the split complex. Since
in each splitting step the dual graph is preserved, it satisfies the dual graph
connectivity constraints by Lemma 4.5.2 applied to the dual graph of ι.

4.5.4 Proof of Theorem 4.2.4

We summarise the results of the earlier subsections in the following.

93



Theorem 4.5.19. Let C be a simplicial complex and Ĉ be its split complex.
Then C embeds into S3 if and only if Ĉ has an embedding into S3 that satisfies
the dual graph connectivity constraints.

Proof. Assume that C embeds into S3. Then by Theorem 4.5.3 its vertical split
complex embeds into S3 and satisfies the vertical graph connectivity constraints.
Since the vertical split complex is locally connected, we can apply Lemma 4.5.6
to get the desired embedding of the split complex. Note that this embedding
has the same dual graph as the vertical split complex. Hence it also satisfies
the connectivity constraints for the vertices.

Now conversely assume that the split complex has an embedding ι′ that
satisfies the dual graph connectivity constraints. By Lemma 4.5.4 the vertical
split complex has an embedding in S3. As this embedding has the same dual
graph as ι′, it satisfies the vertical dual graph connectivity constraints. So we
can apply Theorem 4.5.3. This completes the proof.

Now we show how Theorem 4.5.19 implies Theorem 4.2.4.

Proof of Theorem 4.2.4. Let C be a globally 3-connected simplicial complex
and let Ĉ be its split complex. If C embeds into S3, then Ĉ has an embedding
into S3 whose dual graph G satisfies the dual graph connectivity constraints by
Theorem 4.5.19. By Corollary 4.3.14, the two simplicial complexes C and Ĉ
have the same dual matroid. So by Theorem 4.2.1 the cycle matroid of G is the
dual matroid of C. This completes the proof of the ‘only if’-implication.

Conversely assume that a split complex Ĉ of a simplicial complex C has an
embedding ι̂ into S3 and the dual matroid M of C is the cycle matroid of a graph
G and the set of faces incident with any vertex or edge of C is a connected edge
set of G. By Corollary 4.3.14 M is the dual matroid of Ĉ. Let G′ be the dual
graph of the embedding ι̂ of Ĉ. By Theorem 4.2.1 the cycle matroid of G′ is
equal to M . Since M is 3-connected by assumption, by a theorem of Whitney
[99], the graphs G and G′ are identical. Hence G′ satisfies the connectivity
constraints. So we can apply the ‘if’-implication of Theorem 4.5.19 to deduce
the ‘if’-implication of Theorem 4.2.4.

Proof of Theorem 4.2.5. By Chapter 1, it suffices to show that a simplicial com-
plex C whose split complex is embeddable has an embedding if and only if its
dual matroid has no constraint minor in the list of Figure 4.2. Since the split
complex is embeddable, its dual matroid is the cycle matroid of a graph G.
By Corollary 4.3.14 the dual matroid of C is the cycle matroid of G. By The-
orem 4.2.4, C is embeddable if and only if G satisfies the graph connectivity
constraints. The later is true if and only if there is no vertex or edge such that
the set X of incident faces is disconnected in G. By the main result of Chap-
ter 3, X is disconnected in G if and only if (G,X) has a constraint minor in the
list of Figure 4.2.
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4.6 Infinitely many obstructions to embeddabil-
ity into 3-space

In this section we construct an infinite sequence (An|n ∈ N) of minimal obstruc-
tions to embeddability. More precisely, An will have the property that its split
complex is simply connected and embeddable, its dual matroid Mn is the cycle
matroid of a graph but no such graph will satisfy the connectivity constraints.
However, if we remove a constraint or contract or delete an element from the
dual matroid, then there is such a graph.

The dual matroid Mn of An will be the disjoint union of a cycle Cn of length
n and a loop `, see Figure 4.6.

Figure 4.6: The matroid M8. For each of the eight vertices on the cycle, there
is a connectivity constraint forbidding that the loop is attached at that vertex.

The connectivity constraints are as follows. Fix a cyclic orientation {ei|i ∈
Zi} of the edges on Cn. We have a connectivity constraint for every i ∈ [n],
namely that X[i, n] = Cn − ei − ei+1 + ` is a connected set.

Fact 4.6.1. There is no graph whose cycle matroid is Mn that meets all the
connectivity constraints X[i, n].

Proof. By Cn we denote the graph that is a cycle of length n whose edges have
the cyclic ordering {ei|i ∈ Zi}. It is straightforward to see that Cn is the unique
graph whose cycle matroid is Cn that meets all the connectivity constraints
X[i, n]− e.

Now suppose for a contradiction that there is a graph G whose cycle matroid
is Mn that meets all the connectivity constraints X[i, n]. Then G is obtained
from Cn by attaching a loop. Since each X[i, n] contains e, we have to attach
the loop at some vertex of Cn. The connectivity constraint X[i, n], however,
forbids us to attach the loop at the vertex incident with ei and ei+1. Hence G
does not exist.

A careful analysis of this proof yields the following simple facts.

Fact 4.6.2. 1. There is a graph whose cycle matroid is Mn that meets all
the connectivity constraints X[i, n] but one.

2. for every element e, there is a graph whose cycle matroid is Mn − e that
meets all the connectivity constraints X[i, n]− e;
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3. for every element e, there is a graph whose cycle matroid is Mn/e that
meets all the connectivity constraints X[i, n]− e.

Hence it remains to construct An such that its dual matroids is Mn and so
that the nontrivial connectivity constraints are the X[i, n]. We remark that we
allow the faces of An to be arbitrary closed walks. (One obtains a simplicial
complexes from An by applying baricentric subdivisions to the faces.)

We start the construction of An with a cycle C of length n. We attach n
faces, which we call e1, ..., en. For each ei, and each vertex vk of C except for
the i-th vertex vi, we attach n−1 edges and let ei traverse them in between the
two edges incident with vk. We denote the endvertices of the new edges not on
C by x(i, k, j) where (k, j ≤ n; k, j 6= i), see Figure 4.7.

v1

Figure 4.7: In grey, we indicate the cycle C with the new edges. In black we
sketched the traversal of the face e1 after addition of the new edges.

Next we disjointly add a copy of the original cycle C and only attach a
single face to it which we denote by `. Call the resulting walk-complex27 A′n.
We finally obtain An from A′n by identifying for each i ∈ [n] the i − th vertex
vi on the new copy of C with all vertices x(i′, i, i) with i′ 6= i.

By construction, the split complex of An is A′n. Hence by Corollary 4.3.14
above, the dual matroid of An is Mn. By construction, the nontrivial connectiv-
ity constraints are the X[i, n]. Clearly, the split complex A′n is simply connected
and embeddable.

This completes the construction of the An. By Fact 4.6.1 and Fact 4.6.2
they have the desired properties.

4.7 Appendix I

First we give a definition of ‘globally 3-connected’ directly in terms of the simpli-
cial complex without referring to its dual matroid. Given a simplicial complex
C, its edge/face incidence matrix A and a subset L of the faces of C, we de-
note by r(L) the rank over F3 of the submatrix of A induced by the vectors

27A walk-complex is a graph together with a family of closed walks, which we call its faces.
Every simplicial complex is a walk-complex. Conversely, from every walk complex we can
build a simplicial complex by attaching at each face a cone over that walk.
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whose faces are in L. A 2-separation of a simplicial complex C is a partition
of its set F of faces into two sets L and R both of size at least two such that
r(L) + r(R) ≤ r(F ) + 1. It is straightforward it check that a simplicial complex
is globally 3-connected if and only if it has no 2-separation.

When defining ‘edge split complexes’, we mentioned a related more naive
definition. Here we give this definition. In Example 4.7.1 and Example 4.7.2
we show that this notion lacks two important features of edge split complexes.
Splitting an edge e at an endvertex v is defined like ‘splitting e’ but with ‘in
the same connected component at e’ replaced by ‘v-related’. A lazy edge split
complex is defined as ‘edge split complex’ but with ‘for every edge there is only
one component at e’ replaced by ‘it is locally 2-connected’. lazy split complex is
defined like ‘split complex’ with ‘lazy edge split complex’ in place of ‘edge split
complex’.

Example 4.7.1. In this example we construct a simplicial complex C that has
two distinct lazy edge split complexes. We will construct C such that it has
two vertices v and w; these vertices are joined by five edges e, e1, e2, e3 and
e4. The edge e is a cut vertex in the link graphs at v and w. And splitting e at
one endvertex will make the link graph at the other endvertex 2-connected, see
Figure 4.8.

Link graph at v Link graph at w

e

e1 e2

e3e4

e

e1 e2

e3e4

Figure 4.8: If we split one of these link graphs at e, the other becomes a six-cycle.

Next we construct C with the above properties. We obtained C from four
triangular faces f1, f2, f3 and f4 glued together at a single edge e. Let v and w
be the two endvertices of that edge. Let ei[v] be the edge of fi incident with v
different from e. Let ei[w] be the edge of fi incident with w different from e. Let
vi be the vertex incident with fi that is not incident with e. We add the edges
ek between vk and vk+1 for any k ∈ Z4. We add the four faces: e1[v]e1e2[v],
e3[v]e3e4[v], e2[w]e3e3[w] and e4[w]e4e1[w]. This completes the construction of
C.

Example 4.7.2. In this example we show that Theorem 4.5.19 with ‘split
complex’ replaced by ‘lasy split complex’ is false. Let H be a planar graph with
vertices v and w such that the graph H ′ obtained from H by identifying the
vertices v and w is not planar. Let C be the cone over H. We obtain C ′ from C
by identifying the two edges corresponding to v and w. Whilst the link at the
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top of C is H, the complex C ′ has the link H ′ and is hence not embeddable. By
choosing v and w far apart in H, one ensures that C ′ is a simplicial complex.

The lazy split complex of C ′ is unique and equal to C. Unlike C ′, the sim-
plicial complex C is embeddable. The dual graph of every embedding consists
of a single vertex, and so trivially satisfies the graph connectivity constraints.
This completes the example.

Concerning Theorem 4.2.4, it is straightforward to modify the example to
make the dual graph of the embedding 3-connected.

4.8 Appendix II: Matrices representing matroids
over the integers

Matroids representable over the integers are well-studied [75]. In this appendix,
we study something very related but slightly different, namely matrices that
represent matroids over the integers. Our aim in this appendix is to prove
Theorem 4.8.6 below, which is a characterisation of certain matrices representing
matroids over the integers.

A matrix A is a representation of a matroid M over a field k if all its entries
are in k and the columns are indexed with the elements of M . Furthermore for
every circuit o of M there is a vector vo in the span over k of the rows of A
whose support is o. And the vectors vo span over k all row vectors of A.

The following is well-known.

Lemma 4.8.1. Let A be a matrix representing a matroid M over some field k.
Let I an element set that is independent in M . Then the matrix obtained from
A by deleting all columns belonging to elements of I represents the matroid M/I
over k.

A matrix A is a regular representation (or representation over the integers)
of a matroid M if all its entries are integers and the columns are indexed with
the elements of M . Furthermore for every circuit o of M there is a {0,−1,+1}-
valued vector28 vo in the span over Z of the rows of A whose support is o. And
the vectors vo span over Z all row vectors of A. The following is well-known.

Lemma 4.8.2. Assume that a matrix A regularly represents a matroid M .
Then for every cocircuit d of M , there is a {0,−1,+1}-valued vector wd whose
support is equal to d that is orthogonal29 over Z to all row vectors of A. These
vectors wd generate over Z all vectors that are orthogonal over Z to every row
vector.

The following is well-known.

Lemma 4.8.3. Let M be a matroid regularly represented by a matrix A. Let
v be a sum of row vectors of A with integer coefficients. If the support of v is
nonempty, then it includes a circuit of M .

28A vector is an element of a vector space kS , where k is a field and S is a set. In a slight
abuse of notation, in this chapter we also call elements of modules of the form ZS vectors.

29Two vectors a and b in kS are orthogonal if
∑

s∈S a(s) · b(s) is identically zero over k.

98



Example 4.8.4. A matrix is unimodular if it is {0,−1,+1}-valued and the
determinant of every quadratic submatrix is {0,−1,+1}-valued30. Every uni-
modular matrix is a regular representation of some matroid, see for example
[90]. For example, the vertex/edge incidence matrix of a graph G is a regular
representation of the graphic matroid of G.

There also exist regular representations that are not totally unimodular:

Example 4.8.5. 
1 1
1 −1
1 0
0 −1


This matrix is a regular representation of the matroid consisting of two elements
in parallel but it is not totally unimodular.

A matroid is regular if it can be regularly represented by some matrix.
The class of regular matroids has many equivalent characterisations [75]. For
example, a matroid has a regular representation (in fact a totally unimodular
one) if and only if it has a representation over every field. In this chapter, we
need the following related fact, which focuses on the matrices instead of the
matroids:

Theorem 4.8.6. Let A be a matrix whose entries are −1, +1 or 0. Then A
regularly represents a matroid if and only if there is a single matroid M such
that A represents M over any field.

Whilst the ’only if’-implication is immediate, the other implication is less
obvious. To prove it we rely on the following.

Lemma 4.8.7. Let (vi|i ∈ I) be a family of integer valued vectors of ZS, where
S is a finite set. Assume that the family (vi|i ∈ I) considered as vectors of the
vector space QS spans the whole of QS over Q. Additionally, assume that for
every prime number p, the same assumption is true with the finite field ‘Fp’ in
place of ‘Q’. Then the family (vi|i ∈ I) spans over Z all integer valued vectors
in ZS.

Proof that Lemma 4.8.7 implies Theorem 4.8.6. Assume that A is an integer
valued matrix that represents the matroid M over Q and over all finite fields
Fp for every prime number p, when we interpret31 the entries of A as elements
of the appropriate field. Our aim is to show that A regularly represents the
matroid M .

Let b be a base of M . Let A′ be the matrix obtained from A by deleting
all columns belonging to elements of b. We denote by M ′ the matroid M/b, in
which every element is a loop. By Lemma 4.8.1, A′ represents the matroid M ′

over Q and over all finite fields Fp. Let (vi|i ∈ I) be the family of row vectors of

30Here we evaluate the determinate over Z
31Here in Fp we interpret the integer m as its remainder after division by p.
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A′. Since every element of M ′ is a loop, we can apply Lemma 4.8.7 and deduce
that the family (vi|i ∈ I) spans over Z all integer valued vectors in ZE′ , where
E′ is the set of elements of M ′.

Let v be any integer valued vector that is generated by the rows of A over
Q. We show that v is also generated by the rows of A with integer coefficients.
By the above, there is a vector w generated from the row vectors of A over Z
that agrees with v in all coordinates of E′. Hence v − w is generated by the
row vectors over Q. So if v−w is nonzero, its support must contain a circuit of
M by Lemma 4.8.3. Since the support of v − w is contained in the base b, the
support does not contains a circuit of M . Hence v must be equal to w. Thus v
is in the span of the row vectors with coefficients in Z.

Now let o be a circuit of M . Since A is a regular representation of M over Q,
there is a vector vo with entries in Q generated by the row vectors of A over Q
whose support is o. We multiplying all entries with a suitable rational number
if necessary, we may assume that additionally all entries of vo are integers and
that the greatest common divisor of the entries is one. By the above vo is in
the span of the row vectors with coefficients in Z.

Next we show that all entries of vo are zero, plus one, or minus one. Suppose
for a contradiction that there is some prime number p that divides some entry of
vo. If we interpret the entries of vo as elements of Fp, then vo is also in the span
of the row vectors with coefficients in Fp. Indeed, the coefficients are just the
integer coefficients we have in the representation over Z interpreted as elements
of Fp. Since the greatest common divisor of the entries of vo is one, vo when
interpreted over Fp is nonzero but its support is properly contained in o. Since
in M the circuit o does not include another circuit, we get a contraction to the
assumption that A represents M over Fp. Thus all entries of vo are zero, plus
one, or minus one.

It remains to show that the set of vectors vo where o is a fundamental circuit
of b generates every row vector x of A. Since for every element not in b, there
is a unique vo which takes the value plus one or minus one at that element and
zero at every other elements not in b, there is a vector x′ generated over Z by the
vo that agrees with x when restricted to E′. As above we deduce that x′ = x,
and hence x is generated by the vo over Z. Thus A regularly represents M .

In order to prove Lemma 4.8.7, we rely on the following well-known lemma.

Lemma 4.8.8. Let m and n be integer and let d be their greatest common
divisor. Then there are integers α and β such that α ·m− β · n = d.

Proof of Lemma 4.8.7. Let s ∈ S be arbitrary. By es we denote the vector
which in coordinate s has the entry one and otherwise the entry zero. Since
the family (vi|i ∈ I) spans es over Q, there is some positive natural number γs
so that the family (vi|i ∈ I) spans γs · es over Z. Let δs be the least possible
value for γs. Our aim is to show that all δs are equal to one. Suppose not for
a contradiction. Then there is some prime number p that divides some δs. Let
s̄ be the index so that in the factorisation of δs̄ the prime number p has the
highest multiplicity, say k.
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Sublemma 4.8.9. There is some nonzero integer ε such that p has the multi-
plicity at most k − 1 in the factorisation of ε and such that ε · es̄ is spanned by
the family (vi|i ∈ I) over Z.

Let us first see how we finish the proof assuming Sublemma 4.8.9. By
Lemma 4.8.8, there are α and β such that α · δs̄ − β · ε is equal to the greatest
common divisor D of δs̄ and ε. Hence by Sublemma 4.8.9 D · es̄ is generated by
the family (vi|i ∈ I) over Z. Since p has the multiplicity at most k − 1 in the
factorisation of D, the number D is strictly smaller than δs̄. This contradicts
the choice of δs̄. Hence all δs are equal to one. It remains so show that the
following.

Proof of Sublemma 4.8.9. Since the family (vi|i ∈ I) spans es̄ over Fp, there is
an integer valued vector w such that the family (vi|i ∈ I) spans es̄ + p · w over
Z. For a subset T of S we denote by wT the vector which takes the value w(s)
in coordinate s if s ∈ T and zero otherwise. We denote the multiplicity of p in
the factorisation of an integer n by ]p(n).

We shall show inductively for every subset T of S that there is some nonzero
natural number εT with ]p(εT ) ≤ k − 1 such that εT · (es̄ + p · wT ) is spanned
by the family (vi|i ∈ I) over Z. We start the induction with T = S and εT = 1
and so wT = w. Assume that we already proved the induction hypothesis for
a nonempty subset T of S. Let t ∈ T be arbitrary. We denote the greatest
common divisor of εT · p · w(t) and δt by dt. We let εT−t = εT · δtdt . We have

]p(εT−t) = ]p(εT ) + ]p(δt)− ]p(dt) ≤ ]p(εT ) + ]p(δt)−min{]p(εT ) + 1, ]p(δt)} =

= max{]p(δt), ]p(εT )− 1}
Hence by the choice of t̄ and by induction ]p(εT−t) ≤ k − 1. Furthermore:

δt
dt
· εT · (et̄ + p · wT )− εT · p · w(t)

dt
· δtet = εT−t · (et̄ + p · wT−t)

Note that all fractions in the above equation are integers. This completes the
induction step. Hence the vector ε∅ · et̄ is spanned by the family (vi|i ∈ I) over
Z, which completes the proof.
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Chapter 5

A refined Kuratowski-type
characterisation

5.1 Abstract

Building on earlier chapters, we prove an analogue of Kuratowski’s characteri-
sation of graph planarity for three dimensions.

More precisely, a simply connected 2-dimensional simplicial complex embeds
in 3-space if and only if it has no obstruction from an explicit list of obstructions.
This list of obstructions is finite except for one infinite family.

5.2 Introduction

We assume that the reader is familiar with Chapter 1. In that chapter we prove
that a locally 3-connected simply connected 2-dimensional simplicial complex
has a topological embedding into 3-space if and only if it has no space minor
from a finite explicit list Z of obstructions. The purpose of this chapter is
to extend that theorem beyond locally 3-connected (2-dimensional) simplicial
complexes to simply connected simplicial complexes in general.

The first question one might ask in this direction is whether the assumption
of local 3-connectedness could simply be dropped from the result of Chapter 1.
Unfortunately this is not true. One new obstruction can be constructed from
the Möbius-strip as follows.

Consider the central cycle of the Möbius-strip, see Figure 5.1. Now attach a
disc at that central cycle. In a few lines we explain why this topological space
X cannot be embedded in 3-space. Any triangulation of X gives an obstruction
to embeddability. It can be shown that such triangulations have no space minor
in the finite list Z.

Why can X not be embedded in 3-space? To answer this, consider a small
torus around the central cycle. The disc and the Möbius-strip each intersect
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Figure 5.1: The Möbius-strip. The central cycle is depicted in grey.

that torus in a circle. These circles however have a different homotopy class
in the torus. Since any two circles in the torus of a different homotopy class
intersect1, the space X cannot be embedded in 3-space without intersections of
the disc and the Möbius-strip. Obstructions of this type we call torus crossing
obstructions. A precise definition is given in Section 5.3.

A refined question might now be whether the result of Chapter 1 extends
to simply connected simplicial complex if we add the list T of torus crossing
obstructions to the list Z of obstructions. The answer to this question is ‘almost
yes’. Indeed, we just need to add to the space minor operation the two simple
operations of stretching defined in Section 5.4 and Section 5.5. These operations
are illustrated in Figure 5.2 and Figure 5.3.

Figure 5.2: If we strech the highlighted edge in the simplicial complex on the
left, we obtain the one on the right. The newly added faces are depicted in grey.

It is not hard to show that stretching preserves embeddability, see Lemma 5.4.1
and Lemma 5.5.1 below. The main result of this chapter is the following.

Theorem 5.2.1. Let C be a simply connected simplicial complex. The following
are equivalent.

� C has a topological embedding in 3-space;

� C has no stretching that has a space minor in Z ∪ T .

1A simple way to see this is to note that the torus with a circle removed is an annulus.
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Figure 5.3: If we strech the highlighted pair of edges in the simplicial complex
on the left, we obtain the one on the right. The newly added faces are depicted
in grey.

We deduce Theorem 5.2.1 from the results of Chapter 1 in two steps as fol-
lows. The notion of ‘almost local 3-connectedness and stretched out’ is slightly
more general and more technical than ‘local 3-connectedness’, see Section 5.3
for a definition. First we extend the results of Chapter 1 to almost locally
3-connected and stretched out simply connected simplicial complexes, see The-
orem 5.3.4 below.

By lemmas of Chapter 2 it suffices to prove Theorem 5.2.1 for simply con-
nected simplicial complexes that are locally connected. We conclude the proof
by showing that any such simplicial complex can be stretched to an almost
locally 3-connected and stretched out one. More precisely:

Theorem 5.2.2. For any locally connected simplicial complex C, there is a
stretching C ′ of C that is locally almost 3-connected and stretched out such that
C embeds in 3-space if and only if C ′ embeds in 3-space.

Moreover C is simply connected if and only if C ′ is simply connected.

The chapter is organised as follows. In Section 5.3 we prove Theorem 5.3.4.
In Section 5.4 and Section 5.5 we prove Theorem 5.2.2. We conclude the chapter
with the proof of Theorem 5.2.1.

For graph theoretic definitions we refer the reader to [35].

5.3 A Kuratowski theorem for locally almost 3-
connected simply connected simplicial com-
plexes

In this section we prove Theorem 5.3.4, which is used in the proof of the main
theorem. First we define the list T of torus crossing obstructions.

Given a simplicial complex C, a mega face F = (fi|i ∈ Zn) is a cyclic
orientation of faces fi of C together with for every i ∈ Zn an edge ei of C that
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is only incident with fi and fi+1 such that the ei and fi are locally distinct, that
is, ei 6= ei+1 and fi 6= fi+1 for all i ∈ Zn. We remark that since in a simplicial
complex any two faces can share at most one edge, the edges ei are implicitly
given by the faces fi. A boundary component of a mega face F is a connected
component of the 1-skeleton of C restricted to the faces fi after we delete the
edges ei. Given a cycle o that is a boundary component of a mega face F , we
say that F is locally monotone at o if for every edge e of o and each face fi
containing e, the next face of F after fi that contains an edge of o contains the
unique edge of o that has an endvertex in common with e and ei+1. Under these
assumptions for each edge e of o the number of indices i such that e is incident
with fi is the same. This number is called the winding number of F at o.

A torus crossing obstruction is a simplicial complex C with a cycle o (called
the base cycle) whose faces can be partitioned into two mega faces that both
have o has a boundary component and are locally monotone at o but with
different winding numbers. We denote the set of torus crossing obstructions by
T .

Remark 5.3.1. The set of torus crossing obstructions is infinite. Indeed, it
contains at least one member for every pair of distinct winding numbers. So it
is not possible to reduce it to a finite set. However one can further reduce torus
crossing obstruction as follows. First, by working with the class of 3-bounded
2-complexes as defined in Chapter 1 instead of simplicial complexes, one may
assume that the cycle o is a loop. Secondly, one may introduce the further
operation of gluing two faces along an edge if that edges is only incident with
these two faces. This way one can glue the two mega faces into single faces.
Thirdly, one can enlarge the holes of the mega faces to make them into one big
hole (after contracting edges afterwards one may assume that this single hole
is bounded by a loop). After all these steps we only have one torus crossing
obstruction left for any pair of distinct winding numbers. This obstruction
consists of three vertex-disjoint loops and two faces, each incident with two
loops. The loop contained by both faces is the base cycle o. Here the faces
may have winding number greater than one. The faces have winding number
precisely one at the other loops.

By Bm we denote the graph consisting of m edges in parallel. Given a
simplicial complex C and a cycle o of C and m ≥ 2, we say that o is a Bm-cycle
if all link graphs at the vertices of o are obtained from subdivisions of Bm by
adding paths at some vertices and the edges of o are branching vertices2 in the
link graphs.

Lemma 5.3.2. Let C be a simplicial complex. Assume that C has a Bm-cycle
o such that for some edge e of o the link graph L of the contraction C/(o − e)
at the vertex o− e is not loop planar. Then a torus crossing obstruction can be
obtained from C by deleting faces.

2A branching vertex of Bm with m ≥ 3 is one of the two vertices that has degree at least
three in Bm. By adding paths to some vertices of Bm, the degrees of the vertices may change.
This addition of paths, however, is not taken into account in the definition of branching
vertices. If m = 2, then Bm is a cycle and any vertex is a branching vertex.
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Proof. Our aim is to define a torus crossing obstruction with base cycle o. For
that we define a set of possible mega faces as follows.

The complex C/(o− e) has only one loop and that is e. We denote the two
vertices of L corresponding to e by `1 and `2. Since o is a Bm-cycle, the link
graph L is (isomorphic to) a subdivision of Bm with branching vertices `1 and
`2 – plus attached paths. We shall define mega faces such that every edge of Bm
incident with `1 is a face of precisely one of these mega faces. We define these
mega faces recursively. So let f be an edge of Bm incident with `1 that is not
already assigned to a mega face. Let P be the paths of Bm between `1 and `2
that contains f . The edges on that path after f are its consecutives in its mega
face. The last edge of that path is incident with `2 and hence it also corresponds
to an edge incident with `1. If that face is equal to f we stop. Otherwise we
continue with that face as we did with f , see Figure 5.4.

1

2
3

4

5

1

2
3

4
5

Figure 5.4: The construction of a mega face in a subdivision of B5. The bijection
between the edges incident with `1 and `2 is indicated by numbers. In grey we
marked a set of the edges whose faces form a mega face.

Eventually, we will come back to the face f . This completes the definition
of the mega face containing f . This defines a mega face as all interior vertices
of these paths have degree two. It is clear from this definition that the mega
faces partition the edges of Bm. Since o is a Bm-cycle, these mega-faces are also
mega-faces of C and the cycle o is a boundary component of each of them. It
is straightforward to check that these mega-faces are monotone at o.

It suffices to show that two of these mega faces have distinct winding number
at o. Suppose not for a contradiction. Then all mega faces have the same
winding number.

We enumerate the mega faces and let K be their total number. The winding
number of a mega face is equal to the number of its traversals of the edge e,
that is, its number of faces that – when considered as edges of Bm – are incident
with `1. So by our assumption, there is a constant W such that all our mega
faces contain precisely W faces incident with e. We enumerate these faces in a
subordering of the mega face. More precisely, by f [k,w] we denote the k-th face
incident with e on the w-th mega face, where k and w are in the cyclic groups
ZK and ZW , respectively.

We will derive a contradiction by constructing a rotation system of the link
graph L that is loop planar. Note that it suffices to show how to embed Bm in
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the plane. The paths can clearly be added afterwards. We embed Bm in the
plane such that the rotation system at `1 is f [1, 1], f [2, 1], . . . , f [K, 1], f [1, 2],
f [2, 2], . . . , f [K, 2], f [1, 3], . . . ,. . . , f [K,W ], f [1, 1].

Then the rotation system at `2 is obtained from the that of `1 by replacing
each face f [k,w] by f [k,w + 1] and then reversing. Since this shift operation
keeps this particular cyclic ordering invariant, the rotation systems at `1 and `2
are reverse. So this defines a loop planar embedding of Bm. Hence L has a loop
planar rotation system. This is the desired contradiction to our assumption.
Hence two mega faces must have a different winding number. So C contains a
torus crossing obstruction.

Next we define ‘stretched out’. This is a technical condition, which used only
once in the argument, namely in the proof of Lemma 5.3.3 below. A simplicial
complex is stretched out if

1. every edge incident with only two faces has an endvertex that is incident
with precisely four faces;

2. if the link graph at a vertex v is obtained from a subdivision of a 3-
connected graph or Bm by attaching paths, then no such path is attached
at a subdivision vertex.

A path in a simplicial complex C is a Bm-path if

1. the link graphs at all interior vertices of P are subdivisions of graphs of
the form Bk for some k ≥ 3 plus possibly some attached paths;

2. the link graphs at the two endvertices of P are subdivisions of 3-connected
graphs plus possibly some attached paths.

Lemma 5.3.3. Let C be a stretched out simplicial complex3 with a Bm-path P .
Then the complex C ′ obtained from C by contracting all edges of the path P has
at most one loop which is incident with more than one face.

Proof. Let v and w be the endvertices of the path P . Since C is a simplicial
complex, there is at most one edge between v and w. Our aim is to show that
any other loop of C ′ is only incident with a single face.

So let e be a loop of C ′ such that in C the edge e has an endvertex u different
from v and w. As e is a loop in C ′, both endvertices of e in C are on P . Thus
the vertex u is an interior vertex of P . So the link graph L(u) at u is obtained
from a subdivision of Bm with m ≥ 3 by attaching paths. Since C is stretched
out, these paths can only be attached at the two vertices of Bm at degree at
least three. As e is not on P , in the link graph L(u) it is a vertex of degree at
most two. Since in the simplicial complex C every vertex of P is incident with
more than four faces, and e has both endvertices on P , no endvertex of e can be
incident with four faces. Since C is stretched out, the edge e cannot be incident
with two faces. Thus e has degree one in L(u). That is, e is incident with only
a single face in C.

3In this chapter we follow the convention that every edge of a simplicial complex is incident
with some face.
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A graph is almost 3-connected if it is obtained from a 3-connected graph or
Bm by subdividing edges and by attaching paths at some of the vertices. Note
that since we allow m to be equal to two, all cycles are almost 3-connected. A
simplicial complex is locally almost 3-connected if all its link graphs are almost
3-connected.

Theorem 5.3.4. Let C be a simplicial complex that is locally almost 3-connected
and stretched out. The following are equivalent.

� C has a planar rotation system;

� C has no space minor in Z ∪ T .

As a preparation for the proof of Theorem 5.3.4, we prove the following
analogue of Lemma 1.5.1.

Lemma 5.3.5. Let C be a simplicial complex that is locally almost 3-connected.
Then C has a planar rotation system unless

1. C is not locally planar;

2. there is a Bm-path P such that C/P is not locally planar at the vertex P ;

3. the contraction C/(o − e) is not locally planar, where o is a cycle and e
is an edge of o and either o is chordless and not a loop or else o is a
Bm-cycle.

Proof. For simplicity, we first give a proof, where we strengthen the assumption
of ‘locally almost 3-connectedness’ to ‘ all of whose link graphs are subdivisions
of either 3-connected graphs or graphs of the form Bm’. We stress that we allow
that m = 2, which allows the link graphs to be cycles of arbitrary length.

We obtain H from the 1-skeleton of C by deleting all edges of C that are
incident with precisely two faces. In order to show that C has a planar rotation
system it suffices to construct for each connected component H ′ of H a rotation
system of C that is planar at all vertices of H ′. Indeed, since the rotators at
vertices of degree two are unique, we can combine these rotation systems for
the different components of H to a planar rotation system of C. We call such a
rotation system planar at H ′. So now let H ′ be a connected component of H.

First assume that H ′ just consists of a single vertex. Either C has a rotation
system that is planar at H ′ or the link graph of C at the single vertex of H ′ is
not loop planar. That is, we have the first outcome of the lemma.

Next assume that all link graphs at vertices of H ′ are subdivisions of Bm.
Since we may assume that H ′ contains at least two vertices, m is at least three
and each vertex of H ′ is incident with precisely two edges (which are the branch-
ing vertices in its link graph). So the connected graph H ′ is a cycle o. In fact,
it is a Bm-cycle. Similarly as Lemma 1.3.2 one proves that there is a rotation
system planar at H ′ unless there is an edge e of o such that C/(o − e) is not
loop planar at o− e. That is, we have the third outcome of the lemma.
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Thus we may assume that H ′ contains a vertex whose link graph is a sub-
division of a 3-connected graph. Let W be the set of vertices of H ′ whose link
graphs are subdivisions of a graph Bm. We shall prove by induction on the size
of W that there is a rotation system planar at H ′. Since this induction involves
contractions of edges and the class of simplicial complexes is not closed under
contractions, we work inside the slightly larger class of 3-bounded 2-complexes,
see Chapter 1. The base case is proved as Lemma 1.5.1 (There is a slight shift
of language. Instead of ‘C/e is not loop planar at e’ we say in the more general
context of this proof that ‘e is a Bm-path without interior vertices satisfying
2’).

Now assume that we constructed for all H ′ with smaller sets W rotation
systems that are planar at H ′. By the base case, W contains a vertex w, which
has degree two in H ′. Let x be an edge of H ′ incident with w. Clearly the
3-bounded 2-complex C/x has one vertex less whose link graph is of the form
Bm in the component H ′/x. Similarly as Lemma 1.3.2 one proves that C/x
has a rotation system planar at H ′/x if and only if C has a rotation system
planar at H ′.4 So we can apply the induction hypothesis. That is, there is a
rotation system planar at H ′ or there is some vertex v of H ′/x such that one of
C/x, C/(P + x) or C/(o− e+ x) is not planar at v (with P , o and e as in the
statement of Lemma 5.3.5).

If C is not locally planar, or P is a Bm-path in C satisfying 2 of Lemma 5.3.5
or o is a cycle in C satisfying 3, we are done. Hence we may assume that w
is contracted onto v in H ′/x and that the vertex w has not degree one in the
contraction set x, P + x or o − e + x, respectively, since the link graph at w
is of the form Bm and so whether we contract x or not would then not affect
whether 1, 2 or 3 is satisfied. So w is incident with an edge aside from x in the
contraction set. Since x is a serial edge of H ′, it cannot be in parallel to any
edge of P or o. Hence P +x is a Bm-path or o+x is a cycle, respectively. So we
have outcome 2 or 3. This completes the induction step. Hence by induction
there is a rotation system planar at H ′.

Having finished the proof under the stronger assumption that all link graphs
are subdivisions of either 3-connected graphs or graphs of the form Bm, we
now explain how this proof can be modified to give a proof under the weaker
assumption that all link graphs are almost 3-connected. That is, they are of the
above form with some paths attached to some of the vertices.

The proof is the same except that we make the following more general def-
inition of the graph H. Given a face f incident with an edge e, we say that f
is proper at e if in both link graphs containing e the unique edge corresponding
to f is not contained in any attached path. We obtain H from the 1-skeleton
of C by deleting all edges e that are incident with less than three faces proper
at e.

Proof of Theorem 5.3.4. By Lemma 5.3.2 we may assume that C has no Bm-
cycle o such that for some edge e of o the contraction C/(o − e) is not loop

4Lemma 1.3.2 proves this statement if C = H′. The proof of the more general statement
needed here can be proved precisely the same way as Lemma 1.3.2.
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planar at the vertex o− e.
Next we treat the case that C has a Bm-path P such that the link graph

L(P ) of C/P at P is not loop planar. Let e be a loop of C/P such that there
is a single face f incident with e. Then e is incident with the vertex P . Since
L(P ) is a connected graph the face f can only be incident with a single loop
of C/P . In particular, there are only two edges of L(P ) corresponding to f
and their endvertices corresponding to the loop e have degree one. Let L′ be
the graph obtained from L(P ) by deleting all such faces. As L(P ) is not loop
planar, also L′ is not loop planar. Moreover, L′ is the link graph in the complex
C ′ obtained from C/P by deleting all faces f such that there is a loop of C/P
that is only incident with f . By Lemma 5.3.3, C ′ has at most one loop. Hence
by Lemma 1.7.4 or Lemma 1.7.7 C ′ has a space minor that is a generalised cone
or a looped generalised cone that is not loop planar at its top, respectively. In
the first case we deduce by Lemma 1.7.6 that C ′ has a space minor in Z1. In
the second case we deduce similarly as in the last paragraph of the proof of
Theorem 1.7.9 that C ′ has a space minor in Z2.

Having treated the above cases the rest of the proof of Theorem 5.3.4 is
analogue to the proof of Theorem 1.7.9 except that we refer to Lemma 5.3.5
instead of Lemma 1.5.1.

5.4 Streching local 1-separators

Given a simplicial complex C with a vertex v and an edge e incident with v that
is a cutvertex of the link graph L(v), the simplicial complex C1 obtained from
C by stretching e at v is defined as follows, see Figure 5.2.

Let ∆n be the simplicial complex obtained by gluing n triangles together at
a single edge, see Figure 5.5.

ē

Figure 5.5: The simplicial complex ∆4 with the gluing edge labelled ē.

Informally, we obtain C1 from C by replacing the edge e by ∆n, where n is
the number of components of L(v) − e. More precisely, the simplicial complex
C1 is defined as follows. We denote the gluing edge of ∆n by ē. We label the
vertices of ∆n not incident with ē by the components of L(v)−e. The vertex set
of C1 is the vertex set of C together with these new vertices for the components
of L(v) − e. In our notation we suppress a bijection between the endvertices
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of e in C and the endvertices of ē in ∆n and will treat them as identical. The
edge set of C1 is that of C with e replaced by the edges of ∆n. The incidences
between vertices and edges are as in C or ∆n except that an edge x of C − e
incident with v is now instead incident with the vertex of ∆n corresponding to
the component containing x.

The faces of C1 are the faces of C together with the faces of ∆n. Let w be
the endvertex of e different from v. The incidences between edges and faces are
as in C or ∆n except that a face f that is incident with e in C now is incident
an edge of ∆n; more precisely, it is the edge wx, where x is the component of
L(v)− e such that in L(v) the edge f joins v with a vertex of x. This completes
the definition of stretching e at v.

Note that the link graph at w of C is obtained from the link graph at w in
C1 by contracting all edges incident with the vertex ē.

For the rest of this section, we fix a simplicial complex C with a vertex v
and an edge e incident with v that is a cutvertex of the link graph L(v). Let C1

be obtained from C by stretching e at v.

Lemma 5.4.1. C embeds in 3-space if and only if C1 embeds in 3-space.

Proof sketch. This follows from combining the following two simple facts.

1. Let C be a simplicial complex and e be an edge of C that is not a loop.
Then C is embeddable in 3-space if and only if C/e is;

2. let C be a simplicial complex with a face f just consisting of the two edges
e1 and e2. If C is embeddable in 3-space, then so is the contraction5 C/f .
Conversely, if C/f is embeddable in 3-space such that the faces incident
with e1 form an interval in the cyclic orientation of the edge of C/f that
corresponds to f , then also C is embeddable in 3-space.

Indeed, we obtain C from C ′ by first contracting all edges incident with the
new endvertex of ē and then contracting all faces of ∆n.

Lemma 5.4.2. C is simply connected if and only if C1 is simply connected.

Proof sketch. It is easy to derive this lemma from the fact that C can be ob-
tained from C1 by contracting edges that are not loops and contracting faces of
size two in the sense of Chapter 1.

A graph is almost 2-connected if it is obtained from a 2-connected graph by
attaching paths at some of the vertices. A simplicial complex is locally almost
2-connected if all its link graphs are almost 2-connected.

Lemma 5.4.3. To any locally connected simplicial complex C we can apply
stretchings at edges such that the resulting simplicial complex is locally almost
2-connected.

5The contraction C/f is obtained from C by identifying the two edges e1 and e2 along f ,
see Chapter 1. The new edge is labelled f .
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Proof. We prove this by induction on the number of vertices of C whose link
graph is not almost 2-connected. We may assume that there is a vertex v whose
link graph is not almost 2-connected. We consider the block-cutvertex tree of
the link graph L(v) and successively stretch C at all edges that are cutvertices
of L(v). If e is such an edge an w is the endvertex of e different from w, it is
straightforward to check that if L(w) is almost 2-connected, the same is true
after the stretching. Thus the resulting simplicial complex has one vertex less
whose link graph is not almost 2-connected. Hence we can apply induction.

The lemmas of this section cumulate in the following.

Theorem 5.4.4. For any locally connected simplicial complex C, there is a
stretching C1 of C that is locally almost 2-connected such that C embeds in
3-space if and only if C1 embeds in 3-space.

Moreover C is simply connected if and only if C1 is simply connected.

Proof. We construct C1 as in Lemma 5.4.3. By Lemma 5.4.1, C embeds in
3-space if and only if C1 embeds in 3-space. By Lemma 5.4.2, C is simply
connected if and only if C1 is simply connected.

5.5 Streching local 2-separators

This section is analogue to Section 5.4 but in parts slightly more complicated. A
2-separator6 in a (multi-) graph L is a pair of vertices (a, b) such that L− a− b
has at least two proper7 components or else only one proper component and
at least two edges between the vertices a and b. In the later case we call the
2-separator artificial.

Given a simplicial complex C with a vertex v and 2-separator (a, b) of the
link graph L(v), the simplicial complex C2 obtained from C by stretching {a, b}
at v is defined as follows, see Figure 5.3.

Let ∆+
n be the simplicial complex obtained by gluing n copies of ∆2 together

at a path of length 2 whose endvertices have degree two in ∆2 (this is uniquely
defined up to isomorphism), see Figure 5.6.

Informally, we obtain C2 from C by replacing the edges a and b by ∆+
n ,

where n is the number of proper components of L(v) − a − b. More precisely,
the simplicial complex C2 is defined as follows. We denote the gluing edges
of ∆+

n by ā and b̄. We label the vertices of ∆+
n incident with neither ā nor b̄

by the proper components of L(v) − a − b. The vertex set of C2 is that of C
together with these new vertices for the proper components of L(v)− a− b. In
our notation we suppress a bijection between the endvertices of a in C and the
endvertices of ā in ∆+

n and will treat them as identical. Similarly, we suppress
a bijection between the endvertices of b and b̄. Both these bijections agree at
the common endvertex v of a and b.

6To be very precise, if the graph only consists of the two vertices a and b and has at least
three edges in parallel, then (a, b) is also a 2-separator. However all 2-separators we consider
in this chapter will be within graphs of at least three vertices.

7A component K of L(v)− a− b is proper if it has both a and b as a neighbour.
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ā b̄

Figure 5.6: The simplicial complex ∆+
3 with the gluing edges labelled ā and b̄.

The edge set of C2 is that of C with a and b replaced by the edges of ∆+
n .

The incidences between vertices and edges are as in C or ∆+
n except that an edge

x of C incident with v is incident with the vertex for the (proper) component
of L(v)− a− b that contains x.

The faces of C2 are the faces of C together with the faces of ∆+
n . The

incidences between edges and faces are as in C or ∆+
n except that a face f that

is incident with precisely one of a or b in C now is incident with an edge of ∆+
n ;

more precisely, if f is incident with a, then in C2 it is incident with the edge
wax, where wa is the endvertex of a different from v and x is the component
of L(v) − a − b such that in L(v) the edge f joins a with a vertex of x. If f is
incident with b this is defined the same with ‘b’ in place of ‘a’. This completes
the definition of stretching a 2-separator at a vertex.

Let wa be the endvertex of a different from v. The link graph at wa of C
is obtained from the link graph at wa in C2 by contracting all edges incident
with the vertex ā. Note that wa cannot be incident with b as C is a simplicial
complex.

For the rest of this section, we fix a simplicial complex C with a vertex
v and edges a and b incident with v such that L(v) − a − b has at least two
proper components. Let C2 be obtained from C by stretching {a, b} at v. The
following two lemmas are proved analogously to Lemma 5.4.1 and Lemma 5.4.2,
respectively.

Lemma 5.5.1. C embeds in 3-space if and only if C2 embeds in 3-space.

Lemma 5.5.2. C is simply connected if and only if C2 is simply connected.

Observation 5.5.3. If C is locally almost 2-connected, then so is C ′.

Lemma 5.5.4. To any locally almost 2-connected simplicial complex C we can
apply stretching at pairs of edges such that the resulting simplicial complex is
locally almost 3-connected.

Remark 5.5.5. The proof idea of this lemma is quite simple. If a simplicial
complex C has a link graph that is not of the desired type, then we find a suitable
2-separation of that link graph. Then we stretch C along that 2-separator. In
order to finish the argument, it suffices to define a way in which this new graph
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is smaller than C and apply induction. Our definition of such a parameter is
quite technical; the first part of our proof defines it.

Proof of Lemma 5.5.4. We shall prove this by induction. First we need some
definitions in order to define the parameter we would like to apply induction on.
We denote by ≤lex the lexicographical ordering on the set of finite sequences
of natural numbers that are at least three. An example of such a sequence is
an (abbreviated) degree sequence of a graph G: a sequence of the numbers of
vertex degrees of G that are at least three. Here we allow multiplicities. We
denote the degree sequence of a (labelled) graph G by γ(G). In this proof the
ordering of the sequence will not matter: in a slight abuse of grammar, we shall
be talking about ‘the’ degree sequence of an unlabelled graph. We denote by ≤
the lexicographical ordering on the multi-set8 of finite sets of finite decreasing
sequences. That is: given two such finite multi-set X and Y . If the ≤lex-largest
element of X is strictly smaller than the ≤lex-largest element of Y , then X ≤ Y .
Otherwise we compare the second largest elements and so forth.

An example of such a multi-set is the multi-set of degree sequences of link
graphs of a simplicial complex C (ordered by ≤lex). We denote that parameter
by β(C). Now let C be a locally almost 2-connected simplicial complex and
assume by induction that we already proved the lemma for all locally almost
2-connected simplicial complexes C ′ with β(C ′) < β(C). If all link graphs of
C are almost 3-connected, we are done. Hence we may assume that there is a
vertex v of C whose link graph L(v) is not of that form. Let L1 be the (unique)
2-connected graph obtained from L(v) by deleting paths attached at vertices.
Let L2 be the graph obtained from L1 by suppressing subdivision vertices. By
assumption L2 is neither 3-connected, nor a cycle nor a graph Bn. We apply
the Tutte decomposition to L2. It has a 2-separator {a, b} (we stress that (a, b)
is allowed to be an artificial 2-separator). Then {a, b} is also a 2-separator of
L(v).

Let C ′ be the simplicial complex obtained from C by stretching the pair
{a, b}. By Observation 5.5.3 C ′ is locally almost 2-connected. Our aim is to
show that β(C ′) < β(C) in order to apply induction on β.

We denote the endvertex of a different from v by wa; and the endvertex of b
different from v by wb. Note that wa 6= wb as C is a simplicial complex. Let S
be the multi-set consisting of the degree sequences of the multi-set of link graphs
L(v), L(wa) and L(wb) of C. Let S′ be the multi-set consisting of the degree
sequences of the multi-set of link graphs L′(wa), L′(wb), L(v̄) at the vertices,
wa, wb and v̄, respectively – together with the link graphs L′(K) for a proper
component K of L(v)− a− b.

It suffices to show the following.

Sublemma 5.5.6. β(S′) < β(S).

Proof. Since the link graph L(wa) is obtained from the link graph L′(wa) by
contracting all edges incident with the vertex a, and this can only increase the

8A multi-set is the same as a set except that elements are allowed to be contained with a
multiplicity greater than one.
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abbreviated degree sequence, we have that γ(L′(wa)) ≤ γ(L(wa)); and the same
inequation with ‘b’ in place of ‘a’.

Hence it remains to show that the degree sequences γ(L′(K)) and γ(L′(v̄))
are all strictly less than γ(L(v)).

First we show that γ(L′(v̄)) is strictly less than γ(L(v)). Each of the degrees
of a and b in L′(v̄) are at most their degree in L(v). Furthermore since L2 is not
a graph of the form Bn, L(v) contains a vertex of degree at least three different
from a and b. Thus γ(L′(v̄)) is strictly less than γ(L(v)).

For any proper component K of L(v)− a− b, the graph L′(K) is obtained9

fromK by adding a path of length two between the vertices a and b. So γ(L′(K))
is at most γ(L(v)).

Since L2 is not a graph of the form Bn, each proper component of L2−a− b
contains a vertex of degree at least three. Thus if (a, b) is not artificial, then
each γ(L′(K)) is strictly less than γ(L(v)).

If (a, b) is artificial, it remains to show that the unique proper component
K1 has γ(L′(K1)) strictly less than γ(L(v)). This is clear as a and b have a
strictly smaller degree in L′(K1) than in L(v).

Lemma 5.5.7. Let C be locally almost 3-connected simplicial complex. Then
there is a stretching of C that has additionally the property that it is stretched
out.

Proof. Assume there is a vertex v of C such that the link graph L(v) is obtained
from a subdivision of a 3-connected graph or of a graph Bm by attaching paths
at some subdivision vertex u. Then we stretch the two edges of C that are
neighbours of u in the subdivision. This reduces the total number of such
vertices u and clearly preserves being locally almost 3-connected. Hence we
may assume that C has no such vertex u.

Assume that C has an edge e only incident with two faces and that both
endvertices of that face are incident with more than four faces. Then we pick an
endvertex v of e arbitrarily and stretch at v the two edges incident with v that
share faces with e. This reduces the total number of such edges e and preserves
all the above properties of C. Hence there is a stretching of C that is locally
almost 3-connected and stretched out.

The lemmas of this section cumulate in the following.

Theorem 5.5.8. For any locally almost 2-connected simplicial complex C, there
is a stretching C2 of C that is locally almost 3-connected and stretched out such
that C embeds in 3-space if and only if C2 embeds in 3-space.

Moreover C is simply connected if and only if C2 is simply connected.

Proof. We construct C ′2 as in Lemma 5.5.4. Applying Lemma 5.5.7 to C ′2 yields
a simplicial complex C2 that is locally almost 3-connected and stretched out.

9Here we suppress a bijection between the vertex sets of these two graphs.
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By Lemma 5.5.1, C embeds in 3-space if and only if C2 embeds in 3-space. By
Lemma 5.5.2, C is simply connected if and only if C2 is simply connected.

Proof of Theorem 5.2.2. Combine Theorem 5.4.4 and Theorem 5.5.8.

Proof of Theorem 5.2.1. By Lemma 2.6.1 and Lemma 2.6.2 it suffices to prove
Theorem 5.2.1 for simply connected simplicial complexes that are locally con-
nected. So it follows by combining Theorem 5.3.4, Theorem 5.2.2 and Theo-
rem 2.2.1.
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Part II

Infinite graphs
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Chapter 6

Edge-disjoint double rays in
infinite graphs: a Halin
type result

6.1 Abstract

We show that any graph that contains k edge-disjoint double rays for any k ∈ N
contains also infinitely many edge-disjoint double rays. This was conjectured
by Andreae in 1981.

6.2 Introduction

We say a graph G has arbitrarily many vertex-disjoint H if for every k ∈ N there
is a family of k vertex-disjoint subgraphs of G each of which is isomorphic to H.
Halin’s Theorem says that every graph that has arbitrarily many vertex-disjoint
rays, also has infinitely many vertex-disjoint rays [43]. In 1970 he extended this
result to vertex-disjoint double rays [46]. Jung proved a strengthening of Halin’s
Theorem where the initial vertices of the rays are constrained to a certain vertex
set [61].

We look at the same questions with ‘edge-disjoint’ replacing ‘vertex-disjoint’.
Consider first the statement corresponding to Halin’s Theorem. It suffices to
prove this statement in locally finite graphs, as each graph with arbitrarily many
edge-disjoint rays contains a locally finite union of tails of these rays. But the
statement for locally finite graphs follows from Halin’s original Theorem applied
to the line-graph.

This reduction to locally finite graphs does not work for Jung’s Theorem or
for Halin’s statement about double rays. Andreae proved an analog of Jung’s
Theorem for edge-disjoint rays in 1981, and conjectured that a Halin-type The-
orem would be true for edge-disjoint double rays [7]. Our aim in the current
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chapter is to prove this conjecture.
More precisely, we say a graph G has arbitrarily many edge-disjoint H if for

every k ∈ N there is a family of k edge-disjoint subgraphs of G each of which is
isomorphic to H, and our main result is the following.

Theorem 6.2.1. Any graph that has arbitrarily many edge-disjoint double rays
has infinitely many edge-disjoint double rays.

Even for locally finite graphs this theorem does not follow from Halin’s anal-
ogous result for vertex-disjoint double rays applied to the line graph. For ex-
ample a double ray in the line graph may correspond, in the original graph, to
a configuration as in Figure 6.1.

Figure 6.1: A graph that does not include a double ray but whose line graph
does.

A related notion is that of ubiquity. A graph H is ubiquitous with respect to
a graph relation ≤ if nH ≤ G for all n ∈ N implies ℵ0H ≤ G, where nH denotes
the disjoint union of n copies of H. For example, Halin’s Theorem says that rays
are ubiquitous with respect to the subgraph relation. It is known that not every
graph is ubiquitous with respect to the minor relation [8], nor is every locally
finite graph ubiquitous with respect to the subgraph relation [65, 101], or even
the topological minor relation [8, 9]. However, Andreae has conjectured that
every locally finite graph is ubiquitous with respect to the minor relation [8].
For more details see [9]. In Section 6.7 (the outlook) we introduce a notion
closely related to ubiquity.

The proof is organised as follows. In Section 6.4 we explain how to deal
with the cases that the graph has infinitely many ends, or an end with infinite
vertex-degree. In Section 6.5 we consider the ‘two ended’ case: That in which
there are two ends ω and ω′ both of finite vertex-degree, and arbitrarily many
edge-disjoint double rays from ω to ω′.

The only remaining case is the ‘one ended’ case: That in which there is a
single end ω of finite vertex-degree and arbitrarily many edge-disjoint double
rays from ω to ω. One central idea in the proof of this case is to consider 2-
rays instead of double rays. Here a 2-ray is a pair of vertex-disjoint rays. For
example, from each double ray one obtains a 2-ray by removing a finite path.
The remainder of the proof is subdivided into two parts: In Subsection 6.6.3
we show that if there are arbitrarily many edge-disjoint 2-rays into ω, then
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there are infinitely many such 2-rays. In Subsection 6.6.2 we show that if there
are infinitely many edge-disjoint 2-rays into ω, then there are infinitely many
edge-disjoint double rays from ω to ω.

We finish by discussing the outlook and mentioning some open problems.

6.3 Preliminaries

All our basic notation for graphs is taken from [35]. In particular, two rays in a
graph are equivalent if no finite set separates them. The equivalence classes of
this relation are called the ends of G. We say that a ray in an end ω converges
to ω. A double ray converges to all the ends of which it includes a ray.

6.3.1 The structure of a thin end

It follows from Halin’s Theorem that if there are arbitrarily many vertex-disjoint
rays in an end of G, then there are infinitely many such rays. This fact motivated
the central definition of the vertex-degree of an end ω: the maximal cardinality
of a set of vertex-disjoint rays in ω.

An end is thin if its vertex-degree is finite, and otherwise it is thick. A pair
(A,B) of edge-disjoint subgraphs of G is a separation of G if A ∪ B = G. The
number of vertices of A ∩B is called the order of the separation.

Definition 6.3.1. Let G be a locally finite graph and ω a thin end of G. A
countable infinite sequence ((Ai, Bi))i∈N of separations of G captures ω if for all
i ∈ N

� Ai ∩Bi+1 = ∅,

� Ai+1 ∩Bi is connected,

�

⋃
i∈NAi = G,

� the order of (Ai, Bi) is the vertex-degree of ω, and

� each Bi contains a ray from ω.

Lemma 6.3.2. Let G be a locally finite graph with a thin end ω. Then there is
a sequence that captures ω.

Proof. Without loss of generality G is connected, and so is countable. Let
v1, v2, . . . be an enumeration of the vertices of G. Let k be the vertex-degree
of ω. Let R = {R1, . . . , Rk} be a set of vertex-disjoint rays in ω and let S be the
set of their start vertices. We pick a sequence ((Ai, Bi))i∈N of separations and
a sequence (Ti) of connected subgraphs recursively as follows. We pick (Ai, Bi)
such that S is included in Ai, such that there is a ray from ω included in Bi, and
such that Bi does not meet

⋃
j<i Tj or {vj | j ≤ i}: subject to this we minimise

the size of the set Xi of vertices in Ai ∩Bi. Because of this minimization Bi is
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connected and Xi is finite. We take Ti to be a finite connected subgraph of Bi
including Xi. Note that any ray that meets all of the Bi must be in ω.

By Menger’s Theorem [35] we get for each i ∈ N a set Pi of vertex-disjoint
paths from Xi to Xi+1 of size |Xi|. From these, for each i we get a set of |Xi|
vertex-disjoint rays in ω. Thus the size of Xi is at most k. On the other hand
it is at least k as each ray Rj meets each set Xi.

Assume for contradiction that there is a vertex v ∈ Ai ∩ Bi+1. Let R be a
ray from v to ω inside Bi+1. Then R must meet Xi, contradicting the definition
of Bi+1. Thus Ai ∩Bi+1 is empty.

Observe that
⋃Pi ∪ Ti is a connected subgraph of Ai+1 ∩Bi containing all

vertices of Xi and Xi+1. For any vertex v ∈ Ai+1 ∩ Bi there is a v–Xi+1 path
P in Bi. P meets Bi+1 only in Xi+1. So P is included in Ai+1 ∩ Bi. Thus
Ai+1 ∩Bi is connected. The remaining conditions are clear.

Remark 6.3.3. Every infinite subsequence of a sequence capturing ω also cap-
tures ω.

The following is obvious:

Remark 6.3.4. Let G be a graph and v, w ∈ V (G) If G contains arbitrarily
many edge-disjoint v–w paths, then it contains infinitely many edge-disjoint
v–w paths.

We will need the following special case of the theorem of Andreae mentioned
in the Introduction.

Theorem 6.3.5 (Andreae [7]). Let G be a graph and v ∈ V (G). If there are
arbitrarily many edge-disjoint rays all starting at v, then there are infinitely
many edge-disjoint rays all starting at v.

6.4 Known cases

Many special cases of Theorem 6.2.1 are already known or easy to prove. For
example Halin showed the following.

Theorem 6.4.1 (Halin). Let G be a graph and ω an end of G. If ω contains
arbitrarily many vertex-disjoint rays, then G has a half-grid as a minor.

Corollary 6.4.2. Any graph with an end of infinite vertex-degree has infinitely
many edge-disjoint double rays.

Another simple case is the case where the graph has infinitely many ends.

Lemma 6.4.3. A tree with infinitely many ends contains infinitely many edge-
disjoint double rays.

Proof. It suffices to show that every tree T with infinitely many ends contains a
double ray such that removing its edges leaves a component containing infinitely
many ends, since then one can pick those double rays recursively.
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There is a vertex v ∈ V (T ) such that T − v has at least 3 components
C1, C2, C3 that each have at least one end, as T contains more than 2 ends. Let
ei be the edge vwi with wi ∈ Ci for i ∈ {1, 2, 3}. The graph T \ {e1, e2, e3} has
precisely 4 components (C1, C2, C3 and the one containing v), one of which, D
say, has infinitely many ends. By symmetry we may assume that D is neither
C1 nor C2. There is a double ray R all whose edges are contained in C1 ∪C2 ∪
{e1, e2}. Removing the edges of R leaves the component D, which has infinitely
many ends.

Corollary 6.4.4. Any connected graph with infinitely many ends has infinitely
many edge-disjoint double rays.

6.5 The ‘two ended’ case

Using the results of Section 6.4 it is enough to show that any graph with only
finitely many ends, each of which is thin, has infinitely many edge-disjoint double
rays as soon as it has arbitrarily many edge-disjoint double rays. Any double
ray in such a graph has to join a pair of ends (not necessarily distinct), and there
are only finitely many such pairs. So if there are arbitrarily many edge-disjoint
double rays, then there is a pair of ends such that there are arbitrarily many
edge-disjoint double rays joining those two ends. In this section we deal with
the case where these two ends are different, and in Section 6.6 we deal with the
case that they are the same. We start with two preparatory lemmas.

Lemma 6.5.1. Let G be a graph with a thin end ω, and let R ⊆ ω be an
infinite set. Then there is an infinite subset of R such that any two of its
members intersect in infinitely many vertices.

Proof. We define an auxilliary graph H with V (H) = R and an edge between
two rays if and only if they intersect in infinitely many vertices. By Ramsey’s
Theorem either H contains an infinite clique or an infinite independent set of
vertices. Let us show that there cannot be an infinite independent set in H. Let
k be the vertex-degree of ω: we shall show that H does not have an independent
set of size k + 1. Suppose for a contradiction that X ⊆ R is a set of k + 1 rays
that is independent in H. Since any two rays in X meet in only finitely many
vertices, each ray in X contains a tail that is disjoint to all the other rays in X.
The set of these k+ 1 vertex-disjoint tails witnesses that ω has vertex-degree at
least k + 1, a contradiction. Thus there is an infinite clique K ⊆ H, which is
the desired infinite subset.

Lemma 6.5.2. Let G be a graph consisting of the union of a set R of infinitely
many edge-disjoint rays of which any pair intersect in infinitely many vertices.
Let X ⊆ V (G) be an infinite set of vertices, then there are infinitely many
edge-disjoint rays in G all starting in different vertices of X.

Proof. If there are infinitely many rays in R each of which contains a different
vertex from X, then suitable tails of these rays give the desired rays. Otherwise
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there is a ray R ∈ R meeting X infinitely often. In this case, we choose the
desired rays recursively such that each contains a tail from some ray in R−R.
Having chosen finitely many such rays, we can always pick another: we start at
some point in X on R which is beyond all the (finitely many) edges on R used
so far. We follow R until we reach a vertex of some ray R′ in R−R whose tail
has not been used yet, then we follow R′.

Lemma 6.5.3. Let G be a graph with only finitely many ends, all of which are
thin. Let ω1, ω2 be distinct ends of G. If G contains arbitrarily many edge-
disjoint double rays each of which converges to both ω1 and ω2, then G contains
infinitely many edge-disjoint double rays each of which converges to both ω1 and
ω2.

Proof. For each pair of ends, there is a finite set separating them. The finite
union of these finite sets is a finite set S ⊆ V (G) separating any two ends of G.
For i = 1, 2 let Ci be the component of G− S containing ωi.

There are arbitrarily many edge-disjoint double rays from ω1 to ω2 that
have a common last vertex v1 in S before staying in C1 and also a common last
vertex v2 in S before staying in C2. Note that v1 may be equal to v2. There are
arbitrarily many edge-disjoint rays in C1+v1 all starting in v1. By Theorem 6.3.5
there is a countable infinite set R1 = {Ri1 | i ∈ N} of edge-disjoint rays each
included in C1 + v1 and starting in v1. By replacing R1 with an infinite subset
of itself, if necessary, we may assume by Lemma 6.5.1 that any two members of
R1 intersect in infinitely many vertices. Similarly, there is a countable infinite
set R2 = {Ri2 | i ∈ N} of edge-disjoint rays each included in C2 +v2 and starting
in v2 such that any two members of R2 intersect in infinitely many vertices.

Let us subdivide all edges in
⋃R1 and call the set of subdivision vertices

X1. Similarly, we subdivide all edges in
⋃R2 and call the set of subdivision

vertices X2. Below we shall find double rays in the subdivided graph, which
immediately give rise to the desired double rays in G.

Suppose for a contradiction that there is a finite set F of edges separating
X1 from X2. Then vi has to be on the same side of that separation as Xi

as there are infinitely many vi–Xi edges. So F separates v1 from v2, which
contradicts the fact that there are arbitrarily many edge-disjoint double rays
containing both v1 and v2. By Remark 6.3.4 there is a set P of infinitely many
edge-disjoint X1–X2 paths. As all vertices in X1 and X2 have degree 2, and by
taking an infinite subset if necessary, we may assume that each end-vertex of a
path in P lies on no other path in P.

By Lemma 6.5.2 there is an infinite set Y1 of start-vertices of paths in P
together with an infinite set R′1 of edge-disjoint rays with distinct start-vertices
whose set of start-vertices is precisely Y1. Moreover, we can ensure that each
ray in R′1 is included in

⋃R1. Let Y2 be the set of end-vertices in X2 of those
paths in P that start in Y1. Applying Lemma 6.5.2 again, we obtain an infinite
set Z2 ⊆ Y2 together with an infinite set R′2 of edge-disjoint rays included in⋃R2 with distinct start-vertices whose set of start-vertices is precisely Z2.

For each path P in P ending in Z2, there is a double ray in the union of
P and the two rays from R′1 and R′2 that P meets in its end-vertices. By
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construction, all these infinitely many double rays are edge-disjoint. Each of
those double rays converges to both ω1 and ω2, since each ωi is the only end
in Ci.

Remark 6.5.4. Instead of subdividing edges we also could have worked in the
line graph of G. Indeed, there are infinitely many vertex-disjoint paths in the
line graph from

⋃R1 to
⋃R2.

6.6 The ‘one ended’ case

We are now going to look at graphs G that contain a thin end ω such that
there are arbitrarily many edge-disjoint double rays converging only to the end
ω. The aim of this section is to prove the following lemma, and to deduce
Theorem 6.2.1.

Lemma 6.6.1. Let G be a countable graph and let ω be a thin end of G. Assume
there are arbitrarily many edge-disjoint double rays all of whose rays converge
to ω. Then G has infinitely many edge-disjoint double rays.

We promise that the assumption of countability will not cause problems
later.

6.6.1 Reduction to the locally finite case

A key notion for this section is that of a 2-ray. A 2-ray is a pair of vertex-disjoint
rays. For example, from each double ray one obtains a 2-ray by removing a finite
path.

In order to deduce that G has infinitely many edge-disjoint double rays,
we will only need that G has arbitrarily many edge-disjoint 2-rays. In this
subsection, we illustrate one advantage of 2-rays, namely that we may reduce
to the case where G is locally finite.

Lemma 6.6.2. Let G be a countable graph with a thin end ω. Assume there is
a countable infinite set R of rays all of which converge to ω.

Then there is a locally finite subgraph H of G with a single end which is thin
such that the graph H includes a tail of any R ∈ R.

Proof. Let (Ri | i ∈ N) be an enumeration of R. Let (vi | i ∈ N) be an enumer-
ation of the vertices of G. Let Ui be the unique component of G \ {v1, . . . , vi}
including a tail of each ray in ω.

For i ∈ N, we pick a tail R′i of Ri in Ui. Let H1 =
⋃
i∈NR

′
i. Making use

of H1, we shall construct the desired subgraph H. Before that, we shall collect
some properties of H1.

As every vertex of G lies in only finitely many of the Ui, the graph H1 is
locally finite. Each ray in H1 converges to ω in G since H1 \ Ui is finite for
every i ∈ N. Let Ψ be the set of ends of H1. Since ω is thin, Ψ has to be finite:
Ψ = {ω1, . . . , ωn}. For each i ≤ n, we pick a ray Si ⊆ H1 converging to ωi.
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Now we are in a position to construct H. For any i > 1, the rays S1 and Si
are joined by an infinite set Pi of vertex-disjoint paths in G. We obtain H from
H1 by adding all paths in the sets Pi. Since H1 is locally finite, H is locally
finite.

It remains to show that every ray R in H is equivalent to S1. If R contains
infinitely many edges from the Pi, then there is a single Pi which R meets
infinitely, and thus R is equivalent to S1. Thus we may assume that a tail of R
is a ray in H1. So it converges to some ωi ∈ Ψ. Since Si and S1 are equivalent,
R and S1 are equivalent, which completes the proof.

Corollary 6.6.3. Let G be a countable graph with a thin end ω and arbitrarily
many edge-disjoint 2-rays of which all the constituent rays converge to ω. Then
there is a locally finite subgraph H of G with a single end, which is thin, such
that H has arbitrarily many edge-disjoint 2-rays.

Proof. By Lemma 6.6.2 there is a locally finite graph H ⊆ G with a single end
such that a tail of each of the constituent rays of the arbitrarily many 2-rays is
included in H.

6.6.2 Double rays versus 2-rays

A connected subgraph of a graph G including a vertex set S ⊆ V (G) is a
connector of S in G.

Lemma 6.6.4. Let G be a connected graph and S a finite set of vertices of G.
Let H be a set of edge-disjoint subgraphs H of G such that each connected
component of H meets S. Then there is a finite connector T of S, such that at
most 2|S| − 2 graphs from H contain edges of T .

Proof. By replacing H with the set of connected components of graphs in H, if
necessary, we may assume that each member of H is connected. We construct
graphs Ti recursively for 0 ≤ i < |S| such that each Ti is finite and has at most
|S| − i components, at most 2i graphs from H contain edges of Ti, and each
component of Ti meets S. Let T0 = (S, ∅) be the graph with vertex set S and
no edges. Assume that Ti has been defined.

If Ti is connected let Ti+1 = Ti. For a component C of Ti, let C ′ be the
graph obtained from C by adding all graphs from H that meet C.

As G is connected, there is a path P (possibly trivial) in G joining two of
these subgraphs C ′1 and C ′2 say. And by taking the length of P minimal, we
may assume that P does not contain any edge from any H ∈ H. Then we can
extend P to a C1–C2 path Q by adding edges from at most two subgraphs from
H— one included in C ′1 and the other in C ′2. We obtain Ti+1 from Ti by adding
Q.

T = T|S|−1 has at most one component and thus is connected. And at most
2|S| − 2 many graphs from H contain edges of T . Thus T is as desired.

Let d, d′ be 2-rays. d is a tail of d′ if each ray of d is a tail of a ray of d′.
A set D′ is a tailor of a set D of 2-rays if each element of D′ is a tail of some
element of D but no 2-ray in D includes more than one 2-ray in D′.
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Lemma 6.6.5. Let G be a locally finite graph with a single end ω, which is
thin. Assume that G contains an infinite set D = {d1, d2, . . . } of edge-disjoint
2-rays.

Then G contains an infinite tailor D′ of D and a sequence ((Ai, Bi))i∈N
capturing ω (see Definition 6.3.1) such that there is a family of vertex-disjoint
connectors Ti of Ai ∩Bi contained in Ai+1 ∩Bi, each of which is edge-disjoint
from each member of D′.

Proof. Let k be the vertex-degree of ω. By Lemma 6.3.2 there is a sequence
((A′i, B

′
i))i∈N capturing ω. By replacing each 2-ray in D with a tail of itself if

necessary, we may assume that for all (r, s) ∈ D and i ∈ N either both r and
s meet A′i or none meets A′i. By Lemma 6.6.4 there is a finite connector T ′i of
A′i ∩B′i in the connected graph B′i which meets in an edge at most 2k− 2 of the
2-rays of D that have a vertex in A′i.

Thus, there are at most 2k − 2 2-rays in D that meet all but finitely many
of the T ′i in an edge. By throwing away these finitely many 2-rays in D we
may assume that each 2-ray in D is edge-disjoint from infinitely many of the
T ′i . So we can recursively build a sequence N1, N2, . . . of infinite sets of natural
numbers such that Ni ⊇ Ni+1, the first i elements of Ni are all contained in
Ni+1, and di only meets finitely many of the T ′j with j ∈ Ni in an edge. Then
N =

⋂
i∈NNi is infinite and has the property that each di only meets finitely

many of the T ′j with j ∈ N in an edge. Thus there is an infinite tailor D′ of D
such that no 2-ray from D′ meets any T ′j for j ∈ N in an edge.

We recursively define a sequence n1, n2, . . . of natural numbers by taking
ni ∈ N sufficiently large that B′ni does not meet T ′nj for any j < i . Taking
(Ai, Bi) = (A′ni , B

′
ni) and Ti = T ′ni gives the desired sequences.

Lemma 6.6.6. If a locally finite graph G with a single end ω which is thin
contains infinitely many edge-disjoint 2-rays, then G contains infinitely many
edge-disjoint double rays.

Proof. Applying Lemma 6.6.5 we get an infinite set D of edge-disjoint 2-rays, a
sequence ((Ai, Bi))i∈N capturing ω, and connectors Ti of Ai ∩Bi for each i ∈ N
such that the Ti are vertex-disjoint from each other and edge-disjoint from all
members of D.

We shall construct the desired set of infinitely many edge-disjoint double
rays as a nested union of sets Di. We construct the Di recursively. Assume
that a set Di of i edge-disjoint double rays has been defined such that each of
its members is included in the union of a single 2-ray from D and one connector
Tj . Let di+1 ∈ D be a 2-ray distinct from the finitely many 2-rays used so far.
Let Ci+1 be one of the infinitely many connectors that is different from all the
finitely many connectors used so far and that meets both rays of di+1. Clearly,
di+1 ∪ Ci+1 includes a double ray Ri+1. Let Di+1 = Di ∪ {Ri+1}. The union⋃
i∈NDi is an infinite set of edge-disjoint double rays as desired.
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6.6.3 Shapes and allowed shapes

Let G be a graph and (A,B) a separation of G. A shape for (A,B) is a word
v1x1v2x2 . . . xn−1vn with vi ∈ A∩B and xi ∈ {l, r} such that no vertex appears
twice. We call the vi the vertices of the shape. Every ray R induces a shape
σ = σR(A,B) on every separation (A,B) of finite order in the following way:
Let <R be the natural order on V (R) induced by the ray, where v <R w if
w lies in the unique infinite component of R − v. The vertices of σ are those
vertices of R that lie in A ∩B and they appear in σ in the order given by <R.
For vi, vi+1 the path viRvi+1 has edges only in A or only in B but not in both.
In the first case we put l between vi and vi+1 and in the second case we put r
between vi and vi+1.

Let (A1, B1), (A2, B2) be separations with A1 ∩ B2 = ∅ and thus also A1 ⊆
A2 and B2 ⊆ B1. Let σi be a nonempty shape for (Ai, Bi). The word τ =
v1x1v2 . . . xn−1vn is an allowed shape linking σ1 to σ2 with vertices v1 . . . vn if
the following holds.

� v is a vertex of τ if and only if it is a vertex of σ1 or σ2,

� if v appears before w in σi, then v appears before w in τ ,

� v1 is the initial vertex of σ1 and vn is the terminal vertex of σ2,

� xi ∈ {l,m, r},

� the subword vlw appears in τ if and only if it appears in σ1,

� the subword vrw appears in τ if and only if it appears in σ2,

� vi 6= vj for i 6= j.

Each ray R defines a word τ = τR[(A1, B1), (A2, B2)] = v1x1v2 . . . xn−1vn
with vertices vi and xi ∈ {l,m, r} as follows. The vertices of τ are those vertices
of R that lie in A1 ∩B1 or A2 ∩B2 and they appear in τ in the order given by
<R. For vi, vi+1 the path viRvi+1 has edges either only in A1, only in A2 ∩B1,
or only in B2. In the first case we set xi = l and τ contains the subword vilvi+1.
In the second case we set xi = m and τ contains the subword vimvi+1. In the
third case we set xi = r and τ contains the subword virvi+1.

For a ray R to induce an allowed shape τR[(A1, B1), (A2, B2)] we need at
least that R starts in A2. However, each ray in ω has a tail such that whenever
it meets an Ai it also starts in that Ai. Let us call such rays lefty. A 2-ray is
lefty if both its rays are.

Remark 6.6.7. Let (A1, B1), and (A2, B2) be two separations of finite order
with A1 ⊆ A2, and B2 ⊆ B1. For every lefty ray R meeting A1, the word
τR[(A1, B1), (A2, B2)] is an allowed shape linking σR(A1, B1) and σR(A2, B2).
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From now on let us fix a locally finite graph G with a thin end ω of vertex-
degree k. And let ((Ai, Bi))i∈N be a sequence capturing ω such that each mem-
ber has order k.

A 2-shape for a separation (A,B) is a pair of shapes for (A,B). Every 2-
ray induces a 2-shape coordinatewise in the obvious way. Similarly, an allowed
2-shape is a pair of allowed shapes.

Clearly, there is a global constant c1 ∈ N depending only on k such that
there are at most c1 distinct 2-shapes for each separation (Ai, Bi). Similarly,
there is a global constant c2 ∈ N depending only on k such that for all i, j ∈ N
there are at most c2 distinct allowed 2-shapes linking a 2-shape for (Ai, Bi) with
a 2-shape for (Aj , Bj).

For most of the remainder of this subsection we assume that for every i ∈ N
there is a set Di consisting of at least c1 · c2 · i edge-disjoint 2-rays in G. Our
aim will be to show that in these circumstances there must be infinitely many
edge-disjoint 2-rays.

By taking a tailor if necessary, we may assume that every 2-ray in each Di

is lefty.

Lemma 6.6.8. There is an infinite set J ⊆ N and, for each i ∈ N, a tailor
D′i of Di of cardinality c2 · i such that for all i ∈ N and j ∈ J all 2-rays in D′i
induce the same 2-shape σ[i, j] on (Aj , Bj).

Proof. We recursively build infinite sets Ji ⊆ N and tailors D′i of Di such that
for all k ≤ i and j ∈ Ji all 2-rays in D′k induce the same 2-shape on (Aj , Bj).
For all i ≥ 1, we shall ensure that Ji is an infinite subset of Ji−1 and that the
i− 1 smallest members of Ji and Ji−1 are the same. We shall take J to be the
intersection of all the Ji.

Let J0 = N and let D′0 be the empty set. Now, for some i ≥ 1, assume that
sets Jk and D′k have been defined for all k < i. By replacing 2-rays in Di by
their tails, if necessary, we may assume that each 2-ray in Di avoids A`, where
` is the (i − 1)st smallest value of Ji−1. As Di contains c1 · c2 · i many 2-rays,
for each j ∈ Ji−1 there is a set Sj ⊆ Di of size at least c2 · i such that each
2-ray in Sj induces the same 2-shape on (Aj , Bj). As there are only finitely
many possible choices for Sj , there is an infinite subset Ji of Ji−1 on which Sj
is constant. For D′i we pick this value of Sj . Since each d ∈ D′i induces the
empty 2-shape on each (Ak, Bk) with k ≤ ` we may assume that the first i− 1
elements of Ji−1 are also included in Ji.

It is immediate that the set J =
⋂
i∈N Ji and the D′i have the desired prop-

erty.

Lemma 6.6.9. There are two strictly increasing sequences (ni)i∈N and (ji)i∈N
with ni ∈ N and ji ∈ J for all i ∈ N such that σ[ni, ji] = σ[ni+1, ji] and σ[ni, ji]
is not empty.

Proof. Let H be the graph on N with an edge vw ∈ E(H) if and only if there
are infinitely many elements j ∈ J such that σ[v, j] = σ[w, j].

As there are at most c1 distinct 2-shapes for any separator (Ai, Bi), there
is no independent set of size c1 + 1 in H and thus no infinite one. Thus, by
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Ramsey’s theorem, there is an infinite clique in H. We may assume without
loss of generality that H itself is a clique by moving to a subsequence of the D′i
if necessary. With this assumption we simply pick ni = i.

Now we pick the ji recursively. Assume that ji has been chosen. As i and
i + 1 are adjacent in H, there are infinitely many indicies ` ∈ N such that
σ[i, `] = σ[i+ 1, `]. In particular, there is such an ` > ji such that σ[i+ 1, `] is
not empty. We pick ji+1 to be one of those `.

Clearly, (ji)i∈N is an increasing sequence and σ[i, ji] = σ[i+ 1, ji] as well as
σ[i, ji] is non-empty for all i ∈ N, which completes the proof.

By moving to a subsequence of (D′i) and ((Aj , Bj)), if necessary, we may
assume by Lemma 6.6.8 and Lemma 6.6.9 that for all i, j ∈ N all d ∈ D′i induce
the same 2-shape σ[i, j] on (Aj , Bj), and that σ[i, i] = σ[i+ 1, i], and that σ[i, i]
is non-empty.

Lemma 6.6.10. For all i ∈ N there is D′′i ⊆ D′i such that |D′′i | = i, and all
d ∈ D′′i induce the same allowed 2-shape τ [i] that links σ[i, i] and σ[i, i+ 1].

Proof. Note that it is in this proof that we need all the 2-rays in D′′i to be lefty
as they need to induce an allowed 2-shape that links σ[i, i] and σ[i, i+1] as soon
as they contain a vertex from Ai. As |D′i| ≥ i · c2 and as there are at most c2
many distinct allowed 2-shapes that link σ[i, i] and σ[i, i+ 1] there is D′′i ⊆ D′i
with |D′′i | = i such that all d ∈ D′′i induce the same allowed 2-shape.

We enumerate the elements of D′′j as follows: dj1, d
j
2, . . . , d

j
j . Let (sji , t

j
i ) be a

representation of dji . Let Sji = sji ∩Aj+1 ∩Bj , and let Si =
⋃
j≥i S

j
i . Similarly,

let T ji = tji ∩Aj+1 ∩Bj , and let Ti =
⋃
j≥i T

j
i .

Clearly, Si and Ti are vertex-disjoint and any two graphs in
⋃
i∈N{Si, Ti} are

edge-disjoint. We shall find a ray Ri in each of the Si and a ray R′i in each of
the Ti. The infinitely many pairs (Ri, R

′
i) will then be edge-disjoint 2-rays, as

desired.

Lemma 6.6.11. Each vertex v of Si has degree at most 2. If v has degree 1 it
is contained in Ai ∩Bi.
Proof. Clearly, each vertex v of Si that does not lie in any separator Aj ∩ Bj
has degree 2, as it is contained in precisely one Sji , and all the leaves of Sji lie

in Aj ∩Bj and Aj+1 ∩Bj+1 as dji is lefty. Indeed, in Sji it is an inner vertex of
a path and thus has degree 2 in there. If v lies in Ai ∩Bi it has degree at most
2, as it is only a vertex of Sji for one value of j, namely j = i.

Hence, we may assume that v ∈ Aj∩Bj for some j > i. Thus, σ[j, j] contains
v and l : σ[j, j] : r contains precisely one of the four following subwords:

lvl, lvr, rvl, rvr

(Here we use the notation p : q to denote the concatenation of the word p with
the word q.) In the first case τ [j − 1] contains mvm as a subword and τ [j] has
no m adjacent to v. Then Sj−1

i contains precisely 2 edges adjacent to v and Sji
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has no such edge. The fourth case is the first one with l and r and j and j − 1
interchanged.

In the second and third cases, each of τ [j − 1] and τ [j] has precisely one m
adjacent to v. So both Sj−1

i and Sji contain precisely 1 edge adjacent to v.
As v appears only as a vertex of S`i for ` = j or ` = j − 1, the degree of v in

Si is 2.

Lemma 6.6.12. There are an odd number of vertices in Si of degree 1.

Proof. By Lemma 6.6.11 we have that each vertex of degree 1 lies in Ai ∩ Bi.
Let v be a vertex in Ai ∩ Bi. Then, σ[i, i] contains v and l : σ[i, i] : r contains
precisely one of the four following subwords:

lvl, lvr, rvl, rvr

In the first and fourth case v has even degree. It has degree 1 otherwise. As
l : σ[i, i] : r starts with l and ends with r, the word lvr appear precisely once
more than the word rvl. Indeed, between two occurrences of lvr there must
be one of rvl and vice versa. Thus, there are an odd number of vertices with
degree 1 in Si.

Lemma 6.6.13. Si includes a ray.

Proof. By Lemma 6.6.11 every vertex of Si has degree at most 2 and thus every
component of Si has at most two vertices of degree 1. By Lemma 6.6.12 Si has
a component C that contains an odd number of vertices with degree 1. Thus
C has precisely one vertex of degree 1 and all its other vertices have degree 2,
thus C is a ray.

Corollary 6.6.14. G contains infinitely many edge-disjoint 2-rays.

Proof. By symmetry, Lemma 6.6.13 is also true with Ti in place of Si. Thus
Si ∪ Ti includes a 2-ray Xi. The Xi are edge-disjoint by construction.

Recall that Lemma 6.6.1 states that a countable graph with a thin end ω
and arbitrarily many edge-disjoint double rays all whose subrays converge to ω,
also has infinitely many edge-disjoint double rays. We are now in a position to
prove this lemma.

Proof of Lemma 6.6.1. By Lemma 6.6.6 it suffices to show that G contains a
subgraph H with a single end which is thin such that H has infinitely many
edge-disjoint 2-rays. By Corollary 6.6.3, G has a subgraph H with a single
end which is thin such that H has arbitrarily many edge-disjoint 2-rays. But
then by the argument above H contains infinitely many edge-disjoint 2-rays, as
required.

With these tools at hand, the remaining proof of Theorem 6.2.1 is easy. Let
us collect the results proved so far to show that each graph with arbitrarily many
edge-disjoint double rays also has infinitely many edge-disjoint double rays.
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Proof of Theorem 6.2.1. Let G be a graph that has a set Di of i edge-disjoint
double rays for each i ∈ N. Clearly, G has infinitely many edge-disjoint double
rays if its subgraph

⋃
i∈NDi does, and thus we may assume without loss of

generality that G =
⋃
i∈NDi. In particular, G is countable.

By Corollary 6.4.4 we may assume that each connected component of G
includes only finitely many ends. As each component includes a double ray
we may assume that G has only finitely many components. Thus, there is one
component containing arbitrarily many edge-disjoint double rays, and thus we
may assume that G is connected.

By Corollary 6.4.2 we may assume that all ends of G are thin. Thus, as
mentioned at the start of Section 6.5, there is a pair of ends (ω, ω′) of G (not
necessarily distinct) such that G contains arbitrarily many edge-disjoint double
rays each of which converges precisely to ω and ω′. This completes the proof as,
by Lemma 6.5.3 G has infinitely many edge-disjoint double rays if ω and ω′ are
distinct and by Lemma 6.6.1 G has infinitely many edge-disjoint double rays if
ω = ω′.

6.7 Outlook and open problems

We will say that a graph H is edge-ubiquitous if every graph having arbitrarily
many edge-disjoint H also has infinitely many edge-disjoint H.

Thus Theorem 6.2.1 can be stated as follows: the double ray is edge-ubiquitous.
Andreae’s Theorem implies that the ray is edge-ubiquitous. And clearly, every
finite graph is edge-ubiquitous.

We could ask which other graphs are edge-ubiquitous. It follows from our
result that the 2-ray is edge-ubiquitous. Let G be a graph in which there are
arbitrarily many edge-disjoint 2-rays. Let v ∗G be the graph obtained from G
by adding a vertex v adjacent to all vertices of G. Then v ∗ G has arbitrarily
many edge-disjoint double rays, and thus infinitely many edge-disjoint double
rays. Each of these double rays uses v at most once and thus includes a 2-ray
of G.

The vertex-disjoint union of k rays is called a k-ray. The k-ray is edge-
ubiquitous. This can be proved with an argument similar to that for Theo-
rem 6.2.1: Let G be a graph with arbitrarily many edge-disjoint k-rays. The
same argument as in Corollaries 6.4.4 and 6.4.2 shows that we may assume that
G has only finitely many ends, each of which is thin. By removing a finite set of
vertices if necessary we may assume that each component of G has at most one
end, which is thin. Now we can find numbers kC indexed by the components
C of G and summing to k such that each component C has arbitrarily many
edge-disjoint kC-rays. Hence, we may assume that G has only a single end,
which is thin. By Lemma 6.6.2 we may assume that G is locally finite.

In this case, we use an argument as in Subsection 6.6.3. It is necessary
to use k-shapes instead of 2-shapes but other than that we can use the same
combinatorial principle. If C1 and C2 are finite sets, a (C1, C2)-shaping is a pair
(c1, c2) where c1 is a partial colouring of N with colours from C1 which is defined
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at all but finitely many numbers and c2 is a colouring of N(2) with colours from
C2 (in our argument above, C1 would be the set of all k-shapes and C2 would
be the set of all allowed k-shapes for all pairs of k-shapes).

Lemma 6.7.1. Let D1, D2, . . . be a sequence of sets of (C1, C2)-shapings where
Di has size i. Then there are strictly increasing sequences i1, i2, . . . and j1, j2, . . .
and subsets Sn ⊆ Din with |Sn| ≥ n such that

� for any n ∈ N all the values of c1(jn) for the shapings (c1, c2) ∈ Sn−1∪Sn
are equal (in particular, they are all defined).

� for any n ∈ N , all the values of c2(jn, jn+1) for the shapings (c1, c2) ∈ Sn
are equal.

Lemma 6.7.1 can be proved by the same method with which we constructed
the sets D′′i from the sets Di. The advantage of Lemma 6.7.1 is that it can not
only be applied to 2-rays but also to more complicated graphs like k-rays.

A talon is a tree with a single vertex of degree 3 where all the other vertices
have degree 2. An argument as in Subsection 6.6.2 can be used to deduce that
talons are edge-ubiquitous from the fact that 3-rays are. However, we do not
know whether the graph in Figure 6.2 is edge-ubiquitous.

Figure 6.2: A graph obtained from 2 disjoint double rays, joined by a single
edge. Is this graph edge-ubiquitous?

We finish with the following open problem.

Question 6.7.2. Is the directed analogue of Theorem 6.2.1 true? More pre-
cisely: Is it true that if a directed graph has arbitrarily many edge-disjoint di-
rected double rays, then it has infinitely many edge-disjoint directed double rays?

It should be noted that if true the directed analogue would be a common
generalization of Theorem 6.2.1 and the fact that double rays are ubiquitous
with respect to the subgraph relation.
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Chapter 7

The colouring number of
infinite graphs

7.1 Abstract

We show that, given an infinite cardinal µ, a graph has colouring number at
most µ if and only if it contains neither of two types of subgraph. We also
show that every graph with infinite colouring number has a well-ordering of its
vertices that simultaneously witnesses its colouring number and its cardinality.

7.2 Introduction

Our point of departure is a recent article by Péter Komjáth [62] one of whose
results addresses infinite graphs with infinite colouring number. Recall

Definition 7.2.1. The colouring number col(G) of a graph G = (V,E) is the
smallest cardinal κ such that there exists a well-ordering <∗ of V with

|N(v) ∩ {w |w <∗ v}| < κ for all v ∈ V ,

where N(v) is the set of neighbours of v. We call such well-orderings good.

This notion was introduced by Erdős and Hajnal in [40].
What Komjáth proved in [62] is that if the colouring number of a graph G is

bigger than some infinite cardinal µ, thenG contains either aKµ, i.e., µmutually
adjacent vertices, or G contains for each positive integer k an induced copy of the
complete bipartite graph Kk,k. This condition is not a characterisation: there
are graphs, such as Kω,ω, which have small colouring number but nevertheless
include an induced Kk,k for each k.

Since having colouring number ≤ µ is closed not only under taking induced
subgraphs but even under taking subgraphs, it seems easier to look first for a
characterisation in terms of forbidden subgraphs. When playing with the ideas
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appearing in Komjáth’s proof, we realized that they can be used to give just
such a transparent characterization of “having colouring number ≤ µ” in terms
of forbidden subgraphs. For some explicit graphs called µ-obstructions, to be
introduced in Definition 7.3.1 below, we shall prove

Theorem 7.2.2. Let G be a graph and let µ denote some infinite cardinal. Then
the statement col(G) > µ is equivalent to G containing some µ-obstruction as a
subgraph.

The proof we describe has an interesting consequence:

Theorem 7.2.3. Every graph G whose colouring number is infinite possesses
a good well-ordering of length |V (G)|.

It is not hard to re-obtain the result of Komjáth mentioned above from our
characterisation 7.2.2 by inspecting whether the µ-obstructions satisfy it. In
fact, one can easily obtain the following strengthening:

Theorem 7.2.4. If G is a graph with col(G) > µ, where µ denotes some infinite
cardinal, then G contains either a Kµ or, for each positive integer k, an induced
Kk,ω.

We will also give an example in Section 2 demonstrating that the conclusion
cannot be improved further to the presence of an induced Kω,ω. Which complete
bipartite graphs exactly one gets by this approach depends on which properties
the relevant cardinals have in the partition calculus.

For standard set-theoretical background we refer to Kunen’s textbook [64].

7.3 Obstructions

Throughout this section, we fix an infinite cardinal µ. There are two kinds of
µ-obstructions relevant for the condition col(G) > µ in Theorem 7.2.2. They
are introduced next.

Definition 7.3.1. (1) A µ-obstruction of type I is a bipartite graph H with
bipartition (A,B) such that for some cardinal λ ≥ µ we have

• |A| = λ, |B| = λ+,

• every vertex of B has at least µ neighbours in A, and

• every vertex of A has λ+ neighbours in B.

(2) Let κ > µ be regular, and let G be a graph with V (G) = κ. Define TG
to be the set of those α ∈ κ with the following properties:

• cf(α) = cf(µ)

• The order type of N(α) ∩ α is µ.
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• The supremum of N(α) ∩ α is α.

If TG is stationary in κ, then G is a µ-obstruction of type II. We also call graphs
isomorphic to such graphs µ-obstructions of type II.

Now we can directly proceed to the easier direction of Theorem 7.2.2.

Proposition 7.3.2. If a graph G has a µ-obstruction of either type as a sub-
graph, then col(G) > µ.

Proof. Suppose first that G contains a µ-obstruction of type I, say with bi-
partition (A,B) as in Definition 7.3.1 above, and |A| = λ ≥ µ. Assume for a
contradiction that there is a good well-ordering of G. Thus every b ∈ B has
a neighbour in A above it in that well-ordering. For a ∈ A, we denote by Xa

the set of those neighbours of a that are below a in the well-ordering. Hence
B =

⋃
a∈AXa. Since all the Xa have size less than µ, we deduce that |B| ≤ λ,

which is the desired contradiction.

In the second case, we may without loss of generality assume that G itself is
an obstruction of type II. Again we suppose for a contradiction that there is a
good well-ordering <∗ of V (G). Notice that each α ∈ TG has a neighbour β < α
such that α <∗ β. Let f : TG −→ κ be a function sending each α to some such
β. By Fodor’s Lemma, there must be some β < κ such that

T = {α ∈ TG | f(α) = β}

is stationary. Now every element of T is a neighbour of β, and β comes after
T in the ordering <∗, which in view of |T | = κ > µ contradicts our assumption
that this ordering is good.

We say that a graph is µ-unobstructed if it contains no µ-obstruction of
either type. To complete the proof of Theorem 7.2.2 we still need to show that
every µ-unobstructed graph G satisfies col(G) ≤ µ. This will be the objective
of Sections 3 and 4.

In the remainder of this section, we prove two results asserting that in order
to find an obstruction in a given graph G it suffices to find something weaker.

Definition 7.3.3. A µ-barricade is bipartite graph with bipartition (A,B) such
that

• |A| < |B|,

• and every vertex of B has at least µ neighbours in A.

Lemma 7.3.4. If G has a µ-barricade as a subgraph, then it also has a µ-
obstruction of type I as a subgraph.

Proof. Let H with bipartition (A,B) be a barricade which is a subgraph of G,
chosen so that λ = |A| is minimal. By deleting some vertices of B if necessary,
we may assume that B has cardinality λ+. Let A′ be the set of a ∈ A for which
NB(a) is of size λ+, and let B′ be the set of elements of B with no neighbour in
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A\A′. By the definition of A′, there are at most λ edges ab with a ∈ A\A′ and
b ∈ B. So B \B′ is of size at most λ. It follows that B′ has cardinality λ+. In
particular, the subgraph H ′ of H on (A′, B′) is a barricade, so by minimality of
|A| we have |A′| = λ. Since by construction every vertex of A′ has λ+ neighbours
in B and hence in B′, the subgraph H ′ is a µ-obstruction of type I.

Definition 7.3.5. Let κ > µ be regular. A graph G with set of vertices κ is
said to be a µ-ladder if there is a stationary set T such that each α ∈ T has
at least µ neighbours in α. Also, every graph isomorphic to such a graph is
regarded as a µ-ladder.

Lemma 7.3.6. Every graph containing a µ-ladder is µ-obstructed.

Proof. It suffices to prove that every µ-ladder is µ-obstructed. So let G with
V (G) = κ be as described in the previous definition. For each α ∈ T we let
the sequence 〈αi | i < µ〉 enumerate the µ smallest neighbours of α in increasing
order and denote the limit point of this sequence by f(α). Clearly we have
f(α) ≤ α and cf

(
f(α)

)
= cf(µ) for all α ∈ T .

Let us first suppose that the set

T ′ = {α ∈ T | f(α) < α}

is stationary in κ. Then for some γ < κ the set

B = {α ∈ T ′ | f(α) = γ}

is stationary and as |γ| < κ = |B| the pair (γ,B) is a µ-barricade in G. Due to
Lemma 7.3.4 it follows that G contains a µ-obstruction of type I.

So it remains to consider the case that

T ′′ = {α ∈ T | f(α) = α}

is stationary in κ. In that case we have N(α) ∩ α = {αi | i < µ} for all α ∈ T ′′.
So TG is a superset of T ′′ and thus stationary, meaning that G is a µ-obstruction
of type II.

7.4 The regular case

In this and the next section we shall prove the harder part of Theorem 7.2.2, in
such a way that Theorem 7.2.3 is also immediate. To this end we shall show

Theorem 7.4.1. Let G denote an infinite graph of order κ and let µ be an
infinite cardinal. Then at least one of the following three cases occurs:

• G has a subgraph H with |V (H)| < |V (G)| and col(H) > µ.

• G is µ-obstructed.

• G has a good well-ordering of length κ exemplifying col(G) ≤ µ .
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Suppose for a moment that we know this. To deduce Theorem 7.2.2 we
consider any graph with col(G) > µ. Let G∗ be subgraph of G with col(G∗) > µ
and subject to this with |V (G∗)| as small as possible. ThenG∗ is still infinite and
when we apply Theorem 7.4.1 to G∗ the first and third outcome are impossible,
so the second one most occur. Thus G∗ and hence G contains a µ-obstruction, as
desired. To obtain Theorem 7.2.3 we apply Theorem 7.4.1 to G with µ = col(G).

The proof of Theorem 7.4.1 itself is divided into two cases according to
whether κ is regular or singular. The former case will be treated immediately
and the latter case is deferred to the next section.

Proof of Theorem 7.4.1 when κ is regular. Let V (G) = κ and consider the set

T = {α < κ |Some β ≥ α has at least µ neighbours in α} .

First Case: T is not stationary in κ.

Let 〈δi | i < κ〉 be a strictly increasing continuous sequence of ordinals with
limit κ such that δi 6∈ T holds for all i < κ. If for some i < κ the restriction
Gi of G to the half-open interval [δi, δi+1) has colouring number > µ, then the
first alternative holds. Otherwise we may fix for each i < κ a well-ordering <i
of V (Gi) that exemplifies col(Gi) ≤ µ. The concatenation <∗ of all these well-
orderings has length κ, so it suffices to verify that it demonstrates col(G) ≤ µ.

To this end, we consider any vertex x of G. Let i < κ be the ordinal with
x ∈ Gi. The neighbours of x preceding it in the sense of <∗ are either in δi or
they belong to Gi and precede x under <i. Since x ≥ δi and δi 6∈ T , there are
less than µ neighbours of x in δi. Also, by our choice of <i, there are less than
µ such neighbours in Gi.

Second Case: T is stationary in κ.

Let us fix for each α ∈ T an ordinal βα ≥ α with |N(βα) ∩ α| ≥ µ. A
standard argument shows that the set

E = {δ < κ | If α ∈ T ∩ δ, then βα < δ}
is club in κ. Thus T ∩ E is unbounded in κ. Let the sequence 〈ηi | i < κ〉
enumerate the members of this set in increasing order. Then for each i < κ the
ordinal ξi = βηi is at least ηi and smaller than ηi+1, because the latter ordinal
belongs to E. In particular, each of the equations ηi = ξj and ξi = ξj is only
possible if i = j. Thus it makes sense to define

vα =


α if α 6= ηi, ξi for all i < κ ,

ξi if α = ηi for some i < κ ,

ηi if α = ξi for some i < κ .

The map π sending each α < κ to vα is a permutation of κ. If α belongs to the
stationary set T ∩ E, then vα = ξi for some i < κ and therefore vα has at least
µ neighbours in ηi and all of these are of the form vβ with β < α. So π gives
an isomomorphism between G and a µ-ladder, and in the light of Lemma 7.3.6
we are done.
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7.5 The singular case

Next we consider the case that κ is a singular cardinal. The form of our argument
will be recognisable to anyone who is familiar with Shelah’s singular compactness
theorem (see for instance [87]). We will not, however, assume such familiarity.

We will refer to sets of size at least µ as big and sets of size less than µ as
small

We will often consider ⊆-increasing families (Xi)i<γ of sets for which each
NXi(v) is small. In such cases we would like to conclude that also N⋃

i<γ Xi
(v)

is small. We can do this as long as γ and µ have different cofinalities. So we fix
the notation $ for the rest of the argument to mean the least infinite cardinal
whose cofinality is not equal to cf(µ). Thus $ is either ω or ω1.

Definition 7.5.1. A set X of vertices of a graph G is robust if for any v ∈
V (G) \X the neighbourhood NX(v) is small.

Remark 7.5.2. Let (Xi)i<$ be a ⊆-increasing family of robust sets. Then⋃
i<$Xi is also robust.

Lemma 7.5.3. Let G be a µ-unobstructed graph and let X be an uncountable
set of vertices of G. Then there is a robust set Y of vertices of G which includes
X and is of the same cardinality.

Proof. Let λ be the cardinality of X.
We build a ⊆-increasing family (Xi)i<$ of sets recursively by letting X0 =

X, taking Xi+1 = Xi ∪ {v ∈ V (G) : NXi(v) is big} and Xl =
⋃
i<lXi for l a

limit ordinal. We take Y =
⋃
i<$Xi. Since by construction Y is robust and

includes X, it remains to prove that |Y | = λ.
To do this, we prove by induction on i that each Xi is of size λ. The cases

where i is 0 or a limit are clear, so suppose i = j+1. By the induction hypothesis,
|Xj | = λ. If |Xj+1| were greater than λ then the induced bipartite subgraph on
(Xj , Xj+1) would be a barricade, which is impossible by Lemma 7.3.4. Thus
|Xj+1| = λ, as required.

Remark 7.5.4. Lemma 7.5.3 also holds when X is countably infinite, but the
proof is more involved and so we have omitted it (unlike in the above proof, we
need that there are no type II obstructions).

Proof of Theorem 7.4.1 when κ is singular. If G is µ-obstructed then we are
done, so we suppose that it isn’t.

Let (vi)i<κ be an enumeration of the set of vertices. Let (κi)i<cf(κ) be a
continuous cofinal sequence for κ, where κ0 > cf(κ) is uncountable. We begin
by building a family (Xi,j)i<cf(κ),j<$ of robust sets of vertices of G, with Xi,j of

size κi, together with a family of enumerations ((xki,j)k<κi)i<cf(κ),j<$ of these
sets. These enumerations will be chosen arbitrarily. We choose the sets in such
a way that they satisfy the following conditions:

1. Xi′,j′ ⊆ Xi,j for i′ ≤ i and j′ ≤ j.
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2. vk ∈ Xi,0 for k < κi

3. xki′,j ∈ Xi,j+1 for k < κi (this ensures that for any limit ordinal l all
elements of Xl,j also appear in some Xi,j+1 with i < l).

We do this by nested recursion on i and j. When we come to choose Xi,j ,
we have already chosen all Xi′,j′ with j′ < j or both j′ = j and i′ ≤ i. The
three conditions above specify some collection of κi-many vertices which must
appear in Xi,j . We can extend this collection to a robust set of the same size
(which we take as Xi,j) by Lemma 7.5.3.

Now for i < cf(κ) let Xi =
⋃
j<$Xi,j , which is robust by Remark 7.5.2.

We claim that for any limit ordinal l we have Xl =
⋃
i<lXi. That each Xi

with i < l is a subset of Xl is clear by condition 1 above. On the other hand,
for any x ∈ Xl there must be some j < $ with x ∈ Xl,j , say x = xkl,j . But
then as k < κl it follows from the continuity of the κi that there is some i < l
with k < κi. Thus by condition 3 above we have x ∈ Xi,j+1 ⊆ Xi, so that
x ∈ ⋃i<lXi.

Each vertex must lie in some set Xi by condition 2 above, and it follows
from what we have just shown that the least such i can never be a limit. That
is, X0 together with all the sets Xi+1 \ Xi gives a partition of the vertex set.
If the induced subgraph of G on any of these sets has colouring number > µ
then the first alternative of Theorem 7.4.1 holds. Otherwise all of these induced
subgraphs have good well-orderings. Since each Xi is robust, the well-ordering
obtained by concatenating all of these well-orderings is also good, so that the
third alternative of Theorem 7.4.1 holds.

7.6 A necessary condition

In this section we derive Theorem 7.2.4 from Theorem 7.2.2. For that we shall
rely on the following.

Theorem 7.6.1 (Dushnik, Erdős, and Miller, [39]). For each infinite cardinal
λ we have λ −→ (λ, ω). This means that if the edges of a complete graph on λ
vertices are coloured red and green, then there is either a red clique of size λ, or
a green clique of size ω.

By restricting ones attention to the red graph, one realises that this means
that every infinite graph G either contains a clique of size |V (G)| or an infinite
independent set. When used in this formulation, we refer to the above as DEM.

Proof of Theorem 7.2.4. By Theorem 7.2.2 it remains to show that every graph
with an obstruction of type I or II has a Kµ subgraph or an induced Kk,ω.

First we check this for obstructions (A,B) of type I. By DEM, we may
assume that the neighbourhood N(b) of every b ∈ B contains an independent
set Yb of size k. Let f be the function mapping b to Yb. There must be a finite
subset Y of A such that |f−1(Y )| = |B|. By DEM, we may assume that f−1(Y )
contains an infinite independent set B′. Then G[B′ ∪ Y ] is isomorphic to Kk,ω.
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Hence it remains to show that every obstruction G of type II has a Kµ

subgraph or an induced Kk,ω. For every α ∈ TG, we may assume by DEM that
N(α) ∩ α contains an independent set Yα of size k. For each i with 1 ≤ i ≤ k,
let fi : T → κ be the function mapping α to the i-th smallest element of Yα.
By Fodor’s Lemma, there is some stationary T ′ ⊆ TG at which f1 is constant,
and some stationary T ′′ ⊆ T ′ at which f2 is constant. Proceeding like this, we
find some stationary S ⊆ TG at which all the fi are constant. Let X be the
set of these k constants. By DEM, we may assume that S contains an infinite
independent set I. Then G[X ∪ I] is isomorphic to Kk,ω.

In the following example, we show that if we replace ‘Kk,ω’ by ‘Kω,ω’ in
Theorem 7.2.4, then it becomes false.

Example 7.6.2. Let A be the set of finite 0-1-sequences, and let B be the set
of infinite 0-1-sequences. We define a bipartite graph G with vertex set A ∪ B
by adding for each a ∈ A and b ∈ B the edge ab if a is an initial segment of b.
Since G is bipartite, it cannot contain a Kω. It cannot contain a Kω,ω either
since any two vertices in B have only finitely many neighbours in common.

On the other hand, col(G) > ℵ0 since G is an ℵ0-barricade.

Remark 7.6.3. The proof of Theorem 7.2.4 actually shows something slightly
stronger: in order to have col(G) ≤ µ it is enough to forbid Kµ and a Kk,µ+ -
subgraph where the k vertices on the left are independent. If µ = ω, then DEM
implies it is enough to forbid Kµ and an induced Kk,µ+ . On the other hand if
κ = 2ω and µ = ω1, it may happen that the bipartite graph contains neither a
Kµ nor an induced Kk,ω1 by Sierpiski’s theorem, which says that

2ω 6−→ (ω1)2
2 .
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Chapter 8

On tree-decompositions of
one-ended graphs

8.1 Abstract

We prove that one-ended graphs whose end is undominated and has finite vertex
degree have tree-decompositions that display the end and that are invariant
under the group of automorphisms.

This can be applied to prove a conjecture of Halin from 2000 and solves a
recent problem of Boutin and Imrich. Furthermore, it implies for every transitive
one-ended graph that its end must have infinite vertex degree.

8.2 Introduction

In [38], Dunwoody and Krön constructed tree-decompositions invariant under
the group of automorphisms that are non-trivial for graphs with at least two
ends. In the same paper, they applied them to obtain a combinatorial proof
of generalization of Stalling’s theorem of groups with at least two ends. This
tree-decomposition method has multifarious applications, as demonstrated by
Hamann in [52] and Hamann and Hundertmark in [53]. For graphs with only
a single end, however, these tree-decompositions may be trivial. Hence such a
structural understanding of this class of graphs remains elusive.

For many one-ended graphs, such as the 2-dimensional grid, such tree-
decompositions cannot exist. Indeed, it is necessary for existence that the end
has finite vertex degree; that is, there is no infinite set of pairwise vertex-disjoint
rays belonging to that end. Already in 1965 Halin [45] knew that one-ended
graphs whose end has finite vertex degree have tree-decompositions display-
ing the end (a precise definition can be found towards the end of Section 8.4).
Nevertheless, for these tree-decompositions to be of any use for applications as
above, one needs them to have the additional property that they are invariant
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under the group of automorphisms. Unfortunately such tree-decomposition do
not exist for all graphs in question, see Example 8.4.10 below, but in the ex-
ample there is a vertex dominating the end. In this chapter we construct such
tree-decompositions if the end is not dominated.

Theorem 8.2.1. Every one-ended graph whose end is undominated and has
finite vertex degree has a tree-decomposition that displays its end and that is
invariant under the group of automorphisms.

This better structural understanding leads to applications similar to those for
graphs with more than one end. Indeed, below we deduce from Theorem 8.2.1
a conjecture of Halin from 2000, and answer a recent question of Boutin and
Imrich. A further application was pointed out by Hamann.

For graphs like the one in Figure 8.1, the tree-decompositions of Theo-
rem 8.2.1 can be constructed using the methods of Dunwoody and Krön. Namely,
if the graphs in question contain ‘highly connected tangles’ aside from the end.
In general such tangles need not exist, for an example see Figure 8.2. It is the
essence of Theorem 8.2.1 to provide a construction that is invariant under the
group of automorphisms that decomposes graphs as those in Firgure 8.2 in a
tree-like way.

b

b

b

b

b

b b

b

Kn Kn Kn Kn
b b b

Figure 8.1: Complete graphs glued together at separators of size two along a
ray. The method of Dunwoody and Krön gives a tree-decomposition of this
graph along an end whose separators have size two.

Applications. In [51] Halin showed that one-ended graphs with vertex
degree equal to one cannot have countably infinite automorphism group. Not
completely satisfied with his result, he conjectured that this extends to one-
ended graphs with finite vertex degree. Theorem 8.2.1 implies this conjecture.

Theorem 8.2.2. Given a graph with one end which has finite vertex degree, its
automorphism group is either finite or has at least 2ℵ0 many elements.

Theorem 8.2.2 can be further applied to answer a question posed by Boutin
and Imrich, who asked in [13] whether there is a graph with linear growth
and countably infinite automorphism group. Theorem 8.2.2 implies a negative
answer to this question as well as strengthenings of further results of Boutin
and Imrich, see Section 8.5 for details.
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Figure 8.2: The product of the canopy tree with K1. This graph has a tree
decomposition whose decomposition tree is the canopy tree.

Finally, Matthias Hamann1 pointed out the following consequence of Theo-
rem 8.2.1.

Theorem 8.2.3. Ends of transitive one-ended graphs must have infinite vertex
degree.

We actually prove a stronger version of Theorem 8.2.3 with ‘quasi-transitive’2

in place of ‘transitive’.

The rest of this chapter is structured as follows: in Section 8.3 we set up
all necessary notations and definitions. As explained in [31], there is a close
relation between tree-decompositions and nested sets of separations. In this
chapter we work mainly with nested sets of separations. In Section 8.4 we prove
Theorem 8.2.1, and Section 8.5 is devoted to the proof of Theorem 8.2.2, and
its implications on the work of Boutin and Imrich. Finally, in Section 8.6 we
prove Theorem 8.2.3.

Many of the lemmas we apply in this work were first proved by Halin. Since
in some cases we need slight variants of the original results and also since Halin’s
original papers might not be easily accessible, proofs of some of these results
are included in appendices.

8.3 Preliminarlies

Throughout this chapter V (G) and E(G) denote the sets of vertices and edges
of a graph G, respectively. We refer to [35] for all graph theoretic notions which
are not explicitly defined.

1personal communication
2Here a graph is quasi-transitive, if there are only finitely many orbits of vertices under

the automorphism group.
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8.3.1 Separations, rays and ends

A separator in a graph G is a subset S ⊆ V (G) such that G−S is not connected.
We say that a separator S separates vertices u and v if u and v are in different
components of G − S. Given two vertices u and v, a separator S separates u
and v minimally if it separates u and v and the components of G−S containing
u and v both have the whole of S in their neighbourhood. The following lemma
can be found in Halin’s 1965 paper [48, Statement 2.4], and also in his later
paper [49, Corollary 1] and then with a different proof.

Lemma 8.3.1. Given vertices u and v and k ∈ N, there are only finitely many
distinct separators of size at most k separating u and v minimally.

A separation is a pair (A,B) of subsets of V (G) such that A ∪ B = V (G)
and there is no edge connecting A \B to B \A. This immediately implies that
if u and v are adjacent vertices in G then u and v are both contained in either
A or B. The sets A and B are called the sides of the separation (A,B). A
separation (A,B) is said to be proper if both A \ B to B \ A are non-empty
and then A ∩ B is a separator. A separation (A,B) is tight if every vertex in
A ∩ B has neighbours in both A \ B and B \ A. The order of a separation is
the number of vertices in A∩B. Throughout this chapter we will only consider
separations of finite order. The following is well-known.

Lemma 8.3.2. (See [30, Lemma 2.1]) Given any two separations (A,B) and
(C,D) of G then the sum of the orders of the separations (A ∩ C,C ∪ D) and
(B ∩D,A ∪ C) is equal to the sum of the orders of the separations (A,B) and
(C,D). In particular if the orders of (A,B) and (C,D) are both equal to k the
the sum of the orders of (A ∩C,C ∪D) and (B ∩D,A ∪C) is equal to 2k.

The separations (A,B) and (C,D) are strongly nested if A ⊆ C and D ⊆ B.
They are nested if they are strongly nested after possibly exchanging ‘(A,B)’
by ‘(B,A)’ or ‘(C,D)’ by ‘(D,C)’. That is, (A,B) and (C,D) are nested if one
of the following holds:

� A ⊆ C and D ⊆ B,

� A ⊆ D and C ⊆ B,

� B ⊆ C and D ⊆ A,

� B ⊆ D and C ⊆ A.

We say a set S of separations is nested, if any two separations in it are nested.
A ray in a graph G is a one-sided infinite path v0, v1, . . . in G. The sub-rays

of a ray are called its tails. Given a finite separator S of G, there is for every
ray γ a unique component of G− S that contains all but finitely many vertices
of γ. We say that γ lies in that component of G − S. Given a separation
(A,B) of finite order one can similarly say that γ lies in one of the sides of the
separation. Two rays are in the same end if they lie in the same component of
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G−S for every finite separator of G. Clearly, this is an equivalence relation. An
equivalence class is called a (vertex) end3. An alternative way to define ends is
to say that two rays R1 and R2 are in the same end if there are infinitely many
pairwise disjoint R1 −R2 paths. (Given subsets X and Y of the vertex set, an
X − Y path is a path that has its initial vertex in X and terminal vertex in Y
and every other vertex is neither in X nor Y . In the case where X = {x} then
we speak of x − Y paths instead of X − Y paths and if Y = {y} we speak of
x−y paths.) An end ω lies in a component C of G−S if every ray that belongs
to ω lies in C. Clearly, every end lies in a unique component of G−S for every
finite separator S and if (A,B) is a separation of finite order then an end either
lies in A or B.

A vertex v ∈ V (G) dominates an end ω of G, if there is no separation (A,B)
of finite order such that v ∈ A \B and ω lies in B. Equivalently, v dominates ω
if for every ray R in ω there are infinitely many paths connecting v to R such
that any two of them only intersect in v.

The vertex degree of an end ω is equal to a natural number k if the maximal
cardinality of a family of pairwise disjoint rays belonging to the end is k. If no
such number k exists then we say that the vertex-degree of the end is infinite.
Halin [45] (see also [34, Theorem 8.2.5]) proved that if the vertex-degree of an
end is infinite then there is an infinite family of pairwise disjoint rays belonging
to the end. Ends with finite vertex degree are sometimes called thin and those
with infinite vertex degree are called thick.

The following lemma is well-known. A proof can be found in Appendix A.

Lemma 8.3.3. (Cf. [51, Section 3]) Let G be a connected graph and ω an end
of G having a finite vertex degree. Then there are only finitely many vertices in
G that dominate the end ω.

In this chapter we are focusing on 1-ended graphs where the end ω has vertex
degree k. In the following definition we pick out a class of separations that are
relevant in this case.

Definition 8.3.4. Let G be an arbitrary graph. If ω is an end of G that has
vertex degree k then say that a separation (A,B) is ω-relevant if it has the
following properties

� the order of (A,B) is exactly k,

� A \B is connected,

� every vertex in A ∩B has a neighbour in A \B,

� ω lives in B, and

� there is no separation (C,D) of order < k such that A ⊆ C and ω lives in
D.

3A notion related to ‘vertex ends’ are ‘topological ends’. In this chapter we are mostly
interested in graphs where no vertex dominates a vertex end. In this context the two notions
of end agree.
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Define Sω as the set of all ω-relevant separations.

The following characterization of ω-relevant separations is uses a Menger
type result. A proof based on [44] and [45] is contained in Appendix A.

Lemma 8.3.5. Let G be an arbitrary graph. Suppose ω is an end of G with
vertex degree k.

1. If (A,B) is an ω-relevant separation then there is a family of k pairwise
disjoint rays in ω such that each of them has its initial vertex in A ∩B.

2. Conversely, if (A,B) is a separation of order k such that A\B is connected,
every vertex in A ∩ B has a neighbour in A \ B, the end ω lies in B and
there is a family of k disjoint rays in ω such that each of these rays has
its initial vertex in A ∩B then the separation (A,B) is ω-relevant.

In particular, for (A,B) ∈ Sω the component of G− (A∩B) in which ω lives
has the whole of A∩B in its neighbourhood and hence every separation in Sω is
tight. Note that the set A \B completely determines the ω-relevant separation
(A,B).

The relation

(A,B) ≤ (C,D) :⇐⇒ A ⊆ C and B ⊇ D

defines a partial order on the set of all separations, so in particular on the set
Sω. Since (C,D) is a tight separation, the condition A ⊆ C implies that D ⊆ B.
This is shown in [31, (7) on p. 17] and the argument goes as follows: Suppose
that D 6⊆ B and x ∈ D\B. Then x ∈ A ⊆ C so x ∈ (C∩D)\B. Because (C,D)
is a tight separation, x has a neighbour y ∈ D \ C. But x ∈ A \ B and hence
y must also be in A. But y 6∈ C, contradicting the assumption that A ⊆ C.
Hence D ⊆ B and (A,B) ≤ (C,D) ⇐⇒ A ⊆ C.

The next result follow from results of Halin in [45]. These results are in
turn proved by using Menger’s Theorem. For the convenience of the reader a
detailed proof is provided in Appendix A.

Theorem 8.3.6. Let G be a connected 1-ended graph such that the end ω is un-
dominated and has finite vertex degree k. Then there is a sequence {(An, Bn)}n≥0

of ω-relevant separations, such that the sequence of sets Bn is strictly decreasing
and for every finite set of vertices F there is a number n such that F ⊆ An \Bn.

We will not use the following in our proof.

Remark 8.3.7. Theorem 8.3.6 is also true if we leave out the assumption that
G is one-ended (and replace ‘the end ω’ by ‘there exists an end ω that’).

8.3.2 Automorphism groups

An automorphism of a graph G = (V,E) is a bijective function γ : V → V
that preserves adjacency and whose inverse also preserves adjacency. Clearly
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an automorphism γ also induces a bijection E → E which by abuse of nota-
tion we will also call γ. The automorphism group of G, i.e. the group of all
automorphisms of G, will be denoted by Aut(G).

Let Γ be a subgroup of Aut(G). For a set D ⊆ V (G) we define the setwise
stabiliser of D as the subgroup Γ{D} = {γ ∈ Γ | γ(D) = D} and the pointwise
stabiliser ofD is defined as Γ(D) = {γ ∈ Γ | γ(d) = d for all d ∈ D}. The setwise
stabiliser is the subgroup of all elements in Γ that leave the set D invariant and
the pointwise stabiliser is the subgroup of all those elements in Γ that fix every
vertex in D. If D ⊆ V (G) is invariant under Γ then we use ΓD to denote the
permutation group on D induced by Γ, i.e. ΓD is the group of all permutation
σ of D such that there is some element γ ∈ Γ such that the restriction of γ to
D is equal to σ. Note that Γ(D) is a normal subgroup of Γ{D} and the index
Γ(D) in Γ{D} is equal to the number of elements in (Γ{D})D.

The full automorphism group of a graph has a special property relating to
separations. Suppose γ is an automorphism of a graph G and that γ leaves both
sides of a separation (A,B) invariant and fixes every vertex in the separator
A ∩ B. Then the full automorphism group contains automorphisms σA and
σB such that σA like γ on A fixes every vertex in B and vice versa for σB .
Informally one can describe this property by saying that the pointwise stabiliser
(in the full automorphism group) of a set D of vertices acts indpendently on
the components of G − D. We will refer to this property as the independence
property.

There is a natural topology on Aut(G), called the permutation topology :
endow the vertex set with the discrete topology and consider the topology of
pointwise convergence on Aut(G). Clearly, the permutation topology also makes
sense for any group of permutations of a set. The following lemma is a special
case of a result in [24, (2.6) on p. 28]. In particular it tells us that the limit of a
sequence of automorphisms again is an automorphism. This fact will be central
to the proof of Theorem 8.2.2.

Lemma 8.3.8. The automorphism group of a graph is closed in the set of all
permutations of the vertex set endowed with the topology of pointwise conver-
gence.

The next result is also a special case of a result from Cameron’s book refered
to above. This time we look at [24, (2.2) on p. 28].

Lemma 8.3.9. The automorphism group of a countable graph is finite, count-
ably infinite or has at least 2ℵ0 elements.

8.4 Invariant nested sets

In this section we will prove Theorem 8.4.8. The following two facts about
sequences of nested separations will be useful at several points in the proof.

Lemma 8.4.1. Let G be a connected graph. Assume that (Ai, Bi)i∈N is a
sequence of proper separations of order at most some fixed natural number k.
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Assume also that Ai ( Ai−1, every Ai \ Bi is connected, and every vertex in
Ai ∩Bi has a neighbour in Ai \Bi. Define X as the set of vertices contained in
infinitely many Ai. Then

1. X ⊆ Bi for all but finitely many i,

2. there is a unique end µ which lies in every Ai, and

3. x ∈ X if and only if x dominates µ.

Proof. First observe that X =
⋂
i∈NAi because the sequence Ai is decreasing.

Let X ′ be the set of vertices in X with a neighbour outside of X. For every
x ∈ X ′ we can find a neighbour y of x and i0 ∈ N such that y /∈ Ai for every
i ≥ i0. Since the edge xy must be contained in either Ai or Bi we conclude that
x ∈ Bi and thus x ∈ Ai ∩Bi for i ≥ i0.

Hence there is i1 ∈ N such that X ′ ⊆ Ai ∩Bi for every i ≥ i1. The order of
each separation is at most k, so X ′ contains at most k vertices. Now for i ≥ i1
every path from X \Bi to Ai \ (X ∪Bi) must pass through X ′ and thus through
Bi. Since Ai \ Bi is connected this means that one of the two sets must be
empty, i.e., either X \Bi = ∅ or X \Bi = Ai \Bi. Assume that the latter is the
case. Then Ai contains at most k vertices which are not contained in X and the
same is clearly true for every Aj for j > i. This contradicts the fact that the
sequence Ai was assumed to be infinite and strictly decreasing. We conclude
that X ⊆ Bi for i ≥ i1. Note that this implies that X = X ′ because if i ≥ i1
then X ⊆ Ai ∩Bi and every vertex in Ai ∩Bi has an neighbour in Ai \Bi.

To see that there is an end µ which lies in every Ai we construct a ray which
has a tail in each Ai. For this purpose pick for i ≥ i1 a vertex vi ∈ Ai \X and
paths Pi connecting vi to vi+1 in Ai\X. This is possible because Ai\X contains
Ai \Bi and is connected (Ai \Bi is connected and every vertex in Bi ∩Ai has
a neighbour in Ai \ Bi). No vertex lies on infinitely many paths Pi because no
vertex is contained in infinitely many sets Ai \X. Hence the union of the paths
Pi is an infinite, locally finite graph and thus contains a ray. This ray belongs
to an end µ which lies in every Ai.

Finally we need to show that every vertex in X dominates the end µ. With-
out loss of generality we can assume that X ⊆ Bi for all i. So, let R be a ray
in µ and x ∈ X. We will inductively construct infinitely many paths from x to
R which only intersect in x. Assume that we already constructed some finite
number of such paths. Since all of them have finite length, there is an index i
such that Ai \Bi doesn’t contain any vertex in their union. The ray R has a tail
contained in Ai \ Bi and since x ∈ Ai ∩ Bi we know that x has a neighbour in
Ai \Bi. Finally Ai \Bi is connected, so we can find a path connecting x to the
tail of R which intersects the previously constructed paths only in x. Proceeding
inductively we obtain infinitely many paths connecting x to R which pairwise
only intersect in x completing the proof of the Lemma.

We would now like to construct a subset of the set Sω of ω-relevant separa-
tions that is both nested and invariant under all automorphisms and from that
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set we construct a tree. The following two lemmas give us important properties
of nestedness when we restrict to ω-relevant separations.

Lemma 8.4.2. Two separations (A,B), (C,D) in Sω are nested if and only if
they are either comparable with respect to ≤, or A ⊆ D.

Proof. First assume that the two separations are nested. It is impossible that
B ⊆ C and D ⊆ A since the end ω lies in B and D, but not in C and A.
Hence, if the two separations are not comparable, then we know that A ⊆ D
and C ⊆ B.

For the converse implication first consider the case that A ⊆ D. We want to
show that C ⊆ B. Assume for a contradiction that there is a vertex x in C \B.
This vertex must be contained in A ⊆ D and hence in the separator C ∩D. By
the definition of Sω the vertex x must have a neighbour y in C \D. Then y /∈ A
and x /∈ B, contradicting the fact that the edge xy must lie in either A or B,
as (A,B) is a separation.

Finally, note that any two separations in Sω that are comparable with respect
to ≤ are obviously nested.

Lemma 8.4.3. (Analogies with [38, Lemma 4.2]) For each (A,B) ∈ Sω there
are only finitely many (C,D) ∈ Sω not nested with (A,B).

Proof. The first step is to show that if (C,D) is not nested with (A,B) then
(C,D) separates some vertices v and w in A ∩ B. Then we show that we may
assume that the separation is minimal. Since A ∩ B is finite there are only
finitely many possibilities for the pair v, w and we can apply Lemma 8.3.1 to
deduce the result.

First suppose for a contradiction that (C \D)∩(A∩B) is empty. Since C \D
is connected, it must be a subset of A \ B or B \ A. As every vertex in C ∩D
has a neighbour in C \D it follows that C ⊆ A in the first case, whilst C ⊆ B
in the second. In both cases (A,B) and (C,D) are nested by Lemma 8.4.2,
contrary to our assumption. Hence there exists a vertex v ∈ (C \D)∩ (A∩B).
Note that by letting the separations (A,B) and (C,D) switch roles we see that
(A \B) ∩ (C ∩D) is also non-empty.

Since the separation (C,D) is in Sω there is by Lemma 8.3.5 a family of k
disjoint rays that all have their initial vertices in C ∩ D. Because ω lives in
D, all vertices in these rays, except their initial vertices, are contained in the
component of D\C that contains ω. Pick a vertex v′ from (A\B)∩(C∩D). This
vertex v′ is the initial vertex of one of the rays mentioned above. Since ω lives
in B this rays must contain a vertex w from A∩B and as mentioned above w is
contained in the component of D \C that contains ω. Now we have shown that
(C,D) separates the two vertices v and w. This separation is minimal because v
is in C \D and C \D is connected and has C ∩D as it neighbourhood, and w is
contained in the component of G−(C∩D) that contains ω and that component
has the whole of C ∩D as its neighbourhood.

LetG be a one-ended graph whose end ω is undominated and has finite vertex
degree k. Recall that by Lemma 8.4.1 there are no infinite decreasing chains in
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Sω—such a chain would define an end µ 6= ω, contradicting the assumption that
G has only one end. In particular, Sω has minimal elements. Assign recursively
an ordinal α(A,B) to each (A,B) ∈ Sω by the following method: if (A,B)
is minimal (with respect to ≤ in Sω) then set α(A,B) = 0; otherwise define
α(A,B) as the smallest ordinal β such that α(C,D) < β for all separations
(C,D) ∈ Sω such that (C,D) < (A,B). For v ∈ V (G), let Sω(v) be the set of
those separations (A,B) in Sω with v ∈ A ∩B. Now set

α(v) = sup{α(A,B) | (A,B) ∈ Sω(v)}.

If it so happens that Sω(v) is empty then α(v) = 0. For a vertex set S, we let
α(S) be the supremum over all α(v) with v ∈ S. Note that the functions α(A,B)
and α(v) are both invariant under the action of the automorphism group of G.

Example 8.4.4. Below is a construction of a graph where α takes ordinal values
that are not natural numbers. However, it is not difficult to show that for a
locally finite connected graph the α-values are always natural numbers.

We construct a graph G at which α takes values that are not natural num-
bers. Let Pn = vn0 , . . . , v

n
n be a path of length n. We obtain G by taking a ray

and identifying its starting vertex r with the vertices vnn for each n ≥ 0. This
graph has only one end µ and its vertex degree is 1. For 0 ≤ k ≤ n − 1 the
separation ({vn0 , . . . , vnk }, V G \ {vn0 , . . . , vnk−1}) is µ-relevant and its α-value is
k. Hence any separation (A,B) with r (and all the attached paths) in A has
α-value at least the ordinal ω.

Lemma 8.4.5. Let G be a graph with only one end ω. Assume that ω is
undominated and has vertex degree k. Let (C,D) be in Sω. Then for all but
finitely many vertices v in C, we have α(v) ≤ α(C,D).

Proof. By Lemma 8.4.3, there are only finitely many separations in Sω that are
not nested with (C,D). Let C ′ the set of those vertices in C \D that are not
in any separator of these finitely many separations. It suffices to show that if
v ∈ C ′ and (A,B) in Sω(v) then α(A,B) < α(C,D). Note that the result is
trivially true if Sω(v) is empty. By the choice of v, the separations (A,B) and
(C,D) are nested. Since v is in (C \D) ∩ (A ∩B), it is not true that A ⊆ D or
B ⊆ D. Since the end ω does not lie in the sides A and C, it does not lie in the
side A∪C of the separation (A∪C,B ∩D). Hence it lies in the side B ∩D. In
particular B ∩ (D \ C) is nonempty. Thus it is not true that B ⊆ C. Looking
at the definition of nestedness we see that A ⊆ C. Hence (A,B) < (C,D) and
thus α(A,B) < α(C,D) and the result follows.

Lemma 8.4.6. Let G be a graph with only one end ω. Assume that ω is
undominated and has vertex degree k. For every separation (C,D) in Sω, there
is a separation (A,B) ∈ Sω such that C ⊆ A and α(C) < α(A,B).

Proof. Let {(An, Bn)}n≥0 be a sequence of ω-relevant separations as described
in Theorem 8.3.6. Find a separation (A,B) in this sequence such that C ∩D ⊆
A \B. Suppose for a contradiction that C \D contains a vertex x from A ∩B.
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There is a ray R that has x as a starting vertex and every other vertex is
contained in B \A. Because C ∩D contains no vertex from B we see that this
ray would be contained in C \ D, contradicting the assumption that the end
ω lies in D. Hence, C \ D does not intersect A ∩ B and then, since C \ D is
connected, we conclude that C ⊆ A. Thus α(C,D) ≤ α(A,B).

By the previous Lemma there are at most finitely many vertices v in C such
that α(v) > α(C,D). Suppose for a contradiction that v is such a vertex and
there is no value of n such that α(v) < α(An, Bn). Then we can find a sequence
{(Cn, Dn)}n≥0 of separations in Sω(v) such that α(C1, D1) < α(C2, D2) <
· · · and for every n there is a number rn such α(An, Bn) < α(Cnr , Bnr ).
By Lemma 8.4.3 we may assume that for all values of n and m the sepa-
rations (Cn, Dn) and (Cm, Bm) are nested. Say that a pair of separations
{(Cn, Dn), (Cm, Dm)} is blue if the separations are comparable with respect
to ≤ and red otherwise. By Ramsey’s Theorem, see e.g. [24, (1.9) on p. 16],
there is an infinite set of separations such that all pairs from that set have the
same colour. If all pairs from that set were blue then we could find an infinite
increasing or a decreasing chain. By Lemma 8.4.1(2) there cannot be an infinite
descending chain of separations and if there was an infinite increasing chain in
Sω(v) then, by Lemma 8.4.1(3) with the roles of the Ai’s and the Bi’s reversed,
v would be a dominating vertex for the end ω, contrary to assumptions. Hence
all pairs from that infinite set must be red and we can conclude that there is an
infinite set of separations in the family {(Cn, Dn)}n≥0 such that no two of them
are comparable with respect to ordering. We may assume that if n and m are
distinct then (Cn, Dn) and (Cm, Dm) are not comparable and then Cn \Dn and
Cm\Dm are disjoint. Start by choosing n such that v ∈ An\Bn and then choose
m such that none of the vertices in An∩Bn is in Cm \Dm. There must be some
vertex u that belongs both to Bn and Cm \Dm. The set (Cm \Dm)∪{v} is con-
nected and thus it contains a v−u path P . But v ∈ An\Bn and u ∈ Bn\An and
the path P contains no vertices from An∩Bn. We have reached a contradiction.
Hence our original assumption must be wrong.

Let X be a connected set of vertices which cannot be separated from the end
ω by a separation of order less than k. A separation (A,B) ∈ Sω is called X-
nice, if for every v ∈ A∩B we have α(v) > α(X) and there is some ϕ ∈ Aut(G)
such that ϕ(X) ⊆ A (then we must have ϕ(X) ⊆ A \B). Let N (X) be the set
of all X-nice separations in Sω which are minimal with respect to ≤, i.e. N (X)
contains all X-nice separations (A,B) ∈ Sω such that A is minimal with respect
to inclusion.

Lemma 8.4.7. Let G be a graph with only one end ω. Assume that ω is
undominated and has vertex degree k.

Suppose (X,Y ) ∈ Sω. Then N (X) is non-empty. For each automorphism ϕ
of G there is a unique element (A,B) in N (X) such that ϕ(X) ⊆ A. If (A,B)
and (C,D) are not equal and in N (X), then A ⊆ D and C ⊆ B. Furthermore,
any two elements of N (X) can be mapped onto each other by an automorphism.

Proof. The existence of an X-nice separation follows from Lemma 8.4.6. Mini-
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mal such separations exist because by Lemma 8.4.1 an infinite descending chain
would imply that G had another end µ 6= ω.

Let (A,B) and (C,D) be elements ofN (X). Suppose ϕ(X) ⊆ A and ψ(X) ⊆
C, where ϕ,ψ ∈ Aut(G). Note that ϕ(X) is disjoint from C ∩ D because
α(ϕ(X)) = α(X), which is strictly less than α(v) for any v ∈ C ∩D. Hence it
is a subset of either C \D or D \ C. We next prove that if (A,B) and (C,D)
are not equal, then A ⊆ D and C ⊆ B.

First we consider the case that ϕ(X) is a subset of C \ D. Our aim is to
show that (A,B) and (C,D) are equal. This also implies that (A,B) is the
unique element in N (X) such that ϕ(X) ⊆ A. Our strategy will be to construct
a X-nice separation that is ≤ to both of them and by minimality of (A,B)
and (C,D) we will conclude that it must be equal to both of them. Note that
ϕ(X) is included in (C \ D) ∩ (A \ B). Let A′ be the connected component
of (C \ D) ∩ (A \ B) that contains the connected set ϕ(X) together with the
separator of (A ∩ C,B ∪ D). Let B′ be the union of B ∪ D with the other
components of (C \D) ∩ (A \B).

Next we show that the separation (A′, B′) is in N (X). Since the end ω lies
in B ∩ D, this vertex set is infinite. Because (A,B) is in Sω, the separation
(A ∪ C,B ∩ D) has order at least k. Hence by Lemma 8.3.2, the separation
(A ∩C,B ∪D) has order at most k. The property that X cannot be separated
from ω by fewer than k vertices implies that the separation (A′, B′) has order
precisely k. Also, every vertex of the separator of (A′, B′) has a neighbour in
A′ \ B′ and in B′ \ A′. Clearly ω lies in B′ and there is no separation (C ′, D′)
of order less than k such that A′ ⊆ C ′ and ω lies in D′ as (X,Y ) ∈ Sω. Hence
(A′, B′) is in Sω and thus it is in N (X) as A′ ⊆ A. Since A′ ⊆ A, it must be
that A′ = A by the minimality of (A,B). Similarly, A′ = C. Thus A = C and
so (A,B) = (C,D). This completes the case when ϕ(X) is a subset of C \D.

So we may assume that ϕ(X) ⊆ D\C, and by symmetry that ψ(X) ⊆ B\A.
Consider the separations (A ∩D,B ∪ C) and (B ∩ C,A ∪D). They must have
order at least k because ϕ(X) ⊆ A∩D, ω ∈ B∪C and ψ(X) ⊆ B∩C, ω ∈ A∪D.
So they must have order precisely k by Lemma 8.3.2. Let A′ be the component
of G−(B∪C) that contains ϕ(X) together with the separator of (A∩D,B∪C).
Let B′ be the union of B ∪C with the other components. Similar as in the last
case we show that (A′, B′) is in N (X). By the minimality of (A,B) it must be
that A ⊆ D. The above argument with the separation (B ∩ C,A ∪D) in place
of (A ∩D,B ∪ C) yields that C ⊆ B. This completes the proof that if (A,B)
and (C,D) are not equal and in N (X), then (A,B) and (C,D) are nested.

By the above there is for each ϕ ∈ Aut(G) a unique separation (Aϕ, Bϕ) ∈
N (X) such that ϕ(X) ⊆ Aϕ. If we apply ϕ−1 to this separation we must obtain
the unique separation (A,B) ∈ N (X) such that X ⊆ A. Hence any separation
of N (X) can be mapped by an automorphism to every other separation in
N (X).

Theorem 8.4.8. Let G be a connected graph with only one end ω, which is
undominated and has finite vertex degree k. Then there is a nested set S of
ω-relevant separations of G that is Aut(G)-invariant. And there is a 1-ended
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tree T and a bijection between the edge set of T and S such that the natural
action of Aut(G) on S induces an action on T by automorphisms.

Proof. Pick some ω-relevant separation (A0, B0). Define a sequence (An, Bn)
of separations as follows. For n ∈ N>0 pick (An, Bn) ∈ N (An−1) such that
An−1 ( An, which is possible by Lemma 8.4.7. Observe that the sequence of
separations (An, Bn) has the same properties as the sequence in Theorem 8.3.6.

Now let
S = {(ϕ(An), ϕ(Bn)) | n ∈ N>0, ϕ ∈ Aut(G)}.

Note that (A0, B0) is not an element in S.
First we prove that S is nested. Let (ϕ(An), ϕ(Bn)) and (ψ(Am), ψ(Bm)) be

two different elements of S (here ϕ and ψ are automorphisms of G). If m = n
then they are nested by Lemma 8.4.7, since they both are elements of N (An−1).
Hence assume without loss of generality that n < m. If ϕ(Am) = ψ(Am) then
ϕ(An) ⊆ ϕ(Am) = ψ(Am) which implies that the two separations are nested.
Otherwise by Lemma 8.4.7 we have ϕ(An) ⊆ ϕ(Am) ⊆ ψ(Bm), also showing
nestedness, by Lemma 8.4.2.

Next we construct a directed graph T+. We define T+ as follows. Its vertex
set is S. We add a directed edge from (ϕ(An), ϕ(Bn)) to (ψ(An+1), ψ(Bn+1))
if ϕ(An) is a subset of ψ(An+1). By Lemma 8.4.7, each vertex has outdegree at
most one. And by the construction of S it has outdegree at least one.

The next step is to show that the graph is connected. Let (C,D) = ϕ(An, Bn)
be a vertex in T+. Find an m such that C ⊆ Am \Bm. Suppose for a contradic-
tion that (ϕ(Am), ϕ(Bm)) 6= (Am, Bm). Both (ϕ(Am), ϕ(Bm)) and (Am, Bm)
are in N (X). By Lemma 8.4.7 ϕ(Am) ⊆ Bm. Thus ϕ(Am) is empty. This is a
contradiction to the assumption that (Am, Bm) is a proper separation. Now we
see that

(Am, Bm) = (ϕ(Am), ϕ(Bm)), (ϕ(Am−1), ϕ(Bm−1)), . . . , (ϕ(An), ϕ(Bn)) = (C,D)

is a path in T+ from (Am, Bm) to (C,D). Thus every vertex in T+ is in the same
connected component as some vertex (Am, Bm) and since they all belong to the
same component we deduce that T+ is connected. Hence the corresponding
undirected graph T is a tree.

The map that sends (ϕ(An), ϕ(Bn)) to the edge with endvertices (ϕ(An), ϕ(Bn))
and (ψ(An+1), ψ(Bn+1)) is clearly a bijection. If the ray (A1, B1), (A2, B2), . . .
is removed from T then what remains of T is clearly rayless and thus the tree
T is one-ended.

The statement about the action of Aut(G) on T follows easily since the
properties used to define T are invariant under Aut(G).

A tree-decomposition of a graphG consists of a tree T and a family (Pt)t∈V (T )

of subsets of V (G), one for each vertex of T such that

(T1) V (G) =
⋃
t∈V (T ) Pt,

(T2) for every edge e ∈ E(G) there is t ∈ V (T ) such that both endpoints of e
lie in Pt, and
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(T3) Pt1 ∩ Pt3 ⊆ Pt2 whenever t2 lies on the unique path connecting t1 and t3
in T .

The tree T is called decomposition tree, the sets Pt are called the parts of the
tree-decomposition.

We associate to an edge e = st of the decomposition tree a separation of G
as follows. Removing e from T yields two components Ts and Tt. Let Xs =⋃
u∈Ts Pu and Xt =

⋃
u∈Tt Pu. If Xs\Xt and Xt\Xs are non-empty (this will be

the case for all tree-decompositions considered in this chapter), then (Xs, Xt) is
a proper separation of G. Clearly, the set of all separations associated to edges
of a decomposition tree is nested.

The separators A ∩ B of the separations associated to edges of a decom-
position tree are called adhesion sets. The supremum of the sizes of adhesion
sets is called the adhesion of the tree-decomposition. The tree-decompositions
constructed in this chapter all have finite adhesion.

Given a graph G with only one end ω and a tree-decomposition (T, Pt | t ∈
V (T )) of G of finite adhesion, then (T, Pt | t ∈ V (T )) displays ω if firstly the
decomposition tree T has only one end; call it µ. And secondly for any edge st
of T with µ in Tt, the associated separation (Xs, Xt) has the property that ω
lies in Xt.

A tree-decomposition is Aut(G)-invariant if the set S of separations associ-
ated to it is closed by the natural action of Aut(G) on S. The following implies
Theorem 8.2.1.

Theorem 8.4.9. Let G be a connected graph with only one end ω, which is
undominated and has finite vertex degree k. Then G has a tree-decomposition
(T, Pt | t ∈ V (T )) of adhesion k that displays ω and is Aut(G)-invariant.

Proof. We follow the notation of the proof of Theorem 8.4.8.
Given a vertex t of T+, the inward neighbourhood of t, denoted by N+(t),

is the set of vertices u of T+ such that there is a directed edge from u to t in
T+. Recall that the vertices of T+ are (in bijection with) separations; we refer
to the separation associated to the vertex t by (At, Bt). Given a vertex t, we
let Pt = At \

⋃
u∈N+(t)(Au \Bu).

It is straightforward that (T, Pt | t ∈ V (T )) is a tree-decomposition of adhe-
sion k (whose set of associated separations is S ∪ {(B,A) | (A,B) ∈ S}). It is
not hard to see that (T, Pt | t ∈ V (T )) displays ω and is Aut(G)-invariant.

Example 8.4.10. In this example we construct a one-ended graph G whose end
is dominated and has vertex degree 1, but the graphG has no tree-decomposition
of finite adhesion that is invariant under the group of automorphisms and whose
decomposition tree is one-ended. We obtain G from the canopy tree by adding a
new vertex adjacent to all the leaves of the canopy tree. Then we add infinitely
many vertices of degree one only incident to that new vertex, see Figure 8.3.

Suppose for a contradiction that G has a tree-decomposition (T, Pt | t ∈
V (T )) of finite adhesion that is invariant under the group of automorphisms
and such that T is one-ended.
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Figure 8.3: A graph with no Aut(G)-invariant tree-decomposition of finite ad-
hesion.

There cannot be a single part Pt that contains a ray of the canopy tree. To
see that first note that there cannot be two such parts by the assumption of
finite adhesion. Hence any such part would contain all vertices of the canopy
tree from a certain level onwards. This is not possible by finite adhesion.

Having shown that there cannot be a single part Pt that contains a ray of
the canopy tree, it must be that every part Pt with t near enough to the end of
T contains a vertex of the canopy tree.

Our aim is to show that any vertex u of degree 1 is in all parts. Suppose
not for a contradiction. Then since T is one-ended, there is a vertex t of T such
that t separates in T all vertices s with u ∈ Ps from the end of T . We pick t
high enough in T such that there is a vertex v of the canopy tree in Pt. If Pt
contained all vertices of the orbit of v, then Pt together with all parts Ps, where
s has some fixed bounded distance from t in T , would contain a ray. This is
impossible; the proof is similar as that that Pt cannot contain a ray. Hence there
is a vertex v′ in the orbit of v that is not in Pt. Take an automorphism of G
that fixes u and moves v to v′. As the tree-decomposition is Aut(G)-invariant,
T has a vertex s such that u, v′ ∈ Ps but v /∈ Ps. Since T is Aut(G)-invariant
and one-ended, t does not separate s from the end of T . This is a contradiction
as u ∈ Ps.

Hence u must be in all parts. As u was arbitrary, every vertex of degree one
must be in every part. So the tree-decomposition does not have finite adhesion.
This is the desired contradiction. Hence such a tree-decomposition does not
exist.
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8.5 A dichotomy result for automorphism groups

Before we turn to a proof of Theorem 8.2.2, we state a few helpful auxiliary
results. The following lemma can be seen as a consequence of [51, Lemma 7],
but for completeness a direct proof is provided in Appendix B.

Lemma 8.5.1. If T is a one-ended tree and R is a ray in T , then every auto-
morphism of T fixes some tail of R pointwise.

The next result is Lemma 3 in [51]. For completeness a proof is included in
Appendix C.

Lemma 8.5.2. The pointwise (and hence also the setwise) stabiliser of a finite
set of vertices in the automorphism group of a rayless graph is either finite or
contains at least 2ℵ0 many elements.

The next result is an extension of Lemma 8.5.2 to one-ended graphs where
the end has finite vertex degree.

Lemma 8.5.3. Let G be a graph with only one end ω. Assume that ω has
finite vertex degree k. Let X be a finite set of vertices in G that contains all
the vertices that dominate the end. If the graph G − X is connected then the
pointwise stabiliser of X in Aut(G) is either finite or contains at least 2ℵ0 many
elements.

Proof. Denote by Γ the pointwise stabiliser of X in Aut(G). If Γ is finite, then
there is nothing to show, hence assume that Γ is infinite.

Consider a nested Aut(G−X)-invariant set of ω-relevant separations ofG−X
as in Theorem 8.4.8 and a tree T built from this set in the way described. Clearly
Γ gives rise to a subgroup of Aut(G−X) whence this nested set is Γ-invariant.
Adding X to both sides of every separation in S gives rise to a new Γ invariant
set S of nested separations such that each separation has order k + |X|. The
tree we get from S is the same as T . From now on we will work with S.

Every element γ ∈ Γ induces an automorphism of T . Note that this canonical
action of Γ on T is in general not faithful, i.e. it is possible that different elements
of Γ induce the same automorphism of T .

Let R be a ray in T and let (en)n∈N be the family of edges of R (in the order in
which they appear on R). Let (An, Bn) be the separation of G corresponding to
en. Denote by Γn the stabiliser of en in Γ. By Lemma 8.5.1 every automorphism
of T (and hence also every γ ∈ Γ) fixes some tail of R, so Γn is non-trivial for
large enough n. Furthermore, Γn is a subgroup of Γm whenever n ≤ m.

We claim that for all but finitely many n, we have at least one non-trivial γ
in the pointwise stabiliser of Bn. To see this, let γ1, . . . , γ(k+|X|)!+1 be a set of
(k+ |X|)! + 1 different non-trivial automorphisms in Γ. Choose n large enough
such that they all are contained in Γn and act differently on An. By a simple
pigeon hole argument, at least two of them, γ1 and γ2 say, have the same action
on An ∩Bn. Then γ1 ◦ γ−1

2 is an automorphism which fixes An ∩Bn pointwise,
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and fixes An setwise but not pointwise. Now, using the independence property
from Section 8.3.2 we can define an automorphism

γ(x) =

{
γ1 ◦ γ−1

2 (x) if x ∈ An \Bn
x if x ∈ Bn

with the desired properties.
Note that the subgroup leaving An invariant in the pointwise stabiliser of

Bn in Γ induces the same permutation group on the rayless graph induced by
An in G as does the subgroup leaving An invariant in the pointwise stabiliser of
An∩Bn. Hence, if there is n ∈ N such that the pointwise stabiliser of Bn in Γ is
infinite, then this stabiliser contains at least 2ℵ0 many elements by Lemma 8.5.2.

So (by passing to a tail of R) we may assume that the pointwise stabiliser
of Bn is a finite but non-trivial subgroup of Γ for every n ∈ N .

Next we claim that for every n there is a non-trivial automorphism in the
pointwise stabiliser of An. If not, then Γn is finite and we choose σ ∈ Γ\Γn. For
an edge e of T , denote by Te the component of T −e which does not contain the
end of T . Clearly σ(Te) = Tσ(e) for every edge e. In particular, if e = em is the
last edge of R which is not fixed by σ, then clearly σ(Te) ⊆ T −Te. Furthermore
n < m, so An ⊆ Am, and Bm ⊆ Bn. Hence σ(An) ⊆ σ(Am) ⊆ Bm ⊆ Bn. Now
let γ be a nontrivial automorphism in the pointwise stabiliser of Bn. Then
σ−1 ◦ γ ◦ σ is easily seen to be a nontrivial element of the pointwise stabiliser of
An: for a ∈ An we have

σ−1 ◦ γ ◦ σ(a) = σ−1 ◦ σ(a) = a

since σ(a) ∈ Bn is fixed by γ.
Now define an infinite sequence (γk)k∈N of elements of Γ as follows. Pick a

nontrivial γ1 in the pointwise stabiliser of A1. Assume that γi has been defined
for i < k, then let nk be such that γi acts non-trivially on Ank for all i < k and
pick a nontrivial element γk in the pointwise stabiliser of Ank . For an infinite
0-1-sequence (rj)j≥1, define

ψi = γrii ◦ γ
ri−1

i−1 ◦ · · · ◦ γr11 ,

in other words, ψn is the composition of all γj with j ≤ n and rj = 1. Finally
define ψ to be the limit of the ψn in the topology of pointwise convergence. This
limit exists, because for j > i the restriction ψi and ψj to Ani coincide, and the
Ani exhaust V (G). By Lemma 8.3.8, ψ is contained in Aut(G) and is also in
Γ ⊆ Aut(G) because every ψi stabilises X pointwise.

Finally assume that we have two different 0-1-sequences (rj)j≥1 and (r′j)j≥1

and let (ψj)j≥1 and (ψ′j)j≥1 be the corresponding sequences of automorphisms.
If l is the first index such that rl 6= r′l then the restrictions of ψl and ψ′l (and
hence also of ψi and ψ′i for i > l) to Anl differ. Hence different 0-1-sequences
give different elements of Γ and Γ contains at least 2ℵ0 many elements.

Theorem 8.2.2. Let G be a graph with one end which has finite vertex degree.
Then Aut(G) is either finite or has at least 2ℵ0 many elements.
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Proof. Let X be the set of vertices which dominate ω. This set is possibly
empty and by Lemma 8.3.3 it is finite. Every automorphism stabilises X setwise.
Therefore the pointwise stabiliser of X is a normal subgroup of Aut(G) with
finite index. So it suffices to show that the conclusion of Theorem 8.2.2 holds
for the stabiliser Γ of X.

For every component C of G−X let ΓC be the pointwise stabiliser of X in
Aut(C ∪ X). Then ΓC is either finite or contains at least 2ℵ0 many elements
by Lemma 8.5.2 and Lemma 8.5.3. If |ΓC | = 2ℵ0 for some component C then
we need do no more. So assume that all the groups ΓC are finite. The same
argument as used towards the end of the proof of Lemma 8.5.2 (see Appendix
C) now shows that either Γ is finite or has at least cardinality 2ℵ0 .

As a corollary we can answer a question posed by Boutin and Imrich in [13].
In order to state this question, we first need some notation. For a vertex v in
a graph G we define Bv(n), the ball of radius n centered at v, as the set of all
vertices in G in distance at most n from v. We also define Sv(n), the sphere of
radius n centered at v, as the set of all vertices in G in distance exactly n from
v. A connected locally finite graph is said to have linear growth if there is a
constant c such that |Bv(n)| ≤ cn for all n = 1, 2, . . .. It is an easy exercise to
show that the property of having linear growth does not depend on the choice
of the vertex v.

In relation to their work on the distinguishing cost of graphs Boutin and
Imrich [13] ask whether there exist one-ended locally finite graphs that has
linear growth and countably infinite automorphism group.

If G is a locally finite graph with linear growth and v is a vertex in G then
there is a constant k such that |Sv(n)| = k for infinitely many values of n.
(This is observed by Boutin and Imrich in their paper [13, Fact 2 in the proof
of Proposition 13].) From this we deduce that the vertex-degree of an end of
G is at most equal to k, since each ray in G must pass through all but finitely
many of the spheres Sv(n). Using Theorem 8.2.2 one can now give a negative
answer to the above question.

Theorem 8.5.4. If G is a connected locally finite graph with one end and linear
growth, then the automorphism group of G is either finite or contains exactly
2ℵ0 many elements.

Proof. Since G is locally finite and connected, the graph G is countable. Hence
the automorphism group cannot contain more than 2ℵ0 many elements. Fur-
thermore linear growth implies that all ends must have finite vertex degree,
hence we can apply Theorem 8.2.2.

In particular a connected graph with linear growth and a countably infi-
nite autormorphism group cannot have one end. Thus one can strengthen [13,
Theorem 22] and get:

Theorem 8.5.5. (Cf. [13, Theorem 22]) Every locally finite connected graph
with linear growth and countably infinite automorphism group has 2 ends.
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Furthermore one can in [13, Theorem 18] remove the assumption that the
graph is 2-ended, since it is implied by the other assumptions.

8.6 Ends of quasi-transitive graphs

Finally, another application was pointed out to the authors by Matthias Hamann.
Recall that a graph is called transitive, if all vertices lie in the same orbit under
the automorphism group, and quasi-transitive (or almost-transitive), if there
are only finitely many orbits on the vertices.

The groundwork for the study of automorphisms of infinite graphs was laid
in the 1973 paper of Halin [47]. Among the results there is a classification
of automorphisms of a connected infinite graph, see [47, Sections 5, 6 and 7].
Type 1 automorphisms, to use Halin’s terminology, leave a finite set of vertices
invariant. An automorphism is said to be of type 2 if it is not of type 1. Type
2 automorphism are of two kinds, the first kind fixes precisely one end which
is then thick (i.e. has infinite vertex degree) and the second kind fixes precisely
two ends which are then both thin (i.e. have finite vertex degrees). In Halin’s
paper these results are stated with the additional assumption that the graph is
locally finite but the classification remains true without this assumption.

It is a well known fact that a connected, transitive graph has either 1, 2,
or infinitely many ends (follows for locally finite graphs from Halin’s paper [43,
Satz 2] and for the general case see [36, Corollary 4]). It is a consequence of
a result of Jung [60] that if such a graph has more than one end then there is
a type 2 automorphism that fixes precisely two ends and thus the graph has
at least two thin ends. In particular, in the two-ended case both of the ends
must be thin. Contrary to this, we deduce from Theorem 8.4.8 that the end
of a one-ended transitive graph is always thick. This even holds in the more
general case of quasi-transitive graphs. This was proved for locally finite graphs
by Thomassen [88, Proposition 5.6]. A variant of this result for metric ends was
proved by Krön and Möller in [63, Theorem 4.6].

Theorem 8.6.1. If G is a one-ended, quasi-transitive graph, then the unique
end is thick.

For the proof we need the following auxiliary result.

Proposition 8.6.2. There is no one-ended quasi-transitive tree.

Proof. Assume that T is a quasi-transitive tree and that R is a ray in T . Then
there is an edge-orbit under Aut(T ) containing infinitely many edges of R.
Contract all edges not in this orbit to obtain a tree T ′ whose automorphism
group acts transitively on edges. Clearly, every end of T ′ corresponds to an end
of T (there may be more ends of T which we contracted). But edge transitive
trees must be either regular, or bi-regular. Hence T ′, and thus also T , has at
least 2 ends.

Proof of Theorem 8.6.1. Assume for a contradiction that G is a quasi-transitive,
one-ended graph whose end is thin.
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If the end ω is dominated, then remove all vertices which dominate it and
only keep the component C in which ω lies. The resulting graph is still quasi-
transitive since C must be stabilised setwise by every automorphism. Further-
more, the degree of ω does not increase by deleting parts of the graph. Hence
we can without loss of generality assume that the end of the counterexample G
is undominated.

Now apply Theorem 8.4.8 to G. This gives a nested set S of separations
which is invariant under automorphisms—in particular, there are only finitely
many orbits of S under the action of Aut(G). Theorem 8.4.8 further tells us
that there is a bijection between S and the edges of a one-ended tree T such that
the action of Aut(G) on S induces an action on T by automorphisms. Hence T
is a quasi-transitive one-ended tree, which contradicts Proposition 8.6.2.

8.7 Appendix A

We say that a vertex v dominates a ray L if there are infinitely many v−L paths,
any two only having v as a common vertex. It follows from the definition of an
end that if a vertex domintes one ray belonging to an end then it dominates
every ray belonging to that end and dominates the end.

Proof of Lemma 8.3.3. Assume that the set X of dominating vertices is infi-
nite. By the above we can assume that there is a ray R and infinitely many
vertices x1, x2, . . . that dominate R in G. We show that G must then contain
a subdivision of the complete graph on x1, x2, . . .. Start by taking vertices v1

and v2 on R1 such that there are disjoint x1 − v1 and x2 − v2 paths. Then
we find vertices w1 and w2 furher along the ray R1 such that there are disjoint
x1 − w1 and x3 − w3 paths and still further along we find vertices u2 and u3

such that there are disjoint x2 − u2 and x3 − u3 paths. Adding the relevant
segments of R we find x1 − x2, x1 − x3 and x2 − x3 paths having at most their
endvertices in common. The subgraph of G consisting of these three paths is
thus a subdivision of the complete graph on three vertices. Using induction we
can find an increasing sequence of subgraphs Hn of G that contains the vertices
x1, x2, . . . , xn and also paths Pij linking xi and xj such that any two such paths
have at most their end vertices in common. The subgraph Hn is a subdivision
of the complete graph on n-vertices. The subgraph H =

⋃∞
i=1Hi is a subdivi-

sion of the complete graph on (countably) infinite set of vertices and contains
an infinite family of pairwise disjoint rays that all belong to the end ω. This
contradicts our assumptions and we conclude that T must be finite.

A ray decomposition4 of adhesion m of a graph G consists of subgraphs
G1, G2, . . . such that:

1. G =
⋃∞
i=1Gi;

4Halin used the German term ‘schwach m-fach kettenförmig’.
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2. if Tn+1 =
(⋃n

i=1Gi
)
∩Gn+1 then |Tn+1| = m and Tn+1 ⊆ Gn \

(⋃n−1
i=1 Gi

)
for n = 1, 2, . . .;

3. for each value of n = 1, 2, . . . there are m pairwise disjoint paths in Gn+1

that have their initial vertices in Tn+1 and teminal vertices in Tn+2;

4. none of the subgraphs Gi contains a ray.

The following Menger-type result is used by Halin in his proof of [45, Satz 2].
In the proof we also use ideas from another one of Halin’s papers [44, Proof of
Satz 3].

Theorem 8.7.1. Let G be a locally finite connected graph with the property that
G contains a family of m pairwise disjoint rays but there is no such family of
m + 1 pairwise disjoint rays. Then there is in G a family of pairwise disjoint
separators T1, T2, . . . such that each contains precisely m vertices and a ray in
G must for some n0 intersects all the sets Tn for n ≥ n0.

Proof. Fix a reference vertex v0 in G. Let Ej denote the set of vertices in
distance precisely j from v0. Define also Bi as the set of vertices in distance at
most i from v0. For numbers i and j such that i + 1 < j we construct a new
graph Hij such that we start with the subgraph of G induces by Bj , then we
remove Bi but add a new vertex a that has as its neighbourhood the set ∂Bi
(for a set C of vertices ∂C denotes the set of vertices that are not in C but are
adjacent to some vertex in C) and we also add a new vertex b that has every
vertex in ∂(G \Bj) as its neighbour. Since G is assumed to be locally finite the
graph Hij is finite. (By abuse of notation we do not distinguish the additional
vertices a and b in different graphs Hij .)

Suppose that, for a fixed value of i, there are always for j big enough at
least k distinct a − b paths in Hij such that any two of them interesect only
in the vertices a and b. Then one can use the same argument as in the proof
of König’s Infinity Lemma to show that then G contains a family of k pairwise
disjoint rays. Because G does not contain a family of m + 1 pairwise disjoint
rays there are for each i a number ji such that for every j ≥ ji there are at most
m disjoint a− b paths in Hiji . Since a and b are not adjacent in Hiji then the
Menger Theorem says that minimum number of a vertices in an a− b separator
is equal to the maximal number of a − b paths such that any two of the paths
have no inner vertices in common. Whence there is in Hiji \ {a, b} a set T and
a − b separator with precisely m vertices. This set is also an separator in G
and every ray in G that has its initial vertex in Bi must intersect T . From this
information we can easily construct our sequence of separators T1, T2, . . ..

We can also clearly assume that if ij is the smallest number such that Tj is
in Bij then Tk ∩Bij = ∅ for all k > j.

Corollary 8.7.2. Let G be a connected locally finite graph. Suppose ω is an
end of G and ω has finite vertex degree m. Then there is a sequence T1, T2, . . .
of separators each containing precisely m vertices such that if Ci denotes the
component of G− Ti that ω belongs to then C1 ⊇ C2 ⊇ . . . and

⋂∞
i=1 Ci = ∅.
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Proof. We use exactly the same argument as above except that when we con-
struct the Hij we only put in edges from b to those vertices in Ej that are in
the boundary of the component of G \Bj that ω lies in.

Proof of Lemma 8.3.5. The first part of the Lemma about the existence of a
family of k pairwise disjoint rays in ω with their initial vertices in A∩B follows
directly from the above.

For the second part, the only thing we need to show is that there cannot
exist a separation (C,D) of order < k such that A ⊆ C and ω lies in D. Such
a separation cannot exist because the k pairwise disjoint rays that have their
initial vertices in A∩B and belong to ω would all have to pass through C∩D.

Theorem 8.7.3. ([45, Satz 2]) Let G be a graph with the property that it con-
tains a family of m pairwise disjoint rays but no family of m+1 pairwise disjoint
rays. Let X denote the set of vertices in G that dominate some ray. Then the
set X is finite and the graph G−X has a ray decomposition of adhesion m.

Proof. Let R1, . . . , Rm denote a family of pairwise disjoint rays. Set R = R1 ∪
· · · ∪Rm.

Any ray in G must intersect the set R in infinitely many vertices and thus
intersects one of the rays R1, . . . , Rm in infinitely many vertices. From this we
conclude that every ray in G is in the same end as one of the rays R1, . . . , Rm.
Thus a vertex that dominates some ray in G must dominate one of the rays
R1, . . . , Rm.

In Lemma 8.3.3 we have already shown that the set of vertices dominating
an end of finite vertex degree is finite. Note also that if a vertex in R is in
infinitely many distinct sets of the type ∂C where C is a component of G \ R
then x would be a dominating vertex of some ray Ri. Thus there can only be
finitely many vertices in R with this property.

We will now show that G −X has a ray decomposition of adhesion m. To
simplify the notation we will in the rest of the proof assume that X is empty.

Assume now that there is a component C of G−R such that ∂C is infinite.
Take a spanning tree of C and then adjoin the vertices in ∂C to this tree using
edges in G. Now we have a tree with infinitely many leafs. It is now apparent
that either the tree contains a ray that does not intersect R or there is a vertex in
C that dominates a ray in G. Both possibilities are contrary to our assumptions
and we can conclude that ∂C is finite for every component C of G \R.

For every set S in R of such that S = ∂C for some component C in G\R we
find a locally finite connected subgraph CS of C ∪ S containing S. The graph
G′ that is the union of R and all the subgraphs CS is a locally finite graph. The
original graph G has a ray decomposition of adhesion m if and only if G′ has a
ray decomposition of adhesion m.

At this point we apply Theorem 8.7.1. From Theorem 8.7.1 we have the se-
quence T2, T3, . . . of separators. We choose T2 such that all the rays R1, . . . , Rm
intersect T2. We start by defining Gi for i ≥ 2 as the union of Ti and all
those components of G − Ti that contain the tail of some ray Ri. Finally, set
G1 = G \ (G2 \ T2). Note that none of the subgraphs Gi can contain a ray and
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our family of rays provides a family of m pairwise disjoint Ti−Ti+1 paths. Now
we have shown that G has a ray decomposition of adhesion m.

Finally, we are now ready to show how Halin’s result above implies Theo-
rem 8.3.6 that concerns ω-relevant separations.

Proof of Theorem 8.3.6. We continue with the notation in the proof of Theo-
rem 8.7.3. Recall that there are infinitely many pairwise disjoint paths con-
necting a ray Ri to a ray Rj . Thus we may assume that the initial vertices of
the rays R1, . . . Rk all belong to the same component of G − T2. We set An
as the union of the component of G − Tn+1 that contains these initial vertices
with Tn+1. Then set Bn = (G \An) ∪ Tn+1. Now it is trivial to check that the
sequence (An, Bn) of separations satisfies the conditions.

8.8 Appendix B

Proof of Lemma 8.5.1. Let σ be an automorphism of T . In cite [89, Proposi-
tion 3.2] Tits proved that there are three types of automorphisms of a tree:
(i) those that fix some vertex, (ii) those that fix no vertex but leave an edge
invariant and (iii) those that leave some double-ray . . . , , v−1, v0, v1, v2, . . . in-
variant and act as non-trivial translations on that double-ray. (Similar results
were proved independently by Halin in [47].) Since T is one-ended it contains
no double-ray and thus (iii) is impossible. Suppose now that σ fixes no vertex
in T but leaves the edge e invariant. The end of T lives in one of the compo-
nents of T − e and σ swaps the two components of T − e. This is impossible,
because T has only one end and this end must belong to one of the components
of T − e. Hence σ must fix some vertex v. There is a unique ray R′ in T with
v as an initial vertex and this ray is fixed pointwise by σ. The two rays R and
R′ intersect in a ray that is a tail of R and this tail of R is fixed pointwise by
σ.

8.9 Appendix C

In this Appendix we prove Lemma 8.5.2 which is a slightly sharpened version of
Lemma 3 from Halin’s paper [51]. The change is that ‘uncountable’ in Halin’s
results is replaced by ‘at least 2ℵ0 elements’.

First there is an auxilliary result that corresponds to Lemma 2 in [51].

Lemma 8.9.1. Let G be a connected graph and Γ = Aut(G). Suppose D is a
subset of the vertex set of G. Let {Ci}i∈I denote the family of components of
G−D. Define Gi as the subgraph spanned by Ci ∪ ∂Ci. Set Γi = Aut(Gi)(∂Ci).

Suppose that Γi is either finite or has at least 2ℵ0 elements for all i. Then Γ(D)

is either finite or has at least 2ℵ0 elements.

Proof. If one of the groups γi has at least 2ℵ0 elements then there is nothing
more to do. So, we assume that all these groups are finite.
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Now there are two situations where it is possible that Γ(D) is infinite. The
first is when infinitely many of the groups Γi are non-trivial. For any family
{σi}i∈I such that σi ∈ Γi we can find an automorphism σ ∈ Γ(G\Ci) ⊆ Γ(D)

such that the restriction to Ci equals σi for all i. If infinitely many of the groups
ΓCi are nontrivial, then there are at least 2ℵ0 such families {σi}i∈I and Γ(D)

must have at least 2ℵ0 elements.
We say that two components Ci and Cj are equivalent if ∂Ci = ∂Cj and

there is an isomorphism ϕij from the subgraph Gi to the subgraph Gj fixing
every vertex in ∂Ci = ∂Cj . Clearly there is an automorpism σij of G that
fixes every vertex that is neither in Ci nor Cj such that σij(v) = ϕij(v) for
v ∈ Ci and σij(v) = ϕ−1

ij (v) for v ∈ Cj . If there are infinitely many disjoint
ordered pairs of equivalent components we can for any subset of these pairs
find an automorphism σ ∈ Γ(D) such that if (Ci, Cj) is in our subset then the
restriction of σ to Ci ∪ Cj is equal to the restriction of σij . There are at least
2ℵ0 such sets and thus Γ(D) has at least 2ℵ0 elements.

If neither of the two cases above occurs then Γ(D) is clearly finite.

Proof of Lemma 8.5.2. Following Schmidt [84] (see also Halin’s paper [50, Sec-
tion 3]) we define, using induction, for each ordinal λ a class of graphs A(λ).
The class A(0) is the class of finite graphs. Suppose λ > 0 and A(µ) has already
been defined for all µ < λ. A graph G is in the class A(λ) if and only if it
contains a finite set F of vertices such that each component of G−F is in A(µ)
for some µ < λ. It is shown in the papers referred to above that if G belongs to
A(λ) for some ordinal λ then G is rayless and, conversely, every rayless graph
belongs to A(λ) for some ordinal λ. For a rayless graph G we define o(G) as
the smallest ordinal λ such that G is in A(λ).

The Lemma is proved by induction over o(G). If o(G) = 0 then the graph
G is finite and the automorphism group is also finite.

Assume that the result is true for all rayless graphsH such that o(H) < o(G).
Find a finite set F of vertices such that each of the components of G− F has a
smaller order than G. Denote the family of components of G−F with {Ci}i∈I .
Denote with Gi the subgraph induced by Ci ∪ ∂Ci. By induction hypothesis
the pointwise stabiliser of ∂Ci in Aut(Gi) is either finite or has at least 2ℵ0

elements. Lemma 8.9.1 above implies that Aut(G)(D) is either finite or has at

least 2ℵ0 elements.
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Part III

Infinite matroids
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Chapter 9

Matroid intersection, base
packing and base covering
for infinite matroids

9.1 Abstract

As part of the recent developments in infinite matroid theory, there have been
a number of conjectures about how standard theorems of finite matroid theory
might extend to the infinite setting. These include base packing, base covering,
and matroid intersection and union. We show that several of these conjectures
are equivalent, so that each gives a perspective on the same central problem of
infinite matroid theory. For finite matroids, these equivalences give new and
simpler proofs for the finite theorems corresponding to these conjectures.

This new point of view also allows us to extend, and simplify the proofs of,
some cases where these conjectures were known to be true.

9.2 Introduction

The well-known finite matroid intersection theorem of Edmonds states that for
any two finite matroids M and N the size of a biggest common independent
set is equal to the minimum of the rank sum rM (EM ) + rN (EN ), where the
minimum is taken over all partitions E = EM ∪̇EN . The same statement for
infinite matroids is true, but for a silly reason [32], which suggests that more
care is needed in extending this statement to the infinite case.

Nash-Williams [4] proposed the following for finitary matroids.

Conjecture 9.2.1 (The Matroid Intersection Conjecture). Any two matroids
M and N on a common ground set E have a common independent set I admit-
ting a partition I = JM ∪ JN such that ClM (JM ) ∪ ClN (JN ) = E.
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For finite matroids this is easily seen to be equivalent to the intersection
theorem, which is why we refer to Conjecture 9.2.1 as the Matroid Intersection
Conjecture. If for a pair of matroids M and N on a common ground set there
are sets I, JM and JN as in Conjecture 9.2.1, we say that M and N have the
Intersection property, and that I, JM and JN witness this.

In [6], it was shown that this conjecture implies the celebrated Aharoni-
Berger-Theorem [2], also known as the Erdős-Menger-Conjecture. Call a ma-
troid finitary if all its circuits are finite and co-finitary if its dual is finitary.
The conjecture is true in the cases where M is finitary and N is co-finitary [6].1

Aharoni and Ziv [4] proved the conjecture for one matroid finitary and the other
a countable direct sum of finite rank matroids.

In this chapter we will demonstrate that the Matroid Intersection Conjecture
is a natural formulation by showing that it is equivalent to several other new
conjectures in unexpectedly different parts of infinite matroid theory.

Suppose we have a family of matroids (Mk|k ∈ K) on the same ground set
E. A packing for this family consists of a spanning set Sk for each Mk such that
the Sk are all disjoint. Note that not all families of matroids have a packing.
More precisely, the well-known finite base packing theorem states that if E is
finite then the family has a packing if and only if for every subset Y ⊆ E the
following holds. ∑

k∈K
rMk.Y (Y ) ≤ |Y |

The Aharoni-Thomassen graphs [3, 35] show that this theorem does not extend
verbatim to finitary matroids. However, the base packing theorem extends to fi-
nite families of co-finitary matroids [5]. This implies the topological tree packing
theorems of Diestel and Tutte. Independently from our main result, we close the
gap in between by showing that the base packing theorem extends to arbitrary
families of co-finitary matroids (for example, topological cycle matroids).

Similar to packings are coverings: a covering for the family (Mk|k ∈ K)
consists of an independent set Ik for each Mk such that the Ik cover E. And
analogously to the base packing theorem, there is a base covering theorem char-
acterising the finite families of finite matroids admitting a covering.

We are now in a position to state our main conjecture, which we will show
is equivalent to the intersection conjecture. Roughly, the finite base packing
theorem says that a family has a packing if it is very dense. Similarly, the finite
base covering theorem says roughly that a family has a covering if it is very
sparse. Although not every family of matroids has a packing and not every
family has a covering, we could ask: is it always possible to divide the ground
set into a “dense” part, which has a packing, and a “sparse” part, which has a
covering?

Definition 9.2.2. We say that a family of matroids (Mk|k ∈ K) on a common
ground set E, has the Packing/Covering property if E admits a partition E =
P ∪̇C such that (Mk�P |k ∈ K) has a packing and (Mk.C|k ∈ K) has a covering.

1In fact in [6] the conjecture was proved for a slightly larger class.

167



Conjecture 9.2.3. Any family of matroids on a common ground set has the
Packing/Covering property.

Here Mk�P is the restriction of Mk to P and Mk.C is the contraction of Mk

onto C. Note that if (Mk�P |k ∈ K) has a packing, then (Mk.P |k ∈ K) has a
packing, so we get a stronger statement by taking the restriction here. Similarly,
we get a stronger statement by contracting to get the family which should have
a covering than we would get by restricting.

For finite matroids, we show that this new conjecture is true and implies
the base packing and base covering theorems. So the finite version of Con-
jecture 9.2.3 unifies the base packing and the base covering theorem into one
theorem.

For infinite matroids, we show that Conjecture 9.2.3 and the intersection
conjecture are equivalent, and that both are equivalent to Conjecture 9.2.3 for
pairs of matroids. In fact, for pairs of matroids, we show that (M,N) has
the Packing/Covering property if and only if M and N∗ have the Intersection
property. As the Packing/Covering property is preserved under duality for pairs
of matroids, this shows the less obvious fact that the Intersection property is
also preserved under duality:

Corollary 9.2.4. If M and N are matroids on the same ground set then M
and N have the intersection property if and only if M∗ and N∗ do.

Conjecture 9.2.3 also suggests a base packing conjecture and a base covering
conjecture which we show are equivalent to the intersection conjecture but not
to the above mentioned rank formula formulation of base packing for infinite
matroids.

The various results about when intersection is true transfer via these equiva-
lences to give results showing that these new conjectures also hold in the corre-
sponding special cases. For example, while the rank-formulation of the covering
theorem is not true for all families of co-finitary matroids, the new covering con-
jecture is true in that case. This yields a base covering theorem for the algebraic
cycle matroid of any locally finite graph and the topological cycle matroid of
any graph. Similarly, we immediately obtain in this way that the new packing
and covering conjectures are true for finite families of finitary matroids. Thus
we get packing and covering theorems for the finite cycle matroid of any graph.

For finite matroids, the proofs of the equivalences of these conjectures sim-
plify the proofs of the corresponding finite theorems.

We show that Conjecture 9.2.3 might be seen as the infinite analogue of the
rank formula of the matroid union theorem. It should be noted that there are
two matroids whose union is not a matroid [5], so there is no infinite analogue
of the finite matroid union theorem as a whole.

This new point of view also allows us to give a simplified account of the
special cases of the intersection conjecture and even to extend the results a
little bit. Our result includes the following:

Theorem 9.2.5. Any family of matroids (Mk|k ∈ K) on the same ground set
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E for which there are only countably many sets appearing as circuits of matroids
in the family has the Packing/Covering property.

This chapter is organised as follows: In Section 2, we recall some basic
matroid theory and introduce a key idea, that of exchange chains. After this, in
Section 3, we restate our main conjecture and look at its relation to the infinite
matroid intersection conjecture. In Section 4, we prove a special case of our
main conjecture. In the next two sections, we consider base coverings and base
packings of infinite matroids. In the final section, Section 7, we give an overview
over the various equivalences we have proved.

9.3 Preliminaries

9.3.1 Basic matroid theory

Throughout, notation and terminology for graphs are that of [35], for matroids
that of [75, 22], and for topology that of [10]. M always denotes a matroid

and E(M), I(M), B(M), C(M) and S(M) denote its ground set and its sets of
independent sets, bases, circuits and spanning sets, respectively.

Recall that the set I(M) is required to satisfy the followingindependence
axioms [22]:

(I1) ∅ ∈ I(M).

(I2) I(M) is closed under taking subsets.

(I3) Whenever I, I ′ ∈ I(M) with I ′ maximal and I not maximal, there exists
an x ∈ I ′ \ I such that I + x ∈ I(M).

(IM) Whenever I ⊆ X ⊆ E and I ∈ I(M), the set {I ′ ∈ I(M) | I ⊆ I ′ ⊆ X}
has a maximal element.

The axiom (IM) for the dual M∗ of M is equivalent to the following:

(IM∗) Whenever Y ⊆ S ⊆ E and S ∈ S(M), the set {S′ ∈ S(M) | Y ⊆ S′ ⊆ S}
has a minimal element.

As the dual of any matroid is also a matroid, every matroid satisfies this. We
need the following facts about circuits, the first of which is commonly referred
to as the infinite circuit elimination axiom [22]:

(C3) Whenever X ⊆ C ∈ C(M) and {Cx | x ∈ X} ⊆ C(M) satisfies x ∈ Cy ⇔
x = y for all x, y ∈ X, then for every z ∈ C \

(⋃
x∈X Cx

)
there exists a

C ′ ∈ C(M) such that z ∈ C ′ ⊆
(
C ∪⋃x∈X Cx) \X.

(C4) Every dependent set contains a circuit.

A matroid is called finitary if every circuit is finite.

Lemma 9.3.1. A set S is M -spanning iff it meets every M -cocircuit.
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Proof. We prove the dual version where I := E(M) \ S.

A set I is M∗-independent iff it does not contain an M∗-circuit. (9.1)

Clearly, if I contains a circuit, then it is not independent. Conversely, if I is
not independent, then by (C4) it also contains a circuit.

Let 2X denote the power set of X. If M = (E, I) is a matroid, then for
every X ⊆ E there are matroids M�X := (X, I ∩ 2X) (called the restriction
of M to X), M\X := M�E\X (which we say is obtained from M by deleting

X)2, M.X := (M∗�X)∗ (which we say is obtained by contracting onto X) and
M/X := M.(E \X) (which we say is obtained by contracting X). For e ∈ E,
we will also denote M/{e} by M/e and M\{e} by M\e.

Given a base B of X (that is, a maximal independent subset of X), the
independent sets of M/X can be characterised as those subsets I of E \X for
which B ∪ I is independent in M .

Lemma 9.3.2. Let M be a matroid with ground set E = C∪̇X∪̇D and let o′ be
a circuit of M ′ = M/C\D. Then there is an M -circuit o with o′ ⊆ o ⊆ o′ ∪ C.

Proof. Let s be any M -base of C. Then s ∪ o′ is M -dependent since o′ is M ′-
dependent. On the other hand, s ∪ o′ − e is M -independent whenever e ∈ o′
since o′ − e is M ′-independent. Putting this together yields that s∪ o′ contains
an M -circuit o, and this circuit must not avoid any e ∈ o′, as desired.

For a family (Mk|k ∈ K) of matroids, where Mk has ground set Ek, the direct
sum

⊕
k∈KMk is the matroid with ground set

⋃
k∈K Ek×{k}, with independent

sets the sets of the form
⋃
k∈K Ik×{k} where for each k the set Ik is independent

in Mk. Contraction and deletion commute with direct sums, in the sense that for
a family (Xk ⊆ Ek|k ∈ K) we have

⊕
k∈K(Mk/Xk) = (

⊕
k∈KMk)/(

⋃
k∈K Xk×

{k}) and
⊕

k∈K(Mk\Xk) = (
⊕

k∈KMk)\(⋃k∈K Xk × {k})

Lemma 9.3.3. Let M be a matroid and X ⊆ E(M). If S1 ⊆ X spans M�X
and S2 ⊆ E \X spans M/X, then S1 ∪ S2 spans M .

Proof. Let B be a maximal independent subset of S1. Then B spans S1 and
S1 spans X, so B spans X. Thus B is a base of X. Now let e ∈ M \X \ S2.
Since e ∈ ClM/X(S2) there is a set I ⊆ E \X such that I is M/X-independent
but I + e is not. Then B ∪ I is M -independent but B ∪ I + e is not, so that
e ∈ ClM (S1 + S2), as witnessed by the set B + I. Any other element of E is
either in S2 or is in X ⊆ ClM (S1), and so is in the span of S1 ∪ S2.

Lemma 9.3.4 ([23], Lemma 5). Let M be a matroid with a circuit C and a
co-circuit D, then |C ∩D| 6= 1.

2We use the notation M�X rather than the conventional notation M |X to avoid confusion
with our notation (Mk|k ∈ K) for families of matroids.
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A particular class of matroids we shall employ is the uniform matroids Un,E
on a ground set E, in which the bases are the subsets of E of size n. In fact, the
matroids we will use are those of the form U∗1,E , in which the bases are all those
sets obtained by removing a single element from E. Such a matroid is said to
consist of a single circuit, because C(U∗1,E) = {E}. A subset is independent iff
it isn’t the whole of E. Note that for a subset X of E, U∗1,E�X is free (every
subset is independent) unless X is the whole of E, and U∗1,E .X = U∗1,X unless
X is empty.

9.3.2 Exchange chains

Below, we will need a modification of the concept of exchange chains introduced
in [5]. The only modification is that we need not only exchange chains for
families with two members but more generally exchange chains for arbitrary
families, which we define as follows: Let (Mk|k ∈ K) be a family of matroids
and let Bk ∈ I(Mk). A (Bk|k ∈ K)-exchange chain (from y0 to yn) is a tuple
(y0, k0; y1, k1; . . . ; yn) where Bkl + yl includes an Mkl -circuit containing yl and
yl+1. A (Bk|k ∈ K)-exchange chain from y0 to yn is called shortest if there is
no (Bk|k ∈ K)-exchange chain (y′0, k

′
0; y′1, k

′
1; . . . ; y′m) with y′0 = y0, y′m = yn

and m < n. A typical exchange chain is shown in Figure 9.1.

C1

C2

C3

C4

y0

y1

y2

y3

y4

I2 ∈ I(M2)

I1 ∈ I(M1)

(a) Before the exchange

C1

C2

C3

C4

y0

y1

y2

y3

y4

I1 + y0 − y1 + y2 − y3

I2 + y1 − y2 + y3 − y4

(b) After the exchange

Figure 9.1: An (I1, I2)-exchange chain of length 4.

Lemma 9.3.5. Let (Mk|k ∈ K) be a family of matroids and let Bk ∈ I(Mk).
If (y0, k0; y1, k1; . . . ; yn) is a shortest (Bk|k ∈ K)-exchange chain from y0 to yn,
then B′k ∈ I(Mk) for every k, where

B′k := Bk ∪ {yl|kl = k} \ {yl+1|kl = k}

Moreover, ClMk
Bk = ClMk

B′k.

Proof (Sketch). The proof that the B′k are independent is done by induction on
n and is that of Lemma 4.5 in [5]. To see the second assertion, first note that
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{yl|kl = k} ⊆ ClMk
Bk and thus B′k ⊆ ClMk

Bk. Thus it suffices to show that
Bk ⊆ ClMk

B′k. For this, note that the reverse tuple (yn, kn−1; yn−1, kn−2; . . . ; y0)
is a B′k-exchange chain giving back the original Bk, so we can apply the preced-
ing argument again.

Lemma 9.3.6. Let M be a matroid and I,B ∈ I(M) with B maximal and B\I
finite. Then |I \B| ≤ |B \ I|.

Lemma 9.3.7. Let (Mk|k ∈ K) be a family of matroids, let Bk ∈ I(Mk) and
let C be a circuit for some Mk0 such that C \ Bk0 only contains one element,
e. If there is a (Bk|k ∈ K)-exchange chain from x0 to e, then for every c ∈ C,
there is a (Bk|k ∈ K)-exchange chain from x0 to c.

Proof. Let (y0 = x0, k0; y1, k1; . . . ; yn = e) be an exchange chain from x0 to e.
Then (y0 = x0, k0; y1, k1; . . . ; yn = e, k0; c) is the desired exchange chain.

9.4 The Packing/Covering conjecture

The matroid union theorem is a basic result in the theory of finite matroids.
It gives a way to produce a new matroid M =

∨
k∈KMk from a finite family

(Mk|k ∈ K) of finite matroids on the same ground set E. We take a subset I of
E to be M -independent iff it is a union

⋃
k∈K Ik with each Ik independent in

the corresponding matroid Mk. The fact that this gives a matroid is interesting,
but a great deal of the power of the theorem comes from the fact that it gives
an explicit formula for the ranks of sets in this matroid:

rM (X) = min
X=P ∪̇C

∑
k∈K

rMk
(P ) + |C| (9.2)

Here the minimisation is over those pairs (P,C) of subsets of X which partition
X.

For infinite matroids, or infinite families of matroids, this theorem is no
longer true [5], in that M is no longer a matroid. However, it turns out, as we
shall now show, that we may conjecture a natural extension of the rank formula
to infinite families of infinite matroids.

First, we state the formula in a way which does not rely on the assumption
that M is a matroid:

max
Ik∈I(Mk)

∣∣∣∣∣ ⋃
k∈K

Ik

∣∣∣∣∣ = min
E=P ∪̇C

∑
k∈K

rMk
(P ) + |C| (9.3)

Note that this is really only the special case of (9.2) with X = E. However,
it is easy to deduce the more general version by applying (9.3) to the family
(Mk�X |k ∈ K).

Note also that no value |⋃k∈K Ik| appearing on the left is bigger than
any value

∑
k∈K rMk

(P ) + |C| appearing on the right. To see this, note that
|⋃k∈K(Ik ∩ P )| ≤ ∑k∈K rMk

(P ) and
⋃
k∈K(Ik ∩ C) ⊆ C. So the formula is
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equivalent to the statement that we can find (Ik|k ∈ K) and P and C with
P ∪̇C = E so that ∣∣∣∣∣ ⋃

k∈K
Ik

∣∣∣∣∣ =
∑
k∈K

rMk
(P ) + |C| . (9.4)

For this, what we need is to have equality in the two inequalities above, so we
get ∣∣∣∣∣ ⋃

k∈K
(Ik ∩ P )

∣∣∣∣∣ =
∑
k∈K

rMk
(P ) and

⋃
k∈K

(Ik ∩ C) = C . (9.5)

The equation on the left can be broken down a bit further: it states that each
Ik ∩ P is spanning (and so a base) in the appropriate matroid Mk�P , and that
all these sets are disjoint. This is the familiar notion of a packing:

Definition 9.4.1. Let (Mk|k ∈ K) be a family of matroids on the same ground
set E. A packing for this family consists of a spanning set Sk for each Mk such
that the Sk are all disjoint.

So the Ik ∩ P form a packing for the family (Mk�P |k ∈ K). In fact, in this
case, each Ik ∩ P is a base in the corresponding matroid. In Definition 9.4.1,
we do not require the Sk to be bases, but of course if we have a packing we can
take a base for each Sk and so obtain a packing employing only bases.

Dually, the right hand equation in (9.5) corresponds to the presence of a
covering of C:

Definition 9.4.2. Let (Mk|k ∈ K) be a family of matroids on the same ground
set E. A covering for this family consists of an independent set Ik for each Mk

such that the Ik cover E.

It is immediate that the sets Ik∩C form a covering for the family (Mk�C |k ∈
K). In fact we get the stronger statement that they form a covering for the
family (Mk.C|k ∈ K) where we contract instead of restricting, since for each k
we have that Ik ∩P is an Mk-base for P , and we also have that Ik, which is the
union of Ik ∩ C with Ik ∩ P , is Mk-independent.

Putting all of this together, we get the following self-dual notion:

Definition 9.4.3. Let (Mk|k ∈ K) be a family of matroids on the same ground
set E. We say this family has the Packing/Covering property iff there is a
partition of E into two parts P (called the packing side) and C (called the
covering side) such that (Mk�P |k ∈ K) has a packing, and (Mk.C|k ∈ K) has
a covering.

We have established above that this property follows from the rank for-
mula for union, but the argument can easily be reversed to show that in fact
Packing/Covering is equivalent to the rank formula, where that formula makes
sense. However, Packing/Covering also makes sense for infinite matroids, where
the rank formula is no longer useful. We are therefore led to the following
conjecture:
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Conjecture 9.2.3. Every family of matroids on the same ground set has the
Packing/Covering property.

Because of this link to the rank formula, we immediately get a special case
of this conjecture:

Theorem 9.4.4. Every finite family of finite matroids on the same ground set
has the Packing/Covering property.

Packing/Covering for pairs of matroids is closely related to another property
which is conjectured to hold for all pairs of matroids.

Definition 9.4.5. A pair (M,N) of matroids on the same ground set E has the
Intersection property iff there is a subset J of E, independent in both matroids,
and a partition of J into two parts JM and JN such that

ClM (JM ) ∪ ClN (JN ) = E .

Conjecture 9.2.1. Every pair of matroids on the same ground set has the
Intersection property.

We begin by demonstrating a link between Packing/Covering for pairs of
matroids and Intersection.

Proposition 9.4.6. Let M and N be matroids on the same ground set E. Then
M and N have the Intersection property iff (M,N∗) has the Packing/Covering
property.

Proof. Suppose first of all that (M,N∗) has the Packing/Covering property,
with packing side P decomposed as SM ∪̇SN∗ and covering side C decomposed
as IM ∪̇IN∗ . Let JM be an M -base of SM , and JN an N -base of C \ IN∗ .
J = JM ∪ JN is independent in M since JN ⊆ IM is independent in M.C and
JM is independent in M�P . Similarly J is independent in N since JM ⊆ P \SN∗
is independent in N.P and JN is independent in N�C . But also

ClM (JM ) ∪ ClN (JN ) = ClM (SM ) ∪ ClN (C \ IN∗) ⊇ P ∪ C = E .

Now suppose instead that M and N have the Intersection property, as wit-
nessed by J = JM ∪̇JN . Let JM ⊆ P ⊆ ClM (JM ) and JN ⊆ C ⊆ ClN (JN ) be
a partition of E (this is possible since ClM (JM )∪ClN (JN ) = E). We shall show
first of all that M�P and N∗�P have a packing, with the spanning sets given by
SM = JM and SN

∗
= P \ JM . JM is spanning in M�P since P ⊆ ClM (JM ),

so it is enough to check that P \ JM is spanning in N∗�P , or equivalently that
JM is independent in N.P . But this is true since JN is an N -base of C and
JM ∪ JN is N -independent.

Similarly, JN is independent inM.C, and since C ⊆ ClN (JN ) JN is spanning
in N�C and so C \ JN is independent in N∗.C. Thus the sets IM = JN and
IN
∗

= C \ JN form a covering for (M.C,N∗.C).
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Corollary 9.4.7. If M and N are matroids on the same ground set then (M,N)
has the Packing/Covering property iff (M∗, N∗) does. �

This corollary is not too hard to see directly. However, the following similar
corollary is less trivial.

Corollary 9.2.4. If M and N are matroids on the same ground set then M
and N have the Intersection property iff M∗ and N∗ do. �

Proposition 9.4.6 shows that Conjecture 9.2.1 follows from Conjecture 9.2.3,
but so far we would only be able to use it to deduce that any pair of matroids
has the Packing/Covering property from Conjecture 9.2.1. However, this turns
out to be enough to give the whole of Conjecture 9.2.3.

Proposition 9.4.8. Let (Mk|k ∈ K) be a family of matroids on the same
ground set E, and let M =

⊕
k∈KMk, on the ground set E ×K. Let N be the

matroid on the same ground set given by
⊕

e∈E U
∗
1,K . Then the Mk have the

Packing/Covering property iff M and N do.

Proof. First of all, suppose that the Mk have the Packing/Covering property
and let P , C, Sk and Ik be as in Definition 9.4.3. We can partition E ×K into
P ′ = P ×K and C ′ = C×K. Let SM =

⋃
k∈K Sk×{k}, and let SN = P ′ \SM .

SM is spanning in M�P ′ by definition, and since the sets Sk are disjoint, there
is for each e ∈ P at most one k ∈ K with (e, k) 6∈ SN . Thus SN is spanning
in N�P ′ . Similarly, let IM =

⋃
k∈K Ik × {k} and let IN = C ′ \ IM . IM is

independent in M.C ′ by definition, and since the sets Ik cover C there is for
each e ∈ E at least one k ∈ K with (e, k) 6∈ IN . Thus IN is independent in
N.C ′.

Now suppose instead that M and N have the Packing/Covering property,
with packing side P decomposed as SM ∪̇SN and covering side C decomposed
as IM ∪̇IN . First we modify these sets a little so that the packing and covering
sides are given by P × K and C × K for some sets P and C. To this end,
we let P = {e ∈ E|(∀k ∈ K)(e, k) ∈ P}, and C = {e ∈ E|(∃k ∈ K)(e, k) ∈
C}, so that P and C form a partition of E. Let S

N
= SN ∩ (P × K) and

I
N

= IN ∪ ((C × K) \ C). We shall show that (SM , S
N

) is a packing for

(M�P×K , N�P×K) and (IM , I
N

) is a covering for (M.(C ×K), N.(C ×K)).

For any e ∈ C, the restriction of the corresponding copy of U∗1,K to P ∩
({e} ×K) is free, and so since the intersection of SN with this set is spanning
there, it must contain the whole of P ∩ ({e} ×K). So since SM ⊆ P is disjoint
from SN , it can’t contain any (e, k) with e ∈ C. That is, SM ⊆ P × K. It
also spans P × K in M , since it spans the larger set P . For each e ∈ P ,

S
N ∩ ({e}×K) = SN ∩ ({e}×K) N -spans {e}×K. Thus S

N
N -spans P ×K,

so (SM , S
N

) is a packing for (M�P×K , N�P×K).

To show that (IM , I
N

) is a covering for (M.(C ×K), N.(C ×K)), it suffices

to show that I
N

is N.(C×K)-independent. For each e ∈ C, the set C∩({e}×K)

175



is nonempty, so the contraction of the corresponding copy of U∗1,K to this set

consists of a single circuit, so there is some point in this set but not in IN . Then

that same point is also not in I
N

, and so I
N ∩ ({e} ×K) is independent in the

corresponding copy of U∗1,K , so I
N

is indeed N.(C × P )-independent.

Now that we have shown that P ×K, C ×K, (SM , S
N

) and (IM , I
N

) also
witness that M and N have the Packing/Covering property, we show how we
can construct a packing and a covering for (Mk�P |k ∈ K) and (Mk.C|k ∈ K)
respectively.

For each k ∈ K let Ik = {e ∈ E|(e, k) ∈ IM}. Since, as we saw above, IM

meets each of the sets {e} × K with e ∈ C, the union of the Ik is C. Since
also each Ik is independent in Mk.C, they form a covering for (Mk.C|k ∈ K).

Similarly, let Sk = {e ∈ E|(e, k) ∈ SM}. Since the intersection of S
N

with
{e} ×K is spanning in the corresponding copy of U∗1,k for any e ∈ P , it follows
that for such e it misses at most one point of this set, so that there can be at
most one point in SM ∩ ({e} × K), so the Sk are disjoint. Thus they form a
packing of (Mk�P |k ∈ K).

Corollary 9.4.9. The following are equivalent:

(a) Any two matroids have the Intersection property (Conjecture 9.2.1).

(a) Any two matroids in which the second is a direct sum of copies of U1,2

have the Intersection property.

(a) Any pair of matroids has the Packing/Covering property.

(a) Any pair of matroids in which the second is a direct sum of copies of U1,2

has the Packing/Covering property.

(a) Any family of matroids has the Packing/Covering property (Conjecture 9.2.3).

Proof. We shall prove the following equivalences.

(b) oo // (d)
OO

��
(a) oo // (c) oo // (e)

The equivalences of (a) with (c) and (b) with (d) both follow from Proposi-
tion 9.4.6. (c) evidently implies (d), but we can also get (c) from (d) by applying
Proposition 9.4.8. Similarly, (e) evidently implies (c) and we can get (e) from
(c) by applying Proposition 9.4.8.

9.5 A special case of the Packing/Covering con-
jecture

In [4], Aharoni and Ziv prove a special case of the intersection conjecture. Here
we employ a simplified form of their argument to prove a special case of the
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Packing/Covering conjecture. Our simplification also yields a slight strength-
ening of their theorem.

Key to the argument is the notion of a wave.

Definition 9.5.1. Let (Mk|k ∈ K) be a family of matroids all on the ground set
E. A wave for this family is a subset P of E together with a packing (Sk|k ∈ K)
of (Mk�P |k ∈ K). In a slight abuse of notation, we shall sometimes refer to the
wave just as P or say that elements of P are in the wave. A wave is a hindrance
if the Sk don’t completely cover P . The family is unhindered if there is no
hindrance, and loose if the only wave is the empty wave.

Remark 9.5.2. Those familiar with Aharoni and Ziv’s notion of wave should
observe that if (P, (S1, S2)) is a wave as above and we let F be an M2-base
of S2 then F is not only M2-independent but also M∗1 .P -independent, since
S1 ⊆ P \ F is M1�P -spanning. Now since P ⊆ ClM2

(F ), we get that F is also
M∗1 .ClM2

(F )-independent. Thus F is a wave in the sense of Aharoni and Ziv
for the matroids M∗1 and M2. There is a similar correspondence of the other
notions defined above.

Similarly, they say that the pair (M1,M2) is matchable iff there is a set which
is M1-spanning and M2-independent. Those interested in translating between
the two contexts should note that there is a covering for (M1,M2) iff (M∗1 ,M2)
is matchable.

We define a partial order on waves by (P, (Sk|k ∈ K)) ≤ (P ′, (S′k|k ∈ K))
iff P ⊆ P ′ and for each k ∈ K we have Sk ⊆ S′k. We say a wave is maximal iff
it is maximal with respect to this partial order.

Lemma 9.5.3. For any wave P there is a maximal wave Pmax ≥ P .

Proof. This follows from Zorn’s Lemma since for any chain ((Pi, (S
i
k|k ∈ K))|i ∈

I) the union (
⋃
i∈I Pi, (

⋃
i∈I S

i
k|k ∈ K)) is a wave.

Lemma 9.5.4. Let (Mk|k ∈ K) be a family of matroids on the same ground
set E, and let (P, (Sk|k ∈ K)) and (P ′, (S′k|k ∈ K)) be two waves. Then
(P ∪ P ′, (Sk ∪ (S′k \ P )|k ∈ K)) is a wave.

Proof. Clearly, the Sk ∪ (S′k \ P ) are disjoint and clMk
Sk includes S′k ∩ P and

hence clMk
(Sk ∪ (S′k \ P )) includes P ∪ P ′, as desired.

Corollary 9.5.5. If Pmax is a maximal wave then anything in any wave P is
in Pmax.

Proof. We apply Lemma 9.5.4 to the pair (Pmax, P ).

Lemma 9.5.6. For any e ∈ E and k ∈ K, any maximal wave P satisfies
e ∈ ClMk

P whenever there is any wave P ′ with e ∈ ClMk
P ′.

In particular, if e is not contained in any wave, there are at least two k such
that, for every wave P ′, we have e /∈ ClMk

P ′.
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Proof. Let (P, (Sk|k ∈ K)) be a maximal wave. By Corollary 9.5.5 for any wave
(P ′, (S′k|k ∈ K)) we have S′k ⊆ ClMk

Sk. Thus e ∈ ClMk
P ′ = ClMk

S′k implies
e ∈ ClMk

P , as desired.
For the second assertion, assume toward contradiction that there is at most

one k0 such that, for every wave P ′, e /∈ ClMk0
P ′. Then e ∈ ClMk

P for all
k 6= k0. But then the following is a wave and contains e:
X := (P + e, (Sk|k ∈ K)) where Sk0 = Sk0 + e and Sk = Sk for other values of
k. This is a contradiction.

Lemma 9.5.7. Let (P, (Sk|k ∈ K)) be a wave for a family (Mk|k ∈ K) of
matroids. Let (P ′, (S′k|k ∈ K)) be a wave for the family (Mk/P |k ∈ K). Then
(P ∪ P ′, (Sk ∪ S′k|k ∈ K)) is a wave for the family (Mk|k ∈ K). If either P or
P ′ is a hindrance then so is P ∪ P ′.

Remark 9.5.8. In fact, though we will not need this, a similar statement can
be shown for an ordinal indexed family of waves P β , with P β a wave for the
family (Mk/

⋃
γ<β P

γ |k ∈ K).

Proof. For each k, the set S′k is spanning in Mk�P∪P ′/P and Sk is spanning in
Mk�P∪P ′�P , so by Lemma 9.3.3 each set Sk ∪ S′k spans P ∪ P ′, and they are
clearly disjoint. If the Sk don’t cover some point of P then the Sk ∪ S′k also
don’t cover that point, and the argument in the case where P ′ is a hindrance is
similar.

Corollary 9.5.9. For any maximal wave Pmax, the family (Mk/Pmax|k ∈ K)
is loose.

We are now in a position to present another Conjecture equivalent to the
Packing/Covering Conjecture. It is for this new form that we shall present our
partial proof.

Conjecture 9.5.10. Any unhindered family of matroids has a covering.

Proposition 9.5.11. Conjecture 9.5.10 and Conjecture 9.2.3 are equivalent.

Proof. First of all, suppose that Conjecture 9.2.3 holds, and that we have an
unhindered family (Mk|k ∈ K) of matroids. Using Conjecture 9.2.3, we get P ,
C, Sk and Ik as in Definition 9.4.3. Then (P, (Sk|k ∈ K)) is a wave, and since
it can’t be a hindrance the sets Sk cover P . They must also all be independent,
since otherwise we could remove a point from one of them to obtain a hindrance.
So the sets Sk ∪ Ik give a covering for (Mk|k ∈ K).

Now suppose instead that Conjecture 9.5.10 holds, and let (Mk|k ∈ K) be
any family of matroids on the ground set E. Then let (P, (Sk|k ∈ K)) be a
maximal wave. By Corollary 9.5.9, (Mk/P |k ∈ K) is loose, and so in particular
this family is unhindered. So it has a covering (Ik|k ∈ K). Taking covering side
C = E \ P , this means that the Mk have the Packing/Covering property.

Lemma 9.5.12. Suppose that we have an unhindered family (Mk|k ∈ K) of
matroids on a ground set E. Let e ∈ E and k0 ∈ K such that for every wave P
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we have e /∈ ClMk0
P . Then the family (M ′k|k ∈ K) on the ground set E − e is

also unhindered, where M ′k0 = Mk0/e but M ′k = Mk\e for other values of k.

Proof. Suppose not, for a contradiction, and let (P, (Sk|k ∈ K)) be a hindrance
for (M ′k|k ∈ K). Without loss of generality, we assume that the Sk are bases
of P . Let Sk be given by Sk0 = Sk0 + e and Sk = Sk for other values of k.
Note that Sk0 is independent because otherwise, by the Mk0/e-independence
of Sk0 , we must have e ∈ ClMk0

(Sk0) (in fact, {e} must be an Mk0-circuit),
so that P ⊆ ClMk0

(Sk0), and thus (P, (Sk|k ∈ K)) is a wave for the Mk with

e ∈ ClMk0
P . Let P ′ be the set of x ∈ P such that there is no (Sk|k ∈ K)-

exchange chain from x to e.
Let x0 ∈ P \

⋃
k∈K Sk. If x0 ∈ P ′, then we will show that (P ′, (P ′ ∩ Sk|k ∈

K)) is a wave containing x0. This contradicts the assumption that (Mk|k ∈ K)
is unhindered. We must show for every k that every x ∈ P ′ \ P ′ ∩ Sk is Mk-
spanned by P ′ ∩ Sk. Since e 6∈ P ′ we cannot have x = e. Let C be the unique
circuit contained in x + Sk. If x ∈ P ′, then C ⊆ P ′ by Lemma 9.3.7, so
x ∈ ClMk

(P ′ ∩ Sk), as desired.
If x0 /∈ P ′, there is a shortest (Sk|k ∈ K)-exchange chain

(y0 = x0, k0; y1, k1; . . . ; yn = e)

from x0 to e. Let S
′
k := Sk ∪ {yl|kl = k} \ {yl+1|kl = k}. By Lemma 9.3.5, S

′
k

is Mk-independent and ClMk
Sk = ClMk

Sk
′

for all k ∈ K. Thus each S
′
k Mk-

spans P but avoids e, in other words: (P, (S
′
k|k ∈ K)) is an (Mk|k ∈ K)-wave.

But also e ∈ ClMk0
P since e ∈ Sk0 , a contradiction.

We will now discuss those partial versions of Conjecture 9.5.10 which we can
prove. We would like to produce a covering of the ground set by independent sets
- and that means that we don’t want any of the sets in the covering to include
any circuits for the corresponding matroid. First of all, we show that we can at
least avoid some circuits. In fact, we’ll prove a slightly stronger theorem here,
showing that we can specify a countable family of sets, which are to be avoided
whenever they are dependent. In all our applications, the dependent sets we
care about will be circuits.

Theorem 9.5.13. Let (Mk|k ∈ K) be an unhindered family of matroids on the
same ground set E. Suppose that we have a sequence of subsets on of E. Then
there is a family (Ik|k ∈ K) whose union is E and such that for no k ∈ K and
n ∈ N do we have both on ⊆ Ik and on dependent in Mk.

Proof. If some wave includes the whole ground set, then as the family is un-
hindered, this wave would yield the desired covering. Unfortunately, we may
not assume this. Instead, we recursively build a family (Jk|k ∈ K) of dis-
joint sets such that some wave (P, (Sk|k ∈ K)) for the Mk/Jk\

⋃
l 6=k Jl includes

enough of E \ ⋃k Jk that any family (Ik|k ∈ K) whose union is E and with
Ik ∩ (P ∪⋃k∈K Jk) = Sk ∪ Jk will work.

We construct Jk as the nested union of some (Jnk |n ∈ N ∪ {0}) with the
following properties. Abbreviate Mn

k := Mk/J
n
k \
⋃
l 6=k J

n
l .
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(a) Jnk is independent in Mk.

(a) For different k, the sets Jnk are disjoint.

(a) (Mn
k |k ∈ K) is unhindered.

(a) Either the set on\
⋃
k∈K J

n
k is included in some (Mn

k |k ∈ K)-wave or there
are distinct l, l′ such that there is some e ∈ on∩Jnl and some e′ ∈ on∩Jnl′ .

Put J0
k := ∅ for all k. These satisfy ((a))-((a)), and ((a)) is vacuous since

there is no term o0 (we are following the convention that 0 is not a natural
number). Assume that we have already constructed Jnk satisfying ((a))-((a)).

If ((a)) with on+1 in place of on is already satisfied by the (Jnk |k ∈ K) we
can simply take Jn+1

k := Jnk for all k.
Otherwise, if we let Pmax be a maximal wave, there is some e ∈ on+1 \⋃

k∈K J
n
k not in Pmax and so not in any (Mn

k |k ∈ K)-wave. By Lemma 9.5.6,
there are at least two k ∈ K such that e /∈ ClMn

k
P ′ for every wave P ′. In

particular, e is not a loop ({e} is independent) in Mn
k for those two k. Let l be

one of these two values of k. Now let Jn+1
l := Jnl + e and Jn+1

k := Jnk for k 6= l.

Then the Jn+1
k satisfy ((a)) and ((a)). By Lemma 9.5.12 and the choice of e,

we also have ((a)).

If the Jn+1
k already satisfy ((a)), then we are done. Else, to obtain ((a)),

repeat the induction step so far and find e′ ∈ on+1 \
⋃
k∈K J

n+1
k not in any

(Mn
k |k ∈ K)-wave. Here Mn

k is Mn
k /e if k = l and Mn

k \e otherwise. Further we
find, l′ 6= l such that {e′} is independent in Mn

l′ and e′ /∈ ClMl
P ′ for every wave

P ′. Now let Jn+1
l′ := Jn+1

l′ + e′ and Jn+1
k := Jn+1

k for k 6= l′. Then the Jn+1
k

satisfy ((a)) and ((a)) and now also ((a)). By Lemma 9.5.12 and the choice of
e′, we also have ((a)).

We now define a new family of matroids by M ′k := Mk/Jk\
⋃
l 6=k Jl, and

we construct an (M ′k|k ∈ K)-wave (P, (Sk|k ∈ K)). We once more do this
by taking the union of a recursively constructed nested family. Explicitly, we
take Sk =

⋃
n∈N S

n
k and P =

⋃
n∈N P

n, where for each n the wave Wn =
(Pn, (Snk |k ∈ K)) is a maximal wave for (Mn

k |k ∈ K) and the Snk are nested.
We can find such waves using Lemma 9.5.3: for each n we have that Wn is also
a wave for (Mn+1

k |k ∈ K) since in our construction we never contract or delete
anything which is in a wave.

Now let (Ik|k ∈ K) be chosen so that
⋃
Ik = E and for each k0 ∈ K we have

Ik0 ∩ (P ∪⋃k∈K Jk) = Sk0 ∪Jk0 . Suppose for a contradiction that for some pair
(k0, n) we have on ⊆ Ik0 and on is dependent in Mk0 . Then by ((a)), either the
set on \

⋃
k∈K J

n
k is included in some (Mn

k |k ∈ K)-wave or there are distinct l, l′

such that there is some e ∈ on ∩ Jnl and some e′ ∈ on ∩ Jnl′ . In the second case,
clearly on * Ik0 .

In the first case, we will find a hindrance for (Mn
k |k ∈ K), which contradicts

((a)). It suffices to show that Snk0 is dependent inMn
k0

, since then we can obtain a
hindrance by removing a point from Snk0 in Wn. Let o = on\

⋃
k∈K J

n
k = on\Jnk0 .

Note that o is dependent in Mn
k0

, since on is dependent in Mn
k0

but Jnk0 is not
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by ((a)). By assumption, o ⊆ Pn, and so since also o ⊆ on ⊆ Ik0 we have
o ⊆ Ik0 ∩ Pn = Snk0 , so that Snk0 is Mn

k0
-dependent as required.

Note that, in particular, if we have a countable family of matroids each with
only countably many circuits then Theorem 9.5.13 applies in order to prove
Conjecture 9.2.3 in that special case. Requiring only countably many circuits
might seem quite restrictive, but there are many cases where it holds:

Proposition 9.5.14. A matroid of any of the following types on a countable
ground set has only countably many circuits:

(a) A finitary matroid.

(a) A matroid whose dual has finite rank.

(a) A direct sum of matroids each with only countably many circuits.

Proof. ((a)) follows from the fact that the countable ground set has only count-
ably many finite subsets. For ((a)), since every base B has finite complement,
there are only countably many bases. As every circuit is a fundamental circuit
for some base, there can only be countably many circuits, as desired. For ((a)),
there can only be countably many nontrivial summands in the direct sum since
the ground set is countable, and the result follows.

In particular, Theorem 9.5.13 applies to any countable family of matroids
each of which is a direct sum of matroids that are finitary or whose duals have
finite rank. This includes the main result of Aharoni and Ziv in [4], if the ground
set E is countable, by Proposition 9.4.6.

If we have a family of sets (Ik|k ∈ K) which does not form a covering, because
some elements aren’t independent, how might we tweak it to make them more
independent? Suppose that the reason why Ik is dependent is that it contains
a circuit o of Mk, but that o also includes a cocircuit for another matroid Mk′

from our family. Then we could move some point from Ik into Ik′ to remove
this dependence without making Ik′ any more dependent.3 We are therefore
not so worried about circuits including cocircuits in this way as we are about
other sorts of circuits. Therefore we now consider cases where most circuits do
include such cocircuits:

Definition 9.5.15. Let (Mk|k ∈ K) be a family of matroids on the same
ground set E. For each k ∈ K we let Wk be the set of all Mk-circuits that
do not contain an Mk′ -cocircuit with k′ 6= k. Call the family (Mk|k ∈ K) of
matroids at most countably weird if

⋃
Wk is at most countable.

Note that if E is countable then (Mk|k ∈ K) is at most countably weird if
and only if

⋃
W∞k is countable where W∞k is the subset of Wk consisting only

of the infinite circuits in Wk.

3We may assume that the Ik are disjoint. Then any new circuits in Ik′ would have to meet
the cocircuit in just one point, which is impossible by Lemma 9.3.4.
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Theorem 9.5.16. Any unhindered and at most countably weird family (Mk|k ∈
K) of matroids has a covering.

Proof. Apply Theorem 9.5.13 to (Mk|k ∈ K) where the on enumerate
⋃
Wk

where the Wk are defined as in Definition 9.5.15.
So far (Ik|k ∈ K) is not necessarily a covering since each Ik might still contain

circuits. But by the choice of the family of circuits each circuit contained in Ik
contains an Mk′ -cocircuit with k′ 6= k.

In the following, we tweak (Ik|k ∈ K) to obtain a covering (Lk|k ∈ K).
First extend Ik into a minimal Mk-spanning set Bk by (IM)∗. We obtain Lk
from Bk by removing all elements in Ik ∩

⋃
l 6=k Bl. We can suppose without loss

of generality (Ik|k ∈ K) was a partition of E, and so the family (Lk|k ∈ K)
covers E. It remains to show that Lk is independent. For this, assume for
a contradiction that Lk contains an Mk-circuit C. By the choice of Bk, the
circuit C is contained in Ik. In particular, C contains an Ml-cocircuit X for
some l 6= k. By construction Bl meets X and thus C. As C ⊆ Ik, the circuit C is
not contained in Lk, a contradiction. So (Lk|k ∈ K) is the desired covering.

Theorem 9.5.17. Any at most countably weird family (Mk|k ∈ K) of matroids
has the Packing/Covering property.

Proof. For each k ∈ K, let Wk be the set of all Mk-circuits that do not contain
an Mk′ -cocircuit with k′ 6= k. Let (P, (Sk|k ∈ K)) be a maximal wave. We
may assume that each Sk is a base of P . It suffices to show that the family
(Mk/P |k ∈ K) has a covering.

By Theorem 9.5.16, it suffices to show that the family (Mk/P |k ∈ K) is at
most countably weird . Let W k be the set of Mk/P -circuits that do not include
some Mk′/P -cocircuit for some k′ 6= k. By Lemma 9.3.2, for each o ∈W k, there
is an Mk-circuit ô included in o ∪ Sk with o ⊆ ô.

Next we show that if ô includes some Mk′ -cocircuit b, then b ⊆ o. In partic-
ular o includes some Mk′/P -cocircuit. Indeed, otherwise b∩P is nonempty and
includes some Mk′�P -cocircuit. This cocircuit would be included in Sk, which
is impossible since Sk′ spans P , and is disjoint from Sk. Thus if ô is in Wk, then
o is in W k.

For each o ∈ ⋃W k, we pick some k ∈ K such that o ∈ W k, and let
ι(o) = ô. Then ι :

⋃
W k →

⋃
Wk is an injection since if ι(o) = ι(q), then

o = ι(o) \ P = ι(q) \ q = q. Thus (Mk/P |k ∈ K) is at most countably weird
and so (Mk/P |k ∈ K) has a covering by Theorem 9.5.16, which completes the
proof.

However, there are still some important open questions here.

Definition 9.5.18 ([6]). The finitarisation of a matroid M is the matroid Mfin

whose circuits are precisely the finite circuits of M .4 A matroid is called nearly
finitary if every base misses at most finitely many elements of some base of the
finitarisation.

4It is easy to check that Mfin is indeed a matroid [6].
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From Proposition 9.4.6 and the corresponding case of Matroid Intersection
[6] we obtain the following:

Corollary 9.5.19. Any pair of nearly finitary matroids has the Packing/Covering
property.

By Proposition 9.4.8 Corollary 9.5.19 implies that any finite family of nearly
finitary matroids has the Packing/Covering property. Since every countable
set has only countably many finite subsets, any family of finitary matroids
supported on a countable ground set is at most countably weird, and thus
has the Packing/Covering property by Theorem 9.5.17. On the other hand any
family of two cofinitary matroids has the Packing/Covering by Corollary 9.5.19
since the pairwise Packing/Covering Property is self-dual. By Proposition 9.4.8,
this implies that any family of cofinitary matroids has the Packing/Covering
property. We sum up these results in the following table.

Type of family cofinitary finitary nearly finitary
finite X X X
countable ground set X X ?
arbitrary X ? ?

In particular, we do not know the answer to the following open questions.

Open Question 9.5.20. Must every family of nearly finitary matroids on a
countable common ground set have the Packing/Covering property?

Open Question 9.5.21. Must every family of finitary matroids have the Pack-
ing/Covering property?

9.6 Base covering

The well-known base covering theorem reads as follows.

Theorem 9.6.1. Any family of finite matroids (Mk|k ∈ K) on a finite common
ground set E has a covering if and only if for every finite set X ⊆ E the following
holds. ∑

k∈K
rMk

(X) ≥ |X|

Taking the family to contain only one matroid, consisting of one infinite
circuit, we see that this theorem does not extend verbatim to infinite matroids.
However, Theorem 9.6.1 extends verbatim to finite families of finitary matroids
by compactness [5].5 The requirement that the family is finite is necessary as
(Uk = U1,R|k ∈ N) satisfies the rank formula but does not have a covering.

In the following, we conjecture an extension of the finite base covering theo-
rem to arbitrary infinite matroids. Our approach is to replace the rank formula

5The argument in [5] is only made in the case where all Mk are the same but it easily
extends to finite families of arbitrary finitary matroids.
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by a condition that for finite sets X is implied by the rank formula but is still
meaningful for infinite sets. A first attempt might be the following:

Any packing for the family (Mk�X |k ∈ K) is already a covering. (9.6)

Indeed, for finite X, if (Mk�X |k ∈ K) has a packing and there is an element
of X not covered by the spanning sets of this packing, then this violates the
rank formula. However, there are infinite matroids that violate (9.6) and still
have a covering, see Figure 9.2.

B2 B1

B′
2 B′

1

Figure 9.2: Above is a base packing which isn’t a base covering. Below that is
a base covering for the same matroids, namely the finite cycle matroid for the
graph, taken twice.

We propose to use instead the following weakening of (9.6).

If (Mk�X |k ∈ K) has a packing, then it also has a covering. (9.7)

To see that (9.7) does not imply the rank formula for some finite X, consider
the family (M,M), where M is the finite cycle matroid of the graph

• • •

This graph has an edge not contained in any cycle (so that (M,M) does not
have a packing) but enough parallel edges to make the rank formula false.

Using (9.7), we obtain the following:

Conjecture 9.6.2 (Covering Conjecture). A family of matroids (Mk|k ∈ K)
on the same ground set E has a covering if and only if (9.7) is true for every
X ⊆ E.
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Proposition 9.6.3. Conjecture 9.2.3 and Conjecture 9.6.2 are equivalent.

Proof. For the “only if” direction, note that Conjecture 9.6.2 implies Conjec-
ture 9.5.10, which by Proposition 9.5.11 implies Conjecture 9.2.3.

For the “if” direction, note that by assumption we have a partition E = P ∪̇C
such that there exist disjoint Mk�P -spanning sets Sk and Mk.C-independent
sets Ik whose union is C. By (9.7), (Mk�P |k ∈ K) has a covering with sets Bk,
where Bk ∈ I(Mk�P ). As Ik ∪ Bk ∈ I(Mk), the sets Ik ∪ Bk form the desired
covering.

As Packing/Covering is true for finite matroids, Proposition 9.6.3 implies
the non-trivial direction of Theorem 9.6.1. By Theorem 9.5.17 we obtain the
following applications.

Corollary 9.6.4. Any at most countably weird family of matroids (Mk|k ∈ K)
has a covering if and only if (9.7) is true for every X ⊆ E.

Let us now specialise to graphs. A good introduction to the algebraic and
the topological cycle matroids of infinite graphs is [21]. We rely on the fact that
the algebraic cycle matroid of any locally finite graph and the topological cycle
matroid of any graph are co-finitary.

Definition 9.6.5. The bases of the topological cycle matroid are called topolog-
ical trees and the bases of the algebraic cycle matroid are called algebraic trees.
Using this we define topological tree-packing, topological tree-covering, algebraic
tree-packing, algebraic tree-covering.

Corollary 9.6.6 (Base covering for the topological cycle matroids). A family
of multigraphs (Gk|k ∈ K) on a common ground set E has a topological tree-
covering if and only if the following is true for every X ⊆ E.

If (Gk[X]|k ∈ K) has a topological tree-packing, then it also has
a topological tree-covering.

(9.8)

Corollary 9.6.7 (Base covering for the algebraic cycle matroids of locally finite
graphs). A family of locally finite multigraphs (Gk|k ∈ K) on a common ground
set E has an algebraic tree-covering if and only if the following is true for every
X ⊆ E.

If (Gk[X]|k ∈ K) has an algebraic tree-packing, then it also has
an algebraic tree-covering.

(9.9)

9.7 Base packing

The well-known base packing theorem reads as follows.

Theorem 9.7.1. Any family of finite matroids (Mk|k ∈ K) on a finite common
ground set E has a packing if and only if for every finite set Y ⊆ E the following
holds. ∑

k∈K
rMk.Y (Y ) ≤ |Y |
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Aigner-Horey, Carmesin and Fröhlich [5] extended this theorem to families
consisting of finitely many copies of the same co-finitary matroid. We extend
this to arbitrary co-finitary families.

Theorem 9.7.2. Any family of co-finitary matroids (Mk|k ∈ K) on a common
ground set E has a packing if and only if for every finite set Y ⊆ E the following
holds. ∑

k∈K
rMk.Y (Y ) ≤ |Y |

Proof by a compactness argument. We will think of partitions of the ground set
E as functions from E to K - such a function f corresponds to a partition
(Sfk |k ∈ K), given by Sfk = {e ∈ E|f(e) = k}. Endow K with the co-finite
topology where a set is closed iff it is finite or the whole of K. Then endow
KE with the product topology, which is compact since the topology on K is
compact.

By Lemma 9.3.1 a set S is spanning for a matroid M iff it meets every
cocircuit of that matroid. So we would like a function f contained in each of
the sets Ck,B = {f |Sfk ∩ B 6= ∅}, where B is a cocircuit for the matroid Mk.
We will prove the existence of such a function by a compactness argument: we
need to show that each Ck,B is closed in the topology given above and that any
finite intersection of them is nonempty.

To show that Ck,B is closed, we rewrite it as
⋃
e∈B{f |f(e) = k}. Each of

the sets {f |f(e) = k} is closed since their complements are basic open sets, and
the union is finite since Mk is co-finitary.

Now let (ki|1 ≤ i ≤ n) and (Bi|1 ≤ i ≤ n) be finite families with each Bi a
cocircuit in Mki . We need to show that

⋂
1≤i≤n Cki,Bi is nonempty. Let X =⋃

1≤i≤nBi. Since the rank formula holds for each subset of X, we have by the
finite version of the base packing Theorem a packing (Sk|k ∈ K) of (Mk.X|k ∈
K). Now any f such that f(e) = k for e ∈ Sk will be in

⋂
1≤i≤n Cki,Bi by

Lemma 9.3.1, since each Bi is an Mki .X-cocircuit. This completes the proof.

Theorem 9.7.1 does not extend verbatim to arbitrary infinite matroids. In-
deed, for every integer k there exists a finitary matroid M on a ground set
E with no three disjoint bases yet satisfying |Y | ≥ krM.Y (Y ) for every finite
Y ⊆ E [3, 35].

In the following we conjecture an extension of the finite base packing theorem
to arbitrary infinite matroids. This extension uses the following condition, which
for finite sets Y is implied by the rank formula of the base packing theorem but
is still meaningful for infinite sets:

If (Mk.Y |k ∈ K) has a covering, then it also has a packing. (9.10)

Indeed, if (Mk.Y |k ∈ K) has a covering and there is an element of Y con-
tained in several of the corresponding independent sets, then this violates the
rank formula.
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Using our new condition, we obtain the following:

Conjecture 9.7.3 (Packing Conjecture). A family of matroids (Mk|k ∈ K)
on the same ground set E has a packing if and only if (9.10) is true for every
Y ⊆ E.

Proposition 9.7.4. Conjecture 9.2.3 and Conjecture 9.7.3 are equivalent.

Proof. Since by Lemma 9.3.1 condition (9.10) for a pair of matroids is equivalent
to (9.7) for the duals of those matroids and a pair of matroids have a packing
if and only if their duals have a covering, Conjecture 9.7.3 implies that any
pair of matroids satisfying (9.7) has a covering, and in particular that any
unhindered pair of matroids has a covering. As in the proof of (9.5.11), this
implies that any pair of matroids has the Packing/Covering property, which
implies Conjecture 9.2.3 by Corollary 9.4.9.

The converse is proved as in the proof of Proposition 9.6.3.

As Packing/Covering is true for finite matroids, Proposition 9.7.4 implies
the non-trivial direction of Theorem 9.7.1. By Theorem 9.5.17 we obtain the
following applications.

Corollary 9.7.5. Any at most countably weird family of matroids on ground
set E has a packing if and only if (9.10) is true for every Y ⊆ E.

Now let us specialise to graphs. The question if there is a packing theorem for
the finite cycle matroid of an infinite graph was raised by Nash-Williams in 1967
[73] , who suggested that a countable graph G has k edge-disjoint spanning trees
if and if k · rM.Y (Y ) ≤ |Y | for every finite edge set Y . Here M is the finite cycle
matroid of G. However, Aharoni and Thomassen constructed a counterexample
in 1989 [3]. Our approach gives the following two packing theorems for finite
cycle matroids of infinite graphs. We rely on the fact that the finite cycle
matroid of any graph is finitary.

Corollary 9.7.6 (Base packing theorem for the finite cycle matroid). Any
family of countable multigraphs (Gk|k ∈ K) with a common edge set E has a
tree-packing if and only if (9.11) is true for every Y ⊆ E.

If (Mk.Y |k ∈ K) has a tree-covering, then it also has a tree-
packing.

(9.11)

Corollary 9.7.7 (Base packing theorem for the finite cycle matroid). Any finite
family of multigraphs (Gk|k ∈ K) with common edge set E has a tree-packing if
and only if (9.11) is true for every Y ⊆ E.

A similar result was obtained by Aharoni and Ziv [4]. However, their argu-
ment is different and they have the additional assumption that the ground set
is countable.

Note that the covering conjecture for arbitrary finitary families is still open
and equivalent to Open Question 9.5.21.
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9.8 Overview

We have shown that a great many natural conjectures are equivalent, which we
will review in this section. We are indebted to a reviewer for pointing out the
importance of the fact that many of the equivalences we have proved specialise
to smaller classes than the class of all matroids. We therefore consider the
following conjectures, each of which could be made relative to a class M of
matroids.

The Intersection conjecture: Any two matroids in M on the same ground
set have the Intersection property

The pairwise Packing/Covering conjecture: Any pair of matroids from
M on the same ground set has the Packing/Covering property

The Packing/Covering conjecture: Any family of matroids fromM on the
same ground set has the Packing/Covering property

The Packing conjecture: A family of matroids (Mk ∈ M|k ∈ K) on the
same ground set E has a packing if and only if the following condition is
true for every Y ⊆ E:

If (Mk.Y |k ∈ K) has a covering, then it also has a packing.

The Covering conjecture: A family of matroids (Mk ∈ M|k ∈ K) on the
same ground set E has a covering if and only if the following condition is
true for every Y ⊆ E:

If (Mk�Y |k ∈ K) has a packing, then it also has a covering.

Most crudely, if M is a class of matroids containing all matroids U∗1,K and
closed under duality, minors and direct sums then all of the above conjectures are
equivalent to each other, with proofs exactly as in this chapter. However, par-
ticular equivalences only depend on weaker conditions on the class M. For the
equivalence of the Intersection conjecture with the pairwise Packing/Covering
conjecture, both relative to M, we just need that M is closed under dual-
ity. For the equivalence of the pairwise Packing/Covering conjecture with the
Packing/Covering conjecture, we just need that M contains all the matroids
U∗1,K and is closed under direct sums. This equivalence also holds for classes of
matroids of bounded size:

Lemma 9.8.1. LetM<κ be the class of all matroids on ground sets of cardinal-
ity less than κ for some regular6 cardinal κ. Then the pairwise Packing/Covering
conjecture for Mκ is equivalent to the Packing/Covering conjecture for Mκ.

6Recall that an infinite cardinal κ is regular if and only if no set of cardinality κ can be
expressed as a union of fewer than κ sets, all of cardinality less than κ.
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Proof (assuming the axiom of choice). It is clear that the pairwise Packing/Covering
conjecture follows from the Packing/Covering conjecture. For the converse, sup-
pose the pairwise Packing/Covering conjecture holds, and let (Mk|k ∈ K) be
a family of matroids on the same ground set E of cardinality less than κ. For
each e ∈ E, let Ke be the set of k ∈ K for which {e} is independent in Mk. Let
E′ = {e ∈ E|#(Ke) < κ}, and let K ′ =

⋃
e∈E′ Ke. Then K ′ has cardinality

less than κ, so by Proposition 9.4.8 the family (Mk�E′ |k ∈ K ′) has the Pack-
ing/Covering property: call the packing side P and the covering side C, and let
the packing and the covering be (Ik|k ∈ K ′) and (Sk|k ∈ K ′).

Let C ′ = E \ P , and for any k ∈ K \ K ′ let Sk = ∅, which is spanning
in Mk�E′ by the definition of K ′. Using some well-ordering of E \ E′, we can
choose recursively for each e ∈ E \E′ an element k(e) of Ke such that all of the
k(e) are distinct. For each k ∈ K \K ′, we now set Ik = {e ∈ E \ E′|k(e) = k},
which is either empty or has size 1 and is independent in Mk. Then the Sk
form a packing of P and the Ik form a covering of C ′, so (Mk|k ∈ K) has the
Packing/Covering property.

For the equivalence of the Packing/Covering conjecture with the Covering
conjecture, both relative toM, we just need thatM is closed under contraction.
For the equivalence of the Packing/Covering conjecture with the Packing con-
jecture, both relative to M, we just need that M is closed under deletion. To
see this, it is not enough to use the argument in the proof of Proposition 9.7.4,
for that argument goes via the pairwise Packing/Covering conjecture. Instead,
an argument dual to that for the Covering conjecture must be used, relying on
the existence of maximal cowaves, where a cowave is a pair (C, (Ik|k ∈ K)) with
the Ik forming a covering of (Mk.C|k ∈ K). The existence of maximal cowaves
can be demonstrated by an argument dual to that for Lemma 9.5.3.
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Chapter 10

On the intersection of
infinite matroids

10.1 Abstract

We show that the infinite matroid intersection conjecture of Nash-Williams im-
plies the infinite Menger theorem proved by Aharoni and Berger in 2009.

We prove that this conjecture is true whenever one matroid is nearly finitary
and the second is the dual of a nearly finitary matroid, where the nearly finitary
matroids form a superclass of the finitary matroids.

In particular, this proves the infinite matroid intersection conjecture for
finite-cycle matroids of 2-connected, locally finite graphs with only a finite num-
ber of vertex-disjoint rays.

10.2 Introduction

The infinite Menger theorem1 was conjectured by Erdős in the 1960s and proved
recently by Aharoni and Berger [2]. It states that for any two sets of vertices S
and T in a connected graph, there is a set of vertex-disjoint S-T -paths whose
maximality is witnessed by an S-T -separator picking exactly one vertex form
each of these paths.

The complexity of the only known proof of this theorem and the fact that
the finite Menger theorem has a short matroidal proof, make it natural to ask
whether a matroidal proof of the infinite Menger theorem exists. In this chapter,
we propose a way to approach this problem by proving that a conjecture of
Nash-Williams regarding infinite matroids implies the infinite Menger theorem.

Building on earlier work of Higgs and Oxley, recently, Bruhn, Diestel, Kriesell,
Pendavingh and Wollan [22] found axioms for infinite matroids in terms of inde-
pendent sets, bases, circuits, closure and (relative) rank. These axioms allow for

1see Theorem 10.4.1 below.
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duality of infinite matroids as known from finite matroid theory, which settled
an old problem of Rado. With these new axioms it is now possible to study
which theorems of finite matroid theory have infinite analogues.

Here, we shall look at Edmonds’ matroid intersection theorem, which is a
classical result in finite matroid theory [74]. It asserts that the maximum size
of a common independent set of two matroids M1 and M2 on a common ground
set E is given by

min
X⊆E

rkM1
(X) + rkM2

(E \X), (10.1)

where rkMi denotes the rank function of the matroid Mi.
In this chapter, we consider the following conjecture of Nash-Williams, which

first appeared in [4]2 and serves as an infinite analogue to the finite matroid
intersection theorem3.

Conjecture 10.2.1. [The infinite matroid intersection conjecture]
Any two matroids M1 and M2 on a common ground set E have a common inde-
pendent set I admitting a partition I = J1∪J2 such that clM1

(J1)∪clM2
(J2) = E.

Here, clM (X) denotes the closure of a set X in a matroid M ; it consists of X
and the elements spanned by X in M (see [74]).

10.2.1 Our results

Aharoni and Ziv [4] proved that Conjecture 10.2.1 implies the infinite analogues
of Knig’s and Hall’s theorems. We strengthen this by showing that this conjec-
ture implies the celebrated infinite Menger theorem (in the undirected version as
stated in Theorem 10.4.1 below), which is known to imply the infinite analogues
of Knig’s and Hall’s theorems [35].

Theorem 10.2.2. The infinite matroid intersection conjecture for finitary ma-
troids implies the infinite Menger theorem.

We are able to prove new instances of Conjecture 10.2.1.4, see Theorem 10.2.5
below. Before we can state this theorem, we need to introduce the class of ‘nearly
finitary matroids’. For any matroid M , taking as circuits only the finite circuits
of M defines a (finitary) matroid with the same ground set as M . This matroid
is called the finitarization of M and denoted by Mfin.

It is not hard to show that every basis B of M extends to a basis Bfin of
Mfin, and conversely every basis Bfin of Mfin contains a basis B of M . Whether
or not Bfin \ B is finite will in general depend on the choices for B and Bfin,
but given a choice for one of the two, it will no longer depend on the choice for
the second one.

2Historical note: in [4], Nash-Williams’s Conjecture is only made for finitary matroids,
those all of whose circuits are finite.

3An alternative notion of infinite matroid intersection was recently proposed by Chris-
tian [32].

4The methods of this chapter are refined in [18], which was submitted to the arxiv half a
year after this chapter.
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We call a matroid M nearly finitary if every base of its finitarization contains
a base of M such that their difference is finite.

Next, let us look at some examples of nearly finitary matroids. There are
three natural extensions to the notion of a finite graphic matroid in an infinite
context [22]; each with ground set E(G). The most studied one is the finite-
cycle matroid, denoted MFC(G), whose circuits are the finite cycles of G. This
is a finitary matroid, and hence is also nearly finitary.

The second extension is the algebraic-cycle matroid, denoted MA(G), whose
circuits are the finite cycles and double rays of G [22, 21]5.

Proposition 10.2.3. MA(G) is a nearly finitary matroid if and only if G has
only a finite number of vertex-disjoint rays.

The third extension is the topological-cycle matroid, denoted MC(G)6, whose
circuits are the topological cycles of G (Thus Mfin

C (G) = MFC(G) for any finitely
separable graph G; see Subsection 10.7.2 or [21] for definitions).

Proposition 10.2.4. Suppose that G is 2-connected and locally finite. Then,
MC(G) is a nearly finitary matroid if and only if G has only a finite number of
vertex-disjoint rays.

Here we prove the following.

Theorem 10.2.5. Conjecture 10.2.1 holds for M1 and M2 whenever M1 is
nearly finitary and M2 is the dual of a nearly finitary matroid.

Aharoni and Ziv [4] proved that the infinite matroid intersection conjecture
is true whenever one matroid is finitary and the other is a countable direct sum
of finite-rank matroids. Note that Theorem 10.2.5 does not imply this result
of [4] nor is it implied by it.

Proposition 10.2.4 and Theorem 10.2.5 can be used to prove the following.

Corollary 10.2.6. Suppose that G and H are 2-connected, locally finite graphs
with only a finite number of vertex-disjoint rays. Then their finite-cycle matroids
MFC(G) and MFC(H) satisfy the intersection conjecture.

Similar results are true for the algebraic-cycle matroid, the topological-cycle
matroid, and their duals.

10.2.2 An overview of the proof of Theorem 10.2.5

In finite matroid theory, an exceptionally short proof of the matroid intersec-
tion theorem employing the well-known finite matroid union theorem [74, 85] is

5MA(G) is not necessarily a matroid for any G; see [57].
6MC(G) is a matroid for any G; see [21].
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known. The latter theorem asserts7 that for two finite matroids M1 = (E1, I1)
and M2 = (E2, I2) the set system

I(M1 ∨M2) = {I1 ∪ I2 | I1 ∈ I1, I2 ∈ I2} (10.2)

forms the set of independent sets of their union matroid M1∨M2. Throughout,
M∗ denotes the dual of a matroid M . We prove that this strategy of proof
extends to infinite matroids.

Theorem 10.2.7. If M1 and M2 are matroids on a common ground set E and
M1 ∨M∗2 is a matroid, then Conjecture 10.2.1 holds for M1 and M2.

Thus in order to prove Conjecture 10.2.1, it would be enough to prove that
the union of any two matroids is a matroid. Unfortunately, this is not true.8

We provide examples in Section 10.8. However, we can prove that the union of
two nearly finitary matroids is a matroid.

Theorem 10.2.8. If M1 and M2 are nearly finitary matroids, then M1 ∨M2

is a nearly finitary matroid.

Hence Theorem 10.2.5 follows from combining Theorem 10.2.8 and Theo-
rem 10.2.7.

This chapter is organized as follows. Additional notation, terminology, and
basic lemmas are given in Section 10.3. In Section 10.4 we prove Theorem 10.2.2.
In Section 10.5 we prove Theorem 10.2.8. In Section 10.6 we prove Theo-
rem 10.2.7, and in Section 10.7 we prove Propositions 10.2.3 and 10.2.4 and
Corollary 10.2.6. In Section 10.8, we construct matroids whose union is not a
matroid.

10.3 Preliminaries

Notation and terminology for graphs are that of [35], and for matroids that
of [22, 74].

Throughout, G always denotes a graph where V (G) and E(G) denote its
vertex and edge sets, respectively. We write M to denote a matroid and write
E(M), I(M), B(M), and C(M) to denote its ground set, independent sets,
bases, and circuits, respectively.

It will be convenient to have a similar notation for set systems. That is, for
a set system I over some ground set E, an element of I is called independent, a
maximal element of I is called a base of I, and a minimal element of P(E) \ I
is called circuit of I. A set system is finitary if an infinite set belongs to the

7Often the matroid union theorem is complemented by a formula for the rank function
of the union. This, however, is implied by the fact that the union is a matroid (as follows
from Theorem 10.2.7 below and results of [18]). This rank formula and its relation to Conjec-
ture 10.2.1 is studied in [18].

8This is not that surprsing as the methods of this chapter are much more elementary than
those developed by Aharoni and Berger in [2].
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system provided each of its finite subsets does; with this terminology, M is
finitary provided that I(M) is finitary.

We review the definition of a matroid as this is given in [22]. A set system I is
the set of independent sets of a matroid if it satisfies the following independence
axioms:

(I1) ∅ ∈ I.

(I2) dIe = I, that is, I is closed under taking subsets.

(I3) Whenever I, I ′ ∈ I with I ′ maximal and I not maximal, there exists an
x ∈ I ′ \ I such that I + x ∈ I.

(IM) Whenever I ⊆ X ⊆ E and I ∈ I, the set {I ′ ∈ I | I ⊆ I ′ ⊆ X} has a
maximal element.

In [22], an equivalent axiom system to the independence axioms is provided
and is called the circuit axioms system; this axiom system characterises a ma-
troid in terms of its circuits. Of these circuit axioms, we shall make frequent use
of the so called (infinite) circuit elimination axiom phrased here for a matroid
M :

(C) Whenever X ⊆ C ∈ C(M) and {Cx | x ∈ X} ⊆ C(M) satisfies x ∈ Cy ⇔
x = y for all x, y ∈ X, then for every z ∈ C \

(⋃
x∈X Cx

)
there exists a

C ′ ∈ C(M) such that z ∈ C ′ ⊆
(
C ∪⋃x∈X Cx) \X.

The following is a well-known fact for finite matroids (see, e.g., [74]), which
generalizes easily to infinite matroids.

Lemma 10.3.1. [22, Lemma 3.11]
Let M be a matroid. Then, |C∩C∗| 6= 1, whenever C ∈ C(M) and C∗ ∈ C(M∗).

10.4 From infinite matroid intersection to the
infinite Menger theorem

In this section, we prove Theorem 10.2.2; asserting that the infinite matroid
intersection conjecture implies the infinite Menger theorem.

Given a graph G and S, T ⊆ V (G), a set X ⊆ V (G) is called an S–T
separator if G −X contains no S–T path. The infinite Menger theorem reads
as follows.

Theorem 10.4.1 (Aharoni and Berger [2]). Let G be a connected graph. Then
for any S, T ⊆ V (G) there is a set L of vertex-disjoint S–T paths and an S–T
separator X ⊆ ⋃P∈L V (P ) satisfying |X ∩ V (P )| = 1 for each P ∈ L.

Infinite matroid union cannot be used in order to obtain the infinite Menger
Theorem directly via Theorem 10.2.7 and Theorem 10.2.2. Indeed, in Sec-
tion 10.8 we construct a finitary matroid M and a co-finitary matroid N such
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that their union is not a matroid. Consequently, one cannot apply Theo-
rem 10.2.7 to the finitary matroids M and N∗ in order to obtain Conjec-
ture 10.2.1 for them. However, it is easy to see that Conjecture 10.2.1 is true
for these particular M and N∗.

Next, we prove Theorem 10.2.2.

Proof of Theorem 10.2.2. Let G be a connected graph and let S, T ⊆ V (G) be
as in Theorem 10.4.1. We may assume that G[S] and G[T ] are both connected.
Indeed, an S–T separator with G[S] and G[T ] connected gives rise to an S–
T separator when these are not necessarily connected. Abbreviate E(S) :=
E(G[S]) and E(T ) := E(G[T ]), let M be the finite-cycle matroid MF (G), and
put MS := M/E(S)−E(T ) and MT := M/E(T )−E(S); all three matroids are
clearly finitary.

Assuming that the infinite matroid intersection conjecture holds for MS and
MT , there exists a set I ∈ I(MS)∩I(MT ) which admits a partition I = JS ∪JT
satisfying

clMS
(JS) ∪ clMT

(JT ) = E,

where E = E(MS) = E(MT ). We regard I as a subset of E(G).
For the components of G[I] we observe two useful properties. As I is disjoint

from E(S) and E(T ), the edges of a cycle in a component ofG[I] form a circuit in
both, MS and MT , contradicting the independence of I in either. Consequently,

the components of G[I] are trees. (10.3)

Next, an S-path9 or a T -path in a component of G[I] gives rise to a circuit of
MS or MT in I, respectively. Hence,

|V (C) ∩ S| ≤ 1 and |V (C) ∩ T | ≤ 1 for each component C of G[I]. (10.4)

Let C denote the components of G[I] meeting both of S and T . Then by
(10.3) and (10.4) each member of C contains a unique S–T path and we denote
the set of all these paths by L. Clearly, the paths in L are vertex-disjoint.

In what follows, we find a set X comprised of one vertex from each P ∈ L to
serve as the required S–T separator. To that end, we show that one may alter
the partition I = JS ∪ JT to yield a partition

I = KS ∪KT satisfying clMS
(KS) ∪ clMT

(KT ) = E and (Y.1-4), (10.5)

where (Y.1-4) are as follows.

(Y.1) Each component C of G[I] contains a vertex of S ∪ T .

(Y.1) Each component C of G[I] meeting S but not T satisfies E(C) ⊆ KS .

(Y.1) Each component C of G[I] meeting T but not S satisfies E(C) ⊆ KT .

9A non-trivial path meeting G[S] exactly in its end vertices.
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(Y.1) Each component C of G[I] meeting both, S and T , contains at most one
vertex which at the same time

(a) lies in S or is incident with an edge of KS , and

(a) lies in T or is incident with an edge of KT .

Postponing the proof of (10.5), we first show how to deduce the existence of
the required S–T separator from (10.5). Define a pair of sets of vertices (VS , VT )
of V (G) by letting VS consist of those vertices contained in S or incident with
an edge of KS and defining VT in a similar manner. Then VS ∩VT may serve as
the required S–T separator. To see this, we verify below that (VS , VT ) satisfies
all of the terms (Z.1-4) stated next.

(Z.1) VS ∪ VT = V (G);

(Z.1) for every edge e of G either e ⊆ VS or e ⊆ VT ;

(Z.1) every vertex in VS ∩ VT lies on a path from L; and

(Z.1) every member of L meets VS ∩ VT at most once.

To see (Z.(Z.1)), suppose v is a vertex not in S ∪T . As G is connected, such
a vertex is incident with some edge e /∈ E(T )∪E(S). The edge e is spanned by
KT or KS ; say KT . Thus, KT + e contains a circle containing e or G[KT + e]
has a T -path containing e. In either case v is incident with an edge of KT and
thus in VT , as desired.

To see (Z.(Z.1)), let e ∈ clMT
(KT )\KT ; so that KT+e has a circle containing

e or G[KT + e] has T -path containing e; in either case both end vertices of e are
in VT , as desired. The treatment of the case e ∈ clMS

(KS) is similar.
To see (Z.(Z.1)), let v ∈ VS ∩ VT ; such is in S or is incident with an edge of

KS , and in T or is incident with an edge in KT . Let C be the component of
G[I] containing v. By (Y.1-4), C ∈ C, i.e. it meets both, S and T and therefore
contains an S–T path P ∈ L. Recall that every edge of C is either in KS or KT

and consider the last vertex w of a maximal initial segment of P in C − KT .
Then w satisfies (Y.(a)), as well as (Y.(a)), implying v = w; so that v lies on a
path from L.

To see (Z.(Z.1)), we restate (Y.(Y.1)) in terms of VS and VT : each component
of C contains at most one vertex of VS ∩VT . This clearly also holds for the path
from L which is contained in C.

It remains to prove (10.5). To this end, we show that any component C
of G[I] contains a vertex of S ∪ T . Suppose not. Let e be the first edge on
a V (C)–S path Q which exists by the connectedness of G. Then e /∈ I but
without loss of generality we may assume that e ∈ clMS

(JS). So in G[I] + e
there must be a cycle or an S-path. The latter implies that C contains a vertex
of S and the former means that Q was not internally disjoint to V (C), yielding
contradictions in both cases.

We define the sets KS and KT as follows. Let C be a component of G[I].

1. If C meets S but not T , then include its edges into KS .
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2. If C meets T but not S, then include its edges into KT .

3. Otherwise (C meets both of S and T ) there is a path P from L in C.
Denote by vC the last vertex of a maximal initial segment of P in C−JT .
As C is a tree, each component C ′ of C − vC is a tree and there is a
unique edge e between vC and C ′. For every such component C ′, include
the edges of C ′ + e in KS if e ∈ JS and in KT otherwise, i.e. if e ∈ JT .

Note that, by choice of vC , either vC is the last vertex of P or the next edge of
P belongs to JT . This ensures that KS and KT satisfy (Y.(Y.1)). Moreover,
they form a partition of I which satisfies (Y.(Y.1)-(Y.1)) by construction. It
remains to show that clMS

(KS) ∪ clMT
(KT ) = E.

As KS ∪KT = I, it suffices to show that any e ∈ E \ I is spanned by KS

in MS or by KT in MT . Suppose e ∈ clMS
(JS), i.e. JS + e contains a circuit

of MS . Hence, G[JS ] either contains an e-path R or two disjoint e–S paths
R1 and R2. We show that E(R) ⊆ KS or E(R) ⊆ KT in the former case and
E(R1) ∪ E(R2) ⊆ KS in the latter.

The path R is contained in some component C of G[I]. Suppose C ∈ C and
vC is an inner vertex of R. By assumption, the edges preceding and succeeding
vC on R are both in JS and hence the edges of both components of C−vC which
are met by R plus their edges to vC got included into KS , showing E(R) ⊆ KS .
Otherwise C /∈ C or C ∈ C but vC is no inner vertex of R. In both cases the
whole set E(R) got included into KS or KT .

We apply the same argument to R1 and R2 except for one difference. If
C /∈ C or C ∈ C but vC is no inner vertex of Ri, then E(Ri) got included into
KS as Ri meets S.

Although the definitions of KS and KT are not symmetrical, a similar argu-
ment shows e ∈ clMS

(KS) ∪ clMT
(KT ) if e is spanned by JT in MT .

Note that the above proof requires only that Conjecture 10.2.1 holds for
finite-cycle matroids.

10.5 Union

In this section, we prove Theorem 10.2.8. The main difficulty in proving this
theorem is the need to verify that given two nearly finitary matroids M1 and
M2, that the set system I(M1 ∨M2) satisfies the axioms (IM) and (I3).

To verify the (IM) axiom for the union of two nearly finitary matroids we
shall require the following theorem, proved below in Subsection 10.5.2.

Proposition 10.5.1. If M1 and M2 are finitary matroids, then M1 ∨M2 is a
finitary matroid.

To verify (IM) for the union of finitary matroids we use a compactness
argument (see Subsection 10.5.2). More specifically, we will show that I(M1 ∨
M2) is a finitary set system whenever M1 and M2 are finitary matroids. It is
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then an easy consequence of Zorn’s lemma that all finitary set systems satisfy
(IM).

The verification of axiom (I3) is dealt in a joint manner for both matroid
families. In the next section we prove the following.

Proposition 10.5.2. The set system I(M1 ∨ M2) satisfies (I3) for any two
matroids M1 and M2.

Indeed, for finitary matroids, Proposition 10.5.2 is fairly simple to prove.
We, however, require this proposition to hold for nearly finitary matroids as
well. Consequently, we prove this proposition in its full generality, i.e., for any
pair of matroids. In fact, it is interesting to note that the union of infinitely
many matroids satisfies (I3); though the axiom (IM) might be violated as seen
in Observation 10.5.10).

At this point it is insightful to note a certain difference between the union
of finite matroids to that of finitary matroids in a more precise manner. By the
finite matroid union theorem if M admits two disjoint bases, then the union of
these bases forms a base of M ∨M . For finitary matroids the same assertion is
false.

Claim 10.5.3. There exists an infinite finitary matroid M with two disjoint
bases whose union is not a base of the matroid M ∨M as it is properly contained
in the union of some other two bases.

Proof. Consider the infinite one-sided ladder with every edge doubled, say H,
and recall that the bases of MF (H) are the ordinary spanning trees of H. In
Figure 10.1, (B1, B2) and (B3, B4) are both pairs of disjoint bases of MF (H).
However, B3∪B4 properly covers B1∪B2 as it additionally contains the leftmost
edge of H

Clearly, a direct sum of infinitely many copies of H gives rise to an infinite
sequence of unions of disjoint bases, each properly containing the previous one.
In fact, one can construct a (single) matroid formed as the union of two nearly
finitary matroids that admits an infinite properly nested sequence of unions of
disjoint bases.

B2 B4
. . . . . .

B1 B3

Figure 10.1: The disjoint bases B1 and B2 on the left are properly covered by
the bases B3 and B4 on the right.
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10.5.1 Exchange chains and the verification of axiom (I3)

In this section, we prove Proposition 10.5.2. Throughout this section M1 and
M2 are matroids. It will be useful to show that the following variant of (I3) is
satisfied.

Proposition 10.5.4. The set I = I(M1 ∨M2) satisfies the following.

(I3’) For all I,B ∈ I where B is maximal and all x ∈ I \B there exists y ∈ B\I
such that (I + y)− x ∈ I.

Observe that unlike in (I3), the set I in (I3’) may be maximal.
We begin by showing that Proposition 10.5.4 implies Proposition 10.5.2.

Proof of Proposition 10.5.2 from Proposition 10.5.4. Let I ∈ I be non-maximal
and B ∈ I be maximal. As I is non-maximal there is an x ∈ E \ I such that
I + x ∈ I. We may assume x /∈ B or the assertion follows by (I2). By (I3’),
applied to I + x, B, and x ∈ (I + x) \ B there is y ∈ B \ (I + x) such that
I + y ∈ I.

We proceed to prove Proposition 10.5.4. The following notation and termi-
nology will be convenient. A circuit of M which contains a given set X ⊆ E(M)
is called an X-circuit.

By a representation of a set I ∈ I(M1 ∨M2), we mean a pair (I1, I2) where
I1 ∈ I(M1) and I2 ∈ I(M2) such that I = I1 ∪ I2.

For sets I1 ∈ I(M1) and I2 ∈ I(M2), and elements x ∈ I1 ∪ I2 and y ∈
E(M1) ∪ E(M2) (possibly in I1 ∪ I2), a tuple Y = (y0 = y, . . . , yn = x) with
yi 6= yi+1 for all i is called an even (I1, I2, y, x)-exchange chain10 (or even
(I1, I2, y, x)-chain) of length n if the following terms are satisfied.

(X1) For an even i, there exists a {yi, yi+1}-circuit Ci ⊆ I1 + yi of M1.

(X1) For an odd i, there exists a {yi, yi+1}-circuit Ci ⊆ I2 + yi of M2.

If n ≥ 1, then (X1) and (X2) imply that y0 /∈ I1 and that, starting with
y1 ∈ I1 \ I2, the elements yi alternate between I1 \ I2 and I2 \ I1; the single
exception being yn which can lie in I1 ∩ I2.

By an odd exchange chain (or odd chain) we mean an even chain with the
words ‘even’ and ‘odd’ interchanged in the definition. Consequently, we say
exchange chain (or chain) to refer to either of these notions. Furthermore,
a subchain of a chain is also a chain; that is, given an (I1, I2, y0, yn)-chain
(y0, . . . , yn), the tuple (yk, . . . , yl) is an (I1, I2, yk, yl)-chain for 0 ≤ k ≤ l ≤ n.

Lemma 10.5.5. If there exists an (I1, I2, y, x)-chain, then (I+y)−x ∈ I(M1∨
M2) where I := I1 ∪ I2. Moreover, if x ∈ I1 ∩ I2, then I + y ∈ I(M1 ∨M2).

Remark. In the proof of Lemma 10.5.5 chains are used in order to alter the sets
I1 and I2; the change is in a single element. Nevertheless, to accomplish this
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C1

C2

C3

C4

y0

y1

y2

y3

y4

I2 ∈ I(M2)

I1 ∈ I(M1)

(a) the initial representation

C1

C2

C3

C4

y0

y1

y2

y3

y4

I1 + y0 − y1 + y2 − y3

I2 + y1 − y2 + y3 − y4

(b) the obtained representation

Figure 10.2: An even exchange chain of length 4.

change, exchange chain of arbitrary length may be required; for instance, a chain
of length four is needed to handle the configuration depicted in Figure 10.2.

Next, we prove Lemma 10.5.5.

Proof of Lemma 10.5.5. The proof is by induction on the length of the chain.
The statement is trivial for chains of length 0. Assume n ≥ 1 and that Y =
(y0, . . . , yn) is a shortest (I1, I2, y, x)-chain. Without loss of generality, let Y
be an even chain. If Y ′ := (y1, . . . , yn) is an (odd) (I ′1, I2, y1, x)-chain where
I ′1 := (I1 + y0) − y1, then ((I ′1 ∪ I2) + y1) − x ∈ I(M1 ∨M2) by the induction
hypothesis and the assertion follows, since (I ′1 ∪ I2) + y1 = (I1 ∪ I2) + y0. If also
x ∈ I1 ∩ I2, then either x ∈ I ′1 ∩ I2 or y1 = x and hence n = 1. In the former
case I+y ∈ I(M1∨M2) follows from the induction hypothesis and in the latter
case I + y = I ′1 ∪ I2 ∈ I(M1 ∨M2) as x ∈ I2.

Since I2 has not changed, (X2) still holds for Y ′, so to verify that Y ′ is an
(I ′1, I2, y1, x)-chain, it remains to show I ′1 ∈ I(M1) and to check (X1). To this
end, let Ci be a {yi, yi+1}-circuit of M1 in I1 + yi for all even i. Such exist by
(X1) for Y . Notice that any circuit of M1 in I1 + y0 has to contain y0 since
I1 ∈ I(M1). On the other hand, two distinct circuits in I1 + y0 would give rise
to a circuit contained in I1 by the circuit elimination axiom applied to these
two circuits, eliminating y0. Hence C0 is the unique circuit of M1 in I1 +y0 and
y1 ∈ C0 ensures I ′1 = (I1 + y0)− y1 ∈ I(M1).

To see (X1), we show that there is a {yi, yi+1}-circuit C ′i of M1 in I ′1 + yi
for every even i ≥ 2. Indeed, if Ci ⊆ I ′1 + yi, then set C ′i := Ci; else, Ci
contains an element of I1 \ I ′1 = {y1}. Furthermore, yi+1 ∈ Ci \ C0; otherwise
(y0, yi+1, . . . , yn) is a shorter (I1, I2, y, x)-chain for, contradicting the choice of
Y . Applying the circuit elimination axiom to C0 and Ci, eliminating y1 and
fixing yi+1, yields a circuit C ′i ⊆ (C0 ∪ Ci)− y1 of M1 containing yi+1. Finally,
as I ′1 is independent and C ′i \ I ′1 ⊆ {yi} it follows that yi ∈ C ′i.

10Some authors call them augmenting paths
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We shall require the following. For I1 ∈ I(M1), I2 ∈ I(M2), and x ∈ I1∪ I2,
let

A(I1, I2, x) := {a | there exists an (I1, I2, a, x)-chain}.
This has the property that

for every y /∈ A, either I1 + y ∈ I(M1) or the unique circuit Cy
of M1 in I1 + y is disjoint from A.

(10.6)

To see this, suppose I1 + y /∈ I(M1). Then there is a unique circuit Cy of
M1 in I1 + y. If Cy ∩ A = ∅, then the assertion holds so we may assume
that Cy ∩ A contains an element, a say. Hence there is an (I1, I2, a, x)-chain
(y0 = a, y1, . . . , yn−1, yn = x). As a ∈ I1 this chain must be odd or have length
0, that is, a = x. Clearly, (y, a, y1, . . . , yn−1, x) is an even (I1, I2, y, x)-chain,
contradicting the assumption that y /∈ A.

Next, we prove Proposition 10.5.4.

Proof of Proposition 10.5.4. Let B ∈ I(M1 ∨M2) maximal, I ∈ I(M1 ∨M2),
and x ∈ I\B. Recall that we seek a y ∈ B\I such that (I+y)−x ∈ I(M1∨M2).
Let (I1, I2) and (B1, B2) be representations of I and B, respectively. We may
assume I1 ∈ B(M1|I) and I2 ∈ B(M2|I). We may further assume that for all
y ∈ B\I the sets I1 +y and I2 +y are dependent in M1 and M2, respectively, for
otherwise it holds that I+y ∈ I(M1∨M2) so that the assertion follows. Hence,
for every y ∈ (B ∪ I) \ I1 there is a circuit Cy ⊆ I1 + y of M1; such contains y
and is unique since otherwise the circuit elimination axiom applied to these two
circuits eliminating y yields a circuit contained in I1, a contradiction.

IfA := A(I1, I2, x) intersectsB\I, then the assertion follows from Lemma 10.5.5.
Else, A∩ (B \ I) = ∅, in which case we derive a contradiction to the maximality
of B. To this end, set (Figure 10.3)

B′1 := (B1 \ b1) ∪ i1 where b1 := B1 ∩A and i1 := I1 ∩A

B′2 := (B2 \ b2) ∪ i2 where b2 := B2 ∩A and i2 := I2 ∩A
Since A contains x but is disjoint from B\I, it holds that (b1∪b2)+x ⊆ i1∪i2

and thus B+ x ⊆ B′1 ∪B′2. It remains to verify the independence of B′1 and B′2
in M1 and M2, respectively.

Without loss of generality it is sufficient to show B′1 ∈ I(M1). For the
remainder of the proof ‘independent’ and ‘circuit’ refer to the matroid M1.
Suppose for a contradiction that the set B′1 is dependent, that is, it contains
a circuit C. Since i1 and B1 \ b1 are independent, neither of these contain C.
Hence there is an element a ∈ C ∩ i1 ⊆ A. But C \ I1 ⊆ B1 \A and therefore no
Cy with y ∈ C \ I1 contains a by (10.6). Thus, applying the circuit elimination
axiom on C eliminating all y ∈ C \ I1 via Cy fixing a, yields a circuit in I1, a
contradiction.

Since in the proof of Proposition 10.5.4 the maximality of B is only used in
order to avoid the case that B + x ∈ I(M1 ∨M2), one may prove the following
slightly stronger statement.
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a

C

B1

B2

I1
I2

A

i1
i2

b2
b1

Figure 10.3: The independent sets I1, at the top, and I2, at the bottom, the
bases B1, on the right, and B2, on the left, and their intersection with A.

Corollary 10.5.6. For all I, J ∈ I(M1 ∨ M2) and x ∈ I \ J , if J + x /∈
I(M1 ∨M2), then there exists y ∈ J \ I such that (I + y)− x ∈ I(M1 ∨M2).

Next, the proof of Proposition 10.5.4, shows that for any maximal represen-
tation (I1, I2) of I there is y ∈ B\I such that exchanging finitely many elements
of I1 and I2 gives a representation of (I + y)− x.

For subsequent arguments, it will be useful to note the following corollary.
Above we used chains whose last element is fixed. One may clearly use chains
whose first element is fixed. If so, then one arrives at the following.

Corollary 10.5.7. For all I, J ∈ I(M1 ∨ M2) and y ∈ J \ I, if I + y /∈
I(M1 ∨M2), then there exists x ∈ I \ J such that (I + y)− x ∈ I(M1 ∨M2).

10.5.2 Finitary matroid union

In this section, we prove Proposition 10.5.1. In view of Proposition 10.5.2, it
remains to show that I(M1∨M2) satisfies (IM) whenever M1 and M2 are finitary
matroids.

The verification of (IM) for countable finitary matroids can be done using
König’s infinity lemma. Here, in order to capture matroids on any infinite
ground set, we employ a topological approach. See [10] for the required topo-
logical background needed here.

We recall the definition of the product topology on P(E). The usual base of
this topology is formed by the system of all sets

C(A,B) := {X ⊆ E | A ⊆ X,B ∩X = ∅},

where A,B ⊆ E are finite and disjoint. Note that these sets are closed as well.
Throughout this section, P(E) is endowed with the product topology and closed
is used in the topological sense only.
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We show that Proposition 10.5.1 can easily be deduced from Proposition 10.5.8
and Lemma 10.5.9, presented next.

Proposition 10.5.8. Let I = dIe ⊆ P(E). The following are equivalent.

10.5.8.1. I is finitary;

10.5.8.1. I is compact, in the subspace topology of P(E).

A standard compactness argument can be used in order to prove 10.5.8.10.5.8.1..
Here, we employ a slightly less standard argument to prove 10.5.8.10.5.8.1. as
well. Note that as P(E) is a compact Hausdorff space, assertion 10.5.8.10.5.8.1.
is equivalent to the assumption that I is closed in P(E), which we use quite
often in the following proofs.

Proof of Proposition 10.5.8. To deduce 10.5.8.10.5.8.1. from 10.5.8.10.5.8.1., we
show that I is closed. Let X /∈ I. Since I is finitary, X has a finite subset
Y /∈ I and no superset of Y is in I as I = dIe. Therefore, C(Y, ∅) is an open
set containing X and avoiding I and hence I is closed.

For the converse direction, assume that I is compact and let X be a set such
that all finite subsets of X are in I. We show X ∈ I using the finite intersection
property11 of P(E). Consider the family K of pairs (A,B) where A ⊆ X and
B ⊆ E \X are both finite. The set C(A,B) ∩ I is closed for every (A,B) ∈ K,
as C(A,B) and I are closed. If L is a finite subfamily of K, then⋃

(A,B)∈L
A ∈

⋂
(A,B)∈L

(C(A,B) ∩ I) .

As P(E) is compact, the finite intersection property yields ⋂
(A,B)∈K

C(A,B)

 ∩ I =
⋂

(A,B)∈K
(C(A,B) ∩ I) 6= ∅.

However,
⋂

(A,B)∈K C(A,B) = {X}. Consequently, X ∈ I, as desired.

Lemma 10.5.9. If I and J are closed in P(E), then so is I ∨ J .

Proof. Equipping P(E)×P(E) with the product topology, yields that Cartesian
products of closed sets in P(E) are closed in P(E)×P(E). In particular, I ×J
is closed in P(E)× P(E). In order to prove that I ∨ J is closed, we note that
I ∨ J is exactly the image of I × J under the union map

f : P(E)× P(E)→ P(E), f(A,B) = A ∪B.

It remains to check that f maps closed sets to closed sets; which is equivalent
to showing that f maps compact sets to compact sets as P(E) is a compact

11The finite intersection property ensures that an intersection over a family C of closed sets
is non-empty if every intersection of finitely many members of C is.
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Hausdorff space. As continuous images of compact spaces are compact, it suffices
to prove that f is continuous, that is, to check that the pre-images of subbase
sets C({a}, ∅) and C(∅, {b}) are open as can be seen here:

f−1(C({a}, ∅)) = (C({a}, ∅)× P(E)) ∪ (P(E)× C({a}, ∅))
f−1(C(∅, {b})) = C(∅, {b})× C(∅, {b}).

Next, we prove Proposition 10.5.1.

Proof of Proposition 10.5.1. By Proposition 10.5.2 it remains to show that the
union I(M1)∨ I(M2) satisfies (IM). As all finitary set systems satisfy (IM), by
Zorn’s lemma, it is sufficient to show that I(M1 ∨M2) is finitary. By Propo-
sition 10.5.8, I(M1) and I(M2) are both compact and thus closed in P(E),
yielding, by Lemma 10.5.9, that I(M1) ∨ I(M2) is closed in P(E), and thus
compact. As I(M1) ∨ I(M2) = dI(M1) ∨ I(M2)e, Proposition 10.5.8 asserts
that I(M1) ∨ I(M2) is finitary, as desired.

We conclude this section with the following observation.

Observation 10.5.10. A countable union of finitary matroids need not be a
matroid.

Proof. We show that for any integer k ≥ 1, the set system

I :=
∨
n∈N

Uk,R

is not a matroid, where here Uk,R denotes the k-uniform matroid with ground
set R.

Since a countable union of finite sets is countable, we have that the members
of I are the countable subsets of R. Consequently, the system I violates the
(IM) axiom for I = ∅ and X = R.

Above, we used the fact that the members of I are countable and that the
ground set is uncountable. One can have the following more subtle example,
showing that a countable union of finite matroids need not be a matroid.

Let A = {a1, a2, . . .} and B = {b1, b2, . . .} be disjoint countable sets, and for
n ∈ N, set En := {a1, . . . , an} ∪ {bn}. Then

∨
n∈N U1,En is an infinite union of

finite matroids and fails to satisfy (IM) for I = A and X = A ∪B = E(M).

10.5.3 Nearly finitary matroid union

In this section, we prove Theorem 10.2.8.
For a matroid M , let Ifin(M) denote the set of subsets of E(M) containing

no finite circuit of M , or equivalently, the set of subsets of E(M) which have all
their finite subsets in I(M). We call Mfin = (E(M), Ifin(M)) the finitarization
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of M . With this notation, a matroid M is nearly finitary if it has the property
that

for each J ∈ I(Mfin) there exists an I ∈ I(M) such that |J \ I| <∞. (10.7)

For a set system I (not necessarily the independent sets of a matroid) we
call a maximal member of I a base and a minimal member subject to not being
in I a circuit. With these conventions, the notions of finitarization and nearly
finitary carry over to set systems.

Let I = dIe. The finitarization Ifin of I has the following properties.

1. I ⊆ Ifin with equality if and only if I is finitary.

2. Ifin is finitary and its circuits are exactly the finite circuits of I.

3. (I|X)fin = Ifin|X, in particular I|X is nearly finitary if I is.

The first two statements are obvious. To see the third, assume that I is nearly
finitary and that J ∈ Ifin|X ⊆ Ifin. By definition there is I ∈ I such that
J \ I is finite. As J ⊆ X we also have that J \ (I ∩ X) is finite and clearly
I ∩X ∈ I|X.

Proposition 10.5.11. The pair Mfin = (E, Ifin(M)) is a finitary matroid,
whenever M is a matroid.

Proof. By construction, the set system Ifin = I(Mfin) satisfies the axioms (I1)
and (I2) and is finitary, implying that it also satisfies (IM).

It remains to show that Ifin satisfies (I3). By definition, a set X ⊆ E(M)
is not in Ifin if and only if it contains a finite circuit of M .

Let B, I ∈ Ifin where B is maximal and I is not, and let y ∈ E(M) \ I such
that I + y ∈ Ifin. If I + x ∈ Ifin for any x ∈ B \ I, then we are done.

Assuming the contrary, then y /∈ B and for any x ∈ B \I there exists a finite
circuit Cx of M in I + x containing x. By maximality of B, there exists a finite
circuit C of M in B + y containing y. By the circuit elimination axiom (in M)
applied to the circuits C and {Cx}x∈X where X := C ∩ (B \ I), there exists a
circuit

D ⊆
(
C ∪

⋃
x∈X

Cx

)
\X ⊆ I + y

of M containing y ∈ C \⋃x∈X Cx. The circuit D is finite, since the circuits C

and {Cx} are; this contradicts I + y ∈ Ifin.

Proposition 10.5.12. For arbitrary matroids M1 and M2 it holds that

I(Mfin
1 ∨Mfin

2 ) = I(Mfin
1 ∨Mfin

2 )fin = I(M1 ∨M2)fin.
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Proof. By Proposition 10.5.11, the matroids Mfin
1 and Mfin

2 are finitary and
therefore Mfin

1 ∨Mfin
2 is a finitary as well, by Proposition 10.5.1. This establishes

the first equality.
The second equality follows from the definition of finitarization provided we

show that the finite members of I(Mfin
1 ∨Mfin

2 ) and I(M1 ∨M2) are the same.
Since I(M1) ⊆ I(Mfin

1 ) and I(M2) ⊆ I(Mfin
2 ) it holds that I(Mfin

1 ∨Mfin
2 ) ⊇

I(M1 ∨M2). On the other hand, a finite set I ∈ I(Mfin
1 ∨Mfin

2 ) can be written
as I = I1∪I2 with I1 ∈ I(Mfin

1 ) and I2 ∈ I(Mfin
2 ) finite. As I1 and I2 are finite,

I1 ∈ I(M1) and I2 ∈ I(M2), implying that I ∈ I(M1 ∨M2).

With the above notation a matroid M is nearly finitary if each base of
Mfin contains a base of M such that their difference is finite. The following is
probably the most natural manner to construct nearly finitary matroids (that
are not finitary) from finitary matroids.

For a matroid M and an integer k ≥ 0, set M [k] := (E(M), I[k]), where

I[k] := {I ∈ I(M) | ∃J ∈ I(M) such that I ⊆ J and |J \ I| = k}.
Proposition 10.5.13. If rk(M) ≥ k, then M [k] is a matroid.

Proof. The axiom (I1) holds as rk(M) ≥ k; the axiom (I2) holds as it does in M .
For (I3) let I ′, I ∈ I(M [k]) such that I ′ is maximal and I is not. There is a set
F ′ ⊆ E(M)\I ′ of size k such that, in M , the set I ′∪F ′ is not only independent
but, by maximality of I ′, also a base. Similarly, there is a set F ⊆ E(M) \ I of
size k such that I ∪ F ∈ I(M).

We claim that I ∪ F is non-maximal in I(M) for any such F . Suppose not
and I ∪ F is maximal for some F as above. By assumption, I is contained in
some larger set of I(M [k]). Hence there is a set F+ ⊆ E(M) \ I of size k + 1
such that I ∪ F+ is independent in M . Clearly (I ∪ F ) \ (I ∪ F+) = F \ F+ is
finite, so Lemma 10.5.14 implies that∣∣F+ \ F

∣∣ =
∣∣(I ∪ F+) \ (I ∪ F )

∣∣ ≤ ∣∣(I ∪ F ) \ (I ∪ F+)
∣∣ =

∣∣F \ F+
∣∣ .

In particular, k + 1 = |F+| ≤ |F | = k, a contradiction.
Hence we can pick F such that F ∩ F ′ is maximal and, as I ∪ F is non-

maximal in I(M), apply (I3) in M to obtain a x ∈ (I ′ ∪F ′) \ (I ∪F ) such that
(I ∪ F ) + x ∈ I(M). This means I + x ∈ I(M [k]). And x ∈ I ′ \ I follows, as
x /∈ F ′ by our choice of F .

To show (IM), let I ⊆ X ⊆ E(M) with I ∈ I(M [k]) be given. By (IM) for
M , there is a B ∈ I(M) which is maximal subject to I ⊆ B ⊆ X. We may
assume that F := B \I has at most k elements; for otherwise there is a superset
I ′ ⊆ B of I such that |B \I ′| = k and it suffices to find a maximal set containing
I ′ ∈ I(M [k]) instead of I.

We claim that for any F+ ⊆ X \ I of size k + 1 the set I ∪ F+ is not in
I(M [k]). For a contradiction, suppose it is. Then in M |X, the set B = I ∪F is
a base and I ∪ F+ is independent and as (I ∪ F ) \ (I ∪ F+) ⊆ F \ F+ is finite,
Lemma 10.5.14 implies∣∣F+ \ F

∣∣ =
∣∣(I ∪ F+) \ (I ∪ F )

∣∣ ≤ ∣∣(I ∪ F ) \ (I ∪ F+)
∣∣ =

∣∣F \ F+
∣∣ .
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This means k + 1 = |F+| ≤ |F | = k, a contradiction. So by successively adding
single elements of X \ I to I as long as the obtained set is still in I(M [k]) we
arrive at the wanted maximal element after at most k steps.

We conclude this section with a proof of Theorem 10.2.8. To this end, we
shall require following two lemmas.

Lemma 10.5.14. Let M be a matroid and I,B ∈ I(M) with B maximal and
B \ I finite. Then, |I \B| ≤ |B \ I|.

Proof. The proof is by induction on |B \ I|. For |B \ I| = 0 we have B ⊆ I and
hence B = I by maximality of B. Now suppose there is y ∈ B \ I. If I + y ∈ I
then by induction

|I \B| = |(I + y) \B| ≤ |B \ (I + y)| = |B \ I| − 1

and hence |I \ B| < |B \ I|. Otherwise there exists a unique circuit C of M
in I + y. Clearly C cannot be contained in B and therefore has an element
x ∈ I \B. Then (I + y)− x is independent, so by induction

|I \B| − 1 = |((I + y)− x) \B| ≤ |B \ ((I + y)− x)| = |B \ I| − 1,

and hence |I \B| ≤ |B \ I|.

Lemma 10.5.15. Let I ⊆ P(E) be a nearly finitary set system satisfying (I1),
(I2), and the following variant of (I3):

(*) For all I, J ∈ I and all y ∈ I \ J with J + y /∈ I there exists x ∈ J \ I
such that (J + y)− x ∈ I.

Then I satisfies (IM).

Proof. Let I ⊆ X ⊆ E with I ∈ I. As Ifin satisfies (IM) there is a set Bfin ∈ Ifin

which is maximal subject to I ⊆ Bfin ⊆ X and being in Ifin. As I is nearly
finitary, there is J ∈ I such that Bfin \ J is finite and we may assume that
J ⊆ X. Then, I \ J ⊆ Bfin \ J is finite so that we may choose a J minimizing
|I \ J |. If there is a y ∈ I \ J , then by (*) we have J + y ∈ I or there is an
x ∈ J \ I such that (J + y)− x ∈ I. Both outcomes give a set containing more
elements of I and hence contradicting the choice of J .

It remains to show that J can be extended to a maximal set B of I in X.
For any superset J ′ ∈ I of J , we have J ′ ∈ Ifin and Bfin \ J ′ is finite as it is a
subset of Bfin \ J . As Ifin is a matroid, Lemma 10.5.14 implies

|J ′ \Bfin| ≤ |Bfin \ J ′| ≤ |Bfin \ J |.

Hence, |J ′ \ J | ≤ 2|Bfin \ J | <∞. Thus, we can greedily add elements of X to
J to obtain the wanted set B after finitely many steps.

Next, we prove Theorem 10.2.8.
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Proof of Theorem 10.2.8. By Proposition 10.5.4, in order to prove that M1 ∨
M2 is a matroid, it is sufficient to prove that I(M1 ∨M2) satisfies (IM). By
Corollary 10.5.7 and Lemma 10.5.15 it remains to show that I(M1 ∨ M2) is
nearly finitary.

So let J ∈ I(M1 ∨ M2)fin. By Proposition 10.5.12 we may assume that
J = J1 ∪ J2 with J1 ∈ I(Mfin

1 ) and J2 ∈ I(Mfin
2 ). By assumption there are

I1 ∈ I(M1) and I2 ∈ I(M2) such that J1 \ I1 and J2 \ I2 are finite. Then I =
I1∪I2 ∈ I(M1∨M2) and the assertion follows as J \(I1∪I2) ⊆ (J1\I1)∪(J2\I2)
is finite.

10.6 From infinite matroid union to infinite ma-
troid intersection

In this section, we prove Theorem 10.2.7.

Proof of Theorem 10.2.7. Our starting point is the well-known proof from finite
matroid theory that matroid union implies a solution to the matroid intersection
problem. With that said, let B1 ∪ B∗2 ∈ B(M1 ∨M∗2 ) where B1 ∈ B(M1) and
B∗2 ∈ B(M∗2 ), and let B2 = E \ B∗2 ∈ B(M2). Then, put I = B1 ∩ B2 and note
that I ∈ I(M1) ∩ I(M2). We show that I admits the required partition.

For an element x /∈ Bi, i = 1, 2, we write Ci(x) to denote the fundamental
circuit of x into Bi in Mi. For an element x /∈ B∗2 , we write C∗2 (x) to denote
the fundamental circuit of x into B∗2 in M∗2 . Put X = B1 ∩B∗2 , Y = B2 \ I, and
Z = B∗2 \X, see Figure 10.4.

B1

B2

B∗
2

I

X

Y

Z

blue

red

blue is spanned by I in M2

red is spanned by I in M1

Figure 10.4: The sets X, Y , and Z and their colorings.

Observe that

clM1
(I) ∪ clM2

(I) = E = I ∪X ∪ Y ∪ Z. (10.8)

To see (10.8), note first that
X ⊆ clM2

(I). (10.9)
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Clearly, no member of X is spanned by I in M1. Assume then that x ∈ X is
not spanned by I in M2 so that there exists a y ∈ C2(x)∩ Y . Then, x ∈ C∗2 (y),
by Lemma 10.3.1. Consequently, B1 ∪B∗2 ( B1 ∪ (B∗2 + y − x) ∈ I(M1 ∨M∗2 );
contradiction to the maximality of B1 ∪B∗2 , implying (10.9).

By a similar argument, it holds that

Y ⊆ clM1
(I). (10.10)

To see that
Z ⊆ clM1

(I) ∪ clM2
(I), (10.11)

assume, towards contradiction, that some z ∈ Z is not spanned by I neither in
M1 nor in M2 so that there exist an x ∈ C1(z) ∩X and a y ∈ C2(z) ∩ Y . Then
B1−x+z and B2−y+z are bases and thus B1∪B∗2 ( (B1−x+z)∪(B∗2−z+y);
contradiction to the maximality of B1 ∪B∗2 . Assertion (10.8) is proved.

The problem of finding a suitable partition I = J1 ∪ J2 can be phrased
as a (directed) graph coloring problem. By (10.8), each x ∈ E \ I satisfies
C1(x) − x ⊆ I or C2(x) − x ⊆ I. Define G = (V,E) to be the directed graph
whose vertex set is V = E \ I and whose edge set is given by

E = {(x, y) : C1(x) ∩ C2(y) ∩ I 6= ∅}. (10.12)

Recall that a source is a vertex with no incoming edges and a sink is a vertex
with no outgoing edges. As C1(x) does not exist for any x ∈ X and C2(y) does
not exist for any y ∈ Y , it follows that

the members of X are sinks and those of Y are sources in G. (10.13)

A 2-coloring of the vertices of G, by say blue and red, is called divisive if it
satisfies the following:

(D.1) I spans all the blue elements in M1;

(D.1) I spans all the red elements in M2; and

(D.1) J1 ∩ J2 = ∅ where J1 := (
⋃
x blue C1(x)) ∩ I and J2 := (

⋃
x red C2(x)) ∩ I.

Clearly, if G has a divisive coloring, then I admits the required partition.
We show then that G admits a divisive coloring. Color with blue all the

sources. These are the vertices that can only be spanned by I in M1. Color
with red all the sinks, that is, all the vertices that can only be spanned by I
in M2. This defines a partial coloring of G in which all members of X are red
and those of Y are blue. Such a partial coloring can clearly be extended into a
divisive coloring of G provided that

G has no (y, x)-path with y blue and x red. (10.14)

Indeed, given (10.14) and (10.13), color all vertices reachable by a path from
a blue vertex with the color blue, color all vertices from which a red vertex is
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reachable by a path with red, and color all remaining vertices with, say, blue.
The resulting coloring is divisive.

It remains to prove (10.14). We show that the existence of a path as in
(10.14) contradicts the following property:
Suppose that M and N are matroids and B ∪B′ is maximal in I(M ∨N). Let
y /∈ B ∪B′ and let x ∈ B ∩B′. Then, (by Lemma 10.5.5)

there exists no (B,B′, y, x)-chain; (10.15)

(in fact, the contradiction in the proofs of (10.9),(10.10), and (10.11) arose
from simple instances of such forbidden chains).

Assume, towards contradiction, that P is a (y, x)-path with y blue and x red;
the intermediate vertices of such a path are not colored since they are not a sink
nor a source. In what follows we use P to construct a (B1, B

∗
2 , y0, y2|P |)-chain

(y0, y1, . . . , y2|P |) such that y0 ∈ Y , y2|P | ∈ X, all odd indexed members of the
chain are in V (P ) ∩ Z, and all even indexed elements of the chain other than
y0 and y2|P | are in I. Existence of such a chain would contradict (10.15).

Definition of y0. As y is pre-colored blue then either y ∈ Y or C2(y)∩Y 6= ∅.
In the former case set y0 = y and in the latter choose y0 ∈ C2(y) ∩ Y .

Definition of y2|P |. In a similar manner, x is pre-colored red since either
x ∈ X or C1(x)∩X 6= ∅. In the former case, set y2|P | = x and in the latter case
choose y2|P | ∈ C1(x) ∩X.

The remainder of the chain. Enumerate V (P ) ∩ Z = {y1, y3, . . . , y2|P |−1}
where the enumeration is with respect to the order of the vertices defined by
P . Next, for an edge (y2i−1, y2i+1) ∈ E(P ), let y2i ∈ C1(y2i−1) ∩C2(y2i+1) ∩ I;
such exists by the assumption that (y2i−1, y2i+1) ∈ E. As y2i+1 ∈ C∗2 (y2i)
for all relevant i, by Lemma 10.3.1, the sequence (y0, y1, y2, . . . , y2|P |) is a
(B1, B

∗
2 , y0, y2|P |)-chain in I(M1 ∨M∗2 ).

This completes our proof of Theorem 10.2.7.

Note that in the above proof, we do not use the assumption that M1 ∨M∗2
is a matroid; in fact, we only need that I(M1 ∨M∗2 ) has a maximal element.

10.7 The graphic nearly finitary matroids

In this section we prove Propositions 10.2.3 and 10.2.4 yielding a characteriza-
tion of the graphic nearly finitary matroids.

For a connected graph G, a maximal set of edges containing no finite cycles
is called an ordinary spanning tree. A maximal set of edges containing no finite
cycles nor any double ray is called an algebraic spanning tree. These are the
bases of MF (G) and MA(G), respectively. We postpone the discussion about
MC(G) to Subsection 10.7.2.
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To prove Propositions 10.2.3 and 10.2.4, we require the following theorem of
Halin [34, Theorem 8.2.5].

Theorem 10.7.1 (Halin 1965). If an infinite graph G contains k disjoint rays
for every k ∈ N, then G contains infinitely many disjoint rays.

10.7.1 The nearly finitary algebraic-cycle matroids

The purpose of this subsection is to prove Proposition 10.2.3.

Proof of Proposition 10.2.3. Suppose that G has k disjoint rays for every integer
k; so that G has a set R of infinitely many disjoint rays by Theorem 10.7.1. We
show that MA(G) is not nearly finitary.

The edge set of
⋃R =

⋃
R∈RR is independent in MA(G)fin as it induces

no finite cycle of G. Therefore there is a base of MA(G)fin containing it; such
induces an ordinary spanning tree, say T , of G. We show that

T − F contains a double ray for any finite edge set F ⊆ E(T ). (10.16)

This implies that E(T ) \ I is infinite for every independent set I of MA(G) and
hence MA(G) is not nearly finitary. To see (10.16), note that T −F has |F |+ 1
components for any finite edge set F ⊆ E(T ) as T is a tree and successively
removing edges always splits one component into two. So one of these compo-
nents contains infinitely many disjoint rays from R and consequently a double
ray.

Suppose next, that G has at most k disjoint rays for some integer k and let
T be an ordinary spanning tree of G, that is, E(T ) is maximal in MA(G)fin.
To prove that MA(G) is nearly finitary, we need to find a finite set F ⊆ E(T )
such that E(T ) \ F is independent in MA(G), i.e. it induces no double ray of
G. Let R be a maximal set of disjoint rays in T ; such exists by assumption and
|R| ≤ k. As T is a tree and the rays of R are vertex-disjoint, it is easy to see
that T contains a set F of |R| − 1 edges such that T − F has |R| components
which each contain one ray of R. By maximality of R no component of T − F
contains two disjoint rays, or equivalently, a double ray.

10.7.2 The nearly finitary topological-cycle matroids

In this section we prove Proposition 10.2.4 that characterizes the nearly finitary
topological-cycle matroids. Prior to that, we first define these matroids. To
that end we shall require some additional notation and terminology on which
more details can be found in [21].

An end of G is an equivalence class of rays, where two rays are equivalent if
they cannot be separated by a finite edge set. In particular, two rays meeting
infinitely often are equivalent. Let the degree of an end ω be the size of a maximal
set of vertex-disjoint rays belonging to ω, which is well-defined [35]. We say that
a double ray belongs to an end if the two rays which arise from the removal of
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one edge from the double ray belong to that end; this does not depend on the
choice of the edge. Such a double ray is an example of a topological cycle12

For a graph G the topological-cycle matroid of G, namely MC(G), has E(G)
as its ground set and its set of circuits consists of the finite and topological
cycles. In fact, every infinite circuit of MC(G) induces at least one double ray;
provided that G is locally finite [35].

A graph G has only finitely many disjoint rays if and only if G has only
finitely many ends, each with finite degree. Also, note that

every end of a 2-connected locally finite graph has degree at least 2. (10.17)

Indeed, applying Menger’s theorem inductively, it is easy to construct in any
k-connected graph for any end ω a set of k disjoint rays of ω.

Now we are in a position to start the proof of Proposition 10.2.4.

Proof of Proposition 10.2.4. If G has only a finite number of vertex-disjoint
rays then MA(G) is nearly finitary by Proposition 10.2.3. Since MA(G)fin =
MC(G)fin and I(MA(G)) ⊆ I(MC(G)), we can conclude that MC(G) is nearly
finitary as well.

Now, suppose that G contains k vertex-disjoint rays for every k ∈ N. If G
has an end ω of infinite degree, then there is an infinite set R of vertex-disjoint
rays belonging to ω. As any double ray containing two rays of R forms a circuit
of MC(G), the argument from the proof of Proposition 10.2.3 shows that MC(G)
is not nearly finitary.

Assume then that G has no end of infinite degree. There are infinitely
many disjoint rays, by Theorem 10.7.1. Hence, there is a countable set of ends
Ω = {ω1, ω2, . . .}.

We inductively construct a set R of infinitely many vertex-disjoint double
rays, one belonging to each end of Ω. Suppose that for any integer n ≥ 0 we
have constructed a set Rn of n disjoint double rays, one belonging to each of the
ends ω1, . . . , ωn. Different ends can be separated by finitely many vertices so
there is a finite set S of vertices such that

⋃Rn has no vertex in the component
C of G − S which contains ωn+1. Since ωn+1 has degree 2 by (10.17), there
are two disjoint rays from ωn+1 in C an thus also a double ray D belonging to
ωn+1. Set Rn+1 := Rn ∪ {D} and R :=

⋃
n∈NRn.

As
⋃R contains no finite cycle of G, it can be extended to an ordinary

spanning tree of G. Removing finitely many edges from this tree clearly leaves
an element of R intact. Hence, the edge set of the resulting graph still contains
a circuit of MC(G). Thus, MC(G) is not nearly finitary in this case as well.

In the following we shall propose a possible extension of Theorem 10.7.1 to
matroids. We call a matroid M k-nearly finitary if every base of its finitarization
contains a base of M such that their difference has size at most k. Note that

12Formally, the topological cycles of G are those subgraphs of G which are homeomorphic
images of S1 in the Freudenthal compactification |G| of G. However, the given example is the
only type of topological cycle which shall be needed for the proof.
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saying ‘at most k’ is not equivalent to saying ‘equal to k’, consider for example
the algebraic-cycle matroid of the infinite ladder. We conjecture the following.

Conjecture 10.7.2. Every nearly finitary matroid is k-nearly finitary for some
k.

We remark that Propositions 10.2.3 and 10.2.4 above are special cases of
this conjecture. In the proof of Proposition 10.2.4 we used Theorem 10.7.1. In
fact it is not difficult to show that Proposition 10.2.4 and Theorem 10.7.1 are
equivalent. In particular, Conjecture 10.7.2 implies Theorem 10.7.1.

10.7.3 Graphic matroids and the intersection conjecture

By Theorem 10.2.5, the intersection conjecture is true for MC(G) and MFC(H)
for any two graphs G and H since the first is co-finitary and the second is
finitary. Using also Proposition 10.2.4, we obtain the following.

Corollary 10.7.3. Suppose that G and H are 2-connected, locally finite graphs
with only a finite number of vertex-disjoint rays. Then, MC(G) and MC(H)
satisfy the intersection conjecture.

Using Proposition 10.2.3 instead of Proposition 10.2.4, we obtain the follow-
ing.

Corollary 10.7.4. Suppose that G and H are graphs with only a finite num-
ber of vertex-disjoint rays. Then, MA(G) and MA(H) satisfy the intersection
conjecture if both are matroids.

With a little more work, the same is also true for MFC(G), see Corol-
lary 10.2.6.

Proof of Corollary 10.2.6. First we show that (((MC(G)fin)∗)fin)∗ = MC(G) if
G is locally finite. Indeed, then MC(G)fin = MFC(G), MFC(G)∗ is the matroids
whose circuits are the finite and infinite bonds of G, and its finitarization has
as its circuits the finite bonds of G. And the dual of this matroid is MC(G), see
[22] for example.

Having showed that (((MC(G)fin)∗)fin)∗ = MC(G) if G is locally finite, we
next show that if MC(G) is nearly finitary, then so is MFC(G)∗. For this let
B be a base of MFC(G)∗ and B′ be a base of (MFC(G)∗)fin. Then B′ \ B =
(E \ B) \ (E \ B′). Now E \ B is a base of MFC(G) = MC(G)fin and by the
above E \B′ is a base of MC(G). Since MC(G) is nearly finitary, B′ \B is finite,
yielding that MFC(G)∗ is nearly finitary.

AsMFC(G)∗ is nearly finitary andMFC(H) is finitary, MFC(H) andMFC(G)
satisfy the intersection conjecture by Theorem 10.2.5.

A similar argument shows that if G and H are are 2-connected, locally finite
graphs with only a finite number of vertex-disjoint rays, then one can also prove
that MFC(G)∗ and MFC(H)∗ satisfy the intersection conjecture. Similar results
are true for MC(G)∗ or MA(G)∗ in place of MFC(G)∗.
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10.8 Union of arbitrary infinite matroids

In this section, we show that there exists infinite matroids M and N whose
union is not a matroid.

In Claim 10.8.1, we treat the relatively simpler case in which M is finitary
and N is co-finitary and both have uncountable ground sets. Second, then, in
Claim 10.8.2, we refine the argument as to have M both finitary and co-finitary
and N co-finitary and both on countable ground sets.

Claim 10.8.1. There exists a finitary matroid M and a co-finitary matroid N
such that I(M ∨N) is not a matroid.

Proof. Set E = E(M) = E(N) = N × R. Next, put M :=
⊕

n∈NMn, where
Mn := U1,{n}×R. The matroid M is finitary as it is a direct sum of 1-uniform
matroids. For r ∈ R, let Nr be the circuit matroid on N × {r}; set N :=⊕

r∈RNr. As N is a direct sum of circuits, it is co-finitary. (see Figure 10.5).

M1 M2 M3

N−2 N0 Nπ

...

...

... . . .

. . .. . .

... M4

(1, 0) (2, 0) (3, 0) (4, 0)

Figure 10.5: M =
⊕

n∈N Mn and N =
⊕

r∈R Nr.

We show that I(M ∨ N) violates the axiom (IM) for I = ∅ and X = E;
so that I(M ∨N) has no maximal elements. It is sufficient to show that a set
J ⊆ E belongs to I(M ∨N) if and only if it contains at most countably many
circuits of N . For if so, then for any J ∈ I(M ∨N) and any circuit C = N×{r}
of N with C * J (such a circuit exists) we have J ∪ C ∈ I(M ∨N).

The point to observe here is that every independent set of M is countable,
(since every such set meets at most one element of Mn for each n ∈ N), and that
every independent set of N misses uncountably many elements of E (as any such
set must miss at least one element of Nr for each r ∈ R).

Suppose J ⊆ E contains uncountably many circuits of N . Since each inde-
pendent set of N misses uncountably many elements of E, every set D = J \JN
is uncountable whenever JN ∈ I(J). On the other hand, since each independent
set of M is countable, we have that D /∈ I(M). Consequently, J /∈ I(M ∨N),
as required.

We may assume then that J ⊆ E contains only countably many circuits of
N , namely, {Cr1 , Cr2 , . . .}. Now the set JM = {(i, ri) : i ∈ N} is independent in
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M ; consequently, J \ JM is independent in N ; completing the proof.

We proceed with matroids on countable ground sets.

Claim 10.8.2. There exist a matroid M that is both finitary and co-finitray, and
a co-finitary matroid N whose common ground is countable such that I(M ∨N)
is not a matroid.

Proof. For the common ground set we take E = (N × N) ∪ L where L =
{`1, `2, . . .} is countable and disjoint to N × N. The matroids N and M are
defined as follows. For r ∈ N, let Nr be the circuit matroid on N × {r}. Set
N to be the matroid on E obtained by adding the elements of L to the ma-
troid

⊕
r∈NNr as loops. Next, for n ∈ N, let Mn be the 1-uniform matroid on

({n} × {1, 2, . . . , n}) ∪ {`n}. Let M be the matroid obtained by adding to the
matroid

⊕
n∈NMn all the members of E \ E(

⊕
n∈NMn) as loops

We show that I(M ∨N) violates the axiom (IM) for I = N×N and X = E.
It is sufficient to show that

(a) I ∈ I(M ∨N); and that

(b) every set J satisfying I ⊂ J ⊆ E is in I(M ∨ N) if and only if it misses
infinitely many elements of L.

To see that I ∈ I(M ∨ N), note that the set IM = {(n, n) | n ∈ N} is
independent in M and meets each circuit N × {r} of N . In particular, the set
IN := (N×N)\IM is independent in N , and therefore I = IM ∪IN ∈ I(M ∨N).

Let then J be a set satisfying I ⊆ J ⊆ E, and suppose, first, that J ∈
I(M ∨N). We show that J misses infinitely many elements of L.

There are sets JM ∈ I(M) and JN ∈ I(N) such that J = JM ∪ JN . As
JN misses at least one element from each of the disjoint circuits of N in I, the
set D := I \ JN is infinite. Moreover, we have that D ⊆ JM , since I ⊆ J . In
particular, there is an infinite subset L′ ⊆ L such that D + l contains a circuit
of M for every ` ∈ L′. Indeed, for every e ∈ D is contained in some Mne ; let
then L′ = {`ne : e ∈ D} and note that L′ ∩ J = ∅. This shows that JM and L′

are disjoint and thus J and L′ are disjoint as well, and the assertion follows.
Suppose, second, that there exists a sequence i1 < i2 < . . . such that J

is disjoint from L′ = {`ir : r ∈ N}. We show that the superset E \ L′
of J is in I(M ∨ N). To this end, set D := {(ir, r) | r ∈ N}. Then, D
meets every circuit N × {r} of N in I, so that the set JN := N × N \ D is
independent in N . On the other hand, D contains a single element from each
Mn with n ∈ L′. Consequently, JM := (L \ L′) ∪ D ∈ I(M) and therefore
E \ L′ = JM ∪ JN ∈ I(M ∨N).

While the union of two finitary matroids is a matroid, by Proposition 10.5.1,
the same is not true for two co-finitary matroids.

Corollary 10.8.3. The union of two co-finitary matroids is not necessarily a
matroid.
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Since two matroids M and N∗ satisfy Conjecture 10.2.1 by Theorem 10.2.7
if the union of M and N is a matroid, it seems worth investigating where the
boundaries of this approach are. In particular, we have the following question.
Is the class of nearly finitary matroids the largest class containing the fintary
matroids that is closed under taking (finite) unions in the following sense?

Question 10.8.4. Is there for every non-nearly finitary matroid M a finitary
matroid N such that the union of M and N is not a matroid?

In [5] we prove that this conjecture is true for any matroid M such that the
finitarization of M has an independent set I containing only countably many
M -circuits such that I has no finite subset meeting all of these circuits.
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Chapter 11

An excluded minors method
for infinite matroids

11.1 Abstract

The notion of thin sums matroids was invented to extend the notion of repre-
sentability to non-finitary matroids. A matroid is tame if every circuit-cocircuit
intersection is finite. We prove that a tame matroid is a thin sums matroid over
a finite field k if and only if all its finite minors are representable over k.

11.2 Introduction

Given a family of vectors in a vector space over some field k, there is a ma-
troid structure on that family whose independent sets are given by the linearly
independent subsets of the family. Matroids arising in this way are called rep-
resentable matroids over k. A classical theorem of Tutte [91] states that a finite
matroid is binary (that is, representable over F2) if and only if it does not have
U2,4 as a minor. In the same spirit, a key aim of finite matroid theory has
been to determine such ‘forbidden minor’ characterisations for the classes of
matroids representable over other finite fields. For example Bixby and Seymour
[12, 86] characterized the finite ternary matroids (those representable over F3)
by forbidden minors, and more recently there is a forbidden minors character-
isation for the finite matroids representable over F4, due to Geelen, Gerards
and Kapoor [41]. In 1971 Rota conjectured that for any finite field the class
of finite matroids representable over that field is characterised by finitely many
forbidden minors. A proof of this conjecture has been announced by Geelen,
Gerards and Whittle. An outline of the proof has already appeared in [42]. In
this chapter we develop a method which makes it possible to extend the above
excluded minor characterisations from finite to infinite matroids.

It is clear that any representable matroid is finitary, that is, all its circuits
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are finite, and so many interesting examples of infinite matroids are not repre-
sentable. However, since the construction of many standard examples, including
the algebraic cycle matroids of infinite graphs, is suggestively similar to that of
representable matroids, the notion of thin sums matroids was introduced in [21]:
it is a generalisation of representability which captures these infinite examples.
We will work with thin sums matroids rather than with representable matroids.

In [1] it was shown that the class of tame thin sums matroids over a fixed
field is closed under duality, where a matroid is tame if any circuit-cocircuit
intersection is finite. On the other hand, there are thin sums matroids whose
dual is not a thin sums matroid [15] - such counterexamples cannot be tame. A
simple consequence of this closure under duality is that the class of tame thin
sums matroids over a fixed field is closed under taking minors, and so we may
consider the forbidden minors for this class.

Minor closed classes may have infinite ‘minimal’ forbidden minors. For ex-
ample the class of finitary matroids has the infinite circuit U∗1,N as a forbidden
minor. Similarly, the class of tame thin sums matroids over R has U2,P(R) as a
forbidden minor. However, our main result states that the class of tame thin
sums matroids over a fixed finite field has only finite minimal forbidden minors.

Theorem 11.2.1. Let M be a tame matroid and k be a finite field. Then
M is a thin sums matroid over k if and only if every finite minor of M is
k-representable.

The proof is by a compactness argument. All previous compactness proofs
in infinite matroid theory known to the authors use only that either all finite
restrictions or all finite contractions have a certain property to conclude that
the matroid itself has the desired property. For our purposes, arguments of this
kind must fail because there is a tame matroid all of whose finite restrictions
and finite contractions are binary but which is not a thin sums matroid over F2

- in fact, it has a U2,4-minor. We shall briefly sketch how to construct such a
matroid. Start with U2,4, and add infinitely many elements parallel to one of
its elements. This ensures that every finite contraction is binary. If we also add
infinitely many elements which are parallel in the dual to some other element
then we guarantee in addition that all finite restrictions are binary, but the
matroid itself has a U2,4 minor.

Theorem 11.2.1 implies that each of the excluded minor characterisations for
finite representable matroids mentioned in the first paragraph extends to tame
matroids. Thus, for example, a tame matroid is a thin sums matroid over F2 if
and only if it has no U2,4 minor. Any future excluded minor characterisations
for finite matroids representable over a fixed finite field will also immediately
extend to tame matroids by this theorem.

Our approach makes it possible to lift many other standard theorems about
finite matroids representable over a finite field to theorems about tame thin
sums matroids over the same field. For example, the same method shows that
a tame matroid is regular (that is, a thin sums matroid over every field) if and
only if all its finite minors are, and that regularity is equivalent to signability for
tame matroids (see Section 3 for a definition). Our method applies to excluded
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minor characterisations of properties other than representability. In [16] the
same method is employed to show that the tame matroids all of whose finite
minors are graphic are precisely those matroids that arise from some graph-like
space, in the sense that the circuits are given by topological circles and the
cocircuits by topological bonds.

The proof of Theorem 11.2.1 will appear in Section 4, but first we must
introduce some basic preliminary results for those without a background in
infinite matroid theory. In Section 3 we treat the binary case separately. This
is simpler but many ideas can alredy be seen there. In Section 5 we apply these
methods to related representations such as regular ones.

11.3 Preliminaries

11.3.1 Basics

Throughout, notation and terminology for graphs are those of [35], and for
matroids those of [75, 22]. And M always denotes a matroid and E(M) (or just
E), I(M) and C(M) denote its ground set and its sets of independent sets and
circuits, respectively.

A set system I ⊆ P(E) is the set of independent sets of a matroid if and
only if it satisfies the following independence axioms [22].

(I1) ∅ ∈ I(M).

(I2) I(M) is closed under taking subsets.

(I3) Whenever I, I ′ ∈ I(M) with I ′ maximal and I not maximal, there exists
an x ∈ I ′ \ I such that I + x ∈ I(M).

(IM) Whenever I ⊆ X ⊆ E and I ∈ I(M), the set {I ′ ∈ I(M) | I ⊆ I ′ ⊆ X}
has a maximal element.

A set system C ⊆ P(E) is the set of circuits of a matroid if and only if it
satisfies the following circuit axioms [22].

(C1) ∅ /∈ C.

(C2) No element of C is a subset of another.

(C3) (Circuit elimination) Whenever X ⊆ o ∈ C(M) and {ox | x ∈ X} ⊆ C(M)
satisfies x ∈ oy ⇔ x = y for all x, y ∈ X, then for every z ∈ o \

(⋃
x∈X ox

)
there exists a o′ ∈ C(M) such that z ∈ o′ ⊆

(
o ∪⋃x∈X ox) \X.

(CM) I satisfies (IM), where I is the set of those subsets of E not including an
element of C.

We will rely on the following straightforward lemmas, which may be proved
for infinite matroids in essentially the same way as for finite matroids. Fix some
matroid M .
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Lemma 11.3.1. Let M be a matroid and s be a base. Let oe and bf a funda-
mental circuit and a fundamental cocircuit with respect to s, then

1. oe ∩ bf is empty or oe ∩ bf = {e, f} and

2. f ∈ oe iff e ∈ bf .

Proof. To see the first note that oe ⊆ s+ e and bf ⊆ (E \ s) + f . So oe ∩ bf ⊆
{e, f}. As a circuit and a cocircuit can never meet in only one edge, the assertion
follows.

To see the second, first let f ∈ oe. Then f ∈ oe∩bf , so by (1) oe∩bf = {e, f}
and so e ∈ bf . The converse implication is the dual statement of the above
implication.

Lemma 11.3.2. For any circuit o containing two edges e and f , there is a
cocircuit b such that o ∩ b = {e, f}.

Proof. As o−e is independent, there is a base including o−e. By Lemma 11.3.1,
the fundamental cocircuit of f of this base intersects o in e and f , as desired.

Lemma 11.3.3. Let M be a matroid with ground set E = C∪̇X∪̇D and let o′

be a circuit of M ′ = M/C\D. Then there is an M -circuit o with o′ ⊆ o ⊆ o′∪C.

Proof. Let s be any M -base of C. Then s ∪ o′ is M -dependent since o′ is M ′-
dependent. On the other hand, s ∪ o′ − e is M -independent whenever e ∈ o′
since o′ − e is M ′-independent. Putting this together yields that s∪ o′ contains
an M -circuit o, and this circuit must not avoid any e ∈ o′, as desired.

Corollary 11.3.4. Let M ′ be a minor of M . Further let o′ be an M ′-circuit
and b′ be an M ′-cocircuit. Then there is an M -circuit o ⊆ o′ ∪ (E(M) \E(M ′))
and an M -cocircuit b ⊆ b′ ∪ (E(M) \ E(M ′)) such that o ∩ b = o′ ∩ b′.

A scrawl is a union of circuits. For any matroid M , M can be recovered
from its set of scrawls since the circuits are precisely the minimal nonempty
scrawls.

Lemma 11.3.5. Let M be a matroid, and let w ⊆ E. The following are equiv-
alent:

1. w is a scrawl of M .

2. w never meets a cocircuit of M just once.

Corollary 11.3.6. Let M be a matroid with ground set E = C∪̇X∪̇D, and let
w′ ⊆ X. Then w′ is a scrawl of M ′ = M/C\D if and only if there is a scrawl
w of M with w′ ⊆ w ⊆ w′ ∪ C.
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11.3.2 Thin sums matroids

Throughout the whole chapter, we will follow the convention that if we write
that a sum equals zero then this implicitly includes the statement that this sum
is well-defined, that is, that only finitely many summands are nonzero.

Definition 11.3.7. Let A be a set, and k a field. Let f = (fe|e ∈ E) be a
family of functions from A to k, and let λ = (λe|e ∈ E) be a family of elements
of k. We say that λ is a thin dependence of f if and only if for each a ∈ A we
have ∑

e∈E
λefe(a) = 0 ,

We say that a subset I of E is thinly independent for f if and only if the
only thin dependence of f which is 0 everywhere outside I is (0|e ∈ E). The
thin sums system Mf of f is the set of such thinly independent sets. This isn’t
always the set of independent sets of a matroid [22], but when it is we say that
this matroid is the thin sums matroid of f , and that it is thinly represented by
f over k.

This definition is deceptively similar to the definition of the representable
matroid corresponding to f considered as a family of vectors in the k-vector
space kA. The difference is in the more liberal definition of dependence: it is
possible for λ to be a thin dependence even if there are infinitely many e ∈ E
with λe 6= 0, provided that for each a ∈ A there are only finitely many e ∈ E
such that both λe 6= 0 and fe(a) 6= 0.

Indeed, the notion of thin sums matroid was introduced as a generalisation
of the notion of representable matroid: every representable matroid is finitary,
but this restriction does not apply to thin sums matroids.

There are many natural examples of thinly representable matroids: for exam-
ple, finite, topological and algebraic cycle matroids of graphs are always thinly
representable over every field [1]. A finitary matroid is thinly representable over
k if and only if it is representable in the usual sense [1].

The following connection between scrawls and thin dependences will turn
out to be useful.

Lemma 11.3.8 ([1]). Let Mf be a thinly representable matroid, and let c be a
linear dependence for f . Then the support of c is a scrawl.

Let k be a field and let k∗ denote the set of nonzero elements of k. A k-
painting for the matroid M is a choice of a function co : o→ k∗ for each circuit
o of M and a function db : b → k∗ for each cocircuit b of M such that for any
circuit o and cocircuit b we have∑

e∈o∩b
co(e)db(e) = 0 . (11.1)

A matroid is k-paintable if it has a k-painting.
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Lemma 11.3.9 ([1]). Let M be a tame matroid. Then M is a thin sums matroid
over the field k if and only if M is k-paintable.

By symmetry of the definition, it is clear that a matroid is k-paintable if
and only if its dual is. Each k-painting ((co|o ∈ C(M)), (db|b ∈ C(M∗))) of M
induces at least one k-painting ((c′o|o ∈ C(N)), (d′b|b ∈ C(N∗))) for each minor
N = M/C\D in the following way: By Lemma 11.3.3, for each circuit o of N we
can pick a circuit ō of M such that o ⊆ ō ⊆ o ∪ C. Similarly, for each cocircuit
b of N we can pick a cocircuit b̄ of M such that b ⊆ b̄ ⊆ b ∪D. Let c′o = cō�o
and d′b = db̄�b. Then ((c′o|o ∈ C(N)), (d′b|b ∈ C(N∗))) is a k-painting of N .

In particular, if a matroid is k-paintable then all its finite minors are.

11.4 Binary matroids

Theorem 11.4.1. Let M be a tame matroid. Then the following are equivalent:

1. M is a binary thin sums matroid.

2. For any circuit o and cocircuit b of M , |o ∩ b| is even.

3. For any circuit o and cocircuit b of M , |o ∩ b| 6= 3

4. M has no minor isomorphic to U2,4.

5. If o1, o2 are circuits then o14o2 is empty or includes a circuit.

6. If o1, o2 are circuits then o14o2 is a disjoint union of circuits.

7. If (oi|i ∈ I) is a finite family of circuits then 4i∈Ioi is empty or includes
a circuit.

8. If (oi|i ∈ I) is a finite family of circuits then 4i∈Ioi is a disjoint union of
circuits.

9. For any base s of M , and any circuit o of M , o = 4e∈o\soe, where oe is
the fundamental circuit of e with respect to s.

Proof. We shall prove the following implications:

(1)

(2) (3) (4)(5)

(6)

(7)

(8)

(9)
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Those implications indicated by dotted arrows are clear. We shall prove the
remaining implications.

(2) implies (1): We need to find a suitable thin sums system. Let A be the

set of cocircuits of M , and let E
f−→ FA2 be the map sending e to the function

which sends b ∈ A to 1 if e ∈ b and 0 otherwise.
We are to show that the thin sums matroid Mts defined by f is M . Since the

characteristic function of any M -circuit is a thin dependence for f with support
equal to that circuit by (2), any M -dependent set is also Mts(f)-dependent.

It remains to show that the support of every non-zero thin dependence is
M -dependent. By Lemma 11.3.5 the support of every non-zero thin dependence
includes a circuit, as desired.

(2) implies (8): Let (oi|i ∈ I) be a finite family of circuits. By Zorn’s
Lemma, we can choose a maximal family (oj |j ∈ J) of disjoint circuits such
that

⋃
j∈J oj ⊆ 4i∈Ioi, and let w = 4i∈Ioi \

⋃
j∈J oj . Let b be any cocircuit of

M , so that |b ∩ oi| is even for each i ∈ I. Then |b ∩ 4i∈Ioi| is also even, and
in particular finite. Since the oj are disjoint, there can only be finitely many of
them that meet b ∩ 4i∈Ioi, and since for each such j we have that |b ∩ oj | is
even, it follows that |b ∩ w| is even. In particular, b ∩ w doesn’t have just one
element. Since b was arbitrary, by Lemma 11.3.5 w is a scrawl of M and so if
it is nonempty it includes a circuit. But in that case, we could add that circuit
to the family (oj |j ∈ J), contradicting the maximality of that family. Thus w
is empty, and 4i∈Ioi =

⋃
j∈J oj is a disjoint union of circuits.

(5) implies (3): Suppose, for a contradiction, that (5) holds but (3) fails, and
choose a circuit o and a cocircuit b with o ∩ b = {x, y, z} of size 3. Pick a base
s of (E \ b) + x including o − y − z, which exists by (IM). As b is a cocircuit,
b− x avoids some M -base, thus (E \ b) + x is spanning and thus s is spanning,
as well. Let oy and oz be the fundamental circuits of y and z with respect to s.

It suffices to show that oy4oz ⊆ o− x. Indeed, since y, z ∈ oy4oz, (5) then
yields a circuit properly included in o, which is impossible. By Lemma 11.3.2
we can’t have oy ∩ b = {y} so we must have x ∈ oy. Similarly, x ∈ oz, and so
x /∈ oy4oz. So it is sufficient to show that oy and oz agree outside o, in other
words: oy ⊆ oz ∪ o and oz ⊆ oy ∪ o.

To see this, first note that by uniqueness of the fundamental circuit of y it
suffices to show that y is spanned by (oz − z) ∪ (o − y − z). As z is spanned
by (oz − z), o − y is spanned by (oz − z) ∪ (o − y − z). Since o is a circuit, y
is also spanned by (oz − z) ∪ (o− y − z), as desired. A similar argument yields
oz ⊆ oy ∪ o, completing the proof.

(3) implies (4): Since any subset of the ground set of U2,4 of size 3 is both
a circuit and a cocircuit, it is easy to find a circuit and cocircuit in U2,4 whose
intersection has size 3. So we simply apply Corollary 11.3.4.

(4) implies (2): Suppose for a contradiction that (4) holds but (2) does not.
Then let o be a circuit and b a cocircuit such that |o ∩ b| = k is odd. By
contracting o \ b and deleting b \ o, we obtain a minor M ′ of M in which o∩ b is
both a circuit and a cocircuit. Let s be a minimal spanning set containing o∩ b,
which exists by (IM∗). Then in the minor M ′′ of M ′ obtained by contracting
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s \ (o ∩ b), (o ∩ b) is spanning, and is still both a circuit and a cocircuit. By a
similar removal, we can find a minor M ′′′ of M ′′ in which o∩ b is a circuit and a
cocircuit and is both spanning and cospanning. Let x ∈ o∩ b. Then o∩ b− x is
both a base and a cobase of M ′′′, and it is finite (it has size k− 1). As o∩ b− x
is a base and a cobase, the complement of o∩ b− x is also a base and a cobase.
Thus the ground set of M ′′′ is also finite (it has size 2k−2). Applying the finite
version of the theorem, then, M ′′′ contains a U2,4 minor, which is also a minor
of M , giving the desired contradiction.

(9) implies (2): first we will show that the following implies (2):

For any base s of M , any circuit o meets every fundamental
cocircuit of s in an even number of edges.

(�)

To see that (�) implies (2), it suffices to show that every cocircuit b is funda-
mental cocircuit of some base s. Let e ∈ b. Then as b is a cocircuit, E \ (b− e)
is spanning. Thus by (IM) there is a base s of E \ (b− e), which clearly has b
as fundamental cocircuit.

So it remains to see that (9) implies (�). By (9), o = 4e∈o\soe. Let bf be
some fundamental cocircuit of s for some f ∈ s. By Lemma 11.3.1 oe ∩ bf is
empty or oe ∩ bf = {e, f}. So it suffices to show that every f is in only finitely
many oe, which follows from the fact that o = 4e∈o\soe is well defined at f .
This completes the proof.

(2) implies (9): we have to show for every edge f that it is contained in only
finitely many oe and that f ∈ o ⇐⇒ f ∈ 4e∈o\soe(f). If f /∈ s, this is easy, so
let f ∈ s. By Lemma 11.3.1 f ∈ oe iff e ∈ bf . As M is tame |o ∩ bf | is finite, so
there are only finitely many such e. By (2), |o ∩ bf | is even. If f /∈ o, all such
e are not contained in s, so f /∈ 4e∈o\soe. If f ∈ o, all such e but f are not
contained in s, so f ∈ 4e∈o\soe. This completes the proof.

We remark that we might also put the duals of the statements in the list onto
the list. It might be worth noting that (7) becomes false if we also allow I to be
infinite. To see this, consider the finite cycle matroid of the graph obtained from
a ray by adding a vertex that is adjacent to every vertex on the ray. Indeed,
the symmetric difference of all 3-cycles is a ray starting at this new vertex. This
set is not empty, and nor does it include a circuit, so the infinite version of (7)
fails.

More generally, the finite cycles of a locally finite graph generate the cycle
space, which may contain infinite cycles [35].

We offer the following related open questions. Let (10) be the statement like
(9) but for only one base of M . For finite matroids, (10) is equivalent to (9). Is
the same true for tame matroids?

The following simple question also remains open:
In Theorem 11.4.1, we assumed that M is tame. Without this assumption,

the theorem is no longer true. For example, in [17] there is an example of a wild
matroid satisfying (2-6) and (10), but not (1) or (7-9). However, this matroid
is not a binary thin sums matroid. In fact, we still do not know the answer to
the following:
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Open Question 11.4.2. Is every binary thin sums matroid tame?

In a binary tame matroid, it is easy to see that any set meeting every cocircuit
not in an odd number of edges is a disjoint union of circuits provided that the set
is either countable or does not meet any cocircuit infinitely. A well-known result
of Nash-Williams says that the above is also true if the matroid is the finite cycle
matroid of some graph. Does this extend to all binary tame matroids?

Open Question 11.4.3. Let M be a binary tame matroid and let X be a set
that meets no cocircuit in an odd number of edges. Must X be a disjoint union
of circuits?

11.5 Excluded minors of representable matroids

In this section, we will prove the main result, Theorem 11.2.1. The proof will be
by a compactness argument, but because we wish to prove the result for tame
matroids rather than just finitary ones, we will need to go beyond the usual
compactness arguments for finitary matroids in two ways. First, we need the
characterisation in Lemma 11.3.9, since the definition of thin sums matroids is
not suited to compactness arguments. Second, we need the following lemma,
which allows us to move to a finite minor whilst preserving a finite amount of
complexity in a tame matroid.

Lemma 11.5.1. Let M be a tame matroid, O a finite set of circuits of M and
B a finite set of cocircuits of M . Then there exists a finite minor N of M and
functions f : O → C(N) and g : B → C(N∗) such that for any o ∈ O and b ∈ B
we have f(o) ∩ g(b) = o ∩ b.
Proof. We pick an element eo ∈ o for each o ∈ O and an element eb ∈ b for each
b ∈ B. Let F =

⋃
o∈O

⋃
b∈B o ∩ b ∪ {eo|o ∈ O} ∪ {eb|b ∈ B}. Since M is tame,

F is finite. Next, for each o ∈ O and each e ∈ o ∩ F − eo we pick a cocircuit
bo,e with o ∩ bo,e = {eo, e} (this is possible by Lemma 11.3.2). Let B′ be the
set of all cocircuits picked in this way or contained in B. Note that B′ is finite.
Similarly, we pick for each b ∈ B and each element eb (which by construction is
in F ∩ b) a circuit ob,e with ob,e ∩ b = {eb, e} for each e ∈ F ∩ b − eb, and we
collect all of these, together with all circuits contained in O, in a finite set O′.

Let F ′ = F ∪ (
⋃
O′ ∩⋃B′) = F ∪⋃o∈O′ ⋃b∈B′ o ∩ b. Note that F ′ is also

finite. Let C =
⋃
O′ \ F ′, and let D = E \ (C ∪ F ′). Thus E = C∪̇F ′∪̇D. Let

N be the finite minor of M with ground set F ′ that is given by M/C\D. For
each o ∈ O, o \ F ′ ⊆ C and so o ∩ F ′ is a scrawl of N by Corollary 11.3.6. Let
f(o) be a circuit of N with eo ∈ f(o) ⊆ o ∩ F ′. Then for each e ∈ o ∩ F − eo
we know that F ′ ∩ bo,e is a scrawl of N∗, again by Corollary 11.3.6, so it can’t
meet f(o) in just one point. But eo ∈ f(o)∩F ′ ∩ bo,e ⊆ {eo, e} so we must have
f(o) ∩ F ′ ∩ bo,e = {eo, e} and we conclude that e ∈ f(o). Since e was arbitrary,
this implies that o ∩ F ⊆ f(o).

Similarly, for each b ∈ B, we find a cocircuit g(b) of N such that g(b) ⊆ F ′∩b
but b ∩ F ⊆ g(b). Thus for o ∈ O and b ∈ B we have f(o) ∩ g(b) = o ∩ b, as
required.
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By Lemma 11.3.9, Theorem 11.2.1 is equivalent to the following result.

Theorem 11.5.2. Let M be a tame matroid and k be a finite field. Then M
is k-paintable if and only if all of its finite minors are k-paintable.

Proof. The ‘only if’ part was established in Section 11.3. For the ‘if’ part,
we begin by defining the topological space whose compactness we will use. We
would like an element of this space to correspond to a choice of functions co : o→
k∗ and db : b→ k∗ for each o ∈ C(M) and b ∈ C(M∗), so we take

H =

 ⋃
o∈C(M)

{o} × o

q
 ⋃
b∈ C(M∗)

{b} × b


and take the underlying set of our space to be X = (k∗)H - the compact topology
on X that we will use is given by the product of |H| copies of the discrete
topology on k∗.

For each circuit o and cocircuit b of M , the set

Co,b =

{
c ∈ (k∗)H

∣∣∣∣∣ ∑
e∈o∩b

c(o, e)c(b, e) = 0

}

is closed because o∩b is finite. We shall now show that any finite intersection of
such sets is nonempty. That is, we shall show that

⋂
(o,b)∈K Co,b 6= ∅ for every

finite subset K of C(M)× C(M∗).
Let O be the set of circuits appearing as first components of elements of K,

and let B be the set of cocircuits appearing as second components of elements
of K. By Lemma 11.5.1, there are a finite minor N of M and functions f : O →
C(N) and g : B → C(N∗) such that for any o ∈ O and b ∈ B we have f(o)∩g(b) =
o ∩ b.

Since N is finite, it is k-paintable. So we can find functions cf(o) : f(o)→ k∗

and dg(b) : g(b)→ k∗ for all o ∈ O and b ∈ B such that
∑
e∈o∩b cf(o)(e)dg(b)(e) =

0 for each such o and b. Let c ∈ (k∗)H be chosen so that, for each o ∈ O, b ∈ B
and e ∈ o ∩ b we have c(o, e) = cf(o)(e) and c(b, e) = cg(b)(e). These choices
ensure that c ∈ ⋂(o,b)∈K Co,b.

Since (k∗)H is compact, and any finite intersection of the Co,b is nonempty,
we have that

⋂
(o,b)∈C(M)×C(M∗) Co,b is nonempty. As any element in the inter-

section gives a k-painting, this completes the proof.

We note that this gives a uniform way to extend excluded minor characteri-
sations of representability from finite to infinite matroids. For example, we may
immediately extend the result of [12, 86] as follows:

Corollary 11.5.3. A tame matroid M is a thin sums matroid over GF (3) if
and only if it has no minor isomorphic to U2,5, U3,5, F7 or F ∗7 .
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11.6 Other applications of the method

11.6.1 Regular matroids

A key definition to prove Theorem 11.5.2 was that of a k-painting. The corre-
sponding notion for regular matroids is as follows.

A signing for a matroid M is a choice of a function co : o→ {1,−1} for each
circuit o of M and a function db : b → {1,−1} for each cocircuit b of M such
that for any circuit o and cocircuit b we have∑

e∈o∩b
co(e)db(e) = 0 ,

where the sum is evaluated over Z. A matroid is signable if it has a signing.

Lemma 11.6.1. [[75, Proposition 13.4.5],[97]] Let M be a finite matroid. Then
M is regular if and only if M is signable.

Using similar ideas to those in the proof of Theorem 11.5.2, we obtain the
following.

Theorem 11.6.2. Let M be a tame matroid. Then the following are equivalent.

1. M is a thin sums matroid over every field.

2. M is signable

3. Every finite minor of M is regular.

Proof. (2) implies that M is k-paintable for every field k, and so implies (1).
(1) implies that every finite minor of M is representable over every field, and so
is regular, which gives (3). (3) implies that every finite minor of M is signable,
by Lemma 11.6.1. We may then deduce (2) by a compactness argument like
that in the proof of Theorem 11.5.2.

Motivated by this theorem, we call a tame matroid regular if any of these
equivalent conditions hold.

11.6.2 Partial fields

Theorem 11.6.2 is a special case of a more general result extending characteri-
sations of simultaneous representations over multiple fields using partial fields
to tame infinite matroids. For some background on partial fields, see [94].

A partial field consists of a pair (R,S), where R is a ring and S is a subgroup
of the group of units of R under multiplication, such that −1 ∈ S. In this
context, an (R,S)-painting for a matroid M is a choice of a function co : o→ S
for each circuit o of M and a function db : b→ S for each cocircuit b of M such
that for any circuit o and cocircuit b we have∑

e∈o∩b
co(e)db(e) = 0 . (11.2)
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For example, for any field k a matroid M is k-paintable if and only if it is
(k, k∗)-paintable, and M is signable if and only if it is (Z, {−1, 1})-paintable.
It is clear that the class of (R,S)-paintable matroids is closed under duality
and under taking minors. In particular, any finite minor of an (R,S)-paintable
matroid is (R,S)-paintable. The converse follows from an almost identical com-
pactness argument to that used for Theorem 11.5.2, giving:

Theorem 11.6.3. Let (R,S) be a partial field with S finite. A tame matroid
is (R,S)-paintable if and only if all its finite minors are.

It follows from the results of [94, Section 2.7] that a finite matroid is (R,S)-
paintable if and only if it is (R,S)-representable. For finite matroids it is
known that simultaneous representability over sets of fields corresponds to rep-
resentability over partial fields, and we are now in a position to lift many such
results to all tame matroids. For example, we can lift [100, Theorem 1.2] as
follows:

Corollary 11.6.4. A tame matroid M is a thin sums matroid over both F3 and
F4 if and only if it is (C, {ζi|i ≤ 6})-paintable for ζ a primitive sixth root of
unity.

11.6.3 Ternary matroids

For finite matroids, a useful property of F3-representable matroids is the unique-
ness of the representations. In this section, we shall prove the corresponding
property for tame ternary matroids.

Let M be a k-paintable matroid for some field k. We say that two k-paintings
((co|o ∈ C(M)), (db|b ∈ C(M∗))) and ((c̃o|o ∈ C(M)), (d̃b|b ∈ C(M∗))) are equiv-
alent if and only if there are constants x(o) for every o ∈ C(M), constants x(b)
for every b ∈ C(M∗), constants x(e) for every edge e and a field automorphism
ϕ such that the following are true:

1. c̃o(e) = ϕ(x(o)x(e)co(e)) for any e ∈ o ∈ C(M).

2. d̃b(e) = ϕ
(
x(b)db(e)
x(e)

)
for any e ∈ b ∈ C(M∗).

Two signings of the same matroid M are equivalent if and only if they induce
equivalent F3-paintings of M .

Via Lemma 11.3.9 for any tame matroid any thin sums representation over
k corresponds to a k-painting. For finite matroids, the notions of equivalence
for representations and paintings coincide: it is straightforward to check that
two representations are equivalent iff the corresponding paintings are. As for
finite matroids, we obtain the following.

Theorem 11.6.5. Any two F3-paintings of the same matroid M are equivalent.

Proof. M , being F3-paintable, must be tame. Without loss of generality we may
also assume that M is connected and has more than one edge. Thus any edges
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e and f of M lie on a common circuit1. We nominate a particular edge g1, and
for each other edge g we nominate a circuit o(g) containing both g1 and g. We
also nominate for each circuit o of M an edge e(o) ∈ o and for each cocircuit b
of M an edge e(b) ∈ b.

We denote the two F3-paintings ((co|o ∈ C(M)), (db|b ∈ C(M∗))) and ((c̃o|o ∈
C(M)), (d̃b|b ∈ C(M∗))). We shall construct witnesses to the equivalence as in
the definition above. Since every automorphism of F3 is trivial, we shall take ϕ
to be the identity.

We now set x(g) =
c̃o(g)(g)co(g)(g1)

c̃o(g)(g1)co(g)(g)
for each g ∈ E, x(o) = c̃o(e(o))

x(e(o))co(e(o)) for

each circuit o of M and x(b) = x(e(b))d̃b(e(b))
db(e(b))

for each cocircuit b of M .

In order to prove that these values satisfy (1) at a particular circuit o and
g ∈ o, let O = {o, o(g), o(e(o))} and F = {g, g1, e(o)} and use the construction
from the proof of Lemma 11.5.1 to obtain a finite minor M ′ = M/C\D such
that for every o ∈ O there is an M ′-circuit o′ ⊆ o such that o′ ∩ F = o ∩ F and
for every b ∈ B there is an M ′-cocircuit b′ ⊆ b such that b′ ∩ F = b ∩ F .

Let ((c′o|o ∈ C(M ′)), (d′b|b ∈ C(M ′∗)) be the F3-painting of M ′ induced by

((co|o ∈ C(M)), (db|b ∈ C(M∗)), and ((c̃′o|o ∈ C(M ′)), (d̃′b|b ∈ C(M ′∗)) that

induced by ((c̃o|o ∈ C(M)), (d̃b|b ∈ C(M∗))).
By uniqueness of representation for finite matroids, we can find constants

x′(o′) for every o′ ∈ C(M ′), constants x′(b′) for every b′ ∈ C(M ′∗) and constants
x′(g) for every g ∈ X such that

3. c̃′o′(g) = x′(o′)x′(g)c′o′(g) for any g ∈ o′ ∈ C(M ′).

4. d̃′b′(g) =
x′(b′)d′

b′ (g)

x′(g) for any g ∈ b′ ∈ C(M ′∗).

Lemma 11.6.6. For each o ∈ O there is λo ∈ k∗ such that

5. co�F = λoc
′
o′�F

Proof. As part of the construction of M ′, we picked a canonical element eo of o′.
Let λ = co(eo)

c′
o′ (eo) . For any other e ∈ o′∩F , there is by construction a cocircuit bo,e

of M with o∩ bo,e = {eo, e}. Then by the dual of Corollary 11.3.6 bo,e ∩E(M ′)
is a coscrawl of M ′, and so there is a cocircuit b′ of M ′ with eo ∈ b′ ⊆ bo,e,
and so eo ∈ o′ ∩ b′ ⊆ {eo, e}. Since o′ and b′ can’t meet in only one element,
e ∈ b′. Since the painting of M ′ is induced from that of M , there is a cocircuit
b of M such that db(e) = d′b′(e) for all e ∈ E(M ′) and b′ ⊆ b ⊆ b′ ∪D, and so
o∩ b = {eo, e}. Using the identities in the definition of painting, we deduce that

co(eo)db(eo) + co(e)db(e) = 0 and c′o′(eo)d
′
b′(eo) + c′o′(e)d

′
b′(e) = 0

and so

co(e) = −co(eo)db(eo)
db(e)

= −λc
′
o′(eo)d

′
b′(eo)

d′b′(e)
= λc′o′(e)

which gives the desired result, since e ∈ o′ ∩ F was arbitrary.

1In Section 3 of [23], it is shown that the relation ‘e is in a common circuit with f ’ is indeed
an equivalence relation for infinite matroids.
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Similarly, we can find constants λ̃o for each o ∈ O such that

6. c̃o�F = λ̃oc̃
′
o′�F

Now we must simply unwind all the algebraic relationships to obtain the
desired result.

x(g) =
c̃o(g)(g)co(g)(g1)

c̃o(g)(g1)co(g)(g)
=
c̃′o(g)′(g)c′o(g)′(g1)

c̃′o(g)′(g1)c′o(g)′(g)
=

x′(o(g)′)x′(g)

x′(o(g)′)x′(g1)
=

x′(g)

x′(g1)

where the first equation follows from the definitions, the second from (5) and
(6) and the third from (3). Similarly, we get:

x(o) =
c̃o(e(o))

x(e(o))co(e(o))
=
λ̃o
λo

c̃′o′(e(o))
x(e(o))c′o′(e(o))

=
λ̃o
λo

x′(o′)x′(e(o))
x(e(o))

And finally:

x(o)x(g)co(g) =
λ̃o
λo

x′(o′)x′(e(o))x′(g1)

x′(e(o))
x′(g)

x′(g1)
co(g) =

λ̃o
λo
x′(o′)x′(g)co(g)

Now the last term is just c̃o(g) by first applying (5) and then (3). This
completes the proof of the above assignment satisfies (1). The proof that it also
satisfies (2) is similar.

As every tame regular matroid is a thin sums matroid over F3, it also has a
unique representation. In particular the finite cycle matroid, the algebraic cycle
matroid and the topological cycle matroid of a given graph (and their duals)
have a unique signing.

In what follows, we will describe this signing of the finite cycle matroid of
a given graph G — the other cases are similar. First direct the edges of G in
an arbitrary way. To define the functions co, let o be some cycle of G. Pick a
cyclic order of o. For e ∈ o, let co(e) = 1 if e is directed according to the cyclic
order of o and −1 otherwise.

Next, let b be some cocircuit. By minimality of the cocircuit, it is contained
in a single component of G and its removal separates this component into two
components, say C1(b) and C2(b). Note that every edge in b has precisely one
endvertex in each of these components. For e ∈ b, let db(e) = 1 if e points to a
vertex in C1 and −1 otherwise.

It remains to check that
∑
e∈o∩b co(e)db(e) = 0 for all circuits o and cocircuits

b. As every circuit is finite, the above sum is finite. Since the directions we gave
to the edges of G do not influence the values of the products co(e)db(e), we
may assume without loss of generality that in the bond b all edges are directed
from C1(b) to C2(b). So we get a summand of +1 for each edge along which o
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traverses b from C1(b) to C2(b) and a summand of −1 for each edge along which
o traverses b from C2(b) to C1(b). Since o must traverse b the same number of
times in each direction, the sum evaluates to 0.

Let us look at how to modify the above construction to make it work for
the algebraic cycle matroid and the topological cycle matroid instead. Finite
circuits in the algebraic cycle matroid may be dealt with as before. To define co
for a double ray o, we pick an orientation of o and let co(e) be 1 if e is directed
in agreement with this orientation and −1 otherwise. The above argument still
applies: using the tameness of the algebraic cycle matroid, we obtain that a
double ray can cross a skew cut only finitely many times, and both tails of the
double ray must lie on the same side (as one side is rayless), so the double ray
must cross the skew cut the same number of times in each direction.

Using the fact that topological circles are homeomorphic to the unit circle,
we get a cyclic order on each circuit of the topological cycle matroid and the
above construction again gives us a signing.
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Chapter 12

Matroids with an infinite
circuit-cocircuit intersection

12.1 Abstract

We construct some matroids that have a circuit and a cocircuit with infinite
intersection.

This answers a question of Bruhn, Diestel, Kriesell, Pendavingh and Wollan.
It further shows that the axiom system for matroids proposed by Dress in 1986
does not axiomatize all infinite matroids.

We show that one of the matroids we define is a thin sums matroid whose
dual is not a thin sums matroid, answering a natural open problem in the theory
of thin sums matroids.

12.2 Introduction

In [22], Bruhn, Diestel, Kriesell, Pendavingh and Wollan introduced axioms
for infinite matroids in terms of independent sets, bases, circuits, closure and
(relative) rank. These axioms allow for duality of infinite matroids as known
from finite matroid theory, which settled an old problem of Rado. Unlike the
infinite matroids known previously, such matroids can have infinite circuits or
infinite cocircuits. Many infinite matroids are finitary, that is, every circuit
is finite, or cofinitary, that is, every cocircuit is finite, but nontrivial matroids
with both infinite circuits and infinite cocircuits have been known for some time
[22, 57].

However in all the known examples, all intersections of circuit with cocircuit
are finite. Moreover, this finiteness seems to be a natural requirement in many
theorems [1, 14]. This phenomenon prompted the authors of [22] to ask the
following.
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Question 12.2.1 ([22]). Is the intersection of a circuit with a cocircuit in an
infinite matroid always finite?

Dress [37] even thought that the very aim to have infinite matroids with
duality, as in Rado’s problem, would make it necessary that circuit-cocircuit
intersection were finite. He therefore proposed axioms for infinite matroids
which had the finiteness of circuit-cocircuit intersections built into the definition
of a matroid, in order to facilitate duality.

And indeed, it was later shown by Wagowski [96] that the axioms proposed
by Dress capture all infinite matroids as axiomatised in [22] if and only if Ques-
tion 12.2.1 has a positive answer. We prove that the assertion of Question 12.2.1
is false and consequently that the axiom system for matroids proposed by Dress
does not capture all matroids.

We call a matroid tame if the intersection of any circuit with any cocircuit
is finite, and otherwise wild.

Theorem 12.2.2. There exists a wild matroid.

To construct such matroids M , we use some recent result from an investi-
gation of matroid union [6]. We later became aware that Matthews and Oxley
had constructed some matroids similar to ours by means of a more involved
construction in [69], though they did not have the distinction between tame and
wild matroids in mind.

We hope that the wild matroids we construct here may be sufficiently badly
behaved to serve as generic counterexamples also for other open problems. To
illustrate this potential, we shall show that we do obtain a counterexample to
a natural open question about thin sums matroids, a generalisation of repre-
sentable matroids.

If we have a family of vectors in a vector space, we get a matroid structure
on that family whose independent sets are given by the linearly independent
subsets of the family. Matroids arising in this way are called representable ma-
troids. Although many interesting finite matroids (eg. all graphic matroids) are
representable, it is clear that any representable matroid is finitary and so many
interesting examples of infinite matroids are not of this type. However, since the
construction of many of these examples, including the algebraic cycle matroids
of infinite graphs, is suggestively similar to that of representable matroids, the
notion of thin sums matroids was introduced in [21]: it is a generalisation of
representability which captures these infinite examples.

Since thin sums matroids need not be finitary, and the duals of many thin
sums matroids are again thin sums matroids, it is natural to ask whether the
class of thin sums matroids itself is closed under duality. It is shown in [1]
that the class of tame thin sums matroids is closed under duality, so that any
counterexample must be wild. We show below that one of the wild matroids we
have constructed does give a counterexample.

Theorem 12.2.3. There exists a thin sums matroid whose dual is not a thin
sums matroid.
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The chapter is organised as follows. In Section 2, we recall some basic
matroid theory. After this, in Section 3, we give the first example of a wild
matroid. In Section 4, we give a second example, which is obtained by taking
the union of a matroid with itself. In Section 5, we show that the class of thin
sums matroids is not closed under duality by constructing a suitable wild thin
sums matroid whose dual is not a thin sums matroid.

12.3 Preliminaries

Throughout, notation and terminology for graphs are that of [35], for matroids
that of [75, 22]. A set system I is the set of independent sets of a matroid

if it satisfies the following independence axioms [22].

(I1) ∅ ∈ I.

(I2) I is closed under taking subsets.

(I3) Whenever I, I ′ ∈ I with I ′ maximal and I not maximal, there exists an
x ∈ I ′ \ I such that I + x ∈ I.

(IM) Whenever I ⊆ X ⊆ E and I ∈ I, the set {I ′ ∈ I | I ⊆ I ′ ⊆ X} has a
maximal element.

M always denotes a matroid and E(M), I(M), B(M), C(M) and S(M) de-
note its ground set and its sets of independent sets, bases, circuits and spanning
sets, respectively. A matroid is called finitary if every circuit is finite.

In our constructions, we will make use of algebraic cycle matroid MA(G) of
a graph G. The circuits of MA(G) are the edge sets of finite cycles of G and the
edge sets of double rays1. If G is locally finite, then MA(G) is cofinitary, that is,
its dual is finitary [6]. If G is not locally finite, then this is no longer true [22].
Higgs [57] characterized those graphs G that have an algebraic cycle matroid,
that is, whose finite circuits and double rays from the circuits of a matroid: G
has an algebraic cycle matroid if and only if G does not contain a subdivision
of the Bean-graph, see Figure 12.1.

12.4 First construction: the matroid M+

In this example, we will need the following construction from [6], where it is
also shown that this construction gives a matroid:

Definition 12.4.1. (Truncation) Let M be a matroid, in which ∅ isn’t a base.
Then the matroid M−, on the same groundset, is that whose bases are those
obtained by removing a point from a base of M . That is, B(M−) = {B− e|B ∈
B(M), e ∈ B}. Dually, if M is a matroid whose ground set E isn’t a base, we
define M+ by B(M+) = {B + e|B ∈ B(M), e ∈ E \B}.

1A double ray is a two sided infinite path
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Figure 12.1: The Bean-graph

Thus (M+)∗ = (M∗)−.
We shall show that the matroids constructed in this way are very often wild.
Since M− is obtained from M by making the bases of M into dependent

sets, we may expect that C(M−) = C(M) ∪ B(M): that is, the set of circuits of
M− contains exactly the circuits and the bases of M . This is essentially true,
but there is one complication: an M -circuit might include an M -base, which
would prevent it being an M−-circuit. Let O be a circuit of M−. If O is M -
independent, it is clear that O must be an M -base. Conversely, any M -base is
a circuit of M−. If O is M -dependent, then since all proper subsets of O are
M−-independent and so M -independent, O must be an M -circuit. Conversely,
an M -circuit not including an M -base is an M−-circuit.

On the other hand, none of the circuits of M is a circuit of M+: for any
circuit O of M , pick any e ∈ O and extend O − e to a base B of M . Then
O ⊆ B + e, so O ∈ I(M+). In fact, a circuit of M+ is a set minimal with
the property that at least two elements must be removed before it becomes M -
independent. To see this note that the independent sets of M+ are those sets
from which an M -independent set can be obtained by removing at most one
element.

Now we are in a position to construct a wild matroid: let M be the algebraic
cycle matroid of the graph in Figure 12.2. Then the dashed edges form a circuit
in M+, and the bold edges form a circuit in (M+)∗ = (M∗)− (they form a base
in M∗ since their complement forms a base in M). The intersection, consisting
of the dotted bold edges, is evidently infinite.

For the remainder of this section, we will generalize this example to construct
a large class of wild matroids. To do so, we first have a closer look at the circuits
of M+. It is clear that if M is the finite cycle matroid of a graph G, then we get
as circuits of M+ any subgraphs which are subdivisions of those in Figure 12.3.

More generally, we can make precise a sense in which every circuit of M+ is
obtained by sticking together two circuits.
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Figure 12.2: A circuit and a cocircuit with infinite intersection

(a) (b) (c)

Figure 12.3: Shapes of circuits in M+, with M a finite cycle matroid

Lemma 12.4.2. Let O be a circuit of M , and I ⊆ E(M) \ O. Then O ∪ I is
M+-independent iff I is M/O-independent.

Proof. If: Extend I to a base B of M/O. Pick any e ∈ O. Then B′ = B∪O− e
is a basis of M and O ∪ I ⊆ B′ + e.

Only if: Pick B a base of M and e ∈ E \B such that O ∪ I ⊆ B ∪ e. Since
O is dependent, we must have e ∈ O, and so I ⊆ B \O. Finally, B \O is a base
of M/O, since B ∩O = O − e is a base of O.

Lemma 12.4.3. Let O1 be a circuit of M , and O2 a circuit of M/O1. Then
O1 ∪O2 is a circuit of M+. Every circuit of M+ arises in this way.

Proof. O1 ∪ O2 is M+-dependent by Lemma 12.4.2. Next, we shall show that
any set O1 ∪ O2 − e obtained by removing a single element from O1 ∪ O2 is
M+-independent, and so that O1 ∪O2 is a minimal dependent set (a circuit) in
M+. The case e ∈ O2 is immediate by Lemma 12.4.2. If e ∈ O1, then we pick
any e′ ∈ O2. Now extend O2 − e′ to a base B of M/O1. Then B′ = B ∪O1 − e
is a base of M and O1 ∪O2 − e ⊆ B′ + e′.

Finally, we need to show that any circuit O of M+ arises in this way. O must
be M -dependent, and so we can find a circuit O1 ⊆ O of M . Let O2 = O \O1:
O2 is a circuit of M/O1 by Lemma 12.4.2.

Corollary 12.4.4. Any union of two distinct circuits of M is dependent in
M+.

It follows from Lemma 12.4.3 that the subgraphs of the types illustrated in
Figure 12.3 give all of the circuits of M+ for M a finite cycle matroid. Similarly,
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subdivisions of the graphs in Figure 12.3 and Figure 12.4 give circuits in the
algebraic cycle matroid of a graph.

(d) (e)

(g)(f )

(h)

Figure 12.4: Shapes of circuits in M+, with M an algebraic cycle matroid

Now that we have a good understanding of the circuits of matroids con-
structed this way, we can find many matroids M such that M+ is wild.

Theorem 12.4.5. Let M be a matroid with a base B and a circuit O such that
O \B is infinite. Then M+ is wild.

Proof. Let e ∈ O \ B, and let O′ be the fundamental circuit of e with respect
to B. As O′ \O is dependent in M/O, there is an M/O-circuit O′′ included in
O′. By Lemma 12.4.3, O ∪O′′ is an M+-circuit.

Since E\B is an M∗-base, it is a circuit of (M∗)− = (M+)∗. Now (O∪O′′)∩
(E\B) includes O \B and so it is infinite.
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12.5 Second construction: matroid union

The union of two matroids M1 = (E1, I1) and M2 = (E2, I2) is the pair (E1 ∪
E2, I1 ∨ I2), where

I1 ∨ I2 := {I1 ∪ I2 | I1 ∈ I1, I2 ∈ I2}
The finitarization Mfin of a matroid M is the matroid whose circuits are

precisely the finite circuits of M . In [6] it is shown that Mfin is always a
matroid. Note that every base of Mfin contains some base of M and conversely
every base of M is contained in some base of Mfin. A matroid M is called
nearly finitary if for every base of M , it suffices to add finitely many elements
to that base to obtain some base of Mfin. It is easy to show that M is nearly
finitary if and only if for every base of Mfin it suffices to delete finitely many
elements from that base to obtain some base of M .

The main tool for this example is the following theorem.

Theorem 12.5.1 ([6]). The union of two nearly finitary matroids is a matroid,
and in fact nearly finitary.

Note that there are two matroids whose union is not a matroid [5].
One can also define M+ using matroid union: M+ = M ∨ U1,E(M). Here

U1,E(M) is the matroid with groundset E(M), whose bases are the 1-element
subsets of E(M). In this section, we will obtain a wild matroid as union of some
non-wild matroid M with itself.

Let us start constructing M . We obtain the graph H from the infinite one-
sided ladder L by doubling every edge, see Figure 12.5.

r1 r′1 r2 r′2

u1 u2

d′1

u′1

d1

u3

Figure 12.5: The graph H

As in the figure, we fix the following notation for the edges of H: In L, call
the edges on the upper side of the ladder u1, u2, . . ., the edges on the lower side
d1, d2, . . . and the rungs r1, r2, . . .. For every edge e of L, call its clone e′.

Let MA(H) be the algebraic cycle matroid of H. Note that MA(H) is a
matroid by the results mentioned in the Preliminaries. Now we define M as the
union of MA(H) with itself. To show that M is a matroid, by Theorem 12.5.1
it suffices to show the following.
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Lemma 12.5.2. MA(H) is nearly finitary.

Proof. First note that the finitarization of MA(H) is the finite cycle matroid
MF (H), whose circuits are the finite cycles of H. To see that MA(H) is nearly
finitary, it suffices to show that each base B of MF (H) contains at most one
double ray. It is easy to see that a double ray R of H contains precisely one
rung ri or r′i. From this rung onwards, R contains precisely one of uj or u′j for
j ≥ i and one of dj or d′j for j ≥ i. Let R and S be two distinct double rays
with unique rung edges eR and eS . Wlog assume that the index of eR is less or
equal than the index of eS . Then already R+ eS contains a finite circuit, which
consists of eR, eS and all edges of R with smaller index than that of eS . So each
base B of MF (H) contains at most one double ray, proving the assumption.

Having proved that M ∨M is a matroid, we next prove that it is wild.

Theorem 12.5.3. The matroid M ∨M is wild.

To prove this, we will construct a circuit C and a cocircuit D with infinite
intersection. Let us start with C, which we define as the set of all horizontal
edges in Figure 12.5 together with the rung r1.

Lemma 12.5.4. C := {ui, u′i, di, d′i|i = 1, 2, . . .}+ r1 is a circuit of M .

Proof. First, we show that C is dependent. To this end, it suffices to show that
C − r1 = {ui, u′i, di, d′i|i = 1, 2, . . .} is a basis of M . As I1 = {ui, di|i = 1, 2, . . .}
and I2 = {u′i, d′i|i = 1, 2, . . .} are both independent in MA(H), their union
C − r1 is independent in M . All other representations C − r1 = I1 ∪ I2 with
I1, I2 ∈ I(MA(H)) are the upper one up to exchanging parallel edges since from
ui and u′i precisely one is I1 and the other is in I2. Similarly, the same is true
for di and d′i. So C − r1 is a base and C is dependent, as desired.

It remains to show that C − e is independent for every e ∈ C. The case
e = r1, was already consider above. By symmetry, we may else assume that
e = ui. Then C − ui = I1 ∪ I2 where I1 = {ui, di|i = 1, 2, . . .} − ui + r1 and
I2 = {u′i, d′i|i = 1, 2, . . .} and I1 and I2 are both independent in MA(H), proving
the assumption.

Next we turn to D, drawn bold in Figure 12.5.

Lemma 12.5.5. D := {ui, ri|i = 1, 2, . . .} is a cocircuit of M .

Proof. To this end, we show that E \D is a hyperplane, that is, E \D is non-
spanning and E \ D together with any edge is spanning in M . To see that
E \D is non-spanning, we properly cover it by the following two bases B1 and
B2 of MA(H), see Figure 12.6. Formally, B1 := {di|i = 1, 2, . . .} ∪ {r′i|i odd} ∪
{u′i|i odd}, B2 := {d′i|i = 1, 2, . . .} ∪ {r′i|i even} ∪ {u′i|i even}+ r1.

To see that E \D together with any edge is spanning in M , we even show
that E \ D together with any edge is a base of M . This is done in two steps:
first we show that E \D together with any edge e is independent in M and then
that E \D together with any two edges is dependent in M . Concerning the first
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B2 B1

r1 r′1 r2 r′2

u1 u2

d′1

u′1

d1

u3

Figure 12.6: The two bases B1 and B2 properly cover E \D

assertion, we distinguish between the cases e = un for some n and e = rn for
some n. In both cases we assume that n is odd. If n is even, then the argument
is similar. In both cases we will cover E \D+e with two bases of MA(H), which
arise from a slight modification of B1 and B2, see Figures 12.7 and 12.8.

B′
2B′

1r1 r′1 r2 r′2

u1 u2

d′1

u′1

d1

u3

rn

Figure 12.7: The two bases B′1 and B′2 cover E \D + rn

B′′
2B′′

1
r1 r′1 r2 r′2

u1 u2

d′1

u′1

d1

u3 un

Figure 12.8: The two bases B′′1 and B′′2 cover E \D + un

In the first case the bases are

B′1 := B1 \ {r′i|i < n and odd} ∪ {r′i|i < n and even},

B′2 := B2 ∪ {r′i|i < n and odd} \ {r′i|i < n and even} − r1 + rn

In the second case, the bases arise from B′1 and B′2 as follows:

B′′1 := B′1 + un − r′n−1, B′′1 := B′1 + r′n−1 − rn
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Having shown that E \D + e is independent for every e ∈ D, it remains to
show for any two e1, e2 ∈ D that E \ D + e1 + e2 cannot be covered by two
bases of MA(H). In fact we prove the slightly stronger fact that E \D+ e1 + e2

cannot be covered by two bases of MF (H), that is by two spanning trees T1 and
T2 of H.

Let Hn be the subgraph of H consisting of those 2n vertices that have the
least distance to r1. Choose n large enough so that e1, e2 ∈ Hn. An induction
argument shows that E \D has 4n − 3 edges in Hn since E \D has 1 edge in
H1 and E \D has 4 edges is Hn \Hn−1. On the other hand, T1∪T2 can have at
most 2(2n − 1) edges in Hn since Hn has 2n vertices. This shows that T1 and
T2 cannot cover E \D + e1 + e2 because they cannot cover Hn \D + e1 + e2.
So for any e ∈ D the set E \D+ e is a base of M , proving the assumption.

As |C ∩D| =∞, this completes the proof of Theorem 12.5.3.
In the previous section, we were able to generalise our example and give a

necessary condition under which M+ is wild. Here, we do not see a way to do
this, because the description of C and D made heavy use of the structure of M .
It would be nice to have a large class of matroids M , as in the previous section,
such that M ∨M is wild.

Open Question 12.5.6. For which matroids M is M ∨M wild?

12.6 A thin sums matroid whose dual isn’t a
thin sums matroid

The constructions introduced so far give us examples of matroids which are
wild, and so badly behaved. We therefore believe they will be a fruitful source
of counterexamples in matroid theory. In this section, we shall illustrate this by
giving a counterexample for a very natural question.

First we recall the notion of a thin sums matroid.

Definition 12.6.1. Let A be a set, and k a field. Let f = (fe|e ∈ E) be a
family of functions from A to k, and let λ = (λe|e ∈ E) be a family of elements
of k. We say that λ is a thin dependence of f iff for each a ∈ A we have∑

e∈E
λefe(a) = 0 ,

where the equation is taken implicitly to include the claim that the sum on
the left is well defined, that is, that there are only finitely many e ∈ E with
λefe(a) 6= 0.

We say that a subset I of E is thinly independent for f iff the only thin
dependence of f which is 0 everywhere outside I is (0|e ∈ E). The thin sums
system Mf of f is the set of such thinly independent sets. This isn’t always the
set of independent sets of a matroid [22], but when it is we call it the thin sums
matroid of f .
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This definition is deceptively similar to the definition of the representable
matroid corresponding to f considered as a family of vectors in the k-vector
space kA. The difference is in the more liberal definition of dependence: it is
possible for λ to be a thin dependence even if there are infinitely many e ∈ E
with λe 6= 0, provided that for each a ∈ A there are only finitely many e ∈ E
such that both λe 6= 0 and fe(a) 6= 0.

Indeed, the notion of thin sums matroid was introduced as a generalisation
of the notion of representable matroid: every representable matroid is finitary,
but this restriction does not apply to thin sums matroids. Thus, although it
is clear that the class of representable matroids isn’t closed under duality, the
question of whether the class of thin sums matroids is closed under duality
remained open. It is shown in [1] that the class of tame thin sums matroids is
closed under duality, so that any counterexample must be wild. We show below
that one of the wild matroids we have constructed does give a counterexample.

There are many natural examples of thin sums matroids: for example, the
algebraic cycle matroid of any graph not including a subdivision of the Bean
graph is a thin sums matroid, as follows:

Definition 12.6.2. Let G be a graph with vertex set V and edge set E, and
k a field. We can pick a direction for each edge e, calling one of its ends its
source s(e) and the other its target t(e). Then the family fG = (fGe |e ∈ E) of
functions from V to k is given by fe = χt(e) − χs(e), where for any vertex v the
function χv takes the value 1 at v and 0 elsewhere.

Theorem 12.6.3. Let G be a graph not including any subdivision of the Bean
graph. Then MfG is the algebraic cycle matroid of G.

This theorem, which motivated the defintion of Mf , is proved in [1].
For the rest of this section, M will denote the algebraic cycle matroid for the

graph G in Figure 12.9, in which we have assigned directions to all the edges
and labelled them for future reference. We showed in the Section 12.4 that M+

is wild. We shall devote the rest of this Section 12.4 to showing that in fact it
gives an example of a thin sums matroid whose dual isn’t a thin sums matroid.

l r0

p0

q0

p1 p2 p3

r1 r2 r3

q1 q2 q3

∗

Figure 12.9: The graph G

As usual, we denote the vertex set of G by V and the edge set by E. We
call the unique vertex lying on the loop at the left ∗.
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Theorem 12.6.4. M+ is a thin sums matroid over the field Q.

Proof. We begin by specifying the family (fe|e ∈ E) of functions from V to Q
for which M+ = Mf . We take fe to be fGe as in Definition 12.6.2 if e is one of
the pi or qi, to be χ∗ if e = l, and to be fGe + i · χ∗ if e = ri.

First, we have to show that every circuit of M+ is dependent in Mf . There
are a variety of possible circuit types: in fact, types (b), (c), (e) and (f) from
Figures 12.3 and 12.4 can arise. We shall only consider type (f): the proofs for
the other types are very similar. Figure 12.10 shows the two ways a circuit of
type (f) can arise.

l m n

n

Figure 12.10: The two ways of obtaining a circuit of type (f)

The first includes the edge l, together with rn for some n and all those pi
and qi with i ≥ n. We seek a thin dependence λ such that λ is nonzero on
precisely these edges.

We shall take λrn = 1. We can satisfy the equations
∑
e∈E λefe(v) with

v 6= ∗ by taking λpi = λqi = 1 for all i ≥ n. The equation
∑
e∈E λefe(∗) = 0

reduces to λ∗ + nλrn = 0, which we can satisfy by taking λ∗ = −n. It is
immediate that this gives a thin dependence of f .

The second way a circuit of type (f) can arise includes the edges rl, rm and
rn, together with those pi and qi with either l ≤ i < m or n ≤ i. We seek a thin
dependence λ such that λ is nonzero on precisely these edges.

The equations
∑
e∈E λefe(v) with v 6= ∗ may be satisfied by taking λpi =

λqi = λrl = −λrm for l ≤ i ≤ m and λpi = λqi = λrn for i ≥ n. The equation∑
e∈E λefe(∗) = 0 reduces to lλrl +mλrm + nλrn = 0, which since λrm = −λrl

reduces further to (m − l)λrm = nλrn . We can satisfy this equation by taking
λrm = n and λrn = m − l. Taking the remaining λe to be given as above then
gives a thin dependence of f . Note that λ 6= 0 since m 6= l and thus λrn 6= 0.

Next, we need to show that every dependent set of Mf is also dependent in
M+, completing the proof. Let D be such a dependent set, as witnessed by a
nonzero thin dependence λ of f which is 0 outside D. Let D′ = {e|λe 6= 0},
the support of λ. Using the equations

∑
e∈E λefe(v) with v 6= ∗, we may deduce

that the degree of D′ at each vertex (except possibly ∗) is either 0 or at least
2. Therefore any edge (except possibly l) contained in D′ is contained in some
circuit of M included in D′. Since {l} is already a circuit of M , we can even
drop the qualification ‘except possibly l’.
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Since D′ is nonempty, it must include some circuit O of M . Suppose first of
all for a contradiction that D′ = O. The intersection of D′ with the set {l} ∪
{ri|i ∈ N0} is nonempty, so by the equation

∑
e∈E λefe(∗) = 0 this intersection

must have at least 2 elements. The only way this can happen with D′ a circuit
is if there are m < n such that D′ consists of rm, rn, and the pi and qi with
m ≤ i < n. We now deduce, since λ is a thin dependence, that λpi = λqi =
λrm = −λrn for m ≤ i ≤ n. In particular, the equation

∑
e∈E λefe(∗) = 0

reduces to (m−n)λrm = 0, which is the desired contradiction as by assumption
λrm 6= 0 and m < n. Thus D′ 6= O, and we can pick some e ∈ D \O. As above,
D′ includes some M -circuit O′ containing e. Then the union O ∪ O′ ⊆ D is
M+-dependent by Corollary 12.4.4.

Theorem 12.6.5. (M+)∗ is not a thin sums matroid over any field.

Proof. Suppose for a contradiction that it is a thin sums matroid Mf , with f a
family of functions A→ k. For each circuit O of (M+)∗, we can find a nonzero
thin dependence λ of f which is nonzero only on O - it must be nonzero on the
whole of O by minimality of O.

The circuits of (M+)∗ = (M∗)− are precisely the circuits and the bases of
M∗, the dual of the algebraic cycle matroid of G, since no circuit in M∗ includes
a base. This dual M∗, called the skew cuts matroid of G, is known to have as
its circuits those cuts of G which are minimal subject to the condition that one
side contains no rays [21].

Thus since {r0, q0} is a skew cut, we can find a thin dependence λ0 which
is nonzero precisely at r0 and q0. Similarly, for each i > 0 we can find a thin
dependence λi which is nonzero precisely at qi−1, ri and qi. Since the set of
bold edges in Figure 12.2 is also a circuit of (M+)∗, there is a thin dependence
λ which is nonzero on precisely those edges.

To obtain a contradiction, we will show that {ri|i ∈ N} is dependent in Mf .
The idea behind the following calculations is to consider {ri|i ∈ N} as the limit
of the Mf -circuits {ri|0 ≤ i ≤ n} ∪ {qn} and then to use the properties of thin
sum representations to show that the “limit” {ri|i ∈ N} inherits the dependence.

Now define the sequences (µi|i ∈ N) and (νi|i ∈ N) inductively by ν0 = 1,
νi = −(λiqi/λ

i
qi−1

)νi−1 for i > 0 and µi = −(λiri/λ
i
qi)νi. Pick any a ∈ A. Then

we have 0 =
∑
e∈E λ

0
efe(a) = λ0

r0fr0(a) + λ0
q0fq0(a), and rearranging gives

ν0fq0(a) = µ0fr0(a) .

Similarly, 0 =
∑
e∈E λ

i
efe(a) = λiqi−1

fqi−1
(a) + λirifri(a) + λiqifqi(a), and

rearranging gives
νifqi(a) = νi−1fqi−1

(a) + µifri(a) .

So by induction on i we get the formula

νifqi(a) =

i∑
j=0

µjfrj (a) .
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The formula
∑
e∈E λefe(a) = 0 implicitly includes the statement that the

sum is well defined, so only finitely many summands can be nonzero. In partic-
ular, there can only be finitely many i for which fqi(a) 6= 0. It then follows by
the formula above that there are only finitely many i such that fri(a) is nonzero,
since if fri(a) 6= 0, then as µi 6= 0 we have νifqi(a) 6= νi−1fqi−1

(a). So as νi 6= 0
and νi−1 6= 0, one of fqi(a) or fqi−1(a) is not equal to zero. Therefore all but
finitely many fri(a) are zero since all but finitely many fqi(a) are zero. So the
following sum is well defined and evaluates to zero.

∞∑
i=0

µifri(a) = 0 .

Therefore, if we define a family (λ′e|e ∈ E) by λ′ri = µi and λ′e = 0 for other
values of e, then we have ∑

e∈E
λ′efe(a) = 0 .

Since a ∈ A was arbitrary, this implies that λ′ is a thin dependence of f .
Note that λ′ 6= 0 since λ′r0 6= 0. Thus the set {ri|i ∈ N} is dependent in
Mf = (M∗)−. But it is also an (M∗)−basis, since adding l gives a basis of M∗.
This is the desired contradiction.
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[66] László Lovász. Graph minor theory. Bull. Amer. Math. Soc. (N.S.),
43(1):75–86, 2006.

[67] Jiri Matousek, Eric Sedgwick, Martin Tancer, and Uli Wagner. Em-
beddability in the 3-sphere is decidable. In Computational geometry
(SoCG’14), pages 78–84. ACM, New York, 2014. Extended version avail-
able at ”https://arxiv.org/pdf/1402.0815”.

[68] Jiri Matousek, Martin Tancer, and Uli Wagner. Hardness of embedding
simplicial complexes in Rd. J. Eur. Math. Soc. (JEMS), 13(2):259–295,
2011.

[69] Laurence R. Matthews and James G. Oxley. Infinite graphs and bicircular
matroids. Discrete Math., 19(1):61–65, 1977.

[70] B. Mohar and C. Thomassen. Graphs on Surfaces. Johns Hopkins, 2001.

[71] Edwin E. Moise. Affine structures in 3-manifolds. V. The triangulation
theorem and Hauptvermutung. Annals of Mathematics. Second Series,
56:96–114, 1952.
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Relat. Top., Mém. dédiés à Georges de Rham, 188-211 (1970)., 1970.

[90] K. Truemper. Matroid Decompositions (Revised Version). Leibnitz com-
pany, 2017.

[91] W. T. Tutte. A Homotopy Theorem for Matroids, II. Transactions of the
American Mathematical Society, 88(1):pp. 161–174, 1958.

251



[92] W. T. Tutte. Lectures on matroids. J. Res. Nat. Bur. Standards Sect. B,
69B:1–47, 1965.

[93] W. T. Tutte. Graph theory, volume 21 of Encyclopedia of Mathematics
and its Applications. Addison-Wesley Publishing Company, Advanced
Book Program, Reading, MA, 1984. With a foreword by C. St. J. A.
Nash-Williams.

[94] S.H.M. van Zwam. Partial fields in matroid theory. PhD thesis, Eindhoven
University of Technology, 1999.

[95] U. Wagner. Minors, embeddability, and extremal problems for hyper-
graphs. Thirty Essays on Geometric Graph Theory (Editor: J. Pach),
pages 569–607, 2013.

[96] M. Wagowski. Strong duality property for matroids with coefficients.
Europ. J. Comb., 15:293–302, 1994.

[97] N. White. Unimodular matroids. In Combinatorial geometries, volume 29
of Encyclopedia Math. Appl., pages 40–52. Cambridge Univ. Press, Cam-
bridge, 1987.

[98] H. Whitney. Non-separable and planar graphs. Trans. Am. Math. Soc.,
34:339–362, 1932.

[99] H. Whitney. 2-Isomorphic Graphs. Amer. J. Math., 55:245–254, 1933.

[100] Geoff Whittle. On matroids representable over GF(3) and other fields.
Transactions of the American Mathematical Society, 349(2):pp. 579–603,
1997.

[101] D.R Woodall. A note on a problem of Halin’s. Journal of Combinatorial
Theory, Series B, 21(2):132 – 134, 1976.

[102] Raphael Zentner. Integer homology 3-spheres admit irreducible represen-
tations in SL(2,C). Preprint 2016, available at arXiv:1605.08530.

252


	Introduction
	I Embedding simply connected 2-complexes in 3-space
	A Kuratowski-type characterisation
	Abstract
	Introduction
	Rotation systems
	Vertex sums
	Constructing planar rotation systems
	Marked graphs
	Space minors
	Motivation
	Basic properties
	Generalised Cones
	A Kuratowski theorem

	Concluding remarks

	 Rotation systems 
	Abstract
	Introduction
	Basic definitions
	Rotation systems
	Constructing piece-wise linear embeddings
	Cut vertices
	Local surfaces of planar rotation systems
	Embedding general simplicial complexes

	Constraint minors
	Abstract
	Introduction
	A graph theoretic perspective
	Deleting and contracting edges outside the constraint
	Contracting edges in the constraint
	Concluding remarks

	Dual matroids
	Abstract
	Introduction
	Dual matroids
	Proof of Theorem 4.2.1
	Split complexes

	A Whitney type theorem
	Constructing embeddings from embeddings of split complexes
	Constructing embeddings from vertical split complexes
	Constructing embeddings from edge split complexes
	Embeddings induce embeddings of split complexes
	Proof of Theorem 4.2.4

	Infinitely many obstructions to embeddability into 3-space
	Appendix I
	Appendix II: Matrices representing matroids over the integers

	A refined Kuratowski-type characterisation
	Abstract
	Introduction
	A Kuratowski theorem for locally almost 3-connected simply connected simplicial complexes
	Streching local 1-separators
	Streching local 2-separators


	II Infinite graphs
	Edge-disjoint double rays in infinite graphs: a Halin type result
	Abstract
	Introduction
	Preliminaries
	The structure of a thin end

	Known cases
	The `two ended' case
	The `one ended' case
	Reduction to the locally finite case
	Double rays versus 2-rays
	Shapes and allowed shapes

	Outlook and open problems

	The colouring number of infinite graphs
	Abstract
	Introduction
	Obstructions
	The regular case
	The singular case
	A necessary condition

	On tree-decompositions of one-ended graphs
	Abstract
	Introduction
	Preliminarlies
	Separations, rays and ends
	Automorphism groups

	Invariant nested sets
	A dichotomy result for automorphism groups
	Ends of quasi-transitive graphs
	Appendix A
	Appendix B
	Appendix C


	III Infinite matroids
	Matroid intersection, base packing and base covering for infinite matroids
	Abstract
	Introduction
	Preliminaries
	Basic matroid theory
	Exchange chains

	The Packing/Covering conjecture
	A special case of the Packing/Covering conjecture
	Base covering
	Base packing
	Overview

	On the intersection of infinite matroids
	Abstract
	Introduction
	Our results
	An overview of the proof of Theorem 10.2.5

	Preliminaries
	From infinite matroid intersection to the infinite Menger theorem
	Union
	Exchange chains and the verification of axiom (I3)
	Finitary matroid union
	Nearly finitary matroid union

	From infinite matroid union to infinite matroid intersection
	The graphic nearly finitary matroids
	The nearly finitary algebraic-cycle matroids
	The nearly finitary topological-cycle matroids
	Graphic matroids and the intersection conjecture

	Union of arbitrary infinite matroids

	An excluded minors method for infinite matroids
	Abstract
	Introduction
	Preliminaries
	Basics
	Thin sums matroids

	Binary matroids
	Excluded minors of representable matroids
	Other applications of the method
	Regular matroids
	Partial fields
	Ternary matroids


	Matroids with an infinite circuit-cocircuit intersection
	Abstract
	Introduction
	Preliminaries
	First construction: the matroid M+
	Second construction: matroid union
	A thin sums matroid whose dual isn't a thin sums matroid



