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Abstract

The Freudenthal compactification provides a functor from the category of locally
finite CW complexes and proper maps into the category of compact spaces and
continuous maps. It is natural to ask how a topological invariant such as simple—
connectedness behaves under such a functor. In this thesis, we prove that the
Freudenthal compactification of a simply—connected space is not necessary simply—
connected. Moreover, we will introduce an algebraic property which ensures for

CW complezes that simple—connectedness is preserved under the Freudenthal func-
tor.
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1 Introduction

In infinite graph theory, it is quite common not only to consider the actual infi-
nite graph G but its Freudenthal compactification |G|. Indeed, many theorems
of finite graph theory do not verbatim generalize to infinite graphs but to their
appropriate analogues for |G|; see for example [1], [2]. It is not hard to see that
the Freudenthal compactification of a tree, i.e. a simply—connected graph, is still
simply—connected (see Chapter 4 below for a rigorous proof). So Diestel asked
(personal communication) whether this holds for higher—dimensional complexes
in general. Let us phrase the question in a slightly different manner: One can
prove that every proper continuous map, i.e. every fiber is compact, f: X — Y
between connected locally compact CW complexes has a unique extension to
a continuous map f: F(X) — F(Y) between the Freudenthal compactification
F(X) of X and F(Y) of Y. In fact, this gives a functor from the category of
connected locally compact CW complexes and proper maps into the category of
compact spaces and continuous maps, [3]. Then it is a natural question in alge-
braic topology whether the Freudenthal functor preserves simple-connectedness.
As it turns out, there are two—dimensional simply—connected CW complexes such
that the fundamental group of their Freudenthal compactification is uncountable
[4]. One aim of this thesis is to give such an example.

Since the general answer to Diestel’s question is in the negative, one can hope to
find a computable property which characterises the simply—connected CW com-
plexes with a simply—connected Freudenthal compactification. The main aim of
this thesis is to give an algebraic property for simply—connected CW complexes
which ensures that their Freudenthal compactification is still simply—connected.
We have reason to presume that our property is indeed a characterisation.

If such a property is of any use in practice, it should be phrased in terms of
X and its homotopy type rather than using information or a deep insight of the
homotopy type of F(X). However, ends are defined in terms of components of
X\ K for a compact K but the homotopy type of such a component can be quite
hard to understand. Our first step will be to establish the notation of a dummy.
A dummy will be a maximal CW subcomplex of a component. Its homotopy type
in particular will be much easier to understand since it is, by definition, a CW
complex.

To give a brief insight on how our property works, consider the one-way infinite
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cylinder with bottom disk X = D! US! x R. Then X is simply—connected and
admits a canonical cell decomposition.

jj 11 (Dnir) = 7Z

S -1

|
iﬂ (D)) =7

i
el

Fix the following exhausting sequence of X: Let K, be the finite cylinder up
to level n, i.e. D'US! x [0,n]. For every K, there is only one component
C, of X\ K, so X has exactly one end and its Freudenthal compactification is
homeomorphic to a 2-sphere. The dummy D,, of C),, — the maximal subcomplex
inside C,,— is just S!x[n+1, c0). Now observe that the fundamental group of every
D,, is just Z and that there is a canonical map from 71 (D41, Vpi1) t0 T (D, v)
by conjugation with s,. Moreover, the induced morphism ¢, on the level of
fundamental groups is just the identity since the generator of my(Dyq1,Vnt1) 18
mapped to the generator of m1(D,,v,). Having this in mind, consider the path
a: I — F(X) from vy to the one end w in F(X) which wraps exactly once around
every e, and the path g: I — F(X) from vy to w which just runs down every
. Since F(X) = S! is simply—connected, both paths are homotopic. Now, how
do we prove this just by data of X7 Clearly, every loop e, is null-homotopic
in X. However, every such homotopy uses a point in the bottom disk so there
is no chance of fitting all these homotopies together to one (continuous) limit
homomotopy. Alternatively, there is a smarter way: Since the morphisms ¢,, are
particularly surjective, we could start to deform e; into D, to obtain a loop €,
which wraps twice around the second level, and then deform €}, into D3 to obtain
a loop which wraps three times around the third level and so forth. The trick
here is that all these little loops get sucked up into the end in the limit step; thus,
we obtain a homotopy to 8. Just by considering m(D,,, v,) and the ¢,, we were
able to decide that o and f are homotopic in F(X). The crucial property here
was that every considered loop had a preimage in arbitrarily high dummies. This
already gives a good idea on how our property worked. Let us phrase this more
precisely:

For every n, there is an N(n) = N such that for every L > N, we have

()
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(pro-opr)(m(Dr,vr)) = (p10-0pn)(m(Dn,vN)).

Note that satisfying (x) is to say that the inverse system (m1(Dp, vn), ©n)nen
satisfies the Mittag—Leffler condition. Due to this fact, we will name our property
the generalized Mittag—Leffler condition. Accordingly, our main theorem will be:

Theorem. Let X be a simply—connected strongly locally finite CW complex. If X
satisfies the generalized Mittag-Leffler condition, then F(X) is simply—connected.

The thesis is organized as follows: In the next chapter we gather all standard
definitions and theorems that we need in this thesis. In the third chapter, we
show that there occurs no loss of information when using dummies instead of
components. In chapter four, we will prove all tools and techniques that will
be used before we phrase the actual condition and prove the main theorem in
chapter five. On the contrary, we will discuss in chapter six what can be said if
a CW complex does not satisfy the generalized Mittag—LefHler condition. In fact,
we will see that if a CW complex does not satisfy the generalized Mittag—LefHer
condition and in addition, a certain dummy has an abilian fundamental group,
then the fundamental of F'(X) will be uncountable. This will show us a class of
counterexamples of the initial question and leads us to the conjecture that the
generalized Mittag—Leffler condition is a characterisation of the simply—connected
CW complex with a simply—connected Freudenthal compactification.



2 Notation and basic facts

In the first chapter, we collect all the formal definitions and theorems that will be
used later on in this thesis. All statements can be found in standard textbooks.
As usual, we denote by I the unit interval and S™ for the n—dimensonal sphere.
In the definition of a CW complex, we use D" for the n—dimensional ball other
than there the latter D reverse to dummies, see chapter 2 below. We use A for
the closure of a subset and A for its interior, the boundary dA of a set is A\ A.

2.1 The Freudenthal compactification

For a connected, locally connected, locally compact Hausdorff space X, consider
the set of all compact subsets K and denote by C(K) the set of all components of
X\ K for K € K. Then (K, Q) is a directed partially ordered set. For any two
compact subsets K C K’, there is a canonical map

fK’—>K: C(K/) — C(K)

that maps every C’ € C(K”) to the unique component C' € C(K) with C' C C.
In fact, for every compact K” with K C K” C K’, we obtain a commutative
diagram of sets.

C(K') — %=1 (k)
fK’k %:K
C(K//)

Therefore, (C(K))kex is a inverse system of sets. Its inverse limit is called the
endspace and we will denote it by Q(X) = l&l(c (K))kex. An element of Q(X) is
called end. Given an end w € ) and a compact set K of X, then there is exactly
one component C' of X \ K which were picked by w, one says that w lives in C'
and we will write C' for the union of C' together with all the ends that live in C.
The Freudenthal compactification F'(X) of X is the space X U Q(X) with the
following base B of its topology:

B={0CX|Oopenin X} U{C|C eC(K), K € K}.

For a connected, locally connected, locally compact Hausdorff space X, F'(X)
is indeed a Hausdorff compactification. See [3] for a detailed introduction of the
Freudenthal compactification.
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2.2 CW complexes

Every thing in this section can be easily found in the Appendix of [5].

Definition 2.2.1. For a topological space X, a cell decomposition of X a (set-
theoretical) partition of X into subspaces (X;);cr, each of the (X;) homeomorphic
to R, The X; are called n(i)-dimensional cells or just n(i)-cells.

Definition 2.2.2. A topological Hausdorff space X together with a cell decom-
position of X is called CW complex if it satisfies the following properties:

(i) (Characteristic maps) For every n-cell o of the cell decomposition of X,

there is a continuous map
O, D" - X

such that the restriction of @, to I is a homeomorphism @, : D — o and
®, maps S"! = 9D to the union of cells of dimension at most n — 1.

(1) (Closure finiteness) For every n—cell o, the closure @ C X has a non-trivial
intersection with only finitely many cells of X.

(17i) (Weak topology) A subset A C X is closed if and only if ANT C 7 is closed
for all cells o of X.

Remark 2.2.3. Let X be a CW complex. If o C X is an n—cell of X and P, its
attaching map, then ®(S"1) =7\ o.

Straight from the definition we can conclude the following:
Lemma 2.2.4.
e Fuvery connected CW complex is path—connected.
o Fvery CW complex is locally path—connected.
o Fuvery CW complezx is locally contractible.
Definition 2.2.5.

e A CW complex is called finite if its cell decomposition contains only finitely
many cells.

e The n—skeleton X™ of a CW complex X is the union of all the cells of
dimension at most n.

e If X" = X but the (n — 1)-skeleton is a proper subset of X, then we say
X is n—dimensional.
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o A subset Y C X of a CW complex X is called subcompler of X if it is the
union of cells of X and if for every cell ¢ C Y, its closure in X is contained
inY.

e A CW complex is called locally finite if every point is contained in a finite
subcomplex.

The statements we will use in the early chapters are:

Lemma 2.2.6. Let X be a CW complex and Y C X a union of cells of X, then
the following are equivalent:

(1) Y is a subcomplex.
(17) Y is closed in X.

(7ii) The inherited cell decomposition of Y endowsY with the structure of a CW
complez.

Lemma 2.2.7. A CW complez is finite if and only if has only finitely many cells.

Remark 2.2.8. Thus, a CW complex is locally finite if and only if it is locally
compact. In particular local-finiteness does not depend on the given cell decom-
position.

Lemma 2.2.9. A locally finite CW complex is metrizable.

The above lemma ensures that a locally finite CW complex is compactified by
its end space. In fact:

Lemma 2.2.10. If X is a locally finite CW complex and K a compact subcompler,
then X \ K has only finitely many components.

Proof. Suppose to the contrary that X \ K has infinitely many components.
Since the boundary of every component hits K and K has only finitely many
cells, there is one cell ¢ C K that is hit by the boundary of infinitely many
components. As the image of a sphere & is compact, there is one point = € &
such that every neighbourhood of z is hit by the boundary of infinitely many
components, contradicting that X is locally finite. O

In the later chapters we will use:

Lemma 2.2.11. A CW complex is connected if and only if its 1-skeleton is
connected.

Lemma 2.2.12. If X is a CW complex and A C X a subcomplex, then X/A is
a CW complex.
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2.3 The fundamental group

Given two continuous maps f,g: X — Y between topological spaces, then f is
said to be homotopic to g, written f ~ g, if there exists a continuous map

H: X xI—=Y

with H(-,0) = f(-) and H(-,1) = g(-). Furthermore, if fi4 = g1 for a subset
A C X, then f is homotopic to g relative A, written f ~ g rel A, if f is homotopic
to g throughout a homotopy H with H(a,t) = g(a) = f(a) for every a € A and
t € I. Being homotopic and being homotopic relative A is clearly an equivalence
relation and we write [f] and [f]4 for the respective equivalence classes of f and
refer to them as the homotopy class of f (relative A). For a path—connected space
X and a base point xy € X, the set

(X, 20) = { [a]fo1} |: I = X with a(0) = (1) = o}

is called the fundamental group of X and has a natural structure of a group. To
be more precise given two paths «,  based at zy, we write « - 5 for the following
path:

a-p:1—X

a(2t) te0,1]
~ {5(2t— 1) tels,1].

It is not hard to see that « - 3 is indeed a path, i.e. it is continuous. In fact,
(+) induces a well-defined operation on the level of homotopy classes and equips
(X, xp) with the structure of a group. Moreover, (-) extends to all paths « and
f with a(1) = 3(0). It extends to all continuous maps a: I; — X and : I — X
from closed intervals I, I, C R with a(max I;) = S(min I5). If mo(X, o) is fixed,
we will drop the index and just write [«] for a closed path at xy. Furthermore,
if [o] = [5], we will just say that « is homotopic to 3, meaning throughout a
homotopy relative {0, 1}. More generally, if we consider two paths with the same
endpoints, then homotopic will always mean homotopic relative endpoints.

Every continuous map f: X — Y between path—connected spaces gives a group
homomorphism f.: mo(X zo) — mo(Y.f(z0)) by [a] — [f o a]. Notice even if f is
injective or surjective, this does not hold for f,. Every path f from z to y gives an
isomorphism of groups f*: mo(X,x) — m(X,y) by [a] = [f~!: «a- f]. More gen-
erally, if A C X, every path from a € A to x € X gives a group homomorphism
f=1t.0f" m(A a) = m(X,z). For simplicity, we will just write f instead of
f and it will be clear from the context whether f denotes the continuous map
or its assigned group homomorphism. Note that any two a—x paths induce the
same group homomorphism if and only if they are homotopic relative {a, x}.
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Definition 2.3.1.

e A closed path a: I — X is called null-homotopic if it is homotopic to a
constant map relative its endpoints.

e A path—connected space X is called simply—connected if every closed path
is null-homotopic, i.e. m(X,x) =1 for every z € X.

Remark 2.3.2. A path—connected space is simply—connected if and only if any
two paths with same endpoints are homotopic.



3 The dummy notation

In the first section of this chapter, we will introduce the concept of a dummy.
So far, we have only mentioned locally finite CW complexes; however, to really
apply combinatorial techniques, we need a little more structure on the cell de-
composition of the CW complex. In fact, if we want to detect ends in terms of
subcomplexes, we are somewhat forced to require more structure; see the upcom-
ing examples. To be more precise, we will consider strongly locally finite CW
complexes.

3.1 The dummy notation

Definition 3.1.1. A CW complex X is called strongly locally finite if there is a
cover (K, )nen of finite subcomplexes such that every point in X is contained in
only finitely many of the K.

Example 3.1.2. Let X be the CW complex with one cell in every dimension
and for the n—dimensional cell o, let ®ysn-1 be the projection to a point in the
(n — 1)-dimensional cell, see [3].

Vo

SZ
S3

Then X is not strongly locally finite since every subcomplex contains the only
O-cell, vg. Since X is non—compact and its 1-skeleton is just vy we have no
chance of understanding its end space by considering the "graph—part" of X.

However, X can be given a strongly locally finite cell decomposition. Hence,
strongly locally finiteness depends on the given cell decomposition, unlike locally
finiteness, see Remark 2.2.8. So the natural question arises whether every locally
finite CW complex can be given a strongly locally finite cell decomposition. The
answer to this question is in general unknown, see [6].
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Definition 3.1.3. For a CW complex X, let V' be a set of O—cells. Then we write
X|[V] for the following subcomplex:

e The O-skeleton of X[V] is V.

e Gliven the (n-1) skeleton (X[V])"™! of X[V], its n skeleton is (X[V])"~!
together with all n—dimensional cells of X whose boundary lies entirely in
(X[t

Indeed, X[V] is a subcomplex of X and we will call it the induced subcomplex (of
X)byV.

Lemma 3.1.4. If X is a strongly locally finite CW complex and V is a finite set
of 0—cells, then X[V] is a finite subcomplez.

Proof. Let (K, )nen be a strongly locally finite cover of finite subcomplexes. Sup-
pose to the contrary that X[V] is not a finite subcomplex. For every cell o in
X|[V], there is a K, (o) that contains 0. By Lemma 2.2.6, every K, contains o.
Since X[V] and K, are subcomplexes, both need to contain every cell 6 of X
with # N7 # (. By the definition of a CW complex, the boundary of a cell is
contained in cells of lower dimension, recursively K, ) needs to contain at least
one of the zero cells in V. By assumption, X [V] contains infinitely many cells and
V' is finite, so there are infinitely many distinct cells (0;);en of X[V] and a zero
cell v € V such that v € K, for every i € N. Due to the fact that every K,
is a finite subcomplex, there are infinitely many distinct K, ,,). This, however,
contradicts the fact that (K, ),en is strongly locally finite cover. O]

Corollary 3.1.5. Given a finite subcomplex K of a strongly locally finite CW
complex, then every unbounded component C' of X \ K contains a zero cell.

Proof. Every cell is path—connected so C' has a cell decomposition by cells of X.
Moreover, CW complexes are locally path—connected so K U C is closed in X,
i.e. K UC is a subcomplex of X. If C' contains no O-cells, then C C X[K],
contradicting Lemma 3.1.4 since C' contains infinitely many cells of X. O]

Note that both statements are generally false if X is not strongly locally finite;
see Example 3.1.2.

Definition 3.1.6. Let X be a CW complez, K a finite subcomplex and (K,,)nen
an exhausting sequence of finite subcomplezes.

e A dummy of X \ K is maximal-connected subcomplex of X contained in
X\ K, i.e. avoiding K.

e We will write D(K) for the set of all dummies of X \ K.

o We will write D((K,)nen) for the set of all dummies of (K, )nen, i.e. D((Kp)nen) =
UnGN D<Kn)

10
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Of course, every dummy of X \ K is contained in exactly one component of
X\ K but it does not need to be a dummy in every component. However, Lemma
3.1.5 shows that if the component is unbounded, then there is at least one dummy
contained in it.

Lemma 3.1.7. For a locally finite CW complex X and a finite subcomplex K,
there are only finitely many dummies of X\ K contained in a component of X\ K,
in particular D(K) is finite.

Proof. Suppose to the contrary that there are infinitely many distinct dummies
(D;)ien contained in a component C' of X \ K. As mentioned in Chapter one, C
is even path—connected so there is a path P; in C' from every D; to D;. This path
is contained in finitely many cells. Denote by o; the first of these cells that is not
contained in D;. Then we have for every D; that a;N D; # () but o; € D;. On the
one hand, every dummy is maximal and connected. Thus, 3;NK # (), as otherwise
7; would be contained in finitely many D;, contradicting the maximality. On the
other hand, the closure of every cell is contained in finitely many cells so there
are infinitely many distinct @;. This contradicts the fact that K is contains only
finitely many cells and X is locally finite. As can be seen in the first chapter,
X \ K contains only finitely many components. O]

Corollary 3.1.8. For a locally finite CW complex X and a finite subcomplex K,
there are only finitely many cells that are not contained in one of the dummies of

X\ K.

Proof. Let (K, )nen be a strongly locally finite cover of X. Suppose to the con-
trary that there are infinitely many cells (0;);en that are not contained in one of
the dummies of X \ K. Each cell o, is by definition contained in one of the K.
If these K,,(;) would lie entirely in one of the components of X \ K, then o; would
be contained in a dummy. However, K contains only finitely many cells so there
are infinitely many distinct K, containing the same cell of K. O

Similar to the definition of the Freudenthal compactification, there is a canon-
ical map

fK/—>K: ]D)(K,) — D(K)

for any two compact sets K C K’ which maps every dummy in D(K”) to the
unique dummy in D(K’) which includes it. These maps are compatible for every
compact K" with K C K” C K’. Thus, we obtain an inverse system of sets
(D(K)) ke Moreover, there is a canonical map ¢k : D(K) — C(K) which maps
every dummy of X \ K to the component of X \ K which includes it. These
maps neither need to be surjective nor injective. On the one hand, a bounded
component C' does need to contain a O—cell; thus there is no dummy contained in
C. On the other hand, consider the following CW complex:

11
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€9 €1
Vo
v,
e €1

Deleting vy does not separate the two rays since some reminder of the 2—cell
connects them. On the contrary, X — vy contains two dummies, namely the rays.
However, the next theorem shows that both inverse limits define the same ends.

Theorem 3.1.9. For a strongly locally finite CW complex X, there is a canonical
bijection of inverse limits induced by the (¢x)Kkex:

12 @(D(K))Kem - @(C(K))Keic
(Dr)kex = (pr(Dk))kex

Proof. Let (Dk)kex € Im(D(K))xex. Clearly, (D) € ¢(Dk) whenever K C
K’; thus, ¢ is well defined.

 1s surjective

Given an element (Ck)gex € T&n(C(K))KEm Let (K, )nen be an exhausting
sequence of finite subcomplexes of X. Denote by W, the set of all dummies in
D(K,,) contained in Ck,, for n € N. On the one hand, every W, is non-empty
since each Ck needs to be unbounded; see Corollary 3.1.5. On the other hand,
every W), is finite by Lemma 3.1.7. Moreover, every dummy in W), is contained
in one of the dummies in W,,. By Konig’s infinity lemma, there is a sequence
of dummies Dy O Dy O ... with D,, C Ck,. This sequence defines an element

(Dx)kex € ImD(K) with o((Dx)kex) = (Cx ) xex-
© 1s injective

Suppose there are two distinct elements (Dx)kex, (Di)xex € Im(D(K))kex
with the same image. Then they need to differ in one component, say, D(K), i.e.
Dy and D) are two distinct dummies in the same component of X \ K. There
are only finitely many cells in C'x not contained in one of the dummies (Corollary
3.1.8) and every path from Dg to Dy in Ck needs to hit one of these cells. Let
K be a compact set so large that it contains K and all the finitely many cells
in Cx not contained in one of the dummies. Then Dy and D% are two distinct

dummies of C'z so there is a path from Dy to D% in Ciz C Ck. Yet, this path
avoids all the cells not contained in one of the dummies in C'k. O

12
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3.2 The Freudenthal compactification as a limit
of finite complexes

It is known that the Freudenthal compactification of a space can be obtained
as an inverse limit of compact spaces [7]. However, if the space is a strongly
locally finite CW complex, we will show in this section that its Freudenthal com-
pactification can be obtained by an inverse limit of finite CW complexes. Our
preliminaries in the first section will enable us to imitate the techniques of infinite
graph theory by Diestel [1].

Given a strongly locally finite CW complex, denote by F(X) the set of all finite
partitions F' = {Vj,...,V,} of X" such that only finitely many cells of X are not
contained in one of the X[V;], i € {1,...,n}. For two partitions F; and F, in
F(X), Fy is said to be finer than Fy and we write F} < F} if every partition class
of F} is contained in one of the partition classes of Fy. This relation turns F(X)
into a directed partially ordered set. Every partition F' = {V;,...,V,} in F(X)
defines a finite CW complex X [F], namely the CW complex that is obtained from
X by contracting each of the X[V;], i € {1,...,n}. Furthermore, if F} is finer
than F5, we obtain a commutative diagram of topological spaces

X[Fy)

PFy—Fy

where ¢p, and ¢p, are the quotient projections and pp,_,m, maps [x]x(m] to
[#]x(r). The map pp_p, is well defined since F is finer than F, and it is
continuous due to the universal property of the quotient topology. Moreover,
for any F3 € F with F| = F3 = F; the bonding maps are compatible i.e.
PP, —F, = DF—F; © Drs—F,. Lhis gives an inverse system of topological spaces
(X[F])per(x) where the bonding maps fr, p,: X[F1] = X[F5] are the pp,p,.

On the one hand, every finite subcomplex K of X defines a finite CW complex
X[K] by contracting all the dummies of X \ K. On the other hand K defines a
partition F in F(X). The partition classes of F are the 0—cells of every dummy
of X \ K and every O-cell of K as a single partition class. In fact, X[Fk| =
X[K]. Given two finite subcomplexes K; C K, then there is a projection map
q: X[K3] — X[K;] and this map coincides with the bonding map of X[Fk,| =
X[Ks] to X[Fg,] = X[K3).

Theorem 3.2.1. For a strongly locally finite CW complex X, its Freudenthal
compactification is homeomorphic to the inverse limit of (X[F])per(x),

i.e. Jim((X[F))percx) = F(X),

13
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Proof. By Tychonoff’s theorem, @((X[F])Fef(x)) is compact. Clearly, F'(X) is
Hausdorff so it suffices to define a continuous bijective map:

Vs lim((X[F]) reren) = F(X),

Given an element (2r)per(x) in the inverse limit. If one of the zp is a singleton
equivalence class, i.e. xp = {z} € X[F], then we define

W((ZUF)FQJ:()Q) =rxe X C F(X)

To see that this is well defined, suppose that there are two singleton equivalence
classes xp, = {1} and xp, = {x2}. Since F(X) is a directed ordered set, there
is an F3 € F(X) which is finer than F} and F;. By construction, fp,_, g and
frs—r, are projections so that xp, is a singleton equivalence class as well. Hence,
{z1} = xp, = {x2}. If none of the z is a singleton partition class, consider the
partitions F[K]| that are induced by the finite subcomplexes K of X. It can be
assumed that every xp(g) is the set of O—cells of a dummy Dy of X \ K. Since
(xp)pe F(x) is an element of the inverse limit, we have D, C D for any compact
K' C K. Moreover, p(Dg:) C p(Dg). The set of finite subcomplexes is cofinal
in the set of compact subsets so the ¢(Dg) define exactly one end w € Q(X) and
we define

U((zr)rerx)) = w € X) C F(X).

U is surjective

Let z € X C F(X) be given. For every F' € F, there is exactly one equivalence
class xp in X[F] with € zp and (xp)per is clearly an element of the inverse
limit. Obviously, there are partitions in F' € F(X) with zr = {x} as a singleton
partition class. By definition, ¥((zr)per) = .

Let x = w € Q(X) be given. Consider the partitions F[K] that are induced
by the finite subcomplexes K of X and (Dk)xex := ¢ *(w). Let zppx) be the
set of zero cells of the dummy Dy. For an arbitrary partition F' € F chose K
so large that F[K] is finer that F' and let xp := fpk—r(2pK)). Then (zp)rer
is well defined since the bonding maps are compatible. By the same argument,
(xp)rer is an element of the inverse limit. As a consequence, V((zr)per) = w
by definition.

¥ is injective
If (xp)rer is an element of the inverse limit with U((xp)per) = ¢ € X then
there is an zp with {x} = zp. This uniquely determines (zp)per. On the one
hand, the partitions that are finer than F' are cofinal in F(X); consequently,

rp = {x} = xp for every finer partition by the well-definedness of ¥. On
the other hand, every other coordinate xp~» is determined by the bonding map

14
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for an element finer than ' and F”. Moreover, every end w € Q(X) is uniquely
determined by the components C'x of X \ K in which the end lives in. By Theorem
3.1.9 and the definition of ¥, there can only be one element in the inverse limit
that is mapped to w.

VU is continuous

Let x € X and O be an open neighbourhoud of x in F(X) without loss of
generality O C X. By local finiteness, there is a finite subcomplex K with
O C K. Clearly, O considered as a subset of X[K] is open in X[K]|. This shows
that

U 0) = (0x [I XI[F]) N Um((X[F])rercx))

FeF(X)
F+#Fk

is open in @((X[F])FGF(X))

Let w = (Ck)kex € Q(X) and C be a basic open set for w, i.e. there is
a compact set K such that C' is the component of X \ K the end w lives in.
Without loss of generality, we may assume that K is a finite subcomplex. Let
Dy, ..., D, be all the dummies in D(K) with D; C Cx. Then C/Dy,...,D,,
considered as a subset of X[K], is open in X [K]. This shows that

U Y(C)=(C/Dy,....Dyx ] X 1) N m((X[F]) rerx)

FeF(X
F;AFK

is open in @((X[F])FG;(X)).
[l

It is a basic theorem in topology that the countable product of metrizable
spaces is metrizable, [8], so we obtain:

Corollary 3.2.2. Let X be a strongly locally finite CW complezx, then F(X) is
metrizable. O

Every cofinal sequence of the underlying poset holds an induced inverse system
and it is a basic fact that the inverse limit of the induced inverse system is
homeomorphic to the original inverse limit, [9].

Corollary 3.2.3. If X is a strongly locally finite CW complex and (K, )nen is an
exhausting sequence of finite subcomplexes, then im (X [Ky|nen) = F(X). O

Obviously, one can always find such an exhausting sequence, even for non-
strongly locally finite complexes. However, Lemma 3.1.4 shows that for strongly
locally finite complexes, one can choose an exhausting sequences in a favorable
way: Choose an arbitrary enumeration X' = {zy,xs,...} of its O—cells. Then
X[{x1,...,2z,}] is a finite subcomplex for every n. Thus, K,, := X[{z1,...,z,}|
gives an exhausting sequence of finite subcomplexes.
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4 Tools and techniques

As the title gives away, this chapter will introduce all the necessary auxiliary
theorems we need in our proof of the main theorem. However, a good amount of
the upcoming theorems is formulated in such a generality that they might be of
independent interest.

4.1 Limits of maps

Our main theorem of this section gives a criterion when a sequence of continuous
maps f, : A — F(X) from a path-connected space A into F(X) defines a
continuous limit map. As we have seen in the introduction, it will be of use to
construct a limit homotopy from a given sequence of homotopic paths and an
important corollary of the main theorem of this section will tackle this problem.

Theorem 4.1.1. Let X be a strongly locally finite CW complex and (K, )nen
a cover of finite subcomplexes of X. For a path—connected Hausdorff space A,
let f,: A — F(X) be a sequence of continuous maps. Then the pointwise limit
f= nh_g)lo fn exists and is continuous if the following properties hold:

(1) There is at least one a € A such that fi(a) = f.(a) € X for every n € N.

For every n € N, there is an N(n) > n such that for every l > N(n),
(17) f]\’,(ln)(Kn) = 7Y (K,); in addition, fyxmy and fi coincide on the preimage
of K,.

Proof. Letting K, := K; U...U K, gives another cover of finite subcomplexes
(K,)nen. Then (7) and (i7) hold for (K, ),en as well since (z) does not depend
on the cover. For (ii) and a given n, consider max{N(1),..., N(n)} so we may
assume K; C K5 C ... and fi(a) € K;.

To increase the readability of the proof, let us first show an auxiliary result:

For every compact set K of X with fi(a) € K and every component C' of
X\ K, there is a index N such that f5'(C) = f; *(C) for every | > N.

Given a compact set K of X, take n large enough that K C K, and then fix
N(n) of property (ii). We claim that N = N(n) is the promised index of the
auxiliary result. Suppose the contrary, fix an [ such that f; witnesses the failure
of N. Then there are distinct components C;, Cy of X \ K and z € A with
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fn(x) € Gy and fi(z) € Cy. Let a be a path from z to @ in A and write W for
N (K = fiH(K,) C A. Since fy and f; agree on W, we have o & W. Let ¢ be
the infimum over all t € I with a(t) € W. Note that fy(a(f)) = fi(a(t)) € K,
but «([0,£)) "W = . Now consider the two paths fy o a and f; o« in F(X).
On the one hand, fy(a([0,%))) € C; and fi(a([0,7))) € C,. Since C; and C,
are disjoint by the definition of F'(X), we have fN( (1)) = fila()) € K. On
the other hand, fy(([0,7))) € Cy \ K,, and fi(a([0,7))) C Cy \ K, gives that
fN(Oz(fo)) fila(?)) € K is a limit point of Cy \ K, contradicting the fact that

K C K,,. This completes the proof of the auxiliary result.

Having () at hand, let us prove the theorem.

lim f, (z) := Jim (fu(z)) gives a well-defined map

n—oo

Suppose first that (f,(x))nen is bounded in X, then there is an index ng such
that {f.(z)|n € N} C K,,. By property (ii), we can find an N(ng) with
Inmoy () = filx) € Ky, for every I > N(ng); thus, (fn(2))nen is eventually
constant.

Suppose now that (f,(z))nen is unbounded in X. Then every subsequence
(fn,(7))ien is unbounded in X, too. If not, there is a K, such that {f,.(z)|i €
N} C K, but then for every N > n there are n;,l > N with f,,(z) € K, and
fi(z) ¢ K. Consequently, property (ii) is violated for K. Furthermore, F'(X)
is a compact metrizable space by Corollary 3.2.2; thus, (f,(z))sen contains a
converging subsequence and its limit point needs to be an end, say w € Q(X).
We claim that lim fa(z) = w. Given a basic open set C' of w for a component

C of X \ K without loss of generality, assume that a € K. By our auxiliary
result, there is an index N with fy'(C) = f;71(C) for every [ > N(n). Since the
subsequence converges to w, there is an index n; with f,. (z) € C and n; > N(n)
for every I >n; > N fi(z) e C.

lim ives a continuous ma

Given a basic open set O of X. We may assume O to be a bounded open set
for X is locally compact. Fix K,, with O C K,. By property (i), fJQ(ln)(Kn) =
dim f,” '(K,) and fg(ln)(O) = (lim f2)"H(O) is open in A by the continuity of

fN(n

Given a basic open set C' for a component C' of X \ K for compact K. We
may assume without loss of generality that a € K. Fix the index N of (%), then
fN(C) = (nlLHgO f»)"H(C) is open in A by the continuity of fy. O
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Corollary 4.1.2. Let X be a strongly locally finite CW complex and (K, )nen an
ezhausting sequence of finite subcomplexes of X. For a path—connected Hausdorff
space A, let a,: A — F(X) be a sequence of continuous maps. Then nh_g)lo Qo

exists, is continuous and o =~ nh_}r{)lO a, if the following properties hold:

For every n € N, there are finitely many open disjoint Ay, ..., A C A such
that:

(1) an and apyq coincide on A\ (AU ... UAL).

(17) The image of a,(A;) and aui1(A;) is contained in F(X) \ K, for i €
{1,...,L}.

(441) a7z = o, 7 relative OA; in F(X)\ Ky, fori€{l,...,L}.

Proof. In order to prove the corollary, we will first define the homotopies H,
from v, to a1 then we fit the first n homotopies together to obtain H,. The
sequence of the H,, will satisfy the requirements of Theorem 4.1.1 and their limit
will prove the Corollary. Recall the following statement which one easily verifies.

Let f: X — Y be a map between topological spaces and Xy U...UX,, =X a
finite cover of closed subsets. Then f is continuous if and only if fx, is (%)
continuous for every i € {1,...,n}.

For a given n, let Ay,..., A; be the promised open sets and H(A;) be the
homotopy from o7, 10 @z, of property (ii7). Then define H,, as

Hy: Ax I — F(X)
H(A;)(a,t) ifae€ A forie{l,...,L}
(a’t)H{ an(a)  ifa€ A\ (A U...UAL).

Since H(A;) is relative to 0A;, this map is well defined and it is continuous
due to (*) . Note that H, 1(-,1) = a,, = H,(-,0). Now use order—preserving

homeomorphisms 1 = [y 77" & 3% | -] to obtain the maps

n—1 1 n 1
TRV ET) SES SESEYLS)
=1 i=1

We are now able to construct the H,,. Let
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Hi: Ax T — F(X) Ho: Ax T — F(X)
a1y [Hi0:t) £E10.3 Hooi(a,t) ¢ (0,0 5]
’ Hj(a,1) te[i ] (a,t) = ¢ Hila,t) ¢t € [Ci 5, S0 5

H!(a,1) t€[Xr,4,1].

i=1 20

Every H,, is continuous due to (). The exhausting sequence (K, ),en especially
is a cover of X. Since H,(-,0) = ay, requirement (i) of Theorem 4.1.1 is satisfied.
To see that the requirement (i7) of Theorem 4.1.1 is satisfied, consider a K.
Any of the homotopies H(A;) took place in F(X) \ K,; thus, lettingn+1=N
ensures Hy'(K,) = H;'(K,) =t W and Hyw = Hpw for every L > N. By
the construction of the H,, this gives an index function for the requirement (i7).
Now Theorem 4.1.1 gives a limit homotopy H = lim #,, and a, = H(:, )Y
shows o ~ 7}1_)11(;10 Q. ]

4.2 Normal forms of paths

In this section, we tackle the problem that a general path can be wild. Our first
theorem gives us some global control, i.e. every path in F'(X) is homotopic to a
path in XI. Then we will prove that one can even ensure for a path in X! to be
a local homeomorphism on every edge of X! which gives us some local control.

Theorem 4.2.1. Let X be a strongly locally finite CW complex and let x and y
be O—cells. Then every x—y path in F(X) is homotopic to an x—y path in X'.

Proof. For this proof, call a cell ¢ of a CW complex good if no other cell is
attached to o, i.e. 0N = ( for every cell # # o. Let us first prove:

Every good cell ¢ in a CW complex is open. (%)

Consider X \ 0 = 0. Let 0 # o be a cell. On the one hand, § N o° = 0 is
closed. On the other hand, @ N o = 7 \ o is closed since it is the image of a
sphere. Consequently, o€ is closed by the weak topology of X.

In order to prove the theorem, we need another auxiliary result:

For every strongly locally finite CW complex X, there is an enumeration
01,09, ... of the cells of dimension greater than one, such that o, is good in ()
X\{o1,...,00 1} and X \ Upenon = X

Note that by (*) and Lemma 2.2.6, the space X \ o is a strongly locally finite
CW complex for every good cell o in X. Hence in the situation above, X \
{o1,...,0,_1} is a strongly locally finite CW complex. In order to prove (kx), let
us set up another definition. For a cell o, denote by Wi(o) the set of cells in X
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whose boundary intersects 0. More generally, let W;(o) be the set of all cells of
X whose boundary intersects one of the cells in W;_1(0). Since X is particular
locally finite, every W;(o) is finite. We claim that W;(c) = () eventually. If not
then there is a sequence of cells ¢ = 6y, 0,0, ... with 6, N 0,1 # 0 by Kénig’s
infinity lemma. This, however, contradicts the fact that X admits a strongly
locally finite cover of finite subcomplexes since every subcomplex containing one
of the 0, needs to contain o. Note that W;(o) contains only cells of dimension
greater than o for every ¢ > 1. Moreover, if ¢ is a cell in X and N is the largest
index for which V(o) is non—empty then every cell in Wy (o) is good in X, in
particular every cell in Wy_; is good in X \ Wy (o). Now we are able to prove
(xx). Let 01,0y, ... be an arbitrary enumeration of all the cells of dimension
greater than one. For 6;, let n(i) be the greatest index such that W (6;) is
non—empty. Consider the sequence of sets:

Waay(6h), ..., Wi(01), W) (02), ..., Wi(02), Wie)(03),... Wi(6s3), ...

Clearly, every cell of dimension greater than one is contained in one of the
W;(0;). Thus, enumerating the cells in W;(6;) gives an enumeration of all the
cells of dimension higher than one. Just keeping the first appearance of a cell
gives a subsequence satisfying (s#:x).

Now let us prove the actual theorem. Let a: I — F(X) be an 2—y path. Let
01,09, ... be a sequence of all cells of dimension greater than one satisfying ().
We will define a sequence of paths o = ay,an, ... and a cover (K,,),en with the
following properties:

(1) Every a, is an z—y path in X \ {oy,...,0,}.

(#7) The sequence (v, )nen and the exhausting sequence (K, ),en satisfy the re-
quirements of Corollary 4.1.2.

Let ap = av. Given av,, by (%) the cell 0,41 is open in X \{oy,...,0,}. Choose a
point x € 0,,41. By compactness of I, there are only finitely many open intervals
of a™(0,41) that contain a point which is mapped to x. In these intervals,
find finitely many closed subintervals (closed in I) such that the interior of their
union contains o~ '(x), say [ai,bi],...,[ar,br]. Then ay,s, is a path in 0,4
(2 R™ for m > 2). It is a standard result that every path in R™ for m > 2 is
homotopic relative endpoints to a path that misses a certain point (except for
the endpoints). So «,, is homotopic to a path o/, which misses z. Moreover, o,

coincides with a,, outside of the (a;,b1),...,(ar,br) and ap,p, is homotopic
to O‘T[ai,bi} by a homotopy in 0,41. Now o/, is a path in X \ {o1,...,0,, 2} but
this space deformation retracts to X \ {oy,...,0,41,} for every solid ball (of

dimension higher than one) minus a point deformation retracts to its boundary.
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In fact, o/, is homotopic to a path .1 in X\{oy, ..., 0,41} that coincides with a,,
outside o, and all homotopies of the subintervals [ay, b1], ..., [ar, br] took place in
ont1 € X\ {o1,...,0,} . Choose an exhausting sequence of finite subcomplexes
such that K, contains none of the cells o; with ¢ > n. Then (v, )neny and (K, )nen
satisfy the requirements of Corollary 4.1.2. O

Corollary 4.2.2. Let X be a strongly locally finite CW complex and let xq be a
O—cell, then v: w1 (F(XY), 1) — m(F(X), zq) is surjective. O

Definition 4.2.3. For a strongly locally finite subcomplex X, we say that a path
a: I — F(X) is in normal form if it satisfies the following two properties:

(i) The image of « is a subset of F(X1).

(i1) The path « is a local homeomorphism on every edge e of X, i.e. a~!(e) isa
union of finitely many disjoint open intervals Uy, ..., U, such that oy, = e
fori=1,...n.

Lemma 4.2.4. For a strongly locally finite CW complex X and O—cells x and vy,
every x—y path is homotopic to a path in normal form.

Proof. Given an z—y path a: [ — F(X), by Theorem 4.2.1 we may assume that
(7) of Definition 4.2.3 holds for . To find a homotopy to a path that also satisfies
(77) of Definition 4.2.3, we want to use Corollary 4.1.2. In fact, we will find one
such homotopy in the 1-skeleton so let us assume X! = X. Let e1,e,... be an
enumeration of the edges of X. Furthermore, let O(e,,) be the union of &, and all
the edges that are incident with e,. Note that O(e,) is open in X and simply—
connected. Let ap := a. Given «,,, consider all the path—connected components
of a;;1(O(e,)) that contain a point mapped to &,. By compactness of I, as in the
proof of the previous theorem, there are only finitely many such intervals. Let
(a1,b1),...,(ar,br) C I be all of them. Then ay,(q, 4,] is a path in O(e,,). Clearly,
@|[q,,5;] s homotopic relative {a;,b;} to a path from a; to b; in O(e,) that is a
local homeomorphism on e,,. Moreover, these homotopies can be taken in O(e,,).
Denote by H; one such homotopy for aui,s). Let a,y1 be the path that arises
from a,, by applying all the homotopies H; on all the intervals [a;, b;], i = 1,..., L.
Let K, be the union of all the edges e; with i < n such that all the edges that
are adjacent to e; have an index less than n. By locally finiteness of X!, this is
an exhausting sequence of finite subcomplexes and by construction, the sequence
(an)nen satisfies the requirements of Corollary 4.1.2. [

Corollary 4.2.5. For a strongly locally finite CW complex X and a 0-cell x,
every element of w1 (X, xg) contains a representative in normal form. [
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4.3 Normal spanning trees

According to Diestel, "[nJormal spanning trees are perhaps the most important
single structural tool for analysing an infinite graph" [10] and with regard to
Corollary 4.2.2, it might not be surprising that a crucial step in the proof of our
main theorem will be to use normal spanning trees. We first transfer some basic
graph theoretical notation into our topological setting. Then we show two lem-
mata in order to prove the main result of this section, namely that the closure
of a normal spanning tree in a CW complex is contractible and thus particularly
simply—connected.

A tree is a simply—connected one-dimensional CW complex. Fixing a O—cell
r called the root of a tree T' induces a partial order on the set of O—cells. For
two O—cells x and y we say that x is lower than y if x lies on the direct edge
path from r to y. A spanning tree of a CW complex X is a subcomplex T of X
which is a tree and contains every O-cell of X. If X is a CW complex and T" a
spanning tree, then every 1-cell that is not contained in 7" is called a chord of T'.
A spanning tree T' is called normal if the endpoints of every chord are compatible
in the induced order of the O—cells. It is a well-known fact that every locally finite
graph contains a normal spanning tree [1].

Lemma 4.3.1. Every locally finite CW complex has a normal spanning tree.
O

Note that the end space of the CW complex and the end space of its normal
spanning tree can differ; see Example 3.1.2. As can be seen below, this cannot
happen if the CW complex is strongly locally finite.

Lemma 4.3.2. For a strongly locally finite CW complex X and a normal span-
ning tree T of X, the inclusion v extends to a continuous map:

(i) 7: F(X') — F(X) such that Tjox1y: QX') = Q(X).

(i¢) ©: F(T) — F(X") such that tjo¢r): Q(T) = Q(X1).

Proof. Let us first prove (i). Let X° = {v;,vs,...} be an enumeration of the
0-cells of X and let V;, := {vy,...,v,}. Then (X*[V,])nen and (X[V;])nen are ex-
hausting sequences of finite subcomplexes of X' and X respectively. Furthermore,
the dummies of X'\ X'[V,] and the dummies of X \ X[V,] are in one-to-one
correspondence by inclusion; Lemma 2.2.11. So by Theorem 3.1.9, there is a
canonical bijection 7 of Q(X?!) and Q(X). Moreover, if (x,).en is a sequence of
points in X' converging to an end w € Q(X?), then (t(x,))nen = (Tn)nen con-
verges in F(X) to i(w). Since X! is dense in F(X!), the extension 7 of ¢« by 7 is
continuous. In particular 7 = 7,o(x1) is a continuous bijective map from a compact
space to a Hausdorff space and therefore a homeomorphism. The statement of
(i) is a well-known fact in infinite graph theory, see [1]. O
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Corollary 4.3.3. For a strongly locally finite CW complex X and a normal span-
ning tree T of X, there are homeomorphisms:

(i) F(X') =~ X! C F(X) that fives X*.

(it) F(T) =T C F(X) that fizes T.

Proof. Note that X! = X'U(XT\ X1) and Q(X) = X!\ X! by Corollary 3.1.5.
Thus, 7: F(X!) — X! is a continuous bijective map from a compact space into
a Hausdorff space by Lemma 4.3.2. This shows (i) and the very same argument
proves (i7). O

Lemma 4.3.4. Let T be a locally finite tree, then F(T') is contractible.

Proof. Let T<, be the tree up to and including the nth level of 7. Then 7.,
is homeomorphic to the contraction space T[T<,_;] of Chapter 2. So we have
continuous maps:

fn: F(T) — T<, C F(T).

These maps are the identity on T, and map every point x € F(T) \ T<, to
the dummy in 7'\ T<,_; which includes . We claim that the f, satisfy the
requirements of Corollary 4.1.2. Let T.,, be the exhausting sequence of 7. For
every n, the set F\(T) \ T<,, is open and fur., = idr., = foi1jr., on T<y, so (i)
holds. To see that (i7) is satisfied, note that T, ; deformation retracts onto T,
relative T,. These deformations give homotopies from f, to f,1; relative the
vertices at level n, i.e. O(F(T)\ T<,). O

Theorem 4.3.5. Let X be a strongly locally finite CW complex and T a normal
spanning tree of X, then T is contractible.

Proof. By Lemma 4.3.4, F(T) is contractible. Thus, Corollary 4.3.3 (ii) proves
the theorem. 0

4.4 Pruning of paths

As seen in the previous section, a path a in F(X) can only fail to be null-
homotopic if it leaves the closure of a normal spanning tree T" of X. By Theorem
4.2.1, we may assume « to be a path in XI. Hence, in order to prove that a
path is null-homotopic, we only need to deal with its behaviour on the chords
of the tree. At first, it may seem appealing to deform every subpath of a that
runs through a chord to a path in 7. However, as seen in the example of the
introduction, this attempt needs to fail. Our attempt will be a different one: We
first start with a path « in normal form and then "cut out" all subpaths on which
« "uses" a chord and "replace" them by paths in 7" to obtain a new path g which
is clearly null-homotopic. Then we start two sequences of maps: One starting by

23



CHAPTER 4. TOOLS AND TECHNIQUES

a ~ ap >~ ... and the other starting by g ~ 8; ~ .... We will do this in such a
way that their limit will be equal. The big advantage here is that we can suck up
all twistings in the end space. In this section, we formalise "cut out", "replacing"
and "uses" for a path. Moreover, as we describe, we want to alter a on infinitely
many chords at once; thus, it is not clear whether [ is continuous. The main

thereom will ensure this for normal spanning trees.

Definition 4.4.1. Let X be a locally finite CW complex and 7" a normal spanning
tree of X and let xy be a O—cell as a base point, not necessarily the root of T'.

o If x and y are two O-zero cells, then we denote by T),_,, the path from z to
y in normal form.

e For a chord e of T' with end points e; and e; and a homeomorphism a,: [ =

e, we call
[Tagser * Qe Toysay) € T1(F(X), 0)

the fundamental loop of e in ey — ey direction based at xy.

Remark 4.4.2.

o Clearly, T,_,, is not unique. However, these normal paths only differ by a
parametrisation and any of them will suffice for our purposes but to over-
come ambiguity, one can fiz a Ty, for any pair of 0-cells.

e Edge paths considered as subspaces of X' are simply—connected so the ho-
motopy class of Ty e, - e - Tey—sz, does not depend on the individual paths.
If the direction and the base point are clear from the context, we will not
mention them. In fact, since we are only interested in the homotopy type,
we will call Tyy—ye, - Qe * Tey—yn, the fundamental loop of e, well-knowing that
only [Tog—se, - Qe+ Toyyay] s unique.

Definition 4.4.3. Let X be a strongly locally finite CW complex and 7" a fixed
spanning tree of X.

e A used chord for a path a: I — F(X) is a pair (e, [a,b]) consisting of a
chord e of T together with a subinterval [a,b] C I such that ajp) = e.

e For a path a: I — F(X) and a set of used chords S of «, the pruned path
alS of a by § is the map
alS: I — F(X)
a(x) iftzg | (ab)

€T +— (e,]a,b))ES
Ta@)—sa@) (1 —x)a +xb) if x € [a,b], (e,[a,b]) € S.
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Remark 4.4.4. If S is a finite set of used chords, al S s clearly continuous for
it is the (-) sum over finitely many paths.

Lemma 4.4.5. Let X be a strongly locally finite CW complex and T a fized
spanning tree of X. For every path a: I — F(X) and a set S of used chords of
«, there are only finitely many used chords in S with the same chord.

Proof. Suppose to the contrary that there are infinitely many distinct used chords
in S, say (e, [a;, bi])ien, with the same chord e. Let = be an inner point of e and
let z; € (a,b) be the point with a(z;) = x. Note that by definition of a used
chord, none of the a(z,) is an endpoint of e. Moreover, (z,),en has a limit point
Z in I. Since the length of the intervals [a;, b;] needs to shrink, Z is a limit point
of (a;)ien, too. Yet, this contradicts the fact that « is continuous since a(a;) is
one of the endpoints of e and x is an inner point. O

Theorem 4.4.6. Let X be a strongly locally finite CW complex and T a fixed
normal spanning tree of X. For every path a: [ — F(X) and every set S of used
chords of a, the pruned path is indeed a path, i.e. alS is continuous.

Proof.
Let z € (X' UQ(X)).

Choose an open neighbourhood O of z that avoids X' U Q(X) = X!, then
alS871(0) =a1(0) is open.

Let x € X'

If # additionally is an inner point of an edge in 7', choose an open neighbour-
hood O of z that contains no O—cell and denote by e, the edge in T with x € e,.
There are exactly two components of T\ e, and by normality and local finiteness,
there are only finitely many chords of 7" that hit both components. By Lemma
4.4.5, there are only finitely many used chords in & with one of these chords, say
(e1,[a1,b1]), ..., (én, [@n, by]). Then

O‘\I/S_I(O) - O‘\L{(elv [ala bl])? ) (em [am bn])}_1<0>

is open. If x is an inner point of a chord, then the edge path in 7' from one
endpoint of the chord to the other endpoint contains only finitely many edges.
The very same argument as the above one shows that a | S(O)~! is open for a
small O. If x is a 0—cell, let O be an open neighbourhood of x that contains no
O—cell. Fix for every chord or edge that O hits an inner point. Then the above
arguments for the inner points show that o | S(O)~! is open.
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Let z € Q(X).

Consider the exhausting sequence given by K, := X|[(T,)°]. Using K&nig’s
infinity lemma, we find a closed neighbourhood basis (D,,)nen of  such that D,
is a dummy of X \ K,,. By normality of T, an edge e is contained in D,, if and
only if Th(4)—a() is contained in D,. Hence, a | S™'(D,) = o !(D,) for every

n € N. ]

Remark 4.4.7. The above statement is wrong in general if T is not normal.
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5 The main theorem

Finally, we come to the main body of this thesis. In section one, we will introduce
the generalized Mittag-Leffler condition in detail. We will prove a couple of basic
statements of the property and give two non—trivial examples. In the second
section, we will prove our main theorem:

Theorem. Let X be a simply—connected strongly locally finite CW complex. If X
satisfies the generalized Mittag-Leffler condition, then F(X) is simply—connected.

5.1 The generalized Mittag-Leffler condition

For the rest of this section, let X be a connected strongly locally finite CW
complex, not necessarily simply—connected. Consider a normal spanning tree T
of X. Let K,, := X[(T<,)°] be the subcomplex that is induced by all the verices
at level at most n. Clearly, (K, )nen is an exhausting sequence of connected finite
subcomplexes. Fix for every dummy D € D = D((K,,)nen) a O—cell zp € D as a
base point, since 7' is spanning it contains xp. Furthermore, for any two dummies
D,D" € D with D" C D the path T, ,_,,, is a path in D by normality of T
Thus it induces a group homomorphism from (D', zp/) to m(D,zp). In fact
the triple

((Kp)nens (zp)pen, (Tp—~p)prcp)

holds an inverse system of fundamental groups: (m(D,zp))pep with bonding
maps T _,p. Notice that D is ordered by inclusion! and the bonding maps are
indeed compatible since trees are by definition simply connected. More generally:

Definition 5.1.1. Let (K,)n,eny be an exhausting sequence of connected finite
subcomplexes of X and (zp)pep a system of base points with zp € D. If

(forsp)pcp is a system of compatible paths ie. fpp =~ foopr - forosp,
for any dummies D" C D” C D, then the triple

((Kn)nen, (xp)pen, (for—p)prep)

is called an admissible triple for X.

LOf course, D is not directed and not all authors require the underlying poset to be directed.
We just want to point out the structure of a system of groups indexed by a poset with
compatible bonding maps. We will never consider the limit of this system.
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Remark 5.1.2. For every strongly locally finite C'W complex there exists an
admissible triple. Indeed every normal spanning tree induces an admissible triple.

In fact much more is true:

Lemma 5.1.3. For a strongly locally finite CW complex every exhausting se-
quence of connected finite subcomplexes can be extended to an admissible triple.

Proof.
We will prove a stronger statement:

For every strongly locally finite CW complex X and an arbitrary exhausting
sequence (K, )en of connected finite subcomplexes, there is a spanning tree T
of X such that T'N D is path—connected, for every dummy D € D.

Then T defines an admissible triple with the given exhausting sequence by
the same arguments as in the introduction of this chapter. Every finer exhaust-
ing sequence defines a larger set of dummies so we may assume that (K,)° and
(K,;1)° differ by at most one O—cell. This defines an enumeration of all O—cells
X0 = {vy,vy,...}. Note that v, is adjacent to one of its predecessor since K,, is
connected. The proof of (%) work by a common method in infinite graph theory
to obtain topological spanning trees, see [1] for details. Let us define a sequence
of trees T} C Ty, C ... C X' such that:

(1) T, contains at {vy,...,v,}.

(17) T, has a exactly one vertex in every dummy of X \ K,,, and this vertex has
the lowest index under all O—cells in his dummy.

(#ii) T, and T, only differ by vertices and edges that are contained in dummies
of X\ K,,.

For n =1, consider X \ v;. For a dummy D € D(v;), denote by vp the 0—cell
with the lowest index under all O—cells in D. Then v; needs to be adjacent to vp,
for every D € D(vy). Let T} be the subgraph that is induced by v; and all the vp.
Clearly, T is a tree that satisfies (i) and (i7), trivially it satisfies (iii). Given T,,
by (7) and (77) it contains v, ;. Let D be the dummy of X \ K,, with v,,,; € D.
Consider D \ v,,+1. Dummies are by definition CW complexes, hence by Lemma
3.1.7 there are only finitely many dummies of D\ v,41, say D7, ..., D}. Moreover,
D(K,11) =D(K,) \ {D}U{D],...,D;}. Consequently the very same procedure
as in the induction basis for v, and D defines 7},,; and one easily verifies the
properties (i) to (7i7).

We claim that 7' := U,enTn proves (x). Unions of CW complexes are CW
complexes, so T is a CW complex. The image of a path is compact so it is
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contained in 7T, eventually, hence T is path—connected and simply—connected,
ie. T is a tree. It is spanning by (7). Consider T'N D for an n and a dummy
D € D(K,,). Then T'N D is path-connected by (i7) and the fact that 7" is path—
connected. O

We want to use the data of an admissible triple as a certificate to decide if
F(X) is simply—connected. For a given admissible triple, consider w1 (D, zp) for
an n € N and a dummy D € D(K,). For every m > n and D’ € D(K,,) with
D" C D, we obtain a subgroup fp,p(mi (D', zp/)) of m(D,zp). Let us write
HP(D’) for the normal closure of fp_,p(m (D', xp/)) in 7 (D, xp).

Definition 5.1.4. We say that X satisfies the generalized Mittag—Leffler condi-
tion for the admissible triple (K, )nen, (2p)pep, (for—p)p'cp) forn and a dummy
D € D(K,) if the following condition holds:

There is an N € N such that for every L > N:

U #0))=( U H"D))
D'eD(Kn) D’eD(Kp)
D'CD D'CD

We will say that X satisfies the generalized Mittag—Leffler condition for the ad-

missible triple ((K,)nen, (2p)pep, (for—p)pcp) if X satisfies it for every n € N
and every D € D(K,).

Note that in the above equality O always holds. The point is to find an N such
that the right-hand side is constant eventually.

Example 5.1.5. Consider the following CW complex X with the indicated cell
decomposition.

/Un—i-l
Crgt1
7 = 7T1(Dn+17 Un+1

7= 71 ( Dy, vp) QQT@ En "

6?\/;;)
1
1
e
<> O
N
Choosing the spine as a normal spanning tree gives an admissible triple. Note
that w1 (Dy, vy,) = Z and the induced morphisms are, by definition of the attaching
map of the 2—cells, just the multiplication by 2. Thus, the right-hand side of the

defining equality of the generalized Mittag—Leffler condition is decreasing. Hence,
X does not satisfy the generalized Mittag—Leffler condition.
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Example 5.1.6. Now let us extend X to Y by gluing on every level of X a
cylinder as indicated.

Choosing the union of all the spines as a normal spanning tree T gives an ad-
missible triple. For every X[TY,| = K,,, we obtain (n+1)-many copies of the reg-
ular cylinder as a dummy and one copy of Y without the bottom disk as a dummy
D,,. Clearly, all the cylinder dummies satisfy the generalized Mittag—Leffler con-
dition. To see that D, satisfies the generalized Mittag—Leffler condition, note
71 (Dp,vn) = Z and the induced morphisms are multiplications by 2 from above
and multiplications by 3 from all the added cylinders. Since 2 and 3 are relative
prime, the unit is always contained in the right—hand side of the defining equal-
ity of the generalized Mittag—Leffler condition, i.e. the right-hand side equals
the entire group for every L > n. So 'Y satisfies the generalized Mittag—Leffler
condition.

The goal for the rest of this section is to prove that a strongly locally finite
CW complex satisfies the generalized Mittag—LefHler condition either for all ad-
missible triples or for none, Theorem 5.1.8. This will justify the definition that
X satisfies the generalized Mittag—LefHler condition if and only if it satisfies it for
every admissible triple, Definition 5.1.9. In order to prove Theorem 5.1.8, let us
first show an auxiliary result.

For an arbitrary admissible triple, every subsequence of the exhausting se-
quence induces another triple. Indeed, every subsequence of an exhausting se-
quence is again an exhausting sequence. Choosing all the xp and fp/_,p for which
D and D’ are dummies of the subsequence gives a triple. This induced triple is
admissible since it inherits all the necessary properties and we will call it the
induced admissible triple of the subsequence.
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Lemma 5.1.7. X satisfies the generalized Mittag—Leffler condition for an ad-
missible triple if and only if X satisfies the generalized Mittag—Leffler condition
for one (equivalent all) induced admissible triple of a subsequence.

Proof. The forward implication is immediate by definition. So, given an arbitrary
admissible triple, say ((Kn)nENa (xD)DEID)a (fD/ﬁD)D/gD). Let (Kni)ieN be a sub-
sequence of (K, )nen and let X satisfy the generalized Mittag—Leffler condition
for the induced admissible triple ((Ky,)ien, (xD)DGD((Kni)ieN)7 (for=p)prcp). Let
n € Nand D € D(K,,) and choose an index of the subsequence n; with n; > n. For
n; and every dummy D’ € (K,,,) with D" C D, let Np/(n;) be an index that wit-
nesses that X satisfies the generalized Mittag—Leffler condition for the induced
admissible triple. We claim that N := max{Np/(n;)| D" € D(K,,), D' C D}
shows that X satisfies the generalized Mittag—Leffler condition for the admissible
triple ((Kp)nen, (p)pen, (for—p)pcp) for n and D. Let:
we{ U HPD))Cm(D xp).

D'eD(Ky)
D'CD
Fix an arbitrary L > N. Consider a summand of [a], say ¢ - fpr—p([8]) - g7*
with g € m (D, zp) and [f] € m (D', xp/) for some D' € D(Ky). Then there is
one dummy D(n;) € D(K,,,) with D' C D(n;) C D. Furthermore, by definition
of the index N:

oo (18D =TTy - ] 15"

[ryj] c fD;’—>D(ni)(7T1<D;/?xD;-’)) fOI' D;/ € D(KL) with D;/ Q D (*)

This defines a suitable representation of [« for every summand:

g- fD’%D([B]) '9_1 =g- fD(ni)—>DfD’—>D(m')([B]) g

=g- fD(m)—>D< 11 7 [%’]hj_l) 97!

j=1

= (9- fowo-p()) - fowo-n(bi]) - (fomo-n(h") - g7")
(9 fomop(h2) - Foe-o(72]) - (fomo-n(hs") -g7")

N

(9 fomo=p(m)) - Fom-n(m) - (fom-p(ha') -97")

()
e( U HYD)
D'eD(KL)
D'CD
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Theorem 5.1.8. If X satisfies the generalized Mittag-Leffler condition for one
admissible triple, then it satisfies it for every admissible triple.

PT’OOf. Let ((Kn)neNa (xD)De]D)a (fD’—>D>D’gD) be an admissible triple for which X
satisfies the generalized Mittag—Leffler condition.

e Given an admissible triple with the same exhausting sequence and the same
base points but different paths, say (fp—p)prcp. Let n € N and D €
D(K,,). Then for every m > n and every dummy D’ € D(K,,) with D’ C D,
the two paths fp_p and fp_p define a loop a := (forap - fD/_,D) in D
based at zp. Then [a] € m (D, zp) and

f~D’—>D(771(D/al‘D)) = [04]_1 : (fD/—>D(7T1(D/,9ED))) : [CY],

thus HP(D') does not depend on the set of morphisms.

e Given a triple with the same exhausting sequence but different base points,
say (Zp)pep, and different morphisms, say ( fD/_>D) pcp- Every dummy D
of (K, )nen is path—connected, so fix a path Pp in D from xp to Zp. Letting
go—p = Pp - frp - Pyt gives a system of compatible paths for (K, )pen
and (zp)pep. Indeed, for any dummies D, D', D" € D with D' C D" C D:

9p—p = Ppr - fpp - Ppt
~ PD/ . (fD’*)D” . fD”*)D) . PBl
~ (PD/ . fD/*)DH . PB,}) . (PDH . fD”*)D . PBI)

= 9p'—p" " Yp"—D

By the previous point, X satisfies the generalized Mittag—LefHer condition
for the admissible triple ((K,)nen, (p)pep, (9p—p)pcp). Then we can
conclude that X satisfies the generalized Mittag—Leffler condition for the
admissible triple ((Kn)nENu (jD)DED; (.]ED/_>D>DIQD) by applying the induced
group homomorphism of the path Pp to the defining equality in the defini-
tion of generalized Mittag—LefHler condition. Notice that every Pp gives an
isomorphism and for any two dummies D, D’ € D with D" C D we have a
commutative diagram of groups

7T1(DI793D’) il 771(D/,9~UD')
\LQD’HD ifD/_)D

P N
7T1(D,IL’D) = Wl(D,l"D)

e Given an arbitrary admissible triple, say (N(f(n)neN, (ZD) pep» (for—p)prep).

By Lemma 5.1.7 we may assume K, C K, C K, for every n € N. By
Lemma 5.1.3 we can extend the exhausting sequence K; C Ky C Ky C
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... to an admissible triple ((K,, K;)nen, (Yp)pen, (90—p)prcp). Now X
satisfies the generalized Mittag—Leffler condition:

for ((Kn)nen, (p)pen, (for—p)D'CD) by assumption,
= for ((Ky)nen, (Yp)pen, (90/—p)prcD) by our previous point,

= for ((Kn, K)neN; (yD)De]D)UDJ (gD’—>D>D’gD) by Lemma 517,

= for ((K)nen, (yD)De]ﬁ)7 (9p'—p)p'cD) by Lemma 5.1.7,

= for ((K,)nen, (20) pesrs (forsp)prcp) by our previous point.

]

The effort of this section culminates in the following definition:

Definition 5.1.9. We will say that X satisfies the generalized Mittag—Leffler con-
dition if X satisfies the generalized Mittag—Leffler condition for one (equivalent
every) admissible triple.

5.2 Proof of the main theorem

Theorem 5.2.1. Let X be a simply—connected strongly locally finite CW com-
plex. If X satisfies the generalized Mittag-Leffler condition, then F(X) is simply—
connected.

Proof. For the rest of the proof, let T" be a fixed normal spanning tree of X with
root 7. The exhausting sequence we refer to is given by K, := X[(T<,)"], the
finite subcomplex that is induced by the vertices of level at n.

The proof is organized as follows: Given an arbitrary element [« € m (F(X), 1),
by Corollary 4.2.5 we may assume that its representative « is in normal form.
Consider the set S of all used chords of a and define 3 := ] S. Then [ is a loop
by Theorem 4.4.6 based at r. Furthermore, 3 lies entirely in 7', thus 3 is null-
homotopic by Theorem 4.3.5. Starting with o and g we will simultaneously define
two sequences a = ag >~ a1 =~ ... and = [y >~ B ~ ... of loops based at r by
using the generalized Mittag—LefHler condition again and again. Both will satisfy
the requirements of Corollary 4.1.2. However, we need X to be simply—connected
to start the procedure. Moreover, we will make sure that

a~op > lim a, = lim §, ~ f; ~

hence « is null-homotopic, i.e. m (F(X),r) = 1.
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Let a: [ — F(X) be a loop in normal form based at the root r of 7. We will
define the «,, and (3, inductively and assign to every «,, a set S, of used chords
of a,, arranging that:

1. Every edge of a used chord in S,, has height? at least n. Moreover, for every
used chord (e, [a,b]) € S,, and the unique dummy D € D(K,,) with e C D,

[TzD—>a(a) * U[a,b] Ta(b)—mD] S < U HD(D/)>7

D'eD(Ky)
D'CD
for the index N that witnesses that X satisfies the generalized Mittag—
Leffler condition for n and D.

2. ap >~ apy and B, = a, 1 S, ~ apig b Spa1 = Bna1 by homotopies that
satisfy the requirements of Corollary 4.1.2.

(0—=1)

Let ag := a, Sy be the set of all used chords of a and By = ag | Sy. For
n = 1 and a dummy D € D(K;), denote by Np(1) the index that witnesses
that X satisfies the generalized Mittag-Leffler condition for 1 and D and let
N = max{Np(1)| D € D(K;)}. Let Uy be the set of all used chords (e, [a,b]) in
So such that e is adjacent to r. Since X is in particular locally finite Uy is finite
by Lemma 4.4.5. Furthermore, for every D € D(K}) let Vp be the set of all used
chords (e, [a, b]) in Sp, such that e has height at most N. Every V) is finite, since
there are only finitely many chords with a height less than N. In fact there are
only finitely many dummies in D(K}), so Wy := Upep(k,) Vo U Up is finite. Note
that the fundamental loop of a chord for a used chord in Sy \ Wy lies in

U HD(D')> C m(D,zp), for some D € D(K7). (%)
D'eD(Ky)
D'CD

For every used chord (e, [a,b]) € Wy, let

Pejap) = Ta@—r  Tomyor At " Ta@)sr - Top)

Let af be the path that coincides with g, but for every interval [a,b] of a
used chord in Wy, plug in the path P 4. This path is continuous since Wy is
finite and obviously homotopic to agy. Moreover, Ta_é) Lo ab] - Top)—r defines
the fundamental loop of e at r. Since X is simply—connected, the fundamental
loop of e is homotopic to any fundamental loop of a chord with height at least
N. Fix for every such Ta’(}l) Cor ey - To@)—r a fundamental loop gj. based at

2For us the height of an edge is the height of the lower endpoint of the edge. Note that the
endpoints of a chord are in deed comparable by the definition of a normal tree.
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r of a chord with height at least N. Define a; to be the path that coincides
with af, but for every Ta_((ll)_w b * Tap)—r Plug in gy We may assume oy
in normal form since all the used loops and paths could have been chosen in
normal form. Let S; be the union of Sy \ W, and all the used chords of all g, ).
Then «; and S; satisfy (1) by () and the height of the gy, 4. Define 3, as the
pruned path of a; by &, which is continuous by Remark 4.4.4. Now [, and (3,
only differ on the finitely many intervals of the used chords in W}. For such a
used chord (e, [a,b]) € Wy, the paths By and S| have the same start and
endpoint. Since X is simply—connected, they are homotopic. Clearly, any of the
used homotopies avoid Ky = (). Consequently 2. is satisfied.

The idea for the induction step is that (1) mimics the roll of the simple-
connectedness in the induction basis. To be more precise:

(n—=n+1)

For (n+ 1) and a dummy D € D(K,,1), denote by Np(n + 1) the index that
witnesses that X satisfies the generalized Mittag-Leffler condition for (n+1) and
D and let N = max{Np(n+1)|D € D(K,11)}. Let U, be the set of all used
chords (e, [a,b]) in S, such that e is adjecent to a vertex in K, ;. Then U, is
finite by the very same arguments as in the induction basis. Furthermore, for
every D € D(K,,4+1), let Vb be the set of all used chords (e, [a,b]) in S,,, such that
e has height of at most N. Again every Vp is finite and there are only finitely
many dummies in D(K,1) so W, := Uben(k,,.) Vo U Uy is finite. Note that the
fundamental loop of a chord for a used chord in S, \ W, lies in

U HP(D)) € m(D,xp), for some D € D(Kpi1). (%)
D'eD(Ky)
D'CD
For every used chord (e, [a,b]) € W, there is exactly one dummy D € D(K,)
with ay,(a), a,(b) € D, since e has height at least n by 1. Let

R -1 -1
P(e,[a,b]) T Tan(a)—mD ) Tan(a)—mp " fab] Tan(b)ﬁxD ) Tan(b)—>xp'

Let o, be the path that coincides with «,, but for every interval [a, b] of a used
chord in W41, plug in the path Py o). This path is continuous since W,
is finite and obviously homotopic to «a,. In fact, we alter «, only on finitely
many open intervals and the used homotopies take place in X \ K. Moreover,

Tai(}z)ﬁzp -] - Ta(b)—ap, defines a loop based at xp. By property (1) for o, this
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loop is homotopic in D C X \ K, to a loop of the form

T—l

a(@)—zp  Alabl * Tap)—ap =

—

@
I
—

hz’_l ) (fDi—>D(gi>> - h;

hZI ’ (T;;Dliﬁxp " Gi- T$D1H$D> - h;

I

@
Il
—

with [h;] € m(D,zp) and [g;] € 771(D‘ xp:) for dummies D' € D(Ky). Let
a4 be the path that coincides with o/, but for every T a(@)—zp  Ylab] Tow)—azp
plug in the right hand side of the above homotopy. We may assume ;1 in
normal form, since we could have chosen all the used paths in normal form. Let
S,i1 be the union of S, \ W,, and all the used chords of all the g; i = 1,...,m
for every T ! a(@)—zp * Ylab] - Tb)—zp- Apparently, o, and S,4; satisfy property
1. because of (#x) and the height of the chords of the used chords of the g;.
Furthermore, «,, and «,1 only differ on the finitely many intervals of the used
chords in W,,; 1, and all the used homotopies took place in X \ K, by (1) so (2)
for v, and o, 41 holds. Let 8,41 = api1d Spe1. Then, 8, and (5,41 only differ
on the finitely many intervals of the used chords in W,, ;. For such a used chord
(e, [a,b]) € Wyt the paths B, and B410,4) have the same start and endpoint.
One the one hand 3,5 is homotopic to

Tan(a)%zp T_()—>:5D ﬁn“ab Tan(b)%xp Toé_n(b)%xD’

by a homotopy in X\ K,,. Clearly Ta_n(a) eap” Bulab) o (b)—ap 18 null-homotopic
in D, since it is a loop in T". On the other hand o, 11j(. is a path of the form

m

tnslfat) = Ton@osen  (LL0 - (Tay - 90 Topimsan) - hi) = Tty

i=1

By the definition of 5,1 the restriction to [a,b] defines a path of the form:

m

Busttian) = Tant@en - (T10" - (T} map i Topiosen) 1) - Ty v

i=1
where ~; is the pruned path of g; by all its used chords. In particular ~; is a
path in T, hence T;;i Svap Vi Te,;—ap 18 null homotopic. Consequently, the above

sum defines a null homotopic loop, in D. Thus £, and (,1|j,5 are homotopic
by a homotopy in D C X \ K,,, i.e. 2. holds for /3,, and (1.

Since ag = « is in normal form, the pruned path of a by all its used chords is

a path in T, thus 3y = a | Sy is null homotopic. To see that llm ay = 7}1_)1210 B
consider § := U,,en Sp.-
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Let x € I be a point that lies in only finitely many intervals of the used chords
in §. Then there exists an N € N, such that x lies in none of the intervals of
the used chords in &y, for every L > N. Since we alter oy, only the intervals of
Sy, we have ay(x) = ar(zx), for every L > N. Consequently lim an(x) = ay(z).
By definition 3, = a, | Sy, so ar(x) = Br(x) for every L > N. Consequently,
A3n, Bu(@) = limy, @n().

Let x € I be a point that lies in infinitely many intervals of the used chords
in S. Then for every n € N there is exactly one used chord (e, [a,b]) € S,
with € [a,b]. Denote by D, the dummy of D(K,) with «,(x) € D,. The
homotopie from ayap t0 Qpiijee avoids K, so D, 2 D,.;. This gives a
sequence of dummies D; C Dy C ... and there is exactly one end w € €2, such
that {w} = N D,. Consequently nl1_>nolo ap(x) = w. Furthermore, e, C D,,, so w
is the unique limit point of the sequence of start points of the e,. Since T is
normal the path in T between the start and end point for every e, lies in D,,,
thus f,(x) € D, so Jim fn(z) = w. O
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6 Failing the generalized
Mittag-Leffler condition

In this chapter, we want to understand what happens if a CW complex fails to
satisfy the generalized Mittag—Leffler condition. The best possible outcome would
be if we could prove that 7(F'(X)) is non-trivial as soon as a simply—connected X
fails to satisfy the generalized Mittag—Leffler condition for this would characterise
all the simply—connected CW complexes with a simply—connected Freudenthal
compactification. Unfortunately, we are neither able to do so nor find a counter—
example, i.e. a simply—connected CW complex that fails to satisfy the generalized
Mittag—Leffler condition for which F'(X) is still simply—connected. Instead, we
will prove that if the fundamental group of a dummy witnessing the failing of
the generalized Mittag—Leffler condition has an abelian fundamental group, then
its Freudenthal compactification is not simply—connected. Unfortunately, the
commutativity of this fundamental group will be a crucial part because it will
guarantee us that its first homology group coincides with its fundamental group
which makes it possible to apply a version of the Mayer—Vietoris sequence.

6.1 The Seifert—van Kampen theorem and the
Mayer—Vietoris sequence for dummies

One advantage of CW complexes is that the Seifert—van Kampen theorem and
the Mayer—Vietoris sequence apply to a cover of subcomplexes rather than just
open covers. Our goal in this section is to prove the analogue in our context, i.e.
for a cover of subcomplexes AU B = X, the Seifert—van Kampen theorem and
the Mayer—Vietoris sequence apply to the cover AU B = F(X). We will not be
able to prove this for arbitrary subcomplexes A and B but for a large class of
subcomplexes which, most importantly, include all dummies.

Definition 6.1.1. A deformation retraction of a space X onto a subspace A is a
continuous map:
R: XxI—X

such that R(-,0) =idyx, R(X,1) C Aand R(a,t) =aforallac Aandt e l. In

the above situation we say that X deformation retracts onto A.

Remark 6.1.2. A deformation retraction gives a homotopie equivalence, in par-
ticular m (X) = m(A).
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A well-known fact of CW complex is the following, for details see [5]

Lemma 6.1.3. For a CW complex X and a subcomplex A of X and an e < 1,
there is an open neighbourhood N.(A) contained in the e—neigboudhood of A such
that:

e N.(A) deformation retract onto A.

e If A and B are two subcomplexes, then N.(A) N N.(B) = N.(AN B).

Definition 6.1.4. If X is a locally finite CW complex, we call a subcomplex A
wide if every end in A C F(X) has an open neighbourhood contained in A.

Lemma 6.1.5.
(1) For a strongly locally finite CW complex X and a finite subcomplez, K ev-
ery dummy of X \ K is wide.

(17) Finite unions and finite intersections of wide complexes are wide.

Proof. For the first statement, just note that there are only finitely many cells
of X not contained in one of the dummies of X \ K. For the second statement,
consider two wide complexes A and B. Then every accumulation point of AU B
is an accumulation point of A or B. Hence, AU B is wide. Clearly, AN B is
wide. O

Lemma 6.1.6. Let X be a locally finite CW complex and A a wide subcomplez.
For every e < 1 and the open neighbourhood N.(A) of Lemma 6.1.3 the subspace
N.UA C F(X) deformation retracts onto A.

Proof. Let R: N.(A) x I — N.(A) x A be a strong deformation retraction onto
A. Consider:

R: N(A)UA x I — N.(A)

@.1) > {R(m,t) if 2 € N.(A)
’ r ifzeA\A

Obviously, we only need to show that R is indeed continuous. Let A; := A and
Ay := N.(A) \ A (the closure in N.(A)U A). Both sets are closed in N.(A) U A
and their union is N.(A) U A. Moreover, E|A1XI is the projection onto the first

component so it is continuous. Since A is wide, N.(A)\ A contains no ends.
Consequently, N.(A)\ A C X, so Rja,x; = Rja,xs is continuous. Then R is
continuous by the auxiliary statement (x) in the proof of Corollary 4.1.2. O
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Theorem 6.1.7. Let X be a strongly locally finite CW complex and A and B
two wide subcomplexes such that X = AU B, then:

(i) (Seifert—van Kampen theorem) If, in addition, A and B are path—connected
and AN B is non—empty and path—connected, then A, B and AN B are
path—connected and

m(F(X)) = m(A) %, @) 1 (B).

(17) (Mayer—Vietoris sequence) There is a long exact sequence in homology:
. > H, 1 (F(X)) = H,(ANB) - H,(A) ® H,(B) —» H,(F(X)) — ...

Proof. Let A, B and X as in (i). Clearly, AN B is non—empty and AU B =
AUB =X = F(X). To see that A, B and AN B = AN B are path-connected,

we prove:
If C is a path-connected subcomplex, then C is path—connected.

For every end w in C, there is a sequence of 1-cells in C' converting to w.
For instance, choose an exhausting sequence (K,)neny of X and let D, be the
dummy w lives in. Then D, N C'is a non—empty CW complex; hence, it contains
a 1-cell. As a result, every end in C is in C'. By a theorem of Diestel [...] the
closure of a connected subgraph in the Freudenthal compactification of a graph
is path—connected. In particular, the closure of C' in F(X') is path—connected.
By Lemma 4.3.2, Q(X") = Q(X). Consequently, there is a path in C from C' to
every end in C.

For the actual statements in () and (i), note that N.(A) U A and N.(B)U B
are open in F(X) since A and B are wide. The theorem then derives from
the usual Seifert—van Kampen theorem/the Mayer—Vietoris sequence and Lemma
6.1.3. Note Remark 6.1.2. [

6.2 A class of counterexamples

In this section, we prove the main theorem of the chapter: If X fails to satisfy
the generalized Mittag—Leffler condition and at least one of its dummies witness-
ing the failing has an abelian fundamental group, then the fundamental group
of F(X) is non—trivial. In fact we will prove more, namely that in the above
situation, the first homology group of F(X) is uncountable. This will give us a
class of counterexamples for the overall question whether simple-connectedness
is preserved under the Freudenthal functor. Note that for the above statement,
we do not require X to be simply—connected. The first two lemmata that we will
prove may look quite technical. However, it will be clear what they invoke.
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Lemma 6.2.1. Let X be a strongly locally finite CW complex that does not satisfy
the generalized Mittag—Leffler condition and let ((Kp)nen, (p)pen, (for—p)p'cD)
be an arbitrary admissible triple. Then there is a sequence of natural numbers
N(1) < N(2) < ... such that the following properties hold.

(i) There is a decreasing sequence of dummies Dyay € D@y C ... with
D@y € D(Kny) for every n € N.

1) Together with a sequence of loops In1y, Ny, - .. such that every loop In(
(1): N (2) (n)
18 based at LDy and

Ivovo (v (U HPO(D) € mi(Dway, Ey)-

DIED(KN(7L+1))
D'CDy

Proof. By Theorem 5.1.8, X fails to satisfy the generalized Mittag—LefHler condi-
tion for the admissible triple. Hence, there is an index N(1), a dummy Dyq) €
D(K (1)) and a sequence of natural numbers N (1) < N(2) < ... with

m(Dyasaoyg) 2( U HOM)2( U HoD))2...
D'eD(K n(2)) D'eD(K ns))
D'CDyq) D'CDy )

Consider N(n) and denote for the moment by D!, ..., D* all the dummies in
]D)(KN(H)) with D C DN(I)- If

HPxoDYC (| HPYoD))

for every D', i =1,...,k, then

U #Ho@)c( U HPOD)),
D’'eD(K n(n)) D'eD(K y(n+1))
D'CDyq) D'CDy)
contradicting (x). Thus, there is one D with
HP~0 (DY ¢ < U HDN(1)<D/)>.
D'eD(K N (nt1))

D'CDy 1)

In particular, there is an element [I;] € 7, (D?, xp:) with
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fvm-ro() g (U HPYoD))
D'eD(K N (ny1))
D'SDyqy
since the above right-hand side is normal. Let Dy, := D' and Ingy = Li.

Clearly, all properties of (i) and (i¢) are satisfied except that Dy ,) does not need
to be a superset of Dy(,41). However, by a compactness argument, there is a sub-
sequence (N (n;));en such that the associated sequence of dummies is decreasing.
Then the subsequence inherits all the other properties of its supersequence. [

Remark 6.2.2. Starting with an arbitrary admissible triple, the above lemma
gives an index function N(n) with certain properties. Applying the lemma to the
induced admissible triple of the (Knm))nen, we can ensure that N(n) =n +1 to
avoid an overflow of indices. Using that I is compact, we can even ensure, by the
same argument as above, that the image of every l,, does not hit K, 1. Note that
we did not change the dummy with the lowest indez.

Lemma 6.2.3. Let X be a strongly locally finite CW complex. For an arbitrary
admissible triple ((Kp)nen, (p)pep, (fpr—p)pcp), fit an n € N and a dummy
D € D(K,). Let D',...,D* € D(K,1) be all the dummies with D' C D.
Suppose a is a loop based at xp that hits none of the D* and

We¢( U HD)=( U HD))

D' eD(Kni1) i=1,..k
D'CD
Then « is not even null-homotopic in D/D*, ... D, i.e.

q([a]) #0 € m(D/D*, ..., D¥ q(xp)).

Proof. Suppose to the contrary that « is null-homotopic in D/D?!, ... D* and
let H: I x I — D/D*',... DF witness a ~ ¢,,. Consider for every D' the
open neighbourhood retract N.(D?) by choosing € small enough to ensure that
the N.(DY),..., N.(D¥) are pairwise disjoint. Then D! considered as a point
in D/D*, ..., D¥ is closed and N.(D?) considered as a subset of D/D*,... D*
is open. Consequently, A := H=}(D'U ... U D¥) is closed in I x [ and B :=
HY(N(D')U...UN.(D"*)) is open in I x I. Hence, A and B¢ are two closed
disjoint subsets so their distance dist(A, B) = r > 0 is a positive real number.
The map

dlSt(,A) IxI— Rzo
x > dist(z, A)

is continuous. Therefore, C' := dist™'(Z, A) is closed. Let L € N be so large

29
that the square of length % has diameter less than 3. Consider the partition of

I x I that is given by L? many squares of length % By construction, every square
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hits at most one of A, B or C. Note that avoiding B¢ means lying entirely in
B; for example, every square that hits C' is a subset of B. Denote by Q¢ the
union of all the squares that hit C' and let Q4,...,Q,, be all the finitely many
outer path-components ! of Q¢. Let I;: I — I x I be a path that runs exactly
once around the outer boundary of @;, i = 1,...,m. Every point in H(A®) is
a singleton equivalence class in D/D*, ..., D¥ so Hjge — D\ (D*U...U D) is
continuous. Moreover, H4c defines a homotopy in D from « to a path based at
xp of the form

o o ﬁ(HIAC o hy)+ (Hiae oli) - (Has 0 hih).

1=

—

Jo
o

C$D1|\ ¢CxD

Note that (H|4col;) is a path in one of the N.(D?®) for they are path—connected
and pairwise disjoint. Now fix for every i € {1,...,m} a path P; in N.(D’®),
j(i) € {1,...,k} from the base point of (H|4c o li) to the base point of D’®) for
the unique N.(D'®) the loop (H|sc ol;) runs in. Then

IZ

H H|Ac0h) (H|Acoli)'(H|Acoh;l)

[L((Hiaeohi)- P) - (P (Hiacols) - B) - (Pt (Hiae 0 b))

':]3 m

~

N
Il
i

LA path-component of Q¢ is an outer path—component if there is a path in I x I to a corner
that avoids all other path—components of Q¢.
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Note that ((H|Ac o hy;) - B-) is a path from the base point xp to the base point
of the dummy x ;). Consequently, iLZ = <(H|Ac oh;) - P,) . waj(i)_mQ ?S a loop
based at xp. Furthermore, g := P! - (l; 0 H) - P,) is a loop in N.(D®) based
at xij(l) so g; is homotopic to a loop in D?® since N,(D’) deformation retracts
onto D’®. Then

Q
1R
=

@
Il
—

12
ek

((Hyae o hi) - Pi) - (P (Hjac o) - Pr) - (P71 (Hiac 0 b))

~.
[y

l) ’ ( 71 ) —=TD "G fl'Dj(i)*)xD> ’ (ﬁ;l)

T piti

12
=

@
Il
—

i” (fxDj(i)HmD (gl)) ’ h;l

I
=

s
Il
—

gives the desired contradiction

o =TT - (fupsion () - (€ (U HP (DY),

i=1 i=1
[l

If a strongly locally finite CW complex fails to satisfy the generalized Mittag—
Leffler condition, we obtain the following picture by applying the two previous
lemmata where every [; satisfies the conclusion of Lemma 6.2.3.

Theorem 6.2.4. Let X be a strongly locally finite CW complex that fails to satisfy
the generalized Mittag—Leffler condition. If there is an admissible triple such that
one of the dummies that witnesses the failing has an abelian fundamental group,
then m (F (X)) is uncountable.
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Proof. In fact, we prove that the first homology group H;(F (X)) is uncountable.
By the Hurwicz theorem, this shows in particular that 71 (F(X)) is uncountable.
Suppose to the contrary that H;(F(X)) is countable. Let n € N and D € D(K,,)
such that D witnesses the failing of the generalized Mittag—Lefller condition and
m1(D) is abelian. We may assume n = 1 by an index shift of the exhausting
sequence. Consider the subcomplex

A = U D'
D’'eD(K1)
D'#D
Then A’ is wide by Lemma 6.1.5. There are only finitely many cells not con-
tained in one of the dummies of X \ Kj. Denote by K a finite subcomplex that
contains all of them and let A := A’U K. Then K = K, hence A is still wide.
Moreover, AUD = X so Theorem 6.1.7 gives a long exact sequence in homology:

.= Hy(F(X)) = Hi(AND) - Hi(A) & Hi (D) — Hi(F(X)) — ...

In fact, AN D = AN D C K is a finite subcomplex so its homology group is

finitely generated and in particular countable. By exactness, H;(D) is countable.
Our goal now is to show that H;(D) is uncountable which will be the desired
contradiction and this will work by a technique of [ ... ]. For this purpose, let
D = Dy C Dy C ... be the sequence of dummies of Lemma 6.2.1 and (,,)nen
the promised sequence of loops. Consider S' as the union of two copies I; and
I5 of the unit interval glued together in their endpoints. For a sequence of zeroes
and ones P € N1} let ap: S' — D be the following map: On the intervals

[Z?;f %7 1 %] C I, let

f51+1_>D -1, of P has a one on the nth entry
(8% n—1 n - " "
25 2r2 i o) Sy 1D, if P has a zero on the nth entry

and for the intervals [Y77' &, 57, ] C I, let Qi g 1y = IDrirsDy-
i=1 2t7Lui=1 21

This defines ap on S' — 1, letting ap(1) = w for the unique end that is contained

in all the D,,, turns ap into a continuous map since [,, is contained in D,,. Every

continuous map induces a group homomorphism on the level of homology groups

so that every ap gives an associated group homomorphism

ap:. Hl(Sl) — Hl(ﬁ)
Every group homomorphism from Z = H;(S!) is determined by the image

of the unit. By assumption H;(D) is countable so there need to be two dis-
tinct sequences P, Q € N{®1 which induce the same group homomorphism. Let
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n be the first coordinate where they differ and let D!,..., D¥ be all the dum-
mies in D(K,, ;) with D* C D. Denote by ¢ the quotient projection ¢: D —
D/D,... Dk, Then qo ap and p o ag still need to induce the same group
homomorphism

Hy(SY) “25° Hy(D) % H(D/D',...,D").

Furthermore, D/D?,...,D¥ = D/D",..., D*. Tt is not hard to see that the
quotient map ¢q: D — D/D?', ... D* gives a surjection on the level of fundamental
groups; for example, use that any path in a CW complex is homotopic to a path
in its one skeleton. We have required that m(D) is abelian so in particular
m(D/D?Y, ... DF) is abelian. Again by the Hurwicz theorem, we have

H,(D/D%,...,D*) = H\(D/D",...,D¥) = 7 (D/D*,..., D).

This gives a contradiction by using Lemma 6.2.3:

0= glar(lne)) —alaglne) =1 X fosollll =1 2 fo.-ni ()]

i<n i<n
P(i)=1 Qi)=1
= [fp.~p:([l])] # 0.
O

Example 6.2.5. Let X be the first CW complex of Example 5.1.5, then X fails to
satisfy the generalized Mittag—Leffler condition. As seen in the example, m (D) =
Z for a dummy D so Theorem 6.2.4 shows that the fundamental group of F(X)
is uncountable despite the fact that X is simply—connected.
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