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Abstract

Consider a set of tangles of some set S of separations, e.g. of a graph or matroid, and
a nested set T of separations such that all these tangles agree on T ∩ S. Then we find
a nested set T ′ ⊇ T with T ′ ⊆ T ∪ S that distinguishes all these tangles. We use this
local refinement theorem to provide a new inductive way of constructing trees of tangles
in general universes of separations. This approach is of particular relevance in cluster
analysis applications where the order of separations in S \T should be allowed to depend
on the choice of the tangle of T that identifies the location of the dataset which the
elements of S are deemed to separate.
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1 Introduction

Tangles were introduced by Robertson and Seymour [12] as a tool to describe clusters
in graphs. Tangles do not list the elements of clusters explicitly, but make use of the
idea that a cluster cannot be divided equally by separations of ‘low order’. Hence, these
low-order separations can be oriented towards the side containing most of the cluster;
this orientation forms the tangle pointing to the cluster. This new paradigm has the
advantage that a cluster can be captured even though it might be fuzzy, as happens in
most real-world scenarios.

One of the central theorems in the context of tangles in graphs is the following tree-
of-tangles theorem. Roughly speaking, it says that the clusters to which the maximal
tangles of a graph point can be ordered in a tree-like way (see also [1, Theorem 12.5.4]).

Theorem 1.1 ([12], cited as [10, Theorem 1.1]). Every graph has a tree-decomposition
displaying its maximal tangles.

The paradigm of describing clusters by orienting separations towards them leads to
the concept of profiles in abstract separation systems : tangles of graphs are a special
case of (robust) profiles in abstract separation systems. But abstract separation systems
do not only arise from graphs but also, for example, from matroids or other discrete
structures. Diestel, Hundertmark, and Lemanczyk proved a tree-of-tangles theorem in
this more general setting, Theorem 1.2 below. Here the structure tree, i.e. the tree-like
way of ordering the profiles, is described by a collection T of nested separations. Their
theorem implies Theorem 1.1, but also strengthens it in that its structure tree is invariant
under automorphisms of the underlying separation system:

Theorem 1.2 ([6, Theorem 3.6]). Let U = (U,≤, ∗,∨,∧, | |) be a submodular uni-
verse of separations. Then for every robust set P of profiles in U there is a nested
set T = T (P) ⊆ U of separations such that:

(i) every two profiles in P are efficiently distinguished by some separation in T ;

(ii) every separation in T efficiently distinguishes a pair of profiles in P;

(iii) for every automorphism α of U we have T (Pα) = T (P)α;

(iv) if all the profiles in P are regular, then T is a regular tree set.

The proof of this theorem given in [6] builds the nested set T inductively, making sure
for k = 1, 2, . . . that the sets Tk ⊆ T of separations included in T by step k distinguish
any two profiles in P that can be distinguished by a separation of order < k. At each
step, the nested set Tk constructed so far consists only of separations of order < k. It
partitions the set of all the profiles of order ≥ k in P by putting those profiles in the
same partition class that cannot be distinguished by a separation of order < k and which
therefore ‘live in the same location of Tk’ in that they induce the same profile on Tk. For
each of these locations, local nested sets of separations of order precisely k are then built
to distinguish as many of the profiles in P that live at this location as possible. These
local nested sets are all nested with Tk and with each other. Combined with Tk, they
form the new nested set Tk+1.
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Since the profiles in P can be assumed to be regular in most applications [6], we
restrict ourselves to this case for the course of the introduction. Then all the above Tk are
tree sets [3]. Every tree set T can be represented by the edge set E of a graph-theoretic
tree T̂ in an essentially unique way such that the profiles of T correspond to nodes of T̂ .
More precisely, every profile of T defines an orientation of E towards some node of T̂ , the
node corresponding to that profile of T (see [3]).

In the proof of Theorem 1.2 as sketched above, a profile P ∈ P of order ≥ k induces
a profile of the tree set Tk, but it is itself a profile in some larger universe of separations.
The location of P then corresponded to a node t = t(P ) of T̂k. In the case of a separation
system arising from a graph, the node t(P ) represents those clusters of the graph that
orient Tk as P does. We say that these clusters live in the location t(P ).

In order to avoid having to refer, rather indirectly, to the graph-theoretic tree T̂k in our
definition of the location of a profile P ∈ P with respect to T , let us define the location
of P as the set L(P ) ⊆ Tk of the maximal separations in the profile that P induces on Tk.
Then L(P ) consists of the separations that correspond to the oriented edges of T̂k which
are incident with t(P ) and point towards it. We say that P lives in the location L(P )
of Tk. (These sets L(P ) are splitting stars of Tk [3].)

Analysing the structure of the clusters living in a given location of Tk requires the
construction of a local tree set ‘inside’ this location, using separations of order exactly k.
With increasing k, the graph-theoretic tree T̂k representing Tk gets refined more and more
by little trees replacing the nodes of T̂k. Therefore, the order of a separation in T =

⋃
k Tk

reflects its importance for the overall structure of our graph in the sense that low-order
separations describe its tree-like structure in terms of its rough clusters, whereas high-
order separations reveal more specific local clusters inside a broader one. From this point
of view, the inductive approach in the proof of Theorem 1.2 reveals the cluster structure
of a graph (say) step-by-step in unfolding detail.

The overall structure of our graph or data set that emerges in this way depends heavily
on what order the individual separations in T =

⋃
k Tk have. Indeed, even the clusters

themselves, defined here as tangles (or profiles) of some given order k, depend on the
orders that we assigned to the separations we are considering.

In Theorem 1.2, it is assumed that these orders are given by some fixed global order
function | · | : U → N (so each separation has some fixed order independent of the location
in which this separation plays a role in finding a local tree set), which moreover has to be
submodular. (A universe of separations, as assumed in Theorem 1.2, is called submodular
if the order function satisfies |s∧t|+|s∨t| ≤ |s|+|t| for any two separations s, t ∈ U .) But
neither of these properties can be assumed in all the important applications of abstract
tangle theory to clustering. Let us illustrate this with an example from [4].

In the course of a study, a group V of people filled in a questionnaire Q. Each question
could be answered yes or no, so it defines a bipartition of V . All these bipartitions together
form the separation system induced by Q. Its clusters captured as profiles of Q correspond
to those parts of V where most people gave the same answers to many of the questions
in our questionnaire. In other words, the profiles in our separation system identify the
‘mindsets’ found amongst the participants of our study. In order to determine these
mindsets and to tell them apart, we would ideally like to find a nested set T ⊆ Q that
distinguishes these profiles, as the questions in T alone will then allow us to distinguish
those mindsets from one another. Usually, our set Q of questions itself will not contain
such a tree set T . But we can construct one that consists of Boolean expressions of
questions from Q.
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One strategy for algorithmically finding such a tree T of tangles is to build it iteratively,
starting with the most important questions and adding less important ones as T grows. As
noted earlier, the importance of a separation should be reflected by its order: important
questions should be assigned low orders as separations, so that they are considered first.
In our previous example, however, this cannot be achieved by any fixed order function on
all the separations.

Indeed, suppose we have started building our tree of tangles considering some of the
bipartitions arising from the questionnaire Q. We may find that one profile P of these
separations points to a place where people like classical music. In order to refine P by
more detailed profiles, we now wish to consider some further questions and determine
those of their profiles that extend P . Given the nature of this particular P , it seems
more promising to look at the ‘Do you like Bach?’ bipartition than at the ‘Do you like
football?’ one. At the same time, we may have another location of the tree set built so far
where people like sports. Here, the ‘Do you like football?’ bipartition is more relevant than
the ‘Do you like Bach?’ one in order to investigate the structure of this location further.
This exemplifies that the importance of a bipartition of V given by a question in Q can
depend on the location that we wish to explore in more detail using that bipartition.

Back to the abstract setting, the practical problem of defining the order of separations
locally translates into the following mathematical problem: suppose we have a tree set T .
In the next iteration step we wish to choose for each splitting star L of T individually
a set SL of further separations. (For tree sets T = Tk as earlier, this choice can be
seen as assigning local order k to the separations in SL because we believe them to be
the next most important separations for the purpose of analysing the location L.) Note
that we may consider the same separation s for different, but perhaps not all, locations
of T . Then we are looking for profiles of SL ∪ L that extend L in that they induce the
orientation L on L, and we seek to extend T at each of its locations L by an additional
local tree set TL ⊆ SL of separations inside L which distinguishes all the profiles of SL∪L
that extend L. This corresponds to replacing the nodes of T̂ with local structure trees,
independently for each splitting star L of T .

In order for the sets SL to contain such local tree sets TL, they need to satisfy a struc-
tural condition which, in Theorem 1.2, used to come with the submodular global order
function that we no longer have. This condition, structural submodularity, was identified
by Diestel, Erde, and Weißauer [5], who showed that it guarantees the existence of struc-
ture trees. Alternatively, if there are no refining profiles for some location L, then we
can use the concept of tangle-tree duality to find a local tree set TL that witnesses the
non-existence of certain refinements of L.

In this thesis, we first give a brief introduction into abstract separation systems with
the relevant definitions in Section 2. Then we follow the above sketched iterative approach
to cluster analysis on bipartitions of finite sets as exemplified with the questionnaire sce-
nario: in Section 3 we go through this approach in mathematical detail and precisely
formulate the theorems needed to make it work. The proofs of these local refinement the-
orems form Section 4. Inspired by the cluster analysis setup, we investigate how to build
trees of tangles using local refinements in general universes of separations in Section 5,
and reformulate the ‘algorithmic’ approach from Section 3 into a more structural frame-
work. In Section 6 we apply our results from Section 5 to reobtain a non-canonical version
of Theorem 1.2, and deduce a sequential tree-of-tangles theorem. Finally, in Section 7,
we elaborate the idea of using tangle-tree duality in the context of local refinements in
general universes of separations, extending the work of Erde [11].
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2 Separation Systems, Profiles, and Tangles

In this thesis, we work within the framework of [2], [3], [5], [6], and [7]. This section
provides a brief introduction into abstract separation systems and the relevant definitions;
its structure is partially inspired by [10, Section 2] and [11, Section 2.2]. For any discussion
and context to the definitions made here, we refer the reader to the papers cited above.
For the definitions of graphs and their properties, see [1].

Section 2 does not contain any new definitions or results; so this section may be
skipped and just used for future reference if the reader is familiar with the framework of
abstract separation systems. All further concepts which are not defined in this section
will be defined below.

A separation system is a triple (S,≤,∗ ) which consists of a poset (S,≤) and an order-
reversing involution ∗ : S → S; we shall write simply S as a shortened form. For an
element s ∈ S, its inverse under the involution is denoted by s = (s)∗. The involution ∗

is order-reversing in that s ≥ t if and only if s ≤ t for s, t ∈ S. The elements of S are
called (oriented) separations.

The underlying unoriented separation of s ∈ S is the set {s, s} which we denote by s.
We call s and s the orientations of an unoriented separation s. If s = s, then s is called
degenerate; otherwise s is called non-degenerate. For a separation system S, we denote
by S the set of all the unoriented separations s with orientations in S. We will informally
use terms defined for unoriented separations also for oriented separations, and vice-versa.
For example, we shall also call s a separation and S a separation system.

We say that two unoriented separations s, t ∈ S are nested if there are orientations s
of s and t of t with s ≤ t. If s and t are not nested, we say that they cross. A nested
set (of separations) is a set of separations whose elements are pairwise nested. Two sets
of separations are said to be nested if every element of the first set is nested with every
element of the second set.

Given an oriented separation s and an unoriented separation t, we say that s points
towards t if there is an orientation t of t such that s ≤ t. Conversely, s points away from t
if there is an orientation t of t such that t ≤ s. Note that if two separations s and t are
nested, then each orientation of s points towards or away from t; however, a separation s
may point both towards and away from t.

Such a separation s is trivial in S in that there exists t ∈ S with s < t and s < t; we
say that t witnesses the triviality of s in S. The inverse s of a trivial separation s is called
co-trivial. If a separation s ∈ S has no trivial orientation, we shall call it non-trivial. If T
is a nested set of non-trivial and non-degenerate separations, then we say that T is a tree
set.

A trivial separation s clearly satisfies s ≤ s, but there can be other separations with
this property, too. Such a separation s with s ≤ s is called small ; its inverse is called co-
small. Note that degenerate separations are non-trivial, but small. A separation system
or even a set of separations without small elements is called regular.

A star is a set L of non-degenerate nested oriented separations with s ≤ t for every
two distinct s, t ∈ L. In particular, an element s of a star L points towards each sepa-
ration t which has an orientation in L. Note that by denoting a star with L, we slightly
abuse notation here: L does not need to contain both orientations of an unoriented sepa-
ration s with some orientation s ∈ L, but will usually only contain one such orientation
(otherwise s is small).
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A universe of separations is a quintuple (U,≤,∗ ,∨,∧) which consists of a separation
system (U,≤,∗ ) in which the join operator ∨ and the meet operator ∧ are well-defined,
and make the poset (U,≤) a lattice. Here, for two oriented separations s, t ∈ U , the
separation s ∨ t is defined as supremum of s and t in the partial order ≤, and s ∧ t is
defined as their infimum. Note that DeMorgan’s law holds in universes of separations in
that (s ∨ t)∗ = s ∧ t for s, t ∈ U . Given two unoriented separations s, t ∈ U , a corner
of s and t is a separation of the form s ∨ t where s and t are orientations of s and t,
respectively.

For a universe U , an order function is a map | · | : U → N≥0 with |s| = |s|; so |s| is
called the order of s. For an unoriented separation s ∈ U , we let |s| := |s| be the order
of s. Given ` ∈ N, let S` denote the set of all those separations in U that have order < `.
Note that if U is finite (as in this thesis), a real-valued map | · | : U → R≥0 with |s| = |s|
for all s ∈ U can be scaled into an ‘essentially integer-valued’ order function.

An order function is called submodular if

|s ∧ t|+ |s ∨ t| ≤ |s|+ |t| ∀ s, t ∈ U.

If a universe U is equipped with a submodular order function, we shall call U a submodular
universe (of separations).

A purely structural analogue of the submodularity of an order function is the following:
a separation system S in an arbitrary universe U of separations is called structurally
submodular if for any two separations s, t ∈ S, at least one of s ∨ t and s ∧ t is also in S.
In particular, if U is a submodular universe of separations, then the submodularity of its
order function implies that the separation systems S` ⊆ U with ` ∈ N are structurally
submodular.

Given two separation systems S and S ′, a map α : S → S ′ is an isomorphism of S
and S ′ if it is a bijection which commutes with their respective involutions and respects
the partial orderings. An isomorphism of two universes U and U ′ is an isomorphism of
their underlying separation systems which also respects their ∨ and ∧ operations and, if
existing, their order functions.

For a set S of unoriented separations, an orientation O of S is a set O ⊆ S which
contains precisely one orientation of each s ∈ S. A partial orientation of S is an orientation
of some subset of S. We say that an orientation O of S extends a partial orientation O′

of S if O′ ⊆ O.
A non-degenerate separation s ∈ U is said to distinguish two orientations O and O′

(not necessarily of the same set of separations) if there are orientations s and s of s
with s ∈ O and s ∈ O′. In the context of an order function, a separation s efficiently
distinguishes two orientations O and O′ if it has minimal order amongst those separations
which distinguish O and O′. We call two orientations O and O′ distinguishable if there
exists a separation which distinguishes O and O′; similarly, a set O of orientations is
called distinguishable if every two orientations in O are distinguishable. For a set O
of orientations, we say that a separation s is O-relevant if it distinguishes some two
orientations in O.

The above notions extend to sets of separations as follows: We say that a set S ⊆ U
of separations distinguishes a set O of orientations if every pair of orientations in O is
distinguished by some separation in S. Similarly, we say that S is O-relevant if every
separation in S is O-relevant.
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An orientation O of a set S of unoriented separations is called consistent if we do not
have s < t for any two distinct s, t ∈ O. If U is a universe of separations and S ⊆ U ,
then a consistent orientation P of S is a profile (of S or S) if it has the profile property
in that

(s ∨ t)∗ /∈ P ∀ s, t ∈ P.
Note that a separation system S which contains a degenerate separation d ∈ S cannot
have a profile by the profile property applied to d ∨ d.

A profile P is regular if it does not contain any co-small separations; this will often
be the case in application scenarios. In particular, two regular profiles cannot be distin-
guished by separations that have a small orientation. For a universe U of separations
equipped with an order function, P is an `-profile in U for ` ∈ N if it is a profile of S`;
here, ` is called the order of P . In general, P is called a profile in U if it is an `-profile
in U for some ` ∈ N.

The following definitions will be needed to formulate the concept of tangle-tree duality.
Let S be a set of unoriented separations, and let F ⊆ 2S . An orientation O of S is an F-
tangle of S if O is consistent and there is no F ⊆ O with F ∈ F . In a universe U
with S ⊆ U , we shall also call O an F -tangle of S if F ⊆ 2U .

In the context of F -tangles, the set F often consists of stars. Given a set F ⊆ 2S of
stars and a separation system S, we say that F forces s ∈ S if {s} ∈ F . The set F is
called standard for S if F forces every trivial separation s ∈ S. Moreover, the essential
core of F is the set of all F ′ ⊆ S that arise from some F ∈ F by deleting those elements
of F which are trivial in S.

An S-tree is a pair (G,α) which consists of a (graph-theoretical) tree G and a
map α : E(G)→ S from the oriented edge set E(G) ofG to S such that α(v, w) = α(w, v)∗

for all the edges vw ∈ E(G). For a leaf vertex v of G with neighbour w, we call α(v, w) a
leaf separation of (G,α). If O is an orientation of S and (G,α) an S-tree, then O induces
an orientation E(G) via α. This orientation will necessarily have a sink vertex v ∈ V (G),
and we say that O is contained in v.

Given a set F ⊆ 2S , we call (G,α) an S-tree over F if α(Fv) ∈ F for all v ∈ V (G)
where

Fv := {(u, v) | uv ∈ E(G)}.
An S-tree (G,α) is called order-respecting if α preserves the natural ordering on E(G)

(see [1] for the definition of this natural ordering). We say that (G,α) is redundant if there
is a node v ∈ V (G) with distinct neighbours v′, v′′ ∈ V (G) such that α(v, v′) = α(v, v′′);
otherwise, it is called irredundant. Moreover, (G,α) is tight if each set α(Fv) does not
contain both orientations of a non-degenerate separation. Finally, we say that an S-
tree (G,α) is essential if it is irredundant, tight, and α(E(G)) does not contain any
trivial separations.

Let us briefly collect the most important results regarding these properties of S-trees:
In [3, Lemma 6.2], Diestel showed that for each S-tree (G,α) over some F ⊆ 2S , there
exists an irredundant S-tree (G′, α′) over F with G′ ⊆ G and α′ = α � E(G′). An irre-
dundant S-tree (G,α) over a set F ⊆ 2S of stars is order-respecting by [3, Lemma 6.3 (i)];
in particular, the set α(E(G)) of separations is nested. Moreover, for each S-tree (G,α)
over some set F ⊆ 2S of stars, there exists an essential S-tree (G′, α′) over the essential
core of F where G′ is a minor of G and α′ = α � E(G′) [3, Corollary 6.7]. For an essen-
tial S-tree (G,α) over stars, the map α is even injective [3, Lemma 6.8], and α(E(G)) is
a tree set.
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Given a separation s ∈ S, let S≥s consist of those separations s′ ∈ S where s points
towards s′. For two non-trivial separations s, t ∈ S with t ≥ s, we define a map f ↓st
on S≥s \ {s} via

f ↓st (x) := x ∨ t and f ↓st (x) := (x ∨ t)∗,

where x is the unique orientation of x ∈ S≥s with x ≥ s (this exists since s is non-trivial).
If α′ := f ↓st ◦ α maps E(G) into S, then (G,α′) is again an S-tree, the shift of (G,α)
onto t.

For two non-trivial and non-degenerate separations s and t in a separation system S,
we say that t emulates s in S if s ≤ t, and if for any separation x ∈ S≥s \{s} with x ≥ s,
we have t ∨ x ∈ S. Given a set F ⊆ 2S of stars, we say that t emulates s in S for F
if t emulates s in S, and if for every star L ∈ F with L ⊆ S≥s \ {s} that contains a
separation x ≥ s, we have f ↓st (L) ∈ F .

A separation system S is separable if for every two non-trivial and non-degenerate
separations s, s′ ∈ S with s ≤ s′ , there exists a separation r ∈ S such that r emulates s
in S and r emulates s′ in S. Furthermore, S is called F-separable if for every two non-
trivial and non-degenerate separations s, s′ ∈ S with s ≤ s′ that are not forced by F ,
there exists a separation r ∈ S such that r emulates s in S for F and r emulates s′ in S
for F . Let us say that a set F ⊆ 2S of stars is closed under shifting in S if s emulates t
in S for F whenever s emulates t in S. It is clear from the definitions that a separation
system S is F -separable if it is separable and F is closed under shifting in S.

Let us give two important examples of separation systems. For a graph G = (V,E), a
pair (A,B) of subsets of V is an (oriented) separation of G if there is no edge between A\B
and B\A in E. We refer to B as the big side of (A,B), and call A the small side of (A,B).
Here, we identify the unoriented separation {(A,B), (B,A)} with {A,B}. The set of all
separations of a graph G forms a separation system where (A,B)∗ = (B,A) and

(A,B) ≤ (C,D) :⇐⇒ A ⊆ C and B ⊇ D

for two separations (A,B) and (C,D) of G. This partial order is indeed a lattice in that

(A,B) ∨ (C,D) = (A ∪ C,B ∩D) and (A,B) ∧ (C,D) = (A ∩ C,B ∪D).

The universe of separations of a graph G is usually equipped with the submodular order
function |{A,B}| := |A ∩B|.

Along the same lines, we can define the universe of separations of a finite set V
as {{A,B} | A ∪ B = V }. The involution ∗, the partial order ≤ and the (natural) order
function | · | are defined as for separations of graphs. As in Section 3, we often restrict
ourselves to the bipartitions of V , i.e. to the universe {{A,B} | A∩B = ∅ and A∪B = V }
with the same involution and partial order. However, all the bipartitions have order 0
with respect to the natural order function for set separations. There are multiple ways to
define more meaningful submodular order functions on bipartition universes; one of them
will be sketched in Section 3.

Finally, we end this section with the remark that all the separation systems considered
in this thesis are finite without further notice.
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3 Algorithmic Cluster Analysis via Local Refinements

In this section we describe the cluster analysis approach sketched in the introduction in
more mathematical detail, and state precisely the theorems we need to make it work. We
shall prove these theorems in Section 4.

In cluster analysis we usually deal with bipartitions of finite sets. For example, suppose
we are given a certain property that elements of some finite ground set V may or may
not possess. Then this property naturally induces a bipartition of V which splits V into
those elements that have the property and those that do not have it. We refer the reader
to [4] for an in-depth discussion of possible setups and application scenarios.

So in this section we work with a universe U of separations which consists of all the
bipartitions of some finite ground set V , i.e.

U = {(A,B) | A ∩B = ∅ and A ∪B = V }.
Recall from [6, Section 5.1] that profiles of a separation system S ⊆ U which consists of
set bipartitions and contains a non-trivial separation are regular, i.e. these profiles do not
contain any co-small separations: this is because the only small bipartition of V is the
trivial (∅, V ) whose triviality is witnessed by every non-trivial bipartition. In particular,
separations that distinguish two regular profiles are never small. So the structure tree T
that we intend to build will not only be a nested set, but even a regular tree set. Therefore,
we restrict our attention in this section to regular tree sets T . Note that by the above,
almost all tree set T of set bipartitions are regular: the tree set T = {{∅, V }} is the only
exception. (For more general results and discussions, see Sections 5 and 7.)

So let T ⊆ U be a regular tree set in a universe U of set bipartitions. Since every
profile of T orients T consistently, it is in particular the down-closure of its maximal
elements. The sets of maximal elements of consistent orientations of T are the so-called
splitting stars of T :

Definition 3.1 ([3]). Let U be a universe of separations, and let T ⊆ U be a nested set
which has no degenerate elements. Then L is a splitting star of T if there is a consistent
orientation O of T such that L is the set of maximal elements of O.

As sketched in the introduction and shown by Diestel in [3], we can envision a tree
set T as a graph-theoretical tree T̂ , as follows. Let L be the set of splitting stars of T . We
take L as the vertex set of T̂ , and T as its set of edges, where we assign to each edge t ∈ T
as its terminal nodes the two splitting stars in L that contain t or t, respectively. In this
way, we also have a bijection between the vertices of our graph-theoretical tree T̂ and the
consistent orientations of T .

In order to analyse algorithmically the cluster structure of V described by a separation
system S, we want to build, iteratively, a sequence of regular tree sets ∅ = T0 ⊆ · · · ⊆ Tn
that describes this cluster structure in evolving detail. Ideally, we would like to have
that Tk ⊆ S for each 0 ≤ k ≤ n, but usually Tk will consist of separations in S and
corners of separations in S, as we will see below. In the (k + 1)-th iteration step, Tk+1

shall arise from Tk by local refinements in that we analyse the clusters in V captured
as profiles of Tk. For this purpose we construct, for each cluster captured as a profile
of Tk separately, a ‘local’ regular tree set which describes the structure of the investigated
cluster in more detail. These local regular tree sets will be nested with Tk and with each
other, and, combined with Tk, they form the refined regular tree set Tk+1.
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Let us make precise how a regular tree set T describes the cluster structure of V (see
also [4, Section 4.1]). For each splitting star L of T , let VL consist of those elements of V
that lie on the big side of all the separations in L. So VL is precisely the big side of the
oriented separation which is the supremum of L, namely supL :=

∨
{t∈L} t = (V \VL, VL).

Since L is a splitting star of T , the set VL is also the set of those elements in V that lie
on the big side of all the separations in the consistent orientation of T with maximal
elements L. Each splitting star L with non-empty VL is induced by a profile of T , but
note that VL can be empty even if L is induced by a profile.

Now the collection of the (non-empty) sets VL for all the splitting stars L of T form a
partition of V : for each v ∈ V , let us orient each bipartition in T towards that side which
contains v. This yields a consistent orientation of T with a corresponding splitting star L
of T such that v ∈ VL. Now this consistent orientation is unique: if any bipartition in T
is oriented differently, then v is not in the big side of this bipartition, and, in particular, v
is not in VL′ for the respective splitting star L′ 6= L.

So from the perspective that the collection of the sets VL for all the splitting stars L
of T partitions V , each splitting star L of T captures VL as a substructure of V . Now
each profile P of T is a consistent orientation of T , and thus corresponds to a certain
splitting star L of T . This splitting star L identifies VL as the ‘cluster’ described by P .
Therefore, we loosely refer to VL as ‘the cluster described/captured by L’. So in order
to investigate the cluster captured by a splitting star L in more detail, we have to study
how S partitions VL.

During the first k iteration steps, we may have identified some splitting stars of the
already constructed regular tree set Tk that we do not want or need to analyse any further
because the cluster that they capture is detailed enough for our purpose. For example,
the cluster VL described by such an uninteresting splitting star L could be small or even
empty, or there might not be any separation in S which partitions VL into proper subsets.
This is why we carry forward, along with Tk, a set Lk of those splitting stars that we want
to investigate further. The splitting stars L ∈ Lk are called locations of Tk. We say that
a profile P of Tk lives in the location L of Tk that it induces.

Suppose that a regular tree set Tk and a set Lk of splitting stars of Tk have been
constructed. For the (k+ 1)-th iteration step we wish to choose, for each location L ∈ Lk
individually, a set of separations SL that we believe to be of high relevance for the further
investigation of the cluster captured by L. In particular, the choice of SL may depend
on the location L. All the separations in SL will be separations in our fixed separation
system S; however, for notational simplicity, we will often not mention this explicitly in
what follows, and just require SL ⊆ U .

Now which separations from S are reasonable candidates for SL for some given loca-
tion L ∈ Lk? In order to investigate the cluster VL captured by the location L, we have
to look at how the separations in S partition VL. In particular, we do not care about
how V \ VL is partitioned by S, and any information about this will be irrelevant for the
purpose of analysing L. So suppose we believe that a separation s ∈ S is of high relevance
for the further investigation of the cluster described by L. Remember that we want to
use the separations in SL to investigate the cluster captured by L in that we construct a
‘local’ regular tree set TL which describes this cluster in more detail. Moreover, the local
regular tree set TL should be nested with T and with all the local regular tree sets that
we construct for other locations in Lk. Now s might cross Tk arbitrarily which greatly
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complicates our aim to construct such a local regular tree set TL. But for the purpose of
investigating L, we do only need the information about how s partitions VL. So instead
of including s itself into SL, we include the ‘part’ of s into SL which contains only the
information about how it partitions VL (in addition to what we already know from L
and Tk).

More precisely, instead of s = {A,B}, we can include one of the separations
{A ∪ (V \ VL), B ∩ VL} and {B ∪ (V \ VL), A ∩ VL} into SL. Let s = (A,B). Then
these two separations are precisely the unoriented separations which underlie the two cor-
ner separations s ∨ supL = (A∪ (V \VL), B ∩VL) and s ∨ supL = (B ∪ (V \VL), A∩VL)
of s and supL. This is why we shall informally say that we replace s with one of the
corner separations s ∨ supL and s ∨ supL.

These two corner separations capture precisely the information that we are interested
in, namely how s partitions VL: they both have V \ VL completely on one side, but
partition VL in the same way as s did. Particularly, note that both corners s ∨ supL
and s ∨ supL induce the same partition on VL; so it is sufficient to include one of them
into SL as we do not gain any information about the structure of VL by including them
both.

The corners of s with supL have the advantage over s that they are already ‘com-
patible’ with L and Tk in a way that helps us to find a local regular tree set TL which
describes the structure of the cluster captured by L. These corners are, for example,
nested with Tk, but they are compatible with Tk and L in an even stronger sense that we
are going to make precise below.

However, the above replacement step has one caveat: SL was supposed to be a subset
of S, but the corners s ∨ supL and s ∨ supL will in general not be in S. By definition
the corners of separations in S contain the information about how S partitions V that we
get by considering combinations of separations in S. In this sense, we do not change the
amount of information that S contains about V if we consider such corners. This justifies
that we add, for the purpose of analysing a location L, corners of separations in S to SL,
and thus to S. But we make this change to S locally, for the purpose of analysing L only:
for each location L′ 6= L, the added corners have VL′ ⊆ V \ VL completely on one side, so
they do not provide any information about how S partitions VL′ .

Let us illustrate this replacement step with the example from the introduction where
the separation system S was induced by the answers of study participants to questions
from a questionnaire Q. Suppose that we so far constructed a regular tree set Tk, and
let L ∈ Lk be a location of Tk that we want to investigate further, e.g. the location of Tk
where VL contains the lovers of classical music in our study group. Then VL consists of
those participants of our study that answered all the questions which induce the separa-
tions in L in the way that induces the orientation L of L, e.g. they answered the question
whether they like classical music in the affirmative.

Suppose that we want to analyse L further using a separation s ∈ S that corresponds
to the question ‘Do you like Bach?’. Now even though the participants in V \VL do not like
classical music in general, some of them might still enjoy the music of Johann Sebastian
Bach while others do not like any classical music at all. Consequently, the separation s
might partition the small side of the ‘Do you like classical music?’-separation in L. In this
case, s itself carries more information about V than we need for the further analysis of L:
we are not interested in what the study participants in V \ VL think about Bach; we are
interested in whether the study participants in VL, those that like classical music, do also
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like Bach or not. So instead of including s into SL, we include the separation into SL that
corresponds to the combined question ‘Do you like classical music and do you like Bach?’.
On the formal level, considering such Boolean expressions of questions from Q corresponds
to taking corners of the corresponding induced separations in S. In particular, if we want
to include the separation into SL that corresponds to logical conjunction of the question
inducing s with all the questions inducing the separations in L, then we include precisely
the corners s ∨ supL and s ∨ supL.

However, these corners do not have to be in S since the corresponding combined
questions may not appear on the questionnaire Q. But for any Boolean expression of
questions from Q, we can infer how the participants of the study would have answered
the combined question based on their answers to the questions from Q (assuming that the
participants of our study answered the questions in Q consistently). In this sense, adding
the corresponding corner separation to S for the purpose of analysing a location L only
does not change the amount of information that S provides about VL.

By looking at the questionnaire example, we explained how to construct the sets SL
of separations ‘by hand’ in that we determine, for each location L separately, the most
relevant separations for the analysis of L by content-related considerations. But from an
algorithmic perspective it is not desirable to stop the algorithm after each iteration step
to manually select a suitable set SL for every location L; instead, we want to choose the
sets SL mechanically in each iteration step. In the next paragraph we will describe an
approach to such a mechanical construction by adapting a construction of Diestel in [4,
Section 3.4].

In the introduction we explained using the questionnaire example that we cannot
assume the existence of a global submodular order function which reasonably describes
the next important separations simultaneously at each location in Lk. Therefore, we
suggested to use local order functions whose definition depends on the respective location
instead. Formally we can rephrase the choice of the sets SL in the following way: For
each location L, we define a ‘local’ order function | · |L on U depending on L. Then the
separations of highest relevance for the analysis of L are those separations in S that have
low order with respect to | · |L, namely order < ` for some ` ∈ N. From this set S` of
separations, we can construct SL by the replacement process as described above. But
with a suitably constructed local order function | · |L, we can avoid this replacement step
since all the separations constructed in the replacement process are already in S`, and we
can just pick them therefrom (see below).

One typical construction of a global submodular order function on bipartition universes
is as follows (for any details, see in particular [4, Section 3.4]): For each two elements u, v
of the finite ground set V , we choose a similarity measure σ(u, v) ∈ N where u and v are
seen as similar if the pair {u, v} has a high similarity measure σ(u, v). (As Diestel explains,
it is possible to define a reasonable similarity measure only referencing S, but without a
concrete interpretation. [4]) Now the order of a bipartition {A,B} of V is defined as

|{A,B}| =
∑
a∈A

∑
b∈B

σ(a, b). (?)

So | · | assigns low order to those bipartitions of V that do not separate many similar
pairs.

This construction can be adapted to define a local order function | · |L as follows:
When analysing the location L, we are interested in how the separations in S partition
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the elements of VL. Therefore, if we calculate the local order of a bipartition {A,B} at L,
we do only need to consider those pairs (a, b) of elements a ∈ A and b ∈ B in the double
sum in (?) where both a and b are in VL. The resulting local order function | · |L on U
assigns to a bipartition {A,B} of V an order that is based solely on the similarity of
elements of VL. To put it in another way, the order assigned by | · |L to {A,B} equals the
order that the order function | · | constructed in (?) on the ground set VL would assign
to the bipartition {A ∩ VL, B ∩ VL} of VL.

From this perspective, it is immediate that | · |L assigns the same order to a separation s
and its corner separations s ∨ supL and s ∨ supL with supL. So we can choose SL as
the set of those separations in S` which have the form of such a corner separation without
loosing any information about how the separations of low order partition VL.

This inconvenient and somehow artificial restriction step can be avoided by directly
choosing SL with respect to the order function defined by (?) on the ground set VL: We
first apply this order function to the set of bipartitions of the ground set VL that are in-
duced by S, and choose S ′

L
to be the set of all those bipartitions of VL induced by S that

have order< ` for some fixed ` ∈ N. Then we define SL = {(A∪(V \VL), B) | {A,B} ∈ S ′
L
}

which contains precisely the separations in U that have the form s∨ supL for some s ∈ S
of order < ` with respect to the above constructed | · |L. Note that by construction,
this SL contains precisely one of s ∨ supL and s ∨ supL for each s ∈ S ′

L
.

With the replacement process described above, we can assume that each separation s
which we include into SL does not partition V \VL, otherwise we include a corner separa-
tion of s with supL instead of s itself without loosing any information about L. Hence,
every separation s ∈ SL has an orientation s such that V \VL is a subset of the small side
of s. In other words this orientation s satisfies supL ≤ s by the definition of VL, so supL
points towards any separation s ∈ SL.

However, as we shall see in the course of this thesis, this property is stronger than
what we actually need to build the desired sequence of regular tree sets through local
refinements. Indeed, we do not need the separations in SL to have V \ VL completely on
their small side; it is sufficient for our purposes if they do not partition the small side of
any single t ∈ L. We say that such separations are ‘inside’ L. To define this formally, we
first extend the notion of ‘pointing towards’ to sets of separations as follows:

Definition 3.2. Let X be a set of oriented separations in a universe U of separations,
and let Y ⊆ U be a set of unoriented separations. Then X points towards Y if every
x ∈ X points towards every y ∈ Y , i.e. if for every x ∈ X and every y ∈ Y , there is an
orientation y of y such that x ≤ y . Conversely, X points away from Y if every x ∈ X
points away from every y ∈ Y . If X = {x}, then we say that x points towards or points
away from Y , and similarly for Y = {y}.

Now we are ready to make precise what we mean by separations inside a location L:

Definition 3.3. Let L be a star of separations in a universe U of separations. We say
that an unoriented separation s ∈ U is inside L if L points towards s. Conversely, we
call s outside L if some t ∈ L points away from s, i.e. if there is an orientation s of s and
some t ∈ L with s ≤ t. A set X ⊆ U of unoriented separations is inside or outside L if
every x ∈ X is inside or outside L, respectively.

By this definition, a separation is nested with L if it is inside or outside L. Conversely,
a separation is inside or outside L if it is nested with L. If L = ∅, then Definition 3.3
says that every separation in U is inside L, but not outside L.
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Note that every separation in L is inside and outside L, we can view them intuitively
as the borders of the star L. But there can also be other separations which are inside and
outside L, namely those separations that have a trivial orientation with a witness in L:
suppose a separation s /∈ L is inside and outside L. Then there are orientations s and s
of s and some t ∈ L with s < t < s, so t witnesses the triviality of s. Particularly, in a
universe U of set bipartitions, the trivial separation (∅, V ) is inside every splitting star L
of a (regular) tree set T .

However, for non-empty nested sets T in arbitrary universes of separations, every se-
paration in T is outside a splitting star L of T , since L is the set of maximal elements of
some consistent orientation O of T . Furthermore, if T is a (regular) tree set, then there
is no separation from T \ L inside L since all the separations in T are non-trivial in T .

Now the property ‘s is inside L’ is strictly weaker than the property ‘supL points
towards s’: If supL points towards a non-trivial separation s, then s is clearly inside L.
But the converse does not hold: the supremum supL does not need to point towards a
separation s inside L. Indeed, s does not even have to be nested with supL as can be
seen in the following example:

Example 3.4. Let U be a universe of bipartitions, and let T = {t, t′} ⊆ U be a regular
tree set where there are orientations t of t and t′ of t′ such that t < t′ . Then L = {t, t′} is
a splitting star of T . Given s ∈ U with t < s < t′ , the underlying unoriented separation s
is inside L, but it crosses supL = t ∨ t′ because s partitions both the small and the big
side of t ∨ t′ .

In the light of this, let us briefly revisit the above replacement step. Suppose a
separation s ∈ U is of high relevance for the further investigation of a location L. Above,
we included either s ∨ supL or s ∨ supL into SL instead of including s into SL directly.
Thereby, we ensured that V \ VL is completely on one side of each separation in SL,
i.e. supL points towards SL. If we now relax this requirement in that we only want to
ensure that each separation in SL is inside L, we could modify the replacement step
as follows: Given s = {A,B}, we go through all the separations in L which do not
point towards s one by one. For each such t = (C,D) ∈ L, we replace s with either
s ∨ t = (A ∪ C,B ∩ D) or s ∨ t = (B ∪ C,A ∩ D), and then continue with the chosen
corner as our new s. The choice between s∨ t and s∨ t can be made individually for each
considered t ∈ L. In this way we ensure that each t ∈ L points towards every separation
in SL, so that L points towards SL. However, in practice, it is usually more convenient to
avoid making these choices and determining those t ∈ L not pointing towards s in that
we directly replace s by s ∨ supL or s ∨ supL.

To put it in a nutshell: Suppose we are given the separations that we believe to be
of high relevance for the purpose of investigating the cluster VL captured by a location L
of Tk. Then we can modify them into a set SL of separations inside L which contains the
same amount of information about VL. This set SL is the one that we use to find a local
regular tree set TL describing the structure of the cluster captured by L.

Suppose now that we have chosen a set SL ⊆ U of separations inside L for each
location L ∈ Lk. Given such a location L ∈ Lk, the structure of the cluster VL captured
by L is described by how VL is partitioned by separations in S. We now investigate the
structure of VL using the separations in SL. The ‘sub-clusters’ of VL that we can identify
using SL are captured by those profiles of Tk ∪ SL that extend the profile of Tk which
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corresponds to VL itself. Since the splitting star L of Tk already determines the full profile
of Tk which corresponds to VL, we hence consider profiles of SL∪L extending L. We shall
call such profiles refinements of L into SL, and make the following definition:

Definition 3.5. Let U be a universe of separations, T ⊆ U a regular tree set, and L a
splitting star of T . Let SL ⊆ U be a set of separations. Then we say that P refines L
into SL if P is a profile of SL ∪L extending L. We call P a refinement of L into SL. The
set of all refinements of L into SL is denoted by PL(SL). If SL is clear from the context,
we usually write just PL.

Note that our definition of a refinement includes that P is a profile. So if L itself is
not a profile of L, then there are no refinements of L into SL. But since each (non-empty)
cluster of V is captured by a profile of Tk, the locations L that we investigate will arise
from profiles of Tk, and, in particular, L will be a profile of L. Some of our later results
also work for so-called F-tangles of SL ∪ L that orient L as L, but which do not need to
be profiles themselves; we will make clear when this is the case.

In practice, we are often not interested in whether any refinements of L into some
set SL of separations exist (i.e. whether PL 6= ∅), but we look for certain special refine-
ments P ′

L
⊆ PL. The main reason for this is the following (see also [4, Section 3.1]):

Recall (e.g. from [5]) that each element v of our ground set V defines a principal profile
of U which is ‘focused’ on v, namely

Pv = {(A,B) ∈ U | v ∈ B}.

In particular, if v ∈ VL for some splitting star L, then for any set SL ⊆ U of separations,
the profile Pv ∩ (SL ∪ L) refines L into SL. Throughout our iterative cluster analysis, all
the L ∈ Lk will usually have VL 6= ∅. So in this case, it cannot happen that there do not
exist any refinements of L into SL.

However, if L itself is not a profile of L, then there are clearly no refinements of L into
any set SL ⊆ U of separations. Furthermore, even if L itself is induced by a profile of T ,
then it can occur that there exist no refinements of L into a set SL ⊆ U of separations
if VL is empty:

Example 3.6. Let V = {1, 2, 3, 4} and consider the bipartitions si = ({i}, V \ {i})
for i ∈ V . Then P = {si | i ∈ V } is a profile of the regular tree set T = {si | i ∈ V },
and P lives in the location L = P of T . Clearly, we have VL = ∅ here.

If we now consider the bipartition r = ({1, 2}, {3, 4}) of V which is inside L, then
there exists no refinement P ′ of L into {r}: by the profile property for s1 and s2 , we
would need r ∈ P ′, whereas the profile property for s3 and s4 required P ′ to orient r as r.

Now if we assume in our algorithmic setup that VL is non-empty for every L ∈ Lk,
then there exist refinements of L into SL exist for every set SL ⊆ U of separations,
namely those which are induced by the principal profile of some v ∈ VL. From this
perspective, the sheer existence of such refinements does not directly tell us anything
about the cluster structure of VL as described by SL; so the existence of such refinements
becomes interesting if they have additional properties (see below).

Therefore, we often do not consider the set PL of all the refinements of L into SL;
instead, we focus on the existence of a set P ′

L
⊆ PL of certain ‘special’ refinements

with additional properties. A typical class of such special refinements consists of those
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refinements which are also FL-tangles for some set FL ⊆ 2U of stars. In particular, the
additional tangle-structure of such refinements has the advantage that their non-existence
is witnessed by a certain structure tree; we will make this precise below (see Theorem 3.11
and the preceding discussion).

Let us briefly discuss possible choices for the set FL of stars. In general there are
many suitable choices for FL depending on the specific setup. Note that for an arbitrary
set F of stars, the F -tangles of a separation system S ⊆ U do not have to be profiles of S.
But here we want to consider FL-tangles that refine a location L into some set SL ⊆ U of
separations. So in order to make sure that all the FL-tangles of SL ∪L that orient L as L
are also refinements of L into SL, we should choose FL in such a way that all the FL-
tangles of SL ∪ L are indeed profiles. A typical choice for such a set FL of stars is as
follows (see also [4, Section 3.1] and [5, Section 5.3]).

For an integer n ≥ 1, consider the set Fn ⊆ 2U of stars defined as

Fn = {L ⊆ U | L = {(A1, B1), (A2, B2), (A3, B3)} is a star in U with |B1∩B2∩B3| < n}.

In the definition of Fn, we do not require the (Ai, Bi) to be distinct. Particularly, an Fn-
tangle of a separation system S ⊆ U orients every separation {A,B} ∈ S with |A| < n
as (A,B). So an Fn-tangle P of S has the property that for every star L ⊆ P of
size |L| ≤ 3, the set VL has size at least n. In [5, Lemma 25], it is shown that if S is
structurally submodular, then the Fn-tangles of S are precisely those orientations P of S
where for every set {(A1, B1), (A2, B2), (A3, B3)} ⊆ P (and not just every such set which
is also a star), we have |B1 ∩B2 ∩B3| < n.

Note that Fn is standard for every non-empty separation system S ⊆ U , since it
clearly contains the singleton star {(V, ∅)}, and hence forces even every small separation
in U . By definition an Fn-tangle P of some separation system S ⊆ U is also a profile of S:
Suppose this does not hold for some Fn-tangle P of S and let r, s, (r ∨ s)∗ ∈ P contradict
the profile property. Then these three separations form a star L ⊆ U of size 3 which
has VL = ∅. In particular, L ∈ Fn for all n ≥ 1 which contradicts that P is an Fn-tangle.

Now the profile of some separation system S ⊆ U which is induced by a principal
profile of U is always an F1-tangle of S, too; so the Fn-tangles of S become interesting
for n ≥ 2. Note that the profiles of S induced by principal profiles of U can also be Fn-
tangles of S for some n > 1, e.g. for a tree set T and a splitting star L of T , the profiles
of T induced by principal profiles for v ∈ VL are at least F|VL |-tangles of T . But this is
not true for every separation system S ⊆ U , and hence it does already reveal something
about the cluster structure of V as described by S.

Moreover, since Fn ⊇ Fn′ for n ≥ n′, every Fn-tangle is also an Fn′-tangle for n ≥ n′.
This means that the number of Fn-tangles decreases with increasing n. From this point
of view, the Fn-tangles for large n capture rather broad substructures of V . So if we
choose FL = Fn for some n ≥ 1, then the choice of n is a parameter that we can use to
specify the degree of fineness of the refinements that we want to consider.

Back to our algorithmic analysis, we aim to extend Tk to a ‘refined’ regular tree
set Tk+1 ⊇ Tk which also describes the local cluster structure at each location L as far as
possible using the separations in SL. More precisely, we construct Tk+1 such that Tk+1,
for each location L ∈ Lk, contains a local regular tree set TL ⊆ SL ∪L that describes the
structure of VL as captured by a set of ‘interesting’ refinements P ′

L
⊆ PL of L into SL.

In what follows, let us always keep in mind as a key example that P ′
L

could be chosen as

the set of all FL-tangles in PL for some suitable locally chosen set FL ⊆ 2U of stars.
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We will construct the refined regular tree set Tk+1 ⊇ Tk in two steps: First, we show
for each location L separately that if SL admits certain structural properties, then there
exists such a local regular tree set TL ⊆ SL∪L describing P ′

L
in that it either distinguishes

all the refinements in P ′
L

or it witnesses the absence of certain refinements of L into SL.
Secondly, we combine all the local regular tree sets TL with Tk and with each other to Tk+1.

Before we describe structural properties of the sets SL ⊆ U of separations that guar-
antee the existence of the desired local regular tree sets TL ⊆ SL ∪ L, let us address the
question how to deal with sets SL that do not satisfy these structural conditions. As we
will see, all the structural conditions that we need to require on the SL have one crucial
property in common: they demand the set SL to contain specific corners of its separations.

Hence, if SL does not satisfy the required structural conditions, we ‘pre-process’ it in
that we repeatedly add corners to SL until we get a superset S ′

L
⊇ SL which satisfies

these structural conditions (see also [4, Section 4.3]). Note that this process of repeatedly
adding corners will terminate since V , and hence U and S, are finite. After this pre-
processing step, we replace SL by the newly constructed set S ′

L
. Since SL is inside L, the

set S ′
L

is again inside L: if a separation t points towards two separations s and s′, then
it is immediate from the definition that t points towards all four corners of s and s′.

As explained above, the amount of information that SL provides about the cluster
captured by L does not change by adding these corners; this justifies that we change S
locally for the purpose of analysing L, and add the demanded corners to S. But note
that the size of SL (and S) may increase significantly if many corners have to be added.

Unfortunately, the modification of SL by adding corners can change the set of refine-
ments of L into SL. More precisely, the set of refinements of L into the original SL does
not have to be in one-to-one correspondence to the set of refinements of L into the newly
constructed S ′

L
. Clearly, every refinement of L into S ′

L
induces a refinement of L into SL

since SL ⊆ S ′
L

; but the converse does not need to be true as in the following example:

Example 3.7. Let U be a universe of bipartitions, and let S = {s1, s2, s3} ⊆ U consist
of three distinct separations which cross pairwise. Suppose that there exists an orienta-
tion P = {s1 , s2 , s3} of S such that s1 < s2 ∨ s3 =: r (see Figure 3.1). Now P is surely
a profile of S since neither consistency nor the profile property can be violated if no two
separations in S are even nested.

But if we consider a separation system S ′ ⊇ S which contains the corner r, then there
is no profile P ′ of S ′ that extends the profile P of S: by the profile property for s2 and s3 ,
we must have r ∈ P ′ whereas we need r ∈ P ′ by consistency with s1 - a contradiction.

s3s2

s1

r = s2 ∨ s3

Figure 3.1: The situation in Example 3.7: the profile P = {s1 , s2 , s3} cannot be extended
to a profile which contains an orientation of the corner r of s2 and s3.
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This means that we cannot consider the refinements of L into SL and then fully
describe them by finding a local regular tree set in S ′

L
∪ L, since the refinements of L

into SL may have no counterpart in S ′
L

. For example, a regular tree set TL distinguishing
the refinements of L into S ′

L
does not have to distinguish all the refinements of L into SL.

Moreover, if we consider special refinements of L into SL (e.g. FL-tangles), then there
does necessarily exist any such refinement of L into S ′

L
. But in practice, these cases do

not occur very often, and most refinements of L into SL will indeed extend to refinements
of L into SL (see also [4, Section 4.3]).

Back to the algorithm, this means that the set of refinements of L which we can ana-
lyse precisely is the set of refinements of L into S ′

L
. Thereby, we also obtain information

about the refinements of L into SL, but as described above, our findings about the re-
finements of L into S ′

L
do not need to provide the full picture about the refinements of L

into SL. Therefore, we will consider the set of refinements of L into S ′
L

as the set PL
of refinements that we want to investigate in the following. So we first pre-process SL
suitably by adding corners to get S ′

L
, and then replace SL with S ′

L
. After this replacement

step, we have the set SL that we are using for the course of our cluster analysis, and we
finally determine the set PL of refinements of L into this SL.

Given a regular tree set T in a universe U of set bipartitions, a splitting star L of T ,
and a set SL ⊆ U of separations, we will now study structural properties of SL which
guarantee the existence of a suitable local regular tree set TL ⊆ SL ∪L that describes the
structure of the cluster captured by L as characterized by a set P ′

L
⊆ PL of refinements

of L into SL. In doing so, we distinguish three possible cases: either P ′
L

consists of mul-
tiple refinements of L into SL, or there is precisely one such refinement in P ′

L
, or P ′

L
is

empty, i.e. there does not exist any refinement of L into SL in P ′
L

.

Let us first assume that P ′
L

contains multiple refinements of L into SL. In this case,
we want to use a structural version of the tree-of-tangles theorem to refine T in that
we add a local regular tree set TL ⊆ SL to T which distinguishes all the refinements
in P ′

L
. As we shall see in the following, SL even contains such a regular tree set TL which

distinguishes the set PL of all refinements of L into SL. Such a regular tree set TL clearly
distinguishes P ′

L
⊆ PL, too.

In general, a separation system S in a universe U is guaranteed to contain a tree set
distinguishing all its profiles if it is structural submodular. Let us recall from Section 2 that
a separation system S ⊆ U is structurally submodular if for any two separations s, t ∈ S,
at least one of s ∨ t and s ∧ t is also in S. This purely structural analogue of the
submodularity of a global order function was introduced by Diestel, Erde, and Weißauer
in [5]. They showed that structural submodularity implies the existence of structure trees:

Theorem 3.8 ([5, Theorem 6]). Let U be a universe of separations, S ⊆ U a structurally
submodular separation system, and let P be a set of profiles of S. Then S contains a tree
set that distinguishes P.

We want to use Theorem 3.8 to refine a given regular tree set T into a regular tree
set T ′ ⊇ T by adding a local regular tree set TL ⊆ SL which distinguishes all the refine-
ments in PL. It turns out that it is enough to require SL to be structurally submodular
if SL is inside L. But by the previous construction, we can clearly assume SL to be
inside L in our cluster analysis scenario.
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So our first local refinement theorem reads as follows:

Theorem 3.9. Let U = (U,≤, ∗,∨,∧) be the universe of bipartitions of a finite set V ,
and let T ⊆ U be a regular tree set. Let L be a splitting star of T , and let SL be a set of
separations in U which contains a non-trivial separation. Moreover, assume that

(i) SL is a structurally submodular separation system;

(ii) SL is inside L.

Let PL be the set of refinements of L into SL. Then there exists a regular tree set T ′ ⊇ T
in U with T ′ ⊆ T ∪ SL such that every two refinements in PL are distinguished by some
separation in TL = (T ′ \ T ) ∩ SL.

We will prove Theorem 3.9 in Section 4. Note that the condition that SL contains
a non-trivial separation is included in Theorem 3.9 to rule out the pathological case
that T = L = ∅ and SL = {{∅, V }}. In this case, the refinements of L into SL are not
regular, and they cannot be distinguished by any regular tree set in U .

If SL is structurally submodular, then Theorem 3.9 provides the regular tree set T ′

that we are looking for. Recall that by definition, a separation system has to contain
specific corners to be structurally submodular. So if SL is not structurally submodular,
we can pre-process SL as described above to make it structurally submodular before we
determine the set PL of refinements of L into SL and apply Theorem 3.9. This pre-
processing step will not always be needed: if SL comes as the set of those separations in
some universe of set bipartitions which have low order with respect to some local sub-
modular order function (e.g. a local order function based on pairwise similarity as in (?)),
then SL is already structurally submodular.

For the second case, assume that there is precisely one refinement in P ′
L

. There are
two possible reasons for this: either there is only one cluster inside L, and we have
thus completed our analysis of the cluster captured by L. Or there are multiple clusters
inside L, but SL does not distinguish them. It is up to us to decide which of these reasons
applies to L and SL.

The decision which of the two reasons applies can be done mechanically in different
ways: For example, we could try to investigate the cluster described by L in a fixed
number n of iteration steps by repeated choices of SL. If we still do not find more than
one refinement in n iteration steps, then we stop investigating L and decide that L is the
most local structure that we wish to find. In this case, we drop L and do not carry it
forward in Lk+1. On the other hand, if we investigate L further and keep it in Lk+1, then
it might be sensible to choose the new SL as a superset of the set of separations that we
considered in the preceding iteration step. Thereby, we ensure that the refinements found
in the next iteration step extend the currently found unique refinement.

In the third case, there does not exist any refinement of L into SL in P ′
L

, i.e.P ′
L

is
empty. Then we can make use of another central result in tangle theory, the so-called
tangle-tree duality theorem, Theorem 3.10 below. We will use the tangle-tree duality
theorem to find a local regular tree set TL ⊆ SL ∪L that witnesses the absence of certain
refinements, namely such refinements that are also FL-tangles refining L into SL for some
suitably chosen set FL ⊆ 2U of stars. In particular, if P ′

L
is empty, then the set FL should

be chosen such that there is also no FL-tangle refining L into SL. Especially, this is true
if we consider as P ′

L
precisely the set of FL-tangles refining L into SL.
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The tangle-tree duality theorem says that a separation system S either has an F -
tangle or there exists an S-tree over F , i.e. a tree-like object that witnesses, in some
easily checkable way, the non-existence of F -tangles of S. It reads as follows:

Theorem 3.10 ([7, Theorem 4.3]). Let U be a universe of separations containing a finite
separation system S. Let F ⊆ 2U be a set of stars, standard for S. If S is F-separable,
exactly one of the following holds:

(i) There exists an F-tangle of S.

(ii) There exists an S-tree over F .

Let us first make precise how an S-tree over a set F of stars helps us find a regular
tree set which witnessing the non-existence of F -tangles of S. In [3, Section 6], Diestel
showed that for an essential S-tree (G,α) over the essential core of F , the separation
system α(E(G)) is a tree set that does not contain any separations which are trivial
in S. Since we work in a universe of set bipartitions, this implies that the separation
system α(E(G)) is even a regular tree set. In this case, we call α(E(G)) the regular tree
set associated with (G,α). We shall informally say that the regular tree set associated
with an essential S-tree (G,α) over F witnesses the non-existence of F -tangles of S in
the sense of tangle-tree duality.

However, for general S-trees over F , the set α(E(G)) does not even have to be nested.
But if F contains its essential core, then we can make a general S-tree (G,α) over F
essential: by [3, Corollary 6.7], there exists an essential S-tree (G′, α′) over the essential
core of F with G′ a minor of G and α′ = α � E(G′). In the light of this result we assume
for the rest of this section without further notice that every S-tree over a set F of stars
containing its essential core is essential and over the essential core of F . In particular,
speaking of the regular tree set associated with an S-tree over F is always well-defined.
In the setup of cluster analysis as in this section, the set F of stars often contains its
essential core (e.g. each of the sets Fn of stars defined above).

As described above, we aim to use Theorem 3.10 to refine T by adding a local regular
tree set TL to T which witnesses in the sense of tangle-tree duality that there are no FL-
tangles refining L into SL for some locally chosen set FL ⊆ 2U of stars containing its
essential core.

Note that TL cannot be associated with an (SL ∪ L)-tree over FL: such a tree would
witness the non-existence of any FL-tangles of SL ∪ L. But the absence of FL-tangles
refining L into SL does not necessarily prevent the existence of FL-tangles of SL ∪L that
do not orient L as L. The additional restriction ‘L is oriented as L’ can be translated
into the language of tangles by considering the set F ′

L
= FL∪{{t}|t ∈ L} of stars instead

of FL itself. Then the F ′
L

-tangles of SL∪L are precisely the FL-tangles refining L into SL.
Therefore, TL will be a regular tree set associated with an (SL ∪ L)-tree over F ′

L
.

If SL is inside L (as it is in our cluster analysis setup), and if both SL and FL satisfy
certain structural conditions which we will discuss below, then we can proceed as desired,
and use Theorem 3.10 to get a refined regular tree set T ′ ⊇ T .
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So our second local refinement theorem reads as follows:

Theorem 3.11. Let U = (U,≤, ∗,∨,∧) be the universe of bipartitions of a finite set V ,
and let T ⊆ U be a regular tree set. Let L be a splitting star of T , and let SL be a set
of separations in U . Suppose that FL ⊆ 2U is a set of stars, standard for SL ∪ L, which
contains its essential core. Moreover, assume that

(i) SL ∪ L is separable;

(ii) SL is inside L;

(iii) FL is closed under shifting in SL ∪ L.

If there are no FL-tangles refining L into SL, then there exists a regular tree set T ′ ⊇ T
in U with T ′ ⊆ T ∪ SL such that T ′ contains a regular tree set TL ⊆ ((T ′ \ T ) ∩ SL) ∪ L
which is associated with an essential (SL ∪ L)-tree over F ′

L
= FL ∪ {{t}|t ∈ L}.

For the proof, we again defer the reader to Section 4. The proof will indeed show
that Theorem 3.11 still holds if we do not require the considered FL-tangles to be profiles
of SL ∪L. Note that we have the inclusion TL ⊆ ((T ′ \T )∩SL)∪L instead of an equality
as in Theorem 3.11 since Theorem 3.10 does not tell us which separations from L are
in TL; however, we still have (T ′ \ T ) ∩ SL ⊆ TL.

Let us discuss the structural conditions on SL and FL in Theorem 3.11. There we
require SL∪L to be separable and FL to be closed under shifting in SL∪L. In the proof of
Theorem 3.11, we use these assumptions to show that SL ∪L is F ′

L
-separable as required

for the application of Theorem 3.10. In our setup, separation systems are often separable,
and many suitable choices of FL are closed under shifting and standard for SL ∪ L. For
example, the above defined sets Fn of stars are standard for SL ∪L and also closed under
shifting by [5, Lemma 26].

Note that by the definition of separability, we can again make a separation system
separable using the previously described pre-processing routine in that we repeatedly add
corners if needed. However, we will not need to do this if SL is a structurally submodular
separation system:

Lemma 3.12 ([5, Lemma 13]). Let U be a universe of separations and S ⊆ U a struc-
turally submodular separation system. Then S is separable.

If SL is structurally submodular and inside a splitting star L of T , then SL ∪ L is
structurally submodular, too. So if SL is inside L, then SL ∪ L is separable if SL is
structurally submodular.

Until now, we investigated how to refine a regular tree set T at a single splitting
star L of T using the separations in SL. The next theorem says that we can do these local
refinements simultaneously for an arbitrary set L of splitting stars of T : we can extend T
to a regular tree set T ′ ⊇ T such that for each L ∈ L, there exists a local regular tree
set TL ⊆ ((T ′ \ T ) ∩ SL) ∪ L which describes the structure of a set P ′

L
of refinements

of L into SL. Let us keep in mind that an exemplary choice for each P ′
L

would be the

set of FL-tangles refining L into SL for a locally chosen set FL ⊆ 2U of stars (see also
Corollary 3.14).

The complete local refinement theorem for regular tree sets combines the two previous
single location refinement theorems, Theorem 3.9 and Theorem 3.11, as follows:
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Theorem 3.13. Let U = (U,≤, ∗,∨,∧) be the universe of bipartitions of a finite set V ,
let T ⊆ U be a regular tree set, and let L be a set of splitting stars of T . For each splitting
star L ∈ L, let SL ⊆ U be a set of separations inside L, and let P ′

L
⊆ PL be a set of

refinements of L into SL. For every L ∈ L, let us assume that

(i) if P ′
L

is non-empty, then SL is a structurally submodular separation system which
contains a non-trivial separation;

(ii) if P ′
L

is empty, then SL ∪ L is a separable separation system, and we have a

set FL ⊆ 2U of stars containing its essential core, which is standard for SL ∪ L,
closed under shifting in SL ∪ L, and such that there is no FL-tangle refining L
into SL.

Then there exists a regular tree set T ′ ⊇ T in U with T ′ ⊆ T ∪
⋃
L∈L SL such that for

every L ∈ L,

(a) if P ′
L

is non-empty, then every pair of refinements in P ′
L

is distinguished by some
separation in TL = (T ′ \ T ) ∩ SL;

(b) if P ′
L

is empty, then there exists a regular tree set TL ⊆ ((T ′ \ T ) ∩ SL) ∪ L which
is associated with an essential (SL ∪ L)-tree over F ′

L
= FL ∪ {{t}|t ∈ L}.

For the formal proof, see Section 4. Essentially, the assumptions (i) and (ii) enable
us to apply our previous two local refinement theorems iteratively to the splitting stars
in L one by one. Since the refined regular tree sets obtained from one of the previous two
local refinement theorems were constructed by adding ‘local’ regular tree sets inside the
investigated splitting star, the already constructed local regular tree sets do not interfere
with the new local regular tree set.

Note that condition (i) in Theorem 3.13 forbids SL = ∅ if L is a profile of L; but if we
set SL = ∅, then this means that we do not analyse L any further. So we can also just
remove L from L before applying Theorem 3.13. Similarly, if condition (ii) is not met in
that we have P ′

L
= ∅, but do not find a suitable set FL of stars in U , then we cannot use

tangle-tree duality to witness the absence of refinements in P ′
L

. In this case, we can again
remove L from L, and then apply Theorem 3.13 to the remaining splitting stars.

Theorem 3.13 is formulated in a very general form. In order to illustrate its prac-
tical use, let us give the subsequent corollary which follows directly from Theorem 3.13
combined with Lemma 3.12:

Corollary 3.14. Let U = (U,≤, ∗,∨,∧) be the universe of bipartitions of a finite set V ,
let T ⊆ U be a regular tree set, and let L be a set of splitting stars of T . For each
splitting star L ∈ L, let SL ⊆ U be a structurally submodular set of separations inside L
which is either empty or contains a non-trivial separation, and let FL ⊆ 2U be a set of
stars containing its essential core which is standard for SL ∪ L and closed under shifting
in SL ∪ L.
Let P ′

L
⊆ PL be the set of FL-tangles refining L into SL. Then there exists a regular tree

set T ′ ⊇ T in U with T ′ ⊆ T ∪
⋃
L∈L SL such that for every L ∈ L,

(a) if P ′
L

is non-empty, then every pair of refinements in P ′
L

is distinguished by some
separation in TL = (T ′ \ T ) ∩ SL;

(b) if P ′
L

is empty, then there exists a regular tree set TL ⊆ ((T ′ \ T ) ∩ SL) ∪ L which
is associated with an essential (SL ∪ L)-tree over F ′

L
= FL ∪ {{t}|t ∈ L}.
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Let us return to our inductive construction of building a sequence ∅ = T0 ⊆ · · · ⊆ Tn
of regular tree sets by local refinements that describes the cluster structure of V as given
by S in evolving detail. Suppose T0, . . . , Tk (and the corresponding sets L0, . . . ,Lk of
‘interesting’ splitting stars) were already constructed.

In the (k + 1)-th iteration step, we determine, for each location L ∈ Lk separately, a
set SL of separations that we believe to be of highest relevance for the further investigation
of L, e.g. mechanically using the local order function approach. By the replacement step
presented at the beginning of this section, we may assume that each SL is inside the
respective location L. Based on what the set P ′

L
of ‘interesting’ refinements of L into SL

looks like, we can use the pre-processing step described above to ensure that SL has
the structural properties that guarantee the existence of a suitable local regular tree
set TL inside L (see conditions (i) and (ii) of Theorem 3.13 above). By neither of these
modification steps, the amount of information that SL provides about the cluster captured
by L changes.

However, recall that some refinements into the original set of separations do not extend
to refinements into this pre-processed SL. Hence, the number of refinements of L into
the pre-processed SL may be lower than the one before the pre-processing step. If this
results in that there are no interesting refinements any more, then note that if SL satisfies
condition (i), it also satisfies condition (ii): remember from Lemma 3.12 and the comment
thereafter that if SL is structurally submodular, then SL ∪ L is also separable.

Now for those locations L ∈ Lk without interesting refinements into the pre-
processed SL, we choose a local set FL of stars satisfying condition (ii). Then we ap-
ply the local refinement theorem for regular tree sets, Theorem 3.13 to Tk, Lk, and the
collection of the corresponding SL for L ∈ Lk, and obtain the next and more detailed
regular tree set Tk+1.

How do we choose the set Lk+1 of interesting splitting stars of Tk+1? Every refine-
ment P from some P ′

L
is a partial consistent orientation of the regular tree set Tk+1. There-

fore, we can extend it to a complete consistent orientation O of Tk+1 [2, Lemma 4.1 (i)].
Since L is a splitting star of Tk, all the local regular tree sets TL′ for L′ 6= L are outside L
(see Lemma 4.1 below). Thus, the orientation O has the same maximal elements as P
has because O is consistent and P orients L ∪ TL. So for Lk+1, we choose those splitting
stars L′ of Tk+1 that are induced by such an extension of a refinement from some P ′

L
.

Furthermore, we may again restrict ourselves to such splitting stars with VL′ 6= ∅.
Then we begin the next iteration step dealing with Tk+1 and Lk+1. This iterative

procedure will lead to a sequence of regular tree sets that displays the structure of our
separation system in more and more detail.

The algorithmic approach as presented in this section is rather a framework and a proof
of concept; questions of implementation are not within the scope of this thesis. However,
let us end this section with a brief discussion about the key factors determining the
computational complexity of a single local refinement step as described in Theorem 3.13.
In each such local refinement step, we need to analyse |Lk| ≤ |Tk| + 1 locations. First,
we choose a suitable set SL of separations for each location L ∈ Lk which we potentially
need to suitably pre-process by repeatedly adding corners. Secondly, we compute for each
location L ∈ Lk separately either a tree of tangles or a suitable duality tree, depending
on the size of the set P ′

L
of ‘interesting’ refinements of L into SL. Finally, we combine all

these local regular tree sets to our refined regular tree set Tk+1. So the complexity of each
refinement step depends heavily on how the first step and the second step are implemented.
For a discussion of current algorithms, we refer the reader to [4, Section 4.3].
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4 Proofs of the Local Refinement Theorems

In this section we show the validity of the algorithm described above. Therefore, it merely
consists of proofs of the local refinement theorems that we claimed in Section 3. As de-
scribed in the introduction, the approach of local refinements was first taken in the proof
of Theorem 1.2 as [6, Theorem 3.6]. So some arguments and approaches in the following
proofs are inspired by arguments thereof.

We begin by proving the first local refinement theorem, Theorem 3.9 above. It says
that we can use the structural version of the tree-of-tangles theorem, Theorem 3.8 above,
to extend a given regular tree set such that it also distinguishes the refinements of a fixed
splitting star:

Theorem 3.9. Let U = (U,≤, ∗,∨,∧) be the universe of bipartitions of a finite set V ,
and let T ⊆ U be a regular tree set. Let L be a splitting star of T , and let SL be a set of
separations in U which contains a non-trivial separation. Moreover, assume that

(i) SL is a structurally submodular separation system;

(ii) SL is inside L.

Let PL be the set of refinements of L into SL. Then there exists a regular tree set T ′ ⊇ T
in U with T ′ ⊆ T ∪ SL such that every two refinements in PL are distinguished by some
separation in TL = (T ′ \ T ) ∩ SL.

Proof. We consider the set PL � SL of those profiles of SL which are induced by profiles
in PL. Since SL is structurally submodular, we can apply Theorem 3.8 to (SL ,≤, ∗)
and PL � SL, and obtain a local tree set TL ⊆ SL distinguishing PL � SL. As all the
refinements of L into SL orient L in the same way, distinct refinements in PL induce
distinct profiles of SL. So TL also distinguishes PL.

All the refinements in PL are regular profiles as SL contains a non-trivial separation.
In particular, such refinements cannot be distinguished by a small separation. So after
removing separations from TL that are not PL-relevant, we may assume that TL is a
regular tree set.

By (ii), TL ⊆ SL is inside L. Since L is a splitting star of T , every separation in T is
outside L. So TL is also nested with T . Hence, T ′ = T ∪ TL is the desired refined regular
tree set.

Theorem 3.9 holds with the same proof even in general universes of separations as long
as all the refinements in PL are regular. For a discussion of more general tree-of-tangles-
type theorems in the context of local refinements in arbitrary universes of separations,
see Section 5. In particular, Theorem 3.9 is a special case of Theorem 5.5.

Now we turn to the second local refinement theorem, Theorem 3.11 above. Here we use
the concept of tangle-tree duality, described in Theorem 3.10 above, to witness the non-
existence of refinements that are FL-tangles for some set FL ⊆ 2U of stars. As we already
mentioned in Section 3, the second local refinement theorem holds even if the FL-tangles
of SL ∪ L are not profiles themselves.
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Theorem 3.11. Let U = (U,≤, ∗,∨,∧) be the universe of bipartitions of a finite set V ,
and let T ⊆ U be a regular tree set. Let L be a splitting star of T , and let SL be a set
of separations in U . Suppose that FL ⊆ 2U is a set of stars, standard for SL ∪ L, which
contains its essential core. Moreover, assume that

(i) SL ∪ L is separable;

(ii) SL is inside L;

(iii) FL is closed under shifting in SL ∪ L.

If there are no FL-tangles refining L into SL, then there exists a regular tree set T ′ ⊇ T
in U with T ′ ⊆ T ∪ SL such that T ′ contains a regular tree set TL ⊆ ((T ′ \ T ) ∩ SL) ∪ L
which is associated with an essential (SL ∪ L)-tree over F ′

L
= FL ∪ {{t}|t ∈ L}.

Proof. By construction the F ′
L

-tangles of SL ∪L are precisely those FL-tangles of SL ∪L
that refine L into SL. Therefore, we want to apply Theorem 3.10 to SL ∪ L and F ′

L
.

Suppose that we could do so, and obtained an (SL ∪ L)-tree (G,α) over F ′
L

.
Since T is a regular tree set in U , there are no separations in L which are co-trivial

in U . Hence, F ′
L

still contains its essential core. So by [3, Corollary 6.7], we can assume
without loss of generality that (G,α) is even an essential (SL ∪ L)-tree over the essential
core of F ′

L
. Since the trivial separation (∅, V ) is the only small separation in U , this implies

that the nested set TL associated with (G,α) is a regular tree set. By (ii), TL ⊆ SL ∪L is
inside L. Since L is a splitting star of T , every separation in T is outside L. Therefore, TL
is also nested with T . So the regular tree set T ′ = T ∪ TL is as desired.

It remains to prove that SL ∪ L and F ′
L

satisfy the assumptions of Theorem 3.10.
Since FL is standard, so is F ′

L
. Moreover, since SL ∪ L is separable by (i), it is sufficient

to show that F ′
L

is closed under shifting. By (iii), FL is closed under shifting. Now F ′
L
\FL

consists only of singleton stars, and every relevant shift maps such a singleton star {t}
to {s} for some separation s ≥ t. But since t points towards SL ∪ L, this yields that
either s = t, or s is co-trivial in U . Since F ′

L
is standard, we have {s} ∈ F ′

L
in both

cases. Hence, F ′
L

is closed under shifting which completes the proof.

Theorem 3.11 is also a direct corollary of Proposition 7.2 which shows that we can use
the concept of tangle-tree duality in the context of local refinements even in more general
universes of separations, and even if SL is not necessarily inside L. Therefore, the above
proof is essentially an extract of the proofs in Section 7 which, in turn, follow closely the
lines of the proof of [11, Lemma 8].

It remains to show that we can deduce the complete local refinement theorem for
regular tree sets, Theorem 3.13 above, from the previous two local refinement theorems,
Theorem 3.9 and Theorem 3.11. The complete local refinement theorem for regular tree
sets says that given a regular tree set T , a set L of splitting stars of T , and for each L ∈ L,
a suitable set SL of separations and a set P ′

L
of refinements of L into SL, we can extend T

to a regular tree set T ′ ⊇ T such that for each L in L, there exists a local regular tree
set TL ⊆ T ′ ∩ (SL ∪ L) which describes the structure of the refinements in P ′

L
.

To prove Theorem 3.13, we are going to apply the suitable local refinement theorem
to the splitting stars in L one by one. Each such local refinement step should leave all
the other splitting stars of T ‘untouched’ in the following sense: if T is a regular tree
set with distinct splitting stars L and L′, then L′ should again be a splitting star of the
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refined regular tree set T ′ ⊇ T resulting from either Theorem 3.9 or Theorem 3.11 applied
to T , L, and SL. Since the refined regular tree set T ′, as constructed in the proofs of
the previous local refinement theorems, differs from T only by a local regular tree set TL
inside L, it is sufficient to show that a separation which is inside L must be outside every
other location L′ of T . This is precisely the statement of the following lemma:

Lemma 4.1. Let U = (U,≤, ∗,∨,∧) be the universe of bipartitions of a finite set V ,
let T ⊆ U be a tree set, and let L and L′ be distinct splitting stars of T . Then if a
separation r /∈ L is inside L, it must be outside L′.

Proof. Suppose that there exist s ∈ L and s′ ∈ L′ with s ≤ s′ . Then we were done: since r
is inside L and r /∈ L, there is an orientation r of r with s < r, and we have r < s ≤ s′ .
So r is outside L′ as claimed.

It remains to show that there are such s ∈ L and s′ ∈ L′ with s ≤ s′ . By definition of a
splitting star, there is an orientation O of T with maximal elements L. Similarly, there is
an orientation O′ of T with maximal elements L′. Since L 6= L′, we have O 6= O′, i.e. there
exists a separation t ∈ T with orientations t and t such that t ∈ O and t ∈ O′. Since L
is the set of maximal elements of O, there must be some s ∈ L with t ≤ s. Analogously,
we find s′ ∈ L′ with t ≤ s′ . The combination of these inequalities yields s ≤ t ≤ s′ , as
desired.

Lemma 4.1 holds with the same proof in general universes of separations, and even for
splitting stars of a nested set T . It also follows from Proposition 5.11 and Proposition 5.4
since for a splitting star L of a nested set T , every separation in T is outside L. From
this perspective, Lemma 4.1 uses an argument from the proof of Theorem 1.2 in [6] (see
in particular Proposition 5.4 below).

We are now ready to prove the complete local refinement theorem for regular tree sets:

Theorem 3.13. Let U = (U,≤, ∗,∨,∧) be the universe of bipartitions of a finite set V ,
let T ⊆ U be a regular tree set, and let L be a set of splitting stars of T . For each splitting
star L ∈ L, let SL ⊆ U be a set of separations inside L, and let P ′

L
⊆ PL be a set of

refinements of L into SL. For every L ∈ L, let us assume that

(i) if P ′
L

is non-empty, then SL is a structurally submodular separation system which
contains a non-trivial separation;

(ii) if P ′
L

is empty, then SL ∪ L is a separable separation system, and we have a

set FL ⊆ 2U of stars containing its essential core, which is standard for SL ∪ L,
closed under shifting in SL ∪ L, and such that there is no FL-tangle refining L
into SL.

Then there exists a regular tree set T ′ ⊇ T in U with T ′ ⊆ T ∪
⋃
L∈L SL such that for

every L ∈ L,

(a) if P ′
L

is non-empty, then every pair of refinements in P ′
L

is distinguished by some
separation in TL = (T ′ \ T ) ∩ SL;

(b) if P ′
L

is empty, then there exists a regular tree set TL ⊆ ((T ′ \ T ) ∩ SL) ∪ L which
is associated with an essential (SL ∪ L)-tree over F ′

L
= FL ∪ {{t}|t ∈ L}.
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Proof. We build T ′ iteratively going through the splitting stars in L = {L1 , . . . , Lm} one
by one. More precisely, we construct a sequence T = T0 ⊆ · · · ⊆ Tm of regular tree
sets such that for each 0 ≤ i ≤ m, the conclusions (a) and (b) hold with T ′ = Ti for
those splitting stars Lj with j ≤ i, while the Lj with j > i are still splitting stars of Ti.
Then T ′ = Tm is clearly as desired.

Suppose T0, . . . , Ti were already constructed for some 0 ≤ i < m. By the induction
hypothesis, L := Li+1 is a splitting star of Ti. Now the assumptions (i) and (ii) guarantee
that we can apply the appropriate local refinement theorem to Ti and L.

First, suppose that P ′
L

is non-empty. If P ′
L

contains only one refinement, then we
set Ti+1 = Ti which trivially satisfies (a) for L. If P ′

L
has size at least 2, then by

assumption (i), we can apply Theorem 3.9 to Ti and L. This gives us a refined regular
tree set Ti+1 ⊇ Ti that ensures (a) for L.

Secondly, if P ′
L

is empty, then there are no FL-tangles refining L into SL for a locally
chosen set FL of stars in U by assumption (ii). So we can apply Theorem 3.11 to Ti and L
by assumption (ii), and we obtain a refined regular tree set Ti+1 ⊇ Ti that ensures (b)
for L.

In all these constructions, the refined regular tree set Ti+1 differs from Ti only by a
local regular tree set TL inside L = Li . By Lemma 4.1, all the separations in TL are
outside each splitting star Lj with j > i + 1. So by the induction hypothesis, all the Lj
with j > i+ 1 are again splitting stars of Ti+1. Moreover, for every two distinct splitting
stars Lj and Lj′ , we have SLj

∩ SL
j′
⊆ (L ∩ L′) ∪ {{∅, V }} by Lemma 4.1 since each SL

is inside the respective L. Hence, we also have that the correct inclusions on TLj
in (a)

and (b) for j ≤ i. This completes the induction step, and hence the proof.

26



5 Distinguishing Profiles by Local Refinements

In Section 3 we investigated how we can use a structural version of the tree-of-tangles
theorem in a universe U of set bipartitions to distinguish multiple refinements of a splitting
star, and thereby refine a given regular tree set (see Theorem 3.9). Inspired from this
result, we now turn to the more theoretical question how we can use local refinement
steps to distinguish profiles of separation systems in arbitrary universes. In particular,
such profiles do not have to be regular any more; hence, a structure tree can contain
trivial and small separations.

As described in the introduction, the approach of using local refinements to distinguish
profiles was first taken in the proof of Theorem 1.2 in [6] in the context of universes
of separations equipped with a submodular order function; arguments from this proof
inspired many ideas in this section. However, we do not assume the existence of an
order function here; all the conditions formulated in this section will be of a structural
nature in that they are defined purely in terms of the considered separation systems. We
shall revisit Theorem 1.2 in Section 6, and reobtain it using results from our structural
setup. In order to approach the question how we can use local refinement steps in general
universes of separations, we move from the algorithmic perspective to a more structural
one as follows.

In the algorithmic setup of Section 3, we start with a regular tree set T and a set L of
splitting stars of T . For each location L ∈ L, we consider the set PL of refinements of L
into a locally chosen set SL of separations inside L, i.e. the profiles of SL ∪ L orienting L
as L. In particular, each refinement P ∈ PL has the same set of maximal elements in
the partial orientation P ∩ T of our tree set T , namely the splitting star L. We said that
the profile P lives in the location L of T . Note that since T is a regular tree set, the
consistent partial orientation P ∩ T can be uniquely extended to a consistent orientation
of T which is the down-closure of L [3].

Now, instead of constructing the profiles given SL, we will assume in the following
that we begin with a set P of profiles and a nested set T in some arbitrary universe U
of separation. Here, each profile P ∈ P is a profile of some individual separation sys-
tem S(P ) ⊆ U . We now aim to refine the nested set T into a nested set T ′ ⊇ T by ‘local
refinements’ such that T ′ distinguishes more profiles in P than T does.

Analogously to the algorithmic setup, we will identify the maximal separations of the
partial orientation P ∩ T as the location L = L(P ) of T in which the profile P ∈ P
lives - even though L(P ) does not need to be the set of maximal elements of a consistent
orientation of the whole nested set T . Indeed, the consistent partial orientation P ∩ T
cannot necessarily be extended to a consistent orientation of T as T may contain co-trivial
separations [2, Lemma 4.1 (i)].

Let PL be the set of those profiles in P that live in the same location L of T . We now
aim to refine T locally as follows: For each location L of P with respect to T separately,
we consider a local separation system SL that is oriented by all the profiles in PL. If SL
satisfies certain structural conditions (e.g. structural submodularity), then we find a local
nested set TL ⊆ SL of separations inside L such that TL distinguishes the profiles in PL
as far as possible by SL. Then we combine T with all these local nested sets TL to our
refined nested set T ′.

Back to the algorithmic setup of Section 3, we can define the set P as the set of
refinements of some splitting star L of T into the corresponding set SL of separations.
Then all the profiles in P live in the location L of T - which may justify the reuse of the
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notation PL in our general problem formulation. Clearly, the separation systems SL that
we used to define the refinements in PL are oriented by all the profiles in PL. With this
modelling, the algorithmic setup of Section 3 can be seen as a special case of the general
problem that we are going to investigate in this section.

Section 5 is organized as follows. We first make the above sketched general setup
precise and obtain a general local refinement theorem: Given that all the locally chosen
sets SL ⊆ U of separations are nested with T , we identify conditions on the SL and on
the interplay of T and P which assure that the SL contain the local nested sets TL which
are nested with T and with each other, so that we combine all these nested sets into a
refined nested set T ′ ⊇ T . In a second step, we investigate which properties of a set SL
of separations allow us to reduce to the case where SL is nested with T . Moreover, we
show how knowledge about the interplay of T and P can help us to build a tree of tangles
for P by a sequence of local refinements.

Let us start by making precise what profiles we are looking at. Let U = (U,≤, ∗,∨,∧)
be an arbitrary universe of separations. Since U is not equipped with an order function,
we cannot talk about profiles in U as they were defined as profiles of the set S` of
separations of order < ` for some ` ∈ N. Instead, we consider profiles of arbitrary
separation systems S ⊆ U .

Definition 5.1. Let U = (U,≤, ∗,∨,∧) be a universe of separations. We call P a profile
within U if P is a profile of some non-empty separation system S(P ) ⊆ U .

A non-degenerate separation s ∈ U is said to distinguish two profiles P and Q within U
if there are distinct orientations s and s of s with s ∈ P and s ∈ Q. In particular,
every s ∈ U that distinguishes P and Q must be in S(P ) ∩ S(Q).

We say that a set T ⊆ U distinguishes a set P of profiles within U if any pair of
profiles in P is distinguished by some t ∈ T . Moreover, if T is nested and distinguishes P ,
then we call T a tree of tangles for P .

For the remainder of this section, let U = (U,≤, ∗,∨,∧) be a (finite) universe of
separations, T ⊆ U a nested set of separations, and P a set of profiles within U . We shall
often not mention this explicitly in the following.

As sketched above, a profile P within U lives in a location of a nested set T in the
following sense: P induces a partial consistent orientation of T . The maximal separations
of this partial orientation fully determine the orientation of the other separations in P ∩T
by consistency. This leads to the following definition:

Definition 5.2. Let U be a universe of separations, T ⊆ U a nested set, and P a set
of profiles within U . For each profile P ∈ P , its location (with respect to T ) is a set of
oriented separations defined as

L(P, T ) := maxP ∩ T = max{t ∈ P | t ∈ T},

where maxX denotes the set of maximal elements of a set X ⊆ U of oriented separations
in the partial order ≤. We say that P lives in the location L(P, T ) of T , and write L(P, T )
for the separations in L(P, T ) without orientation.

The set consisting of all the locations of profiles in P with respect to T is denoted
by L(P , T ) := {L(P ) | P ∈ P}. Moreover, let PL = {P ∈ P | L(P ) = L} be the set of
profiles in P that live in a location L ∈ L(P , T ).
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We usually write L(P ) and L(P ) for L(P, T ) and L(P, T ), respectively, if T is clear
from the context. Similarly, we write just L for L(P , T ) if P and T are clear from the
context.

Since a profile does not contain any degenerate separation, the location L(P ) of some
profile P ∈ P with respect to T cannot contain a degenerate separation even if there
is one in T . So L(P ) is a star of separations by definition. With Definition 3.3, we
can again speak of a separation s being inside or outside a location L(P ). Since T may
contain separations that are small or trivial in T , note again that we can have separations
in T\L(P ) that are inside and outside L(P ), but such separations must have an orientation
which is trivial with a witness in L(P ).

Let us briefly investigate the relation between locations and splitting stars if T is a tree
set. It turns out that a location L of T is a splitting star precisely if there is no t ∈ T \L
inside L:

Proposition 5.3. Let U be a universe of separations, T ⊆ U a tree set, and P a profile
within U . If there is no t ∈ T \ L(P ) inside L(P ), then L(P ) is a splitting star of T .
Conversely, there is no t ∈ T \ L inside a splitting star L of T .

Proof. Suppose that there is no t ∈ T \ L(P ) inside L(P ). Since P ∩ T is a partial
consistent orientation of a tree set T , we can extend it to a consistent orientation O of T
by [2, Lemma 4.1 (i)]. Now if L(P ) is not a splitting star, then L(P ) particularly cannot
be the set of maximal elements of O. Hence, there exists a maximal element t ∈ O\L(P ).
Since t is not inside L(P ) and t is non-trivial in T , t must be outside L(P ). So there
exists s ∈ L(P ) with t < s or t < s. But the first case cannot occur as O is consistent
whereas the second case contradicts the maximality of t in O.

For the converse, let L be a splitting star of T . By the definition of a splitting star,
there exists a consistent orientation O of T with L as its set of maximal elements. But
in this orientation, we have for every t ∈ T \ L an orientation t ∈ O that is not maximal
in O, i.e. there exists a separation s ∈ L with t < s. Thus, t is outside L and hence not
inside L since every separation t in a tree set T is non-trivial in T .

Both parts of Proposition 5.3 are false if T is not a tree set. For the first part, we
follow [2, Lemma 4.1 (i)]: If T = {s, t} is a nested set with t trivial in T witnessed by s
and t maximal in T , then L = {t} is the location of the profile P = {t} with respect to T .
Furthermore, L does not point towards any element of T \L. But L is not a splitting star
of T , since the partial orientation P of T cannot be extended to a consistent orientation
of T : neither orientation of s is consistent with orienting t as t.

For the second part, consider the profile P ′ = {t, s} of the nested set T above and its
location L′ = {s} with respect to T . Clearly, L′ is a splitting star of T since P ′ orients T
consistently. But t is inside L′ because it has a trivial orientation t witnessed by s ∈ L′.

Suppose we have a nested set T in a universe U and a set P of profiles within U , and
let L = L(P , T ) be the corresponding set of locations. For each location L ∈ L separately,
we want that the locally chosen set SL of separations contains a local tree set TL which
distinguishes PL at least as well as SL does. All these TL together with T should form
a new nested set T ′ which refines the location structure given by T . In order to achieve
this, the TL should be nested with T as well as with each other.

Similar to Section 3, this seems possible under the assumption that SL is nested
with T . By consistency, any two profiles from PL cannot be distinguished by a separation

29



outside L. So any local tree set TL ⊆ SL which consists of PL-relevant separations is not
only nested with T , but even inside L. However, we are not guaranteed at all that two
local tree sets inside distinct locations are nested with each other.

For example, suppose we have two distinct locations L and L′ such that for every t ∈ L,
there exists t′ ∈ L with t ≤ t′ ; in particular, L points towards L′. In this case, the separate
construction of local tree sets TL and TL′ inside L and L′, respectively, can easily result
in crossing separations.

Therefore, we require L to satisfy the following additional condition whose definition
is inspired by an argument in the proof of Theorem 1.2 in [6]:

For every two distinct L,L′ ∈ L, there are s ∈ L and s′ ∈ L′ with s ≤ s′ . (L)

Roughly speaking, (L) makes sure that the difference of two distinct locations is witnessed
by two respective elements that point away from each other. Now property (L) guarantees
that separations inside distinct locations are nested with each other:

Proposition 5.4. Let U be a universe of separations, T ⊆ U a nested set, and P a set
of profiles within U . Suppose that the corresponding set L of locations satisfies (L). For
each L ∈ L, let TL ⊆ U be a set of separations that is inside L. Then for every two distinct
locations L and L′ in L, every separation t ∈ TL is nested with every separation t′ ∈ TL′.

Proof. Let t ∈ TL and t′ ∈ TL′ for two distinct locations L and L′ in L. By (L), there
exist s ∈ L and s′ ∈ L′ with s ≤ s′ . As t is inside L, the separation s points towards t,
i.e. there is an orientation t of t with s ≤ t. Similarly, there is an orientation t′ of t′

with s′ ≤ t′ . Putting this together, we have t ≤ s ≤ s′ ≤ t′ . In particular, t and t′ are
nested.

Using Proposition 5.4, we can now deduce the following general version of a local
refinement theorem in arbitrary universes of separations:

Theorem 5.5. Let U = (U,≤, ∗,∨,∧) be a universe of separations, P a set of profiles
within U , and T ⊆ U a nested set of separations such that the set L of locations of P with
respect to T satisfies (L). For each location L ∈ L, let SL be a set of separations in U
such that

(i) SL is a structurally submodular separation system;

(ii) SL is oriented by every profile P ∈ PL;

(iii) SL is nested with T .

Then there exists a nested set T ′ = T ∪
⋃
L∈L TL in U where for each location L ∈ L, the

nested set TL ⊆ SL \ T is a set of PL-relevant separations inside L such that every pair
of profiles in PL which is distinguished by SL is also distinguished by TL. Moreover, the
set L′ = L(P , T ′) of locations of P with respect to T ′ satisfies (L) again.

Proof. For each location L ∈ L, every profile P ∈ PL induces a profile of SL by (ii).
Let PL � SL be the set of profiles of SL induced by profiles in PL. By (i), the SL
are structurally submodular. Thus, we can apply Theorem 3.8 separately to (SL,≤, ∗)
and PL � SL for each L ∈ L to find ‘local’ tree sets TL ⊆ SL distinguishing PL � SL.
In particular, TL distinguishes every pair of profiles in PL which is distinguished by SL.
Note that the local tree sets TL are tree sets in SL, but they do not need to be tree sets
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in other separation systems (e.g. T ∪ TL) as TL may contain separations that are trivial
therein, but not in SL .

By (iii), each local tree set TL is nested with T , and in particular with L. So by tran-
sition to a subset if necessary, we may assume that TL is a set of PL-relevant separations
inside L as by consistency, no separation outside L can distinguish two profiles in PL.
In particular, we also have TL ⊆ SL \ T . Now we apply Proposition 5.4 to deduce that
the TL are also nested with each other. Then our desired nested set is given by

T ′ = T ∪
⋃
L∈L

TL.

It is left to show that L′ = L(P , T ′) again satisfies (L). For the rest of the proof, we
write L′(P ) := L(P, T ′) ∈ L′ for the location of a profile P ∈ P with respect to T ′. So
let L′(P ), L′(Q) ∈ L′ be distinct locations.

First, if L(P, T ) = L(Q, T ) =: L, then both P and Q are in PL. In particular, P
and Q orient TL, and they orient TL differently because they are in different locations
of T ′. So there exists t ∈ TL with orientations t and t such that t ∈ P and t ∈ Q. Then
there are p ∈ L′(P ) and q ∈ L′(Q) with t ≤ p and t ≤ q . In particular, we have q ≤ t ≤ p,
and thus, p and q are as desired.

Secondly, suppose L(P ) 6= L(Q). Since L satisfies (L), there are separations p ∈ L(P )
and q ∈ L(Q) with p ≤ q . By the definition of a location, there exists p′ ∈ L′(P )
with p ≤ p′ , and, similarly, there is q′ ∈ L′(Q) with q ≤ q′ . But then we are done by
transitivity because p′ ≤ p ≤ q ≤ q′ .

Let us briefly see why Theorem 5.5 is a direct generalization of Theorem 3.9: In the
latter, we had a regular tree set T in a universe U of set bipartitions, a splitting star L of T ,
and a set PL of refinements of L into a set SL of separations which is nested with T and
structurally submodular. If we set P = PL, then each profile P ∈ P lives in the location L
of T . The set SL satisfies conditions (i)-(iii) by construction. Moreover, L(P , T ) = {L}
trivially has property (L). By Theorem 5.5, we get a nested set T ′ ⊇ T with the required
properties. Since all the profiles in P are regular, small separations cannot distinguish
any two profiles in P . Hence, TL is even a regular tree set in U , and so T ′ can be assumed
to be a regular tree set again.

The assumption that SL is nested with T seems to be very strong at first sight. But
in the following, we find conditions on the sets SL which allow us to pass from SL to
the set S ′

L
⊆ SL of all the separations nested with T without loosing any power in

distinguishing PL. In particular, we obtain conditions that are satisfied in the induction
step of the proof of Theorem 1.2; we will see this in detail when we revisit it in Section 6.

In order to restrict ourselves to the separations from SL that are nested with T without
loss of power in distinguishing PL, we have to make sure that the following holds: if two
profiles P and Q in PL are distinguished by a separation s in SL which crosses T , then
there is a separation s′ in SL which is nested with T and still distinguishes P and Q.
We ensure this by two conditions: the first one deals with the case where s crosses an
element of T \L which is inside L whereas the second one handles the case where s crosses
an element of L. This second condition again inspired by an argument in the proof of
Theorem 1.2 in [6]; however, condition (i) is not needed there since in each induction step,
the current nested set Tk ‘strongly partitions’ P (see Section 6). The next proposition
also shows that if the separation system SL is structurally submodular, then the set of
all those separations in SL which are nested with T does again have this property.
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Proposition 5.6. Let U be a universe of separations, and let P be a set of profiles
within U . Let T ⊆ U be a nested set, and let L denote the set of locations of P with
respect to T . Let L ∈ L, and let SL ⊆ U be a set of separations that is oriented by every
profile P ∈ PL. Now suppose that

(i) if a separation t ∈ T \ L inside L and a separation s ∈ SL which distinguishes two
profiles P and Q in PL cross, then there exists a corner of s and t in SL which also
distinguishes P and Q;

(ii) if t ∈ L and a PL-relevant separation s ∈ SL cross, then at least one of the two
corners t ∨ s and t ∨ s is in SL .

Let S ′
L
⊆ SL consist of those separations in SL which are nested with T . Then the

following holds: if two profiles P,Q ∈ PL are distinguished by SL, then they are also
distinguished by S ′

L
.

Moreover, if SL is a structurally submodular separation system, then S ′
L

is also struc-
turally submodular.

The proof of this proposition heavily relies on the following basic fact about crossing
separations and their corners (this fact is sometimes called the ‘fish lemma’):

Lemma 5.7 ([6, Lemma 2.1]). Let U be a universe of separations, and let s, t ∈ U be two
crossing separations. Every separation r that is nested with both s and t is also nested
with all four corner separations of s and t.

Proof of Proposition 5.6. Let P,Q ∈ PL be a pair of profiles that is distinguished by SL.
Choose s ∈ SL to be a separation distinguishing P and Q that crosses the minimal
number of separations in T amongst those separations in SL that distinguish P and Q.
If s is nested with T , then we are done. So suppose for a contradiction that s crosses
some t ∈ T . Since t is nested with L, it is inside L or outside L, and we can proceed via
case distinction.

First, assume that t is inside L and t ∈ T \ L. By (i), there exists a corner r of s
and t in SL that still distinguishes P and Q. By Lemma 5.7, r is nested with all the
separations that t and s are nested with. But then r distinguishes P and Q and crosses
fewer elements of T than s does which contradicts the minimality of s in SL.

Secondly, suppose that t is outside L. We claim that we may assume t ∈ L: If t /∈ L,
then there is an orientation t of t and t′ ∈ L with t < t′ since t is outside L. We
want to show that s crosses t′; so suppose for a contradiction that s is nested with t′.
Then t′ points towards or away from s. In the first case, we have t < t′ < s for some
orientation s of s contradicting that s and t cross. In the second case where t′ points
away from s, we get s < t′ for some orientation s of s. But P and Q orient t′ and s, and
they both orient t′ as t′ . So by consistency, they both orient s as s contradicting that s
distinguishes P and Q. Hence, s and t′ cross, and we may assume that t ∈ L, for if not,
we replace t with t′.

Since s distinguishes P and Q, one of the corners t∨s and t∨s is in SL by (ii). Without
loss of generality, we assume r = t∨s ∈ SL ; the case of t∨s ∈ SL is symmetric. We claim
that r distinguishes P and Q: Since s distinguishes P and Q, we have s ∈ P and s ∈ Q
for suitable orientations s and s of s. By the profile property of P , we have r ∈ P . If r
does not distinguish P and Q, then Q orients r as r, too. But s ≤ r and hence, s ∈ Q by
consistency which contradicts s ∈ Q. So r ∈ Q, and r distinguishes P and Q. Since r is
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a corner of s and t, and r distinguishes P and Q, this again contradicts the minimality s
by Lemma 5.7.

Finally, the moreover-part of this proposition follows directly from Lemma 5.7 in that
corners of separations which are nested with T are also nested with T .

Often enough, the first case in Proposition 5.6 does not occur: in the setup of Section 3,
for example, where T is a regular tree set in a universe U of set bipartitions and L is a
splitting star of T , there are no separations of T \ L inside L by Proposition 5.3.

The next proposition shows that the set L of locations of P with respect to T has
property (L) if there are no separations of T \ L inside any location L.

Proposition 5.8. Let U be a universe of separations, T ⊆ U a nested set, P a set of
profiles within U , and L the set of locations of P with respect to T . Suppose that for every
location L ∈ L, there is no separation t ∈ T \ L inside L. Then L satisfies property (L).

Proof. If |L| = 1, then we are done by the definition of (L). So let |L| > 1, and let P,Q ∈ P
with distinct locations L(P ), L(Q) ∈ L. We have to show that there are p ∈ L(P )
and q ∈ L(Q) with p ≤ q . Note that this is clear if any separation in L(P ) ∩ L(Q) is
oriented differently in L(P ) and L(Q). So we may assume that L(P ) ∩ L(Q) is oriented
in the same way by P and Q.

Let us first suppose that L(P ) ⊆ L(Q) (the case L(Q) ⊆ L(P ) is symmetrical).
Then L(P ) ⊆ L(Q) by the above assumption. Since L(Q) is a star, L(P ) points towards
every separation in L(Q) \ L(P ). As L(P ) does not point towards any separation in
the set T \ L(P ) by assumption, this implies L(P ) = L(Q) and hence, L(P ) = L(Q)
contradicting that these two locations are distinct.

So suppose that L(P ) 6⊆ L(Q) and L(Q) 6⊆ L(P ), and that L(P )∩L(Q) is oriented in
the same way by both P and Q. Since there is no separation t ∈ T \L(P ) inside L(P ), the
location L(P ) cannot point towards any separation in L(Q)\L(P ). We have L(Q) 6⊆ L(P ),
so there exists some q ∈ L(Q) \ L(P ). Then there is p ∈ L(P ) and an orientation q of q
such that q < p. If q ∈ L(Q), then we are done; so suppose that q ∈ L(Q). Then we
have p ∈ L(P )\L(Q), as otherwise p ∈ L(Q) and q < p which contradicts the maximality
of q in Q ∩ T .

Since T is nested, each separation q′ ∈ L(Q) points towards or away from p. If
some q′ ∈ L(Q) points away from p, then either q′ > p > q which again contradicts the
maximality of q in Q ∩ T , or q′ > p in which case p and q′ are as desired. So we may
suppose that all the separations in L(Q) point towards p. But then p is inside L(Q)
and p /∈ L(Q) which contradicts the assumption that there is no separation t ∈ T \ L(Q)
inside L(Q).

By Proposition 5.8, we can apply the general local refinement theorem, Theorem 5.5
above, if condition (ii) of Proposition 5.6 is satisfied for each L ∈ L and the correspond-
ing SL. However, the refined nested set T ′ ⊇ T obtained by Theorem 5.5 does not need
to satisfy the assumption of Proposition 5.8 again: We might have added a separation s
into T ′ that now witnesses the triviality of some separation t ∈ T in T ′. Then the newly
trivial t is automatically inside each location L of T ′ with s ∈ L.

A separation in T that becomes trivial in T ′ must be small. In particular, if all the
profiles in P are regular, then we can assume T to be regular since no small separation
distinguishes any two profiles in P . In this case, no separation in T can become trivial
in T ′, and the assumption of Proposition 5.8 is again satisfied for T ′ and P (after possibly
removing separations from T ′ which are not P-relevant).
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In order to enable the iterative application of Theorem 5.5 even if not all the profiles
in P are regular, let us put the assumption of Proposition 5.8 into a more general form.
Instead of forbidding the existence of any separations inside a location L ∈ L, we require
that every separation in T \ L is outside L.

Definition 5.9. Let U be a universe of separations, T ⊆ U a nested set, P a set of
profiles within U , and L the set of locations of P with respect to T . We say that T
properly partitions P if for every location L ∈ L, each separation s ∈ T \ L is outside L,
i.e. s has an orientation s with s ≤ t for some t ∈ L.

By the definition of ‘inside’ and ‘outside’, T properly partitions P if and only if for each
location L ∈ L(P , T ), a separation in T \L which is inside L must be trivial witnessed by
some separation in L. In particular, there is no non-trivial separation from T \L that lies
inside L. Moreover, note that if T properly partitions P and there is ∅ = L ∈ L(P , T ),
then T itself must be empty as every separation t ∈ T needs a separation in L which
‘witnesses’ that t is outside L.

Now T properly partitions P in the wide class of examples which satisfy that each pro-
file P ∈ P orients the nested set T completely: Here, for each P ∈ P , the location L(P )
consists of the maximal separations of the consistent orientation that P induces on T . So
each separation in T \L(P ) has an orientation which is ≤ some element of L(P ), i.e. it is
outside L(P ). Note that in each iteration step of the proof of Theorem 1.2 in [6], every
profile P in the considered set Pk of profiles orients the current nested set Tk since all the
separations in Tk have order less than the order of P (see Section 6).

If T properly partitions P , then condition (i) of Proposition 5.6 is sufficient to ensure
its conclusion: in the proof of Proposition 5.6, we needed condition (ii) only if t ∈ T \ L
is inside L, but not outside L; but this cannot happen if T properly partitions P . This
yields the following proposition:

Proposition 5.10. Let U be a universe of separations, and let T ⊆ U be a nested set
which properly partitions a set P of profiles within U . Let L be the set of locations of P
with respect to T . For some L ∈ L, let SL ⊆ U be a set of separations that is oriented by
every profile P ∈ PL. Suppose that the separation system SL satisfies that if t ∈ L and
a PL-relevant separation s ∈ SL cross, then at least one of the two corners t ∨ s and t ∨ s
is in SL .
Let S ′

L
⊆ SL consist of those separations in SL which are nested with T . Then the

following holds: if two profiles P,Q ∈ PL are distinguished by SL, then they are also
distinguished by S ′

L
.

Moreover, if SL is a structurally submodular separation system, then S ′
L

is also struc-
turally submodular.

The definition of ‘properly partitions’ ensures that a nested set TL inside L is nested
with T : a separation outside L is nested with every separation inside L by definition.
In the next proposition, we show that this fact guarantees that the refined nested set T ′

obtained from T by the application of Theorem 5.5 properly partitions P if T properly
partitions P . This also provides a formal proof of the claim made above that if T and P
are both regular and there is no separation of T \L inside any L ∈ L, then the same holds
for T ′ (after possibly removing some separations from T ′ such that all the TL are PL-
relevant, and hence regular themselves).
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Proposition 5.11. Let U be a universe of separations, and let T ⊆ U be a nested set
which properly partitions a set P of profiles within U . Let L be the set of locations of P
with respect to T , and assume that L satisfies property (L). For each location L ∈ L,
let SL ⊆ U be a set of separations which satisfies the conditions (i)-(iii) of Theorem 5.5.
Then the nested set T ′ ⊇ T obtained from Theorem 5.5 again properly partitions P.

Proof. Let L(P, T ) ∈ L(P , T ) for some P ∈ P . We want to show that every separa-
tion in T \ L(P, T ′) is outside L(P, T ′). By definition, L(P, T ) points towards L(P, T ′)
as T ⊆ T ′. In particular, each separation inside L(P, T ′) is also inside L(P, T ), and each
separation outside L(P, T ) is outside L(P, T ′) as well.

Theorem 5.5 yields T ′ = T ∪
⋃
TL where L ranges over L(P , T ) and each TL is inside

the respective location L. Since T properly partitions P , every t ∈ T is outside L(P, T ),
and hence outside L(P, T ′). Moreover, if t ∈ TL for some L ∈ L(P , T ) with L 6= L(P, T ),
then t is outside L(P, T ) by property (L), and thus t is also outside L(P, T ′).

So it is enough to consider t ∈ TL(P,T ) \ L(P, T ′). Since P orients TL(P,T ) ⊆ SL(P,T ),

every separation in TL(P,T ) is outside L(P, T ′) since L(P, T ′) is the set of maximal elements

of P ∩ T ′ ⊇ P ∩ TL(P,T ) . This completes the proof.

By Proposition 5.11, the property of ‘T properly partitions P ’ is maintained through
iterative applications of Theorem 5.5. Note that we can always use T = ∅ as a suitable
starting point for such an iterative process since the empty set clearly properly parti-
tions P .

Perhaps surprisingly, the conclusion of Proposition 5.8 still holds if T properly parti-
tions P , in that the corresponding set L of locations satisfies (L). The following proof of
this fact is very similar to the one of Proposition 5.8 given above.

Proposition 5.12. Let U be a universe of separations, T ⊆ U a nested set, P a set
of profiles within U , and L the set of locations of P with respect to T . If T properly
partitions P, then L satisfies property (L).

Proof. If |L| = 1, then we are done by the definition of (L). So let |L| > 1, and let P,Q ∈ P
with distinct locations L(P ), L(Q) ∈ L. We have to show that there are p ∈ L(P )
and q ∈ L(Q) with p ≤ q . As in Proposition 5.8, we may assume that all the separations
in L(P ) ∩ L(Q) are oriented in the same way by both P and Q.

If L(P ) ⊆ L(Q) (the case L(Q) ⊆ L(P ) is symmetrical), then L(P ) ⊆ L(Q) by the
above assumption. Since L(Q) is a star, L(P ) points towards L(Q) \ L(P ). So as T
properly partitions P , each separation q ∈ L(Q) \ L(P ) has an orientation q which is
trivial witnessed by some p ∈ L(P ). Now p ∈ L(P ) ⊆ L(Q) ⊆ S(Q) ∩ T , so q is also
trivial in S(Q) with witness p. Thus, q cannot be maximal in Q ∈ T which contradicts
that q ∈ L(Q). So we cannot have L(P ) ⊆ L(Q).

Therefore, we may suppose that L(P ) 6⊆ L(Q), that L(Q) 6⊆ L(P ), and that all
the separations in L(P ) ∩ L(Q) are oriented in the same way by both P and Q. If no
separation in L(Q)\L(P ) is inside L(P ) and no separation in L(P )\L(Q) is inside L(Q),
then we can proceed as in the proof of Proposition 5.8. So let us assume that there
exists q ∈ L(Q) \ L(P ) which is inside L(P ) (the case of p ∈ L(P ) \ L(Q) inside L(Q) is
symmetric).

Since T properly partitions P , the separation q has a trivial orientation q with a
witness p ∈ L(P ). If q ∈ L(Q), then we are done since q < p for the orientation p ∈ L(P )
of p by the triviality of q . So suppose that q ∈ L(Q). Then we must have p ∈ L(P )\L(Q)
since q cannot be maximal in L(Q) otherwise.
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Now by assumption, p is outside L(Q). Hence, there exists an orientation of p that is
smaller or equal some q′ ∈ L(Q) with q′ ∈ L(Q) \ L(P ). But p witnesses the triviality
of q , so we get q < q′ contradicting the maximality of q in Q ∩ T . This completes the
proof.

We can now combine the previous propositions with Theorem 5.5 to obtain the fol-
lowing refinement theorem whose conditions are often easier to check than constructing
a suitable separation system SL nested with T by hand (see e.g. Section 6):

Theorem 5.13. Let U = (U,≤, ∗,∨,∧) be a universe of separations, P a set of profiles
within U and T ⊆ U a nested set that properly partitions P. Let L be the set of locations
of P with respect to T . For each location L ∈ L, let SL be a set of separations in U such
that

(i) SL is a structurally submodular separation system;

(ii) SL is oriented by every profile P ∈ PL;

(iii) if t ∈ L and a PL-relevant separation s ∈ SL cross, then at least one of the cor-
ners t ∨ s and t ∨ s is in SL .

Then there exists a nested set T ′ = T ∪
⋃
L∈L TL in U where for each location L ∈ L, the

nested set TL ⊆ SL \ T is a set of PL-relevant separations inside L such that every pair
of profiles in PL which is distinguished by SL is also distinguished by TL. Moreover, T ′

properly partitions P again.

Proof. For each location L ∈ L, let S ′
L
⊆ SL be the set of separations in SL which is nested

with T . By Proposition 5.10, S ′
L

is again structurally submodular and distinguishes PL as
far as SL. Since L satisfies property (L) by Proposition 5.12, we can apply Theorem 5.5
to T , P , and the collection of SL for L ∈ L. Thereby, we obtain a nested set T ′ ⊇ T with
the required properties, and T ′ properly partitions P again by Proposition 5.11.

Now suppose that P is a distinguishable set of profiles within U . If we apply Theo-
rem 5.13 repeatedly to build a sequence T0 ⊆ · · · ⊆ Tn of nested sets towards a tree of
tangles Tn for P , then the empty set can always serve as a starting point T0 = ∅ as it
trivially partitions P properly. During the iterative construction, we are guaranteed that
each Tk properly partitions P . Therefore, we only have to care about finding appropriate
separation systems SL satisfying (i)-(iii), but this might not be possible without further
assumptions as we shall see below in Example 5.18.

Before we turn to this, let us first address the problem that if we start our iterative
construction with some arbitrary nested set T0 = T , then T itself can already prevent us
from extending it to a tree of tangles for P even if T properly partitions P .

Example 5.14. For a universe U of separations, let r < t be nested separations in U and
let s ∈ U cross r and t. Consider the three profiles P = {r, s}, Q = {s, t}, and R = {r, t}
on their respective underlying separation systems (see Figure 5.1 on the next page).
Suppose our current nested set is T = {r, t} which partitions the set P = {P,Q,R}
of profiles properly. In order to distinguish P and Q, we would have to add s to T , but
this is not possible.
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Figure 5.1: The situation in Example 5.14: the nested set T = {r, t} properly partitions
the set P of profiles consisting of P = {r, s}, Q = {s, t}, and R = {r, t}, but T cannot
be extended to a nested set which distinguishes P .

The key obstruction in this example is that P and Q live in different locations of T
while there is no separation in T that distinguishes them. Indeed, the iterative application
of Theorem 5.13 with suitably chosen SL in every step can give us a nested set such that
each two profiles from P live in different locations of it. In order to ensure that such a
nested set also distinguishes P , we need to require T0 = T to distinguish profiles living in
different locations of T .

Definition 5.15. Let U be a universe of separations, T ⊆ U a nested set, and P a set
of profiles within U . We say that T strongly partitions P if T properly partitions P , and
if for every pair of profiles P,Q ∈ P that live in different locations of T , there exists a
separation t ∈ T distinguishing P and Q.

If all the profiles in P orient T completely, then T clearly strongly partitions P .
Note that if T strongly partitions P , then the corresponding set L of locations satisfies
property (L) directly: If L(P ) 6= L(Q) for some two profiles P,Q ∈ P , then there exists
some t ∈ T distinguishing them in that (say) t ∈ P and t ∈ Q. Then there exist p ∈ L(P )
and q ∈ L(Q) with t ≤ p and t ≤ q . But this yields p ≤ t ≤ q , so property (L) holds.

Now the following proposition shows that the property ‘T strongly partitions P ’ is
preserved by Theorem 5.5, too.

Proposition 5.16. Let U be a universe of separations, and let T ⊆ U be a nested set
which strongly partitions a set P of profiles within U . Let L be the set of locations of P
with respect to T , and for each location L ∈ L, let SL ⊆ U be a set of separations which
satisfies the conditions (i)-(iii) of Theorem 5.5.
Then the nested set T ′ ⊇ T obtained from Theorem 5.5 strongly partitions P, too.

Proof. Write L′ = L(P , T ′) for the set of locations of P with respect to T ′. By Theo-
rem 5.5, we have that T ′ = T ∪

⋃
L∈L TL where each TL is inside the respective L. Since L

satisfies property (L), the following holds for every location L ∈ L: if t ∈ T ′ \ TL, then t
is outside L.

By Proposition 5.11, T ′ again properly partitions P . It remains to check that every
pair of profiles P,Q ∈ P with L(P, T ′) 6= L(Q, T ′) is distinguished by a separation t ∈ T ′.
If P and Q did already live in distinct locations of T , then we are done since T ⊆ T ′

strongly partitions P .
So suppose L(P, T ) = L(Q, T ) =: L. As observed above, every t ∈ T ′\TL is outside L.

So if t is oriented by some profile in PL, then it is oriented as t by consistency. Therefore,
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it cannot witness that L(P, T ′) and L(Q, T ′) are distinct. Hence, there exists t ∈ TL which
witnesses L(P, T ′) 6= L(Q, T ′). So since both P and Q orient TL, they must orient TL
differently. But then there exists some separation in TL which is oriented differently by P
and Q, and which hence distinguishes P and Q as desired.

If we now use Proposition 5.16 instead of Proposition 5.11 in the proof of Theorem 5.13,
then we obtain the following theorem which we can use to do each single iteration step in
the process of building a tree of tangles for a distinguishable set P of profiles iteratively
by local refinements:

Theorem 5.17. Let U = (U,≤, ∗,∨,∧) be a universe of separations, P a set of profiles
within U , and T ⊆ U a nested set that strongly partitions P. Let L be the set of locations
of P with respect to T . For each location L ∈ L, let SL be a set of separations in U such
that

(i) SL is a structurally submodular separation system;

(ii) SL is oriented by every profile P ∈ PL;

(iii) if t ∈ L and a PL-relevant separation s ∈ SL cross, then at least one of the cor-
ners t ∨ s and t ∨ s is in SL .

Then there exists a nested set T ′ = T ∪
⋃
L∈L TL in U where for each location L ∈ L, the

nested set TL ⊆ SL \ T is a set of PL-relevant separations inside L such that every pair
of profiles in PL which is distinguished by SL is also distinguished by TL. Moreover, T ′

strongly partitions P.

So given that suitable separation systems SL exist throughout the iterative process,
we can apply Theorem 5.17 repeatedly to build a sequence T0 ⊆ · · · ⊆ Tn of nested sets
towards a tree of tangles Tn for a distinguishable set P of profiles if our starting point T0
strongly partitions P . Note again that the empty set strongly partitions every set of
profiles, so it can always serve as a starting point for this iterative process.

If there is a tree of tangles T ⊆ U for a distinguishable set P of profiles, then it is
not necessarily possible to construct a tree of tangles by an iterative application of Theo-
rem 5.17 starting with T = ∅ without further assumptions on the separation systems S(P )
for P ∈ P .

Example 5.18. Let U be a universe of separations. Consider three distinct and nested
separations s1, s2, s3 ∈ U and the separation systems Si = {sj | j 6= i} ⊆ U . The
profiles P1 = {s2 , s3} of S1 , P2 = {s2 , s3} of S2 , and P3 = {s1 , s2} of S3 have a tree of
tangles T = {s1, s2, s3} in U . But

⋂
Si = ∅, and so there is no choice of a non-empty

set SL ⊆ U of separations with respect to the unique location L = ∅ for T0 = ∅.

In Example 5.18, we could fix the problem by extending all the Pi to profiles of the
separation system {s1, s2, s3}. But we do not know whether this holds in general.

Question 5.19. Let U be a universe of separations, and let P be a set of profiles within U
such that for each P ∈ P, we cannot extend P to a profile on a proper superset of S(P ). If
there exists a tree of tangles for P, can we construct one by the iterative local refinements
as described in Theorem 5.17?
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6 Using Local Refinements towards a Tree of Tangles

In this section we present some applications of the results from Section 5. We first con-
sider a universe of separations equipped with a submodular order function, and reobtain
a non-canonical version of Theorem 1.2. In order to get canonicity, we need to ensure
that our construction commutes with isomorphisms of separation systems [6]. But this
is a global phenomenon and it cannot be guaranteed by our local refinement approach
without further global assumptions. In the end of this section, we discuss a possible choice
of such global assumptions that ensure canonicity. Before doing so, we investigate condi-
tions that allow us to build a tree of tangles with an iterative process using Theorem 5.17.
In particular, we obtain a sequential tree-of-tangles theorem, and compare it to a similar
approach in [10].

Let U be a submodular universe of separations as assumed in Theorem 1.2. Now we
use Theorem 5.17 to reobtain a non-canonical version of Theorem 1.2. Note that the set of
profiles P in Theorem 1.2 is a set of profiles in U , so each profile P ∈ P is an `-profile in U
for some ` ∈ N. Moreover, the set P of profiles is required to be robust. The definition
of robustness of a set of profiles is quite technical, so we do not include it here. But we
shall note that a robust set P of profiles is distinguishable. Furthermore, the robustness
of P guarantees the applicability of the following Lemma 6.1 in the situations that are
relevant to us (see [6]).

Lemma 6.1 ([6, Lemma 3.5]). Let U be a submodular universe of separations, and let n
be a positive integer. Let t ∈ U be a separation that efficiently distinguishes two n-
robust profiles P, P ′ in U , and let s ∈ U be a separation that efficiently distinguishes two
profiles P̂ , P̂ ′ in U . If |t| < |s| < n, then t has an orientation t such that either t ∧ s
or t ∧ s efficiently distinguishes P̂ from P̂ ′.

For the proof and any details about robustness, we refer the reader to [6]. Note that
since (t∨s)∗ = t∧s and (t∨s)∗ = t∧s, we may assume, by replacing t with t if necessary,
that Lemma 6.1 gives us an orientation t of t such that either t ∨ s or t ∨ s efficiently
distinguishes P̂ from P̂ ′.

In order to simplify the wording in the remainder of this section, let us make the
following definition: given a nested set T in a universe U and a set P of profiles within U ,
we call a location L ∈ L(P , T ) trivial if PL contains only one profile; otherwise we say
that L is non-trivial.

Theorem 6.2 (Non-Canonical Version of Theorem 1.2). Let U = (U,≤, ∗,∨,∧, | |) be a
submodular universe of separations. Then for every robust set P of profiles in U , there is
a nested set T = T (P) ⊆ U of separations such that:

(a) every two profiles in P are efficiently distinguished by some separation in T ;

(b) every separation in T efficiently distinguishes a pair of profiles in P;

(c) if all the profiles in P are regular, then T is a regular tree set.

Proof. We are going to build T = T (P) iteratively by constructing a sequence of nested
sets Tk where Tk+1 arises from Tk by a local refinement as described in Theorem 5.17. To
ensure the efficiency of T in (a) and (b), we have to keep track of certain properties of
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the Tk. More precisely, we will inductively construct nested sets Tk and integers `k ≥ 0
with the following properties:

• Tk ) Tj and `k > `j for 0 ≤ j < k;

• Tk strongly partitions P ;

• Tk consists of separations of order < `k;

• Tk efficiently distinguishes every pair of profiles which is distinguished by a separa-
tion of order < `k;

• every separation in Tk efficiently distinguishes a pair of profiles in P .

Since P is finite and `k strictly increases with growing k, this iterative process terminates
after finitely many steps with a nested set T = Tn satisfying (a) and (b). Part (c) of the
statement follows directly from the fact that small separations cannot distinguish regular
profiles. So if P consists of regular profiles, then T does not contain any small separations
by (b), and hence T is a regular tree set.

We start our construction with T0 = ∅ and `0 = 0 which trivially have all the above
properties. Now suppose that T0 ( · · · ( Tk and corresponding `0 < · · · < `k were
already constructed. If Tk does not yet distinguish P completely, then we are going
to apply Theorem 5.17 to suitably chosen separation systems SL based on a suitably
chosen `k+1 > `k, and thereby construct the nested set Tk+1 ) Tk.

Let Lk be the set of locations of P with respect to Tk. In order to apply Theorem 5.17,
we have to choose for each location L ∈ Lk a set SL ⊆ U of separations which satisfies
the conditions (i)-(iii) of Theorem 5.17. Let `k+1 > `k be the smallest integer such that
some two profiles in P are efficiently distinguished by a separation of size `k+1 − 1; such
an integer exists since P is not yet distinguished by Tk. By the minimal choice of `k+1,
we are guaranteed that if a separation s ∈ S`k+1

distinguishes some two profiles P and P ′

that are not yet distinguished by S`k , then s distinguishes P and P ′ efficiently.
If L ∈ Lk is trivial, then PL contains only one profile P , and Tk efficiently distin-

guishes P from all other profiles in P since Tk strongly partitions P by the induction
hypothesis. Therefore, we set SL = ∅ for every such trivial location L ∈ Lk. For every
non-trivial location L ∈ Lk, let SL be the set S`k+1

of all the separations of order less
than `k+1. (It is not possible to set SL = S`k+1

for a trivial location L, too: the pro-
file P ∈ PL may have order < `k+1, and hence P does not need to orient S`k+1

which
would contradict condition (ii) of Theorem 5.17.)

Let us check that these sets SL satisfy the conditions (i)-(iii) of Theorem 5.17. For
trivial locations, the conditions (i)-(iii) are clearly satisfied. Let L be a non-trivial loca-
tion. By the submodularity of the order function of U , the separation system SL = S`k+1

is structurally submodular, so condition (i) holds. For condition (ii), note that every two
profiles in PL are not yet distinguished by Tk. So by the induction hypothesis about Tk,
they cannot be distinguished by any separation of order < `k. In particular, since PL ⊆ P
is distinguishable, all the profiles in PL must have order ≥ `k+1 by the minimal choice
of `k+1, so they orient SL = S`k+1

.
Finally, condition (iii) holds by Lemma 6.1: Let t ∈ L, and let s ∈ SL be PL-relevant.

Then t efficiently distinguishes two profiles P, P ′ ∈ P by the induction hypothesis, and
since s is PL-relevant, it distinguishes two profiles P̂ , P̂ ′ ∈ PL. In particular, s distin-
guishes P̂ and P̂ ′ efficiently by the minimal choice of `k+1.
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By the definition of the robustness for sets of profiles, the profiles P and P ′ in the
robust set P of profiles are n-robust for some n > |s| (see [6]). Moreover, we have |t| < |s|
by construction. So we can apply Lemma 6.1. Since t ∈ P̂ , P̂ ′ by t ∈ L, the profiles P̂
and P̂ ′ cannot be distinguished by the separations t∨s and t∨s by consistency. Therefore,
Lemma 6.1 guarantees the existence of t ∨ s or t ∨ s in SL: if one of them efficiently
distinguishes P̂ and P̂ ′, then it has order ≤ |s| < `k+1, and thus it must be in SL = S`k+1

.
Now since the SL satisfy the conditions (i)-(iii) of Theorem 5.17, we can apply Theo-

rem 5.17 to the set P of profiles, the nested set Tk, and the collection of SL for L ∈ Lk, and
we obtain a refined nested set Tk+1 ⊇ Tk. Then, by construction, Tk+1 and `k+1 clearly
have the first four properties listed above. In particular, Tk+1 is a proper superset of Tk
as the choice of `k+1 guarantees that the set SL = S`k+1

of separations and - hence Tk+1

- distinguishes some two profiles which live in the same non-trivial location L ∈ Lk. For
the fifth and final property, we can assume that every separation t ∈ Tk+1 \ Tk distin-
guishes some two profiles P, P ′ ∈ P that were not distinguished by Tk ⊆ S`k (otherwise
remove such separations from Tk+1). So by the minimal choice of `k+1, the separation t
distinguishes P and P ′ efficiently. This completes the proof.

While our proof of Theorem 6.2 proceeds similar to the original proof of the canonical
Theorem 1.2 in [6], let us discuss one key difference here: In the above proof of The-
orem 6.2, the profiles which live in trivial locations with respect to Tk do not need to
orient S`k+1

since they may have order < `k+1. Therefore, we could not set SL = S`k+1

for a trivial location L, but instead we set SL = ∅. This distinction between trivial and
non-trivial locations is circumvented in the proof of Theorem 1.2 given in [6] as follows:
since Tk efficiently distinguishes every pair of profiles which is distinguished by a separa-
tion of order < `k, it especially distinguishes every profile of order ≤ `k from all the other
profiles in P .

Let Pk+1 be the set of all `k+1-profiles which are induced by profiles in P (and which
are ‘n-robust’ for some fixed n depending only on P). Then our conditions on the nested
set Tk+1 ⊇ Tk can be reformulated in that Tk+1 should efficiently distinguish Pk+1, and
every separation in Tk+1 \Tk should efficiently distinguish some two profiles in Pk+1. Now
the advantage of considering Pk+1 instead of P in the construction of Tk+1 is that every
profile in Pk+1 orients S`k+1

, and hence we can choose SL = S`k+1
for every location L

of Pk+1 with respect to Tk.
The application of Theorem 5.17 to the set Pk+1 of profiles, the nested set Tk, and the

collection of SL = S`k+1
for L ∈ L(Pk+1, Tk) then yields a nested set Tk+1 ⊇ Tk with the

same properties as the one constructed in our proof - except for the fact, that this Tk+1

only strongly partitions Pk+1. But this is no real issue since Tk+1 differs from Tk only by
local nested sets TL inside every location L ∈ L(Pk+1, Tk). So Tk already distinguishes a
profile P ∈ P living in a location in L(P , Tk)\L(Pk+1, Tk) from every profile in a location
in L(Pk+1, Tk) by the induction hypothesis. Hence, this Tk+1 strongly partitions P as
well.

Our proof of Theorem 6.2 illustrates the iterative application of Theorem 5.17 to the
same set P of distinguishable profiles and growing nested sets Tk in order to build a tree
of tangles for P . In particular, the above discussed difference to the proof in [6] shows
how the variability in the choice of the SL can helpful.

In the proof of Theorem 6.2 given above, we needed robustness to ensure condition (iii)
of Theorem 5.17 in every iteration step for all non-trivial locations. If we return to a
structural setup where we do not assume the existence of a global submodular order
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function, then we can also formulate a structural requirement on the set P of profiles
within U which always ensures condition (iii). More precisely, we have the following:

Theorem 6.3. Let U = (U,≤, ∗,∨,∧) be a universe of separations, and let P be a
distinguishable set of profiles within U .
Then we can build a sequence ∅ = T0 ( · · · ( Tn = T of nested sets in U by local
refinements as in Theorem 5.17 such that T is a tree of tangles for P if the following
holds:

(a) For every set P ′ ⊆ P of at least two profiles within U , the set S =
⋂
P∈P ′ S(P ) is

a structurally submodular separation system which contains a separation s ∈ S that
distinguishes some two profiles in P ′.

(b) For every P,Q,Q′ ∈ P with t ∈ Q ∩ Q′ and t ∈ P and for every s ∈ U distin-
guishing Q and Q′, there is an orientation s of s such that t ∨ s ∈ S(R) for every
profile R ∈ P with s, t ∈ S(R).

Proof sketch. As in the proof of Theorem 6.2, we build a sequence ∅ = T0 ( · · · ( Tn = T
of nested sets in U such that every Tk strongly partitions P , and such that every Tk
contains only P-relevant separations. Suppose that Tk was already constructed. If Tk
distinguishes P , then we are done setting n = k. Otherwise, there exists a non-trivial
location in Lk = L(P , Tk).

For each trivial location L ∈ Lk, we set SL = ∅ which satisfies the conditions (i)-(iii)
of Theorem 5.17. For each non-trivial location L ∈ Lk, we set SL =

⋂
P∈PL

S(P ) which

is clearly oriented by every profile in PL. By assumption (a), this SL is structurally
submodular, and it distinguishes some two profiles in PL. Now the assumption (b) is
exactly constructed to guarantee the existence of a suitable corner as in condition (iii)
of Theorem 5.17: Suppose that t ∈ L and a PL-relevant separation s ∈ SL cross. Since
every separation in Tk is P-relevant, there exists a profile P ∈ P with t ∈ P . Moreover, s
distinguishes some two profiles Q,Q′ ∈ PL and both these profiles orient t as t. So by
assumption (b), there exists an orientation s of s with t ∨ s ∈ SL since all the profiles
in PL orient both s and t. This ensures condition (iii) of Theorem 5.17.

Applying Theorem 5.17 to Tk, P , and the collection of the SL for L ∈ Lk, we obtain a
refined nested set Tk+1 ) Tk. Note that Tk+1 is a proper superset of Tk: since there exists
some non-trivial location L ∈ Lk, the refined nested set Tk+1 distinguishes some previously
not distinguished profiles in PL by assumption (a). Since P is finite, the iterative process
terminates with a nested set Tn distinguishing P . This completes the proof.

Condition (a) in Theorem 6.3 is in particular satisfied if the separation systems S(P )
form a sequence S1 ⊆ · · · ⊆ Sn of structurally submodular separation systems in that
for every P ∈ P , we have S(P ) = Si for some i ∈ [n]. For example, this is the case if
we consider profiles in some submodular universe U since the S` with ` ∈ N form such a
sequence. However, even for a robust set P of profiles, the application of Lemma 6.1 as in
the proof of Theorem 6.2 does not necessarily guarantee the existence of a suitable corner
as in condition (b) of Theorem 6.3: in order to apply Lemma 6.1, we additionally needed
that |t| < |s|, that t efficiently distinguishes some two profiles in P , and that s efficiently
distinguishes Q and Q′. From this point of view, Theorem 6.3 is not a direct generalization
of Theorem 6.2 since condition (b) does not need to hold in its full generality.
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But in a sequential setup like in the order function-case, we can relax condition (b)
to these ‘efficient cases’ in that we find a good notion of efficiency. This approach was
made precise by Elbracht, Kneip, and Teegen in [10], when they showed a sequential
tree-of-tangles theorem, Theorem 6.4 below. Let us have a closer look on the relation of
Theorem 6.3 to Theorem 6.4.

In order to state Theorem 6.4, we need the following definitions: we call S = (S1, . . . , Sn)
a sequence of structurally submodular separation systems in U if S1 ⊆ S2 ⊆ · · · ⊆ Sn ⊆ U
and each Si is structurally submodular. Such a sequence S is compatible if for every si ∈ Si
and sj ∈ Sj with i ≤ j, there are either at least two corner separations of si and sj in Si,
or at least three of them in Sj. A profile in S = (S1, . . . , Sn) is a profile of some Si. Two
profiles in S are distinguished efficiently by s ∈ U if s ∈ Si for all Si distinguishing the
two profiles.

Moreover, Elbracht, Kneip, and Teegen introduced the following structural notion of
robustness in the context of sequences of separation systems. A set P of profiles in S is
called robust if for all P,Q,Q′ ∈ P the following holds: for every t ∈ Q∩Q′ with t ∈ P and
every s which distinguishes Q and Q′ efficiently, if s ∈ Sj, then there is an orientation s
of s such that either t ∨ s ∈ P or t ∨ s ∈ Sj .

Now Elbracht, Kneip, and Teegen proved the following:

Theorem 6.4 ([10, Theorem 1.4]). If S = (S1, . . . , Sn) is a compatible sequence of struc-
turally submodular separation systems inside a universe U , and P is a robust set of profiles
in S, then there is a nested set T of separations in U which efficiently distinguishes all
the distinguishable profiles in P.

The notion of efficiency used in Theorem 6.4 can be ensured as in the proof of The-
orem 6.2. So the difference between Theorem 6.4 and Theorem 6.3 for sequences boils
down to the question how the combination of the compatibility of S and the robustness
of P in Theorem 6.4 relates to condition (b) in Theorem 6.3. As mentioned above, con-
dition (b) is much stronger than the combination of compatibility and robustness used in
Theorem 6.4. This is mainly due to the fact that condition (b) needs to allow us to build
the nested set T by local refinements.

Let us take a closer look on how the interplay of compatibility and robustness is used
in the proof of [10, Theorem 1.4] if condition (b) does not hold. So suppose that we are
in the setup of Theorem 6.4, and that condition (b) fails in that none of the corners t ∨ s
and t∨s exists in SL . Since we are in a sequential setup, and ensure efficiency throughout
our construction of the Tk, we may assume that there are minimal i, j ∈ [n] with i ≤ j
such that t ∈ Si and s ∈ Sj = SL. Then in the proof of Theorem 6.4 given in [10],
the compatibility of S ensures that there are two corners of s and t in Si, namely the
corners t ∨ s and t ∨ s. This is the place where we can invoke the robustness of P to
see that one of these corners still distinguishes P from Q and Q′ (for the details, see the
proof of [10, Theorem 1.4]).

But this does not help us in our iterative approach: We seek to extend the nested
set Tk by local refinements. So in particular, while refining a location L, we only add
separations from SL to Tk which are inside L (and not outside L). However, both cor-
ners t ∨ s or t ∨ s are clearly outside L. So condition (b) in Theorem 6.3 is exactly
designed to avoid this case in that it ensures the existence of t ∨ s or t ∨ s in SL . In
this sense, condition (b) is a strengthening of the robustness of P that avoids the use of
compatibility, and allows us to build the nested set T by local refinements.
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Let us conclude this section by addressing the question which global assumptions
on the choice of the SL would guarantee the existence of a canonical refinement. The
key building block in our approach is the following canonical tree-of-tangles theorem for
structurally submodular separation systems which was recently proven by Elbracht and
Kneip:

Theorem 6.5 ([9]). Let U be a finite universe of separations, S ⊆ U structurally sub-
modular, and P a set of profiles of S. Then there is a nested set T = T (P) ⊆ S
which distinguishes P. Moreover, every separation in T (P) is P-relevant. This T (P)
can be chosen canonically: if α : U → U ′ is an isomorphism of universes, then we
have α(T (P)) = T (α(P)) .

In the spirit of Theorem 5.5, we obtain the following canonical local refinement theo-
rem:

Theorem 6.6. Let U be a universe of separations and P a set of profiles within U .
Let T = T (P) ⊆ U be a nested set of separations, L the set of locations of P in T , and
let SL be a set of separations for each location L ∈ L. Assume that L satisfies (L) and
all the SL satisfy (i)-(iii) as in Theorem 5.5.
Then there exists a nested set T ′ = T ∪

⋃
L∈L TL in U where for each location L ∈ L, the

nested set TL ⊆ SL \ T is a set of PL-relevant separations inside L such that every pair
of profiles in PL which is distinguished by SL is also distinguished by TL. The set L′ =
L(P , T ′) satisfies (L) again.
Moreover, this T ′(P) can be chosen canonical: if, for some isomorphism α : U → U ′ of
universes, we have T (α(P)) = α(T (P)) and Sα(L) = α(SL) for all L ∈ L, then we also
have α(T ′(P)) = T ′(α(P)).

Proof. The proof proceeds as the one of Theorem 5.5 with the only difference that we use
Theorem 6.5 instead of Theorem 3.8 to find the local tree sets TL = T (PL � SL). So all
the conclusions hold except the last claim that if, for some isomorphism α : U → U ′ of
universes, we have T (α(P)) = α(T (P)) and Sα(L) = α(SL) for all L ∈ L, then we also
have α(T ′(P)) = T ′(α(P)).

By the definition of a location, the following holds: if L is the location of P ∈ P with
respect to T , then α(L) is the location of α(P ) with respect to α(T ). So by definition of
the PL, we have

(α(P)α(L) � Sα(L)) = α(PL � SL) for all L ∈ L.

Theorem 6.5 yields that for all L ∈ L,

Tα(L) = T (α(P)α(L) � Sα(L)) = T (α(P)α(L) � α(SL)) = α(T (PL � SL)) = α(TL).

Finally, the above equalities combine to

T ′(α(P)) = T (α(P)) ∪
⋃

α(L)∈α(L)

Tα(L) = α(T (P)) ∪
⋃
L∈L

α(TL) = α(T ′(P)).

The part of this proof dealing with the canonicity of T ′ is essentially the same as the
corresponding part of the proof of Theorem 1.2 in [6].
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If we use Theorem 6.6 together with the arguments leading to Theorem 5.17 in the
proof of Theorem 6.2, then we can indeed reobtain Theorem 1.2 completely: The choice
of the sets SL in the above proof of Theorem 6.2 clearly commutes with an isomorphism
of universes as required in Theorem 6.6. By Proposition 5.6 and Lemma 6.1, we can
transition to the set S ′

L
⊆ SL of separations nested with Tk without loosing any power in

distinguishing PL, and this transition is again canonical since an isomorphism of universes
respects the corresponding partial orders. To ensure the efficiency of the nested sets Tk
in each iteration step, we then use the fact that the local tree sets TL constructed using
Theorem 6.5 only contain PL-relevant separations.
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7 Local Refinements and Tangle-Tree Duality

In Theorem 3.11, we showed that it is possible to use tangle-tree duality to witness the
absence of local refinements in the algorithmic setup of Section 3. As we did in Section 5
for tangle distinguishing refinements, we now investigate tangle-tree duality refinements
in more general setups in this section. In particular, we derive local refinement results
in general universes of separations where we relax the assumption that the locally chosen
set SL of separations is inside L. For an in-depth discussion of the definitions around
tangle-tree duality, we refer the reader to [7] and [11].

Let us recall the tangle-tree duality theorem:

Theorem 3.10. ([7, Theorem 4.3]) Let U be a universe of separations containing a finite
separation system S. Let F ⊆ 2U be a set of stars, standard for S. If S is F-separable,
exactly one of the following holds:

(i) There exists an F-tangle of S.

(ii) There exists an S-tree over F .

In contrast to Section 3, we do not restrict ourselves to regular tree sets in universes
of set bipartitions here. So let U be an arbitrary universe of separations. Now what can
we do if T ⊆ U is a nested set and not a regular tree set any more? Or what if the locally
chosen set SL ⊆ U of separations is not inside L?

In [11], Erde investigated these questions under the assumption that U is equipped
with a submodular order function. His key lemma [11, Lemma 8] can be adapted to
universes without an order function by requiring the SL to satisfy certain structural
assumptions that were otherwise implied by the submodular order function. Our adaption
of Erde’s lemma, Proposition 7.1 below, is a direct generalization of Theorem 3.11 (since
a universe of bipartitions of a finite set V only contains one small separation, namely
the trivial (∅, V )). Note that our additional assumptions on the SL are stronger than
what the submodular order function provides in Erde’s setup; so our adapted version is
not a direct generalization of Erde’s Lemma (see the discussion below Proposition 7.1).
Nevertheless, the following proof of the modified statement is very similar to Erde’s proof
of [11, Lemma 8].

For notational simplicity, we are going to assume that we have a star L of separations
contained in a separation system S ⊆ U ; this is equivalent to considering S = SL ∪ L in
our previous notation. Now our structural version of [11, Lemma 8] reads as follows:

Proposition 7.1. Let U = (U,≤, ∗,∧,∨) be a universe of separations, and let S ⊆ U
be a separable separation system. Let F ⊆ 2U be a set of stars, standard for S, which
contains {r} for all co-small r, and which is closed under shifting in S. Suppose that L =
{ti | i ∈ [n]} ⊆ S is a star of separations such that one of the following holds for each ti ,
and (ii) holds for either none or at least two of the ti :

(i) ti points towards S;

(ii) there exists an F-tangle Oi of S with ti ∈ Oi.

Moreover, assume that each ti emulates every x ≤ ti :

∀ti ∈ L, x, r ∈ S : (x ≤ r, x ≤ ti and x 6= r) =⇒ (ti ∨ r ∈ S).
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Let F ′ = F ∪ {{ti}|ti ∈ L}. Then either there is an F ′-tangle of S, or there is an
S-tree (G,α) over F ′ such that the nested set of unoriented separations underlying α(E(G))
is inside L.

Proof. Let
F̄ = F ∪ {{x} ⊆ S | ti ≤ x for some i ∈ [n]}.

We first show that we can apply Theorem 3.10 to S and F̄ , i.e. that S is F̄ -separable,
and that F̄ is standard. The latter is clear: since F is standard for S, so is F̄ . To see
that S is F̄ -separable, it is enough to show that F̄ is closed under shifting since S is
separable. By assumption, F is closed under shifting. Further, every element of F̄ \ F
is a singleton star {x}. So its image under some relevant shift is a singleton star {y}
for some separation x ≤ y , and hence, {y} ∈ F̄ by definition. Thus, F̄ is closed under
shifting.

By Theorem 3.10, there is either an F̄ -tangle of S or an S-tree over F̄ . In the first
case, we are done since F ′ ⊆ F̄ implies that every F̄ -tangle is an F ′-tangle, too. So let
us assume that there exists an S-tree (G,α) over F̄ . By [7, Lemma 2.4], we may assume
that (G,α) is irredundant and tight.

By assumption, there exists some k 6= 1 with 0 ≤ k ≤ n such that, after potentially
renumbering the ti , each separation ti with i ∈ [k] is oriented as ti by some F -tangle Oi.
The remaining separations tk+1 , . . . , tn point towards S.

Let i ≥ k + 1, and consider x ∈ S with x < ti . Since ti points towards x, we must
have ti < x, so x is trivial in S witnessed by ti. Now by assumption, F is standard, and
thus, {x} ∈ F . This implies that (G,α) is already an S-tree over

F̄k+1 = F ∪ {{tj } | j ≥ k + 1} ∪ {{x} ⊆ S | tj ≤ x for some j ∈ [k]}.

We now aim to modify (G,α) into an S-tree (G′, α′) over F ′ such that the set S ′ of un-
oriented separations underlying α(E(G′)) is inside L and nested. Given an S-tree (G′, α′)
over F ′, the ti with i ≥ k+ 1 point towards S ′ ⊆ S by assumption; we have to make sure
that the ti with i ≤ k point towards S ′, too. To achieve this, we are going to move the set
of unoriented separations underlying α(E(G)) into L step-by-step in that we construct a
sequence (G,α) = (Gk+1, αk+1), (Gk, αk), . . . , (G1, α1) of tight and irredundant S-trees
over F̄ such that (Gi, αi) is also an S-tree over

F̄i = F ∪ {{tj } | j ≥ i} ∪ {{x} ⊆ S | tj ≤ x for some j ∈ [i− 1]},

and such that tn , . . . , ti point towards the nested set Si of unoriented separations which
underlies α(E(Gi)). Then, since F̄1 = F ′, the S-tree (G1, α1) is as desired.

Suppose that (Gi+1, αi+1) for some 1 ≤ i ≤ k is already constructed. By assumption,
there exists an F -tangle Oi of S that orients ti as ti . Then this ti is the unique tj ∈ L
which is oriented as tj by Oi: Since F contains {r} for every co-small separation r, the F -
tangle Oi is regular. Hence, as L is a star and Oi is consistent, the ti is unique as claimed.
Next, we will show that there exists a leaf separation xi of (Gi+1, αi+1) with ti ≤ xi
and xi ∈ Oi.

Since Oi is a consistent orientation of S, it is contained in some vertex of (Gi+1, αi+1).
The star of separations at that vertex cannot lie in F as Oi is an F -tangle. So it must
lie in F̄ \ F . Each of these stars is a singleton, so the vertex containing Oi must be
a leaf. In particular, there exists a leaf separation xi of (Gi+1, αi+1) with xi ∈ Oi.
Since {xi} ∈ F̄ \ F , we must have tj ≤ xi for some j ∈ [n]. So tj ∈ Oi by consistency,
and, since ti is unique in L with this property, we have i = j as desired.
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By assumption, ti emulates xi in S, and, since F̄ is closed under shifting, ti even
emulates xi in S for F̄ . Moreover, ti and xi are both non-trivial and non-degenerate
because they distinguish the F -tangle Oi from all the other F -tangles Oj with i 6= j ∈ [k]
(this is where we need k 6= 1).

Now if ti = xi , then ti points towards the set Si+1 of unoriented separations underly-
ing αi+1(E(Gi+1)) since (Gi, αi) is irredundant and over stars, and hence order-respecting
by [3, Lemma 6.3 (i)]. In this case, we are done by setting (Gi, αi) = (Gi+1, αi+1).

So suppose that ti < xi . Then we use [7, Lemma 4.2], and shift (Gi+1, αi+1) onto ti to
get an order-respecting S-tree (Ḡi, ᾱi) over F̄ which contains ti as a unique leaf separation.
Moreover, every leaf separation r of (Ḡi, ᾱi) with ti < r is trivial: since (Ḡi, ᾱi) is order-
respecting, the leaf separations of (Ḡi, ᾱi) point towards each other. So as ti is the image
of a unique leaf, we also have ti < r. Hence, r must be trivial and {r} ∈ F since F is
standard. In particular, (Ḡi, ᾱi) is also an S-tree over

F̄i = F ∪ {{tj } | j ≥ i} ∪ {{x} ⊆ S | tj ≤ x for some j ∈ [i− 1]}.

Next, we show that tn , . . . , ti+1 also point towards the set S̄i of unoriented separations
underlying ᾱi(E(Ḡi)). This is clear for j > k, so consider tj for some j ≤ k with j > i.
By the induction hypothesis, tj points towards the set Si+1 of unoriented separations
underlying αi+1(E(Gi+1)), and tj also points towards ti since L is a star. Thus, tj points
towards all the corners of ti and each separation in Si+1. But by the definition of the shift
of (Gi+1, αi+1) onto ti , the set Si of separations contains only separations from Si+1 and
some of their corners with ti. So tj points towards S̄i as well.

By [7, Lemma 2.4], there exists an S-tree (Gi, αi) over F̄ with Gi a minor of Ḡi

and αi = ᾱi � E(Ḡi), such that (Gi, αi) is tight and irredundant, and contains ti as a
leaf separation. Now ti points towards the set Si ⊆ S̄i of unoriented separations underly-
ing αi(E(Gi)) since (Gi, αi) is order-respecting by [3, Lemma 6.3 (i)]. So tn , . . . , ti point
towards Si. Moreover, Si is nested since (Gi, αi) is order-respecting. This completes the
induction step and hence the proof.

In Proposition 7.1, we have the somewhat technical-looking condition on the interplay
of S and L that each ti ∈ L emulates every x ≤ ti . It says that if a separation r ∈ S
crosses some ti ∈ L, then the corner r ∨ ti has to be in S. In comparison to the existence
of some corner of r and ti inside L as in condition (ii) of Proposition 5.6, we consider an
orientation r of r ∈ S here, and require that S contains the specific corner r ∨ ti . Since
this condition is used to guarantee that our preliminary tree with a leaf separation xi ≤ ti
can be shifted onto ti to make ti a leaf separation of the shifted tree, it is enough to require
the condition for such r ∈ S that satisfy r ≥ x for some x ∈ S which is itself ≤ ti .

In the setup of Erde’s [11, Lemma 8], the assumptions only guarantee that if there
exists any leaf separation ≤ ti , then there exists some leaf separation xi ≤ ti which is
emulated by ti . The respective key assumptions are the existence of a submodular order
function together with the requirement that each ti in case (ii) efficiently distinguishes
some two F -tangles of S. Due to the lack of similar tools in the absence of an or-
der function, we imposed the stronger structural assumption that each separation ≤ ti is
emulated by ti , and this is why Proposition 7.1 does not directly generalize [11, Lemma 8].

Let us view Proposition 7.1 from the perspective of local refinements as in Section 3:
Let T ⊆ U be a nested set and L ⊆ T a star which corresponds to the maximal set
of separations of a consistent orientation of T . Suppose we chose a set SL ⊆ U of
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separations and a set FL of stars in U such that SL ∪ L and FL satisfy the assumptions
of Proposition 7.1.Then we apply Proposition 7.1 to the star L ⊆ SL ∪ L and FL, and
obtain either an FL-tangle of SL ∪ L extending L, or an (SL ∪ L)-tree over F ′

L
which

witnesses the non-existence of such tangles.
In the latter case, this (SL∪L)-tree over F ′

L
is constructed such that the nested set TL

of unoriented separations underlying α(E(G)) is inside L. Since every separation of T
is outside L, this is enough to guarantee that TL is nested with T . So T ′ = T ∪ TL is
a refined nested set which witnesses the non-existence of FL-tangles of SL∪L extending L.

We conclude this section with the following version of Proposition 7.1 in which we relax
condition (i) to nestedness with ti under the assumptions of Section 3. More precisely, we
require that F contains its essential core and that all the separations in L are non-trivial:

Proposition 7.2. Let U = (U,≤, ∗,∧,∨) be a universe of separations, and let S ⊆ U be
a separable separation system without degenerate elements. Let F ⊆ 2U be a set of stars,
standard for S, which contains {r} for all co-small r, and which is closed under shifting
in S. Suppose L = {ti | i ∈ [n]} ⊆ S is a star of non-trivial separations such that one of
the following holds for each ti , and (ii) holds for either none or at least two of the ti :

(i) S is nested with ti;

(ii) there exists an F-tangle Oi of S with ti ∈ O.

Moreover, assume that each ti emulates every x ≤ ti :

∀ti ∈ L, x, r ∈ S : (x ≤ r, x ≤ ti and x 6= r) =⇒ (ti ∨ r ∈ S).

Let F ′ = F ∪ {{ti}|ti ∈ L}. Then either there is an F ′-tangle of S, or there is an essen-
tial S-tree over the essential core of F ′ such that the nested set of unoriented separations
underlying α(E(G)) is a tree set inside L.

Proof sketch. We follow the same proof strategy as in Proposition 7.1, and first obtain
an S-tree (G,α) over F̄ from Theorem 3.10. By [3, Corollary 6.7], we may assume
that (G,α) is essential and over the essential core of F̄ .

Let k ≤ n be chosen as above, and let l ∈ N with k ≤ l ≤ n such that, after potentially
renumbering the ti , the separation ti does not point towards S for each ti with k < i ≤ l.
Then we construct a sequence (G,α) = (Gl+1, αl+1), (Gl, αl), . . . , (G1, α1) of essential S-
trees over F̄ similar to the proof of Proposition 7.1, such that (Gi, αi) is also an S-tree
over the essential core of

F̄i = F ∪ {{tj } | j ≥ i} ∪ {{x} ⊆ S | tj ≤ x for some j ∈ [i− 1]},

and such that tn , . . . , ti point towards the tree set of unoriented separations underly-
ing α(E(Gi)). We are again done for i = 1.

For i ≤ k, the construction of (Gi, αi) from (Gi+1, αi+1) works analogously to the proof
of Proposition 7.1 with one difference: we combine [7, Lemma 2.4] with [3, Lemma 6.6]
to obtain an essential S-tree (Gi, αi) over the essential core of F̄ from (Ḡi, ᾱi) where Gi

is a minor of Ḡi and αi = ᾱi � E(Ḡi), such that (Gi, αi) contains ti as a leaf separation
(this works since ti is non-trivial by assumption).

It remains to consider the case k < i ≤ l. If the separation ti points towards the
set Si+1 of unoriented separations underlying αi+1(E(Gi+1)), then we are done by set-
ting (Gi, αi) = (Gi+1, αi+1).
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So suppose ti does not point towards Si+1. Similar as for i ≤ k, we want to shift our
tree (Gi+1, αi+1) onto ti in this case. Let us show that we can do so in that we again
find a non-trivial and non-degenerate leaf separation xi of (Gi+1, αi+1) with ti ≤ xi :
Since ti does not point towards Si+1, and ti is nested with S, there exists x ∈ Si+1 such
that ti ≤ x. Now Si+1 is finite, so there exists a minimal separation xi ∈ Si+1 with xi ≤ x.
By [3, Lemma 6.3 (i)], this xi must be a leaf separation of (Gi+1, αi+1). Since (Gi+1, αi+1)
is essential, xi is non-trivial, and by assumption on S, it is also non-degenerate. From
this point on, we can continue as for i ≤ k.
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