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Abstract

We give axiomatic foundations for infinite matroids with duality, in terms
of independent sets, bases, circuits, closure and rank. Continuing work of
Higgs and Oxley, this completes the solution to a problem of Rado of 1966.

Introduction

Traditionally, infinite matroids are most often defined like finite ones,1 with the
following additional axiom:

(I4) An infinite set is independent as soon as all its finite subsets are indepen-
dent.

We shall call such set systems finitary matroids.
The additional axiom (I4) reflects the notion of linear independence in vector

spaces, and also the absence of (finite) circuits from a set of edges in a graph.
Conversely, it is a direct consequence of (I4) that circuits, defined as minimal
dependent sets, are finite.

Historically, the introduction of axiom (I4) coincided with the discovery
in the first half of the 20th century of what is now called the ‘compactness
technique’ in infinite combinatorics. And indeed, if we define infinite matroids
via (I4), we find that while not all statements about finite matroids extend to
infinite ones, those that do tend to extend ‘by compactness’.2 Today, compact-
ness proofs in infinite combinatorics are considered standard. The fact that (I4)
restricts infinite matroids to those structures whose essential properties can be
derived by (mere) compactness is no longer seen as an asset, but as a sign of
the limited added diversity of infinite matroid theory over the finite theory.

The axiom (I4) is also the crudest possible way of specifying the infinite
independent sets in an infinite matroid, given its finite independent sets. Indeed,
suppose we have a collection of finite subsets of an infinite set that satisfy the
independence axioms for finite matroids. Which infinite sets can we declare
as independent and remain consistent with those axioms? Since independence
should be hereditary under taking subsets, we can only take sets whose finite
subsets are independent. Axiom (I4) simply tells us to take all of these.

1The augmentation axiom is required only for finite sets: given independent sets I, I0 with
|I| < |I0| <1, there is an x 2 I0 r I such that I + x is again independent.

2Among the infinite matroids introduced in this paper, the finitary ones will be precisely
those whose set of independent sets is closed in the (compact) power set of their ground set.
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The most devastating consequence of (I4), however, is that it spoils duality,
one of the key features of finite matroid theory. For example, the cocircuits of
an infinite uniform matroid of rank k would be the sets missing exactly k � 1
points; since these sets are infinite, however, they cannot be the circuits of
another finitary matroid. Similarly, every bond of an infinite graph would be a
circuit in any dual of its cycle matroid—a set of edges minimal with the property
of containing an edge from every spanning tree—but these sets can be infinite
and hence will not be the circuits of a finitary matroid.

This situation prompted Rado in 1966 to ask for the development of a theory
of non-finitary infinite matroids with duality [42, Problem P531]. The collection
of independent sets in such matroids would have to be a more subtly chosen
subcollection of the sets specified by (I4), balanced carefully to make duality
possible. The collection of circuits for such matroids would necessarily have to
allow for infinite circuits.

Rado’s challenge caused some serious activity in the late 1960s (see e.g. [37]
for references), in which several authors suggested numerous possible notions of
infinite matroids. Each of these highlighted one of the aspects of finite matroids
(usually closure), some had duality built in by force, but none came with a set
of axioms similar to those known from finite matroids: axioms that would make
these structures the models of what was visibly a theory of finite and infinite
matroids. This situation led to the popular belief, common to this day, that
Rado’s problem may have no solution: that there may be no theory of infinite
matroids with all the usual aspects including duality.3

Despite these negative expectations, those early activities made an important
contribution: they identified necessary conditions which any theory of infinite
matroids would have to satisfy. Eventually, Oxley [39] proved that any theory
of infinite matroids with duality and minors as we know them would have as
its models certain structures that Higgs [34] had proposed as ‘B-matroids’. Al-
though Oxley [37, 38] had earlier found a set of axioms for these ‘B-matroids’
resembling a mixture of independence and base axioms, it remained an open
problem whether axiom sets of the kind known from finite matroids existed to
capture these structures—axiom sets that would make them accessible to the
tools and techniques that finite matroid theory had developed over the years.

Our aim in this paper is to finally settle Rado’s problem, in the a�rmative.
We propose five equivalent sets of matroid axioms, in terms of independent sets,
bases, circuits, closure and rank, that make duality possible. They will allow
for infinite circuits, but default to finitary matroids when their circuits happen
to be finite. Duality will work as familiar from finite matroids: the cobases
are the complements of bases, and there are well-defined and dual operations of
contraction and deletion extending the familiar finite operations.

Generic examples of these matroids abound: they include the duals of all
finitary matroids, a vast class of structures that can now also be described in
matroidal terms. (These duals are not normally finitary.) For example, there
are now matroid duals of vector spaces. This may, for the first time, facilitate a
genuine use of matroidal techniques in linear algebra: an idea that motivated the
creation of matroid theory, but which never came to fruition since matroid proofs

3Compare Oxley [40, p. 68].
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without duality can usually be carried out in the vector space directly. The
matroid duals of vector spaces and their submatroids have been characterized
recently by Afzali and Bowler [1], based on the axioms introduced in this paper.

One particularly striking example where the now existing dual of a finitary
matroid was found to describe, and shed a new light on, a previously known
important structure outside matroid theory is the following. When a graph G is
infinite (but locally finite), its first homology is best described – in the sense that
it captures similar structural features of G as does its simplicial first homology
when G is finite – not by the (simplicial or singular) first homology of G itself,
but by a non-singular homology theory based on possibly infinite sums of the
edge sets of topological circles in its Freudenthal compactification |G|; see [24,
25, 26]. It turns out that these edge sets of circles in |G| are precisely the
circuits of the dual of the finite-bond matroid of G, a finitary matroid that has
long been known but which under (I4) had no dual. Considering that there
is nothing topological in either the definition of the finite-bond matroid or in
our infinite matroid axioms, the fact that these (edge sets of) topological circles
come up as the cocircuits of finitary matroids seems to point to some deeper
connections of the two fields than meets the eye.

There are also some ‘primal’ infinite matroids that occur naturally outside
matroid theory. For example, infinite matroids can now describe the duality of
infinite graphs, which is more subtle than finite graph duality: between their
bonds and finite circuits, between their finite bonds and their topological circuits
(as earlier), and in many new ways located between these two. Planar infinite
graphs can now be characterized by the duals of their cycle matroids, just as
the finite planar graphs are characterized by their matroid duals via Whitney’s
theorem. There are also some algebraic examples, such as from simplicial ho-
mology. Further primal examples can be found in the existing literature on
Higgs’s ‘B-matroids’, see e.g. [5, 34, 37, 36, 50].

Since our paper was first made available in preprint form [17], various authors
have built on it to extend some of the classical results of finite matroid theory to
infinite matroids, or to relate such infinite extensions to well-known conjectures
outside matroid theory. Such extensions include Whitney’s characterization
of planar graphs [48, 16], excluded minor characterizations of classes of repre-
sentable and graphic matroids [6, 12], Tutte’s linking theorem [46, 18, 13], the
decomposition theorem of Cunningham-Edmonds and Seymour [19, 44, 4, 11],
the matroid union theorem of Rado, Nash-Williams and Edmonds [41, 43, 29, 2],
cases of Edmonds’s matroid intersection theorem [30, 31, 3, 8, 10], and the base
packing and covering theorems of Edmonds [31, 2, 8] (in part anticipated by
Horn, Nash-Williams, and Tutte).

When developing our axioms we faced two challenges: to avoid the use of
cardinalities, and to deal with limits. As concerns the latter, we want every
independent set to extend to a base (so that there can be an equivalent set of
base axioms, in which independent sets are defined as subsets of bases), and
we want every dependent set to contain a circuit (so that there can be an
equivalent set of circuit axioms, in which independent sets are defined as the
sets not containing a circuit). It turns out that we have to require one of these
as an additional axiom, but the other will then follow.
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Devising axioms without reference to cardinalities is a more serious challenge.
Consider two independent sets I1, I2 in a finite matroid. How can we translate
the assumption, made in the third of the standard independence axioms, that
|I1| < |I2|? If I1 ✓ I2, this is equivalent (for finite sets) to I1 ( I2, and we
can use the latter statement instead. But if I1 6✓ I2, the only way to designate
I1 as ‘smaller’ and I2 as ‘larger’ is to assume that I2 is maximal among all
the independent sets while I1 is not—a much stronger statement (for finite
matroids) that fails to capture size di↵erences among non-maximal independent
sets. Nevertheless, we shall see that this distinction will be enough.

Similarly, the cardinality of bases is too crude a measure for rank when it
is infinite: although bases are equicardinal also for our matroids [32], deleting
one element of an infinite independent set should reduce its rank by 1 but does
not reduce its cardinality. Our solution to this problem will be to measure not
absolute but ‘relative’ rank: for finite matroids, this would be the amount by
which the rank of a set A exceeds that of a given subset B ✓ A, and it will be 1
in the above example. It turns out that the usual rank axioms can be rephrased
for finite matroids in terms of such relative rank, in a way that yields an axiom
system that becomes equivalent to the other systems also for infinite matroids.

Our paper is organized as follows. In Section 1 we state our axiom systems
for infinite matroids, and provisionally define infinite matroids as set systems
satisfying the independence axioms. Section 2 is devoted to examples of infinite
matroids that are not necessarily finitary. We have also included some references
to further results and examples of infinite matroids (by other authors) that
have become possible since we first presented our axioms in [17]. In Section 3
we establish a minimum of basic properties of our infinite matroids (including
duality and the existence of minors): those that will enable us in Section 4 to
prove that the independence axioms are in fact equivalent to the other axiomatic
systems proposed in Section 1, as well as to the traditional axioms when the
matroid is finitary. Section 5 provides some alternative axiom systems, which are
more technical to state but may be easier to verify, and are hence worth knowing.
We also include the mixed set of independence and base axioms developed for
Higgs’s ‘B-matroids’ by Oxley [37, 38]. In Section 6, finally, we illustrate our
axioms by examples of set systems that narrowly fail to satisfy them, by missing
just one axiom each. In particular, our axioms are shown to be independent.

Any matroid terminology not explained below is taken from Oxley [40].
Terms used in our infinite graph examples, such as ends of graphs and their
topology, are defined in [21]. Let E be any set, finite or infinite. This set E
will be the default ground set for all matroids considered in this paper. We
write X := E r X for complements of sets X ✓ E, and 2E for the power set
of E. The set of all pairs (A,B) such that B ✓ A ✓ E will be denoted by
(2E ⇥ 2E)✓; for its elements we usually write (A|B) instead of (A,B). Unless
otherwise mentioned, the terms ‘minimal’ and ‘maximal’ refer to set inclusion.
Given E ✓ 2E , we write Emax for the set of maximal elements of E , and dEe for
the down-closure of E , the set of subsets of elements of E . For F ✓ E and x 2 E,
we abbreviate F r {x} to F �x and F [ {x} to F +x. We shall not distinguish
between infinite cardinalities and denote all these by 1; in particular, we shall
write |A| = |B| for any two infinite sets A and B. The set N contains 0.
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1 Axiom systems for infinite matroids

In this section we present our five systems of axioms for infinite matroids. They
are stated, respectively, in terms of independent sets, bases, closure, circuits
and rank.

One central axiom that features in all these systems is that every independent
set extends to a maximal one, inside any restriction X ✓ E.4 The notion of
what constitutes an independent set, however, will depend on the type of axioms
under consideration. We therefore state this extension axiom in more general
form right away, without reference to independence, so as to be able to refer to
it later from within di↵erent contexts.

Let I ✓ 2E . The following statement describes a possible property of I.

(M) Whenever I ✓ X ✓ E and I 2 I, the set { I 0 2 I | I ✓ I 0 ✓ X } has a
maximal element.

Note that the maximal superset of I in I\2X whose existence is asserted in (M)
need not lie in Imax.

1.1 Independence axioms

The following statements about a set I ✓ 2E are our independence axioms:

(I1) ; 2 I.

(I2) dIe = I, i.e., I is closed under taking subsets.

(I3) For all I 2 IrImax and I 0 2 Imax there is an x 2 I 0rI such that I+x 2 I.

(IM) I satisfies (M).

We remark that although (IM) formally depends on our choice of E as well as
that of I, this dependence on E is not crucial: if I satisfies (IM) for some set E
large enough that E ◆

S
I, it does so for every such set E0.

When a set I ✓ 2E satisfies the independence axioms, we call the pair
(E, I) a matroid on E. We then call every element of I an independent set,
every element of 2E r I a dependent set, the maximal independent sets bases,
and the minimal dependent sets circuits. The 2E ! 2E function mapping a set
X ✓ E to the set

cl(X) := X [ {x | 9 I ✓ X : I 2 I but I + x /2 I }

will be called the closure operator on 2E associated with I. The (2E ⇥ 2E)✓ !
N [ {1} function r that maps a pair A ◆ B of subsets of E to

r(A|B) := max { |I r J | : I ◆ J, I 2 I \ 2A, J maximal in I \ 2B}

will be called the relative rank function on the subsets of E associated with I.
We shall see in Section 3 that this maximum is always attained and independent
of the choice of J (Lemma 3.12).

4Interestingly, we shall not need to require that every dependent set contains a minimal
one. We need that too, but will be able to prove it; see Section 3.
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1.2 Base axioms

The following statements about a set B ✓ 2E are our base axioms:

(B1) B 6= ;.

(B2) Whenever B1, B2 2 B and x 2 B1 r B2, there is an element y of B2 r B1

such that (B1 � x) + y 2 B.

(BM) The set I := dBe of all B-independent sets satisfies (M).

1.3 Closure axioms

The following statements about a function cl : 2E ! 2E are our closure axioms:

(CL1) For all X ✓ E we have X ✓ cl(X).

(CL2) For all X ✓ Y ✓ E we have cl(X) ✓ cl(Y ).

(CL3) For all X ✓ E we have cl(cl(X)) = cl(X).

(CL4) For all Z ✓ E and x, y 2 E, if y 2 cl(Z + x) r cl(Z) then x 2 cl(Z + y).

(CLM) The set I of all cl-independent sets satisfies (M). These are the sets I ✓ E
such that x /2 cl(I � x) for all x 2 I.

1.4 Circuit axioms

The following statements about a set C ✓ 2E are our circuit axioms:

(C1) ; /2 C.

(C2) No element of C is a subset of another.

(C3) Whenever X ✓ C 2 C and (Cx | x 2 X) is a family of elements of C such
that x 2 Cy , x = y for all x, y 2 X, then for every z 2 C r

�S
x2X Cx

�
there exists an element C0 2 C such that z 2 C0 ✓

�
C [

S
x2X Cx

�
r X.

(CM) The set I of all C-independent sets satisfies (M). These are the sets I ✓ E
such that C 6✓ I for all C 2 C.

Axiom (C3) defaults for |X| = 1 to the usual (‘strong’) circuit elimination axiom
for finite matroids. In particular, it implies that adding an element to a base
creates at most one circuit; the existence of such a (fundamental) circuit will
follow from Lemma 3.8. For |X| > 1, the inclusion of a specified element z in
C0 is not just a convenience but essential: without it, the statement would in
general be false even for finite matroids. (Take X = C to be the rim of a wheel
in its cycle matroid.) We shall see in Section 6 that the usual finite circuit
elimination axiom is too weak to guarantee a matroid (Example 6.6).
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1.5 Rank axioms

The following statements about a function r : (2E ⇥ 2E)✓ ! N [ {1} are our
(relative) rank axioms:

(R1) For all B ✓ A ✓ E we have r(A|B)  |A r B|.
(R2) For all A,B ✓ E we have r(A|A \B) � r(A [B|B).

(R3) For all C ✓ B ✓ A ✓ E we have r(A|C) = r(A|B) + r(B|C).

(R4) For all families (A�) and B such that B ✓ A� ✓ E and r(A� |B) = 0 for
all �, we have r(A|B) = 0 for A :=

S
� A� .

(RM) The set I of all r-independent sets satisfies (M). These are the sets I ✓ E
such that r(I|I � x) > 0 for all x 2 I.

For finite matroids, these axioms (with (R4) and (RM) becoming redundant)
are easily seen to be tantamount to the usual axioms for an absolute rank func-
tion R derived as R(A) := r(A|;), or conversely with r(A|B) := R(A)�R(B)
for B ✓ A.

2 Examples

The purpose of this section is to show that the infinite matroids just defined do
occur in nature: we give a small collection of natural examples from contexts in
which, working on other problems, we encountered these matroids, and which
made us look for a general definition.

Before we start, let us note that, for finite set systems, our definition of a
matroid coincides with the usual definition. Indeed, finite matroids defined as
usual are matroids in our sense: this is most easily seen in terms of our base or
closure axioms, which for finite E coincide with the usual base or closure axioms.
More generally, all traditional finitary matroids are matroids in our sense, as
axiom (IM) follows by Zorn’s Lemma; see Corollary 4.4 for an explicit proof.

Conversely, if a matroid in our sense happens to be finite or finitary (i.e.,
satisfies (I4) in addition to our axioms), it also satisfies the usual axioms for
finite or finitary matroids: the finite augmentation axiom (see the introduction)
is easy to deduce from Lemma 3.7 below, applied in our matroid’s restriction to
I [ I 0. Since every dependent set contains a circuit (Lemma 3.8), a matroid in
our sense is finitary if and only if it has only finite circuits.

In what follows we shall concentrate on non-finitary matroids.

2.1 Generic non-finitary matroids

Since classical finitary matroids are matroids in our sense, and our matroids
have duals, we at once have a large class of new matroids: duals of finitary
matroids that are not themselves finitary. We already saw an example in the
introduction: the duals of uniform matroids of finite rank. We remark that
having a non-finitary dual is the rule rather than the exception for a finitary
matroid: Las Vergnas [36] and Bean [5] showed that the only finitary matroids
with finitary duals are the direct sums of finite matroids.
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2.2 Cycle and bond matroids in graphs

There are two standard matroids associated with a graph G, both finitary: the
finite-cycle matroid MFC(G) whose circuits are the edge sets of the (finite) cycles
of G, and the finite-bond matroid MFB(G) whose circuits are the finite bonds
of G. (A bond is a minimal non-empty cut.) In a finite graph these two matroids
are dual.

When G is infinite, the dual of MFC(G) is not MFB(G) but the full bond
matroid MB(G). This is the matroid whose circuits are all the bonds of G, finite
or infinite: these, as is easy to show, are the minimal edge sets meeting all the
spanning trees of G (connected), the bases of MFC(G). Similarly, the dual of
MFB(G) is no longer MFC(G) but a matroid MTC(G) whose circuits can be
infinite.

Surprisingly, this matroid MTC(G) has a topological characterization [16].
When G is connected and locally finite, it is particularly natural: its circuits
are the edge sets of the topological circles in |G|, the compact topological space
obtained from G by adding its ends.5 Its bases are the edge sets of the topological
spanning trees of G, the arc-connected standard subspaces of |G| that contain
every vertex (and every end) but lose their connectedness if any edge is deleted.

Theorem 2.1. [16] Let G be a locally finite connected graph.

(i) The dual of its finite-bond matroid MFB(G) is the matroid MTC(G) whose
circuits are the edge sets of the topological circles in |G| and whose bases
are the edge sets of the topological spanning trees of G.

(ii) The dual of its finite-cycle matroid MFC(G) is its bond matroid MB(G),
whose circuits are the (finite or infinite) bonds of G.

In Section 2.3 we shall extend Theorem 2.1 to a slightly larger class of graphs.

It has turned out that these four cycle- and bond-type matroids are only the
extremes of a rich class of matroids associated with the topological circles or the
bonds in a locally finite graph G. Indeed, whenever  is a Borel subset of the
full set of ends of G, the edge sets of topological circles in the space obtained
from G by adding only the ends in  form a matroid. (There exist graphs G
with some non-Borel sets  of ends for which this is not the case.) The duals
of these matroids have as their circuits the bonds of G that have no end of  
in their closure. See Bowler and Carmesin [7] for details.

2.3 Matroids describing the duality of planar graphs

Whitney’s theorem [21] says that a finite graph G is planar if and only if the
dual of its cycle matroid is graphic, i.e., is the cycle matroid of some other graph.
Our matroids allow us to extend this to infinite graphs, as follows.

Thomassen [45] showed that any reasonable notion of duality for infinite
graphs requires that these are finitely separable: that any two vertices can be

5This space, also known as the Freudenthal compactification of G, is the natural setting
for most problems about locally finite graphs that involve paths and cycles. It has been
extensively studied; see [21, 20] for an introduction and overview.
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separated by a finite set of edges. The class of finitely separable graphs is slightly
larger than that of locally finite graphs, and just right for duality: while locally
finite graphs can have duals that are not locally finite (with respect to any
reasonable notion of duality, e.g. geometrically in the plane), duals of finitely
separable graphs, as defined formally below, are again finitely separable.

Since bonds can be infinite, any adaptation of graph duality to infinite graphs
that takes account of all bonds requires a notion of possibly infinite circuits for
graphs: the edge sets which, if the graph is planar, will be the bonds of its
dual. The notion that works for finitely separable graphs extends that defined
for locally finite graphs in Section 2.2: take as the circuits the edge sets of
topological circles in the quotient space G̃ of |G| obtained by identifying every
vertex with all the ends from which it cannot be separated by finitely many
edges.6 (Note that, since G is finitely separable, no two vertices are identified
with the same end.)

As in locally finite graphs, these edge sets are the circuits of a matroid, the
topological cycle matroid MTC(G) of G. As before, this is the dual of the finite-
bond matroid MFB(G). The bonds of G, finite or infinite, are also once more
the circuits of a matroid, the bond matroid MB(G) of G.

Theorem 2.2. [16] Let G be a finitely separable connected graph.

(i) The topological cycle matroid of G is the dual of its finite-bond matroid.
(ii) The bond matroid of G is the dual of its finite-cycle matroid.

A finitely separable graph G⇤ is a dual of a finitely separable graph G with
the same edge set if the bonds of G⇤ are precisely the circuits of G, the edge
sets of the topological circles in G̃. It has been shown in [15] that, if G is 3-
connected, this graph G⇤ is unique, 3-connected, and has G as its unique dual,
so G⇤⇤ = G.

By Theorem 2.2, graph duality commutes with matroid duality:

Corollary 2.3. If G and G⇤ are dual finitely separable graphs, then

M⇤
FC(G) = MTC(G⇤) and M⇤

FB(G) = MB(G⇤).

Call a matroid topologically graphic if it is the topological cycle matroid
MTC(G) of some graph G, and finitely graphic if it is the finite-cycle matroid
MFC(G) of some graph G. We then have the following infinite version of Whit-
ney’s theorem:

Theorem 2.4. [16] The following three assertions are equivalent for a countable
finitely separable graph G:

(i) G is planar;
(ii) M⇤

TC(G) is finitely graphic;
(iii) M⇤

FC(G) is topologically graphic.

6Equivalently: by finitely many vertices. Another way of obtaining G̃ is to start not from
|G| but directly from G: we simply add only those ends that are not dominated by a vertex
in this way, while making rays of the other ends converge to the vertex dominating that end.
See [20, 22] for details.

9



The graphs witnessing (ii) and (iii) can also be chosen to be finitely separa-
ble [16].

As before, Corollary 2.3 and Theorem 2.4 are but the extreme cases of a more
subtle duality of planar graphs, which is reflected by the  -matroids indicated at
the end of Section 2.2. See [7, 23] for details. More on infinite graphic matroids
can be found in [12].

2.4 The algebraic cycle matroid of a graph

Another natural matroid in a locally finite graph G is its algebraic cycle matroid :
the matroid whose circuits are the elementary algebraic cycles of G (in the sense
of infinite simplicial 1-chains with zero boundary), the minimal non-empty edge
sets inducing even degrees at all vertices. When G is infinite, these are the edge
sets of its (finite) cycles and those of its double rays, its 2-way infinite paths.

S z

v

u

y
R

Figure 1: The Bean graph

The elementary algebraic cycles do not form a matroid in every infinite
graph: we shall see in Section 6 that they do not satisfy our circuit axioms
when G is the Bean graph shown in Figure 1. However, Higgs proved (for his ‘B-
matroids’; but cf. Theorem 5.1) that this is essentially the only counterexample:

Theorem 2.5 (Higgs [33]). The elementary algebraic cycles of an infinite graph
G are the circuits of a matroid on its edge set E(G) if and only if G contains
no subdivision of the Bean graph.

Corollary 2.6. The elementary algebraic cycles of any locally finite graph are
the circuits of a matroid.

The dual of the algebraic cycle matroid of a graph G can also be described:
it is the matroid whose circuits are the minimal non-empty cuts dividing the
graph into a rayless ‘small’ side and the rest [16].

2.5 A matroid without finite circuits or cocircuits

Most of the examples of infinite matroids we have seen so far are either finitary
or cofinitary. The algebraic cycle matroids discussed in the last section, however,
can have both infinite circuits and infinite cocircuits. The following example is
an extreme case, in that its circuits and cocircuits are all infinite:

Example 2.7. The matroid of the elementary algebraic cycles in the @0-regular
tree T1 has no finite circuit and no finite cocircuit.
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Proof. Clearly, the elementary algebraic cycles of T1 are just the edge sets of
its double rays. Since T1 does not contain the Bean graph as a subdivision,
they are the circuits of a matroid MT1 on the edge set of T1, by Theorem 2.5.7

To show that every cocircuit is infinite we borrow Lemma 3.11 from Section 3,
which says that a circuit and a cocircuit never meet in exactly one element.
Since for any finite edge set F in T1 it is easy to find a double ray meeting F
in exactly one edge, we deduce that F cannot be a cocircuit.

2.6 Representability and thin independence

An important class of finite matroids are the representable matroids [49]. How-
ever, as matroids defined by linear independence are finitary, the dual of an
infinite representable matroid will not, except in trivial cases, be representable.
Representability thus seems to be a concept too narrow for infinite matroids.
The following notion of thin independence, which agrees with linear indepen-
dence when the matroid is finite, leads to an otherwise slightly weaker notion
of representability that is more compatible with duality.

Let F be a field, and let A be some set. We say that a family � = ('i)i2I

of functions 'i : A ! F is thin if for every a 2 A there are only finitely many
i 2 I with 'i(a) 6= 0. Given such a thin family � of functions, their pointwise
sum

P
i2I 'i is another A ! F function. We say that a family  of A ! F

functions, not necessarily thin, is thinly independent if for every thin subfamily
� = ('i)i2I of  and every corresponding family (�i)i2I of coe�cients �i 2 F
we have

P
i2I �i'i = 0 2 FA only when �i = 0 for all i 2 I.

Unlike with linear independence, the thinly independent subfamilies of a
given family of A ! F functions do not always form a matroid.8 But they do
if the given family of functions is itself thin:

Theorem 2.8. [16] If a family E of A ! F functions is thin, then its thinly
independent subfamilies are the independent sets of a matroid on E.

Afzali and Bowler [1] have shown that the matroids arising as in Theorem 2.8
are precisely the duals of the matroids that are representable over F in the usual
sense.

Whenever the thinly independent subfamilies of a family of A ! F functions
form a matroid, we call this the thin-sums matroid of these functions. We say
that a matroid can be thinly represented over F if it is isomorphic (in the obvious
sense) to such a matroid. For finite matroids, thin representability over a given
field is easily seen to coincide with ordinary representability over that field.

Many standard infinite matroids, including all the variants of cycle and
bond matroids of locally finite graphs [1] (see Sections 2.2–2.4) or of higher-
dimensional complexes (Section 2.7), are thinly representable. Every matroid

7This can also be seen directly. Checking (C1–3) is easy; see [14] for a direct proof of (CM).
8View the elements of E = FN

2 as subsets of N, and define sets I := {{1, n} : n 2 N} and
I0 := {{n} : n 2 N}. Both I and I0 are thinly independent. Moreover, I0 is maximally thinly
independent but I is not: I + N, for instance, is still thinly independent. Yet, the only x 2 I0

for which I + x is thinly independent is x = {1}, which is already contained in I. Thus, (I3)
is violated.
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that is representable over a field F in the usual sense is also thinly representable
over F [1], which is not obvious. So thin representability generalizes ordinary
representability. Conversely, every finitary matroid that is thinly representable
over F is also representable over F (which is easy). Hence for all finitary ma-
troids, not just for the finite ones, thin representability coincides with ordinary
representability, but for infinite (finitary) matroids this coincidence is not the
canonical one as for finite matroids.

The class of thinly representable matroids is not closed under duality [9].
However, there is an important subclass that is: the class of ‘tame’ thinly rep-
resentable matroids (which is also closed under taking minors) [1]. A matroid,
thinly representable or not, is tame if every circuit meets every cocircuit only
finitely. Tame matroids are substantially easier to handle than arbitrary ma-
troids, and have more pleasant properties [7]. Forbidden minor characterizations
extend readily from finite to tame matroids [6]; for example, a tame matroid is
thinly representable over F2 if and only if it does not have U2,4 as a minor. The
class of tame matroids is closed under taking minors (as well as, by definition,
under duality), so the tame matroids also solve Rado’s original problem. See
Bowler and Carmesin [6, 7, 9, 11] for more.

Generalizing matroid representations over fields and over a finite ground
set to representations over fuzzy fields and infinite ground sets, Dress defined
matroids with coe�cients [27]. There is a fuzzy field over which all finite ma-
troids are representable [28]. A matroid with coe�cients, D say, determines a
closure operator clD that satisfies (CL1–4), but which need not satisfy (CLM).
In this setup, D also has a dual D⇤, which by construction has the property
that its circuits intersect those of D finitely. We do not know whether this
duality agrees with ours when clD and clD⇤ do satisfy (CLM) and hence define
matroids in our sense, i.e., whether then (E, clD⇤) = (E, clD)⇤. But there is an
example of a matroid with coe�cients, D say, for which clD satisfies (CLM) but
clD⇤ does not [1]. Results of Wagowski [47] imply that, given a matroid M in
our sense, there is a matroid with coe�cients D such that M = (E, clD) and
M⇤ = (E, clD⇤) if and only if M is tame.

2.7 The algebraic cycle matroid of a complex

Before we turn to more general complexes, let us show that the algebraic cycle
matroid of a graph G = (V,E) can be thinly represented over F2, for any G
for which it is defined (cf. Theorem 2.5). We represent an edge e = uv by
the map V ! F2 assigning 1 to both u and v, and 0 to every other vertex.
Then a set F ✓ E of edges becomes a family ('f )f2F of V ! F2 functions,
not necessarily thin, which is thinly independent if and only if F contains no
elementary algebraic cycle.

The above example generalizes to higher dimensions. Let K be a locally
finite simplicial complex. Let us show that, for each n 2 N, the n-dimensional
cycles in K define a matroid Mn(K) on the set �n(K) of its n-simplices, which
is thinly representable over F2.

Formally, we define this matroid as a thin-sums matroid over F2, representing
each simplex � 2 �n(K) by its boundary @�: this is an (n � 1)-chain with
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coe�cients in F2, which we think of as a function '� : �n�1(K) ! F2.9 Thus,
formally, our ground set E is not �n(K) itself (the intended reading) but the
family ('�)�2�n(K). Since K is locally finite, the sets F ✓ E are thin families
of such functions. Such a family F = ('�)�2⌃ is thinly independent if and
only if it contains no non-trivial n-cycle, that is, has no non-empty subfamily
F 0 = ('�)�2⌃0 such that @ = 0 for the corresponding n-chain  :=

P
�2⌃0 �.

Theorem 2.8 thus has the following application:

Theorem 2.9. [16] The minimal non-zero n-dimensional cycles of a locally
finite simplicial complex form the circuits of a matroid.

Let us call this matroid the n-dimensional cycle matroid of the complex K, and
denote it by Mn(K). In general, this is a non-finitary matroid, but by the result
of Afzali and Bowler [1] mentioned after Theorem 2.8 it is always cofinitary.

We remark that even for n = 1 it was not entirely trivial to verify (CM) for
this matroid. For n > 1 we know of no direct proof. The other essential axioms,
such as (C3), (I3) or (B2), also appear to be hard to verify directly when the
complex is infinite.

3 Basic properties

In this section we prove just enough about infinite matroids (E, I) to enable us
in Section 4 to deduce that the various axiom systems given in Section 1 are
indeed equivalent. On the way we define duality, deletions and contractions,
and show that they behave as for finite matroids. More properties of infinite
matroids, especially regarding connectivity, are proved in [18].

Let M = (E, I) be a fixed matroid, that is, assume throughout this section
that I satisfies the independence axioms. Write B := Imax for its set of bases.
We start with an observation that can be directly read o↵ the axioms:

(I30) For all I 2 I and I 0 2 B there is a B 2 B such that I ✓ B ✓ I [ I 0.

Indeed, by (IM) there is a maximal independent subset B of I [ I 0 such that
I ✓ B. Then B 2 B, as otherwise we could use (I3) to extend B further into I 0

(keeping it independent), contrary to its definition.

Let us establish duality. Define

B⇤ := {B⇤ ✓ E | E r B⇤ 2 B }
�

= {B | B 2 B }
�

and I⇤ := dB⇤e.
Theorem 3.1. If I satisfies the independence axioms, then so does I⇤, with
B⇤ as its set of bases.

Proof. Since I satisfies (I1) and (IM), we have B⇤ 6= ; and hence (I2) and (I1)
for I⇤. Since B and hence also B⇤ is an antichain, we have I⇤max = B⇤. To
prove (I3) for I⇤, let I⇤ 2 I⇤ r B⇤ be given, with I⇤ \ B = ; for B 2 B say,

9In the notation of Section 2.6, we have A = �n�1(K) and index sets I ✓ �n(K).
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and let also B0 2 B be given; our aim is to extend I⇤ non-trivially into B0 while
keeping it in I⇤.

We first use (I30) to extend the independent set B0 r I⇤ into B, to a subset
B00 2 B of (B0 r I⇤)[B. Then I⇤ ✓ B00 2 B⇤, and the inclusion is proper since
I⇤ /2 B⇤ by assumption. But

B00 r I⇤ = B00 [ I⇤ ✓ B0 [ I⇤ = B0 r I⇤

since B0[ I⇤ ✓ B00[ I⇤. So the extension B00 of I⇤ is as desired, completing our
proof of (I3)—indeed of its strengthening (I30)—for I⇤.

It remains to prove that I⇤ satisfies (M). Let X ✓ E and I⇤ 2 I⇤ \ 2X

be given. By definition of I⇤, there exists a set B 2 B such that I⇤ \ B = ;.
By (IM), X has a maximal independent subset I. By (I30), we can extend I to
a subset B0 2 B of I [B ✓ I⇤.

We claim that X r B0 witnesses (M) for I⇤ and I⇤, i.e. that X r B0 is
maximal among the subsets of X that contain I⇤ and avoid an element of B.
Suppose not. Then there is a set B00 2 B such that B00 \X ( B0 \X. Then

I 0 := (B00 \X) [ (B0 r X) ( B0,

so I 0 2 IrB. We can thus use (I3) to extend I 0 properly into B00 to a larger inde-
pendent set I 00. But then I ✓ I 0rX ( I 00rX, contradicting the choice of I.

Given a matroid M = (E, I), we call the matroid M⇤ := (E, I⇤) specified by
Theorem 3.1 the dual of M . As usual, we call the bases, circuits, dependent and
independent sets of M⇤ the cobases, cocircuits, codependent and coindependent
sets of M .

Next, let us show that our matroids have restrictions defined in the usual
way: that, given a set X ✓ E, the pair (X, I \ 2X) is again a matroid. It will
be convenient to use the following duality argument in our proof of this fact:

Lemma 3.2. If X ✓ E and B 2 B, then B \X is maximal in I \ 2X if and
only if B \X is maximal in I⇤ \ 2X .

Proof. Suppose first that B \X is maximal in I \ 2X . If B \X is not maximal
in I⇤ \ 2X , there exists some B0 2 B such that B0 r X ( B r X. Use (I30) to
extend I := B \X to a subset I 0 2 B of I [B0. Then I 0 \X ) B \X, since I 0

is not a proper subset of B. This contradicts our initial assumption about B.
The converse implication follows by taking complements.

Lemma 3.3. For every set X ✓ E, the set I \ 2X satisfies (I30).

Proof. Let an independent subset I of X and a maximal independent subset
I 0 of X be given. Using (IM) in E, extend I 0 to a set B0 2 B. Note that
I 0 = B0 \X, by the maximality of I 0. By Lemma 3.2,

B0 \X is maximal in I⇤ \ 2X . (⇤)
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Use (I30) to extend I into B0, to a subset B 2 B of I[B0. Then B\X ✓ B0\X

and hence B\X ◆ B0\X. Thus by (⇤), the set B\X is maximal in I⇤\2X . Ap-
plying Lemma 3.2 backwards, we deduce that B\X is maximal in I\2X . Since

I ✓ B \X ✓ (I [B0) \X = (I \X) [ (B0 \X) = I [ I 0

(recall that I 0 = B0 \X), this completes the proof.

Theorem 3.4. For every set X ✓ E, the pair (X, I \ 2X) is a matroid.

Proof. Axioms (I1), (I2) and (IM) hold for the sets in I \ 2X because they hold
for I. Axiom (I3) for I \ 2X follows from Lemma 3.3.

Given a matroid M = (E, I) and X ✓ E, we denote the matroid (X, I\2X)
as M |X or as M �X, and call it the restriction of M to X, or the minor of M
obtained by deleting X. Following Oxley [40], we call

M.X := M/X := (M⇤|X)⇤

the contraction of M to X, or the minor of M obtained by contracting X.

Lemma 3.5. The following statements are equivalent for all sets I ✓ X ✓ E:

(i) I is a base of M.X.
(ii) There exists a base I 0 of M �X such that I [ I 0 2 B.
(iii) I [ I 00 2 B for every base I 00 of M �X.

Proof. (i) means that X r I is a base of M⇤|X, a maximal subset of X extend-
ing to a base of M⇤. (Equivalently, I is minimal with the property that we can
extend it to a base of M by adding points of X only.) By Lemma 3.2, this is
equivalent to (ii).

Since M �X is a matroid (Theorem 3.4) it has a base, so (iii) implies (ii).
To prove the converse implication, assume (ii) and let I 00 be a base of M �X.
Use (I30) to extend I 00 into B0 := I [ I 0, i.e. to find a set B00 2 B such that
I 00 ✓ B00 ✓ I 00 [B0. By the minimality of I mentioned in the proof of (i)$(ii),
we have B00 \X ◆ I, and by the maximality of I 00 as a base of M �X we have
B00 r X ✓ I 00. In both cases we trivially also have the converse inclusion, so
B00 = I [ I 00 as desired.

Corollary 3.6. A set I ✓ X is independent in M.X if and only if I [ I 0 2 I
for every independent set I 0 of M �X.

Proof. The forward implication follows easily from Lemma 3.5 (i)!(iii).
For the backward implication, choose I 0 as a base of M �X. Use (IM) to

extend I [ I 0 2 I to a base B 2 B. Then B r X = I 0 by the maximality of I 0,
so B \X ◆ I is a base of M.X by (ii)!(i) of Lemma 3.5.

Our next aim is to show the counterpart of (IM) for dependent sets: that
inside every dependent set we can find a minimal one, a circuit. For the proof
we need another lemma:
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Lemma 3.7. If bases B,B0 satisfy |B r B0| < 1, then |B r B0| = |B0 r B|.

Proof. Suppose not, and choose a counterexample (B,B0) with |B r B0| mini-
mum. Then |B rB0| < |B0rB|. Pick x 2 B rB0, and use (I30) to extend B�x
to a subset B00 2 B of (B � x) [B0. Then (B00, B0) is not a counterexample, so
the extension B00 r (B � x) contains at least two elements y, z. Now use (I30)
to extend B00� z back into B: this yields the base (B00� z) + x ◆ B + y, which
contradicts the maximality of B as a base.

Lemma 3.8. Every dependent set contains a circuit.

Proof. By Theorem 3.4, it su�ces to assume that E /2 I and find a circuit in E.
Pick a base B 2 B; this exists by (I1) and (IM). Then B ( E; pick z 2 E r B.
We shall prove that

C := {x 2 B + z | B + z � x 2 I } .

is a circuit. Note that z 2 C.
We first show that C is dependent. Suppose not, and use (I30) to extend C

to a subset B0 2 B of C [B = B + z. Since B0rB = {z}, we have |B rB0| = 1
by Lemma 3.7, say B r B0 = {y}. But then B + z� y = B0 2 B, so y 2 C ✓ B0

by definition of C. This contradicts the definition of y.
C is minimally dependent, since for every x 2 C we have C�x ✓ B+z�x 2 I

by definition of C.

Recall that a matroid is called finitary if any set whose finite subsets are
independent is also independent.

Corollary 3.9. A matroid is finitary if and only if every circuit is finite.

Proof. A finitary matroid clearly has no infinite circuits. Conversely, a set whose
finite subsets are independent cannot contain a finite circuit. Hence if all circuits
are finite it contains no circuit, and is therefore independent by Lemma 3.8.

Let cl : 2E ! 2E be the closure operator associated with I.

Lemma 3.10. If B is a maximal independent subset of X, then cl(B) = cl(X).

Proof. The inclusion cl(B) ✓ cl(X) is trivial since B ✓ X; we show the con-
verse. Let y 2 cl(X) be given, witnessed by an independent set I ✓ X such
that I + y /2 I. By (IM), we can extend I to a maximal independent subset B0

of X + y. Clearly y /2 B0, so B0 ✓ X. If y 2 cl(B) we are done. If not then
B+y 2 I, so B is an independent but not a maximal independent subset of X+y.
By Lemma 3.3, we may use (I3) in X +y to extend B into B0 to an independent
subset of X that contains B properly, contradicting its maximality.

The following lemma was already used in the proof of Example 2.7:

Lemma 3.11. A circuit and a cocircuit of a matroid never meet in exactly one
element.

Proof. Let C be a circuit, and D a cocircuit, such that C \D = {x}. As D� x
is coindependent, it misses a base B. Apply (I30) to extend the independent
set C � x to a base B0 ✓ (C � x) [ B. Since C is dependent and C � x ✓ B0,
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we have x /2 B0. Hence D \ B0 = ;, contradicting our assumption that D is
codependent.

We still have to show that the relative rank function r associated with I is
well defined:

Lemma 3.12. Given B ✓ A ✓ E, there exist maximal elements J of I \ 2B

and I of I \2A such that J ✓ I. All such sets J and I satisfy |I rJ | = r(A|B).

Proof. Let J be an arbitrary maximal element of I \ 2B; it exists by (IM).
Use (IM) again to extend J to a maximal element I of I \ 2A. To show that
|I r J | = r(A|B), consider any pair J 0 ✓ I 0 of independent subsets of A such
that J 0 is maximally independent in B. We have to show that |I 0rJ 0|  |I rJ |.

We may assume that I 0 is maximal in I \ 2A, and that J 0 = J : if not,
we could use Lemma 3.5 (ii),(iii) in M |A to replace J 0 with J in I 0 without
a↵ecting I 0rJ 0. If both I rJ and I 0rJ are infinite, we have |I 0rJ 0| = |I rJ |
as desired.10 If one of them is finite, then |I 0 r J 0| = |I 0 r J | = |I r J | by
Lemma 3.7 applied in M |A.

Lemma 3.13. Let Y ✓ X ✓ E, and let r0 be the relative rank function associ-
ated with (M |X)/Y . Then for any A,B such that Y ✓ B ✓ A ✓ X, we have

r0(A r Y |B r Y ) = r(A|B).

Proof. By (IM) there exist maximal elements K of I \ 2Y and J ◆ K of
I \ 2B and I ◆ J of I \ 2A. Then |I r J | = r(A|B) by Lemma 3.12. But
I r J = (I r K) r (J r K). As I r K and J r K are bases of (M |A)/Y and
(M |B)/Y , respectively (Lemma 3.5), another application of Lemma 3.12 yields

r(A|B) = |I r J | = |(I r K) r (J r K)| = r0(A r Y |B r Y )

as desired.

4 Equivalence of the axiom systems

In this section we prove that our axiom systems are equivalent. In our use of the
terms ‘dependent’, ‘independent’, ‘base’, ‘circuit’ and ‘closure’ we stick to their
definitions as given in Section 1.1, referring to a set system I known or assumed
to satisfy the independence axioms. When we do not assume this, as will often
be the case in this section, we shall use unambiguous other terms defined in the
context of the axioms assumed, such as ‘maximal C-independent set’.

Theorem 4.1.

(i) If a set I ✓ 2E satisfies the independence axioms, then the set B of bases
satisfies the base axioms with I as the set of B-independent sets.

(ii) If a set B ✓ 2E satisfies the base axioms, then the set I of B-independent
sets satisfies the independence axioms with B as the set of bases.

10Recall our convention that we do not distinguish between infinite cardinalities.
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Proof. (i) Let I satisfy the independence axioms. Applying (IM) with X := E,
we see that every set in I extends to a set in Imax. Hence (I1) implies (B1),
and I = dImaxe; in particular, (IM) implies (BM).

To prove (B2), let B1, B2 2 B := Imax and x 2 B1 r B2 be given. Applying
(I3) with I := B1 � x and I 0 := B2, we find an element y 2 B2 r B1 such that
B := (B1 � x) + y 2 I. We have us show that B 2 Imax. If B /2 Imax, we
can apply (I3) with I := B and I 0 := B1 to extend B into B1 to a set B0 2 I.
But B1 r B = {x}, so this means that B1 ( B0 2 I, as y 2 B0 r B1. This
contradicts our assumption that B1 2 Imax.

(ii) Let B satisfy the base axioms, and let I := dBe. Then (B1) implies (I1),
(I2) is trivial, and (BM) trivially implies (IM). Since by (B2) no set in B contains
another, we also have B = Imax.

To prove (I3), let I 2 I r B and I 0 2 B be given. Use (IM) with X := E to
extend I to a set B 2 B = Imax, and pick x 2 BrI. If x 2 I 0, then I+x 2 I is as
desired. If not, we can use (B2) with B1 := B and B2 := I 0 to find y 2 I 0rB such
that (B�x)+y 2 B. As I ✓ B�x this yields I +y 2 I, as required for (I3).

Theorem 4.2.

(i) If a set I ✓ 2E satisfies the independence axioms, then the associated
closure operator cl satisfies the closure axioms with I as the set of cl-inde-
pendent sets.

(ii) If a function cl : 2E ! 2E satisfies the closure axioms, then the set I of cl-
independent sets satisfies the independence axioms with cl as the associated
closure operator.

Proof. (i) Let I satisfy the independence axioms, and let cl be the associated
closure operator. Then (CL1) and (CL2) hold trivially. By (I2), every set in I
is cl-independent. Conversely, a cl-independent set X lies in I: if not, then by
(IM) it has a maximal independent subset I ( X, and every x 2 X r I satisfies
x 2 cl(I), contradicting the cl-independence of X. Hence the cl-independent
sets are precisely those in I, and (IM) implies (CLM).

To prove (CL3), let X ✓ E be given. By (IM), X has a maximal independent
subset B. By Lemma 3.10, B is maximally independent also in cl(X) = cl(B).
By Lemma 3.10 applied to B in cl(X) this implies cl(B) = cl(cl(X)), yielding
cl(X) = cl(cl(X)) in total.

Let finally Z, x and y be given for the proof of (CL4). As y 2 cl(Z+x)rcl(Z),
there is an independent set I ✓ Z + x such that I + y is dependent and
(I � x) + y 2 I. As I � x ✓ Z, this also witnesses that x 2 cl(Z + y).

(ii) Let cl : 2E ! 2E satisfy the closure axioms, and let I be the set of
cl-independent sets. Then I satisfies (I1) and (I2) trivially, and (IM) is just a
restatement of (CLM).

For the remainder of our proof we shall need show the following fact:

Whenever a set Z ✓ E is cl-independent but Z + x is not
(for some x 2 E), we have x 2 cl(Z). (⇤)

Indeed, by assumption we have x /2 Z, and some y 2 Z +x lies in the closure of
the other elements of Z + x. If y = x, then x = y 2 cl(Z) as claimed. If y 6= x
then y 2 Z, so y /2 cl(Z�y) since Z is cl-independent. Hence x 2 cl(Z) by (CL4).

18



To prove (I3), let I 2 IrImax and I 0 2 Imax be given. Use (CLM) to extend
I to a maximal element B of I \ 2I[I0 . We shall prove that B is maximal in all
of I; then B r I 6= ;, and any x 2 B r I proves (I3).

To show that B 2 Imax, consider any z 2 E r B. Then z 2 cl(I 0): trivially
if z 2 I 0, or by (⇤) and I 0 2 Imax if z /2 I 0. Similarly, the maximality of B in
I \ 2I[I0 implies by (⇤) that I 0 ✓ cl(B). Hence z 2 cl(I 0) ✓ cl(cl(B)) = cl(B)
by (CL2) and (CL3). As z /2 B, this means that B + z /2 I as desired.

It remains to show that cl coincides with the closure operator cl0 associated
with I, i.e. that cl(X) = cl0(X) for every X ✓ E. To show that cl(X) ✓ cl0(X),
consider any x 2 cl(X). If x 2 X then x 2 cl0(X), so assume that x /2 X. Our
assumption of x 2 cl(X) now means that X +x is cl-dependent, that X +x /2 I.
By (CLM), X has a maximal cl-independent subset I. Then X ✓ cl(I) by (⇤),
so x 2 cl(X) ✓ cl(cl(I)) = cl(I) by (CL2) and (CL3), showing that x 2 cl0(X).

The converse inclusion, cl0(X) ✓ cl(X), follows easily from (⇤).

Theorem 4.3.

(i) If a set I ✓ 2E satisfies the independence axioms, then the set C of circuits
satisfies the circuit axioms with I as the set of C-independent sets.

(ii) If a set C ✓ 2E satisfies the circuit axioms, then the set I of C-independent
sets satisfies the independence axioms with C as the set of circuits.

Proof. (i) Let I satisfy the independence axioms, let C be the corresponding
set of circuits, and let cl be the closure operator associated with I. (I1) im-
plies (C1), and (C2) holds by definition of C. By (I2) and Lemma 3.8, the
C-independent sets are precisely those in I, so (IM) implies (CM).

To prove (C3), let X ✓ C 2 C and (Cx | x 2 X) and z be given as stated. Let

Y :=
⇣
C [

[
x2X

Cx

⌘
r (X + z) .

For every x 2 X we have x 2 cl(Cx � x) and (Cx � x) \ (X + z) = ;, so

X ✓ cl
⇣ [

x2X

(Cx � x) r (X + z)
⌘
✓ cl(Y ).

Hence
C � z = (C r (X + z)) [X ✓ Y [ cl(Y ) = cl(Y )

and therefore
z 2 cl(C � z) ✓ cl(cl(Y )) = cl(Y )

by Theorem 4.2 (i). So Y has an independent subset I such that I + z is
dependent. By Lemma 3.8, I + z contains a circuit, which clearly contains z.

(ii) Let C satisfy the circuit axioms, and let I be the set of C-independent
sets. Then (I1) and (I2) hold trivially, and (IM) is just a restatement of (CLM).
By (C2), no element of C contains another, so C is the set of circuits.

To prove (I3), let I 2 IrImax and I 0 2 Imax be given. Use (IM) with X := E
to extend I to a set B 2 Imax, and pick z 2 BrI. If z 2 I 0, then x := z is as re-
quired for (I3). If z /2 I 0, then I 0+z contains a set C 2 C. We wish to apply (C3)
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with X := CrB to obtain a contradiction. Note that X ✓ I 0rI, since I+z ✓ B.
For each x 2 X we may assume that I +x contains a set Cx 2 C, since otherwise
I +x witnesses (I3). Then z /2 I +x ◆ Cx for all x 2 X, so by (C3) there is a set
C0 2 C such that C0 ✓

�
C[

S
x2X Cx

�
rX. As Cx rX ✓ I ✓ B for every x, and

CrX ✓ B by definition of X, this implies that C0 ✓ B 2 I, a contradiction.

We remarked in the introduction that, traditionally, infinite (finitary) ma-
troids were defined by specifying that the finite sets in their collection I of
independent sets should satisfy (I1)–(I3), and that the infinite sets in I were
determined by (I4), i.e., by taking all sets whose finite subsets were known to
be in I. Using the circuit axioms, we can now prove easily that this does in
fact define a matroid in our sense, i.e., that (IM) is true and (I3) also holds for
infinite sets I, I 0 2 I:

Corollary 4.4. Let I ✓ 2E satisfy (I1), (I2) and (I4), and assume that the
finite sets I, I 0 2 I satisfy the usual finite augmentation axiom (I3)fin. Then I
is the set of independent sets of a matroid.

Proof. Let C be the set of all minimal sets in 2ErI. These satisfy (C1) and (C2),
and by (I4) they are finite. Our assumption of (I1)–(I3)fin for the finite sets in I
therefore implies (C3) for C: given C and {Cx | x 2 X} as in (C3), the set
Y := C [

S
x2X Cx is finite, so I \2Y is the set of independent sets of a matroid

on Y . Its circuits, which are precisely the sets in C \ 2Y , satisfy the strong
elimination axiom, and hence also our axiom (C3) (induction on |X|). Finally,
(CM) follows by Zorn’s Lemma. So C is the collection of circuits of a matroid.

For this to imply the assertion by Theorem 4.3 (ii), we need that I contains
precisely the C-independent sets, those that have no subset in C. The sets in I
are C-independent by (I2) and the definition of C. If a set D ✓ E is not in I,
it has a finite subset F not in I, by (I4), and hence a minimal such subset F .
Then F 2 C, so D is not C-independent.

Theorem 4.5.
(i) If a set I ✓ 2E satisfies the independence axioms, then the associated

relative rank function r satisfies the rank axioms with I as the set of r-
independent sets.

(ii) If a function r : (2E ⇥2E)✓ ! N[{1} satisfies the rank axioms, then the
set I of r-independent sets satisfies the independence axioms with r as the
associated relative rank function.

Proof. (i) Let I ✓ 2E satisfy the independence axioms and let r be the as-
sociated relative rank function. (R1) follows directly from the definition of
r. We next show (R2), that r(A |A \ B) � r(A [ B |B) for any A,B ✓ E.
By Lemma 3.13, we may assume that A \ B = ;. By Lemma 3.12, there
is a maximal set J in I \ 2B and a maximal set I 2 I \ 2A[B such that
J ✓ I and r(A [ B |B) = |I r J |. Then I r J 2 I \ 2A by (I2), and hence
r(A |A\B) = r(A|;) � |I rJ | = r(A[B |B), as required. When showing (R3),
we may assume that C = ; by Lemma 3.13. By Lemma 3.12, there is a maximal
set J in I\2B and a maximal set I in I\2A so that J ✓ I and r(A|B) = |IrJ |.
Then r(A|C) = |I| and r(B|C) = |J | by definition of r, and (R3) follows.
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To prove (R4), consider a family (A�) and a B such that B ✓ A� ✓ E for
all �, and let A :=

S
� A� . Suppose r(A|B) > 0. By Lemma 3.12, there is a

maximal set J in I \ 2B and a maximal set I 2 I \ 2A so that J ✓ I and
r(A|B) = |I r J |. Then I r J 6= ;. As I ✓ A, we have (A� \ I) r J 6= ; and
hence r(A� |B) � |I \A� r B| > 0 for some �, as required.

We next show for all I ✓ E that I 2 I if and only if I is r-independent. If
I 2 I, then r(I | I�x) > 0 for any x 2 I by definition of r, so I is r-independent.
Conversely, if I 62 I, there exists a maximal element J of I \ 2I . Then J ( I,
and r(I | I � x) = 0 for any x 2 I r J , proving that I is not r-independent.

As the set of r-independent sets equals I, (RM) follows from (IM).
(ii) Assume that r : (2E ⇥ 2E)✓ ! N [ {1} satisfies the rank axioms, and

let I be the set of r-independent sets. Then (I1) holds as the condition for
r-independence is vacuously satisfied by the empty set. To prove (I2), consider
an element I 2 I and some J ✓ I. If J 62 I, then r(J |J � x) = 0 for some
x 2 J . Taking A = J and B = I �x in (R2), we have r(J |J �x) � r(I | I �x).
So r(I | I � x) = 0, and I 62 I, a contradiction.

Before we show (I3), we make two claims. First, for all I 2 I and x 2 E r I,

I + x 2 I () r(I + x | I) > 0. (⇤)

The forward implication is immediate from the definition of I. For the converse
implication, assume that I + x 62 I. Then there is a y such that r(I + x | I +
x� y) = 0. Then by (R1) and (R3) we have

r(I + x | I � y) = r(I + x | I + x� y) + r(I + x� y | I � y)  1.

Applying (R3) again, we obtain

1 � r(I + x | I � y) = r(I + x | I) + r(I | I � y) � r(I | I � y) � 1

since I 2 I, so r(I + x | I)  0 as required.
The second claim is that, for all X ✓ E and I 2 I \ 2X ,

I is maximal in I \ 2X () r(X|I) = 0. (⇤⇤)

Indeed, if I is a maximal element of I\2X , then r(I+x | I) = 0 for all x 2 XrI,
by (⇤). Taking Ax := I + x for all x 2 X r I and B = I in (R4), we find that
r(X|I) = 0. Conversely, suppose that I is not maximal in I \ 2X . Then r(I +
x | I) > 0 for some x 2 XrI, and r(X|I) = r(X | I+x)+r(I+x | I) > 0 by (R3).

We now show (I3). Consider an I 2 I r Imax and an I 0 2 Imax. By (⇤⇤)
applied with X = E, we have r(E|I) > 0 and r(E|I 0) = 0. Applying (R3) twice,
we deduce

0 < r(E | I) = r(E | I [ I 0) + r(I [ I 0 | I)  r(E | I 0) + r(I [ I 0 | I) = r(I [ I 0 | I) .

Then (⇤⇤) applied with X = I [ I 0 yields that I is not maximal in I \ 2I[I0 .
Hence there is a set I 00 2 I \ 2I[I0 containing I properly. Let x 2 I 00 r I. Then
by (I2), we have I + x 2 I, as required.

(RM) states that (IM) holds for I. This completes our proof that I satis-
fies the independence axioms. It remains to show that r is the rank function
associated with I. Let r0 be the rank function associated with I, and consider
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A ◆ B. By Lemma 3.12, there is a maximal element I of I \ 2A and a maximal
element J of I \ 2B so that J ✓ I and r0(A|B) = |I r J |. As I 2 I, we have
r(I | I �x) = 1 for any x 2 I, and I �x 2 I by (I2). Hence, inductively if I r J
is finite, or by (R3) if it is infinite, r(I|J) = |I r J |. Moreover, r(A|I) = 0 and
r(B|J) = 0 by the maximality of I resp. J . Again by (R3), we deduce that

r(A|B) = r(A|B)+r(B|J) = r(A|J) = r(A|I)+r(I|J) = r(I|J) = |IrJ | = r0(A|B),

as required.

5 Alternative axiom systems and historical links

In the late 1960s and early ’70s, a number of researchers—including Bean, Higgs,
Klee, Minty and Las Vergnas—responded to Rado’s [42] challenge to develop a
theory of non-finitary infinite matroids that would allow for the kind of duality
known from finite matroids. This resulted in a flurry of related but not easily
compatible proposals of how such structures might be defined, of which Higgs’s
B-matroids were but one among many.11

It was only several years later that Oxley clarified the situation in two ways:
he found a simple set of axioms that characterized Higgs’s B-matroids [37], and
he showed that any theory of finite or infinite matroids with notions of duality
and minors that defaulted to the existing finite notions when the structure was
finite would have as its models some subclass of those B-matroids. In particular,
the models of our matroid axioms proposed in Section 1 must be B-matroids.
We shall prove in this section that they are all the B-matroids. Recall, however,
that the tame matroids we introduced in Section 2.6 form a smaller class of
matroids that is also closed under duality and minors.

Our proof that infinite matroids, as introduced in this paper, are precisely
the B-matroids in the sense of Higgs builds on Oxley’s axiomatization of the
latter: we show that our axiom systems from Section 1 are equivalent to Oxley’s
axioms for B-matroids. These are of ‘mixed type’: they can be stated either in
terms of independent sets or in terms of bases, but each version contains ele-
ments of the other. In one flavour, they are the four statements in Theorem 5.1
below, with (IM) rephrased to fit our terminology:

Theorem 5.1. A set I ✓ 2E satisfies the independence axioms if and only if
it satisfies the following four statements:

(I1) ; 2 I.
(I2) I is closed under taking subsets.
(IB) Whenever X ✓ E, the sets I1, I2 ✓ X are maximal elements of I \ 2X ,

and x 2 I1 r I2, there exists an element y 2 I2 r I1 such that (I1 � x) + y
is a maximal element of I \ 2X .

(IM) I satisfies (M).

11Higgs himself studied various notions in parallel, including ‘C-matroids’, ‘transitive
spaces’, ‘finitely transitive spaces’, ‘dually transitive spaces’, ‘exchange spaces’ and ‘dually
exchange spaces’—as well as two more general structures with duality that he calls ‘spaces’
and ‘matroids’.
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Proof. If I satisfies the independence axioms, then in particular it satisfies (I1),
(I2) and (IM). Statement (IB) is the base exchange axiom for restrictions, so it
holds by Theorems 3.4 and 4.1.

Conversely, if I satisfies the above four statements, then Imax satisfies the
base axioms: (B1) follows from (I1) and (IM); (B2) is the case X = E of (IB);
and (BM) follows from (IM) and (I2), since these imply that I = dImaxe.

Given the ‘exchange’ nature of axiom (IB), it may seem that the four state-
ments above are better rephrased in terms of bases. And indeed, Oxley [37]
notes such a translation: a set B ✓ 2E is the set of bases of a B-matroid if and
only if it satisfies (B1), (BM), and (IB) with I := dBe. These, then, di↵er from
our base axioms only in that they require our exchange axiom (B2) explicitly
for all restrictions to subsets X of E. This strengthening makes it necessary to
invoke a notion of independent sets, since the ‘bases’ of M |X for which (IB) says
that (B2) should hold are defined as the maximal subsets of X in dBe. Thus,
whichever way we choose to present these axioms, the presentation will involve
both elements of base exchange and of independence. Divorcing these into sep-
arate sets of independence and base axioms, as we have done in Section 1, made
it necessary to prove that requiring (B2) for all restrictions is in fact redundant
in the presence of (BM)—which we did in our Theorems 3.4 and 4.1.

As a common feature, all our axiom systems so far have included the explicit
requirement (M) that every independent set extends to a maximal one—not only
in the whole matroid but inside any given X ✓ E. This is a strong statement,
and not always easy to verify in practice. We therefore tried to replace it with
weaker axioms, such as one requiring merely that every set X ✓ E must have
some maximal independent subset.

We succeeded in doing this for the independence, the base, and the rank
axioms, at the expense of having to strengthen the other axioms a little (see be-
low). For the circuit and the closure axioms we found no natural strengthening
that would allow a similar substantial weakening of the (M) axiom.

Let us rephrase the independence axioms first:

Theorem 5.2. A set I ✓ 2E satisfies the independence axioms if and only if
it satisfies the following three statements:

(I10) Every set X ✓ E has a subset that is maximal in I \ 2X .
(I2) I is closed under taking subsets.
(I30) For all I 2 I and I 0 2 Imax there is a B 2 Imax such that I ✓ B ✓ I [ I 0.

Proof. Suppose first that I satisfies the independence axioms: statements (I1),
(I2), (I3) and (IM) from Section 1. At the start of Section 3 we proved that
these imply (I30), and (I10) follows from (IM) with I := ;.

Conversely, assume that I satisfies (I10), (I2) and (I30). Axiom (I1) follows
from (I10) and (I2), and (I3) is a weakening of (I30). To prove (IM), we begin by
re-proving the statement of Lemma 3.3 in Section 3, replacing the use of (IM)
in that proof with suitable applications of (I10) and (I30). By (I10), the assertion
of Lemma 3.3 will then imply (IM).
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We begin by copying the first two paragraphs of the proof of Theorem 3.1,
to show that I⇤, defined as before Theorem 3.1, satisfies (I30). (The proof there
assumes that the given set I⇤ is not in B⇤; but if it is, there is nothing to show
since B⇤ = I⇤max.) Next, we establish the assertion of Lemma 3.2 by copying
its proof; this uses (I30) for both I and I⇤, but it does not use (IM). Finally,
we copy the proof of Lemma 3.3 itself. This proof uses (IM) for X = E in the
second line. Instead, we use (I10) with X := E to find some set B̂ 2 B, and then
apply (I30) to extend the given set I 0 into B̂ to the desired set B 2 B (where
I 0 ✓ B ✓ I 0 [ B̂).

We remark that (I10) is weakest possible with the property of completing
(I2) and (I30) to a full set of independence axioms. Indeed, since the set of finite
subsets of an infinite set satisfies (I2) and (I30) but does not define a matroid,
we need to require the existence of a maximal set at least in all of E. Moreover,
we want restrictions M |X of a matroid M to be matroids, but the existence of
maximal independent sets is not hereditary even in the presence of (I2) and (I30);
see Example 6.5 in Section 6. We thus have to require (I10) as stated.

However, there is an interesting alternative to (I10), which we mention with-
out proof. Rather than requiring that in every restriction there is a maximal
independent set, we may instead prescribe this for every contraction (cf. Corol-
lary 3.6): Theorem 5.2 remains valid if we replace its statement (I10) with

(I100) Every set X ✓ E has a maximal subset I such that I [ I 0 2 I for every
I 0 2 I \ 2X .

Next, an alternative set of base axioms. Unlike (B2), the alternative ex-
change axiom (B20) does not imply that B is an antichain, so we have to add
this as a new requirement (B0):

Theorem 5.3. A set B ✓ 2E satisfies the base axioms if and only if B satisfies
the following three statements:

(B0) No element of B is a subset of another.
(B10) For every X ✓ E there is a B 2 B such that B\X is maximal in dBe\2X .
(B20) Whenever B1, B2 2 B and F1 ✓ B1 r B2, there exists F2 ✓ B2 r B1 such

that (B1 r F1) [ F2 2 B.

Proof. Suppose first that B satisfies the base axioms: statements (B1), (B2)
and (BM) from Section 1. (B2) implies (B0), and (BM) implies (B10). To
prove (B20), let B1, B2 and F1 be given as stated. Use (BM) to extend
I := B1 r F1 to a maximal subset B of X := I [ B2 in dBe. We show that
B 2 B; then (B20) holds with F2 := B r I.

Suppose B /2 B. Since B 2 dBe, there exists a set B0 2 B such that B ( B0.
Note that B0 r B ✓ I [B2, by the maximality of B in dBe \ 2I[B2 . Pick x 2
B0rB. Applying (B2) to B0 and B2, we find an element y 2 B2 rB0 = B2 rB
such that (B0�x)+y 2 B. This contradicts the maximality of B in dBe\2I[B2 .

Conversely, assume that B satisfies (B0), (B10) and (B20). We shall prove
that I := dBe satisfies statements (I10), (I2) and (I30) from Theorem 5.2. Then,
by that theorem, I satisfies the independence axioms. By Theorem 4.1, then,
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Imax will satisfy the base axioms and I = dImaxe. Hence dBe = I = dImaxe,
which implies B = Imax since Imax and B are both antichains (by definition
and by (B0), respectively). So B satisfies the base axioms, as desired.

So let us prove that I := dBe satisfies (I10), (I2) and (I30). Statement (I10)
is just (B10) for I = dBe. Statement (I2) is immediate from I = dBe. For the
proof of (I30), let I and I 0 be given as stated. Since I 2 I = dBe, there exists a
set B1 2 B such that I ✓ B1. Applying (B20) to B1 and B2 := I 0 2 Imax ✓ B
with F1 := B1 r(I[I 0), we find a set F2 ✓ I 0rB1 such that (B1 rF1)[F2 2 B.
For B := (B1 r F1) [ F2 we now have I ✓ B ✓ I [ I 0, as required for (I30).

For our alternative rank axioms we need to define a notion of r-independent
sets. We do so as in (RM). Thus, given any function r : (2E ⇥ 2E)✓ ! N [ {1},
a set I ✓ E is r-independent if r(I|I � x) > 0 for every x 2 I.

Theorem 5.4. A function r : (2E ⇥ 2E)✓ ! N[ {1} satisfies the rank axioms
if and only if r satisfies the following four statements:

(R1) For all B ✓ A ✓ E we have r(A|B)  |A r B|.
(R2) For all A,B ✓ E we have r(A|A \B) � r(A [B|B).
(R3) For all C ✓ B ✓ A ✓ E we have r(A|C) = r(A|B) + r(B|C).
(R40) For all B ✓ A ✓ E there exist r-independent sets J ✓ I such that J ✓ B

with r(B|J) = 0 and I ✓ A with r(A|I) = 0.

Proof. Let assume first that r satisfies the rank axioms and prove (R40). Let
B ✓ A ✓ E be given. By (RM), B has a maximal r-independent subset J , which
extends by (RM) to a maximal r-independent subset I of A. Then r(B|J) = 0
and r(A|I) = 0 by (R4) and the maximalities of J and I.

Assume now that r satisfies (R1), (R2), (R3), (R40). We will show that r
satisfies (R4) and (RM).

We first prove (R4). Suppose A =
S

� A� and B ✓ A� for all � are such
that r(A|B) > 0. By (R40), there exist r-independent sets J ✓ I such that
J ✓ B with r(B|J) = 0 and I ✓ A with r(A|I) = 0. Applying (R3) twice,
we see that r(I|J) = r(A|J) = r(A|B) > 0. Then |I r J | > 0 by (R1); pick
x 2 I r J . Applying (R2) with A0 = J + x and B0 = I � x, we obtain
r(J + x |J) � r(I | I � x) > 0. As x 2 A, we have x 2 A� for some �. Now
r(A� |B) � r(A� |J) = r(A� |J + x) + r(J + x |J) > 0, as required.

We now prove (RM). Let J be an r-independent subset of some set X ✓ E.
Applying (R40) with A := X and B := J , we find r-independent sets J 0 ✓ I
such that J 0 ✓ J with r(J |J 0) = 0, and hence J 0 = J by (R3), and I ✓ X with
r(X, I) = 0. Again by (R3), I is a maximal r-independent subset of X.

The fact, shown above, that (R40) implies both (RM) (which is basically the
special case of (R40) that B is r-independent) and (R4) raises the question of
whether (RM) might also imply (R4)—in which case we could scrap (R4) in our
rank axioms. A simple example in Section 6 will show that it does not. The
reason for why (R40) is genuinely stronger than (RM) lies in the fact that, in
the presence of (R3), every r-independent subset I of X satisfying r(X|I) = 0
must be maximally r-independent, but conversely a maximally r-independent
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subset I of X does not automatically satisfy r(X|I) = 0: the fact that is does,
when X r I is infinite, is precisely (R4).

As mentioned earlier, we have no alternative systems of closure axioms. Ox-
ley [39] proved that B-matroids are characterized by the closure axioms given
in Section 1, except that he replaced the usual (and our) axiom (CL4) by the
stronger axiom

(CL40) For all Z ✓ X ✓ E and y 2 cl(X) r cl(Z) there exists an x 2 X r Z such
that x 2 cl((X � x) + y).

(For |X r Z| = 1, axiom (CL40) yields axiom (CL4).)
The reason Oxley replaced (CL4) with (CL40) was historical. Klee [35],

in his own response to Rado’s [42] challenge, had considered ‘C-matroids’, the
systems of cl-independent sets for functions cl : 2E ! 2E satisfying (CL1–3)
and (CL40). Oxley [38] had shown that these axioms are not strong enough to
define a B-matroid,12 and remedied this defect by adding (CLM).

In the presence of (CLM), however, the strengthening of (CL4) to (CL40)
becomes obsolete, because the first implies the second:

Proposition 5.5. If cl : 2E ! 2E satisfies the closure axioms, it even satis-
fies (CL40).

Proof. By Theorem 4.2 (ii), the set I of cl-independent sets satisfies the inde-
pendence axioms, and hence defines a B-matroid by Theorem 5.1. The closure
operator associated with I, which by Theorem 4.2 (ii) is the function cl, satisfies
(CL40) by Oxley [39, Prop. 3.2.8].

Although we have no system of alternative circuit axioms without (CM),
there is a system of axioms for both circuits and cocircuits that achieves this, at
least for countable matroids. These axioms, stated below, extend Minty’s finite
matroids axioms and are due to Bowler and Carmesin [7].

Let us call these the orthogonality axioms for infinite matroids. Think of C
as the set of circuits, and D as the set of cocircuits:

Theorem 5.6. [7] If E is countable, two sets C,D ✓ 2E are the sets of circuits
and cocircuits of a matroid on E if and only if they satisfy the following:

(C1) ; /2 C
(C1⇤) ; /2 D
(C2) No element of C is a subset of another.

(C2⇤) No element of D is a subset of another.
(O1) |C \D| 6= 1 for all C 2 C and D 2 D.
(O2) For all partitions E = P [Q [ {e} either P + e includes an element of C

containing e or Q + e includes an element of D containing e.
12Here is another simple example. Let cl map every finite subset of E to itself, and every

infinite subset to E. Then cl satisfies (CL1–3) and (CL40), but the cl-independent sets are
just the finite subsets of E, which fail to satisfy (M) for X = E.
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(O3) For all e 2 C 2 C and X ✓ E, among all sets C0 2 C with e 2 C0 ✓ X [C
there is one for which C0 r X is minimal.

(O3⇤) For all e 2 D 2 D and X ✓ E, among all sets D0 2 D with e 2 D0 ✓ X[D
there is one for which D0 r X is minimal.

It is not known whether the countability assumption in this theorem is necessary.

In the presence of (O1) and (O2), the statements (O3) and (O3⇤) follow
(even for uncountable E) from tameness, the property that every intersection
of a circuit and a cocircuit is finite. Countable tame matroids, therefore, have
a particularly simple axiomatization, the only non-trivial one of which to check
is usually (O2):

Theorem 5.7 (Bowler & Carmesin [7]). If E is countable, two sets C,D ✓ 2E

are the sets of circuits and cocircuits of a tame matroid on E if and only if they
satisfy the following:

(C1) ; /2 C
(C1⇤) ; /2 D
(C2) No element of C is a subset of another.

(C2⇤) No element of D is a subset of another.
(O1) |C \D| 6= 1 for all C 2 C and D 2 D.
(O2) For all partitions E = P [Q [ {e} either P + e includes an element of C

containing e or Q + e includes an element of D containing e.
(T) |C \D| is finite for all C 2 C and D 2 D.

The most useful way to apply Theorem 5.7 is that (O1), (O2) and (T) are
enough to generate a matroid: if we have sets C and D satisfying these ax-
ioms then their minimal nonempty members give the circuits and cocircuits of
a matroid [7].

Given a set C ✓ 2E , let us write C? for the set of subsets of E that meet
no element of C exactly once. (Thus, (O1) says that D is a subset of C?, or
equivalently that C is a subset of D?.) Bowler and Carmesin [7] have shown that
C and C? satisfy (O2) if and only if C satisfies the circuit elimination axiom (C3).

6 Examples of non-matroids

In this section we illustrate our axioms by examples of set systems that narrowly
fail to be matroids, by missing just one axiom of a given set. In particular, the
axioms within each system will be seen to be independent.

We start with an example mentioned before:

Example 6.1. Let E be infinite. The set I of finite subsets of E satisfies (I1)–
(I3), even (I30). But I has no maximal element, so it violates (IM) and (I10).

Our next example shows that, although we can now deal with infinite sets,
matroids still live in the discrete world:
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Example 6.2. The usual topological closure operator for subsets of R satisfies
the closure axioms (CL1)–(CL4) for E := R, but not (CLM).

Proof. To see that (CLM) fails, notice that independent sets must be discrete.
Hence there is no maximal such set in R.

We continue with two examples showing that neither of our rank axioms
(R4) and (RM) implies the other, given (R1)–(R3).

Example 6.3. Let E be infinite. Given B ✓ A ✓ E define r(A|B) := |A|� |B|,
with 1�1 := 0. Then r satisfies (R1)–(R4) but not (RM).

Proof. (RM) fails, because the r-independent sets are precisely the finite sets.

Example 6.4. Let E be infinite. Given B ✓ A ✓ E, let r(A|B) be 0 if A
and B are either both finite or both infinite, and 1 otherwise. Then r satisfies
(R1)–(R3) and (RM), but not (R4).

Proof. (RM) holds, since ; is the only r-independent set. To see that (R4) fails,
let B := ; and consider as (A�)� an infinite increasing chain of finite sets.

Our motivation for the alternative axiom systems given in Section 5 was to
replace our axiom (M) with something weaker. It led us to replace it by (I10),
while strengthening the extension axiom (I3) to (I30) or the base exchange axiom
(B2) to (B20). We now show that (I10) cannot be weakened further on the basis
of (I2) and (I30), the other alternative independence axioms from Theorem 5.2.

Example 6.1 shows that we cannot replace (I10) with (I1): it is not enough
that some independent set exists, we need a maximal one. But then (I30) gives
us many more. This led Higgs [32] to ask whether our set of axioms from
Theorem 5.2, with

(I0) I has a maximal element

instead of (I10), would yield a (B-) matroid. If that was the case, then the axiom
(M) common to all our systems would also be too strong: we could extract its
‘extension’ part as (I30) and limit its ‘existence’ part to (I0). Of course, we
would still want restrictions of matroids to be matroids, so (I10)—which is (I0)
for restrictions—should, somehow, follow.

Our next example shows that it does not: the example satisfies all axioms
other than those of type (M) or type 10, including (I0), but the set X ✓ E (see
below) has no maximal independent subset.

To define this example, let X = {x0, x1, . . .} and Y = {y0, y1, . . . } be dis-
joint infinite sets, and let G be the graph with vertex set E := X [ Y and edge
set {xiyi | i 2 N }, an infinite matching. Let B be the set of all transversals of
the edges that meet X only finitely, i.e., of all subsets U of X [ Y satisfying
|U \ {xi, yi}| = 1 for every i and |U \X| < 1 (Fig. 2). Let us call the elements
of B the skew transversals of G. Put I := dBe, call its elements independent
and the elements of 2E r I dependent sets. Let C be the set of the minimal
dependent sets, or circuits, and let cl be the closure operator associated with I.
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X

Y

Figure 2: The set of black vertices is an element of B.

Example 6.5. Let B be the set of skew transversals of the graph G shown in
Figure 2, and let I, C and cl be defined as above.

(i) I satisfies (I0)–(I3) and (I30), but not (I10) or (IM).
(ii) B satisfies (B0)–(B2) and (B20), but not (B10) or (BM).
(iii) Not every dependent set contains a circuit.
(iv) C satisfies (C1)–(C3), but not (CM).
(v) The operator cl satisfies (CL1)–(CL4), but not (CLM).
(vi) There is no relative rank function associated with I.

Proof. There are two properties of a set U ✓ E that will each make it dependent:
meeting X infinitely, and containing an edge {xi, yi}. Every single edge is a
circuit, while dependent transversals meeting X infinitely contain no circuit.
So the circuits are precisely the single edges. X itself, then, is dependent but
contains no circuit, showing (iii). Its independent subsets are its finite subsets.
It thus has no maximal independent subset and hence violates (I10) and (B10).
This proves (i) and (ii). (The other axioms are easy to check.) Since no two
distinct circuits meet, (C3) holds vacuously. Since X violates (M) for I, none
of (IM), (BM), (CM) or (CLM) holds. Finally, the closure cl(U) of a set U is
obtained by adding to U all those xi for which yi 2 U , and all those yi for which
xi 2 U . Statement (v) follows. Since X does not contain a maximal independent
set, r(A|X) would not be well-defined for any A ◆ X, and so we have (vi).

As we saw in Section 2, the elementary algebraic cycles of a graph G, the
edge sets of its finite cycles and double rays, are the circuits of a matroid if and
only if G contains no subdivision of the Bean graph (Fig. 1). This means that,
at least in this class of examples, the Bean graph ‘only just’ fails to define a
matroid. And indeed, we shall see below that its elementary algebraic cycles
again violate exactly one of the axioms in each set.

To prove this, we need a formal definition of the Bean graph. Let it be the
graph consisting of two disjoint rays R,S with starting vertices u 2 R and v 2 S
and all possible edges from v to R. Write y for the edge uv, and pick an edge
z 2 E(S). Let C be the set of the elementary algebraic cycles of this graph, and
call them circuits. Write I for the set of edge sets not containing a circuit, put
B := Imax, let cl be the closure operator and r any rank function associated
with I, and call the sets in 2E(G) r I dependent .

Example 6.6. Let C be the set of elementary algebraic cycles of the Bean graph,
and let I, B, cl and r be as defined above.
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(i) C satisfies (C1), (C2), (CM) and the usual finite circuit elimination axiom,
but not the infinite elimination axiom (C3).

(ii) Every dependent set contains a circuit.
(iii) I satisfies (I0), (I1) (even (I10)), (I2) and (IM), but not (I3) or (I30).
(iv) B satisfies (B0), (B1) (even (B10)) and (BM), but not (B2) or (B20).
(v) The operator cl satisfies (CL1), (CL2), (CL4) and (CLM), but not (CL3).
(vi) The function r satisfies (R1), (R2), (R4), (R40) and (RM), but not (R3).

Proof. (i) Assertions (C1) and (C2) are trivial. The circuit elimination axiom
for just two circuits is easily checked by straightforward case analysis for the
current graph, or proved in general as for finite graphs by considering vertex
degrees. For a proof of (CM), let X be any set of edges, and let I ✓ X be an
independent set. Using Zorn’s Lemma we find a maximal subset B of X that
contains I but contains no finite circuit. (Such a set B consists of a spanning tree
in each component of the corresponding subgraph). If B contains no double ray
either, it is a maximal independent subset of X containing I. If it does, then this
double ray D is unique: since any double ray in the Bean graph has to link its
two ends, two distinct double rays would form a finite cycle between them. As I
is independent, D contains an edge x /2 I. By the circuit elimination axiom for
two circuits, B� x is a maximal independent subset of X as required by (CM).

To see that (C3) fails, consider the circuit C := E(R)[E(S) + y, its subset
X := E(R), the edge z 2 E(S) ✓ C, and for every x 2 X as Cx the unique
triangle containing x.

(ii) This is trivial.
(iii) While (I0) is easy (consider E(R) [ E(S) + y � z), (I1) and (I2) are

trivial. We have already proved (IM), which implies (I10). To see that (I3) and
(I30) fail, consider as I the set of unbroken edges in Figure 1, and as I 0 the
set E(R) [ E(S) + y � z. Then I 2 I r Imax (since we can add z and remain
independent), while I 0 2 Imax. But, clearly, I does not extend properly to any
independent subset of I [ I 0.

(iv) B is the set of spanning trees not containing a double ray. It clearly
satisfies (B0) and (B1). We have already proved (BM), and this implies (B10).
To see that (B2) fails (and with it (B20)), consider as B1 the set of unbroken
edges in Figure 1 plus the edge z, and as B2 the set E(R)[E(S)+ y� z. Then
we cannot delete z from B1, add an edge of B2 r B1, and remain independent.

(v) While (CL1), (CL2) and (CL4) are trivial, we have already proved (CLM).
To see that (CL3) fails, consider as X the set of unbroken edges in Figure 1.
Its closure cl(X) contains all the broken edges except z, but cl(cl(X)) contains
z as well.

(vi) (R1) is trivial, and (R2) derives from (IM) and (I2). With B2 as above,
we have r(E|B2) = 0 6= 1 + 0 = r(E |E � z) + r(E � z |B2), so (R3) fails. To
see that (R4) holds, note that r(A|B) = 0 if and only if J + x contains a circuit
for each maximal J in I \ 2B and each x 2 A r B. (R40) is straightforward
from (RM), proved below, and the definition of r. Finally, if I ✓ E, then I
contains a circuit if and only if r(I | I � x) = 0 for some x 2 I. Thus the set of
r-independent sets equals I, and hence (RM) holds.
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