
Forcing finite minors in sparse infinite graphs
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Reinhard Diestel

Developing further Stein’s recent notion of relative end degrees
in infinite graphs, we investigate which degree assumptions can
force a locally finite graph to contain a given finite minor, or a
finite subgraph of given minimum or average degree. This is part
of a wider project which seeks to develop an extremal theory of
sparse infinite graphs.

Introduction

Perhaps the most basic question in extremal graph theory asks which average
degree assumptions force a finite graph G to contain a given desired substruc-
ture. When this substructure is not a subgraph, but a given minor or topolo-
gical minor H, its presence can be forced by making the average degree of G
large enough in terms of H only, independently of the order of G.

When G is infinite, this will no longer work: since infinite trees can have
arbitrarily large degrees, no minimum degree assumption can force an infinite
graph to contain even a cycle. However, just as a finite tree with internal
vertices of large degree has many leaves, an infinite tree of large minimum
degree has many ends. The question we pursue in this paper is which notion
of ‘degree’ for ends might imply that an infinite graph whose vertices and ends
have large degree contains a given finite minor. (The ends of a tree should then
have degree 1, so that trees are no longer counterexamples.)

Various notions of end degrees already exist, but only one of them, due
to Stein [5], can achieve this aim. While this was a crucial step forward, the
exact notion of the ‘relative’ end degrees she proposed still leaves room for
improvement: it can be hard to verify that a given graph has large end degrees
in this sense, indeed there seem to be only few sparse graphs that do.

Our aim in this paper is to develop the notion of relative end degree further,
so that more graphs satisfy the premise that both their vertices and their ends
have degree at least some given k 2 N, while keeping the notion strong enough
that large vertex and end degrees can force any desired finite minor.

To indicate the notion of end degree that we have in mind, let us look at a
locally finite connected graph G of minimum degree k which, however, has no
finite subgraph of minimum degree at least k. (Such a subgraph would be good
enough for us: recall that for every finite graph H there exists an integer k such
that every finite graph of minimum degree at least k contains H as a minor.)
If G has a finite set S of vertices such that every component C of G� S is
such that all its vertices with a neighbour in S have degree at least k in the
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subgraph G[S,C] of G they induce together with S, then S and its neighbours
in G induce a subgraph of minimum degree at least k in G, as desired. If not,
then a standard compactness argument will give us a sequence C0 % C1 % . . .
of ‘bad’ components Cn of G� Sn for finite vertex sets Sn which identifies a
unique end of G. The fact that all these Cn are ‘bad’, i.e., contain a neighbour
of Sn whose degree in G[Sn, Cn] is less than k, should then imply that this
end has degree < k: then the assumption that all vertices and ends of G have
degree at least k will imply that G has a finite subgraph of minimum degree at
least k.

This paper is organized as follows. In Section 1 we make the above ideas
precise and formulate two notions of end degree, one as indicated above, the
other based on the average rather than minimum degrees of the graphs G[S,C].
We shall see how the assumption of large vertex and end degrees in this sense
can force finite subgraphs of given minimum or average degree. We shall also
see, however, that this is rather a strong assumption: unless a graph has a very
simple structure, it will be nontrivial to verify that its ends all have large degree
in this sense. Indeed there may not be many locally finite graphs whose vertex
and end degrees are at least k. We shall therefore amend the definition of end
degree so that the assumption that these degrees are large becomes weaker,
thereby allowing more graphs to have large vertex and end degrees.

In Section 2 we show that for locally finite graphs with countably many
ends the new notion is still strong enough to force finite subgraphs of given min-
imum degree. In Section 3, however, we construct an example of a graph (with
continuum many ends) whose vertex and end degrees can be made arbitrarily
large without forcing it to contain a finite subgraph of minimum degree > 2.
In Section 4 we use topological methods to prove a positive result for graphs
with uncountably many ends, which can also be used to strenghten our result
from Section 2.

All graphs in this paper are locally finite. Notation and terminology for
infinite graphs, including their ends, can be found in [2].

1. End degrees, and statements of results

The simplest, and historically first, notion of degree for an end is the maximum
number of either disjoint or edge-disjoint rays in its graph that represent it.
This notion was introduced by Halin [7], who also showed that these maxima
exist. Replacing in this definition the rays in an end with arcs converging
to it in the Freudenthal compactification of the graph yields a more refined
topological notion of end degree [2, 3].

An assumption of large end degrees in this sense, as well as of large vertex
degrees, can force some substructures in locally finite infinite graphs, such as
an unspecified highly connected subgraph [3, 4, 5]. However, it will not yield the
kind of result we are seeking here: for every integer k there are planar graphs
with all vertex and end degrees at least k, and hence no such degree assumption
can force even a K5 minor. (Indeed, if we draw the k-regular infinite tree in
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the plane and then add edges to turn each level into a cycle, we obtain a planar
graph with only one end, and this end has infinite degree in all the senses
discussed above.)

It was in this situation that Stein [5] suggested a notion of a ‘relative’ end
degree, which would measure for a given end the ratios between the edge and
the vertex boundaries of smaller and smaller regions of the graph around this
end. Before we get to our main results, let us define a simplified and slightly
optimized version of this formally, and state the theorem it leads to.

Given a subgraph or vertex set U in a locally finite graph G, let us call

V +(U) := N(G�U) (✓ U)

its vertex boundary. If U is finite, we write

dG(U) :=
X
v2U

dG(v)
�
|U |

for its ‘average degree in G’.
A region of G is a connected induced subgraph C with a finite vertex

boundary. Since G is locally finite, the neighbourhood S = N(C) of C in G
will then also be finite. Indeed, the regions of G are precisely the subgraphs
arising as components of subgraphs G�S with S ✓ V (G) finite. We then write
G[S,C] := G[S [V +(C)], which is a finite graph, and call

�+
G(C) := min

v2V +(C)
dG[S,C](v)

the minimum and
d+

G(C) := dG[S,C](V +(C))

the average out-degree of C in G.
A sequence C0 ! C1 ! . . . of regions is a defining sequence for an end !

of G if every Cn contains a ray from ! and
T

n Cn = ;. (This latter condition
ensures that ! is the only end with a ray in every Cn.) Following the ideas of
Stein [5], let

��(!) := inf
C0!C1!...

lim
n!1

�+
G(Cn)

d�(!) := inf
C0!C1!...

lim
n!1

d+
G(Cn),

where both infima are taken over all defining sequences C0 ! C1 ! . . . of !
such that the limit under the infimum exists (with 1 allowed).

Thus, ��(!) is either infinite or the least integer k such that ! has a
defining sequence with all minimum out-degrees equal to k. It is not hard to
show for either notion that there always exists a defining sequence of regions
whose out-degrees converge, possibly to 1; in the case of ��(!) the infimum
is attained by a constant sequence. Indeed, if we changed the limit in either
definition to a limes inferior or a limes superior, the values of ��(!) or d�(!)
would not change.

The following is a variant of Stein’s theorem [5] based on our definitions:
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Theorem 1. Let G be a locally finite infinite graph, k 2 N, and q 2 Q.

(i) If �(G) > k and ��(!) > k for every end ! of G, then G has a finite
subgraph of minimum degree > k.

(ii) If dG(S) > q for every large enough* finite set S ✓ V (G), and d�(!) > q
for every end ! of G, then G has a finite subgraph of average degree > q.

Proof. As indicated in the Introduction. Note that the definitions of ��(!),
d�(!) and dG(S) are chosen exactly so as to make this approach work. ⇤

Natural though it may seem, Theorem 1 has a serious snag: it is not clear
how many graphs it applies to. Although one can, for every k, construct graphs
that satisfy the premise of (i) and (ii), there do not appear to be many such
graphs. Indeed, the premise in (i), say, that ��(!) > k for every end !, means
that every defining sequence C0 ! C1 ! . . . for ! is such that �+

G(Cn) > k for n
large enough. Since it is easy to construct pathological defining sequences of
ends, this is rather a strong property, and easy to foil. The same problem ap-
plies to Stein’s original notion of relative end degrees; see [5, 6] for a discussion.

It is tempting, therefore, to change the definition of end degrees considered
above by replacing their infimum with a supremum. Then an end ! will satisfy
�(!) > k as soon as there exists a defining sequence C0 ! C1 ! . . . for it in
which for infinitely many (equivalently: for all) n all boundary vertices of Cn

have degree > k in G[Sn, Cn]. The premise of the theorem that all these end
degrees are at least k thus becomes much weaker and easier to verify, and it is
easy to construct a large diversity of examples of such graphs.

Thus, formally, we let

�+(!) := sup
C0!C1!...

lim
n!1

�+
G(Cn)

d+(!) := sup
C0!C1!...

lim
n!1

d+
G(Cn),

the suprema being taken over all defining sequences C0 ! C1 ! . . . of ! such
that the limit under the infimum exists (with 1 allowed). Let us call �+(!)
the minimum limit degree of !, and d+(!) its average limit degree.

In its full generality, the analogue of Theorem 1 with this much weaker
premise is now too strong to be true. To see this, let us show that every end
! of the infinite k-branching tree Tk has a defining sequence witnessing that
�+(!) > k (while Tk clearly has no finite subgraph of minimum degree > 1).
To obtain such a sequence, let each Cn be the up-closure in Tk of a vertex t
together with its lower neighbour t�. Then V +(Cn) = {t�}, and Sn = N(Cn)
consists of the upper neighbours of t� other than t, and its lower neighbour.
The vertex t� sends k edges to Sn (unless t� is the root of Tk, a case we can
ignore), so �+

G(Cn) = d+
G(Cn) = k.

We shall therefore need some restrictions in order to get positive results.
One such restriction is suggested by the counterexample just discussed, which

* This is made precise after the statement of Theorem 2.

4



relies on the fact that the neighbourhoods of the end-defining regions used are
disconnected. If we ask that these neighbourhoods be connected, or just that
the graphs G� Cn be connected (a slightly weaker assumption), we get our
first positive result:

Theorem 2. Let G be a locally finite infinite graph with at most countably
many ends, and let k 2 N and q 2 Q.

(i) If �(G) > k, and if every end ! of G satisfies �+(!) > k witnessed by a
defining sequence C0 ! C1 ! . . . such that G�Cn is connected for all n,
then G has a finite subgraph of minimum degree > k.

(ii) If dG(S) > q for every large enough finite set S ✓ V (G), and every end !
of G satisfies d+(!) > q witnessed by a defining sequence C0 ! C1 ! . . .
such that G�Cn is connected for all n, then G has a finite subgraph of
average degree > q.

The ‘large enough’ in (ii) can be taken with respect to size, or to mean that
only sets S containing some given set S0 have to satisfy dG(S) > q. The
point is that allowing singleton sets S would make the condition 8S: dG(S) > q
stronger than �(G) > q, which is not the intention. We shall prove Theorem 2
in Section 2.

In Section 4 we use topological methods to strengthen Theorem 2 by drop-
ping the requirement that the graphs G�Cn be connected (Corollary 5). The
proof will assume familiarity with the more elementary proof of Theorem 2
given in Section 2.

The assumption that G should have only countably many ends is a non-
trivial restriction: it is not rare that theorems that are di�cult in general are
much easier to prove under this assumption. So I tried for some time to prove
the general version (with the additional requirement that the graphs G�Cn be
connected, which our earlier example has shown to be necessary) – but ended
up finding a counterexample:

Theorem 3. For every integer k there exists a locally finite graph G with
�(G) > k all whose ends ! have minimum limit degree �+(!) > k, witnessed
by a defining sequence C0 ! C1 ! . . . such that G�Cn is connected for all n,
but which has no finite subgraph H with �(H) > 2.

Thus, Theorem 2 is best possible in this sense. The counterexample proving
Theorem 3 will be described in Section 3.

We shall finally prove a positive result for graphs with uncountably many
ends. The naive extension of Theorem 2 (i) to arbitrary locally finite graphs G
(which is false by Theorem 3) could be rephrased, without mentioning end
degrees explicitly, as saying that G has a finite subgraph of minimum degree at
least k as soon as �(G) > k and every end has a defining sequence C0 ! C1 ! . . .
of regions all of minimum out-degree at least k. Our positive result says that
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this is true if these regions can be taken from one overall set of regions of G
that are nested : such that any two of them are either disjoint or such that one
contains the other. Note that, unlike in Theorem 2, we no longer require that
the graphs G�Cn be connected.

It is not uncommon for a collection of regions defining ends to be nested.
For example, if T is a normal spanning tree of G, the up-closures in T of single
vertices form a nested set of regions in which every end has a defining sequence.

In the topological terminology to be introduced in Section 4, our result
takes the following form:

Theorem 4. Let G be locally finite infinite graph with a nested set C of regions
defining a basis of |G|, and let k 2 N and q 2 Q.

(i) If �(G) > k and �+
G(C) > k for every C 2 C, then G has a finite subgraph

of minimum degree > k.

(ii) If dG(S) > q for every large enough finite set S ✓ V (G), and d+
G(C) > q

for every C 2 C, then G has a finite subgraph of average degree > q.

Theorem 4 will be proved in Section 4.

2. Elementary positive results

To make our proof of Theorem 2 easy to describe we need a few more terms.
An end of G lives in a region C if each of its rays has a tail in C; then it

cannot also live in another region disjoint from C. Given k 2 N, let us call a
region C good for the purpose of the proof of Theorem 2 (i) if G�C is connected
and �+

G(C) > k, and good for the purpose of the proof of Theorem 2 (ii) if G�C
is connected and d+

G(C) > q. The assumptions of �+(!) > k in Theorem 2 (i)
and of d+(!) > q in Theorem 2 (ii) thus imply that ! has a defining sequence
consisting of good regions.

To prove Theorem 2, let us restate it more formally in its part (ii):

Theorem 2. Let G be a locally finite infinite graph with at most countably
many ends, and let k 2 N and q 2 Q.

(i) If �(G) > k, and if every end ! of G satisfies �+(!) > k witnessed by a
defining sequence C0 ! C1 ! . . . such that G�Cn is connected for all n,
then G has a finite subgraph of minimum degree > k.

(ii) If there exists a finite set S0 ✓ V (G) such that dG(S) > q for every finite
set S ✓ V (G) containing S0, and every end ! of G satisfies d+(!) > q
witnessed by a defining sequence C0 ! C1 ! . . . such that G� Cn is
connected for all n, then G has a finite subgraph of average degree > q.

Proof. (i) We may clearly assume that G is connected. Let !1,!2, . . . be an
enumeration of the ends of G. Our first aim is to select an increasing sequence
S0 ✓ S1 ✓ . . . of non-empty finite sets of vertices satisfying the following four
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conditions for n > 0:

The end !n lives in a good component Cn of G�Sn; (1)
G[Sn] is connected; (2)

every component of G�Sn is infinite; (3)
any good component of G�Sn�1 is also a good component of G�Sn. (4)

As S0 we take a finite set of vertices satisfying (2) and (3) for n = 0; this
can be obtained, for example, by taking a single vertex v and adding all finite
components of G� v. We now assume that we have chosen S0 ✓ . . . ✓ Sn for
some n so as to satisfy (2)–(3) if n = 0, and (1)–(4) if n > 0.

Let us now choose Sn+1. If the component C of G� Sn in which !n+1

lives is good, we let Sn+1 := Sn and Cn+1 := C. If C is bad, we choose a
good region Cn+1 ✓ C of G in which !n+1 lives; this exists by our assumption
that �+(!n+1) > k. Note that every Sn–Cn+1 path in G meets N(Cn+1)
before it reaches Cn+1. Since G�Cn+1 is connected (as Cn+1 is good), and
G[Sn] is connected by (2), we can make N(Cn+1) connected by adding finitely
many finite paths from G[Sn [ V (C)]�Cn+1. We can therefore find a finite
connected subset S0n of Sn [ V (C) that contains Sn [N(Cn+1) but does not
meet Cn+1, and let Sn+1 be obtained from S0n by adding any finite components
of C�S0n. Then Cn+1 is a component of G�Sn+1. The set Sn+1 contains Sn

but is still finite, and it satisfies (1)–(4) for n+1. This completes the choice of
S0 ✓ S1 ✓ . . . .

Let us show that the above construction in fact breaks o↵ after finitely
many steps, i.e., that the sequence of sets Sn becomes stationary. If not, then
S :=

S1
n=0 Sn is infinite and spans a connected subgraph of G, by (2). As

G is locally finite, this subgraph contains a ray, from the end !k of G, say.
By (1), the end !k lives in the good component Ck of Sk, which by (4) is still a
component of G�S. Hence Sk is a finite set of vertices separating Ck from S,
both of which contain a ray from !k, a contradiction.

We have shown that our construction of sets S0 ✓ S1 ✓ . . . breaks o↵ after
finitely many steps, with a set Sn say. By (3), every component C of G�Sn

is infinite; let us show that it is a good region of G. Since C is locally finite it
contains a ray. Hence some end of G lives in C; let !k be such an end with k
minimum. By (1), the end !k also lives in the good component Ck of G�Sk.
If k 6 n, then Ck is still a component of G� Sn, by (4), so C = Ck is good.
If n < k, then by the maximality of n we have Sk = Sn. So Ck is also a
component of G�Sn, and hence equal to C.

Since every component of G� Sn is good, every vertex of the finite non-
empty graph H := G[Sn [N(Sn)] that is not in Sn has degree at least k in H.
But so do the vertices in Sn, since they have degree > k in G and H contains
all their neighbours. Thus, having found H we have completed the proof of (i).

(ii) The proof follows the same lines as above, except that we start with
S0 as specified in the statement of (ii). Then at the end it takes a short
argument to see that if every component of G � Sn is good then the finite
graph H = G[Sn [N(Sn)] has average degree > q. Checking this, however, is
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immediate from the definitions of dG(Sn) (which is at least q by assumption)
and of d+

G(C) for the components C of G�Sn (which are all > q), and we leave
it to the reader. ⇤

3. A counterexample

We already saw that Theorem 2 does not extend to graphs with uncountably
many ends if, at the same time, we drop the additional requirement on our
defining sequences C0 ) C1 ) . . . of ends that also the complements G�Cn

must be connected. However, the counterexample we saw – the k-branching
tree Tk with some specially chosen defining sequences for its ends – relied heav-
ily on the fact that the graphs G�Cn were allowed to be disconnected: this
enabled us to give the Cn a small vertex boundary sending many edges out:
to many components of G�Cn, and thus not forcing high degrees outside Cn.
(It will become clearer below why this would otherwise likely be the case.)

We now construct a counterexample in which the graphs G�Cn are con-
nected:

Theorem 3. For every integer k there exists a locally finite graph G with
�(G) > k all whose ends ! have minimum limit degree �+(!) > k, witnessed
by a defining sequence C0 ! C1 ! . . . such that G�Cn is connected for all n,
but which has no finite subgraph H with �(H) > 2.

Proof. Let k be given, without loss of generality k > 1. Let T be the rooted
tree in which every vertex t has k + 1 successors, which we think of as lying
above t. Let us call the vertices of T tree-vertices, and its edges vertical . For
each t 2 T furnish its set of k + 1 successors with horizontal edges to turn
it into a complete graph Kk+1, then subdivide each of these horizontal edges
once. We continue to call the subdivided edges horizontal , and call the new
vertices the subdividing vertices. Call this graph T+.

Now iterate the following construction step ! times: with every subdivid-
ing vertex s of the current graph identify the root of a new copy of T+, putting
it above s. (Keep all labels ‘horizontal’ or ‘vertical’ of the old graph and of the
copies of T+ added to it.) We will show that the resulting graph G proves the
theorem.

Clearly, �(G) > k. To show that every end ! has a minimum limit degree as
stated, let us define a set C of regions C with �+

G(C) = k and G�C connected,
and such that every end has a defining sequence of regions in C. The set C will
consist of one region Cs for every subdividing vertex s of (any of the copies of
T+ in) G, defined as follows. Let tt0 be the edge of the Kk+1 of which s is a
subdividing vertex. Then let Cs be the up-closure of {t, s, t0} in G, together
with the edges ts and st0. This is a connected subgraph of G, and G�Cs is
connected too. The vertex boundary of Cs in G consists of t and t0, each of
which is incident with one vertical edges leaving Cs (to the common predecessor
of t and t0 in the copy of T+ containing them) and k�1 horizontal such edges.
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Now consider an end ! of G. It is represented by a ray R whose vertical
edges all go upwards. For every subdividing vertex s 2 R, the tail sR of R lies
in Cs. For every vertical edge tt+ with t not a subdividing vertex, the tail tR
of R lies in every Cs whose s is joined to t by a horizontal edge. (There are
k > 1 such vertices s.) Hence every tail of R lies in some Cs, and these Cs

form a defining sequence of !.
It remains to show that every finite subgraph H of G has minimum degree

at most 2. Consider a highest vertex v of H. If v is incident with a horizontal
edge vw 2 H, then either v or w has degree at most 2 in H. If not, then v has
degree 1 in H. ⇤

The graph constructed in the proof of Theorem 3 can also serve as a
counterexample to the naive generalization of Theorem 2 (ii) to graphs with
uncountably many ends: since no finite subgraph of G has minimum degree > 2,
there is also no finite subgraph of G that has average degree > 4 (see [2]). The
graph constructed in Stein [4, Fig. 1] is also a counterexample to the generaliza-
tion of Theorem 2 (ii) to graphs with any number of ends; see [4, Lemmas 4.1–2].

Our counterexample in Theorem 3 to the naive extension of Theorem 2
to locally finite graphs with arbitrarily many ends uses only regions C with
G�C connected. A natural stronger requirement, which our example does not
satisfy, would be to ask that N(C) be connected:

Problem. Does every locally finite graph G of minimum degree at least k
have a finite subgraph of minimum degree at least k if all its ends have mini-
mum limit degree at least k witnessed by defining sequences of regions whose
neighbourhoods are connected in G?

Can the example of Theorem 3 be tweaked to give a negative solution to
this problem? A positive solution would be a very nice result indeed.

For average degrees, it is easy to modify the example from Theorem 3 to
a counterexample with connected neighbourhoods of regions. Indeed, joining
for each subdivided Kk+1 all its subdividing vertices to the lower neighbour of
that Kk+1 in T makes the neighbourhoods N(Cs) connected and reduces the
average limit degrees of ends to no less than 2

3k, but there are still no finite
subgraphs of average degree greater than about 4.

4. Positive results using topology

In order to prove Theorem 4, we have to view graphs with ends in a topological
setting. There is a natural topology on a locally finite graph G with ends that
makes it into a compact space extending the 1-complex G. This space |G|, the
Freudenthal compactification of G, is explained in [2]. All we need here is that
every region C of G, together with the ends that live in it and the inner points
of edges leaving it, forms an open subset of |G|. We shall denote this open set
as Ĉ.
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Every locally finite graph G has a nested set C of regions C whose corre-
sponding open sets Ĉ ✓ |G| form a basis of |G| together with the local open
stars around vertices and the open intervals of edges; for example, take the
regions induced in G by the up-closures of single vertices in a normal spanning
tree. We then say that C defines this basis of |G|.

Theorem 4. Let G be locally finite infinite graph with a nested set C of regions
defining a basis of |G|, and let k 2 N and q 2 Q.

(i) If �(G) > k and �+
G(C) > k for every C 2 C, then G has a finite subgraph

of minimum degree > k.

(ii) If dG(S) > q for every large enough finite set S ✓ V (G), and d+
G(C) > q

for every C 2 C, then G has a finite subgraph of average degree > q.

Proof. We prove (i); the proof of (ii) is similar, with the same adjustments as
in the proof of Theorem 2.

Let v be a fixed vertex of G, and let C0 be the subset of C consisting of the
sets in C not containing v. For every end !, let C! be the component of G� v
in which ! lives. Since C defines a basis of |G| and Ĉ! is an open subset of |G|
containing !, there is inside Ĉ! a set Ĉ 3 ! with C 2 C, and hence C 2 C0. So
the sets Ĉ \⌦ with C 2 C0 form an open cover of ⌦, the set of ends of G.

Since ⌦ is a closed subspace of |G|, and hence compact, we can select
from C0 a finite subset {C1, . . . , Cn} such that Ĉ1 [ . . . [ Ĉn ◆ ⌦. Deleting
from this set any Ci contained in another Cj , we may assume that C1, . . . , Cn

are disjoint (using that C is nested).
Since Ĉ1, . . . , Ĉn are open in |G|, the subspace X := |G|r (Ĉ1[ . . .[ Ĉn) is

closed, and hence compact, but contains no end (by the choice of C1, . . . , Cn).
As distinct vertices of G can converge only to ends in |G|, this means that X is
a finite subgraph of G. (It clearly contains every edge, including its endvertices,
of which it contains an inner point.) Since v 2 X, it is non-empty.

As �+
G(Ci) > k for i = 1, . . . , n, and the vertices of X have at least k

neighbours in G, the finite subgraph H of G spanned by X and the vertex
boundaries of C1, . . . , Cn has minimum degree at least k. (We remark that,
unlike in the proof of Theorem 2, G may have Ci–Cj edges for i 6= j, so the
vertex boundaries of the Ci need not lie in N(X). But any such edges will
put their endvertices in V +(Ci) and V +(Cj), so they will be edges of H. The
conclusion that �(H) > k, therefore, is still correct.) ⇤

Note that in the proof of Theorem 4 we did not use the full assumption
that C defines a basis of |G|, only that there exists a vertex v 2 G such that
⌦ can be covered by disjoint sets Ĉ not containing v such that C is a good
region. It would be possible, of course, to rephrase the theorem in this way.

It is also instructive to analyse our counterexample G from the proof of
Theorem 3 in view of Theorem 4. By Theorem 4, the set C of regions Cs

used in the example for the defining sequences of ends cannot be nested. And
indeed, for every horizontal path tst0s0t00 in G the regions Cs and Cs0 intersect
in the entire up-closure of t0. We could prevent this by taking as Cs only the
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up-closure of s itself, but then the vertex boundary of Cs would only consist
of s, which has only two neighbours outside this set.

We finally use Theorem 4 to strengthen Theorem 2 by dropping its con-
nectedness requirement on the complements G�Cn of regions used in defining
sequences of ends:

Corollary 5. Let G be a locally finite infinite graph with at most countably
many ends, k 2 N, and q 2 Q.

(i) If �(G) > k and �+(!) > k for every end ! of G, then G has a finite
subgraph of minimum degree > k.

(ii) If dG(S) > q for every large enough finite set S ✓ V (G), and d+(!) > q
for every end ! of G, then G has a finite subgraph of average degree > q.

Proof. Once more we prove only (i), the proof of (ii) being similar. For every
end ! of G, pick a defining sequence C0

! ) C1
! ) . . . witnessing that �+(!) > k.

Let !1,!2, . . . be a sequence in which every end of G occurs infinitely often.
For n = 1, 2, . . . let Cn be the first region in the sequence C0

!n
) C1

!n
) . . .

that has not been chosen as Ci for any i < n and satisfies Cn \Sn�1 = ; for
Sn�1 := N(C1)[ . . .[N(Cn�1). Then Cn is a component of G�Sn. For all
i < n we have Si ✓ Sn, so Cn is contained in a component of G�Si. As Ci,
too, is a component of G�Si, either Cn ✓ Ci or Cn \Ci = ;.

The C1, C2, . . ., therefore, are distinct and nested, and the sequence con-
tains infinitely many regions from each defining sequence C0

! ) C1
! ) . . . . So

C1, C2, . . . still defines a basis of |G|, and we can apply Theorem 4. ⇤

Let us conclude with an open problem which has an immediate bearing on
the applicability of Theorem 4, but which may be of interest in its own right:

Problem. Find natural conditions for a given set of regions of G defining a
basis of |G| to contain nested subset that still defines a basis.
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