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Abstract

We characterize the fundamental group of a locally finite graph G with
ends combinatorially, as a group of infinite words. Our characterization
gives rise to a canonical embedding of this group in the inverse limit of
the free groups ⇡1(G

0) with G0 ✓ G finite.

1 Introduction

The purpose of this paper is to give a combinatorial characterization of the
fundamental group of the compact space |G| formed by a locally finite graph G—
such as a Cayley graph of a finitely generated group—together with its ends.
The space |G|, known as the Freudenthal compactification of G, is the standard
setting in which locally finite graphs are studied from a topological point of
view [9]. However, no combinatorial characterization of its fundamental group
has so far been known.

When G is finite, ⇡1(|G|) = ⇡1(G) is the free group on the set of (arbitrarily
oriented) chords of a spanning tree of G, those edges of G that are not edges of
the tree. When G is infinite and there are infinitely many chords, then ⇡1(|G|) is
not a free group. However, we show that it embeds canonically as a subgroup in
an inverse limit F ⇤ of free groups: those on the finite sets of (oriented) chords of
any topological spanning tree T , one whose closure in |G| contains no non-trivial
loop.

More precisely, we characterize ⇡1(|G|) in terms of subgroup embeddings

⇡1(|G|)! F1 ! F ⇤,

where F1 is a group formed by ‘reduced’ infinite words of chords of T . These
words arise as the traces of loops in |G|, so in general they will have arbitrary
countable order types. Unlike for finite graphs, many natural homotopies be-
tween such loops do not proceed by retracting passes through chords one by
one. (We give a simple example in Section 3.) Nevertheless, we show that to
generate the homotopy classes of loops in |G| from suitable representatives we
only need homotopies that do retract passes through chords one at a time, in
some linear order. As a consequence, we are again able to define reduction of
words as a linear sequence of steps each cancelling one pair of letters, although
the order in which the steps are performed may now have any countable order
type (such as that of the rationals).
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The fact that our sequences of reduction steps are not well-ordered will
make it di�cult or impossible to handle reductions in terms of their definition.
However we show that reduction of infinite words can be characterized in terms
of the reductions they induce on all their finite subwords. A formalization of
this observation yields the embedding F1 ! F ⇤.

An end of G is trivial if it has a contractible neighbourhood. If every end of
G is trivial, then |G| is homotopy equivalent to a finite graph. If G has exactly
one non-trivial end, then |G| is homotopy equivalent to the Hawaiian Earring.
Its fundamental group was studied by Higman [24] and Cannon & Conner [7].
Our characterization of ⇡1(|G|) is equivalent to their combinatorial description
of this group when G has only one non-trivial end.

Our motivation for this paper is primarily that that the fundamental group
of such a classical space as |G| ought to be understood. Our characterization
achieves this aim while remaining as close to the standard representation of
⇡1(G) for finite G as possible; indeed we shall see that the only added com-
plication, the fact that both words and reductions may now have arbitrary
(countable) order type, is necessary.

Our characterization of ⇡1(|G|) already has a first substantial application.
In [15] we use it to show that, in contrast to finite graphs, the first singular
homology of |G| di↵ers essentially from the topological cycle space C(G) of G.
It has been amply demonstrated in recent years—see e.g. [3, 4, 5, 6, 20, 30],
or [10] for a survey—that the relatively new notion of C(G), rather than the
usual finitary cycle space, is needed to describe the homology of a locally finite
graph. But it had remained an open problem whether C(G) was a truly new
object, or just the first singular homology group of |G| in a new guise. This
question was answered positively in [15]: C(G) di↵ers essentially from H1(|G|),
and Theorem 15 below is the cornerstone of the proof.

This paper is organized as follows. We begin with a section collecting to-
gether the definitions and known background that we need; some elementary
general lemmas are also included here. In Section 3 we introduce our group F1
of infinite words, and show how it embeds in the inverse limit of the free groups
on its finite subsets of letters. In Section 4 we embed ⇡1(|G|) in F1, leaving the
proof of the main lemma to Section 5.

2 Terminology and basic facts

In this section we briefly run through any non-standard terminology we use. We
also list a few elementary lemmas that we shall need, and use freely, later on.
Some of these are given with references, the others are proved in the extended
version of this paper [16].

For graphs we use the terminology of [9], for topology that of Hatcher [23].
Our graphs may have multiple edges but no loops. This said, we shall from now
on use the terms path and loop topologically, for continuous but not necessarily
injective maps � : [0, 1] ! X, where X is any topological space. If � is a loop,
it is based at the point �(0) = �(1). We write �� for the path s 7! �(1 � s).
The image of an injective path is an arc in X, the image of an ‘injective loop’
(a subspace of X homeomorphic to S1) is a circle in X.
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Lemma 1 ([22]). The image of a topological path with distinct endpoints x, y
in a Hausdor↵ space X contains an arc in X between x and y.

All homotopies between paths that we consider are relative to the first and
last point of their domain, usually {0, 1}. We shall often construct homotopies
between paths segment by segment. The following lemma enables us to combine
certain homotopies defined separately on infinitely many segments.

Lemma 2 ([16]). Let ↵,� be paths in a topological space X. Assume that there
is a sequence (a0, b0), (a1, b1), . . . of disjoint subintervals of [0, 1] such that ↵ and
� conincide on [0, 1] \

S
n(an, bn), while each segment ↵ � [an, bn] is homotopic

in ↵([an, bn]) [ �([an, bn]) to � � [an, bn]. Then ↵ and � are homotopic.

Locally finite CW-complexes can be compactified by adding their ends. This
compactification can be defined, without reference to the complex, for any con-
nected, locally connected, locally compact topological space X with a count-
able basis. Very briefly, an end of X is an equivalence class of sequences
U1 ◆ U2 ◆ . . . of connected non-empty open sets with compact boundaries
and an empty overall intersection of closures,

T
n Un = ;, where two such se-

quences (Un) and (Vm) are equivalent if every Un contains all su�ciently late
Vm and vice versa. This end is said to live in each of the sets Un, and every Un

together with all the ends that live in it is open in the space whose point set is
the union of X with the set ⌦(X) of its ends and whose topology is generated
by these open sets and those of X. This is a compact space, the Freudenthal
compactification of X [18, 19]. More topological background on this can be
found in [1, 2, 25]; for applications to groups see e.g. [1, 28, 29, 33, 35].

For graphs, ends and the Freudenthal compactification are more usually de-
fined combinatorially [9, 21, 26], as follows. Let G be a connected locally finite
graph. A 1-way infinite graph-theoretical path in G is a ray. Two rays are
equivalent if no finite set of vertices separates them in G, and the resulting
equivalence classes are the ends of G. It is not hard to see [11] that this com-
binatorial definition of an end coincides with the topological one given earlier
for locally finite complexes. We write ⌦ = ⌦(G) for the set of ends of G. The
Freudenthal compactification of G is now denoted by |G|; its topology is gener-
ated by the open sets of G itself (as a 1-complex) and the sets Ĉ(S,!) defined
for every end ! and every finite set S of vertices, as follows. C(S,!) =: C is the
unique component of G � S in which ! lives (i.e., in which every ray of ! has
a tail, or subray), and Ĉ(S,!) is the union of C with the set of all the ends of
G that live in C and the (finitely many) open edges between S and C.1 Note
that the boundary of Ĉ(S,!) in |G| is a subset of S, that every ray converges
to the end containing it, and that the set of ends is totally disconnected.

Many topological spaces that are not normally associated with graphs can
be expressed as a graph with ends, or as a subspace thereof. The Hawaiian
Earring, for example, is homeomorphic to the subspace of the infinite grid that
consists of all the vertical double rays and its end. Since the subspaces of graphs
with ends form a richer class than the spaces of graphs with ends themselves, we

1The definition given in [9] is slightly di↵erent, but equivalent to the simpler definition
given here when G is locally finite. Generalizations are studied in [27, 32].
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prove all our results not just for |G| but more generally for subspaces H of |G|.
However, the reader will lose little by thinking of H as the entire space |G|. The
subspaces we shall be considering will be standard subspaces of |G|: connected
subspaces that are closed in |G| and contain every edge of which they contain
an inner point.

We shall frequently use the following non-trivial lemma.

Lemma 3 ([12]). For a locally finite graph G, every closed, connected subspace
of |G| is arc-connected.

A topological tree in |G| is an arc-connected standard subspace of |G| that
contains no circle. Note that the subgraph that such a space induces in G =
|G| \ ⌦ need not be connected: its arc-connectedness may hinge on the ends it
contains. A chord of a topological tree T is any edge of G that has both its
endvertices in T but does not itself lie in T .

Lemma 4 ([16]). Topological trees in |G| are locally arc-connected.

Between any two of its points, x and y say, a topological tree T in |G|
contains a unique arc, which we denote by xTy. These arcs are ‘short’ also in
terms of the topology that |G| induces on T :

Lemma 5. If a sequence z0, z1, . . . of points in T converges to a point z, then
every neighbourhood of z contains all but finitely many of the arcs ziTzi+1.

Proof. Since the arcs ziTzi+1 are unique, Lemma 4 implies that they lie in
arbitrarily small neighbourhoods of z.

We shall need topological trees in |G| as spanning trees for our analysis
of ⇡1(|G|): arbitrary graph-theoretical spanning trees of G can have non-trivial
loops in their closures, which would leave no trace of chords and thus be invisible
to our intended representation of homotopy classes by words of such chords.

Let us call a topological tree T in |G| a topological spanning tree of G if T
contains V (G). Since T is closed in |G|, it then also contains ⌦(G). Similarly,
a topological tree T in |G| is a topological spanning tree of a subspace H of |G|
if T ✓ H and T contains every vertex or end of G that lies in H.

Topological spanning trees are known to exist in all locally finite connected
graphs (and in many more [9, 13, 14]). They also exist in all the relevant
subspaces. We need a slight technical strengthening of this:

Lemma 6 ([16]). Let T ✓ H be standard subspaces of |G|. If T is a topological
tree, it can be extended to a topological spanning tree of H.

Proof. Apply Zorn’s Lemma, using that the intersection of a nested chain of
compact connected subspaces of |G| is connected [34, p.203], and hence arc-
connected by Lemma 3.

Like graph-theoretical trees, topological trees in |G| are contractible. We
shall need a slightly technical strengthening of this. Call a homotopy F (x, t)
time-injective if for every x the map t 7! F (x, t) is either constant or injective.
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Lemma 7 ([16]). For every point x in a topological tree T in |G| there is a
time-injective deformation retraction of T onto x.

Given a standard subspace H of |G|, let us call an end ! of G trivial in H if
! 2 H and ! has a contractible neighbourhood in H. For instance, all the ends
of G are trivial in every topological spanning tree of G, by Lemma 7. Trivial
ends in larger subspaces can also be made visible by topological spanning trees:

Lemma 8 ([16]). Let T be a topological spanning tree of a standard subspace H
of |G|. An end ! 2 H of G is trivial in H if and only if ! has a neighbourhood
in H that contains no chord of T .

The proof of Lemma 8 is not hard, but one seems to need Lemmas 3, 4 and 7.

An edge e = uv of G has two directions, (u, v) and (v, u). A triple (e, u, v)
consisting of an edge together with one of its two directions is an oriented edge.
The two oriented edges corresponding to e are its two orientations, denoted by
!e and  e. Thus, {!e,  e} = {(e, u, v), (e, v, u)}, but we cannot generally say which
is which. However, from the definition of G as a CW-complex we have a fixed
homeomorphism ✓e : [0, 1]! e. We call (✓e(0), ✓e(1)) the natural direction of e,
and (e, ✓e(0), ✓e(1)) its natural orientation.

Let � : [0, 1] ! |G| be a path in |G|. Given an edge e = uv of G, if [s, t] is
a subinterval of [0, 1] such that {�(s),�(t)} = {u, v} and �((s, t)) = e̊, we say
that � traverses e on [s, t]. It does so in the direction of (�(s),�(t)), or traverses
!e = (e,�(s),�(t)). We then call its restriction to [s, t] a pass of � through e,
or !e, from �(s) to �(t).

Using that [0, 1] is compact and |G| is Hausdor↵, one easily shows that a
path in |G| contains at most finitely many passes through any given edge:

Lemma 9 ([16]). A path in |G| traverses each edge only finitely often.

3 Infinite words, and limits of free groups

In the this section and the next, we give a combinatorial description of ⇡1(|G|)—
indeed of ⇡1(H) for any standard subspace H of |G|, when G is any connected
locally finite graph. Our description will involve infinite words and their reduc-
tions in a continuous setting, and embedding the group they form as a subgroup
of a limit of finitely generated free groups. Such things have been studied also
by Eda [17], Cannon & Conner [7], and Chiswell & Müller [8].

When G is finite, ⇡1(|G|) is the free group F on the set of chords (arbitrarily
oriented) of any fixed spanning tree, the edges of G that are not edges of the
tree. The standard description of F is given in terms of reduced words of those
oriented chords, where reduction is performed by cancelling adjacent inverse
pairs of letters such as !ei

 ei or  ei
!ei. The map assigning to a path in |G| the

sequence of chords it traverses defines the canonical group isomorphism between
⇡1(|G|) and F ; in particular, reducing the words obtained from homotopic paths
yields the same reduced word.

Our description of ⇡1(|G|) when G is infinite will be similar in spirit, but
more complex. We shall start not with an arbitrary spanning tree but with a
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topological spanning tree of |G|. Then every path in |G| defines as its ‘trace’
an infinite word in the oriented chords of that tree, as before. However, these
words can have any countable order type, and it is no longer clear how to define
the reduction of words in a way that captures homotopy of paths.

Consider the following example. Let G be the infinite ladder, with a topo-
logical spanning tree T consisting of one side of the ladder, all its rungs, and its
unique end ! (Figure 1). The path running along the bottom side of the ladder
and back is a null-homotopic loop. Since it traces the chords !e0,

!e1, . . . all the
way to ! and then returns the same way, the infinite word !e0

!e1 . . .  e1
 e0 should

reduce to the empty word. But it contains no cancelling pair of letters, such as
!ei
 ei or  ei

!ei.

T
ω

→e0
→e1

Figure 1: The null-homotopic loop !e0
!e1 . . .! . . .  e1

 e0

This simple example suggests that some transfinite equivalent of cancelling
pairs of letters, such as cancelling inverse pairs of infinite sequences of letters,
might lead to a suitable notion of reduction. However, in graphs with infinitely
many ends one can have null-homotopic loops whose trace of chords contains
no cancelling pair of subsequences whatsoever:

Example 1. There is a locally finite graph G with a null-homotopic loop �
in |G| whose trace of chords contains no cancelling pair of subsequences, of any
order type.

Proof. Let T be the binary tree with root r. Write Vn for the set of vertices at
distance n in T from r, and let Tn be the subtree of T induced by V0 [ · · · [ Vn.
Our first aim will be to construct a loop � in |T | that traverses every edge of
T once in each direction. We shall obtain � as a limit of similar loops �n in
Tn ✓ |T |.

Let �0 be the unique (constant) map [0, 1] ! T0. Assume inductively that
�n : [0, 1] ! Tn is a loop traversing every edge of Tn exactly once in each di-
rection. Assume further that �n pauses every time it visits a vertex in Vn (i.e.,
a leaf of Tn), remaining stationary at that vertex for some time. More precisely,
we assume for every vertex v 2 Vn that ��1

n (v) is a non-trivial closed interval.
Let us call the restriction of �n to such an interval a pass of �n through v.

Let �n+1 be obtained from �n by replacing, for each vertex v in Vn, the
pass of �n through v by a topological path that first travels from v to its first
neighbour in Vn+1 and back, and then to its other neighbour in Vn+1 and back,
pausing at each of those neighbours for some non-trivial time interval. Outside
the passes of �n through leaves of Tn, let �n+1 agree with �n.

Let us now define �. Let s 2 [0, 1] be given. If its values �n(s) coincide for
all large enough n, let �(s) := �n(s) for these n. If not, then sn := �n(s) 2 Vn

for every n, and s0s1s2 . . . is a ray in T ; let � map s to the end of G containing
that ray. This map � is easily seen to be continuous, and by Lemma 7 it is
null-homotopic. It is also easy to check that no sequence of passes of � through
the edges of T is followed immediately by the inverse of this sequence.
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The edges of T are not chords of a topological spanning tree, but this can
be achieved by changing the graph: just double every edge and subdivide the
new edges once. The new edges together with all vertices and ends then form a
topological spanning tree in the resulting graph G, whose chords are the original
edges of our tree T , and � is still a (null-homotopic) loop in |G|.

Example 1 shows that there is no hope of capturing homotopies of loops
in terms of word reduction defined recursively by cancelling pairs of inverse
subwords, finite or infinite. We shall therefore define the reduction of infinite
words di↵erently, though only slightly. We shall still cancel inverse letters in
pairs, even one at a time, and these reduction ‘steps’ will be ordered linearly
(rather unlike the simultaneous dissolution of all the chords by the homotopy
in the example). However, the reduction steps will not be well-ordered.

This definition of reduction is less straightforward, but it has an important
property: as for finite G, it will be purely combinatorial in terms of letters,
their inverses, and their linear order, making no reference to the interpretation
of those letters as chords and their relative positions under the topology of |G|.

Another problem, however, is more serious: since the reduction steps are not
well-ordered, it will be di�cult to handle reductions—e.g. to prove that every
word reduces to a unique reduced word, or that word reduction captures the
homotopy of loops, i.e. that traces of homotopic loops can always be reduced
to the same word. The key to solving these problems will lie in the observation
that the property of being reduced can be characterized in terms of all the finite
subwords of a given word. We shall formalize this observation by way of an
embedding of our group F1 of infinite words in the inverse limit F ⇤ of the free
groups on the finite subsets of letters.

The remainder of this section is devoted to carrying out this programme. In
Sections 4 and 5 we shall then study how ⇡1(|G|) embeds as a subgroup in F1
when its letters are interpreted as oriented chords of a topological spanning tree
of G. We shall prove that, as in the finite case, the map assigning to a loop
in |G| its trace of chords and reducing that trace is well defined on homotopy
classes, giving us injective homomorphisms

⇡1(|G|)! F1 ! F ⇤ .

By determining their precise images we shall complete our combinatorial char-
acterization of ⇡1(|G|)—and likewise of ⇡1(H) for subspaces H of |G|.

Let
!
A = {!e0,

!e1, . . . } and { e0,
 e1, . . . } be disjoint countable sets. Let us

call the elements of

A := {!e0,
!e1, . . . } [ { e0,

 e1, . . . }

letters, and say that !ei and  ei are inverse to each other. A word in A is a map
w : S ! A from a totally ordered countable set S, the set of positions of (the
letters used by) w, such that w�1(a) is finite for every a 2 A. The only property
of S relevant to us is its order type, so two words w : S ! A and w0 : S0 ! A will
be considered the same if there is an order-preserving bijection ' : S ! S0 such
that w = w0 � '. If S is finite, then w is a finite word; otherwise it is infinite.
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The concatenation w1w2 of two words is defined in the obvious way: we assume
that their sets S1, S2 of positions are disjoint, put S1 before S2 in S1 [ S2, and
let w1w2 be the combined map w1 [ w2. For I ✓ N we let

AI := {!ei | i 2 I} [ { ei | i 2 I} ,

and write w � I as shorthand for the restriction w � w�1(AI). Note that if I is
finite then so is the word w �I, since w�1(a) is finite for every a.

An interval of S is a subset S0 ✓ S closed under betweenness, i.e., such that
whenever s0 < s < s00 with s0, s00 2 S0 then also s 2 S0. The most frequently
used intervals are those of the form [s0, s00]S := {s 2 S | s0  s  s00} and
(s0, s00)S := {s 2 S | s0 < s < s00}. If (s0, s00)S = ;, we call s0, s00 adjacent in S.

A reduction of a finite or infinite word w : S ! A is a totally ordered set R
of disjoint 2-element subsets of S such that the two elements of each p 2 R are
adjacent in S \

S
{q 2 R | q < p} and are mapped by w to inverse letters !ei,

 ei.
We say that w reduces to the word w �(S\

S
R). If w has no nonempty reduction,

we call it reduced.
Informally, we think of the ordering on R as expressing time. A reduction

of a finite word thus recursively deletes cancelling pairs of (positions of) inverse
letters; this agrees with the usual definition of reduction in free groups. When w
is infinite, cancellation no longer happens ‘recursively in time’, because R need
not be well ordered.

As is well known, every finite word w reduces to a unique reduced word,
which we denote as r(w). Note that r(w) is unique only as an abstract word,
not as a restriction of w: if w = !e0

 e0
!e0 then r(w) = !e0, but this letter !e0 may

have either the first or the third position in w. The set of reduced finite words
forms a group, with multiplication defined as (w1, w2) 7! r(w1w2), and identity
the empty word ;. This is the free group with free generators !e0,

!e1, . . . and
inverses  e0,

 e1 . . . . For finite I ✓ N, the subgroup

FI := {w | Im w ✓ AI}

is the free group on {!ei | i 2 I}.
Consider a word w, finite or infinite, and I ✓ N. It is easy to check the

following:

If R is a reduction of w then
�
{s, s0} 2 R | w(s) 2 AI

 
,

with the ordering induced from R, is a reduction of w �I.
(1)

In particular:

Any result of first reducing and then restricting a word can
also be obtained by first restricting and then reducing it. (2)

By (2), mapping w 2 FJ to r(w �I) 2 FI for I ✓ J defines an inverse system
of homomorphisms FJ ! FI . Let us write

F ⇤ := F ⇤(
!
A) := lim �FI

for the corresponding inverse limit of the FI . By our assumption that I runs
through all the finite subsets of some countable set, and FI can be viewed as
the free group on I, this defines F ⇤ uniquely as an abstract group.
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Our next aim is to show that also every infinite word reduces to a unique
reduced word. We shall then be able to extend the map w 7! r(w), defined so far
only for finite words w, to infinite words w. The operation (w1, w2) 7! r(w1w2)
will then make the set of reduced (finite or infinite) words into a group, our
desired group F1.

Existence is immediate:

Lemma 10. Every word reduces to some reduced word.

Proof. Let w : S ! A be any word. By Zorn’s Lemma there is a maximal
reduction R of w. Since R is maximal, the word w �(S \

S
R) is reduced.

To prove uniqueness, we begin with a characterization of the reduced words
in terms of reductions of their finite subwords. Let w : S ! A be any word. If w
is finite, call a position s 2 S permanent in w if it is not deleted in any reduction,
i.e., if s 2 S \

S
R for every reduction R of w. If w is infinite, call a position

s 2 S permanent in w if there exists a finite I ✓ N such that w(s) 2 AI and s is
permanent in w � I. By (2), a permanent position of w � I is also permanent in
w �J for all finite J ◆ I. The converse, however, need not hold: it may happen
that {s, s0} is a pair (‘of cancelling positions’) in a reduction of w � I but w �J
has a letter from AJ \AI whose position lies between s and s0, so that s and s0

are permanent in w �J .

Lemma 11. A word is reduced if and only if all its positions are permanent.

Proof. The assertion is clear for finite words, so let w : S ! A be an infinite
word. Suppose first that all positions of w are permanent. Let R be any
reduction of w; we will show that R = ;. Let s be any position of w. As s is
permanent, there is a finite I ✓ N such that w(s) 2 AI and s is not deleted in
any reduction of w � I. By (1), the pairs in R whose elements map to AI form
a reduction of w � I, so s does not lie in such a pair. As s was arbitrary, this
proves that R = ;.

Now suppose that w has a non-permanent position s. We shall construct a
non-trivial reduction of w. For all n 2 N put Sn := {s 2 S | w(s) 2 A{0,...,n}};
recall that these are finite sets. Write wn for the finite word w � I with I =
{0, . . . , n}, the restriction of w to Sn. For any reduction R of wn+1, the set
R� :=

�
{t, t0} 2 R | t, t0 2 Sn

 
with the induced ordering is a reduction of wn,

by (1).
Pick N 2 N large enough that s 2 SN . Since s is not permanent in w,

every wn with n � N has a reduction in which s is deleted. As wn has only
finitely many reductions, König’s infinity lemma [9] gives us an infinite sequence
RN , RN+1, . . . in which each Rn is a reduction of wn deleting s, and Rn = R�

n+1

for every n. Inductively, this implies:

For all m  n, we have Rm =
�
{t, t0} 2 Rn | t, t0 2 Sm

 
, and

the ordering of Rm on this set agrees with that induced by Rn.
(3)

Let s0 2 S be such that {s, s0} 2 Rn for some n; then {s, s0} 2 Rn for every
n � N , by (3).
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Our sequence (Rn) divides the positions of w into two types. Call a position t
of w essential if there exists an n � N such that t 2 Sn and t remains undeleted
in Rn; otherwise call t inessential. Consider the set

R :=
[

m�N

\
n�m

Rn

of all pairs of positions of w that are eventually in Rn. Let R be endowed with
the ordering p < q induced by all the orderings of Rn with n large enough that
p, q 2 Rn; these orderings are compatible by (3). Note that R is non-empty,
since it contains {s, s0}. We shall prove that R is a reduction of w.

We have to show that the elements of each p 2 R, say p = {t1, t2} with
t1 < t2, are adjacent in S \

S
{q 2 R | q < p}. Suppose not, and pick t 2

(t1, t2)S \
S
{q 2 R | q < p}. If t is essential, then t is a position of wn remaining

undeleted in Rn for all large enough n. But then {t1, t2} /2 Rn for all these n,
contradicting the fact that {t1, t2} 2 R. Hence t is inessential. Then t is deleted
in every Rn with n large enough. By (3), the pair {t, t0} 2 Rn deleting t is
the same for all these n, so {t, t0} =: p0 2 R. By the choice of t, this implies
p0 6< p. For n large enough that p, p0 2 Rn, this contradicts the fact that t1, t2
are adjacent in Sn \

S
{q 2 Rn, q < p}, which they are since Rn is a reduction

of wn.

Note that a word can consist entirely of non-permanent positions and still
reduce to a non-empty word: the word !e0

 e0
!e0 is again an example.

Lemma 11 o↵ers an easy way to check whether an infinite word is reduced. In
general, it can be hard to prove that a given word w has no non-trivial reduction,
since this need not have a ‘first’ cancellation. By Lemma 11 it su�ces to check
whether every position becomes permanent in some large enough but finite w �I.

Similarly, it can be hard to prove that two words reduce to the same word.
The following lemma provides an easier way to do this, in terms of only the
finite restrictions of the two words:

Lemma 12. Two words w,w0 can be reduced to the same (abstract) word if and
only if r(w �I) = r(w0 �I) for every finite I ✓ N.

Proof. The forward implication follows easily from (2). Conversely, suppose
that r(w � I) = r(w0 � I) for every finite I ✓ N. By Lemma 10, w and w0 can
be reduced to reduced words v and v0, respectively. Our aim is to show that
v = v0, that is to say, to find an order-preserving bijection ' : S ! S0 between
the domains S of v and S0 of v0 such that v = v0 � '. For every finite I, our
assumption and the forward implication of the lemma yield

r(v �I) = r(w �I) = r(w0 �I) = r(v0 �I) .

Hence for every possible domain SI ✓ S of r(v � I) and every possible domain
S0I ✓ S0 of r(v0 � I) there exists an order isomorphism SI ! S0I that commutes
with v and v0. For every I, there are only finitely many such maps SI ! S0I ,
since there are only finitely many such sets SI and S0I . And for I ✓ J , every
such map SJ ! S0J induces such a map SI ! S0I with SI ✓ SJ and S0I ✓ S0J ,
by (2). Hence by the infinity lemma [9] there exists a sequence '0 ✓ '1 ✓ · · ·
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of such maps 'n : S{0,...,n} ! S0{0,...,n}, whose union ' maps all of S onto S0,
since by Lemma 11 every position of v and of v0 is permanent.

With Lemma 12 we are now able to prove:

Lemma 13. Every word reduces to a unique reduced word.

Proof. By Lemma 10, every word w reduces to some reduced word w0. Suppose
there is another reduced word w00 to which w can be reduced. By the easy
direction of Lemma 12, we have

r(w0 �I) = r(w �I) = r(w00 �I)

for every finite I ✓ N. By the non-trivial direction of Lemma 12, this implies
that w0 and w00 can be reduced to the same word. Since w0 reduces only to w0

and w00 reduces only to w00, this must be the word w0 = w00.

As in the case of finite words, we denote the unique reduced word that a
word w reduces to by r(w). The set of reduced words now forms a group

F1 = F1(
!
A) ,

with multiplication defined as (w1, w2) 7! r(w1w2), identity the empty word ;,
and inverses w� of w : S ! A defined as the map on the same S, but with the
inverse ordering, satisfying {w(s), w�(s)} = {!ei,

 ei} for some i for every s 2 S.
(Thus, w� is w taken backwards, replacing each letter with its inverse.) Note
that the proof of associativity requires an application of Lemma 13.

As indicated earlier, we claim that F1 embeds canonically in the inverse limit
F ⇤ of the groups FI . By (2), the maps hI : w 7! r(w � I) are homomorphisms
F1 ! FI that commute with the homomorphisms FJ ! FI from the inverse
system, so they define a homomorphism

h : F1 ! F ⇤

satisfying ⇡I � h = hI for all I (where ⇡I is the projection F ⇤ ! FI). To show
that h is injective, consider an element w of its kernel. For every I, we have

r(w �I) = hI(w) = ⇡I(h(w)) = ⇡I(id) = ;,

where id denotes the identity in F ⇤ and ; that of FI , the empty word. Thus,
w is a reduced word which has no permanent positions. By Lemma 11, this
means that w = 0. Thus, h is a group embedding of F1 in F ⇤, as claimed.

We remark that h is never surjective. Indeed, while every letter occurs only
finitely often in a given word, there are elements of F ⇤ whose projections to
the FI contain some fixed letter unboundedly often; such an element will not
lie in the image of h. (For example, the words !e1

!e0
!e1
 e0 . . . !ei

!e0
!ei
 e0 2 FI

for I = {1, . . . , i} define such an element of F ⇤.) However, these are clearly
the only elements of F ⇤ that h misses: the subgroup h(F1) of F ⇤ consists of
precisely those elements (wI) of F ⇤ that are bounded in the sense that for every
letter !e 2 A there exists a k 2 N such that |w�1

I (!e)|  k for all I.
Theorem 15 (ii) below summarizes what we have shown so far.
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4 Embedding ⇡1(H) in F1

Let G be a locally finite connected graph. Let H be a standard subspace of |G|,
and let T be a fixed topological spanning tree of H. If T has only finitely many
chords in H, then H is homotopy equivalent to a finite graph—apply Lemma 7
to the maximal topological subtrees not meeting the interior of an arc between
two chords—and all we shall prove below will be known. We therefore assume
that T has infinitely many chords in H. Enumerate these as e0, e1, . . . , let
!
A := {!e0,

!e1, . . . } be the set of their natural orientations, and put

A := {!e0,
!e1, . . . } [ { e0,

 e1, . . . } .

Let
F1 = F1(

!
A)

be the group of infinite reduced words with letters in A, as defined in Section 3.
Unless otherwise mentioned, the endpoints of all paths considered from now

on will be vertices or ends, and any homotopies between paths will be relative
to {0, 1}. When we speak of ‘the passes’ of a given path �, without referring to
any particular edges, we shall mean the passes of � through chords of T .

Every path � in H defines a word w� by its passes through the chords of T .
Formally, we take as S the set of the domains [a, b] of passes of �, ordered
naturally as internally disjoint subsets of [0, 1], and let w� map every [a, b] 2 S
to the directed chord that � traverses on [a, b]. We call w� the trace of �. Our
aim is to show that h↵i 7! r(w↵) defines a group embedding ⇡1(H)! F1.

For a proof that h↵i 7! r(w↵) is well defined, consider homotopic loops ↵ ⇠ �
in H. We wish to show that r(w↵) = r(w�). By Lemma 12 it su�ces to show
that r(w↵ � I) = r(w� � I) for every finite I ✓ N. Consider the space obtained
from H by attaching a 2-cell to H for every j /2 I, by an injective attachment
map from the boundary of the 2-cell onto the fundamental circle of ej , the
unique circle in T + ej . This space deformation-retracts onto T [

S
{ei | i 2 I},

and hence is homotopy equivalent by Lemma 7 to the wedge sum WI of |I|
circles, one for every ei. Composing ↵ and � with the map H ! WI from this
homotopy equivalence yields homotopic loops ↵0 and �0 in WI , whose traces in
FI are w↵0 = w↵ � I and w�0 = w� � I. Since h�i 7! r(w�) is known to be well
defined for wedge sums of finitely many circles, we deduce that

r(w↵ �I) = r(w↵0) = r(w�0) = r(w� �I) .

This completes the proof that h↵i 7! r(w↵) is well defined, and by the uniqueness
of reduction it is a homomorphism. For injectivity, we shall prove in Section 5
the following extension to paths that need not be loops:

Lemma 14. Paths �, ⌧ in H with the same endpoints are homotopic in H if
(and only if) their traces reduce to the same word.

We remark that the map h↵i 7! r(w↵) will not normally be surjective. For
example, a sequence !e0,

!e1, . . . of distinct chords will always be a reduced word,
but no loop in |G| can pass through these chords in order if they do not converge
to an end. Hence if two ends are non-trivial in H, then by Lemma 8 there is a
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non-convergent sequence !e0,
!e1, . . . of chords of T in H (picked alternately from

smaller and smaller neighbourhoods of the two ends), which forms a reduced
word in F1(

!
A) outside the image of our map h↵i 7! r(w↵).

In order to describe the image of this map precisely, let us call a subword
w0 := w �S0 of a word w : S ! A monotonic if S0 is infinite and can be written as
S0 = {s0, s1, . . . } so that either s0 < s1 < . . . or s0 > s1 > . . . . Let us say that
w0 converges (in |G|) if there exists an end to which every sequence x0, x1, . . .
with xn 2 w(sn) for all n converges. If w is the trace of a path in H, then by
the continuity of this path all the monotonic subwords of w—and hence those
of r(w)—converge.

We can now summarize our combinatorial description of ⇡1(H) as follows.

Theorem 15. Let G be a locally finite connected graph, and let H be a standard
subspace of |G|. Let T be a topological spanning tree of H, and let e0, e1, . . . be
its chords in H.

(i) The map h↵i 7! r(w↵) is an injective homomorphism from ⇡1(H) to the
group F1 of reduced finite or infinite words in {!e0,

!e1, . . . }[{ e0,
 e1, . . . }.

Its image consists of those reduced words whose monotonic subwords all
converge in |G|.

(ii) The homomorphisms w 7! r(w �I) from F1 to FI embed F1 as a subgroup
in lim �FI . It consists of those elements of lim �FI whose projections r(w �I)
use each letter only boundedly often. (The bound may depend on the letter.)

Proof. (i) We already saw that h↵i 7! r(w↵) is a homomorphism, and injectivity
follows from Lemma 14 (which will be proved in Section 5). We have also seen
that for every loop ↵ in H all the monotonic subwords of r(w↵) converge in |G|.
It remains to show the converse: that if all the monotonic subwords of a reduced
word w converge, then there is a loop ↵ in H such that w = r(w↵).

We prove the following more general fact: If w is a word (not necessarily
reduced) whose monotonic subwords all converge, then w is the trace of a loop
in H. So let w : S ! A be such a word. Enumerate S as s0, s1, . . . . We will
inductively choose disjoint closed intervals In ✓ [0, 1] ordered correspondingly,
i.e. so that Im precedes In in [0, 1] whenever sm < sn. For each n, we will let ↵n

be an order-preserving homeomorphism from In to the oriented chord w(sn).
We will then extend the union of all the ↵n to a loop ↵ : [0, 1]! H.

In order that such a continuous extension ↵ exist, we have to take some
precautions when we choose the In. For example, suppose that the chords
w(s0), w(s2), . . . converge to one end, while the chords w(s1), w(s3), . . . converge
to another end. If S is ordered as s0 < s2 < · · · | · · · < s3 < s1 (note that every
monotonic subword of w converges), there may be a point x 2 [0, 1] such that
every interval around x contains all but finitely many of the intervals In. In this
case, any extension of

S
n ↵n will fail to be continuous at x. In order to prevent

this, we shall first formalize such critical situations in terms of partitions of S,
then prove that there are only countably many of them, reserve open intervals
as padding around potentially critical points such as x, and finally choose the
In so as to avoid these intervals.
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Consider a partition P of S into non-empty parts S�(P ) and S+(P ), such
that s� < s+ whenever s� 2 S�(P ) and s+ 2 S+(P ). Note that for all cofinal
sequences in S�(P ), finite or infinite, the final vertices of the corresponding
chords of T converge to a common point z�(P ) 2 H: otherwise there would
be a monotonic subword of w that does not converge in |G|. Likewise, there
is a point z+(P ) 2 H such that for all coinitial sequences in S+(P ) the first
vertices of the corresponding chords converge to z+(P ). We call P critical if
z�(P ) 6= z+(P ).

Let us show that there are only countably many critical partitions P . If not,
there are uncountably many for which neither S�(P ) has a greatest element nor
S+(P ) has a least element. For each such P , both z�(P ) and z+(P ) are ends.
Let W (P ) be a finite set of vertices that separates z�(P ) from z+(P ) in |G|.
As G is countable, there is a set W such that W = W (P ) for uncountably
many P . Pick a sequence P0, P1, . . . of critical partitions with W (Pi) = W , and
so that either S�(P0) ( S�(P1) ( . . . or S+(P0) ( S+(P1) ( . . . . We assume
that S�(P0) ( S�(P1) ( . . . , the other case being analogous. To obtain a
contradiction, let us use this sequence to construct a non-convergent monotonic
subword of w.

Choose s�0 2 S�(P0) and s+
0 2 S+(P0)\S�(P1) so that W separates w(s�0 )

from w(s+
0 ) in G; this is possible, since W separates z�(P0) from z+(P0). Then

for i = 1, 2, . . . in turn choose s�i 2 S�(Pi) and s+
i 2 S+(Pi) \ S�(Pi+1)

so that s�i > s+
i�1 and W separates w(s�i ) from w(s+

i ) in G. Then w �
{s�0 , s+

0 , s�1 , s+
1 , . . . } is a monotonic subword of w that does not converge in |G|,

since W separates all the pairs w(s�i ), w(s+
i ). This completes the proof that

there are only countably many critical partitions; enumerate them as P0, P1, . . . .
We now construct ↵. Inductively choose disjoint, closed, non-trivial intervals

In, Jn ✓ [0, 1] so that Im precedes In on [0, 1] whenever sm < sn, and so that
Im precedes Jn if and only if sm 2 S�(Pn). For each n, let ↵n be an order-
preserving homeomorphism from In to the oriented chord w(sn). Extend the
union of all the ↵n to a loop ↵, as follows. Consider the connected components I
of [0, 1]\

S
In. These are again intervals, possibly trivial; we call them connecting

intervals. We shall first define ↵ on the boundary points a  b of each I, and
then extend it continuously to map I onto the arc ↵(a)T↵(b). To help with our
subsequent proof that ↵ is continuous, let us make sure when we choose ↵(a)
and ↵(b) that they satisfy the following for x = a or x = b:

For every boundary point x of a connecting interval, and every
neighbourhood U of ↵(x), there is an " > 0 such that ↵(y) 2 U
whenever y 2 (x� ", x + ") lies in an interval In.

(4)

Suppose first that I is not an initial or final segment of [0, 1], i.e., that the
boundary points a, b of I satisfy 0 < a  b < 1. Now the sets

S� := {sn | In precedes I} and S+ := {sn | I precedes In}

form a partition P of S into non-empty parts. If P is critical, then P = Pm for
some m and hence Jm ✓ I by the choice of I as a component of [0, 1] \

S
In. In

particular, I is non-trivial in this case. Let ↵ map a to z�(P ) and b to z+(P ).
(Note that if one of these points, a say, is a boundary point of some In, then
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↵n(a) = z�(P ), so ↵ coincides with ↵n on In.) If P is not critical, we have
z�(P ) = z+(P ) and let ↵ map a and b to this point. In both these cases, (4)
follows easily from the definition of z�(P ) and z+(P ).

Now consider the case a = 0. If S has a least element sn, then b is a boundary
point of In on which ↵ is already defined. Otherwise, S has a coinitial sequence
. . . < sn1 < sn0 , in which case the restriction of w to this sequence is a monotonic
subword of w; this converges in |G| to some end !, and we put ↵(b) = !. Note
that ! is independent of the choice of the coinitial sequence of S, as otherwise
there would be a monotonic subword of w that does not converge. In both cases,
our choice of ↵(b) satisfies (4). As ↵(a), if a 6= b, we choose any vertex or end
in H, satisfying (4) trivially. In the case of b = 1, we proceed analogously.

For each I, we now extend ↵ to I ! ↵(a)T↵(b) as planned. In particular, if
↵(a) = ↵(b) we let ↵ map all of I to that point.

It remains to check that ↵ is continuous at boundary points x of intervals
In or of connecting intervals. Suppose first that x is the boundary point of a
connecting interval. Let x0, x1, . . . be a sequence of points in [0, 1] converging
to x. If all but finitely many of these lie in intervals In, their images under
↵ converge to ↵(x) by (4). If not, we may assume that each xi lies in some
connecting interval Ii = [yi, zi]. At most one of these intervals I contains
infinitely many xj (because then it contains x), whose values then converge
to ↵(x) by the continuity of ↵ � I. Disregarding these xj , we may thus assume
that each Ii contains only finitely many xj .

Let us show that the sequence ↵(y0),↵(z0),↵(y1),↵(z1), . . . converges to ↵(x).
Let a neighbourhood U := Ĉ(S,↵(x)) of ↵(x) be given, and let " be as provided
by (4). For all but finitely many i we have yi, zi 2 (x� ", x + "), and we claim
that ↵(yi),↵(zi) 2 U for such i. By definition of yi (the case of zi is analogous),
there is a sequence of boundary points of intervals In that converges to yi, and
we may choose this sequence in (x � ", x + "). By (4), ↵ maps these points to
vertices converging to ↵(yi). By our choice of ", these vertices lie in U . As every
sequence of vertices in U converges to a point in U , we obtain ↵(yi) 2 U as de-
sired. We now apply Lemma 5 to the sequence ↵(y0),↵(z0),↵(y1),↵(z1), . . . . By
the lemma, the entire arcs ↵(Ii) = ↵(yi)T↵(zi) converge to ↵(x). In particular,
↵(xi)! ↵(x) as desired.

Suppose now that x is not the boundary point of a connecting interval but
of an interval In, say In = [x, y]. Then the sets S� := {sm | Im precedes x}
and S+ := {sm | x precedes Im} form a partition P of S, with sn = minS+.
If S� = ;, then x = 0 and continuity at x is trivial. Otherwise, S�(P ) has a
greatest element or P is critical. In both cases, x would be the boundary point
of a connecting interval, a contradiction.

Note that ↵ as defined here does not need to be a loop. But we can turn
it into a loop without changing its trace, by appending to it a path in T from
↵(1) to ↵(0).

(ii) This was proved at the end of Section 3.

Corollary 16. Let H ✓ H 0 be standard subspaces of |G|. Then ⇡1(H) is a
subgroup of ⇡1(H 0).

Proof. Let T be a topological spanning tree of H. By Lemma 6, T extends to a
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topological spanning tree T 0 of H 0. Since every chord of T is also a chord of T 0,
Theorem 15 (i) implies the assertion.

Let us call a standard subspace H of |G| non-trivial if it contains an end
(of G) that is non-trivial in H. The fundamental groups of all such spaces
contain and are contained in the abstract group F1 defined in Section 3; recall
that this group is independent of G, as long as |G| itself is non-trivial. Indeed:

Corollary 17. For every non-trivial standard subspace H of any |G| there are
subgroup embeddings F1 ! ⇡1(H)! F1.

Proof. Theorem 15 (i) says that ⇡1(H) is a subgroup of F1. Conversely, let T
be a topological spanning tree of H. Since H is non-trivial, T has a sequence
of chords in H that converge to an end ! 2 H of G (Lemma 8). The union H 0

of T with all these chords is a standard subspace of |G| contained in H, so
⇡1(H 0)  ⇡1(H) by Corollary 16. Since T is a topological spanning tree of H 0

all whose (infinite subwords of words of) chords converge in |G|, Theorem 15 (i)
implies that ⇡1(H 0) is isomorphic to F1.

Corollary 18. The fundamental group ⇡1(H) of a standard subspace H of |G|
is free if and only if H is trivial. In particular, ⇡1(|G|) is free if and only if
every end has a contractible neighbourhood in |G|.

Proof. Let T be a topological spanning tree of H. If H is trivial, then T has
only finitely many chords in H: otherwise some of them would converge to a
end, which would be non-trivial in H by Lemma 8. By Lemma 7, H is homotopy
equivalent to a finite graph whose fundamental group is the free group on this
set of chords.

Conversely, let us assume that H is non-trivial and show that ⇡1(H) is not
free. By Corollary 17, ⇡1(H) contains F1 as a subgroup, so by the Nielsen-
Schreier theorem [31] it su�ces to prove that F1 is not free. As pointed out
in [7], this was shown by Higman [24].

When H is non-trivial, then ⇡1(H) is uncountable, so any representation
needs uncountably many generators. We believe that one also needs uncount-
ably many relations, but have no proof of this.

Theorem 15 provides a reasonably complete solution to our original graph-
theoretical problem, which asked for a canonical combinatorial description of the
fundamental group of |G| for given G. It does not answer the group-theoretical
question of how interesting or varied are the groups occurring as ⇡1(|G|) or ⇡1(H).

We close with some evidence that this question may indeed be interesting.
For all we know so far, F1 might be the only abstract group ever occurring as
⇡1(H) for non-trivial H. However, this is far from the truth:

Theorem 19 ([16]). The fundamental group ⇡1(H) of a standard subspace H
of |G| is isomorphic to F1 if and only if H contains precisely one end of G that
is non-trivial in H.
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5 Proof of Lemma 14

We conclude our proof of Theorem 15 with the proof of Lemma 14. In this proof
we shall need another lemma:

Lemma 20. Let � be a path in H and let w� : S ! A be its trace. Then for
every S0 ✓ S there is a path ⌧ in H with the same endpoints as � and such that
w⌧ = w� � S0. Moreover, ⌧ can be chosen so that ⌧ � [a, b] = � � [a, b] for every
domain [a, b] 2 S0 of a pass of ⌧ .

Proof. Note that the first statement follows from the more general fact that
we proved in Theorem 15(i): As w� is the trace of a path, all its monotonic
subwords converge in H. Hence also all monotonic subwords of w� �S0 converge
in H, and thus it is the trace of a path ⌧ . To ensure that ⌧ coincides with � on
every domain of a pass of ⌧ , we will construct ⌧ explicitely.

For every x 2 [0, 1] that lies in an interval in S0 we define ⌧(x) := �(x).
Further, we put ⌧(0) := �(0) and ⌧(1) := �(1). Then for every x 2 [0, 1] with
⌧(x) still undefined there is a unique maximal interval [a, b] that contains x and
is disjoint from (s, t) for every [s, t] 2 S0. It is easy to see that �(a) and �(b)
are vertices or ends, and hence lie in T . If a 6= b, we call [a, b] a non-traversing
interval and define ⌧ on [a, b] as a path from �(a) to �(b) whose image is precisely
the arc in T between these two points. If a = b, then �(a) is an end, and we let
⌧(a) := �(a). Clearly w⌧ = w� �S0 and ⌧ � [a, b] = � � [a, b] for each [a, b] 2 S0; it
remains to show that ⌧ continuous.

Continuity is clear at inner points of intervals in S0 or of non-traversing
intervals, so let x be any other point. By definition, ⌧(x) = �(x). It is easy to
see that �(x) is a vertex or an end, so ⌧(x) 2 T . Continuity of ⌧ at x is now
easy to prove, using Lemma 5 and the fact that � is continuous.

Proof of Lemma 14. The proof that ↵ ⇠ � implies r(w↵) = r(w�) was shown
already for the case that ↵ and � are loops. The general case follows, since �
and ⌧ can be made into loops by appending a path in T joining their endpoints,
which does not change their traces. It remains to prove the converse: we assume
that r(w�) = r(w⌧ ), and show that � ⇠ ⌧ .

Our aim is to construct a homotopy F = (ft)t2[0,1] of paths ft in H with
f0 = � and f1 = ⌧ . We first assume that ⌧ does not traverse any chords; the
general statement will then follow from this case. Our proof of this case will
consist of the following five parts. We begin with some simplifications of the
problem, straightening � and ⌧ to homotopic but less complicated paths. We
then pair up the passes of � through chords, with a view to cancel such pairs
(!e,  e) by a local homotopy ft ! ft0 that retracts a small segment of ft running
through !e and back through  e without traversing any other chords. These pairs
of passes have to be nested in the right way, and finding this pairing will be the
second part of our proof. In the third part we determine a (time) order in which
to cancel those nested pairs. This order will have to list inner pairs before outer
pairs, but among all the linear orders doing this we have to find a suitable one:
since the partial order of the nestings of pairs can have limits, so will the linear
order of times t at which to cancel the pairs. At these limits we may encounter
discontinuities in our homotopy. But we shall be able to choose the order of
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cancellations so that this happens only countably often. In the fourth step we
smooth out those discontinuities by inserting further local homotopies ft ! ft0

at those countably many times t. In part five of the proof we finally show that
the homotopy F thus defined is indeed continuous.

We now embark on part one of the proof, simplifying � and ⌧ . Although
⌧ does not, by assumption, traverse chords, its image might still contain inner
points of chords. Let us call a path ↵ in H straight if it does not have this
property, i.e. if ↵(x) 2 T for every x not contained in the domain of a pass.
Applying Lemma 2 to local homotopies retracting any segments of ↵ visiting a
chord e = uv to a constant map with image u or v, we can make any path in H
straight without touching its passes:

Every path ↵ in H is homotopic in Im ↵ to a straight path ↵0

that has the same passes as ↵. (5)

By ‘having the same passes’ we mean not only that ↵,↵0 have the same trace
but that for every interval [a, b] ✓ [0, 1] either both segments ↵ � [a, b] and
↵0 � [a, b] are a pass of their respective path or neither is, and if both are then
↵� [a, b] = ↵0 � [a, b].

By (5), � and ⌧ are homotopic to straight paths �0 and ⌧ 0 such that �0 has
the same passes as � while ⌧ 0 has the same passes as ⌧ (namely, none). In
particular, w�0 = w� and w⌧ 0 = w⌧ = ;, so r(w�0) = r(w�) = r(w⌧ ) = r(w⌧ 0)
by assumption. We may therefore assume that � and ⌧ are themselves straight.

Let us start with the simplest case: assume that � also traverses no chord.
Then � and ⌧ are homotopic. Indeed:

Let ↵ and � be paths in T with identical endpoints x, y 2 V (G)[
⌦(G). Then there is a homotopy between ↵ and � in Im ↵[Im �.
If � is constant, this homotopy can be chosen time-injective.

(6)

To prove (6), we construct homotopies of ↵ and � to an x–y path in xTy. We
shall assemble these two homotopies from homotopies between the segments
� : [a, b]! T of ↵ or � that are maximal with �((a, b)) ✓ T \xTy, and constant
maps, defined as follows. Since T \ xTy is open in T , the maximality of [a, b]
implies that �(a), �(b) 2 xTy. Let us show that �(a) = �(b). If not, then these
two points are joined by two arcs that have disjoint interiors: one in xTy, and
another in Im � (Lemma 1). These two arcs would form a circle in T , which
does not exist since T is a topological spanning tree of H. By Lemma 7, there
is a time-injective homotopy in Im � from � to the constant map [a, b]! {�(a)}
(= {�(b)}). Combining all these homotopies, one for every �, we obtain time-
injective homotopies (in Im ↵ and Im �) from ↵ and � to x–y paths in xTy. If
� is constant (with image x = y), the first of these is the desired time-injective
homotopy from ↵ to �. Otherwise we note that since xTy ' [0, 1], the latter
two paths are homotopic in xTy, and we can combine our three homotopies to
the desired homotopy between ↵ and �.

Using Lemma 2 to apply (6) to segments between passes, we obtain the
following generalization:

If paths ↵ and � in H with identical endpoints have precisely
the same passes (i.e., they agree on each domain of a pass of ↵
or �), then there is a homotopy between them in Im ↵ [ Im �.

(7)
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Let us assume now that � traverses chords. Then [0, 1] is the disjoint union
of the following intervals: the interiors of domains of passes, and the components
of the rest of [0, 1]. Every such component is a closed interval. By (7), we may
assume that

If (a, b) ✓ [0, 1] is maximal with the property that it avoids all do-
mains of passes of �, then � maps [a, b] onto the arc �(a)T�(b).
In particular, if �(a) = �(b) then � is constant on [a, b].

(8)

This completes part one of the proof.

In order to construct our desired homotopy F between � and ⌧ , we have
to use the fact that w� reduces to w⌧ = ;. So let us consider a reduction R
of w� to the empty word. By definition, R is a totally ordered set of disjoint
pairs of positions of w� such that the elements of each p 2 R are adjacent in
S \

S
{q 2 R | q < p} and are mapped by w� to inverse letters !ei,

 ei. The
positions of w�, in this case, are the domains of the passes of �. Let us write

P :=
�
(⇡, ⇢) | 9(s, t) 2 R : (⇡ = � �s and ⇢ = � � t)

 
for the set of pairs of passes corresponding to R, where the order of (s, t) is
that from S (so the interval s precedes the interval t in [0, 1]). Note that P is
countable, because � has only countably many passes. Our homotopy F will
remove the passes of � in pairs as specified by P, one at a time. The order in
which this is done will not necessarily be the ordering which R induces on P,
so let us for now think of P as an unordered set.

Let us fix some more notation for later use. Let ↵ be a path in H, and let
p = (⇡, ⇢) be a pair of passes of ↵ through the same chord e =: e(p) but in
opposite directions. Let [a, a�] be the domain of ⇡ and [b�, b] that of ⇢, and
assume that a < a�  b� < b. Then ⇡(a) = ⇢(b) =: z and ⇡(a�) = ⇢(b�) =: z�

are the two vertices of e. If ↵ � [a�, b�] traverses no chord, and if � is the
path obtained from ↵ by replacing its segment ↵ � [a, b] with the constant map
[a, b]! {z}, we say that � is obtained from ↵ by cancelling the pair p of passes.
Since a, a�, b, b�, z, z� depend only on the pair p = (⇡, ⇢) but not on the rest
of ↵, we denote them by a(p), a�(p), b(p), b�(p), z(p) and z�(p). Thus:

For all p 2 P, we have �(a(p)) = �(b(p)) = z(p) and �(a�(p)) =
�(b�(p)) = z�(p). These points are vertices and hence lie in T . (9)

This completes the second part of our proof.

In the third part, we now wish to determine the order in which our homotopy
F has to cancel the pairs in P. This order will have to satisfy an obvious
necessary condition imposed by the relative position of the passes in these pairs.
Indeed, our definition of P implies that, given two pairs p, p0 2 P, the intervals
(a(p), b(p)) and (a(p0), b(p0)) are either disjoint or nested; accordingly, we call
p and p0 parallel or nested. If p and p0 are nested and [a(p), b(p)] contains
[a(p0), b(p0)], we say that p surrounds p0 and write p � p0. This is clearly a
partial ordering. In fact,  is the inverse of a tree order:

Whenever a pair is surrounded by two other pairs, these latter
pairs are nested. (10)
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This partial ordering  on P will have to be respected by any order in which
our homotopy F can cancel the pairs in P: if p surrounds p0, then p0 has to be
cancelled before p.

Our next aim, therefore, is to extend  to a total ordering � on P. We
may think of � informally as the ‘order in which F will cancel the pairs’, but
should remember that the order type of � may be arbitrarily complicated for a
countable linear ordering. Note that, in order for our desired homotopy F (x, t)
to be continuous, it will not be enough to take as � the (arbitrary) linear
extension of  defined by the reduction R.

To define �, we start by enumerating the elements of P arbitrarily. Then,
recursively for i = 0, 1, . . . , let Mi be a maximal chain in P \ (M0 [ . . .[Mi�1)
containing the first pair from this set in the enumeration of P. (If there is no
pair left we terminate the recursion, so all the chains Mi are non-empty.) Given
two pairs p, p0, not necessarily distinct, let p � p0 if either

• p, p0 lie in the same Mi and p  p0; or

• p 2Mj and p0 2Mi with i < j.

Thus, � puts later chains below earlier chains. When p � p0 we say that p
precedes p0, and p0 succeeds p. By (10) and the maximality of the chains Mi,
each of the sets Mn :=

Sn
i=0 Mi is closed upwards in  : if p0 � p 2 Mn then

also p0 2Mn. In words:

For all i < j, no pair in Mj surrounds a pair in Mi. (11)

By definition of �, this implies that � is indeed a linear extension of , i.e. that
p � p0 whenever p  p0: every pair precedes any pair that surrounds it.

Having partitioned the set P of passes of � into pairs, and having chosen
an order � in which we want our homotopy F to cancel them, we next wish to
map our pairs p to time intervals [s(p), t(p)] ✓ [0, 1] in which F can cancel p.
These intervals will reflect � in that

t(p) < s(p0) whenever p � p0; (12)

in particular, they will be disjoint for di↵erent p. While t runs through [s(p), t(p)],
the path ft will change only on [a(p), b(p)], so as to cancel p.

In order to state precisely what we require, we need another definition. Let
↵ be a topological path in H, with ↵(a) = ↵(b) =: z for some a < b, and let
� be the path obtained from ↵ by replacing ↵ � [a, b] with the constant map
[a, b] ! {z}. We say that a homotopy from ↵ to � retracts ↵ � [a, b] to z if it
is relative to [0, a] [ [b, 1], time-injective, and maps [a, b] ⇥ [0, 1] to ↵([a, b]). If
↵([a, b]) ✓ X ✓ H, we may also say that this retraction is performed in X.

Our paths ft will satisfy the following assertions:

The passes of ft are also passes of �; thus, ft � [c, d] = � � [c, d]
for every t 2 [0, 1] and every domain [c, d] of a pass of ft.

(13)

For every p 2 P, the passes of fs(p) are exactly those passes of
� that are contained in pairs p0 ⌫ p; in particular, p is a pair of
passes of fs(p).

(14)
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For every p 2 P, the path ft(p) is obtained from fs(p) by can-
celling the pair p. This is achieved by a homotopy (ft)t2[s(p),t(p)]

that first retracts fs(p) � [a�(p), b�(p)] to z�(p) in T and then
retracts the resulting path ft � [a(p), b(p)] to z(p) in e(p).

(15)

The first part of the homotopy in (15) will be obtained by applying (6), with
↵ = fs(p) � [a�(p), b�(p)] and � : [a�(p), b�(p)] ! {z�(p)}. This will turn fs(p)

into a path ft mapping [a(p), b(p)] onto the chord e(p), to which the second part
of the homotopy is then applied.

Let us note for later use:

The path ft(p) maps [a(p), b(p)] to the vertex z(p). (16)

With this preview of how the linear order � of cancellations of passes will
be implemented by F , we complete the third part of our proof.

In the fourth part, we now turn to the reason why we have not chosen
the intervals [s(p), t(p)] explicitly yet. This is because observing the rules just
outlined will not su�ce to make our homotopy F continuous.

To see this, consider a bipartition r = (P�, P+) of P into non-empty sets
P�, P+ such that p� � p+ whenever p� 2 P� and p+ 2 P+. Given i 2 N, let

P+
i := P+ \Mi and P�

i := P� \Mi .

Since P� is non-empty, P+ meets only finitely many Mi. Denote the largest i
with P+

i 6= ; by i(r), and call it the index of r. Then P+
i(r) is an initial segment

of P+. Since the elements of Mi are nested, � coincides on P+
i(r) with .

Let us call r critical if P+ has no least element (with respect to �). For
critical partitions r, we define

[a+, b+] :=
\

p2P+
i(r)

[a(p), b(p)] .

Since P+
i(r) is countable, it has an (infinite) coinitial sequence p+

0 > p+
1 > . . . .

Then lim a(p+
n ) = a+. As � is continuous, the vertices z(p+

n ) = �(a(p+
n )) con-

verge in H to �(a+). As only finitely many of the vertices z(p+
n ) can coincide

(Lemma 9), �(a+) must be an end, which we denote by

z(r) 2 ⌦(G) .

Call a point x 2 [a+, b+] critical (with respect to r) if x 2 (a(q), b(q)) also
for some q 2 P�. Then

P�
x :=

�
q 2 P� | x 2 (a(q), b(q))

 
6= ;

is a -chain, which may or may not have a greatest element. Put

(a�x , b�x ) :=
[

q2P�x

�
a(q), b(q)

�
.
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Every q 2 P�
x is nested with every p 2 P+

i(r), since x 2 (a(q), b(q))\ (a(p), b(p)).
As q � p, this means that q  p, so

[a�x , b�x ] ✓ [a+, b+] .

The reader may wish to construct some examples of such � at this point; one
typical situation is described in [16].

To see why such r and x are ‘critical’ for the construction of our homotopy F ,
assume now that F has been chosen so as to satisfy (12)–(15), but apart from
this arbitrarily. Since p+

0 � p+
1 � . . . we then have t+0 > t+1 > . . . , where

t+n := t(p+
n ) is the time at which F has just cancelled the pair p+

n . Let

t+ := limn t+n .

For every x 2 [a(p+
n ), b(p+

n )], statement (16) yields ft+n
(x) = z(p+

n ) = �(a(p+
n )).

Every x 2 [a+, b+] satisfies this for all n, so for such x the continuity of F and �
imply

ft+(x) = limn ft+n
(x) = limn �(a(p+

n )) = �(a+) = z(r) . (17)

Now assume that x is critical. Since P�
x is a countable -chain, it contains a

(finite or infinite) cofinal sequence q0 < q1 < . . . . Then limn a(qn) = a�x . Let

t�x := limn t(qn) .

As q � p for all q 2 P� and p 2 P+, we have t�x  t+ by (12). As earlier, the
fact that x 2 [a(qn), b(qn)] for all n implies

ft�x
(x) = limn ft(qn)(x) =

(16)
limn z(qn) = limn �(a(qn)) = �(a�x ) =: zx . (18)

If P�
x has a greatest element qn, then zx will be the vertex z(qn); if not,

it will be an end. But this end need not be z(r). And if zx 6= z(r), we shall
have a problem: to avoid a contradiction between (17) and (18), we shall have
to ensure that t�x 6= t+ (which does not follow from the assumptions we have
made about F so far), and define F (x, t) so as to move zx to z(r) in the time
interval [t�x , t+]. Let us call our critical partition bad if zx 6= z(r) for some
critical point x, which we then also call bad.

In general, P may have uncountably many critical partitions, and one of
these can have bad points x with infinitely many di↵erent zx. It will be crucial
for our construction of F , therefore, to prove that there can be only countably
many bad partitions. For each of these, we shall be able to deal with all its bad
points simultaneously.

For our proof that there are only countably many bad partitions, let us show
first that

P�
i(r) 6= ; for every bad partition r = (P�, P+), indeed for every

critical partition that has a critical point.
(19)

To prove (19) let i = i(r), let x be a critical point for r, and consider any
q 2 P�

x . If q 2 Mi we are done. If not, then q 2 Mj for some j > i, because
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there are p 2 P+
i with q � p. By the maximality of Mi, this means that q 6 p

for some p 2 Mi. Since q  p for all p 2 P+
i (as shown earlier), it follows that

P�
i = Mi \ P+

i 6= ;, as claimed.
By (19), the nested union

�
a�, b�

�
:=

[
p2P�

i(r)

�
a(p), b(p)

�

is not empty. As q  p for all q 2 P�
i and p 2 P+

i , we have [a�, b�] ✓ [a+, b+]:

a+  a� and b�  b+.

Assuming that r is bad, let us show that at least one of these inequalities
is strict. Pick a bad point x 2 [a+, b+]. Assume first that x 2 (a�, b�). Then
x lies in (a(p), b(p)) for some, and hence for all large enough, p 2 P�

i(r). But
then all these p lie in P�

x , so (a�, b�) ✓ (a�x , b�x ) and hence a�x  a�. (In
fact, we have equality.) Recall that a+  a�x . Since x is a bad point, we have
�(a�x ) 6= �(a+) and therefore a�x 6= a+. Hence a+ < a�x  a�, as desired.

On the other hand if x /2 (a�, b�), then x 2 [a+, a�] [ [b�, b+]. We assume
that x 2 [a+, a�] and show a+ < a�; the case of x 2 [b�, b+] is analogous,
showing b� < b+. Pick q 2 P�

x . Then x 2 (a(q), b(q)) ✓ (a(p), b(p)) for every
p 2 P+

i(r), so a+  a(q) < x  a� by the definition of a+.
We have thus shown that, for every bad partition r, the set

D(r) := (a+, a�) [ (b�, b+)

is non-empty. We next show that these sets are disjoint for distinct r = (P�, P+)
and r̃ = (P̃�, P̃+) with the same index i. As r 6= r̃, we may assume that there
is a pair p 2 P� \ P̃+. Then p 2 Mi, since Mj ✓ P� \ P̃� for every j > i,
while Mj ✓ P+ \ P̃+ for every j < i. But then

a�  a(p) < ã+ < b̃+ < b(p)  b�

with the obvious notation. Since D(r)\ [a�, b�] = ; while D(r̃) ✓ (ã+, b̃+), we
have D(r) \D(r̃) = ; as claimed.

As there are only countably many partition indices i, and for every bad
partition r with index i the set D(r) contains a rational, this completes our
proof that there are only countably many bad partitions.

Denote the set of all critical and all bad partitions by R and R0, respectively.
Given r 2 R, write a(r) and b(r) for the points a+, b+ 2 [0, 1] defined above.
Taking limits in (9), we obtain:

For every r 2 R we have �(a(r)) = �(b(r))
�

= z(r) 2 ⌦(G) ✓ T
�
. (20)

Our plan is to begin the construction of F by extending our linear ordering
� to P [ R. We shall then choose disjoint time intervals [s(q), t(q)] for all
q 2 P [R0, extending (12) to P [R0. For every r = (P�, P+) 2 R, the choices
made for P will define times

t+r := inf { t(p) | p 2 P+} and t�r := sup { t(p) | p 2 P�} .
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In order to satisfy (17), we shall have to have ft+r
map all of [a(r), b(r)] to {z(r)}.

For bad r, this will require the insertion of a local homotopy fs(r) ! ft(r)

analogous to (15), where s(r) and t(r) are chosen so that

t�r  s(r) < t(r)  t+r .

To extend � from P to P [R, we simply place all the partitions r 2 R at
their natural positions in the chains Mi(r). Indeed, let us extend our partial
ordering  on P to P [R by letting q  q0 whenever [a(q), b(q)] ✓ [a(q0), b(q0)].
Then

M̂i := Mi [ { r 2 R | i(r) = i }
is easily seen to be a -chain. We now define � on P [R as we did on P: given
q, q0, we put q � q0 if either

• q, q0 lie in the same M̂i and q  q0; or

• q 2 M̂j and q0 2 M̂i with i < j.

Let us note a couple of facts about this ordering. The fact that pairs are
either nested or disjoint extends at once:

Given q, q0 2 P [R with q � q0, either q  q0 or the intervals
(a(q), b(q)) and (a(q0), b(q0)) are disjoint. (21)

The following statements can be satisfied by suitable p 2 P�
i(r), which we recall

is non-empty if r has a critical point (19):

For every r 2 R that has a critical point, in particular for ev-
ery r 2 R0, there is a pair p 2 P such that p  r. Given any
r0 2 R with r0 � r, this p can be chosen so that r0 � p � r.

(22)

It is not di�cult to describe � directly, without reference to  :

A partition (P�, P+) 2 R precedes all pairs in P+ and succeeds
all pairs in P�. Two partitions r = (P�, P+) and r̃ = (P̃�, P̃+)
satisfy r � r̃ if and only if P̃+ ✓ P+.

(23)

Having defined �, we can now choose disjoint intervals [s(q), t(q)] for all
q 2 P [R0, to satisfy

t(q) < s(q0) whenever q � q0. (24)

This can be done inductively, since P [R0 is countable.
We are finally ready to define our homotopy F = (ft)t2[0,1]. We first define

ft for all t 2 [0, 1] outside the set

C :=
[

q2P[R0

�
s(q), t(q)

�
.

Given such t 2 [0, 1] \ C, let

Qt := { q 2 P [R0 | t(q)  t } .
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For every x 2 [0, 1], the set

Qt
x := { q 2 Qt | x 2 (a(q), b(q)) }

is a -chain, by (21). If Qt
x 6= ;, we set

(at
x, bt

x) :=
[

q2Qt
x

(a(q), b(q))

and define ft(x) := �(at
x) = �(bt

x) 2 T . (Recall (9) and (20).) If Qt
x = ;, we

call x unchanged at time t, define ft(x) := �(x), and put at
x := x =: bt

x. Thus,

for all t /2 C and all x: ft(x) = �(at
x) = �(bt

x). (25)

We need to show that these functions ft are continuous. This will follow
from the fact that � is continous, once we have shown the following:

For all t /2 C and all x with Qt
x 6= ;, the function ft is constant

on (at
x, bt

x) with value ft(x) 2 T . (26)

To prove (26), pick y 2 (at
x, bt

x). We show that Qt
y 6= ; and (at

y, bt
y) = (at

x, bt
x);

then ft(y) = ft(x) 2 T by definition of ft. By the choice of y, there exists
q 2 Qt such that (a(q), b(q)) contains both x and y, giving q 2 Qt

x \ Qt
y. As

Qt
x is a -chain, we have q  q0 for all large enough q0 2 Qt

x. Since y 2
(a(q), b(q)) ✓ (a(q0), b(q0)) implies q0 2 Qt

y, all large enough q0 2 Qt
x lie in Qt

y,
giving (at

x, bt
x) ✓ (at

y, bt
y). Likewise, (at

y, bt
y) ✓ (at

x, bt
x) and hence (at

x, bt
x) =

(at
y, bt

y). This completes the proof of (26), and with it the proof that the ft

defined so far are continuous.
We have just shown that (at

y, bt
y) = (at

x, bt
x) for all x and y with y 2 (at

x, bt
x).

Therefore, for any x, y the intervals (at
x, bt

x) and (at
y, bt

y) are either identical or
disjoint: if (at

x, bt
x) meets (at

y, bt
y), in a point z say, we have (at

x, bt
x) = (at

z, b
t
z) =

(at
y, bt

y). An immediate consequence of this is the following:

For all t 2 [0, 1] \ C and x 2 [0, 1], the points at
x and bt

x are
unchanged at time t.

(27)

It remains to define ft for t 2 (s(q), t(q)) with q 2 P [ R0. Since these
intervals are disjoint, fs(q) and ft(q) are already defined. For each q, our aim
is to define the functions ft with t 2 (s(q), t(q)) as a homotopy between fs(q)

and ft(q). When q 2 R0, this homotopy should retract fs(q) � [a(q), b(q)] to z(q)
in T by a direct application of (6). When q 2 P, our plan is to follow (15)
and achieve the same result in two stages. We first wish to use (6) to retract
fs(q) � [a�(q), b�(q)] to z�(q) in T . This should turn fs(q) � [a(q), b(q)] into a
path consisting of the two passes of q through e(q) at the beginning and end,
and a constant path with image z�(p) in the middle. We then wish to retract
this path to z(q) in e(q).

In order to apply (6) and implement (15) as just outlined, we have to verify
the following prerequisites:

• that fs(q) maps both a(q) and b(q) to z(q);
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• that ft(q) maps all of [a(q), b(q)] to z(q);

• if q 2 P: that fs(q) agrees with � on D(q) := (a(q), a�(q)) [ (b�(q), b(q))
and maps [a�(q), b�(q)] to T ;

• if q 2 R0: that fs(q) maps [a(q), b(q)] to T .

Let us prove the first statement, as well as the second statement for a(q)
and b(q). At times s(q) and t(q), both a(q) and b(q) were unchanged, because
they can lie in an interval (a(q0), b(q0)) only when q < q0 and hence t(q) < t(q0).
Therefore fs(q) and ft(q) both map a(q) and b(q) to �(a(q)) = �(b(q)) = z(q).
(Recall (9) and (20).)

Next, we prove the second statment for x 2 (a(q), b(q)). At time t(q), none
of these x was unchanged, since q 2 Qt(q)

x for all these x. In fact, q is the greatest
element of each of the -chains Qt(q)

x . Therefore (at(q)
x , bt(q)

x ) = (a(q), b(q)), and
hence ft(q)(x) = �(a(q)) = z(q) by (25).

To prove the first part of the third statement note that, if q 2 P, all the points
in D(q) are still unchanged at time s(q). Hence fs(q) agrees with � on D(q).

To prove the rest of the third and the fourth statement, consider any point
x in [a(q), b(q)], but not in D(q) if q 2 P. We have to show that fs(q)(x) 2 T .
This follows from (26) if x is not unchanged at time s(q), so assume that it is.
Then fs(q)(x) = �(x). If this point is not in T , then x is an inner point of the
domain of a pass contained in some p  q. If p = q this means that x 2 D(q),
contradicting our choice of x. Hence p < q, and t(p) < s(q) by (24). Thus
p 2 Qs(q)

x 6= ;, contradicting our assumption that x was unchanged at time s(q).
Having checked the prerequisites, we may now apply (6) as outlined earlier

to choose ft for all t 2 (s(q), t(q)) as follows:

For every r 2 R0, the paths (ft)t2[s(r),t(r)] form a homotopy
retracting fs(r) � [a(r), b(r)] to z(r). (28)

For every p 2 P, the paths (ft)t2[s(p),t(p)] form a homotopy that
first retracts fs(p) � [a�(p), b�(p)] to z�(p) in T and then retracts
the resulting path on [a(p), b(p)] to z(p) in e(p).

(29)

For our later proof that F is continuous, let us note an important property
of the homotopies in (28) and (29). Let U be a neighbourhood in |G| of an
end !; then U \H is a neighbourhood of ! in H. By Lemma 5 there is a basic
open neighbourhood Û ✓ U of ! in |G| (i.e., Û = Ĉ(S,!) for some finite set S of
vertices) such that for any x, y 2 Û \T , the arc xTy is contained in U (and thus
in U \H). Let S0 be the set of neighbours of S in C(S,!), note that these are
finitely many. Call U 0 := Ĉ(S0,!) a core of U around !. If U 0 contains a ver-
tex z(p), then Û contains its neighbour z�(p) and the edge e(p). The next state-
ment therefore follows from the fact that the homotopies used in (28) and (29)
either run inside e(p) or else are time-injective (by our definition of retracting).

Let q 2 P\R0 and x 2 (a(q), b(q)), and let U 0 ✓ |G| be a core of
a neighbourhood U around an end. If both fs(q)(x) and ft(q)(x)
lie in U 0, then ft(x) 2 U for all t 2 [s(q), t(q)].

(30)
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The definition of F is now complete. Note finally that

Im F = Im � . (31)

This completes part four of our proof.

It remains to show that the set (ft)t2[0,1] of paths in H is a homotopy be-
tween � and ⌧ . Since Q0 = ;, we have f0 = �. Rather than proving that
f1 = ⌧ , let us show that Im f1 ✓ T ; then (6) and our assumption that Im ⌧ ✓ T
imply f1 ⇠ ⌧ , which is good enough. For a proof that Im f1 ✓ T consider any
x 2 [0, 1]. If x is not unchanged at time t = 1, then f1(x) 2 T by (26). If it is,
then f1(x) = �(x). Since � is straight, we have f1(x) 2 T unless x lies in the
interior of the domain of a pass of �. But this pass is contained in some pair
p 2 Q1

x, so x was not unchanged at time 1, contradiction.
We now prove that F is continuous. Let x, t 2 [0, 1] be given, and let U be

any neighbourhood of F (x, t) in |G|; then U \H is a neighbourhood of F (x, t)
in H. If F (x, t) is an end, let U 0 be a core of U around that end. We shall find
an " > 0 such that F ((x� ", x + "), (t� ", t + ")) ✓ U , proceeding in two steps.

1. We find an " for which F ((x� ", x + "), (t� ", t]) ✓ U .
For every " > 0, let

Q" :=
�

q 2 P [R0 : (t� ", t] \ (s(q), t(q)) 6= ;
 

.

If Q" = ; for some ", then for all t0 2 (t� ", t] we have Qt0 = Qt and hence
ft0 = ft. As ft is continuous, there is an "0 < " such that F ((x� "0, x + "0),
(t� "0, t]) ✓ U .
If Q" is never empty but finite for some ", there exists q 2 P [ R0 such
that t 2 (s(q), t(q)]. Since (ft)t2[s(q),t(q)] was defined as a homotopy, in (28)
or (29), we have F ((x� "0, x + "0), (t� "0, t]) ✓ U for small enough "0 < ".
We may thus assume that Q" is infinite for every " > 0, so it has no maximal
element with respect to �. By the definition of �, we can choose "0 small
enough that all pairs in Q"0 lie in the same chain Mi. Then i = i(r) for all
partitions r in Q"0 , e.g. by (19). Hence Q"0 ✓ M̂i, so the intervals (a(q), b(q))
with q 2 Q"0 are nested; put

(a, b) :=
[

q2Q"0

(a(q), b(q)) .

From (9), (20) and Lemma 9 we know that �(a) is the limit of an infinite
sequence of ends or distinct vertices �(a(q)) = z(q), so �(a) must be an end.
Our assumption that Q"0 has no maximal element also implies that t /2 C, so
F (x, t) = ft(x) = �(at

x) by (25). Moreover, there are points t0 /2 C arbitrarily
close below t. If F (x, t) is an end, it will su�ce to find an " < "0 such that
t� " /2 C and F (x0, t0) 2 U 0 for all x0 2 (x� ", x+ ") and all t0 2 [t� ", t]\C:
then for all such x0 and all t00 2 (t � ", t) \ C we shall have F (x0, t00) 2 U
by (30).
We distinguish two cases: that x lies in (a, b) or not.
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(i) Suppose that x 2 (a, b). Then at
x = a, so (25) yields F (x, t) = �(a),

which we know is an end. Since � is continuous, there is a � > 0 such
that � maps [a, a + �) to U 0. Choose "1 < "0 so that for all q 2 Q"1 we
have a(q) 2 [a, a + �) and (x� "1, x + "1) ✓ (a(q), b(q)).
Pick q0 2 Q"1 . Choose "2 < "1 small enough that t� "2 > t(q0), and so
that t� "2 /2 C. Then for all x0 2 (x� "2, x + "2) and t0 2 [t� "2, t] \C
we have q0 2 Qt0

x0 6= ;, and (25) yields F (x0, t0) = �(at0

x0). These points
lie in U 0, since a  at0

x0  a(q0) < a + �.
(ii) Suppose now that x /2 (a, b), say x  a. Note that for all x0 /2 (a, b)

and t0 2 (t� "0, t] \ C we have Qt0

x0 = Qt
x0 , and hence ft0(x0) = ft(x0).

If x = a, pick q0 2 Q"0 . Then ft(q0)(x) = ft(x) 2 U 0. (Note that as
a = at

y for all y 2 (a, b), we have ft(x) = ft(a) = �(a) by (27), hence
ft(x) is an end.) As ft(q0) is continuous, there is an "1  t�t(q0) ( "0)
such that t � "1 /2 C and ft(q0)((x� "1, x + "1)) ✓ U 0. We show that
F (x0, t0) 2 U 0 for all x0 2 (x � "1, x + "1) and t0 2 [t � "1, t] \ C. If
Qt0

x0 = Qt(q0)
x0 , then ft0(x0) = ft(q0)(x

0) 2 U 0. Otherwise Qt0

x0 ) Qt(q0)
x0

(since t(q0) < t0), and hence x0 2 (a, b). Then

x� "1 < a  at0

x0 < x0 < x + "1 .

As at0

x0 is unchanged at time t0 (27) and hence also at time t(q0) < t0, we
have ft0(x0) = �(at0

x0) = ft(q0)(a
t0

x0) by (25). This last point lies in U 0,
by the above inequality and the choice of "1.
If x < a then, as ft is continuous, there is an "1 < "0 such that x+"1 < a
and F (x0, t) 2 U for all x0 2 (x�"1, x+"1). Choose "1 so that t�"1 /2 C.
And as noted earlier, F (x0, t0) = F (x0, t) for every t0 2 [t�"1, t]\C and
all these x0, so F (x0, t0) 2 U . On the other hand for t0 2 (t� "1, t) \C,
say t0 2 (s(q), t(q)) with q 2 Q"1 , we have ft0(x0) = ft(q)(x0) for
these same x0, because x0 /2 (a, b) ◆ (a(q), b(q)) and hence ft0(x0)
remained constant throughout the homotopy defined in (28) or (29).
Since t(q) /2 C, we are thus home by the case of t0 2 [t� "1, t] \ C.

2. We find an " for which F ((x� ", x + "), [t, t + ")) ✓ U .
For every " > 0, let

Q" :=
�
q 2 P [R0 : [t, t + ") \ (s(q), t(q)) 6= ;

 
.

As in the first step, we may assume that Q" is infinite for every ". Thus
Q" 6= ;, but Q" has no least element in �. Then t /2 C, so the sets

P+ := { p 2 P | s(p) � t } and P� := { p 2 P | t(p)  t }

partition P. From (22) we know that P+ meets every Q". So P+ has no
least element in �, and

t = inf{ t(p) | p 2 P+}. (32)

Let us write r := (P�, P+). But note that P� may be empty, in which case
r /2 R and every Q" might meet infinitely many chains Mi.

28



If F (x, t) is an end then, as in Step 1, it will su�ce to find an " < "0 such that
t+ " /2 C and F (x0, t0) 2 U 0 for all x0 2 (x� ", x+ ") and all t0 2 [t, t+ "] \C.
We distinguish two cases.

(a) Our first case is that for every " there is a q 2 Q" with x 2 (a(q), b(q)).
Depending on whether P� is empty or not, we shall in two di↵erent
ways define an end z(r) and an interval [a(r), b(r)] containing x, and in
each case prove that

ft maps (a(r), b(r)) to z(r). (33)

We shall then use (33) to find the " desired in Step 2.
We first assume that P� 6= ;. Then r is a critical partition, so z(r) is
defined and is an end. Every Q"\P meets only finitely many chains Mi,
and for the largest of these i we have Q"0 ✓ M̂i for some small enough "0.
Then the intervals [a(q), b(q)] with q 2 Q"0 are nested, and

[a(r), b(r)] =
\

p2P+
i

[a(p), b(p)] =
\

q2Q"0

[a(q), b(q)]

by definition of a(r) and b(r), and (22). By our assumption for Case 2a,
x 2 [a(r), b(r)].
If r is bad, then r lies in R0 and precedes all pairs in P+. By (24)
and (32) we have t(r)  t, so r 2 Qt. In fact, r is the greatest element
of Qt. For r succeeds every p 2 Qt\P, since these p lie in P�. But then
r also succeeds any r0 2 Qt \R0: otherwise r � p � r0 for some p 2 P+

by (22), while t(p)  t(r0)  t (by (24) and r0 2 Qt) implies that p 2 P�.
Now as r is the greatest element of Qt, it is also the greatest element
of Qt

y for every y 2 (a(r), b(r)), giving at
y = a(r). As t /2 C, (25) yields

ft(y) = �(at
y) = �(a(r)) =

(17)
z(r) ,

completing the proof of (33) for the case that P� 6= ; and r is bad.
Let us suppose now that r is not bad (so r 2 R \ R0), and once more
show that ft(y) = z(r) for every y 2 (a(r), b(r)). As before, we have
ft(y) = �(at

y) by (25). If y is critical, then Qt
y 6= ;, and hence at

y = a�y
by (22) and the definitions of r, a�y and at

y. Thus

ft(y) = �(at
y) = �(a�y ) = zy = z(r)

since y is not bad. Now assume that y is not critical. By definition of r,
this means that

Qt
y \ P = ; . (34)

We first prove that y is unchanged at time t. Indeed, otherwise Qt
y 6= ;,

and by (34) there exists an r̃ = (P̃�, P̃+) 2 R0 such that y 2 (a(r̃), b(r̃))
and t(r̃)  t. By (24), r̃ precedes all pairs in P+, which by (23) implies
that P̃+ ◆ P+. As r̃ 6= r (since r̃ 2 R0 but r /2 R0), there exists a pair
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p 2 P̃+ \ P�. As all su�ciently early pairs of P̃+ lie in Mi(r̃), we can
find this p in Mi(r̃), giving r̃  p. But then y 2 (a(r̃), b(r̃)) ✓ (a(p), b(p))
and t(p)  t, contradicting (34).
Thus y is unchanged at time t. Then (25) yields ft(y) = �(y), so let us
show that �(y) = z(r). Our aim is to prove �(y) = z(r) using (8). Let
[a, b] 3 y be a maximal interval with the property that (a, b) (which is
allowed to be empty) avoids every domain of a pass of �. As every neigh-
bourhood of a(r) or b(r) meets the domain of a pass of � (namely, in a(p)
or b(p) for every su�ciently small p 2 P+

i(r)) we have [a, b] ✓ [a(r), b(r)].
We first prove that every point in [a, b] is unchanged at time t. Indeed,
otherwise there is a q 2 Qt for which (a(q), b(q)) meets [a, b]. As y is
unchanged at time t we have (a(q), b(q)) 6◆ [a, b] and thus a(q) 2 (a, b) or
b(q) 2 (a, b), say a(q) 2 (a, b). If q 2 P, then [a(q), a�(q)] is the domain
of a pass of � that meets (a, b), a contradiction. If q = (P̃�, P̃+) 2 R0,
then since [a(q), b(q)] =

T
p2P̃+

i(q)
[a(p), b(p)] there is a pair p 2 P̃+

i(q) with
a(p) 2 (a, a(q)) ✓ (a, b), with a similar contradiction. Hence every point
in [a, b] is unchanged at time t and thus ft � [a, b] = � � [a, b].
Let us show that �(a) = �(b) = z(r): then either [a, b] = {y} and thus
�(y) = z(r), or � maps all of [a, b], including y, to z(r) by (8). We prove
�(a) = z(r); the proof that �(b) = z(r) is analogous. If a = a(r), then
�(a) = �(a(r)) = z(r), by definition of z(r). If a 6= a(r) then, by the
choice of [a, b], there is a sequence y0 < y1 < . . . of points in [a(r), b(r)]
such that limn yn = a and such that every yn lies in the interior of the
domain of a pass of � (possibly the same for all n), and hence is critical.
As a is unchanged at time t, and hence a /2 (a(q), b(q)) for every q 2 Qt,
we have yn  bt

yn
 a and hence also limn bt

yn
= a. As � is continuous,

the points �(bt
yn

) converge in H to �(a). Since each yn is critical but
not bad, we have �(bt

yn
) = z(r) for every n, and thus �(a) = z(r). This

completes the proof of (33) for the case of P� 6= ;.
We now assume that P� = ;. Then every x 2 [0, 1] is unchanged at
time t, since Qt

x 6= ; would imply P� 6= ; by (22) and (24). Thus,
ft = �. Consider the -chain Q1

x of all q 2 P [R0 with x 2 (a(q), b(q)).
By our assumption for Case 2a,

Q1
x \Q" 6= ; for all " > 0. (35)

Since Qt
x = ; this means that Q1

x, like Q", has no least element, and
by (22) neither does Q1

x \ P = Q1
x \ P+. Therefore

[a(r), b(r)] :=
\

p2Q1
x\P+

[a(p), b(p)] =
\

q2Q1
x

[a(q), b(q)] .

Pick p0, p1, . . . 2 Q1
x \ P+ with limn a(pn) = a(r). As � is continuous,

limn z(pn) = �(a(r)) =: z(r). (Recall that z(pn) = �(a(pn)).) By (9)
and Lemma 9, z(r) is an end.
To complete the proof of (33), we show that the interval (a(r), b(r))
avoids every domain of a pass of �: then it is maximal with this prop-
erty, and (33) follows from (8) and the fact that ft = �. (For the
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application of (8) note that �(b(r)) = �(a(r)), by taking limits in (9).)
Suppose that (a(r), b(r)) contains a point y from the domain of a pass
of �, say of the pair p. If p was an element of Q1

x, there would be another
pair p0  p in Q1

x, with y /2 (a(p0), b(p0)). As this contradicts the choice
of y as a point in (a(r), b(r)), we have p /2 Q1

x. Thus, x /2 (a(p), b(p)),
and hence p 6� q for all q 2 Q1

x. But p is nested with every such q, since
y 2 (a(p), b(p)) \ (a(q), b(q)). Therefore p < q, and hence

t < t(p) < s(q) for all q 2 Q1
x ,

by (24) and since p /2 P� = ;. But then for " < t(p) � t we have
Q" \Q1

x = ;, contradicting (35). This completes the proof of (33).
We have thus shown for both sets of definitions that ft maps (a(r), b(r)),
and hence also [a(r), b(r)], to the end z(r). As x 2 [a(r), b(r)], we in par-
ticular have z(r) = ft(x) 2 U 0. As ft is continuous, there is a � > 0 such
that ft maps (a(r)��, b(r)+�) to U 0. By the definition of [a(r), b(r)] (in
either case) we can find a pair p0 2 P+ such that a(p0) 2 (a(r)��, a(r))
and b(p0) 2 (b(r), b(r)+�). Choose " so that t+" /2 C, and small enough
that t + " < t(p0) as well as (x� ", x + ") ✓ (a(p0), b(p0)). Then for all
t0 2 [t, t + "] \ C and x0 2 (x� ", x + ") we have p0 2 Qt(p0)

x0 ◆ Qt0

x0 and
hence a(p0) = at(p0)

x0  at0

x0 . Thus,

a(r)� � < a(p0)  at0

x0  x0 < x + " < b(r) + � ,

giving ft(at0

x0) 2 U 0 by the choice of �. But at0

x0 is unchanged at time t0 (27),
and hence also at time t  t0. So this latter point is just �(at0

x0), giving
F (x0, t0) = �(at0

x0) = ft(at0

x0) 2 U 0 by (25).
(b) Our second case is that there is an "0 such that x /2 (a(q), b(q)) for

all q 2 Q"0 . Suppose first that there is even an "1 < "0 such that
(x�"1, x+"1) avoids (a(q), b(q)) for all q 2 Q"1 . Then consider any x0 2
(x� "1, x + "1). For every t0 2 [t, t + "1) \C we have F (x0, t0) = F (x0, t)
by (25), since Qt0

x0 = Qt
x0 . For t0 2 [t, t+"1)\C, say t0 2 (s(q), t(q)) with

q 2 Q"1 , this implies F (x0, t0) = F (x0, s(q)) = F (x0, t) by (28) or (29),
since x0 /2 (a(q), b(q)) and s(q) 2 [t, t + "1) \ C. As ft is continuous,
there is an "2 < "1 such that ft maps (x � "2, x + "2) to U . Then
F (x0, t0) = F (x0, t) 2 U for all x0 2 (x� "2, x + "2) and t0 2 [t, t + "2).
We may thus assume that there is no such "1. Then:

For every ", the interval (x � ", x + ") meets (a(q), b(q)) for
infinitely many q 2 Q".

(36)

By (36) there is a sequence q0, q1, . . . of pairs and partitions in Q"0 with
limn a(qn) = x or limn b(qn) = x; we assume that limn a(qn) = x. As �
is continuous, we have limn �(an) = �(x). By (9) and (20), the sequence
(�(an))n2N is a sequence of vertices and ends, and every vertex appears
only finitely often (Lemma 9). Therefore �(x) is an end.
Let us show that x is unchanged at time t. By (36), any interval
(a(q), b(q)) that contains x meets some (a(qn), b(qn)), but is not con-
tained in it since qn 2 Q"0 and hence x 2 (a(q), b(q)) \ (a(qn), b(qn)).
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Thus q > qn by (21), and t(q) > t(qn) > t by (24), giving q /2 Qt
x as

desired. As x /2 (a(q), b(q)) for every q 2 Q"0 , x remains unchanged at
all times t0 2 [t, t + "0] \ C.
As x is unchanged at time t, we have �(x) = F (x, t) 2 U 0. As � is
continuous, there is an " < "0 such that �((x � ", x + ")) ✓ U 0 and
t + " /2 C. Then for every x0 2 [x, x + ") and t0 2 [t, t + "] \ C we
have x  at0

x0 ( x0), because x is unchanged at time t0 and hence
x /2 (a(q), b(q)) for every q 2 Qt0

x0 . Likewise, for x0 2 (x� ", x] we have
x0  bt0

x0  x. Thus for every x0 2 (x� ", x + ") and t0 2 [t, t + "] \C we
have at0

x0 2 (x� ", x + ") or bt0

x0 2 (x� ", x + "), say bt0

x0 2 (x� ", x + ").
By (27), bt0

x0 is unchanged at time t0 and hence also at time t  t0. We
thus have F (x0, t0) = �(at0

x0) = �(bt0

x0) = ft(bt0

x0) 2 U 0 by (25).

This completes the fifth and final part of our proof that � and ⌧ are homtopic
if ⌧ does not traverse chords.

Before we consider the general case where ⌧ too travserses chords, let us
remind ourselves in which subsets of H the homotopies considered so far run.
In part one of the above proof, we first used (5) to straighten � to a path �0,
which we then trimmed further to obtain a path �00 satisfying (8). This path
�00 served as f0 for our homotopy F , which ended with a path f1 in T . This
path was homotopic to the straightened version ⌧ 0 of the original path ⌧ (not
traversing any chords). We thus found homotopies

� ⇠ �0 ⇠ f0 ⇠ f1 ⇠ ⌧ 0 ⇠ ⌧ .

The first of these homotopies runs in Im �; see (5). In the second homotopy
we retracted segments �0 � [a, b] ✓ T to paths �00 � [a, b] with image �0(a)T�0(b).
This is the unique �0(a)–�0(b) arc in T , so Lemma 1 implies that the image of
�0 � [a, b] contains it. The homotopy between �0 � [a, b] and �00 � [a, b], which (6)
says runs in the union of the images of those two paths, thus in fact runs in
Im �0 ✓ Im �, and hence so does the entire second homotopy �0 ⇠ �00 = f0. The
third homotopy, f0 ⇠ f1, runs in Im f0 ✓ Im �0 ✓ Im � by (31). Similarly, the
last homotopy ⌧ ⇠ ⌧ 0 runs in Im ⌧ , and the penultimate one, f1 ⇠ ⌧ 0, runs in
Im f1 [ Im ⌧ 0 ✓ Im � [ Im ⌧ . All in all, we have shown the following:

If ⌧ traverses no chords and w� reduces to the empty word, then
there is a homotopy in Im � [ Im ⌧ between � and ⌧ . (37)

To complete our proof of Lemma 14, we now consider the case in which both
� and ⌧ traverse chords. By Lemma 20, there are paths �0 and ⌧ 0 such that
w�0 = r(w�) and w⌧ 0 = r(w⌧ ), and we may further assume that every pass of
�0 is also a pass of � while every pass of ⌧ 0 is also a pass of ⌧ . Statement (37),
applied to every non-trivial interval [a, b] that is maximal with the property that
it avoids the interior of every domain of a pass of �0, yields � ⇠ �0 by Lemma 2:
note that � � [a, b] and �0 � [a, b] have the same first and last point (because a
and b are either boundary points of domains of common passes of � and �0 or
limits of such points, and � and �0 are continuous), and the reduction of w� to
w�0 defines a reduction of w��[a,b] to w�0�[a,b] = ;. Likewise, we obtain ⌧ ⇠ ⌧ 0.
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It thus su�ces to prove �0 ⇠ ⌧ 0, from our assumptions that

w�0 = r(w�) = r(w⌧ ) = w⌧ 0 (38)

(cf. Lemma 13).
Our aim is to use (7) to obtain the desired homotopy �0 ⇠ ⌧ 0. But (7)

requires that the two paths considered have the same passes, not just the same
trace. In order to make (7) applicable, we therefore have to ‘synchronize’ corre-
sponding passes of �0 and ⌧ 0: make their domains coincide by reparametrizing �0
and ⌧ 0, and make �0 and ⌧ 0 agree on those domains by applying local homotopies
inside the corrsponding chords.

Every path ↵ : [0, 1] ! H defines a partition of [0, 1] into intervals: the in-
teriors of domains of passes, and the (closed) components of the rest of [0, 1].
The set I↵ of all those intervals, including trivial ‘intervals’ [x, x] = {x}, inher-
its a linear ordering from [0, 1]. The bijection between the passes of �0 and ⌧ 0

provided by (38) defines an order-preserving bijection ⇡ : I�0 ! I⌧ 0 .
Although ⇡ maps open to open and closed to closed intervals, it might map

non-trivial closed intervals to trivial ones or vice versa. In order to synchronize
�0 with ⌧ 0 as planned, we therefore have to expand trivial closed intervals to
non-trivial ones in our reparametrizations of �0 and ⌧ 0. This will be possible,
since clearly I�0 and I⌧ 0 contain only countably many trivial intervals whose
corresponding interval in the other set is non-trivial.

We may thus partition [0, 1] into a set I of intervals so that there exist order-
preserving bijections ⇡�0 : I ! I�0 and ⇡⌧ 0 : I ! I⌧ 0 that map open to open
intervals bijectively, and trivial to trivial intervals, and which commute with
⇡ : I�0 ! I⌧ 0 . We can now define surjective maps ', : [0, 1]! [0, 1] such that
' maps every I 2 I onto ⇡�0(I) 2 I�0 and  maps every I 2 I onto ⇡⌧ 0(I) 2 I⌧ 0 .

Clearly, �00 := �0 � ' is homotopic to �0, and ⌧ 00 := ⌧ 0 �  is homotopic
to ⌧ 0. So it su�ces to show that �00 ⇠ ⌧ 00. But these maps now have not only
the same trace but also the same domains of corresponding passes. Combining
homotopies between corresponding passes inside their respective chords with a
homotopy between the rests of �00 and ⌧ 00 as in (7) yields the desired homotopy
�00 ⇠ ⌧ 00, by Lemma 2.
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