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1 Introduction

Many theorems about finite graphs involving paths, cycles or spanning trees
do not generalise to infinite graphs verbatim. However, if we consider only
infinite graphs which are locally finite,1 then an elegant solution is known for
generalising most of these theorems. To understand this solution, it is important
to know that for connected locally finite graphs G adding their ends2 yields a
natural compactification |G|, their Freudenthal compactification [6, 7].

Formally, to obtain |G| we extend the 1-complex of G (also denoted G) to
a topological space G ∪ Ω (where Ω is the set of ends of G) by declaring as
open, for every finite set X of vertices and each component C of G−X the set
O|G|(X,C), and taking the topology on G∪Ω this generates. Here, O|G|(X,C)
is the union of the 1-complex of C, the set of all inner edge points of edges
between X and the component C, and the set of all ends of G all whose rays
have tails in C.3

Now, we explain the elegant solution: replacing, in the wording of the the-
orems, paths with homeomorphic images of the unit interval (arcs for short)
in the Freudenthal compactification |G|, cycles with homeomorphic images of
the unit circle (circles for short) in |G|, and spanning trees with uniquely arc-
connected subspaces of |G| including the vertex set of the graph (topological
spanning trees for short, see [7] for a precise definition), does suffice to extend
these theorems. The arcs, circles and topological spanning trees considered are
allowed to contain ends of G (and in a moment we will see that sometimes they
have to).

For a nice illustration of how this solution works, consider the so-called ‘tree-
packing’ [7, Theorem 2.4.1], proved independently by Nash-Williams and Tutte
in 1961: A finite multigraph contains k edge-disjoint spanning trees if and only
if for every partition P of its vertex set it has at least k(|P | − 1) cross-edges.
Aharoni and Thomassen [1] constructed, for every k, a locally finite graph G(k)
witnessing that the naive extension of tree-packing to locally finite graphs fails
in that the graph G(k) has enough edges across every finite partition of its ver-
tex set but no k edge-disjoint spanning trees (see [7] for details). However, as
Diestel [5] has shown in 2005, as soon as we replace ‘spanning trees’ with ‘topo-
logical spanning trees’ we do obtain a correct extension (also see [7, Theorem
8.5.7]): A locally finite multigraph contains k edge-disjoint topological spanning
trees if and only if for every finite partition P of its vertex set it has at least
k(|P | − 1) cross-edges. In particular, at least one of any k edge-disjoint topo-
logical spanning trees of G(k) must use an end.

Another example is a theorem by Fleischner [7, Theorem 10.3.1] from 1974:
If G is a finite 2-connected graph, then G2 has a Hamilton cycle.4 This theorem
was extended by Georgakopoulos [18] in 2009: If G is a locally finite 2-connected
graph, then G2 has a Hamilton circle.

1A graph is locally finite if each of its vertices has only finitely many neighbours.
2An end of a graph is an equivalence class of rays, where a ray simply is a 1-way infinite

path and two rays are equivalent whenever no finite set of vertices separates them in the
graph.

3For the experts: Here, we introduced |G| using a basis that slightly differs from the usual
one, but which generates the same topology. With our basis it will be easier to see the
similarities to the basis of the tangle compactification.

4For every graph G and each natural number d > 0 we write Gd for the graph on V (G) in
which two vertices are adjacent if and only if they have distance at most d in G.
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More generally, Diestel and Kühn [12, 13] (2004) and Berger and Bruhn [2]
(2009) were able to generalise the full cycle space theory of finite graphs to
locally finite ones. We refer the reader to [7, Theorem 8.5.10] for details since
these go beyond the scope of this introduction.

But graphs that are not locally finite—in general—cannot be compactified
by adding their ends, so the elegant solution no longer applies. For example,
in the introduction of Chapter 6 we will see that a K2,ℵ0

(a complete bipartite
graph with one countable bipartition class and the other of size 2) has enough
edges across every finite partition of its vertex set for k = 2. But this graph
has no ends, so the naive extension of topological spanning trees defaults to
spanning trees, any two of which must share an edge (otherwise, none would be
connected). Thus, it is considered one of the most important problems in infinite
graph theory to come up with an extension that allows us to extend the cycle
space theory to non-locally finite graphs. Recently, in 2015, Diestel [8] proposed
a possible solution to this problem and constructed a new compactification which
uses tangles instead of ends, the tangle compactification. Before we present the
special characteristics of this compactification, we give a brief introduction to
tangles.

A separation of finite order of a graph G is a set {A,B} with A ∩ B finite
and A ∪ B = V (G) such that G has no edge between A \ B and B \ A. If ω
is an end of a graph G, then it orients each separation {A,B} of finite order
towards a big side K ∈ {A,B} in that every ray contained in ω has some tail
in K (clearly, it cannot both have a tail in A and a tail in B since A ∩ B is
a finite separator). Observe that every end of a graph G orients all the finite
order separations consistently in that e.g. for every two finite order separations
{A,B} and {C,D} with A ⊆ C and B ⊇ D the end does not choose A and D
as big sides. From a more abstract point of view (but for a different purpose),
Robertson and Seymour [23] defined an ℵ0-tangle (or tangle) in a graph as an
orientation of all its finite order separations towards a big side that is consistent
in some sense including the above. Every end induces an ℵ0-tangle, so each
graph’s end space can be considered as a natural subset of its tangle space,
and in fact, if a graph is locally finite and connected, then its ℵ0-tangles turn
out to be precisely its ends (and its tangle compactification coincides with its
Freudenthal compactification). However, for graphs that are not locally finite,
there may be ℵ0-tangles that are not induced by an end, and adding these on
top of the ends suffices to compactify those graphs—whereas adding only the
ends does not.

Understanding the tangles that are not induced by an end is important, but
for this, we need some notation first: If G is a graph, then we write ϑG for its
tangle compactification, and we denote by X the collection of all finite sets of
vertices of this graph, partially ordered by inclusion. Furthermore, for every
X ∈ X we write CX for the collection of all components of G−X. Finally, for
every subcollection C ⊆ CX we denote the vertex set of

⋃ C by V [C]. Now we
may start: Every finite order separation {A,B} corresponds to the bipartition
{C, C′} of CX with X = A ∩B and

{A,B} = {V [C] ∪X,X ∪ V [C′]},

and this correspondence is bijective for fixed X ∈ X . Hence if τ is an ℵ0-
tangle of the graph, then for each X ∈ X it also chooses one big side from
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each bipartition {C, C′} of CX , namely the K ∈ {C, C′} with X ∪ V [K] = K
where K ∈ {A,B} is the big side of the corresponding finite order separation
{A,B}. Since it chooses these sides consistently, for each X ∈ X they form an
ultrafilter on CX . Furthermore, these ultrafilters are compatible in that they are
limits of a natural inverse system {UX , fX′,X ,X}. Here, each UX is the Stone-
Čech Hausdorff compactification of CX (where CX is endowed with the discrete
topology), i.e each UX is the set of all ultrafilters on CX , equipped with a natural
topology. The bonding maps fX′,X are the unique continuous maps extending
the maps φX′,X which send, for all X ⊆ X ′ ∈ X , every component of G−X ′ to
the unique component of G −X including it. Strikingly, it turns out that the
ℵ0-tangles are precisely the limits of this inverse system, and the ends of a graph
are precisely those of its ℵ0-tangles which induce for each X ∈ X a principal
ultrafilter on CX . In particular, if a graph G is locally finite and connected, then
all CX are finite, and hence all ultrafilters on them are principal. So by the above
correspondence, we see that every ℵ0-tangle of G is induced by an end, and so
the tangle compactification coincides with the Freudenthal compactification for
connected locally finite graphs.

This inverse limit description of the ℵ0-tangles is the key to a better under-
standing of the tangles that are not induced by ends: every ℵ0-tangle which is
not induced by an end does induce a non-principal ultrafilter on some CX , and,
as shown by Diestel, each of these non-principal ultrafilters alone determines
that tangle. Therefore, we call these tangles ultrafilter tangles. It turns out
that, for every ultrafilter tangle τ there exists a unique element Xτ of X whose
up-closure in X consists precisely of those X for which the tangle τ induces a
non-principal ultrafilter on CX .

We conclude our general introduction with a brief description of the tangle
compactification. More details will be given in Section 2.3. To obtain the tangle
compactification ϑG of a graph G we extend the 1-complex of G to a topological
space G ∪ U (where U = lim←−UX corresponds to the tangle space) by declaring
as open, for every X ∈ X and each subcollection C ⊆ CX , the set OϑG(X, C),
and taking the topology on G∪ U this generates. Here, OϑG(X, C) is the union
of the 1-complex of

⋃ C, the set of all inner edge points of edges between X and⋃ C, and the set of all limits (UY |Y ∈ X ) ∈ U with C ∈ UX . Note that C ∈ UX
means that the ℵ0-tangle corresponding to the limit (UY |Y ∈ X ) orients the
finite order separation

{V [CX \ C] ∪X,X ∪ V [C]}

towards X ∪V [C], so OϑG(X, C)∩U consists precisely of those ℵ0-tangles which
orient this finite order separation towards X∪V [C]. Clearly, all singleton subsets
of the tangle compactification are closed in it. Now we know enough to under-
stand the topics and results of this work. In the remainder of this introduction
let me indicate briefly what awaits the reader later.

Chapter 2. In this chapter we introduce basic notation, inverse limits and
some lemmas from general topology. Furthermore, we provide a summary of Di-
estel’s original paper on the tangle compactification [8], and we give an overview
for the various topologies used for infinite graphs in this work.
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Chapter 3. In this chapter we prove some basic results about the tangle
compactification needed later, such as a version of the Jumping Arc Lemma
from [7]. Also, we find a combinatorial description of the sets Xτ (for ultrafilter
tangles τ):

Lemma 3.3.4. Let G be any graph. The following are equivalent for all X ∈ X :

(i) There exists an ultrafilter tangle τ with X = Xτ .

(ii) Infinitely many components of G−X have neighbourhood equal to X.

We call the sets X ∈ X satisfying (i) and (ii) of this lemma the critical
elements of X . The following theorem involves these sets:

Theorem 3.3.5. Let G be any graph. The following are equivalent for all
distinct vertices u and t of the graph G:

(i) There exist infinitely many independent u–t paths in G.

(ii) There exists an end of G dominated5 by both vertices u and t or
there exists some critical element of X containing both vertices u and t.

For the next result we first need some additional definitions. An edge end of
a graph is an equivalence class of rays, where two rays are equivalent whenever
no finite set of edges separates them in the graph. Two vertices of a graph G are
said to be finitely separable if there exists some finite set F of edges such that
the two vertices are contained in distinct components of G−F . Briefly speaking,
for connected graphs G, the compact Hausdorff topological space (EG,ETop)
is obtained from G and its edge ends by equipping this set with a very coarse
topology6 first, and then identifying every two points which share the same open
neighbourhoods (a precise definition is provided in Section 2.5).

By generalising the notion of ‘not finitely separable’ to an equivalence re-
lation ∼ on V ∪ U (where U = lim←−UX) we derive this space from the tangle
compactification as a natural quotient:

Theorem 3.4.14. If G is a connected graph, then (EG,ETop) is homeomor-
phic to the quotient ϑG/∼ of the tangle compactification ϑG.

Chapter 4. Since inverse limits have claimed their place in the infinite topo-
logical graph theory as useful tools to construct limit objects such as circles,
arcs and topological spanning trees from finite minors (see the 5th edition of [7]
for an inverse limit description of the Freudenthal compactification), it makes
sense to investigate whether it is possible to describe the tangle compactifica-
tion via a similar inverse limit. As our main result in this chapter, we show that
this is indeed possible. For this, we construct an inverse system {Gγ , fγ′,γ ,Γ} of
topological spaces Gγ that are based on multigraphs with finite vertex set but
possibly infinite edge set. These multigraphs are obtained from the graph G
by contraction of possibly disconnected vertex sets, but we will see that this is

5A vertex u of a graph G dominates an end ω of G if no finite subset of V (G−u) separates
u from a ray in ω.

6whose basic open sets can be thought of as components of G− F plus certain edge ends
and half-open partial edges of F for each finite set F of edges
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best possible. The topological spaces Gγ are compact and all of their singleton
subsets are closed in them. As promised, we show that the inverse limit

〈〈G〉〉 = lim←−(Gγ | γ ∈ Γ)

of our inverse system describes the tangle compactification:

Theorem 4.3.1. For every graph G its tangle compactification is homeomorphic
to the inverse limit 〈〈G〉〉.

Chapter 5. Whenever we consider a compactification of a topological space,
three particular questions come to mind: Is it the coarsest compactification?
If not, how does a coarsest one look like, and why can we not just take the
one-point compactification and be done? In this chapter, we only consider
compactifications of the 1-complex of G extending the end space in a meaningful
way, and we call these Ω-compactifications (since the end space is denoted Ω).
First, we characterise the graphs admitting a one-point Ω-compactification αG,
one with |αG− (G∪Ω)| = 1 (see Proposition 5.2.2), and we give an example of
such a graph showing that—in general—the one-point Ω-compactification does
not reflect the structure of the graph at all. However, there exist simple examples
admitting a one-point Ω-compactification reflecting their structure while their
tangle compactification adds at least 2c many points on top of the ends. Hence
Diestel [8] asked:

(i) For which graphs is their tangle compactification also their coarsest
Ω-compactification?

(ii) If it is not, is there a unique such Ω-compactification, and is there a
canonical way to obtain it from the tangle compactification?

To answer these questions, we first construct an inverse system {FX , fX′,X ,X}
of Hausdorff compactifications FX of the CX (where each CX is equipped with
the discrete topology) whose inverse limit F = lim←−FX we use to obtain an Ω-
compactification FG of the graph G in the way Diestel used U = lim←−UX to
compactify it. Here, for each X ∈ X the Hausdorff compactification FX of CX
adds as many points to CX as X includes critical elements of X . We will see
that F includes the end space as a natural subspace since the bonding maps
fX′,X respect the natural maps φX′,X (recall that φX′,X sends every component
of G−X ′ to the unique component of G−X including it), and:

Proposition 5.3.8. There exists a natural bijection between F \ Ω and the
collection of all critical elements of X .

Since one-point Ω-compactifications in general do not reflect the structure
of the original graph in a meaningful way, we wish to impose further conditions
on the Ω-compactifications considered in (ii). For this, we introduce C-systems:
these are inverse systems of Hausdorff compactifications of the CX whose inverse
limits generalise the directions7 of the graph G, and hence its ends. Both F and
U come from C-systems, and:

7A map f with domain X is a direction of G if f maps every X ∈ X to a component of
G − X and f(X) ⊇ f(X′) whenever X ⊆ X′ ∈ X (this condition says that f chooses the
components consistently). Diestel and Kühn [10] have shown that the directions of a graph
are precisely its ends.
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Theorem 5.4.1. Every C-system induces an Ω-compactification of its graph G.
In particular, FG and ϑG are Ω-compactifications of the graph G.

Moreover, we obtain the following analogue of [8, Theorem 1] for FG:

Theorem 5.4.2. Let G be any graph.

(i) FG is a compact space in which G is dense and FG \G is totally discon-
nected.

(ii) If G is locally finite and connected, then F = Ω and FG coincides with the
Freudenthal compactification of G.

Studying the technical C-systems leads us to the following result comparing
our new compactification FG and the tangle compactification ϑG:

Theorem 5.4.7. For every graph G its Ω-compactification FG is coarser than
its tangle compactification ϑG.

Then we are finally in a position to answer the first question and half of the
second question of Diestel from above:

Theorem 5.4.10 and 5.4.11. Let G be any graph. FG is the coarsest Ω-
compactification of the graph G induced by a C-system while ϑG is the finest
one. Furthermore, the following are equivalent:

(i) There exists a homeomorphism between FG and ϑG fixing G ∪ Ω.

(ii) Every CX is finite.

(iii) FG = G ∪ Ω = ϑG.

As our third main result of this chapter, we answer the second half of Diestel’s
second question from above, and show that there is a canonical way to obtain
FG from the tangle compactification. For this, we define the natural equivalence
relation � on the collection of all ultrafilter tangles by letting τ � τ ′ whenever
Xτ = Xτ ′ holds.

Theorem 5.5.11. For every graph G the Ω-compactification FG is homeomor-
phic to the quotient ϑG/� of the tangle compactification ϑG.

If Υ denotes the set of all ultrafilter tangles of a graph G, then we find the
following cardinality bound and comparison:

Proposition 5.5.15. For every graph G the following hold:

(i) |F− Ω| = |crit(X )| ≤ |V (G)|,
(ii) |F− Ω| · 2c ≤ |Υ|.

Strikingly, we will see an explicit definition of a set S′ of finite order sepa-
rations yielding our fourth main result in this chapter:

Theorem 5.6.4. For every graph G the elements of the inverse limit F are
precisely the ℵ0-tangles of the graph G with respect to the set S′.

In particular, FG actually is another ‘tangle compactification’ for a smaller
separation system. Finally, we find an inverse subsystem of the inverse system
{Gγ , fγ′,γ ,Γ} whose inverse limit 〈|G|〉 describes the Ω-compactification FG:

Theorem 5.7.5. For every graph G the inverse limit 〈|G|〉 is homeomorphic to
the Ω-compactification FG.
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Chapter 6. Earlier, I expressed my hopes for the tangle compactification to
generalise the elegant solution from the locally finite case to the general case.
To explain why I think that modifications to the tangle compactification cannot
be avoided, I show that every possible notion of a topological spanning tree I
could think of does not meet my expectations. More precisely, for the case that
our graph G is a K2,ℵ0

(see Fig. 1) I will a name set of edges which I expect
to induce a topological spanning tree for any sensible notion of a topological
spanning tree, but none of whose candidates are topologically connected.

x

y

Figure 1: The heavy edge set of this K2,ℵ0
is the sum of all facial cycles.

The heavy edge set from the drawing of our graph G in Fig. 1 is the thin
sum8 of all facial cycles, and I expect it to be an element of the cycle space for
any notion of a cycle space of this graph. Similarly, I further expect every two
edges at a middle vertex together to form an element of any such cycle space.
Consequently, I think that the upper fan in Fig. 1 should induce a topological
spanning tree which contains no edge of the lower fan (since this would create
an element of the cycle space). But if we take as T the upper fan plus the lower
vertex y and add any subset of the tangle space, then this turns out to be a
(topologically) disconnected subspace of the tangle compactification: Indeed, if
we cover y with any basic open neighbourhood O of the 1-complex of G, and
if we cover T − {y} with ϑG − {y} (which is open since all singleton subsets
of the tangle compactification are closed in it), then O and ϑG − {y} meet
only in inner edge points of the lower fan which are no points of T . Thus
{O,ϑG−{y}} induces an open bipartition of T . Informally, the problem here is
that the tangles are not ‘sufficiently connected’ to certain vertices of the graph,
which allows us to separate y from T − {y} so easily. This is why I think that
it makes sense to consider modifications to the tangle compactification.

If we modify the tangle compactification to yield a new compactification
with the potential of overcoming this and so many other difficulties, then it
would be of great advantage if we could see to it that this new compactification
also be Hausdorff: then, for connected graphs, the whole field of (non-metric)
continuum9 theory would open up, providing us with a useful topological tool
box. This is why I construct two new spaces: First, in this chapter we study
classic hindrances to earlier attempts, and we find inspiration leading to the

8A family (Di)i∈I of subsets of E(G) is thin if no edge lies in Di for infinitely many i.
Then the thin sum

∑
i∈I Di is the collection of all edges that lie in Di for an odd number of

indices i. See [7] for details.
9A continuum is a compact connected Hausdorff topological space. See Section 2.4 for

further details.
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construction of the auxiliary space AG. This auxiliary space is Hausdorff, but
in general it is not compact. Thus in the next section we will enhance the idea
behind the auxiliary space AG to obtain a Hausdorff compactification ΛG from
the tangle compactification.

The auxiliary space AG is obtained from |G| (for the experts: here, |G|
is endowed with MTop) in two steps: First, we add auxiliary edges (which—
formally—are internally disjoint copies of the unit interval) between every end
of the graph and each of its dominating vertices, and between any two distinct
vertices u and t of the same critical element of X (one new auxiliary edge for
each critical element of X both vertices are contained in, and internally disjoint
from the edge ut of G in case it exists). Second, we generalise the topology of
|G| onto this new space in a natural way.

In the first half of this chapter, we study the arc-connected subspaces of AG
induced by the auxiliary edges. More precisely, we have a closer look at the
auxiliary arc-components of AG, where an auxiliary arc is an arc in AG which
is included in the closure of the auxiliary edges. Rather strikingly, our first
main result of this chapter holds without imposing any cardinality bounds on
the graph considered:

Theorem 6.4.2. Let G be any graph. Then between every two distinct points
x and y of V ∪ Ω there exists an auxiliary arc if and only if x and y are not
finitely separable.

This suggests that we might be able to take advantage of the results in
Chapter 3, namely that (EG,ETop) is the quotient ϑG/∼ of the tangle com-
pactification, in order to generalise statements about EG to statements about
the auxiliary space AG. We will see that every normal spanning tree of the
graph G induces a topological spanning tree (with respect to the common defi-
nition in terms of arcs) of AG, so the auxiliary space AG overcomes one of the
classic hindrances from [11] (which will be presented in detail in the introduction
of Chapter 6).

Motivated by these findings, we use the synergy between AG and EG to
prove a generalised version of tree-packing10 for countable graphs:

Theorem 6.7.4. Let G be a countable connected graph. Then the following are
equivalent for all k ∈ N:

(i) G has k topological spanning trees in AG which are edge-disjoint on E(G).

(ii) G has at least k(|P | − 1) edges across any finite vertex partition P .

In the outlook of Chapter 6 we will see an idea on a generalisation of thin
sums for circles of AG, but I abandoned further investigation when the idea of
ΛG came to my mind as a better candidate than AG.

Chapter 7. In the previous chapter we have seen that since none of the pos-
sible notions of a topological spanning tree of the tangle compactification I

10As mentioned earlier, the so-called ‘tree-packing’ [7, Theorem 2.4.1] was proved inde-
pendently by Nash-Williams and Tutte in 1961: A finite multigraph contains k edge-disjoint
spanning trees if and only if for every partition P of its vertex set it has at least k(|P | − 1)
cross-edges.
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could think of met my expectations, I suggested to modify the tangle compact-
ification. Furthermore, I claimed that it would be of great advantage if our
modifications would yield a Hausdorff compactification, since then—for con-
nected graphs—the whole field of (non-metric) continuum theory would open
up, providing us with a useful topological tool box. Then we studied the aux-
iliary space AG which—in general—is only Hausdorff but not compact. In this
chapter we enhance the idea behind this auxiliary space to obtain a Hausdorff
compactification ΛG from the tangle compactification.

Starting from the tangle compactification, we add limit edges (which—
formally—are internally disjoint copies of the unit interval) between every end
of the graph and each vertex dominating it, and between every ultrafilter tan-
gle τ and each vertex in Xτ . Treating the inner limit edge points almost like
their incident tangles allows us to turn the topology of the tangle compactifi-
cation into a compact Hausdorff one of the new space, yielding the Hausdorff
compactification ΛG. (As mentioned earlier, we will modify the inverse system
{Gγ , fγ′,γ ,Γ} to construct ΛG formally, see Chapter 7 for details.)

To be precise, the Hausdorff compactification ΛG only compactifies the 1-
complex of G endowed with a slightly coarser topology: at each vertex we only
take ε-balls instead of stars of arbitrary half-open partial edges (for the experts:
ΛG is a Hausdorff compactification of (|G|,MTop)). Since we wish to study
graphs of arbitrary big cardinality while the cardinality of arcs and circles is that
of the unit interval (and hence constant), this discrepancy potentially prohibits
us from fully understanding these graphs (e.g. sufficiently big graphs would not
have a Hamilton circle by definition). Hence we suggest generalisations of arcs,
circles and topological spanning trees for the Hausdorff compactification ΛG
solely in terms of continua (see Chapter 7 for details).

When ΛG came to my mind, this work had already reached critical length,
so I only provide sketches. However, the examples I studied so far looked really
promising, and I am eager to continue my research on this space.

Chapter 8. Since the tangle compactification in general is not Hausdorff, but
the quotient ϑG/∼ is, and since this quotient is homeomorphic to (EG,ETop)
(cf. Chapter 3) for connected graphs G, one might ask whether EG is the max-
imal Hausdorff quotient of the tangle compactification. Strinkingly, an already
known example witnesses that—in general—this is not the case. In this chapter
we study several graphs, but I did not succeed in finding a combinatorial de-
scription of the equivalence relation on the tangle compactification yielding its
maximal Hausdorff quotient (it seems like wild auxiliary arcs are the key here,
where an arc is wild if it induces the ordering of the rationals on some subset
of its vertices).

However, as our main contribution we at least present sufficient combina-
torial conditions for when EG is the maximal Hausdorff quotient of the tangle
compactification of a connected graph G. For these results we need two new
pieces of notation: First, if G is a graph and A is a set, then we write E(A)
for the collection of all edges of G with both endvertices in A. Second, if T is
a normal spanning tree of a graph G, then by [7, Lemma 8.2.3] every end ω of
G contains precisely one normal ray of T (a ray in ω starting at the root of T )
which we denote RTω .

9



Proposition 8.2.2. Let G be a connected graph such that for all two distinct
vertices x and y of G the following are equivalent:

(i) The vertices x and y are not finitely separable.

(ii) There exists some X ∈ X containing both x and y such that no Y ∈ X
disjoint from X separates x and y in G− E(X).

Then EG is the maximal Hausdorff quotient of the tangle compactification ϑG.

If (ii) holds for two distinct vertices x and y of a graph G, witnessed by
such an X, then we can inductively find infinitely many edge-disjoint x–y paths
in G − E(X), so x and y are not finitely separable. In particular, (ii) implies
(i). Therefore, all connected finitely separable graphs satisfy the premise of this
proposition. The next result involves normal spanning trees and binary trees:

Proposition 8.4.2. If G is a connected graph such that for every x ∈ ϑG/∼ the

graph G has a normal spanning tree T (x) whose subtree
⋃
ω∈x∩ΩR

T (x)
ω contains

no subdivision of the (infinite) binary tree, then EG is the maximal Hausdorff
quotient of the tangle compactification ϑG.

In the outlook of this chapter we point out the difficulties preventing us from
giving a characterisation of these graphs, and we state our desired result as a
conjecture.

Personally, I hope that a (possibly modified) tangle compactification allows
us to further generalise the elegant solution from the locally finite case to the
general case, and that is why in this work I study the tangle compactification
of infinite graphs.
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2 Definitions & general facts

2.1 Basic Notation

Any terms regarding graphs that are not defined in this work can be found in [7].
A finite partition of a set is said to be cofinite if at most one partition class

is infinite. A set A is cofinite in a set B if B \ A is finite. If A ⊆ B is cofinite
in B, then A is called a cofinite subset of B. If A ⊆ B are two sets and R is an
equivalence relation on A we denote by B/R the set (B \A) ∪A/R.

The set N contains 0, and for every n ∈ N we denote by [n] the set {1, . . . , n}.
We denote the unit interval [0, 1] by I, and for λ ∈ R and ε > 0 we write (λ± ε)
for the open interval (λ− ε, λ+ ε) and [λ± ε] = [λ− ε, λ+ ε].

A handful of statements are modified or generalised versions of statements
from the lecture courses by Diestel (winter 2015–summer 2016); we flagged them
with an ‘L’.

If G is a graph, then we denote by G the 1-complex of G, i.e. in G every
edge e = xy is a homeomorphic copy [x, y] := {x} ∪ e̊ ∪ {y} of [0, 1] with e̊
corresponding to (0, 1) and e̊ ∩ e̊′ = ∅ for every other edge e′ of G, and e also
inherits the euclidean metric from I. The points of e̊ are called inner edge
points, and they inherit their basic open neighbourhoods from I. The space
[x, y] is called a topological edge, but we refer to it simply as edge. Furthermore,
for every vertex u of G the set

⋃
e∈E(u)[u, je) with each je some point of e̊ is basic

open. If every je is at distance ε from u with respect to the metric of e, then
we write OG(u, ε) =

⋃
e∈E(u)[u, je). For every F ⊆ E we write F̊ =

⋃
e∈F e̊.

If e = [x, y] is a topological edge, and de is its inherited metric from I, then
we denote by m(e) the point of e̊ corresponding to 1/2, and for all 0 ≤ ε < δ ≤ 1
we write

x(ε, δ)y = {i ∈ e | de(i, x) > ε and de(i, x) < δ}
for the subset of e corresponding to the open interval (ε, δ) (with x corresponding
to 0 and y corresponding to 1).

If X is a finite set of vertices of G and ω is an end of G, then C(X,ω) is the
unique component of G−X such that every ray in ω has a tail in it. If C is a
component of G−X, we write Ω(X,C) = {ω ∈ Ω |C(X,ω) = C}. Furthermore,
if ω is an end of G, we write Ω(X,ω) for Ω(X,C(X,ω)).

For every set A we denote by E(A) the set of all edges of G with both
endvertices in A. If A and B are two disjoint sets and ε ∈ (0, 1], then we write
E̊ε(A,B)∗ for the set of all inner points of A–B edges (of G) at distance less
than ε from their endpoint in B (with respect to the metric of the edge). The
‘*’ on the right side is supposed to help us remember ‘from where to take our
ε-balls’.

Two vertices of G are said to be finitely separable whenever there exist some
finitely many edges separating them.11 If every two distinct vertices of G are
finitely separable, then we call G finitely separable.

If T is a normal spanning tree (NST) of G and ω is an end of G, we denote
by RTω the normal ray of T in ω (see [7, Lemma 8.2.3]).

If R is a ray and u is a vertex of R, then uR denotes the tail of R starting
with u, and Ru denotes the finite intial segment of R ending with u.

11i.e. ∃ finite F ⊆ E(G) such that the two vertices are contained in distinct components of
G− F .
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We denote by T2 the (infinite) binary tree on the set of finite 0–1 sequences
(with the empty sequence as the root).

2.2 Inverse Limits

Below we give a minimal introduction to inverse limits of inverse systems accu-
mulated from [7, Chapter 8.7 of the 5th edition], [22] and [16]:

A partially ordered set (I,≤) is called directed if for every i, j ∈ I there is
some k ∈ I with k ≥ i, j. Assume that (Xi | i ∈ I) is a family of topological
spaces indexed by some directed poset (I,≤). Furthermore suppose that we
have a family (ϕji : Xj → Xi)i≤j∈I of continuous maps which are compatible in
that ϕki = ϕji ◦ ϕkj for all i ≤ j ≤ k ∈ I, and which are the identity on Xi

in case of i = j. Then both families together form an inverse system, and the
maps ϕji are called its bonding maps. We denote such a system by {Xi, ϕji, I},
or {Xi, ϕji} for short if I is clear from context. The inverse limit lim←−(Xi | i ∈ I)
(or lim←−Xi for short) of this system is the subset

{(xi)i∈I |ϕji(xj) = xi for all i ≤ j ∈ I}

of
∏
i∈I Xi whose product topology we pass on to lim←−Xi via the subspace topol-

ogy. Whenever we define an inverse system without specifying a topology for
the spaces Xi, we tacitly assume them to carry the discrete topology. We end
this introduction by listing some Lemmas which we will put to use later:

Lemma 2.2.1 ([22, Lemma 1.1.2]). If {Xi, ϕji, I} is an inverse system of Haus-
dorff topological spaces, then lim←−Xi is a closed subspace of

∏
i∈I Xi.

A topological space is totally disconnected if every point in the space is its
own connected component.

Lemma 2.2.2 ([22, Proposition 1.1.3]). Let {Xi, ϕji, I} be an inverse system of
compact Hausdorff totally disconnected topological spaces. Then lim←−Xi is also
a compact Hausdorff totally disconnected topological space.

Lemma 2.2.3 ([16, Lemma 1.1.3]). The inverse limit of an inverse system of
non-empty compact Hausdorff spaces is a non-empty compact Hausdorff space.

Lemma 2.2.4 (Generalized Infinity Lemma, [22, Proposition 1.1.4] and [16,
Corollary 1.1.4]). The inverse limit of an inverse system of non-empty finite
sets is non-empty.

Lemma 2.2.5 ([16, Lemma 1.1.1]). Let {Xi, ϕji, I} be an inverse system of
topological spaces and denote by πi the restriction of the ith projection map
pri :

∏
j∈I Xj → Xi to X where X = lim←−Xi. Then the collection of all subsets

of X of the form π−1
i (Ui) with Ui open in Xi is a basis for the topology of X.

Moreover, if for every i the set Bi is a basis of the topology of Xi, then the
collection of all subsets of X of the form π−1

i (Ui) with Ui in Bi is a basis for
the topology of X.12

12This last sentence is not part of [16, Lemma 1.1.1], but its claim follows immediately from
the original statement.
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A topological space X is T1 if for every pair of distinct points, each has an
open neighbourhood avoiding the other. Equivalently, X is T1 if and only if
every finite subset of X is closed. A topological space X is T2 if it is Hausdorff.
Note that we use normal font here, whereas the binary tree T2 uses italic.

Lemma 2.2.6 ([16, Corollary 1.1.6]). Let T be a compact space, {Xi, ϕji, I} an
inverse system of T1 topological spaces, and σi : T → Xi a compatible system of
continuous surjective maps. Let σ : T → lim←−Xi map each x to (σi(x) | i ∈ I).

Then σ is a continuous surjection.13

Proof. Since [16] only states that σ is surjective, we quickly show that it is also
continuous. For this, by Lemma 2.2.5 consider any basic open set π−1

i (Ui) of
lim←−Xi where Ui is open in Xi. Then πi ◦ σ = σi implies that σ−1(π−1

i (Ui)) =

σ−1
i (Ui) which is open in T since σi is continuous.

Lemma 2.2.7 ([16, Corollary 1.1.5]). Let {Xi, ϕji, I} and {X ′i, ϕ′ji, I} be in-
verse systems of compact Hausdorff spaces. Let σi : Xi → X ′i be a compatible
system of continuous surjections. Then the map

lim←−Xi → lim←−X
′
i

(xi | i ∈ I) 7→ (σi(xi) | i ∈ I)

is a continuous surjection.

A subset J of I is cofinal in I if for every i ∈ I there is some j ∈ J with
j ≥ i. If X and Y are two topological spaces, we write X ' Y to say that X
and Y are homeomorphic.

Lemma 2.2.8 ([7, Lemma 8.7.3 of the 5th edition]). Let {Xi, ϕji, I} be an in-
verse system of compact spaces, and let J ⊆ I be cofinal in I. Then {Xi, ϕji, J}
satisfies lim←−(Xi | i ∈ I) ' lim←−(Xi | i ∈ J) with the homeomorphism that maps
every point (xi | i ∈ I) to its restriction (xi | i ∈ J).

A function f : X → Y is monotone if f−1(y) is connected for every y ∈ f [X].
Assume that (Xn |n ∈ N) is a family of topological spaces, and furthermore
suppose that for every n ∈ N−{0} we have a continuous map fn : Xn → Xn−1.
Then the family of the Xn together with the family of all fn forms an inverse
sequence, denoted {Xn, fn,N}. Clearly, every such inverse sequence gives rise
to an inverse system {Xn, fm,n,N} where fm,n = fn+1 ◦ · · · ◦ fm for m > n and
fn,n = idXn . Hence, given an inverse sequence {Xn, fn,N}, we write lim←−Xn for
the inverse limit of the inverse system it induces.

Theorem 2.2.9 (Capel, [4, Theorem 4.11], [19, Theorem 200]). If {An, fn,N}
is an inverse sequence such that An is an arc and fn is monotone and surjective
for every n then lim←−An is an arc.

13In [16] the Xi are required to be Hausdorff (T2), but T1 suffices since the proof only
uses that singleton subsets of the Xi are closed. Furthermore, [16] does not state that σ is
continuous.
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2.3 ‘Ends and tangles’ plus further notation

This section not only serves as a summary of ‘Ends and tangles’ ([8]), but
also as an introduction of its basic definitions and notation, some of which we
modified to meet our needs. At the end of this section, we introduce some
additional notation, and we remind of a useful construction from the proof of
[10, Theorem 2.2]. But first, we start with the promised summary:

A separation of a graph G is a set {A,B} with A and B subsets of V (G)
such that V (G) = A∪B and G has no edge from A \B to B \A. Clearly, every
separation {A,B} induces a bipartition of the set of components of G−A∩B,
and vice versa. The cardinal |A∩B| is the order of the separation {A,B}. Every
separation {A,B} has two orientations, namely the ordered pairs (A,B) and
(B,A), which we also refer to as oriented separations.14 Informally, we think of
A and B as the small side and the big side of (A,B), respectively. The order
of an oriented separation (A,B) simply is the order of {A,B}, namely |A ∩B|.
If S is a set of separations of the graph, then we denote by

→
S the collection of

the orientations of its elements. We shall call (B,A) the inverse of (A,B) and
vice versa. For the sake of readability we use the more intuitive ’arrow notation’

known from vector spaces: when referring to an element of
→
S as

→
s (or

←
s ), we

denote its inverse by
←
s (or

→
s ). Then the map

→
s 7→ (

→
s )∗ :=

←
s is an involution

on
→
S . We define a partial ordering ≤ on

→
S by letting

(A,B) ≤ (C,D) :⇔ A ⊆ C and B ⊇ D.

Note that our involution reverses this partial ordering, i.e. for
→
r ,
→
s ∈

→
S we

have

→
r ≤ →

s ⇔ ←
r ≥ ←

s .

The triple (
→
S ,≤, ∗) is known as a separation system.

An orientation O of S is a subset of
→
S with |{ →s , ←s } ∩ O| = 1 for every

→
s ∈

→
S . If no two distinct

→
r ,
→
s ∈ O satisfy

←
r <

→
s then we say that O is

consistent. We say that an orientation O of S avoids some F ⊆ 2
→
S if 2O and

F intersect emptily. A non-empty set σ ⊆
→
S is a said to be a star if

→
r ≤ ←

s
holds for all distinct

→
r ,
→
s ∈ σ. The interior of a star σ = {(Ai, Bi) | i ∈ I} is

the set
⋂
i∈I Bi. In the context of a given graph G, the set [V (G)]<ℵ0 will be

denoted by X = X (G), and S = S(G) will denote the set of all separations of
G of finite order. Furthermore, S = S(G) will denote the set of all stars in
→
S . For the rest of this chapter, we let G be a fixed infinite graph. By T<ℵ0 we

denote the set of all finite stars σ ⊆
→
S of finite interior, and by T we denote

the set of all stars σ ⊆
→
S of finite interior. Outside this section, T will be used

to denote topological spanning trees.
For every F ⊆ S we say that an F-tangle of G is a consistent orientation

of S avoiding F . Moreover, an ℵ0-tangle of G is said to be a T<ℵ0-tangle of G,

14Usually we refer to an oriented separation simply as ‘separation’, relying upon context
instead.
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and we write Θ = Θ(G) for the collection of all ℵ0-tangles of G.15 If ω is an
end of G, then by [8, Corollary 1.7] letting

τω := {(A,B) |C(A ∩B,ω) ⊆ B}

defines a bijection ω 7→ τω from the ends of G to the T -tangles of G. Therefore,
we call these ℵ0-tangles the end tangles of G. By abuse of notation, we will
write Ω = Ω(G) for the collection of all end tangles of G. The elements of Θ \Ω
we call the ultrafilter tangles of G, and we write Υ = Υ(G) for the collection of
all these.16 In particular, we have Θ = Ω ]Υ.

For every X ∈ X we denote by CX be the set of all components of G −X,
and UX is the set of all ultrafilters on CX . For every X ⊆ X ′ ∈ X we define
the map φX′,X : CX′ → CX be letting it send every component of G−X ′ to the
unique component of G − X including it, i.e. such that φX′,X(C ′) ⊆ C. For
subsets C ⊆ CX′ we write C′�X := φX′,X [C′], and for ultrafilters U ′ ∈ UX′ we
write

U ′�X :=
〈 {
C′�X

∣∣ C′ ∈ U ′
} 〉
CX

= {C ⊆ CX | ∃ C′ ∈ U ′ : C ⊇ C′�X}

where 〈A〉B for two sets A, B with A ⊆ 2B denotes the collection of all supersets
B′ ⊆ B of elements of A, the set-theoretic up-closure of A in 2B . Due to [8,
Lemma 2.1], letting fX′,X : UX′ → UX send each U ′ ∈ UX′ to U ′ � X for all
X ⊆ X ′ ∈ X yields an inverse system {UX , fX′,X ,X} whose inverse limit we
denote by U . Hence taking the up-closure in the definition of U ′�X ensures that
U ′�X is an ultrafilter on CX , even if there is some finite component of G −X
whose vertex set is included in X ′.

Next, for every τ ∈ Θ and X ∈ X we let

U(τ,X) := {C ⊆ CX | (V \ V [C], X ∪ V [C]) ∈ τ}

where V [C] :=
⋃
C∈C V (C). Then by [8, Lemma 2.3] the map

τ 7→ (U(τ,X) |X ∈ X ) =: υτ

is a bijection from Θ to U . Furthermore, the ends of G are precisely those of
its ℵ0-tangles which this map sends to a family of principal ultrafilters. Now let
U∗X be the set of all non-principal elements of UX . For every X ⊆ X ′ ∈ X we
define a map gX,X′ : U∗X → U∗X′ by letting

gX,X′(U) := {C ⊆ CX′ | ∃D ∈ U : D ⊆ C}

for every U ∈ U∗X . By [8, Lemma 3.1] this map is well-defined, and it sends each
U ∈ U∗X to the unique U ′ ∈ U∗X′ with fX′,X(U ′) = U . In particular, we have

fX′,X ◦ gX,X′ = idU∗X

by [8, Lemma 3.2]. Combined, these Lemmas yield

15As Diestel showed in [8], this definition is equivalent to the definition known from Robert-
son & Seymour.

16This definition differs from the one given by Diestel, but both turn out to be equivalent
due to [8, Theorem 2].
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Lemma 2.3.1. For all X ⊆ X ′ ∈ X the map fX′,X restricts to a bijection
between f−1

X′,X(U∗X) ⊆ U∗X′ and U∗X with inverse gX,X′ .

In particular, we have

Corollary 2.3.2. For every X ∈ X each non-principal U ∈ UX uniquely ex-
tends to an element of U .

For every τ ∈ Υ we set

Xτ = {X ∈ X |U(τ,X) ∈ U∗X},

and every element of Xτ is said to witness that τ is an ultrafilter tangle. By
[8, Lemma 3.3 & 3.4], for every τ ∈ Υ and X ∈ Xτ the non-principal ultrafilter
U(τ,X) uniquely determines τ in that

τ = {(A,B) ∈
→
S | ∃ C ∈ U(τ,X) : V [C] ⊆ B}.

According to [8, Theorem 3.6], for each τ ∈ Υ the set Xτ has a unique least
element Xτ with Xτ = bXτcX = {X ∈ X |Xτ ⊆ X}. Furthermore, [8, Lemma
3.7] states that, if X ∈ X and U ∈ UX is not generated by {C} for any finite
C ∈ CX , then there is some τ ∈ Θ such that U = U(τ,X).

Finally, we use U to compactify G. For this, we equip the UX with the Stone
topology, i.e. we equip UX with the topology generated by declaring as basic
open for every C ⊆ CX the set17

OUX (C) := {U ∈ UX | C ∈ U}.

Then by [8, Lemma 4.1], the bonding maps fX′,X are continuous, so [8, Propo-
sition 4.2] tells us that U is compact, Hausdorff and totally disconnected.18

Next, for every X ∈ X let πX be the restriction of the Xth projection map
prX :

∏
Y ∈X UY → UX , and for every X ∈ X and C ⊆ CX write

OU (X, C) = π−1
X (OUX (C)).

Then by [8, Lemma 4.4], the collection

{OU (X, C) |X ∈ X , C ⊆ CX}

is a basis for the topology of U . Now, we extend the 1-complex of G to a
topological space ϑG := G∪U by declaring as open, for all X ∈ X and C ⊆ CX ,
the sets

OϑG(X, C) :=
⋃ C ∪ E̊(X,

⋃ C) ∪ OU (X, C),

and endowing ϑG with the topology this generates. Then we arrive at the main
result of [8]:

17In [8], the notion for these sets is simply O(C). Since in this work we will compare the
tangle compactification with other spaces, we slightly modify a lot of the topological notation
from [8].

18We added ‘Hausdorff’ here.
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Theorem 2.3.3 ([8, Theorem 1]). Let G be any graph.

(i) ϑG is a compact space in which G is dense and ϑG \G is totally discon-
nected.

(ii) If G is locally finite and connected, then all its ℵ0-tangles are ends, and
ϑG coincides with the Freudenthal compactification of G.

The following is extracted from the proof of [8, Theorem 1], and it will be
reproved in a more general context in the proof of Theorem 5.4.1:

Lemma 2.3.4 ([8, Proof of Theorem 1]). For all X ⊆ X ′ ∈ X and every
C′ ⊆ CX′ we have OϑG(X ′, C′) ⊆ OϑG(X, C′�X).

Even though ϑG in general is not Hausdorff, Diestel remarks that there exist
two workarounds: First, the space ϑG \ E̊ is a Hausdorff compactification of
V (G) which still reflects the structure of G. Second, we can exchange ‘compact’
for ‘Hausdorff’ by modifying the topology of ϑG similarly to the way we would
obtain MTop from VTop (see 2.5 for definitions of MTop and VTop).

From now on, we will write Θ = U and τ = υτ as well as ω = τω by abuse of
notation. If ω is an end of G, we write ĈϑG(X,ω) for the set OϑG(X, {C(X,ω)},
and we write ∆(ω) for the set of vertices of G dominating ω. Furthermore, we
write V (Ω) =

⋃
ω∈Ω ∆(ω) and V (Υ) =

⋃
υ∈ΥXυ, as well as V (U) for the union

V (Ω) ∪ V (Υ). For every υ = (UX |X ∈ X ) ∈ Υ we write U◦(υ) = UXυ and
U(υ,X) = UX . On Υ we define the equivalence relation � by letting υ � υ′

whenever Xυ = Xυ′ holds.
A map f with domain X is a direction of G if f maps every X ∈ X to a

component of G − X and f(X) ⊇ f(X ′) whenever X ⊆ X ′ ∈ X . Clearly, the
directions of G are precisely the elements of the inverse limit of {CX , φX′,X ,X},
and we have seen above that these are precisely the ends of G. However, the
constructive proof of the original Theorem from Diestel and Kühn [10] linking
ends to directions yields much more:

Lemma 2.3.5 (L). Let G be an arbitrary infinite graph and ω an end of G
which is dominated by at most finitely many vertices. Then there exists a
sequence X0, X1, . . . of non-empty finite sets of vertices of C(∆(ω), ω) such
that for all n ∈ N the component C(Xn ∪ ∆(ω), ω) includes both Xn+1 and
C(Xn+1∪∆(ω), ω). In particular, the collection of all ĈϑG(Xn∪∆(ω), ω) forms
a countable neighbourhood basis of ω in ϑG.

Proof. Let an ω be an arbitrary end of G which is dominated by at most finitely
many vertices, and let H := C(∆(ω), ω). We now copy the main part of the
proof of [10, Theorem 2.2] for the sake of completeness: Denote by Y the col-
lection of all finite sets of vertices of H. For every X ∈ Y we write

X̂ := CH(X,ω) ∪N(CH(X,ω))

where CH(X,ω) := C(X ∪∆(ω), ω) is the component of H −X in which every
ray of ω has a tail. Starting with an arbitrary non-empty X0 ∈ Y we will
construct a sequence X1, X2, . . . of non-empty elements of Y such that for all
n ∈ N the component CH(Xn, ω) includes both Xn+1 and CH(Xn+1, ω).

Therefore, we proceed inductively, as follows: Suppose that Xn has been
constructed. Since ω is not dominated by a vertex of H, we find for every
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x ∈ Xn some Xx ∈ Y with x /∈ X̂x. Set X =
⋃
x∈Xn Xx and let Xn+1 be the

neighbourhood of CH(X,ω) in H. Then Xn+1 is finite due to Xn+1 ⊆ X ∈ Y.
By the choice of Xn+1 we have CH(Xn+1, ω) = CH(X,ω). For all x ∈ Xn,
together with X̂ ⊆ X̂x 63 x this yields x /∈ X̂ = X̂n+1 ⊇ Xn+1. Hence H[X̂n+1]
is connected and avoids Xn, so it is included in CH(Xn, ω). This completes the
construction.

Since all the Xn are disjoint, the descending sequence X̂0 ⊇ X̂1 ⊇ · · · has
empty overall intersection: every vertex in X̂n has distance at least n from X0

(because every X0-X̂n path meets all the disjoint sets X1, . . . , Xn−1), so no
vertex can lie in X̂n for every n. We now leave the proof of [10, Theorem 2.2].

Now we for every n ∈ N we let Yn := Xn ∪ ∆(ω). Then the collection of
all open sets ĈϑG(Yn, ω) forms a countable neighbourhood base of ω: Indeed,
let OϑG(Y, C) be a basic open neighbourhood of ω in ϑG. Without loss of
generality we may suppose that ∆(ω) ⊆ Y and write Y ′ := Y \ ∆(ω). Since⋂
n∈N X̂n is empty, there is some N ∈ N such that X̂N avoids Y ′. Hence H[X̂N ]

is a connected subgraph of G−Y , so in particular it is included in C(Y, ω) ∈ C.
Therefore ĈϑG(YN , ω) ⊆ OϑG(Y, C) holds as desired.

2.4 General Topology

If X is a topological space, then a homeomorphic image of the unit interval in
X is an arc in X. The following Lemma is immediate from the continuity of
the quotient map:

Lemma 2.4.1. If X is a topological space and R is an equivalence relation on
X such that X/R is T1, then every element of X/R is a closed subset of X.

Lemma 2.4.2 ([26, Theorem 7.2 a)→d)]). If X and Y are topological spaces and
f : X → Y is continuous, then for each A ⊆ X we have f [clX(A)] ⊆ clY (f [A]).

Lemma 2.4.3 ([26, Corollary 31.6]). A Hausdorff topological space is path-
connected if and only if it is arc-connected.

Lemma 2.4.4 ([26, Corollary 13.14]). If f, g : X → Y are continuous, Y is
Hausdorff, and f and g agree on a dense set D in X, then f = g.

Lemma 2.4.5 (The pasting Lemma, [21, Theorem 18.3]). Let X and Y be
topological spaces and X = A∪B, where A and B are closed in X. Let f : A→ Y
and g : B → Y be continuous. If f(x) = g(x) for every x ∈ A∩B, then f and g
combine to give a continuous function h : X → Y , defined by setting h(x) = f(x)
if x ∈ A and h(x) = g(x) if x ∈ B.

The following lines on continuum theory are accumulated from [26, Chapter
28]: A continuum is a compact, connected Hausdorff topological space.

Theorem 2.4.6 ([26, Theorem 28.2]). Let {Ki | i ∈ I} be a collection of con-
tinua in a topological space X directed by inclusion. Then

⋂
i∈I Ki is a contin-

uum.

A continuum K in a topological space X is said to be irreducible about a
subset A of X if A ⊆ K and no proper subcontinuum of K includes A. In case
of A = {a, b} we say that K is irreducible between a and b.
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Theorem 2.4.7 ([26, Theorem 28.4]). If K is a continuum, then any subset A
of K lies in a subcontinuum irreducible about A.

If X is a connected T1 topological space, then a cut point of X is a point
p ∈ X such that X − {p} is not connected. If p is not a cut point of X, we
call p a noncut point of X. A cutting of X is a set {p,O,O′} where p is a cut
point of X and O together with O′ disconnects X − {p} in that O and O′ are
disjoint non-empty open subsets of X with O ] O′ = X − {p}. A cut point p
separates a from b if there is a cutting {p,O,O′} of X with a ∈ O and b ∈ O′.
Given a 6= b ∈ X we write SX(a, b) for the set consisting of a, b and all the
points p ∈ X which separate a from b. The separation ordering on SX(a, b) is
defined by letting p1 ≤ p2 if and only if p1 = p2 or p1 separates a from p2. This
is actually a partial ordering on SX(a, b).

Theorem 2.4.8 ([26, Theorem 28.11]). The separation ordering on SX(a, b)
is a linear ordering.

Theorem 2.4.9 ([26, Theorem 28.12]). If K is a continuum with exactly two
noncut points a and b, then SK(a, b) = K and the topology on K is the order
topology.

Next, we have a look at compactifications: A compactification of a topolog-
ical space X is an ordered pair (K,h) where K is a compact topological space
and h is an embedding of X as a dense subset of K. Sometimes we also refer to
K as a compactification of X if the map h is clearly understood. In [26, chapter
19] we find the following definitions: A Hausdorff compactification of a topolog-
ical space X is a compactification (K,h) of X with K Hausdorff. If (K,h) and
(K ′, h′) are compactifications of X we write (K,h) ≤ (K ′, h′) whenever there
exists a continuous mapping f : K ′ → K with f ◦ h′ = h, i.e. such the diagram

X K ′

K

h′

h
f

commutes.19 We write (K,h) < (K ′, h′) whenever (K,h) ≤ (K ′, h′) holds while
(K ′, h′) ≤ (K,h) fails. If there exists a homeomorphism f : K ′ → K witnessing
(K,h) ≤ (K ′, h′) we say that (K,h) and (K ′, h′) are topologically equivalent
(clearly, this is symmetric). This definition is stated differently in [26], but both
turn out to be equivalent for Hausdorff compactifications:

Lemma 2.4.10 ([26, Lemma 19.7]). Two Hausdorff compactifications (K,h)
and (K ′, h′) of X are topologically equivalent if and only if (K,h) ≤ (K ′, h′) ≤
(K,h) holds.20

19The class of all compactifications of X need not be a set, hence we do not speak of a
partial ordering.

20We adapted the statement of the original Lemma to our definition of ‘topologically equiv-
alent’.
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Lemma 2.4.11 ([26, Lemma 19.8]). Suppose that (K,h) and (K ′, h) are two
Hausdorff compactifications of X with (K,h) ≤ (K ′, h′) witnessed by a mapping
f : K ′ → K. Then the following hold:

(i) f�h′[X] is a homeomorphism from h′[X] to h[X].

(ii) f [K ′ − h′[X]] = K − h[X].

Lemma 2.4.12. If (K,h) and (K ′, h) are two Hausdorff compactifications of
X and f : K ′ → K witnesses (K,h) ≤ (K ′, h′) then f is unique.

Proof. Let g : K ′ → K be any witness of (K,h) ≤ (K ′, h′). We have to show
f = g. By choice of f and g, we have f ◦ h′ = h and g ◦ h′ = h. In particular,
both f and g agree on h′[X]. Since h′[X] is dense in K ′, Lemma 2.4.4 yields
f = g as desired.

Next, we have a look at two particular Hausdorff compactifications of dis-
crete topological spaces which are known as the one-point Hausdorff compacti-
fication and the Stone-Čech Hausdorff compactification. The following insights
are accumulated from [15, Chapter 3.5]21:

If X is a discrete topological space and ∗ is a point that is not in X, then
we can extend X to a topological space ωX := X ] {∗} by declaring as open,
for every finite subset A of X, the set ωX − A. The pair of this space and the
identity on X is known as the one-point Hausdorff compactification of X.

Lemma 2.4.13. If X is a discrete topological space and (ωX, idX) is its one-
point Hausdorff compactification, then (ωX, idX) is a least Hausdorff compact-
ification of X in that every Hausdorff compactification (K,h) of X satisfies
(K,h) ≥ (ωX, idX).

More generally, if X is a topological space and (K,h) is a Hausdorff compact-
ification of X such that K−X is a singleton, then (K,h) is called the one-point
Hausdorff compactification of X (which is unique up to topological equivalence)
and we write ωX = K as before. In order to state an existential Theorem con-
cerning one-point Hausdorff compactifications we need the following definitions
from [21, §29]: A topological space X is said to be locally compact at x if there
is some compact subspace C of X that contains a neighbourhood of x. If X is
locally compact at each of its points, then X is said to be locally compact.

Theorem 2.4.14 ([21, Theorem 29.1 and subsequent remarks]). A topological
space X has a one-point Hausdorff compactification if and only if X is locally
compact and Hausdorff, but not compact.

If X is a discrete topological space we let βX be the set of all ultrafilters
on X equipped with the topology whose basic open sets are those of the form
{U ∈ βX |A ∈ U}, one for each A ⊆ X. Furthermore, we let ι : X → βX map
each x to the non-principal ultrafilter on X generated by {x}. Then (βX, ι) is
known as the Stone-Čech Hausdorff compactification of X.

21In [15] the definition of ‘compactification’ seems to vary from our definition of ‘Hausdorff
compactification’ at first sight since it does not mention ‘Hausdorff’. A closer look at the
definition of ‘compact’ in [15] reveals that it is hidden there.
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Lemma 2.4.15. If X is a discrete topological space and (βX, ι) is its Stone-
Čech Hausdorff compactification, then (βX, ι) is a greatest Hausdorff compact-
ification of X in that every Hausdorff compactification (K,h) of X satisfies
(K,h) ≤ (βX, ι).

Theorem 2.4.16 ([25]). If X is a topological space, then the relation RX on
X given by

RX =
⋂{

R ⊆ X2
∣∣R is an eq.-rel. on X and X/R is T2

}

is an equivalence relation and X/RX is the maximal Hausdorff quotient of X.

If X is a topological space and RX ⊆ X2 is given by Theorem 2.4.16, then
we write H(X) for the quotient space X/RX . For more details on this topic, e.g.
regarding uniqueness of H(X) and an intuitive construction of RX , we redirect
the reader to [25].

If X is a topological space, we write GX for the relation on X2 defined by
letting a GX b whenever there exist no disjoint open neighbourhoods of a and
b in X. Now fix a topological space X. For every ordinal α we define an
equivalence relation rαX on X and a quotient space hα(X) of X, as follows: Set
r0
X = diag(X) and h0(X) = X/r0

X . For successors α+ 1 we let qαX : X → hα(X)
be the quotient map and put

rα+1
X =

{
(a, b) ∈ X2

∣∣ (qαX(a), qαX(b)) ∈ trcl
(
Ghα(X)

)}

as well as hα+1(X) = X/rα+1
X . For limits λ we take rλX =

⋃
α<λ r

α
X and hλ(X) =

X/rλX . Then

Theorem 2.4.17 ([25, Lemma 4.11 & Construction 4.12]). If X is a topological
space, then there exists a minimal ordinal α with rαX = rα+1

X . Furthermore,
rαX = RX holds (where RX is as in Theorem 2.4.16), i.e. hα(X) = H(X).

Lemma 2.4.18. Let J be a countable non-empty subset of I and let ` : J → R>0

be such that
∑
j∈J `(j) = 1. Then the map

φ : I→ [0, 2], i 7→ i+
∑

j∈J
j<i

`(j)

has the following property: For every λ ∈ [0, 2] \ φ[I \ J ] there is some jλ ∈ J
with jλ < λ and

λ ∈ [φ(jλ), φ(jλ) + `(jλ)].

Proof. For λ ∈ φ[J ] this is clear, so suppose that λ ∈ [0, 2] \ φ[I]. Assume for a
contradiction that there is no such jλ and put

J− := {j ∈ J |φ(j) < λ}, λ− := sup {φ(j) | j ∈ J−}, i− := supJ−

J+ := {j ∈ J |φ(j) > λ}, λ+ := inf {φ(j) | j ∈ J+}, i+ := inf J+

Clearly we have λ− ≤ λ ≤ λ+.
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First, we show that φ(i−) = λ−. If i− = maxJ− then this is clear, so
suppose that i− /∈ J−. Hence

φ(i−) = i− +
∑

j∈J
j<i−

`(j)

= sup J− +
∑

j∈J−
`(j)

(∗)
= sup

{
j +

∑

j′∈J
j′<j

`(j′)
∣∣∣ j ∈ J−

}

= sup {φ(j) | j ∈ J−}
= λ−

(at (∗) we used i− /∈ J−). This completes the proof of φ(i−) = λ−.
Second, we show that φ(i+) = λ+. If i+ = min J+ then this is clear, so

suppose that i+ /∈ J+. Hence

φ(i+) = i+ +
∑

j∈J
j<i+

`(j)

= inf J+ +
∑

j∈J
j<i+

`(j)

= inf
{
j +

∑

j′∈J
j′<j

`(j′)
∣∣∣ j ∈ J+

}

= inf {φ(j) | j ∈ J+}
= λ+

This completes the proof of φ(i+) = λ+.
Therefore λ /∈ φ[I] together with λ− ≤ λ ≤ λ+ implies λ− < λ < λ+, and

hence i− < i+. If i− /∈ J− then φ� [i−, i+] is linear with

φ(i−) = λ− < λ < λ+ = φ(i+)

so in particular we find some i ∈ (i−, i+) with φ(i) = λ, contradicting our

assumption that λ /∈ φ[I]. Otherwise if i− = max J−, then φ̂ := φ� (i−, i+] is
linear with

lim
t↘i−

φ̂(t) = λ− + `(i−) = φ(i−) + `(i−) < λ

(recall that we have φ(i−) + `(i−) < λ due to λ /∈ [φ(i−), φ(i−) + `(i−)] and
φ(i−) = λ− < λ). But then as before we find some i ∈ (i−, i+) with φ(i) = λ,
contradicting our assumption that λ /∈ φ[I].
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2.5 Topologies on graphs: an overview

The 1-complex of G. Recall Section 2.1.

common restr.: G connected

compact : if and only if G is finite

Hausdorff : always

reference: [8]

|G| aka MTop. The topological space |G| is obtained by taking G ∪ Ω as
ground set and taking the topology generated by the following basis: Inner edge
points inhereit their basic open neighbourhoods from (0, 1). For every u ∈ V
and ε ∈ (0, 1] we declare as open the set OG(u, ε). For every end ω of G, each
X ∈ X and all ε ∈ (0, 1] we declare as open the set

Ĉε(X,ω) := C(X,ω) ∪ Ω(X,ω) ∪ E̊ε(X,C(X,ω))∗,

completing the definition of our basis.
For locally finite G the space |G| coincides with the Freudenthal compact-

ification of G (see [10]), and it turned out to be the ‘right space’ in that it
allowed many fundamental theorems from finite graph theory to be generalised
to locally finite graphs.

common restr.: G connected and locally finite

compact : if and only if G is locally finite

Hausdorff : always

reference: [7], [9], [10]

VTop. The topology VTop is defined on G ∪ Ω similarly to |G|, with one
difference: If ω is an end of G and X ∈ X , then we declare as basic open only
the set Ĉ1(X,ω).

common restr.: G connected and locally finite

compact : if and only if every CX is finite

Hausdorff : if and only if every end of G is undominated

reference: [7], [9]

Top. The topology Top is defined on G ∪ Ω as follows: For every end ω
of G, every X ∈ X , and every choice of precisely one je ∈ e̊ for each edge
e ∈ E(X,C(X,ω)), we declare as open the set

C(X,ω) ∪ Ω(X,ω) ∪
⋃{

[y, je)
∣∣ e = xy ∈ E(X,C(X,ω)), y ∈ C(X,ω)

}
,

and we let Top be the topology on G∪Ω generated by these sets together with
the open sets of (the 1-complex of) G. In particular, Top induces the 1-complex
topology on G, which MTop and VTop do not as soon as G is not locally finite.
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common restr.: G connected and locally finite

compact : if and only if G is locally finite

Hausdorff : always

reference: [7], [9]

ITop. Suppose that no vertex of G dominates two ends. Then ITop is the
topology of the quotient space G̃ obtained from G∪Ω equipped with VTop by
identifying every end of G with all of the vertices dominating it.

common restr.: G connected and finitely separable

compact : if G is 2-connected and finitely separable

Hausdorff : always

reference: [3], [11], [14]

ETop. The topological space EG is constructed in two steps, as follows: First,
let Ω′(G) denote the set of all edge-ends of G. Let E ′G := G ∪ Ω′ (with G
viewed as 1-complex) be endowed with the topology generated by the following
basis: Every inner22 edge point inherits its open neighbourhoods from (0, 1).
Furthermore, for every finite set F of edges of G, every component C of G−F ,
and every choice of λe ∈ e̊ (one for each e ∈ F ) we declare as open the set

C ∪ Ω′(F,C) ∪
⋃

e=xy∈F
x∈C

[x, λe),

where Ω′(F,C) denotes the set of all edge-ends of G living in C. Then let EG
be obtained from E ′G by identifying every two points which have the same open
neighbourhoods.

common restr.: G connected

compact : if G is connected

Hausdorff : always

reference: [17], [24]

`-Top. The definition of `-Top takes a dozen lines and we will not need it,
hence we redirect the reader to [17] for details on this interesting space.

common restr.: G connected and countable

compact : if and only if G is locally finite

Hausdorff : always

22Recall that...this is meant wrt top of edge
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The tangle compactification ϑG of G. See Section 2.3.

common restr.: —

compact : always

Hausdorff : if and only if G is locally finite (Corollary 3.3.10)

reference: [7]

A least tangle compactification FG of G. See Section 5.3.

common restr.: —

compact : always

Hausdorff : if and only if G is locally finite (Corollary 5.5.13)

VG, i.e. VTop for the 1-complex of G. We extend (the 1-complex of) G
to a topological space VG = G ∪ Ω by declaring as open for every end ω of G
and every X ∈ X the set Ĉ1(X,ω), and taking the topology on VG that this
generates. Clearly, VG coincides with ϑG \Υ.

Observation 2.5.1. VG is compact if and only if every CX is finite.

Proof. If every CX is finite, then G has not ultrafilter tangle since each ultrafilter
tangle τ induces a non-principal on CXτ which is impossible.

If VG is compact, then every CX must be finite: Otherwise there is some
Y ∈ X with CY infinite. Covering the 1-complex of G[Y ] with basic open sets,
and extending this cover by adding for each C ∈ CY the open set

E̊(Y,C) ∪ C ∪ Ω(Y,C)

clearly yields a cover of VG which has no finite subcover, which is impossible.

common restr.: G connected

compact : if and only if every CX is finite (Obs. 2.5.1)

Hausdorff : if and only if no end is dominated

The auxiliary space AG. See Section 6.2.

common restr.: G connected

compact : if and only if G is locally finite

Hausdorff : always

The Hausdorff compactification ΛG of G. See Section 7.1.

common restr.: —

compact : always

Hausdorff : always

25



Part I

Main results

3 A closer look at the tangle compactification

3.1 First steps

Among the most frequently used lemmas in the field of topological infinite graph
theory is the so-called Jumping Arc Lemma:

Lemma 3.1.1 ([7, Lemma 8.5.3]). Let G be connected and locally finite, and
let F ⊆ E(G) be a cut with sides V1, V2.

(i) If F is finite, then V1 ∩ V2 = ∅ (with the closures taken in |G|), and there
is no arc in |G| \ F̊ with one endpoint in V1 and the other in V2.

(ii) If F is infinite, then V1∩V2 6= ∅, and there may be such an arc (for exam-
ple, there exists such an arc if both graphs G[V1] and G[V2] are connected).

The first statement of this lemma admits a straightforward generalisation to
the tangle compactification:

Lemma 3.1.2. Let G be any graph, and let F ⊆ E(G) be a finite cut with sides
V1 and V2. Then

G[V1] ]G[V2] = ϑG \ F̊

with the closures taken in the tangle compactification (in particular V1∩V2 = ∅),
and no connected subset of ϑG \ F̊ meets both G[V1] and G[V2].

Proof. Consider X = V [F ] ∈ X and pick a bipartition {C, C′} of CX respecting
F in that V [C] ⊆ V1 and V [C′] ⊆ V2 hold. If υ is a tangle of G, then υ is in
one of OϑG(X, C) and OϑG(X, C′), say in OϑG(X, C), and this neighbourhood
witnesses υ /∈ G[V2]. Furthermore, we have υ ∈ G[V1]: Let O be any open
neighbourhood of υ in ϑG. Then O ∩ OϑG(X, C) avoids G[V2] ∪ F̊ and hence
must meet G[V1], since otherwise G is not dense in ϑG which is impossible.

Figure 2: A dominated ray whose set of red edges forms an infinite cut.

But the second statement extends only partially: Indeed, consider the graph
G from Fig. 2, and let F ⊆ E(G) consist precisely of the red edges. Furthermore,
let V1 be the singleton of the vertex of infinite degree, and let V2 be the vertex
set of the black ray. Then F is an infinite cut with sides V1 and V2, but V1 and
V2 intersect emptily since we have V1 = V1 and V2 = V2 ∪ {ω} where ω is the
sole end of the graph G. In particular, G[V1] and G[V2] are connected graphs
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while there is no arc in ϑG\ F̊ with one endpoint in V1 and the other in V2 since
we also have

G[V1] ]G[V2] = ϑG \ F̊ .

However, since the tangle compactification of connected locally finite graphs
coincides with their Freudenthal compactification, the following partial gener-
alisation of the second statement of the Jumping Arc Lemma is immediate:

Lemma 3.1.3. Let G be any graph, and let F ⊆ E(G) be an infinite cut with
sides V1 and V2. If the graph G is connected and locally finite, then the tangle
compactification coincides with the Freudenthal compactification, and we have
V1∩V2 6= ∅. Otherwise, V1∩V2 = ∅ is possible. However, in case of V1∩V2 6= ∅
there may be an arc in ϑG \ F̊ with one endpoint in V1 and the other in V2.

The following lemma shows that arcs in the tangle compactification do not
take advantage of the ultrafilter tangles:

Lemma 3.1.4. If G is any graph, then every arc in its tangle compactification
avoids all ultrafilter tangles.

Proof. Let A be any are in the tangle compactification of the graph G. Pick a
homeomorphism σ : I ↪→→A and without loss of generality suppose for a contra-
diction that σ(1) =: υ is in Υ.

First we show that A meets G: If not, then in particular σ(0) =: υ′ is in U .
Choose Y ∈ X with U(υ, Y ) 6= U(υ′, Y ) and pick C ⊆ CY witnessing this, i.e.
with C ∈ U(υ, Y ) and CY \ C ∈ U(υ′, Y ). Then

{
OϑG(Y, C), OϑG(Y, CY \ C)

}

induces an open bipartition on A which is impossible, so without loss of gener-
ality we may assume that σ(0) is a point of G. Since A is an arc, we may even
assume that σ(0) is a vertex u of G.

Now let Z := Xυ ∪ {u}. Then A meets E̊(Z,G− Z), since otherwise

{
OϑG(Z, CZ),

⋃

z∈Z
OG(z, 1)

}

induces an open bipartition on A which is impossible. Hence we may let e0 be
an edge in E(Z,G − Z) that A traverses and write u0 for the endvertex of e0

in G−Z. Pick C0 ∈ CZ with u0 ∈ C0. Since U(υ, Z) is non-principal by choice
of Z, we know that CZ \ {C0} is an infinite element of U(υ, Z). Then A meets
E̊(Z,G− Z)− e̊0 in some e̊1, since otherwise

{
OϑG

(
Z, CZ \ {C0}

)
, OϑG

(
Z, {C0}

)
∪
⋃

z∈Z
OG(z, 1)

}

induces an open bipartition on A which is impossible. Proceeding inductively,
we find infinitely many edges e0, e1, . . . in E(Z,G−Z) which A traverses. Since
Z is finite, by pigeon-hole principle we find some t ∈ Z which is incident with
infinitely many of the en. In particular, t is a point of A since t lies in the closure
of those e̊n. But then A∩OG(t, 1) has degree at least 3 at t, a contradiction.
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To see that the tangle compactification in general is not sequentially com-
pact, we consider the leaves of a K1,ℵ0

and apply the following lemma:

Lemma 3.1.5. Let G be any graph, and let υ be an ultrafilter tangle. Then no
sequence of vertices of G converges to υ in ϑG.

Proof. Assume for a contradiction that there is some sequence (tn)n∈N of vertices
tn of G with tn → υ in ϑG for n→∞. Without loss of generality we may assume
that no tn is in Xυ. Our sequence (tn)n∈N meets infinitely many components
of G − Xυ, since otherwise tn 6→ υ is a contradiction. Pick a subsequence
(without loss of generality the whole sequence) such that tn and tm live in
different components of G − Xυ for all n 6= m. Furthermore, let C be the set
of all components C of G − Xυ for which there exists some even n ∈ N with
tn ∈ C, and set C′ = CXυ \ C.

If C ∈ U◦(υ) holds, then there is no N ∈ N with tn ∈ OϑG(X, C) for all
n ≥ N , so tn 6→ υ is a contradiction. Otherwise C′ ∈ U◦(υ) similarly results in
tn 6→ υ as desired.

3.2 Obstructions to Hausdorffness

We define the relation G on ϑG by letting x G y whenever there are no disjoint
open neighbourhoods of x and y in ϑG, i.e. whenever x and y are not ‘Hausdorff
topologically distinguishable’. Clearly, G in general is not transitive, hence we
denote by G···G the transitive closure of G, which is an equivalence relation. The

relations G and G···G on ϑG\ E̊ are actually included in the set (V ×U)∪(U ×V ).

Lemma 3.2.1. Let G be a any graph and υ ∈ Υ. Then Xυ contains precisely
those vertices u of G with u G υ.

Proof. For the backward inclusion consider any vertex u of G with u G υ and
assume for a contradiction that u is not in Xυ. Put X = Xυ ] {u} and let C be
the set of those components of G−X which contain neighbours of u. Since u G υ
holds, we know that CX \C is not in U(υ,X), and hence C must be U(υ,X). But
then C�Xυ ∈ U◦(υ) is a singleton by the choice of C and u /∈ Xυ, contradicting
the fact that U◦(υ) is non-principal.

For the forward inclusion let any u ∈ Xυ be given and put X = Xυ \ {u}.
By minimality of Xυ, the ultrafilter U(υ,X) is generated by {D} for some
component D of G −X. In particular, u is in D since otherwise U◦(υ) would
be principal which is impossible. Put C = φ−1

Xυ,X
({D}), i.e. C is the set of all

components of D − u, and note that C is in U◦(υ), since otherwise

CX \ {D} = (CXυ \ C)�X ∈ U(υ,X)

contradicts {D} ∈ U(υ,X). Since U◦(υ) is non-principal, we know that C must
be an infinite subset of CXυ . Now assume for a contradiction that u G υ fails,
witnessed by some basic open neighbourhoods O of u and O(X ′,D) of υ in
ϑG, without loss of generality with Xυ ⊆ X ′. Let C′ consist of those C ∈ C
avoiding X ′, and note that C′ is cofinite in C, so C′ ∈ U◦(υ) holds as well as
C′ ⊆ CXυ ∩ CX′ . Together with

gXυ,X′(U
◦(υ)) = U(υ,X ′)
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this yields C′ ∈ U(υ,X ′). Now set D′ = C′ ∩ D which is in U(υ,X ′) and hence
must be infinite. Since D′ is a subset of C, we know that u sends at least one
edge to each of the infinitely many C ∈ D′ ⊆ D. In particular, u does send at
least one edge to

⋃D, so O and O(X ′,D) must meet, a contradiction.

Corollary 3.2.2. Let υ ∈ Υ and Y ⊆ Xυ be given. Then for every X ∈ bY cX
the set of all components of G−X which send an edge to every vertex in Y is
contained in U(υ,X).

Proof. If Y is empty, then CX is the set of all components of G−X which send
an edge to every vertex in Y = ∅, and CX ∈ U(υ,X) holds since U(υ,X) is an
ultrafilter on CX . Hence we may suppose that Y is non-empty.

For every vertex u of Y we denote by Cu the set of all components of G−X
which send an edge to u. Then every set Cu is contained in U(υ,X): Otherwise,
for some u ∈ Y the set CX \ Cu of all components of G−X which do not send
an edge to u is contained in U(υ,X). But then OϑG(X, CX \ Cu) is an open
neighbourhood of υ in ϑG which avoids every basic open neighbourhood of u,
contradicting Lemma 3.2.1. Hence Cu is contained in U(υ,X) for every u in Y .
Since Y ⊆ Xυ is finite, the set

⋂
u∈Y Cu is also in U(υ,X).

Observation 3.2.3. A graph G is not planar as soon as there is some υ ∈ Υ
or ω ∈ Ω with |Xυ| ≥ 3 or |∆(ω)| ≥ 3, respectively.

Proof. If υ ∈ Υ satisfies |Xυ| ≥ 3, then we let C be the set of all components of
G−Xυ whose neighbourhood is precisely Xυ. By Corollary 3.2.2, we have C ∈
U◦(υ), so C must be infinite. Consider the subgraph H := G[Xυ ∪

⋃ C]−E(Xυ)
and obtain H ′ from H by contracting every element of C to a singleton, deleting
loops and reducing parallel edges. Then H ′ is a K|Xυ|,|C| and a minor of G, so
the statement follows from Kuratowski’s Theorem ([7, Theorem 4.4.6]).

If ω ∈ Ω is dominated by three distinct vertices, pick a ray in ω which avoids
all three vertices, and find for each of the three vertices an infinite fan to that
ray such that no two fans meet (this can be achieved by inductively constructing
all three fans simultaneously, adding paths in turn). Then it is easy to find a
TK3,ℵ0

in the union of the ray and the three infinite fans. Again, the statement
follows from Kuratowski’s Theorem ([7, Theorem 4.4.6]).

Lemma 3.2.4. Let x and y be two distinct vertices of G. Then the following
are equivalent:

(i) There exist infinitely many independent x–y paths in G.

(ii) There is some υ ∈ U satisfying x G υ G y.

Proof. (i)→(ii). Let P be some set of infinitely many independent x–y paths in
G and discard from it the trivial x–y path. Write P = {Pi | i ∈ I} and choose F
to be some non-principal ultrafilter on I. Furthermore, put X = {x, y}. Given
Y ∈ X with X ⊆ Y , we define an ultrafilter UY on CY , as follows:

Let IY denote the set of those i ∈ I for which P̊i avoids Y . For every C ⊆ CY
we write

IY (C) = {i ∈ IY | P̊i meets
⋃ C}.

Then for each bipartition {C, C′} of CY , the set {IY (C), IY (C′)} is a bipartition
of IY : indeed, for i ∈ IY we have i ∈ IY (C) if and only if there is some
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C ∈ C containing P̊i (since i ∈ IY implies that P̊i is connected in G − Y ), so
{IY (C), IY (C′)} is a bipartition of IY as claimed. In order to define UY , we have
to choose for every bipartition {C, C′} of CY precisely one of C and C′, which we
do now: Since Y meets only finitely many of the P̊i while F is non-principal
and I can be written as

I = IY (C) ] IY (C′) ] {{i} | i ∈ I \ IY },

we know that F picks exactly one of IY (C) and IY (C′), say IY (C). Then we let
UY choose C, and C′ otherwise. This completes the definition of UY , and clearly
UY inherits the filter properties from F .

Our next aim is to show that the UY are compatible with respect to the
bonding maps of the inverse system of ultrafilters. For this, let Y ⊆ Y ′ ∈ X both
be supersets of X and write U for the ultrafilter fY ′,Y (UY ′) on CY . Assume for a
contradiction that U and UY are distinct, and consider a bipartition {C, CY \C}
of CY witnessing this with CY \ C ∈ UY and C ∈ U , say. By definition of fY ′,Y
we find some C′ ∈ UY ′ with C′ � Y ⊆ C. Therefore, IY (C) ∈ F holds due to
IY ′(C′) ∈ F and

IY ′(C′) ⊆ IY (C′�Y ) ⊆ IY (C),

so C is in UY as well as CY \ C, a contradiction. Hence the UY are compatible
as desired.

Finally we extend the family of the UY to an element υ of U by letting
UZ := fX∪Z,Z(UX∪Z) for every Z ∈ X with X 6⊆ Z. Then x G υ holds:
Otherwise there is some basic open neighbourhood O of x and some basic open
neighbourhood O(Y, C) of υ with O ∩ O(Y, C) = ∅. Without loss of generality
we may assume that X is included in Y . Thus C ∈ UY implies IY (C) ∈ F by
choice of UY , so in particular IY (C) is infinite since F is non-principal. Hence
infinitely many of the Pi meet

⋃ C, therefore witnessing that x sends infinitely
many edges to

⋃ C. In particular, x does send an edge to
⋃ C, so O and O(Y, C)

must meet, a contradiction. Similarly, y G υ holds.
(ii)→(i). If υ is an end tangle, then put X0 = {x, y} and pick some

N(x)–N(y) path P0 in the sole component C0 generating U(υ,X0). Next, put
X1 = X0 ∪ V (P0) and pick some N(x)–N(y) path P1 in the sole component C1

generating U(υ,X1). Proceeding inductively, we find some disjoint N(x)–N(y)
paths Pn for every n ∈ N. Then {xPny |n ∈ N} is a set of infinitely many inde-
pendent x–y paths. Alternatively, it suffices to note that υ must be dominated
by x and y.

If υ is an ultrafilter tangle, then {x, y} ⊆ Xυ holds by Lemma 3.2.1. Let
Cx be the set of all components of G − Xυ sending an edge to x, and define
Cy analogously. Then x G υ G y implies that both Cx and Cy are in U◦(υ), and
hence C := Cx ∩ Cy ∈ U◦(υ) is an infinite subset of CXυ . Next we choose some
infinite subset {Cn |n ∈ N} of C, and for every n ∈ N we pick some N(x)–N(y)
path Pn in Cn. Again, {xPny |n ∈ N} is a set of infinitely many independent
x–y paths.
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Corollary 3.2.5. Let x and y be two distinct vertices of G. Then the following
are equivalent:

(i) x G···G y.

(ii) There is some X ∈ X containing x and y such that no Y ∈ X disjoint
from X separates x and y in G− E(X).

Proof. (ii)→(i). Let X ∈ X be as in (ii). Hence, we inductively find infinitely
many x–y paths in G−E(X) which meet only in X. By pigeon-hole principle,
infinitely many of them meet exactly the same vertices of X and traverse these
in the same order (starting in x), say x = u0, u1, . . . , un = y for some n ∈ N. We
denote the set of these paths by P = {Pi | i ∈ I} and write P k = uk−1Puk for
each P ∈ P and k ∈ [n]. Applying, for every k ∈ [n], Lemma 3.2.4 to {P ki | i ∈ I}
and the vertices uk−1 and uk yields some υk ∈ U with uk−1 G υk G uk. Hence

x = u0 G υ1 G u1 G · · · G υn G un = y (1)

holds as desired.
(i)→(ii). Suppose that x G···G y holds, witnessed by some vertices u0, . . . , un

of G and some υ1, . . . , υn ∈ U satisfying (1). Applying, for every k ∈ [n],
Lemma 3.2.4 to uk−1 G υk G uk yields some collection {P km |m ∈ N} of infinitely
many independent paths from uk−1 to uk. Set X = {uk | k ≤ n}. Then for
every Y ∈ X disjoint from X we find for every k ∈ [n] some mk ∈ N such that
P kmk avoids Y . Then

⋃
k∈[n] P

k
mk

admits a path from x to y avoiding Y .

3.3 Critical vertex sets

In this section we yield a combinatorial description of the sets Xτ of ultrafilter
tangles.

For every X ∈ X and Y ⊆ X we write CX(Y ) for the set of components of
G−X whose neighbourhood is precisely Y . Furthermore, we let

crit(X) := {Y ⊆ X | CX(Y ) is infinite}.

Observation 3.3.1. Suppose that X ∈ X and Y ∈ crit(X) are given. Then
every X ′ ∈ bXcX meets only finitely many elements of CX(Y ), so the set
CX′(Y ) = CX(Y ) ∩ CX′ is cofinite in CX(Y ), and in particular Y ∈ crit(X ′)
holds. On the other hand, Y ∈ crit(X) implies Y ∈ crit(Y ): since every com-
ponent in CX(Y ) has neighbourhood precisely Y , we have CX(Y ) ⊆ CY (Y ).

We call X ∈ X critical if X ∈ crit(X) holds, i.e. if CX(X) is infinite. More-
over, we write crit(X ) for the set of all critical X ∈ X . Then Observation 3.3.1
implies crit(X ) =

⋃
X∈X crit(X).

Lemma 3.3.2. For every υ ∈ Υ and every X ∈ bXυcX we have Xυ ∈ crit(X)
and CX(Xυ) ∈ U(υ,X).

Proof. Put C = CXυ (Xυ). By Corollary 3.2.2 (applied to Xυ = X = Y ) we know
that C is in U◦(υ). In particular, C is infinite, witnessing Xυ ∈ crit(Xυ). Hence
Xυ ∈ crit(X) holds by Observation 3.3.1. Let D be the set obtained from C by
discarding the finitely many components meeting X from it, i.e. set D = C∩CX .
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Then D = CX(Xυ) holds. Since D is cofinite in C we have D ∈ U◦(υ). Recall
that by definition of gXυ,X we know that

U(υ,X) = {C′ ⊆ CX | ∃D′ ∈ U◦(υ) : D′ ⊆ C′}.

Since D ∈ U◦(υ) by definition is a subset of CX , the equation above yields
D ∈ U(υ,X) as claimed.

Lemma 3.3.3. For all X ∈ X , every Y ∈ crit(X) and each infinite C ⊆ CX(Y )
there is some υ ∈ Υ with υ ∈ OϑG(X, C) and Xυ = Y .

Proof. Choose some non-principal ultrafilter U on CX which contains C. By
Corollary 2.3.2, U uniquely extends to an element υ of Υ. In particular we have
Y ∈ Xυ. For every Y − ( Y the set C�Y − is a singleton contained in U(υ, Y −),
therefore witnessing Y − /∈ Xυ, so Y = Xυ follows.

Lemma 3.3.4. The map [υ]� 7→ Xυ is a bijection between Υ/� and crit(X ).

Proof. The map is well defined by Lemma 3.3.2. By definition of � it is injective.
It remains to verify surjectivity. If X is in crit(X ), then X ∈ crit(X) holds, and
Lemma 3.3.3 yields some υ ∈ Υ with υ ∈ OϑG(X, CX(X)) and Xυ = X, so [υ]�
gets mapped to X as desired.

Theorem 3.3.5. For every two distinct vertices u and t of G the following are
equivalent:

(i) There exist infinitely many independent u–t paths in G.

(ii) There exists some υ ∈ U with u G υ G t.

(iii) There exists some end of G dominated by both u and t or
there exists some υ ∈ Υ with {u, t} ⊆ Xυ.

(iv) There exists an end of G dominated by both u and t or
there exists some X ∈ crit(X ) containing both u and t.

Proof. (i)↔(ii) is Lemma 3.2.4.
(ii)↔(iii) is due to Lemma 3.2.1.
(iii)↔(iv) is due to Lemma 3.3.4.

Corollary 3.3.6. For every X ∈ X the following hold:

(i) For every ω ∈ Ω the set ∆(ω) meets at most one component of G−X.

(ii) Every Y ∈ crit(X ) meets at most one component of G−X.

(iii) For every υ ∈ Υ the set Xυ meets at most one component of G−X.

Lemma 3.3.7. There exists a connected infinite graph G such that crit(X ) is
an infinite chain with respect to inclusion.
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Proof. Put A = {an |n ∈ N}, and let {Bn |n ∈ N} be a collection of pairwise
disjoint countably infinite sets Bn avoiding A. For every n ∈ N write Xn =
{ak | k ≤ n}. Let G be the graph on A ∪ ⋃n∈NBn in which, for every n ∈ N,
each b ∈ Bn is joined precisely to all x ∈ Xn. Then A consists precisely of the
vertices of G of infinite degree (every b ∈ Bn has degree n + 1), and for every
n ∈ N we have Xn ∈ crit(X ) witnessed by CXn(Xn) = {{b} | b ∈ Bn} ∪ {C}
where C is the component of G − Xn including all Bk and ak with k > n.
Every finite X ⊆ A which is distinct from all Xn misses some ak for some
k < max{n ∈ N | an ∈ X}. Thus CX(X) is empty, so X is not in crit(X ). In
particular, we have crit(X ) = {Xn |n ∈ N}.

Lemma 3.3.8. Let X ∈ X and C ⊆ CX be given, and let u ∈ X send infinitely
many edges to

⋃ C. Then there is some ξ ∈ OU (X, C) with u G ξ.

Proof. Assume for a contradiction that no such ξ exists. We will construct a
cover of ϑG consisting of open sets which does not admit a finite subcover. For
this, we cover ϑG as follows:

For t ∈ V (G) we pick OG(t, 1/2).
For every edge e we chose e̊.
For each υ ∈ OU (X, CX \ C) we pick OϑG(X, CX \ C).
For each ω ∈ Ω∩OU (X, C) we have u /∈ ∆(ω) since u G ω fails. Thus we find

some X(ω) ∈ X with u and ω living in distinct components of G −X(ω), and
we choose ĈϑG(X(ω), ω) which avoids E̊(u).

For every υ ∈ Υ∩OU (X, C) we have u /∈ Xυ by Lemma 3.2.1 since u G υ fails.
Then we choose OϑG(X ∪Xυ, CX∪Xυ (Xυ)) (which contains υ by Lemma 3.3.2
and avoids E̊(u) due to u ∈ X \ Xυ). This completes the construction of the
cover.

Since every m(e) with e ∈ E(u,
⋃ C) is covered only by e̊, our cover of ϑG

has no finite subcover, contradicting the compactness of ϑG.

Lemma 3.3.9. The vertices in V (U) = V (Ω) ∪ ⋃ crit(X ) are precisely the
vertices of infinite degree.

Proof. By Lemma 3.3.4 we have V (U) = V (Ω) ∪ ⋃ crit(X ). Clearly, every
vertex in V (U) has infinite degree. Conversely, for every vertex u of infinite
degree there is some υ ∈ U with u G υ by Lemma 3.3.8. If υ is an end, then
u ∈ ∆(υ) ⊆ V (U) follows. Otherwise υ is an ultrafilter tangle, and Lemma 3.2.1
yields u ∈ Xυ ⊆ V (U).

Corollary 3.3.10. The tangle compactification of G is Hausdorff if and only
if G is locally finite.

Proof. If G is locally finite, then the tangle compactification coincides with |G|
which is Hausdorff. Conversely, if the tangle compactification is Hausdorff, then
clearly V (Ω) is empty, and by Lemma 3.2.1 we know that for each ultrafilter
tangle its set Xυ must be empty. Corollary 3.3.9 then yields that G is locally
finite.
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3.4 ETop as a quotient

The coarsest topology for arbitrary infinite graphs known to be of any use is
ETop. In general, it is impossible to obtain ETop from VTop as a quotient.
Indeed, suppose that G is a K1,ℵ0 . Since this graph has no ends and every
two vertices are finitely separable, no two points of G may be identified. But
for this G, the topology VTop does not coincide with ETop, since the set
of all leaves of G is closed in VTop but not in ETop. Now if we consider
the tangle compactification of G ' K1,ℵ0 instead of VTop and identify all
of the (ultrafilter) tangles of G with the center vertex, the resulting space is
homeomorphic to ETop.23

In this chapter we generalise the common notion of ‘finitely separable’ from
vertices to ℵ0-tangles in order to define an equivalence relation on the tangle
compactification whose quotient we show to be homeomorphic to EG.

If x and y are two points of V ∪U and F is a finite cut of G with sides V1 and
V2 such that x ∈ G[V1] and y ∈ G[V2], then we call x and y finitely separable.
If x and y are both vertices of G, then by Lemma 3.1.2 this definition coincides
with the standard definition of ‘finitely separable’ for vertices. Letting x ∼ y
whenever x and y are not finitely separable defines an equivalence relation on
V ∪ U :

Lemma 3.4.1. The relation ∼ is transitive.

Proof. Given x, y, z ∈ V ∪ U with x ∼ y and y ∼ z we have to show x ∼ z.
Assume for a contradiction that x 6∼ z holds, witnessed by some finite cut F of
G with sides V1 and V2. By Lemma 3.1.2 we have precisely one of y ∈ G[V1]
and y ∈ G[V2], and each case contradicts one of x ∼ y and y ∼ z.

Hence ϑ̃G := ϑG/∼ is well defined, and it is a compact space since ϑG is.
Furthermore, we know that

Observation 3.4.2. If G is locally finite and connected, then |G| = ϑG = ϑ̃G.

The next few technical Lemmas already give a hint that ϑ̃G and EG might
be related:

Lemma 3.4.3. Let F be a finite cut of G with sides V1 and V2, and let Λ consist
of precisely one inner edge point λe from each e ∈ F . If this Lemma is applied
outside the context of any Λ, then we tacitly assume Λ = {m(e) | e ∈ F}. Put

Oi = G[Vi] ∪
⋃

e=xy∈F
x∈Vi

[x, λe)

for both i = 1, 2 (with the closures taken in ϑG). Then both Oi are ∼-closed
open sets and we have ϑG = O1]Λ]O2 as well as ϑ̃G = (O1/∼)]Λ] (O2/∼).

Proof. Since G[V1] and the union of the [x, λe] with e = xy ∈ F and x ∈ V1 are
closed, by Lemma 3.1.2 we know that O2 is open. Similarly, O1 is open.

23Indeed, an open neighbourhood of the center vertex and all ultrafilter tangles may miss
at most finitely many leaves, since otherwise we could construct an ultrafilter tangle outside
of that neighbourhood.
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Corollary 3.4.4. ϑ̃G is Hausdorff.

Corollary 3.4.5. Let A ⊆ ϑ̃G be an arc. Then A ∩ E̊ is dense in A.

Lemma 3.4.6. Let G be any graph with only finitely many components. Then
every point of ϑ̃G is exactly of one of the following forms:

(i) an inner edge point;

(ii) [u]∼ for some vertex u of G;

(iii) {ω} for some undominated end ω of G.

If ω is some undominated end of G, then [ω]∼ is not necessarily of the form
(iii), e.g. consider the example from Fig. 16 where it is of the form (ii).

Proof. Consider any point ξ of ϑ̃G.
If ξ contains an inner edge point, then ξ is of the form (i).
If ξ contains a vertex, then ξ is of the form (ii).
If ξ contains some υ ∈ Υ ,then ξ is of the form (ii) for each u ∈ Xυ (which

is non-empty since G has only finitely many components).
Finally suppose that ξ ⊆ Ω, and suppose for a contradiction that ξ is not

of the form (iii), i.e. that ξ is not a singleton. Pick distinct elements ω, ω′ of
ξ and let X ∈ X witness ω 6= ω′. Then since X avoids ξ there exists for every
x ∈ X some finite cut Fx with sides Ax, Bx such that x ∈ Ax and ω lives in Bx.
Let A :=

⋃
x∈X Ax and B :=

⋂
x∈X Bx as well as F := E(A,B) which is a finite

cut due to F ⊆ ⋃x∈X Fx. Now ω ∼ ω′ implies that there is some component
C of G − F in which both ω and ω′ live. Since ω lives in Bx for every x ∈ X
and X is finite, we know that V (C) ⊆ B. In particular, C avoids X, and hence
is a connected subgraph of G − X. But then C(X,ω) = C(X,ω′) follows, a
contradiction.

Corollary 3.4.7. Let G be any graph with only finitely many components. Fur-
thermore let X ∈ X be given together with some bipartition {C, C′} of CX and
two distinct points x and y of ϑG such that x ∈ OϑG(X, C) and y ∈ OϑG(X, C′).
If x ∼ y then [x]∼ meets X.

Proof. Assume for a contradiction that ξ := [x]∼ avoids X. By Lemma 3.4.6
there is some vertex u of G in ξ, and since ξ avoids X there is some C ∈ CX
with u ∈ C, without loss of generality with C ∈ C. Now X ∩ ξ = ∅ implies that
there exists for every t ∈ X some finite cut Ft of G with sides At and Bt such
that t ∈ At and u ∈ Bt. Put A =

⋃
t∈X At and B =

⋂
t∈X Bt, and let F be

the finite cut E(A,B). Let D be the component of G − F containing u. Then
D ⊆ G[B] is a connected subgraph of G avoiding X ⊆ A and D contains u, so
we have u ∈ D ⊆ C. Next consider the finite bond B := E(V \ D,D) ⊆ F .
Then

⋃ C′ ⊆ V \ D (due to D ⊆ C ∈ C) together with y ∈ OG(X, C′) implies
y /∈ G[D], and hence Lemma 3.1.2 yields y ∈ G[V \D]. Thus B witnesses u 6∼ y,
a contradiction.

For the rest of this chapter, G is assumed to be connected.

Next we define an inverse system of multigraphs whose inverse limit is home-
omorphic to EG. For this, we begin by defining the multigraphs: For every
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F ⊆ E(G) we denote by G.F the (multi-)graph which is obtained from G by
contracting the vertex sets of the components of G−F (therefore turning edges
of these components into loops). For the rest of this chapter let E := [E(G)]<ℵ0

be ordered by inclusion. We equip G.F with the topology generated by the
following basis: For inner edge points we declare as open the usual neighbour-
hoods. For every vertex d of G.F we declare as open all neighbourhoods of the
form

{d} ∪
⋃

e∈EG.F (d,G.F−d)

(je, d] ∪
⋃

e∈L
(e \ Ie) ∪

⋃
(`(d) \ L) (2)

where `(d) denotes the set of all loops at d, je ∈ e̊ for every e ∈ EG.F (d,G.F−d),
L ∈ [`(d)]<ℵ0 and Ie is some closed interval included in e̊ for every e ∈ L.

For every F ⊆ F ′ ∈ E we define bonding maps fF ′,F : G.F ′ → G.F which are

the identity on E̊(G.F ′) = E̊(G) and which send every vertex d of G.F ′ to the
vertex of G.F whose corresponding component of G−F includes the component
of G.F ′ corresponding to d. The following Lemmas are case checking:

Lemma 3.4.8. The maps fF ′,F are continuous.

Lemma 3.4.9. The maps fF ′,F are compatible.

Observation 3.4.10. The G.F are compact and Hausdorff.

Since {G.F, fF ′,F , E} is an inverse system of non-empty compact Hausdorff
spaces, its inverse limit

//G// := lim←−(G.F |F ∈ E)

is again non-empty, compact and Hausdorff by Lemma 2.2.3. Furthermore,
Miraftab [20] showed that

Lemma 3.4.11. If G is a connected graph, then //G// is homeomorphic to EG.

Given F ∈ E we define σF : ϑ̃G→ G.F as follows: Let x ∈ ϑ̃G be given. By
Lemma 3.4.6 there are three cases to distinguish: If x is an inner edge point of
some edge e, then we let σF map x to x. For x = [u]∼ with u some vertex of G
we let σF map x to the vertex of G.F whose corresponding component of G−F
contains u. This is well-defined since the finite cuts of G.F are finite cuts of G.
Finally, if x = {ω} we let σF map x to the vertex of G.F whose corresponding
component includes a tail of every ray in ω.24

Lemma 3.4.12. The maps σF are compatible.

Proof. Let F ⊆ F ′ ∈ E and x ∈ ϑ̃G be given. We have to show that

(fF ′,F ◦ σF ′)(x) = σF (x)

holds, but this is clear from the definition of σF , σF ′ and fF ′,F .

Lemma 3.4.13. The maps σF are continuous surjections.

24If G has infinitely many components, then there is some υ ∈ Υ with Xυ = ∅ and there is
no natural choice for σF ([υ]∼) = σF ({υ}) in G.F . Furthermore, no G.F would be compact.
Hence we require G to be connected.
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Proof. Clearly, the σF are surjective by construction. Let x ∈ ϑ̃G be given
together with W some basic open neighbourhood of y := σF (x) in G.F . By
Lemma 3.4.6 we distinguish three cases:

If x is an inner edge point we are done, so assume that x is of the form [u]∼
for some vertex u of G. Hence y is a vertex of G.F and W is of the form (2).
Let C be the component of G − F corresponding to y. Then the non-loop
edges at y in G.F form a finite cut F̄ = EG.F (y,G.F − y) of G.F and thus
also of G. Put Λ = {je | e ∈ F̄} and use Lemma 3.4.3 to yield a tripartition
ϑ̃G = (O1/∼) ] Λ ] (O2/∼). Since C is one side of F̄ in G and u ∈ C, we
without loss of generality have [u]∼ ∈ O1/∼, so σF maps (O1/∼)−⋃e∈L Ie into
W .

Finally assume x = {ω} where ω is an undominated end of G. Then y is a
vertex of G.F and we are done by the previous case.

Theorem 3.4.14. If G is a connected graph, then //G// is homeomorphic to
the quotient space ϑ̃G of ϑG. In particular, ϑ̃G is homeomorphic to EG.

First proof. We start by letting Ψ: ϑ̃G→ //G// map x to (σF (x) |F ∈ E). Then
Ψ(x) is an element of //G// by Lemma 3.4.12 and Ψ is injective: Consider distinct
elements x and y of ϑ̃G. Without loss of generality none of x and y is an inner
edge point. Let F be some finite cut of G witnessing x 6= y, then σF (x) 6= σF (y)
follows as desired. But Ψ is also a continuous surjection by Lemmas 3.4.12,
3.4.13 and 2.2.6. Therefore, Ψ is a continuous bijection from a compact space
onto a Hausdorff space. By general topology, Ψ is a homeomorphism, so //G//
is homeomorphic to ϑ̃G as claimed. Due to Lemma 3.4.11, we also know that
ϑ̃G is homeomorphic to EG.

Second proof (sketch). Define Ψ: ϑ̃G → EG using Lemma 3.4.6 as follows: Let
x ∈ ϑ̃G be given. If x is an inner edge point put Ψ(x) = x. Else if x is of the
form [u]∼ for some vertex u of G let Ψ send u to the point of EG containing u.
Otherwise x is of the form {ω} for some end ω of G and we put Ψ(x) = {ω}.
It is straightforward to check that Ψ is a well defined bijection. Since ϑ̃G is
compact and EG is Hausdorff, it suffices to check that Ψ is continuous, which
easily follows from Lemma 3.4.3.

Corollary 3.4.15. If G is a countable connected graph and ` : E(G) → R>0

satisfies
∑
e∈E(G) `(e) <∞, then |G|` is homeomorphic to ϑ̃G.

Proof. By [17, Theorem 3.1] we know that |G|` and EG are homeomorphic.
Hence Theorem 3.4.14 implies that |G|` and ϑ̃G are also homeomorphic.

Observation 3.4.16. In Section 5.3 we learn about a new compactification FG
which is quite similar to ϑG. For this space, Lemmas 3.1.2, 3.4.3 and 3.4.6
admit straightforward analogues, so EG is also a quotient of FG.
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4 The tangle compactification as inverse limit

4.1 Introduction

In recent years, inverse limits emerged as useful tools to obtain ‘limit objects’
of graphs, such as circles and TSTs, from compatible choices of ‘finite objects’
of some carefully chosen ‘finite minors’. Such inverse systems are known for
the Freudenthal compactification of locally finite graphs ([7, Theorem 8.7.2, 5th
edition]) and for EG with ETop ([20], or see //G// from section 3.4). In this
chapter, we will set up such an inverse system whose inverse limit describes the
tangle compactification. The ‘finite minors’ we are going to use for this actually
are multigraphs with finite vertex set and possibly infinite edge set, and they
are obtained from G by contraction of possibly non-connected sets of vertices.
Hence the question comes to mind whether there is a better inverse system
based on finite minors of G?

Next, let us see an example of an @0-tangle that is not an end tangle: a

consistent orientation of S that has infinite but no finite stars in T .

ω0 ω1 ω2

FIGURE 3. This graph has both end and ultrafilter tangles

Example 1.9. If G is the graph shown in Figure 3, it has @0-tangles that

are not end tangles. Indeed, let U be any ultrafilter on N. Every separation

{A,B} 2 S induces a bipartition of N into

Ā = { i 2 N | !i lives in A } and B̄ = { i 2 N | !i lives in B }.

As U is an ultrafilter, exactly one of these sets is an element of U . Hence

⌧ = { (A,B) 2 ~S | B̄ 2 U }

is an orientation of S. Since the intersection of two sets in U lies in U and

hence is non-empty, ⌧ is consistent. Similarly, let � ✓ ⌧ be a finite star. The

set of all i 2 N whose !i lives in every B with (A,B) 2 � is a finite intersection

of sets in U , and hence is non-empty. Consider any i in this set, and a ray

in !i. This ray has a tail outside every A with (A,B) 2 �, and hence has a

tail in
T {B | (A,B) 2 �}. In particular, this intersection is infinite, and hence

� /2 T<@0 . Thus, ⌧ is indeed an @0-tangle.

If U is a principal ultrafilter generated by {n}, say, then ⌧ is an end tangle

defined by !n. If U is a non-principal ultrafilter, then ⌧ is not defined by any !i

and hence is not an end tangle. ⇤

We shall see in Section 3 that every @0-tangle that is not an end tangle is

defined by a non-principal ultrafilter in a way similar to Example 1.9.

We conclude this section with a couple of simple lemmas about @0-tangles.

The first is that if we change a separation in an @0-tangle ⌧ only finitely, the

resulting separation will again lie in ⌧ . For sets A,A0 ✓ V let us write A ⇠ A0

if their symmetric di↵erence is finite.

Lemma 1.10. Let ⌧ be an @0-tangle of S and (A,B) 2 ⌧ . Let A0 ⇠ A and

B0 ⇠ B. Then (A0, B0) 2 ⌧ .

Proof. It su�ces to show that (A,B) 2 ⌧ implies (A[A0, B [B0) 2 ⌧ : then

also (A0, B0) 2 ⌧ , since otherwise (B0, A0) 2 ⌧ and therefore (B[B0, A[A0) 2 ⌧ .
As (A,B [B0) 6 (A,B), we have (A,B [B0) 2 ⌧ by the consistency of ⌧ .

But {(A,B [B0), (B [B0, A[A0)} 2 T2. Therefore (B [B0, A[A0) /2 ⌧ , and

hence (A[A0, B [B0) 2 ⌧ as desired. ⇤

9

Figure 3: An example graph from [8, Fig. 3].

First, we consider an example graph whose tangle compactification cannot
be described in a meaningful way by an inverse system of minors. Let G be the
graph pictured in Fig. 3, and for every n denote by Rn the ray in ωn starting
at the centre vertex of the infinite star. As Diestel showed in [8, Example 1.9],
every ultrafilter on the naturals induces an ℵ0-tangle of this graph. Indeed, since
the sides of a finite order separation of this graph induce a bipartition of its end
space, and hence of the naturals via the enumeration ω1, ω2, . . . of Ω, we can
use the ‘big’ elements of the ultrafilter to declare the corresponding sides of the
finite order separations as ‘big’ (i.e. orient the finite order separations such that
their big sides induce elements of the ultrafilter). Then the principal ultrafilters
on the naturals induce precisely the end-tangles of this graph. Interestingly, it
is not possible to describe the tangle compactification of this graph as an inverse
limit of minors of G (not even infinite ones), as long as we deem the following
premise meaningful:

If {Hi, ϕji, I} is an inverse system of minors Hi of G and for every i there
is a mapping σi : ϑG→ Hi such that lim←−σi : ϑG→ lim←−Hi is a homeomorphism,
then for every i the map σi sends every ultrafilter tangle of G to an infinite
branch set of Hi which is not included in some Rn.

Now if U and U ′ are distinct non-principal ultrafilters on the naturals, they
induce distinct ultrafilter tangles τ and τ ′ of G. Since lim←−σi is injective, there is
some i in I such that σi sends the two ultrafilter tangles to different branch sets
of Hi. Since Hi is a minor of G, its branch sets are connected, so by the premise
they both meet in the centre vertex of the infinite star, which contradicts the
fact that distinct branch sets are disjoint. Hence contracting non-connected sets
of vertices in general cannot be avoided.
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But perhaps we can use finite multigraphs instead? Indeed, this is possible,
and as it will turn out there is an easy way to obtain such multigraphs from
ours. But making their edge sets finite comes at the cost of quality of life, which
is why we forgo this option.

4.2 Setup

Given a graph G, for every X ∈ X we denote by PX the set of all finite partitions
of CX . Then we let

Γ := {(X,P ) |X ∈ X and P ∈ PX}.

If (X,P ) is in Γ, we denote by p(X,P ) the finite partition of V (G) induced by
P and the singleton subsets of X. Letting (X,P ) ≤ (Y,Q) whenever X ⊆ Y
and p(Y,Q) refines p(X,P ) defines a directed partial ordering on Γ:

Lemma 4.2.1. (Γ,≤) is a directed poset.

Proof. The poset properties are inherited from the subset and the refinement
relation; it remains to verify that (Γ,≤) is directed: For this, let any two el-
ements (X,P ) and (Y,Q) of Γ be given. First, we will define finite partitions
P ′ and Q′ of CX∪Y such that (X,P ) ≤ (X ∪ Y, P ′) and (Y,Q) ≤ (X ∪ Y,Q′)
hold; but this is easy: Recall that the map φX∪Y,X sends every component of
G− (X ∪ Y ) to the unique component of G−X containing it, so the preimage
of every partition class C of P under φX∪Y,X consists precisely of those compo-
nents of G− (X ∪ Y ) which are included in some component of G−X that is
also an element of C. Hence letting

P ′ := {φ−1
X∪Y,X(C) | C ∈ P} \ {∅}

Q′ := {φ−1
X∪Y,Y (C) | C ∈ Q} \ {∅}

will do. Finally, choosing R to be the coarsest refinement of P ′ and Q′ results
in a finite partition of CX∪Y which satisfies the two inequalities

(X,P ) ≤ (X ∪ Y, P ′) ≤ (X ∪ Y,R)

(Y,Q) ≤ (X ∪ Y,Q′) ≤ (X ∪ Y,R),

so we are done by transitivity.

Next we define the topological spaces of our inverse limit. For ever (X,P ) ∈
Γ, we let G/p(X,P ) be the multigraph on p(X,P ) whose edges are precisely the
cross-edges of p(X,P ). The vertices of G/p(X,P ) that are singleton subsets {x}
of X we consider to be vertices of G and refer to them as x; the other vertices
of G/p(X,P ) are its dummy vertices25. Now we let G(X,P ) be the topological
space obtained from the ground set of the 1-complex of G/p(X,P ) by endowing
it with the topology generated by the following basis:

For inner edge points we choose the usual open neighbourhoods, and for ver-
tices x ∈ X we choose as open neighbourhoods the sets of the form

⋃
e∈E(x)[x, je)

25This definition does not coincide with that of dummy vertices of the G/p from the con-
struction of ‖G‖ in [7, 5th edition]: e.g. if some p ∈ p(X,P ) is a singleton, but not a subset
of X, then p is a dummy vertex here but a non-dummy vertex in [7].
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where the inner edge points je ∈ e̊ may be chosen individually for each e. Fi-
nally, for dummy vertices p of G/p(X,P ) we declare as open the sets of the
form

(
E̊(X, p) ∪ {p}

)
\
⋃

e∈F
(xe, je]

where F is some finite subset of E(X, p), and for every e ∈ F the point je is
an arbitrary inner edge point of e while xe is the endvertex of e in X.26 This
completes the definition of the basis.

The spaces G(X,P ) are easily seen to be compact. To complete the setup of
our inverse system, for all (X ′, P ′) ≥ (X,P ) we choose the bonding map

f(X′,P ′),(X,P ) : G(X′,P ′) → G(X,P )

which sends the vertices of G/p(X ′, P ′) to the vertices of G/p(X,P ) including
them; which is the identity on the interior of the edges of G/p(X ′, P ′) that are
also edges of G/p(X,P ); and which sends any other edge of G/p(X ′, P ′) to the
dummy vertex of G/p(X,P ) that includes both its endvertices in G/p(X ′, P ′).
An easy proof by cases shows that these bonding maps are continuous.27 There-
fore, we arrived at an inverse system {Gγ , fγ′,γ ,Γ}, and we set

〈〈G〉〉 = lim←−(Gγ | γ ∈ Γ).

Before we verify that 〈〈G〉〉 describes the tangle compactification, we introduce
some notation concerning 〈〈G〉〉: If W is an open set in Gη for some η ∈ Γ, then
we denote by O〈〈G〉〉(W, η) the open subset 〈〈G〉〉 ∩∏γWγ of 〈〈G〉〉 where Wγ is
the whole space Gγ for all γ except for Wη, which we choose to be W . Given
η ∈ Γ we define fη to be the continuous projection map

fη : 〈〈G〉〉 → Gη, (xγ | γ ∈ Γ) 7→ xη.

Finally, whenever x is an element of 〈〈G〉〉 we denote fη(x) by xη.
Before we verify that 〈〈G〉〉 suits its purpose, we have a last look at their

possibly infinite edge sets. Obviously, the multigraphs G/p(X,P ) in general are
not finite, but their vertex set is finite. It is possible to turn these multigraphs
into finite graphs, simply by deleting the inner edge points of edges incident
with dummy vertices. If we then think of these inner edge points as ‘hidden’
in the dummy vertices incident with the edges containing them, we can adjust
the bonding maps so as to yield another inverse system whose inverse limit
would still describe the tangle compactification. But obviously, the deletion of
these points renders this inverse system useless, since it contradicts our aim to
improve everyone’s quality of life. Therefore, we decided to keep these points,
and instead rely on the compactness of the spaces G(X,P ).

4.3 The homeomorphism

Theorem 4.3.1. If G is an arbitrary infinite graph, then the tangle compacti-
fication ϑG of G is homeomorphic to 〈〈G〉〉.

26The purpose of F is to make our topological spaces T1. Only allowing F = ∅ would also
work, but then our topological spaces are not T1 while the tangle compactification is.

27This is basically the definition of Diestel.
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Proof. The first task is to construct a bijection Ψ: 〈〈G〉〉 ↪→→ϑG. For this, let an
arbitrary x = (xγ | γ ∈ Γ) ∈ 〈〈G〉〉 be given. We distinguish two cases:

First assume that there is some γ = (X,P ) ∈ Γ such that xγ is not a dummy
vertex of G/p(X,P ), so xγ is an element of X or an inner edge point of Gγ . In
this case we let Ψ(x) := xγ , which is a well defined choice: If xγ and xγ′ are two
such points we pick some η ≥ γ, γ′. Then the point xη is not a dummy vertex
either, so the definition of fη,γ and fη,γ′ implies xη = xγ = xγ′ .

In the second case, every xγ is a dummy vertex. Then for every X ∈ X we
let UX be the collection of all the sets C ∈ 2CX for which there is some finite
partition P of CX such that x(X,P ) = V [C], and put Ψ(x) := (UX |X ∈ X ).
To complete the definition of Ψ, it remains to show that (UX |X ∈ X ) is an
element of U . We start by verifying that

Claim 1. The UX are ultrafilters on CX .

Proof of the Claim. Since dummy vertices formally are non-empty sets of ver-
tices, the empty set is not in UX .

Next we show that, for every two elements C and C′ of UX , the intersection
C ∩C′ is again an element of UX . Given two elements C and C′ of UX we choose
witnesses (X,P ) and (X,P ′) of C ∈ UX and C′ ∈ UX , respectively. Let Q be the
coarsest refinement of P and P ′, and let d ∈ Q be the partition class satisfying
d = C ∩C′. Since (X,Q) ≥ (X,P ), (X,P ′) and by compatibility, the only choice
for x(X,Q) is the dummy vertex V [d]. Hence x(X,Q) witnesses that d = C ∩ C′ is
contained in UX .

Now we show that UX is upwards closed. For this, let any C ∈ UX be given
together with a superset C′ ∈ 2CX ; we have to show C′ ∈ UX . Pick some witness
(X,P ) of C ∈ UX and let Q be the coarsest refinement of P and the bipartition
P ′ = {C′, CX \ C′} of CX . Assume for a contradiction that x(X,P ′) is not the
dummy vertex V [C′] of G/p(X,P ′). Then x(X,P ′) must be the dummy vertex
V [CX \ C′] since it is the only other dummy vertex of G/p(X,P ′). Now let d
be the partition class of Q satisfying x(X,Q) = V [d]. By compatibility we know
that x(X,Q) is a subset of both x(X,P ) and x(X,P ′). But then, since C is a subset
of C′, we also know that

V [d] ⊆ V [CX \ C′] ∩ V [C] = ∅

holds, which is a contradiction since d is non-empty.
So far we have seen that UX is a filter, so finally we verify that UX is a

maximal one. For this, consider any bipartition {C, C′} of CX ; we show that
exactly one of C and C′ is contained in UX . Since x(X,{C,C′}) is a dummy vertex,
we know that at least one of C and C′ is in UX , say C. Now assume for a
contradiction that C′ is contained in UX , too, witnessed by some (X,P ). Then
P refines the bipartition {C, C′} since C′ is a partition class of P . In particular
(X,P ) ≥ (X, {C, C′}) holds, and x(X,P ) is the dummy vertex V [C′] of G/p(X,P ).
But then, by definition of f(X,P ),(X,{C,C′}), the only possibility for x(X,{C,C′}) is
the dummy vertex V [C′] of G/p(X, {C, C′}), which is a contradiction. �

Claim 2. For all X ⊆ X ′ ∈ X we have fX′,X(UX′) = UX .

Proof of the Claim. Let X ⊆ X ′ ∈ X be given. By Claim 1 both UX and UX′

are ultrafilters on CX and CX′ , respectively, so U := fX′,X(UX′) is again an
ultrafilter on CX . Assume for a contradiction that U and UX are distinct, and

41



pick some bipartition {C, CX \ C} of CX with U containing C and UX containing
CX \ C. By definition of fX′,X there is some C′ in UX′ witnessing C ∈ U , i.e.
C′ satisfies C′�X ⊆ C. Now choose witnesses (X,P ) = γ and (X ′, P ′) = γ′ of
CX \ C ∈ UX and C′ ∈ UX′ , respectively, and pick some η = (X ′, Q) in Γ with
η ≥ (X ′, P ′), (X,P ). Since C′�X = φX′,X [C′] holds by definition and C includes
C′�X, the set V [C′] is included in V [C]. But xγ is the dummy vertex V [CX \C] of
G/p(X,P ), and xγ′ is the dummy vertex V [C′] of G/p(X ′, P ′), so V [C′] ⊆ V [C]
implies xγ ∩ xγ′ = ∅, and hence xη ⊆ xγ ∩ xγ′ = ∅ (by definition of fη,γ and
fη,γ′) yields the desired contradiction. �

Therefore, Ψ(x) is indeed an element of U and our construction of Ψ is
complete. It remains to show that Ψ is bijective and bicontinuous; we begin
with injectivity:

Claim 3. Ψ is injective.

Proof of the Claim. Let x = (xγ | γ ∈ Γ) and y = (yγ | γ ∈ Γ) be two distinct
elements of 〈〈G〉〉 with xη 6= yη for some η ∈ Γ. If Ψ(x) ∈ G and Ψ(y) ∈ U or
vice versa, we are done, so suppose that Ψ(x) and Ψ(y) either are both in G or
both in U .

For the first case suppose that both Ψ(x) and Ψ(y) are in G, witnessed by
(X,P ) and (Y,Q), respectively, so neither of x(X,P ) and y(Y,Q) is a dummy
vertex. Pick some ξ ≥ η, (X,P ), (Y,Q) and note that, by definition of the
bonding maps and well-definition of Ψ, we have xξ = x(X,P ) = Ψ(x) as well as
yξ = y(Y,Q) = Ψ(y). In particular, xη 6= yη implies xξ 6= yξ (again by definition
of the bonding maps) and hence Ψ(x) 6= Ψ(y).

For the second case suppose that both Ψ(x) = (UX |X ∈ X ) and Ψ(y) =
(U ′X |X ∈ X ) are elements of U , and write η = (Y, P ). Let C and C′ be the
partition classes of P with V [C] = xη and V [C′] = yη. Then in particular C
is contained in UY and C′ is contained in U ′Y . Since C and C′ are disjoint, the
ultrafilters UY and U ′Y are distinct, so Ψ(x) 6= Ψ(y) holds. �

Claim 4. Ψ is surjective.

Proof of the Claim. Let any y ∈ ϑG be given. If y is not an element of U we
choose some X in X such that y is contained in the 1-complex of G[X], and
let ξ := (X, {CX}). Then for every η ≥ ξ in Γ we set xη = y, and for every
γ′ < η for some such η we put xγ′ = fη,γ′(y). Then (xγ | γ ∈ Γ) is a well defined
element of 〈〈G〉〉 which Ψ sends to y.

Otherwise y is in U and of the form (UX |X ∈ X ). For every γ = (X,P ) ∈ Γ
the ultrafilter UX chooses excatly one partition class C(γ) of P . Then

x :=
(
V [C(γ)]

∣∣ γ ∈ Γ
)

is a well-defined point in 〈〈G〉〉: Assume for a contradiction that there are some
η ≤ η′ in Γ with xη, xη′ incompatible in 〈〈G〉〉 in that fη′,η(xη′) 6= xη. Write
η = (Y,Q) and η = (Y ′, Q′). Then the dummy vertex xη′ satisfies

xη′ ⊆ fη′,η(xη′) ∈ p(Y,Q)− {xη}

which implies xη′ ∩ xη = ∅. Furthermore, using the definition of x yields

V [C(η)] ∩ V [C(η′)] = ∅ (3)
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Since C(η′) � Y and C(η) are both in UY it suffices to show that these sets
have empty intersection in order to yield a contradiction. For this, let any
C ∈ C(η′)�Y be given. By definition of C(η′)�Y there is some C ′ ∈ C(η′) with
C ′ ⊆ C. Hence the component C is not in C(η), since otherwise the vertices of C ′

would be contained in the left hand side of (3) which is empty, a contradiction.
Thus C(η′)�Y and C(η) intersect emptily as desired. �

By now we know that Ψ is a bijection. Before we verify that Ψ is also
bicontinuous, let us quickly recall Lemma 2.2.5: According to this Lemma, the
collection of all open sets of the form O〈〈G〉〉(W, η) with η some element of Γ and
W some basic open set in Gη is a basis of the topology of 〈〈G〉〉. Now that we
know this basis, we are almost done:

Claim 5. Ψ−1 maps basic open sets of ϑG to basic open sets of 〈〈G〉〉.

Proof of the Claim. Let any point x of ϑG be given together with some basic
open neighbourhood W .

If x is not in U we choose some X in X such that x is contained in the
1-complex of G[X], and set η := (X, {CX}). Then W is also a basic open
neighbourhood of x in Gη, so Ψ−1[W ] = O〈〈G〉〉(W, η) holds.

Otherwise x is an element of U , so W is of the form OϑG(X, C) for some
X ∈ X and some non-empty C ⊆ CX . Let η := (X, {C, CX \ C}) and consider
the basic open neighbourhood W ′ := E̊(X,

⋃ C) ∪ {V [C]} of the dummy vertex
V [C] in Gη. Then one easily checks that Ψ−1[W ] = O〈〈G〉〉(W ′, η) holds. �

Claim 6. Ψ maps basic open sets of 〈〈G〉〉 to open sets of ϑG.

Proof of the Claim. Let any basic open set O〈〈G〉〉(W, η) of 〈〈G〉〉 be given and
write (X,P ) = η.

If W is a basic open neighbourhood of some non-dummy point of Gη, then
Ψ[O〈〈G〉〉(W, η)] = W is basic open in ϑG.

Otherwise W is of the form
(
E̊(X, d) ∪ {d}

)
\
⋃

e∈F
(xe, je]

where d is some dummy vertex of Gη, the set F is some finite subset of E(X, d),
and for every e ∈ F the point je is an arbitrary inner edge point of e while xe is
the endvertex of e in X. Let C be the partition class of P with V [C] = d. Then

Ψ[O〈〈G〉〉(W, η)] = OϑG(X, C) \
⋃

e∈F
[xe, je]

which is open since the finitely many intervals [xe, je] are closed in ϑG. �

This completes the proof that Ψ is a homeomorphism.

From now on we treat 〈〈G〉〉 ' ϑG as 〈〈G〉〉 = ϑG.
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5 A least tangle compactification

We call a compactification αG of (the 1-complex of) G an Ω-compactification
of G if αG is also a compactification of VG and αG \ E̊ is Hausdorff. Even
though we speak of an Ω-compactification ‘of’ G, we formally treat it as a
compacitification of VG, e.g. if αG ≤ δG holds for another Ω-compactification
δG of G, then any witness f : δG → αG of this is required to fix Ω as well as
G. Whenever αG is an Ω-compactification of G and αG \ VG is a singleton, we
call αG a one-point Ω-compactification of G. For every X ∈ X we denote by
cX the map sending each C ∈ CX to the principal ultrafilter on CX generated
by {C}. Furthermore, in this chapter every CX carries the discrete topology.

5.1 Introduction

As the graph depicted in Fig. 3 (p. 38) shows, there exist graphs G for which
ϑG is not the coarsest Ω-compactification: Indeed, if G is the graph from Fig. 3,
then G has a one-point Ω-compactification reflecting the structure of G while

ϑG adds 22ℵ0
= 2c ≥ ℵ2 many ultrafilter tangles to G∪Ω. But as a Tℵ0

shows,
it is not always possible to just take the one-point Ω-compactification of G in
order to obtain a strictly coarser28 Ω-compactification than ϑG, since V(Tℵ0

)
does not even have a one-point compactification (see Proposition 5.2.2 for a
characterisation of the graphs G admitting a one-point Ω-compactification).
Hence Diestel [8] asked:

(i) For which [graphs] G is ϑG the coarsest [Ω-]compactification [...]?29

(ii) If it is not, is there a unique such topology [i.e. Ω-compactification],
and is there a canonical way to obtain it from ϑG?

In order to tackle these questions, we proceed as follows: In Section 5.3 we
construct for arbitrary G an inverse system {FX , fX′,X ,X} of T2-compactifica-
tions (FX , cX) of the CX whose inverse limit F = lim←−FX we use to obtain an
Ω-compactification FG of G in a similar way Diestel used U to compactify G.
The purpose of FG on the one hand is to serve as a witness when we characterise
those graphs G for which ϑG is not the coarsest Ω-compactification, and on the
other hand it is our candidate for a positive answer regarding the first part of
the second question. But we should have a closer look at the second question
itself before we consider possible solutions.

Obviously, the second question tacitly assumes that any answer imposes
some further meaningful conditions on the Ω-compactifications considered, as
the example graph G from Fig. 4 shows. By Proposition 5.2.2 we know that
this graph has a one-point Ω-compactification, so ϑG clearly is not the coarsest
Ω-compactification of G. But from an intuitive point of view, the one-point Ω-
compactification of G does not reflect the structure of the graph at all. Instead
of one point, three points as indicated by the grey ovals in the drawing feel far
more intuitive. Indeed, if x is one of u and t, then x splits up the drawing of

28 By ‘strictly coarser’ we mean ‘coarser but not topologically equivalent’.
29In his paper, Diestel asked ‘For which G is ϑG the coarsest compactification in which its

ends appear as distinct points?’. In order to obviate coarser versions of the topology of VG
for some special G from leading this question ad absurdum, we interpreted it as stated in (i).
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Figure 4: A graph G whose one-point Ω-compactification does not reflect its
structure.

the graph into a left hand side and a right hand side, which together induce a
separation sx of the graph whose separator consists precisely of x.

The tangle compactification of G respects su and st in that every ℵ0-tangle
lives on precisely one side of each. Since the two separations are nested, say
→
su ≤ →

st as in the drawing, they partition Θ into three classes Θ−, Θ◦ and Θ+.
Here, the tangles in Θ− are those living on the small side of

→
su, the tangles

in Θ+ are those living on the big side of
→
st , and the tangles in Θ◦ are those

living in on the big side of
→
su and on the small side of

→
st . But su and st

are not the only finite order separations of G with two infinite sides, so G has
more than three ℵ0-tangles. Hence our intuition suggests that some finite order
separations reflect the structure of G better than others. So what makes our two
separations so special? The answer is rather simple: both separations respect
the �-classes30 which turn out to be Θ−, Θ◦ and Θ+. Furthermore, we have
crit(X ) = {{u}, {t}, {u, t}}, and |crit(X )| = |Θ/�| = 3 gives an indication that
these might be related; but this was to be expected somewhat (in fact, we will
see that the map [υ]� 7→ Xυ defines a bijection between Υ/� and crit(X ), see
Corollary 3.3.4).

Here, my intuition tells me that it might be worth to have a closer look at
the quotient ϑG/�. Surprisingly, I did not find graph theoretical indications
substantiating my intuition, let alone graph theoretical reasons to consider cer-
tain Ω-compactifications of G revealing ϑG/� as the coarsest one. That is why
I try a more technical approach for a change. Remember that, on the one hand
U is a useful technical description of Θ, but on the other hand U can be un-
derstood as a generalisation of Ω (with the ends viewed as directions). There-
fore, if we manage to abstract the essential ideas behind the inverse system
{UX , fX′,X ,X} generalising {CX , φX′,X ,X}, then this might lead to meaning-
ful conditions regarding question (ii), and maybe ϑG/� turns out to be the
coarsest Ω-compactification satisfying these.

For this, let us take a closer look at how U manages to induce an Ω-
compactification of G. As is well known, Ω is the inverse limit of the inverse
system {CX , φX′,X}. Hence, if every CX is finite, then Ω is compact Hausdorff

30Recall that the equivalence relation � was defined on Υ by letting υ � υ′ whenever
Xυ = Xυ′ holds.
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by Lemma 2.2.3, and so is VG (Observation 2.5.1). But as soon as some CX is
infinite, the space VG is no longer compact. Let us have a closer look at the
tangle compactification overcoming this hindrance. For every X ∈ X , the pair
(UX , cX) is the Stone-Čech Hausdorff compactification of CX , so U = lim←−UX
is compact Hausdorff by Lemma 2.2.3. For VG, the space Ω being compact in
general does not imply that VG is compact, e.g. consider a K1,ℵ0

. This is be-
cause every infinite CX gives rise to a ‘bad’ cover of VG consisting of open sets
(one that has no finite subcover). Since every UX is compact, this cannot pos-
sibly happen in ϑG. Next, we investigate Ω ⊆ U . The bonding maps fX′,X of
the inverse system {UX , fX′,X} by definition respect the bonding maps φX′,X
of the inverse system {CX , φX′,X} in that for all X ⊆ X ′ ∈ X the diagram

CX CX′

UX′UX

φX′,X

fX′,X

cX′cX

commutes, so as a result U includes a homeomorphic copy of Ω. Capturing
these properties formally leads us to the notion of a C-system: A C-system
is an inverse system of Hausdorff compactifications of the CX whose bonding
maps respect the maps φX′,X , and on the class of all C-systems (for fixed G)
we define a natural order-relation ≤C . We prove, making use of the fact that
(UX , cX) is the Stone-Čech Hausdorff compactification of CX for every X ∈ X ,
that CU = {(UX , cX), fX′,X} is the greatest C-system with respect to ≤C and up
to C-equivalence (this will be introduced formally in Section 5.4). Furthermore,
every C-system gives rise to an Ω-compactification of G in the same way CU
yields ϑG. Hence the following two questions arise:

(ii′) Is there a coarsest Ω-compactification induced by a least C-system?

(iii) If there is, can it be used as a witness regarding question (i)?

As our first main result of this chapter, we will show in Theorem 5.4.10 that
{(FX , cX), fX′,X} is indeed the least C-system (up to C-equivalence), and FG
is the coarsest Ω-compactification of G induced by a C-system while ϑG is the
finest Ω-compactification of G induced by a C-system. This settles question (ii′).

Furthermore, as our second main result of this chapter, we will show in The-
orem 5.4.11 that FG and ϑG are topologically equivalent Ω-compactifications if
and only if every CX is finite. In particular, ϑG is the coarsest Ω-compactification
of the graph G if and only if every CX is finite (i.e. ϑG coincides with VG).
This settles question (i) and (iii).

In Section 5.5 we show that FG is homeomorphic to ϑG/� (the quotient we
deemed worth a second look earlier) by a homeomorphism fixing Ω, and we give
a description of � solely in terms of tangles. Together with the answer of (ii′)
this settles question (ii).

As it turns out, it is even possible to describe F using ℵ0-tangles, simply by
adjusting the underlying separation system (see Section 5.6).

Finally, in Section 5.7 we show that there is an inverse subsystem of the
inverse system {Gγ , fγ′,γ ,Γ} (from Chapter 4) whose inverse limit describes the
space FG.
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5.2 The one-point Ω-compactification of G

If G is a graph, then VG is compact if and only if every CX is finite (Observa-
tion 2.5.1). Hence G has a trivial Ω-compactification if and only if every CX is
finite. Now if G is a graph with not all CX finite, then G in general does not
have a one-point Ω-compactification. In this section we characterise the graphs
G admitting a one-point Ω-compactification.

Recall that by Theorem 2.4.14 a topological space T has a one-point Haus-
dorff compactification if and only if T is locally compact and Hausdorff, but
not compact. We start with a characterisation of the graphs admitting a locally
compact end space:

Lemma 5.2.1. For every graph G the following are equivalent:

(i) Ω is a locally compact subspace of VG.

(ii) For every end ω of G there is some X ∈ X such that for all X ′ ∈ bXcX
only finitely many components C of G − X ′ with C ⊆ C(X,ω) contain
ends of G.

Proof. (i)→(ii). Assume for a contradiction that there is some end ω of G
for which (ii) fails. Since Ω is locally compact, we find some compact A ⊆ Ω
together with an open neighbourhood O of ω in Ω such that O ⊆ A. Without
loss of generality O is induced by a basic open neighbourhood Ĉ(X,ω) for some
X ∈ X . Since (ii) fails for ω we find some X ′ ∈ bXcX such that infinitely many
components C of G−X ′ with C ⊆ C(X,ω) contain at least one end of G. Then
the collection {Ω(X ′, C) |C ∈ CX′} is an open cover of Ω which has no finite
subcover of Ω ∩ Ĉ(X,ω). In particular, it is an open cover of A that has no
finite subcover, contradicting the compactness of A.

(ii)→(i). In order to show that Ω(G) is locally compact, let ω be an end of G.
Our task is to find a compact neighbourhood of ω in Ω. Let A := Ω ∩ Ĉ(X,ω)
for some X ∈ X as in (ii), and note that A is a closed neighbourhood of ω in
Ω. For every X ′ ∈ bXcX let

DX′ :=
{
C ∈ φ−1

X′,X(C(X,ω))
∣∣Ω(X ′, C) 6= ∅

}

carry the discrete topology and note that DX′ is finite and non-empty by choice
of X. Then by Lemma 2.2.3 the inverse system {DY , φY ′,Y �DY ′ , bX ′cX } has
a compact inverse limit I whose elements extend precisely to the ends of G in
Ĉ(X,ω). In particular, it is easy to see that I and A are even homeomorphic,
so A is compact as desired.

As the following example shows, a locally compact end space in general does
not suffice to ensure the existence of a one-point Ω-compactification of VG:
indeed, if G is the graph depicted in Fig. 5, then VG obviously is not compact,
and every open neighbourhood of the sole end of the graph includes a copy of
VG. Hence VG and VG\E̊ are not locally compact at the sole end of the graph,
so VG \ E̊ has no one-point Hausdorff compactification by Theorem 2.4.14.
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ω

Figure 5: A graph G with Ω(G) locally compact, but VG not.31

Proposition 5.2.2. For every graph G the following are equivalent:

(i) G has a one-point Ω-compactification.

(ii) There is some Y ∈ X with CY infinite and for every end ω of G there is
some X ∈ X such that for all X ′ ∈ bXcX the set φ−1

X′,X(C(X,ω)) is finite.

Proof. (i)→(ii). If αG is a one-point Ω-compactification of G, then αG \ E̊ is a
one-point Hausdorff compactification of VG\ E̊. It follows from Theorem 2.4.14
that VG \ E̊ is locally compact but not compact, so Observation 2.5.1 implies
that there is some Y ∈ X with CY infinite. Now assume for a contradiction that
there is some ω ∈ Ω not satisfying the condition from (ii). Since VG\E̊ is locally
compact, we find a compact neighbourhood A of ω in VG\ E̊. Pick a basic open
neighbourhood O = Ĉ(X,ω) of ω in VG with O \ E̊ ⊆ A. Since (ii) fails, there
is some X ′ ∈ bXcX with φ−1

X′,X(C(X,ω)) infinite. Then the collection

{
C \ E̊

∣∣C ∈ CX′
}
∪
{
{x}

∣∣x ∈ X ′
}

is a cover of VG\E̊ of open sets which has no finite subcover of A, contradicting
the compactness of A.

(ii)→(i). Since there is some Y ∈ X with CY infinite, we know that VG
is not compact. Let ∗ be a point that is not in G ∪ Ω, and extend VG to a
topological space αG = VG ] {∗} by declaring as open for every X ∈ X and
C ⊆ CX the set

O∗(X, C) :=
⋃ C ∪ E̊(X,

⋃ C) ∪ Ω(X, C) ∪ {∗}
whenever C is cofinite in CX and the set

KX :=
{
C ∈ CX

∣∣∃X ′ ∈ bXcX : φ−1
X′,X(C) is infinite

}

is included in C, and taking on αG the topology this generates. To see that this
yields a topology, it suffices to show that for every two open neighbourhoods
O∗(X, C) and O∗(Y,D) of ∗ there is some open neighbourhood of ∗ included in
their intersection. Due to KX ⊆ C we know that C′ := φ−1

X∪Y,X(C) is cofinite in

CX∪Y . Furthermore, KX∪Y ⊆ C′ follows from KX∪Y ⊆ φ−1
X∪Y,X(KX) and the

choice of C′. Similarly, D′ := φ−1
X∪Y,Y (D) is cofinite in CX∪Y and KX∪Y ⊆ D, so

∗ ∈ O∗(X ∪ Y, C′ ∩ D′) ⊆ O∗(X, C) ∩O∗(Y,D)

31Interestingly, this graph looks precisely like the topological space from [26, Ex. 27.15 and
Fig. 27.3].

48



holds as desired. Clearly, VG is a dense subspace of αG. Furthermore, αG \ E̊
is Hausdorff: For this, let ω be an end of G, and pick X ∈ X as in (ii). Then
Ĉ(X,ω) and O∗(X, CX \ {C(X,ω)}) are disjoint open neighbourhoods of ω and
∗, respectively. For other points this is clear, so αG \ E̊ is Hausdorff as claimed.
It remains to show that αG is compact. For this, let O = O∗(X, C) be an
arbitrary open neighbourhood of ∗. It suffices to show that αG \O is compact.
Let H := G − ⋃ C. Clearly, VH is homeomorphic to αG \ O, so it suffices to
show that VH is compact. Since KX is included in C and CX \ C is finite, for
every X ′ ∈ bXcX the set φ−1

X′,X(CX \ C) is also finite. Hence VH is compact by
Observation 2.5.1 as desired.

5.3 An inverse limit of Hausdorff compactifications

In order to create a coarser Ω-compactification than ϑG, we create an inverse
system {FX , fX′,X ,X} of Hausdorff compactifications (FX , cX) of the CX , which
we then use to obtain an Ω-compactification FG = G ∪ F of G.

If M is a set, then we denote by cof(M) the cofinite filter on M . Recall that
for two sets A, B with A ⊆ 2B we denote by 〈A〉B the collection of all supersets
B′ ⊆ B of elements of A, and we call 〈A〉B the set-theoretic up-closure of A in
2B . Now we start the construction: For every X ∈ X and every Y ∈ crit(X)
let FX(Y ) be the set-theoretic up-closure of cof(CX(Y )) in 2CX , i.e.

FX(Y ) = 〈 cof(CX(Y )) 〉CX .

In particular, FX(Y ) is again a filter on CX . Recall that, for every X ∈ X , we
chose cX to be the function with domain CX which sends every C ∈ CX to the
principal ultrafilter on CX generated by {C}. Write

Fp
X = cX [CX ],

F∗X = {FX(Y ) |Y ∈ crit(X)},
FX = Fp

X ] F∗X .

We endow the spaces FX with the standard topology whose basic open sets are
of the form

OFX (C) := {F ∈ FX | C ∈ F},

one for each C ⊆ CX . This topology has a basis which suits our needs far better:
For every X ∈ X let CX be the collection of all singleton subsets of CX and
all sets C which are cofinite in CX(Y ) for some Y ∈ crit(X). Let BX be the
collection of all sets OFX (C) with C ∈ CX . Then

Lemma 5.3.1. BX is a basis for the topology of FX .

Proof. Given F ∈ FX and C ⊆ CX with F ∈ OFX (C) we have to find some
D ∈ CX with F ∈ OFX (D) ⊆ OFX (C). If F = cX(C) holds for some C ∈ CX ,
then we may choose {C} as D. Otherwise F is of the form FX(Y ) for some
Y ∈ crit(X). Then C ∈ F implies that C ∩ CX(Y ) is cofinite in CX(Y ), so we
may pick D = C ∩ CX(Y ).
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Whenever we speak of a basic open neighbourhood of some element of FX ,
we mean ‘basic’ with respect to BX .

The FX compactify the CX as promised:

Lemma 5.3.2. (FX , cX) is a Hausdorff compactification of CX , for every X ∈
X .

Proof. Since we equipped CX with the discrete topology and FX also induces
the discrete topology on Fp

X = cX [CX ], the map cX clearly is an embedding.
Clearly, cX [CX ] is dense in FX , and FX is Hausdorff since for every two distinct
Y and Y ′ in crit(X) we have CX(Y ) ∩ CX(Y ′) = ∅. Finally we show that FX
is compact: Let {Oi | i ∈ I} be any cover of FX by open sets Oi = OFX (Ci).
For every Y ∈ crit(X) pick some iY ∈ I such that FX(Y ) ∈ OiY and note that
CX(Y ) \ CiY is finite. Hence CX \

⋃
Y ∈crit(X) CiY is finite, and we are done.

Lemma 5.3.3. The spaces FX are totally disconnected.

Proof. Let A be a subset of FX with |A| > 1. Pick two distinct elements F and
F ′ of A. If one of F and F ′ is principal, say F = cX(C) for some C ∈ CX ,
the open sets OFX ({C}) and OFX (CX \ {C}) induce an open bipartition of A.
Otherwise we find distinct elements Y and Y ′ of crit(X) with F = FX(Y ) and
F ′ = FX(Y ′). Then the open sets OFX (CX(Y )) and OFX (CX \ CX(Y )) induce
an open bipartition of A.

In order to obtain an inverse system {FX , fX′,X ,X} from the spaces FX we
define compatible bonding maps fX′,X : FX′ → FX for all X ⊆ X ′ ∈ X as
follows: Let F ′ ∈ FX′ be given.

Suppose first that F ′ is of the form cX′(C
′) for some C ′ ∈ CX′ . Then we

put fX′,X(F ′) = cX(φX′,X(C ′)), i.e. fX′,X(F ′) = cX(C) where C is the unique
component of G−X including C ′.

For the second case suppose that F ′ is of the form FX′(Y ) for some Y ∈
crit(X ′). If Y ⊆ X holds, then we also have Y ∈ crit(X) witnessed by CX′(Y ) ⊆
CX(Y ), so we may put fX′,X(F ′) = FX(Y ). Otherwise Y 6⊆ X implies that there
is some unique component C of G−X including

⋃ CX′(Y ) since every vertex in
Y \X has a neighbour in each element of CX′(Y ), so we put fX′,X(F ′) = cX(C).
This completes the definition of the bonding maps. It remains to show that
they are continuous:

Lemma 5.3.4. The bonding maps fX′,X : FX′ → FX are continuous.

Proof. Let F ′ ∈ FX′ be given together with some basic open neighbourhood
OFX (C) of F := fX′,X(F ′).

Suppose first that F ′ is of the form cX′(C
′) for some C ′ ∈ CX′ , and hence

F is of the form cX(C) for C = φX′,X(C ′). Then OFX′ ({C ′}) is an open
neighbourhood of F ′ which fX′,X maps to OFX ({C}) ⊆ OFX (C).

For the second case suppose that F ′ = FX′(Y ) for some Y ∈ crit(X ′). If
Y 6⊆ X then there exists a unique component C of G−X including

⋃ CX′(Y ), so
F is of the form cX(C). In particular, OFX′ (CX′(Y )) is an open neighbourhood
of F ′ which fX′,X maps to OFX ({C}) ⊆ OFX (C). Otherwise Y ⊆ X holds, then
we have F = FX(Y ) and moreover C is a cofinite subset of CX(Y ) since OFX (C)
is basic open. In particular, C′ := C ∩CX′(Y ) is a cofinite subset of CX′(Y ) with
φX′,X [C′] ⊆ C. Hence OFX′ (C′) is an open neighbourhood of F ′ which fX′,X
maps into OFX (C).
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Therefore, {FX , fX′,X ,X} is an inverse system, and we write

F = lim←−(FX |X ∈ X ).

Proposition 5.3.5. The topological space F is compact, Hausdorff and totally
disconnected.

Proof. According to Lemmas 5.3.2 and 5.3.3 the topological spaces FX are com-
pact, Hausdorff and totally disconnected. By Lemma 2.2.2, so is F.

Analogously to [8, Lemma 3.2], we note a very useful fact:

Lemma 5.3.6. For all X ⊆ X ′ ∈ X the map fX′,X restricts to a bijection
between f−1

X′,X(F∗X) ⊆ F∗X′ and F∗X with inverse gX,X′ .

Corollary 5.3.7. For every X ∈ X , each F ∈ F∗X uniquely extends to an
element of F.

For every v = (FX |X ∈ X ) ∈ F let

Xv := {X ∈ X |FX /∈ Fp
X},

i.e. X ∈ X is in Xv if and only if there is some Y ∈ crit(X) with FX = FX(Y ).
The following is immediate from Lemma 5.3.6 and Corollary 5.3.7:

Proposition 5.3.8. If v is not in Ω, then the set Xv has a least element Xv ∈
crit(X ) such that Xv = bXvcX . The set Xv determines v, and FX = FX(Xv)
holds for every X ∈ Xv. Furthermore, for every Y ∈ crit(X ) there is a unique
v ∈ F with Xv = Y . This defines a bijection χ : crit(X ) ↪→→F \ Ω.

Finally, we use F to compactifiy G in the same way Diestel used U to com-
pactify G. For this, let fX : F → FX send each (FY |Y ∈ X ) to FX , i.e. fX
is the restriction of the Xth projection map prX :

∏
Y ∈X FY → FX to F. By

Lemma 2.2.5 and Lemma 5.3.1, the collection of all sets of the form

OF(X, C) := f−1
X (OFX (C)) = {(FY |Y ∈ X ) ∈ F | C ∈ FX}

with X ∈ X and C ∈ CX forms a basis for the topology of F. Now consider the
1-complex of G and extend its topology to the topological space

FG = G ∪ F

by declaring as open, for every X ∈ X and C ∈ CX , the set

OFG(X, C) :=
⋃ C ∪ E̊(X,

⋃ C) ∪ OF(X, C)

and taking the topology on FG this generates. Here, the graph
⋃ C carries

the 1-complex topology. Note that the subspace topology on F ⊆ FG is our
original topology on F. Let B denote the basis we used for FG. That FG
is indeed an Ω-compactification of G will follow from the more general Theo-
rems 5.4.1 and 5.4.2.
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5.4 Ω-compactifications induced by C-systems

In this section we study C-systems which generalise the known concepts of di-
rections and the inverse systems {UX , fX′,X ,X} and {FX , fX′,X ,X} from the
previous section. Furthermore, we study Ω-compactifications induced by C-
systems in order to answer questions (i) and (ii′) from the introduction of this
chapter.

Fix any infinite graph G. For every X ∈ X denote by C−X the set of all
components of G−X whose neighbourhood is not in crit(X), i.e.

C−X = CX −
⋃

Y ∈crit(X)

CX(Y ),

and note that this set must be finite due to pigeonhole principle. If (α(CX), αX)
is a Hausdorff compactification of CX for every X ∈ X and {α(CX), aX′,X} is
an inverse system whose bonding maps respect the maps φX′,X in that

aX′,X ◦ αX′ = αX ◦ φX′,X (4)

holds for all X ⊆ X ′ ∈ X , i.e. the diagram

CX CX′

α(CX) α(CX′)

φX′,X

aX′,X

αX αX′

commutes, then we call {(α(CX), αX), aX′,X} a C-system (of G). Note that

CF := {(FX , cX), fX′,X}

is a C-system by Lemmas 5.3.2 and 5.3.4, and

CU := {(UX , cX), fX′,X}

is a C-system, too. If every CX is finite, then {(CX , idCX ), φX′,X} is a C-system,
too. As our first main result of this section, we generalise Diestel’s construction
of the tangle compactification and show that every C-system gives rise to an
Ω-compactification of the graph G:

If {(α(CX), αX), aX′,X} is a C-system, put Iα := lim←−α(CX) and for every
X ∈ X let παX : Iα → α(CX) be the restriction of the Xth projection map
prX :

∏
Y ∈X α(CY ) → α(CX). Clearly, παX is continuous. If clear from context,

we write πX instead of παX . Now we extend G (viewed as 1-complex) to a
topological space αG = G ∪ Iα by declaring as open, for all X ∈ X and every
open set O of α(CX), the set

OαG(X,O) :=
⋃ C ∪ E̊(X,

⋃ C) ∪ (παX)−1(O)

where C = α−1
X (O), and taking the topology on αG this generates.

Theorem 5.4.1. If G is any infinite graph, then αG is an Ω-compactification
of G. In particular, so are FG and ϑG.
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Proof. First, we show that G is dense in αG. Every open neighbourhood of
an element of Iα is of the form OαG(X,O). Since αX [CX ] is a dense subset
of α(CX), we know that O meets αX [CX ], and hence

⋃
α−1
X (O) meets G. In

particular, OαG(X,O) meets G, so G is dense in αG.
Next, we show that αG is compact. For this, we mimic the proof of [8,

Theorem 1 (i)], replacing [8, Lemmas 2.3 and 3.7] by topological arguments.
Hence consider any cover O of αG − G by open sets OαG(X,O). Since the
subspace topology of Iα ⊆ αG is the original topology of Iα and Iα is compact
by Lemma 2.2.3, the cover O has a finite subset of the form

O′ = {OαG(X,OX) |X ∈ X ′}

(with X ′ ⊆ X finite) that covers Iα. Our aim is to show that G \⋃O′ is the
1-complex of a finite graph: then G \⋃O′ will be compact as desired. For this,
put X ′ =

⋃X ′, and for each X ∈ X ′ let O′X be the open set a−1
X′,X(OX) of

α(CX′). We claim that for each X ∈ X ′ the inclusion

OαG(X,OX) ⊇ OαG(X ′, O′X) (5)

holds: Indeed,

π−1
X (OX) = π−1

X′ (O
′
X) (6)

holds by choice of O′X and since the diagram

Iα α(CX′)

α(CX)

πX′

πX
aX′,X

commutes. According to the definitions of OαG(X,OX) and OαG(X ′, O′X), and
due to X ⊆ X ′, it remains to show that

⋃
α−1
X (OX) ⊇ ⋃

α−1
X′ (O

′
X) holds.

Using (4), this is easily calculated:

⋃
α−1
X′ (O

′
X)

=
⋃
α−1
X′ (a

−1
X′,X(OX))

(4)
=
⋃
φ−1
X′,X(α−1

X (OX))

⊆⋃α−1
X (OX)

Hence (5) holds as claimed, and the sets OαG(X ′, O′X) still cover Iα by (6).
Now consider the set

C′ := CX′ \
⋃

X∈X ′
α−1
X′ (O

′
X).

If
⋃ C′ is finite, then so is G[X ′]∪⋃ C′ = G \⋃O′, and we are done. Hence we

assume for a contradiction that
⋃ C′ is infinite. Consider the closed set

A := α(CX′) \
⋃

X∈X ′
O′X
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and for every Y ∈ bX ′cX set KY = a−1
Y,X′(A). In particular, every KY is closed

in α(CY ), and hence compact. Furthermore, since
⋃ C′ is infinite, each φ−1

Y,X′(C′)
is non-empty. Together with αX′ [C′] ⊆ A and (4), this implies that every KY

is non-empty. By Lemma 2.2.3 we find an element in the inverse limit of the
inverse system {KY , aY ′,Y �KY ′ , bX ′cX }, which is easily extended to an element
x of Iα since bX ′cX is cofinal in X . In particular, x ∈ Iα ∩ A = Iα \

⋃O′ is
a contradiction. Thus αG is compact, so in particular αG is a compactification
of (the 1-complex of) G.

Since Iα is also Hausdorff by Lemma 2.2.3, it is easy to see that so is αG\E̊.
It remains to show that αG is a compactification of VG. We have already seen
that αG is compact and G is dense in αG. By (4) and abuse of notation we
may assume Ω ⊆ Iα ⊆ αG. Hence it suffices to show that αG induces the
right subspace topology on G ∪ Ω. For every X ∈ X and ω ∈ Ω the open
neighbourhood OαG(X,αX(C(X,ω))) of ω in αG induces on G ∪ Ω the basic
open neighbourhood Ĉ(X,ω) of ω. Conversely, it is easy to see that every open
set OαG(X,O) of αG induces on G∪Ω a set that is also open in VG. Therefore,
VG is a subspace of αG.

In particular, we obtain the following analogue of [8, Theorem 1] for FG:

Theorem 5.4.2. Let G be any graph.

(i) FG is an Ω-compactification of G and FG \G is totally disconnected.

(ii) If G is locally finite and connected, then F = Ω holds and FG coincides
with the Freudenthal compactification of G.

Proof. (i) By Theorem 5.4.1 we know that FG is an Ω-compactification of G,
and FG \G = F is totally disconnected by Proposition 5.3.5.

(ii) If G is locally finite, then crit(X ) is empty, so F = Ω holds.

In order to compare C-systems, we introduce the following notion:
If Cα = {(α(CX), αX), aX′,X} and Cδ = {(δ(CX), δX), dX′,X} are two C-systems
we write Cα ≤C Cδ whenever (α(CX), αX) ≤ (δ(CX), δX) holds for every X ∈ X
(witnessed by unique fX : δ(CX)→ α(CX), see Lemma 2.4.12) and

fX ◦ dX′,X = aX′,X ◦ fX′ (7)

holds for all X ⊆ X ′ ∈ X . Condition (7) together with condition (4) ensures
that the diagram

δ(CX)

CX

δ(CX′)

CX′

α(CX) α(CX′)

δX

αX

dX′,X

fX fX′

aX′,X

φX′,X

δX′

αX′
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commutes for all X ⊆ X ′ ∈ X , so that the mapping

ψδα : lim←− δ(CX)→ lim←−α(CX)

(pX |X ∈ X ) 7→ (fX(pX) |X ∈ X )
(8)

is a well-defined continuous surjection by Lemma 2.2.7. Furthermore, this yields

Lemma 5.4.3. If Cα and Cδ are two C-systems with Cα ≤C Cδ and Cα induces
the Ω-compactification αG of G whereas Cδ induces the Ω-compactification δG
of G, then αG ≤ δG is witnessed by ψδα ∪ idG.

Proof. Put ψ = ψδα∪idG. By (4) we know that ψ fixes Ω (by abuse of notation).
Clearly, it suffices to show that ψ is continuous at every p = (pX |X ∈ X ) ∈ Iδ
(recall that Iδ = lim←− δ(CX)). For this, consider any basic open neighbourhood
OαG(Y,O) of ψ(p) in αG, and recall that O is open in α(CY ). By definition of ψ
we have fY (pY ) ∈ O. Since fY is continuous, we find some open neighbourhood
O′ of pY in δ(CY ) with fY [O′] ⊆ O. Then OδG(Y,O′) is an open neighbourhood
of p in δG. Hence it suffices to show that ψ maps it to OαG(Y,O). By choice of
O′ and definition of ψδα we know that ψδα sends the open subset (πδY )−1(O′)
of Iδ to the open subset (παY )−1(O) of Iα, so by definition of OαG(Y,O) and
OδG(Y,O′) is suffices to show δ−1

Y (O′) ⊆ α−1
Y (O). But this is clear from fY [O′] ⊆

O combined with the commuting diagram

CY δ(CY )

α(CY )

δY

αY
fY

(recall that it commutes since fY witnesses (α(CY ), αY ) ≤ (δ(CY ), δY )).

If both Cα ≤C Cδ and Cδ ≤C Cα hold, we say that Cα and Cδ are C-equivalent.
The following lemma and corollary indicate that this definition is meaningful:

Lemma 5.4.4. Let Cα and Cδ be two C-systems with Cα ≤C Cδ and Cδ ≤C Cα.
For every X ∈ X suppose that

(i) fX : δ(CX)→ α(CX) witnesses (α(CX), αX) ≤ (δ(CX), δX), and

(ii) gX : α(CX)→ δ(CX) witnesses (δ(CX), δX) ≤ (α(CX), αX).

Let ψδα be as in (8), and let ψαδ be defined analogously using the gX instead of
the fX . Then ψδα is a homeomorphism with inverse ψαδ.

Proof. For every X ∈ X Lemma 2.4.10 yields that fX is a homeomorphism, and
by Lemma 2.4.12 we know that gX must be its inverse. In particular, every gX
is injective, and so must be ψαδ. Furthermore, we already know that ψαδ is also
a continuous surjection. Similarly, ψδα is a continuous bijection, and ψαδ is its
continuous inverse.

Corollary 5.4.5. Let Cα and Cδ be two C-equivalent C-systems. Let αG and δG
be the two Ω-compactifications of G induced by Cα and Cδ, respectively. Then αG
and δG are topologically equivalent, witnessed by the homeomorphism ψδα ∪ idG
with inverse ψαδ ∪ idG.
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Proof. Combine Lemmas 5.4.4 and 5.4.3.

At first glance condition (7) complicates the definition of ≤C for C-systems
a lot, giving us a hard time working with it. Surprisingly, the following Lemma
takes this extra work load off our shoulders:

Lemma 5.4.6. Suppose that {(α(CX), αX), aX′,X} and {(δ(CX), δX), dX′,X}
are two C-systems with (α(CX), αX) ≤ (δ(CX), δX) (witnessed by fX) for all
X ∈ X . Then (7) holds for all X ⊆ X ′ ∈ X .

Proof. Recall that for every X ∈ X the witness fX satisfies fX ◦ δX = αX .
Hence for every X ⊆ X ′ ∈ X we compute:

fX ◦ dX′,X ◦ δX′
(4)
= fX ◦ δX ◦ φX′,X
= αX ◦ φX′,X

(4)
= aX′,X ◦ αX′
= aX′,X ◦ fX′ ◦ δX′

Thus both sides of (7) agree on δX′ [CX′ ], so by Lemma 2.4.4 they agree on all
of δ(CX′) as desired.

Theorem 5.4.7. If G is an infinite graph, then the following hold:

(i) For every X ∈ X we have (FX , cX) ≤ (UX , cX).

(ii) CF ≤C CU .

(iii) FG ≤ ϑG.

Proof. (i). This is immediate from Lemma 2.4.15. For further insight, a con-
structive proof follows:

Let any X ∈ X be given and define f : UX → FX as follows: If U ∈ UX is
principal we set f(U) = U . Otherwise U is non-principal, so CX(Y ) ∈ U holds
for exactly one Y ∈ crit(X) due to

CX = C−X ]
⊎

Y ∈crit(X)

CX(Y )

and since C−X is finite. Hence, we set f(U) = FX(Y ).
It remains to verify that f is continuous: For this, consider any U ∈ UX

together with some basic open neighbourhood OFX (C) of f(U) in FX . If U is
generated by some {C} with C ∈ CX , then OUX ({C}) is a basic open neighbour-
hood of U in UX which f maps to OFX (C). Otherwise U is non-principal there
is some Y ∈ crit(X) with f(U) = FX(Y ) and C is a cofinite subset of CX(Y ),
so f maps OUX (C) to OFX (C) as desired. Thus f is continuous as desired.

(ii) is immediate from (i) and Lemma 5.4.6.
(iii) is immediate from (ii) and Lemma 5.4.3.

Next, we prove two technical Lemmas, which we then combine in Theo-
rem 5.4.10 in order to show that CF is the least C-system (with respect to ≤C).
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Lemma 5.4.8. Let X ∈ X be given together with a compactification (α(CX), αX)
of CX and suppose that

αX [CX(Y )] ∩ αX [CX(Y ′)] = ∅ (9)

holds for all Y 6= Y ′ ∈ crit(X). Then (FX , cX) ≤ (α(CX), αX).

Proof. To construct a witness f : α(CX) → FX of (FX , cX) ≤ (α(CX), αX), we
proceed as follows:

First, we write K− = cX [C−X ] (recall that C−X is the set of all components of
G −X whose neighbourhood is not in crit(X)), and for every Y ∈ crit(X) we
put

KY = cX [CX(Y )] ∪ {FX(Y )}.

Then

{K−} ∪ {KY |Y ∈ crit(X)}

is a finite partition of FX into closed—and hence clopen—subsets. Similarly, we
write L− := αX [C−X ], and for every Y ∈ crit(X) we set

LY = αX [CX(Y )]

with the closure taken in α(CX). Since C−X is finite and α(CX) is Hausdorff, we
know that L− is closed in α(CX). Hence (9) yields that

{L−} ∪ {LY |Y ∈ crit(X)}

is a finite partition of α(CX) into closed—and hence clopen—subsets.
Next, we define mappings whose union we will take as f in the end. Let

f− : L− → FX map αX(C) to cX(C) for each C ∈ C−X , and note that f− is
continuous since L− carries the discrete subspace topology. Since for every Y ∈
crit(X) the pair (KY , cX�CX(Y )) is the one-point Hausdorff compactification of
CX(Y ) (equipped with the discrete subspace topology inherited from CX) and
(LY , αX � CX(Y )) is a Hausdorff compactification of CX(Y ), by Lemma 2.4.13
we have

(KY , cX�CX(Y )) ≤ (LY , αX�CX(Y )), (10)

witnessed by some fY : LY → KY . Since KY carries the subspace topology of
FX , we may widen the codomain of fY to FY without losing continuity. Finally,
we take f : α(CX) → FX to be the union of f− and the all of the fY . By
Lemma 2.4.5 we know that f is continuous.

Lemma 5.4.9. Let {(α(CX), αX), aX′,X} be a C-system and let Ξ ∈ X be such
that (FX , cX) ≤ (α(CX), αX) holds for all X ( Ξ. Then

αΞ[CΞ(Y )] ∩ αΞ[CΞ(Y ′)] = ∅

holds for all Y 6= Y ′ ∈ crit(Ξ).
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Proof. Assume for a contradiction that there is a pair Y 6= Y ′ ∈ crit(Ξ) with

αΞ[CΞ(Y )] ∩ αΞ[CΞ(Y ′)] 6= ∅.
Then one of Y \Y ′ and Y ′ \Y is non-empty, so without loss of generality we find
some ξ ∈ Y ′ \Y . Set Ξ− = Ξ−{ξ}. Then (FΞ− , cΞ−) ≤ (α(CΞ−), αΞ−) holds by
assumption, witnessed by some f : α(CΞ−) → FΞ− . By choice of Y and Y ′ we
may pick some z ∈ αΞ[CΞ(Y )] ∩ αΞ[CΞ(Y ′)] (with the closure taken in α(CΞ)).
Now put z− = aΞ,Ξ−(z). Since aΞ,Ξ− is continuous, Lemma 2.4.2 implies

z− ∈ aΞ,Ξ− [αΞ[CΞ(Y )]] ∩ aΞ,Ξ− [αΞ[CΞ(Y ′)]]

(with the closures taken in α(CΞ−)). Using (4) yields

z− ∈ αΞ− [φΞ,Ξ− [CΞ(Y )]] ∩ αΞ− [φΞ,Ξ− [CΞ(Y ′)]]. (11)

By choice of ξ and Ξ− there exists a unique component C of G − Ξ− includ-
ing

⋃ CΞ(Y ′), i.e. with {C} = φΞ,Ξ− [CΞ(Y ′)]. Furthermore, ξ /∈ Y implies
φΞ,Ξ− [CΞ(Y )] = CΞ(Y ). Hence, combining (11) with ξ /∈ Y yields

z− ∈ αΞ− [CΞ(Y )] ∩ {αΞ−(C)}.

But then z− ∈ {αΞ−(C)} implies z− = αΞ−(C) since α(CΞ−) is Hausdorff.
Recall that cΞ−(C) = 〈C〉Ξ− is an isolated point of FΞ− , witnessed by the open
neighbourhoodOFΞ−

({C}) = {cΞ−(C)}. PutO = f−1({cΞ−(C)}) and note that
this is open in α(CΞ−) since f is continuous. Moreover, f ◦ αΞ− = cΞ− together
with Lemma 2.4.11 (i) and (ii) yields O = {z−}. In particular, z− is also isolated
in α(CΞ−), witnessed by O. Due to Y 6= Y ′ we have CΞ(Y ) ∩ CΞ(Y ′) = ∅, and
furthermore ξ ∈ Y ′ \ Y yields C /∈ CΞ(Y ) (recall {C} = φΞ,Ξ− [CΞ(Y ′)]). Hence
z− /∈ αΞ− [CΞ(Y )] follows. Moreover, since z− is isolated in α(CΞ−), we even have
z− /∈ αΞ− [CΞ(Y )], witnessed by O, contradicting our choice of z− as desired.

Theorem 5.4.10. For every infinite G the following hold up to C-/topological
equivalence:

(i) CF is the least C-system (with respect to ≤C).

(ii) CU is the greatest C-system (with respect to ≤C).

(iii) FG is the coarsest Ω-compactification of G induced by a C-system.

(iv) ϑG is the finest Ω-compactification of G induced by a C-system.

Proof. (i). Assume for a contradiction that there is another C-system Cα with
CF 6≤C Cα. Write {(α(CX), αX), aX′,X} = Cα. Due to Lemma 5.4.6 we find
some minimal Ξ ∈ X with (FΞ, cΞ) 6≤ (α(CΞ), αΞ). By Lemma 5.4.8 there exist
Y 6= Y ′ in crit(Ξ) with

αΞ[CΞ(Y )] ∩ αΞ[CΞ(Y ′)] 6= ∅,
contradicting Lemma 5.4.9 by choice of Ξ.

(ii). Let Cα = {(α(CX), αX), aX′,X} be any C-system. Since (UX , cX) is the
Stone-Čech Hausdorff compactification of CX for every X ∈ X , Lemma 2.4.15
yields (α(CX), αX) ≤ (UX , cX) for every X ∈ X . Thus Lemma 5.4.6 implies
Cα ≤C CU .

(iii) and (iv) are immediate from Lemma 5.4.3 combined with (i) and (ii),
respectively.
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Since we now know that FG is the coarsest Ω-compactification of G induced
by a C-system while ϑG is the finest one, the question for a characterisation of
those graphs with FG and ϑG being topologically equivalent immediately comes
to mind.

Theorem 5.4.11. For every infinite G the following are equivalent:

(i) The Ω-compactifications FG and ϑG of G are topologically equivalent.

(ii) CF and CU are C-equivalent.

(iii) Every CX is finite.

(iv) Ω = F = U = Θ.

Proof. Both (iv)↔(iii) and (iii)→(ii) are clear, whereas (ii)→(i) holds by Corol-
lary 5.4.5. Hence it suffices to show (i)→(iii).

(i)→(iii). Assume for a contradicting that (iii) fails, witnessed by some Y ∈
X with CY infinite. Then F∗Y is finite while U∗Y is infinite, so (UY , cY ) ≤ (FY , cY )
is impossible. Let g : ϑG→ FG be a homeomorphism witnessing (i). To yield a
contradiction, we will use g to find a witness of (UY , cY ) ≤ (FY , cY ).

For every X ∈ X let fX : UX → FX be a witness of (FX , cX) ≤ (UX , cX)
(which exists by Theorem 5.4.7). Furthermore, let f̄ : U → F be obtained from
the fX as in (8), i.e. by setting

f̄((UX |X ∈ X )) = (fX(UX) |X ∈ X )

for every (UX |X ∈ X ) ∈ U , and recall that this is a well-defined continuous
surjection by Lemma 5.4.6. By Lemma 5.4.3, the map f := f̄ ∪ idG witnesses
FG ≤ ϑG. In particular, f̂ := f̄ ∪ idV witnesses (FG \ E̊, idV ) ≤ (ϑG \ E̊, idV ).

Since so does ĝ := g � (ϑG \ E̊), Lemma 2.4.12 yields f̂ = ĝ. In particular,
f̄ : U → F is bijective.

Put hY = fY �U∗Y and note im(hY ) = F∗Y by Lemma 2.4.11. Next, we use
the injectivity of f̄ to yield that hY is injective. Assume for a contradiction that
hY is not injective, so there exist UY 6= U ′Y in U∗Y with fY (UY ) = fY (U ′Y ) = FY
for some FY ∈ F∗Y . By Corollary 2.3.2, both UY and U ′Y uniquely extend to
elements (UX |X ∈ X ) = υ and (U ′X |X ∈ X ) = υ′ of U , respectively. By
Corollary 5.3.7, FY uniquely extends to an element (FX |X ∈ X ) = v of F.
Since v is unique, every other (F ′X |X ∈ X ) ∈ F satisfies F ′Y 6= FY . Thus
fY (UY ) = fY (U ′Y ) = FY combined with the definition of f̄ forces f̄(υ) = v and
f̄(υ′) = v, contradicting the injectivity of f̄ . Hence hY = fY �U∗Y is injective as
claimed.

Together with fY ◦ cY = cY this yields that fY is injective. Since fY is also
a continuous surjection by Lemma 2.4.11, and both FY and UY are compact
Hausdorff, it follows from general topology that fY is a homeomorphism. In
particular, the inverse of fY witnesses (UY , cY ) ≤ (FY , cY ), the desired contra-
diction.
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5.5 A natural quotient of the tangle compactification

In this section, we show that FG is homeomorphic to the quotient space ϑG/�,
but first we describe � in terms of tangles.

Recall that we defined the equivalence relation � on Υ by letting υ � υ′

whenever Xυ = Xυ′ holds. Via the natural correspondence between Υ and
Θ − Ω, this induces an equivalence relation �− on Θ − Ω (here we distinguish
between elements of U and elements of Θ). Since U originally only served as a
technical tool to help us better understand the ultrafilter tangles, we wish to be
able to describe the �−-classes in terms of tangles. For this, we investigate the
following natural class of stars: For every X ∈ X and C ∈ CX define

sC→X := (C ∪X,V \ C), sX→C := (sC→X)∗ = (V \ C,X ∪ C)

and put

σX = {sC→X |C ∈ CX}.

Next, we will use these stars to describe Xυ (for υ ∈ Υ) in terms of tangles:

Lemma 5.5.1. For every τ ∈ Θ− Ω we have

{X ∈ X |σX ⊆ τ} = Xτ = bXτcX .

In particular, Xτ is the unique minimal X ∈ X with σX ⊆ τ .

Proof. It suffices to show {X ∈ X |σX ⊆ τ} = Xτ .
For the forward inclusion let any X ∈ X with σX ⊆ τ be given. Then

U(τ,X) is non-principal: Otherwise U(τ,X) is generated by some {C} with
C ∈ CX , so sX→C ∈ τ implies sC→X /∈ τ , and hence σX 6⊆ τ is a contradiction.
Therefore, U(τ,X) ∈ U∗X implies X ∈ Xτ .

For the backward inclusion let any X ∈ Xτ be given. Since U(τ,X) is
non-principal, we know that CX \ {C} ∈ U(τ,X) holds for every C ∈ CX . In
particular we have sC→X ∈ τ for every C ∈ CX , and therefore σX ⊆ τ holds as
desired.

Thus �− can be described solely in terms of tangles, as desired. Next, we
compute loads of technical Lemmas leading to an explicit description of a basis
of the quotient topology of ϑG/�.

Let G be any graph. Define Ψ: U/� → F by setting Ψ�Ω = idΩ and letting
Ψ� (Υ/�) map each [υ]� ∈ Υ/� to χ(Xυ) (where χ : crit(X ) ↪→→F \ Ω is as in
Proposition 5.3.8)

Proposition 5.5.2. The map Ψ is a well defined bijection between U/� and F.

Proof. The map Ψ is well defined by Lemma 3.3.2. Clearly, it suffices to show
that Ψ�(U/�) : U/� → F \Ω is bijective, which is the case by Proposition 5.3.8
and Corollary 3.3.4.

Lemma 5.5.3. For every υ ∈ Υ and X ∈ X with Xυ 6⊆ X there is a unique
component C of G−X with Xυ ⊆ X ∪ C and υ ∈ OϑG(X, {C}).
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Proof. By Lemma 3.3.6 the set Xυ meets at most one component of G−X. Since
Xυ 6⊆ X holds, Xυ meets exactly one component C of G−X. Set X ′ = X∪Xυ.
Then by Lemma 3.3.2, Xυ is in crit(X ′) and C := CX′(Xυ) is in U(υ,X ′). Hence
C�X = {C} is in U(υ,X), so υ ∈ OϑG(X, {C}) holds.

Lemma 5.5.4. For every X ∈ X and C ∈ CX the set OϑG(X, {C}) is closed
under the equivalence relation �.

Proof. Let any υ ∈ Υ∩OϑG(X, {C}) be given together with some υ′ ∈ [υ]�. In
particular Xυ = Xυ′ 6⊆ X holds, so by Lemma 5.5.3 there exist for both υ and
υ′ unique components D and D′ of G−X, respectively, with Xυ ⊆ X ∪D and
υ ∈ OϑG(X, {D}) as well as Xυ′ ⊆ X ∪D′ and υ′ ∈ OϑG(X, {D′}). Since Xυ =
Xυ′ meets both D and D′, the uniqueness of D implies D = D′. Furthermore
D = D′ = C follows since otherwise {D} and {C} would be disjoint elements
of U(υ,X), which is impossible. Hence υ′ ∈ OϑG(X, {C}) holds.

Lemma 5.5.5. Let υ ∈ Υ, X ∈ Xυ and Y ∈ crit(X) be given. Furthermore,
suppose that C ⊆ CX is cofinite in CX(Y ) with C ∈ U(υ,X). Then we have
Xυ = Y .

Proof. Assume for a contradiction that Xυ is distinct from Y . By Lemma 3.3.2
we have CX(Xυ) ∈ U(υ,X). Now Xυ 6= Y implies that CX(Xυ) is disjoint from
CX(Y ), and hence from C, a contradiction.

Lemma 5.5.6. For all X ∈ X , every Y ∈ crit(X) and each cofinite subset C of
CX(Y ) the set OϑG(X, C) is closed under �.

Proof. Put D = CX(Y ). First, we show that OϑG(X,D) is closed under �. For
this, let any κ ∈ Υ ∩ OϑG(X,D) be given together with any κ′ ∈ [κ]�.

If Xκ 6⊆ X holds, then U(κ, X) is generated by some {C} with C a com-
ponent of G − X, and D ∈ U(κ, X) implies C ∈ D. In particular we have
κ ∈ OϑG(X, {C}), so Lemma 5.5.4 implies κ′ ∈ OϑG(X, {C}) and we are done.

Otherwise Xκ ⊆ X holds, so D ∈ U(κ, X) together with Lemma 5.5.5
implies Xκ = Y . Hence D ∈ U(κ′, X) follows from Lemma 3.3.2 and Xκ′ = Y .
Therefore, OϑG(X,D) is closed under �.

Since C is cofinite in D we have

OϑG(X, C) = OϑG(X,D)−
⋃

D∈D\C
OϑG(X, {D})

which is closed under � since OϑG(X,D) is closed under � and the OϑG(X, {D}
are also closed under � by Lemma 5.5.4.

Lemma 5.5.7. For every υ ∈ Υ the set [υ]� is closed in ϑG. In particular,
[υ]� is a compact subset of ϑG.

Proof. Clearly, the closure of [υ]� avoids G. It remains to show that no κ ∈
U \ [υ]� lies in the closure of [υ]�. If we have κ ∈ Ω, then ĈϑG(Xυ,κ) avoids
[υ]� since for every υ′ ∈ [υ]� the ultrafilter U◦(υ′) is non-principal. Otherwise
we have κ ∈ Υ \ [υ]�, so OϑG(X, CX(Xκ)) with X = Xυ ∪Xκ avoids [υ]� since
CX(Xυ) and CX(Xκ) are disjoint due to Xυ 6= Xκ . Thus [υ]� is a closed subset
of the compact space ϑG and hence also compact.

61



Let B be the collection of all basic open sets of the 1-complex topology of
G, all sets OϑG(X, {C})/� with X ∈ X and C ∈ CX , and all sets OϑG(X, C)/�
with X ∈ X and C cofinite in CX(Y ) for some Y ∈ crit(X).

Proposition 5.5.8. The collection B is a basis for the topology of ϑG/�.

Proof. By Lemmas 5.5.4 and 5.5.6, the elements of B are open in ϑG/�.
Let x be any point of ϑG/� together with some arbitrary open neighbour-

hood O. Our task is to find an element B of B with x ∈ B ⊆ O.
If x is a vertex or an inner edge point, we are done. Else if x is an end, we

write ω = x and pick a basic open neighbourhood ĈϑG(X,ω) of ω in ϑG which
is included in

⋃
O. Then we are done by taking B = ĈϑG(X,ω)/�.

Finally suppose that there is some υ ∈ Υ with x = [υ]�. For every υ′ ∈ [υ]�
we pick some basic open neighbourhood O(υ′) = OϑG(X(υ′), C(υ′)) in ϑG which
is included in

⋃
O.

If Xυ 6⊆ X(κ) holds for some κ ∈ [υ]� we put X = X(κ). Then by
Lemma 5.5.3 there is some unique component C ofG−X withXυ = Xκ ⊆ X∪C
and U(κ, X) is generated by {C}. Then

OϑG(X, {C}) ⊆ OϑG(X, C(κ)) ⊆ ⋃O

is a basic open neighbourhood of κ in ϑG which is closed under� by Lemma 5.5.4
and included in

⋃
O. In particular, OϑG(X, {C})/� is an open neighbourhood

of [υ]� in ϑG/� which is an element of B and a subset of O, so we are done.
Hence we may assume that Xυ ⊆ X(υ′) holds for all υ′ ∈ [υ]�. Since the

O(υ′) form an open cover in ϑG of the set [υ]� which is compact by Lemma 5.5.7,
we find some finite subset {υk | k < n} of [υ]� such that the O(υk) cover [υ]�.
Next we put X =

⋃
k<nX(υk) and note that Xυ ⊆ X ∈ X holds. Furthermore,

we set D = CX(Xυ), and for all k < n we put Dk = C(υk) ∩ D. Letting
D+ :=

⋃
k<nDk ⊆ D, our hope is that OϑG(X,D+)/� is a suitable candidate

for B.
We claim thatD+ is a cofinite subset ofD. Assume not for a contradiction, so

D− := D\D+ is infinite and by Lemma 3.3.3 we find some κ ∈ Υ∩OϑG(X,D−)
with Xκ = Xυ. But then there is some ` < n with κ ∈ O(υ`), so in particular
C(υ`) ∈ U(κ, X(υ`)) holds. Since X meets only finitely many elements of C(υ`),
the set D` is a cofinite subset of C(υ`), so in particular D` is in U(κ, X(υ`)).
Furthermore, D` ∈ U(κ, X(υ`)) ∩ 2CX implies D` ∈ U(κ, X) by definition of
gX(υ`),X . This contradicts D− ∈ U(κ, X) since D− and D` ⊆ D+ are disjoint.
Therefore D− is finite as claimed, so by Lemma 5.5.6 the set OϑG(X,D+) is
�-closed.

Furthermore, every υ′ ∈ [υ]� is contained in OϑG(X,D+) since D+ is cofinite
in D = CX(Xυ) = CX(Xυ′) and CX(Xυ′) is in U(υ′, X) by Lemma 3.3.2.

It remains to show that OϑG(X,D+) is included in
⋃
O. Since D+ is the

finite union of the sets Dk, it follows that OϑG(X,D+) is the finite union of the
sets OϑG(X,Dk). Hence it suffices to verify that OϑG(X,Dk) ⊆ ⋃O holds for
all k < n. For this, we observe that

Dk�X(υk) = Dk = C(υk) ∩ D ⊆ C(υk)
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holds for all k < n. Then Lemma 2.3.4 together with Dk�X(υk) ⊆ C(υk) implies

OϑG(X,Dk) ⊆ OϑG(X(υk),Dk�X(υk))

⊆ OϑG(X(υk), C(υk))

⊆ ⋃O

as desired.

Now that we know a basis of the topology of ϑG/�, only two technical
Lemmas stand in between of us and our desired result, namely that Ψ: U/� ↪→→F
induces a homeomorphism Ψ ∪ idG between FG and ϑG/�.

Lemma 5.5.9. For every X ∈ X and C ∈ CX we have

Ψ[OU (X, {C})/�] = OF(X, {C}).

Proof. By Lemma 5.5.4 the set OϑG(X, {C}) is �-closed, and so is OU (X, {C}).
We start with the forward inclusion. If ω is any element of Ω∩OU (X, {C}),

then clearly Ψ(ω) = ω is contained in OF(X, {C}). Else if υ is any element of
Υ∩OU (X, {C}), then the ultrafilter U(υ,X) is generated by {C} and Xυ 6⊆ X
must hold. Furthermore, Lemma 5.5.3 implies Xυ ⊆ X ∪ C. Hence for C :=
CX∪Xυ (Xυ) we have

⋃ C ⊆ C. Let v = (FY |Y ∈ X ) be the element of F
to which Ψ sends [υ]�. In particular, Xυ = Xv holds and furthermore FX is
generated by {D} where D is the unique component of G − X including

⋃ C.
In particular, C = D must hold, so v is an element of OF(X, {C}) as desired.

Finally, we show the backward inclusion. For this, let any element v =
(FY |Y ∈ X ) of OF(X, {C}) be given, and let x be the element of U/� which Ψ
sends to v. If x is an end we are done, so suppose that x is of the form [υ]� for
some υ ∈ Υ. Since FX is generated by {C} we have Xυ 6⊆ X by definition of Ψ.
By Lemma 5.5.3 there exists a unique component D of G−X with Xυ ⊆ X ∪D
and υ ∈ OU (X, {D}). By the forward inclusion we have

Ψ[OU (X, {D})/�] ⊆ OF(X, {D}),

so v ∈ OF(X, {D}) implies C = D. Hence υ ∈ OU (X, {C}) holds as desired.

Lemma 5.5.10. For all X ∈ X , every Y ∈ crit(X) and each cofinite subset C
of CX(Y ) we have

Ψ[OU (X, C)/�] = OF(X, C).

Proof. By Lemma 5.5.6 the set OϑG(X, C) is �-closed.
We start with the forward inclusion. If ω is any element of Ω∩OU (X, C), then

clearly Ψ(ω) = ω is contained in OF(X, C). If υ is any element of Υ∩OϑG(X, C)
we consider two cases. First suppose that Xυ 6⊆ X holds. Then U(υ,X) is
generated by {C} for some C ∈ C. In particular, υ is contained in OU (X, {C}),
so Ψ maps [υ]� to an element of OF(X, {C}) ⊆ OF(X, C) by Lemma 5.5.9 as
desired. Second suppose that Xυ ⊆ X holds. Then C ∈ U(υ,X) and C being a
cofinite subset of CX(Y ) implies Xυ = Y by Lemma 5.5.5. Let v = (FZ |Z ∈
X ) be the element of F to which Ψ sends [υ]�. Then FX = FX(Y ) holds
by definition of Ψ. In particular, C being a cofinite subset of CX(Y ) implies
C ∈ FX(Y ), resulting in v ∈ OF(X, C) as desired.
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Finally, we show the backward inclusion. For this, let any element v =
(FZ |Z ∈ X ) of OF(X, C) be given, and let x be the element of U/� which Ψ
sends to v. If x is an end we are done, so suppose that x is of the form [υ]� for
some υ ∈ Υ. If FX is generated by {C} for some C ∈ C then v is in OF(X, {C})
and by Lemma 5.5.9 we have

[υ]� ∈ OU (X, {C})/� ⊆ OU (X, C)/�
as desired. Otherwise FX = FX(Y ) is the only possibility for FX , so by def-
inition of Ψ we have Xυ = Y . Furthermore, Lemma 3.3.2 implies CX(Y ) =
CX(Xυ) ∈ U(υ,X). Since U(υ,X) is non-principal due to Xυ = Y ⊆ X, the
fact that C is a cofinite subset of CX(Y ) implies C ∈ U(υ,X). Hence υ is con-
tained in OU (X, C), so [υ]� is in OU (X, C)/� as desired.

Theorem 5.5.11. For every graph G combining the bijection Ψ: U/� ↪→→F with
the identity on G ∪ Ω yields a homeomorphism between ϑG/� and FG.

Proof. Set Ψ̂ := Ψ∪ idG : ϑG/� ↪→→FG which is a bijection by Proposition 5.5.2.
By Proposition 5.5.8 we may consider the basis B for the quotient topology of
ϑG/�, and we consider the basis B for the topology of FG (recall that B simply
is the basis we defined to generate the topology of FG). Since Ψ̂ extends the
identity on G, Lemmas 5.5.9 and 5.5.10 yield that Ψ̂ is bicontinuous.

Corollary 5.5.12. Ψ is a homeomorphism between U/� and F.

Corollary 5.5.13. FG is Hausdorff if and only if G is locally finite.

Proof. Combine Theorem 5.5.11 and Corollary 3.3.10.

We close this chapter with a comparison of the cardinalities of F−Ω and Υ:

Lemma 5.5.14. For all X ∈ X , every Y ∈ crit(X) and each non-principal
ultrafilter U on CX(Y ) there is some unique υ ∈ Υ with Xυ = Y and U ⊆ U◦(υ).

Proof. Put U ′ = 〈U〉CX and note that this is the only ultrafilter on CX extending
U . Using Corollary 2.3.2 we uniquely extend it to an element υ of U . In
particular, υ is uniquely determined by U , and clearly we have Y ∈ Xυ. For
every Y − ( Y the set CX(Y )�Y − is a singleton contained in U(υ, Y −), therefore
witnessing Y − /∈ Xυ. Thus Y = Xυ follows due to Xυ = bXυcX .

Proposition 5.5.15. If G is an infinite graph, then

(i) |F− Ω| = |crit(X )| ≤ |V |,
(ii) |Υ| ≥ |Υ/�| · 2c = |crit(X )| · 2c,

(iii) |F− Ω| · 2c ≤ |Υ|.
Proof. (i). By Proposition 5.3.8 the map v 7→ Xv is a bijection from F−Ω onto
crit(X ). Furthermore, crit(X ) ⊆ X = [V ]<ℵ0 implies |crit(X )| ≤ |V |.

(ii). By Lemma 3.3.4 we have |Υ/�| = |crit(X )|. By Lemma 3.3.2 we
know that CXυ (Xυ) ∈ U◦(υ) holds for all υ ∈ Υ. Since the set CXυ (Xυ) is
infinite, there exist at least 2c many non-principal ultrafilters on it, and by
Lemma 5.5.14 each of these extends to a unique element of [υ]�. In particular,
[υ]� has cardinality at least 2c. Since � is an equivalence relation, this implies
|Υ| ≥ |Υ/�| · 2c.

(iii) follows from (i) and (ii) combined.
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5.6 F described by tangles

In [8], U was use as a technical description of Θ. Recently, we created F in-
spired by U , and we showed that F is homeomorphic to a natural quotient of Θ,
namely Θ/�−. So perhaps it is possible to describe F using tangles of G?

Indeed, it turns out that considering a smaller separation system suffices:
Let S′ be the set of all {⋃ C ∪ X,X ∪ ⋃ C′} ∈ S with C ] C′ = CX for which
there is no Y ∈ crit(X) such that both CX(Y ) ∩ C and CX(Y ) ∩ C′ are infinite.
Write Θ′ for the set of all ℵ0-tangles with respect to S′. For every τ ∈ Θ′ and
X ∈ X we let

F(τ,X) :=
{
C ⊆ CX

∣∣ (V [CX \ C] ∪X,X ∪ V [C]
)
∈ τ
}
.

Like for elements of Θ, it is easy to check that this is indeed an element of FX .

Lemma 5.6.1. Let {A,B} ∈ S′ and {C,D} ∈ S be such that both A4C and
B4D are finite. Then {C,D} ∈ S′.

Proof. Assume for a contradiction that {C,D} /∈ S′ holds, witnessed by some
Y ∈ crit(C ∩D). Let {C,D} be the bipartition of CC∩D(Y ) with V [C] ⊆ C and
V [D] ⊆ D. By choice of Y , both C and D are infinite. Next, put

C′ = {C ∈ C |C ∩A ∩B = ∅}
D′ = {C ∈ D |D ∩A ∩B = ∅}

and note that both C \ C′ and D \D′ are finite, since A ∩B is finite. By choice
of {C,D} we know that all but finitely many element of C′ are included in A,
and all but finitely elements of D′ are included in B. We write C′′ and D′′ for
the sets of those elements, respectively.

If Y 6⊆ A∩B holds, then there is some K ∈ CA∩B with
⋃ C′′∪⋃D′′ ⊆ V (K).

Without loss of generality we may assume that V (K) ⊆ A \ B. Since both C′′
and D′′ are infinite, so is A4C, the desired contradiction.

Otherwise Y ⊆ A ∩ B holds, so C′′ and D′′ together with Y ∈ crit(A ∩ B)
witness {A,B} /∈ S′, a contradiction.

Lemma 5.6.2. Let τ ∈ Θ′ and (A,B) ∈ τ be given. If (A′, B′) ∈
→
S is such

that both A4A′ and B4B′ are finite, then (A′, B′) ∈ τ .

Proof. We mimic the proof of [8, Lemma 1.10]. By Lemma 5.6.1 we know that
the three separations {A′, B′}, {A ∪ A′, B′} and {A,B ∪ B′} are in S′. First
note that it suffices to show that (A,B) ∈ τ implies (A ∪ A′, B′) ∈ τ : then
(A′, B′) ∈ τ follows from (A′, B′) ≤ (A ∪A′, B′) ∈ τ and the consistency of τ .

As (A,B ∪B′) ≤ (A,B) ∈ τ holds, we have (A,B ∪B′) ∈ τ by consistency.
Due to {(A,B ∪ B′), (B′, A ∪ A′)} ∈ T2 the only possibility for {A ∪ A′, B′} is
(A ∪A′, B′) ∈ τ as desired.

The next lemma is an analogue of [8, Lemma 2.2], and with a bit of extra
work we can mimic Diestel’s proof.

Lemma 5.6.3. Let τ ∈ Θ′ and X ⊆ X ′ ∈ X be given. Then

fX′,X(F(τ,X ′)) = F(τ,X).
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Proof. Set F = fX′,X(F(τ,X ′)) and note that this is in FX . We check two
cases:

First suppose that F = cX(C) holds for some C ∈ CX and let (A,B) ∈
→

S′

be such that A ∩ B = X and B \ A = V (C), i.e. (A,B) = sX→C . We wish
to show (A,B) ∈ τ , since then {C} ∈ F(τ,X) implies F(τ,X) = cX(C) = F
as desired. For this, set C′ = φ−1

X′,X({C}) and let (A′, B′) ∈
→

S′ be such that
A′ ∩ B′ = X ′ and B′ \ A′ = V [C′]. By choice of C′ we have {A′, B′} ∈ S′.
Now {C} ∈ F implies C′ ∈ F(τ,X ′) by definition of fX′,X , so in particular we
have (A′, B′) ∈ τ . By Lemma 5.6.1, {A,B} ∈ S′ implies {A,B ∪ X ′} ∈ S′.
Furthermore, (A,B ∪X ′) ≤ (A′, B′) holds since we have A′ = A∪X ′ and B′ =
B ∪X ′ by choice of C′. Hence (A′, B′) ∈ τ together with (A,B ∪X ′) ≤ (A′, B′)
implies (A,B ∪ X ′) ∈ τ by the consistency of τ . In particular, Lemma 5.6.2
implies (A,B) ∈ τ as desired.

Second suppose that F is of the form FX(Y ) for some Y ∈ crit(X), and
assume for a contradiction that F 6= F(τ,X). In particular, we find some

cofinite subset C of CX(Y ) with C /∈ F(τ,X). Let (A,B) ∈
→

S′ be such that
A ∩ B = X and B \ A = V [C]. We wish to show (A,B) ∈ τ , since then
C ∈ F(τ,X) yields a contradiction as desired. For this, set C′ = φ−1

X′,X(C)
and let (A′, B′) ∈

→
S be such that A′ ∩ B′ = X ′ and B′ \ A′ = V [C′]. Since

C′ is a cofinite subset of CX′(Y ), we have (A′, B′) ∈
→

S′. In particular, since
F(τ,X ′) = FX′(Y ) holds by definition of fX′,X , we also have (A′, B′) ∈ τ . By
Lemma 5.6.1, {A,B} ∈ S′ implies {A,B ∪ X ′} ∈ S′. As in the first case this
yields (A,B) ∈ τ as desired.

Theorem 5.6.4. The ℵ0-tangles of G with respect to S′ are precisely the limits
of the inverse system {FX , fX′,X}.

Proof. Define Φ: Θ′ → F by setting Ψ(τ) = (F(τ,X) |X ∈ X ) for every τ ∈ Θ′.
By Lemma 5.6.3 this is well-defined, and it is easy to see that Ψ is injective. It
remains to show that Ψ is surjective. For this, let any v = (FX |X ∈ X ) ∈ F be
given.

If FX is principal for all X, then v comes from an end ω of G. Furthermore,
ω induces an ℵ0-tangle τω of G with respect to S, and τω induces the element

τ ′ := τω ∩
→

S′ of Θ′. Clearly, Ψ sends τ ′ to v.
Otherwise Xv is non-empty. By Proposition 5.5.2, the map Ψ: U/� → F is

bijective, so there is some υ ∈ Υ with Ψ([υ]�) = v. Then υ corresponds to the

ℵ0-tangle τυ of G with respect to S, and Ψ sends τυ ∩
→

S′ to v.

5.7 FG as inverse limit

In section 4 we created an inverse system {Gγ , fγ′,γ ,Γ} whose inverse limit
describes the tangle compactification in that there exists a natural homeomor-
phism between 〈〈G〉〉 = lim←−(Gγ | γ ∈ Γ) and ϑG. In this chapter we define a
subset ∆ of Γ, and we show that lim←−(Gγ | γ ∈ ∆) describes FG.

For every X ∈ X let

P−X := {{C} |C ∈ C−X} =
{
{C} |C ∈ CX and N(C) /∈ crit(X)

}
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and let ∆ ⊆ Γ be the set of all (X,P ) ∈ Γ with P of the form

P−X ]
⊎

Y ∈crit(X)

PY (12)

where each PY is a cofinite partition of CX(Y ). Letting ∆ inherit the partial
ordering from (Γ,≤) yields a directed poset:

Lemma 5.7.1. (∆,≤ ∩∆2) is a directed poset.

Proof. Let any two (X,P ), (Y,Q) ∈ ∆ be given. Our task is to find some
(Z,R) ∈ Γ with (X,P ) ≤ (Z,R) and (Y,Q) ≤ (Z,R). Put Z = X ∪ Y and
suppose that P is of the form

P−X ]
⊎

K∈crit(X)

PK

with PK some cofinite partition of CX(K) for every K ∈ crit(X). For every
K ∈ crit(X) ⊆ crit(Z) set

P ′K = {C ∩ CZ | C ∈ PK} \ {∅}

(this is a cofinite partition of CZ(K)) and for every K ∈ crit(Z) \ crit(X) put
P ′K = {CZ(K)}. Then let

P ′ := P−Z ]
⊎

K∈crit(Z)

P ′K

and note that (Z,P ′) is an element of ∆. Define Q′ similarly. Then both P ′ and
Q′ include P−Z . For every K ∈ crit(Z) choose RK to be the coarsest partition
of CZ(K) refining both P ′K and Q′K , and note that RK is again cofinite. Let

R := P−Z ]
⊎

K∈crit(Z)

RK

Then (Z,R) ≥ (X,P ), (Y,Q) holds as desired.

If we recall the inverse system {Gγ , fγ′,γ ,Γ} from section 4, then obviously
the inverse limit lim←−(Gγ | γ ∈ ∆) should describe FG. But the elements of ∆
are rather complicated, while a much easier attempt seems possible: For every
X ∈ X write

PX = P−X ]
⊎

Y ∈crit(X)

{CX(Y )}

and consider the subset

∆′ := {(X,PX) |X ∈ X}

of ∆ which is also directed since (X,PX) ≤ (X ′,PX′) holds for all X ⊆ X ′ ∈ X .
Furthermore, we can show that

Lemma 5.7.2. ∆′ is cofinal in ∆.
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Proof. Let any (X,P ) ∈ ∆ be given where P is of the form (12). For every
element C of

⋃
{C ⊆ CX | ∃Y ∈ crit(X) : C ∈ PY is finite} =: D ⊆ CX

pick a vertex u(C) ∈ V (C). Set X ′ = X ] {u(C) |C ∈ D} which is finite. Then
(X ′,PX′) ≥ (X,P ) holds as desired.

Hence if lim←−(Gγ | γ ∈ ∆) describes FG, then so should lim←−(Gγ | γ ∈ ∆′) by

Lemma 2.2.8. But given X ∈ X and C ∈ CX\C−X it is not straightforward to con-
struct a γ ∈ ∆′ together with an open set in Gγ corresponding to OFG(X, {C})
(an approach similar to the idea of the proof of Lemma 5.7.2 works to derive γ
from (X,PX)). Hence if we want to put our inverse limit description to use, the
superior simplicity of ∆′ comes at the cost of ‘quality of life’. Since the whole
purpose of this inverse limit description is to increase our ‘quality of life’, we
take ∆ over ∆′, keeping in mind that ∆′ always is an option by Lemma 2.2.8.

Thus we set

〈|G|〉 = lim←−(Gγ | γ ∈ ∆).

It remains to show 〈|G|〉 ' FG. Since the definition of the fX′,X deviates from
that of the fX′,X too much, we cannot simply claim that mimicking the proof
of Theorem 4.3.1 will do, but neither do we wish to redo all of the work. Since
it is clear that a homeomorphism defined similarly to the one constructed in
the proof of Theorem 4.3.1 should do, we do not lose any insights when we use
Lemma 2.2.6 over an explicit construction.

For this, we define a continuous surjection σγ : FG → Gγ for every γ =
(X,P ) ∈ ∆ as follows: We let σγ map every vertex to the partition class of
p(X,P ) containing it. If j is an inner edge point of some edge e of G, then if
e is an edge of Gγ we let σγ(j) := j, and otherwise we let σγ map j to the
non-singleton partition class of p(X,P ) containing the endvertices of e. Finally
if v = (FX |X ∈ X ) is an element of F we let σγ assign V [C] to v where C is the
unique element of P ∩ FX .

If O is open in Hη for some η ∈ ∆, then we denote by O〈|G|〉(O, η) the set
〈|G|〉 ∩∏γ∈∆Oγ with Oγ = Gγ for all γ ∈ Γ− {η} and Oη = O.

Lemma 5.7.3. The maps σγ are compatible.

Proof. Let γ′ > γ be elements of ∆, and let ξ ∈ FG be given; we have to show

(fγ′,γ ◦ σγ′)(ξ) = σγ(ξ). (13)

This is clear for ξ ∈ G ∪ Ω, so we may assume that that ξ = (FZ |Z ∈ X ) is
an element of F \ Ω. Write (X ′, Q) = γ′, (X,P ) = γ, and let C′ and C be the
unique elements of Q∩FX′ and P ∩FX , respectively. By definition of fγ′,γ we
know that in order to verify (13) it suffices to show

V [C′] ⊆ V [C]. (14)

For this we check several cases:
First suppose that FX′ = FX′(Y ) holds for some Y ∈ crit(X ′). Then Q is

of the form

Q−X′ ]
⊎

K∈crit(X′)

QK
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where the QK are cofinite partitions of CX′(K) and C′ is the unique infinite
element of QY . If Y 6⊆ X holds, then FX = fX′,X(FX′) is of the form cX(C)
where C is the unique component of G − X including

⋃ CX′(Y ). Then C′ ⊆
CX′(Y ) and C ∈ cX(C) yield

V [C′] ⊆ V [CX′(Y )] ⊆ V (C) ⊆ V [C]

as desired. Otherwise Y ⊆ X implies FX = FX(Y ). We may assume that P
is of the form (12). In particular, C is the unique infinite element of PY . Since
C′ is cofinite in CX′(Y ) and CX′(Y ) is cofinite in CX(Y ) (Observation 3.3.1) we
know that C′ is cofinite in CX(Y ). Now some D ∈ PY satisfies V [D] ⊇ V [C′] due
to γ < γ′, and since C′ is cofinite in CX(Y ), the only possibility for D is D = C
as desired.

For the second case suppose that FX′ = cX′(C
′) holds for some component

C ′ of G −X ′. In particular C ′ is in C′ due to C′ ∈ FX′ . Let C be the unique
component of G − X including C ′. Then the definition of fX′,X yields FX =
cX(C), and C ∈ FX implies C ∈ C. Let D ∈ P be the partition class with
V [D] ⊇ V [C′] (which exists due to γ < γ′). In particular, D must contain C
since C′ does, so D ∈ FX follows. Assume for a contradiction that D and C
are distinct: then C and D are disjoint partition classes of P , so C ∈ D implies
C /∈ C contradicting C ∈ FX = cX(C). Hence D = C yields (14) as desired.

Lemma 5.7.4. The maps σγ are continuous.

Theorem 5.7.5. For every graph G we have FG ' 〈|G|〉.

Proof. Consider the map

Φ: FG→ lim←−(Gγ | γ ∈ ∆)

ξ 7→ (σγ(ξ) | γ ∈ ∆)

which clearly is injective. By Theorem 5.4.2 we know that FG is compact. Since
the σγ�G are surjective, so are the σγ . Hence by Lemmas 5.7.3 and 5.7.4 the σγ
form a compatible system of continuous surjections, and applying Lemma 2.2.6
yields that Φ is also a continuous surjection. It remains to verify that Φ−1 is
continuous. For this, let any point x of FG be given together with some basic
open neighbourhood O of x.

If x is in G we choose some X ∈ X such that x is contained in the 1-complex
of G[X], and set η = (X,PX). Then O is also a basic open neighbourhood of x
in Gη, so O〈|G|〉(O, η) = Φ−1[O] holds.

Otherwise x is an element of F and we check two subcases. First, if O is of the
form OFG(X, {C}) for some X ∈ X and C ∈ CX , then we let P be a partition of
CX such that {C} is a singleton partition class of P and (X,P ) ∈ ∆. Next, we
consider the basic open neighbourhood O′ := E̊(X,C)∪ {V (C)} of the dummy
vertex V (C) in Gη. Clearly, O〈|G|〉(O′, η) = Φ−1[O] holds as desired. For the
second subcase suppose that O is of the form OFG(X, C) for some X ∈ X with C
a cofinite subset of CX(K) for some K ∈ crit(X). Then we let P be a partition
of CX such that C is a partition class of P and (X,P ) ∈ ∆. Considering the
basic open neighbourhood O′ := E̊(X,

⋃ C)∪ {V [C]} of the dummy vertex V [C]
in Gη yields O〈|G|〉(O′, η) = Φ−1[O] as expected. Thus Φ−1 is continuous.
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Corollary 5.7.6. For every infinite graph G we have

FG ' 〈|G|〉 ' lim←−(Gγ | γ ∈ ∆′).

Proof. Combine Theorem 5.7.5 with Lemmas 2.2.8 and 5.7.2.

5.8 Outlook

Of course, finding meaningful graph theoretical reasons to consider C-systems
or F ' U/� is of highest interest. Since we have

lim←−(Gγ | γ ∈ ∆′) ' lim←−(Gγ | γ ∈ ∆) ' FG ' ϑG/�

it might be possible to show that the ℵ0-tangles of G w.r.t S′ induce precisely
the ℵ0-tangles of G w.r.t S′′, where S′′ is the set of all {A,B} ∈ S respecting
the finite partition PA∩B of CA∩B .

Finally, it remains to compare F and U in the wild. Since U is so much bigger
than F, it might be easier to get some generalisation of thins sums to work in a
modified version of ϑG than in a modified version of FG. On the other hand,
we might run into dependencies on certain models of ZFC.
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6 Auxiliary edges and tree-packing

In this chapter, G is always assumed to be connected.

6.1 Introduction

By now, the topological cycle space of locally finite graphs has been the subject
of extensive studies, but several problems are known to occur in straightforward
generalisations to arbitrary infinite graphs. For example consider the heavy edge
sets in the following three graphs:

Figure 6: Classical cycle space obstructions

All heavy edge sets can be obtained as thin sum of all the facial cycles of
their respective graphs, and hence should be elements of their cycle spaces. For
the top left graph, a solution is known: Identifying the end with its dominating
vertex yields a compact Hausdorff quotient G̃ of (G∪Ω,VTop) whose topology
is known as ITop. In this quotient, the ray actually converges to its dominating
vertex, as pictured below:

Studying this quotient proved rewarding, e.g. see [3] and [14]. For the
graph G on the bottom left of Fig. 6, however, (G̃, ITop) is not defined since
the relation we would use to yield G̃ no longer is transitive. Obviously, we
could fix this by taking the transitive closure of that relation, but this would
result in vertex identification, which we want to avoid at all cost. Finally,
consider the graph G on the right in Fig. 6. This graph has no end, and hence
VTop is Hausdorff, but not compact, and identifying the two vertices of infinite
degree does not change that. A space solving all our problems by using vertex
identification is already known: EG is compact Hausdorff, and many of the
theorems known for locally finite graphs admit easy generalisations to EG for
arbitrary infinite graphs (among these we find a working cycle space):
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Figure 7: A ray dominated by two vertices (left) and visualised in EG (right). I
expect the black edges and vertices to induce a TST for any sensible notion of
a TST.

Figure 8: A K2,ℵ0
(left) and visualised in EG (right). I expect the black edges

and vertices to induce a TST for any sensible notion of a TST.

This is possible thanks to the inverse limit //G// describing EG. But EG
has a huge downside: since it uses vertex identification, we lose the structure of
the graph. For an extreme example, consider the graph G from Fig. 9. Clearly,
this graph admits a very rich structure, e.g. its underlying binary tree plus the
edge ∅x yields an NST and in (G̃, ITop) we find an edge-less Hamilton circle
(see [11, Proposition 3.4 and Corollary 3.5]).32 But since no two of its vertices
are finitely separable, EG is just a hawaiian earring, and we may say that EG
takes the sledgehammer approach by sacrificing the structure of our graphs in
exchange for easy generalisations.

proof of the following lemma we exhibit such a graph, which is essentially
the graph of Figure 5 with x and y identified. See the start of Section 4 for
a formal definition of G̃ if desired.

Proposition 3.4 There exists a countable graph G satisfying (2) for which
G̃ contains a circle consisting only of vertices and ends.

Proof. Consider the binary tree T2 whose vertices are the finite 0–1 se-
quences and where each sequence is adjacent to its two one-digit extensions.
The ends of T2 correspond to the infinite 0–1 sequences, which we view
as binary expansions of the reals in [0, 1]. Our aim is to turn this Cantor
set into a copy of [0, 1] by identifying the pairs of ends that correspond to
the same rational q ∈ [0, 1], ie. by identifying every two ends of the form
s1000 . . . and s0111 . . . for some s ∈ T2. To achieve this identification, we
join the vertex s to every such pair of ends by a couple of fans, so that in G̃
these ends will both get identified with s, and hence with each other.

Formally, we join each finite sequence s ∈ T2 to all sequences of at least
|s| + 2 digits that begin with s1 and thereafter contain only 0s, and to all
sequences of at least |s| + 2 digits that begin with s0 and thereafter contain
only 1s. Finally, we add a new vertex x joined to all sequences consisting
only of 0s or only of 1s (Figure 6).

x

0

01 10
1100

1

0

Figure 6: A graph whose ends form a circle in the identification topology

Any two vertices of this graph G are separated by the finite vertex set
consisting of x and their common initial segments, so the graph satisfies (2).
It is easily checked that mapping 0 and 1 to x and every other element of
[0, 1] to its corresponding end or identified pair of ends is a homeomorphism
between [0, 1] with 0 and 1 identified and the set of all vertices and ends
in G̃ (after identification). �

11

Figure 9: A graph from [11, Fig. 6] admitting an edge-less Hamilton circle in
(G̃, ITop).

Let us have a look on the topologies considered so far from another perspec-
tive. Generally speaking, ITop approaches the generalisation problem ‘from

32This is one reason why the usage of ITop is commonly restricted to finitely separable
graphs.
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bottom up’ by using the straightforward generalisation VTop of the Freuden-
thal compactification—which is natural on locally finite graphs—on arbitrary
graphs, then fixing problems by moving on to a Hausdorff quotient and restric-
tion to a suitable class of graphs (which is still big enough to be of interest).

The tangle compactification on the other hand naturally extends the Freu-
denthal compactification to arbitrary infinite graphs in that it uses ℵ0-tangles to
compactify the 1-complex of G. Yet it seems like the tangle compactification is
not the ‘right setting’ for arbitrary infinite graphs: First of all, we recall from the
introduction of this work that a K2,ℵ0 admits some set of edges which we expect
to induce a TST of the tangle compactification, but which has no meaningful
acirclic and topologically connected superset. Second, Lemma 3.1.4 tells us that
arcs in the tangle compactification default to arcs in VG, i.e. the arcs avoid the
ultrafilter tangles. But it would be great if at least leanly structured countable
graphs would admit arc-connected circles and TSTs using ultrafilter tangles in
order to overcome the difficulties discussed earlier.

Therefore, we have two choices. First, we may stick to our definitions of cir-
cles and TSTs in terms of arcs while modifying the tangle compactification in
some way deemed natural. Second, we may adjust both the tangle compactifi-
cation and our definitions of circles and TSTs. Since our definitions of circles
and TSTs heavily rely on the unit interval while we do not impose any cardinal
bounds on our graphs, the second choice is more appealing.

If we modify the tangle compactification, we should see to it that the result-
ing space ΛG is both compact and Hausdorff: then ΛG is a continuum and the
field of continuum theory provides us with a useful tool box. But what could
ΛG look like? Of course, it should solve our earlier problems from Fig. 6. On
the other hand, it should admit a TST even for the graph G from Fig. 9. Here,
the obstruction in (G̃, ITop) is the existence of an edge-less Hamilton circle.
This circle does not look very ‘circle-like’ in that drawing, hence let us draw the
graph again, but this time we start with a circle in the plane (S1, say) and em-
bed the vertices of G into it discretely, as sketched in Fig. 10. Now the idea of a
circle consisting exactly of the vertices and ends of G appears much less incon-
venient, doesn’t it? Also, the (finite) cycles induced by the boundaries of the
inner faces seem to converge to S1 in some sense. Let us state this more clear:

For every n ∈ N denote by Cn the set of all (finite) cycles which are induced
by face boundaries of the drawing above, and which only meet V (G) in

⋃
k≤n 2k.

Then for every ε > 0 there is some N ∈ N such that the (finite) cycle Cn with
edge set

∑
E[CN ] is included in {x ∈ R2 | d2(x, 0) ∈ (1 − ε, 1]}. Also note that∑

E[
⋃
n∈N Cn] = ∅ holds.

This gives us a first hint: if we introduce some sort of limit edges, one between
every end of G and each of its dominating vertices, and if we embed these into
S1 appropriately (which is possible since we embedded V (G) discretely), then
the edge-less Hamilton circle is no longer edge-less. Furthermore, by the looks of
the drawing, it should not be a problem to define basic open neighbourhoods of
the inner edge points of these limit edges such that the sequence (

∑
E[Cn])n∈N

‘converges’ to our Hamilton circle induced by the limit edges. On top of that,
the obvious NST of G (the underlying T2 plus the edge x∅) now should induce
a TST, and the Hamilton circle minus one of its limit edges should be a TST.

But what about a K2,ℵ0
or graphs admitting ultrafilter tangles in general?

In case of G ' K2,ℵ0 , if we remember why the expected TST did not work
out, the problem informally amounted to the ultrafilter tangles not being ‘suffi-
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Figure 10: A sketch of the graph from Fig. 9 embedded into the plane with all
vertices lying on S1.

ciently connected’ to the two vertices of infinite degree. Furthermore, we cannot
meaningfully modify the topology of the tangle compactification of this graph
into a Hausdorff one without losing compactness. But if we join every ultra-
filter tangle υ of G to each vertex in Xυ via a limit edge, and if we generalise
the topology of the tangle compactification in an MTop-like way onto the new
space (treating inner limit edge points almost like tangles), then we obtain a
continuum.

Since the space ΛG is not that easy to work with, we dedicate this chapter
to a Hausdorff auxiliary space AG which in general is not compact, but whose
structure combinatorially captures the basic structure of ΛG. Informally, AG
is obtained from |G| with MTop by disjointly adding auxiliary (multi-)edges
between every end of G and each of its dominating vertices, and between any
two distinct vertices of the same critical vertex set (one for each critical vertex
set both are contained in). As basic open neighbourhoods of the inner edge
points of auxiliary edges we take the same ones as for inner edge points of edges
of G, and we carefully adjust the open neighbourhoods of other points to include
also half-open partial auxiliary edges.

As we have seen two times before, if we construct a TST in EG, then its inner
edge points do not induce a TST of ϑG, e.g. in a K2,ℵ0

the sole non-singleton
∼-class of ϑG (which consists of all ultrafilter tangles and the two vertices of
infinite degree; also recall ϑG/∼ = ϑ̃G ' EG) is totally disconnected in ϑG.
But in A(K2,ℵ0) that ∼-class minus the ultrafilter tangles plus the auxiliary
edge between its two vertices is arc-connected. As it turns out, between every
two distinct points x and y of V ∪ Ω there exists an auxiliary arc from x to
y if and only if x ∼ y, where an auxiliary arc simply is an arc in the closure
of the set of all auxiliary edges (see Sections 6.3 and 6.4). Interestingly, this
holds without any cardinality bounds imposed on the graph considered. Hence,
if we wish to prove a statement about the existence of certain structures in AG,
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then the following two step procedure might be worth a try: First, prove it for
EG using //G//. Second, ‘lift’ the obtained structures to AG by expanding the
non-trivial ∼-classes to something auxiliary arc-connected. For the rest of the
section, we carry out this procedure to prove a generalisation of tree-packing
(with the usual circle and TST definitions) for countable graphs, demonstrating
the synergy of the two spaces EG and AG.

For finite graphs, the so-called ‘tree packing’ is a fundamental theorem that
was proved by Nash-Williams and Tutte independently in 1961:

Theorem 6.1.1 ([7, Theorem 2.4.1]). The following are equivalent for all finite
multigraphs G and k ∈ N:

(i) G contains k edge-disjoint spanning trees.

(ii) G has at least k(|P | − 1) edges across any finite vertex partition P .

For infinite graphs, however, the naive generalisation fails. Indeed, let G be
a K2,ℵ0 whose vertices of infinite degree we denote by x and y. Furthermore,
we enumerate the other vertices of G − x − y as u0, u1, . . .. Now we show that
G satisfies (ii) for k = 2. For this, let P = {p0, . . . , p`} be any finite vertex
partition of G. If x and y are contained in different partition classes, with
x ∈ p0 say, then infinitely many edges leave p0 since there are infinitely many
disjoint paths from x to y in G, so (ii) holds. Otherwise x and y are contained
in the same partition class p0, say. If there are infinitely many of the un not
contained in p0, then again infinitely many edges leave p0, witnessing (ii). Hence
we may assume that p0 contains all but finitely many of the un. Then for every
i > 0 the partition class pi is a finite subset of {un |n ∈ N}, and every edge
leaving pi is incident with precisely one of x and y. Thus exactly 2|pi| many
edges leave pi. By choice of p0 the partition P has precisely

∑̀

i=1

2|pi| ≥
∑̀

i=1

2 = 2` = 2(|P | − 1)

many cross-edges, so again (ii) holds. This completes the verification of (ii) for
k = 2. But obviously, every spanning tree of G has degree 2 at some un. In
particular, every two spanning trees of G share an edge, so (i) fails as claimed.

The TSTs of known topologies on G (not relying on vertex-identification)
face the same problem, but AG does not:

Figure 11: The black edges (including the dashed auxiliary edges) form TSTs
of G ' K2,ℵ0

which are edge-disjoint on E(G).

Of course the two TSTs of AG depicted in Fig. 11 share an edge, but this
is not an edge of G, and clearly this is best possible for AG. Furthermore, the
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shared auxiliary edge indicates that its endvertices are in the same (infinitely
edge-connected) ∼-class, so both TSTs share an artificial edge which represents
infinite edge-connectivity.

6.2 The space AG

In this section, we formally define the topological space AG which makes use of
auxiliary edges.

For this, we let

E(Ω) := E(Ω(G)) := {uω |ω ∈ Ω(G), u ∈ ∆(ω)}
E(X ) := E(X (G)) :=

⋃

X∈crit(X )

[X]2 × {X}

E := E(G) := E(Ω) ∪ E(X )

and we let G be the multigraph on V (G)∪Ω(G) with edge set E(G)∪E where
every ({x, y}, X) ∈ E(X ) has endvertices x and y. The elements of E are referred
to as auxiliary edges. Unless stated otherwise, our standard notation such as X ,
CX and Ω still depends on G, not on G. Next, we obtain a topological space AG
with ground set the 1-complex of G by declaring as (basic) open the following
sets:

For inner edge points of G we take the usual basic open neighbourhoods.
For every vertex u of G and every ε ∈ (0, 1] we declare as open the star OG(u, ε)
of half-open intervals. Finally, for every X ∈ X , for each C ⊆ CX and for all
ε ∈ (0, 1] take

OAG(X, C, ε) := A(X, C) ∪ E̊G

(
X ∪⋃ C,A(X, C)

)
∪

⋃

ξ∈A(X,C)
OG(ξ, ε)

where

A(X, C) =
⋃ C ∪

⋃

C∈C
Ω(X,C).

(Informally, if C is of the form {C(X,ω)} for some end ω of G, then we may think
of OAG(X, C, ε) as Ĉε(X,ω) plus (possibly half-open partial) auxiliary edges.)
Using Corollary 3.3.6 it is easy to check that this really yields a topology. Similar
to Ĉε(X,ω) and Ĉ(X,ω), for every X ∈ X and ω ∈ Ω we write

Ĉε(X,ω) := OAG(X, {C(X,ω)}, ε)
Ĉ(X,ω) := Ĉ1(X,ω)

Observation 6.2.1. AG is Hausdorff.

Lemma 6.2.2. The finite cuts of G are finite cuts of G.

Proof. This follows from Theorem 3.3.5 and the fact that no finite cut separates
an end from any of its dominating vertices.

Lemma 6.2.3. Let X ∈ X be given together with a bipartition {C, C′} of
CX . Furthermore suppose that K is a connected subset of AG meeting both
OG(X, C, 1) and OG(X, C′, 1). Then K meets X.
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Proof. Otherwise {OAG(X, C, 1) , OAG(X, C′, 1)} induces an open bipartition of
K which is impossible.

The following Lemma basically restates the first part of the Jumping Arc
Lemma [7, Lemma 8.5.3 (i)] for AG. Hence, with Lemma 6.2.2 the proof is
analogue:

Lemma 6.2.4 (L). Let F be a finite cut of G with sides V1 and V2. Then

AG \ E̊(G) = V1
AG ] V2

AG

and no connected subset of AG \ F̊ meets both V1
AG

and V2
AG

.

An arc A ⊆ AG is called an auxiliary arc if A ⊆ E
AG

.

Lemma 6.2.5 (L).
⋃
E̊G(A) is dense in A for every arc A in AG.

Proof. First choose a homeomorphism σ : I→ A. We claim that
⋃
E̊G(A) = A.

Assume not for a contradiction. Then
⋃
E̊G(A) ( A since A is closed. Pick

some ξ ∈ A \⋃ E̊G(A) together with some basic open neighbourhood O of ξ in

AG which avoids
⋃
E̊G(A). It is impossible to find such a neighbourhood for

vertices of G or inner edge points of G, so ξ must be an end of G. Let I be
some basic open subset of I which σ maps to O. Then σ[I] ⊆ Ω(G) holds by the
previous argument. Hence it suffices to show that there is no arc living entirely
in Ω(G) to yield a contradiction:

Assume for a contradiction that there is an arc A′ ⊆ Ω(G) starting in ω and
ending in ω′, say. Pick some X ∈ X witnessing ω 6= ω′. Then A′ avoids X,
contradicting Observation 6.2.3.

If H = (V ′, E′) is a subgraph of G, then we write H = V ′∪ E̊′ for its closure
in AG. If a subspace Ξ of AG is of the form H and every ω ∈ V ′ \ V (G) is
incident with an auxiliary edge from E′, then we call Ξ a standard subspace

of AG and write E(Ξ) = E′. By Lemma 6.2.5 we have H = E̊′ if H is arc-
connected. An ATST of G is a uniquely arc-connected standard subspace of

AG including V (G). If A is an auxiliary arc-component of AG and Ξ = E̊′ ⊆ A
is a uniquely arc-connected standard subspace with E′ ⊆ E, then Ξ is called an
ATST of A. If T is an ATST of G or of an auxiliary arc-component of AG and
f is any edge in E(T ), then T − f̊ has precisely two arc-components T1 and
T2 and we write DTf for the fundamental cut of T (with respect to f) which
consists precisely of those edges of G with one endvertex in T1 and the other
in T2. A circle of AG is the image of a homeomorphic embedding of S1 into
AG. By Lemma 6.2.5 every circle of AG is a standard subspace of AG. If C is
a circle of AG, then E(C) is a circuit.

Observation 6.2.6. If T is an NST of G and T is the closure of T in AG, then
≤T naturally extends to an ordering ≤T of T . Furthermore, by Theorem 3.3.5,
all the sets Xυ and ∆(ω) ∪ {ω} (where υ ∈ Υ and ω ∈ Ω) form chains in ≤T .
Hence if f = ut is an edge of T with u <T t, then all edges of DTf (in particular

those of DTf ∩ E(G)) are incident with dueT .

Lemma 6.2.7 (L). Let G be a any graph and let T be an NST of G. Then the
closure of T in AG is a TST of G with respect to AG.
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Proof. Let T denote the closure of T in AG. Using normal rays it is straightfor-
ward to show that T is arc-connected, so assume for a contradiction that there
is some circle C ⊆ T . By Lemma 6.2.5 we may pick some edge f = ut of G
which C traverses. Without loss of generality we have u <T t since f is an edge
of the graph G by choice of C. Now consider the arc A := C \ f̊ . Since T is an
NST we know that DTf = EG(X,D ∪ Ω(X, {D})) where X := dueT ∈ X and
D := btcT . But then

{
OAG

(
X, {D}, 1/2

)
, OAG

(
X, CX \ {D}, 1

)
∪
⋃

x∈X
OG

(
x, 1/2

)}

induces an open bipartition of A since A ⊆ T \ f̊ ⊆ AG \ (D̊Tf ∪ E̊(G)).

6.3 Construction of auxiliary arcs

The aim of this section is to construct an auxiliary arc between any two dis-
tinct vertices of G which are not finitely separable. In order to do this, we will
approximate a topological path in E between the two vertices via a countable
linear ordering on some special set of vertices. Then we ‘fill in the gaps’ of that
linear ordering with inner edge points of auxiliary edges and ends of G, yield-
ing a topological path between the two vertices in E. Finally, since we cannot
guarantee injectivity at the ends of G, we involve general topology to obtain the
desired auxiliary arc.

Suppose that x and y are two distinct vertices of G with x ∼ y and denote
by P the set of all x-y paths in G. Every path P ∈ P naturally induces a linear
ordering ≤P on its vertex set with x <P y, and for each X ∈ X we denote by
≤XP the linear ordering on X ∩ V (P ) induced by ≤P . Furthermore, for every
X ∈ X we define a map ψX with domain P by letting

ψX(P ) := (X ∩ V (P ),≤XP )

for each P ∈ P. In addition, for every X ⊆ X ′ ∈ X we set up a function
ϕX′,X : im(ψX′)→ im(ψX) by letting

ϕX′,X((Y ′,≤′)) := (X ∩ Y ′,≤′ ∩ (X ∩ Y ′)2)

for every (Y ′,≤′) ∈ im(ψX′). Hence {im(ψX), ϕX′,X} is an inverse system and
the diagram

P im(ψX′)

im(ψX)

ψX′

ψX
ϕX′,X

is easily seen to commute.
Since x ∼ y holds, we inductively find some countably infinite subset Q of

P consisting of edge-disjoint x-y paths. For every X ∈ X we let LX be the set
of all L ∈ im(ψX) with ψ−1

X ({L}) ∩ Q infinite, i.e. L is in LX if and only if
ψX sends some infinitely many paths of Q to L. Then it is easy to check that
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{LX , ϕX′,X�LX′} is an inverse system. Clearly, every im(ψX) is finite, and so
is every im(ψX �Q). Hence all LX are non-empty by pigeon-hole principle, so
the Generalized Infinity Lemma (2.2.4) yields some

(LX |X ∈ X ) ∈ lim←−LX . (15)

Theorem 6.3.1. Let G be any graph, and let x and y be two distinct vertices
of G. Then x ∼ y if and only if there is some auxiliary arc from x to y.

Proof. The backward direction is immediate from Lemma 6.2.4.
For the forward direction suppose that x ∼ y holds and consider the family

from (15) constructed above. Write (LX ,≤X) = LX for every X ∈ X and put
V ∗ =

⋃
X∈X LX . By standard inverse limit arguments it is straightforward to

check that ≤ :=
⋃
X∈X ≤X is a linear ordering on V ∗ with least element x and

greatest element y. Since V ∗ is a subset of V [Q] and Q is countable, we know
that V ∗ is countable.

If V ∗ is finite, then x G···G y holds: Otherwise Corollary 3.2.5 yields some
Y ∈ X disjoint from V ∗ such that Y separates x and y in G − E(V ∗). Set
Z = V ∗ ∪ Y . Then we have LZ ∩ Y = ∅ since Y avoids V ∗. Pick some P ∈ Q
edge-disjoint from the finite set E(V ∗) with ψZ(P ) = LZ . Then P is an x–y
path which avoids both Y and E(V ∗), which is impossible since Y separates x
and y in G − E(V ∗). Hence x G···G y holds, so by Theorem 3.3.5 there exists
a path from x to y in G using only auxiliary edges. In particular, we find an
auxiliary arc from x to y.

Therefore, we may assume that V ∗ is infinite. Now consider the set

M := (V ∗ × {−1, 0, 1}) \ {(x,−1), (y, 1)}

and let � be the linear ordering on M induced by the lexicographic ordering
on V ∗×{−1, 0, 1}, where V ∗ is linearly ordered by ≤ and {−1, 0, 1} inherits its
ordering from Z. Since M is countable we find some order preserving injection
ιM : M ↪→ I∩Q with ιM ((x, 0)) = 0 and ιM ((y, 0)) = 1. Note that ιM [V ∗×{0}]
is discrete33 in I. Next define ιV ∗ : V ∗ ↪→ I ∩ Q by letting ιV ∗(u) := ιM ((u, 0))
for every u ∈ V ∗. Then the linear ordering on V ∗ inherited from I via ιV ∗

coincides with ≤. Furthermore, the image of ιV ∗ is discrete in I, so for every
u ∈ V ∗ we may pick some δu > 0 such that (ιV ∗(u) ± δu) meets the image of
ιV ∗ precisely in ιV ∗(u).

An h-blank (where h is some function into R) is a non-empty open interval
(a, b) ⊆ I \ im(h) with {a, b} ⊆ im(h) \ im(h). Clearly, any two h-blanks are
disjoint. Since every h-blank contains a rational number, there are only count-
ably many h-blanks, so we may consider some enumeration {Bn |n < θ} of all
ιV ∗ -blanks where θ ≤ ℵ0. Also note that every ιV ∗ -blank avoids (ιV ∗(u) ± δu)
for every u ∈ V ∗. In order to get rid of the ιV ∗ -blanks, define ι : V ∗ ↪→ Q as
follows: let ι(x) := 0 and for every other u ∈ V ∗ pick

ι(u) ∈
(
ιV ∗(u)−

∑{
b− a

∣∣∣n < θ,Bn = (a, b), b < ιV ∗(u)
}
± δu/2

)
∩Q.

Then the image of ι is again discrete by choice of δu/2. Furthermore ι is injective
and the ordering on V ′ inherited from I via ι coincides with ≤. By construction,

33i.e. every point in ιM [V ∗ × {0}] is isolated
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there are no ι-blanks. For ease of notation we that ι(y) = 1 holds. As before,
for every u ∈ V ∗ we pick some εu > 0 such that (ι(u)± εu) meets the image of
ι precisely in ι(u), e.g. set εu = δu/2. Let A := im(ι) \ im(ι) which is the set
of all accumulation points of the discrete image of ι in I. In order to obtain a
topological x–y path in E we need some more information about ι first:

Claim 1. Let u ∈ V ∗ be given and suppose that there is some t ∈ V ∗ such that
ι(u) < ι(t) and (ι(u), ι(t))∩ im(ι) = ∅. Then there is some υ ∈ U with u G υ G t.

Proof of the Claim. Assume not for a contradiction. Then by Lemma 3.2.4 we
find some Y ∈ X with u, t /∈ Y such that Y separates u and t in G − ut. Put
Z = {u, t} ∪ Y and pick some P ∈ Q with ut /∈ E(P ) and ψZ(P ) = LZ . Then
uPt meets Y in some vertex r. Hence r ∈ LZ implies r ∈ V ∗, but then P
witnesses u <Z r <Z t and thus ι(u) < ι(r) < ι(t), a contradiction. �

Claim 2. Let µ ∈ A be given together with a sequence (tn)n∈N in V ∗ such that
ι(tn)→ µ for n→∞. Then (tn)n∈N has a subsequence which converges to some
ω ∈ Ω(G) in AG.

Proof of the Claim. Without loss of generality we may assume that our sequence
satisfies µ < q(tn+1) < q(tn) for all n. Inductively we define Xn ∈ X and Pn ∈ Q
by letting

Xn := {tn+1} ∪
⋃

k<n

V (tk+1Pktk)

and picking some Pn ∈ Q with ψXn(Pn) = LXn , for every n ∈ N. Then
Qn := tn+1Pntn avoids all tk with k < n since otherwise Pn would witness
q(tn+1) < q(tk) < q(tn) for some k < n, which is impossible. Consider the
connected infinite subgraph H :=

⋃
n∈NQn of G. We claim that H is even

locally finite:
Assume not for a contradiction, witnessed by some vertex z of H of infinite

degree. This vertex is none of the tn since each Qn avoids all tk with k < n. Let
I ⊆ N be the infinite set of all n ∈ N with z ∈ Q̊n, and let i := min I. Then z
is in Xn for all n > i. Pick some m ∈ I with m > i. Then Pm contains z while
z ∈ Xm and ψXm(Pm) = LXm hold, so Pm witnesses z ∈ LXm ⊆ V ∗. But then
for every n ∈ I with n > m we know that z ∈ Q̊n implies ι(tn+1) < ι(z) < ι(tn),
which is impossible since I is infinite. Hence H is locally finite.

Therefore, since H is connected, infinite and locally finite, applying the Star-
Comb Lemma ([7, Lemma 8.2.2]) yields a comb with all teeth in {tn |n ∈ N}.
Let R be its spine, and let ω be the end of G containing R. Since every basic
open neighbourhood of ω in AG is of the form Ĉε(X,ω) for some X ∈ X , only
finitely many teeth of the comb can lie outside of this neighbourhood. Therefore,
the teeth of the comb form a subsequence of (tn)n∈N which converges to ω in
AG as desired. �

Claim 3. In the context of Claim 2, suppose that there is some u ∈ V ∗ with
ι(u) = λ < µ and (λ, µ] ∩ im(ι) = ∅. Then u dominates ω.

Proof of the Claim. Assume not for a contradiction, witnessed by some Z ∈ X .
Without loss of generality the whole sequence (tn)n∈N converges to ω in AG.

Pick N ∈ N such that tn ∈ Ĉ(Z, ω) holds for all n ≥ N . For every n ≥ N let
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Yn := {u, tn} ∪ Z and pick some Wn ∈ Q with ψYn(Wn) = LYn . Then uWntn
meets Z in some zn, so zn ∈ V ∗ and ι(u) < ι(zn) < ι(tn) follow. By pigeon-hole
principle we find some infinite J ⊆ N≥N with zn = zm =: z for all n,m ∈ J .
Then ι(u) < ι(z) < ι(tn) holds for all n ∈ J . Since J is infinite, this implies
ι(z) ∈ (λ, µ], a contradiction. Therefore, u dominates ω. �

Define σ : I→ AG as follows: On the image of ι we let σ(ι(u)) := u for every
u ∈ V ∗, so the diagram

V ∗ I

AG

ι

idV ∗
σ

commutes. Next we write the set I \ im(ι) as disjoint union
⊎
j∈J Ij of maximal

non-empty intervals Ij over some index set J . Let aj := inf Ij and bj := sup Ij
for all j ∈ J . We distinguish several cases (see Fig. 12 for an illustration):

aj = bj aj bj

aj bj aj bj

aj bj

(i) (iia)

(iib) (iii)

(iv)

Figure 12: The cases; red indicates elements of A.

(i) aj = bj , i.e. Ij = {aj} = {bj}

(iia) aj < bj with aj ∈ im(ι) and bj ∈ A, i.e. Ij = (aj , bj ]

(iib) aj < bj with aj ∈ A and bα ∈ im(ι), i.e. Ij = [aj , bj)

(iii) aj < bj with aj ∈ im(ι) and bα ∈ im(ι), i.e. Ij = (aj , bj)

There is no case (iv) covering ‘aj < bj with aj ∈ A and bj ∈ A, i.e. Ij = [aj , bj ]’
since there are no ι-blanks. Now given j ∈ J , we define σ�Ij as follows:

First we consider case (i), i.e. Ij is a singleton. Let aj take on the role of
µ in Claim 2 and pick an arbitrary sequence (tn)n∈N in V ∗ witnessing aj ∈ A,
so Claim 2 yields some ω ∈ Ω(G). Then we set σ(aj) = ω.

Next we consider case (iia), i.e. aj < bj with aj ∈ im(ι) and bj ∈ A.
We pick an arbitrary sequence (tn)n∈N in V ∗ witnessing bj ∈ A, so Claim 2
yields some ω ∈ Ω(G). Letting ι−1(aj) take on the role of u in Claim 3 yields
u ∈ ∆(ω). Hence we let σ � Ij be a homeomorphism onto the edge uω with
σ(bj) = ω. We treat Case (iib) analogously using the symmetric analogue of
Claim 3.

Finally we consider case (iii), i.e. aj < bj with aj ∈ im(ι) and bj ∈
im(ι). Letting ι−1(aj) and ι−1(bj) take on the roles of u and t from Claim 1,
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respectively, yields some υ ∈ U with u G υ G t. If υ is an end of G, then we
write ω = υ and note {u, t} ⊆ ∆(ω). Hence we pick some µ ∈ (aj + εu, bj − εt)
and let σ� [aj , µ] and σ� [µ, bj ] be homeomorphisms onto the edges uω and ωt,
respectively, such that σ(µ) = ω holds. Otherwise υ is an ultrafilter tangle
and we let σ� [aj , bj ] be a homeomorphism onto some auxiliary edge between
u and t such that σ(aj) = u and σ(bj) = t (such an auxiliary edge exists by
Theorem 3.3.5). This completes the definition of σ.

Note that V ∗ ⊆ im(σ) holds by construction. Due to the Claims used for
the definition of σ, proving that σ is well defined amounts to verifying that σ is
continuous, and we will need the continuity of σ in order to obtain an auxiliary
arc from im(σ). Hence, we verify that σ is continuous:

Claim 4. σ : I→ AG is continuous.

Proof of the Claim. Given µ ∈ I (without loss of generality µ ∈ I̊) and O some
basic open neighbourhood of σ(µ) in AG, we have to find some basic open
neighbourhood (a, b) ⊆ I of µ which σ maps to O.

If σ(µ) is a vertex u of G, then we find a suitable neighbourhood of µ included
in (µ ± εu). Else if σ(µ) is an inner edge point we are done, so finally suppose

that σ(µ) =: ω ∈ Ω(G). Thus O is of the form Ĉε(X,ω) for some X ∈ X and
ε > 0. If µ is not in A, then σ(µ) was defined in case (iii) for some j ∈ J , and
we find some suitable open neighbourhood of µ included in (aj , bj). Hence we
may assume that µ is in A. The rest of the proof is dedicated to this case.

Assume for a contradiction that for every n ∈ N there is some ξn ∈ (µ±1/n)
with σ(ξn) /∈ O. First, we obtain a sequence (ξ′n)n∈N from (ξn)n∈N with σ(ξ′n) ∈
V ∗ \O for all n and ξ′n → µ, as follows: Let any n ∈ N be given.

If σ(ξn) is a vertex of G, then we let ξ′n := ξn.
Else if σ(ξn) is an inner edge point of some auxiliary edge en, then we pick

ξ′n ∈ im(ι) such that σ(ξ′n) is an endvertex of en outside of O. For later use, we
let `n denote the length of the closed interval I containing ξn for which σ� I is
a homeomorphism onto the auxiliary edge en.

Finally suppose that σ(ξn) = ωn ∈ Ω \ O. We check two subcases: For
the first subcase suppose that ξn is not in A, so σ(ξn) was defined in case (iii)
for some jn ∈ J . Furthermore, ωn /∈ O implies that σ[Ijn ] avoids O. Let
u := σ(ajn) and t := σ(bjn). Then neither of u and t is in O, since otherwise
X would separate one of u and t from ωn, contradicting {u, t} ⊆ ∆(ωn). In
particular, µ is not in [ajn , bjn ]. If µ < ajn we let ξ′n := ajn , and ξ′n := bjn
otherwise. For the second subcase suppose that ξn is in A. Then by definition
of σ there is some sequence (tm)m∈N in V ∗ such that ι(tm) → ξn in I and
tm → ωn in AG for m → ∞. Since AG is Hausdorff and ωn 6= ω holds due to
ωn /∈ O, we find some M ∈ N such that tM /∈ O and ι(tM ) ∈ (µ± 1/n) (which
is possible due to ξn ∈ (µ± 1/n)). Thus we let ξ′n := ι(tM ). This completes the
subcase and the definition of the ξ′n.

We still have to verify that ξ′n → µ holds. For this, let I ⊆ N be the set of
all n ∈ N for which σ(ξn) is an inner edge point of G. Clearly, σ(µ) was defined
in one of the cases (i), (iia) and (iib) for some j ∈ J . If σ(µ) was defined in
case (i), i.e. with Ij = {µ}, then for every ε > 0 both intervals (µ − ε, µ) and
(µ, µ + ε) meet im(ι) and one easily checks that `n → 0 holds for n ∈ I and
n→∞. Therefore, |ξ′n − ξn| → 0 for n→∞ follows from the choice of the ξ′n.
Thus ξ′n → µ holds for n →∞. Else if σ(µ) was defined in case (iia), i.e. with
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aj ∈ im(ι) and bj = µ ∈ A, then for every ε > 0 the interval (µ, µ + ε) meets
im(ι), but the interval (aj , µ] does not. By construction, σ maps (aj , µ) to the
interior of the auxiliary-edge σ(aj)ω. Hence ξn → µ together with σ(ξn) /∈ O
implies that ξn > µ must hold for all but finitely many n, without loss of
generality for all n. But then one easily checks as before that |ξ′n − ξn| → 0
holds, and thus ξ′n → µ. Otherwise σ(µ) was defined in case (iib), which follows
from (iia) via symmetry, completing the proof of ξ′n → µ.

Therefore, (ξ′n)n∈N is a sequence in I with σ(ξ′n) ∈ V ∗ \ O for all n and
ξ′n → µ for n→∞. Applying Claim 2 to (σ(ξ′n))n∈N and µ yields a convergent
subsequence (σ(ξ′nk))k∈N with limit ω′ ∈ Ω(G). Since AG is Hausdorff, the fact
that no σ(ξ′nk) is in O implies ω′ 6= ω. Write rk = σ(ξ′nk) for all k ∈ N and
note that ι(rk) → µ holds for k → ∞ due to ι(rk) = ι(σ(ξ′nk)) = ξ′nk and
ξ′n → µ. Recall that Claim 2 was used in order to define σ(µ) = ω, so there is
a sequence (tn)n∈N in V ∗ with ι(tn) → µ in I and tn → ω in AG.34 Pick some

Z ∈ X witnessing ω 6= ω′, and choose some N ∈ N such that tn ∈ Ĉ(Z, ω) and

rn ∈ Ĉ(Z, ω′) hold for all n ≥ N . For every n ≥ N let Xn := {tn, rn} ∪ Z and
pick some Pn ∈ Q with ψXn(Pn) = LXn . Then Pn meets Z in some zn between
tn and rn (i.e. zn ∈ tnPnrn if tn < rn and zn ∈ rnPntn otherwise) which yields
zn ∈ LXn ⊆ V ∗, and furthermore

min{ι(rn), ι(tn)} < ι(zn) < max{ι(rn), ι(tn)}

Since Z is finite, by pigeon-hole principle we find some infinite J ⊆ N≥N with
zn = zm =: z for all n,m ∈ J . But then

min{ι(rn), ι(tn)} < ι(z) < max{ι(rn), ι(tn)}

holds for all n ∈ J , yielding ι(z) = µ since J is infinite and ι(rn)→ µ holds as
well as ι(tn)→ µ. Thus µ ∈ im(ι) contradicts µ ∈ A as desired. Therefore, σ is
continuous at µ. �

Since AG is Hausdorff, so is im(σ), and in particular im(σ) is also path-
connected. Hence im(σ) is arc-connected by Lemma 2.4.3, so we may let A be
an arc in im(σ) from x to y. Since A only traverses auxiliary edges, Lemma 6.2.5
implies A ⊆ E, so A is an auxiliary arc from x to y.

We involve Lemma 2.4.3 at the end of the proof since σ may fail to be
injective at ends. Indeed, consider the one-ended grid on 4 × N, and for each
k < 4 let Rk denote the ray with vertex set {k} × N. Then let G be obtained
from this grid by replacing every edge of every Rk and the egde {(1, 0), (2, 0)}
with a copy of a K2,ℵ0 (with the two vertices of infinite degree being identified
with the endvertices of the original egde).

34This is the convergent subsequence mentioned in the conclusion of Claim 2, not the
sequence of the same name mentioned in the premise of that claim.
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Figure 13: The auxiliary edges of G.

Then AG admits two topological (0, 0)–(3, 0) paths in E (see Fig. 13), and
only one of them is an auxiliary arc, while the other can be obtained as im(σ)
for certain choices of Q.

6.4 Basic properties of auxiliary arcs

Lemma 6.4.1. Let G be a any graph, let y be a vertex of G and (ξn)n∈N a
sequence of vertices of G with ξn → ω in AG for some end ω of G. Suppose
that for every n we have an auxiliary arc An from y to ξn. Then one of the
following holds:

(i) There is some k ∈ N such that Ak contains a vertex of G which is the
centre of an infinite star of auxiliary arcs included in the union of the An
with leaves in {ξn |n ∈ N}. In particular, that vertex dominates ω.

(ii) There is an auxiliary arc from y to ω included in {ω} ∪⋃n∈NAn.

In either case there exists an auxiliary arc A from y to ω. Moreover, if all of
the An are tame, then so is A.

Proof. The proof basically mimics two proofs from the lecture course while
taking care of new special cases. First, we prove the statement of the Lemma
minus the ‘Moreover’-part.

Inductively we define a function k : N−{0} → N together with an ascending
sequence W0 ⊆W1 ⊆ · · · of closed subsets of AG as follows: Let W0 := A0 and
suppose that we are at step n > 0 of the construction. Pick some σn : I → An
witnessing that An is an y–ξn auxiliary arc, with σn(0) = y and σn(1) = ξn,
and let λn ∈ I be maximal with σn(λn) ∈ Wn−1. Such a λn exists since Wn−1

is closed in AG and An meets y ∈ W0 ⊆ Wn−1. Write %n := σn(λn) and
A′n := σn[[λn, 1]]. Furthermore, let k(n) < n be minimal with %n ∈ A′k(n) and

let Wn := Wn−1 ∪A′n. This completes the definition of the Wn.
If there is some n with ω ∈ Wn we are done, so suppose ω /∈ ⋃n∈NWn and

consider the tree T := (N, {{n, k(n)} |n ≥ 1}). We check two main cases:
For the first main case, suppose that T is not locally finite, witnessed by

some vertex ` of infinite degree. Let `0 < `1 < · · · denote the ω-sequence of all
`n ∈ N which k sends to `. Since A′` is an arc, and hence sequentially compact,
the sequence (%`n)n∈N has a convergent subsequence (without loss of generality
the whole sequence) with limit point % ∈ A′`. Clearly, % is not an inner edge
point.
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First suppose that % is a vertex of G and consider any basic open neigh-
bourhood O of % in AG. Without loss of generality every %`n is contained in
this neighbourhood. Since A′` ∩ O is the union of two half open partial edges
at % and every A′`n meets A′` precisely in %`n , the only possibility for each %`n
is %`n = %. Hence for every n 6= m we have A′`n ∩ A′`m = {%}. Then % must
dominate ω: Assume not for a contradiction, so we find a witness X ∈ X of
% /∈ ∆(ω). Pick N ∈ N such that %`n ∈ Ĉ(X,ω) holds for all n ≥ N . Then all
A′`n with n ≥ N meet X by Lemma 6.2.3, so by pigeon-hole principle some two
of them meet the same vertex of X, a contradiction. Therefore, % must domi-
nate ω, so (i) holds. In particular, %ω ∪ A` admits an auxiliary arc from y to
ω.

Second suppose that % is an end ω′ of G and let X ∈ X witness ω′ 6= ω.
Furthermore let N ∈ N be big enough that %`n ∈ Ĉ(X,ω) holds for all n ≥ N .
Then every A′`n with n ≥ N meets X by Lemma 6.2.3, so by pigeon-hole
principle some two of them meet the same vertex of X, which is impossible.
Hence % cannot be an end. This completes the first main case.

For the second main case suppose that T is locally finite. Then by [7,
Proposition 8.2.1] there is some ray R = m0m1 . . . in T . Clearly, we can see to
it that m0 = 0. For every n ≥ 1 let In := [1− 1

n , 1− 1
n+1 ). Define σ : I→ AG

by letting σ� In traverse A′mn from %mn to %mn+1
, and set σ(1) = ω. Then σ

is continuous: It suffices to show continuity at 1, so consider some basic open
neighbourhood Ĉε(Z, ω) of ω in AG and pick N ′ ∈ N such that ξn ∈ Ĉε(Z, ω)
holds for all n ≥ N ′. Since Z is finite, Lemma 6.2.3 implies that only finitely
many A′mn with mn ≥ N ′ have points outside of Ĉε(Z, ω). Picking K ≥ N ′

bigger than these finitely many mn ensures that σ maps (1−1/K, 1] to Ĉε(Z, ω).
Hence σ defines a topological path from y to ω in AG. Since I is compact, AG
is Hausdorff and σ : I → AG is a continuous injection, it follows from general
topology that A := im(σ) is an arc (in particular: an auxiliary arc). Thus (ii)
holds and the second main case is complete.

For the ‘Moreover’-part, it remains to show that if all of the An are tame,
then so is A. Since this is clear for (i) we may assume that (ii) holds. Assume
for a contradiction that A is wild, witnessed by some infinite VQ ⊆ V (G)∩A on
which A induces the ordering of the rationals. If there is some n ∈ N such that
im(σ� In) meets VQ in two distinct vertices, then A′mn ⊆ Amn is wild, which is
impossible. Hence every im(σ� In) meets VQ in at most one point. But then 1
is the only accumulation point of σ−1[VQ] in I, a contradiction. Therefore, A is
tame as claimed.

Theorem 6.4.2. Let G be any graph, and let x and y be two distinct points of
V ∪ Ω. Then x ∼ y if and only if there exists an auxiliary arc in from x to y.

Proof. The backward direction holds by Lemma 6.2.4. For the forward direction
we check several cases:

If both x and y are vertices of G we are done by Theorem 6.3.1, so suppose
first that x ∈ V and y = ω ∈ Ω. If there is some t ∈ ∆(ω), then x ∼ ω ∼ t
implies x ∼ t. Hence we find an auxiliary arc from x to t which we may extend
to ω by adding the auxiliary edge tω.

Otherwise ∆(ω) is empty, so by Lemma 2.3.5 we find a sequence X0, X1, . . .
of non-empty elements of X such that for all n ∈ N the component C(Xn, ω) in-
cludes bothXn+1 and C(Xn+1, ω). In particular, the collection of all ĈϑG(Xn, ω)
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forms a countable neighbourhood basis of ω in ϑG. Since x does not dominate
ω we find some X ∈ X with x /∈ X ∪ C(X,ω), and we may choose N ∈ N big
enough that ĈϑG(XN , ω) ⊆ ĈϑG(X,ω).

Now for every n ≥ N we wish to find some vertex tn in C(Xn, ω) with x ∼ tn.
Hence consider an arbitrary n ≥ N and suppose for a contradiction that there
is some finite set of edges F which separates x from Xn in G−C(Xn, ω). Then
Xn ∪C(Xn, ω) is included in some component of G−F which does not contain
x, so x 6∼ ω is a contradiction. Therefore, no finite set of edges separates x from
Xn in G−C(Xn, ω). Proceeding inductively we find some infinitely many edge-
disjoint x–Xn paths in G−C(Xn, ω). By pigeon-hole principle, some infinitely
many of these paths agree on their endvertex in Xn in the same vertex, which
we choose to be tn. In particular, x ∼ tn holds.

Then for all n ≥ N by Theorem 6.3.1 we find some auxiliary arc An from
x to tn. Furthermore, the choice of the basic open neighbourhoods ĈϑG(Xn, ω)
implies tn → ω in ϑG. Applying Lemma 6.4.1 yields some auxiliary arc A from
x to ω.

Finally suppose that both x and y are ends of G, and write x = ω as well as
y = ω′. By Lemma 3.4.6 there is some vertex u of G in [ω]∼. Then ω ∼ u ∼ ω′
together with the previous case yields two auxiliary arcs, one from u to ω and
one from u to ω′, whose union yields an auxiliary arc from ω to ω′ as desired.

6.5 External ATSTs: Technical preliminaries

An ATST T of G is external if for every auxiliary arc-component A of AG the
space T ∩A is arc-connected (i.e. T ∩A is an ATST of A). The idea behind this
definition is that, if we want to obtain an ATST from a TST of EG by blowing
up its non-trivial points in EG \ E̊ to ATSTs of their respective auxiliary arc-
components of AG, then we hope for the result to be an ATST, and if it is then
of course it is an external one.

Corollary 6.5.1. Let G be a graph such that every end of G has a countable
neighbourhood basis in AG. Furthermore, let X ∈ X and let A be an auxiliary
arc-component of AG−X − E̊G(X,AG). Then A is closed.

Proof. Assume for a contradiction that there is some x ∈ A−A (with the closure
taken in AG). In order to yield a contradiction, we will find an auxiliary arc
from x to a point of A. Clearly, x must be an end of G, so we write ω = x. Let y
be an arbitrary point of A∩V (G). Using that ω has a countable neighbourhood
basis in AG we find a sequence (ξn)n∈N of points of (A∩V (G))−{y} such that
ξn → ω holds in AG. For every n we pick an arc An from y to ξn in A. In
particular, the An are auxiliary arcs. Hence Lemma 6.4.1 yields an auxiliary
arc from y to ω, a contradiction.

For every X ∈ X and C ⊆ CX we write

O∼ϑG(X, C) = OϑG(X, C)−⋃(X/∼)

Oϑ̃G(X, C) = O∼ϑG(X, C)/∼

and furthermore if ω is an end of G we write

Ĉϑ̃G(X,ω) = Oϑ̃G(X, {C(X,ω)}).
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Lemma 6.5.2. For every X ∈ X and C ⊆ CX the set Oϑ̃G(X, C) is an open

subset of ϑ̃G.

Proof. Since X is finite and ϑ̃G is Hausdorff, by Lemma 2.4.1 the set
⋃

(X/∼)
is a closed subset of ϑG. Thus O∼ϑG(X, C) is an open subset of ϑG. By Corol-
lary 3.4.7 it is closed under ∼.

Corollary 6.5.3. Let A be a connected subset of ϑ̃G. Furthermore, let X ∈ X
and C ⊆ CX be given such that A meets both Oϑ̃G(X, C) and Oϑ̃G(X, CX \ C).
Then A meets X/∼.

Lemma 6.5.4. Let A be an arc in ϑ̃G, witnessed by σ : I ↪→→A. Suppose that
K := σ(1) /∈ E̊ is an accumulation point of A \ E̊. Then there is some unique
ω ∈ K ∩Ω with A converging to ω in that for every X ∈ X there is some ε > 0
such that

σ[(1− ε, 1)] ⊆ Ĉϑ̃G(X,ω). (16)

Proof. We start by choosing a candidate for ω. For this, we claim that

Claim 1. For every X ∈ X there is some ε > 0 and some C ∈ CX such that

σ[(1− ε, 1)] ⊆ Oϑ̃G(X, {C})

Proof. Assume not for a contradiction, witnessed by some X ∈ X . Choose ε > 0
small enough that A′ := σ[(1− ε, 1)] avoids the finite set X/∼. Then

A′ ⊆ ϑ̃G− (X/∼) =
⊎

C∈CX
Oϑ̃G(X, {C})

holds by Lemmas 3.4.6 and 6.5.2. By assumption, A′ meets at least two sets
of the union on the right hand side, say for D 6= D′ ∈ CX . But then by
Corollary 6.5.3 we know that A′ meets X/∼, a contradiction. �

Mapping every X ∈ X to the unique C ∈ CX from the claim above yields
a direction of G, and hence an end ω of G. In particular, for every X ∈ X
there is some ε > 0 such that ω satisfies (16). Moreover, ω is unique in Ω with
this property. It remains to show ω ∈ K, so assume not for a contradiction
and pick some finite cut F of G witnessing this. Since this F induces an open
neighbourhood of K in ϑ̃G there is some δ > 0 such that σ[(1−δ, 1)] is included
in this neighbourhood. For X = V [F ] this contradicts (16).

Lemma 6.5.5 (Arc Lifting). Let G be a countable connected graph. Suppose
that for every non-singleton auxiliary arc-component A of AG there is some
ATST TA of A, and let A be an arc in ϑ̃G witnessed by σ : I ↪→→A. Furthermore
let x ∈ σ(0) ⊆ ϑG and y ∈ σ(1) ⊆ ϑG be given. Then there exists an arc A′ in

AG from x to y such that (A′− E̊)/∼ = A and for every non-singleton auxiliary
arc-component A of AG exactly one of the following holds:

(i) |A′ ∩ A| ≤ 1;

(ii) A′ ∩ A is an arc in TA.
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Proof. We do not use Theorem 2.2.9 here since this would require us to ‘mix’
the spaces AG and ϑ̃G.

Let Â be the set of all non-singleton auxiliary arc-components of AG meeting⋃
(A\E̊). By Lemma 3.4.6 this set is countable since V (G) is countable. Let σ̄ be

the function with domain I which sends every i ∈ I to σ(i) \Υ. Denote by I the
set of all i ∈ I which σ̄ sends to a subset of some element of Â. For every A ∈ Â
we let iA be the unique point of I with σ̄(iA) ⊆ A. Then I := {iA | A ∈ Â} is
a countable set. Conversely, for each i ∈ I we denote by Ai the unique A ∈ Â
with iA = i. Write I− for the set of all i ∈ I which are accumulation points of
I∩[0, i), and I+ for the set of all i ∈ I which are accumulation points of I∩(i, 1].
For every i ∈ I we define points xi and yi in Ai as follows: If i ∈ I− then we let
xi be the end of G given by Lemma 6.5.4. Else if i = 0 we set xi = x. Otherwise
there is some edge e of G and some ε > 0 such that σ[(i − ε, i)] = e̊, and we
let xi be the endvertex of e in Ai. Similarly, we define yi (with the case ‘i = 0’
replaced by ‘i = 1’). Let J := {i ∈ I |xi 6= yi} and choose some ` : J → R>0

with
∑
i∈J `(i) = 1. For every i ∈ J we let Ai be the unique arc in TAi from xi

to yi and we let σi : [0, `(i)]→ Ai be a parametrisation of Ai. Let

φ : I→ [0, 2], i 7→ i+
∑

j∈J
j<i

`(j)

and recall that for every λ ∈ [0, 2] \ φ[I \ J ] there is some jλ ∈ J with jλ < λ
and

λ ∈ [φ(jλ), φ(jλ) + `(jλ)]

by Lemma 2.4.18. Now we are ready to define a mapping ψ : [0, 2]→ AG whose
image we will take as A′. For this, let λ ∈ [0, 2] be given, and suppose for the
first main case that there is some i ∈ I\J with φ(i) = λ. If σ̄(i) is an inner edge
point, we put ψ(λ) = σ(i). Else if σ̄ sends i to a singleton subset {ξ} of ϑG \ E̊,
we set ψ(λ) = ξ (note that we have ξ ∈ V ∪ Ω by definition of σ̄). Otherwise i
is contained in I \ J and we set ψ(λ) = xi = yi. This completes the first main
case.

For the second main case suppose that λ is not in φ[I \ J ]. Thus

λ ∈ [φ(jλ), φ(jλ) + `(jλ)]

and we put

ψ(λ) = σjλ(λ− φ(jλ)) ∈ Ajλ ,

completing the second main case and thus the definition of ψ. Clearly, ψ is
injective, and for every j ∈ J the restriction

ψ� [φ(j), φ(j) + `(j)]

parametrises Aj .
Put A′ = im(ψ). In order to verify that A′ is the desired arc, it suffices to

show that ψ is a continuous injection since [0, 2] is compact and AG is Hausdorff.
For this, let an arbitrary λ ∈ [0, 2] be given. Clearly, we may assume that ψ(λ)
is an end of G, so we write ω = ψ(λ). Consider any basic open neighbourhood
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O = Ĉ(X,ω) of ω in AG. We have to find an open neighbourhood of λ in [0, 2]
which ψ maps to O.

If we have ω ∈ Åj for some j ∈ J we are done by the continuity of σj .
Else if ω ∈ {xj , yj} for some j ∈ J , say ω = xj , then by choice of xj there is

some ε > 0 such that (16) holds, and hence ψ maps (φ(j−ε), φ(j)] = (φ(j−ε), λ]
to O. Using the continuity of σj yields some δ > 0 such that ψ sends the open
interval (λ− ε, λ+ δ) to O as desired.

Else if ω = xi = yi for some i ∈ I \ J there is some ε > 0 such that (16)
symmetrically holds for both sides, and hence ψ sends (φ(j − ε), φ(j + ε)) to O.

Finally if {ω} is a singleton auxiliary arc-component of AG meeting
⋃

(A\E̊),
then let i be the point of I which σ maps to {ω} (Theorem 6.4.2 and Lemma 3.4.6
yield [ω]∼ = {ω}). Now we use the continuity of σ to find some ε > 0 such that
σ sends (i±ε) to Ĉϑ̃G(X,ω). Then ψ sends (φ(i−ε), φ(i+ε)) to O as desired.

Lemma 6.5.6. Let A be an auxiliary arc-component of AG and let u0, u1, . . .
be an enumeration of A ∩ V (G). For every n ∈ N write Xn = {uk | k < n} and

An = A−Xn − E̊G(Xn,A).

Let some N ∈ N be given, and let (xn)n≥N be an ω-sequence of arc-components
xn of An with xn ⊇ xn+1 for all n ≥ N . Then there exists an end ω of G such
that

⋂
n≥N xn = {ω}.

Proof. The set {xn |n ≥ N} trivially has the finite intersection property. For
every n ≥ N set yn = xn \ E̊(G) and let zn be the closure of yn in ϑG. Since the
set {yn |n ≥ N} also has the finite intersection property, so does {zn |n ≥ N}.
Using that ϑG is compact hence yields some ξ ∈ ζ :=

⋂
n≥N zn.

First we show ζ ⊆ Ω(G). Clearly, ζ avoids G, so suppose for a contradiction
that there is some υ in Υ ∩ ζ. If Xυ meets A, then Xυ ⊆ A and we may let
M ∈ N be big enough that Xυ ⊆ XM . Then due to Lemma 6.2.3 there is
some component C of G−XM with xM ⊆ OAG(XM , {C}, 1), and hence yM ⊆
OϑG(XM , {C}). Therefore, OϑG(XM , CXM −{C}) is an open neighbourhood of
υ avoiding yM , yielding υ /∈ zM , a contradiction. Else if Xυ avoids A, then by
Theorem 6.4.2 there is a finite cut F of G with sides A and B separating Xυ from
A. Put X = V [F ] and let {C, C′} be a bipartition of CX respecting the sides of F ,
i.e. with V [C] ⊆ A and V [C′] ⊆ B. Without loss of generality we have Xυ ⊆ A.
Then υ ∈ OϑG(X, C), since otherwise OϑG(X, C′) is basic open neighbourhood
of υ which sends no edges to Xυ, contradicting Lemma 3.2.1. Hence OϑG(X, C)
is an open neighbourhood of υ avoiding A\ E̊(G) = y0, resulting in υ /∈ z0 ⊇ ζ,
a contradiction. Hence ζ ⊆ Ω(G) holds as claimed.

Finally, we show that ζ is a singleton: Assume not for a contradiction, so we
find two distinct ends ω and ω′ of G in ζ. Let X ∈ X be a witness of ω 6= ω′ and
let K be big enough that X ∩ A ⊆ XK . Then due to Lemma 6.2.3 the ends ω
and ω′ are contained in distinct auxiliary arc components of AK , contradicting
ζ ⊆ xK . Hence ζ is a singleton subset of Ω(G).
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6.6 ATSTs of auxiliary arc-components

Theorem 6.6.1. If G is a countable graph, then every auxiliary arc-component
of AG has an ATST.

Proof. The proof starts with the essential idea of a proof from the lecture course.
Let A be any non-singleton auxiliary arc-component of AG. If A ∩ V (G)

is finite, then any spanning tree of A ⊆ G will do, so we may assume that
A ∩ V (G) is infinite. Pick an enumeration u0, u1, . . . of A ∩ V (G) and write
Xn = {uk | k < n} for every n ∈ N. Furthermore, for every n we write

An = A−Xn − E̊G(Xn,A),

and we let the set Vn consist of all singleton subsets ofXn and all arc-components
of An. Then we let Hn be the multigraph on Vn whose edges are the cross-edges
of Vn with respect to G−E(G). For each n we denote by Nn the arc-component
of An containing un (which is in Xn+1 \ Xn by definition). Hence Vn can be
obtained from Vn−1 by discarding Nn−1 and adding {un−1} as well as the arc-
components of

Kn−1 := Nn−1 − un−1 − E̊G(un−1,Nn−1).

Next, we inductively construct spanning trees Tn of the Hn, starting with
the spanning tree T0 = ({A}, ∅) of H0 = ({A}, ∅). For the induction step,
informally we obtain Tn from Tn−1 by expanding the vertex Nn−1 of Tn−1 to a
star in Hn with centre {un−1} and leaves the arc-components of Kn−1. Formally,
we proceed as follows: Let T ′n be the subgraph of Hn whose 1-complex coincides

with E̊(Tn−1) where the closure is taken in the 1-complex of Hn (i.e. T ′n is the
subgraph of Hn induced by the inner edge points of Tn). Then we let Tn be
the union of T ′n and an arbitrary spanning star of Hn[Vn \ Vn−1] (recall that
Vn \ Vn−1 is the set consisting of {un−1} and the arc-components of Kn−1). It
is easy to see that Tn is a spanning tree of Hn. Note that, by construction, for
every n we have that every {u} ⊆ Xn sends to each arc-component of An at
most one edge of Tn. As a consequence, every arc-component of An has finite
degree in Tn.

Finally, we let

T :=
⋃

n∈N
E̊(Tn)

AG

which will turn out to be our desired ATST of G. The rest of the proof is
dedicated to a formal verification. By definition, T is a standard subspace of
AG. First, we show that T is ‘spanning’:

Claim 1. If K is an auxiliary arc component of An for some n then either K
meets V (G) or K = {ω} for some ω ∈ Ω.

Proof of the Claim. If K avoids V (G) then K also avoids E̊, so K ⊆ Ω. Then
K must be a singleton: Otherwise there is some ω′ ∈ K − {ω}. Pick a witness
X ∈ X of ω 6= ω′. Then K meets X by Lemma 6.2.3, a contradiction. �

Claim 2. A ∩ V (G) ⊆ T .
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Proof of the Claim. By construction we have A∩V (G) ⊆ T . Let any ω ∈ A∩Ω
be given; we have to show ω ∈ T .

If for every n ∈ N the auxiliary arc-component Wn of An containing ω
meets A ∩ V (G) we have ω ∈ A ∩ V (G): Indeed, consider any basic open

neighbourhood Ĉε(X,ω) of ω in AG and pick N ∈ N big enough such that

X ∩ A ⊆ XN . Then WN ⊆ Ĉε(X,ω) by Lemma 6.2.3. Due to our assumption

we know that WN ⊆ Ĉε(X,ω) meets A ∩ V (G). Hence ω ∈ A ∩ V (G) holds.
Since T is closed and A ∩ V (G) ⊆ T we also have ω ∈ A ∩ V (G) ⊆ T .

Otherwise there is some Wn which avoids A ∩ V (G) and hence V (G). By
Claim 1 we have Wn = {ω}, so Tn includes the interior of an auxiliary-edge e
from Xn to ω and e̊ ⊆ T witnesses ω ∈ T . �

Thus T is ‘spanning’. Next, we show that T is arc-connected:

Claim 3. For every i < j there exists an arc from ui to uj in T .

Proof of the Claim. For every n ≥ j there exists a unique path Pn ⊆ Tn from
ui to uj . Let An be an arc traversing Pn (i.e. formally An is the 1-complex of
the graph Pn). For every n > j we define fn : An → An−1 as follows: If ξ ∈ An
is a point of Pn which is also a point of Pn−1 we put fn(ξ) := ξ. Else if ξ is not
a point of Pn−1, then ξ formally is one of the following:

(i) the singleton {un−1} ⊆ Xn \Xn−1;

(ii) an inner edge point of an auxiliary edge from un−1 to an arc-component
of Kn−1;

(iii) an arc-component of Kn−1.

In either case we let fn map ξ to Nn−1, which formally is a point of Pn−1.
Note that f−1

n (Nn−1) is a connected subset of (the 1-complex of) Pn and fn
is a continuous surjection. The arcs An together with the maps fn form an
inverse sequence {An, fn,N≥j} whose inverse limit A := lim←−An is an arc by
Theorem 2.2.9. We have to translate this arc into an auxiliary arc.

For this, we define ϕ : A → A as follows: Let any x = (xn |n ≥ j) ∈ A be
given. If there is some N ≥ j such that xN is an inner edge point, then we put
ϕ(x) = xN . Else if there are some naturals N ≥ j and ` such that xN = {u`},
then we put ϕ(x) = u`. Both cases are well defined by definition of the fn. For
the final case suppose that xn is an auxiliary arc-component of An for every
n ≥ j. Then xn ⊇ xn+1 holds for all n ≥ j by definition of the bonding maps
and we set ϕ(x) = ω for the end ω of G with

⋂
n≥j xn = {ω} which exists by

Lemma 6.5.6. This completes the definition of ϕ.
Let σ : I → A witness that A is an arc. In order to show that A′ := im(ϕ)

is an arc it suffices to show that ψ := ϕ ◦ σ : I → A′ is a continuous injection
since I is compact and A′ ⊆ AG is Hausdorff. Clearly, ψ is injective. Since σ is
continuous, it suffices to show that ϕ is continuous. For this, let x = (xn |n ≥ j)
be any point of A and let O be any basic open neighbourhood of ϕ(x) in AG.

If there exists some N ≥ j such that xN is not an arc-component of AN ,
then O easily translates into an open neighbourhood W of xN in AN . Letting
Wn := An for all n ≥ j with n 6= N and WN := W results in the desired open
neighbourhood A ∩∏n≥jWn of x.
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Otherwise for every n ≥ j the point xn is an arc-component of An, and ϕ(x)

is an end ω of G by construction. In particular, O is of the form Ĉε(X,ω) for
some X ∈ X . Let N ≥ j be big enough that X ∩ A ⊆ XN . Then Lemma 6.2.3
implies xN ⊆ Ĉε(X,ω). Recall that xN is a vertex of the path PN . Due to
N ≥ j > i there exist two distinct auxiliary edges e and e′ such that e̊∪{xN}∪ e̊′
is a homeomorphic copy of (0, 1) in AN . Clearly, this set includes an open

neighbourhood W of xN in AN such that W − {xN} ⊆ Ĉε(X,ω) holds. In
particular, letting Wn := An for all n ≥ j with n 6= N and WN := W results in
an open neighbourhood A ∩∏n≥jWn of x which ϕ sends to O. �

Claim 4. If A is an arc in A which meets two distinct auxiliary arc-components
of An, then A meets Xn.

Proof of the Claim. If not, then A also avoids Xn ∪ E̊G(Xn,A). Hence there
exists a unique arc-component of An including A, a contradiction. �

Claim 5. For every n and every arc-component K of An: if A is an arc in A
meeting K and A \ K, then A meets E̊(Xn,K).

Proof of the Claim. Let σ : I → A be a parametrisation of A, without loss of
generality with σ(0) ∈ K and σ(1) ∈ A−K−E̊(Xn,K). Since K is a closed subset
of AG by Lemma 6.5.1 there is a maximal λ ∈ I with σ(λ) ∈ K. By Claim 4 we
know that σ[[λ, 1]] meets Xn, so since Xn is finite there is some minimal µ > λ
with σ(µ) ∈ Xn. Again by Claim 4 and by choice of both λ and µ we know

that σ[(λ, µ)] avoids An. Hence σ[(λ, µ)] is a connected subset of E̊(Xn,A).
In particular, there is an auxiliary edge e in E(Xn,A) with e̊ ⊇ σ[(λ, µ)], so
e = σ[[λ, µ]] follows. Write e = xy with x ∈ A and y ∈ Xn. Due to σ(λ) ∈ K,
the only possibility for x and y is x = σ(λ) and y = σ(µ). Therefore, we have
e ∈ E(Xn,K) as desired. �

Claim 6. For every end ω of G in A there exists an arc from ω to u0 in T .

Proof of the Claim. We check two main cases.
For the first main case suppose that for every n the auxiliary arc-component

Wn of An containing ω meets V (G) in some tn. Then we use Claim 3 to find
an auxiliary arc An from u0 to tn in T for every n. We have tn → ω in AG:
Consider any basic open neighbourhood Ĉε(X,ω) of ω in AG and let N ∈ N
be big enough that X ∩ A ⊆ XN . Then Lemma 6.2.3 yields WN ⊆ Ĉε(X,ω)

which implies tn ∈ Ĉε(X,ω) for all n ≥ N . If Lemma 6.4.1 yields an auxiliary
arc from u0 to ω included in {ω} ∪⋃n∈NAn ⊆ T then we are done. Otherwise
Lemma 6.4.1 yields some k ∈ N and a vertex u` on Ak which is the centre
of an infinite star of auxiliary arcs included in

⋃
n∈NAn and with leaves in

{tn |n ∈ N}. But then Claim 5 applied to the infinitely many arcs from u to
the tn in that fan implies that W` is a vertex of H` with infinite degree in T`,
which is impossible (as argued at the end of the construction of the trees Tn).

For the second main case suppose that there is some N such thatWN avoids
V (G). Then WN = {ω} holds by Claim 1, so TN includes the interior of some
auxiliary edge from some u ∈ XN to ω. If u = u0 we are done. Otherwise, by
Claim 3 there is an auxiliary arc from u0 to u in T , which uω extends to an
auxiliary arc from u0 to ω in T . �

Thus, T is arc-connected.
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Claim 7. T is acirclic.

Proof of the Claim. Suppose for a contradiction that T contains a circle C. By
Lemma 6.2.5 we know that C traverses an auxiliary-edge, so in particular C
contains a vertex of G. Let N ∈ N be minimal with uN ∈ C. Then C − uN
avoids XN+1. Let e be an auxiliary edge at uN which C traverses, and let K
be the auxiliary arc-component of AN+1 containing the other endvertex of e
(which exists by choice of N). Now consider the arc A := C − e̊ ⊆ T . Since A
meets both XN+1 and K, Claim 5 together with the choice of N yields that A
traverses some e′ ∈ E(uN ,K)−{e}. But then we have e̊∪ e̊′ ⊆ TN+1, i.e. TN+1

has two parallel edges, contradicting the fact that TN+1 is a spanning tree of
HN+1. �

This completes the proof that T is an ATST of A.

6.7 Tree-packing

A circle in EG is a homeomorphic copy of the unit circle. If H = (V ′, E′)
is a subgraph of G, then the closure of (V ′/∼E) ∪ E̊′ in EG where ∼E is the
equivalence class used to obtain EG from E ′G = G ∪ Ω′ (cf. Section 2.5) is
said to be a standard subspace of EG. Clearly, every circle in EG is a standard
subspace. A standard subspace of EG is said to be spanning if it includes EG\E̊.
A topological spanning tree (TST) of EG is a uniquely arc-connected spanning
standard subspace of EG. These definitions are equivalent to those of Miraftab
[20, Chapter 5].35

Lemma 6.7.1 ([20, Lemma 22]). Suppose that G is a countable connected graph.
A standard subspace Ξ of EG is arc-connected if and only if Ξ contains an edge
from every finite cut of G of which it meets both sides (taken in EG).

Lemma 6.7.2. Suppose that G is a countable connected graph. If for every
finite partition of V (G), into ` sets say, G has at least k(`−1) cross-edges, then
EG has k edge-disjoint arc-connected spanning standard subspaces.

Proof. This easily follows from mimicking the proof of [7, Lemma 8.5.8] where
we replace

(i) the Gn by the G.F from the inverse system {G.F, fF ′,F , E},

(ii) [7, Lemma 8.5.5] by Lemma 6.7.1,

(iii) [7, Lemma 8.1.2] by Lemma 2.2.4,

and finally use Lemma 3.4.11 for lim←−(G.F |F ∈ E) = //G// ' EG.

The following Lemma can be proved analogously to [7, Lemma 8.5.9] (with
[7, Lemma 8.5.5] replaced by Lemma 6.7.1 in the proof):

Lemma 6.7.3 (L). Suppose that G is a countable connected graph. Then every
connected spanning standard subspace of EG includes a TST of EG.

35Note that Miraftab writes (G̃, Itop) for (EG,ETop).
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Theorem 6.7.4. Let G be a countable connected graph.36 Then the following
are equivalent for all k ∈ N:

(i) G has k external ATSTs which are edge-disjoint on E(G).

(ii) G has at least k(|P | − 1) edges across any finite vertex partition P .

Proof. (i)→(ii). Using Lemma 6.2.4 this holds by the same argumentation as
in the proof of [7, Theorem 8.5.7].

(ii)→(i). For this proof we treat EG ' ϑ̃G as EG = ϑ̃G (recall Theo-
rem 3.4.14). Applying Lemmas 6.7.2 and 6.7.3 yields k edge-disjoint TSTs
T̃1, . . . , T̃k of EG. Let Â be the set of all non-singleton auxiliary arc-components
of AG. For every A ∈ Â we apply Theorem 6.6.1 to find an ATST TA of A,
and for each i ∈ [k] we set

T̂i = E̊
(
T̃i
) AG

∪
⋃

A∈Â

TA

Then every T̂i is acirclic: Assume not for a contradiction, witnessed by some
circle C ⊆ T̂i.

If E(C) avoids all finite cuts of G, then C being connected together with
Lemma 6.2.4 yields C ⊆ TA for some A ∈ Â, which is impossible.

Otherwise E(C) meets some finite cut F of G in some edge e. Then A :=

C − e̊ is an arc in T̂i − e̊. By Lemma 6.2.4 we know that (A \ E̊)/∼ satisfies the
premise of Lemma 6.7.1, so T̃i − e̊ is still connected which is impossible. Thus
Ti is acirclic.

Furthermore, every Ti is arc-connected: For this, let any two distinct points
x and y of AG be given (without loss of generality none of x and y is in E̊(G)).
If x ∼ y, then by Theorem 6.4.2 there is some A ∈ Â containing x and y, so
we find an arc from x to y in TA and hence in T̂i. Otherwise x 6∼ y holds, and
we let A be an arc in T̃i from [x]∼ to [y]∼. Then Lemma 6.5.5 lifts A to an arc
from x to y in T̂i.

Corollary 6.7.5. Every countable connected graph has an ATST.

6.8 Outlook: limit thin sums

While we managed to construct auxiliary arcs without imposing any cardinality
bounds on G, we proved tree-packing only for countable connected G. On the
one hand, this is needed for the Arc Lifting Lemma (6.5.5) to work. But on the
other hand we used it to obtain ATSTs of auxiliary arc-components of AG, and
we would like to know whether these exist for arbitrary G, too. Also, we would
like to know whether there is a connection to dendrites.

There exist various obstructions to naive generalisations of thins sums of
circles. For example, if G is just a dominated ray embedded into the plane, and
if our thin family consists of all the (inner) facial cycles of G, then their sum
should yield the ray plus the sole auxiliary edge since the ray itself is an NST
and hence induces an ATST. Hence we could modify the definition of a thin sum
in that we also add certain auxiliary edges. For example, if G has no ultrafilter

36Multigraph should not be a problem.
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tangles, and if (Ci | i ∈ I) is a thin family of circuits, then a candidate for such
a thin sum could be

∑

i∈I
Ci +

{
uω ∈ E(Ω)

∣∣∣∣ω ∈
(⋃

i∈I
Ci
)
∩ EG(u)

∖ (∑

i∈I
Ci
)
∩ EG(u)

}
.

On the other hand, investigation of ΛG from the next section should be priori-
tised.
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Part II

Partial results

7 A tangle Hausdorff compactification

The introduction of Chapter 6 motivated the auxiliary space AG after motivat-
ing the Hausdorff compactification ΛG. Hence in this chapter, we immediately
begin with the formal construction of ΛG.

7.1 Construction

Recall section 4. For every X ∈ X and C ⊆ CX put

Λ(X, C) = OϑG(X, C) \ E̊,

and for each P ∈ PX put

P̂ = {Λ(X, C) | C ∈ P}.

Furthermore, for every (X,P ) ∈ Γ we denote by p̂(X,P ) the finite partition of
V ∪ U induced by P̂ and the singleton subsets of X. Let Ĝ be the graph on
V ∪ U with edge set

E(G) ∪ {uυ | υ ∈ Υ, u ∈ Xυ} ∪ {uω |ω ∈ Ω, u ∈ ∆(ω)}.

The edges in E(Ĝ) \E(G) are the limit edges. For every γ = (X,P ) ∈ Γ we let
Ĝ/p̂(X,P ) be the multigraph on p̂(X,P ) whose edges are precisely the cross-
edges of p̂(X,P ) with respect to Ĝ. Vertices of Ĝ/p̂(X,P ) that are singleton
subsets {x} of X we consider to be vertices of G and refer to them as x; the other
vertices of Ĝ/p̂(X,P ) are its dummy vertices. Now we let Ĝγ be the topological

space obtained from the ground set of the 1-complex of Ĝ/p̂(X,P ) by endowing
it with the topology generated by the following basis:

For every x ∈ X and ε ∈ (0, 1] we choose OĜ(x, ε). For every inner edge
point of an edge that is an edge of G we choose the usual open neighbourhoods.
For every dummy vertex d = Λ(X, C) of Ĝ/p̂(X,P ) and every ε > 0 we choose
as open the set

{d} ∪
⋃{

t[0, ε)x
∣∣x ∈ X and xt ∈ EĜ(X, d)

}
.

If i is an inner edge point of an edge e ∈ E(Ĝ) \E(G) with e = xυ, i.e. there is
some C ∈ P and some υ ∈ OU (X, C) with e = xυ, then for every 0 ≤ ε < δ ≤ 1
with i ∈ x(ε, δ)υ and every finite F ⊆ EĜ(X, d) − {e} we declare as open the
set

⋃
{x(ε, δ)ξ |x ∈ X and xξ ∈ EĜ(X, d) \ F},

also see Fig. 14.
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C C′

δ

ε

υ υ′

Figure 14: A basic open neighbourhood of an inner limit edge point.

Lemma 7.1.1. Ĝγ is a compact Hausdorff topological space for every γ ∈ Γ.

For every γ = (X,P ) ≤ (X ′, P ′) = γ′ ∈ Γ we define a bonding map

f̂γ′,γ : Ĝγ′ → Ĝγ which sends the vertices of Ĝγ′ to the vertices of Ĝγ including

them; which is the identity on the edges of Ĝγ′ that are also edges of Ĝγ ; and

which sends any other edge of Ĝγ′ to the dummy vertex of Ĝγ that contains

both its endvertices in Ĝγ′ .

Lemma 7.1.2. The f̂γ′,γ are continuous.

By Lemmas 7.1.1 and 2.2.3 the inverse limit

ΛG = lim←−(Ĝγ | γ ∈ Γ)

is compact Hausdorff.

7.2 Outlook

Call a continuum T TST-like if for every two distinct points a and b of T
the set ST (a, b) endowed with the subspace topology is a subcontinuum of
T . Recall that, by Theorem 2.4.8 the space ST (a, b) is linearly ordered by its
separation ordering, and by Theorem 2.4.9 the subspace topology on ST (a, b)
coincides with its order topology. If H = (V ′, E′) is a subgraph of Ĝ where each

υ ∈ V ′ \ V (G) is incident with a limit edge in E′, then we write H = V ′ ∪ E̊′
for its closure in ΛG and call this closure a standard subspace. If G is any graph
and Ξ is a standard subspace of ΛG with V (G) ⊆ Ξ, then we say that Ξ is
spanning. A TST of ΛG is a spanning standard subspace of ΛG that is also a
TST-like subcontinuum of ΛG. A circle C of ΛG is a subcontinuum of ΛG such
that C − {a, b} is disconnected for every two distinct points a and b of C.37

Conjecture 7.2.1. If G is any graph, then ΛG admits a TST.

Idea. By transfinite usage of Theorem 2.4.6 we can find a subcontinuum Ξ′ of
ΛG such that

(i) ΛG \ E̊(G) ⊆ Ξ′.

37We should not need the additional requirement that C −{a} be connected: an arc minus
its two endpoints is still connected, and hence not a circle. Also see the claim of [26, Theorem
28.14].
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(ii) For every edge e of G the space Ξ′ − e̊ is disconnected.

Finally, use Theorem 2.4.7 to find a subcontinuum Ξ of Ξ′ which is irreducible
about V (G). It remains to show that Ξ is a TST-like standard subspace of
ΛG. (If Ξ is not standard, a transfinite approach should work instead of Theo-
rem 2.4.7, but here we have to remove open neighbourhoods of inner edge points
of limit edges with ε = 0 and δ = 1.)
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8 ETop and the maximal Hausdorff quotient

8.1 Introduction

Since for connected graphs G the quotient ϑ̃G = ϑG/∼ is a Hausdorff quotient of
ϑG with ϑ̃G ' EG by Theorem 3.4.14, one might ask whether it is the maximal
Hausdorff quotient of ϑG. In this chapter, we study for which graphs G the
space ϑ̃G is the maximal Hausdorff quotient of the tangle compactification. In
order to keep things to the point, we introduce some notation first: Recall that
the relation G is defined on ϑG \ E̊ by letting x G y whenever there exist no two
disjoint open neighbourhoods of x and y in ϑG, and G···G denotes the transitive

closure of G. Since G···G is an equivalence relation, we write ϑ̂G for the quotient
space ϑG/G···G. The equivalence relation ∼∼∼ on ϑG satisfying ϑG/∼∼∼ = H(ϑG) is
given by Theorem 2.4.16. Due to Corollary 3.4.4, the minimality of ∼∼∼ and the
definition of G···G we have

Lemma 8.1.1. G⊆G···G⊆∼∼∼⊆∼ holds for every graph G.

Now we are ready to start: Of course, the first question that comes to mind,
is whether there even exist graphs for which ϑ̃G is not the maximal Hausdorff
quotient, i.e. for which ∼∼∼ is a proper subset of ∼. Surprisingly, a long known
example graph positively answers this question:

proof of the following lemma we exhibit such a graph, which is essentially
the graph of Figure 5 with x and y identified. See the start of Section 4 for
a formal definition of G̃ if desired.

Proposition 3.4 There exists a countable graph G satisfying (2) for which
G̃ contains a circle consisting only of vertices and ends.

Proof. Consider the binary tree T2 whose vertices are the finite 0–1 se-
quences and where each sequence is adjacent to its two one-digit extensions.
The ends of T2 correspond to the infinite 0–1 sequences, which we view
as binary expansions of the reals in [0, 1]. Our aim is to turn this Cantor
set into a copy of [0, 1] by identifying the pairs of ends that correspond to
the same rational q ∈ [0, 1], ie. by identifying every two ends of the form
s1000 . . . and s0111 . . . for some s ∈ T2. To achieve this identification, we
join the vertex s to every such pair of ends by a couple of fans, so that in G̃
these ends will both get identified with s, and hence with each other.

Formally, we join each finite sequence s ∈ T2 to all sequences of at least
|s| + 2 digits that begin with s1 and thereafter contain only 0s, and to all
sequences of at least |s| + 2 digits that begin with s0 and thereafter contain
only 1s. Finally, we add a new vertex x joined to all sequences consisting
only of 0s or only of 1s (Figure 6).

x

0

01 10
1100

1

0

Figure 6: A graph whose ends form a circle in the identification topology

Any two vertices of this graph G are separated by the finite vertex set
consisting of x and their common initial segments, so the graph satisfies (2).
It is easily checked that mapping 0 and 1 to x and every other element of
[0, 1] to its corresponding end or identified pair of ends is a homeomorphism
between [0, 1] with 0 and 1 identified and the set of all vertices and ends
in G̃ (after identification). �

11

Figure 15: A graph with G···G=∼∼∼(∼ from [11, Fig. 6]

The graph G from [11, Fig. 6], also pictured in Fig. 15 here, originally
served as an example of a non-finitely separable graph on which the relation
used to obtain ITop as a quotient of VTop is an equivalence relation (i.e. for
which ITop is well-defined even though G is not finitely separable) and which
has no topological spanning tree with respect to ITop. Even more strikingly,
in ITop this graph admits an edgeless Hamilton circle (which witnesses the
absence of topological spanning trees, see [11, Proposition 3.4 and Corollary
3.5] for details). In this graph, ∼ identifies every two points of V ∪ Ω, whereas
ITop identified every vertex with the two ends it dominates. Unsurprisingly,
G···G identifies the same points as ITop did:

Clearly, it suffices to show that this graph has no ultrafilter tangles. For
this, consider any X ∈ X . Then CX is finite: Indeed, let X ′ be the union of
{x} and the first n levels of the underlying binary tree of G, where n ∈ N is big
enough that X is included in X ′. Now CX′ is easily seen to be finite, and so
CX must be finite. Hence every CX is finite, so G has no ultrafilter tangles as
claimed.
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By arguments similar to an exercise from the lectures, it follows that ϑ̂G is
Hausdorff (we shifted the proof to the end of the introduction):

Lemma 8.1.2 (L). There is a connected graph with G···G=∼∼∼(∼.

Furthermore, the edgeless Hamilton circle from ITop also is one in ϑ̂G, so
ϑ̂G has no TST either. All in all, this graph shows a sufficiently rich structure
of finite vertex separators branching in a binary tree like way (the separators
of the form dueT with u a vertex of the NST T of G given by the underlying
binary tree plus the edge x∅) can force ∼∼∼(∼ even though the graph does not
have a single finite cut.

So ∼ and ∼∼∼ in general do not coincide. As a K2,ℵ0
shows, G in general is not

transitive, but maybe G···G coincides with ∼∼∼ for every graph? An easy example
shows that this is not the case:

u0 u1 u2 u3 u4

ω

Figure 16: A graph with G···G(∼∼∼=∼.

If ω is an undominated end of an arbitrary graph, then clearly [ω]G···G = {ω}
holds. The graphG pictured above shows that [ω]G···G ( [ω]∼ is possible: Indeed,
[ω]∼ = {un |n ∈ N} ∪ {ω} holds while ∼ and G···G agree on the vertex set of

G. Thus ϑ̃G turns this graph into hawaiian earrings and ϑ̂G does the same
except for ω which does not get identified with any other point. Taking a closer
look reveals that [u0]G···G = {un |n ∈ N} is not closed in ϑ̂G, witnessed by

[ω]G···G = {ω}, so ϑ̂G is not even T1 by Lemma 2.4.1. Meanwhile, ∼∼∼ and ∼
coincide.

So if the G···G-classes in general are not closed, then perhaps taking their clo-

sures might suffice? If (by abuse of notation) we define G···G to be the relation

on ϑG with x G···G y whenever there is some G···G-class whose closure in ϑG con-

tains both x and y, then the following example shows that neither of G···G and
its transitive closure do suffice:
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ω0 ω1 ω2

ω
x

y

u1 t1u0 t0 u2 t2

Figure 17: A graph with trcl
(
G···G

)
(∼∼∼=∼.

Indeed, if G is the graph pictured in Fig. 17, then the G···G is not an equiva-
lence relation: For every double ray of heavy edges, its vertices of infinite degree
(in G) form a G···G-class, and these are the only non-trivial G···G-classes, so ev-
ery end ωn with n > 0 lies in the closure of two distinct G···G-classes. Thus, the

only non-trivial equivalence class of the transitive closure of G···G consist of all
vertices of G of infinite degree together with all ends ωn (n ∈ N). Since the end

ω is excluded from this class, the quotient ϑG/trcl
(
G···G

)
fails to be T1.

As described in the preliminaries of Theorem 2.4.17, it is possible to obtain ∼∼∼
from G···G via a transfinite construction. The graph from Fig. 17 can also be used
to show that there exists no ordinal α < ω such that hα(ϑG) = H(ϑG) holds
for every graph G (where hα(ϑG) is defined in Section 2.4). Indeed, assume for
a contradiction that there is such an α < ω, and let G be the graph pictured in
Fig. 17. Put G0 = G. For every n ∈ N there is a subgraph Hn corresponding
to ωn just like the red subgraph of G corresponds to ω1. To obtain the graph
G1 from G we replace the red subgraph H1 of G with a copy of G where the
vertices x and y of the copy take over the roles of u1 and t1 of the original
G, respectively, and we do the same for every other n. Next we obtain G2

from G1 by replacing the Hn of each copy of G that was added in the previous
construction step in the same way. Proceeding inductively, we arrive at a graph
Gα+1 for which hα(ϑ(Gα+1)) is not Hausdorff, contradicting our assumption.

Now that all straightforward attempts starting ‘from below’ with G···G failed
and the graph from Fig. 17 showed that a sufficiently rich structure can result in
∼∼∼(∼, we will try a different approach. Readers who attended a talk by Diestel
about the discovery of topological infinite graph theory already noticed that
every example graph from this introduction is based on a graph which occurred
in his talks. In these talk, the examples led to the definition of a circle and the
usage of arcs instead of (graph-)paths. So, perhaps some sort of special arcs
might describe the ∼∼∼-classes?
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Figure 18: A dominated ray and a K2,ℵ0
.

For the example graphs from Fig. 18 this does not work: IfG is the left graph,
then every arc (in ϑG) from the sole end of G to its dominating vertex must
visit some vertex of finite degree. Similarly, every arc between the two vertices
of infinite degree of the right graph must visit some vertex of finite degree.
Furthermore, arc-constructions in graphs that are not locally finite face various
problems. But, what if we enrich ϑG with some auxiliary structure reflecting
our intuition? Let us have a second look at the example graphs discussed so
far, but this time we draw in auxiliary arcs (using grey):

ω

Figure 19: A dominated ray and a K2,ℵ0
with auxiliary arcs.

u0 u1 u2 u3 u4

ω

Figure 20: The graph from Fig. 16 with auxiliary arcs.
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ω0 ω1 ω2 ω3

ω

Figure 21: The graph from Fig. 17 with auxiliary arcs.

For the simple examples things look fine, and after choosing a more conve-
nient drawing, the edgeless Hamilton circle from Fig. 15 can be visualised by an
auxiliary Hamilton circle:

x

∅
011

01

010

0

001

00

000 111

11

110

1

101

10

10

Figure 22: The graph from Fig. 15 with auxiliary Hamilton circle.

We have already seen that for the graph G from Figures 15 and 22 the
quotient ϑ̃G is not the maximal Hausdorff quotient of ϑG. In fact, we shall see
later that auxiliary arc components describe precisely the ∼-classes. But not all
is lost: The auxiliary Hamilton circle failing to describe the ∼∼∼-classes is wild,
while the auxiliary arcs from our other examples are all tame.38 So perhaps we
can use this in order to characterise the graphs with EG = H(ϑG)?

I did not succeed in finding a combinatorial characterisation of the graphs G
satisfying EG = H(ϑG). However, as our main contribution we at least present

38Recall that an arc is called wild if it induces on some subset of its vertices the ordering
of the rationals, and tame otherwise.

103



sufficient combinatorial conditions. In Section 8.5 we will discuss the main
difficulty prohibiting me from giving a combinatorial characterisation. Basically,
the difficulty lies in describing a limit property (here: wild and tame), which
excludes naive inverse limit approaches right from the start.

Before we continue, we give a proof of a fact we used earlier:

Proof of Lemma 8.1.2. Let G′ be the graph from Fig. 15, and consider G :=
G′ − x for simplicity. Furthermore, let T be the underlying binary tree of G,
and note that it is an NST of G (with root ∅). It suffices to verify that ϑ̂G
is Hausdorff. Therefore, let x 6= y ∈ ϑG be given. We have to find disjoint
open neighbourhoods of x and y in ϑG which are G···G-closed. Since the only
non-trivial G···G-classes are of the form {[u01ω]Ω, u, [u10ω]Ω} with u a vertex of
G, without loss of generality we may assume that x and y are vertices of G.
Let 〈 · 〉 : ⋃n≤ω 2n → I map each 0-1 sequence (finite or infinite) to its naturally
corresponding value in I, and let Φ: Ω(G) → I map every end ω to the image
of the binary sequence induced by RTω under the map 〈 · 〉. We check two cases:

First suppose that x and y are incomparable with respect to ≤T . Then we
define an open neighbourhood Wx of x in ϑG by taking the union of OG(x, 1/2)
with the following choices of sets: for every n ≥ 1 choose

OG
(
x0n, 1/2

)
∪ ĈϑG

(
dx0neT , [x0n1ω]Ω(G)

)

∪OG
(
x1n, 1/2

)
∪ ĈϑG

(
dx1neT , [x1n0ω]Ω(G)

)
.

Similarly, we define Wy. These clearly are disjoint and G···G-closed.
Now suppose that x and y are comparable with respect to ≤T with x <T y,

say. Without loss of generality suppose that the first digit of the 0-1 sequence
y after x is 1 (the other case follows by symmetry). Next, we pick some ξ ∈
(〈y0ω〉, 〈y01ω〉) \Q and let R = u1u2 . . . be some normal ray in T whose end in
G corresponds to ξ. In particular there are some N(x) < N(y) ∈ N such that
x = uN(x) and y = uN(y). For every n > N(x) we define Wn

x as follows: If
un+1 = un1 we let

Wn
x := OG(un, 1/2) ∪ ĈϑG

(
duneT , [un0ω]Ω(G)

)

and Wn
x := ∅ otherwise. Similarly, for every n > N(y) we define Wn

y as follows:
If un+1 = un0 we let

Wn
y := OG(un, 1/2) ∪ ĈϑG

(
duneT , [un1ω]Ω(G)

)

and Wn
y := ∅ otherwise. Furthermore, for every n > 0 we let Mn

x denote

OG
(
x0n, 1/2

)
∪ ĈϑG

(
dx0neT , [x0n1ω]Ω(G)

)

and similarly for every n > 0 we let Mn
y denote

OG
(
y1n, 1/2

)
∪ ĈϑG

(
dy1neT , [y1n0ω]Ω(G)

)

Finally let

Wz := OG(z, 1/2) ∪
⋃

n>N(z)

Wn
z ∪

⋃

n>0

Mn
z
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for z ∈ {x, y}. Clearly, Wx and Wy are open and disjoint. We show that Wx is
G···G-closed (then Wy will be G···G-closed by an analogue argument).

For this, we first show that if ω is an end in Wx dominated by a vertex u
then u is also in Wx. If ω is in some Mn

x , then clearly u ∈Wx holds. Otherwise
ω is an end in some Wn

x . If u ∈ Wn
x then we are done, so suppose not. Due to

ω ∈Wn
x the normal ray R′ = t0t1 . . . of ω starts with un0 and u is in {u0, . . . , un}

since T is normal. Pick k ≤ n with u = uk. By u /∈ Wn
x we have k < n. The

only two possibilities for R′ are u01ω and u10ω, but the first case is impossible
due to k < n and choice of Wn

x , so we have R′ = u10ω. Since the sequence un
is an initial segment of R′ this yields u = uk ∈ W k

x as desired. Thus we have
∆[Wx ∩ Ω(G)] ⊆Wx as claimed.

Second, we show that if u is a vertex in Wx dominating an end ω then ω is
also in Wx. Since u and RTω represent the same rational and by the construction
of Wx, it suffices to show that the ends in Wx correspond to (〈x0ω〉, ξ), i.e. that

Φ[Wx ∩ Ω(G)] = (〈x0ω〉, ξ).

Since “⊆” is clear we show “⊇”. Given any λ ∈ (〈x0ω〉, ξ) pick ω ∈ Ω(G)
with Φ(ω) = λ and let N be maximal with uN ∈ RTω . Then λ < ξ implies
uN+1 = uN1. If N = N(x) then ω ∈ Mn

x for some n ≥ 1 due to λ > 〈x0ω〉.
Otherwise N > N(x) and ω ∈WN

x holds.
Since the only non-trivial G···G-classes are of the form {[u01ω]Ω, u, [u10ω]Ω}

it follows from the two claims above that Wx is G···G-closed.

8.2 A first sufficient combinatorial condition

Call a graph G simply-branching if ∼ and G···G agree on V 2. This is a combina-
torial definition since Corollary 3.2.5 combinatorially describes G···G on V 2.

Example 8.2.1. The graph pictured in Fig. 16 is simply-branching, while the
graphs from Figs. 17 and 15 are not.

Proposition 8.2.2. Let G be a simply-branching graph with finitely many com-
ponents. Then ϑ̃G = H(ϑG).

Proof. We show ∼=∼∼∼. Recall that ϑ̃G is Hausdorff by Corollary 3.4.4, so ∼∼∼⊆∼
holds by minimality of ∼∼∼. Assume for a contradiction that ∼∼∼(∼ holds, and pick
any two distinct points p, q ∈ ϑG witnessing this, i.e. with p ∼ q and p 6∼∼∼ q.
Since G···G and ∼ agree on V 2, either {p, q} meets V and U , or both p and q are
in U . We thus check two main cases:

For the first main case suppose p ∈ V and q ∈ U , say. Write u = p and
υ = q. We check two subcases:

First suppose υ ∈ Υ and pick any t ∈ Xυ which exists since G has only
finitely many components. Thus t ∼∼∼ υ holds by Lemma 3.2.1, and furthermore
u ∼ t implies u G···G t. In particular u ∼∼∼ t, so u ∼∼∼ υ is a contradiction.

For the second subcase suppose υ ∈ Ω and write ω = υ. If ω is dominated by
any vertex x then clearly u ∼ x as well as x ∼∼∼ ω, yielding u ∼∼∼ ω, a contradiction.
So we may assume that ω is undominated. By Lemma 2.4.1 it suffices to show
that ω lies in the closure of [u]∼∼∼ in ϑG to yield ω ∈ [u]∼∼∼. Applying Lemma 2.3.5
to the undominated end ω of G yields a sequence X0, X1, . . . of non-empty
elements of X such that for all n ∈ N the component C(Xn, ω) includes both
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Xn+1 and C(Xn+1, ω). Furthermore, the collection {ĈϑG(Xn, ω) |n ∈ N} is a
countable neighbourhood basis of ω in ϑG. Since ω is undominated, we may
assume that u is not in X0∪C(X0, ω). By Lemma 3.4.7 we know that every Xn

meets [u]∼ in some vertex tn, so in particular every Xn meets [u]∼∼∼ since tn ∼ u
implies tn ∼∼∼ u by assumption. Thus every ĈϑG(Xn, ω) meets [u]∼∼∼ as desired,

resulting in ω ∈ [u]∼∼∼, a contradiction. This completes the second subcase and
the first main case.

Now suppose both p and q are in U and write υ1 = p, υ2 = q. We will check
two subcases:

First suppose υ1 ∈ Υ and υ2 ∈ Ω, say. As before, pick t1 ∈ Xυ1 and note
t1 ∼∼∼ υ1 as well as t1 ∼ υ2. Hence t1 6∼∼∼ υ2, since otherwise υ1

∼∼∼ υ2 is a
contradiction. But then we derive a contradiction for t1 and υ2 from the second
subcase of the first main case.

For the second subcase suppose both υi are in Ω. Since υ1 ∼ υ2 there is some
vertex u ∈ [υ1]∼ by Lemma 3.4.6. Then υ1

∼∼∼ u ∼∼∼ υ2 by the second subcase of
the first main case, a contradiction.

8.3 Auxiliary arcs and the maximal Hausdorff quotient

An arc is called wild if it induces on some subset of A∩V (G) the ordering of the
rationals, and tame otherwise. Let fA be a function with domain ϑG \ E̊ that
is the identity on V ∪ Ω and which assigns some element of Xυ to υ for every
υ ∈ Υ. We define the equivalence relation ∼−∼ on ϑG\E̊ by letting x ∼−∼ y whenever
there is some tame auxiliary arc from fA(x) to fA(y) or fA(x) = fA(y).39 By
Theorem 3.3.5 the equivalence relation ∼−∼ is well defined.

Next, we introduce a definition which helps us in that it describes ‘good’
open subsets of AG. Suppose that R is an equivalence relation on AG \ E̊(G).
An open subset O of AG which is closed under R is called R-standard if it
satisfies the following three conditions for every edge e of G:

(i) If O contains both endvertices of e, then also e̊ ⊆ O.

(ii) If O contains exactly one endvertex of e, say x, then O ∩ e = [x,m(e)).

(iii) If O avoids both endvertices of e, then O also avoids e̊.

Every open subset O of ϑG which is ∼∼∼-closed induces an ∼∼∼ ∩ (V ∪ Ω)2-
standard subset Ǒ of AG, where Ǒ is the union of the following choice of sets:

For every u ∈ O ∩ V (G) choose OG(u, 1/2).

For every ω ∈ O∩Ω(G) let Ĉε(X,ω) be a basic open neighbourhood included

in O, and choose Ĉ1/2(X,ω).
For every edge e of G we check three cases: If both endvertices of e are in

O, then we choose e̊. Else if precisely one endvertex of e is in O, say x, then we
choose [x,m(e)). Otherwise no endvertex of e is in O and we choose the empty
set.

For every auxiliary edge e with one endvertex in O we know that both
endvertices must be in O, and hence we choose e̊.

This completes the definition of Ǒ.

39One special case which led to this definition is the following: If υ ∈ Υ is such that
Xυ = {t} then our definition must ensure t ∼−∼ υ.
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Observation 8.3.1. If O is an open subset of ϑG which is ∼∼∼-closed, then

O \ E̊(G) = Ǒ \ E̊(G).

If O1 and O2 are two disjoint open subsets of ϑG which are ∼∼∼-closed, then Ǒ1

and Ǒ2 are disjoint.

Lemma 8.3.2. Let x and y be two vertices of G with x 6∼∼∼ y and let A be an
auxiliary arc from x to y. Then there is a vertex u ∈ V (G) ∩A distinct from x
and y with x 6∼∼∼ u 6∼∼∼ y.

Proof. Put R = ∼∼∼ ∩ (V ∪ Ω)2. By Observation 8.3.1 we find two disjoint R-
standard neighbourhoods O(x) of x and O(y) of y in AG. Since A is connected
there is some point ξ ∈ A \ (O(x) ∪O(y)). In particular, x 6∼∼∼ ξ 6∼∼∼ y holds.

If ξ is a vertex of G we are done.
Else if ξ is an inner edge point of some edge e of G, then e must be an

auxiliary edge with endvertices a and b, say. In particular, one of a and b is
a vertex of G, say a. Since O(x) and O(y) are R-standard, ξ /∈ O(x) ∪ O(y)
implies that all of e avoids O(x) ∪O(y), so we are done with u = a.

Finally assume that ξ is an end of G and write ω = ξ. Next, let H be the
complete graph on {x, y, ω}. For every edge e = ab ofH we use Observation 8.3.1
to yield two disjoint R-standard neighbourhoods Oe(a) of a and Oe(b) of b in
AG. Then we let O(a) be the intersection over all sets Oe(a) where e is an edge
of H at a. By Lemma 6.2.5 we find some auxiliary edge e′ of A together with
some j ∈ e̊′ ∩ O(ω). Then j is in both Oxω(ω) and Oyω(ω) by choice of O(ω).
Since both of these are R-standard, both contain the endvertices of e′, and so
does O(ω). Then one of the endvertices of e′ is a vertex of G in A ∩O(ω), and
this vertex can take on the role of u by choice of O(ω).

Corollary 8.3.3. Let x and y be two distinct vertices of a graph G with x 6∼∼∼ y.
Then every auxiliary arc from x to y is wild.

Proof. By Lemma 8.3.2 between every two distinct vertices a and b of G on A
with a 6∼∼∼ b there is a vertex u of G on A with a 6∼∼∼ u 6∼∼∼ b. Iterating this lemma,
starting with a = x and b = y, yields a subset of A ∩ V (G) on which A induces
the ordering of the rationals.

Lemma 8.3.4. For every graph G we have ∼−∼⊆∼∼∼ on V (G)2.

Proof. Assume not for a contradiction, witnessed by two distinct vertices x and
y, i.e. with x ∼−∼ y and x 6∼∼∼ y. Pick a tame auxiliary arc A from x to y witnessing
x ∼−∼ y. Then the existence of A contradicts Corollary 8.3.3.

Lemma 8.3.5. If G is a graph such that every auxiliary arc is tame, then ∼∼∼⊆∼−∼
holds on V (G)2.

Proof. Suppose that two distinct vertices x and y of G are given with x ∼∼∼ y.
Then x ∼ y holds by Lemma 8.1.1. Using Theorem 6.3.1 we find an auxiliary
arc from x to y, which is tame by assumption, so we have x ∼−∼ y.

Lemma 8.3.6. Let G be a graph with finitely many components such that every
auxiliary arc is tame. Then ∼∼∼=∼−∼=∼ holds.

Proof. By Lemmas 8.3.4 & 8.3.5 together with Theorem 6.3.1 we know that
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(∗) The three equivalence relations ∼∼∼, ∼−∼ and ∼ agree on V (G)2.

We show “∼∼∼⊆∼⊆∼−∼⊆∼∼∼”.
“∼∼∼⊆∼”. This follows from Corollary 3.4.4 and minimality of ∼∼∼.
“∼⊆∼−∼”. Let p, q ∈ ϑG \ E̊ be given with p ∼ q. We check several cases:
If both p and q are in V (G) ∪ Ω(G), then we are done by Theorem 6.4.2

combined with the assumption that all auxiliary arcs are tame.
Next, suppose that p is a vertex of G and q is an ultrafilter tangle, and write

u = p and υ = q. Then we pick some t ∈ Xυ. Recall that υ G t holds by
Lemma 3.2.1, so “∼∼∼⊆∼” implies υ ∼ t. In particular, u ∼ υ ∼ t holds, which
implies u ∼ t, and hence u ∼−∼ t by (∗). By definition of ∼−∼, this yields u ∼−∼ υ.

Now suppose that p is an ultrafilter tangle and q is an end of G, and write
υ = p and ω = q. Pick t ∈ Xυ and note that t ∼ υ holds as before. Furthermore,
υ ∼ ω implies t ∼ ω. Hence t ∼−∼ ω follows by a previous case. Together with
υ ∼−∼ t this yields υ ∼−∼ ω.

Finally suppose both p and q are ends of G and write ω = p and ω′ = q.
By Lemma 3.4.6 there is some vertex u of G in [ω]∼. Then ω ∼ u ∼ ω′ implies
ω ∼−∼ u ∼−∼ ω′ by a previous case, and therefore ω ∼−∼ ω′.

“∼−∼⊆∼∼∼”. Let p, q ∈ ϑG \ E̊ be given with p ∼−∼ q and let A be some tame
auxiliary arc from fA(p) to fA(q). By (∗), not both p and q are vertices of G.
We check several cases:

First, suppose that p is a vertex of G and q is an ultrafilter tangle, and write
u = p and υ = q. Furthermore, write t = fA(υ) and recall that t is a vertex
in Xυ. In particular, we have u ∼−∼ t, which implies u ∼∼∼ t by (∗). Furthermore,
t ∼∼∼ υ holds by Lemma 3.2.1. Together with u ∼∼∼ t, this yields u ∼∼∼ υ.

Next, suppose that p is a vertex of G and q is an end of G, and write u = p
and ω = q. Assume for a contradiction that u 6∼∼∼ ω holds, witnessed by some
disjoint open neighbourhoods O(u) of u and O(ω) of ω in ϑG, respectively, which
are both ∼∼∼-closed. By Lemma 6.2.5 there is some auxiliary edge e whose interior
meets Ǒ(ω) and which A traverses. In particular, since Ǒ(ω) is ∼∼∼ ∩(G ∪ Ω)2-
standard, we know that the whole edge e is included in Ǒ(ω). Let t be an
endvertex of e which is also a vertex of G. Then u 6∼∼∼ t holds, but also u ∼−∼ t
witnessed by a tame auxiliary arc A′ ⊆ A. This contradicts (∗), so u ∼∼∼ ω must
hold as desired.

Now suppose that p is an ultrafilter tangle of G and q is an end of G, and
write υ = p and ω = q. Pick t ∈ Xυ and note t ∼−∼ υ as well as t ∼−∼ ω due to
t ∼−∼ υ ∼−∼ ω. Hence t ∼∼∼ ω holds by the previous case. Together with υ ∼∼∼ t this
yields υ ∼∼∼ ω.

Finally, suppose that both p and q are ends of G, and write ω = p and
ω′ = q. Pick some X ∈ X witnessing ω 6= ω′. Then A meets X in some vertex
u of G due to Observation 6.2.3. Then ω ∼−∼ u ∼−∼ ω′ implies ω ∼∼∼ u ∼∼∼ ω′ by an
earlier case, and hence ω ∼∼∼ ω′ follows.

8.4 A second sufficient combinatorial condition

Lemma 8.4.1. If G is a connected graph such that for every x ∈ ϑ̃G the graph

G has a normal spanning tree T (x) whose subtree
⋃
ω∈x∩ΩR

T (x)
ω contains no

subdivision of the (infinite) binary tree, then all auxiliary arcs (in AG) are
tame.
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Proof. Let A be any auxiliary arc, and assume for a contradiction that it is wild,
witnessed by some infinite set VQ ⊆ A of vertices of G on which it induces the
ordering of the rationals. By Lemma 6.2.4 we know that there is some unique

x ∈ ϑ̃G with A \ E̊(G) ⊆ x. For every ω ∈ x ∩ Ω write Rω = R
T (x)
ω and put

T =
⋃
ω∈x∩ΩRω, taking as root for T the root of T (x). By [7, Proposition 8.6.1]

the rooted tree T is recursively prunable, so we may assume that every vertex
of T receives an ordinal label by some fixed recursive pruning of T . For every
ω ∈ x ∩ Ω let α(ω) be the minimal ordinal label of the vertices of Rω.

Claim 1. If t ∈ V (Rω) receives label α(ω), then tRω = btcTα(ω)
holds.

Proof. Every vertex u of tRω receives label α(ω) by minimality of α(ω), so
tRω ⊆ btcTα(ω)

holds. Since tRω ( btcTα(ω)
would contradict the fact that

btcTα(ω)
is a chain in Tα(ω), equality must hold as claimed. �

Now choose some homeomorphism σ : I→ A and write IQ = σ−1[VQ]. Next,
pick two points λ− < λ+ in IQ and let A denote the set of all accumulation
points of IQ in the open interval (λ−, λ+). Since IQ is discrete in I we know that
A avoids IQ and σ maps A into the end space of G.

Claim 2. Every point of A is an accumulation point of A.

Proof. Given any λ ∈ A pick a sequence (λn)n∈N in IQ with λn → λ, and without
loss of generality suppose that λn < λn+1 < λ holds for all n ∈ N. Given an
arbitrary ε > 0 pick N ∈ N big enough that |λ − λn| < ε and λn ∈ (λ−, λ+)
hold for all n ≥ N . Using that A induces the ordering of the rationals on VQ
(and hence on IQ) it is easy to find some µ ∈ (λN , λN+1) ∩ A. By choice of N
we have |λ− µ| < ε. �

In order to yield a contradiction, we inductively construct a sequence (ωn)n∈N
(where the ωn are ends, not ordinals) in A together with a sequence (tn)n∈N of
vertices of T such that for all n ∈ N we have

(i) tn is a vertex of Rωn ,

(ii) tn receives label α(ωn),

(iii) α(ωn+1) < α(ωn).

This suffices, since then by (iii) we have a strictly decreasing sequence (α(ωn))n∈N
of ordinals, which is impossible.

We start the construction by picking an arbitrary ω0 ∈ σ[A] together with
some vertex t0 of Rω0 receiving label α(ω0). Now suppose that we are at step
n > 0 of the construction, and tk and ωk got constructed for k < n. Using
Claim 2 we find some ωn in σ[A] ∩ Ĉ(dtn−1eT , ωn−1) other than ωn−1. Let u
be the maximal vertex of Rωn ∩ Rωn−1

with respect to the natural ordering
≤T on T induced by its root. Since T (x) is an NST and dueT = dueT (x)

holds, we know that dueT witnesses ωn 6= ωn−1. By (i) we have tn−1 ∈ Rωn−1
,

so u >T tn−1 holds since otherwise u ≤T tn−1 contradicts C(dtn−1eT , ωn) =
C(dtn−1eT , ωn−1). By Claim 1, we find some vertex tn of Rωn \ Rωn−1 with
tn >T u such that tn receives label α(ωn). In particular, u >T tn−1 implies
tn >T tn−1. Also recall that tn−1 receives label α(ωn−1) by (ii). Together with
tn /∈ Rωn−1

and Claim 1 applied to tn−1 and ωn−1, the only possibility for α(ωn)
is α(ωn) < α(ωn−1). Thus (i)–(iii) hold for n.
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Proposition 8.4.2. If G is a connected graph such that for every x ∈ ϑ̃G the

graph G has an NST T (x) whose subtree
⋃
ω∈x∩ΩR

T (x)
ω contains no subdivision

of the (infinite) binary tree, then EG is the maximal Hausdorff quotient of ϑG.

Proof. By Lemma 8.4.1 all auxiliary arcs (in AG) are tame, so ∼∼∼ and ∼ coincide
by Lemma 8.3.6. Furthermore, ϑ̃G ' EG holds by Theorem 3.4.14.

Proposition 8.4.2 is not best possible:

Lemma 8.4.3. There exists a connected graph G all whose auxiliary arcs are
tame and which has an NST, but which does not satisfy the premise of Theo-
rem 8.4.2.

Proof. Let G be obtained from the infinite binary tree with root r by adding an
edge from r to every other vertex. Then Υ is empty by the same argument we
used on the graph from Fig. 15, and ∼ only identifies all ends of G with r (since
r is the only vertex of infinite degree). Hence ∼=G···G implies ϑ̃G = H(ϑG)
by Lemma 8.1.1. Now Lemma 6.2.5 together with the fact that the auxiliary
edges form a star in G (with center r and the ends of G as leaves) yields that
every auxiliary arc traverses the closure of either one or two auxiliary edges,
and hence must be tame.

8.5 Outlook

Of course, we would like to know whether ∼∼∼ and ∼−∼ coincide for all G. Further-
more, if x and y are two vertices of G and every auxiliary arc between them is
wild, then the question arises whether there exists structures of the graph wit-
nessing that. One difficulty are the auxiliary edges between vertices and ends
which allow the auxiliary arcs to ‘jump’ in an NST.

Let 〈 · 〉 : ⋃n<ω 2n → I map each sequence to its naturally corresponding
value in I.

Conjecture 8.5.1. For every graph G and every two distinct vertices x and y
of G the following are equivalent:

(i) x ∼ y and every auxiliary arc from x to y is wild.

(ii) There exists a countable subset W of
→
S (G − xy) such that the following

hold:

(a) Every (A,B) ∈W satisfies x ∈ A \B and y ∈ B \A.

(b) The partial ordering ≤ of
→
S (G − xy) induces the ordering of the

rationals on W .

(c) There exists a bijection ϕ : T2 → W satisfying ϕ(a) ≤ ϕ(b) if and
only if 〈a〉 ≤ 〈b〉. Let ϕ̂ : T2 → X map each vertex of the T2 to the
vertex separator of ϕ(a). For every a ∈ V (T2) let n(a) ∈ N be the
level of the T2 containing a, and let Xa be the set of all vertices of
the first n(a) levels of the T2 minus a. Then for every a ∈ V (T2) and
every auxiliary arc A from x to y, the set ϕ̂(a)\⋃b∈Xa ϕ̂(b) meets A.

(iii) x 6∼∼∼ y.
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