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1 Introduction

The ideas spawning from the method of tree decompositions have led to many
fruitful avenues of research. There is now a theory of abstract separations,
first introduced by Reinhard Diestel and Sang-il Oum in the first, 2014
version of [6], which generalizes the well known concepts of separating sets
in graphs and the connectivity of edge partitions in matroids. This has led
to the simplification, unification and generalization of numerous theorems
and proofs about decompositions.

One type of theorem that was affected are the results about splitting
objects along their separations of some low order, where the order corresponds
to the size of the separator in the graph case and the value of the connectivity
function for matroids. For separations of order two in particular, it is now
known for both infinite graphs ([11]) and infinite matroids ([1]) that the
torsos of their parts are 3-connected, cycles/circuits or bonds/cocircuits.

Given these results, it seems natural to ask a question of the same type
for objects that share some of the same features enabling the proofs for
graphs and matroids. One such object, generalizing graphs by adding a
topological structure, are the graph-like spaces defined in [3] as a way to
represent graphic matroids, which are based on the graph-like continua of
Thomassen and Vella ([12]).

In this thesis we first give the definitions required and examine some
properties of pseudo-arcs in graph-like spaces, as defined in [3], which for
many purposes can be treated similarly to paths in graphs. An example
of this is the proof of a version of Menger’s theorem for pseudo-arcs which
we give. Afterwards we apply the framework of separations to graph-like
spaces and define both a decomposition into blocks as well as one along
the separations of order two of a graph-like space, prove that these blocks
are always 2-connected and give, using methods of [11], a description of
the torsos of the latter decomposition analogous to those for graphs and
matroids given certain niceness conditions. We also explore some of their
further properties.

In particular, we will show that for those graph-like spaces which induce
matroids in the sense of [3] the parts of these decompositions of graph-like
spaces correspond in a natural way to those of their familiar equivalents in
the associated matroid. We will also consider the issue of reconstructing a
graph-like space from the parts of our decomposition along 2-separations
and find that, while it is not possible in general or even for all graph-like
spaces inducing matroids, it can be done for compact graph-like spaces.
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2 Preliminaries

2.1 Separation systems

We will use the concept of separations systems as a framework for our
decompositions, the reference used for the definitions in this subsection is [6].

A separation system is a triple (S,≤,∗ ), where (S,≤) is a partial order
and ∗ is an involution on S such that s ≤ t if and only if t∗ ≤ s∗ for all
s, t ∈ S. We call the elements of S (oriented) separations and sets of the
forms {s, s∗} for s ∈ S unoriented separations.

A separation s is called small if s ≤ s∗, trivial if there exists a separation
t such that s < t and s < t∗ and degenerate if s = s∗. A pair of unoriented
separations is nested if they contain comparable elements and a pair of
ordered separations (s, t) is nested if the unoriented separation containing s
is nested with the one containing t. A separation in some separation system
is good if it is nested with any other separation of that system and neither it
nor its inverse is small.

A partial orientation of a separation system S is a subset of S meeting
each unoriented separation at most once. It is an orientation of S if it meets
each unoriented separation exactly once. A partial orientation is consistent
if it contains no separations s 6= t such that s∗ < t.

We call a set of separations T ⊆ S regular if it contains no small sepa-
rations and nested if all pairs of separations contained in it are nested. A
tree set is a nested separation system containing no trivial or degenerate
elements.

During the construction of a decomposition from a tree set we shall need
the following special case of [6, Lemma 4.1].

Lemma 2.1. Let S be a regular tree set and P a consistent partial orientation
of S. Then P extends to a consistent orientation and for any maximal
Element of P there is a unique consistent orientation in which that element
is maximal.

An important example of a tree set given in [8] is the set of oriented

edges of a tree. Formally, for some tree T let
−→
E (T ) be the set of all pairs

(x, y) of vertices of T such that x and y are adjacent, let ∗ be the involution
exchanging the components of each pair and let (a, b) ≤ (c, d) if (a, b) = (c, d)
or the unique {a, b}-{c, d}-path meets b and c. Since the path must have

some pair of endvertices,
−→
E (T ) clearly is a regular tree set. An orientation o

of
−→
E (T ) points towards some vertex v of T , if no element of o has v in its

first component. An orientation o of
−→
E (T ) points towards an end ω of T if
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for every (a, b) ∈ o the end ω lives in the component of T − ab containing b.
Indeed, the following lemma shows that these are the only two possibilites.

Lemma 2.2. Every consistent orientation of
−→
E (T ) for some tree T points

to a vertex or an end of T .

Proof. Let D be the directed graph induced by the edges of some consistent
orientation o. Since two edges starting at the same vertex would contradict
the consistency of o, each vertex has at most one edge directed outwards. If
D has a vertex with no such edge, then o points to that vertex by definition.
Otherwise we can find a directed ray R in D simply by starting at an arbitrary
vertex and following its unique edge directed outwards. We claim that o
points towards the end of this ray. Let (a, b) ∈ o be arbitrary. Then by the
consistency of o the unique {a, b}-R-path in T must meet b, completing the
proof.

2.2 Infinite matroids

While matroids have been researched for some time, a proper notion of
infinite matroids was only established recently in [2], which the following
definitions and statements are based on. For our purposes a matroid M on
some ground set E will be defined as a set of subsets of E satisfying the
following conditions:

1. ∅ ∈M

2. M is down-closed with regard to inclusion

3. For any I ∈M that is not maximal with regard to inclusion and any
J ∈M that is there exists an x ∈ J \ I such that I ∪ {x} ∈M .

4. For any I ∈M and Z ⊆ E there exists an inclusion-maximal element
of M that contains I and is contained in Z.

For the rest of this subsection we fix a matroid M on a ground set E.
Any element of E will be called an edge. The elements of M are called

independent and subsets of E that are not elements of M are called dependent.
An inclusion-maximal independent set is called a base and an inclusion-
minimal dependent set is called a circuit.

A key property of circuits, circuit elimination, asserts that for any circuit
C, any family (ei)i∈I of different edges of C, any family (Ci)i∈I such that Ci
contains ei, but no ej for j 6= i and any z contained in C, but not any Ci,
there exists a circuit D contained in the union of C and all the Ci such that
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z ∈ D, but ei /∈ D for all i ∈ I. Furthermore, the set of circuits of a matroid
defines it uniquely.

The dual M∗ of M is the matroid on E containing all the subsets of the
complements of the maximal elements of M . The restriction of M to some
X ⊆ E is the matroid on the ground set X containing all those elements of
M contained in X. The contraction onto X is the dual of the restriction of
the dual of M to X.

A circuit of the dual of M is called a cocircuit of M . An edge e is called
a loop if {e} is a circuit and a coloop if {e} is a cocircuit. If an edge is not a
loop, it is contained in some cocircuit and dually, if an edge is not a coloop,
it is contained in some circuit.

The notion of connectivity for infinite matroids was introduced in [5],
where the connectivity function κM for a matroid M was defined as the
function mapping each subset X ⊆ E to the number of elements that need
to be deleted from the union of a base of M restricted to X and a base of M
restricted to the complement of X to obtain a base of M . They proved that
this is well-defined and that this is in fact the same number of edges that
need to be deleted from any base of M restricted to X to obtain a base of
M contracted onto X. Furthermore, they showed that κM = κM∗ and that
κM (X) = 0 if and only if there is no circuit meeting both X and Xc.

Writing e ∼ f for two edges e.f if e = f or if e and f are contained in a
common circuit, a component of M is an equivalence class under ∼. M is
called connected if all its edges are equivalent.

A separation of M is a pair (F, F c) for any F ⊆ E such that both F and
F c contain at least κM (F ) + 1 edges. Its order |(F, F c)| is κM (F ) + 1. A
separation of order k is called a k-separation. Let Sk(M) be the set of all
k-separations of M . The inverse (F, F c)∗ of a separation (F, F c) is (F c, F )
and we write (F1, F

c
1 ) ≤ (F2, F

c
2 ) if F1 ⊆ F2. Then (Sk,≤,∗ ) is a separation

system. M is k-connected for some natural number k if all separations of
order less than k are small. As shown in [5], a matroid is connected if and
only if it is 1-connected. We write gk(M) for the set of separations which are
good in Sk. As noted in the introduction, the decomposition of a matroid
along its 2- separations from [1] will become important. We shall only state
part of it here, for which we need some definitions. Later, we will also need
a key lemma from the proof.

Proposition 2.3. If M is connected, then for any infinite chain (Ai, Bi)i∈I
of good separations of M , the intersection of the Bi is empty. In particular,
there are no ω + 1-chains of good separations.
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A tree decomposition of a matroid is a pair of a tree T and a (possibly
trivial) partition (Rv)v∈V (T ) of subsets E such that for any edge e of T the
partition of the edges that has two edges f ∈ Rv and g ∈ Rw on the same side
if and only if v and w lie in the same component of T − e always corresponds
to an unordered separation, the induced unoriented separation of e. If these
are always k-separations, we say that it has uniform adhesion k. We call the
Rv the parts of the tree decomposition.

For the rest of this section fix a tree decomposition D = (T, (Rv)v∈V (T )).
Let φv for some v ∈ V (T ) be the function mapping any subset X of M to
X ∩Rv together with vw for every w such that X meets some Rz where z is
in the component of T − vw containing w. The authors prove that for any
v ∈ V (T ) there is a matroid on the set consisting of Rv together with all
the edges of T adjacent with v, which has as its circuits all those sets φv(C)
for a circuit C of M that are not singleton edges outside Rv. This is called
the torso Mv of that Rv. For the rest of this subsection assume M to be
connected and E to have at least three elements. We are now able to state
the existence of their decomposition.

Theorem 2.4. There exists a tree decomposition of uniform adhesion 2 of
M such that any torso Mv of it is 3-connected, a circuit or a cocircuit and
such that the union of all the induced unordered separations of the edges of
T is the set of good separations of M .

We will also need a special case of [1, Lemma 4.11], for which we will
assume D to be as in Theorem 2.4.

Lemma 2.5. Let (F, F c) be a 2-separation of M and v ∈ V (T ). If |φv(F )| ≥
2 and |φv(F )c| ≥ 2, then (φv(F ), φv(F

c)) is a 2-separation of Mv.

We obtain the following corollary.

Corollary 2.6. Let (F, F c) be a 2-separation of G that is not good. Then
there exists some v ∈ V (T ) such that (φv(F ), φv(F

c)) is a 2-separation of
Mv.

Proof. Since (F, F c) is not good, there must exists some v ∈ V (T ) meeting
both F and F c. But since it cannot cross any good separations, such a v
must be unique. But then |φv(F )| ≥ 2 and |φv(F )c| ≥ 2, since (F, F c) is a
2-separation and we are done by Lemma 2.5.
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2.3 Graph-like spaces

A graph-like space, as defined in [3], is a topological space G together with a
vertex set V , an edge set E and a continuous map tGe : [0, 1] 7→ G for every
e ∈ E satisfying the following conditions:

1. V and (0, 1)× E are disjoint.

2. The underlying set of G is V ∪ (0, 1)× E.

3. {tGe (0), tGe (1)} ⊆ V for every e ∈ E.

4. {tGe (x);x ∈ (0, 1)} ⊆ (0, 1)× {e} for every e ∈ E

5. te(G) restricted to (0, 1) is an open map for every e ∈ E.

6. For v, w ∈ V there exist disjoint open subsets U,U ′ of G such that
v ∈ U , w ∈ U ′ and V (G) ⊆ U ∪ U ′.

In this subsection G will always be a graph-like space. For an edge e of G
we call (0, 1)× e the set of inner points of e and write G− e for the subspace
obtained by deleting these points. We will write V (G) for the vertex set
and E(G) for the edge set of G. We call tGe (0) and tGe (1) the endvertices
of an edge e and call e a loop if they are the same. Two edges are called
parallel if they have the same endvertices. For a set of edges E we write
V (E) for the set of endvertices of edges in E. A map of graph-like spaces is
a continuous map from G to a graph-like space H that arises from a map
φV : V (G)→ V (H) and a map φE : E(G)→ V (G)∪ (E(G)×{+,−} (where
+ and − are chosen such that this is a disjoint union) by mapping any vertex
as in φV and any inner edge point (x, e) to φE(e) if that is a vertex, to (x, f)
if φE((x, e)) has the form (f,+) and to (1− x, f) if it has the form (f,−).

A graph-like subspace H of G is a graph-like space such that its topological
space is a subspace of that of G, its vertex and edge sets are subsets of those
of G and the map for any edge of H is the same as the map for the same
edge in G. An important example of a graph-like subspace is G[X], the
graph-like subspace of G induced by X, for some X ⊆ V (G), which is defined
as the graph-like space obtained from G by deleting all vertices in V (G) \X
and all edges that do not have both endvertices in X. Another example is
the graph-like subspace of G induced by F for some edge set F , which is the
graph-like space obtained from G by restricting to the closure of F .

We call a compact, topologically connected graph-like subspace A of G
a pseudo-line (with endvertices x, y ∈ V (A)) if for every edge e the vertices
x and y are contained in different topological components of A − e and
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for every v, w ∈ V (A) there exists some edge f such that v and w are in
different topological components of G− f . A map of graph-like spaces from
a pseudo-line L to G is called a pseudo-path between the images of the
endpoints of L, an injective such map is a pseudo-arc. We will call the images
of the endvertices of L endvertices of the pseudo-path. Given two pseudo-
lines and a pair of one endvertex of each their concatenation is the space
obtained by taking their direct sum and identifying the two given vertices.
This is again a pseudo-line by [3]. Given two pseudo-paths f : L→ G and
g : M → G such that f(x) = g(y), where x and y are endvertices of their
respective pseudo-lines, their concatenation is given by the function from
the concatenation of L and M at x and y that agrees with f and g on their
domains. Clearly this is a pseudo-path.

The space G is pseudo-arc connected if there exists a pseudo-arc between
any two vertices of G. A pseudo-arc component with respect to pseudo-arcs
is a maximal vertex set X such that G[X] is connected.

Since pseudo-arc connectedness will play a much more important role in
this thesis than topological connectedness for reasons that will become clearer
in the section about separations, we will depart from standard usage in that
whenever we speak of connectedness or components in graph-like spaces it
is meant with respect to pseudo-arcs if not stated otherwise. Furthermore,
we will say that some set of vertices X separates two others A and B if
there is no pseudo-arc between any a ∈ A and b ∈ B not meeting X and
similarly a set of edges E separates them if this hold for its set of inner points.
A pseudo-cycle is the union of two pseudo-lines with the same endvertices
which are otherwise disjoint.

Given sets X and Y in a topological space H with some designated set
V an (X,Y )-witness in H (with respect to V ) is a pair (U,W ) of disjoint
open sets in H such that X ⊆ U , Y ⊆W and V ⊆ U ∪W . A witness in H
(with respect to V ) is just any (X,Y )-witness for nonempty subsets X,Y
of V . Clearly the sixth condition for graph-like spaces is equivalent to the
existence of an (X,Y )-witness (with respect to the vertex set) for all finite
vertex sets (X,Y ). For graph-like spaces it is always assumed that witnesses
and (X,Y )-witnesses are with respect to their vertex set. In a graph-like
space a cross-edge of a witness (U,W ) is an edge with an endvertex in both
U and W .

A topological cut in G is a set of edges F such that there exists a witness
(U,W ) in G with F as its set of cross-edges. A graph-like space G induces a
matroid M if the edge sets of pseudo-cycles of G are exactly the circuits of
M and the minimal topological cuts of G are exactly the cocircuits of M .
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To define a contraction in G let first ≡C for some edge set C be the
equivalence relation on V (G) such that u ≡C v for u, v ∈ V (G) if and only
if the set of crossing edges of every ({u}, {v})-witness meets C. Then the
function fC mapping each vertex of G to its equivalence class, all inner edge
points of edges within an equivalence class to that class and every other
point to itself defines a quotient topology, which is a graph-like space with
the set of equivalence classes as vertex set and the edges not in C as edge
set. We say that this graph-like space is obtained from G by contracting C.

We will need the following three results from [3], [4] and [9] respectively.

Lemma 2.7. Any pseudo-line is the closure of its inner points of edges.

Theorem 2.8. Every compact graph-like space induces a matroid.

Theorem 2.9. If G is compact and topologically connected G is connected.

A tree-like space, as defined in [9], is a compact graph-like space, such
that between any two vertices there is a unique pseudo-line. We will write
LT (s, t) for the unique pseudo-line between s and t in a tree-like space T .

The fact that for purposes of connectivity pseudo-arcs and pseudo-paths
are equivalent concepts will often prove useful. To prove this, we will add an
edge to our graph-like space. Thus for any set X of pairs of different elements
of V (G) we will write G⊕X for some fixed graph-like space constructed by
choosing any family (ex)x∈X not meeting E(G), forming the sum of G and
[0, 1] × {ex;x ∈ X} and identifying (0, ex) and (1, ex) arbitrarily with the
two elements of x.

Proposition 2.10. If there is a pseudo-path f from x ∈ V (G) to y ∈ V (G)
in G, there is a pseudo-arc from x to y in G, whose image is contained in
the image of f .

Proof. The image of f is a compact graph-like space. Therefore X =
G⊕ {x, y} is compact. Then X induces a matroid by Theorem 2.8. Assume
first that e is a coloop in M . Then there must be some topological cut (A,B)
such that e is the only edge with an endvertex in A and B. Adding the inner
points of any other edge to the side its endvertices lie on and restricting
to X − e gives open sets A′ and B′ partitioning X − e, but this space is
connected. Therefore, there exists some cycle C in M containing e. Let g
be an isomorphism of graph-like spaces between some pseudo-circle P and a
subgraph-like space containing exactly the edges of C and let f be the edge
of P mapped to e. Then the restriction of g to P − f is a pseudo-arc from x
to y contained in the image of f .
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This also implies that no two components can share a vertex since then
their union would easily be seen to be connected by concatenating pseudo-
arcs. By Zorn’s Lemma every vertex is contained in some component, so the
components partition the vertices, as we would expect. We can also use this
to obtain a sort of decomposition into pseudo-cycles of two pseudo-arcs with
the same endvertices, similar to the one of a closed walk into circles for a
finite graph.

Corollary 2.11. If there are two different pseudo-lines L1 and L2 from
x ∈ V (G) to y ∈ V (G), then for any e ∈ E(L1) 4 E(L2) there exists a
pseudo-cycle in G containing e and using only edges of L1 and L2.

Proof. Let e be any edge of L1 not contained in L2. Let a be its endpoint
closer to x in L1 and b the other. Concatenating the segment of L1 from a
to x, the whole of L2 and the segment of L2 from y to b gives a pseudo-path
from a to b not using e. By Proposition 2.10 the result follows.

Often times in this thesis, when the compactness of pseudo-lines is used,
it is only the following key consequence of it that is necessary.

Lemma 2.12. Any linearly ordered ascending net in a pseudo-line converges
to its supremum.

Proof. Since pseudo-lines are compact, the net A has a convergent subnet B.
Then B can clearly only converge to the supremum of A. Since A is linearly
ordered and ascending, A must do the same.

We can use this to prove statements treating pseudo-arcs basically as if
they were paths in graphs, as in our proof of the finite Menger’s theorem for
pseudo-arcs in the next section and the following lemma, which we shall need
later to show that a certain contraction minor of a matroid is connected. For
concatenations of segments of pseudo-lines we will use the same notation as
we would for paths in graphs.

Lemma 2.13. Let v, w ∈ V (G) such that G − v − w is connected and let
L1 and L2 be two pseudo-lines with endvertices v and w. Then for any
e1 ∈ E(L1) and e2 ∈ E(L2) with V (ei) 6= {v, w} for 1 ≤ i ≤ 2 there exists a
pseudo-line with endvertices v and w containing e1 and e2 or a pseudo-cycle
containing e1 and e2, but not both v and w

Proof. If either e1 or e2 is contained in both pseudo-lines, we are done.
First, we will consider the case that L1 and L2 are disjoint except for v

and w. Choose a pseudo-line L between L1 and L2 avoiding v and w. By
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Lemma 2.12 L has a last vertex x in L1 and a first vertex after x in L2, which
we call y. If e1 and e2 are both closer to v than x and y, then we obtain
a cycle vL1xLyL2v avoiding w containing both e1 and e2. If e1 is closer to
v than x and e2 is closer to w than y we obtain a pseudo-line vL1xLyL2w
from v to w. The other two possibilities are analogous.

Now let us consider the case in which L1 and L2 are not disjoint. By
Lemma 2.12 there is a vertex x of L1 closest to w on L2 before e2 and a
vertex y of L1 on L2 closest to v that is closer to w than e2. We have x 6= v
or y 6= w by assumption. If e1 is in the segment of L1 between x and y, then
xL2yL1x is a pseudo-cycle as required. Otherwise w.l.o.g. e1 is closer to v
than both x and y. If x is closer to v on L1 than y then V L1xL2yL1 is a
pseudo-line as required. The other case is symmetrical.

Since we want to work with separations based on vertices, which cannot
completely capture the conncectivity of multigraphs, it is useful to restrict
ourselves to some analogue of simple graphs. Thus we call a graph-like
space simple if it has no multiple edges or loops. A simple subgraph-like
space H of G is a simplification of G if their vertex-sets are the same and
any edge missing from H is a loop or parallel to an edge of H. Unlike for
graphs, however, this operation does not necessarily leave the components
unchanged.

Example 2.14. Consider the curve f(t) = (t, 0) for t ∈ [0, 1] and the
curve g defined piecewise as g(t) = (t, 1 − 2n+2|t − (1 − 3 · (1/2)n+2)|) for
t ∈ [1 − (1/2)n, 1 − (1/2)n+1] where n ≥ 0 and g(t) = (1, 0) for t = 1. Let
A and B be their respective images. Then [0, 1]2 restricted to A ∪ B is
a graph-like space G with vertex set V = (A ∩ B) ∪ {(1, 0)} and edge set
E = Ef ∪Eg, where Ef and Eg correspond to the sections between successive
vertices on f and g, respectively. Let H be the simplification of G obtained
by deleting Ef . Clearly, the edges in Ef define a pseudo-line from (0, 0) to
(0, 1). However, any such pseudo-line in H would need to contain all the
edges in Eg, but then it would not be closed in [0, 1]2 and thus not compact.

If a graph-like space is well-behaved enough to allow us to subdivide
edges, we can however use this to obtain a simple graph-like space preserving
the components. Because we view graph-like spaces through the lens of
their pseudo-arcs, it will be useful to have a notion of closure based only
on pseudo-arcs. We call a graph-like subspace H of G pseudo-arc closed if
every pseudo-arc in G starting in H has a last vertex mapped to H. For this
notion to be helpful to us, some pseudo-arc closed sets should naturally occur
in our decompositions. Indeed, since our decompositions will be based on
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Figure 1: Example 2.14

separations whose separators are finite sets of vertices, the following lemma
shows this.

Lemma 2.15. Any graph-like subspace H of G such that there exists some
closed set X of vertices such that any pseudo-arc from H to its complement
meets X is pseudo-arc closed.

Proof. Let f : P → G be any pseudo-arc starting in H. If it ends in H then
its last vertex is its last vertex in H. Otherwise let Z be the set of vertices
of P mapped to X. Let z be the supremum of Z. Then by Lemma 2.12
f(z) ∈ X. Since the segment of f starting at z does not meet X again, it
cannot meet H either, so z is the last vertex of f mapped to H.

It would be very useful if pseudo-arc closed spaces automatically turned
out to be closed. This clearly cannot be the case, since we can consider any
topologically totally disconnected space as an edgeless graph-like space, but
for our purposes the following will suffice.

Lemma 2.16. If G is compact and H is a pseudo-arc closed graph-like
subspace with finitely many topological components, then H is closed.

Proof. Assume that there is some x ∈ H̄ \H. This must clearly be a vertex.
Since H has finitely many components, there exists some component C of H
such that x ∈ C̄. Since C is topologically connected, so is C̄. Then C̄ is a
topologically connected, compact graph-like space, so by Theorem 2.9 it is
pseudo-arc connected. Therefore there is some pseudo-line L with x as one
endvertex and one endvertex in C that is contained in C̄. Since inner points
of edges are never in the closure of graph-like subspaces that don’t already
contain them, all edges of L are contained in H. Since H is pseudo-arc
closed, there is a vertex h of H closest to x. Clearly, c 6= x. But then the
part of L between h and x is a nontrivial pseudo-line containing no edges,
contradicting Lemma 2.7.
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2.4 Ultrafilter limits

To aid the reconstruction efforts mentioned before, some standard topological
tools are needed, in particular a method of taking limits that chooses among
different limit points.

For this section let D be a directed set, U an ultrafilter on D and X a
topological space. We call U cofinal if every U ∈ U is cofinal in D.

For a family (Xd)d∈D of subsets of X we define its (ultrafilter) limit (with
respect to U) limU (Xd)d∈D as the set of all those x ∈ X such that for every
open neighborhood V of x we have {d ∈ D;V ∩ Xd 6= ∅} ∈ U . This is a
known generalization of the limits of ultrafilters discussed in sources like [10].

For this to be a useful concept, it should relate in some way to the usual
limits. Indeed, ultrafilter limits encompass all the possible limits of subnets.

Lemma 2.17. A point x ∈ X is a limit point of a net (xd)d∈D if and only if
there exists some cofinal ultrafilter V such that x ∈ limV({xd})d∈D. A point
x ∈ X is the limit of a net (xd)d∈D if and only for all cofinal ultrafilters V
we have x ∈ limV({xd})d∈D.

Proof. For the forward direction of the first statement let F be the filter
generated by {d ∈ D;xD ∈ V } for open neighborhoods V of x and all
complements of noncofinal subsets. Clearly, all the sets in F are cofinal, so
in particular they are nonempty. Then let V be an extension of F to an
ultrafilter. This is a cofinal ultrafilter and x ∈ limV({xd})d∈D by definition.
For its backward direction, if x ∈ limV({xd})d∈D for some cofinal ultrafilter
V , then {d ∈ D;xd ∈ V } is cofinal in D for every open neighborhood V of x,
so x is a limit point of (xd)d∈D.

The forward direction of the second statement is immediate from the fact
that the complement of any set eventually containing D is not cofinal. To
prove its backward direction, assume that x is not the limit of (xd)d∈D. Then
there exists some open neighborhood V of x such that Z = {d ∈ D;xd /∈ V }
is cofinal. The set Z together with the complement of any set that is not
cofinal generates a cofinal filter, which can be extended to a cofinal ultrafilter
V. By construction x /∈ limV({xd})d∈D

The proof of the following lemma is based on [10, Theorem 3.48].

Lemma 2.18. Let (Xd)d∈D be a family of subsets of X. If X is Hausdorff
and {d ∈ D; |Xd| ≤ 1} ∈ U , then limU (Xd)d∈D has at most one element. If
X is compact and {d ∈ D;Xd 6= ∅} ∈ U then limU (Xd)d∈D has at least one
element.
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Proof. For the first statement let U = {d ∈ D; |Xd| ≤ 1} and let x 6= y ∈
limU(Xd)d∈D. Since X is Hausdorff, there are open neighborhoods V1 of x
and V2 of y that are disjoint. Let Ui = {d ∈ D;Xd ∩ Vi 6= ∅} for i ∈ {1, 2}.
By definition these are contained in U and thus so is U1∩U2. By disjointness
we have U1 ∩ U2 ⊆ U c, so U /∈ U .

For the second statement let U = {d ∈ D;Xd 6= ∅} and let (xd)d∈U
be a choice of one element of each Xd. If limU(Xd)d∈D is empty, then by
definition we may choose for each x ∈ X an open neighborhood Vx such that
Ux := {d ∈ D;Vx ∩Xd = ∅} ∈ U . Since X is compact this open cover has a
finite subcover Vy1 , . . . , Vyn . Then U c = Uy1 ∩ · · · ∩ Uyn ∈ U , so U /∈ U .

In compact Haussdorf spaces being a continuum (closed and connected)
is preserved under taking ultrafilter limits.

Proposition 2.19. If X is compact and Hausdorff and (Xd)d∈D is a family
of closed, connected subsets of X, then limU (Xd)d∈D is closed and connected.

Proof. We will write Y for limU (Xd)d∈D. For any point x in the closure of
Y any of its open neighborhoods V contains a point y ∈ Y . Thus V is also a
neighborhood of y. We then have {d ∈ D;V ∩Xd 6= ∅} ∈ U and so x ∈ Y .
This proves that Y is closed. Now assume that Y is disconnected. Then
there are nonempty closed sets Y1 and Y2 partitioning Y . Since X is compact
and Hausdorff, X is normal. Thus there are disjoint open sets V1 and V2
containing Y1 and Y2 respectively. Because V1 and V2 are open neighborhood
of points in Y we have Ui := {d ∈ D;Vi ∩ Xd} ∈ U for i ∈ {1, 2}. Let
Zd = Xd \ (V1 ∪ V2). We have Zd 6= ∅ for all d ∈ U1 ∩ U2 by the connectivity
of Xd. Thus by Lemma 2.18 limU(Zd)d∈D is nonempty, but it must be a
subset of Y by definition of the ultrafilter limit. W.l.o.g. there exists a
z ∈ Y1 ∩ limU (Zd)d∈D. But V1 is a neighborhood of z not meeting any Zd, a
contradiction.

This means that the limit of edge-disjoint continua in a compact graph-
like space can only be a single vertex, where a family of subsets of a graph-like
space is edge-disjoint if no two of them contain inner points of the same edge.

Corollary 2.20. If G is a compact graph-like space, D is unbounded, U is
cofinal and (Xd)d∈D is a family of closed, connected edge-disjoint subsets of
G, then limU (Xd)d∈D is a single vertex.

Proof. By Proposition 2.19 limU(Xd)d∈D is connected. If it is not a single
vertex, it contains an inner point p of an edge e, since V (G) is totally
disconnected. But then by Lemma 2.17 it is the limit of a net of points of
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which at most one is an inner point of e, contradicting the fact that p has
an open neighborhood consisting only of inner points of e.

3 Menger’s theorem for pseudo-arcs

As promised, we will give a proof of a finite version of Menger’s theorem for
pseudo-arcs in graph-like spaces by treating pseudo-arcs as though they were
paths. The details of the proof closely follow the third (augmenting paths)
proof of Menger’s theorem in [7]. The augmenting arcs method in graph-like
spaces was first used in [12].

Since the proofs this is based on often refer to the degree of vertices, we
need an equivalent. This will be number of directions at a vertex, where
a direction at a vertex v in a graph-like space G is an equivalence class of
nontrivial pseudo-lines with v as an endvertex, two such pseudo-lines being
equivalent if there exists another such pseudo-line that is contained in both.
A leaf of a tree-like space is a vertex at which there at most one direction.
The following lemma is a translation of a trivial fact for graph-theoretical
trees.

Lemma 3.1. Any tree-like space with an edge has at least two leaves.

Proof. Given a tree-like space T , let P be the set of all pairs (v, d), where
v ∈ V (T ) and d is a direction at v. We define a relation on P by setting
(v, d) ≤ (w, e) for (v, d) and (w, e) in P if any element of d can be obtained
from one of e by deleting its segment from w to v. Clearly ≤ is reflexive and
transitive.

To prove that it is antisymmetric, let us assume that (v, d) ≤ (w, e)
and (w, e) ≤ (v, d). If v = w, then also d = e. So we may assume that
v 6= w. Since (w, e) ≤ (v, d) there must be some L ∈ d meeting w. But then
this pseudo-line cannot be obtained from one with w as an endvertex, a
contradiction. Thus ≤ is a partial order.

Let us first prove that T has a leaf using Zorn’s Lemma. So let C be any
chain in P . If C is empty, then any direction is an upper bound and one
exists because T has an edge, so we may assume that C is nonempty. Since
T is compact, the net (v)(v,d) ∈ C has a limit point x. Since T is a tree-like
space, the unique pseudo-lines L(v,d) between x and v where (v, d) ∈ C are
all contained in the same direction at x. So if x is not a leaf already, there is
some other direction e at x. Since the elements of e meet Lv only at x the
concatenation of L(v,d) and any of them is contained in d and so (v, d) ≤ (x, e).
By Zorn’s Lemma, P has a maximal element (y, f). Now if there was another

14



direction g at y then for any G ∈ g, the other endvertex of G together with
the direction of G at that vertex would contradict maximality. Thus y is the
desired leaf.

Now we know that T has some leaf y, which gives us some maximal
element (y, f) of P . Let P ′ be the subset of P that is not below (y, f). The
other endvertex of any element F of f , together with the direction of F at
that vertex is an element of P ′, so the empty chain still has an upper bound.
For any other chain the construction before still gives an upper bound, since
it cannot lie below (y, f) if the elements of C do not. Thus P ′ has a maximal
element (z, h) and it is a leaf as before. Since y is a leaf, y 6= z and so T has
two leaves.

Let us now fix a graph-like space G, subsets A,B ⊆ V (G) and a finite set
of disjoint pseudo-arcs P from A to B. For these we can now formulate an
equivalent to alternating paths in graphs. We call a pseudo-path f : L→ G
alternating if it satisfies the following conditions:

1. It starts in A \ V (P).

2. No two edges of L are mapped to the same edge.

3. For any edge e contained in both f(L) and an element p of P the
endvertices of e are ordered differently in f and p.

4. We have |f−1(v)| ≤ 1 for any vertex v /∈ V (P).

5. If we have f(l) = v for some v ∈ V (P) and l ∈ V (L) such that v is
not the final vertex of f then there exists a one-sided interval at l such
that f is injective on it and in its image there is a connected part of
some p ∈ P.

Let us first prove that these pseudo-paths are actually augmenting.

Lemma 3.2. If there is an alternating pseudo-path f ending in B \ V (P),
there exists a set of disjoint pseudo-arcs Q from A to B with |Q| > |P|.

Proof. Let T be the union of the images of f and the elements of P. Since
this is a finite union, T is compact. Let T ′ be the subspace of T induced
by E(P)4 E(f(L)). Then T ′ is closed and thus also compact and so are
the topological components of T ′. By Theorem 2.9 they are then pseudo-arc
connected.

Let A′ be the set of starting vertices of f and the p ∈ P and B′ the set
of their ending vertices. Now consider the set Q of those components of T ′
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meeting A′ ∪ B′. Since there is only one direction in T ′ at any vertex of
A′∪B′, these vertices cannot be contained in a pseudo-cycle. But since there
are no more than two directions at any vertex of T ′, there indeed cannot be
a pseudo-cycle contained in any element of Q, since there would need to be
a pseudo-arc from that pseudo-cycle to any vertex not contained in it. Thus
Q is a set of tree-like spaces.

Let Q ∈ Q be given. Since there is at least one direction at any vertex,
Q has an edge. By Lemma 3.1 Q then has two leaves q1 and q2. Any
vertex of Q must be contained in LT (q1, q2) since otherwise there would be a
pseudo-line between them, contradicting the fact that there are no more than
two directions at any vertex of T ′. Thus Q is indeed a set of pseudo-lines and
since there is just one direction at its endvertices, they must be contained in
A′ ∪B′. In particular |Q| > |P|.

Now it suffices to show that no element of Q has both endvertices in A′

or B′. Assume for a contradiction that q ∈ Q is a pseudo-arc from x to y
and let p1 and p2 be the elements of P containing x and y respectively. By
Lemma 2.12 q has a last vertex a on p1 and a first vertex after a on p2. Then
there exists an interval I ⊆ L such that f(I) is a pseudo-path between a and
b. But no matter in which order f traverses a or b, by the fifth condition
it would have to traverse an edge of p1 or p2 in the same order as in its
pseudo-arc, contradicting the third condition.

Now it suffices to show that if augmentation fails, we can find an appro-
priate separator.

Lemma 3.3. If there is no alternating pseudo-path ending in B \ V (P),
there exists a choice of one vertex from each element of P separating A and
B.

Proof. For every p ∈ P let xp be the supremum in p of the set of all vertices
v such that there exists an alternating pseudo-path ending in v and let X be
the set of these vertices. We claim that X separates A and B.

Let us assume for contradiction that there exists a pseudo-arc f from A
to B avoiding X. From Lemma 2.12 and the fact that f does not alternate
we know that f has a first vertex in V (P ), which cannot appear after xp
in the ordering of its pseudo-arc. The subspace S induced by the parts of
all the p ∈ P until xp is closed and f meets it by the above argument, so
by Lemma 2.12 f has a last vertex y in S, which lies on some r ∈ P. Since
f avoids X, y 6= xr, so there exists a z on r after y such that there is an
alternating pseudo-path g that ends in z.
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Let z′ be the first vertex of g on the segment of r between z and y and
let g′ be the segment of g until z′ followed by the reversed segment of r until
y. Then g′ is alternating pseudo-path ending in y. Since g′ meets V (P) only
in S and y is the last vertex of f in S, the part of f after y can meet g′ only
outside of V (P). If it does not, then let g′′ be the concatenation of these
two pseudo-paths. If it does, then let c be the infimum in g′ of those l in its
preimage such that g′(l) lies on the part of f after y. Then g′(c) is contained
in the part of f starting from y. Let g′′ be the concatenation of g′ until c
and f starting from its last occurence of g′(c).

In both cases, g′′ satisfies the conditions of an alternating pseudo-path in
so far as the subspace S is concerned. But it cannot meet the parts of each
r ∈ P starting from xr because if it did meet this closed space, it would have
a first vertex s in it by Lemma 2.12 and then s would contradict the choice
of X, so indeed g′′ is alternating with respect to P.

Corollary 3.4. For any natural number k the sets A and B can be separated
by at most k vertices if and only if there is no set of k+1 disjoint pseudo-arcs
from A to B.

Proof. The forward direction is trivial. For the other direction, assume that
there is no set of k + 1 disjoint pseudo-arcs from A to B. Let P be a set of
disjoint pseudo-arcs from A to B of maximal size. Then Lemma 3.2 implies
that there can be no alternating pseudo-path ending in B \ V (P), so by
Lemma 3.3 there is a set of vertices of size |P| ≤ k separating A and B.

Motivated by the fact that for graph-like spaces inducing matroids only
the vertices contained in a pseudo-cycle matter for the matroid, we call a
graph-like space G irredundant if every vertex of G is contained in some
pseudo-cycle.

For these spaces, we can deduce from Menger’s theorem that if no vertex
disconnects them, then every two vertices are contained in a common cycle.
Indeed, first we obtain a fan version of Menger for k = 2 by applying Menger
with the single vertex replaced by a pseudo-cycle.

Corollary 3.5. Let G be an irredundant graph-like space and let v be a
vertex such that G− v is connected. Then v can be separated from a set of
vertices B not containing v by a vertex w 6= v if and only if there is no set
of two pseudo-arcs from v to B that are disjoint except for v.

Proof. Let C be some pseudo-cycle including v. By Corollary 3.4 there exists
either a vertex w 6= v separating B and C or two disjoint pseudo-arcs from
B to C. In the first case we are done, so let f and g be two such pseudo-arcs.
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Since C is compact, f and g have last vertices on C. Since these are different,
we can add segments of the pseudo-cycle disjoint except for v to obtain the
required pseudo-arcs.

Afterwards we apply this version to our two vertices by again replacing
one of them with a pseudo-cycle.

Corollary 3.6. Let G be an irredundant graph-like space and let v 6= w be
vertices such that G− v and G− w are connected. Then v can be separated
from w by a vertex z /∈ {v, w} if and only if there is no set of two pseudo-arcs
from v to w that are disjoint except for v and w.

Proof. Let C be some pseudo-cycle including w. By Corollary 3.5 there exists
either a vertex z 6= v, w separating v and C or two disjoint pseudo-arcs from
v to C. In the first case we are done, so let f and g be two such pseudo-arcs.
Since C is compact, f and g have last vertices on C. Since these are different,
we can add segments of the pseudo-cycle disjoint except for w to obtain the
required pseudo-arcs.

4 Separations

In order to apply the theory of separation systems explained above, we
need a notion of separation for graph-like spaces. In analogy to the vertex
separations of graphs, which can be defined as pair of sets of vertices, which
together cover all of them, such that there is no finite path from one of them
to the other avoiding their intersection, given a graph-like space G for us a
separation is a pair (A,B) of subsets of V (G) with A ∪B = V (G) such that
every pseudo-arc from A to B meets A ∩ B. Its order |(A,B)| is |A ∩ B|.
We will call a separation of order k a k-separation.

As stated before, we will only consider simple graph-like spaces, so we
can define a simple graph-like space to be k-connected if and only if every
l-separation for any l < k is small and avoid making exceptions for loops and
double edges. Then clearly G is 1-connected if and only if any two vertices
can be connected by a pseudo-arc.

As usual for separations of this form, we define the inverse (A,B)∗ of a
separation (A,B) as (B,A) and a relation ≤ between separations as follows:
(A,B) ≤ (C,D) if and only if A ⊆ C and D ⊆ B. Clearly, if (A,B) is a
k-separation, then so is (B,A). Thus ∗ is an involution on the set of k-
separations. By definition of ≤, ∗ is also order-reversing, i.e. (A,B) ≤ (C,D)
if and only if (C,D)∗ ≤ (A,B)∗. Define Sk(G) for each finite k as the set of
all k-separations of G. Then (Sk,≤,∗ ) is a separation system.
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A separation is small if and only if one side contains every vertex of G.
We call such separations improper and the other separations proper. We will
write gk(G) for the set of good separations of Sk. By definition gk forms a
regular tree set. A basic criterion for a sensible definition is the existence of
meets and joins. Indeed, for finite order separations there are always meets
and joins of finite order.

Lemma 4.1. Let (A,B) and (C,D) be finite order separations. Then (A ∪
C,B ∩D) is a finite order separation.

Proof. We have (A∪C)∩ (B ∩D) = (A∩B ∩D)∪ (C ∩B ∩D) ⊆ V (G) and
since any point that is not contained in A or C must be contained in both B
and D we also have (A ∪ C) ∪ (B ∩D) = G. Thus, if (A ∪ C,B ∩D) is not
a separation, then there must be some pseudo-arc f from some y ∈ A∪C to
some z ∈ B ∩D not meeting (A ∪ C) ∩ (B ∩D).

Since (A ∩ B) ∪ (C ∩ D) is finite and f crosses at least one of (A,B)
or (C,D) there is some last x on f . This gives a pseudo-arc g from x to z
avoiding one of A ∩B and C ∩D, which therefore must lie completely in D
or B, respectively. Therefore, z ∈ (A∩B∩D)∪ (C ∩B∩D), a contradiction.

Furthermore, since (A∪C)∩ (B∩D) ⊆ (A∩B)∪ (C ∩D), (A∪C,B∩D)
has finite order.

As for tree decompositions in graphs, the parts of our decompositions will
be obtained as an intersection of the second components of all separations
belonging to some orientation and it will be useful to have a short notation
for this. Thus for any set o of separations of a graph-like space we will write
Po for the set

⋂
(A,B)∈oB.

Since we want the decomposition to display the connectivity of the graph-
like space, it would be problematic for a part that lies between nonempty
parts to be empty. Fortunately, this does not happen.

Lemma 4.2. Let C be a chain of finite order separations in some 1-connected
graph-like space G, such that PC and PC∗ are nonempty. Then for any
partition (C1, C2) of C with c1 < c2 for all (c1, c2) ∈ C1 ×C2 the set PC1∪C∗2
is nonempty.

Proof. Let a ∈ P ∗C and b ∈ PC be given and let f be a pseudo-arc from a
to b. Clearly, the image of f must meet A ∩ B for every (A,B) ∈ C1. Let
x(A,B) be the last vertex on f in A ∩ B and let x be their supremum. By
choice of the x(A,B) we have f(x) ∈ B for all (A,B) ∈ C1. Now it suffices to
show that f(x) ∈ E for all (E,F ) ∈ C2.
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Assume for contradiction that f(x) ∈ F −E. Then f must meet E ∩ F
somewhere before x, let y be the last such point. Since y < x, there must
be some x(A,B) between them. But then x(A,B) ∈ E − F , contradicting
(A.B) < (E,F ).

Now we will investigate the connectivity of the sides of separations that
have the lowest order possible in G. For these, making the separator complete
suffices to give its sides the same connectivity as the original space.

Proposition 4.3. Let (A,B) be a proper k-separation in a k-connected graph-
like space space G for some finite k. Then G[A]⊕ {{v, w}; v 6= w ∈ A ∩B}
and G[B]⊕ {{v, w}; v 6= w ∈ A ∩B} are k-connected.

Proof. By symmmetry it suffices to prove this for A. Let (C,D) be an
proper l-separation for l < k of G[A] ⊕ {{v, w}; v 6= w ∈ A ∩ B}. Since G
is k-connected there is some pseudo-arc f from C to D avoiding C ∩D in
G. Replacing each segment of f between two elements v and w of A ∩ B
such that there is no x ∈ A ∩B between v and w on f with the edge added
between them makes this into a pseudo-arc in G[A]⊕{{v, w}; v 6= w ∈ A∩B}
because replacing a segment of a pseudo-line between two vertices with a
single edge always leaves a pseudo-line. This contradicts the fact that (C,D)
was a separation.

To apply this to the space we started with we need some relation between
the separations of some space and that space with some edges added.

Lemma 4.4. If (A,B) is a separation of G and X is a finite set of pairs,
whose union is contained in A or B, then (A,B) is a separation of G⊕X.

Proof. By symmetry we may assume w.l.o.g. that
⋃
X ⊆ A. It suffices to

show that (A,B) is a separation of G⊕X. If not, there is some pseudo-arc f
from A to B avoiding A ∩B. Let x be the supremum of the points mapped
to inner points of new edges. Then f(x) ∈ A and f restricted to its points
from x to its end in B is a pseudo-arc in G from A to B avoiding A ∩B, a
contradiction.

Together these place a helpful restriction on the separations occuring in
the sides of these maximum order separations.

Corollary 4.5. Let (A,B) be a proper k-separation in a k-connected graph-
like space space G for some finite k. Then any proper l-separation (C,D) of
A or B for l < k has a vertex of A ∩B in C \D and D \ C.
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Proof. By symmetry, it suffices to prove this for A. Let (C,D) be a proper
separation not satisfying this. By Lemma 4.4 this can then be extended to a
separation of A⊕{{v, w}; v 6= w ∈ A∩B}, contradicting Proposition 4.3.

It may perhaps seem more straightforward to use as separations topological
separations, i.e. pairs (A,B) of vertex sets of some graph-like space G such
that A ∪ B ⊇ V (G) and such that no topological component G − (A ∩ B)
meets both A and B with order and involution defined as before. The
following example, however, shows that chains of topological separations
in topologically connected simple graph-like spaces do not necessarily have
suprema even when they do have upper bounds, whereas we will see later that
this does not occur for our separations in simple graph-like spaces connected
in our sense, a feature that will be used heavily in our proofs.

Example 4.6. Let V = ω×2×2∪({ω}×2}, E1 = {((a, 0, b), (a+1, 0, b)); a ∈
ω, b ∈ 2}, E2 = {((a, 0, b), (a, 1, b)); a ∈ ω, b ∈ 2} and E = E1 ∪ E2.

Let vε for some v ∈ V and 0 < ε ≤ 1 consist of v together with (0, ε)×{e}
for all e ∈ E with v as their first component and (1− ε, 1)×{e} for all e ∈ E
with v as their second component. Let τ∗ be the set of open intervals of edges
e and let τv for v ∈ ω×2×2 be the set of all vε for 0 < ε ≤ 1. Furthermore, let
τ(ω,i) = {{(ω, i)} ∪

⋃
k>n;b∈2 τ

ε
(k,i,b) ∪

⋃
e∈F (n,i)(0, 1)× {e};n ∈ ω; 0 < ε ≤ 1}

for i ∈ 2, where F (n, i) for n ∈ ω and i ∈ 2 is E ∩ {(k, i, c); k > n, c ∈ 2}2.
Then we define τ to be the topology on V ∪ ((0, 1)×E) induced by the union
of τ∗ and the τv for v ∈ V .

Let v1, v2 ∈ V be two different vertices. W.l.o.g. vi 6= (ω, i) for i ∈ 2.
Choose U∗i ∈ τ(ω,i) avoiding vi and not containing the midpoint of any edge
whose endvertices are not both contained in U∗i and let U ′i be obtained

from U∗i by taking its union with v
1/3
i . Now let U1 = U ′1 and let U2 be

obtained from U ′2 by adding v1/3 for any v ∈ V \ (U ′1 ∪U ′2). Then (U1, U2) is
a ({v1}, {v2})-witness in (V ∪ ((0, 1)× E), τ). Thus this space with vertex
set V , edge set E and maps chosen as the second projections forms a simple
graph-like space G.

Since the graph (V,E) has just three components and two of them contain
a sequence converging to the third, G is topologically connected. With a
similar argument deleting some vertex of the form (a, 0, b) for a ∈ ω, b ∈ 2
always leaves two topological components and the other vertices do not
topologically disconnect G. For each vertex v topologically disconnecting G
let sv be the separation with separator v, whose first component is finite. Let
C be the chain s(a,0,0) for a ∈ ω. Then the upper bounds for C are exactly
the separations s(b,0,0) for b ∈ ω, but they do not have a minimum.
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Figure 2: Example 4.6

5 Tree-like decompositions

The goal of this section is to introduce a notion similar to tree decompositions
for graph-like spaces. Since chains of separations of any length can occur,
ordinary trees can not necessarily capture the structure of a graph-like space.
To avoid this problem, we will use a tree-like space instead, as in [9]. Therefore
we start by defining a few terms for tree-like spaces in analogy to concepts
in ordinary trees to help us work with them.

Clearly, any vertex other than v will occur in exactly one direction at
v, which we call its direction from v. An adjacent direction D of a tree-like
space T is a direction at any v ∈ V (T ) that is represented by a pseudo-arc
with just one edge. We write vD for the unique vertex besides v contained
in every pseudo-arc representing D. A direction that is not an adjacent
direction is a limit direction. Clearly, a limit direction can only be a direction
at one vertex v, which we call its end. Call t ∈ V (T ) a limit point of T if
there is a limit direction at t and necessary if v ∈ V (T )− v.

For our analogous decomposition we can keep two of the conditions for
tree decompositions of graphs similar, but since the edges of a graph-like
space do not completely determine its connectivity, the condition that every
edge must be contained in some part is not sufficient. We instead mandate
the fact that intersections of neighboring parts form separators, which is a
corollary in the case of graphs.

A tree-like decomposition of a graph-like space G is a pair (T, (Vt)t∈V (T )),
where T is a tree-like space and Vt ⊆ V (G), satisfying the following conditions:

1.
⋃
t∈V (T ) Vt = V (G)

2. Vs ∩ Vt ⊆ Vx for all s, t, x ∈ V (T ) with x ∈ LT (s, t)

3. For every s, t ∈ V (T ) and every edge e ∈ E(LT (s, t)) between a and b
we have that every pseudo-arc in G from Vs to Vt meets Va ∩ Vb.
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It is proper if every empty Vt is a necessary leaf.
For any t ∈ V (T ) and direction d at t we will write V (t, d) for all those

vertices which occur in Vs for some s whose direction from t is d and V̊ (t, d)
for V (t, d)\Vt. By the second condition given any t ∈ V (T ) each v ∈ V (G)\Vt
is contained in V (t, d) for exactly one direction d at t.

A tree-like decomposition D = (T, (Vd)d∈D) has adhesion ≤ k (or < k) for
some cardinal k if for every s, t ∈ V (T ) we have |Vs∩Vt| ≤ k (or |Vs∩Vt| < k).

For compact graph-like spaces there are a few useful topological properties
of tree-like decompositions that we will note here. These will be useful for
our project of reconstructing a graph-like space from a decomposition.

Lemma 5.1. Let (T, (Vt)t∈V (T )) be a tree-like decomposition of a compact,
connected graph-like space G of adhesion < ℵ0. Then for any t ∈ V (T ) that
is not a limit point and any direction d at t we have that G[V (G) \ V̊ (t, d)]
is closed.

Proof. Since t is not a limit point, d is an adjacent direction, so every pseudo-
arc with an endpoint in G[V (G) \ V̊ (t, d)] that meets its complement must
meet Vt ∩ Vtd . Therefore it is pseudo-arc closed by Lemma 2.15 and has
finitely many components, which implies that it is closed by Lemma 2.16.

Lemma 5.2. Let D = (T, (Vt)t∈V (T )) be a tree-like decomposition of a
compact, connected graph-like space G of adhesion < ℵ0. Then any graph-
like subspace of G with vertex set Vt for some t ∈ V (T ) that is not a limit
point is closed.

Proof. It suffices to prove that G[Vt] is closed since the set of inner points of
any edge is open. Let d be any direction at t. Let X(d) = G[V (G) \ V̊ (t, d)].
Since t is not a limit point, d is an adjacent direction, so every pseudo-arc
with an endpoint in X(d) that meets its complement must meet Vt ∩ Vtd .
Therefore X(d) is pseudo-arc closed by Lemma 2.15 and has finitely many
components. This implies that it is closed by Lemma 2.16. As the intersection
of the X(d), G[Vt] is then also closed.

Lemma 5.3. Let D = (T, (Vt)t∈V (T )) be a tree-like decomposition of a
connected graph-like space G of adhesion < ℵ0. If G is compact, then any
graph-like subspace of G with vertex set V (t, d) for some t ∈ V (T ) that is not
a limit point and some direction d at t is closed. If G is |Gt ∩Gtd |-connected,
then G[V (T, d)]− E(G[Vt ∩ Vtd)]) is connected.

Proof. For the first assertion it suffices to prove that X = G[V (t, d)] is closed
since the set of inner points of any edge is open. Since t is not a limit point,
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d is an adjacent direction, so every pseudo-arc with an endpoint in X that
meets its complement must meet Gt ∩ Gtd . Therefore X(d) is pseudo-arc
closed by Lemma 2.15 and has finitely many components. This implies that
it is closed by Lemma 2.16.

For the second assertion, let S consist of all but one vertex of Vt ∩ Vtd .
Let v, w ∈ V (t, d) be given. Then there exists some pseudo-arc f between
them avoiding S. But if this pseudo-arc had a vertex x outside of V (t, d),
both the sections toward and from x would need to meet Gt∩Gtd in different
vertices, so it would meet S, a contradiction.

In the following, our goal is to construct a proper tree-like decomposition
of a graph-like space from a nested set S of proper separations of G. The
basis for this decomposition will be the tree-like space given by the following
result from [9].

Theorem 5.4. For any tree set τ there exists a tree-like space T such that
the vertices of T are the consistent orientations of T , its edges are the
unoriented separations of τ , an unoriented separation e is incident with two
orientations differing exactly in e and for two s, t ∈ τ we have s ≤ t if and
only if LT (vs, vt∗) ⊆ LT (vs∗ , vt∗) ⊆ LT (vs∗ , vt), where vx for some separation
x is the orientation incident with {x, x∗} containing x.

Let us write D′(S) for the pair (T (S), (Po)o∈V (T ((S))).

Proposition 5.5. D′(S) is a tree-like decomposition of G.

Proof. For the first condition, let any x ∈ V (G) be given. The set {(A,B);x ∈
B − A} is a partial consistent orientation. Thus, by Lemma 2.1 it can be
extended to a consistent orientation ox. Then we have x ∈ Pox by definition.

For the second condition, let o, p, x ∈ O(S) with x ∈ LT ′(S,f)(o, p) and
a ∈ Po∩Pp be given. Then a ∈ Po∪p and in particular a ∈ Px since x ⊆ o∪p.

Now let s, t, e, a, b be given as in the third condition and let f be a
pseudo-arc from Vs to Vt. Now by choice of e we have that e is an unoriented
separation such that s and t contain different orientations of it. Thus f must
meet its separator Va ∩ Vb.

To make D′(S) proper, we can just ignore those vertices which are
associated with empty parts and not needed as limits because this leaves
a connected space. To make this formal, write O∗(S) for the set of those
o ∈ O(S) with Po nonempty. Then, let T (S) be the subspace of T ′(S)
induced by O∗(S) and write D(S) for the pair (T (S)[O∗(S)], (Po)o∈O∗(S)).
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Lemma 5.6. If G is 1-connected and nonempty and S consists only of finite
order separations, D(S) is a proper tree-like decomposition.

Proof. If G is nonempty, then so is O∗(S). So to show that T (S) is a tree-like
space it suffices to prove that LT ′(S,f)(a, b) does not contain any c with Pc
empty if Pa and Pb are nonempty. This follows from Lemma 4.2. That D(S)
is a tree-like decomposition is then a direct corollary of Proposition 5.5.

To show that it is proper, let Vo be an empty part of D(S). Then o is
clearly necessary. If o is not a leaf, then there exist two pseudo-arcs ending in
o that are disjoint except for v. Then by Lemma 4.2 one of these must consist
only of empty parts, which can then not all be necessary, a contradiction.

It remains to give a definition of torso analogous to that for graphs. We
will only do so for tree-decompositions of adhesion ≤ 2 because this is all
we need. Since edges added for the torso for graphs in some sense represent
paths through the rest of the graph we will analogously have the added
edges represent pseudo-arcs. Unlike in graphs, however it can matter which
pseudo-arc between two vertices is chosen. We will see in our chapter about
2-separations that in this case the adjacencies we obtain for the torso are
the same as if we would add an edge between any two vertices occuring
together in another part. Since we want to keep the torsos simple, we do
not add edges between vertices which are already adjacent. To make the
correspondence to matroids simpler, we make an exception for parts with
just two vertices, however.

Let G be some graph-like space, V ⊆ V (G) and let F be a set of
nontrivial pseudo-lines in G with disjoint interiors meeting G[V ] exactly in
their endvertices. Then we will write G� F for a graph-like space obtained
from G[V ] ∪

⋃
F by contracting all but one edge of each f ∈ F .

Given a tree-like decomposition D = (T, (Vi)i∈I) of a graph-like space G
of adhesion ≤ 2 a torso of a part Vi is a space of the form G[Vi] � F , where
if |Vi| > 2 then F is a set consisting of a choice of one nontrivial pseudo-line
Lx,y with x, y as its endvertices, whose interior does not meet G[Vi] for any
nonadjacent pair x 6= y ∈ V (G) for which any such Lx,y exists and if |Vi| ≤ 2
then F is a set containing a choice of one nontrivial pseudo-line Lx,y,d with
x and y as its endvertices, whose interior does not meet G[Vi] and that is
contained in parts associated with d, for any pair x 6= y and any direction d
at v for which any such Lx,y,d exists. The definition of the torso guarantees
its existence for any tree-like decomposition of adhesion ≤ 2, the following
lemma shows that for graph-like spaces inducing matroids any two torsos of
the same part are similar.
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Lemma 5.7. If G represents a matroid and D = (T, (Vi)i∈I) is a tree-like
decomposition of G of adhesion ≤ 2, then the set of pseudo-cycles of any
two torsos of some part Vi is the same (up to renaming the added edges).
Furthermore the set of pseudo-cycles of the torso then does not depend on
the set and topology of the edges between pairs of vertices between which an
edge of the torso would be added if they were nonadjacent.

Proof. Let C be a cycle of a torso for some choice of pseudo-lines F and let
F ′ be some other choice of pseudo-lines. Since C is a pseudo-cycle in this
torso, the space C ′ obtained from C by replacing every added edge by its
associated pseudo-arc in F is a pseudo-cycle in G. Applying Corollary 2.11
to each pair of pseudo-arcs corresponding to the added edges used by C in
F and F ′ gives a set of pseudo-cycles Je for each added edge e.

Let Ee be a set with a choice of one edge from each element of Je. If
there exists some f ∈ C that is not an added edge, then we apply circuit
elimination on C with the union of the Je at the Ee and f .

If there exists no such edge, then in particular there are more than two
added edges. Then choose one of them arbitrarily as f and let E′ be the
set of added edges except for f . We can then apply circuit elimination on
C with all the elements Je for e ∈ E′ at all the edges of Ee for e ∈ E′ and
some element of Jf . We may now apply the first case to D, Jf and Ef .

In both cases we obtain a cycle C∗ using only pseudo-arcs of F ′ whenever
it leaves Vi. Thus replacing those pseudo-arcs with their corresponding edges
gives a pseudo-cycle of the torso, which must be C. The proof of the second
assertion is similar.

From now on we will assume we have chosen some way of deciding on
one torso for any part of any tree-like decomposition we consider and use
the definite article for that torso.

6 Blocks

Our goal for this section is to define a decomposition of some fixed connected
graph-like space G with no loops into blocks. This will be done in three
steps: first we characterize the good 1-separations of G, then show that any
graph-like space with no good 1-separation is 2-connected and finally prove
that any separation of the parts of the decomposition lifts to one of G. Let
us start by making an observation about 1-separations.

Lemma 6.1. Two 1-separations (A,B) and (C,D) can cross only if A∩B =
C ∩D.
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Proof. Let (A,B) and (C,D) be two crossing separations and let v be the
unique element of A ∩B and w the unique element of C ∩D. Assume for a
contradiction that v 6= w. W.l.o.g. we may assume that w ∈ A and v ∈ C.
By Lemma 4.1 (A ∪ C,B ∩ D) is a separation, but (A ∪ C) ∩ (B ∩ D) =
(A ∩B ∩D) ∪ (C ∩B ∩D) = ({v} ∩D) ∪ ({w} ∩B) = ∅, contradicting the
fact that G is 1-connected.

We can use this to reach our first goal and characterize the good 1-
separations of G.

Proposition 6.2. A proper 1-separation (A,B) of G is good if and only if
A or B contains just one component of G− (A ∩B) .

Proof. For the forward direction let C1 and C2 be two components in A
and D1 and D2 be two in B. Then moving C2 to B and D2 to A gives a
separation crossing (A,B). For the other direction, let (A,B) be a separation
satisfying the condition. W.l.o.g. we can assume A is the side with just
one component. We know that A ∩ B has exactly one element, call it v.
Clearly. (A,B) cannot cross any separation with intersection v since A+ v
must always be contained in one side. Now Lemma 6.1 gives the result.

Similar to the known decomposition theorems for graphs, the sets Po for
some o ∈ g1 are good candidates for our blocks. The first requirement they
need to satisfy to fill this role is that they should not be separated by any
1-separations, as our next statement guarantees.

Corollary 6.3. For any o ∈ O(g1) and any 1-separation (A,B) the set Po
is completely contained in A or B.

Proof. Let v be the unique vertex of A∩B. If Po met multiple components of
G−v, let C and D be two. Then (C+v,G−C) is a 1-separation satisfying the
conditions of Proposition 6.2. So o must contain it or its inverse. Therefore
one of C or D cannot be contained in Po.

In particular, this implies that any space with no good 1-separation is
2-connected, which was the second objective.

This, however, is not enough to make this a sensible notion of block, since
blocks should also induce 2-connected spaces themselves. To prove that they
do, we will show that separations of G[Po] induce ones of G.

Lemma 6.4. For any separation (A,B) of G[Po] for some set of 1-separation
o there exist some separation (E,F ) of G with A ⊆ E, B ⊆ F and A ∩B =
E ∩ F .
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Proof. Let (A,B) be a separation of Po and assume that f is a pseudo-arc
from some a ∈ A to some b ∈ B avoiding A∩B. Since (A,B) is a separation
in Po, f contains some vertex c /∈ Po. Let (C,D) ∈ o be some separation
with c ∈ C. Then the part of f from a to c and from c to b both meet C ∩D,
but this only has one element, contradicting the injectivity of f . Therefore
A ∩ B separates A − (A ∩ B) and B − (A ∩ B) in G and we may arrange
the components of G− (A ∩B) not meeting either set arbitrarily to get a
separation with the required properties.

Having checked off all requirements, the desired statement is now imme-
diate.

Corollary 6.5. For any o ∈ O(g1) the subgraph-like space G[Po] is 2-
connected.

Proof. Po has no proper 0-separation because this would contradict the
1-connectivity of G by Lemma 6.4. Po has no proper 1-separation because
this would contradict Corollary 6.3 by Lemma 6.4.

With this result it now makes sense to call D(g1(G)) the block decom-
position of G and its parts blocks. Since blocks never meet both sides of
a 1-separation, they are uniquely determined as the maximal such sets by
construction. We can also characterize them using Corollary 6.5.

Proposition 6.6. The nonempty blocks of G are exactly the maximal vertex
sets X such that G[X] is 2-connected.

Proof. If X is a nonempty block, then G[X] is 2-connected by Corollary 6.5.
Any superset Y of X containing some y /∈ X can not be 2-connected, since
y is separated from any x ∈ X by some vertex v in G and thus also in
G[Y ]. If G[X] is 2-connected, then there exists no good 1-separation in G
separating vertices of X and so X is contained in some block Y . Since G[Y ]
is 2-connected, X cannot be a strict subset of Y if it is maximal with this
property.

Let us now investigate some other properties of D(g1(G)). For this, we
will first prove the existence of suprema for chains of 1-separations.

Lemma 6.7. Let C be a chain of proper 1-separations of G with no maximal
element such that PC is nonempty and A\B is nonempty for any (A,B) ∈ C.
Then there is a 1-separation (E,F ) that is a supremum for C, such that
E \ F =

⋃
(A,B)∈C A \B and F = PC .
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Proof. Let b ∈ PC and a ∈ V (G) \ PC be arbitrary and let f be any pseudo-
arc from a to b. For any (A,B) ∈ C with a ∈ A the image of f contains the
unique vertex of A ∩ B, say x(A,B) is mapped to it. This forms a linearly
ordered, increasing net, which converges to its supremum by Lemma 2.12.
Since f is continuous, the net of the

⋃
A ∩B converges to its image x. We

have x ∈ B for all (A,B) ∈ C, so x ∈ PC . Since the set of (A,B) considered
is always a final segment of C, this x is independent of the choice of a, b and
f . Therefore x separates PC from all those vertices which lie in A \ B for
any (A,B) ∈ C. Thus we can obtain a proper separation (E,F ) that is an
upper bound for C by putting into E exactly those components of G − x
that meet A \B for some (A,B) ∈ C.

Now E \F will contain only vertices that lie in A\B for some (A,B) ∈ C.
Indeed, if not then there is some pseudo-arc l avoiding x from an element of
PC to a vertex in its complement, but then the net of x(A,B) as above on it
would converge to x, a contradiction. Therefore F = PC .

Finally, assume that (I, J) is any smaller 1-separation. If I ∩ J = {x}
then clearly it cannot be an upper bound. So we may assume that I∩J = {y}
with y 6= x. Then clearly y ∈ E. If (I, J) was an upper bound, then for any
(A,B) ∈ C, a ∈ A \B, and pseudo-arc f from a to x, the image of f would
need to meet y. But by choice of x there is some (X,Y ) ∈ C such that the
part of f between y and x meets X ∩ Y , a contradiction.

In particular for chains of good separations we obtain good suprema.

Corollary 6.8. Any chain C ⊆ g1 such that there are o ∈ O∗(g1), p ∈ O(g1)
with C ⊆ o, C∗ ⊆ p, |PC | > 1 and o4 p = C ∪ C∗ has a supremum in g1.

Proof. Let C be such a chain. If C has a maximal element, we are done.
Otherwise let (E,F ) be the supremum for this chain given by Lemma 6.7.
Since |PC | > 1, this is clearly a proper separation. By Proposition 6.2 it
suffices to show that E ∩ F does not separate any two vertices a and b such
that there exists a separation (A,B) ∈ C with a, b ∈ A \B. If it does then
any pseudo-arc f from a to b meets E ∩ F in its unique vertex x. But since
x ∈ Po, the parts of f on either side of x meet A ∩ B, contradicting the
injectivity of f .

When working with parts of tree-like decompositions, those that are
easiest to handle are those which do not correspond to limit points in the
tree-like space. This makes the following corollary very helpful, since it tells
us that all other parts are of a few types and in particular are all trivial, by
which we mean that they have at most one vertex.
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Corollary 6.9. For any block Vo exactly one of the following four statements
is true:

1. o is a leaf, o contains a chain with no supremum in g1 and Vo is trivial

2. o contains a chain and the inverse of its supremum and Vo is trivial
and nonempty

3. o contains the supremum of every chain it contains and Vo is trivial
and nonempty

4. o contains the supremum of every chain it contains and no two of its
maximal elements have the same separator and Vo is nonempty

Proof. If o contains a chain with no supremum in g1, then by Corollary 6.8
o is a leaf and has at most one vertex. Otherwise let us first assume the
nonempty block Vo contains a chain C without a supremum. Since by
assumption C has a limit (E,F ) ∈ g1, we then have (F,E) ∈ o. But then
Vo ⊆ E∩F , as required. Now let us assume that o has two maximal elements
(A,B) and (E,F ) with the same separator. By Proposition 6.2 one side of
each separation contains just one component. But since (F,E) ≤ (A,B),
this must be B and F respectively. Therefore Vo contains just the separating
vertex.

This tool can help us obtain some results which let us infer some of the
connectivity properties from its block decomposition. These will be useful
for analyzing 2-separations in the next section. For some block Vo of the
block decomposition of G let Xo be the set of vertices contained in Vo and
at least one other block.

Corollary 6.10. For any block Vo such that o is not a leaf (G−Vo +Xo, Vo)
is a separation.

Proof. If o does not contain a supremum for some chain, then by Corollary 6.9
Vo has just one vertex w and there is some chain C such that o contains
the inverse of its supremum (E.F ). Then E ∩ F = {w} and flipping (F,E)
in o gives an orientation o′ with w ∈ Vo′ , so w ∈ Xo. Otherwise by Zorn’s
Lemma any element lies under some maximal one and since the separator of
any maximal element is clearly contained in Xo, any pseudo-arc f from Vo
to its complement must meet Xo.

Lemma 6.11. If Vo, Vp are blocks and v is a vertex of LT (g1)(o, p) besides
o and p then Xv separates Vo from Vp.
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Proof. Let us first consider the case that Vv and thus Xv by Corollary 6.10
consists of a single vertex w. Then there is a pseudo-arc f from Vo to
w. This pseudo-arc must use the separating vertices of any separations
corresponding to the edges of LT (g1)(o, v) in order. By Lemma 2.12 these
must then converge to w. Since pseudo-arcs are closed and any arc from
Vo to Vp must also include these vertices, w separates Vo and Vp. If Vv has
more than one vertex, then by Corollary 6.9 any chain of separations in o
has a supremum in o so any element of o lies below some maximal element
in o. Indeed, otherwise applying Zorn’s Lemma to the set of all elements not
below any maximal element of o would give us a maximal element in this set,
which would then also be maximal in o, a contradiction. Since the separator
of any maximal separation in o is clearly contained in Xo any pseudo-arc
from Vo to Vp must meet Xo.

Lemma 6.12. Let f be a pseudo arc from x ∈ Po to y ∈ Pp in G, where Vo
and Vp are blocks. Then LT (g1)(o, p) has as nontrivial vertices exactly o, p
(if nontrivial) and those v such that the image of f meets Vv in at least two
vertices.

Proof. Let v /∈ {o, p} be a nontrivial vertex contained in LT (g1)(o, p). Then
any element of v lies under some maximal one by Corollary 6.9 and Zorn’s
Lemma. Therefore v has two incident edges in LT (g1)(o, p). The image of f
must contain the separating vertices a and b of the associated separations
(A,B) and (C,D). By Corollary 6.9 these cannot be the same.

Conversely LT (g1)(o, p) contains o and p by definition, so let a nontrivial
vertex v /∈ {o, p} be given and assume it is not contained in LT (g1)(o, p),
but f meets Vv in two vertices a and b. Now there exists some separation
(A,B) ∈ v \ (o ∪ p). At least one of a and b, w.l.o.g. a, is not contained in
A ∩ B. Then the parts of f from a to o and from o to a must both meet
A ∩B, contradicting the injectivity of f .

7 2-Blocks

Using our results about blocks, in this section we will define a decomposition
along the 2-separations of some fixed simple 2-connected graph-like space G.
For this, we will follow steps similar to the last section.

Thus we start by looking for a characterization of good 2-separations.
From our discussion of separations earlier the following is immediate.

Corollary 7.1. For any proper 2-separation (A,B) the subspaces A and B
are 1-connected.
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Proof. By symmetry it suffices to show this for A. Let v and w be the vertices
of A∩B. If there was a proper 0-separation (C,D) of A, then (C + v,D+ v)
or (C + w,D + w) would be a a proper 1-separation with v and w together
in A or B, contradicting Corollary 4.5.

This is useful to prove the characterization we were looking for.

Proposition 7.2. A 2-separation (A,B) is good if and only if A or B is
2-connected and A or B contains just one component of G− (A ∩B).

Proof. Let v and w be the vertices of A ∩ B. If both A and B are not
2-connected, then there are proper 1-separation (C,D) of A and (E,F )
of B. By Corollary 4.5 we may assume that v ∈ (C \ D) ∩ (E \ F ) and
w ∈ (D \ C) ∩ (F \ E). Then (C ∪ E,D ∪ F ) is a proper 2-separation
crossing (A,B). If both A and B contain at least two components of
G − (A ∩ B) exchanging one component from A with one from B gives a
proper 2-separation crossing (A,B).

For the other direction, assume that (C,D) crosses (A,B). Then the
second condition implies that A ∩ B 6= C ∩ D. W.l.o.g. we may assume
that A is 2-connected. Then C ∩D must be contained in A, since otherwise
A would lie completely in C or D. But C ∩ D also has to meet B since
otherwise B would lie completely in C or D by Corollary 7.1. So C ∩D must
consist of one vertex v ∈ A ∩ B and one vertex w ∈ A \ B. This however
contradicts Corollary 4.5.

Note that the condition that one side should be 2-connected is only a
restriction if the separator leaves exactly two components, otherwise, as we
prove next, it is always satisfied.

Lemma 7.3. If a proper 2-separation (A,B) has two components in A (or
B) then A (or B) is 2-connected.

Proof. By symmetry it suffices to show this for A. Let A ∩ B = {v, w}.
Assume that (C,D) is a proper 1-separation of A with separator {x}. By
Corollary 4.5 v and w lie on different sides and neither is x. So x lies in
one of the components of A − {v, w}. Let F be some other component.
Moving all the other components in A to B gives a proper 2-separation, so
by Corollary 7.1 the subspace defined by F ∪ {v, w} is 1-connected. Thus
there is some pseudo-arc f from v to w in this space. But then f avoids x, a
contradiction.
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This, together with our characterization implies that to prove that G has
a good 2-separation, it is sufficient to find any proper 2-separation with a
2-connected side.

Lemma 7.4. If there is a proper 2-separation (A,B) in G, such that A or
B is 2-connected , then there exists a good 2-separation with separator A∩B
in G.

Proof. W.l.o.g. A is 2-connected. Let v and w be the two elements of A∩B.
If (A,B) is not good, then by Lemma 7.2 both A and B must contain at least
two components. Let (C,D) be the separation with all but one component
from A moved to B. Then by Lemma 7.3 D is 2-connected. This implies
that (C,D) is good by Proposition 7.2.

These tools will help us with our second step of proving that G is 3-
connected or a pseudo-cycle if it does not have a good 2-separation. The
strategy for this follows that used to verify a similar statement for infinite
graphs in [11, Theorem 6].

Just as the block decomposition of each side of a 2-separation of a 2-
connected graph is always a path, it turns out to always be a pseudo-line in
our case.

Proposition 7.5. For any proper 2-separation (A,B) of G with A ∩ B =
{v, w} the block decomposition of A and B is a pseudo-line, whose endpoints
are the unique blocks containing v and w, respectively.

Proof. By symmetry it suffices to show this for A. Let us first show that
v is contained in just one block Vo. If not, then v lies in the separator of
some proper 1-separation of A, contradicting Corollary 4.5. Similarly, w is
contained in just one block Vp. If there was some vertex x of the tree-like
space not on the pseudo-line between o and p, there must be some pseudo-line
from x to o. It must contain at least one edge e not on the pseudo-line
from o to p. Then the associated separation does not separate v and w, a
contradiction to Corollary 4.5.

Moreover, in both cases no block has more than two vertices.

Lemma 7.6. Let (A,B) be any proper 2-separation of G. If any block of
the block decomposition of A or B has three vertices, then G has a good
2-separation.

Proof. By symmetry it suffices to show this for A. If the decomposition has
just one block then A is 2-connected by Corollary 6.5, so then there is a
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good 2-separation by Lemma 7.4. Otherwise the two vertices v, w ∈ A ∩B
lie in different blocks Vo and Vp.

First, let us assume that one of these blocks, w.l.o.g. Vo has at least three
vertices. Since by Corollary 6.5 Vo is 2-connected, by Lemma 7.4 it suffices
to show that there is no pseudo-arc from Vo to its complement not meeting
Xo or v. By Corollary 6.10 any such pseudo-arc f cannot be contained in
A. Thus it must meet w. But w is separated from Vo by Xo in A, so this is
impossible.

If any other block Vx has at least three vertices, then similarly it suffices
to show that Xx separates Vx from its complement and any pseudo-arc
contradicting this would need to meet v or w, which Xx separates from
Vx.

Using these two results, we now emulate the proof of [11, Theorem 6].

Proposition 7.7. If G has no good 2-separation, then it is 3-connected or
a pseudo-cycle.

Proof. If G is 3-connected then we are done. So we may assume that there
is a proper 2-separation (A,B) with A ∩B = {v, w}. We want to show that
A and B are pseudo-lines from v to w. By symmetry it suffices to show this
for A. To this end, we will first prove that in A there is a unique pseudo-line
between any two vertices.

By Corollary 7.1 A is 1-connected, so there is a pseudo-line between any
two vertices. Now let L and K be two pseudo-arcs between x and y. We
want to prove that they are identical. It suffices to show that the edge set of
L is equal to that of K. Indeed, by Lemma 2.7 they are the closure of their
interior points of edges. So let e be any edge of L. By the third condition for
tree-like decompositions the endvertices of e are contained in some block Vo.
Then by Lemma 6.12 K also has two vertices a and b in Vo. By Lemma 7.6,
however, every block has only two vertices, so these are the endvertices of e.
Since no pseudo-arc between two vertices of a block can leave that block, K
must then also contain e. By symmetry the converse holds as well.

Thus it now suffices to prove that A is equal to the unique pseudo-line L
between v and w in A. If A has any vertex u not in L, then u lies in some
block Vt. By Proposition 7.5 t lies on the pseudo-line between a and b. If Vt
is a trivial block, then L must contain u by Lemma 6.11. If Vt is nontrivial,
then L must contain u by Lemma 6.12. In both cases this is a contradiction.
If A has any edge f /∈ L, then it connects two vertices of L, but these can
also be connected along L, a contradiction.
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What we would like to prove now to satisfy our third goal is a statement
similar to Lemma 6.4 which would allow us to characterize the parts of our
decomposition. From the similar theorems for graphs and matroids we know
that we should expect to lift separations not from the parts themselves,
but from their torsos and so obtain a description of the parts in terms of
these. Unfortunately, as the following example shows, this will not yield a
satisfactory result in the general case, since we may end up with torsos which
are not even connected.

Example 7.8. Let V = ω× 2× 3∪{ω}, E1 = {((a, b, c), (a, b, d)); a ∈ ω, b ∈
2, c ∈ 3, d ∈ 3 \ {c}}, E2 = {((a, b, c), (a + 1, b, 0)); a ∈ ω, b ∈ 2, c ∈ {1, 2}},
E3 = {((a, 0, 0), (a, 1, 0)); a ∈ 3}} and E = E1 ∪ E2 ∪ E3.

Let vε for some v ∈ V and 0 < ε ≤ 1 consist of v together with (0, ε)×{e}
for all e ∈ E with v as their first component and (1− ε, 1)×{e} for all e ∈ E
with v as their second component. Let τ∗ be the set of open intervals of edges
e and let τv for v ∈ ω × 2 × 3 be the set of all vε for 0 < ε ≤ 1. Moreover,
let τω = {{ω} ∪

⋃
k>n;b∈2,c∈2 τ

ε
(k,b,c) ∪

⋃
e∈F (n)(0, 1)× {e};n ∈ ω; 0 < ε ≤ 1},

where F (n) for n ∈ ω is E ∩ {(a, b, c); a > n, c ∈ 2}2. Then we define τ to be
the topology on V ∪ ((0, 1)×E) induced by the union of τ∗ and the τv for
v ∈ V .

Let v1, v2 ∈ V be two different vertices. W.l.o.g. v2 6= ω. Choose U ′1 ∈ τω
avoiding v2 and not containing the midpoint of any edge whose endvertices
are not both in U ′1 and let U1 be obtained from U ′1 by taking its union with

v
1/3
1 . Let U ′2 = v

1/3
2 and let U2 be obtained from U ′2 by adding v1/3 for any

v ∈ V \ (U1 ∪ U ′2). Then (U1, U2) is a ({v1}, {v2})-witness with regard to V
in (V ∪ ((0, 1)× E), τ). Thus this space with vertex set V , edge set E and
maps chosen as the second projections forms a simple graph-like space H.

Since the underlying graph (V,E) has just two components and the
vertices in ω × 1× 2 induce a pseudo-line connecting them, H is connected.
Moreover, deleting any finite set of vertices whose deletion does not disconnect
(V −{ω}, E) cannot disconnect H since it leaves a final segment of this pseudo-
line. In particular, since (V − {ω}, E) is 2-connected, so is H and since all
separators of size 2 in (V −{ω}, E) are of the form {(a, b, 0), (a+ 1, b, 0)} for
a ∈ ω and b ∈ 2, so are those of H. Clearly, all these actually are separators
in H and they leave exactly two components, one of them finite. Since none
of the 2-separations of H cross, the 2-block decomposition of H is a star.
Let Vt be the part corresponding to the center vertex and let T be the torso
of this part where all the pseudo-arcs chosen are finite paths with only a
vertex with a 3 in the last component as inner vertices. Any topologically
connected nontrivial subspace of T including ω must include infinitely many
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Figure 3: Example 7.8

of the edges added in the torso. But since any vertex of T has an open
neighborhood not meeting the midpoint of any of these edges, any such
subspace can not be compact. Therefore T contains no nontrivial pseudo-arc
ending in ω and is thus not connected.

The problem in this example is that replacing sections of a pseudo-arc
with other pseudo-arcs is only guaranteed to result in a pseudo-arc for finitely
many such substitutions. Thus we call a graph-like space G stable, if for
every pseudo-line L with endpoints v, w in G, set I of edge-disjoint connected
segments of C, none of which trivial or the whole of L, and family (Li)i∈I of
pseudo-lines in G such that the endvertices of Li are those of i, Li and i are
different and the interior of Li and Lj never meets for i 6= j there exists a
pseudo-line L′ with endvertices v and w contained in L \

⋃
I ∪

⋃
{Li; i ∈ I}.

Before we continue toward a lifting result for stable graph-like space, we
should make sure that this class of spaces is nontrivial. Indeed, all compact
graph-like spaces are stable.

Proposition 7.9. If G is compact, then G is stable.

Proof. Since G is compact, G represents a matroid by Theorem 2.8. Given
L, v, w, I and (Li)i∈I as in the definition of stable, define H to be G
restricted to the edges of L and of the Li. Then H is also compact and so is
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H ′ = H ⊕ {{v, w}}. Thus H ′ represents a matroid. Call the added edge e.
For each i let Ji be a set of cycles as in Corollary 2.11 applied to L and Li
and choose an edge ji of Li from each.. Then we may use circuit elimination
on E(L) + e, keeping e and eliminating the ji using Ji. The resulting circuit
then contains the desired pseudo-line with endpoints v and w.

Whether all graph-like spaces inducing matroids are stable is not known.
For the rest of this section, we will assume G to be stable. This now allows
us to prove the desired lifting lemma.

Lemma 7.10. For any separation (A,B) of the torso To of some part Vo of
D(g2), there exists some separation (E,F ) of G with A ⊆ E, B ⊆ F and
A ∩B = E ∩ F .

Proof. Let (A,B) be a separation of To and assume that f is a pseudo-arc
from some a ∈ A to some b ∈ B avoiding A∩B. Since (A,B) is a separation
of the torso, f contains vertices outside of Vo. For any such vertex c, let vc
be the supremum of vertices of Vo before c and wc be the infimum of vertices
of Vo after c. We can now use the stability of G to obtain a pseudo-arc from
v to w contained in Vo together with the pseudo-lines selected for the torso.
Replacing these with their equivalent edges we obtain a pseudo-arc in To
still avoiding A∩B, a contradiction. Therefore A∩B separates A− (A∩B)
and B − (A ∩B) in G and we may arrange the other components arbitrarily
to get a separation with the required properties.

For 2-separations we can preserve the property of being good under
lifting.

Lemma 7.11. For any good 2-separation (A,B) of the torso To of some
part Vo of D(g2), there exists some good 2-separation (E,F ) of G with
A ∩B = E ∩ F and Vo meeting both E \ F and F \ E.

Proof. If G− (A∩B) has at least three components, then by Lemma 7.3 and
Proposition 7.2, arranging the components such that one component meeting
A \B is alone on on one side and the other components are on the other side
gives a good 2-separation fulfilling the requirements. So by Lemma 7.10 we
may assume that it has two components, one, say C, containing A \B and
one, say D, containing B \A. By Lemma 7.2 (A,B) has a 2-connected side,
say A. Then it suffices to show that C ∪ (A ∩ B) is 2-connected, so let us
assume for a contradiction that it is not.

By Corollary 7.1 it is 1-connected. Thus we may assume that C ∪ (A∩B)
has a proper 1-separation (K,L). By Corollary 4.5 A ∩ B has a vertex
c ∈ K \ L and a vertex d ∈ L \K. Let v be the unique vertex of K ∩ L.
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If v ∈ To, then the pseudo-arcs corresponding to each additional edge
of the torso can contain v only if it was one of its endvertices. Therefore,
the pseudo-arc from c to d avoiding v in To[A], which exists since this set is
2-connected, can be turned into a pseudo-path f from K to L avoiding v by
replacing any added edges by the corresponding pseudo-arcs. This, however,
contradicts (K,L) being a separation by Proposition 2.10.

So v /∈ To and v must meet one of the pseudo-arcs corresponding to the
added edges since To is connected. Since these have disjoint interiors v can
in fact only meet one. Let a be one of the endvertices of this added edge.
Then the pseudo-arc from c to d avoiding a in To[A] can be turned into a
pseudo-path f from K to L avoiding v by replacing any added edges by the
corresponding pseudo-arcs. This again contradicts (K,L) being a separation
by Proposition 2.10.

Thus (C ∪ (A ∩B), D ∪ (A ∩B)) is as required.

From this we can now deduce the desired characterization.

Theorem 7.12. The torsos of the parts of the 2-block decomposition of G
are 3-connected, pseudo-cycles or bonds.

Proof. The torso To has no proper 0-separations or 1-separations since this
would contradict the 2-connectivity of G by Lemma 7.10. The torso has
no good 2-separations by Lemma 7.11, since otherwise o would need to
orient the lifted separation. If To has only two vertices, then it is clearly a
bond. Otherwise To is simple. Then it is 3-connected or a pseudo-cycle by
Proposition 7.7.

Even if a graph-like space is not stable, its nonempty 2-blocks which are
3-connected are still uniquely determined as the maximal sets of size at least
two which do not lie on different sides of any 2-separation by construction.

In the rest of this section, we consider some additional properties of the
2-block decomposition. In particular, we will justify our definition of torsos
by showing that edges are added as they would be for graphs. For this we
will first note that like chains of 1-separations, chains of 2-separations have
suprema if they have upper bounds.

Lemma 7.13. Let C be a chain of proper 2-separations of G with no maximal
element such that |PC | ≥ 2 and (A \ B) is nonempty for any (A,B) ∈ C.
Then there is a 2-separation (E,F ) that is a supremum for C such that
F = PX∪C .
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Proof. By Corollary 3.4 there are two disjoint pseudo-arcs f and g from
(
⋃

(A,B)∈C A) to PC . For any (A,B) ∈ C we have that the image of f and g

contain one of the two vertices in A ∩B, say xf(A,B) and xg(A,B) are mapped
to it. These form linearly ordered, increasing nets, which converge to their
suprema xf and xg by Lemma 2.12. Since f and g are continuous, the nets
of the respective images converge to x1 = f(xf ) and x2 = g(xg), respectively.
We have x1, x2 ∈ B for all (A,B) ∈ C, so x1, x2 ∈ PX∪C . Any other pseudo-
arc h into PC from (

⋃
(A,B)∈C A) must then contain a subnet of one these

two nets and since the net of the vertices of separators of elements of C
met by h must converge, it must converge to x1 or x2. Therefore {x1, x2}
separates PC from all those vertices which lie in A \B for any (A,B) ∈ C.
Thus we can obtain a proper separation (E,F ) that is an upper bound for
C by putting into E exactly those components of G − {x1, x2} that meet
A \B for some (A,B) ∈ C.

Now E \F will contain only vertices that lie in A\B for some (A,B) ∈ C.
Indeed, if not then there is some pseudo-arc l avoiding x1 and x2 to some
such vertex, but then the net of x(A,B) as above on it would converge to one
of these vertices, a contradiction.

Finally, assume that (I, J) is any smaller 2-separation. If I∩J = {x1, x2}
then clearly it cannot be an upper bound. So we may assume that there is
some z ∈ (G∩H)∩ (E \F ). If (I, J) were an upper bound then for any pair
f and g of disjoint pseudo-arcs from (

⋃
(A,B)∈C A) ∩ PX to PX∪C one would

need to meet z, w.l.o.g. f . Then the net of the f(x(A,B)) as above has x1 or
x2 as a supremum, so there is some (A,B) ∈ C such that x(A,B) lies between
z and x1 on f , a contradiction.

Moreover, a supremum of a chain of good 2-separations is again good.

Corollary 7.14. Any chain C ⊆ g2 such that there are o ∈ O∗(g2) and
p ∈ O(g2) with C ⊆ o, C∗ ⊆ p, |PC | > 2 and o4p = C∪C∗ has a supremum
in g2.

Proof. Let C be such a chain. If C has a maximal element we are done.
Otherwise by Lemma 7.13 there is a 2-separation (E,F ) that is a supremum
for C. Since |PC | > 2, it is proper. Let us first show that E contains just
one component of G \ (E ∩ F ). For that it suffices to show that E ∩ F does
not separate any two vertices a and b such that there exists a separation
(A,B) ∈ C with a, b ∈ A \B. If it does then any pseudo-arc f from a to b
meets E ∩ F in one of its vertices x or y. But since x, y ∈ Po, the parts of
f on either side of x or y meet A ∩B. Since f is injective, this happens in
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different vertices. Therefore either vertex of A ∩B already separates a and
b, contradicting the 2-connectivity of G.

Now by Proposition 7.2 it suffices to show that E or F is 2-connected.
If not, then by Corollary 7.1 there are proper 1-separations (I, J) of E
and (K,L) of F . W.l.o.g. we may assume x ∈ (I \ J) ∩ (K \ L) and
y ∈ (J \ I) ∩ (L \K) by Corollary 4.5. Then (I ∪K,J ∪ L) is a proper 2-
separation. Since (I, J) and (K,L) were proper, there are vertices z1 ∈ I \ J ,
z2 ∈ J \ I, z3 ∈ K \ L and z4 ∈ L \K. We choose them outside of E ∩ F
if possible. If z1 and z2 are not contained in E ∩ F , there exists some
(A,B) ∈ C such that z1, z2 ∈ A \ B. This, however, implies that (A,B)
will cross (I ∪ K,J ∪ L), a contradiction. Otherwise w.l.o.g. z1 = x, so
the unique vertex v of I ∩ J separates x from every other vertex of E. By
Corollary 7.1 v and x are then adjacent. Since v /∈ PC , there is a final
segment C ′ of C such that x is in the separator of every element of C ′. If
z2 = y a similar argument would show that y was in the separator for every
element of some final segment of C ′, contradicting the fact that any chain of
good 2-separations with the same separator has at most two elements. Thus
there is some (A,B) ∈ C ′ with z2 ∈ A \B. Now the separations (A,B) and
(I ∪K,J ∪ L) cross, a contradiction.

Thus all the parts with at least three vertices are again not limit points.

Corollary 7.15. For any 2-block Vo exactly one of the following four state-
ments is true:

1. o is a leaf, o contains a chain with no supremum in g2 and Vo has at
most two vertices

2. o contains a chain and the inverse of its supremum and the torso of
Vo is a bond

3. o contains the supremum of every chain it contains and the torso of Vo
is a bond

4. o contains the supremum of every chain it contains and no two of its
maximal elements have the same separator and Vo is nonempty

Proof. If o contains a chain with no supremum in g2, then by Corollary 7.14
o is a leaf and |Vo| ≤ 2. Otherwise let us first assume the nonempty block Vo
contains a chain C, but not its supremum. Since by Corollary 7.14 C has
a limit (E,F ) ∈ g1, we then have (F,E) ∈ o. But then Vo ⊆ E ∩ F , so its
torso must be a bond. Now let us assume that o has two distinct maximal
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elements (A,B) and (E,F ) with the same separator. By Proposition 7.2
at least one side of (A,B) and and at least one side of (E,F ) contain just
one component of G− (A ∩B). But since (A,B) and (E,F ) are nested, we
have (F,E) ≤ (A,B), so in particular F ⊆ A and B ⊆ E. If B contained
more than one component of G − (A ∩ B), then E would also contain
all these components and F would contain just the one of A, so actually
(A,B) = (E,F ), a contradiction. Therefore B contains just one component
of G− (A ∩B) and analogously so does F . Since the single components in
B and F must be distinct, Vo contains just the separating vertices and its
torso is a bond.

We can use this to prove that the added edges of such parts are determined
only by the overlap with neighboring parts.

Lemma 7.16. If Vo is a nontrivial 2-block, edges are added in the torso
exactly between those nonadjacent pairs {x, y} such that there exists some
2-block Vp with x, y ∈ Vp and o 6= p.

Proof. If an edge between x and y is added in the torso, then x and y are
nonadjacent and there exists some pseudo-line L from x to y, such that the
interior of L does not meet Vo. In particular there exists some p ∈ V (T ) such
that L meets Vp \Vo. We have that o\p is a chain. But by Corollary 7.15 any
chain in o has a supremum (A,B). Let o′ be obtained from o by replacing
(A,B) with (B,A). Then Vo′ contains x and y.

For the other direction, if x and y are nonadjacent and there exists some
other 2-block Vp such that x, y ∈ Vp then there is some 2-separation with
separator {x, y} contained in o. By Corollary 7.1 there then exists some
pseudo-arc between x and y, whose interior does not meet Vo.

Since the set of added edges for 2-blocks with at most two vertices is
easy to determine, this is enough to reach our goal.

Lemma 7.17. If Vo is a 2-block with two vertices x and y then the set of
added edges of the torso is in bijection with the set of directions at f .

Proof. It suffices to show that every direction D at o indeed gives rise to an
edge in the torso. Let p be some vertex whose direction from o is D. By
Corollary 3.4 there exist two disjoint pseudo-arcs from Vo to Vp. Adding a
pseudo-arc between their endvertices gives a pseudo-path between x and y, in
whose image we can find a pseudo-arc f between x and y by Proposition 2.10.
Then f witnesses that D gives rise to an edge.
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Corollary 7.18. The underlying graph of the torso of some part Vo is
uniquely determined by T (g1) and G[Vo].

Proof. This is a direct consequence of Lemma 7.16 and Lemma 7.17 together
with the fact that there cannot be edges added to parts with at most one
vertex.

8 Graph-like spaces inducing matroids

In this section we will observe a natural correspondence between parts of
the tree decomposition of Theorem 2.4 and 2-blocks of a graph-like space
inducing that matroid. First, however, we should note that the similar
correspondence for blocks is obvious.

Proposition 8.1. Let G be a 1-connected, simple graph-like space represent-
ing a matroid M . Then there is a bijection g between the components of M
and the nontrivial blocks of G such that for any component C the block g(C)
contains exactly the edges of C.

Proof. By the third condition for tree-like decompositions, any edge is con-
tained in some block and since any two blocks meet in at most one vertex,
it cannot be contained in multiple. Let us first show that any two edges
e, f in the same component C of M are contained in the same block. There
exists some pseudo-cycle D containing e and f . Since no pseudo-cycle can
meet both sides of a proper 1-separation in more than the separating vertex,
there cannot be a good 1-separation separating two endvertices of e and f .
Now this defines a function g mapping each component C of M to the block
containing all its edges. The surjectivity of g is immediate from the fact that
each nontrivial block contains at least one edge.

So it remains to prove that g is injective. Let E and F be components
of M and let e ∈ E and f ∈ F be any edges. If e and f lie in the same
block, then by Corollary 3.4 there are two disjoint pseudo-arcs between their
endvertices. This gives a pseudo-cycle containing both e and f , so E = F .
Therefore g is injective.

To obtain a similar result for 2-blocks, we will use statements translating
separations back and forth between graph-like space and matroids. To make
sure that a good separation is translated to a good one, a criterion for
2-separations of matroids being good will be useful.
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Proposition 8.2. Let M be a connected matroid and let (E,Ec) be a 2-
separation of M . Then (E,Ec) is good if and only if M restricted to E or
Ec is connected and M contracted onto E or Ec is connected.

Proof. To prove the forward direction, first assume that M restricted to E
and Ec are both disconnected and let C and D be a component of each. We
want to prove that (E′, E′c) = (E −C +D,Ec −D+C) is a 2-separation of
M . Since components are nonempty and M is connected, it suffices to prove
that for any bases B1 and B2 of M restricted to E′ and E′c respectively
there exists an edge e of their union, such that B1 ∪B2 − e is independent.
For that, let BE = (B1 \ D) ∪ (B2 ∩ C) and BEc = (B2 \ C) ∪ (B1 ∩ D).
These are independent sets in M restricted to E and Ec respectively, so
there exists some e such that BE ∪BEc − e is independent in M . But this is
the same set as B1 ∪B2 − e, so we are done.

For the second assertion, assume that (E,Ec) is good. Since the connec-
tivity function is unaffected by taking duals, (E,Ec) is a good 2-separation
of M∗. As proven before, M∗ restricted onto E or Ec is connected. Thus M
contracted onto E or Ec is connected.

To prove the other direction, we will assume that (E,Ec) is not good.
W.l.o.g. |M | ≥ 3. Let (T, (Rv)v∈V (T )) be the tree decomposition from
Theorem 2.4. By Corollary 2.6, there exists some v ∈ V (T ) such that
(φv(E), φv(E

c)) is a 2-separation of Mv. We may assume that Mv is a circuit,
the case that it is a cocircuit is dual. Then clearly there is no cycle in M
restricted to φv(E) and by definition of the torso M restricted to E is not
connected.

For the rest of this section, let G be a connected simple graph-like space
representing a connected matroid M . By Proposition 8.1 G is then also
2-connected.

Going from separations of the graph-like space to those of the matroid is
easier than vice versa, but unfortunately it cannot always be done uniquely,
since an edge in the separator may be placed on either side.

Lemma 8.3. If (A,B) is a 2-separation (A,B) of G, (E(G[A]), (E(G[A]))c)
is a 2-separation of M . Moreover, if (A,B) is good, then so is at least one
of (E(G[A]), (E(G[A]))c) and (E(G[B]), (E(G[B]))c).

Proof. Let a ∈ A \ B and b ∈ B \ A be arbitrary vertices and let v, w be
the vertices of A ∩ B. Since G is 2-connected, there are pseudo-arcs from
a to v and w avoiding w or v, respectively and similarly for b, so E(G[A])
and (E(G[A]))c both contain at least two edges. Now let B1 and B2 be
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bases of M restricted to these two sets respectively. Since M is connected,
B1 ∪B2 contains a pseudo-cycle C. Let e be any edge on C and let x and
y be its endvertices. W.l.o.g. e is contained in B. Now it suffices to prove
that B1 ∪ B2 − e is independent. If not, then there exists a pseudo-cycle
D whose edges are contained in this set. W.l.o.g. we may assume that x
lies between y and v on the part of C in B. Then there are pseudo-arcs
f1 from x to v and f2 from w to y contained in C and B. There is also a
pseudo-arc g from v to w on D contained in B. Concatenating f1, g and f2
gives a pseudo-path from x to y using only edges of B2− e, which contains a
pseudo-arc by Proposition 2.10. Then B2 contains a cycle, a contradiction.

Let us now prove the second assertion. Since (A,B) is good, by Proposi-
tion 7.2 one of A and B meets just one component of G \ (A∩B), w.l.o.g. A.
Let e1, e2 ∈ (E(G[B]))c). Applying Corollary 3.4 to the set of separating ver-
tices {x, y} and V (e1) or V (e2) in G[A] respectively, we obtain pseudo-lines L1

and L2 from x to y. Let D be a result of applying Lemma 2.13 to L1 and L2,
x and y as well as e1 and e2 in G[B]. If D is a pseudo-cycle, then since only x
and y are incident with edges not in (E(G[B]))c), E(D) must be a cycle in M
contracted to (E(G[B]))c). If D is a pseudo-line, then since G[A] is connected
by Lemma 7.1, E(D) must be a cycle in M contracted to (E(G[B]))c). Thus,
this matroid is connected. By Proposition 7.2 we may choose F to be one of
A and B such that G[F ] is 2-connected, preferring A. Let e1, e2 ∈ E(G[F ])
be given. Then applying Corollary 3.4 to V (e1) and V (e2) in G[F ] gives a
cycle containing e1 and e2, so M restricted to E(G[F ]) is connected. If x
and y are adjacent, by Proposition 4.3 both G[A] and G[B] are connected,
so in either case E(G[F ]) is one of the sides of (E(G[B]), (E(G[B]))c). Thus
(E(G[B]), (E(G[B]))c) is good by Proposition 8.2.

The other direction requires a bit more work. First, we observe that for
good 2-separations of matroids, unlike for arbitrary ones, the set of vertices
incident with edges of one of the sides is connected in the graph-like space. As
it will turn out, we only need to consider these vertices to find our separation
of G, the rest will then fall into place.

Corollary 8.4. If (E,Ec) is a good 2-separation of M , then for any vertices
v, w ∈ V (E) there exists a pseudo-arc from v to w using only edges of E and
similarly for Ec.

Proof. By Lemma 8.2 we may assume w.l.o.g. that M restricted to E is
connected. Then the assertion for E follows from the the fact that any two
edges of E are contained in a common cycle using only edges of E. To prove
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Figure 4: The two cases in the proof of Corollary 8.4

the assertion for Ec let v, w ∈ V (Ec) be given. Let ev and ew be edges of
Ec adjacent to v and w respectively and let C be a circuit containing ev
and ew. Let L1 and L2 be the two pseudo-lines which are the components
of C − ev − ew. If L1 or L2 contains no element of E, then we are done.
Otherwise choose some ei ∈ E(Li) ∩ E for i ∈ {1, 2}. Since M restricted
to E is connected, there is some cycle C ′ contained in E including e1 and
e2. Let S′1 and S′2 be the two pseudo-lines from an endvertex of e1 to an
endvertex of e2 which are the components of C ′−e1−e2. By Lemma 2.12 we
can obtain a pseudo-line Si for i ∈ {1, 2} meeting L1 and L2 once each and
only in its endvertices by restricting Si to its segment from its last vertex ai
in L1 to its first vertex bi after that in L2.

Let f be some edge between a1 and a2 on L1. Let F = E(L1) ∪E(L2) ∪
E(S1) ∪ E(S2) + ev + ew − f . Since any cycle contained in F meets S1 or
S2 in an edge, F ∩ Ec is independent in Ec. Since any cycle contained in
F contains ev or ew, F ∩ E is independent in E. Thus there is some edge g
such that F − g is independent.

W.l.o.g. a1 occurs before a2 on L1. If b1 occurs before b2 on L2, then
the cycle obtained from e1 and S1 by connecting them with segments of L1

and L2 and the analogous one containing e2 and S2 are edge-disjoint cycles
contained in F , so one of them avoids g. If b1 occurs after b2 on L2, then
the cycle obtained from e1 and S1 by connecting them with segments of L1

and L2, the analogous one containing e2 and S2 and the unique cycle in F
containing both S1 and S2 are three cycles in F with empty intersection, so
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one of them avoids g. In both cases this contradicts the independence of
F − g, finishing the proof.

This is helpful for showing that there are exactly two vertices incident
with edges of both sides of such a separation.

Lemma 8.5. Let (E,Ec) be a good 2-separation of M . Then |V (E) ∩
V (Ec)| = 2.

Proof. Let us first show that V (E) ∩ V (Ec) has at most two vertices. Oth-
erwise let v1, v2 and v3 be three such vertices. By Corollary 8.4 there is a
pseudo-arc f1 from v1 to v2 using only edges of E and a pseudo-arc from
v3 to v1, from which we can obtain a pseudo-arc f2 from v3 onto f1 by
Lemma 2.12. We can define g1 and g2 similarly for Ec. Since the set of edges
of f1 and f2 is acyclic, it can be extended to a base B1 of M restricted to E.
Similarly we obtain a base B2 of M restricted to Ec containing the edges of
g1 and g2. Now there exists some edge e such that B1 ∪B2 − e is a base of
M . W.l.o.g. e ∈ B1. Then B1 − e still contains a pseudo-arc between two of
{v1, v2, v3} and between these two vertices there is also a pseudo-arc with
edges in B2, contradicting the fact that B1 ∪B2 − e is independent.

In addition V (E) ∩ V (Ec) has at least two vertices, since there exists
some cycle in M contained in B1 ∪B2.

In light of this, it seems clear that these two vertices should be the
separator, with the sides containing at least all the vertices incident with an
edge of that sides. Some vertices might be left over, however, so these need
to be distributed. Luckily, it turns out that this can be done uniquely.

Lemma 8.6. Given a good 2-separation (E,Ec) of M , let A = V (E) and
B = V (Ec). Then there exists a unique good 2-separation (C.D) of G with
A ⊆ C, B ⊆ D and A ∩B = C ∩D.

Proof. By Lemma 8.5 |A ∩ B| = 2. Therefore A \ B and B \ A must be
nonempty, since in a simple graph-like space two edges will always induce at
least three vertices.

Now we will show that A ∩ B separates A from B. If not, let f be a
pseudo-arc from A to B avoiding A ∩B. Then by Corollary 8.4 there exist
pseudo-arcs g1 and g′2 from the vertices of A ∩ B onto f using only edges
of E and h1 and h′2 from the vertices of A ∩ B onto f using only edges of
Ec. Let g2 be the part of g′2 until the infimum of points from g1 and let h2
be defined analogously. The edges of f that lie in E together with those of
g1 and those of g2 are acyclic, so they can be extended to a base B′1 of E.
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Similarly, we obtain a base B′2 of Ec. Thus there must be some edge d such
that B′1 ∪B′2 − d is independent. Then d must clearly lie on f and both g1
and h1 must meet f on different sides of d. The same however, holds for g2
and h2, so there must be a pseudo-cycle in B′1 ∪B′2 − d, a contradiction.

By Proposition 8.2 w.l.o.g. M contracted to E is connected. Thus for
any two edges e1, e2 ∈ E there exists a pseudo-cycle containing e1 and e2
not meeting both vertices of A ∩B or a pseudo-line with set of endvertices
A ∩B containing both e1 and e2. In particular A ∩B does not separate any
two vertices of A. Let C ′ be the component of G \ (A ∩B) meeting A. We
define (C,D) = (C ′ ∪A ∩B,C ′c).

By Proposition 8.2 one of M restricted to E or Ec is connected. We
will only consider the case where E is connected, the other one is analogous.
By Proposition 7.2 it now suffices to show that C is 2-connected. By
Lemma 7.1 C is 1-connected, so assume (I, J) to be a 1-separation of C.
Since G restricted to E is connected, for any two edges e1, e2 ∈ E there is a
pseudo-cycle containing both. Thus A is completely contained in I or J . In
particular, this holds for A ∩B, so by Corollary 4.5 (I, J) must be improper.

Finally, uniqueness follows from the fact that any component of G\(A∩B)
must be incident with an edge by the connectedness of G.

To make things a bit nicer, we sum up our findings so far with two
functions.

Corollary 8.7. There exist a homomorphism f : g2(M) → g2(G) and a
function g : g2(G)→ g2(M) satisfying the following conditions:

1. f(g(s)) = s for every s ∈ g2(G)

2. For any (E,Ec) ∈ g2(M), if f((E.Ec)) = (A,B) for some (A,B) ∈
g2(G), then E(A) ⊇ E and E(B) ⊇ Ec

Proof. Let f be given by Lemma 8.6. Then the second condition is obvious.
By uniqueness we have f(s∗) = f(s)∗ for any s ∈ g2(M). To prove that
f is a homomorphism, let (E,Ec) ≤ (F, F c) in g2(M) be given. Then the
components of G \ (V (E) ∩ V (Ec)) contained in the first component of
f((E,Ec)) do not meet V (F c). But since each component is incident with an
edge, they must then be contained in the first component of f((F, F c)). Thus
f((E,Ec)) ≤ f((F, F c)) and f is a homomorphism. Let g be any function as
given by Lemma 8.3. Let s ∈ g2(G) be arbitrary. Then s is a possible choice
when applying Lemma 8.6 to g(s). By uniqueness s = f(g(s)).
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For the rest of this section, we fix functions f and g as in Corollary 8.7.
For a 2-block Vo of G let E∗(Vo) be the set of edges induced by Vo, whose
set of endvertices is not the separator of any good 2-separation. Fix a tree
decomposition D = (T, (Rv)v∈V (T )) as in Theorem 2.4, where we take V (T )
to consist of the consistent orientations of the good 2-separations of M .
Putting it all together, we obtain a correspondence result as desired.

Proposition 8.8. G is 2-connected and there exists a unique function h from
the set of orientations defining 2-blocks of G to V (T ) such that f [h(o)] = o.
Moreover, h is injective, im(h) = {t ∈ V (T );∀a 6= b ∈ g2(M)f(a) =
f(b) =⇒ |{a, b} ∩ t| 6= 1}, E∗(Vo) ⊆ h(o) and the set of circuits of the torso
of Vo is the same as that of the torso of the part associated with h(o) (up to
renaming added edges).

Proof. By Proposition 8.1 G is 2-connected. Let Vo be a 2-block of G. We
define h by h(o) = {s ∈ g2(M); f(s) ∈ o}. This is a consistent orientation
because f is a homomorphism. We have f [h[o]] ⊆ o by definition and the
reverse inclusion because g is a right-inverse of f . If h′ differs from h on
o, then for s ∈ h′(o) \ h(o) we have f(s) /∈ o, which proves uniqueness.
Furthermore h is injective because f is surjective.

Clearly, any t ∈ V (T ) contained in the image of h must satisfy the condi-
tion in the assertion, the other inclusion follows from h({s ∈ g2(G); g(s) ∈
t}) = t for any such t ∈ V (T ). The second condition in Corollary 8.7 gives
E∗(o) ⊆ h(o) for any o defining a 2-block.

Finally, if C is a circuit of the torso of a 2-block Vo, then replacing
the added edges in C with their associated pseudo-arcs gives a circuit of
G, which witnesses that the equivalent edge set is a cycle in the torso of
h(o). Conversely, if C is a cycle of the torso of h(o), then there exists some
pseudo-cycle C ′ in G meeting f(Vo) exactly in h(o) ∩ C. By Lemma 5.7 we
may assume that the pseudo-arcs contained in C ′ are those chosen for the
construction of the torso. But then replacing these pseudo-arcs in C ′ with
their equivalent edges gives a pseudo-cycle as required.

Our translation of separations also gives us a version of Proposition 2.3
for graph-like spaces inducing matroids.

Corollary 8.9. There exists no ω + 1-chain of good 2-separations of G.
Furthermore, if C is an ω-chain of good 2-separations of G, then G[VC ]
contains no edge.

Proof. Since there exist at most two comparable separations with the same
separator, by Proposition 2.3 and Lemma 8.7 to establish both statements it
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suffices to prove that for any chain C in g2(G) such that no two separations
have the same separator, g(C) is a chain in M of the same length.

So let C be such a chain. Since there exist at most two comparable
separations with the same separator, we may assume that no two separations
in C have the same. Let (A1, B1), (A2, B2) ∈ C with (A1, B1) < (A2, B2)
be given and define (Ei, E

c
i ) = g((Ai, Bi)) for i ∈ {1, 2}. To prove that

(E1, E
c
1) ≤ (E2, E

c
2), let e ∈ E2 be arbitrary. Then e ∈ E[A2] by the

second condition of Corollary 8.7. Since (A1, B1) and (A2, B2) have different
separators, e /∈ E(B1). Thus e ∈ E1. But since f is a left inverse of g, g is
injective and we are done.

9 Reconstruction

Our goal for this section is to reconstruct a graph-like space from its 2-
block decomposition. For this to make sense, we first need to specify what
information we will use for this reconstruction.

Call a pair of a tree-like space T and a family of simple graph-like spaces
(Gt)t∈V (T ) satisfying the following conditions a skeleton:

1. If x ∈ Gs ∩Gt for s, t ∈ V (T ), then x is a vertex in both spaces.

2. There are no two e, f ∈
⋃
t∈T E(Gt) that connect the same vertices

3. Gs ∩Gt ⊆ Gx for all s, t, x ∈ V (T ) with x ∈ LT (s, t)

It is short if on any pseudo-line L in T the supremum of any infinite chain
of different vertices is an endvertex and for any such supremum v the space
Gv has at most one vertex.

Given a proper tree-like decomposition D = (T, (Vt)t∈V (T )) of adhesion
< ℵ0 of some graph-like space we can obtain a skeleton with the same tree-
like space by taking the induced space of every part and arbitrarily deleting
edges contained in multiple parts from all but one of them. We will call any
skeleton obtained in this way an induced skeleton of D. This will be the
data used for our proof of reconstruction for compact spaces. In particular
we can obtain such a skeleton from our decomposition into 2-blocks and as
we will see later, this skeleton will be short. Thus we can limit ourselves to
considering only short skeletons.

To simplify notation, let us fix for this section a natural number k ≤
1, a compact k-connected graph-like space G and a short skeleton S =
(T, (Gt)t∈V (T )) induced by a proper tree-like decomposition of G of adhesion
≤ k. Our first goal now is identify from this skeleton the topology that is

49



supposed to agree with the original one. It is optimal for us to declare as
open as few sets as possible while still defining a graph-like space, since this
will make it more likely that all these sets were open in the original space and
for a compact space this is all that needs to be checked. Write V (S) for the
set

⋃
t∈V (T ) V (Gt), E(S) for the set

⋃
t∈V (T )E(Gt) and

⋃
S for

⋃
t∈V (T )Gt.

For any vertex t of T and any direction d at t let Ctd be the union of all
those Gs such that s 6= t occurs in any element of d. Let τ∗ be the set of all
subsets U of

⋃
S satisfying the following conditions:

1. The intersection of U with Gt is open in Gt for all t ∈ V (T ).

2. If U contains Gt 6= ∅ for some limit point t then there exists some edge
e of T such that U contains all Gs where s lies in the same component
of T − e as t.

3. For any t ∈ V (T ) the set of all adjacent directions d at t such that U
meets Gt ∩Gtd , but does not contain Cdt is finite.

Let τ be the topology on
⋃
S generated by τ∗. Call this space R′(S).

By showing that witnesses in G still qualify in R′(S), we can prove that
this is a graph-like space.

Lemma 9.1. The space R′(S) together with vertex set V (S), edge set E(S)
and maps as in the Gt the edge was contained in is a simple graph-like space.

Proof. Since G is a graph-like space, all conditions not referring to the
topology are trivially satisfied. Furthermore, if U is open in (0, 1) and e is
an edge occurring in some Ga with a ∈ V (T ), then tGa

e (U) ∈ τ∗. Thus the
maps restricted to (0, 1) are still open.

Now it remains to prove that for any two vertices v1, v2 ∈ V (S) there
exists a ({v1}, {v2})-witness in R(D). Let (X,Y ) be a ({v1}, {v2})-witness
in G. Now it suffices to show that X,Y ∈ τ∗. The first condition is clearly
satisfied.

For the second condition let v be the unique vertex of Gt for some limit
point t and let d be the unique direction at t such that v ∈ V (t, d). If Cd

′
s

always meets both X and Y for every s ∈ V (T ) and direction d′ with s 6= t
and v ∈ V (s, d′), then, since G[V (t, d)] is connected by Lemma 5.3, there
must always be some edge with endpoints in V (t, d) that is not contained in
X ∪ Y . But since all vertices besides v will eventually not be contained in
V (t, d), there must be infinitely many edges not contained in X ∪ Y , which
together with X and Y form an open cover of G with no finite subcover, a
contradiction.
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To prove the third condition, assume that it fails for one of them, w.l.o.g.
X at some t ∈ V (T ). Then there is an infinite set D of directions d such that
X does not contain Cdt , but meets Gt ∩Gtd . To deduce a contradiction as
before it now suffices to prove that there is a family of distinct edges (ed)d∈D
not contained in X ∪ Y .

So let d ∈ D be given. By assumption both X and Y meet Cdt . Since
Cdt is connected by Lemma 5.3, X ∪ Y can not cover it. Thus there must be
some edge ed not contained in X ∪ Y . But since every edge is contained in
Gs for just one s ∈ V (T ), all ed for d ∈ D are distinct.

We will write R(S) for the graph-like space in Lemma 9.1, although, as
we will show next, it is really just G.

Theorem 9.2. R(S) = G

Proof. Since G is compact and R(S) is Hausdorff it suffices to show that
any open set in R(S) is open in G. So let U ∈ τ∗ be given and assume for a
contradiction that there exists a net (xd)d∈D in G \ U converging to some
x ∈ U . Clearly D is unbounded. If x occurs in Gt only for some limit point
t, then by the second condition there exists some vertex s of T and some
adjacent direction r at s such that U c is completely contained in Crs . But by
Lemma 5.3 this space is closed, a contradiction.

Otherwise the set of t ∈ V (T ) with x ∈ Gt that are not limits points
together with the edges between them in T forms a graph-theoretical tree
T ′. Let U be an ultrafilter on D. For each edge e of T ′ and endvertex a
of e let Da

e be the set of all those d ∈ D such that xd ∈ Gs, where s is
contained in the same same component of T − e as a. Let o be the set of
all those orientations of edges e pointing towards a, where Da

e ∈ U . Clearly
this defines a consistent orientation. By Lemma 2.2 o points to a vertex or
an end. If it points to an end, then x must also be contained in the limit
point corresponding to that end, so the edge that we obtain from the second
condition for tree-like decompositions should have been oriented differently.
Thus it points to a vertex t.

But the first condition implies that no subnet of (xd)d∈D can be contained
in Gt, so t must be a leaf. Therefore we may assume w.l.o.g. that (xd)d∈D
does not meet Gt and only meets Crt for directions r such that x /∈ Gt ∩Gtr .
Now Lemma 5.3 implies that (xd)d∈D cannot have a subnet in Crt for any
direction r at t, so we may assume that it meets each such direction at
most once. By the third condition for tree-like decompositions we may also
assume that (xd)d∈D does not meet any Crt for any direction r such that
Gt ∩Gtr ⊆ U .
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Let r(d) be the direction r′ at t such that xd ∈ Cr
′
t , let Xd = C

r(d)
t and

let yd be some vertex of Gt ∩Gtr(d) . By Lemma 2.18 limU({yd})d∈D has a
unique element y, which is contained in Gt \ U by Lemma 5.2 and the first
condition. By Lemma 2.17 limU(Xd)d∈D also contains x ∈ U , so it has at
least two elements. But by Lemma 5.3 the Xd are closed and connected, so
this contradicts Corollary 2.20.

For this to be useful, we still need to check that the 2-block decomposition
satisfies the requirements.

Corollary 9.3. Let G be a compact 2-connected graph-like space and let S
be an induced skeleton of its 2-block decomposition. Then R(S) = G.

Proof. By Theorem 9.2 all that remains to be checked is that S is short.
Since by Theorem 2.8 G induces a matroid, by Corollary 8.9 there are no
ω + 1-chains of good separations. Thus there can not be any more edges
after the supremum v of an infinite chain of vertices, so Lemma 2.7 implies
that v is an endvertex.

Now we need to show that the part Vv associated with v has just one
vertex. So assume that a and b are different vertices of Vv. Then there exist
disjoint open sets U and W of G covering V (G) with a ∈ U and b ∈ W .
Since G is compact, U ∪W contains all inner points of all but finitely many
edges. Let F be the finite set of other edges and let L be a nontrivial
pseudo-line in T ending at v. Since any set of comparable separations with
the same separator has size at most two, any edge of F is induced by the
parts at only finitely many elements of L. Furthermore, by Corollary 8.9,
G[Vv] contains no edges. Thus by the second and third condition for tree-like
decompositions there exists some vertex x 6= v of L such that for any vertex
y in the segment of L from x to v no endpoint of an edge of F is included in
Vy. Let z1 and z2 be the vertices of Vx ∩ Vx′ , where x′ is the successor of x
toward v. Let f be a pseudo-arc from a to b avoiding z1. Since the image of
f is topologically connected, f must use an edge of F and therefore one of
its endvertices r. But then the parts of f before and after r must both meet
z2, a contradiction.

The requirement that G be compact can not be weakened to just having it
induce a matroid, even if stability is assumed. More formally, there exist two
2-connected stable graph-like space inducing matroids which have the same
2-block decomposition and whose torsos of these 2-blocks may be chosen
to be identical. In particular, this can happen because we can not tell the
difference between the multitude of possible ways topologies of graphs may
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behave at vertices of infinite degrees if each part contains only finitely many
of their incident edges and these are not chosen for the torso.

Example 9.4. Let V = ω × 2 and let E = E0 ∪ E1 ∪ E′, where Ei =
{((0, i), (a, b)); a ∈ ω, a > 0, b ∈ 2} for i ∈ 2 and E′ = {((a, 0), (a, 1)); a ∈
ω, a > 0}. Let Z = P(E0) × P(E1). Define E1

v to be the set of all e ∈ E
whose first component is v and define E2

v analogously. Let τ be the set of
open intervals of edges in E and let τ(a,b) for some (a, b) ∈ V with a > 0 be
the set {{(a, b)} ∪ (0, ε)×E1

(a,b) ∪ (1− ε, 1)×E1
(a,b); ε ∈ (0, 1]}. Furthermore,

for A ⊆ E0 let τA(0,0) = {{(0, 0)} ∪ (0, ε) × (E1 \ A) ∪ {(x, a); a ∈ A, x ∈
(0, ε∗a)}; ε ∈ (0, 1], ε∗ ∈ (0, 1]A} and analogously define τB(0,1) for some B ⊆ E1.

For each (A,B) ∈ Z let T(A,B) be the topological space induced by the union

of τ , τ(a,b) for all (a, b) ∈ V with a > 0, τA(0,0) and τB(0,1).

Since for any partition (P,Q) of V we can find a (P,Q)-witness in Tz for
any z ∈ Z by taking the union over p ∈ P and q ∈ Q respectively of sets
from the subbasis containing that vertex and the midpoint of no edge, Tz
together with vertex set V , edge set E and the trivial open maps forms a
graph-like space Gz. The space Gz is simple and 2-connected because (V,E)
is a simple, 2-connected graph and stable because the only pseudo-arcs in it
are finite paths. Furthermore it represents the finite cycle matroid of (V,E),
since as before its pseudo-cycles are all finite and any partition of the vertices
induces a topological cut, which contains exactly the crossing edges of the
partition. Since the 2-separations of Gz are the same as those of Gz′ for any
z, z′ in Z, they have the same 2-block decomposition.

Let G1 = G(E0,E1) and G2 = G(E∗0 ,E
∗
1 )

, where E∗i = {((0, i), (a, 0)); a ∈
ω, a > 0} for i ∈ 2. Since E0 and E∗0 differ by infinitely many edges we can
choose εa for a ∈ E0 \E∗0 such that 0 is their closure to obtain an open set
in G2 such that the length of edges at (0, 0) is not bounded below. But
since for any open set of G1 these are bounded below, their topologies are
different. To obtain equal torsos for G1 and G2, it suffices to choose the
pseudo-lines defining them as the unique ones avoiding E∗0 and E∗1 . Indeed,
then the torsos of the center are identical by construction and in those of the
leaves every vertex is incident with only finitely many edges, so both have
the topology of the associated finite graph.

This result is not dependent on the specific choice of torsos given. Indeed,
if the choice of torso for the center vertex can be given by some total ordering
on all pseudo-arcs which occur in the set of graph-like spaces constructed,
there always exists an edge not in the highest priority pseudo-arc for every
leaf and we can thus obtain two graph-like spaces Gz, Gz′ as above with the
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Figure 5: The graph from Example 9.4

same torso, where at least one component of z differs from that component
of z′ by infinitely many edges and which are thus different.

10 Summary

The main objective of this thesis was to find an equivalent to the known
decompositions of graphs and matroids along their 2-separations for graph-like
spaces. To this end we first observed some useful properties of pseudo-arc
connectivity that made it a suitable choice for defining our separations,
including a Menger-type result. Based on the prior work in [9], we described
how to obtain a tree-like decomposition from any nested set of separations
of a graph-like space. We then applied this first to the simpler problem of
finding an analogue for blocks and found no major difficulties in constructing
a decomposition of a connected graph-like space into maximally 2-connected
parts in this way.

For 2-blocks things did not turn out quite so nicely. For any simple,
2-connected graph-like space G we can still use the same procedure as before
to find a decomposition along its 2-separations, but we need G to be stable
if we want the torso of every part to be 3-connected, a pseudo-cycle or
a bond. Furthermore, if G represents a matroid then each part of our 2-
block decomposition corresponds to a part of the known decomposition for
matroids. Finally, if G is compact then it can be reconstructed knowing
only the decomposition tree-like space and the topologies of each part, but
this is not necessarily possible otherwise even if G is stable and represents a
matroid.
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