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Introduction

The notion of connectivity is probably one of the most fundamental ones in graph
theory. Many variants of connectivity arose from the original graph invariant
‘connectivity’ and its aspects can be found in all areas of graph theory. This
dissertation focuses on infinite graphs, directed ones as well as undirected ones,
for which we study different aspects of connectivity. Infinite graph theory itself
has many different branches which can be analysed. Three of them are mainly
represented in this dissertation and, therefore, also form the chapters of it. Now
we mention a few words about these three branches of infinite graph theory and
how they appear in this dissertation, before we address the aspects of connectivity
which we study within these branches.

Overview about the chapters

Chapter I deals with general infinite graph theory. By this we mean that we in
general do not equip the graph with any additional structure, like a topology or an
orientation for each of its edges. Furthermore, we do not restrict the cardinality
of the studied graphs, neither directly by further assumptions nor indirectly via
assumptions on the structure of the graphs, like being connected and locally finite
implies being of countable size.

For Chapter II we work within topological infinite graph theory. Different from
general infinite graph theory we only consider locally finite connected graphs,
i.e., connected graphs where each vertex has finite degree, in this chapter. More
precisely, in topological infinite graph theory we view such a graph G also as a
1-complex and then compactify it using the Freudenthal compactification [19],
which yields the compact topological space |G| (cf. [12, Section 8.5] and [13]).
Analysing the space |G| together with G, we can gain more information about the
graph G than studying it solely, especially since we are able to consider the graph
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from another, namely topological point of view. Another benefit is that many
concepts from finite graph theory can now more easily be generalised to infinite
graphs by first interpreting them in a topological way and then studying their
analogue in |G|. A main example to mention of this topological approach, initiated
by Diestel and Kühn [17,18], is the definition of cycles via topology. Cycles of a
finite graph can be seen as homeomorphic images of the unit circle S1 Ď R2 in the
graph seen as a 1-complex. Generalising this definition slightly for any locally finite
connected graph G by asking for homeomorphic images of the unit circle S1 Ď R2

in |G|, we have obtained a definition for cycles which coincides with the usual defini-
tion for finite cycles, but does not necessarily restrict them to be finite anymore. So
we have gained a sensible notion of infinite cycles for locally finite connected graphs.

The last chapter of this dissertation, Chapter III, is dedicated to directed infinite
graphs. Apart from allowing more than one edge between the same pair of vertices,
all edges are now also equipped with one of the two possible directions. Although
in general considered in directed graph theory as well, we shall not work with edges
that have only one endvertex, which are commonly called loops. The additional
overlying directed structure on top of a multigraph allows to ask new questions
about the graphs, but often brings new difficulties with it. While in general we do
not want to restrict the cardinality of directed infinite graphs, we shall indirectly
do this in the first section of that chapter. The reason for this is that we shall
use methods from topological infinite graph theory in that section and, therefore,
restrict our analysis to directed graphs, whose underlying undirected multigraph
is locally finite and connected. Note that, as for undirected graphs, we call an
undirected multigraph locally finite if each of its vertices is incident with only
finitely many edges. Hence, the directed graphs considered in the first section of
Chapter III will be of countable cardinality. In the other section of that chapter
we shall again work with directed infinite graphs of arbitrary cardinality.

All chapters are subdivided by sections, each addressing a certain aspect of
connectivity. For this reason we begin each section with its own rather specialised
introduction. Let us now give an overview about the aspects of connectivity which
are analysed in this dissertation.
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The sections of Chapter I

One possibility to generalise the concept of connectivity of graphs is the following.
Given a vertex set A Ď V pGq of some graph G it might be that we cannot easily
separate small subsets of the vertices of A from each other inside of G, although
the graph GrAs induced by A is not highly connected. More precisely, for k P N
we want to define a vertex set A Ď V pGq of a graph G to be k-connected in G,
if A contains at least k vertices and for any two subsets A1, A2 Ď A of A of size
|A1| “ |A2| ď k there are |A1| many disjoint A1–A2 paths in G. As usual an X–Y
path in G for two vertex set X, Y Ď V pGq is a path in G that is disjoint from
X Y Y , except from its endvertices one of which lies in X while the other lies
in Y . A remarkable consequence of this definition is that for each separation of
the graph whose order ` P N is less than k P N, all but at most ` vertices of a
k-connected vertex set lie on the same side of the separation.

Let us consider some examples of k-connected vertex sets. For integers m,n P N
we define the mˆ n grid as the following graph. The vertex set of the mˆ n grid
consists of all pairs pi, jq of integers i, j satisfying 1 ď i ď m and 1 ď j ď n. We
define two of its vertices to be adjacent if their coordinates differ by precisely 1
in total. Similarly, we define the full grid, or more briefly Zˆ Z, as the graph on
all pairs of integers where the adjacency relation is defined as just before. Since
the degree of all vertices in an mˆ n grid and in the full grid is at most 4, these
graphs are at most 4-connected. However, if a graph G contains an mˆ n grid,
then a vertex set forming a row or a column of that grid is k-connected in G for
k :“ mintm,nu. Furthermore, if the full grid is contained in G, then we even ob-
tain a vertex set of countably infinite size which is k-connected in G for every k P N.

In Section A we restrict our attention to the graph Z ˆ Z and the question
which graphs contain Z ˆ Z as a minor. We answer this question with Theo-
rem A.1.4, which characterises these graphs in terms of the existence of certain
set of disjoint rays, i.e., one-way infinite paths. Furthermore, we prove a duality
theorem characterising the graphs that do not contain Zˆ Z as a minor by the
existence of a certain tree-decomposition of the graph. While similar theorems
(cf. Theorem A.1.2 due to Halin [30, Satz 41] and Theorem A.1.3 due to Robertson,
Seymour and Thomas [53, (2.6)]) were known for the half grid, also called Nˆ Z
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and analogously defined as Zˆ Z above, nothing has been known for the full grid
until Theorem A.1.4 has been proved.

Section B is dedicated to the characterisation of those graphs that contain
a k-connected vertex set of a fixed but arbitrary infinite cardinality κ, where
k P N. This is done in Theorem B.3.7. The characterisation is stated in terms
of the existence of minors of certain, so-called k-typical graphs of size κ. We
give an equivalent criterion via the existence of subdivisions of certain, so-called
generalised k-typical graphs of size κ. Furthermore, we prove that the set all of
k-typical graphs of size κ and generalised k-typical graphs of size κ is finite if
we consider a fixed number k P N and a fixed cardinality κ. Similarly as in the
main result of Section A, we also prove a duality theorem characterising graphs
without k-connected vertex set of size κ via the existence of a certain nested set of
separations of the graph each of which has order less than k.

Related results have been proved for finite graphs by Geelen and Joeris [24, 39].
For infinite graphs and k-connected vertex set of infinite cardinality κ, not much
has been known so far, especially not if κ is a singular cardinal. People rather
studied the question which substructures arise in highly connected infinite graphs.
For k P N Halin [31] proved that every k-connected graph of size κ, for some
regular cardinal κ, contains a subdivision of Kk,κ. In the case where κ “ ℵ0

Oporowski, Oxley and Thomas [49] refined this result with respect to the minor
relation and proved that every countable infinite k-connected graph either contains
Kk,ℵ0 as a minor or another one out of a finite set of graphs. (In fact they used
a slightly weaker condition as being k-connected, but we omit to state it here.)
The Kk,ℵ0 as well as the other graphs occurring in the result of Oporowski, Oxley
and Thomas [49] will also occur as the k-typical graphs of countable size in our
Theorem B.3.7.

In Section C, the last one of Chapter I, we answer a question proposed by
Georgakopoulos [25, Problem 1]. He formulated this problem when he studied
the same aspect of connectivity which is covered in all of Chapter II of this
dissertation, namely Hamiltonicity for locally finite connected graphs. Before we
focus on topological infinite graph theory and the relation between Hamiltonicity
and connectivity, let us state the main result of Section C. Although the question
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of Georgakopoulos appeared in the context of topological infinite graph theory,
the question itself is a purely graph theoretical one about infinite graphs. In order
to state the question of Georgakopoulos, we have to give some definitions first.

In a graph G we call two rays equivalent if they cannot be separated by finitely
many vertices. It is easy to check that this defines an equivalence relation on the
set of all rays of G. The equivalence classes of this relation are called the ends
of G. The elements of an end ω of G are called ω-rays. Now we call an end of G a
countable end, if it does not contain uncountably many disjoint rays. For an end ω
of G we, furthermore, say that a set of ω-rays R devours ω if every ω-ray in G
has a non-empty intersection with

Ť

R. Now we are able to state the question
proposed by Georgakopoulos:

Question 1. Let G be a graph, ω be a countable end of G and R1 be any set of
disjoint ω-rays. Does there exist a set R of ω-rays such that R devours ω and the
set of startvertices of the rays in R equals the set of startvertices of the rays in R1?

We affirmatively answer Question 1 with Theorem C.1.2. Previously, Geor-
gakopoulos [25, Lemma 10] had already proved the existence of such an ω-devouring
set R, but only in the special case where the set R1 of ω-rays is finite. Nevertheless,
this special case was a helpful ingredient in his proof [25, Thm. 3] that the square
of every locally finite 2-connected graph is Hamiltonian (cf. Theorem D.1.2), which
generalises a theorem of Fleischner [23] for finite graphs (cf. Theorem D.1.1).

The section in Chapter II

We proceed with the aspect of connectivity which is addressed by the sole section
of Chapter II, namely Section D. Let us first consider finite undirected graphs.
In general being 2-connected has an equivalent and quite illustrative reformu-
lation, which says that any pair of vertices of a graph lies on a common cycle.
However, for different pairs of vertices the cycles might also be different. Ask-
ing whether there exists one cycle in a graph which is a common witness of the
2-connectivity of the graph for all pairs of vertices at the same time, is a question
that is difficult to answer. Such a cycle contains all vertices of the graph and is
called a Hamilton cycle. Obviously, not all 2-connected graphs have a Hamilton
cycle, but those that have one are called Hamiltonian.
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Hamiltonicity of locally finite connected graphs is the connectivity related topic
that is studied in Section D. As mentioned at the beginning of this introduction,
the topological definition of cycles via homeomorphic images of the unit circles
S1 in the space |G| for a locally finite connected graph G, now allows cycles that
correspond to infinite subgraphs of G. So we are able to sensibly consider the
question whether a locally finite connected graph G is Hamiltonian. Before we
describe the content of Section D in more detail, let us briefly come back to the
initial motivation of studying Hamiltonicity. In finite graphs, a Hamilton cycle
is a witness for the 2-connectivity of the graph. At first sight it might not be
clear whether the subgraph corresponding to a Hamilton cycle in an infinite locally
finite connected graph could also suffice to prove the 2-connectivity of the graph,
although it will not be a direct witness anymore containing two disjoint paths
between any two vertices. However, this statement is true (cf. Corollary D.2.9).

The first two main results of Section D, Theorem D.1.5 and Theorem D.1.8,
are extensions to locally finite connected graphs of theorems stating sufficient
conditions for the Hamiltonicity of finite graphs. Instead of giving a precise
formulation of them at this point, we refer to the introduction of Section D.

Let us mention the last result of Section D in more detail. Note that a Hamilton
cycle in a finite graph might not be unique, if it exists at all. For locally finite
connected graphs this remains the same. So the property of a graph to be
uniquely Hamiltonian, i.e., there exists a unique Hamilton cycle for the graph,
is very restrictive. For finite graphs, Sheehan [56] conjectured that no r-regular
graph exists that is uniquely Hamiltonian, if r ą 2 (cf. Conjecture D.1.10).
Obviously, a cycle is a 2-regular graph that is uniquely Hamiltonian, justifying the
condition r ą 2. This conjecture is still open for finite graphs, but several partial
results have been obtained [34,61,64].

Mohar [47] has asked an analogue question for infinite graphs (cf. Question D.1.11)
and we answer it with Theorem D.1.12, which constructs a uniquely Hamiltonian
cubic connected graph each of whose ends has an additional property as occurring
in Mohar’s question.
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The sections of Chapter III

Although Chapter III is about directed graphs, which we briefly call digraphs from
now on, the research in Section E has its beginning in undirected finite graph
theory, namely with spanning trees and its connection to edge-connectivity. Span-
ning trees exist precisely when the corresponding multigraph is (edge-)connected.
Furthermore, they have the remarkable property of being edge-minimal under
the condition of meeting every non-empty cut of a connected multigraph. The
existence of several, edge-disjoint spanning trees is characterised by the following
famous result independently proved by Nash-Williams and Tutte.

Theorem 2. [48, 67], [12, Thm. 2.4.1] A finite multigraph G has k P N edge-
disjoint spanning trees if and only if for every partition P of V pGq there are at
least kp|P | ´ 1q edges in G whose endvertices lie in different partition classes.

This theorem has a qualitative corollary saying that every finite 2k-edge-connected
multigraph has k edge-disjoint spanning trees where k P N. So high edge-
connectivity of a finite multigraph guarantees the existence of many edge-disjoint
spanning trees.

In Section E we consider an analogue of Theorem 2 for finite digraphs, namely
Edmond’s Branching Theorem (cf. Theorem E.1.2). For a finite digraph D with
a vertex r P V pDq we call a digraph obtained by taking an undirected spanning
tree of the underlying undirected multigraph of D and then directing all its edges
away from r a spanning arborescence rooted in r of D. Let us now state Edmond’s
Branching Theorem.

Theorem 3. [21], [3, Thm. 9.5.1] A finite digraph G with a vertex r P V pGq has
k P N edge-disjoint spanning arborescences rooted in r if and only if there are k
edges from X to Y for every bipartition pX, Y q of V pGq with r P X.

So Edmond’s Branching Theorem characterises, similarly as Theorem 2 for finite
undirected multigraphs, which finite digraphs admit the existence of k edge-disjoint
spanning arborescences with a common root where k P N.

We generalise this theorem to digraphs whose underlying undirected multigraph
is locally finite and connected. We need this restriction on the structure of the
digraph because we use methods from topological infinite graph theory similarly as
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in Chapter II. For our corresponding theorem we introduce the notion of pseudo-
arborescences, which is a generalisation of ordinary arborescences in finite digraphs
to infinite digraphs whose underlying undirected multigraph is locally finite and
connected. The corresponding main result, Theorem E.4.3, characterises those
digraphs that admit the existence of k edge-disjoint spanning pseudo-arborescences
with a common root where k P N. Furthermore, we study the structure of spanning
pseudo-arborescences, especially in which way they behave like trees and in which
way they do not.

Section F is dedicated to an aspect of connectivity exclusively studied in digraphs,
namely strong connectivity. In this section we again consider digraphs of arbitrary
cardinality. Before we continue let us quickly state the definition of a digraph
being strongly connected.

We call a digraph D strongly connected if for any two vertices v, w P V pDq there
exist both in D, a directed path from v to w and a directed path from w to v.
By name related we call a digraph weakly connected if its underlying undirected
multigraph is connected.

An obvious obstruction for a digraph D to be strongly connected would be a cut
of D where all edges of the cut have their head in a common side of that cut and
their tail on the other. We call such a cut a directed cut of D, or briefly a dicut
of D. It is easy to check that dicuts are in fact the only obstruction preventing a
digraph from being strongly connected. So if we want to turn any weakly connected
digraph D into a strongly connected one, we could achieve this by contracting an
edge from every non-empty dicut of D. We call a set of edges of D which meets
every non-empty dicut of D a dijoin of D. Now the minimum size of a dijoin of a
digraph D measures how ‘close’ D is to being strongly connected. The following
theorem of Lucchesi and Younger states an important fact about this parameter.

Theorem 4. [46, Thm.] In every weakly connected finite digraph, the maximum
number of disjoint dicuts equals the minimum size of a dijoin.

With Theorem 4 in mind we shall study the relation between dijoins and dicuts
of infinite digraphs in Section F. First of all we give an example that a direct
extension to infinite digraphs of this theorem fails if we consider infinite dicuts as
well. So we restrict our attention to finite dicuts and call an edge set of a digraph D
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a finitary dijoin of D if it meets every finite dicut of D. Building up on this we state
a conjecture (cf. Conjecture F.1.5) which, if verified, extends Theorem 4 to infinite
digraphs in a way as the theorem of Menger for finite graphs (cf. Theorem F.1.1)
has been extended to infinite graphs by Aharoni and Berger [1].
One of our main results in Section F is a reduction of Conjecture F.1.5 to

countable digraphs, meaning that it is sufficient to verify Conjecture F.1.5 just
for countable digraphs. Let us remark here that the proof of the infinite version
of Menger’s theorem is highly complicated, especially for graphs of uncountable
cardinality. This might be an indication that extending Theorem 4 to infinite
digraphs could be easier than the proof of the extension of Menger’s theorem to
infinite graphs. The other main results are verifications of Conjecture F.1.5 for
several classes of digraphs.
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Chapter I.

General infinite graph theory
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A. Excluding a full grid minor

A.1. Introduction

In extremal graph theory it is common to analyse the structure of graphs which
do not contain a certain minor or subdivision of some graph. This goes hand in
hand with the search for conditions in terms of graph invariants, such as degree
conditions, that force the existence of certain minors or subdivisions. Extending
the scope of extremal questions to include infinite graphs, it is helpful to consider
new graph invariants, which may not be defined for finite graphs, in order to gain
more information about the structure of infinite graphs. For an overview of results
in the field of extremal infinite graph theory see the surveys of Diestel [13] and of
Stein [57].
One example for such a new invariant is the degree of an end of a graph. The

ends of a graph are the equivalence classes of the rays, i.e., one-way infinite paths,
where we say that two rays are equivalent if an only if they cannot be separated
by finitely many vertices in the graph. Now the degree of an end is defined as
the maximum number of disjoint rays in this end (including ‘infinitely many’).
The foundation of this definition, namely, that the end degree is well-defined, is
provided by the following theorem of Halin.

Theorem A.1.1. [30, Satz 1] If a graph contains n pairwise disjoint rays for every
n P N, then it contains infinitely many pairwise disjoint rays.

Furthermore, although without stating the term ‘end degree’ explicitly, Halin used
the following theorem to show that an end of infinite degree forces the existence of
an Nˆ N grid minor. In fact he actually proved that it forces a subdivision of the
graph H8 shown in Figure A.1. Then the statement about the Nˆ N grid minor
follows, since the graph H8 contains the N ˆ N grid as a minor. Note that the
question of whether a graph contains an N ˆ Z grid minor is not more difficult
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than asking for an Nˆ N grid minor since the Nˆ N grid contains a subdivision
of the Nˆ Z grid.

Theorem A.1.2. [30, Satz 41] Whenever a graph contains infinitely many pairwise
disjoint and equivalent rays, it contains a subdivision of H8.

Beside Halin’s proof of Theorem A.1.2, there is now also a shorter proof of this
theorem by Diestel (see [14] or [12, Thm. 8.2.6]). Note that the converse of this
implication is obviously true as well. So Theorem A.1.2 gives a characterisation
of graphs without a subdivision of H8 and therefore also of graphs without an
Nˆ Z grid minor.

Robertson, Seymour and Thomas characterized the structure of graphs without
Nˆ Z grid minors as those that have tree-decompositions into finite parts and with
finite adhesion. A tree-decomposition into finite parts has finite adhesion if along
each ray of the tree the sizes of the adhesion sets corresponding to its edges are
infinitely often less than some fixed finite number. Given such a tree-decomposition,
an Nˆ Z grid minor cannot be contained in a part because all of these are finite.
The only other possibility where such a grid minor could lie in a graph would be in
the union of the parts along a ray of the tree of the tree-decomposition. However,
the finite adhesion prevents this possibility.

Theorem A.1.3. [53, (2.6)] A graph has no N ˆ Z grid minor if and only if it
has a tree-decomposition into finite parts and with finite adhesion.

While all the above theorems give characterisations for when graphs do or do not
contain an Nˆ Z grid minor, it was not clear whether a similar characterisation
exists for Z ˆ Z grids. The main theorem of Section A, Theorem A.1.4, and
Corollary A.1.5 give characterisations for a Zˆ Z grid minor in the same spirit as
the results above do for an Nˆ Z grid minor. The key idea is to consider not just
sets of disjoint equivalent rays but bundles, which are sets of disjoint equivalent
rays having the additional property that there are infinitely many disjoint cycles
that intersect with each ray of the bundle, but only in a path. Graphically, the
cycles of a bundle can be viewed as concentric cycles around the common end in
which the rays of the bundle lie. It is not difficult to see that graphs with a Zˆ Z
grid minor contain arbitrarily large bundles. But it turns out that the converse
is also true, and so containing arbitrarily large bundles is not only necessary for
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the existence of a Z ˆ Z grid minor, but also sufficient. Now let us state the
main theorem and its corollary precisely. See Section A.2 for the definitions of the
involved terms.

Theorem A.1.4. For a graph G the following are equivalent:

(i) There is an end ω of G and n-bundles Bn for every n P N with Bn Ď ω.

(ii) There is an 8-bundle in G.

(iii) There is a consistent 8-bundle in G.

(iv) G contains a subdivision of the Dartboard.

(v) G contains a Zˆ Z grid as a minor.

(vi) G contains a set R of infinitely many equivalent disjoint rays such that for
every R P R all rays in RztRu are still equivalent in G´R.

Corollary A.1.5. A graph has no Z ˆ Z grid minor if and only if it has a
bundle-narrow tree-decomposition into finite parts distinguishing all ends.

The rest of Section A is organized as follows. In Section A.2 we state the
definitions and notation that we need in all of Section A. Furthermore, we collect
known results which we shall use in the proof of the main theorem and its corollary.
The proofs of Theorem A.1.4 and of Corollary A.1.5 are the content of Section A.3.

A.2. Preliminaries

In this section, we list important definitions, notation and already known results
needed for the rest of Section A. In general, we will use the graph theoretical
notation of [12] in Section A. For basic facts about graph theory, especially for
infinite graphs, the reader is referred to [12] as well.
All graphs we consider in Section A are undirected and simple. Furthermore,

we do not assume a graph to be finite unless we state this explicitly.
For n ě 3 we write Cn for the cycle with n vertices and for m, k P N we denote

by Km,k the complete bipartite graph with m vertices in one class and k in the
other.
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We define the NˆN grid as the graph whose vertex set is NˆN and two vertices
are adjacent if and only if they differ in only one component by precisely 1. The
Z ˆ Z grid and the N ˆ Z grid are defined in the same way but with vertex set
Zˆ Z or Nˆ Z, respectively, instead of Nˆ N.

The graph H8 (see Fig. A.1) is the graph obtained in the following way: First
take the Nˆ N grid and delete the vertex p0, 0q together with all vertices pn,mq
with n ą m. Furthermore, delete all edges pn,mqpn` 1,mq when n and m have
equal parity.

Now let us make some remarks on the graph H8. It follows from the definition
of H8 that it is a subgraph of the Nˆ N grid. However, H8 is still rich enough
to contain the N ˆ N grid as a minor. This fact is not so hard to prove and we
omit a proof of it. Furthermore, every vertex in H8 has either degree 2 or 3. So
having H8 as a minor in a graph is equivalent to containing a subdivision of it.
So we can conclude that a graph has the Nˆ N grid as a minor if and only if it
contains a subdivision of H8.

H∞

Figure A.1.: The graph H8.

A one-way infinite path in a graph G is called a ray of G. An equivalence relation
can be defined on the set of all rays of G by saying that two rays in G are equivalent
if they cannot be separated by finitely many vertices. It is straightforward to
check that this relation really defines an equivalence relation. The corresponding
equivalence classes of rays with respect to this relation are called the ends of G.

A ray which is contained in an end ω of the graph is called an ω-ray. The vertex
of degree 1 in a ray is called the startvertex of the ray. A subgraph of a ray R
which is itself a ray is called a tail of R.

For n P N a set of n disjoint rays is called an n-bundle if there are infinitely
many disjoint cycles each of which intersects with each ray, but only in a path. For
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every n-bundle, the cycles which witness that the n disjoint rays are an n-bundle
can be chosen in such a way that they all run through the rays in the same cyclic
order. We call such a set of cycles the embracing cycles of the n-bundle. Note
that the definition of an n-bundle implies that an n-bundle is always a subset
of one end. For the rest of Section A, we will implicitly assume by stating that
R1, . . . , Rn are the rays of an n-bundle that the embracing cycles traverse them in
order R1, . . . , Rn´1, Rn.
An infinite set of disjoint rays tR1, R2, . . .u is called an 8-bundle if there are

disjoint cycles Ci and natural numbers ci for every i P N such that for all i, j P N
with i ă j we have ci ă cj and Ci intersects with each R` for ` ď ci, but only in a
path. Furthermore, we call an 8-bundle consistent if for all i, j P N with i ă j the
cycles Ci and Cj run through the rays R1, . . . , Rci in the same cyclic order. As for
n-bundles we call the cycles Ci embracing cycles. Also note that the rays of an
8-bundle are in the same end.

Now consider an n-bundle with rays R1, . . . , Rn and a k-bundle whose rays are
R11, . . . , R

1
k where n ď k. We say that the n-bundle can be joined to the k-bundle

if there are vertices ri P V pRiq for every i P t1, . . . , nu and r1j P V pR
1
jq for every

j P t1, . . . , ku together with n pairwise disjoint ri–r1σpiq paths, for some injection
σ : t1, . . . , nu ÝÑ t1, . . . , ku, each of which intersects

Ť

iRiri Y
Ť

j r
1
jR

1
j only in its

endvertices. The involved paths are called joining paths.
Finally, we call an n-bundle infinitely joined to a k-bundle if for every finite

vertex set S of the graph the n-bundle can be joined to the k-bundle such that
the joining paths do not intersect with S.

In order to define an archetypal example of a graph containing an 8-bundle, we
have to construct a sequence pGiqiPN of graphs first. For this we need, furthermore,
the function f : N ÝÑ N which is defined as follows:

fpiq “

$

&

%

4, if i “ 1

2i ¨ 3, if i ě 2.

Now we state the recursive definition of the graphs Gi. Let G1 be a C4. Next
suppose Gi has already been defined. The construction yields that there is a unique
cycle Di in Gi which is isomorphic to Cfpiq and contains all vertices that have degree
2 in Gi, of which there are gpiq “ 1

3 ¨ fpi` 1q many. Enumerate these vertices
according to the cyclic order in which they appear on Di. Now we obtain Gi`1
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by taking Gi together with a disjoint copy of Cgpiq whose vertices we enumerate
according to the cyclic order of this cycle too, adding an edge between the j-th
vertex of Di and the j-th of Cgpiq for each j and subdividing each edge of Cgpiq
twice. Finally, we define the Dartboard (see Fig. A.2) as

Ť

iGi.

Figure A.2.: The Dartboard.

We continue with some remarks about normal spanning trees and tree-decom-
positions. Let T be a tree with root r and let t P V pT q. Then we write ttu for the
up-closure of t with respect to the tree-order of T with root r. Similarly, we write
rts for the down-closure of t.

A rooted spanning tree of a graph is normal if the endvertices of every edge in
the graph are comparable in the tree-order.
The following theorem of Halin gives a very useful sufficient condition for the

existence of a normal spanning tree.

Theorem A.2.1. [31, Thm. 10.1] Every connected graph which does not contain
a subdivision of a Kℵ0 has a normal spanning tree.

Next let us recall the definition of a tree-decomposition. Let G be a graph, T
be a tree and pVtqtPV pT q be a sequence of vertex sets of G. We call pT, pVtqtPV pT qq a
tree-decomposition of G if the following three properties hold:

1. V pGq “
Ť

tPV pT q Vt.

2. For each edge vw of G there is a t P V pT q such that v, w P Vt.

3. For all t1, t2, t3 P V pT q such that t2 lies on the unique t1–t3 path in T the
inclusion Vt1 X Vt3 Ď Vt2 is true.
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We call a tree-decomposition pT, pVtqtPV pT qq rooted if the corresponding tree T is
rooted. For a rooted tree-decomposition pT, pVtqtPV pT qq whose tree T has root r,
we write pT, r, pVtqtPV pT qq.

A graph has a tree-decomposition into finite parts if there is a tree-decomposition
pT, pVtqtPV pT qq of the graph with Vt finite for every t P V pT q.
We say that a tree-decomposition pT, pVtqtPV pT qq of a graph G into finite parts

distinguishes all ends of G if for every ray t1t2 . . . of T all rays of G that intersect
all but finitely many Vti are equivalent. Since all parts of such a tree-decomposition
are finite, there is an injection from the set of ends of G to the set of ends of T .
An easy observation shows that we always get a tree-decomposition into finite

parts distinguishing all ends as soon as we have a normal spanning tree.

Lemma A.2.2. Every graph with a normal spanning tree has a tree-decomposition
into finite parts distinguishing all ends.

Proof. Let T be a normal spanning tree of a graph G with root r. Then we define
the desired tree-decomposition as pT, r, prtsqtPV pT qq. Let us briefly check that this
really defines a tree-decomposition. It is obvious that each vertex v lies in some
part, for example in rvs. Since T is normal, we know that the endvertices of
every edge are comparable and must therefore lie in some common part. Note for
the remaining property that for all t1, t3 P V pT q we have rt1s X rt3s “ rts where
t is the greatest vertex in the tree-order which is still comparable with t1 and
t3. Since every vertex t2 on the t1–t3 path in T is greater than t, we get that
rt1sX rt3s “ rts Ď rt2s.

The definition of pT, r, prtsqtPV pT qq ensures that every part is finite. So it remains
to check that this tree-decomposition distinguishes all ends. Let us fix a ray
r “ t1t2 . . . of T and suppose there are two rays in G which intersect with all
but finitely many parts rtis. Since

Ť

iďkrtisz
Ť

iďjrtis always induces a connected
subgraph for k ą j, we get that the two rays cannot be separated by finitely many
vertices, which means they are equivalent.

A tree-decomposition pT, pVtqtPV pT qq has finite adhesion if for every t P V pT q
there is an integer n ě 0 such that |Vs X Vt| ď n for every s being adjacent with
t in T and additionally for every ray t1t2 . . . of T there is an integer k such that
|Vti X Vti`1 | ď k holds for infinitely many i P N.
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By Theorem A.1.3 a tree-decomposition of a graph G into finite parts and with
finite adhesion is a witness that G does not contain an Nˆ Z grid minor. Beside
the requirement that each part shall be too small to contain a grid minor, which
is done by requiring all parts to be finite, the possibility to distribute a grid minor
along a branch in the tree-decomposition is prevented by making all branches too
narrow for arbitrarily many rays to run through them. The latter goal is achieved
by requiring the tree-decomposition to have finite adhesion.
setting the adhesion parameter of the tree-decomposition to be finite.
Similar to the definition before we now introduce a property that prevents from

distributing a Z ˆ Z grid minor along a whole branch in a tree-decomposition.
Unfortunately, verifying this property needs a closer look at the graph and the
bundles in it, in contrast to the more abstract property of finite adhesion, which
involves only the tree and parts of the decomposition.
A tree-decomposition pT, pVtqtPV pT qq is called bundle-narrow if for every ray

t1t2 . . . of T there is an integer k ě 1 such that there is no k-bundle in G whose
rays intersect all but finitely many Vti .
We close this section with a well-known result about 2-connected graphs. We

will need this lemma in the proof of Theorem A.1.4.

Lemma A.2.3. [12, Prop. 9.4.2] For every positive integer k, there exists an
integer n such that every 2-connected graph on at least n vertices contains a
subgraph isomorphic to a subdivision of either K2,k or a cycle of length k.

A.3. Proof of the main theorem

Before we can prove Theorem A.1.4 we have to make some observations about
bundles. We start with the following lemma which tells us in our context of bundles
that we can join a bundle to another one which is sufficiently large as soon as both
are subsets of the same end.

Lemma A.3.1. Let G be a graph, ω be an end of G and k ě n ě 1 be integers.
Furthermore, let R “ tR1, . . . , Rnu and R1 “ tR11, . . . , R1ku be sets of n and k

pairwise disjoint ω-rays, respectively. Then there are vertices r1i P V pR1iq for each
i with 1 ď i ď k such that there are n pairwise disjoint paths between the start
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vertices of the rays in R and the vertices r11, . . . , r1k each of which intersects
Ť

i r
1
iR
1
i

at most in r1i.

Proof. We want to work within a finite subgraph H of G in which we find the
desired paths. To define H we take a set P of kn2 pairwise disjoint paths such
that for every i P t1, . . . , nu and every j P t1, . . . , ku there are n disjoint Ri–R1j
paths in P. This is possible since all rays lie in the same end. For all i, j with
1 ď i ď n and 1 ď j ď k let ri be the last vertex on Ri which is an endvertex of
one of the kn many Ri–R1j paths from P and r1j be the last vertex on the ray R1j
which is hit by any path from P or any Riri. Next we define H as follows:

H :“ G
”

n
ď

i“1
V pRiriq Y V

´

ď

P
¯

Y

k
ď

j“1
V pR1jr

1
jq

ı

.

We complete the proof of this lemma by showing that there are n disjoint paths
from the start vertices of the rays in R to n vertices of the set tr11, . . . , r1ku in the
graph H. By Menger’s Theorem it is sufficient to prove that there is no set S of
less than n vertices which separates the start vertices of the rays in R from the
vertices r11, . . . , r1k in H. Suppose for a contradiction that such a set S exists in H.
Since S contains less than n vertices and the paths Riri are pairwise disjoint, we
can find an index ` such that R`r` does not contain any vertex of S. The same is
true for the paths R1ir1i with some index p. Furthermore, we can find an R`–R1p
path P`p P P that is disjoint from S because P contains n many R`–R1p paths.
Now we have a contradiction because the union of the paths R`r`, P`p and R1pr1p
contains a path from the startvertex of the ray R` to r1p that avoids S.

By iterating Lemma A.3.1 and using the fact that there are only finitely many
injections which correspond to path systems of joining paths from an n-bundle to
a k-bundle for k ě n, we obtain the following corollary.

Corollary A.3.2. Let G be a graph and ω be an end of G. Then an n-bundle Bn

is infinitely joined to a k-bundle Bk if k ě n and Bn, Bk Ď ω.

Proof. First we apply Lemma A.3.1 to the rays of Bn, say tR1, . . . , Rnu, and Bk,
say tR11, . . . , R1ku. Let P1 be the resulting path system. Next we delete the finite
subgraph H of G defined as in the proof of Lemma A.3.1 from G. By the definition
of bundles, the tails of Bn and Bk in G´H are still bundles and all of these tails
are still equivalent. Next we apply Lemma A.3.1 to these tails and obtain a path

19



system P2. By iterating this argument, we get path systems Pi for i P N such
that P XQ “ H for every P,Q P

Ť

iPNPi with P ‰ Q and each path system Pi
connects the n rays of Bn with n distinct rays of Bk. Since there is only a finite
bounded number of possibilities on which rays the start- and endvertices of the
paths of some path system Pi can be, we obtain by the pigeonhole principle that
there is an infinite subset tP 1j ; j P Nu Ď tPi ; i P Nu of path systems and an
injection σ : t1, . . . , nu ÝÑ t1, . . . , ku such that each path system P 1j contains a
path from Ri to R1σpiq for all i P t1, . . . , nu. So the set tP 1j ; j P Nu of disjoint path
systems witnesses that Bn is infinitely joined to Bk.

For n-bundles it follows from the pigeonhole principle that we can always find an
infinite subset of the embracing cycles whose elements induce the same cyclic order
on the rays of the n-bundle. So without loss of generality we could assume that
the embracing cycles of an n-bundle run through the rays of the bundle always in
the same cyclic order. We can do a similar thing for 8-bundles, but it involves
an application of the compactness principle rather than the pigeonhole principle.
So before we make the corresponding statement about 8-bundles precise, let us
state a version of the compactness principle we will make use of, namely König’s
Lemma:

Lemma A.3.3. [12, Lemma 8.1.2] Let V0, V1, . . . be an infinite sequence of disjoint
non-empty finite sets, and let G be a graph on their union. Assume that every
vertex in a set Vn with n ě 1 has a neighbour in Vn´1. Then G contains a ray
v0v1 . . . with vn P Vn for all n.

Now the next lemma tells us that we always obtain a consistent 8-bundle from
an 8-bundle.

Lemma A.3.4. The rays of an 8-bundle B8 form also a consistent 8-bundle
witnessed by an infinite subset of the embracing cycles of B8.

Proof. Let B8 “ tR1, R2, . . .u be an 8-bundle of a graph and let tCi ; i P Nu be
the set of its embracing cycles. Furthermore, let the natural numbers ci be given
as in the definition of an 8-bundle. Now we define an auxiliary graph G to apply
König’s Lemma. For every n ě 1 let Vn Ď V pGq be the set of all cyclic orders of
how an embracing cycle Cj runs through the set of rays tR1, . . . , Rcnu for j ě n.
So each set Vn is finite and non-empty. Furthermore, let there be an edge in G
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between vertices vn P Vn and vn`1 P Vn`1 if the cyclic order vn`1 restricted to the
set tR1, . . . , Rcnu is equal to vn. With these definitions all requirements for König’s
Lemma (Lemma A.3.3) are fulfilled. So G contains a ray v1v2 . . . with vn P Vn for
every n ě 1. This allows us to take cycles Ckn such that Ckn induces vn on the
rays tR1, . . . , Rcnu for every n ě 1 where kn ą kn1 holds for n ą n1. These cycles
witness that B8 is a consistent 8-bundle.

Now we are prepared to prove Theorem A.1.4.

Proof of Theorem A.1.4. Using Lemma A.3.4 we get that the implication from (ii)
to (iii) is true.
Showing that (iv) follows from (iii) is not difficult. We sketch the proof of this

implication. Construct subdivisions of the defining subgraphs Gi of the Dartboard
inductively. Start with an embracing cycle of the consistent 8-bundle that runs
through fp1q “ 4 rays of the 8-bundle as G1. Now suppose we have already
constructed a subdivision Hn of Gn and there are fpnq tails T1, T2, . . . , Tfpnq of
rays of the 8-bundle that intersect with Hn only in their startvertices. Pick fpnq
many embracing cycles C 11, C 12, . . . , C 1fpnq of the 8-bundle that are disjoint from
Hn, each traversing the tails T1, T2, . . . Tfpnq, and another embracing cycle C which
is disjoint from Hn, comes later in the enumeration of all embracing cycles than
the ones we have picked so far and traverses at least fpn ` 1q many rays of the
8-bundle including the fpnq tails Ti. Since the 8-bundle is consistent, we can use
the cycles C,C 11, . . . , C 1fpnq and the tails Ti to find a subdivision of Hn`1 together
with fpn` 1q many tails of rays of the 8-bundle that intersect with Hn`1 only in
their startvertices. In this step we possibly have to reroute some of the tails Ti
using the cycles C 1i in order to get compatible paths from Hn to C Ď Hn`1. Using
this construction the union

Ť

nHn gives us a subdivision of the Dartboard.
The implications from (iv) to (v) and from (v) to (vi) are easy and so we omit

the details.
Now we look at the implication from (i) to (ii). Let ω be an end of a graph

G such that there are n-bundles Bn “ tRn
1 , . . . , R

n
nu Ď ω for every n P N. We

construct an 8-bundle inductively. In step i we shall have a graph Hi which
satisfies the following properties:

1. Hi is the union of disjoint cycles C1, . . . , Ci and disjoint paths P i
1, . . . , P

i
i .
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2. The intersection of P i
j with Ck is a path for all j, k with j ď k ď i.

3. P i
j X Ck “ H holds for all j, k with k ă j ď i.

4. Each path P i
j runs through the cycles Cj, . . . , Ci in the order of their enu-

meration.

5. Hi XHi´1 “ Hi´1 for 1 ă i.

6. P i´1
j is an initial segment of P i

j for every j ď i with 1 ă i.

7. In G there exist tails of rays of some n-bundle Bn such that every endvertex
of a path P i

j in Hi ´Hi´1 with j ď i is a startvertex of one of these tails but
apart from that the tails are disjoint from Hi.

For H1 we take an embracing cycle of B1 as C1 and set H1 “ C1. We define P 1
1

to be the trivial path which is the last vertex v of R1
1 on C1. So (1), (3), (4), (5)

and (6) are obviously satisfied. Property (2) holds by the definition of embracing
cycle. For (7) we can take the tail vR1

1 of R1
1.

Now suppose we have already defined Hi which satisfies the seven stated prop-
erties. Let Bn be the n-bundle which we get from property (7) for step i. By
Corollary A.3.2 we get that Bn is infinitely joined to any k-bundle Bk if k ě n.
Let us fix an integer k with k ą n ě i. Since Hi is a finite graph, we can find
joining paths Q1, . . . , Qn from Bn to Bk which meet Hi only in the endvertices of
the paths P i

j . Now fix an embracing cycle C of Bk that is disjoint from Hi such
that the tails of the rays of Bk starting from C are disjoint from Hi as well as from
the joining paths Qj. We set Ci`1 “ C. Furthermore, we define P i`1

j for j ď i to
be the concatenation of P i

j with the joining path Qj1 which it intersects and with
the path QC

j1 where QC
j1 is the path which starts at the endvertex of Qj1 which lies

on a ray of Bk and follows that ray up to the last vertex that is in the intersection
of this ray with Ci`1. Since k ą i holds, there is a ray R˚ in Bk whose tail with
startvertex in Ci`1 does not intersect with any of the paths P i`1

j . Now we set P i`1
i`1

to be the trivial path consisting of the last vertex on R˚ which lies also on Ci`1.
Finally, we set Hi`1 to be the union of Hi with all paths P i`1

j . It remains to check
that the definitions we made for step i ` 1 ensure that the properties (1) to (7)
are also true for Hi`1. Property (1), (5) and (6) are obviously true by definition.
Since (5) and (6) hold and the paths Qj and QC

j are chosen to be disjoint from Hi
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except for one starting vertex of each Qj, we need to check property (2) just for
the paths P i`1

j and the cycle Ci`1. Note that the intersection of a path P i`1
j with

the cycle Ci`1 is equal to the intersection of one of the rays of Bk with Ci`1. So
this intersection is just a path because Ci`1 is an embracing cycle of Bk. Property
(3) and (4) are valid because of property (2) and since P i`1

j ´ P i
j is disjoint from

Hi. The bundle Bk together with suitable tails of its rays starting in Ci`1 we chose
in the construction for step i` 1 witnesses that property (7) holds.
Using the sequence of graphs pHiqiPN, we are able to define an 8-bundle B8.

We set R8j “
Ť

iPN P
i
j for every j P N and then B8 “ tR8j ; j P Nu. Property (6)

ensures that each R8j is a ray and the disjoint cycles Ci together with property
(2) ensure that B8 is indeed an 8-bundle. This completes the proof that (i)
implies (ii).

It remains to prove the implication from (vi) to (i). Let ω be the end of G which
contains R as a subset. Next let us fix an arbitrary k P N and show that there is
a k-bundle in the graph G all whose rays are elements of ω. For this purpose we
choose n disjoint rays R1, . . . , Rn from the set R where n is as big as the integer n
from Lemma A.2.3 with our fixed k as input. Next we define an auxiliary graph H
to which we shall apply that lemma. First set V pHq “ tR1, . . . , Rnu. Furthermore,
we say that there is an edge RiRj if and only if there exist infinitely many disjoint
Ri–Rj paths in G which are disjoint from all rays in tR1, . . . , RnuztRi, Rju. In
order to apply Lemma A.2.3 to H, we need to check that H is 2-connected. Suppose
for a contradiction that there exists a ray R` such that H ´R` is not connected.
So we can find a bipartition pA,Bq of V pHqztR`u which yields an empty cut of
H. Now let us fix a ray R P A and R1 P B. We know by assumption that R and
R1 are equivalent in G´R`. This implies that there are infinitely many disjoint
R–R1 paths in G ´ R`. Using the pigeonhole principle and the fact that A and
B contain less than n rays, infinitely many of these paths have a common last
ray of A and a common first ray in B which they intersect, but this tells us that
there exists an A–B edge in H ´R`. So we have a contradiction and can conclude
that H is 2-connected. Now we apply Lemma A.2.3 to H. If the lemma tells
us that H contains a subdivided cycle of length at least k, then we immediately
also get a k-bundle in G all whose rays are elements of ω. So suppose there is a
subdivision of K2,k in H. Without loss of generality let R˚1 , R˚2 and R1, . . . , Rk

be branch vertices of the subdivided K2,k in H such that there are disjoint paths
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from R˚1 and R˚2 to Ri for every i with 1 ď i ď k in H. Now we use the rays
R˚1 and R˚2 as distributing rays in G to build infinitely many disjoint cycles that
witness tR1, . . . , Rku being a k-bundle. The cycles can be built all in the same
way: First pick a R1–R˚2 path P ˚1 which is disjoint from R˚1 and from each ray Ri

for 1 ď i ď k and i ‰ 1. Now start at the endvertex of P ˚1 on R1 and follow that
ray until there is a R1–R˚1 path P1 which is disjoint from R˚2 , P ˚1 and from each
ray Ri for 1 ď i ď k and i ‰ 1. Then follow P1 and R˚1 afterwards until there is a
R˚1–R2 path which is disjoint from R˚2 , P ˚1 , P1 and from each ray Ri for 1 ď i ď k

and i ‰ 2. Repeating this pattern we get a R˚2–Rk path Q which meets every
ray Ri for 1 ď i ď k only in a path. Then we can close Q to obtain a cycle by
following Rk from the endvertex of Q on Rk until there is a Rk–R˚2 path P ˚2 that is
disjoint from R˚1 , from each ray Ri for 1 ď i ď k and i ‰ k and from each path we
have used so far, then following P ˚2 and finally using the P ˚2 –P ˚1 path on R˚2 . By
deleting large enough initial segments from all rays, we can repeat the construction
of such cycles infinitely often and obtain the desired sequence of disjoint cycles
witnessing that tR1, . . . , Rku Ď ω is a k-bundle.

Using Theorem A.1.4 we prove now Corollary A.1.5, which describes the structure
of graphs without ZˆZ grid minor in terms of bundle-narrow tree-decompositions.

Proof of Corollary A.1.5. Let G be a graph and let us assume that it does not
contain a Zˆ Z grid minor. So G cannot contain a subdivision of Kℵ0 either and
we can apply Theorem A.2.1 telling us that G has a normal spanning tree. Using
Lemma A.2.2 we obtain a tree-decomposition of G into finite parts distinguishing
all ends. Now we know that for every ray t1t2 . . . of T all rays of G that intersect
all but finitely many of the parts Vti are equivalent in G. Using the equivalence
of (i) and (v) in Theorem A.1.4, we can furthermore find for each end of G the
least integer k ě 1 such that no k-bundle exists in this end. Combining these two
observations, we can find for every ray t1t2 . . . of T the least integer k ě 1 such
that there is no k-bundle in G whose rays intersect with all but finitely many of
the parts Vti . So our tree-decomposition of G into finite parts which distinguishes
all ends is already bundle-narrow.

For the other direction let us assume that a graph graph G has a ZˆZ grid minor
and suppose for a contradiction that it also has a bundle-narrow tree-decomposition
pT, pVtqtPV pT qq into finite parts. Using that all parts Vt are finite, we can look at
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the last time a ray R of G leaves a part Vt. In this way R induces a ray t1t2 . . .
of T such that R intersects each part Vti . Note that equivalent rays in G induce
rays in T which have a common tail, because they cannot be separated by finitely
many vertices in G. By the equivalence of (i) and (v) in Theorem A.1.4, there
exists an end of G which contains n-bundles for every n P N. We know that the
rays of all these bundles induce rays of T that lie in the same end of T . Now
any ray of T that belongs to this end of T contradicts our assumption that the
tree-decomposition is bundle-narrow.
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B. k-connected sets in infinite graphs: a
characterisation by an analogue of
the Star-Comb Lemma for higher
connectivity

B.1. Introduction

It is a well-known and easy-to-prove fact that each connected finite graph contains
a long path or a vertex of high degree. More precisely, for every m P N there is
an n P N such that each connected graph with at least n vertices (or better say a
graph with a component of size at least n) either contains a path Pm of length m
or a star K1,m with m leaves (i.e. a complete bipartite graph with one vertex on
one side and m vertices on the other side) as a subgraph (cf. [12, Prop. 9.4.1]). In a
way, the existence of these ‘unavoidable’ subgraphs characterise graphs with large
components, although not with a sharp equivalence: For the other direction, if a
graph contains Pm or K1,m as a subgraph, then it obviously contains a component
of size at least m` 1.

For 2-connected graphs there is an analogous result, which also is folklore: For
every m P N there is an n P N such that each 2-connected finite graph with at
least n vertices either contains a subdivision of a cycle Cm of length m or a
subdivision of a complete bipartite graph K2,m (cf. [12, Prop. 9.4.2]). As before,
these ‘unavoidable’ subdivisions yield some kind of characterisation: If a graph
contains a subdivision of Cm or K2,m, then it contains a 2-connected subgraph
with at least m vertices.

In 1993, Oporowski, Oxley and Thomas [49] continued on this path and gave
two finite lists of graphs that are similarly unavoidable subdivisions in k-connected

26



graphs for k P t3, 4u1. The graphs in these lists are not necessarily k-connected,
but a slight modification of their result yields similar lists of unavoidable minors
in k-connected graphs which are k-connected themself (cf. [12, Thm. 9.4.3 and
Theorem 9.4.4]). For k “ 3 the ‘unavoidable’ minors are the wheel or the complete
bipartite graph K3,m, while for k “ 4 the number of ‘unavoidable’ minors is growing
to four different minors, whose definition we omit here. Now a characterisation for
the existence of large k-connected subgraphs fails for trivial reasons, as subdivi-
sions (and similarly inflated subgraphs) of k-connected graphs for k ě 3 are not
necessarily more than 2-connected. To obtain a similar characterisation as before
we need a different notion of a ‘highly connected object’ in a graph.

For k P N, a set X of at least k vertices of a graph G is called k-connected in G,
if for all Z1, Z2 Ď X with |Z1| “ |Z2| ď k there are |Z1| many vertex disjoint paths
from Z1 to Z2 in G. Note that any subset Y Ď X with |Y | ě k is also k-connected
in G. We often omit stating the graph in which X is k-connected if it is clear
from the context. Now k-connected sets offer a solution for the other direction of
a possible characterisation, since as it can be easily seen that any set containing
precisely one vertex of each branch set of a k-connected minor of G is k-connected
in G (cf. Lemma B.4.2).

Recently, Geelen and Joeris [24, 39] generalised these results to arbitrary k P N.
They introduced so called generalised wheels (depending on k and m), which
together with the complete bipartite graph Kk,m are the ‘unavoidable’ minors in
graphs with large k-connected sets. And for k P t2, 3, 4u they correspond precisely
to the ‘unavoidable’ minors mentioned before. These generalised wheels and
the Kk,m are graphs that contain a k-connected set of size m. Hence as before,
there is the converse direction: each graph that contains such a generalised wheel
(depending on k and m) or Kk,m as a minor also contains a k-connected set of
size m.

Now let us consider infinite graphs. Again there is a well-known and easy-
to-prove fact that each infinite connected graph contains either a ray, that is a
one-way infinite path, or a vertex of infinite degree. Conversely, each graph that
contains a ray or a vertex of infinite degree has an infinite component. There
is also a more localised version of this result, which is known as the Star-Comb

1In fact, for k “ 4 the authors show something slightly stronger by requiring the graph to have
a property which is slightly weaker than being 4-connected.
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Lemma (cf. Lemma B.2.4). In essence this lemma relates the subgraphs of the
result from above to a given vertex set.
For 2-connected infinite graphs one can easily construct an analogous result.

A double ray is a two-way infinite path. We say a vertex d dominates a ray R if
they cannot be separated by deleting a finite set of vertices not containing d. An
end of a graph is an equivalence class of rays, where two rays are equivalent, if
they cannot be separated by deleting a finite set of vertices. Now it is a common
exercise to prove that every infinite 2-connected graph contains either a double
ray whose subrays belong to the same end, a ray which is dominated by a vertex,
or a subdivision of a K2,ℵ0 . With the advent of topological infinite graph theory,
those results became an even more meaningful extension of the finite result. In
locally finite graphs, that are graphs where each vertex has finite degree, a double
ray whose subrays belong to the same end is the easiest example of an infinite
topological circle, that is a homeomorphic image of the sphere S1 in the Freudenthal
compactification of the 1-complex of G (cf. [12, Section 8.5]). Moreover, a similar
topological approach works in finitely separable graphs, that are graphs containing
no subdivision of K2,ℵ0 . In such a graph, a ray starting a at vertex dominating it
is also an infinite topological circle [13, Section 5].
In 1978, Halin [31] studied such a problem for arbitrary k P N. He showed

that every k-connected graph whose set of vertices has size at least κ for some
uncountable regular cardinal κ contains a subdivision of Kk,κ. Hence for all
those cardinals, Kk,κ is the unique ‘unavoidable’ subdivision (or minor). The
‘unavoidable’ minors for graphs whose set of vertices has singular cardinality
remained undiscovered.
Oporowski, Oxley and Thomas [49] also studied countably infinite graphs for

arbitrary k P N. Together with the Kk,ℵ0 , the ‘unavoidable’ minors for countably in-
finite k-connected2 graphs have the following structure. For `, d P N with `` d “ k,
they consist of a set of ` disjoint rays, d vertices that dominate one of the rays (or
equivalently all of those rays) and infinitely many edges connecting pairs of them
in a tree-like way.

This leads to the first part of our main result. For k P N and an infinite cardinal κ
we will define certain graphs with a k-connected set of size κ in Section B.3, the so

2Again, the authors show something slightly stronger, requiring a slightly weaker property than
k-connectivity, but still a stronger property than containing a k-connected set.
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called k-typical graphs. These graphs will encompass complete bipartite graphsKk,κ

as well as the graphs described by Oporowski, Oxley and Thomas [49] for κ “ ℵ0.
We will moreover introduce such graphs even for singular cardinals κ. It will turn
out that for fixed k and κ there are only finitely many k-typical graphs up to
isomorphisms. We shall characterise graphs with a k-connected set of size κ via
the existence of a minor of such a k-typical graph.

Moreover we will extend the definition of k-typical graphs to so called generalised
k-typical graphs. As before for fixed k and κ there are only finitely many generalised
k-typical graphs up to isomorphisms, and we shall extend the characterisation
from before via the existence of subdivisions of such a generalised k-typical graph.

In finite graphs, k-connected sets have also been studied in connection to tree-
width. Diestel, Gorbunov, Jensen and Thomassen [16, Prop. 3] showed that for
any graph G and k P N, if G contains a pk ` 1q-connected set of size at least 3k,
then G has tree-width at least k, and conversely if G has no pk` 1q-connected set3

of size at least 3k, then G has tree-width less than 4k. As before with the minors,
the characterisation is not possible as an exact equivalence.
In infinite graphs, different notions of decompositions of graphs in a tree-like

way that extend the notion of tree-decompositions in finite graphs have been
studied. Robertson, Seymour and Thomas [54] gave a survey of different results
characterising the existence of different kinds of these decompositions via forbidden
minors. In recent years, one of those decomposition notions, the notion of a
nested set of separations has been studied in more detail [15]. They correspond to
tree-decompositions of finite graphs in a natural way and offer a generalisation
for infinite graphs. We define separations and the necessary terms, including the
notion of parts for a nested set of separations, which provides some analogue of
tree-width, in Section B.2.
This leads to the final characterisation in our main theorem.

Theorem B.1.1. Let G be an infinite graph, let k P N and let κ ď |V pGq| be an
infinite cardinal. Then the following are equivalent.

(a) V pGq contains a subset of size κ that is k-connected in G.

(b) G contains a k-typical graph of size κ as a minor with finite branch sets.
3In fact, the authors show something slightly stronger, requiring for the second part a slightly
weaker property than k-connectivity.
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(c) G contains a subdivision of a generalised k-typical graph of size κ.

(d) There is no nested set of separations of order less than k of G such that
every part has size less than κ.

In fact, we will prove a slightly stronger result which will require some more
notation, Theorem B.3.7 in Subsection B.3.3. In the same vein as the Star-
Comb Lemma, that result will relate the minors (or subdivisions) with a specific
k-connected set in the graph.

After fixing some notation and recalling some basic definitions and simple facts
in Section B.2, we will define the k-typical graphs and generalised k-typical graphs
in Section B.3. In Section B.4 we will collect some basic facts about k-connected
sets and their behaviour with minors or topological minors. Section B.5 deals
with the structure of ends in graphs. Subsection B.5.1 is dedicated to extend a
well-known connection between minimal separators and the degree of an end from
locally finite graphs to arbitrary graphs. Afterwards, Subsection B.5.2 gives a
construction on how to find disjoint rays in some end with additional structure
between them. Sections B.6 and B.7 are dedicated to prove the characterisation
via minors and topological minors for the case of regular cardinals in Section B.6
and, respectively, the case of singular cardinals in Section B.7. In Section B.8 we
will talk about some applications of the minor characterisation, and in Section B.9
we shall finish the proof of the main theorem of Section B with the characterisation
via nested sets of separations.

B.2. Preliminaries

For Section B let us explicitly note that we shall work in ZFC. For general notation
about graph theory that we do not specifically introduce here we refer the reader
to [12].
In Section B we consider both finite and infinite cardinals. As usual, for an

infinite cardinal κ we define its cofinality, denoted by cf κ, as the smallest infinite
cardinal λ such that there is a set X Ď tY Ď κ | |Y | ă κu such that |X| “ λ

and
Ť

X “ κ. We distinguish infinite cardinals κ to regular cardinals, i.e. cardinals
where cf κ “ κ, and singular cardinals, i.e. cardinals where cf κ ă κ. Note that cf κ
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is always a regular cardinal. For more information on infinite cardinals and ordinals,
we refer the reader to [42].

Throughout Section B, let G denote an arbitrary simple and undirected graph
with vertex set V pGq and edge set EpGq. We call G locally finite if each vertex
of G has finite degree.

Let G and H be two graphs. The union GYH of G and H is the graph
with vertex set V pGq Y V pHq and edge set EpGq Y EpHq. The Cartesian prod-
uct GˆH of G and H is the graph with vertex set V pGq ˆ V pHq such that two
vertices pg1, h1q, pg2, h2q P V pGˆHq are adjacent if and only if either h1 “ h2 and
g1g2 P EpGq or g1 “ g2 and h1h2 P EpHq holds.
Given two sets A and B, we denote by KpA,Bq the complete bipartite graph

between the classes A and B. We also write Kκ,λ for KpA,Bq if |A| “ κ and
|B| “ λ for two cardinals κ and λ.

Unless otherwise specified, in Section B a path is a finite graph. The length of a
path is the size of its edge set. A path is trivial, if it only contains only one vertex,
which we will call its endvertex. Otherwise, the two vertices of degree 1 in the path
are its endvertices. The other vertices are called the inner vertices of the path.
Let A,B Ď V pGq be two (not necessarily disjoint) vertex sets. An A –B path

is a path whose inner vertices are disjoint from AYB such that one of its end
vertices lies in A and the other lies in B. In particular, a trivial path whose
endvertex is in AXB is also an A –B path. An A –B separator is a set S of
vertices such that AzS and BzS lie in different components of G´ S. We also say
S separates A and B. For convenience, by a slight abuse of notation, if A “ tau
(or B “ tbu) is a singleton we will replace A by a (or B by b respectively) for these
terms.

We shall need the following version of Menger’s Theorem for finite parameter k
in infinite graphs, which is an easy corollary of Menger’s Theorem for finite graphs.

Theorem B.2.1. [12, Thm. 8.4.1] Let k P N and let A, B Ď V pGq. If A and B
cannot be separated by less than k vertices, then G contains k disjoint A –B paths.

We shall also need a trivial cardinality version of Menger’s theorem, which is easily
obtained from Theorem B.2.1 by noting that the union of less than κ many disjoint
A –B paths for an infinite cardinal κ has size less than κ (cf. [12, Section 8.4]).
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Theorem B.2.2. Let κ be a cardinal and let A, B Ď V pGq. If A and B cannot
be separated by less than κ vertices, then G contains κ disjoint A –B paths.

Recall that a one-way infinite path R is called a ray and a two-way infinite
path D is called a double ray. The unique vertex of degree 1 of R is its start vertex.
A subgraph of R (or D) that is a ray itself is called a tail of R (or D respectively).
Given v P R, we write vR for the tail of R with start vertex v. A finite path P Ď R

(or P Ď D) is a segment of R (or D respectively). If v and w are the endvertices
of P , then we denote P also by vRw (or vDw respectively). If v is the end vertex
of vRw whose distance is closer to the start vertex of R, then v is called the bottom
vertex of vRw and w is called the top vertex of vRw. If additionally v is the start
vertex of R, then we call vRw an initial segment of R and denote it by Rw.

Recall that an end of G is an equivalence class of rays, where two rays are
equivalent if they cannot be separated by deleting finitely many vertices of G. We
denote the set of ends of G by ΩpGq. A ray being an element of an end ω P ΩpGq
is called an ω-ray. A double rays all whose tails are elements of ω is called an
ω-double ray.

For an end ω P ΩpGq let degpωq denote the degree of ω, that is the supremum of
the set t|R| | R is a set of disjoint ω-raysu. Note for each end ω there is in fact a
set R of vertex disjoint ω-rays with |R| “ degpωq [30, Satz 1].

Recall that a vertex d P V pGq dominates a ray R if d and some tail of R lie in the
same component of G´ S for every finite set S Ď V pGqztdu. By Theorem B.2.2
this is equivalent to the existence of infinitely many d –R paths in G which are
disjoint but for d itself. Note that if d dominates an ω-ray, then it also dominates
every other ω-ray. Hence we also write that d dominates an end ω P ΩpGq if d
dominates some ω-ray. Let Dompωq denote the set of vertices dominating ω and
let dompωq “ |Dompωq|. If dompωq ą 0, we call ω dominated, and if dompωq “ 0,
we call ω undominated.

For an end ω P ΩpGq, let ∆pωq denote degpωq ` dompωq, which we call the
combined degree of ω. Note that the sum of an infinite cardinal with some other
cardinal is just the maximum of the two cardinals.

The following lemma due to König about the existence of a ray is a weak version
of the compactness principle in combinatorics.
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Lemma B.2.3 (König’s Infinity Lemma). [12, Lemma 8.1.2] Let pViqiPN be a
sequence of disjoint non-empty finite sets, and let G be a graph on their union.
Assume that for every n ą 0 each vertex in Vn has a neighbour in Vn´1. Then G
contains a ray v0v1 . . . with vn P Vn for all n P N.

In Section B.9 we shall also use a stronger version of the compactness principle
in combinatorics. We omit stating it here but refer to [12, Appendix A].
A comb C is the union of a ray R together with infinitely many disjoint finite

paths each of which has precisely one vertex in common with R, which has to be
an endvertex of that path. The ray R is the spine of C and the end vertices of the
finite paths that are not on R together with the end vertices of the trivial paths
are the teeth of C. A comb whose spine is in ω is also called an ω-comb. A star
is the complete bipartite graph K1,κ for some cardinal κ, where the vertices of
degree 1 are its leaves and the vertex of degree κ is its centre.

Next we state a version of the Star-Comb lemma in a slightly stronger way than
elsewhere in the literature (e.g. [12, Lemma 8.2.2]). We also give a proof for the
sake of completeness.

Lemma B.2.4 (Star-Comb Lemma). Let U Ď V pGq be infinite and let κ ď |U |
be a regular cardinal. Then the following are equivalent.

(a) There is a subset U1 Ď U with |U1| “ κ such that U1 is 1-connected in G.

(b) There is a subset U2 Ď U with |U2| “ κ such that G either contains a
subdivided star whose set of leaves is U2 or a comb whose set of teeth is U2.

(Note that if κ is uncountable, only the former can exist.)

Moreover, if these statements hold, we can choose U1 “ U2.

Proof. Note that a set of vertices is 1-connected, if and only if it belongs to the
same component of G. Hence if (b) holds, then U2 is 1-connected and we can set
U1 :“ U2 to satisfy (a).

If (a) holds, then we take a tree T Ď G containing U1 such that each edge of T
lies on a path between two vertices of U1. Such a tree exists by Zorn’s Lemma
since U1 is 1-connected in G. We distinguish two cases.

If T has a vertex c of degree κ, then this yields a subdivided star with centre c
and a set U2 Ď U1 of leaves with |U2| “ κ by extending each incident edge of c to
a c –U1 path.
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Hence we assume T does not contain a vertex of degree κ. Given some ver-
tex v0 P V and n P N, let Dn denote the vertices of T of distance n to v0. Since T
is connected, the union

Ť

tDn | n P Nu equals V pT q. And while κ is regular, it
follows that κ “ ℵ0, and therefore that T is locally finite. Hence each Dn is finite
and, since T is still infinite, each Dn is non-empty. Thus T contains a ray R

by Lemma B.2.3. If R does not already contain infinitely many vertices of U1,
then by the property of T there are infinitely many edges of T between V pRq

and V pT ´Rq. We can extend infinitely many of these edges to a set of disjoint
R –U1 paths, ending in an infinite subset U2 Ď U1, yielding the desired comb.

In both cases, U2 is still 1-connected, and hence serves as a candidate for U1 as
well, yielding the “moreover” part of the claim.

The following immediate remark helps to identify when we can obtain stars by
an application of the Star-Comb lemma.

Remark B.2.5. If there is an ω-comb with teeth U and if v dominates ω, then
there is also a set U 1 Ď U with |U 1| “ |U | “ ℵ0 such that G contains a subdivided
star with leaves U 1 and centre v.

We say that an end ω is in the closure of a set U Ď V pGq, if there is an ω-comb
whose teeth are in U . Note that this combinatorial definition of closure coincides
with the topological closure when considering the topological setting of locally
finite graphs mentioned in the introduction [12, Section 8.5] [13].

For an end ω of G and an induced subgraph G1 of G we write ωæG1 for the set
of rays R P ω which are also rays of G1. The following remarks are immediate.

Remarks B.2.6. Let G1 “ G´ S for some finite S Ď V pGq.

1. ωæG1 is an end of G1 for every end ω P ΩpGq.

2. For every end ω1 P ΩpG1q there is an end ω P ΩpGq such that ωæG1 “ ω1.

3. The degree of ω P ωpGq in G is equal to the degree of ωæG1 in G1.

4. Dompωq “ DompωæG1q Y pDompωq X Sq for every end ω P ΩpGq.

Given an end ω P ΩpGq, we say that an ω-ray R is ω-devouring if no ω-ray is
disjoint from R. We need the following lemma about the existence of a single
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ω-devouring ray for an end ω of at most countable degree, which is a special case
of Theorem C.1.2. Note that Section C does not depend on Section B and its
results.

Lemma B.2.7. If degpωq ď ℵ0 for ω P ΩpGq, then G contains an ω-devouring
ray.

A different way to prove this lemma arises from the construction of normal
spanning trees, cf. [12, Prop. 8.2.4]. Imitating this proof according to an enumera-
tion of the vertices of a maximal set of disjoint ω-rays yields that the normal ray
constructed this way is ω-devouring.

Let us fix some notations regarding minors. Let G and M be graphs. We say M
is a minor of G if G contains an inflated subgraph H Ď G witnessing this, i.e. for
each v P V pMq

• there is a non-empty branch set Bpvq Ď V pHq;

• HrBpvqs is connected;

• tBpvq | v P V pMqu is a partition of V pHq; and

• there is an edge between v, w P V pMq in M if and only if there is an edge
between some vertex in Bpvq and a vertex in Bpwq in H.

We call M a finite branch set minor or fbs-minor of G if each branch set is finite.
Without loss of generality we may assume that such an inflated subgraph H

witnessing that M is a minor of G is minimal with respect to the subgraph relation.
Then H has the following properties for all v, w P V pMq:

• HrBpvqs is a finite tree Tv;

• for each v, w P V pMq there is a unique edge evw in EpHq between Bpvq

and Bpwq if vw P EpMq, and no such edge if vw R EpMq;

• each leaf of Tv is an endvertex of such an edge between two branch sets.

Given a subset C Ď V pMq and a subset A Ď V pGq, we say that M is an fbs-
minor of G with A along C, if M is an fbs-minor of G such that the map mapping
each vertex of the inflated subgraph to the branch set it is contained in induces
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a bijection between A and the branch sets of C. As before, we assume without
loss of generality that an inflated subgraph H witnessing that M is an fbs-minor
of G is minimal with respect to the subgraph relation. We obtain the properties
as above, but a leaf of Tv could be the unique vertex of A in Bpvq instead.

For `, k P N, we write r`, ks for the closed integer interval ti P N | ` ď i ď ku as
well as rk, `q for the half open integer interval ti P N | ` ď i ă ku. Given some set I,
a family F indexed by I is a sequence of the form pFi | i P Iq, where the members Fi
are some not necessarily different sets. For convenience we sometimes use a family
and the set of its members with a slight abuse of notation interchangeably, for
example with common set operations like

Ť

F . Given some J Ď I, we denote
by FæJ the subfamily pFj | j P Jq. A set T is a transversal of F , if |T X Fi| “ 1
for all i P I. For a family pFi | i P Nq with index set N we say some property holds
for eventually all members, if there is some N P N such that the property holds
for Fi for all i P N with i ě N .
The following lemma is a special case of the famous Delta-Systems Lemma, a

common tool of infinite combinatorics.

Lemma B.2.8. [42, Thm. II.1.6] Let κ be a regular cardinal, U be a set and
F “ pFα Ď U | α P κq a family of finite subsets of U . Then there is a finite set
D Ď U and a set I Ď κ with |I| “ κ such that Fα X Fβ “ D for all α, β P I with
α ‰ β.

A separation of G is a tuple pA,Bq of vertex sets such that AYB “ V pGq

and such that there is no edge of G between AzB and BzA. The set AXB is
the separator of pA,Bq and the cardinality |AXB| is called the order of pA,Bq.
Given k P N, let SkpGq denote the set of all separations of G of order less than k.
Two separations pA,Bq and pC,Dq are nested if either A Ď C and D Ď B, or

A Ď D and C Ď B holds. A set N of separations of G is called a nested separation
system of G if it is symmetric, i.e. pB,Aq P N for each pA,Bq P N and nested,
i.e. the separations in N are pairwise nested.

An orientation O of a nested separation system N is a subset of N that contains
precisely one of pA,Bq and pB,Aq for all pA,Bq P N . An orientation O of N
is consistent if whenever pA,Bq P O and pC,Dq P N with C Ď A and B Ď D,
then pC,Dq P O. For each consistent orientation O of N we define a part PO of N
as the vertex set

Ş

tB | pA,Bq P Ou. It is easy to check that the union of all
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parts cover the vertex set of G. Moreover, we allow the empty set H as a nested
separation system. In this case, we say that V pGq is a part of H (this can be
viewed as the empty intersection of vertex sets of the empty set as an orientation
of H).
A nested separation system N has adhesion less than k if all separations it

contains have order less than k, i.e. N Ď SkpGq.
Note that each oriented edge of the tree of a tree-decomposition of G induces a

separation pA,Bq where A is the union of the parts on one side of the edge while B
is the union of the parts on the other side of the edge. It is easy to check that
the set of separations induced by all those edges is a nested separation system.
Moreover, properties like adhesion and the size of parts are transferred by this
process.
For more information on nested separation systems and their connection to

tree-decompositions we refer the interested reader to [15].

B.3. Typical graphs with k-connected sets

Throughout this section, let k P N be fixed. Let κ denote an infinite cardinal.
In Subsection B.3.1 we shall describe an up to isomorphism finite class of graphs

each of which contains a designated k-connected set of size κ. We call such a graph
a k-typical graph and the designated k-connected set its core. These graphs will
appear as the minors Theorem B.1.1(b).
In Subsection B.3.2 we shall describe based on these k-typical graphs a more

general but still finite class of graphs each of which again contains a designated
k-connected set of size κ. We call such a graph a generalised k-typical graph and
the designated k-connected set its core. These graphs will appear as the topological
minors Theorem B.1.1(c).

B.3.1. k-typical graphs

The most basic graph with a k-connected set of size κ is a complete bipartite
graph Kk,κ “ Kpr0, kq, Zq for any infinite cardinal κ and a set Z of size κ disjoint
from r0, kq. Although in this graph the whole vertex set is k-connected, we only
want to consider the infinite side Z as the core CpKk,κq of Kk,κ, cf. Figure B.1.
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This is the first instance of a k-typical graph with a core of size κ. For uncountable
regular cardinals κ, this is the only possibility for a k-typical graph with a core of
size κ.

κ

Figure B.1.: A stylised version of a K4,κ, where the large box stands for the core
of κ many vertices and the dashed lines from a vertex to the corners
of the box represent that this vertex is connected to all vertices in the
box.

A k-blueprint B is a tuple pB,Dq such that

• B is a tree of order k; and

• D is a set of leaves of B with |D| ă |V pBq|.

Take the ray N :“
`

N, tnpn` 1q | n P Nu
˘

and the Cartesian product B ˆN. For
a node b P V pBq and n P N let

• bn denote the vertex pb, nq;

• Nb denote the ray ptbu,Hq ˆN Ď B ˆN; and

• Bn denote the subgraph B ˆ ptnu,Hq Ď B ˆN.

Then letNpB{Dq :“ pB ˆNq{tNd | d P Du denote the contraction minor of B ˆN

obtained by contracting each ray Nd for each d P D to a single vertex. We denote
the vertex of NpB{Dq corresponding to the contracted ray Nd by d for d P D
and call such a vertex dominating. Using this abbreviated notation, we call the
tree Bn ´D the n-th layer of NpB{Dq.
A triple B “ pB,D, cq is called a regular k-blueprint if pB,Dq is a k-blueprint

and c P V pBqzD. We name the graph TkpBq :“ NpB{Dq and the vertex set
CpTkpBqq :“ V pNcq is the core of TkpBq, see Figure B.2 for an example.

Lemma B.3.1. For a regular k-blueprint B the core of TkpBq is k-connected
in TkpBq.
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Figure B.2.: Image of T4pP, tdu, cq where P “ cabd is a path of length 3 between
nodes c and d. P0 is represented in gray. The crosses represent its
core.

Proof. Let B “ pB,D, cq and let C “ CpTkpBqq denote the core of TkpBq. Let
U,W Ď C with |U | “ |W | “ k1 ď k. Suppose for a contradiction there is a ver-
tex set S of size less than k1 separating U and W . Then there are m,n P N
with cm P UzS, cn P W zS such that the n-th and m-th layer are both disjoint
from S. Moreover there is a b P B such that Nb (or tbu if b P D) are disjoint
from U and W . Hence we can connect cm and cn with the path consisting of the
concatenation of the unique cm –bm path in Bm, the unique bm – bn path in Nb

and the unique bn – cn path in Bn. This path avoids S, contradicting that S is a
separator. By Theorem B.2.1 there are k1 disjoint U –W paths, and hence C is
k-connected in TkpBq.

For any regular k-blueprint B “ pB,D, cq the graph TkpBq is a k-typical graph
with a countable core. Such graphs are besides the complete bipartite graph Kk,ℵ0

the only other k-typical graphs with a core of size ℵ0.
Note that given two regular k-blueprints B1 “ pB1, D1, c1q and B2 “ pB2, D2, c2q

such that there is an isomorphism ϕ between B1 and B2 that maps D1 to D2,
then TkpB1q and TkpB2q are isomorphic. Moreover, if ϕ maps c1 to c2, then there
is an isomorphism between TkpB1q and TkpB2q that maps the core of TkpB1q to the
core of TkpB2q. Hence up two isomorphism there are only finitely many k-typical
graphs with a core of size ℵ0.

Given a singular cardinals κ we have more possibilities for typical graphs with
k-connected sets of size κ. We call a sequence K “ pκα ă κ | α P cf κq of infinite
cardinals a good κ-sequence, if

• it is cofinal, i.e.
Ť

K “ κ;
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• it is strictly ascending, i.e. κα ă κβ for all α ă β with α, β P cf κ;

• cf κ ă κα ă κ for all α P cf κ; and

• κα is regular for all α P cf κ.

Note that given any I Ď cf κ with |I| “ cf κ there is a unique order-preserving
bijection between cf κ and I. Hence we can relabel subsequence KæI of a good
κ-sequence K to a good κ-sequence KæI. Moreover, note that any cofinal sequence
can be made into a good κ-sequence by looking at an strictly ascending subsequence
starting above the cofinality of κ, then replacing each element in the sequence
by its successor cardinal and relabel as above. Here we use the fact that each
successor cardinal is regular. Hence for every singular cardinal κ there is a good
κ-sequence.

Let K “ pκα ă κ | α P cf κq be a good κ-sequence and let ` ď k be a non-negative
integer. As a generalisation of the graph Kk,κ we first consider the disjoint union
of the complete bipartite graphs Kk,κα . Then we identify ` sets of vertices each
consisting of a vertex of the finite side of each graph, and connect the other k ´ `
vertices of each with disjoint stars K1,cf κ. More formally, let X “ r`, kq ˆ t0u,
and for each α P cf κ let Y α “ tαu ˆ r0, kq ˆ t1u and let Zα “ tαu ˆ κα ˆ t2u. We
denote the family pY α | α P cf κq with Y and the family pZα | α P cf κq with Z.
Then consider the union

Ť

tKpY α, Zαq | α P cf κu of the complete bipartite graphs
and let `–Kpk,Kq denote the graph where for each i P r0, `q we identify the set
cf κˆ tiu ˆ t1u to one vertex in that union. For this graph we fix some further
notation. Let

• xi denote pi, 0q P X for i P r`, kq;

• yi “ yαi for all α P cf κ denote the vertex corresponding to cf κˆ tiu ˆ t1u
for i P r0, `q; we call such a vertex a degenerate vertex of `–Kpk,Kq;

• yαi denote pα, i, 1q for i P r`, kq; and

• Yi denote pyαi | α P Iq for i P r`, kq.

Note that while the definition of `–Kpk,Kq formally depends on the choice of a
good κ-sequence, the structure of the graph is independent of that choice.
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Remark B.3.2. `–Kpk,K0q is isomorphic to a subgraph of `–Kpk,K1q, and vice
versa, for any two good κ-sequences K0, K1.

Given `–Kpk,Kq as above, let Si denote the star Kptxiu,
Ť

Yiq for all i P r`, kq.
Consider the union of `–Kpk,Kq with

Ť

iPr`,kq Si. We call this graph `–FKk,κpKq,
or an `-degenerate frayed Kk,κ (with respect to K). As before, any vertex yi

for i P r0, `q is called a degenerate vertex of `–FKk,κpKq, and any xi for i P r`, kq
is called a frayed centre of `–FKk,κpKq. The core Cp`–FKk,κpKqq of `–FKk,κpKq
is the vertex set

Ť

Z. As with Kk,κ it is easy to see that Cp`–FKk,κpKqq is
k-connected in `–FKk,κpKq and of size κ.
Note that Remark B.3.2 naturally extends to `–FKk,κpKq. Hence for each κ

we now fix a specific good κ-sequence and write just `–FKk,κ when talking about
an `-degenerate frayed Kk,κ regarding that sequence. Further note that k–FKk,κ

is isomorphic to Kk,κ. We also call a 0-degenerate frayed Kk,κ just a frayed Kk,κ

or FKk,κ for short, see Figure B.3 for an example.
For a singular cardinal κ and for any ` P r0, ks the graph `–FKk,κ is a k-typical

graph with a core of size κ. These are besides the complete bipartite graph Kk,κ

the only other k-typical graphs with a core of size κ if κ has uncountable cofinality.

κα κβ κγκ{

Figure B.3.: Image of 2 –FK4,κ. The black squares represent the frayed centres
and the white squares the degenerate vertices. Its core is represented
by the union of the boxes (labelled according to the fixed good κ-
sequence) and has size κ as illustrated by the bracket.

Next we will describe the other possibilities of k-typical graphs for singular
cardinals with countable cofinality.
A singular k-blueprint B is a 5-tuple p`, f, B,D, σq such that

• 0 ď `` f ă k;
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• pB,Dq is a pk ´ `´ fq-blueprint with 2 ¨ |D| ď |V pBq|; and

• σ : r`` f, kq Ñ V pB ´Dq ˆ t0, 1u is an injective map.

Let B “ p`, f, B,D, σq be a singular k-blueprint and let K “ pκα ă κ | α P ℵ0q

be a good κ-sequence. We construct our desired graph TkpBqpKq as follows. We
start with `-FKk,κpKq with the same notation as above. We remove the set
txi | i P r`` f, kqu from the graph we constructed so far. Moreover, we take the
disjoint union with NpB{Dq as above. We identify the vertices tyαi | i P r`` f, kqu
with distinct vertices of the p2α ` |V pBq|q-th and p2α ` 1` |V pBq|q-th layer for
every α P ℵ0 as given by the map σ, that is

yαi „ π0pσpiqq2α`π1pσpiqq`|V pBq|

where π0 and π1 denote the projection maps for the tuples in the image of σ. For
convenience we denote a vertex originated via such an identification by any of its
previous names. The core of TkpBqpKq is CpTkpBqpKqq :“

Ť

Z. For an example
we refer to Figure B.4.

κ1 κ2κ{

Figure B.4.: Image of T7p1, 2, P, tdu, σq for P and tdu as in Figure B.2.

As before, the information given by a specific good κ-sequence does not matter
for the structure of the graph. Similarly, we get with Remark B.3.2 that two
graphs TkpBqpK0q and TkpBqpK1q obtained by different good κ-sequences K0, K1

are isomorphic to fbs-minors of each other. Hence when we use the fixed good
κ-sequence as before, we call the graph just TkpBq.
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Lemma B.3.3. For a singular k-blueprint B, the core of TkpBq is k-connected
in TkpBq.

Proof. Let B “ p`, f, B,D, σq and let C “ CpTkpBqq denote the core of TkpBq. Let
U,W Ď C with |U | “ |W | “ k1 ď k. Suppose for a contradiction there is a vertex
set S of size less than k1 separating U and W . This separator needs to contain all
degenerate vertices as well as block all paths via the frayed centres. Hence there are
less than k1 ´ `´ f many vertices of S on NpB{Dq, and therefore there is either
a b P V pBqzD such that either Nb does not contain a vertex of S or a d P DzS.
Moreover, there are m,n P N such that um P pU X ZmqzS and wn P pW X ZnqzS.
Now n ‰ m since S cannot separate two vertices of ZnzS in KpY n, Znq Ď TkpBq.
Since the vertices of Y n XNpB{Dq lie on at least pk ´ `´ fq{2 different rays
of the form Nx for x P V pBqzD, there is a vertex vn P pY n XNpB{DqqzS such
that the ray Nx that contains vn either has no vertices of S on its tail starting
at vn or on its initial segment upto vn. Also, there is an N P N with N ě n in
the first case and N ď n in the second case (since n ě |V pBq|) such that BN

does not contain a vertex of S. Hence we can find a path avoiding S starting
at wn and ending on the ray Nb or the dominating vertex d. Analogously, we
get vm P pY m XNpB{DqqzS, BM and a respective path avoiding S. Hence we can
connect um and wn via a path avoiding S, contradicting the assumption.

For a singular cardinal κ with countable cofinality and for any singular k-
blueprint B the graph TkpBq is a k-typical graph with core of size κ. These are the
only remaining k-typical graphs.
Note that as before there are up to isomorphism only finitely many k-typical

graphs with a core of size κ.
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In summary we get for each k P N and each infinite cardinal κ a finite list of
k-typical graphs with a core of size κ:

κ k-typical graph T core CpT q
κ “ cf κ ą ℵ0 Kk,κ Z

κ “ cf κ “ ℵ0 Kk,κ Z

TkpB,D, cq V pNcq

κ ą cf κ ą ℵ0 Kk,κ Z

`–FKk,κ

Ť

Z
κ ą cf κ “ ℵ0 Kk,κ Z

`–FKk,κ

Ť

Z
Tkp`, f, B,D, σq

Ť

Z

Note that for the finiteness of this list we need the fixed good κ-sequence for a
singular cardinal κ.

Lemma B.3.4. The core of a k-typical graph is k-connected in that graph.

B.3.2. Generalised k-typical graphs

The k-typical graphs cannot serve for a characterisation for the existence of k-
connected sets as in Theorem B.1.1(c) via subdivisions, as the following example
illustrates. Consider two disjoint copies of the K2,ℵ0 together with a matching
between the infinite sides, see Figure B.5. Now the vertices of the infinite side
from one of the copies is a 4-connected set in that graph, but the graph does
not contain any subdivision of a 4-typical graph, since it neither contains a path
of length greater than 13 (and hence no subdivision of a T4pBq for some regular
k-blueprint B), nor a subdivision of a K4,ℵ0 .

To solve this problem we introduce generalised k-typical graphs, where we ‘blow
up’ some of the vertices of our k-typical graph to some finite tree, e.g. an edge in
the previous example. This then will allow us to obtain the desired subdivisions
for our characterisation.

Let G be a graph, v P V pGq be a vertex, T be a finite tree and γ : Npvq Ñ V pT q

be a map. We define the pv, T, γq-blow-up of v in G as the operation where we
delete v, add a vertex set tvu ˆ V pT q disjointly and for each w P Npvq add the
edge between w and pv, γpwqq. We call the resulting graph Gpv, T, γq.
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Figure B.5.: A graph with an infinite 4-connected set (marked by the cross vertices)
containing no subdivision of a 4-typical graph.

Given blow-ups pv, Tv, γvq and pw, Tw, γwq in G, we can apply the blow-up of w
in Gpv, Tv, γvq by replacing v in the preimage of γw by pv, γvpwqq. We call this
graph Gpv, Tv, γvqpw, Tw, γwq. Note that the order in which we apply the blow-ups
does not matter, that is Gpv, Tv, γvqpw, Tw, γwq “ Gpw, Tw, γwqpv, Tv, γvq. We anal-
ogously define for a set O “ tpv, Tv, γvq | v P W u of blow-ups for some W Ď V pGq

the graph GpOq obtained by successively applying all the blow-ups in O. Note
that if W is infinite, then GpOq is still well-defined, since each edge gets each of
its endvertices modified at most once.

A type-1 k-template T1 is a triple pT, γ, cq consisting of a finite tree T , a map
γ : r0, kq Ñ V pT q and a node c P V pT q such that each node of degree 1 or 2 in T
is either c or in the image of γ. Note that for each k there are only finitely many
type-1 k-templates up to isomorphisms of the trees, since their trees have order at
most 2k ` 1.

Let T1 “ pT, γ, cq be a type-1 k-template and let O1 :“ tpz, T, γq | z P CpKk,κqu.
We call the graph Kk,κpT1q :“ Kk,κpO1q a generalised Kk,κ. The core CpKk,κpT1qq

is the set CpKk,κq ˆ tcu, see Figure B.6 for an example. Note that Figure B.5 is
also an example.
Similarly, with T1 as above, let O11 :“ tpz, T, γαq | α P cf κ, z P Zαu, where γα

denotes the map defined by yαi ÞÑ γpiq. The graph `–Kpk,KqpT1q :“ `–Kpk,KqpO11q
is a generalised `–Kpk,Kq. The vertex set

Ť

Z ˆ tcu is the precore of that graph.
Analogously, we obtain a generalised `–FKk,κpKq for a good κ-sequence K as

`–FKk,κpKqpT1q :“ `–FKk,κpO
1
1q with core Cp`–FKk,κpKqpT1qq :“

Ť

Z ˆ tcu.

A type-2 k-template T2 for a k-blueprint pB,Dq is a set tpb, Pb, γbq | b P V pBqzDu
of blow-ups in B such that for all b P V pBqzD
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1 2

3 4

κ κ1,2

3,4

Figure B.6.: Image of a generalised K4,κ on the left. The crosses represent the core.
On the right is how we represent the same graph in a simplified way
by labelling the vertices according to their adjacencies.

• Pb is a path of length at most k ` 2;

• the endnodes of Pb are called vb0 and vb1;

• Pb contains nodes vbK and vbJ;

• the nodes vb0, vbK, vbJ, vb1 need not be distinct;

• if vn0 ‰ vbK, then vb0vbK P EpPbq and if vn1 ‰ vbJ, then vb1vbJ P EpPbq;

• γbpNpbqq Ď vbKPbv
b
J;

We say T2 is simple if vb0 “ vbK and vb1 “ vbJ. Note that for each k there are
only finitely many type-2 k-templates, up to isomorphisms of the trees in the
k-blueprints and the paths for the blow-ups.
Let T2 “ tpb, Tb, γbq | b P V pBqzDu be a type-2 k-template for a k-blueprint

pB,Dq. Then O2 :“ tpbn, Tb, γnb q | n P N, b P V pBqzDu is a set of blow-ups in
NpB{Dq, where γnb is defined via

γnb pvq “

$

’

’

’

&

’

’

’

%

γbpb
1
q if v “ b1n for b1 P Npbq;

vbJ if v “ bn`1;

vbK if n ě 1 and v “ bn´1.

Then NpB{DqpT2q :“ NpB{DqpO2q is a generalised NpB{Dq.
Let B “ pB,D, cq be a regular k-blueprint and let T2 “ tpb, Tb, γbq | b P V pBqzDu

be a type-2 k-template for pB,Dq. We call TkpBqpT2q :“ TkpBqpO2q a gener-
alised TkpBq with core CpTkpBqpT2qq :“ V pNcq ˆ tv

c
1u. For an example that gener-

alises the graph of Figure B.2, see Figure B.7.
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Figure B.7.: Image of a generalised T4pP, tdu, cq for P , tdu, c as in Figure B.2. In
grey we represent the blow-up of P as given by some type-2 k-template.
The crosses represent the core.

A type-3 k-template T3 for a singular k-blueprint B “ p`, f, B,D, σq is a tuple
pT1, T2q consisting of a type-1 p` ` fq-template T1 and a type-2 pk ´ ` ´ fq-
template T2. Note that for each k there are only finitely many type-3 k-templates
up to isomorphisms as discussed above for T1 and T2.
Let T3 “ pT1, T2q be a type-3 k-template with T1 “ pT, γ, c1q for a singular

k-blueprint B “ p`, f, B,D, σq. Then for pbn, Tb, γnb q P O2 we extend γnb to γ̂nb via

γ̂nb pvq “

$

’

’

’

&

’

’

’

%

vb1 if v P tyni | i P r`` f, kqu and n even;

vb0 if v P tyni | i P r`` f, kqu and n odd;

γnb pvq otherwise.

Let O12 :“ tpbn, Tb, γ̂nb q | pbn, Tb, γnb q P O2u denote the corresponding set of blow-ups
in TkpBq and let O11 be for T1 as above. The graph TkpBqpT3q :“ TkpBqpO11 YO12q
is a generalised TkpBq with core CpTkpBqpT3qq :“

Ť

Z ˆ tc1u. For an example that
generalises the graph of Figure B.4 see Figure B.8.

We call the graph from which a generalised graph is obtained via this process
its parent. As before, Remark B.3.2 and its extensions extend to generalised
k-typical graphs as well.

Remark B.3.5. Every `–FKk,κpT1qpKq or TkpBqpT3qpKq for a singular k-blue-
print B, a type-1 k-template T2, a type-2 k-template T3 and a good κ-sequence K,
contains a subdivision of `–FKk,κpT1q or TkpBqpT3q respectively.

A generalised k-typical graph is either Kk,κpT1q, `–FKk,κpT1q, TkpBqpT2q or
TkpB1qpT3q for any type-1 k-template T1, any ` P r0, kq, any regular k-blueprint B,
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Figure B.8.: Image of a generalised T7p1, 2, P, tdu, σq for P , tdu, σ as in Figure B.4.
.

any type-2 k-template T2 for B, any singular k-blueprint B1 and any type-3 k-
template T3 for B1. As with the k-typical graphs we obtain that this list is finite.

Corollary B.3.6. The core of a generalised k-typical graph is k-connected in that
graph.

B.3.3. Statement of the Main Theorem

Now that we introduced all k-typical and generalised k-typical graphs, let us give
the full statement of our main theorem of Section B.

Theorem B.3.7. Let G be an infinite graph, let k P N, let A Ď V pGq be infinite
and let κ ď |A| be an infinite cardinal. Then the following are equivalent.

(a) There is a subset A1 Ď A with |A1| “ κ such that A1 is k-connected in G.

(b) There is a subset A2 Ď A with |A2| “ κ such that there is a k-typical graph
which is a minor of G with finite branch sets and with A2 along its core.

(c) There is a subset A3 Ď A with |A3| “ κ such that there G contains a subdi-
vided generalised k-typical graph with A3 as its core.
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(d) There is no nested separation system N Ď SkpGq such that every part P of N
can be separated from A by less than κ vertices.

Moreover, if these statements hold, we can choose A1 “ A2 “ A3.

Note that for A “ V pGq we obtain the simple version as in Theorem B.1.1 by
forgetting the extra information about the core.

B.4. k-connected sets, minors and topological

minors

In this section we will collect a few basic remarks and lemmas on k-connected sets
and how they interact with minors and topological minors for future references.
We omit some of the trivial proofs.

Remark B.4.1. If A Ď V pGq is k-connected in G, then any A1 Ď A with |A1| ě k

is k-connected in G as well.

Lemma B.4.2. If M is a minor of G and A Ď V pMq is k-connected in M for
some k P N, then any set A1 Ď V pGq with |A1| ě k consisting of at most one vertex
of each branch set for the vertices of A is k-connected in G.

Lemma B.4.3. For k P N, if G contains the subdivision of a generalised k-typical
graph T with core A, then the parent of T is an fbs-minor with A along its core.

A helpful statement for the upcoming inductive constructions would be that for
every vertex v of G, every large k-connected set in G contains a large subset which is
pk´1q-connected in G´ v. But while this is a true statement (cf. Corollary B.8.2),
an elementary proof of it seems to be elusive if v is not itself contained in the
original k-connected set. The following lemma is a simplified version of that
statement and has an elementary proof.

Lemma B.4.4. Let k P N and let A Ď V pGq be infinite and k-connected in G.
Then for any finite set S Ď V pGq with |S| ă k there is a subset A1 Ď A with
|A1| “ |A| such that A1 is 1-connected in G´ S.

Proof. Without loss of generality we may assume that A and S are disjoint.
Take a sequence pBα | α P |A|q of disjoint subsets of A with |Bα| “ k. For every
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α P |A|zt0u there is at least one path from B0 to Bα disjoint from S. By the
pigeonhole principle there is some v P B0 such that |A| many of these paths start
in v. Now let A1 be the set of endvertices of these paths.

B.5. Structure within ends

This section studies the structure within an end of a graph.
In Subsection B.5.1 we will extend to arbitrary infinite graphs a well-known

result for locally finite graphs relating end degree with a certain sequence of
minimal separators, making use of the combined end degree.
Subsection B.5.2 is dedicated to the construction of a uniformly connecting

structure between disjoint rays in a common end and vertices dominating that
end.

B.5.1. End defining sequences and combined end degree

For an end ω P ΩpGq and a finite set S Ď V pGq let CpS, ωq denote the unique
component of G´ S that contains ω-rays. A sequence pSn | n P Nq of finite vertex
sets of G is called an ω-defining sequence if CpSn`1, ωq Ď CpSn, ωq for all n P N and
Ş

tCpSn, ωq | n P Nu “ H. Note that for every ω-defining sequence pSn | n P Nq
and every finite set X Ď V pGq we can find an N P N such that X Ď G´ CpSN , ωq.
Hence we shall also refer to the sets Sn in such a sequence as separators Sn and Sm.
Given n,m P N with n ă m, let GrSn, Sms denote GrpSn Y CpSn, ωqqzCpSm, ωqs,
the graph between the separators.
For ends of locally finite graphs there is a characterisation of the end degree

given by the existence of certain ω-defining sequences. The degree of an end ω
is equal to k P N, if and only if k is the smallest integer such that there is an
ω-defining sequence of sets of size k, cf. [57, Lemma 3.4.2]. In this subsection
we extend this characterisation to arbitrary graphs with respect to the combined
degree. Recall the definition of the combined degree, ∆pωq :“ degpωq ` dompωq.

In arbitrary graphs ω-defining sequences need not necessarily exist, e.g. in Kℵ1 .
We start by characterising the ends admitting such a sequence.
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Lemma B.5.1. Let ω P ΩpGq be an end. Then there is an ω-defining sequence
pSn | n P Nq if and only if ∆pωq ď ℵ0.
Moreover, this sequence can be chosen such that Si X Sj contains only vertices

dominating ω for all i ‰ j.

Proof. Note that for all finite S Ď V pGq, no d P Dompωq can lie in a component
C ‰ CpS, ωq of G´S. Hence for every ω-defining sequence pSn | n P Nq and every
d P Dompωq there is an N P N such that d P Sm for all m ě N . Therefore, if
dompωq ą ℵ0, no ω-defining sequence can exist, since the union of the separators
is at most countable. Moreover, note that for every ω-defining sequence every
ω-ray meets infinitely many distinct separators. It follows that degpωq is at most
countable as well if an ω-defining sequence exist.

For the converse, suppose ∆pωq ď ℵ0. Let tdn | n ă dompωqu be an enumeration
of Dompωq. Let R “ r0r1 . . . be an ω-devouring ray, which exist by Lemma B.2.7.
We build our desired ω-defining sequence pSn | n P Nq inductively. Set S0 :“ tr0u.
For n P N suppose Sn is already constructed as desired. Take a maximal set Pn
of pairwise disjoint NpSnzDompωqq –R paths in CpSn, ωq. Note that Pn is finite
since otherwise by the pigeonhole principle we would get a vertex v P SnzDompωq
dominating ω. Furthermore, Pn is not empty as CpSn, ωq is connected. Define

Sn`1 :“ pSn XDompωqq Y
ď

Pn

Y
 

rm | m is minimal with rm P CpSn, ωq
(

Y
 

dm | m is minimal with dm P CpSn, ωq
(

.

By construction, Sn`1 X Si contains only vertices dominating ω for i ď n. Let P
be any Sn –CpSn`1, ωq path. We can extend P in CpSn`1, ωq to a Sn –R path.
And since CpSn`1, ωq X Sn`1 is empty, we obtain P X Sn`1 ‰ H by construction
of Sn`1. Hence any Sn –CpSn`1, ωq path meets Sn`1. While for any vertex
v P CpSn`1, ωqzCpSn, ωq there is a path to CpSn, ωq X CpSn`1, ωq in CpSn`1, ωq,
this path would meet a vertex w P Sn. This vertex would be a trivial Sn –
CpSn`1, ωq path avoiding Sn`1, and hence contradicting the existence of such v.
Hence CpSn`1, ωq Ď CpSn, ωq.

Suppose there is a vertex v P
Ş

tCpSn, ωq | n P Nu. By construction v is neither
dominating ω nor is a vertex on R. Note that every v –R path has to contain
vertices from infinitely many Sn, hence it has to contain a vertex dominating ω. For
each d P Dompωq let Pd be either the vertex set of a v –Dompωq path containing d
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if it exist, or Pd “ H otherwise. If X :“
Ť

tPd | d P Dompωqu is finite, we can
find an N P N such that v P X Ď G´ CpSN , ωq, a contradiction. Otherwise
apply Lemma B.2.4 to X XDompωq in GrXs. Note that in GrXs all vertices of
X X Dompωq have degree 1. Furthermore, we know that V pRq XX Ď Dompωq,
since no Pd contains a vertex of R as an internal vertex. But then the centre of
a star would be a vertex dominating ω in XzDompωq and the spine of a comb
would contain an ω-ray disjoint to R as a tail, again a contradiction.

In the proof of the end-degree characterisation via ω-defining sequences we shall
need the following fact regarding the relationship of degpωq and dompωq.

Lemma B.5.2. If degpωq is uncountable for ω P ΩpGq, then dompωq is infinite.

Proof. Suppose for a contradiction that dompωq ă ℵ0. For G1 :“ G ´ Dompωq
let R be a set of disjoint ωæG1-rays of size ℵ1, which exist by Remark B.2.6.
Let T be a transversal of tV pRq | R P Ru. Applying Lemma B.2.4 to T yields a
subdivided star with centre d and uncountably many leaves in T . Now d R Dompωq
dominates ωæG1 in G1 and hence ω in G by Remark B.2.6, a contradiction.

Let ω P ΩpGq be an end with dompωq “ 0, pSn | n P Nq be an ω-defining sequence
and R be a set of disjoint ω-rays. We call ppSn | n P Nq,Rq a degree witnessing
pair for ω, if for all n P N and for each s P Sn there is a ray R P R containing
s and every ray R P R meets Sn at most once for every n P N. Note that this
definition only makes sense for undominated ends, since a ray that contains a
dominating vertex meets eventually all separators not only in that vertex.

Lemma B.5.3. Let ω P ΩpGq be an end with dompωq “ 0. Then there is a degree
witnessing pair ppSn | n P Nq,Rq.

Proof. By Lemma B.5.1 and Lemma B.5.2 there exists an ω-defining sequence
pS 1n | n P Nq with disjoint sets.
We want to construct an ω-defining sequence pSn | n P Nq with the property,

that for all n P N and for all m ą n there are |Sn| many Sn –Sm paths in GrSn, Sms.
Let S0 be an S 10 –S 1fp0q separator for some fp0q P N which is of minimum order

among all candidates separating S 10 from S 1m for any m P N. Suppose we already
constructed the sequence up to Sn. Let Sn`1 be an S 1fpnq`1 –S 1fpn`1q separator
for some fpn` 1q ą fpnq ` 1 which is of minimum order among all candidates
separating S 1fpnq`1 and S 1m for any m ą fpnq ` 1.
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Note that Sm and Sn are disjoint for all m,n P N with n ‰ m and that
CpSn`1, ωq Ď CpS 1fpnq`1, ωq for all n P N. Hence pSn | n P Nq is an ω-defining
sequence with disjoint sets. Moreover, note that |Sn| ď |Sn`1| for all n P N, since
Sn`1 would have been a candidate for Sn as well. In particular, there is no
Sn –Sn`1 separator S of order less than |Sn| for every n P N, since this would also
have been a candidate for Sn. Hence by Theorem B.2.1 there is a set of |Sn| many
disjoint Sn –Sn`1 paths Pn in GrSn, Sn`1s.
Now the union

Ť

t
Ť

Pn | n P Nu is by construction a union of a set R of rays,
since the union of the paths in Pn intersect the union of the paths in Pm in precisely
Sn`1 if m “ n` 1 and are disjoint if m ą n` 1. These rays are necessarily ω-rays,
meet every separator at most once and every s P Sn is contained in one of them,
proving that ppSn | n P Nq,Rq is a degree witnessing pair for ω.

Corollary B.5.4. Let k P N and let ω P ΩpGq with dompωq “ 0. Then degpωq ě k

if and only if for every ω-defining sequence pSn | n P Nq the sets Sn eventually
have size at least k.

Proof. Suppose degpωq ě k. Let pSn | n P Nq be any ω-defining sequence. Then
each ray out of a set of k disjoint ω-rays has to go through eventually all Sn. For
the other direction take a degree witnessing pair ppSn | n P N,Rq. Now |R| ě k,
since eventually all Sn have size at least k.

Corollary B.5.5. Let k P N and let ω P ΩpGq with dompωq “ 0. Then degpωq “ k

if and only if k is the smallest integer such that there is an ω-defining sequence
pSn | n P Nq with |Sn| “ k for all n P N.

We can easily lift these results to ends dominated by finitely many vertices with
the following observation based on Remark B.2.6.

Remark B.5.6. Suppose dompωq ă ℵ0. Let G1 denote G´Dompωq.

(a) For every ωæG1-defining sequence pS 1n | n P Nq of G1 there is an ω-defining
sequence pSn | n P Nq of G with S 1n “ SnzDompωq for all n P N.

(b) For every ω-defining sequence pSn | n P Nq of G there is an ωæG1-defining
sequence pS 1n | n P Nq of G1 with S 1n “ SnzDompωq for all n P N.

Corollary B.5.7. Let k P N and let ω P ΩpGq. Then ∆pωq ě k if and only if for
every ω-defining sequence pSn | n P Nq the sets Sn eventually have size at least k.
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Proof. As noted before, each vertex dominating ω has to be in eventually all sets
of an ω-defining sequence.
Suppose ∆pωq ě k. If dompωq ě ℵ1, then there is no ω-defining sequence and

there is nothing to show. If dompωq “ ℵ0, then the sets of any ω-defining sequence
eventually have all size at least k. If dompωq ă ℵ0, we can delete Dompωq and
apply Corollary B.5.4 to G´Dompωq with k1 “ degpωq. With Remark B.5.6 (b)
the claim follows.

If ∆pωq ă k, we can delete Dompωq and apply Corollary B.5.4 with k1 “ degpωq.
With Remark B.5.6 (a) the claim follows.

Corollary B.5.8. Let k P N and let ω P ΩpGq. Then ∆pωq “ k if and only if k
is the smallest integer such that there is an ω-defining sequence pSn | n P Nq with
|Sn| “ k for all n P N.

Proof. As before, we delete Dompωq and apply Corollary B.5.5 with k1 “ degpωq
and Remark B.5.6.

Finally, we state more remarks on the relationship between degpωq and dompωq
similar to Lemma B.5.2 without giving the proof.

Remarks B.5.9. Let κ1, κ2 be infinite cardinals and let k1, k2 P N.

(1) If dompωq is infinite, then so is degpωq for every ω P ΩpGq.

(2) If ∆pωq is uncountable, then both degpωq and dompωq are infinite for every
ω P ΩpGq.

(3) There is a graph with an end ω1 such that degpω1q “ κ1 and dompω1q “ κ2,
namely the union of the complete bipartite graph KpA,Bq with |A| “ κ1,
|B| “ κ2 with the complete graph on A.

(4) There is a graph with an end ω1 such that degpω1q “ k1 and dompω1q “ k2.

(5) There is a graph with an end ω1 such that degpω1q “ ℵ0 and dompω1q “ k2.

B.5.2. Constructing uniformly connected rays

Let ω P ΩpGq and let I, J be disjoint finite sets with 1 ď |I| ď degpωq and
0 ď |J | ď dompωq. Let R “ pRi | i P Iq be a family of disjoint ω-rays and let
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D “ pdj P Dompωq | j P Jq of distinct vertices disjoint from
Ť

R. Let T be a tree
on I Y J such that J is a set of leaves of T . Let W :“

Ť

RYD and k :“ |I Y J |.
We call a finite subgraph Γ Ď G a pT, T2q-connection, if if T2 is a simple type-2
k-template for pT, Jq, and there is a set P of internally disjoint W –W paths such
that Γ Ď

Ť

RY
Ť

P and Γ is isomorphic to a subdivision of T pT2q. Moreover, the
subdivision of viKPiviJ is the segment Ri X Γ for all i P I such that viJ corresponds
to the top vertex of that segment. Then pR,Dq is called pT, T2q-connected if for
every finite X Ď V pGqzD there is a pT, T2q-connection avoiding X.

Lemma B.5.10. Let ω P ΩpGq, let R “ pRi | i P Iq be a finite family of disjoint
ω-rays with |I| ě 1 and let D “ pdj P Dompωq | j P Jq be a finite family of distinct
vertices disjoint from

Ť

R with I X J “ H. Then there is a tree T on I Y J and a
simple type-2 |I Y J |-template T for pT, Jq such that pR,Dq is pT, T q-connected.

Proof. Let X Ď V pGqzD be any finite set. We extend X to a finite superset X 1

such that Ri XX
1 is an initial segment of Ri for each i P I, and such that D Ď X 1.

As all rays in R are ω-rays, we can find finitely many
Ť

R –
Ť

R paths avoiding X 1

which are internally disjoint such that their union with
Ť

R is a connected subgraph
of G. Moreover it is possible to do this with a set P of |I|´ 1 many such paths
in a tree-like way, i.e. contracting a large enough finite segment avoiding X 1 of
each ray in R and deleting the rest yields a subdivision Γ1X of a tree on I whose
edges correspond to the paths in P. For each vertex dj we can moreover find a
dj –

Ť

R path avoiding V pΓ1Xq YX 1ztdju and all paths we fixed so far. This yields
a tree TX on I Y J and a simple type-2 k-template TX for pTX , Jq such that J is a
set of leaves and a pTX , TXq-connection ΓX avoiding X.

Now we iteratively apply this construction to find a family pΓi | i P Nq of pTi, Tiq-
connections such that Γm ´D and Γn ´D are disjoint for all m,n P N with m ‰ n.
By the pigeonhole principle we now find a tree T on I Y J , a type-2 |I Y J |-
template T and an infinite subset N Ď N such that pTn, Tnq “ pT, T q for all n P N .

Now for each finite set X Ď V pGqzD there is an n P N such that Γn and X are
disjoint, hence pR,Dq is pT, T q-connected.

Corollary B.5.11. Let ω P ΩpGq, let R “ pRi | i P Iq be a finite family of disjoint
ω-rays with |I| ě 1 and let D “ pdj P Dompωq | j P Jq be a finite family of distinct
vertices disjoint from

Ť

R with I X J “ H. Then there is a tree T such that G
contains a subdivision of a generalised NpT {Jq.
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Proof. By Lemma B.5.10 there is a tree T and a simple type-2 |I Y J |-template T
such that pR,Dq is pT, T q-connected. Let pΓi | i P Nq be a family of pT, T q-
connections such that Γm ´D and Γn ´D are disjoint for all m,n P N with m ‰ n.
Then H “

Ť

tΓn | n P Nu Y
Ť

R is the desired subdivision.

Finally, this result can be lifted to the minor setting by Lemma B.4.3.

Corollary B.5.12. Let ω P ΩpGq, let R “ pRi | i P Iq be a finite family of disjoint
ω-rays with |I| ě 1 and let D “ pdj P Dompωq | j P Jq be a finite family of distinct
vertices disjoint from

Ť

R with I X J “ H. Then there is a tree T such that G
contains NpT {Jq as an fbs-minor.

B.6. Minors for regular cardinalities

This section is dedicated to prove the equivalence of (a), (b) and (c) of Theo-
rem B.3.7 for regular cardinals κ.

B.6.1. Complete bipartite minors

In this subsection we construct the complete bipartite graph Kk,κ as the desired
minor (and a generalised version as the desired subdivision), if possible. The ideas
of this construction differ significantly from Halin’s construction [31, Thm. 9.1] of
a subdivision of Kk,κ in a k-connected graph of uncountable and regular order κ.

Lemma B.6.1. Let k P N, let A Ď V pGq be infinite and k-connected in G and let
κ ď |A| be a regular cardinal. If

• either κ is uncountable;

• or there is no end in the closure of A;

• or there is an end ω in the closure of A with dompωq ě k;

then there is a subset A1 Ď A with |A1| “ κ such that Kk,κ is an fbs-minor of G
with A1 along its core.

Moreover, the branch sets for the vertices of the finite side of Kk,κ are singletons.
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Proof. We iteratively construct a sequence of subgraphs Hi for i P r0, kq witnessing
that Ki,κ is a minor of G. Furthermore, we incorporate that the branch sets for
the vertices of the finite side of Ki,κ are singletons tvj | j P r0, iqu and the branch
sets for the vertices of the infinite side induce finite trees on Hi each containing a
vertex of A. Moreover, we will guarantee the existence of a subset Ai Ď A with
|Ai| “ |A| which is 1-connected in Gi :“ G´ tvj | j P r0, iqu and such that each
vertex of Ai is contained in a branch set of Hi and each branch set of Hi contains
precisely one vertex of Ai.
Set G0 :“ G, A0 :“ A and H0 “ GrAs. For any i P r0, kq we inductively apply

Lemma B.2.4 (and in the third case also Remark B.2.5) to Ai in Gi to find a
subdivided star Si with centre vi and κ many leaves Li Ď Ai. Without loss of
generality we can assume vi R V pHiq, since otherwise we could just remove the
branch set containing vi and from Ai the vertex contained in that branch set.
Moreover, by Lemma B.4.4 we find a subset L1i Ď Li with |L1i| “ κ which is
1-connected in Gi`1. First we remove from Hi every branch set which corresponds
to a vertex of the infinite side of Ki,κ and does not contain a vertex of L1i. Now
each path in Si from a neighbour of vi to Li eventually hits a vertex of one of
the finite trees induced by one of the remaining branch sets of Hi. Since all these
paths are disjoint, only finitely many of them meet the same branch set first. Thus
κ many different of the remaining branch sets are met by those paths first. To
get Hi`1 we do the following. First we add tviu as a new branch set. Then each of
the κ many branch sets reached first as described above we extend by the path
segment between vi and that branch set of precisely one of those paths. Finally, we
delete all remaining branch sets not connected to tviu. With Ai`1 :“ L1i X V pHi`1q

we now have all the desired properties.
Finally, setting H :“ Hk and A1 :“ Ak finishes the construction.

Let H be an inflated subgraph witnessing that Kk,κ “ Kpr0, kq, Zq is an fbs-
minor of G with A along Z for some A Ď V pGq where each branch set of x P r0, kq
is a singleton. Given a type-1 k-template T1 “ pT, γ, cq we say H is T1-regular if
for each z P Z:

• there is an isomorphism ϕz : T 1z Ñ Tz between a subdivision T 1z of T and the
finite tree Tz “ HrBpzqs;

• xϕzpγpxqq P EpHq for each x P r0, kq; and
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• AXBpzq “ tϕzpcqu.

We say G contains Kk,κ as a T1-regular fbs-minor with A along Z if there is such a
T1-regular H.

Lemma B.6.2. Let k P N and κ be a regular cardinal. If Kk,κ is an fbs-minor of
G with A1 along its core where each branch set of x P r0, kq is a singleton, then
there is type-1 k-template T1 and A2 Ď A1 with |A2| “ κ such that G contains Kk,κ

as a T1-regular fbs-minor with A2 along its core.

Proof. Let H be the inflated subgraph witnessing that Kk,κ is an fbs-minor as in
the statement. Let x also denote the vertex of G in the branch setBpxq of x P r0, kq.
Let vzx P Bpzq denote the unique endvertex in Bpzq of the edge corresponding
to xz P EpMq (cf. Section B.2). Let Tz denote a subtree of HrBpzqs contain-
ing Bz “ tv

z
x | x P r0, kqu Y tazu for the unique vertex az P AXBpzq. Without

loss of generality assume that each leaf of Tz is in Bz. By suppressing each degree 2
node of Tz that is not in Bz, we obtain a tree suitable for a type-1 k-template
where az is the node in the third component of the template.

By applying the pigeonhole principle multiple times there is a tree T such that
there exist an isomorphism ϕz : T 1z Ñ Tz for a subdivision T 1z of T for all z P Z 1

for some Z 1 Ď Z with |Z 1| “ κ, such that tϕzpvzxq | z P Z 1u is a singleton ttxu for
all x P r0, kq and tϕzpazq | z P Z 1u is a singleton tcu.

Therefore with γ : r0, kq Ñ V pT q defined by x ÞÑ tx and c defined as above, we
obtain a type-1 k-template T1 :“ pT, γ, cq such that the subgraph H 1 of H where
we delete each branch set for z P ZzZ 1 is T1-regular.

Hence, we also obtain a subdivision of a generalised Kk,κ.

Corollary B.6.3. In the situation of Lemma B.6.1, there is A2 Ď A1 with |A2| “ κ

such that G contains a subdivision of a generalised Kk,κ with core A2.

B.6.2. Minors for regular k-blueprints

In this subsection we construct the k-typical minors for regular k-blueprints, if
possible. While these graphs are essentially the same minors given by Oporowski,
Oxley and Thomas [49, Thm. 5.2], we give our own independently developed proof.
The first lemma constructs such a graph along some end of high combined

degree.
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Lemma B.6.4. Let ω P ΩpGq be an end of G with ∆pωq ě k P N. Let A Ď V pGq

be a set with ω in its closure. Then there is a countable subset A1 Ď A and a
regular k-blueprint B such that G contains a subdivision of a generalised TkpBq
with core A1.

Proof. Let I, J be disjoint sets with |I Y J | “ k and |I| ě 1. Let R “ pRi | i P Iq

be a family of disjoint ω-rays and D “ pdj P Dompωq | j P Jq be a family of distinct
vertices disjoint from

Ť

R. Applying Lemma B.5.10 yields a tree B on I Y J

and a type-2 k-template T for pB, Jq such that pR,Dq is pB, T q-connected. Let
pΓi | i P Nq denote the family of pB, T q-connections as in the proof of Lemma B.5.10.
Moreover, there is an infinite set of disjoint A –

Ť

R paths by Theorem B.2.2 since ω
is in the closure of A. Now any infinite set of disjoint A –

Ť

R paths has infinitely
many endvertices on one ray Rc for some c P I. Let A2 denote the endvertices
in A of such an infinite path system. Next we extend for infinitely many Γi the
segment of Rc that it contains so that it has the endvertex of such an A2 –Rc path
as its top vertex and add that segment together with the path to Γi, while keeping
them disjoint but for D. Let A1 denote the set of those endvertices of the paths
in A2 we used to extend Γi for those infinitely many i P N. Finally, we modifying
the type-2 k-template accordingly. We obtain the subdivision of the generalised
TkpB, J, cq as in the proof of Corollary B.5.11.

The following lemma allows us to apply Lemma B.6.4 when Lemma B.6.1 is not
applicable.

Lemma B.6.5. Let k P N, let A Ď V pGq be infinite and k-connected in G and
let ω P ΩpGq be an end in the closure of A. Then ∆pωq ě k.

Proof. We may assume that ∆pGq is finite. Hence without loss of generality A
does not contain any vertices dominating ω. Let pSn | n P Nq be an ω-defining
sequence, which exists by Lemma B.5.1. Take N P N such that there is a set
B Ď AzCpSN , ωq of size k. For every n ą N let Cn Ď AX CpSn, ωq be a set of
size k, which exists since ω is in the closure of A. Since A is k-connected in G,
there are k disjoint B –Cn paths in G, each of which contains at least one vertex
in Sn. Hence for all n ą N we have |Sn| ě k and by Corollary B.5.7 we have
∆pωq ě k.
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We close this subsection with a corollary that is not needed in Section B, but
provides a converse for Lemma B.6.5 as an interesting observation.

Corollary B.6.6. Let ω P ΩpGq be an end of G with ∆pωq ě k P N. Then every
subset A Ď V pGq with ω in the closure of A contains a countable subset A1 Ď A

which is k-connected in G.

Proof. By Lemma B.6.4 we obtain a subdivision of a generalised TkpBq with core
A1 for some A1 Ď A in G for a regular k-blueprint B. Corollary B.3.6 yields the
claim.

B.6.3. Characterisation for regular cardinals

Now we have developed all the necessary tools to prove the minor and topological
minor part of the characterisation in Theorem B.3.7 for regular cardinals.

Theorem B.6.7. Let G be a graph, let k P N, let A Ď V pGq be infinite and let
κ ď |A| be a regular cardinal. Then the following are equivalent.

(a) There is a subset A1 Ď A with |A1| “ κ such that A1 is k-connected in G.

(b) There is a subset A2 Ď A with |A2| “ κ such that

‚ either Kk,κ is an fbs-minor of G with A2 along its core;

‚ or TkpBq is an fbs-minor of G with A2 along its core for some regular
k-blueprint B.

(c) There is a subset A3 Ď A with |A3| “ κ such that

‚ either G contains a subdivision of a generalised Kk,κ with core A3;

‚ or G contains the subdivision of a generalised TkpBq with core A3 for
some regular k-blueprint B.

Moreover, if these statements hold, we can choose A1 “ A2 “ A3.

Proof. If (b) holds, then A2 is k-connected in G by Lemma B.4.2 together with
Lemma B.3.4.
If (a) holds, then we can find a subset A3 Ď A1 with |A3| “ κ yielding (c) by

either Lemma B.6.1 and Corollary B.6.3 or by Lemma B.6.5 and Lemma B.6.4.
If (c) holds, then so does (b) by Lemma B.4.3 with A2 :“ A3. Moreover, A3 is a

candidate for both A2 and A1.
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B.7. Minors for singular cardinalities

In this section we will prove the equivalence of (a), (b) and (c) of Theorem B.3.7
for singular cardinals κ.

B.7.1. Cofinal sequence of regular bipartite minors with
disjoint cores.

In this subsection, given a k-connected set A of size κ, we will construct an
`–Kpk,Kq minor in G for some suitable ` P r0, ks and good κ-sequence K with
a suitable subset of A along its precore. This minor is needed as an ingredient
for any of the possible k-typical graphs but the Kk,κ (which we obtain from the
following lemma if ` “ k). Let A “ pAα Ď A | α P cf κq be a family of disjoint
subsets of A. We say that G contains `–Kpk,Kq as an fbs-minor with A along its
precore Z if the map mapping each vertex of the inflated subgraph to its branch
set induces a bijection between Aα and Zα for all α P cf κ.

Lemma B.7.1. Let k P N, let A Ď V pGq be infinite and k-connected in G and
let κ ď |A| be a singular cardinal. Then there is an ` P r0, ks, a good κ-sequence
K “ pκα ă κ | α P cf κq, and a family A “ pAα Ď A | α P cf κq of pairwise disjoint
subsets of A with |Aα| “ κα such that G contains `–Kpk,Kq as an fbs-minor with A
along Z. Moreover, the branch sets for the vertices in

Ť

Y are singletons

Proof. We start with any good κ-sequence K “ pκα ă κ | α P cf κq. We construct
the desired inflated subgraph by iteratively applying Lemma B.6.1.
For α P cf κ suppose we have already constructed for each β ă α an inflated

subgraph Hβ witnessing that Kk,κβ is an fbs-minor of G with some Aβ Ď A along
its core. Furthermore, suppose that the branch sets of the vertices of the finite side
are singletons and the branch sets of the vertices of the infinite side are disjoint
to all branch sets of Hγ for all γ ă β. We apply Lemma B.6.1 for κα to any set
A1 Ď Az

Ť

βăαA
β of size κα to obtain an inflated subgraph for Kk,κα with the

properties as stated in that lemma. If any branch set for a vertex of the infinite
side meets any branch set we have constructed so far, we delete it. Since κα is
regular and κα ą cf κ, the union of all inflated subgraphs we constructed so far has
order less than κα. We obtain that the new inflated subgraph (after the deletions)
still witnesses that Kk,κα is an fbs-minor of G with some Aα Ď A1 along its core.
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If a branch set for the finite side meets any branch set of a vertex for the infinite
side for some β ă α, we delete that branch set and modify Aβ accordingly. As the
union of all branch sets for the finite side we will construct in this process has
cardinality cf κ, each Aβ will loose at most cf κ ă κβ many elements, hence will
remain at size κβ for all β P cf κ. We denote the sequence pAα | α P cf κq with A.

By Lemma B.2.8 there is an ` ď k and an I Ď cf κ with |I| “ cf κ such that Hα

and Hβ have precisely ` branch sets for the vertices of the finite side in common
for all α, β P I. Hence relabelling the subsequences KæI and AæI to KæI and AæI
respectively as discussed in Section B.3 yields the claim, where the union of the
respective subgraphs Hα is the witnessing inflated subgraph.

B.7.2. Frayed complete bipartite minors

In this subsection we will construct a frayed complete bipartite minor, if possible.
We shall use an increasing amount of fixed notation in this subsection based
on Lemma B.7.1, which we will fix as the situation in which we continue our
construction.

Situation B.7.2. Let k P N, let A Ď V pGq be infinite and k-connected in G and
let κ ď |A| be a singular cardinal. Let ` ď k and let

• K “ pκα ă κ | α P cf κq be a good κ-sequence; and

• A “ pAα | α P cf κq be a family of pairwise disjoint subsets of A such that
|Aα| “ κα.

Let H be an inflated subgraph witnessing that G contains `–Kpk,Kq as an fbs-
minor with A along Z as in Lemma B.7.1. To simplify our notation, we denote
the unique vertex of H in a branch set of yαi also by yαi for all α P cf κ and i ă k.
Similarly, we denote the set tyαi P V pHq | i P r0, kqu also with Y α for all α P cf κ,
and denote the family pY α Ď V pHq | α P cf κq with Y. Moreover, let Hα denote
the subgraph of H witnessing that KpY α, Zαq is an fbs-minor of G with Aα

along Zα. Finally, let D` “ tyi | i P r0, `qu “
Ş

tV pHαq | α P cf κu denote the set
of degenerate vertices of `–Kpk,Kq.

For a set U Ď V pGq and α P cf κ, a Y α –U bundle Pα is the union
Ť

tPα
i | i P r0, kqu of k disjoint paths, where Pα

i Ď G is a (possibly trivial) Y α –U
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path starting in yαi P Y α and ending in some uαi P U . A family P “ pPα | α P cf κq
of Y α –U bundles is a Y –U bundle if Pα ´ U and P β ´ U are disjoint for all
α, β P cf κ with α ‰ β. Note that if a Y –U bundle exists, then U contains D`.

A set U Ď V pGq distinguishes Y if whenever yαi and yβj are in the same component
of G´ U for α, β P cf κ and i, j P r0, kq, then α “ β.

Lemma B.7.3. If a set U Ď V pGq distinguishes Y, then there is a Y –U bundle
P.

Proof. Let U Ď V pGq distinguish Y . By definition every finite set separating Y α

from Y β in G also has to separate Aα from Aβ. Since A is k-connected in G, there
are also k disjoint Y α –Y β paths in G by Theorem B.2.1. Hence we fix the initial
Y α –U segments of these paths for each α P cf κ, which are disjoint outside of U by
the assumption that U distinguishes Y . This yields the desired Y –U bundle.

For a cardinal λ, a set W Ď V pGq is λ-linked to a set U Ď V pGq, if for ev-
ery w P W and every u P U there are λ many internally disjoint w –u paths in G.
The following lemma is the main part of the construction.

Lemma B.7.4. In Situation B.7.2, suppose there is a set U Ď V pGq such that

• there is a Y –U bundle P “ pPα | α P cf κq; and

• there is a set W Ď U with |W | “ k such that W is cf κ-linked to U .

Then there is an I0 Ď cf κ with |I0| “ cf κ and a family A0 “ pA
α
0 Ď Aα | α P I0q

with |Aα0 | “ κα for all α P I0 such that `–FKk,κpKæI0q is an fbs-minor of G with A0

along ZæI0.

Proof. Let U , P and W be as above. By Lemma B.2.8 there is a j P r0, ks and a
subset I 1 Ď cf κ with |I 1| “ cf κ such that (after possibly relabelling the sets Y α

for all α P I 1 simultaneously) for every α, β P I 1 with α ‰ β

• yi “ uαi “ uβi for all i P r0, `q;

• xi :“ uαi “ uβi for all i P r`, `` jq; and

• uαi0 ‰ uβi1 for all i0, i1 P r`` j, kq.

Furthermore, after deleting at most j more elements from I 1 we obtain I2 such
that
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• uαi ‰ yαi for all i P r`, `` jq and all α P I2.

Note that if |U | ă cf κ, then `` j “ k and we set I0 :“ I2 and L :“ H.
Otherwise we construct subdivided stars with distinct centres in W . We start

with a k ´ `´ j element subset W 1 “ twi | i P r`` j, kqu Ď W disjoint from D`

and txi | i P r`, `` jqu. A subgraph L of G is a partial star-link if there is a set
IpLq Ď I2 such that L is the disjoint union of subdivided stars Si for all i P r`` j, kq
with centre wi and leaves uαi , and L is disjoint to Pα ´ tuαi | i P r`` j, kqu for
all α P IpLq. A partial star-link L is a star-link if |IpLq| “ cf κ. Note that the
union of a chain of partial star-links (ordered by the subgraph relation) yields
another partial star-link. Hence by Zorn’s Lemma there is a maximal partial
star-link M . Assume for a contradiction that M is not a star-link. Then the
set N “ V pMq Y

Ť

αPIpMq V pP
αq has size less than cf κ. Take some β P I 1zIpMq

such that M is disjoint to P β. Since W is cf κ-linked to U , we can find k ´ `´ j
disjoint W 1 – tuβi | i P r` ` j, kqu paths disjoint from NzW 1, contradicting the
maximality of M (after possibly relabelling). Hence there is a star-link L, and we
set I0 :“ IpLq.
Let HI0 denote the subgraph of H containing only the branch sets for vertices

in Y α Y Zα for α P I0. Since L Y
Ť

αPI0
Pα has size cf κ ă κα for all α P I0,

we can remove every branch set for some z P Zα meeting LY
Ť

αPI0
Pα and obtain

Aα0 Ď Aα with |Aα0 | “ κα. The union of the resulting subgraph with L and
Ť

αPI0
Pα

witnesses that `–FKk,κpKæI0q is an fbs-minor of G with A0 :“ pAα0 | α P I0q

along ZæI0.

As before, the previous lemma can be translated to find a desired subdivision of
a generalised `–FKk,κ.

Lemma B.7.5. In the situation of Lemma B.7.4, there is an I1 Ď I0 with |I1| “
cf κ and a family A1 “ pA

α
1 Ď Aα0 | α P I1q with |Aα1 | “ κα for all α P I1 such that

G contains a subdivision of a generalised `–FKk,κpKæI1q with core
Ť

A1.

Proof. Let H be the inflated subgraph witnessing that `–FKk,κpKæI0q is an fbs-
minor of G with A0 along its core. Let Hα Ď H be the subgraph corresponding
to the subgraph KpY α, Zαq of `–FKk,κpKæI0q for each α P I0. For each α P I0

we apply Lemma B.6.2 to Hα. By the pigeonhole principle there is a set I1 Ď I0

with |I1| “ cf κ such that the type-1 k-template we got is the same for each α P I1.
This yields the desired subdivision as for Corollary B.6.3.
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The remainder of this subsection is dedicated to identify when we can apply
Lemma B.7.4.

Lemma B.7.6. In Situation B.7.2, if either cf κ is uncountable or there is no end
in the closure of some transversal T of A, then there is a set U Ď V pGq with the
properties needed for Lemma B.7.4.

Proof. We start with a transversal T of A (whose closure does not contain any end
if cf κ is countable). We apply Lemma B.6.1 to T to obtain an inflated subgraph
witnessing that Kk,cf κ is an fbs-minor of G with T0 Ď T along its core. We call the
union of the singleton branch sets for the vertices of the finite side W “: U0. By
constructionW is cf κ-linked to U0. Let I0 denote the set tα P cf κ | |T0 X A

α| “ 1u.
We construct U inductively.

For some α ă κ we assume we already constructed a strictly Ď-ascending se-
quence pUβ | β ă αq such that W is cf κ-linked to Uβ for all β ă α. If there is
a subset I Ď I0 with |I| “ cf κ such that U 1 :“

Ť

βăα Uα distinguishes YæI, then
we are done by Lemma B.7.3 since by construction W is still cf κ-linked to U 1.
Otherwise there is a component of G´ U 1 containing a transversal Tα of YæIα for
some Iα Ď I0 with |Iα| “ cf κ. Applying Lemma B.2.4 to Tα yields a subdivided
star with centre uα and cf κ many leaves Lα Ď Tα. We then set Uα :“ U 1 Y tuαu.
By Theorem B.2.2 there are cf κ many internally disjoint w –uα paths for all w P W ,
since no set of size less than cf κ could separate uα from Lα, Lα from T0, or any
subset of size cf κ of T0 from w. Hence W is cf κ-linked to Uα and we can continue
the construction. This construction terminates at the latest if U 1 “ V pGq.

If cf κ is countable and there is an end in the closure of some transversal of A,
then there is still a chance to obtain an `–FKk,κ minor. We just need to check
whether G contains a Y –Dompωq bundle, since we have the following lemma.

Lemma B.7.7. For every end ω P ΩpGq, the set Dompωq is ℵ0-linked to itself.

Proof. Suppose there are u, v P Dompωq with only finitely many internally disjoint
u – v paths. Hence there is a finite separator S Ď V pGq such that u and v are
in different components of G´ S. Then at least one of them is in a different
component than CpS, ωq, a contradiction.

Hence, we obtain the final corollary of this subsection.
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Corollary B.7.8. In Situation B.7.2, suppose cf κ is countable and there is an
end ω in the closure of some transversal of A with domω ě k such that Dompωq
distinguishes Y. Then Dompωq satisfies the properties needed for Lemma B.7.4.

B.7.3. Minors for singular k-blueprints

This subsection builds differently upon Situation B.7.2 in the case where we do
not obtain the frayed complete bipartite minor. We incorporate new assumptions
and notation, establishing a new situation, which we will further modify according
to some assumptions that we can make without loss of generality during this
subsection.

Situation B.7.9. Building upon Situation B.7.2, suppose cf κ is countable and
there is an end ω in the closure of some transversal of A, i.e. an ω-comb whose
teeth are a transversal T of tAi | i P Ju for some infinite J Ď N. Suppose that

(˚) there is no YæI –Dompωq bundle for any infinite I Ď N.

In particular Dompωq does not distinguish YæJ by Lemma B.7.3. Hence there
is a component C of G´Dompωq containing a comb with teeth in YæJ , since a
subdivided star would yield a vertex dominating ω outside Dompωq. This comb
is an ω-comb since its teeth cannot be separated from T by a finite vertex set.
Without loss of generality we may assume that J “ N by redefining K, Y and A
as KæJ , YæJ and AæJ respectively.

Let G1 :“ GrCs and let ω1 be the end of G1 containing the spine of the aforemen-
tioned ω-comb in G1. Let S “ pSn | n P Nq be an ω1-defining sequence in G1 and
let R be a family of disjoint ω1-rays in G1 such that

`

S,R
˘

witnesses the degree of
the undominated end ω1 of G1, which exist by Lemma B.5.3. Moreover, we will
modify this situation with some assumptions that we can make without loss of
generality. We will fix them in some of the following lemmas and corollaries.
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Lemma B.7.10. In Situation B.7.9, we may assume without loss of generality
that for all n P N the following hold:

• Sn X
Ť

Y “ H; and

• Sn is contained in a component of G1rSn, Sn`1s.

Hence we include these assumptions into Situation B.7.9.

Proof. Given x, y P N we can choose n P N with n ě y and m P N with m ą n

such that Sn is contained in a component of G1rSn, Sms and Y x is disjoint to
Sn Y Sm. Note that it is possible to incorporate the first property since pS,Rq is
degree-witnessing in G1. Iteratively applying this observation yields subsequences
of S and Y . Taking the respective subsequences of K and A and relabelling all of
them accordingly as before yields the claim.

Lemma B.7.11. In Situation B.7.9, we may assume without loss of generality
that H ‰ Y nzDompωq Ď V pG1rSn, Sn`1sq for all n P N. Hence we include this
assumption into Situation B.7.9.

Proof. Note that Y nzDompωq “ H for only finitely many n P N by (˚). Moreover,
for all but finitely many n P N there is an xn P N such that Y nzDompωq meets
V pG1rSn, Sn`1sq since ω is in the closure of Y . Suppose that Y xnzDompωq is not
contained in V pG1rSn, Sn`1sq for some n P N. Since for any i, j P r0, kq with i ‰ j

there are κx many disjoint yxi – yxj paths in Hx, all but finitely many of them have
to traverse Dompωq. In particular, there is an Y x –Dompωq bundle in Hx. Such
a bundle trivially also exists if Y x Ď Dompωq. If this happens for all x in some
infinite I Ď N, then there is a YæI –Dompωq bundle in G, contradicting (˚). Hence
this happens at most finitely often. Again, relabelling and taking subsequences
yields the claim.

The following lemma allows some control on how we can find a set of disjoint
paths from Y n to the rays in R and has two important corollaries.

Lemma B.7.12. In Situation B.7.9, let R1 Ď R with |R1| “ minpdegpω1q, kq.
Then for all n ą 2k there is anM ą n such that for all m ěM there exists an Y n –
pDompωq Y pSm X

Ť

R1qq bundle P n,m with P n,m ´Dompωq Ď G1rSn´2k, Sms.
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Proof. Let n ą 2k be fixed. As in the proof of Lemma B.7.3 for each x ą 0 there
are k disjoint Y n –Y x´1 paths in G, whose union contains a Y n – pDompωq Y Sxq
bundle Qx in GrC YDompωqs. For Qn´2k, let M P N be large enough such
that Qn´2k ´Dompωq Ď G1rSn´2k, SM s, and let m ěM .
Suppose for a contradiction that there is a vertex set S of size less than k

separating Y n from Dompωq Y pSm X
Ť

R1q in GrV pG1rSn´2k, Smsq Y Dompωqs.
Then for at least one i P rn´ 2k, nq the graph G1rSi, Si`1s does not contain a
vertex of S. We distinguish two cases.

Suppose degpω1q ě k. Then S contains a vertex from every path of Qn´2k ending
in Dompωq, but does not contain a vertex from every path of Qn´2k. Let Q be
such a Y n –Sn´2k path avoiding S. Now Q meets Si by construction. There is at
least one ray R P R1 that does not contain a vertex of S. Since Si is contained
in a component of G1rSi, Si`1s and R X Si ‰ H, we can connect Q with R and
hence with Sm XR in G1rSi, Si`1s avoiding S, which contradicts the assumption.

Suppose degpω1q ă k, thenR1 “ R and hence Sm X
Ť

R1 “ Sm. As before, there
is a Y n –Sm path Q in Qm not containing a vertex of S. This path being contained
in G1rSn´2k, Sms would contradict the assumption. Hence we may assume the path
meets Sj for every j P rn´2k,ms and in particular Si. Let Q1 Ď Q denote Y n –Si

path in G1rSi, Sms, and let Q2 Ď Q denote Si –Sm path in G1rSi, Sms. As before,
we can connect Q1 and Q2 in G1rSi, Si`1s avoiding S, which again contradicts the
assumption.

Corollary B.7.13. In Situation B.7.9, let R1 Ď R with |R1| “ minpdegpω1q, kq.
Without loss of generality for all n P N there is a Y n – pDompωq Y pSn`1 X

Ť

R1qq
bundle P n such that P n ´Dompωq Ď G1rSn, Sn`1s ´ Sn. Hence we include this
assumption into Situation B.7.9.

Proof. We successively apply Lemma B.7.12 to obtain suitable subsequences.
Relabelling them yields the claim.

Corollary B.7.14. Situation B.7.9 implies dompωq ă k.

Proof. Suppose dompωq ě k. Then for every n ą 2k there is no Y n –Dompωq
separator S of size less than k by Lemma B.7.12, since m can be chosen such
that S X CpSm, ω1q “ H. Hence we can extend a path of the bundle in CpSm, ω1q.
Therefore, for each n ą 2k there is an m ą n such that we can find a Y n –Dompωq
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bundle P n,m such that P n,m ´Dompωq Ď G1rSn´2k, Sms, and consequently an
infinite subset I 1 Ď N such that pP n,m | n P I 1q is an YæI 1 –Dompωq bundle, con-
tradicting the assumption (˚) in Situation B.7.9.

This last corollary is quite impactful. From this point onwards, we know that
ω1 “ ωæpG´Dompωqq by Remark B.2.6.

Lemma B.7.15. In Situation B.7.9, we may assume without loss of generality
that for all n P N the following hold:

• Hn ´Dompωq Ď G1rSn, Sn`1s ´ pSn Y Sn`1q;

• Hn XDompωq “ D` Ď Y n.

Hence we include these assumptions into Situation B.7.9.

Proof. Note that Hn X G1rSn, Sn`1s ´ pSn Y Sn`1q ‰ H by Lemmas B.7.10
and B.7.11. We delete the finitely many branch sets of vertices corresponding to
the infinite side of Kk,κn in Hn containing a vertex of Dompωq, Sn or Sn`1. Since
the remaining inflated subgraph is connected, no branch set of the infinite side
meets a vertex outside of G1rSn, Sn`1s. Moreover, for all but finitely many n P N
the branch sets of vertices corresponding to the finite side of Hn that meet Dompωq
are precisely the singletons of the elements in D` by Corollary B.7.14. Deleting
the exceptions and relabelling accordingly yields the claims.

The next lemma reroutes some rays to find a bundle from Y n to those new rays
and dominating vertices with some specific properties.

Lemma B.7.16. In Situation B.7.9, there is a set R2 of |R1| disjoint ω1-rays in
G1 and a Y n – p

Ť

R2 Y Dompωqq bundle Qn for each n P N such that for every
R2 P R2

• there is an R1 P R1 with V pR2q X
Ť

S “ V pR1q X
Ť

S; and

• |Qn XR2| ď 2 for every n P N.

Hence we include references to these objects into Situation B.7.9.

Proof. Given n P N, let P n be as in Corollary B.7.13. Let P be a set of |R1|
disjoint Sn –Sn`1 paths in G1rSn, Sn`1s each with end vertices R1 X pSn Y Sn`1q
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for some R1 P R1. We call such a set P feasible. For a feasible P, let P npPq
denote the Y n – pDompωqY

Ť

Pq bundle contained in P n and let pnpPq denote the
finite parameter |pP n ´ P npPqq ´

Ť

P|. Note that tR1 XG1rSn, Sn`1s | R1 P R1u
is a feasible set. Now choose a feasible Pn such that pnpPnq is minimal and
let Qn :“ P npPnq.

Assume for a contradiction that there is a path P P Pn with |Qn X P | ą 2. Let
v0, v1 and v2 denote vertices in this intersection such that v1 P V pv0Pv2q. We
replace the segment v0Pv2 by the path consisting of the paths Qn

i and Qn
j that

contain v0 and v2 respectively, as well as any yni – ynj path in Hn avoiding the
finite set Dompωq YQn Y Sn Y Sn`1. The resulting set P is again feasible and the
parameter pnpPq is strictly smaller than pnpPnq, contradicting the choice of Pn.

Now let R2 be the set of components in the union
Ť

tPn | n P Nu. Indeed, this is
a set of ω1-rays that together with the bundles Qn satisfy the desired properties.

For m,n P N, we say Qm and Qn follow the same pattern, if for all i, j P r0, kq

• Qm
i and Qn

i either meet the same ray in R2 or the same vertex in Dompωq;

• if Qm
i and Qm

j both meet some R P R2 and Qm
i meets R closer to the start

vertex of R than Qm
j , then Qn

i meets R closer to the start vertex of R
than Qn

j .

Lemma B.7.17. In Situation B.7.9, we may assume without loss of generality
that

• there are k0, k1, f P N with 1 ď k0 ď degpω1q, 0 ď `` f ` k1 ď dompωq and
`` f ` k0 ` k1 “ k;

• there is a subset R0 Ď R2 with |R0| “ k0; and

• there are disjoint Df , D1 Ď DompωqzD` with |Df | “ f and |D1| “ k1;

such that for all m,n P N

(a) Qn is a Y n – p
Ť

R0 YD` YDf q bundle;

(b) Qn XDompωq “ Df YD`; and

(c) Qm and Qn follow the same pattern.
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Hence we include these assumptions and references to the existing objects into
Situation B.7.9.

Proof. Using the fact that Dompωq is finite, we apply the pigeonhole principle
to find a set Df Ď DompωqzD` and an infinite subset I Ď N such that (b) hold
for all n P I. Set f :“ |Df |. Applying it multiple times again, we find an infinite
subset I 1 Ď I such that (c) holds for all m,n P I 1. If |R2| ě k ´ `´ f , then set R0

to be any subset of R2 of size k ´ `´ f containing each ray that meets Qn

for any n P I 1. Otherwise set R0 :“ R2 and set k0 :“ |R0| “ degpω1q “ degpωq.
Now (a) holds by the choices of Df and R0. Since ∆pωq ě k by Lemma B.6.5,
there is a set D1 Ď DompωqzpD` YDf q of size k1 :“ k ´ `´ f ´ k0, completing the
proof.

Finally, we construct the subdivision of a generalised k-typical graph for some
singular k-blueprint.

Lemma B.7.18. In Situation B.7.9, there exists a singular k-blueprint
B “ p`, f, B,Dq for a tree B of order k0 ` k1 with |D| “ k0, such that G con-
tains a subdivision of a generalised TkpBqpKq with core

Ť

A.

Proof. We apply Lemma B.5.10 to R0 and D1 to obtain a simple type-2 k-template
T2, a tree B of order k0 ` k1 and a set D Ď V pBq with |D| “ k1 such that pR0, D1q

is pB, T2q-connected. For each n P N let Γn denote a pB, T2q-connection avoiding Sn,
DompωqzD1 as well as for each R P R0 its initial segment Rs for s P pSn X V pRqq.
Note that there is an m ą n such that Γn ´D1 Ď G1rSn, Sms ´ Sm. Hence Γn
and Γm`1 are disjoint to G1rSm, Sm`1s Ě Qm. For rays R P R0 with |Qm XR| ě 1,
we extend Γn on that ray to include precisely one vertex in the intersection as
well as with the corresponding path in Qm to Y m. If furthermore |Qm XR| “ 2,
we also extend Γm`1 on that ray to include the other vertex of the intersection
and with the corresponding path in Qm to Y m. Since Qm and Qn follow the same
pattern for all m,n P N by Lemma B.7.17, we can modify T2 to T 12 accordingly
to have infinitely many pB, T 12 q-connections which pairwise meet only in D1 and
contain Y n for each n P I for some infinite subset I Ď N. After relabelling and
setting B :“ p`, f, B,Dq, we obtain the subdivision of TkpBqpT 12 q as in the proof of
Corollary B.5.11.
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B.7.4. Characterisation for singular cardinals

Now we have developed all the necessary tools to prove the minor and topological
minor part of the characterisation in Theorem B.3.7 for singular cardinals.

Theorem B.7.19. Let G be a graph, let k P N, let A Ď V pGq be infinite and let
κ ď |A| be a singular cardinal. Then the following are equivalent.

(a) There is a subset A1 Ď A with |A1| “ κ such that A1 is k-connected in G.

(b) There is a subset A2 Ď A with |A2| “ κ such that

‚ either G contains an `-degenerate frayed Kk,κ as an fbs-minor with A2

along its core for some 0 ď ` ď k;

‚ or TkpBq is an fbs-minor of G with A2 along its core for a singular
k-blueprint B.

(c) There is a subset A3 Ď A with |A3| “ κ such that

‚ either G contains a subdivision of a generalised `–FKk,κ with core A3

for some 0 ď ` ď k;

‚ or G contains the subdivision of a generalised TkpBq with core A3 for
some singular k-blueprint B.

Moreover, if these statements hold, we can choose A1 “ A2 “ A3.

Proof. If (b) holds, then A2 is k-connected in G by Lemma B.4.2 together with
Lemma B.3.4.
Suppose (a) holds. Then we can either find a subset A3 Ď A1 with |A3| “ κ

and a subdivision of `–FKk,κpKq with core A3 for some good κ-sequence K by
Lemma B.7.4 and either Lemma B.7.6 or Corollary B.7.8. Otherwise, we can apply
Lemma B.7.18 to obtain A3 Ď A1 with |A3| “ κ and a subdivision of TkpBqpKq
with core A3 for some singular k-blueprint B and a good κ-sequence K. With
Remark B.3.5 we obtain the subdivision of the respective generalised k-typical
graph with respect to the fixed good κ-sequence.

If (c) holds, then so does (b) by Lemma B.4.3 with A2 :“ A3. Moreover, A3 is a
candidate for both A2 and A1.
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B.8. Applications of the minor-characterisation

In this section we will present some applications of the minor-characterisation of
k-connected sets.
As a first corollary we just restate the theorem for k “ 1, giving us a version

of the Star-Comb Lemma for singular cardinalities. For this, given a singular
cardinal κ, we call the graph FK1,κ a frayed star, whose centre is the vertex x0 of
degree cf κ and whose leaves are the vertices

Ť

Z. Moreover, we call the graph
T1p0, 0, ptcu,Hq,H, 0 ÞÑ pc, 0qq a frayed comb with spine Nc and teeth

Ť

Z. Note
that each generalised frayed star or generalised frayed comb contains a subdivision
of the frayed star or frayed comb respectively.

Corollary B.8.1 (Frayed-Star-Comb Lemma). Let U Ď V pGq be infinite and let
κ ď |U | be a singular cardinal. Then the following are equivalent.

(a) There is a subset U1 Ď U with |U1| “ κ such that U1 is 1-connected in G.

(b) There is a subset U2 Ď U with |U2| “ κ such that G either contains a
subdivided star or a subdivided frayed star whose set of leaves is U2 or a
subdivided frayed comb whose set of teeth is U2.

(Note that if cf κ is uncountable, only one of the former two can exist.)

Moreover, if these statements hold, we can choose U1 “ U2.

Even though this Frayed-Star-Comb Lemma has a much more elementary proof,
we state it here only as a corollary of our main theorem.

Now Theorems B.6.7 and B.7.19 give us the tools to prove the statement we
originally wanted to prove instead of Lemma B.4.4.

Corollary B.8.2. Let k P N, let A Ď V pGq be infinite and k-connected in G and
let κ ď |A| be an infinite cardinal. Then for every v P V pGq there is a subset
A1 Ď A with |A1| “ κ such that A1 is pk ´ 1q-connected in G´ v.

Proof. First we apply Theorem B.6.7 or Theorem B.7.19 to A to get a k-typical
graph T and an inflated subgraph H witnessing that T is an fbs-minor of G with
some A2 Ď A along its core such that |A2| “ κ. Let us call a vertex of T essential,
if either

• it is a vertex of the finite side of Kk,κ if T “ Kk,κ;
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• it is a degenerate vertex or frayed centre of `–FKk,κ if T “ `–FKk,κ for some
` P r0, ks; or

• it is a dominating vertex, a degenerate vertex or a frayed centre of TkpBq if
T “ TkpBq for some regular or singular k-blueprint B.

We distinguish four cases.
If v R V pHq, then H Ď G ´ v still witnesses that T is an fbs-minor of G ´ v

with A1 :“ A2 along its core.
If v belongs to a branch set of a vertex c of the core, then the inflated subgraph

obtained by deleting that branch set still yields a witness that T is an fbs-minor
of G´ v with A1 :“ A2ztcu along its core.
If v belongs to a branch set of an essential vertex w P V pT q, then the inflated

subgraph where we delete this branch set from H witnesses that the obvious
pk´ 1q-typical subgraph of T ´w is an fbs-minor of G´ v with A1 :“ A2 along its
core.
If v belongs to a branch set of a vertex w P V pNpB{Dq ´Dq, then we delete

the branch sets of the layers (not including D) up to the layer containing w and
relabelling accordingly (and modifying the κ-sequence if necessary). This yields
a supergraph of an inflated subgraph witnessing that T is an fbs-minor of G´ v
with A1 along its core for some A1 Ď A2 with |A1| “ κ. Similar arguments yield
the statement if v belongs to a branch set of a neighbour of a frayed centre.
In any case, with the other direction of Theorem B.6.7 or Theorem B.7.19 we

get that A1 is pk ´ 1q-connected in G´ v.

As another corollary we prove that we are able to find k-connected sets of
size κ in sets which cannot be separated by less than κ many vertices from
another k-connected set. This will be an important tool for our last part of the
characterisation in the main theorem of Section B.

Corollary B.8.3. Let k P N, let A,B Ď V pGq be infinite and let κ ď |A| be an
infinite cardinal. If B is k-connected in G and A cannot be separated from B by
less than κ vertices, then there is an A1 Ď A with |A1| “ κ which is k-connected
in G.

Proof. Let P be a set of κ many disjoint A –B paths as given by Theorem B.2.2.
Let B1 “ B X

Ť

P . Let H Ď G be an inflated subgraph witnessing that a k-typical
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graph is an fbs-minor of G with B2 along its core for some B2 Ď B1 with |B2| “ κ

as given by Theorem B.6.7 or Theorem B.7.19. Let P 1 denote the set of the A –H
subpaths of the A –B2 paths in P . We distinguish two cases.

If the k-typical graph is a TkpBq for some regular k-blueprint B “ pT,D, cq, then
(since each branch set in H is finite) there is an infinite subset P2 Ď P 1 and a node
c1 P V pT zDq such that each branch set in H of vertices in V pNc1q meets

Ť

P2 at
most once and no other branch set meets

Ť

P2. Let A1 :“
Ť

P2 X A. We extend
each of these branch sets with the path from P2 meeting it. This yields a subgraph
H 1 witnessing that TkpT,D, c1q is an fbs-minor of G with some A2 along its core
with A1 Ď A2.

Otherwise, since each branch set in H is finite, there is a subset P2 Ď P 1 of size κ
such that each branch set in H of vertices corresponding to the core meets

Ť

P2

at most once and no other branch set meets
Ť

P2. Let A1 :“
Ť

P2 X A. Again,
we extend each of these branch sets with the path from P2 meeting it. This yields
a subgraph H 1 witnessing that the same k-typical graph is an fbs-minor of G with
some A2 along its core such that A1 Ď A2 Ď A1 YB2.
Now applying Theorem B.6.7 or Theorem B.7.19 again together with Re-

mark B.4.1 yields the claim.

B.9. Nested separation systems

This section will finish the proof of Theorem B.3.7 by providing the last equivalence
of the characterisation.
Given k P N, a tree-decomposition of adhesion less than k is called k-lean if

for any two (not necessarily distinct) parts Vt1 , Vt2 of the tree-decomposition
and vertex sets Z1 Ď Vt1 , Z2 Ď Vt2 with |Z1| “ |Z2| “ ` ă k ` 1 there are either `
disjoint Z1 –Z2 paths in G or there is an edge tt1 on the t1 – t2 path in the tree
such that |Vt1 X Vt2 | ă `. In particular, given a k-lean tree-decomposition, each
part Vt is mintk, |Vt|u-connected in G.
In [9], the authors noted that the proof given in [4] of a theorem of Thomas

[60, Thm. 5] about the existence of lean tree-decompositions witnessing the tree-
width of a finite graph can be adapted to prove the existence of a k-lean tree-
decomposition of that graph.
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Theorem B.9.1. [9, Thm. 2.3] Every finite graph has a k-lean tree-decomposition
for any k P N.

This definition can easily be lifted to nested separation systems. A nested sepa-
ration system N Ď SkpGq is called k-lean if given any two (not necessarily distinct)
parts P1, P2 of N and vertex sets Z1 Ď P1, Z2 Ď P2 with |Z1| “ |Z2| “ ` ă k ` 1
there are either ` disjoint Z1 –Z2 paths in G or there is a separation pA,Bq in N
with P1 Ď A and P2 Ď B of order less than `. Here, we specifically allow the empty
set as a nested separation system to be k-lean if its part, the whole vertex set
of G, is mintk, |V pGq|u-connected. Again, we obtain that each part P of a k-lean
nested separation system is mintk, |P |u-connected in G. Moreover, note that the
nested separation system that a k-lean tree-decomposition induces as described in
Section B.2 is k-lean as well.

For a subset X Ď V pGq consider the induced subgraph GrXs. Every separation
of GrXs is of the form pAXX,B XXq for some separation pA,Bq of G. We
denote this separation also as pA,BqæX. Given a set S of separations of G we
write SæX for the set consisting of all separations pA,BqæX for pA,Bq P S such
that neither AXX nor B XX equals X.

Theorem B.9.2. For every graph G and every k P N there is a nested separation
system N Ď SkpGq such that each part P of N is minpk, |P |q-connected in G.

Proof. For every finite X Ď V pGq let N pXq denote the set of nested separation
systems NæX of GrXs such that there is a nested separation system N Ď SkpGrZsq

that is k-lean for a finite Z Ď V pGq containing X. Note that N pXq is not empty
by Theorem B.9.1 for every finite X Ď V pGq. Moreover, for every finite X Ď V pGq,
every N P N pXq and every Y Ď X we have NæY P N pY q by definition. Moreover,
given any finite set Y of finite subsets of V pGq we obtain for every N P N p

Ť

Yq
that NæY P N pY q for every Y P Y . Hence by the compactness principle there is a
set N of separations of G such that NæX P N pXq for every finite X Ď V pGq. It
is easy to check that each separation in N has order less than k and that N is a
nested separation system.
For some part P of N we consider two arbitrary vertex sets Z1, Z2 Ď P with
|Z1| “ |Z2| “ ` ď minpk, |P |q “: kP . For a suitable finite set X Ď V pGq contain-
ing Z1 Y Z2 these sets are in the same part of the k-lean tree-decomposition
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of GrXs inducing NæpZ1 Y Z2q. Hence there are kP many disjoint Z1 –Z2 paths
in GrXs and hence in G. Therefore P is kP connected in G.

Now we are able to prove the remaining equivalence of our main theorem of
Section B.

Theorem B.9.3. Let G be an infinite graph, let k P N, let A Ď V pGq be infinite
and let κ ď |A| be an infinite cardinal. Then the following are equivalent.

(a) There is a subset A1 Ď A with |A1| “ κ such that A1 is k-connected in G.

(d) There is no nested separation system N Ď SkpGq such that every part P of N
can be separated from A by less than κ vertices.

Proof. Assume that paq does not hold. Let N be a nested separation system as
obtained from Theorem B.9.2. Suppose for a contradiction that there exists a
part P of N that cannot be separated from A by less than κ vertices. Then P is
k-connected in G and has size at least κ. By Corollary B.8.3, there is a subset
A1 Ď A of size κ which is k-connected in G, a contradiction. Hence every part
of N can be separated from A by less than κ vertices, so (d) does not hold.
If (a) holds, let N Ď SkpGq be any nested separation system and let H be an

inflated subgraph witnessing that a k-typical graph T is an fbs-minor of G with
some A1 Ď A along its core for |A1| “ κ as in Theorem B.6.7 or Theorem B.7.19.
Now there has to be a part of N containing at least one vertex from each branch
set corresponding to the core of T , since no separation of size less than k can
separate two distinct such branch sets from each other by Lemma B.3.4. This part
has to have size at least κ, and the disjoint paths in each branch set from a vertex
of A1 to the part witness by Theorem B.2.2 that A cannot be separated by less
than κ vertices from that part.

Let us finish this section with an open problem regarding the question when it
is possible to extend this characterisation to tree-decompositions.

Problem B.9.4. For which class of infinite graphs is the existence of a k-connected
set of size κ equivalent to the non-existence of a tree-decomposition of adhesion
less than k where every part has size less than κ?
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We suspect that the class of locally finite connected graphs should be a solution
for Problem B.9.4, where κ is necessarily equal to ℵ0, since locally finite connected
graphs are countable.

78



C. Infinite end-devouring sets of rays
with prescribed start vertices

C.1. Introduction

Looking for spanning structures in infinite graphs such as spanning trees or
Hamilton cycles often involves difficulties that are not present when one considers
finite graphs. It turned out that the concept of ends of an infinite graph is crucial
for questions dealing with such structures. Especially for locally finite graphs, i.e.,
graphs in which every vertex has finite degree, ends allow us to define these objects
in a more general topological setting [13].
Nevertheless, the definition of an end of a graph is purely combinatorial: We

call one-way infinite paths rays and the vertex of degree 1 in them the start vertex
of the ray. For any graph G we call two rays equivalent in G if they cannot
be separated by finitely many vertices. It is easy to check that this defines an
equivalence relation on the set of all rays in the graph G. The equivalence classes
of this relation are called the ends of G and a ray contained in an end ω of G is
referred to as an ω-ray.
When we focus on the structure of ends of an infinite graph G, we observe

that normal spanning trees of G, i.e., rooted spanning trees of G such that the
endvertices of every edge of G are comparable in the induced tree-order, have a
powerful property: For any normal spanning tree T of G and every end ω of G
there is a unique ω-ray in T which starts at the root of T and has the property
that it meets every ω-ray of G, see [12, Sect. 8.2]. For any graph G, we say that
an ω-ray with this property devours the end ω of G. Similarly, we say that a set
of ω-rays devours ω if every ω-ray in G meets at least one ray out of the set. Note
that if a set of ω-rays devours ω, then every ω-ray R meets the union of that set
infinitely often, since each tail of R meets at least one ray out of the set.

End-devouring sets of rays are helpful for the construction of spanning structures
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such as infinite Hamilton cycles. For example, in a one-ended locally finite graph af-
ter removing an end-devouring set of rays, each component is finite. Thomassen [63]
used this fact to show that the square of each locally finite 2-connected one-ended
graph contains a spanning ray. Georgakopoulos [25] generalised this to locally
finite 2-connected graphs with arbitrary many ends by building some other kind
of spanning structure with the help of an end-devouring set of rays, which he
then used to construct an infinite Hamilton cycle in the square of such a graph.
He proved the following proposition about the existence of finite sets of rays
devouring any countable end, i.e., an end which does not contain uncountably
many disjoint rays. Note that the property of an end being countable is equivalent
to the existence of a finite or countably infinite set of rays devouring the end.

Proposition C.1.1. [25] Let G be a graph and ω be a countable end of G. If G
has a set R of k P N disjoint ω-rays, then it also has a set R1 of k disjoint ω-rays
that devours ω. Moreover, R1 can be chosen so that its rays have the same start
vertices as the rays in R.

For the proof of this proposition Georgakopoulos recursively applies a con-
struction similar to the one yielding normal spanning trees to find rays for the
end-devouring set. However, this proof strategy does not suffice to give a version
of this proposition for infinitely many rays. He conjectured that such a version
remains true [25, Problem 1]. We confirm this conjecture with the following
theorem, which also covers the proposition above.

Theorem C.1.2. Let G be a graph, ω a countable end of G and R any set of
disjoint ω-rays. Then there exists a set R1 of disjoint ω-rays that devours ω and
the start vertices of the rays in R and R1 are the same.

Note that, in contrast to the proposition, the difficulty of Theorem C.1.2 for an
infinite setR comes from fixing the set of start vertices, since any inclusion-maximal
set of disjoint ω-rays devours ω.
After introducing some additionally needed terminology in Section C.2, the

proof of Theorem 1 will feature in Section C.3. In Section C.4 we will see why this
theorem does not immediately extend to ends that contain an uncountable set of
disjoint rays. There we discuss an additional necessary condition on the set of
start vertices.
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C.2. Preliminaries

All graphs in Section C are simple and undirected. For basic facts about finite
and infinite graphs we refer the reader to [12]. If not stated differently, we also use
the notation of [12].
We define the union GYH of G and H as the graph pV pGq Y V pHq, EpGq Y

EpHqq.
Any ray T that is a subgraph of a ray R is called a tail of R. For a vertex v

and an end ω of a graph G we say that a vertex set X Ď V pGq separates v from ω

if there does not exist any ω-ray that is disjoint from X and contains v.
For a finite set M of vertices of a graph G and an end ω of G, let CpM,ωq

denote the unique component of G´M that contains a tail of every ω-ray.
Given a path or ray Q containing two vertices v and w we denote the unique

v –w path in Q by vQw. Furthermore, for Q being a v –w path we write vQ̄ for
the path that is obtained from Q by deleting w.
For a ray R that contains a vertex v we write vR for the tail of R with start

vertex v.
We use the following notion to abbreviate concatenations of paths and rays.

Let P be a v –w path for two vertices v and w, and let Q be either a ray or another
path such that V pP qXV pQq “ twu. Then we write PQ for the path or ray P YQ,
respectively. We omit writing brackets when stating concatenations of more than
two paths or rays.
The degree of an end ω of G, denoted by degpωq, is the maximum cardinality

of a set of disjoint ω-rays. Halin [30, Satz 1] showed that the degree of an end is
well-defined. Note that an end is countable if and only if its degree is either finite
or countably infinite.

C.3. Theorem

For the proof of Theorem C.1.2 we shall use the following characterisation of
ω-rays.

Lemma C.3.1. Let G be a graph, ω an end of G and Rmax an inclusion-maximal
set of pairwise disjoint ω-rays. A ray R Ď G is an ω-ray, if and only if it meets
rays of Rmax infinitely often.
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Proof. Let W denote the set
Ť

tV pRq ; R P Rmaxu.
If R is an ω-ray, then each tail of R meets a ray of Rmax since Rmax is inclusion-

maximal. Hence R meets W infinitely often.
Suppose for a contradiction that R is an ω1-ray for an end ω1 ‰ ω of G that

contains infinitely many vertices of W . Let M be a finite set of vertices such that
the two components C :“ CpM,ωq and C 1 :“ CpM,ω1q of G ´M are different.
By the pigeonhole principle there is either one ω-ray of Rmax containing infinitely
many vertices of V pC 1q X V pRq XW , or infinitely many disjoint rays of Rmax

containing those vertices. In both cases we get an ω-ray with a tail in C 1, since we
cannot leave C 1 infinitely often through the finite set M . But this contradicts the
definition of C.

A natural strategy for constructing up to infinitely many disjoint rays is to
inductively construct them in countably many steps. In each step we fix only
finitely many finite paths as initial segments instead of whole rays, while extending
previously fixed initial segments and ensuring that they can be extended to rays.
This strategy is for example used by Halin [30, Satz 1] to prove that the maximum
number of disjoint rays in an end is well-defined. Our proof of Theorem C.1.2 is
also based on that strategy. In order to guarantee that the set of rays we construct
turns out to devour the end, we also fix an inclusion-maximal set of vertex disjoint
rays of our specific end, so a countable set, and an enumeration of the vertices
on these rays. Then we try in each step to either contain or separate the least
vertex with respect to the enumeration that is not already dealt with from the
end with appropriately chosen initial segments if possible. Otherwise, we extend a
finite number of initial segments while still ensuring that all initial segments can
be extended to rays. Although it is impossible to always contain or separate the
considered vertex with our initial segments while being able to continue with the
construction, it will turn out that the rays we obtain as the union of all initial
segments actually do this.

Proof of Theorem C.1.2. Let us fix a finite or infinite enumeration tRj ; j ă |R|u
of the rays in R. Furthermore, let sj denote the start vertex of Rj for every j ă |R|
and define S :“ tsj ; j ă |R|u.
Next we fix an inclusion-maximal set Rmax of pairwise disjoint ω-rays and an

enumeration tvi ; i P Nu of the vertices in W :“
Ť

tV pRq ; R P Rmaxu. This is
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possible since ω is countable by assumption.
We do an inductive construction such that the following holds for every i P N:

1. P i
s is a path with start vertex s for every s P S.

2. P i
s “ s for all but finitely many s P S.

3. P i´1
s Ď P i

s for every s P S.

4. For every s “ sj P S with j ă minti, |R|u there is a wis P W X pP i
szP

i´1
s q.

5. P i
s and P i

s1 are disjoint for all s, s1 P S with s ‰ s1.

6. For every s P S there exists an ω-ray Ri
s with P i

s as initial segment and s as
start vertex such that all rays Ri

s are pairwise disjoint.

If possible and not spoiling any of the properties (1) to (6), we incorporate the
following property:

p˚q
Ť

sPS

P i
s either contains vi´1 or separates vi´1 from ω if i ą 0.

We begin the construction for i “ 0 by defining P 0
s :“ s “: P´1

s for every s P S.
All conditions are fulfilled as witnessed by R0

sj
:“ Rj for every j ă |R|.

Now suppose we have done the construction up to some number i P N. If we
can continue with the construction in step i ` 1 such that properties (1) to (6)
together with p˚q hold, we do so and define all initial segments P i`1

s and rays Ri`1
s

accordingly. Otherwise, we set for all s P S

P i`1
s :“ sRi

sw
i
s if s “ sj for j ă minti` 1, |R|u and

P i`1
s :“ P i

s otherwise,

where wis denotes the first vertex ofW on Ri
szP

i
s which exist by Lemma C.3.1. With

these definitions properties (1) up to (5) hold for i` 1. Witnessed by Ri`1
s :“ Ri

s

for every s P S we immediately satisfy (6) too. This completes the inductive part
of the construction.

Using the paths P i
s we now define the desired ω-rays of R1. We set R1s :“

Ť

iPN P
i
s

for every s P S and R1 :“ tR1s ; s P Su. Properties (1), (3) and (4) ensure that R1s
is a ray with start vertex s for every s P S, while we obtain due to property (5)
that all rays R1s are pairwise disjoint. Property (4) also ensures that all rays in R1

are ω-rays by Lemma C.3.1.
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It remains to prove that the setR1 devours the end ω. Suppose for a contradiction
that there exists an ω-ray R disjoint from

Ť

R1. By the maximality of our chosen
set of ω-rays Rmax, we know that R contains a vertex vj for some j P N. In
the next paragraph we will show how we could have proceeded in step j ` 1 to
incorporate property (˚) as well. For an easier understanding of the technical
definitions of that paragraph we refer to Figure C.1.

Without loss of generality, let vj be the start vertex of R. Let P be an R –
Ť

R1

path among those ones that are disjoint from
Ť

sPS sP̄
j`1
s for which vjRp is as short

as possible where p denotes the common vertex of P and R. Such a path exists,
because all rays in R1YtRu are equivalent and

Ť

sPS sP̄
j`1
s is finite by property (2).

Let t P S and q P V pGq be such that V pP q X V pR1tq “ tqu. Furthermore, let R˚

be an ω-ray with start vertex r˚ P R such that R˚ is disjoint from
Ť

sPS R
1
s and

P ppRr˚q XR˚ “ tr˚u for which vjRr˚ is as short as possible. Since p and pR are
candidates for r˚ and R˚, respectively, such a choice is possible. We define

P̂ j`1
t :“ ptR1tqqP ppRr˚q and R̂j`1

t :“ P̂ j`1
t R˚ ;

and replace in step j ` 1 the ray Rj`1
t by R̂j`1

t , the path P j`1
t by P̂ j`1

t and for
all s P Szttu the ray Rj`1

s by R1s while keeping P j`1
s as it was defined. By this

construction properties (1) to (6) are satisfied.
Now we show that p˚q holds as well. Suppose for a contradiction that there

exists an ω-ray Z disjoint from
´

Ť

sPSzttu P
j`1
s

¯

Y P̂ j`1
t with start vertex vj. First

note that Z is disjoint from r˚Rp Ď P̂ j`1
t . Let us now show that Z is also disjoint

from pR Y
Ť

sPS R
1
s. Otherwise, let z denote the first vertex along Z that lies in

pR Y
Ť

sPS R
1
s. However, z cannot be contained in pR, as this would contradict the

choice of r˚, and it cannot be an element of
Ť

sPS R
1
s since this would contradict the

choice of p. But now with Z being not only disjoint from pR Y
Ť

sPS R
1
s but also

from r˚Rp, we get again a contradiction to the choice of r˚. Hence, we would have
been able to incorporate property p˚q without violating any of the properties (1)
to (6) in step j ` 1 of our construction. This, however, is a contradiction since we
always incorporated property p˚q under the condition of maintaining properties (1)
to (6). So we arrived at a contradiction to the existence of the ray R since by p˚q
every ray containing vj meets the initial segments of rays fixed in our construction
at step j ` 1. Therefore, the set R1 devours the end ω.
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t
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Figure C.1.: Sketch of the situation above. The rays in R1 are drawn vertically,
with their fixed initial segments from step j ` 1. Horizontally drawn
is the ray R that is suppose to contradict that R1 devours ω with its
start vertex vj P W . The R –

Ť

R1 path P is chosen with its vertex p
on R as close to vj as possible. The ray R˚ is chosen disjoint to the
rays in R1 and except from its start vertex r˚ on R disjoint from the
initial segment of R upto p again with r˚ as close to vj as possible.
The ray R̂j`1

t is highlighted in grey with its initial segment fixed
upto r˚.
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C.4. Ends of uncountable degree

Given an end ω of some graph of uncountable degree, then by reasons of cardinality
it cannot be devoured by a set of ω-rays which is strictly smaller than the degree
of ω. But, unlike in the countable degree case, the the existence of a set of
degpωq many disjoint ω-rays is not sufficient for existence of a set of disjoint ω-rays
devouring ω with the same start vertices. We illustrate an obvious obstruction.

A separation of a graph G is a tuple pA,Bq with AYB “ V pGq such that there
are no edges between AzB and BzA. Suppose G contains a separation pA,Bq
such that both GrAzBs and GrBzAs contain a set of disjoint ω-rays of cardinality
more than |AXB|. At least one of GrAzBs or GrBzAs contains a set R of degpωq
many disjoint ω-rays, say GrBzAs. But no set R1 of disjoint ω-rays with the same
start vertices as the rays in R can devour ω since at most |AXB| many rays meet
vertices of AzB and hence cannot meet all ω-rays in GrAzBs.

For an easy example of this obstruction consider two sets A and B of size κ ą ℵ0

such that ℵ0 ď |AXB| ă κ and let G be the union of the complete graphs on A
and B. Then pA,Bq a separation where both GrAzBs and GrBzAs contain a set
of κ many disjoint rays to the unique end of G.
Hence we can state two necessary conditions for a set S Ď V pGq to be a set of

start vertices for a set of disjoint ω-rays devouring ω:

• there is a set R of disjoint ω-rays with S as its start vertices; and

• for each separation pA,Bq of G, if GrAzBs contains a set of more than
|AXB| disjoint ω-rays, then AzB contains a vertex of S.

Problem C.4.1. Are these conditions together also sufficient for the existence of
a set of disjoint ω-rays devouring ω with S as its start vertices?

Note that our construction for the proof of Theorem C.1.2, if continued trans-
finitely, might face numerous new problems at limit steps.
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D. Hamiltonicity in locally finite graphs:
two extensions and a counterexample

D.1. Introduction

Results about Hamilton cycles in finite graphs can be extended to locally finite
graphs in the following way. For a locally finite connected graph G we consider its
Freudenthal compactification |G| [12, 13]. This is a topological space obtained by
taking G, seen as a 1-complex, and adding certain points to it. These additional
point are the ends of G, which are the equivalence classes of the rays of G under
the relation of being inseparable by finitely many vertices. Extending the notion
of cycles, we define circles [17,18] in |G| as homeomorphic images of the unit circle
S1 Ď R2 in |G|, and we call them Hamilton circles of G if they contain all vertices
of G. As a consequence of being a closed subspace of |G|, Hamilton circles also
contain all ends of G. Following this notion we call G Hamiltonian if there is a
Hamilton circle in |G|.

One of the first and probably one of the deepest results about Hamilton circles
was Georgakopoulos’s extension of Fleischner’s theorem to locally finite graphs.

Theorem D.1.1. [23] The square of any finite 2-connected graph is Hamiltonian.

Theorem D.1.2. [25, Thm. 3] The square of any locally finite 2-connected graph
is Hamiltonian.

Following this breakthrough, more Hamiltonicity theorems have been extended to
locally finite graphs in this way [5, 8, 25, 32,35,36,43].
The purpose of Section D is to extend two more Hamiltonicity results about

finite graphs to locally finite ones and to construct a graph which shows that
another result does not extend.

The first result we consider is a corollary of the following theorem of Harary and
Schwenk. A caterpillar is a tree such that after deleting its leaves only a path is
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left. Let SpK1,3q denote the graph obtained by taking the star with three leaves,
K1,3, and subdividing each edge once.

Theorem D.1.3. [33, Thm. 1] Let T be a finite tree with at least three vertices.
Then the following statements are equivalent:

(i) T 2 is Hamiltonian.

(ii) T does not contain SpK1,3q as a subgraph.

(iii) T is a caterpillar.

Theorem D.1.3 has the following obvious corollary.

Corollary D.1.4. [33] The square of any finite graph G on at least three vertices
such that G contains a spanning caterpillar is Hamiltonian.

While the proof of Corollary D.1.4 is immediate, the proof of the following
extension of it, which is the first result of Section D, needs more work. We call
the closure H in |G| of a subgraph H of G a standard subspace of |G|. Extending
the notion of trees, we define topological trees as topologically connected standard
subspaces not containing any circles. As an analogue of a path, we define an arc as
a homeomorphic image of the unit interval r0, 1s Ď R in |G|. Note that for standard
subspaces being topologically connected is equivalent to being arc-connected by
Lemma D.2.5. For our extension we adapt the notion of a caterpillar to the space
|G| and work with topological caterpillars, which are topological trees T such that
T ´ L is an arc, where T is a forest in G and L denotes the set of vertices of degree
1 in T .

Theorem D.1.5. The square of any locally finite connected graph G on at least
three vertices such that |G| contains a spanning topological caterpillar is Hamilto-
nian.

The other two results of Section D concern the uniqueness of Hamilton circles.
The first is about finite outerplanar graphs. These are finite graphs that can be
embedded in the plane so that all vertices lie on the boundary of a common face.
Clearly, finite outerplanar graphs have a Hamilton cycle if and only if they are
2-connected. In a 2-connected graph call an edge 2-contractible if its contraction
leaves the graph 2-connected. It is also easy to see that any finite 2-connected
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outerplanar graph has a unique Hamilton cycle. This cycle consists precisely of the
2-contractible edges of the graph (except for the K3), as pointed out by Sysło [58].
We summarise this with the following proposition.

Proposition D.1.6. (i) A finite outerplanar graph is Hamiltonian if and only
if it is 2-connected.

(ii) [58, Thm. 6] Finite 2-connected outerplanar graphs have a unique Hamilton
cycle, which consists precisely of the 2-contractible edges unless the graph is
isomorphic to a K3.

Finite outerplanar graphs can also be characterised by forbidden minors, which
was done by Chartrand and Harary.

Theorem D.1.7. [11, Thm. 1] A finite graph is outerplanar if and only if it
contains neither a K4 nor a K2,3 as a minor.1

In the light of Theorem D.1.7 we first prove the following extension of state-
ment (i) of Proposition D.1.6 to locally finite graphs.

Theorem D.1.8. Let G be a locally finite connected graph. Then the following
statements are equivalent:

(i) G is 2-connected and contains neither K4 nor K2,3 as a minor.1

(ii) |G| has a Hamilton circle C and there exists an embedding of |G| into a
closed disk such that C is mapped onto the boundary of the disk.

Furthermore, if statements (i) and (ii) hold, then |G| has a unique Hamilton circle.

From this we then obtain the following corollary, which extends statement (ii) of
Proposition D.1.6.

Corollary D.1.9. Let G be a locally finite 2-connected graph not containing K4

or K2,3 as a minor, and not isomorphic to K3. Then the edges contained in the
Hamilton circle of |G| are precisely the 2-contractible edges of G.

1Actually these statements can be strengthened a little bit by replacing the part about not
containing a K4 as a minor by not containing it as a subgraph. This follows from Lemma D.4.1.
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We should note here that parts of Theorem D.1.8 and Corollary D.1.9 are
already known. Chan [10, Thm. 20 with Thm. 27] proved that a locally finite
2-connected graph not isomorphic to K3 and not containing K4 or K2,3 as a minor
has a Hamilton circle that consists precisely of the 2-contractible edges of the
graph. He deduces this from other general results about 2-contractible edges in
locally finite 2-connected graphs. In our proof, however, we directly construct the
Hamilton circle and show its uniqueness without working with 2-contractible edges.
Afterwards, we deduce Corollary D.1.9.

Our third result is related to the following conjecture Sheehan made for finite
graphs.

Conjecture D.1.10. [56] There is no finite r-regular graph with a unique Hamilton
cycle for any r ą 2.

This conjecture is still open, but some partial results have been proved [34,61, 64].
For r “ 3 the statement of the conjecture was first verified by C. A. B. Smith. This
was noted in an article of Tutte [66] where the statement for r “ 3 was published
for the first time.
For infinite graphs Conjecture D.1.10 is not true in this formulation. It fails

already with r “ 3. To see this consider the graph depicted in Figure D.1, called
the double ladder.

Figure D.1.: The double ladder

It is easy to check that the double ladder has a unique Hamilton circle, but all
vertices have degree 3. Mohar has modified the statement of the conjecture and
raised the following question. To state them we need to define two terms. We
define the vertex- or edge-degree of an end ω to be the supremum of the number of
vertex- or edge-disjoint rays in ω, respectively. In particular, ends of a graph G
can have infinite degree, even if G is locally finite.

Question D.1.11. [47] Does an infinite graph exist that has a unique Hamilton
circle and degree r ą 2 at every vertex as well as vertex-degree r at every end?
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Our result shows that, in contrast to Conjecture D.1.10 and its known cases,
there are infinite graphs having the same degree at every vertex and end while
being Hamiltonian in a unique way.

Theorem D.1.12. There exists an infinite connected graph G with a unique
Hamilton circle that has degree 3 at every vertex and vertex- as well as edge-degree
3 at every end.

So with Theorem D.1.12 we answer Question D.1.11 positively and, therefore,
disprove the modified version of Conjecture D.1.10 for infinite graphs in the way
Mohar suggested by considering degrees of both, vertices and ends.
The rest of Section D is structured as follows. In Section D.2 we establish

all necessary notation and terminology for Section D. We also list some lemmas
that will serve as auxiliary tools for the proofs of the main theorems of Section D.
Section D.3 is dedicated to Theorem D.1.5 where at the beginning of that section we
discuss how one can sensibly extend Corollary D.1.4 and which problems arise when
we try to extend Theorem D.1.3 in a similar way. In Section D.4 we present a proof
of Theorem D.1.8. Afterwards we describe how a different proof of this theorem
works which copies the ideas of a proof of statement (i) of Proposition D.1.6.
We conclude this section by comparing the two proofs. Section D.5 contains the
construction of a graph witnessing Theorem D.1.12.

D.2. Preliminaries

When we mention a graph during Section D we always mean an undirected and
simple graph. For basic facts and notation about finite as well as infinite graphs
we refer the reader to [12]. For a broader survey about locally finite graphs and a
topological approach to them see [13].
Now we list important notions and concepts that we shall need in Section D

followed by useful statements about them. In a graph G with a vertex v we denote
by δpvq the set of edges incident with v in G. Similarly, for a subgraph H of G or
just its vertex set we denote by δpHq the set of edges that have only one endvertex
in H. Although formally different, we will not always distinguish between a cut
δpHq and the partition pV pHq, V pGqzV pHqq it is induced by. For two vertices
v, w P V pGq let dGpv, wq denote the distance between v and w in G.
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We call a finite graph outerplanar if it can be embedded in the plane such that
all vertices lie on the boundary of a common face.
For a graph G and an integer k ě 2 we define the k-th power of G as the

graph obtained by taking G and adding additional edges vw for any two vertices
v, w P V pGq such that 1 ă dGpv, wq ď k.

A tree is called a caterpillar if after the deletion of its leaves only a path is left.
We denote by SpK1,3q the graph obtained by taking the star with three leaves

K1,3 and subdividing each edge once.
We call a graph locally finite if each vertex has finite degree.
A one-way infinite path in a graph G is called a ray of G, while we call a two-way

infinite path in G a double ray of G. Every ray contains a unique vertex that
has degree 1 it. We call this vertex the start vertex of the ray. An equivalence
relation can be defined on the set of rays of a graph G by saying that two rays are
equivalent if and only if they cannot be separated by finitely many vertices in G.
The equivalence classes of this relation are called the ends of G. We denote the
set of all ends of a graph G by ΩpGq.

The union of a ray R with infinitely many disjoint paths Pi for i P N each having
precisely one endvertex on R is called a comb. We call the endvertices of the paths
Pi that do not lie on R and those vertices v for which there is a j P N such that
v “ Pj the teeth of the comb.
The following lemma is a basic tool for infinite graphs. Especially for locally

finite graphs it helps us to get a comb whose teeth lie in a previously fixed infinite
set of vertex.

Lemma D.2.1. [12, Prop. 8.2.2] Let U be an infinite set of vertices in a connected
graph G. Then G contains either a comb with all teeth in U or a subdivision of an
infinite star with all leaves in U .

For a locally finite and connected graph G we can endow G together with its
ends with a topology that yields the space |G|. A precise definition of |G| can be
found in [12, Ch. 8.5]. Let us point out here that a ray of G converges in |G| to the
end of G it is contained in. Another way of describing |G| is to endow G with the
topology of a 1-complex and then forming the Freudenthal compactification [19].

For a point set X in |G|, we denote its closure in |G| by X. We shall often write
M for some M that is a set of edges or a subgraph of G. In this case we implicitly
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assume to first identify M with the set of points in |G| which corresponds to the
edges and vertices that are contained in M .
We call a subspace Z of |G| standard if Z “ H for a subgraph H of G.
A circle in |G| is the image of a homeomorphism having the unit circle S1 in

R2 as domain and mapping into |G|. Note that all finite cycles of a locally finite
connected graph G correspond to circles in |G|, but there might also be infinite
subgraphs H of G such that H is a circle in |G|. Similar to finite graphs we call a
locally finite connected graph G Hamiltonian if there exists a circle in |G| which
contains all vertices of G. Such circles are called Hamilton circles of G.

We call the image of a homeomorphism with the closed real unit interval r0, 1s
as domain and mapping into |G| an arc in |G|. Given an arc α in |G|, we call a
point x of |G| an endpoint of α if 0 or 1 is mapped to x by the homeomorphism
defining α. If the endpoint of an arc corresponds to a vertex of the graph, we also
call the endpoint an endvertex of the arc. Similarly as for paths, we call an arc
an x–y arc if x and y are the endpoints of the arc. Possibly the simplest example
of a nontrivial arc is a ray together with the end it converges to. However, the
structure of arcs is more complicated in general and they might contain up to 2ℵ0

many ends. We call a subspace X of |G| arc-connected if for any two points x and
y of X there is an x–y arc in X.
Using the notions of circles and arc-connectedness we now extend trees in a

similar topological way. We call an arc-connected standard subspace of |G| a
topological tree if it does not contain any circle. Note that, similar as for finite
trees, for any two points x, y of a topological tree there is a unique x–y arc in that
topological tree. Generalizing the definition of caterpillars, we call a topological
tree T in |G| a topological caterpillar if T ´ L is an arc, where T is a forest in G
and L denotes the set of all leaves of T , i.e., vertices of degree 1 in T .

Now let ω be an end of a locally finite connected graph G. We define the vertex-
or edge-degree of ω in G as the supremum of the number of vertex- or edge-disjoint
rays in G, respectively, which are contained in ω. By this definition ends may have
infinite vertex- or edge-degree. Similarly, we define the vertex- or edge-degree of ω
in a standard subspace X of |G| as the supremum of vertex- or edge-disjoint arcs
in X, respectively, that have ω as an endpoint. We should mention here that the
supremum is actually an attained maximum in both definitions. Furthermore, when
we consider the whole space |G| as a standard subspace of itself, the vertex-degree
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in G of any end ω of G coincides with the vertex-degree in |G| of ω. The same
holds for the edge-degree. The proofs of these statements are nontrivial and since
it is enough for us to work with the supremum, we will not go into detail here.
We make one last definition with respect to end degrees which allows us to

distinguish the parity of degrees of ends when they are infinite. The idea of this
definition is due to Bruhn and Stein [7]. We call the vertex- or edge-degree of an
end ω of G in a standard subspace X of |G| even if there is a finite set S Ď V pGq

such that for every finite set S 1 Ď V pGq with S Ď S 1 the maximum number of
vertex- or edge-disjoint arcs in X, respectively, with ω as endpoint and some s P S 1

is even. Otherwise, we call the vertex- or edge-degree of ω in X, respectively, odd.
Next we collect some useful statements about the space |G| for a locally finite

connected graph G.

Proposition D.2.2. [12, Prop. 8.5.1] If G is a locally finite connected graph, then
|G| is a compact Hausdorff space.

Having Proposition D.2.2 in mind the following basic lemma helps us to work
with continuous maps and to verify homeomorphisms, for example when considering
circles or arcs.

Lemma D.2.3. Let X be a compact space, Y be a Hausdorff space and f : X ÝÑ Y

be a continuous injection. Then f´1 is continuous too.

The following lemma tells us an important combinatorial property of arcs. To
state the lemma more easily, let F̊ denote the set of inner points of edges e P F in
|G| for an edge set F Ď EpGq.

Lemma D.2.4. [12, Lemma 8.5.3] Let G be a locally finite connected graph and
F Ď EpGq be a cut with sides V1 and V2.

(i) If F is finite, then V1 X V2 “ H, and there is no arc in |G|zF̊ with one
endpoint in V1 and the other in V2.

(ii) If F is infinite, then V1 X V2 ‰ H, and there may be such an arc.

The next lemma ensures that connectedness and arc-connectedness are equivalent
for the spaces we are mostly interested in, namely standard subspaces, which are
closed by definition.
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Lemma D.2.5. [20, Thm. 2.6] If G is a locally finite connected graph, then every
closed topologically connected subset of |G| is arc-connected.

We continue in the spirit of Lemma D.2.4 by characterising important topological
properties of the space |G| in terms of combinatorial ones. The following lemma
deals with arc-connected subspaces. It will be convenient for us to use this in a
proof later on.

Lemma D.2.6. [12, Lemma 8.5.5] If G is a locally finite connected graph, then a
standard subspace of |G| is topologically connected (equivalently: arc-connected) if
and only if it contains an edge from every finite cut of G of which it meets both
sides.

The next theorem is actually part of a bigger one containing more equivalent
statements. Since we shall need only one equivalence, we reduced it to the following
formulation. For us it will be helpful to check or at least bound the degree of an
end in a standard subspace just by looking at finite cuts instead of dealing with
the homeomorphisms that actually define the relevant arcs.

Theorem D.2.7. [13, Thm. 2.5] Let G be a locally finite connected graph. Then
the following are equivalent for D Ď EpGq:

(i) D meets every finite cut in an even number of edges.

(ii) Every vertex of G has even degree in D and every end of G has even edge-
degree in D.

The following lemma gives us a nice combinatorial description of circles and will
be especially useful in combination with Theorem D.2.7 and Lemma D.2.6.

Lemma D.2.8. [7, Prop. 3] Let C be a subgraph of a locally finite connected
graph G. Then C is a circle if and only if C is topologically connected, every vertex
in C has degree 2 in C and every end of G contained in C has edge-degree 2 in C.

A basic fact about finite Hamiltonian graphs is that they are always 2-connected.
For locally finite connected graphs this is also a well-known fact, although it has
not separately been published. Since we shall need this fact later and can easily
deduce it from the lemmas above, we include a proof here.
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Corollary D.2.9. Every locally finite connected Hamiltonian graph is 2-connected.

Proof. Let G be a locally finite connected Hamiltonian graph and suppose for a
contradiction that it is not 2-connected. Fix a subgraph C of G whose closure
C is a Hamilton circle of G and a cut vertex v of G. Let K1 and K2 be two
different components of G´ v. By Theorem D.2.7 the circle C uses evenly many
edges of each of the finite cuts δpK1q and δpK2q. Since C is a Hamilton circle and,
therefore, topologically connected, we also get that it uses at least two edges of
each of these cuts by Lemma D.2.6. This implies that v has degree at least 4 in C,
which contradicts Lemma D.2.8.

D.3. Topological caterpillars

In this section we close a gap with respect to the general question of when the k-th
power of a graph has a Hamilton circle. Let us begin by summarizing the results
in this field. We start with finite graphs. The first result to mention is the famous
theorem of Fleischner, Theorem D.1.1, which deals with 2-connected graphs.

For higher powers of graphs the following theorem captures the whole situation.

Theorem D.3.1. [41, 55] The cube of any finite connected graph on at least three
vertices is Hamiltonian.

These theorems leave the question whether and when one can weaken the assump-
tion of being 2-connected and still maintain the property of being Hamiltonian.
Theorem D.1.3 gives an answer to this question.

Now let us turn our attention towards locally finite infinite graphs. As mentioned
in the introduction, Georgakopoulos has completely generalized Theorem D.1.1
to locally finite graphs by proving Theorem D.1.2. Furthermore, he also gave a
complete generalization of Theorem D.3.1 to locally finite graphs with the following
theorem.

Theorem D.3.2. [25, Thm. 5] The cube of any locally finite connected graph on
at least three vertices is Hamiltonian.

What is left and what we do in the rest of this section is to prove lemmas about
locally finite graphs covering implications similar to those in Theorem D.1.3, and
mainly Theorem D.1.5, which extends Corollary D.1.4 to locally finite graphs.
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Let us first consider a naive way of extending Theorem D.1.3 and Corollary D.1.4
to locally finite graphs. Since we consider spanning caterpillars for Corollary D.1.4,
we need a definition of these objects in infinite graphs that allows them to contain
infinitely many vertices. So let us modify the definition of caterpillars as follows:
A locally finite tree is called a caterpillar if after deleting its leaves only a finite
path, a ray or a double ray is left. Using this definition Theorem D.1.3 remains
true for locally finite infinite trees T and Hamilton circles in |T 2|. The same proof
as the one Harary and Schwenk [33, Thm. 1] gave for Theorem D.1.3 in finite
graphs can be used to show this.
Corollary D.1.4 remains also true for locally finite graphs using this adapted

definition of caterpillars. Its proof, however, is no trivial deduction anymore. The
problem is that for a spanning tree T of a locally finite connected graph G the
topological spaces |T 2| and |G2| might differ not only in inner points of edges but
also in ends. More precisely, there might be two equivalent rays in G2 that belong
to different ends of T 2. So the Hamiltonicity of T 2 does not directly imply the one
of G2. However, for T being a spanning caterpillar of G, this problem can only
occur when T contains a double ray such that all subrays belong to the same end
of G. Then the same construction as in the proof for the implication from (iii) to
(i) of Theorem D.1.3 can be used to build a spanning double ray in T 2 which is
also a Hamilton circle in |G2|. The idea for the construction which is used for this
implication is covered in Lemma D.3.4.

The downside of this naive extension is the following. For a locally finite infinite
graph the assumption of having a spanning caterpillar is quite restrictive. Such
graphs can especially have at most two ends since having three ends would imply
that the spanning caterpillar must contain three disjoint rays. This, however, is
impossible because it would force the caterpillar to contain a SpK1,3q. For this
reason we have defined a topological version of caterpillars, namely topological
caterpillars. Their definition allows graphs with arbitrary many ends to have a
spanning topological caterpillar. Furthermore, it yields with Theorem D.1.5 a
more relevant extension of Corollary D.1.4 to locally finite graphs.
We briefly recall the definition of topological caterpillars. Let G be a locally

finite connected graph. A topological tree T in |G| is a topological caterpillar if
T ´ L is an arc, where T is a forest in G and L denotes the set of all leaves of T ,
i.e., vertices of degree 1 in T .
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The following basic lemma about topological caterpillars is easy to show and
so we omit its proof. It is an analogue of the equivalence of the statements (ii)
and (iii) of Theorem D.1.3 for topological caterpillars.

Lemma D.3.3. Let G be a locally finite connected graph. A topological tree T
in |G| is a topological caterpillar if and only if T does not contain SpK1,3q as a
subgraph and all ends of G have vertex-degree in T at most 2.

Before we completely turn towards the preparation of the proof of Theorem D.1.5
let us consider statement (i) of Theorem D.1.3 again. A complete extension
of Theorem D.1.3 to locally finite graphs using topological caterpillars seems
impossible because of statement (i). To see this we should first make precise what
the adapted version of statement (i) most possibly should be. In order to state it
let G denote a locally finite connected graph and let T be a topological tree in |G|.
Now the formulation of the adapted statement should be as follows:

(i*) In the subspace T 2 of |G2| is a circle containing all vertices of T .

This statement does not hold if T has more than one graph theoretical component.
Therefore, it cannot be equivalent to T being a topological caterpillar in |G|, which
is the adapted version of statement (iii) of Theorem D.1.3 for locally finite graphs.
Note that any two vertices of T lie in the same graph theoretical component of
T if and only if they lie in the same graph theoretical component of T 2. Hence,
we can deduce that statement (i*) fails if T has more than one graph theoretical
component from the following claim.

Claim. Let G be a locally finite connected graph and let T be a topological tree
in |G|. Then there is no circle in the subspace T 2 of |G2| that contains vertices
from different graph theoretical components of T 2.

Proof. We begin with a basic observation. The inclusion map from G into G2

induces an embedding from |G| into |G2| in a canonical way. Moreover, all ends
of G2 are contained in the image of this embedding. To see this note that any
two non-equivalent rays in G stay non-equivalent in G2 since G is locally finite.
Furthermore, by applying Lemma D.2.1 it is easy to see that every end in G2

contains a ray that is also a ray of G. This already yields an injection from |G| to
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|G2| whose image contains all of ΩpG2q. Verifying the continuity of this map and
its inverse is immediate.

Now let us suppose for a contradiction that there is a circle C in T 2 containing
vertices v, v1 from two different graph theoretical components K,K 1 of T 2. Say
v P V pKq and v1 P V pK 1q. Let A1 and A2 denote the two v1–v arcs on C. Since A1

and A2 are disjoint except from their endpoints, they have to enter K via different
ends ω2

1 and ω2
2 of G2 that are contained in K Ď |G2|. Say ω2

1 P A1 and ω2
2 P A2.

By the observation above ω2
1 and ω2

2 correspond to two different ends ω1 and ω2

of G. Only one of them, say ω1, lies on the unique v1–v arc that is contained in the
topological tree T . Now we modify A2 by replacing each edge uw of A2 which is
not in EpT q by a u–w path of length 2 that lies in T . By Lemma D.2.6 this yields
an arc-connected subspace of T that contains v and v1. By our observation above
the unique v1–v arc in this subspace must contain the end ω2. This, however, is a
contradiction since we have found two different v1–v arcs in T .

Now we start preparing the proof of Theorem D.1.5. For this we define a certain
partition of the vertex set of a topological caterpillar. Additionally, we define a
linear order of these partition classes. Let G be a locally finite connected graph
and T a topological caterpillar in |G|. Furthermore, let L denote the set of leaves
of T . By definition, T ´ L is an arc, call it A. This arc induces a linear order ăA
of the vertices of V pT q ´L. For consecutive vertices v, w P V pT q ´L with v ăA w
we now define the set

Pw :“ twu Y pNT pvq X Lq

(cf. Figure D.2). If A has a maximal element m with respect to ăA, we define an
additional set P` “ NT pmq X L. Should A have a minimal element s with respect
to ăA, we define another additional set P´ “ tsu. The sets Pw, possibly together
with P` and P´, form a partition PT of V pT q. For any v P V pT q we denote the
corresponding partition class containing v by Vv. Next we use the linear order
ăA to define a linear order ăT on PT . For any two vertices v, w P V pT q ´ L with
v ăA w set Vv ăT Vw. If P` (resp. P´) exists, set Pv ăT P` (resp. P´ ăT Pv) for
every v P V pT q ´ L. Finally we define for two vertices v, w P V pT q with Vv ďT Vw
the set

Ivw :“
ď

tVu ; Vv ďT Vu ďT Vwu.

The following basic lemma lists important properties of the partition PT together
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Figure D.2.: The partition classes Pw.

with its order ăT . The proof of this lemma is immediate from the definitions of PT
and ăT . Especially for Lemma D.3.5 and in the proof of Theorem D.1.5 the listed
properties will be applied intensively. Furthermore, the proof that statement (iii)
of Theorem D.1.3 implies statement (i) of Theorem D.1.3 follows easily from this
lemma.

Lemma D.3.4. Let T be a topological caterpillar in |G| for a locally finite con-
nected graph G. Then the partition PT of V pT q has the following properties:

(i) Any two different vertices belonging to the same partition class of PT have
distance 2 from each other in T .

(ii) For consecutive partition classes Q and R with Q ăT R, there is a unique
vertex in Q that has distance 1 in T to every vertex of R. For Q ‰ P´, this
vertex is the one of Q that is not a leaf of T .

Proof.

Referring to statement (ii) of Lemma D.3.4, let us call the vertex in a partition
class Q P PT that is not a leaf of T the jumping vertex of Q.
We still need a bit of notation and preparation work before we can prove the

main theorem of this section. Now let T denote a topological caterpillar with only
one graph-theoretical component. Let pX1,X2q be a bipartition of the partition
classes Vv such that consecutive classes with respect to ďT lie not both in X1, or
in X2. Furthermore, let v, w P V pT q be two vertices, say with Vv ďT Vw, whose
distance is even in T . We define a pv, wq square string S in T 2 to be a path in T 2

with the following properties:

1. S uses only vertices of partitions that lie in the bipartition class Xi in which
Vv and Vw lie.

2. S contains all vertices of partition classes Vu P Xi for Vv ăT Vu ăT Vw.
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3. S contains only v and w from Vv and Vw, respectively.

Similarly, we define pv, ws, rv, wq and rv, ws square strings in T 2, but with the
difference in (3) that they shall also contain all vertices of Vw, Vv and Vv Y Vw,
respectively. We call the first two types of square strings left open and the latter
ones left closed. The notion of being right open and right closed is analogously
defined. From the properties of PT listed in Lemma D.3.4, it is immediate how to
construct square strings.
The next lemma gives us two possibilities to cover the vertex set of a graph-

theoretical component of a topological caterpillar T that contains a double ray.
Each cover will consist of two, possibly infinite, paths of T 2. Later on we will use
these covers to connect all graph-theoretical components of T in a certain way
such that a Hamilton circle of G2 is formed.

Lemma D.3.5. Let G be a locally finite connected graph and let T be a topological
caterpillar in |G|. Suppose T has only one graph-theoretical component and contains
a double ray. Furthermore, let v and w be vertices of T with Vv ďT Vw.

(i) If dT pv, wq is even, then in T 2 there exist a v–w path P , a double ray D and
two rays Rv and Rw with the following properties:

• P and D are disjoint as well as Rv and Rw.

• V pT q “ V pP q Y V pDq “ V pRvq Y V pRwq.

• v and w are the start vertices of Rv and Rw, respectively.

• Rv X Vx “ H for every Vx ąT Vw.

• Rw X Vy “ H for every Vy ăT Vv.

(ii) If dT pv, wq is odd, then in T 2 there exist rays Rv, Rw, R
1
v, R

1
w with the following

properties:

• Rv and Rw are disjoint as well as R1v and R1w.

• V pT q “ V pRvq Y V pRwq “ V pR1vq Y V pR
1
wq.

• v is the start vertex of Rv and R1v while w is the one of Rw and R1w.

• Rv X Vx “ R1w X Vx “ H for every Vx ąT Vw.

• Rw X Vy “ R1v X Vy “ H for every Vy ăT Vv.
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Proof. We sketch the proof of statement (i). As v–w path P we take a square
string Svw in T 2 with v and w as endvertices. Depending whether v is a jumping
vertex or not we take a left open or closed square string, respectively. Depending
on w we take a right closed or open square string if w is a jumping vertex or not,
respectively. Since dT pv, wq is even, we can find such square strings. To construct
the double ray D start with a pv´, w´s square string in T 2 where v´ and w´ denote
the jumping vertices in the partition classes proceeding Vv and Vw, respectively.
Using the properties (i) and (ii) of the partition PT mentioned in Lemma D.3.4,
the pv´, w´s square string can be extend to a desired double ray D containing all
vertices of T that do not lie in Svw (cf. Figure D.3).

To define Rv we start with a square string Sv having v as one endvertex. For
the definition of Sv we distinguish four cases. If v and w are jumping vertices, we
set Sv as a path obtained by taking a pv, ws square string and deleting w from it.
If v is not a jumping vertex, but w is one, take a rv, ws square string, delete w
from it and set the remaining path as Sv. In the case that v is a jumping vertex,
but w is none, Sv is defined as a path obtained from a pv, wq square string from
which we delete w. In the case that neither v nor w is a jumping vertex, we take a
rv, wq square string, delete w from it and set the remaining path as Sv. Next we
extend Sv using a square string to a path with v as one endvertex containing all
vertices in partition classes Vu with Vv ăT Vu ăT Vw. We extend the remaining
path to a ray that contains also all vertices in partition classes Vu with Vu ďT Vv,
but none from partition classes Vx for Vx ąT Vw. The desired second ray Rw can
now easily be build in T 2 ´Rv.
The rays for statement (ii) are defined in a very similar way (cf. Figure D.3).

Therefore, we omit their definitions here.

The following lemma is essential for connecting the parts of the vertex covers of
two different graph-theoretical components of T . Especially, here we make use of
the structure of |G| instead of arguing only inside of T or T 2. This allows us to
build a Hamilton circle using square strings and to “jump over" an end to avoid
producing an edge-degree bigger than 2 at that end.
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Figure D.3.: Examples for covering the vertices of a caterpillar as in Lemma D.3.5.

Lemma D.3.6. Let T be a spanning topological caterpillar of a locally finite
connected graph G and let v, w P V pGq where Vv ďT Vw. Then for any two
vertices x, y with Vv ăT Vx ăT Vw and Vv ăT Vy ăT Vw there exists a finite x–y
path in GrIvws.

Proof. Let the vertices v, w, x and y be as in the statement of the lemma and, as
before, let L denote the set of leaves of T . Now suppose for a contradiction that
there is no finite x–y path in GrIvws. Then we can find an empty cut D of GrIvws
with sides M and N such that x and y lie on different sides of it. Since T XGrIvws
contains an x–y arc, there must exist an end ω PM XN X T ´ L.
Let us show next that there exists an open set O in |G| that contains ω and,

additionally, every vertex in O is an element of Ivw. To see this we first pick a set
OA Ď T ´ L so that it is open in the subspace T ´ L, topologically connected and
contains ω, but its closure does not contain the jumping vertices of Vv and Vw.
Now let O1 be an open set in |G| witnessing that OA is open in T ´ L. We
prove that O1 contains only finitely many vertices of V pGqzIvw. Suppose for a
contradiction that this is not the case. Then we would find an infinite sequence
pznqnPN of different vertices in O1zIvw that must converge to some point p P |G|
by the compactness of |G|. Since T is a spanning topological caterpillar of G, it
contains all the vertices zn. Using that G is locally finite, we get that the jumping
vertices of the sets Vzn also form a sequence that converges to p. So we can
deduce that p P T ´ L, because T ´ L is a closed subspace containing all jumping
vertices. Hence, p P O1 X pT ´ Lq “ OA. This is a contradiction to our choice of
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OA ensuring p R OA. Hence, O1 contains only finitely many vertices of V pGqzIvw,
say v1, . . . , vn for some n P N. Before we define our desired set O using O1, note
that Ov :“ |G|ztvu defines an open set in |G| for every vertex v P V pGq. Therefore,
O :“ O1 X

Şn
i“1 Ovi is an open set in |G| containing no vertex of V pGqzIvw.

Inside O we can find a basic open set B around ω, which contains a graph-
theoretical connected subgraph with all vertices of B. Now B contains vertices
of M and N as well as a finite path between them, which must then also exist in
GrIvws. Such a path would have to cross D contradicting the assumption that D
is an empty cut in GrIvws.

To figure out which parts of the vertex covers of which graph-theoretical compo-
nents of T we can connect such that afterwards we are still able to extend this
construction to a Hamilton circle of G, we shall use the next lemma. For the
formulation of the lemma, we use the notion of splits.

Let G be a multigraph and v P V pGq. Furthermore, let E1, E2 Ď δpvq such that
E1 Y E2 “ δpvq but E1 X E2 “ H where Ei ‰ H for i P t1, 2u. Now we call a
multigraph G1 a v-split of G if

V pG1q “ V pGqztvu Y tv1, v2u

with v1, v2 R V pGq and

EpG1q “ EpG´ vq Y tv1w ; wv P E1u Y tv2u ; uv P E2u.

We call the vertices v1 and v2 replacement vertices of v.

Lemma D.3.7. Let G be a finite Eulerian multigraph and v be a vertex of degree 4
in G. Then there exist two v-splits G1 and G2 of G both of which are also Eulerian.

Proof. There are 1
2 ¨

`4
2

˘

“ 3 possible non-isomorphic v-splits of G such that v1

and v2 have degree 2 in the v-split. Assume that one of them, call it G1, is not
Eulerian. This can only be the case if G1 is not connected. Let pA,Bq be an empty
cut of G1. Note that G ´ v has precisely two components C1 and C2 since G is
Eulerian and v has degree 4 in G. So C1 and C2 must lie in different sides of
pA,Bq, say C1 Ď A. Since G was connected, we get that v1 and v2 lie in different
sides of the cut pA,Bq, say v1 P A. Therefore, A “ C1 Y tv1u and B “ C2 Y tv2u.
If δpvq “ tvw1, vw2, vw3, vw4u and tv1w1, v1w2u, tv2w3, v2w4u Ď EpG1q, set G1 and
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G2 as v-splits of G such that the inclusions tv1w1, v1w3u, tv2w2, v2w4u Ď EpG1q and
tv1w1, v1w4u, tv2w2, v2w3u Ď EpG2q hold. Now G1 and G2 are Eulerian, because
every vertex has even degree in each of those multigraphs and both multigraphs
are connected. To see the latter statement, note that any empty cut pX, Y q of Gi

for i P t1, 2u would need to have C1 and C2 on different sides. If also v1 and v2

are on different sides, we would have pA,Bq “ pX, Y q, which does not define an
empty cut of Gi by definition of Gi. However, v1 and v2 cannot lie on the same
side of the cut pX, Y q. This is because otherwise the cut pX, Y q would induce an
empty cut in G after identifying v1 and v2 in Gi. Since G is Eulerian and therefore
especially connected, we would have a contradiction.

Now we have all tools together to prove Theorem D.1.5. Before we start the
proof, let us recall the statement of the theorem.

Theorem D.1.5. The square of any locally finite connected graph G on at least
three vertices such that |G| contains a spanning topological caterpillar is Hamilto-
nian.

Proof. Let G be a graph as in the statement of the theorem and let T be a
spanning topological caterpillar of G. We may assume by Corollary D.1.4 that G
has infinitely many vertices. Now let us fix an enumeration of the vertices, which
is possible since every locally finite connected graph is countable. We inductively
build a Hamilton circle of G2 in at most ω many steps. We ensure that in each
step i P N we have two disjoint arcs Ai and Bi in |G2| whose endpoints are vertices
of subgraphs Ai and Bi of G2, respectively. Let ai` and air (resp. bi` and bir) denote
the endvertices of Ai (resp. Bi) such that Vai

`
ďT Vair (resp. Vbi` ďT Vbir). For the

construction we further ensure the following properties in each step i P N:

1. The vertices air and bir are the jumping vertices of Vair and Vbir , respectively.

2. The partition sets Vai
`
and Vbi

`
as well as Vair and Vbir are consecutive with

respect to ďT .

3. If VvXV pAiYBiq ‰ H holds for any vertex v P V pGq, then Vv Ď V pAiYBiq.

4. If for any vertex v P V pGq there are vertices u,w P V pGq such that
Vu, Vw Ď V pAi YBiq and Vu ďT Vv ďT Vw, then Vv Ď V pAi YBiq is true.
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5. Ai X Ai`1 “ Ai and Bi XBi`1 “ Bi, but V pAi`1 YBi`1q contains the least
vertex with respect to the fixed vertex enumeration that was not already
contained in V pAi YBiq.

We start the construction by picking two adjacent vertices t and t1 in T that
are no leaves in T . Then Vt and V 1t are consecutive with respect to ďT . Note that
G2rVts and G2rVt1s are cliques by property (i) of the partition PT mentioned in
Lemma D.3.4. We set A1 to be a Hamilton path of G2rVts with endvertex t and
B1 to be one of G2rVt1s with endvertex t1. This completes the first step of the
construction.
Suppose we have already constructed An and Bn. Let v P V pGq be the least

vertex with respect to the fixed vertex enumeration that is not already contained
in V pAnYBnq. We know by our construction that either Vv ăT Vx or Vv ąT Vx for
every vertex x P V pAnYBnq. Consider the second case, since the argument for the
first works analogously. Let v1 P V pGq be a vertex such that Vv1 is the predecessor of
Vv with respect to ďT . Further, let w P V pGq be a vertex such that Vw ąT Vanr , Vbnr
and Vw is the successor of either Vanr or Vbnr , say Vbnr . By Lemma D.3.6 there exists a
v1–w path P in GrIbnr ,vs. We may assume that EpP qzEpT q does not contain an edge
whose endvertices lie in the same graph-theoretical component of T . Furthermore,
we may assume that every graph-theoretical component of T is incident with at
most two edges of EpP qzEpT q. Otherwise we could modify the path P using edges
of EpT q to meet these conditions.
Next we inductively define a finite sequence of finite Eulerian auxiliary multi-

graphs H1, . . . , Hk where Hk is a cycle for some k P N. Every vertex in each of
these multigraphs will have either degree 2 or degree 4. Furthermore, we shall
obtain Hi`1 from Hi as a h-split for some vertex h P V pHiq of degree 4 until we
end up with a multigraph Hk that is a cycle.

As V pH1q take the set of all graph-theoretical components T1, . . . , Tn of T that
are incident with an edge of EpP qzEpT q. Two vertices Ti and Tj are adjacent if
either there is an edge in EpP qzEpT q whose endpoints lie in Ti and Tj or there is a
ti–tj arc A in T for a subgraph A of T and vertices ti P V pTiq and tj P V pTjq such
that no endvertex of any edge of EpP qzEpT q lies in V pAq YNT pAq. Since T is a
spanning topological caterpillar, the multigraph H1 is connected. By definition
of P , the multigraph H1 is also Eulerian where all vertices have either degree 2
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or degree 4.
Now suppose we have already constructed Hi and there exists a vertex h P V pHiq

with degree 4 in Hi. Since Hi is obtained from H1 via repeated splitting operations,
we know that h is incident with two edges d, e in Hi that correspond to edges dP , eP ,
respectively, of EpP qzEpT q. Furthermore, h is incident with two edges f, g that
correspond to arcs Af and Ag, respectively, of T for subgraphs Af and Ag of T
such that neither V pAf q YNT pAf q nor V pAgq YNT pAgq contain an endvertex of
an edge of EpP qzEpT q. Let Tj be the graph-theoretical component of T in which
each of dP and eP has an endvertex, say wd and we, respectively. Here we consider
two cases:

Case 1. The distance in Tj between wd and we is even.

In this case we define Hi`1 as a Eulerian h-split of Hi such that one of the
following two options holds for the edge di`1 in Hi`1 corresponding to d. The first
option is that di`1 is adjacent to the edge in Hi`1 corresponding to e. The second
options is that di`1 is adjacent to the edge in Hi`1 corresponding to either f or g
with the property that the path in Tj connecting wd and Af (resp. Ag) does not
contain we. This is possible since two of the three possible non-isomorphic v-splits
of Hi are Eulerian by Lemma D.3.7.

Case 2. The distance in Tj between wd and we is odd.

Here we set Hi`1 as a Eulerian h-split of Hi such that the edge in Hi`1 corre-
sponding to d is not adjacent to the one corresponding to e. As in the first case,
this is possible because two of the three possible non-isomorphic h-splits of Hi

are Eulerian by Lemma D.3.7. This completes the definition of the sequence of
auxiliary multigraphs.

Now we use the last auxiliary multigraph Hk of the sequence to define the arcs
An`1 and Bn`1. Note that P is a w–v1 path in GrIbnr ,vs where v1 and w lie in
the same graph-theoretical components Tv1 and Tw of T as v and bnr , respectively.
Since we may assume that EpP qzEpT q ‰ H holds, let e P EpP qzEpT q denote the
edge which contains one endvertex we in Tw. Then either the distance between we
and anr or between we and bnr is even, say the latter one holds. Now we first extend
Bn via a pbnr , wes square string in T 2 and An by a panr , w`e s square string in T 2

where Vw`e is the successor of Vwe with respect to ďT and w`e is the jumping vertex

108



of Vw`e . Then we extend An further using a ray to contain all vertices of partition
classes Vx with Vx ąT Vw`e for x P Tw. This is possible due to the properties (i)
and (ii) of the partition PT mentioned in Lemma D.3.4.
Next let P1 and P2 be the two edge-disjoint Tv1–Tw paths in Hk. Since every

edge of EpP qzEpT q corresponds to an edge of Hk, we get that e corresponds either
to P1 or P2, say to the former one. Therefore, we will use P1 to obtain arcs to
extend Bn and P2 for arcs extending An. Now we make use of the definition of Hk

via splittings. For any vertex Tj of H1 of degree 4 we have performed a Tj-split. We
did this in such a way that the partition of the edges incident with Tj into pairs of
edges incident with a replacement vertex of Tj corresponds to a cover of V pTjq via
two, possibly infinite, paths as in Lemma D.3.5. So for every vertex of H1 of degree
4 we take such a cover. For every graph-theoretical component Tm of T such that
there exist two consecutive edges TiTj and TjT` of P1 or P2 that do not correspond
to edges of EpP qzEpT q and Vti ăT Vtm ăT Vtj or Vtj ăT Vtm ăT Vt` holds for every
choice of ti P Ti, tj P Tj , t` P T` and tm P Tm, we take a spanning double ray of T 2

m.
We can find such spanning double rays by using again the properties (i) and (ii) of
the partition PT mentioned in Lemma D.3.4. Since Hk “ P1 Y P2 is a cycle, we
can use these covers and double rays to extend An and Bn to be disjoint arcs αn

and βn with endvertices on Tv1 . With the same construction that we have used
for extending An and Bn on Tw, we can extend αn and βn to have endvertices v1j
and vj which are the jumping vertices of Vv1 and Vv, respectively. Additionally,
we incorporate that these extensions contain all vertices of partition classes Vy
for y P Tv1 and Vy ď Vv. Then we take these arcs as An`1 and Bn`1 where An`1

and Bn`1 are the corresponding subgraphs of G2 whose closures give the arcs. By
setting an`1

r and bn`1
r to be v1j and vj , depending on which of the two arcs An`1 or

Bn`1 ends in these vertices, we have guaranteed all properties from p1q to p5q for
the construction.
Now the properties p3q ´ p5q yield not only that A and B are disjoint arcs for

A “
Ť

iPNA
i and B “

Ť

iPNB
i, but also that V pGq “ V pA Y Bq. If there exists

neither a maximal nor minimal partition class with respect to ďT , the union AYB
forms a Hamilton circle of G2 by Lemma D.2.8. Should there exist a maximal
partition class, say Vanr for some n P N with jumping vertex anr , the vertex anr

will also be an endvertex of A. In this case we connect the endvertices anr and bnr
of A and B via an edge. Such an edge exists since Vanr and Vbnr are consecutive
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with respect to ďT by property p2q and anr as well as bnr are jumping vertices by
property p1q. Analogously, we add an edge if there exists a minimal partition class.
Therefore, we can always obtain the desired Hamilton circle of G2.

D.4. Graphs without K4 or K2,3 as minor

We begin this section with a small observation which allows us to strengthen
Theorem D.1.8 a bit by forbidding subgraphs isomorphic to a K4 instead of
minors.

Lemma D.4.1. For graphs without K2,3 as a minor it is equivalent to contain a
K4 as a minor or as a subgraph.

Proof. One implication is clear. So suppose for a contradiction we have a graph
without a K2,3 as a minor that does not contain K4 as a subgraph but as a
subdivision. Note that containing a K4 as a subdivision is equivalent to containing
a K4 as a minor since K4 is cubic. Consider a subdivided K4 where at least one
edge e of the K4 corresponds to a path Pe in the subdivision whose length is at
least two. Let v be an interior vertex of Pe and a, b be the endvertices of Pe. Let
the other two branch vertices of the subdivision of K4 be called c and d. Now
we take ta, b, c, d, vu as branch vertex set of a subdivision of K2,3. The vertices a
and b can be joined to c and d by internally disjoint paths using the ones of the
subdivision of K4 except the path Pe. Furthermore, the vertex v can be joined to
a and b using the paths vPea and vPeb. So we can find a subdivision of K2,3 in
the whole graph, which contradicts our assumption.

Before we start with the proof of Theorem D.1.8 we need to prepare two structural
lemmas. The first one will be very convenient for controlling end degrees because
it bounds the size of certain separators.

Lemma D.4.2. Let G be a 2-connected graph without K2,3 as a minor and let K0

be a connected subgraph of G. Then |NpK1q| “ 2 holds for every component K1 of
G´ pK0 YNpK0qq.

Proof. Let K0, G and K1 be defined as in the statement of the lemma. Since G is
2-connected, we know that |NpK1q| ě 2 holds. Now suppose for a contradiction
that NpK1q Ď NpK0q contains three vertices, say u, v and w. Pick neighbours ui, vi
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and wi of u, v and w, respectively, in Ki for i P t0, 1u. Furthermore, take a finite
tree Ti in Ki whose leaves are precisely ui, vi and wi for i P t0, 1u. This is possible
because K0 and K1 are connected. Now we have a contradiction since the graph H
with V pHq “ tu, v, wuYV pT0qYV pT1q and EpHq “

Ť1
i“0ptuui, vvi, wwiuYEpTiqq

forms a subdivision of K2,3.

Let G be a connected graph and H be a connected subgraph of G. We define
the operation of contracting H in G as taking the minor of G which is attained by
contracting in G all edges of H. Now let K be any subgraph of G. We denote by
GK the following minor of G: First contract in G each subgraph that corresponds
to a component of G´K. Then delete all multiple edges.

Obviously GK is connected if G was connected. We can push this observation a
bit further towards 2-connectedness with the following lemma.

Lemma D.4.3. Let K be a connected subgraph with at least three vertices of a
2-connected graph G. Then GK is 2-connected.

Proof. Suppose for a contradiction that GK is not 2-connected for some G and K
as in the statement of the lemma. Since K has at least three vertices, we obtain
that GK has at least three vertices too. So there exists a cut vertex v in GK . If v is
also a vertex of G and, therefore, does not correspond to a contracted component
of G´K, then v would also be a cut vertex of G. This contradicts the assumption
that G is 2-connected.
Otherwise v corresponds to a contracted component of G´K. Note that two

vertices of GK both of which correspond to contracted components of G´K are
never adjacent by definition of GK . However, v being a cut vertex in GK must
have at least one neighbour in each component of GK ´ v. So in particular we
get that v separates two vertices, say x and y, of GK that do not correspond
to contracted components of G ´ K. This yields a contradiction because K is
connected and, therefore, contains an x–y path. This path still exists in GK and
contradicts the statement that v separates x and y in GK .

We shall need another lemma for the proof Theorem D.1.8. In that proof we
shall construct an embedding of an infinite graph into a fixed closed disk D by
first embedding a finite subgraph into D. Then we extend this embedding stepwise
to bigger finite subgraphs so that eventually we define an embedding of the whole
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graph into D. The following lemma will allow us to redraw newly embedded edges
as straight lines in each step while keeping the embedding of every edge that was
already embedded as a straight line. Additionally, we will be able to keep the
embedding of those edges that are mapped into the boundary of the disk.

Lemma D.4.4. Let G be a finite 2-connected outerplanar graph and C be its
Hamilton cycle. Furthermore, let σ : G ÝÑ D be an embedding of G into a fixed
closed disk D such that C is mapped onto the boundary BD of D. Then there is
an embedding σ˚ : G ÝÑ D such that

(i) σ˚peq is a straight line for every e P EpGqzEpCq.

(ii) σ˚peq “ σpeq if e P EpCq or σpeq is a straight line.

Proof. We prove the statement by induction on ` :“ |EpGqzEpCq|. For ` “ 0 we
can choose the given embedding σ as our desired embedding σ˚. Now let ` ě 1
and suppose σ does not already fulfill all properties of σ˚. Then there exists an
edge e P EpGqzEpCq such that σpeq is not a straight line. Hence, G ´ e is still
a 2-connected outerplanar graph that contains C as its Hamilton cycle. Also
σ æG´e is an embedding of G ´ e into D such that C is mapped onto BD. So
by the induction hypothesis we get an embedding σ̃˚ satisfying (i) and (ii) with
respect to σ æG´e. Now let e “ uv and suppose for a contradiction that we cannot
additionally embed e as a straight line between u and v. Then there exists an
edge xy P EpG´ eqzEpCq such that σ̃˚pxyq is crossed by the straight line between
u and v. Because σ̃˚pxyq is a straight line between x and y by property (ii), we
know that the vertices u, v, x and y are pairwise distinct. This, however, is a
contradiction to G being outerplanar since the cycle C together with the edges
uv and xy witness the existence of a K4 minor in G with u, v, x and y as branch
sets. So we can extend σ̃˚ by embedding e “ uv as a straight line between u and
v, which yields our desired embedding of G into D.

With the lemmas above we are now prepared to prove Theorem D.1.8. We recall
the formulation of the theorem.

Theorem D.1.8. Let G be a locally finite connected graph. Then the following
statements are equivalent:

(i) G is 2-connected and contains neither K4 nor K2,3 as a minor.
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(ii) |G| has a Hamilton circle C and there exists an embedding of |G| into a
closed disk such that C is mapped onto the boundary of the disk.

Furthermore, if statements (i) and (ii) hold, then |G| has a unique Hamilton circle.

Proof. First we show that piiq implies piq. Since G is Hamiltonian, we know by
Corollary D.2.9 that G is 2-connected. Suppose for a contradiction that G contains
K4 or K2,3 as a minor. Then G has a finite subgraph H which already has K4

or K2,3 as a minor. Now take any finite connected subgraph K0 of G which
contains H and set K “ GrV pK0q YNpK0qs. Next let us take an embedding of
|G| as in statement piiq of this theorem. It is easy to see using Lemma D.4.2 that
our fixed embedding of |G| induces an embedding of GK into a closed disk such
that all vertices of GK lie on the boundary of the disk. This implies that GK is
outerplanar. So GK can neither contain K4 nor K2,3 as a minor by Theorem D.1.7,
which contradicts that H is a subgraph of GK .

Now let us assume piq to prove the remaining implication. We set K0 as
an arbitrary connected subgraph of G with at least three vertices. Next we
defineKi`1 “ GrV pKiq YNpKiqs for every i ě 0. InsideG we define the vertex sets
Li “ tv P V pKiq ; Npvq Ď V pKiqu for every i ě 1. Let then K̃i`1 “ GKi`1 ´ Li

for every i ě 1. By Lemma D.4.3 we know that GKi is 2-connected for each i ě 0.
Furthermore, GKi contains neither K4 nor K2,3 as a minor for every i ě 0 since
it would also be a minor of G contradicting our assumption. So each GKi is
outerplanar by Theorem D.1.7. Using statement (ii) of Proposition D.1.6 we obtain
that each GKi has a unique Hamilton cycle Ci and that there is an embedding σi
of GKi into a fixed closed disk D such that Ci is mapped onto the boundary BD
of D. Set Ei “ EpCiq X EpKiq for every i ě 1.

Next we define an embedding of G into D and extend it to the desired embedding
of |G|. We start by taking σ1. Note again that GK1 is a finite 2-connected
outerplanar graph by Lemma D.4.3. Furthermore, σ1pC1q “ BD . So we can use
Lemma D.4.4 to obtain an embedding σ˚1 : GK1 ÝÑ D as in the statement of
that lemma. Because of Lemma D.4.2 we can extend σ˚1 æK1 using σ2 æK̃2

, maybe
after rescaling the latter embedding, to obtain an embedding ϕ2 : GK2 ÝÑ D

such that ϕ2pC2q “ BD. We apply again Lemma D.4.4 with ϕ2, which yields an
embedding σ˚2 : GK2 ÝÑ D as in the statement of that lemma. Note that this
construction ensures σ˚2 æK1“ σ˚1 æK1 . Proceeding in the same way, we get an
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embedding σ˚ : G ÝÑ D by setting σ˚ :“
Ť

iPN σ
˚
i æKi . The use of Lemma D.4.4 in

the construction of σ˚ ensures that all edges are embedded as straight lines unless
they are contained in any Ei. However, all edges in the sets Ei, and therefore also
all vertices of G, are embedded into BD. Furthermore, we may assure that σ˚ has
the following property:

Let pMiqiě1 be any infinite sequence of components Mi of G´Ki where
Mi`1 ĎMi. Also, let tui, wiu be the neighbourhood of Mi in G. Then the
sequences pσ˚puiqqiě1 and pσ˚pwiqqiě1 converge to a common point on BD.

p˚q

It remains to extend this embedding σ˚ to an embedding σ˚ of all of |G| into D.
First we shall extend the domain of σ˚ to all of |G|. For this we need to prove the
following claim.

Claim 1. For every end ω of G there exists an infinite sequence pMiqiě1 of
components Mi of G´Ki with Mi`1 ĎMi such that

Ş

iě1 Mi “ tωu.

Since Ki is finite, there exists a unique component of G´Ki in which all ω-rays
have a tail. Set this component as Mi. It follows from the definition that ω lies
in Mi. Furthermore, we get that

Ş

iě1 Mi does neither contain any vertex nor an
inner point of any edge. So suppose for a contradiction that

Ş

iě1 Mi contains
another end ω1 ‰ ω. We know there exists a finite set S of vertices such that
all tails of ω-rays lie in a different component of G ´ S than all tails of ω1-rays.
By definition of the graphs Ki we can find an index j such that S Ď V pKjq. So
ω lies in Mj and ω1 in M 1

j where M 1
j is the component of G ´ Kj in which all

tails of ω1-rays lie. Since G is locally finite, the cut EpMj, Kjq is finite. Using
Lemma D.2.4 we obtain that Mj XM 1

j “ H. Therefore, ω1 RMj Ě
Ş

iě1 Mi. This
contradiction completes the proof of the claim.

Now let us define the map σ˚. For every vertex or inner point of an edge x, we
set σ˚pxq “ σ˚pxq. For an end ω let pMiqiě1 be the sequence of components Mi

of G´Ki given by Claim 1 and tui, wiu be the neighbourhood of Mi in G. Using
property p˚q we know that pσ˚puiqqiě1 and pσ˚pwiqqiě1 converge to a common
point pω on BD. We use this to set σ˚pωq “ pω. This completes the definition
of σ˚.
Next we prove the continuity of σ˚. For every vertex or inner point of an edge

x, it is easy to see that an open set around σ˚pxq in D contains σ˚pUq for some
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open set U around x in |G|. This holds because G is locally finite and so it follows
from the definition of σ˚ using the embeddings σ˚i . Let us check continuity for
ends. Consider an open set O around σ˚pωq in D, where ω is an end of G. Let
Bεpσ

˚pωqq denote the restriction to D of an open ball around σ˚pωq with radius
ε ą 0. Then Bεpσ

˚pωqq is an open set and, for sufficiently small ε, contained
in O. We fix such an ε for the rest of this proof. Let pMiqiě1 be a sequence as
in Claim 1 for ω and tui, wiu be the neighbourhood of Mi in G. By property
p˚q and the definition of σ˚, we get that pσ˚puiqqiě1 and pσ˚pwiqqiě1 converge to
σ˚pωq on BD. So there exists a j P N such that Bεpσ

˚pωqq contains σ˚puiq and
σ˚pwiq for every i ě j. By the definitions of σ˚ and σ˚ using the embeddings σ˚i ,
it follows that σ˚pMjq Ř Bεpσ

˚pωqq Ď O. At this point we use the property of σ˚

that every edge of G is embedded as a straight line unless it is embedded into BD.
Hence, if vw P EpGq and σ˚pvq, σ˚pwq P Bεpσ

˚pωqq, then σ˚pvwq is also contained
in Bεpσ

˚pωqq by the convexity of the ball. Since Mj together with the inner points
of the edges of EpMj, Kjq is a basic open set in |G| containing ω whose image
under σ˚ is contained in O, continuity holds for ends too.

The next step is to check that σ˚ is injective. If x and y are each either a vertex
or an inner point of an edge, then they already lie in some Kj. By the definition
of σ˚ we get that σ˚pxq “ σ˚pyq if and only if there exists a j P N such that x and
y are mapped to the same point by the embedding of Kj defined by

Ťj
i“1 σ

˚
i æKi .

So x and y need to be equal.
For an and ω of G, let pMiqiě1 be a sequence of components of G´Ki such that

Ş

iě1 Mi “ tωu, which exists by Claim 1. Let tui, wiu be the neighbourhood of Mi

in G. Since G is locally finite, there exists an integer j such that y lies in Kj if it is
a vertex or an inner point of an edge, or y lies in M 1

j for some component M 1
j ‰Mj

of G´Kj if y is an end of G that is different from ω. By the definition of σ˚ and
property p˚q we get that the arc on BD between σ˚pujq and σ˚pwjq into which the
vertices of Mj are mapped contains also σ˚pωq but not y. Hence, σ˚pωq ‰ σ˚pyq if
ω ‰ y. This shows the injectivity of the map σ˚.
To see that the inverse function of σ˚ is continuous, note that |G| is compact

by Proposition D.2.2 and D is Hausdorff. So Lemma D.2.3 immediately implies
that the inverse function of σ˚ is continuous. This completes the proof that σ is
an embedding.

It remains to show the existence of a unique Hamilton circle of G that is mapped
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onto BD by σ. For this we first prove that BD Ď Impσq. This then implies that the
inverse function of σ˚ restricted to BD is a homeomorphism defining a Hamilton
circle of G since it contains all vertices of G. We begin by proving the following
claim.

Claim 2. For every infinite sequence pMiqiě1 of components Mi of G´Ki with
Mi`1 ĎMi there exists an end ω of G such that

Ş

iě1 Mi “ tωu.

Let pMiqiě1 be any sequence as in the statement of the claim. Since for every
vertex v there exists a j P N such that v P Kj , we get that

Ş

iě1 Mi is either empty
or contains ends of G. Using that each Mi is connected and that Mi`1 ĎMi, we
can find a ray R such that every Mi contains a tail of R. Therefore,

Ş

iě1 Mi

contains the end in which R lies. The argument that
Ş

iě1 Mi contains at most
one end is the same as in the proof of Claim 1. This completes the proof of Claim 2.

Suppose a point p P BD does not already lie in Impσ˚q. Then it does not
lie in Impσ˚i æKiq for any i ě 1. So there exists an infinite sequence pMiqiě1 of
components Mi of G´Ki with Mi`1 ĎMi such that p lies in the arc Ai of BD
between σ˚puiq and σ˚pwiq into which the vertices ofMi are mapped, where tui, wiu
denotes the neighbourhood of Mi in G. Using Claim 2 we obtain that there exists
an end ω of G such that

Ş

iě1 Mi “ tωu. By property p˚q of the map σ˚ the
sequences pσ˚puiqqiě1 and pσ˚pwiqqiě1 converge to a common point on BD. This
point must be p since the arcs Ai are nested. Now the definition of σ˚ tells us
that σ˚pωq “ p. Hence BD Ď Impσ˚q and G is Hamiltonian.
We finish the proof by showing the uniqueness of the Hamilton circle of G.

Suppose for a contradiction that G has two subgraphs C1 and C2 yielding different
Hamilton circles C1 and C2. Then there must be an edge e P EpC1qzEpC2q.
Let j P N be chosen such that e P EpKjq. By Lemma D.4.2 we obtain that
GKj rEpC1q XEpGKjqs and GKj rEpC2q XEpGKjqs are two Hamilton cycles of GKj

differing in the edge e. Note that GKj is a finite 2-connected outerplanar graph.
The argument for this is the same as for GK in the proof that piiq implies piq. This
yields a contradiction since GKj has a unique Hamilton cycle by statement (ii) of
Proposition D.1.6.

Next we deduce Corollary D.1.9. Let us recall its statement first.

116



Corollary D.1.9. The edges contained in the Hamilton circle of a locally finite
2-connected graph not containing K4 or K2,3 as a minor are precisely the
2-contractible edges of the graph unless the graph is isomorphic to a K3.

Proof. Let G be a locally finite 2-connected graph not isomorphic to a K3 and
not containing K4 or K2,3 as a minor. Further, let C be the subgraph of G such
that C is the Hamilton circle of G. First we show that each edge e P EpCq is a
2-contractible edge. Note for this that the closure of the subgraph of G{e formed
by the edge set EpCqzteu is a Hamilton circle in |G{e|. Hence, G{e is 2-connected
by Corollary D.2.9.
It remains to verify that no edge of EpGqzEpCq is 2-contractible. For this we

consider any edge e “ uv P EpGqzEpCq. Let K be a finite connected induced
subgraph of G containing at least four vertices as well as Npuq YNpvq, which is a
finite set since G is locally finite. Then we know by Lemma D.4.3 and by using the
locally finiteness of G again that GK is a finite 2-connected graph not containingK4

or K2,3 as a minor. So by Theorem D.1.7 and Proposition D.1.6 we get that GK has
a unique Hamilton cycle consisting precisely of its 2-contractible edges. However,
as we have seen in the proof of Theorem D.1.8, GKrEpCq X EpGKqs is the unique
Hamilton cycle of GK and does not contain e. Since GK is outerplanar, we get that
the vertex of GK{e corresponding to the edge e is a cut vertex in GK{e. By our
choice of K containing Npuq YNpvq, we get that the vertex in G{e corresponding
to the edge e is a cut vertex of G{e too. So e is not 2-contractible.

The question arises whether one could prove the more complicated part of
Theorem D.1.8, the implication piq ùñ piiq, by mimicking a proof for finite graphs.
To see the positive answer for this question, let us summarize the proof for finite
graphs except the part about the uniqueness.
By Theorem D.1.7 every finite graph without K4 or K2,3 as a minor can be

embedded into the plane such that all vertices lie on a common face boundary.
Since every face of an embedded 2-connected graph is bounded by a cycle, we
obtain the desired Hamilton cycle.
So for our purpose we would first need to prove a version of Theorem D.1.7

for |G| where G is a locally finite connected graph. This can similarly be done in
the way we have defined the embedding for the Hamilton circle in Theorem D.1.8
by decomposing the graph into finite parts using Lemma D.4.2. Since none of
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these parts contains a K4 or a K2,3 as a minor, we can fix appropriate embeddings
of them and stick them together. However, in order to obtain an embedding of
|G| we have to be careful. We also need to ensure that the embeddings of finite
parts that converge to an end in |G| also converge to a point in the plane where
we can map the corresponding end to.

The second ingredient of the proof is the following lemma pointed out by Bruhn
and Stein, but which is a corollary of a stronger and more general result of Richter
and Thomassen [52, Prop. 3].

Lemma D.4.5. [6, Cor. 21] Let G be a locally finite 2-connected graph with an
embedding ϕ : |G| ÝÑ S2. Then the face boundaries of ϕp|G|q are circles of |G|.

These observations show that the proof idea for finite graphs is still applicable for
locally finite graphs.
Let us compare the proof for the implication piq ùñ piiq of Theorem D.1.8

that we sketched right above, with the one we outlined completely. The two
proofs share a big similarity. Both need to show first that |G| can be embedded
into the plane such that all vertices lie on a common face boundary if G is a
connected or 2-connected, respectively, locally finite graph without K4 or K2,3 as a
minor. At this point the proof we outlined completely already incorporates further
properties into the embedding without too much additional effort. Especially, we
use the 2-connectedness of the graph there by finding suitable finite 2-connected
contraction minors. Then we apply Proposition D.1.6 for these. The embeddings
we obtain for the contraction minors allow us to define an embedding of |G| into a
fixed closed disk. Furthermore, this embedding of |G| has the additional property
that its restriction onto the boundary of the disk directly witnesses the existence
of a Hamilton circle. The second proof, however, takes a step backward and argues
more general. There the 2-connectedness of G is used to apply Lemma D.4.5,
which, as noted before, is a corollary of a more general result of Richter and
Thomassen [52, Prop. 3]. At this point we forget about the special embedding of
|G| into the plane that we had to construct before. We continue the argument
with an arbitrary one given that G is a 2-connected locally finite graph. So for
the purpose of proving the implication piq ùñ piiq of Theorem D.1.8, the outlined
proof is more straightforward and self-contained.
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D.5. A cubic infinite graph with a unique

Hamilton circle

This section is dedicated to Theorem D.1.12. We shall construct an infinite
graph with a unique Hamilton circle where all vertices in the graph have degree 3.
Furthermore, all ends of that graph have vertex-degree 3 as well as edge-degree 3.
The main ingredient in our construction is the finite graph T depicted in Figure D.4.
This graph has three distinguished vertices of degree 1, which we denote by u, l
and r as in Figure D.4. For us, the important feature of T is that we know where
all Hamilton paths, i.e., spanning paths, of T ´ u and T ´ r proceed. Tutte [66]
came up with the graph T to construct a counterexample to Tait’s conjecture [59],
which said that every 3-connected cubic planar graph is Hamiltonian. The crucial
observation of Tutte in [66] was that T ´ u does not contain a Hamilton path.
We shall use this observation as well, but we need more facts about T , which are
covered in the following lemma. The proof is straightforward, but involves several
cases that need to be distinguished.

Lemma D.5.1. There is no Hamilton path in T ´ u, but there are precisely two
in T ´ r (see Figure D.4).
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Figure D.4.: The fat edges in the most left picture are in every Hamilton path of
T ´ r. The fat edges in the other two pictures mark the two Hamilton
paths of T ´ r.

Proof. As mentioned already by Tutte [66], the graph T ´ u does not have a
Hamilton path. It remains to show that T ´ r has precisely two Hamilton paths.
For this we need to check several cases, but afterwards we can precisely state the
Hamilton paths. For convenience, we label each edge with a number as depicted
in Figure D.5 and refer to the edges just by their labels for the rest of the proof.
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Figure D.5.: Our fixed labelling of the relevant edges of T .

Obviously, the edges incident with ` and u would need to be in every Hamilton
path of T ´ r since these vertices have degree 1. Furthermore, the edges 2 and 3
need to be in every Hamilton path of T ´ r since the vertex incident with 2 and 3
has degree 2 in T ´ r.

Claim 1. The edge 4 needs to be in every Hamilton path of T ´ r.

Suppose for a contradiction that there is a Hamilton path P in T ´ r that
does not use 4. Then it needs to contain 1. Since it also contains 2, we know
5 R EpP q. This implies further that 7, 8 P EpP q. We can use 4 R EpP q also to
deduce that 6, 10 P EpP q holds. Now we get 11 R EpP q since 6, 7 P EpP q. This
implies 20, 21 P EpP q. But now 14 R EpP q holds because 10, 20 P EpP q. From
this we get then 16, 18 P EpP q. So 19 cannot be contained in P , which implies
13, 17 P EpP q. Now we arrived at a contradiction since the edges incident with l
and u together with the edges of the set t1, 2, 3, 13, 17, 16, 18u form a `-u path in
T ´ r that is contained in P and needs therefore to be equal to P . Then, however,
P would not be a Hamilton path T ´ r. This completes the proof of the Claim 1.

We immediately get from Claim 1 that 5 needs to be in every Hamilton path of
T ´ r and since 8 and 9 can not both be contained in any Hamilton path of T ´ r,
because they would close a cycle together with 5, 2 and 3, we also know that 12
needs to be in every Hamilton path of T ´ r.

Claim 2. The edges 14 and 16 lie in every Hamilton path of T ´ r.
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Suppose for a contradiction that the claim is not true. Then there is a Hamil-
ton path P of T ´ r containing 18. So P cannot contain 19, which implies
13, 17 P EpP q. Since 3, 13 P EpP q, we obtain 9 R EpP q, from which we follow
that 8 P P holds. Furthermore, 15 cannot be contained in P , because then the
edges 15, 17, 13, 3, 2, 5, 8, 12 would form a cycle in P . Therefore, 16 is an edge of
P . From 5, 8 P EpP q we can deduce that 7 R EpP q holds. So 6 and 11 are edges
of P , which that implies 10 R EpP q. Then 14, 20 P EpP q needs to be true. Now,
however, we have a contradiction, because P would have a vertex incident with
three vertices, namely 14, 16 and 18. This completes the proof of Claim 2

It follows from Claim 2 that 19 is contained in every Hamilton path of T ´ r.
We continue with another claim.

Claim 3. The edges 6 and 20 lie in every Hamilton path of T ´ r.

Suppose for a contradiction that the claim is not true. Then there is a Hamilton
path P of T ´ r containing 10. This immediately implies that 6 R EpP q, yield-
ing 7, 11 P EpP q, and 20 R EpP q, yielding 21 P EpP q. We note that 8 cannot
be an edge of P since P would then contain a cycle spanned by the edge set
t8, 7, 11, 21, 12u. Therefore, 9 P EpP q must hold. Here we arrive at a contradiction,
since P now contains a cycle spanned by the edge set t9, 3, 2, 5, 7, 11, 21, 12u. This
completes the proof of Claim 3

Using all the observations we have made so far, we can now show that T ´ r has
precisely two Hamilton paths and state them by looking at the edge 11. Assume
that 11 is contained in a Hamilton path P1 of T ´ r. Then 7, 21 R EpP1q follows,
because 6, 20 P EpP1q holds by Claim 3. Since we could deduce from Claim 1
that 5, 12 P EpP1q holds, we get furthermore 8, 15 P EpP1q. This now yields
9, 17 R EpP1q and, therefore, 13 P EpP1q. As we can see, the assumption that 11 is
contained in a Hamilton path P1 of T ´ r is true. Also, P1 is uniquely determined
with respect to this property and consists of the fat edges in the most right picture
of Figure D.4.
Next assume that there is a Hamilton path P2 of T ´ r that does not contain

the edge 11. Then 7 and 21 have to be edges of P2. Using again that 5, 12 P EpP2q

holds, we deduce 8, 15 R EpP2q. Then, however, we get 9, 17 P EpP q and have
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already uniquely determined P2, which corresponds to the fat edges in the middle
picture of Figure D.4.

Using Lemma D.5.1 we shall now prove Theorem D.1.12 by constructing a pre-
scribed graph. During the construction we shall often refer to certain distinguished
vertices of T that are named as depicted in Figure D.4. Let us recall the statement
of the theorem.

Theorem D.1.12. There exists an infinite connected graph G with a unique
Hamilton circle that has degree 3 at every vertex and vertex- as well as edge-degree
3 at every end.

Proof. We construct a sequence of graphs pGnqnPN inductively and obtain the
desired one G as a limit of the sequence. We start with G0 “ T 1

0 “ T .
Now suppose we have already constructed Gn for n ě 0. Furthermore, let

tT in ; 1 ď i ď 2nu be a specified set of disjoint subgraphs of Gn each of which
each is isomorphic to T . We define Gn`1 as follows. Take Gn and two copies Tc
and Tv of T for each T in Ď Gn. Then identify for every i the vertices of Tc that
correspond to u, ` and r, respectively, with the vertices of the related T in Ď Gn

corresponding to `, s and t, respectively. Also identify for every i the vertices of
Tv corresponding to u, ` and r, respectively, with the ones of the related T in Ď Gn

corresponding to w, x and y, respectively. Finally, delete in each T in Ď Gn the
vertices corresponding to c and v, see Figure D.6. This completes the definition
of Gn`1. It remains to fix the set of 2n`1 many disjoint copies of T that occur as
disjoint subgraphs in Gn`1. For this we take the set of all copies Tc and Tv of T
that we have inserted in the subgraphs T in of Gn.
Using the graphs Gn we define a graph Ĝ as a limit of them. We set

Ĝ “ GrÊs where Ê “

#

e P
ď

nPN
EpGnq ; DN P N : e P

č

něN

EpGnq

+

.

Note that an edge e P EpGnq is an element of Ê if and only if it was not deleted
during the construction of Gn`1 as an edge incident with one of the vertices that
correspond to c or v in T in for some i. Finally, we define G as the graph obtained
from Ĝ by identifying the three vertices that correspond to u, ` and r of T 1

0 .
Next let us verify that every vertex of G has degree 3 and that every end of

G has vertex- as well as edge-degree 3 in G. Since every vertex of T except u, `
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Figure D.6.: A sketch of the construction of G1. The fat black, grey and dashed
edges incident with the grey vertices in the right picture correspond
to the ones in the left picture.

and r has degree 3, the construction ensures that every vertex of G has degree
3 too. In order to analyse the end degrees, we have to make some observations
first. The edges of G that are adjacent to vertices corresponding to u, ` and r of
any T in define a cut EpAin, Bi

nq of G. Note that for any finite cut of a graph all
rays in one end of the graph have tails that lie completely on one side of the cut.
Therefore, the construction of G ensures that for every end ω of G there exists
a function f : N ÝÑ N with fpnq P t1, . . . , 2nu such that all rays in ω have tails
in Bfpnq

n for each n P N and Bfpnq
n Ě B

fpn`1q
n`1 with

Ş

nPNB
fpnq
n “ H. Using that

|EpAin, B
i
nq| “ 3 for every n and i, this implies that every end of G has edge-degree

at most 3. Since there are three disjoint paths from tu, `, ru to ts, `, tu as well as
to tx,w, yu in T , we can also easily construct three disjoint rays along the cuts
EpAin, B

i
nq that belong to an arbitrary chosen end of G. So every end of G has

vertex-degree 3. In total this yields that every end of G has vertex- as well as
edge-degree 3 in G.
It remains to prove that G has precisely one Hamilton circle. We begin by

stating the edge set of the subgraph C defining the Hamilton circle C of G. Let
EpCq consist of those edges of EpGq X T in for every n and i that correspond to
the fat edges of T in the most right picture of Figure D.4. Now consider any
finite cut D of G. The construction of G yields that there exists an N P N such
that D is already a cut of the graph obtained from Gn by identifying the vertices
corresponding to u, ` and r of T 1

0 Ď Gn for all n ě N . Using this observation we
can easily see that every vertex of G has degree 2 in C. We also obtain that every
finite cut is met at least twice, but always in an even number of edges of C. By
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Lemma D.2.6 we get that C is topologically and also arc-connected. Therefore,
every end of G has edge-degree at least 1 and at most 3 in C. Together with
Theorem D.2.7 this implies that every end of G has edge-degree 2 in C. Hence,
Lemma D.2.8 tells us that C is a circle, which is Hamiltonian since it contains all
vertices of G.

We finish the proof by showing that C is the unique Hamilton circle of G. Since
any Hamilton circle H of G meets each cut EpAin, Bi

nq precisely twice, H induces
a path through T that contains all vertices of T except one out of the set tu, `, ru.
By Lemma D.5.1 we know that such paths must contain the edge adjacent to u.
Let us consider any T in in Gn. Now let T jn`1 be the copy of T whose vertices of
degree 1 we have identified with the vertices corresponding to the neighbours of c
in T in during the construction of Gn`1. The way we have identified the vertices
implies that the path induced by H through T in must also use the edge adjacent
to ` since the induced path in T jn`1 must use the edge adjacent to u. With a
similar argument we obtain that the induced path inside T in must use the edge
corresponding to vw. We know from Lemma D.5.1 that there is a unique Hamilton
path in T ´ r that uses the edges `c and vw, namely the one corresponding to
the fat edges in the most right picture of Figure D.4. So the edges which must be
contained in every Hamilton circle are precisely those of C.

Remark D.5.2. After reading a preprint covering the content of Section D Max
Pitz [51] carried further some ideas of Section D. Also using the graph T , he
recently constructed a two-ended cubic graph with a unique Hamilton circle where
both ends have vertex- as well as edge-degree 3. He further proved that every
one-ended Hamiltonian cubic graph whose end has edge-degree 3 (or vertex-degree
3) admits a second Hamilton circle.
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Chapter III.

Directed infinite graphs
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E. An analogue of Edmonds’ Branching
Theorem for infinite digraphs

E.1. Introduction

Studying how to force spanning structures in finite graphs is a basic task. The
most fundamental spanning structure is a spanning tree, whose existence is already
characterised by the connectedness of the graph. Moving on and characterising
the existence of a given number of edge-disjoint spanning trees via an immediately
necessary condition, Nash-Williams [48] and Tutte [67] independently proved the
following famous theorem.

Theorem E.1.1. [48, 67], [12, Thm. 2.4.1] A finite multigraph G has k P N edge-
disjoint spanning trees if and only if for every partition P of V pGq there are at
least kp|P | ´ 1q edges in G whose endvertices lie in different partition classes.

Later, Edmonds [21] generalised Theorem E.1.1 to finite digraphs, also involving
a condition which is immediately seen to be necessary for the existence of the
spanning structures. In his theorem, Edmonds considers as spanning structures
out-arborescences rooted in a vertex r, i.e., spanning trees whose edges are directed
away from the root r. His theorem immediately implies a corresponding result for
in-arborescences rooted in r, i.e., spanning trees directed towards r, via reversing
every edge in the digraph. For this reason we shall focus in Section E only on
out-arborescences and denote them just by arborescences.

Theorem E.1.2. [21], [3, Thm. 9.5.1] A finite digraph G with a vertex r P V pGq
has k P N edge-disjoint spanning arborescences rooted in r if and only if there are
k edges from X to Y for every bipartition pX, Y q of V pGq with r P X.

One of the main results of Section E is to extend Theorem E.1.2 to a certain
class of infinite digraphs. There has already been work in this area. In order to
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mention two important results about this let us call a one-way infinite path all
whose edges are directed away from the unique vertex incident with only one edge
a forward directed ray. Similarly, we call the digraph obtained by reversing all
edges of a forward directed ray a backwards directed ray. Thomassen [64] extended
Theorem E.1.2 to infinite digraphs that do not contain a backwards directed ray,
while Joó [40] obtained an extension for infinite digraphs without forward directed
rays using different methods. In contrast to these two results we shall demand a
local property for our digraphs by considering locally finite digraphs, i.e., digraphs
where every vertex has finite in- and out-degree. Similarly, undirected multigraphs
are called locally finite if every vertex has finite degree.
When trying to extend Theorem E.1.2 to infinite digraphs it is important to

know that a complete extension is not possible. The reason for this is that
Oxley [50, Ex. 2] constructed a locally finite graph without two edge-disjoint
spanning trees but fulfilling the necessary condition in Theorem E.1.1. Following up,
Aharoni and Thomassen [2, Thm.] gave a construction for further counterexamples
to Theorem E.1.2, which are all locally finite and can even be made 2k-edge-
connected for arbitrary k P N. Hence, using ordinary spanning trees for an
extension of Theorem E.1.1 to locally finite graphs does not work. This immediately
implies that extending Theorem E.1.2 to locally finite digraphs fails as well if
ordinary arborescences are used. While Thomassen and Joó could overcome this
problem by forbidding certain one-way infinite paths, for us it is necessary to
additionally change the notion of arborescence since the counterexamples to direct
extensions of Theorem E.1.1 and Theorem E.1.2 to infinite (di)graphs are locally
finite.
For undirected locally finite (connected) multigraphs G the problem of how to

extend Theorem E.1.1 has successfully been overcome. The key was to not just
consider G but the Freudenthal compactification |G| [12,13] of the 1-complex of
G. Instead of ordinary spanning trees, now packings of topological spanning trees
of G are considered. We call a topologically connected subspace of |G| which
is the closure of a set of edges of G, contains all vertices of G but contains no
homeomorphic image of the unit circle S1 Ď R2, a topological spanning tree of
G. There is an equivalent but more combinatorial, and especially finitary, way of
defining topological spanning trees of G. They are precisely the closures in |G| of
the minimal edge sets that meet every finite cut of G [12]. As already observed by
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Tutte, this finitary condition can be used to obtain the following packing theorem
for disjoint edge sets each meeting every finite cut, via the compactness principle.

Theorem E.1.3. [67] A locally finite multigraph G has k P N disjoint edge sets
each meeting every finite cut of G if and only if for every finite partition P of
V pGq there are at least kp|P | ´ 1q edges in G whose endvertices lie in different
partition classes.

By the equivalence noted above, Theorem E.1.3 implies a packing result for
topological spanning trees:

Theorem E.1.4. [12, Thm. 8.5.7] A locally finite multigraph G has k P N edge-
disjoint topological spanning trees if and only if for every finite partition P of V pGq
there are at least kp|P | ´ 1q edges in G whose endvertices lie in different partition
classes.

In the spirit of Tutte’s approach, we prove the following packing theorem
generalising Theorem E.1.2 to locally finite digraphs for what we call spanning
pseudo-arborescences rooted in some vertex r. For a locally finite weakly connected
digraph G and r P V pGq we define a spanning pseudo-arborescences rooted in r as
a minimal edge set F Ď EpGq such that F contains an edge directed from X to Y
for every bipartition pX, Y q of V pGq with r P X and finitely many edges between
X and Y in either direction.

Theorem E.1.5. A locally finite weakly connected digraph G with r P V pGq has
k P N edge-disjoint spanning pseudo-arborescences rooted in r if and only if there
are k edges from X to Y for every bipartition pX, Y q of V pGq with r P X and
finitely many edges between X and Y in either direction.

In fact we shall prove a slightly stronger version of this theorem, Theorem E.4.3,
which requires more notation.

While minimal edges sets meeting every finite cut in an undirected multigraph
turn out to be topological extensions of finite trees, there is no analogous topological
interpretation of spanning pseudo-arborescences on terms of the Freudenthal
compactification of the underlying multigraph. In Section E.5 we give an example
of a digraph G with underlying multigraph H where the closure in |H| of the
underlying undirected edges of any spanning pseudo-arborescence of G contains a
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homeomorphic image of S1. We shall be able to extend to pseudo-arborescences,
in a suitable topological setting, the property of finite arborescences of being
edge-minimal such that each vertex is still reachable by a directed path from
the root. While in finite arborescences such directed paths are unique, however,
their analogues in pseudo-arborescences are not in general unique. This will be
illustrated by an example given in Section E.5.

Finally, we prove the following structural characterisation for spanning pseudo-
arborescences.

Theorem E.1.6. Let G be a locally finite weakly connected digraph and r P V pGq.
Then the following statements are equivalent for an edge set F Ď EpGq containing
an edge from X to Y for every bipartition pX, Y q of V pGq with r P X and finitely
many edges between X and Y in either direction.

(i) F is a spanning pseudo-arborescences rooted in r.

(ii) For every vertex v ‰ r of G there is a unique edge in F whose head is v, and
no edge in F has r as its head.

(iii) For every weak component T of GrF s the following holds: If r P V pT q, then
T is an arborescence rooted in r. Otherwise, the underlying multigraph of T
is a tree, T contains a backwards directed ray and all other edges of T are
directed away from that ray.

We prove a slightly more general version of Theorem E.1.6 in Section E.5
(cf. Theorem E.5.3).

The structure of Section E is as follows. In Section E.2 we give basic definitions
and fix our notation for directed and undirected (multi)graphs. We especially
refer to the topology we consider on locally finite (weakly) connected digraphs and
(undirected) multigraphs, and state some basic lemmas that we shall need for our
main results of Section E. In Section E.3 we extend some lemmas about directed
walks and paths in finite digraphs to locally finite (weakly) connected digraphs.
Section E.4 is dedicated to the proof of Theorem E.1.5. Section E is completed
with Section E.5 containing the proof of Theorem E.1.6 and a discussion about
how much pseudo-arborescences resemble finite arborescences or topological trees.
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E.2. Preliminaries

For basic facts about finite and infinite graphs we refer the reader to [12]. As a
source especially for facts about directed graphs we refer to [3].
Throughout all of Section E we shall often write G “ pV,Eq for a digraph.

Then V pGq will denote its vertex set V and EpGq its set of directed edges E. As
for undirected graphs, we shall call the elements of EpGq just edges. In general,
we allow our digraphs to have parallel edges, but no loops. We view the edges
of a digraph G as ordered pairs pa, bq of vertices a, b P V pGq and shall write ab
instead of pa, bq, although this might not uniquely determine an edge. For an edge
ab P EpGq we furthermore denote the vertex a as the tail of ab and b as the head
of ab.

For two disjoint vertex sets X, Y of a digraph G we denote by EpX, Y q the set
of all edges of G having not both, their head and their tail, in just one of the sets
X and Y . By ÝÑE pX, Y q we denote the set of edges of G that have their tail in X
and their head in Y . For a multigraph or digraph G we call the edge set EpX, Y q
a cut if pX, Y q is a bipartition of V pGq. If we introduce a cut EpX, Y q, then
we implicitly want pX, Y q to be the corresponding bipartition of V pGq defining
the cut. For a vertex set X Ď V pGq we set d`pXq “ |

ÝÑ
E pX, V pGqzXq| and

d´pXq “ |
ÝÑ
E pV pGqzX,Xq|. If X “ tvu for some vertex v P V pGq, we write d`pvq

instead of d`ptvuq and call it the out-degree of v. Similarly, we write d´pvq instead
of d´ptvuq and call it the in-degree of v.
For a finite non-trivial directed path P we call the vertex of out-degree 1 and

in-degree 0 in P the start vertex of P . Similarly, the vertex of in-degree 1 and
out-degree 0 in P the endvertex of P . If P consists only of a single vertex, we call
that vertex the endvertex of P .

We define a finite directed walk as a tuple pW ,ăWq with the following properties:

1. W is a weakly connected graph with at least one vertex on the edge set
EpWq “ te1, e2, . . . , enu for some n P N such that the head of ei´1 is the tail
of ei for every i P N satisfying 1 ď i ď n.

2. ăW is a linear order on EpWq stating that ei ăW ej if and only if i ă j for
all i, j P t1, . . . , nu.

We call a directed walk without edges trivial and call its unique vertex its endvertex.
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Otherwise, we call the tail of e1 the start vertex of pW ,ăWq and the tail of en the
endvertex of pW ,ăWq. If the start vertex and the endvertex of finite directed walk
are equal, we call it closed. Lastly, we call pW ,ăWq a finite directed s–t walk for
two vertices s, t P V pWq if s is the start vertex of pW ,ăWq and t is the endvertex
of pW ,ăWq. We might call a finite graph W a finite directed walk and implicitly
assume that there exists a linear order ăW , which we then also fix, such that
pW ,ăWq is a finite directed walk. Especially, we will say that a finite directed
walk pW ,ăWq is contained in a graph G1 if W is a subgraph of G1. Note that
directed paths are directed walks when equipped with the obviously suitable linear
order.
We define a ray to be an undirected one-way infinite path. Any subgraph of a

ray R that is itself a ray is called a tail of R.
We call a weakly connected digraph R a backwards directed ray if there is a

unique vertex v P V pRq with d´pvq “ 1 and d`pvq “ 0 while d´pwq “ d`pwq “ 1
holds for every other vertex w P V pRqztvu. A forward directed ray is analogously
defined by interchanging d´ and d`.
For an undirected multigraph G we define an equivalence relation on the set

of all rays in G. We call two rays in G equivalent if they cannot be separated by
finitely many vertices in G. An equivalence class with respect to this relation is
called an end of G. We denote the set of all ends of G by ΩpGq. We define the
ends of a digraph D precisely as the ends of its underlying multigraph. The set of
all ends of D is also denoted by ΩpDq. We say that a backwards directed ray R of
D is contained in some end ω P ΩpDq if the underlying ray of R is contained in
the end ω of the underlying multigraph of D.

We call a digraph A an out-arborescence rooted in r if r P V pAq YΩpAq and the
underlying multigraph of A is a tree such that d´pvq “ 1 holds for every vertex
v P V pAqztru and additionally d´prq “ 0 in the case that r P V pAq, while we
demand that r contains a backwards directed ray if r P ΩpAq.

Note that if r P V pAq, then A does not contain a backwards directed ray. In the
case where r P ΩpAq, then r is the unique end of A containing a backwards directed
ray, since a second one would yield a vertex with in-degree bigger than 1 by using
that the underlying multigraph of A is a tree. Also note that if A is a finite digraph,
the condition d´prq “ 0 for r P V pAq in the definition of an out-arborescence
rooted in r is redundant, because it is implied by the tree structure of A.
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Similarly, an in-arborescence rooted in r is defined with d´ replaced by d`.
Corresponding results about in-arborescences are immediate by reversing the
orientations of all edges. For both types of arborescences we call r the root of the
arborescence. In Section E we shall only work with out-arborescences. Hence, we
shall drop the prefix ‘out’ and just write arborescence from now on.

A multigraph is called locally finite if each vertex has finite degree. We further
call a digraph locally finite if its underlying multigraph is locally finite.
For a vertex set X in a locally finite connected multigraph G we define its

combinatorial closure X Ď V pGq Y ΩpGq as the set X together with all ends of G
that contain a ray which we cannot separate from X by finitely many vertices.
Note that for a finite cut EpX, Y q of G we obtain that pX,Y q is a bipartition of
V pGqYΩpGq, because every end in X can be separated from Y by the finitely many
vertices of X that are incident with edges of EpX, Y q, and, furthermore, each ray
contains a subray that is either completely contained in X or in Y since EpX, Y q
is finite. The combinatorial closure of a vertex set in a digraph is just defined as
the combinatorial closure of that set in the underlying undirected multigraph.
Let G be a locally finite digraph and Z Ď V pGqztru where r P V pGq Y ΩpGq.

An edge set F Ď EpGq is called r-reachable for Z if |F XÝÑE pX, Y q| ě 1 holds for
every finite cut EpX, Y q of G where r P X and Y X Z ‰ H. Furthermore, if F is
an r-reachable set for Z “ V pGqztru, we call F a spanning r-reachable set. We
continue with a very basic remark about spanning r-reachable sets.

Remark E.2.1. Let G be a locally finite digraph with a spanning r-reachable
set F where r P V pGq Y ΩpGq. Then |F X ÝÑE pV pGqzM,Mq| ě 1 holds for every
non-empty finite set M Ď V pGq with r RM .

Proof. Since G is locally finite and M is finite, we know that the cut
EpV pGqzM,Mq is finite. The assumption r RM ensures that r P V pGqzM . Using
that F is a spanning r-reachable set and that M , as a non-empty set, contains a
vertex different from r, we get the desired inequality |F X ÝÑE pV pGqzM,Mq| ě 1
by the definition of spanning r-reachable sets.

Note that for a locally finite digraph G with a spanning r-reachable set F the
digraph GrF s is spanning. This follows by applying Remark E.2.1 to the set
M “ tvu for every vertex v P V pGq. Furthermore, note that if G is finite, the
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subgraph induced by a spanning r-reachable set contains a spanning arborescence
rooted in r P V pGq.

We conclude this section with a last definition. We call an inclusion-wise minimal
r-reachable set F for a set Z Ď V pGqztru a pseudo-arborescence for Z rooted in r.
Moreover, if F is spanning, we call it a spanning pseudo-arborescence rooted in r.

E.2.1. Topological notions for undirected multigraphs

For this subsection let G “ pV,Eq denote a locally finite connected multigraph. We
can endow G together with its ends with a topology which yields the topological
space |G|. A precise definition of |G| can be found in [12, Ch. 8.5]. However, this
concept and definition directly extends to locally finite connected multigraphs. For
a better understanding we should point out here that a ray of G converges in |G|
to the end of G that it is contained in. An equivalent way of describing |G| is by
first endowing G with the topology of a 1-complex and then compactifying this
space using the Freudenthal compactification [19].
For an edge e P E let e̊ denote the set points in |G| that correspond to inner

points of the edge e. For an edge set F Ď E we define F̊ “
Ť

t̊e ; e P F u Ď |G|.
Given a point set X in |G|, we denote the closure of X in |G| by X. To ease
notation we shall also use this notation when X denotes an edge set or a subgraph
of G, meaning that we apply the closure operator to the set of all points in |G|
that correspond to X. Note that for a vertex set its closure coincides with its
combinatorial closure in locally finite connected multigraphs. Hence, we shall use
the same notation for these two operators. Further we call a subspace Z Ď |G|
standard if Z “ H for a subgraph H of G.

Let W Ď |G| and ăW be a linear order on E̊ XW . We call the tuple pW,ăW q a
topological walk in |G| if there exists a continuous map σ : r0, 1s ÝÑ |G| such that
the following hold:

1. W is the image of σ,

2. each point p P E̊ XW has precisely one preimage under σ, and

3. the linear order ăW equals the linear order ăσ on E̊ XW defined via p ăσ q
if and only if σ´1ppq ăR σ

´1pqq where ăR denotes the natural linear order of
the reals.
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We call such a map σ a witness of pW,ăW q. When we talk about a topological
walk pW,ăW q we shall often omit stating its linear order ăW explicitly and just
refer to the topological walk by writing W . Especially, we might say that a
topological walk pW,ăW q is contained in some subspace X of |G| if W Ď X holds.
Further, we call a point x of |G| an endpoint of W if 0 or 1 is mapped to x by a
witness of W . Similar to finite walks in graphs we call an endpoint x of W an
endvertex of W if x corresponds to a vertex of G. Further, we denote W as an
x–y topological walk, if x and y are endpoints of W . If W has just one endpoint,
which then has to be an end or a vertex by definition, we call it closed. Note that
an x–y topological walk is a standard subspace for any x, y P V Y ΩpGq. We say
that a witness σ of a topological walk W pauses at a vertex v P V if the preimage
of v under σ is a disjoint union of closed nontrivial intervals.

We define an arc in |G| as the image of a homeomorphism mapping into |G| and
with the closed real unit interval r0, 1s Ď R as its domain. Note that arcs in |G|
are also topological walks in |G| if we equip them with a suitable linear order, of
which there exist only two. Since the choice of such a linear order does not change
the set of endpoints of the arc if we then consider it as a topological walk, we shall
use the notion of endpoints and endvertices also for arcs. Furthermore, note that
finite paths of G which contain at least one edge correspond to arcs in |G|, but
again there might be infinite subgraphs, for example rays, whose closures form
arcs in |G|. We now call a subspace X of |G| arc-connected if there exists an x–y
arc in X for any two points x, y P X.
Lastly, we define a circle in |G| as the image of a homeomorphism mapping

into |G| and with the unit circle S1 Ď R2 as its domain. It is easy to check that
any circle needs to contain a vertex. Hence, we might also consider any circle
as a closed topological walk if we equip it with a suitable linear order, which,
however, depends on the point on the circle that we choose as the endpoint for the
closed topological walk, and on choosing one of the two possible orientations of S1.
Similar as for finite paths, note that finite cycles in G correspond to circles in |G|,
but there might be infinite subgraphs of G whose closures are circles in |G| as well.
Using these definitions we can now formulate a topological extension of the

notion of trees. We define a topological tree in |G| as an arc-connected standard
subspace of |G| that does not contain any circle. Note that in a topological
tree there is a unique arc between any two points of the topological tree, which
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resembles a property of finite trees with respect to its vertices and finite paths.
Furthermore, we denote by a topological spanning tree of G a topological tree in
|G| that contains all vertices of G. Since topological spanning trees are closed
subspaces of |G|, they need to contain all ends of G as well.

E.2.2. Topological notions for digraphs

In this subsection we extend some of the notions of the previous subsection to
directed graphs. Throughout this subsection let G denote a locally finite weakly
connected digraph and let H denote its underlying multigraph. We define the
topological space |G| as |H|. Additionally, every edge e “ uv P EpGq defines a
certain linear order ăe on teu Ď |G| via its direction. For the definition of ăe
we first take any homeomorphism ϕe : r0, 1s ÝÑ teu Ď |G| with ϕep0q “ u and
ϕep1q “ v. Now we set p ăe q for arbitrary p, q P teu if ϕ´1

e ppq ăR ϕ
´1
e pqq where

ăR is the natural linear order on the real numbers. Note that the definition of ăe
does not depend on the choice of the homeomorphism ϕe.
Let pW,ăW q be a topological walk in |G| with witness σ. We call pW,ăW q

directed if ăe æ̊e equals ăW æ̊e for every edge e P EpGq with e̊ X W ‰ H. If
pW,ăW q is directed and σp0q “ s ‰ t “ σp1q for s, t P |G|, then there is no
linear order ă1W such that pW,ă1W q is a directed topological walk with a witness
σ1 satisfying σ1p0q “ t and σ1p1q “ s, because every topological s–t walk uses
inner points of some edge. Hence, if we consider a directed topological s–t walk
pW,ăW q for s, t P |G|, we implicitly assume that σp0q “ s ‰ t “ σp1q holds for
every witness σ of pW,ăW q.

As arcs and circles can be seen as special instances of topological walks, directed
arcs and directed circles are analogously defined. Note that if we can equip an
arc with a suitable linear order such that it becomes a directed topological walk,
then this linear order is unique. Hence, when we call an arc directed we implicitly
associate this unique linear order with it.

E.2.3. Basic lemmas

The proofs of two lemmas (Lemma E.3.1 and Lemma E.4.1) rely to some extend
on compactness arguments. At those points it will be sufficient for us to use the
following lemma, which is known as König’s Infinity Lemma.
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Lemma E.2.2. [12, Lemma 8.1.2] Let pViqiPN be a sequence of disjoint non-empty
finite sets, and let G be a graph on their union. Assume that for every n ą 0 each
vertex in Vn has a neighbour in Vn´1. Then G contains a ray v0v1 . . . with vn P Vn
for all n P N.

We shall heavily work with the topological space |G| of a locally finite multigraph
G appearing as the underlying graph of digraphs we consider. Therefore, we shall
make use of some basic statements and properties of the space |G|, especially such
involving connectivity. Although the following lemmas are only stated for locally
finite graphs, their proofs immediately extend to locally finite multigraphs.

Proposition E.2.3. [12, Lemma 8.5.1] If G is a locally finite connected multigraph,
then |G| is a compact Hausdorff space.

The next lemma is essential for decoding the topological property of arc-connect-
edness of standard subspaces of |G| into a combinatorial one.

Lemma E.2.4. [12, Lemma 8.5.3] Let G be a locally finite connected multigraph
and F Ď EpGq be a cut with sides V1 and V2.

(i) If F is finite, then V1 X V2 “ H, and there is no arc in |G|zF̊ with one
endpoint in V1 and the other in V2.

(ii) If F is infinite, then V1 X V2 ‰ H, and there may be such an arc.

Note that for a finite cut EpX, Y q of G we obtain that pX,Y q is a bipartition
of V pGq Y ΩpGq.

The following lemma captures the equivalence of arc-connectedness and connect-
edness for standard subspaces of |G|.

Lemma E.2.5. [12, Lemma 8.5.4] If G is a locally finite connected multigraph,
then every connected standard subspace of |G| is arc-connected.

We conclude with a convenient lemma which combines the essences of the
previous two.

Lemma E.2.6. [12, Lemma 8.5.5] If G is a locally finite connected multigraph,
then a standard subspace of |G| is connected if and only if it contains an edge from
every finite cut of G of which it meets both sides.
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E.3. Fundamental statements about topological

directed walks in locally finite digraphs

In this section we lift several facts about topological walks and arcs to their directed
counterparts. Most of the involved techniques and proof ideas are similar to the
ones used in undirected locally finite connected multigraphs. Nevertheless, because
of overlying directed structure on the multigraph, some adjustments and additional
arguments are needed in the proofs. We start with a statement that combinatorially
characterises the existence of directed topological walks in a standard subspace
via finite cuts.

Lemma E.3.1. Let G be a locally finite weakly connected digraph, s, t P V pGq Y
ΩpGq with s ‰ t and F Ď EpGq. Then the following are equivalent:

(i) F contains a directed topological s–t walk.

(ii) |F XÝÑE pX, Y q| ě 1 for every finite cut EpX, Y q of G with s P X and t P Y .

(iii) |F XÝÑE pX, Y q| “ |F XÝÑE pY,Xq| ` 1 for every finite cut EpX, Y q of G with
s P X and t P Y .

Proof. First we prove the implication from (i) to (iii). Let EpX, Y q be any finite
cut of G with s P X and t P Y . Since F contains a directed topological s–t
walk pW,ăW q for an edge set W Ď EpGq, we know that F X EpX, Y q ‰ H by
Lemma E.2.6. Note furthermore that X X Y “ H by Lemma E.2.4. As X and
Y are closed and |G| is compact by Proposition E.2.3, we get that X and Y are
compact too. Now let ϕ be a witness ofW . Since Y is compact and ϕ is continuous,
there exists a smallest number q P r0, 1s such that ϕpqq P Y . Furthermore, there is
a biggest number p P r0, qs such that ϕppq P X. Note that p ‰ q since X X Y “ H.
Now let M “ tϕprq P |G| ; p ă r ă qu. Obviously, M contains only inner points
of edges in EpX, Y q. Since M is connected, we obtain M “ e̊ for some edge
e P EpX, Y q. Using that ăW æ̊e equals ăe æ̊e because pW,ăW q is a directed s–t
walk, we see that e P W X

ÝÑ
E pX, Y q. Next we consider ϕærq, 1s and iterate the

previous argument. Using that EpX, Y q contains only finitely many edges, we get
inductively that |F XÝÑE pX, Y q| “ |F XÝÑE pY,Xq| ` 1 is true.
The implication from (iii) to (ii) is immediate.
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It remains to show that (ii) implies (i). For this we first fix a sequence pSnqnPN
of finite vertex sets Sn Ď V pGq such that Sn Ř Sn`1 for every n P N and
Ť

nPN Sn “ V pGq. For every n P N let Gn denote the digraph which arises by
contracting EpG ´ Snq in G. Since G is locally finite, we know that each Gn is
a finite digraph. We call the vertices of Gn that are not contained in Sn dummy
vertices. Note that each dummy vertex of Gn corresponds to a unique weak
component of G´ Sn.

If some v P V pGqYΩpGq is not contained in Sn, there exists a unique component
Cn of G´Sn such that v P Cn. This is obviously true if v is a vertex of G, but also
holds if v is an end of G. To see the latter statement suppose v P ΩpGq is contained
in Cn for a component Cn of G ´ Sn. Then the cut EpV pCnq, V pGqzV pCnqq is
finite as Sn is finite and G is locally finite. Hence V pCnq X pV pGqzV pCnqq “ H by
Lemma E.2.4, which means that v cannot lie in the closure of another component
of G´ Sn. We refer to the dummy vertex of Gn corresponding to Cn by a slight
abuse of notation as v.
Since for each n P N every cut of Gn corresponds to a finite cut of G, we

obtain by Theorem E.1.2 that F X EpGnq contains the edge set of a finite di-
rected s–t walk in the digraph Gn. Furthermore, any finite directed s–t walk
pWn`1,ăWn`1q in Gn`1 induces a finite directed s–t walk pWn,ăWnq in Gn via
EpWnq :“ EpWn`1q X EpGnq and defining ăWn as ăWn`1 æEpWnq. Note that
each maximal interval with respect to ăWn`1 of EpWn`1qzEpWnq corresponds to
some v–w walk where v and w are the same dummy vertex of Gn. Hence each
time a dummy vertex of Gn appears as the head of some edge e P EpWnq there
is a corresponding, possibly trivial, walk We

n`1 using edges of of such a maximal
interval with the induced order ăWn`1 æEpWe

n`1q.
For every n P N let Vn denote the set of all finite directed s–t walks in Gn that

use only edges from F . Obviously, each set Vn is finite as Gn is a finite digraph.
By the previously given arguments, none of the sets Vn is empty and each element
of Vn`1 induces one of Vn. Hence, we get a sequence ppWn,ăWnqqnPN of finite
directed s–t walks where pWn,ăWnq P Vn such that EpWn`1q X EpWnq “ EpWnq

and ăWn`1 æEpWnq equals ăWn for every n P N by Lemma E.2.2. We define
Wn :“ EpWnq for every n P N. Next we set W :“

Ť

nPNWn and ăW :“
Ť

nPN ăWn .
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Further, we define a linear order ăW on W̊ as follows for p, q P W̊ with p ‰ q:

p ăW q iff

$

&

%

p P e̊ and q P f̊ with e ăW f for some e, f P W with e ‰ f , or

p, q P e̊ and p ăe q for some e P W.

Now we claim that pW,ăW q is a directed topological s–t walk in |G|. In order
to show this we first have to define a witness ϕ for pW,ăW q. We shall obtain ϕ
as a limit of countably many certain witnesses ϕn of directed topological walks
pWn,ăWn

q in |Gn| that we define inductively, where ăWn
is analogously defined as

ăW but with respect to Wn.
For n “ 0 we start with a witness ϕ0 of the directed topological s–t walk

pW0,ăW0
q in |G0| which pauses at every dummy vertex of G0 contained in W0.

Now suppose that the witness ϕn of pWn,ăWn
q has already been defined such

that it pauses at every dummy vertex of Gn that is contained inWn. Then we define
ϕn`1 as some witness of pWn`1,ăWn`1

q as follows. For every edge e P Wn whose
head is a dummy vertex of Gn, let W e

n`1 be the edge set of the walkWe
n`1 as above

and let ϕen`1 be a witness thatWe
n`1 is the corresponding directed topological walk

that pauses at every dummy vertex of Gn`1 that is contained in W e
n`1. Starting

with ϕn, each time we enter some dummy vertex d of Gn by an edge e, we replace
the image of the interval that is mapped to d with a rescaled version of ϕen`1.
Using the maps ϕn we are able to define ϕ as follows: For every q P r0, 1s for

which there exists an n P N such that ϕnpqq P Sn, we set ϕpqq :“ ϕnpqq. Otherwise,
ϕnpqq corresponds to a contracted component Cn of G ´ Sn for every n P N.
Since Sn Ř Sn`1 for every n P N and

Ť

nPN Sn “ V pGq, it is easy to check that
Ş

nPNCn “ tωu for some end ω of G. In this case, we define ϕpqq :“ ω. This
completes the definition of ϕ. It is straightforward to verify that ϕ is continuous
and also onto W because each ϕn is onto Wn and W :“

Ť

nPNWn. This ensures
that it is a witness of pW,ăW q being a topological s–t walk. Note that the linear
order ăW æ̊e equals ăe æ̊e for each edge e P W since each linear order ăWn

has
this property. Hence, ϕ witnesses that pW,ăW q is a directed topological s–t walk
in |G| with W Ď F .

We proceed with a lemma which encodes the existence of directed arcs in
standard subspaces in the same combinatorial way as Lemma E.3.1 did this for
directed topological walks.
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Lemma E.3.2. Let G be a locally finite weakly connected digraph, s, t P V pGq Y
ΩpGq with s ‰ t and A Ď EpGq. Then the following are equivalent:

(i) A is a directed s–t arc.

(ii) A is inclusion-wise minimal such that |A X ÝÑE pX, Y q| ě 1 holds for every
finite cut EpX, Y q of G with s P X and t P Y .

(iii) A is inclusion-wise minimal such that |AXÝÑE pX, Y q| “ |AXÝÑE pY,Xq| ` 1
holds for every finite cut EpX, Y q of G with s P X and t P Y .

Proof. First we show the implication from (i) to (iii). As A is a directed s–t arc,
it is also a directed topological s–t walk. So by Lemma E.3.1, we only need to
check the minimality of A for property (iii). Since A is an s–t arc, we know that
s and t are in different topological components of Azteu for any edge e P A. So
no proper subset of A has the property that its closure in |G| contains a directed
topological s–t walk. Again by Lemma E.3.1 we know that no proper subset of
A satisfies statement (iii) of Lemma E.3.1. This proves the minimality of A and
hence statement (iii).
Next let us verify that (iii) implies (ii). Assume for a contradiction that

statement (iii) holds, but (ii) does not. Then there must exist a proper subset A1 Ř
A that fulfils property (ii), maybe except from being minimal. By Lemma E.3.1
we get that A1 satisfies also statement (iii) of Lemma E.3.1. This contradicts the
minimality of A.
It remains to prove the implication from (ii) to (i). By assuming (ii) we know

from Lemma E.3.1 that A contains a directed topological s–t walk and by the
minimality of A we know that A is in fact a directed topological s–t walk, say
witnessed by ϕ : r0, 1s ÝÑ |G|. Now suppose for a contradiction that A is
not a directed s–t arc. Then there exists a point a P V pGq Y ΩpGq that spoils
injectivity for ϕ. Note that A is compact because it is a closed set in |G| that is
a compact space by Proposition E.2.3. Since ϕ is continuous and A is compact,
there exists a smallest number x P r0, 1s and a largest number y P r0, 1s such that
ϕpxq “ ϕpyq “ a. We obtain from this that the image of ϕær0, xs is a directed
topological s–a walk and the image of ϕæry, 1s is a directed topological a–t walk.
Concatenating these two walks yields another directed topological s–t walk, which
is the closure in |G| of some edge set A1 Ď A. Knowing that x ‰ y, we get that
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A1 Ř A since the image of ϕærx, ys contains points that correspond to inner points
of edges. This is a contradiction to the minimality of A.

We conclude this section with the following corollary which allows us to extract
a directed s–t arc from a directed topological s–t walk for distinct points s, t of
|G|.

Corollary E.3.3. Let s, t P V pGq Y ΩpGq with s ‰ t for some locally finite weakly
connected digraph G. Then every directed topological s–t walk in |G| contains a
directed s–t arc.

Proof. Let W be a directed topological s–t walk where W Ď EpGq. So W has
property (ii) of Lemma E.3.1. Now consider the set W of all subsets of W that
also have property (ii) of Lemma E.3.1. This set is ordered by inclusion and not
empty since W P W. Next let us check that every decreasing chain C Ď W is
bounded from below by

Ş

C, which is an element of W . Obviously,
Ş

C Ď c holds
for every c P C. To see that

Ş

C is an element of W note that for every finite cut
EpX, Y q of G with s P X and t P Y all but finitely many c P C contain the same
edges from EpX, Y q. As every c P C has also at least one edge from EpX, Y q,
we know that the same is true for

Ş

C, which shows that
Ş

C PW holds. Now
Zorn’s Lemma implies that W has a minimal element, which is a directed s–t arc
by Lemma E.3.2.

E.4. Packing pseudo-arborescences

We begin this section with a lemma characterising when a packing of k P N
many edge-disjoint spanning r-reachable sets is possible in a locally finite weakly
connected digraph G with r P V pGqYΩpGq. This lemma is the main ingredient to
prove our first main result of Section E. The proof is mainly based on a compactness
argument.

Lemma E.4.1. A locally finite weakly connected digraph G with r P V pGqYΩpGq
has k P N edge-disjoint spanning r-reachable sets if and only if every bipartition
pX, Y q of V pGq with r P X and |EpX, Y q| ă 8 satisfies d´pY q ě k.

Proof. The condition that every bipartition pX, Y q of V pGq with r P X and
|EpX, Y q| ă 8 satisfies d´pY q ě k is obviously necessary for the existence of k
edge-disjoint spanning r-reachable sets.

141



Let us now prove the converse. First we fix a sequence pSnqnPN of finite vertex
sets Sn Ď V pGq such that

Ť

nPN Sn “ V pGq. For every n P N let Gn denote the
digraph which arises by contracting, inside of G, each weak component of G´ Sn
to a single vertex. Here we keep multiple edges, but delete loops that arise. Since
G is locally finite, we know that each Gn is a finite digraph.
Note that, as in the proof of Lemma E.3.1, if r R Sn, there exists a unique

component Cn of G ´ Sn such that r P Cn and we refer to the vertex of Gn

corresponding to Cn as r.
Now we define Vn as the set of all k-tuples consisting of k edge-disjoint spanning

r-reachable sets of Gn. As every cut of Gn is finite and also corresponds to a cut
of G, our labelling with r ensures that each Gn has k edge-disjoint arborescences
rooted in r by Theorem E.1.2. So none of the Vn is empty. Furthermore, each Vn
is finite as Gn is a finite digraph.

Next we show that every spanning r-reachable set Fn`1 of Gn`1 induces one for
Gn via Fn :“ Fn`1 X EpGnq. So let Fn`1 be given and consider a cut EpXn, Ynq

of Gn with r P Xn. As each component of G´ Sn`1 is contained in a component
of G ´ Sn, we can find a cut EpXn`1, Yn`1q of Gn`1 with r P Xn`1 such that
ÝÑ
E pXn, Ynq “

ÝÑ
E pXn`1, Yn`1q (and in fact also ÝÑE pYn, Xnq “

ÝÑ
E pYn`1, Xn`1q). Since

Fn`1 is a spanning r-reachable set of Gn`1, we obtain that Fn is one of Gn.
Now we can apply Lemma E.2.2 to the graph defined on the vertex set

Ť

nPN Vn

where two vertices vn`1 P Vn`1 and vn P Vn are adjacent if the i-th spanning
r-reachable set in vn is induced by the i-th one of vn`1 for every i with 1 ď i ď

k. So we obtain a ray r0r1 . . . with rn P Vn and set F :“ pF 1, . . . , F kq where
F i :“

Ť

nPN r
i
n and rin denotes the i-th entry of the k-tuple rn for every i with

1 ď i ď k. Let us now check that each F i is a spanning r-reachable set of G. As
Ť

nPN Sn “ V pGq holds, we can find for every finite cut EpX, Y q of G with r P X
an n P N such that all endvertices of edges of EpX, Y q are contained in Sn. Hence,
there exists a cut EpXn, Ynq of Gn with r P Xn such that ÝÑE pXn, Ynq “

ÝÑ
E pX, Y q

and ÝÑE pYn, Xnq “
ÝÑ
E pY,Xq. Since each F i contains the edges of rin, which is a

spanning r-reachable set of Gn and, therefore, contains an edge of ÝÑE pXn, Ynq,
we know that each F i is a spanning r-reachable set of G. Finally, we get that
all the F i are pairwise edge-disjoint because for every n P N the rin are pairwise
edge-disjoint.
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The next lemma ensures the existence of pseudo-arborescences for a set
Z Ď V pGqztru in the sense that every r-reachable set for Z contains one. The
proof of this lemma works by an application of Zorn’s Lemma and is very similar
to the proof of Corollary E.3.3. Therefore, we omit stating its proof.

Lemma E.4.2. Let G be a locally finite weakly connected digraph, Z Ď V pGqztru

with r P V pGq Y ΩpGq. Then every r-reachable set for Z in G contains a pseudo-
arborescences for Z rooted in r.

Combining Lemma E.4.1 and Lemma E.4.2 we now obtain one of our main
results of Section E.

Theorem E.4.3. A locally finite weakly connected digraph G with r P V pGqYΩpGq
has k P N edge-disjoint spanning pseudo-arborescences rooted in r if and only
if every bipartition pX, Y q of V pGq with r P X and |EpX, Y q| ă 8 satisfies
d´pY q ě k.

E.5. Structure of pseudo-arborescences

The following lemma characterises r-reachable sets in terms of directed arcs.
Additionally, it justifies the naming of r-reachable sets.

Lemma E.5.1. Let G be a locally finite weakly connected digraph with sets F Ď
EpGq and Z Ď V pGqztru where r P V pGq Y ΩpGq. Then F is an r-reachable set
for Z in G if and only if there exists a directed r–z arc inside F for every z P Z.

Proof. Let us first assume that F is an r-reachable set for Z in G. We fix some
z P Z and prove next that |F X ÝÑE pX, Y q| ě 1 holds for each finite cut EpX, Y q
where r P X and z P Y . If z is a vertex, this follows immediately from the
definition of an r-reachable set for Z. In the case that z P ΩpGq, we also get that
some vertex of Z lies in Y . This follows, because z is contained in the closed and,
therefore, compact set Z, which implies the existence of a sequence S of vertices
of Z converging to z. Since EpX, Y q is a finite cut and z P Y , we can find inside
GrY s a basic open set O containing z. Now O must contain a vertex of S and
hence Y must do so as well. Therefore, the desired inequality follows again by the
definition of an r-reachable set for Z.
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Now we are able to use Lemma E.3.1, which yields that F contains a directed
topological r–z walk. We complete the argument by applying Corollary E.3.3
telling us that F contains also a directed r–z arc.
Conversely, consider any finite cut EpX, Y q where r P X and Y X Z ‰ H, say

z P Y X Z. The assumption ensures the existence of a directed r–z arc in F . By
Lemma E.3.2 we obtain that |F XÝÑE pX, Y q| ě 1 holds as desired.

Now let us turn our attention towards spanning pseudo-arborescences rooted
in some vertex or end in a locally finite weakly connected digraph. The question
arises how similar these objects behave compared to spanning arborescences rooted
in some vertex in a finite graph. A basic property of finite arborescences is the
existence of a unique directed path in the arborescence from the root to any
other vertex of the graph. Closely related is the absence of any cycle, directed or
undirected, in a finite arborescence since its underlying graph is a tree. Although
we know by Lemma E.5.1 that the closure of a spanning pseudo-arborescences
contains a directed arc from the root to any other vertex (or even end) of the
graph, we shall see in the following example that we can neither guarantee the
uniqueness of such arcs nor avoid infinite circles (directed or undirected ones).

Example E.5.2. Consider the graph depicted in Figure E.1. This graph contains
spanning r-reachable sets, for example the bold black edges together with the bold
grey edges. However, every spanning r-reachable set of this graph must contain
all bold black edges because for any head of such an edge there is no other edge of
which it is a head. As this graph has only one end, namely ω, we see that there
are directed and undirected infinite circles containing only bold black edges. This
shows already that, in general, it is not possible to find spanning r-reachable sets
that do not contain directed or undirected infinite circles. So there does not exist
a stronger version of Theorem E.4.3 in the sense that the edges of the underlying
multigraph of every spanning pseudo-arborescences form a topological spanning
tree in the Freudenthal compactification of the underlying multigraph.

The graph in Figure E.1 shows furthermore that, in general, we cannot find
spanning r-reachable sets F such that there exists a unique directed arc from r to
every vertex and every end of the graph inside F . In the example we have two
different directed arcs from r to the end ω that contain only bold black edges and
are therefore in every spanning r-reachable set of this graph. Hence, we also get
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Figure E.1.: An example of a graph with a marked vertex r where the closure of
any spanning r-reachable set contains an infinite circle and multiple
arcs to the end ω and certain vertices.

two different directed arcs from r to every vertex on the infinite directed circle
that consists only of bold black edges.

Although, in general, spanning pseudo-arborescences do not behave tree-like in
the sense that their underlying graphs correspond to topological spanning trees,
they do so in a local sense. We conclude this section with a main result about
characterising those spanning r-reachable that are inclusion-wise minimal via some
local tree-like properties. Especially, we obtain the absence of finite cycles (directed
or undirected ones) in any spanning pseudo-arborescences.

Theorem E.5.3. Let G be a locally finite weakly connected digraph and further
let r P V pGq Y ΩpGq. Then the following are equivalent for a spanning r-reachable
set F of G:

(i) F is a spanning pseudo-arborescences rooted in r.

(ii) For every vertex v ‰ r of G there is a unique edge in F whose head is v, and
no edge in F has r as its head.
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(iii) For every weak component T of GrF s the following holds: If r P V pT q, then
T is an arborescence rooted in r. Otherwise, T is an arborescence rooted in
some end of T .

Proof. We start by proving the implication from (i) to (ii). Let us first suppose
for a contradiction that F contains an edge e whose head is r. Obviously, there is
no finite cut EpX, Y q of G such that r P X and e P ÝÑE pX, Y q. Hence, F zteu is a
smaller spanning r-reachable set of G contradicting the minimality of F .

Next let us consider an arbitrary vertex v ‰ r of G. We know by Remark E.2.1
that F contains at least one edge of ÝÑE pV pGqztvu, tvuq. So F contains at least one
edge whose head is v.

Now suppose for a contradiction that there exists some vertex v ‰ r of G which
is the head of at least two edges of F , say e and f . We know by Lemma E.5.1
that F contains a directed r–v arc A. Since the cut EpV pGqztvu, tvuq is finite
and A is a directed r–v arc, we get that A must contain precisely one edge of
ÝÑ
E pV pGqztvu, tvuq. Hence, one of the edges e, f is not contained in A, say e. By
the minimality of F , we obtain that F zteu cannot be a spanning r-reachable set
of G. So there must exist a finite cut EpX, Y q of G with r P X such that e is the
only edge in F XÝÑE pX, Y q. Now we have a contradiction since the head of e is v
and lies in Y , which means that the directed arc A contains at least one edge of
ÝÑ
E pX, Y q by Lemma E.3.2, but such an edge is different from e. Therefore, e was
not the only edge in F XÝÑE pX, Y q.

We continue with the proof that statement (ii) implies statement (iii). For this
let us fix an arbitrary weak component T of GrF s. We now show that T is a tree.
Suppose for a contradiction that T contains a directed or undirected cycle C.

If C is a directed cycle, each vertex on C would already be a head of some edge
of the cycle. Hence, r cannot be a vertex on C. Applying Remark E.2.1 with the
finite set V pCq, we obtain that there needs to be an edge uv of F with v P V pCq
and u P V pGqzV pCq. So v is the head of two edges of F , which contradicts
statement (ii).
In the case that C is a cycle, but not a directed one, take a maximal directed

path on C. Its endvertex is the head of two edges of C. So we get again a
contradiction to statement (ii). We can conclude that T is a tree.
If r is be a vertex of T , then it is immediate from statement (ii) that T is an

arborescence rooted in r. Otherwise, there needs to be a backwards directed ray R
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in T as each vertex different from r is the head of a unique edge of F . Let ω be the
end of T which contains R. Hence, T is an arborescence rooted in ω, completing
the proof of this implication.
It remains to show the implication from (iii) to (i). For this we assume state-

ment (iii) and suppose for a contradiction that F is not minimal with respect
to inclusion. Hence, F 1 “ F zteu is a spanning r-reachable set as well for some
e “ uv P F . Let T be the weak component of GrF s which contains v. As T is an
arborescence rooted in r or some end of T , we get that no edge of F 1 has v as its
head. Note that r ‰ v because of the edge uv P F . Now we get a contradiction
by applying Remark E.2.1 with F 1 and the set tvu, which tells us that F 1 needs
contains an edge whose head is v.

The question might arise whether we can be more specific in statement (iii) of
Theorem E.5.3 in the case when r is an end of G. Unfortunately, it is not true that
there has to exist a weak component of GrF s whose unique backwards directed
ray lies in r. The reason for this is that the end r might be an accumulation point
of a sequence of infinitely many different weak components of GrF s in |G| each of
which contains a backwards directed ray to a different end of G. It is not difficult
to construct an example for this situation and so we omit such a description here.
On the other hand if the end r P ΩpGq is not an accumulation point of different
ends of G, then there exists at least one weak component of GrF s whose backwards
directed ray is contained in r. To see this fix an arbitrary directed r–v arc A inside
F for some vertex v. Since F is a spanning r-reachable set of G, we can find such
an arc. If among all of the weak components of GrF s which are met by A, there is
a first one with respect to the linear order of A, then a backwards directed ray of
this component is an initial segment of A and, therefore, contained in r. Note for
the other case that tails of the backwards directed rays of each component of GrF s
that is met by A must be contained A. Since A is an arc, all these backwards
directed rays must be contained in different ends of G. These ends, however, would
then have r as an accumulation point in |G| contradicting the assumption on r.
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F. On the Infinite Lucchesi-Younger
Conjecture

F.1. Introduction

In finite graph theory there exist a lot of theorems which relate the maximum
number of disjoint substructures of a certain type in a graph with the minimal size
of another substructure in that graph, which bounds the number of disjoint objects
of the first type that can exist. Often there is no gap between such numbers.
Some results of this type even have a reformulation in the language of linear
programming.

Probably the most well-known example of such a result is the theorem of Menger
for finite graphs. In order to state the theorem more easily, let us make the
following definition. For two vertex sets A,B Ď V pGq in a graph G we call a path
P an A–B path in G if one endvertex of P lies in A, the other in B and except
from these two vertices, P is disjoint from the set AYB. Note that a vertex in
AXB is also an A–B path.

Theorem F.1.1. [12, Thm. 3.3.1] Let G be a finite graph and A,B Ď V pGq. Then
the maximum number of disjoint A–B paths in G equals the minimum size of a
vertex set separating A from B in G.

This theorem has the following immediate corollary.

Corollary F.1.2. Let G be a finite graph and A,B Ď V pGq. Then there exists a
tuple pS,Pq such that the following holds

(i) P is a set of disjoint A–B paths in G.

(ii) S Ď V pGq separates A from B in G.

(iii) S Ď
Ť

P.
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(iv) |S X P | “ 1 for every P P P.

However, this corollary is not weaker than Theorem F.1.1 because Theorem F.1.1
is conversely implied by Corollary F.1.2. The crucial point of Corollary F.1.2 is
that the elements of the tuple pS,Pq make certain optimality assertions about
each other: The set P and the way it interacts with S proves that the separator S
has minimum size. Conversely, the size of S bounds the size of any set of disjoint
A–B paths. Hence, S and its interaction with P shows that P is of maximum size.

The benefit of the formulation of Corollary F.1.2 is that it avoids talking about
maximality and minimality in terms of sizes or cardinalities. In infinite graphs this
now becomes much more meaningful. An extension of Theorem F.1.1 which only
asks for the existence of κ many disjoint A–B paths and a set of size κ separating
A from B for some cardinality κ is quite easy to prove. In contrast to this, the
extension of Corollary F.1.2 which asks for the same tuple, but in a graph of
arbitrary cardinality, is probably one of the deepest theorems in infinite graph
theory and due to Aharoni and Berger [1]. While the proof of this theorem is
already challenging for countable graphs, it becomes much more complicated in
graphs of higher cardinality.
We want to consider a theorem about finite digraphs which has a similar

formulation as Theorem F.1.1. To state the theorem we have do give some
definitions first. In a weakly connected directed graph D we call a cut of D
directed, or a dicut of D, if all of its edges have their head in a common side of the
cut. Now we call a set of edges of D a dijoin of D if it meets every non-empty
dicut of D. Now we can state the mentioned theorem, which is due to Lucchesi
and Younger.

Theorem F.1.3. [46, Thm.] In every weakly connected finite digraph D, the
maximum number of disjoint dicuts of D equals the minimum size of a dijoin of D.

Beside the proof Theorem F.1.3 of Lucchesi and Younger [46, Thm.], further ones
appeared by Lovász [45, Thm. 2] and Frank [22, Thm. 9.7.2]. As for Theorem F.1.1
we state a reformulation of Theorem F.1.3 which avoids talking about maximality
and minimality in terms of sizes or cardinalities.

Corollary F.1.4. Let D be a finite weakly connected digraph. Then there exists a
tuple pF,Bq such that the following holds
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(i) B is a set of disjoint dicuts of D.

(ii) F Ď EpDq is a dijoin of D.

(iii) F Ď
Ť

B.

(iv) |F XB| “ 1 for every B P B.

Now we consider the question whether Corollary F.1.4 extends to infinite digraphs
as Corollary F.1.2 did for infinite graphs. Let us first show that a direct extension
of this formulation to arbitrary infinite digraphs fails. To do this we define a
double ray to be an undirected two-way infinite path. Now consider the digraph
depicted in Figure F.1. Its underlying undirected graph is the Cartesian product
of a double ray with an edge. Then we orient all edges corresponding to one copy
of the double ray in one direction and all edges of the other copy in the different
direction. Finally, we direct all remaining edges such that they have their tail in
the same copy of the double ray.
This digraph does not have any finite dicut, but infinite ones. Note that every

dicut of this digraph contains at most one horizontal edge, which corresponds to a
oriented one of some copy of the double ray, and all vertical edges left to some
vertical edge. So we cannot even find two disjoint dicuts. Next let us look at
dijoins of the digraph depicted in Figure F.1. In order to hit every dicut which
contains a horizontal edge, a dijoin must contain infinitely many vertical edges
left to some vertical edge. So we obtain that each dijoin hits every dicut infinitely
often in this digraph. Therefore, neither the statement of Corollary F.1.4 nor
the statement of Theorem F.1.3 using cardinalities remains true if we consider
arbitrary dicuts in infinite digraphs.

Figure F.1.: A counterexample to an extension of Corollary F.1.4 to infinite di-
graphs where infinite dicuts are considered too.

In order to overcome the problem of this example let us again consider the
situation in Corollary F.1.2. There, all elements of the set P are just finite
paths. So we might need to restrict our attention to finite dicuts when extending
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Corollary F.1.4 to infinite digraphs. Hence, we make the following definitions. In a
weakly connected digraph D we call an edge set F Ď EpDq a finitary dijoin of D
if it intersects every non-empty finite dicut of D. Building up on this definition we
call a tuple pF,Bq as in Corollary F.1.4, but where F is now only a finitary dijoin
and B a set of disjoint finite dicuts of D, an optimal pair for D. Furthermore, we
call an optimal pair nested if the elements of B are pairwise, i.e., any two finite
dicuts EpX1, X2q, EpY1, Y2q P B either satisfy X1 Ď Y1 or Y1 Ď X1.

Not in contradiction to the example given above, we make following conjecture,
which we call the Infinite Lucchesi-Younger Conjecture.

Conjecture F.1.5. There exists an optimal pair for every weakly connected di-
graph.

Apparently, an extension of Theorem F.1.3 as in Conjecture F.1.5 has indepen-
dently been conjectured by Aharoni [44].
The three mentioned proofs [46, Thm.] [45, Thm. 2] [22, Thm. 9.7.2] of Theo-

rem F.1.3 even show a slightly stronger result.

Theorem F.1.6. [46, Thm.] There exists a nested optimal pair for every weakly
connected finite digraph.

Hence, we also make the following conjecture.

Conjecture F.1.7. There exists a nested optimal pair for every weakly connected
digraph.

An indication why Conjecture F.1.7 might be properly stronger than Conjec-
ture F.1.5 is the following. Different from finite digraphs, not every finitary dijoin
that is part of an optimal pair for a given weakly connected infinite digraph can
also feature as part of some nested optimal pair for that digraph. As an example
for this, consider the infinite digraph depicted twice in Figure F.2. Its underlying
graph consists of a ray R together with an additional vertex v R V pRq which
is precisely adjacent to every second vertex along R, beginning with the unique
vertex on R of degree 1. Then we orient all edges incident with v towards v. Each
remaining edge is oriented towards the unique neighbour of v to which it is incident
with.

Considering Figure F.2 it is easy to check that the grey edges FL in the left
instance of the digraph are a finitary dijoin. Furthermore, we can easily find a
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Figure F.2.: All edges are meant to be directed from left to right. The grey edges
in the left picture feature in a finitary dijoin of a nested optimal pair.
The grey edges in the right picture feature in a finitary dijoin of an
optimal pair, but not in any finitary dijoin of a nested optimal pair.

nested optimal pair in which FL features. In the right instance of the digraph, the
grey edges FR also form a finitary dijoin and we can also easily find an optimal
pair in which FR features. However, no matter which finite dicut we choose on
which the rightmost grey edge lies, it cannot be nested with all the finite dicuts
we choose for all the other edges of FR.

One of the main results here is that we verify Conjecture F.1.7 for several classes
of digraphs. We gather all these results in the following theorem. Before we can
state the theorem, we have to give some further definitions. We call a minimal
non-empty dicut of a digraph a dibond. Furthermore, we call an undirected one-way
infinite path a ray. An undirected multigraph which does not contain a ray, is
called rayless.

Theorem F.1.8. Conjecture F.1.7 holds for a weakly connected digraph D if it
has any of the following properties:

(i) There exists a finitary dijoin of D of finite size.

(ii) There is a finite maximal number of disjoint finite dicuts of D.

(iii) There is a finite maximal number of disjoint and pairwise nested finite dicuts
of D.
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(iv) Every edge of D lies in only finitely many finite dibonds of D.

(v) D has no infinite dibond.

(vi) The underlying multigraph of D is rayless.

The other main result of Section F is that we can reduce Conjecture F.1.5 and
Conjecture F.1.7 to countable digraphs with a certain separability property and
whose underlying multigraph is 2-connected. In order to state the theorem, we
have to make a further definition. We call a digraph D finitely diseparable if for
any two vertices v, w P V pDq there is a finite dicut of D such that v and w lie in
different sides of that finite dicut.

Theorem F.1.9.

(i) If Conjecture F.1.5 holds for all countable finitely diseparable digraphs whose
underlying multigraph is 2-connected, then Conjecture F.1.5 holds for all
weakly connected digraphs.

(ii) If Conjecture F.1.7 holds for all countable finitely diseparable digraphs whose
underlying multigraph is 2-connected, then Conjecture F.1.7, respectively,
holds for all weakly connected digraphs.

The structure of Section F is as follows. In Section F.2 we introduce our needed
notation. Furthermore, we state and prove several lemmas we shall need to
prove the main theorems of Section F. Section F.3 is dedicated to the proof of
Theorem F.1.9. In the last part, Section F.4, shall prove Theorem F.1.8 via several
lemmas.

F.2. Preliminaries

For basic facts about finite and infinite graphs we refer the reader to [12]. Several
proofs, especially in Section F.4, base on certain compactness arguments using
the compactness principle in combinatorics. We omit stating it here but refer to
[12, Appendix A]. Especially for facts about directed graphs we refer to [3].
In general, we allow our digraphs to have parallel edges, but no loops if we do

not explicitly mention them. Similarly, all undirected multigraphs we consider do
not have loops if nothing else is explicitly stated.
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Throughout this section let D “ pV,Eq denote a digraph. Similarly as in
undirected graphs we shall call the elements of E just edges. We view the edges
of D as ordered pairs pu, vq of vertices u, v P V and shall write uv instead of
pu, vq, although this might not uniquely determine an edge. In parts where a finer
distinction becomes important we shall clarify the situation. For an edge uv P E
we furthermore denote the vertex u as the tail of uv and v as the head of uv. We
denote the underlying multigraph of D by UnpDq.

In an undirected non-trivial path we call the vertices incident with just one edge
the endvertices of that path. For the trivial path consisting just of one vertex,
we call that vertex also an endvertex of that path. If P is an undirected path
with endvertices v and w, we call P a v–w path. For a path P containing two
vertices x, y P V pP q we write xPu for the x–u subpath contained in P . Should P
additionally be a directed path where v has out-degree 1, then we call P a directed
v–w path. We also allow to call the trivial path with endvertex v a directed v–v
path. For two vertex sets A,B Ď V we call an undirected path P Ď D an A–B
path if P is an a–b path for some a P A and b P B but is disjoint from A Y B

except from its endvertices. Similarly, we call an directed path that is an A–B
path a directed A–B path.

We call an undirected graph a star if it is isomorphic to the complete bipartite
graph K1,κ for some cardinal κ, where the vertices of degree 1 are its leaves and
the vertex of degree κ is its centre.
We define a ray to be an undirected one-way infinite path. Any subgraph of a

ray R that is itself a ray is called a tail of R. An undirected multigraph that does
not contain a ray is called rayless.
A comb C is an undirected graph that is the union of a ray R together with

infinitely many disjoint undirected finite paths each of which has precisely one
vertex in common with R, which has to be an endvertex of that path. The
endvertices of the finite paths that are not on R together with the endvertices of
the trivial paths are the teeth of C.

For two vertex sets X, Y Ď V we define EpX, Y q Ď E as the set of those edges
that have their head in XzY and their tail in Y zX, or their head in Y zX and their
tail in XzY . Further we define ÝÑE pX, Y q “ tuv P EpX, Y q ; u P X and v P Y u. If
X Y Y “ V and X X Y “ H, we call EpX, Y q a cut of D and refer to X and Y as
the sides of the cut. Moreover, by writing EpM,Nq and calling it a cut of D we
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implicitly assumeM and N to be the sided of that cut. We call two cuts EpX1, Y1q

and EpX2, Y2q of D nested if either X1 Ď X2 and Y1 Ě Y2 holds or X2 Ď X1 and
Y2 Ě Y1 is true. Moreover, we call a set or sequence of cuts of D nested if its
elements are pairwise nested. If two cuts of D are not nested, we call them crossing
(or say that they cross). A cut is said to separate two vertices v, w P V if v and w
lie on different sides of that cut. We call a cut EpX, Y q directed, or briefly a dicut,
if all edges of EpX, Y q have their head in one common side of the cut. We call
D finitely separable if for any two different vertices v, w P V there exists a finite
cut of D such that v and w are separated by that cut. If furthermore any two
different vertices v, w P V can even be separated by a finite dicut of D, we call D
finitely diseparable. A minimal non-empty cut is called a bond. Note that DrXs
and DrY s are weakly connected digraphs for a bond EpX, Y q. A bond that is also
a dicut is called a dibond. For a vertex set Y Ď V we define δ´pY q “ ÝÑE pV zY, Y q.
Analogously, we set δ`pY q “ ÝÑE pY, V zY q. Given a dicut B “ ÝÑE pX, Y q with sides
X, Y P V , we call Y the in-shore of B and X the out-shore of B. We shall writ
inpBq for the in-shore of the dicut B and outpBq for the out-shore of B.
For undirected multigraphs cuts, bonds, sides, the notion of being nested and

the notion of separating two vertices are analogously defined. Hence, we call an
undirected multigraph finitely separable if any two vertices can be separated by a
finite cut of the multigraph. Furthermore, in an undirected multigraph G with
X, Y Ď V pGq we write EpX, Y q for the set of those edges of G that have one
endvertex in XzY and the other in Y zX.

Let us mention two very basic but important observations with respect to dicuts.

Remark F.2.1. Let D be a digraph and let Xn be an in-shore of a dicut of D for
each n P N such that

Ş

nPNXn ‰ H. Then
Ş

nPNXn and
Ť

nPNXn are in-shores of
dicuts of D as well.

Note that
Ş

nPNXn and
Ť

nPNXn might be infinite dicuts of D, even if each Xn

is finite. Furthermore, note that if X1 and X2 are in-shores of dibonds, X1 XX2

does not need to be an in-shore of a dibond, even if X1 XX2 ‰ H.

Remark F.2.2. Let D be a digraph and let X1 and X2 be in-shores of dicuts of D
such that X1 XX2 ‰ H. Then δ´pX1q Y δ

´pX2q “ δ´pX1 YX2q Y δ
´pX1 XX2q.

Moreover, if δ´pX1q and δ´pX2q are disjoint, then δ´pX1YX2q and δ´pX1XX2q

are disjoint as well.
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For a set N Ď E let D{N denote the contraction minor of D which is obtained
by contracting inside D all edges of N and deleting all loops that might occur.
Similar, we define D.N :“ D{pEzNq. For a vertex v P V and any contraction
minor D{N with N Ď E let 9v denote the vertex in D{N which corresponds to the
contracted (possibly trivial) weak component of DrN s containing v.
We state the following basic remark without proof.

Remark F.2.3. Let D be a digraph and v, w P V pDq. Then the following holds.

(i) If B is a cut or dicut in D, then it is also a cut or dicut, respectively, in
D.N for every N Ě B.

(ii) If B is a cut or dicut in D.N for some N Ě B, then it is also a cut or dicut,
respectively, in D.

(iii) If B is a cut or dicut in D.M for some M,N Ď EpDq with N Ě M Ě B,
then it is also a cut or dicut, respectively, in D.N .

(iv) If B is a cut in D and separates v and w in D, then B separates 9v and 9w in
D.N for every N Ě B.

(v) If B is a cut in D.N and separates 9v and 9w in D.N for some N Ě B, then
B separates v and w in D.

(vi) If B is a cut in D.M and separates 9v and 9w in D.M for some M,N Ď EpDq

with N ĚM Ě B, then B separates 9v and 9w in D.N .

For a multigraph G we call a subgraph X Ď G a 2-block of G if X either consists
of a set of pairwise parallel edges in G or is a maximal 2-connected subgraph of G.
In a digraph D we call a subdigraph X a 2-block of D if UnpXq is a 2-block of
UnpDq.
We call an edge set F Ď E a dijoin of D if F X B ‰ H holds for every non-

empty dicut B of D. Similarly, we call an edge set F Ď E a finitary dijoin of D if
F XB ‰ H holds for every non-empty finite dicut B of D. Note that an edge set
F Ď E is already a (finitary) dijoin if F XB ‰ H holds for every (finite) dibond
of D since every (finite) dicut is a disjoint union of (finite) dibonds. We call a
pair pF,Bq consisting of a finitary dijoin F and a set of disjoint finite dicuts B an
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optimal pair for D if F Ď
Ť

B and |F XB| “ 1 for every B P B. Furthermore, we
call an optimal pair pF,Bq for D nested, if B is nested.
We state a basic remark about optimal pairs.

Remark F.2.4. If pF,Bq is an optimal pair for a weakly connected digraph D,
then each B P B is a finite dibond of D.

Proof. Suppose for a contradiction that there is some B P B such that B is not a
finite dibond of D. Since B is the disjoint union of finite dibonds of D, we find
two finite dibonds B1 and B2 of D such that B1, B2 Ď B. By the property of
pF,Bq is an optimal pair for D, we know that |F XB| “ 1. This, however, implies
that F XBj “ H for some j P t1, 2u. Now we have a contradiction to F being a
finitary dijoin of D.

The following lemma is a basic tool in infinite graph theory. We shall only apply
it for vertex sets of cardinality ℵ0 and ℵ1 in this section.

Lemma F.2.5. B.2.4 Let G be an infinite connected undirected multigraph and
let U Ď V pGq be such that |U | “ κ for some regular cardinal κ. Then there exists
a set U 1 Ď U with |U 1| “ |U | such that G either contains a comb whose set of teeth
is U 1 or a subdivided star whose set of leaves is U 1.

Using Lemma F.2.5 let us now prove the following lemma.

Lemma F.2.6. In a finitely separable rayless multigraph all 2-blocks are finite.

Proof. Let G be a finitely separable rayless multigraph and suppose for a contradic-
tion that there exists a 2-block X of G such that V pXq is infinite. Let U Ď V pXq

be such that |U | “ ℵ0. Applying Lemma F.2.5 to U in X, we obtain a subdivided
star S1 in X whose set of leaves L1 satisfies |L1| “ |U | since G is rayless. Let c1

be the centre of S1. Using that X is 2-connected, we now apply Lemma F.2.5 to
L1 in G ´ c1, which is still a connected rayless multigraph. Hence, we obtain a
subdivided star S2 in G´ c1 whose set of leaves L2 satisfies |L2| “ |L1| “ ℵ0 and
L2 Ď L1. Let c2 denote the centre of S2. Now we get a contradiction to G being
finitely separable because S1 and S2 have infinitely many common leaves in L2. So
GrV pS1q Y V pS2qs contains infinitely many disjoint c1–c2 paths, witnessing that c1

and c2 cannot be separated by a finite cut of G.
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To complete the proof we still need to consider for a contradiction a 2-block X
of G whose vertex set is finite but whose edge set is infinite. Since there are only
finitely many two-element subsets of V pXq, we find by the pigeonhole principle
two vertices x, y P V pXq such that infinitely many edges of X have x and y as
their endvertices. Now these infinitely many edges witness that x and y cannot be
separated by a finite cut in G, contradicting again that G in finitely separable.

We obtain the following immediate corollary.

Corollary F.2.7. A finitely separable rayless multigraph has no infinite bond.

Proof. By considering the 2-block-cutvertex tree (cf. [12, Lemma 3.1.4]) of a given
multigraph we can easily deduce that each bond of that multigraph is contained in
precisely one of its 2-blocks. Hence, the statement follows from Lemma F.2.6.

The following lemma makes a similar assertion as Lemma F.2.6 but without the
assumption of being rayless. The proof strategy is the same as in Lemma F.2.6:
We apply Lemma F.2.5 twice and use our assumption to ensure that we do not
get a comb by the application of Lemma F.2.5. We state the proof for the sake of
completeness here.

Lemma F.2.8. Every 2-block of a finitely separable multigraph is countable.

Proof. Let G be a finitely separable multigraph. Suppose for a contradiction that
X is a 2-block of some finitely separable multigraph such that V pXq is uncountable.
We obtain that X is also finitely separable, and by definition that X is 2-connected.
Let U Ď V pXq be a set of cardinality ℵ1. By applying Lemma F.2.5 with U in
X we have to find a subdivided star S1 whose set of leaves is some U 1 Ď U with
|U 1| “ ℵ1. Let c1 denote the centre of S1. Using the 2-connectedness of X we know
that X ´ c1 is still connected. So we can again apply Lemma F.2.5, this time with
U 1 in X ´ c1. We obtain a subdivided star S2 whose set of leaves is some U2 Ď U 1

with |U2| “ ℵ1. Let c2 be the centre of S2. Since X is finitely separable, there
exists a finite dicut B of X which separates c1 from c2. However, the subdivided
stars S1 and S2, which have uncountably many common leaves in U2, witness that
B cannot be finite. This is a contradiction.

It remains to consider for a contradiction a 2-block X of some finitely separable
multigraph such that V pXq is countable but EpXq in uncountable. As before we

158



know that X is finitely separable. Since there exist only countably many two-
element subsets of V pXq, we have to find uncountably many edges in X that have
pairwise the same endvertices, say x and y. Now we have again a contradiction
to X being finitely separable since any dicut separating x and y would need to
contain uncountably many edges.

F.2.1. Quotients

For G being a digraph or a multigraph with v, w P V pGq let us write v ” w if
and only if we cannot separate v from w by a finite cut in G. It is easy to check
that ” defines an equivalence relation. For v P V pGq we shall write rvs” for the
equivalence class with respect to ” containing v.
Let G{” denote the di- or multigraph which is formed from G by identifying

for each equivalence class of ” all vertices contained in it while keeping all edges
that did not become loops. For any vertex v P V pGq let pvq denote the vertex of
V pG{”q corresponding to rvs”. Furthermore, let X̂ :“ tpxq ; x P Xu for every set
X Ď V pDq.
The proofs for the statements (i)-(iv) in the following proposition work analo-

gously to those for the statements in Proposition F.2.12. Hence we only carry out
the proof of Proposition F.2.12. The proof of statement (v) in the following propo-
sition works via a proof by contradiction and using a straightforward inductive
construction. Therefore, we omit to state it as well.

Proposition F.2.9. Let G be a digraph or a multigraph. Then the following holds.

(i) G{” is (weakly) connected if G is (weakly) connected.

(ii) For every finite cut EpX, Y q of G we get that EpX̂, Ŷ q is a finite cut of G{”
with EpX, Y q “ EpX̂, Ŷ q.

(iii) For every finite cut EpM,Nq of G{” we get that M “ X̂ and N “ Ŷ for
some finite cut EpX, Y q of G with EpX̂, Ŷ q “ EpX, Y q.

(iv) G{” is finitely separable.

(v) G{” is rayless if UnpGq or G, respectively, is rayless.
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Let D be any digraph. We define a relation „ on V pDq by saying that v „ w

for v, w P V pDq if and only if there is no finite dicut separating v and w. It is easy
to check that „ defines an equivalence relation and so we omit a proof for this.
Let rvs„ denote the equivalence class of „ containing v.
We define the digraph D{„ in the same way as we defined the quotient D{”

but now with respect to the relation „. For any vertex v P V pDq let rvs denote
the vertex of V pD{„q which corresponds to rvs„. Further, set X̃ “ trxs ; x P Xu
for every set X Ď V pDq.
Next we prove some basic lemmas about the relation „ that we shall need

later. The first lemma will help us to work with the relation „ more easily. More
precisely, the lemma characterises the relation v „ w for any two vertices v, w of
the digraph by the existence of a certain edge set working as a witness. For any
finite cut separating v and w it will be enough to consider this edge set to see that
this cut is not a dicut.

Lemma F.2.10. Let D be a digraph and v, w P V pDq. Then v „ w if and only
if there is an edge set C Ď EpDq such that |C XÝÑE pX, Y q| “ |C XÝÑE pY,Xq| holds,
with CXÝÑE pX, Y q ‰ H if EpX, Y q separates v and w, for every finite cut EpX, Y q
of D.

Moreover, C “ H is satisfies the properties for v „ w precisely when v ” w.

Proof. If an edge set C as in the statement of the lemma exists, then obviously
v „ w holds.
For the converse we assume v „ w. We prove the existence of the desired

set C via a compactness argument. Let B be a finite set of finite cuts of D.
Now we consider the finite contraction minor D.p

Ť

Bq. Since v „ w and using
Remark F.2.3, there is no dicut in D.p

Ť

Bq separating 9v and 9w. This, however,
implies the existence of a directed 9v– 9w path and a directed 9w– 9v path in D.p

Ť

Bq.
So the union of these paths yields an edge set CB Ď

Ť

B such that for each
cut EpXB, YBq of D.p

Ť

Bq we have |CB X
ÝÑ
E pXB, YBq| “ |CB X

ÝÑ
E pYB, XBq| with

CB X
ÝÑ
E pXB, YBq ‰ H if EpXB, YBq separates 9v and 9w.

Now let B1 Ď B and let CB be any subset of
Ť

B with the properties mentioned
above. Then we get that CB1 :“ CBX

Ť

B1 satisfies the properties mentioned above
as well but with respect to D.p

Ť

B1q by Remark F.2.3.
By the compactness principle there exists an edge set C Ď EpDq such that
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the equation |C XÝÑE pX, Y q| “ |C XÝÑE pY,Xq| holds for every finite cut EpX, Y q
of D as EpX, Y q is also a cut of the finite contraction minor D.pEpX, Y qq by
Remark F.2.3. Similarly, CXÝÑE pX, Y q ‰ H if EpX, Y q separates v and w, because
EpX, Y q separates 9v and 9w in the finite contraction minor D.pEpX, Y qq again by
Remark F.2.3. Hence, C is as desired in the statement of the lemma.

For the last assertion of the lemma let us first assume v ” w. Then there is no
finite dicut of D separating v and w by definition of ”. Therefore, C “ H satisfies
all desired conditions and v „ w.
For the converse we assume that C “ H satisfies all desired conditions and

v „ w. This implies that there is no finite cut of D separating v and w. Hence,
we know v ” w.

For two vertices v, w P V pDq such that v „ w let us call any edge set C Ď EpDq

with the properties as in Lemma F.2.10 a witness for v „ w. Note that there exists
always an inclusion-minimal witness for v „ w by Zorn’s Lemma.
The following lemmas tells us that given a minimal witness C for v „ w, all

vertices incident with an edge of C are also equivalent to v with respect to „.

Lemma F.2.11. Let D be a digraph and v „ w for two vertices v, w P V pDq.
Then a minimal edge set C of D witnessing v „ w does also witness v „ y for any
y P V pDrCsq.

Proof. Let C be as in the statement of the lemma. Now suppose for a contradiction
that there is a y P V pDrCsq which is separated from v by a finite dicut B “ EpX, Y q

of D and C X B “ H. Without loss of generality let y P Y . Since C witnesses
v „ w, both vertices v and w have to lie on the same side of B, namely X.
We claim that C 1 :“ C X EpDrXsq does also witness v „ w. This would be a
contradiction to the minimality of C as y is incident with an edge of C both of
which endvertices lie in Y because C XB “ H.

Let us first consider any finite cut EpM,Nq of D. Since EpX XM,Y Y Nq

is also a finite cut, but C X EpX XM,Y q “ H, we obtain the desired equation
|C 1 X

ÝÑ
E pM,Nq| “ |C 1 X

ÝÑ
E pN,Mq|.

Especially, if EpM,Nq separates v and w, then EpX XM,Y YNq does so as
well. Hence, the same argument yields C 1 XÝÑE pM,Nq ‰ H.

We continue by collecting some properties of D{„ in the following proposition.
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The proof of statement (v) needs a bit more preparation. Therefore, we shall
postpone it until we have proved two further lemmas.

Proposition F.2.12. Let D be a digraph. Then the following holds.

(i) D{„ is weakly connected if D is weakly connected.

(ii) For every finite dicut EpX, Y q of D we get that EpX̃, Ỹ q is a finite dicut
of D{„ with EpX, Y q “ EpX̃, Ỹ q.

(iii) For every finite dicut EpM,Nq of D{„ we get that M “ X̃ and N “ Ỹ for
some finite dicut EpX, Y q of D with EpX̃, Ỹ q “ EpX, Y q.

(iv) D{„ is finitely diseparable.

(v) UnpD{„q is rayless if UnpDq is rayless.

Proof of statements (i)–(iv). Statement (i) is immediate.
If EpX, Y q is a finite dicut of D, then for every x P X all vertices of rxs„ are

contained in X by definition of „. Analogously, all vertices of rys„ lie in Y for
each y P Y . Hence, EpX̃, Ỹ q is a finite dicut of D{„ proving statement (ii).

Next let us verify statement (iii). Let EpM,Nq be a finite dicut of D{„. Then
set X “

Ť

tm P V pDq ; rms PMu and Y “
Ť

tn P V pDq ; rns P Nu. By definition
of „ we obtain that EpX, Y q is a finite dicut of D as well as M “ X̃ and N “ Ỹ

yielding EpX, Y q “ EpX̃, Ỹ q.
In order to show statement (iv), let rvs and rws be two different vertices of

V pD{„q. Since v and w are not contained in the same equivalence class, there
must exist a finite dicut EpX, Y q of D separating them. By statement (ii) we get
that EpX̃, Ỹ q is a finite dicut of D{„ and it separates rvs from rws by definition
of „.

Before we can complete the proof of Proposition F.2.12, we have to prepare some
lemmas. The first is about inclusion-minimal edge sets witnessing the equivalence
of two vertices with respect to „ in digraphs whose underlying multigraph is
rayless.

Lemma F.2.13. Let D be a digraph such that UnpDq is rayless and let v „ w for
two vertices v, w P V pDq. Then any inclusion-minimal edge set of D witnessing
v „ w is finite.
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Proof. Let C Ď EpDq be an inclusion-minimal edge set witnessing that v „ w.
Due to the minimality of C we know that each element of C lies on a finite cut of
D separating v and w. As each cut is a disjoint union of bonds, each edge in C is
contained in a finite bond of D separating v and w. Using Proposition F.2.9 we get
that C Ď EpD{”q where each edge in C lies on a finite bond of D{” separating
pvq and pwq.
Next we consider the 2-block-cutvertex tree T of D{” (cf. [12, Lemma 3.1.4]).

Let P denote the finite path in T whose endvertices are the 2-blocks of D{”
containing pvq and pwq, respectively. Now we use the basic fact that each bond of
a di- or multigraph is also a bond of a unique 2-block of that di- or multigraph,
respectively, and therefore completely contained in that 2-block. Hence, each bond
of D{” separating pvq and pwq is a bond of the finitely many 2-blocks corresponding
to the vertices of P . This implies that all edges in C are contained in the finitely
many 2-blocks which correspond to vertices of P . However, each 2-block of D{” is
finite because UnpD{”q is finitely separable and rayless by Proposition F.2.9 and
such multigraphs do not have infinite 2-blocks by Lemma F.2.6. So C is contained
in a finite set and thus itself finite.

The next lemma builds up on Lemma F.2.13 and is the last one we shall need
to complete the proof of Proposition F.2.12.

Lemma F.2.14. Let D be a digraph such that UnpDq is rayless and let v „ w for
two vertices v, w P V pDq. Then any minimal edge set of D witnessing v „ w is in
D{” a strongly connected finite edge-disjoint union of directed cycles.

Proof. Let C be a minimal edge set of D witnessing v „ w. Since UnpDq is rayless,
we know by Lemma F.2.13 that C is finite. Let v1, v2, . . . , vn be the endvertices of
all edges in C where n P N. By Lemma F.2.11 we know that vi „ v holds for all i
with 1 ď i ď n. Next consider the set M “ tpviq ; 1 ď i ď nu Ď V pD{”q, whose
size is at most n. Because of Remark F.2.3 we get that C is also an inclusion-
minimal witness for pvq „ pwq and a witness for pvq „ pviq for every pviq PM . We
fix for each pair of vertices in M a cut of D{” that separates these two vertices,
which is possible since D{” is finitely separable by Proposition F.2.9. Let B denote
the set of all these cuts. As C witnesses pviq „ pvjq for all pviq, pvjq PM , we obtain
that C intersects each cut in B. Especially, C Ď

Ť

B as each edge in C has two
vertices of M as its endvertices.
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Next we consider the finite contraction minor K :“ pD{”q.p
Ť

Bq. We observe,
similarly as in the proof of Lemma F.2.10, that KrCs is a finite edge-disjoint union
of directed cycles. Furthermore, it contains a directed 9pvq– 9pviq path and a directed

9pviq– 9pvq path for every pviq PM . Therefore, KrCs is also strongly connected. Due
to our choice of B we know that C is still a strongly connected finite edge-disjoint
union of directed cycles in D{”.

We are now able to prove the last statement of Proposition F.2.12.

Proof of statement (v) of Proposition F.2.12. Suppose for a contradiction that
UnpDq is rayless but UnpD{„q contains a ray R “ rv0srv1s . . . with vertices
rvis P V pD{„q for all i P N. For each i P N let v1i P rvis„ and v2i`1 P rvi`1s„

be the endvertices of the edge rvisrvi`1s seen in D. Furthermore, let Ci be an
inclusion-minimal edge set witnessing v2i „ v1i`1 for every i P N with i ě 1. We
know by Lemma F.2.11 that each Ci is completely contained in rvis„.
Next we consider the graph D{”. Since UnpDq is rayless, we obtain that

UnpD{”q is rayless as well by statement (v) of Proposition F.2.9. Therefore, we
know by Lemma F.2.14 that each Ci is a strongly connected finite edge-disjoint
union of directed cycles in D{”. Since each Ci is completely contained in rvis„, we
get that pD{”rCisqXpD{”rCjsq “ H holds for all i, j P N with i ‰ j. Similarly, v1i
and v2i`1 lie in different equivalence classes with respect to ” for every i P N because
they do so as well with respect to „. Let Pi Ď D{” be a directed pv2i q–pv1i`1q

path that is contained in Ci for every i P N with i ě 1. We define the edge set
M :“

Ť

iě1 EpPiq Y
Ť

iě0pv
1
iqpv

2
i`1q Ď EpD{”q. Now we derive a contradiction

because the graph D{”rM s is a ray in UnpD{”q.

Let us close this subsection with the following observation.

Lemma F.2.15. For every digraph D each 2-block of D{„ is countable.

Proof. We know by Proposition F.2.12 that each 2-block of D{„ is finitely disepara-
ble. Hence, UnpXq is a 2-connected finitely separable multigraph. So Lemma F.2.8
implies the statement of this lemma.
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F.3. Reductions for the Infinite

Lucchesi-Younger Conjecture

In this section we prove some reductions for Conjecture F.1.5 and Conjecture F.1.7
in the sense that it suffices to solve these conjectures on a smaller class of digraphs.
We begin by reducing these conjectures to finitely diseparable digraphs via the
following lemma.

Lemma F.3.1. Let D be a weakly connected digraph. Then the following state-
ments are true:

(i) If pF,Bq is a (nested) optimal pair for D, then pF, B̃q is a (nested) optimal
pair, respectively, for D{„, where B̃ :“ tEpX̃, Ỹ q ; EpX, Y q P Bu.

(ii) If pF,B1q is a (nested) optimal pair for D{„, then there is a (nested) optimal
pair pF,Bq, respectively, for D such that B1 “ B̃ holds where we define
B̃ :“ tEpX̃, Ỹ q ; EpX, Y q P Bu.

Proof. Note first that by Proposition F.2.12 D{„ is weakly connected because D
is so. We now start with the proof of statement (i). Since B is a set of disjoint
finite dicuts of D we obtain by Proposition F.2.12 that B̃ is a set of disjoint finite
dicuts of D{„. Furthermore, if B is nested, then so is B̃ since the definition of
D{„ ensures that we never identify two vertices of D that lie on different sides of
a finite dicut of D. We also obtain F Ď

Ť

B̃ and |F X B1| “ 1 for every B1 P B̃
because pF,Bq is a optimal pair for D and because of the definition of B̃. In order
to see that F is a finitary dijoin of D{„, consider any finite dicut EpM,Nq of D{„.
We know by Proposition F.2.12 that M “ X̃ and N “ Ỹ holds for some finite
dicut EpX, Y q of D. Since F is a finitary dijoin of D, we know that F intersects
with EpX, Y q. So F intersects with EpM,Nq as well.

Now we prove statement (ii). By Proposition F.2.12 we know that for each finite
dicut EpM,Nq of D{„ we have M “ X̃ and N “ Ỹ for some finite dicut EpX, Y q
of D. Hence, B1 “ B̃ for some set B of finite dicuts of D. Since the elements of B̃
are pairwise disjoint, we know that the elements of B are also pairwise disjoint.
Furthermore, if B̃ is nested, then B is nested as well. We directly obtain that
F Ď

Ť

B and |F XB| “ 1 holds for every B P B since pF, B̃q is an optimal pair for
D{„. It remains to verify that F is a finitary dijoin of D. Using Proposition F.2.12
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again we know that for any finite dicut EpX, Y q of D the set EpX̃, Ỹ q is a finite
dicut of D{„. Since F intersects EpX̃, Ỹ q as F is a finitary dijoin of D{„, we get
that F intersects EpX, Y q as well. So F is a finitary dijoin of D.

The next reduction of Conjecture F.1.5 and Conjecture F.1.7 tells us that we can
restrict our attention also to digraphs whose underlying multigraphs is 2-connected.

Lemma F.3.2. Let D be a weakly connected digraph. Then the following state-
ments are true:

(i) If pF,Bq is a (nested) optimal pair for D, then pF X EpXq,BæXq defines a
(nested) optimal pair, respectively, for every 2-block X of D, where we set
BæX :“ tB P B ; B Ď EpXqu.

(ii) If pFX ,BXq is a (nested) optimal pair for every X P X of D, then
p
Ť

XPX FX ,
Ť

XPX BXq is a (nested) optimal pair, respectively, for D, where
X denotes the set of all 2-blocks of D.

Proof. We first prove statement (i). Let X be a 2-block of D. We assume that
pF,Bq is an optimal pair for D. This implies that each element of B is a finite
dibond of D by Remark F.2.4. By considering the 2-block-cutvertex tree of D
(cf. [12, Lemma 3.1.4]) we can easily deduce that for any dibond B “ EpM,Nq of
D we have either BXEpXq “ H or B Ď EpXq. In the later case B is also a dibond
of X, but with sides M X V pXq and N X V pXq. Hence, if B is a set of disjoint
dibonds of D, we get that BæX is a set of disjoint dibonds of X. Furthermore,
BæX is nested if B is nested. We also directly obtain from our observation that
F XEpXq Ď

Ť

BæX and |pF XEpXqq XB| “ 1 for every B P BæX since pF,Bq is
an optimal pair for D. What remains is to check that pF XEpXq is a finitary dijoin
of X. It is easy to see using the 2-block-cutvertex tree of D (cf. [12, Lemma 3.1.4])
that any dibond of X is also a dibond of D, although with adapted sides. Hence,
F intersects every finite dibond of X as F is a finitary dijoin of D. So F is also a
finitary dijoin of X.
Now we show that statement (ii) is true. So let us assume that pFX ,BXq is a

optimal pair for every X P X . We know by Remark F.2.4 that all elements of some
BX are finite dibonds of the 2-block X of D. As noted in the proof of statement (i)
all these dibonds are also finite dibonds of D. Hence,

Ť

XPX BX is a set of disjoint
dibonds of D. Furthermore, if each BX is nested, then it is easy to deduce that
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Ť

XPX BX is a set of nested dibonds of D using the 2-block-cutvertex tree of D
(cf. [12, Lemma 3.1.4]). Using that for each X P X the pair pFX ,BXq is an optimal
one, we immediately get

Ť

XPX FX Ď
ŤŤ

XPX BX and |B X
Ť

XPX FX | “ 1 for
every B P

Ť

XPX BX . To see that
Ť

XPX FX is a finitary dijoin of D let B be any
finite dicut of D. Then B contains a finite dibond B1 of D, which needs to intersect
with some 2-block of D, say with X P X . As noted in the proof of statement (i),
we know that B1 is also a finite dibond of X. Since pFX ,BXq is an optimal pair
for X, we get that

Ť

XPX FX intersects B1 and, therefore, also B.

We can now close this section by proving Theorem F.1.9. In order to do this we
basically only need to combine Lemma F.3.1 and Lemma F.3.2. Let us restate the
theorem.

Theorem F.1.9.

(i) If Conjecture F.1.5 holds for all countable finitely diseparable digraphs whose
underlying multigraph is 2-connected, then Conjecture F.1.5 holds for all
weakly connected digraphs.

(ii) If Conjecture F.1.7 holds for all countable finitely diseparable digraphs whose
underlying multigraph is 2-connected, then Conjecture F.1.7, respectively,
holds for all weakly connected digraphs.

Proof. Let us prove statement (i) and assume that Conjecture F.1.5 holds for all
countable finitely diseparable digraphs whose underlying multigraph is 2-connected.
Now let D be any weakly connected digraph. We know by Proposition F.2.12 that
D{„ is a weakly connected finitely diseparable digraph, and so is every 2-block of
it. Furthermore, Lemma F.2.15 yields that each 2-block of D{„ is countable. By
our assumption we know that Conjecture F.1.5 holds for every countable 2-block
of D{„. So using Lemma F.3.2 we obtain an optimal pair for D{„. Then we also
obtain an optimal pair for D by Lemma F.3.1.

The proof for statement (ii) works completely analogously to the one for state-
ment (i).

167



F.4. Special cases

In this section we prove some special cases of Conjecture F.1.7. Before we come to
the first special case, we state a basic observation.

Lemma F.4.1. In a weakly connected digraph D the following are equivalent:

(i) There is finitary dijoin of D of finite size.

(ii) There is a finite maximal number of disjoint finite dicuts of D.

(iii) There is a finite maximal number of disjoint and pairwise nested finite dicuts
of D.

Proof. We start by proving the implication from (i) to (ii). Let F be a finitary
dijoin of D of finite size. Then, by definition, we can find at most |F | many disjoint
finite dicuts of D.
The implication from (ii) to (iii) is immediate.
Finally, we assume statement (iii) and prove statement (i). Let B be a finite

set of maximal size containing disjoint and pairwise nested finite dicuts of D. We
claim that F :“

Ť

B is a finite finitary dijoin of D.
Suppose this is not the case. Then there exists a finite dicut B0 of D which

is disjoint to F . By our choice of B we know that B0 is not nested with each
element of B. Let B10 “ tB10, . . . , B

1
ku with k P N be the set of those elements

of B which are crossing with B0. Further, let B1i with i P t0, . . . , ku be such
that either inpB1iq or outpB1iq is inclusion-minimal among all sides of the dicuts
B1j P B10. If inpB1iq is inclusion-minimal among all sides of the elements B1j P B10,
set B2i :“ δ´pinpB1iq X inpB0qq and B1 :“ δ´pinpB1iq Y inpB0qq. Otherwise, define
B2i :“ δ´pinpB1iq Y inpB0qq as well as B1 :“ δ´pinpB1iq X inpB0qq. We also define
B11 “ B10ztB1iu. By Remark F.2.1 and Remark F.2.2 we know that B1 and B2i are
nested finite dicuts of D and the elements of the set tB1, B

2
i u Y B11 are pairwise

disjoint. Furthermore, B2i is nested with each element of B and B1 is nested with
each element of BzB11.
We can repeat the argument with B1 instead of B0 and with B11 instead of B10.

Iterating this procedure we obtain after k` 1 steps the set B2 “ tB20 , . . . , B2ku and
the finite dicut Bk of D such that pBzB10q Y B2 Y tBku is a nested set of disjoint
finite dicuts of D. This, however, is a contradiction to the maximality of the set
B. Hence, F is a finite finitary dijoin of D.
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Now we prove a first special case for Conjecture F.1.7 about digraphs that admit
a finitary dijoin of finite size.

Lemma F.4.2. Let D be a weakly connected digraph with one of the following
properties:

(i) D has a finitary dijoin of finite size.

(ii) There is a finite maximal number of disjoint finite dicuts of D.

(iii) There is a finite maximal number of disjoint and pairwise nested finite dicuts
of D.

Then Conjecture F.1.7 holds for D.

Proof. We know by Lemma F.4.1 that properties (i), (ii) and (iii) are equivalent.
So let us fix a set B of maximum size which consists of pairwise nested and disjoint
finite dicuts of D. By assumption |B| is finite.
Let N Ď EpDq be a finite set of edges such that

Ť

B Ď N holds and D.N is
weakly connected. Since D.N is a finite weakly connected digraph, there exists
a nested optimal pair pFN ,BNq for D.N by Theorem F.1.6. By the choice of N
we know that each element of B is also a finite dicut of D.N . Furthermore, each
finite dicut in D.N is also one in D and, thus, BN is a set of disjoint finite dicuts
in D. Hence, |B| “ |BN | “ |FN |. Using that the elements in B are pairwise nested
and disjoint finite dicuts, we get that pFN ,Bq is a nested optimal pair for D.N as
well. Given a finite edge set M Ě N with a nested optimal pair pFM ,BMq in D.M
we obtain that pFM ,Bq is also a nested optimal pair for D.N .

Note that for any finite edge set N Ď EpDq satisfying
Ť

B Ď N there are only
finitely many possible edge sets FN Ď

Ť

B such that pFN ,Bq is a nested optimal
pair for D.N . Hence, we get via the compactness principle an edge set F Ď

Ť

B
with |F X B| “ 1 for every B P B such that pF,Bq is a nested optimal pair for
D.M for every finite edge set M Ď EpDq satisfying

Ť

B ĎM .
We claim that pF,Bq is a nested optimal pair for D. We already know by

definition that B is a nested set of disjoint finite dicuts of D and that F Ď
Ť

B
with |F XB| “ 1 for every B P B. It remains to check that F is a finitary dijoin
of D. So let B1 be any finite dicut of D. Then the set N 1 :“ B1 Y

Ť

B is also
finite and B1 is a finite dicut of D.N 1. Since pF,Bq is also a nested optimal pair
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for D.N 1, we know that F XB1 ‰ H holds, which proves that F is a finitary dijoin
of D.

We continue with another special case. Its proof is also based on a compactness
argument. However, we need to choose the set up for the argument more carefully.

Lemma F.4.3. Conjecture F.1.7 holds for weakly connected digraphs in which
every edge lies in only finitely many finite dibonds.

Proof. Let D be a weakly connected digraph where every edge lies in only finitely
many finite dibonds. For an edge e P EpDq let Be denote the set of finite dibonds
of D that contain e. Our assumption on D implies that Be is a finite set. For
a finite set B of finite dibonds of D we define B̂ “

Ť

tBe ; e P
Ť

Bu. Again our
assumption on D implies that B̂ is finite. Note that B Ď B̂ holds.

Given a finite set B of finite dibonds of D, we call pFB,B1q a nested pre-optimal
pair for D.p

Ť

Bq if the following hold:

1. FB intersects every element of B,

2. B1 Ď B̂,

3. the elements of B1 are pairwise nested,

4. FB Ď
Ť

B1, and

5. |FB XB
1| “ 1 for every B1 P B1.

We know that for every finite set B of finite dibonds of D there exists a nested
pre-optimal pair for D.p

Ť

Bq, since a nested optimal pair for D.p
Ť

B̂q is one and
it exists by Theorem F.1.6. However, there can only be finitely many nested
pre-optimal pairs for D.p

Ť

Bq as
Ť

B̂ is finite.
Now let B1 and B2 be two finite sets of finite dibonds of D with B1 Ď B2, and let

pFB2 ,B12q be a nested pre-optimal pair for D.p
Ť

B2q. Then pFB2 X
Ť

B1,B12 X B̂1q

is a nested pre-optimal pair for D.p
Ť

B1q. Now we get by the compactness
principle an edge set F 1D Ď EpDq and a set BD of finite dibonds of D such that
pF 1D X

Ť

B,BD X B̂q is a nested pre-optimal pair for D.p
Ť

Bq for every finite set
B of finite dibonds of D. Further let FD Ď F 1D be such that each element of FD
lies on a finite dibond of D and pFD X

Ť

B,BD X B̂q is still a nested pre-optimal
pair for D.p

Ť

Bq for every finite set B of finite dibonds of D.
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We claim that pFD,BDq is a nested optimal pair for D. First we verify that FD
is a finitary dijoin of D. Let B be any finite dibond of D. Then FD intersects
B, because pFD XB,BD X ytBuq is a nested pre-optimal pair for D.B. So FD is a
finitary dijoin of D.
Next consider any element e P FD. By definition of FD we know that e P Be

holds for some finite dibond Be of D. Using again that pFD XBe,BD XztBeuq

is a nested pre-optimal pair for D.Be, we get that e P
Ť

BD. So the inclusion
FD Ď

Ť

BD is valid.
Given any BD P BD we know that pFD XBD,BD X ztBDuq is a nested pre-optimal

pair for D.BD. Hence, |FD XB| “ 1 holds for every B P BD X ztBDu. Especially,
|FD XBD| “ 1 is true because BD P BD X ztBDu.
Finally, let us consider two arbitrary but different elements B1 and B2 of BD.

We know that pFD X pB1 YB2q,BD X {tB1, B2uq is a nested pre-optimal pair for
D.pB1 YB2q. Therefore, B1 and B2 are disjoint and nested. This shows that
pFD,BDq is a nested optimal pair for D and completes the proof of this lemma.

Before we can continue proving further special cases of Conjecture F.1.7, we
have to state the following lemma, which is due to Thomassen and Woess. This
lemma is a helpful tool in infinite graph theory. For us it will be especially useful
in connection with Lemma F.4.3.

Lemma F.4.4. [65, Prop. 4.1] Let G be a connected graph, e P EpGq and k P N.
Then there are only finitely many bonds of G of size k that contain e.

The next lemma can be used together with Lemma F.4.3 to deduce that Conjec-
ture F.1.7 holds for weakly connected digraphs without infinite dibonds.

Lemma F.4.5. In a weakly connected digraph without infinite dibonds each edge
lies in only finitely many finite dibonds.

Proof. Let D be a weakly connected digraph and e P EpDq such that it lies on
infinitely many finite dibonds. We shall prove that e lies on some infinite dibond of
D. Since e lies on only finitely many dibonds of D with size k for every k P N by
Lemma F.4.4, we can pick a sequence pB2nqnPN of finite dibonds of D all containing
e such that |B2n| ă |B2n`1| holds for every n P N. Iteratively using Remark F.2.1
we can obtain a nested sequence pB1nqnPN of finite dibonds of D all containing e
such that |B1n| ă |B1n`1| holds for every n P N, where the inequality can again be
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achieved due to Lemma F.4.4. Now we can find an infinite set I Ď N such that
either inpB1iq Ě inpB1jq holds for all i, j P I with i ď j or inpB1iq Ď inpB1jq is true
for all i, j P I with i ď j. Since the following argument is symmetric with respect
to in- or out-shores, we assume without loss of generality that the first case holds
for the sequence pB1iqiPI .
We inductively find an edge set E˚ “ tei P EpDq ; i P Nu together with

a subsequence pBnqnPN of pB1iqiPI in the sense that there is an order preserving
bijection σ : I ÝÑ N such that B1i “ Bσpiq holds for every i P I, such that the
following properties are fulfilled:

1. e0 “ e holds.

2. E˚n :“ te0, . . . , enu Ď Bn holds for every n P N.

3. inpBnq contains an undirected tree Tn that covers all heads of edges in E˚n
and satisfies EpTnq XBm “ H for all n,m P N with m ě n.

We start by setting B0 :“ B1k0 for some k0 P I such that B0 contains an edge
e11 R E

˚
0 . This is possible since |B1i| ă |B1j| holds for all i, j P I. Further, set T0 as

the head of e0. Let v11 be the head of e11. Now let P 11 be an undirected tv11u–V pT0q

path in DrinpB0qs. Such a path exists since B0 is a dibond of D and so DrinpB0qs

is weakly connected. We now define e1 to be the last edge on P 11 in the direction
from v11 to T0 which lies in infinitely many dibonds in pB1iqiPI if it exists, and
e1 :“ e11 otherwise. Note that there needs to be an edge in EpP 11q Y te11u which
lies in infinitely many dibonds in pB1iqiPI because inpB1iq Ď inpB1k0q holds for all
i P I with i ě k0 and so B1i X pEpP 11q Y te11uq ‰ H holds for all i ě k0. Let v1

be the head of e1. Now we set I1 Ď Iztk0u to be an infinite index set such that
e1 P B

1
i for all i P I1 and EpP1q XB

1
i “ H for all i P I1 where P1 is the tv1u–V pT0q

path contained in P 11. Also we set T1 :“ T0 Y P1 and B1 :“ B1k1 for some k1 P I1

such that B1 contains an edge e12 R E˚1 . Note that T1 Ď DrB1is for each i P I1

by construction. Now we repeat the argument with k1 instead of k0 and with T1

instead of T0, etc. Iterating this construction infinitely often yields our desired
sequence pBnqnPN of finite dibonds of D.
Let B1 be the dicut of D whose in-shore is defined via inpB1q :“

Ş

nPN inpBnq.
Remark F.2.1 ensures that B1 is in fact a dicut of D. Note that the equal-
ity outpB1q “

Ť

nPN outpBnq holds and each outpBnq induces a weakly connected
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subdigraph of D as Bn is a dibond of D. So we know that DroutpB1qs is weakly con-
nected as well. Now we set T :“

Ť

nPN Tn. Property (3) ensures that V pT q Ď inpB1q
holds. Let K be the vertex set of the weak component of DrinpB1qs that contains
V pT q. Then B :“ EpV pDqzK,Kq is a dicut of D whose in-shore is K. By defini-
tion DrKs is a weakly connected subdigraph of D and B Ď B1 holds. Let C be
the set of weak components of DrinpB1qs. Since each element of C is adjacent with
outpB1q, we obtain that DroutpBqs is also a weakly connected digraph. Hence, B
is a dibond of D. Finally, property (2) together with property (3) ensure that
E˚ Ď B holds. Especially, e “ e0 P B by property (1). So B is an infinite dibond
of D containing e.

As noted before, we obtain the following corollary.

Corollary F.4.6. Conjecture F.1.7 holds for weakly connected digraphs without
infinite dibonds.

We close this section with a last special case where we can show that Conjec-
ture F.1.7 holds.

Lemma F.4.7. Conjecture F.1.7 holds for weakly connected digraphs whose un-
derlying multigraph is rayless.

Proof. Let D be a weakly connected digraph such that UnpDq is rayless. We know
by Proposition F.2.12 that UnpD{„q is rayless as well, and that D{„ is weakly
connected and finitely diseparable. So we obtain from Corollary F.2.7 that D{„
has no infinite dibond. Now Corollary F.4.6 implies that Conjecture F.1.7 is true
in the digraph D{„. Using again that D{„ is finitely diseparable, any nested
optimal pair for D{„ directly translates to one for D by Lemma F.3.1. Hence,
Conjecture F.1.7 is true for D as well.
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Apendix

Summary

Different aspects of connectivity in infinite directed and undirected graphs are
studied in this dissertation, which consists of three chapters.

In Chapter I, graphs are studied whose cardinality is not necessarily bounded by
further assumptions. In Section A of this chapter, those graphs are characterised
that contain Z ˆ Z as a minor. This is done in terms of the existence of a
certain collection of rays. Furthermore, we prove a duality theorem characterising
those graphs not containing Z ˆ Z as a minor by the existence of a certain
tree-decomposition for them.

Section B is dedicated to a characterisation of graphs containing a k-connected
vertex set of fixed but arbitrary infinite cardinality, where k P N. This is done
via the existence of minors of certain, so-called k-typical graphs as well as via the
existence of subdivisions of certain, so-called generalised k-typical graphs. Given
the number k P N and fixing the cardinality of the k-connected vertex set, there are
only finitely many k-typical graphs and also only finitely many generalised k-typical
ones, which is also proved in that section. Finally, we prove a duality theorem
characterising the absence of a k-connected vertex set of a certain cardinality in
a graph by the existence of a certain nested set of separations of order less than
k P N of the graph.
The last section of Chapter I, Section C, answers a question of Georgakopou-

los [25]. Given a countable end ω of some graph, i.e., an end which does not
contain uncountably many disjoint rays, that section contains the proof for the
existence of a set of ω-devouring rays in that graph whose set of startvertices can
be arbitrarily chosen as long as it is the set of startvertices of any set of disjoint
rays in ω.

In contrast to Chapter I, Chapter II focusses on locally finite connected graphs,
which must be of countable cardinality. By considering the Freudenthal compactifi-
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cation of such graphs, a topological definition of infinite cycles can be given, which
coincides with the usual definition for finite cycles, but also allows infinite ones.
Cycles are defined as homeomorphic images of the unit circle S1 Ď R2 into the
Freudenthal compactification of a locally finite connected graph. Now questions
regarding Hamiltonicity of infinite graphs can be asked in a more meaningful way.
In Section D, two sufficient conditions for Hamiltonicity of such graphs are

proved. These results extend to locally finite connected graphs corresponding
theorems for finite graphs. First it is shown that the square of any locally finite
connected graph on at least three vertices which contains the edge set of a spanning
topological caterpillar is Hamiltonian.

The second result says that for locally finite connected graphs being 2-connected
and neither containing a subdivision of a K4 nor of a K2,3 is equivalent to the
existence of an embedding of the Freudenthal compactification of the graph into a
closed disk such that the boundary of that disk witnesses the Hamiltonicity of the
graph. Moreover, it is shown that such graphs are uniquely Hamiltonian.
The last result of Section D affirmatively answers the question of Mohar [47]

whether an uniquely Hamiltonian cubic infinite graph exists all whose ends have
vertex- or edge-degree 3. Such a graph with vertex- and edge-degree 3 at every
end of the graph is constructed in that section.
The last chapter of this dissertation, Chapter III, deals with directed infinite

graphs. In the first section of that chapter Edmonds’ Branching Theorem is ex-
tended to locally finite directed graphs. For this the notion of pseudo-arborescences
is defined, which generalises ordinary arborescences in finite directed graphs. There
we prove a corresponding packing result for pseudo-arborescences. In order to
do this, methods from infinite directed graph theory and topological infinite
graph theory, as used in Chapter II, are combined. For this reason, the directed
graphs appearing in this section are countable. Furthermore, the structure of
pseudo-arborescences is studied in Section E as well.
In Section F, the second and also last section of Chapter III, a conjecture is

made which, if affirmatively proved, would generalise the theorem of Lucchesi and
Younger for finite directed graphs to infinite directed graphs in a way as it has
been done with the theorem of Menger. Different from Section E, directed graphs
of arbitrary cardinality are considered in Section F. One of the main results there,
however, is that it suffices to verify the conjecture for countable directed graphs.
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Apart from that, the conjecture is verified for several classes of directed graphs in
Section F, which forms the other main result of that section.

176



Zusammenfassung

Diese Dissertation, mit dem ins Deutsche übersetzten Titel "Zusammenhang in
gerichteten und ungerichteten Graphen", welche in drei Kapitel unterteilt ist,
behandelt verschiedene Aspekte von Zusammenhang in unendlichen gerichteten
sowie ungerichteten Graphen.

Im ersten Kapitel werden Graphen studiert, deren Kardinalität nicht notwendiger
Weise durch weitere Annahmen beschränkt ist. In Abschnitt A werden diejenigen
Graphen charakterisiert, welche Zˆ Z als Minor enthalten. Dies geschieht mittels
der Existenz einer bestimmten Menge von Strahlen. Außerdem beweisen wir einen
Dualitätssatz, welcher die Nichtexistenz von Zˆ Z als Minor in einem Graphen
durch die Existenz einer bestimmten Baumzerlegung des Graphens charakterisiert.
Abschnitt B ist der Charakterisierung solcher Graphen gewidmet, welche eine

k-zusammenhängende Eckenmenge fester aber beliebige unendlicher Kardinal-
ität enthalten, wobei k P N. Dies geschieht mittels der Existenz von Minoren
von bestimmten, sogenannten k-typischen Graphen und außerdem durch die
Existenz von Unterteilungen von bestimmten, sogenannten verallgemeinerten
k-typischen Graphen. Bei gegebenem k P N und fixierter Kardinalität der k-
zusammenhängenden Eckenmenge gibt es bloß endlich viele k-typische Graphen
und auch nur endlich viele verallgemeinerte k-typische Graphen. Dies wird ebenfalls
in jenem Abschnitt bewiesen. Schließlich zeigen wir einen Dualitätssats, welcher
die Nichtexistenz einer k-zusammenhängenden Eckenmenge fixer Kardinalität in
einem Graphen durch die Existenz einer bestimmten geschachtelten Menge von
Teilungen des Graphens der Ordnung kleiner als k P N charakterisiert.

Der letzte Abschnitt des ersten Kapitels, Abschnitt C, beantwortet eine Frage
von Georgakopoulos [25]. Für ein abzählbares Ende ω eines beliebigen Graphens,
was bedeutet, dass ω nicht überabzählbar viele disjunkte Strahlen enthält, wird in
diesem Abschnitt folgendes bewiesen: Es existiert eine Menge ω-verschlingender
Strahlen im Graphen mit beliebig wählbarer Menge von Startecken, sofern diese
Menge von Startecken für irgendeine Menge disjunkter Strahlen aus ω auch die
Menge der Startecken darstellt.
Im Kontrast zum ersten Kapitel konzentriert sich das zweite Kapitel auf lokal

endliche zusammenhängende Graphen, welche somit abzählbare Kardinalität haben
müssen. Mittels der Freudenthal-Kompaktifizierung solcher Graphen kann eine
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topologische Definition von Kreisen angegeben werden, welche für endliche Kreise
mit der gängigen Definition übereinstimmt, nun aber auch unendliche Kreise zulässt.
Kreise werden definiert als homöomorphe Bilder des Einheitskreises S1 Ď R2 in
der Freudenthal-Kompaktifizierung eines lokal endlichen zusammenhängenden
Graphens. Damit können nun Fragen bezüglich der Hamiltonizität unendlicher
Graphen in einem aussagekräftigeren Kontext gestellt werden.
In Abschnitt D werden zwei hinreichende Bedingungen für die Hamiltonizität

solcher Graphen bewiesen. Diese Resultate verallgemeinern entsprechende Sätze
über die Hamiltonizität endlicher Graphen auf lokal endliche zusammenhängende
Graphen. Zuerst wird gezeigt, dass das Quadrat eines jeden lokal endlichen zusam-
menhängenden Graphens mit mindestens drei Ecken, welcher die Kantenmenge
einer aufspannenden topologischen Raupe enthällt, hamiltonisch ist.

Das zweite Resultat besagt, dass 2-zusammenhängend zu sein und weder einen
K4, noch einen K2,3 als Minor zu enthalten, für lokal endlichen zusammen-
hängende Graphen dazu äquivalent ist, dass eine Einbettung der Freudenthal-
Kompaktifizierung in eine abgeschlossene Kreisscheibe existiert, deren Rand gle-
ichzeitig die Hamiltonizität des Graphens bezeugt. Darüber hinaus wird gezeigt,
dass solche Graphen auf eindeutige Weise hamiltonisch sind.
Das letzte Resultat von Abschnitt D gibt eine positive Antwort auf die Frage

von Mohar [47], ob ein kubischer unendlicher Graph existiert, der auf eindeutige
Weise hamiltonisch ist und nur Enden besitzt, deren Ecken- oder Kantengrad 3 ist.
Solch ein Graph, bei dem jedes seiner Ende sowohl Ecken- als auch Kantengrad 3
hat, wird in jenem Abschnitt konstruiert.

Das dritte und letzte Kapitel dieser Dissertation behandelt gerichtete unendliche
Graphen. Im ersten Abschnitt dieses Kapitels, Abschnitt E, wird Edmonds’ Branch-
ing Theorem auf lokal endliche gerichtete Graphen erweitert. Dafür wird der
Begriff der Pseudo-Arboreszenz definiert, welcher den Begriff der herkömmlichen
Arboreszenz in endlichen Graphen generalisiert, und ein entsprechender Satz be-
wiesen, der die Existenz von k P N vielen kanten-disjunkten Pseudo-Arboreszenzen
in einem gerichteten Graphen charakterisiert. Hierbei werden Methoden für un-
endlichen gerichtete Graphen mit Methoden aus der topologischen unendlichen
Graphentheorie, wie im zweiten Kapitel dieser Dissertation verwendet, kombiniert.
Aus diesem Grund haben die in diesem Abschnitt betrachteten gerichteten Graphen
abzählbare Kardinalität. Schließlich wird die Struktur von Pseudo-Arboreszenzen
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studiert.
In Abschnitt F, dem zweiten und letzten Abschnitt des dritten Kapitels, wird

eine Vermutung aufgestellt, die, sofern sie bestätigt wird, den Satz von Lucchesi
und Younger für endliche gerichtete Graphen auf solche Weise auf unendliche
gerichtete Graphen verallgemeinert, wie es bereits mit dem Satz von Menger
passierte. Anders als in Abschnitt E werden in Abschnitt F gerichtete Graphen
beliebiger Kardinalität betrachtet. Eines der Hauptresultate hier ist allerdings,
dass es ausreichend ist die Vermutung für abzählbare gerichtete Graphen zu
verifizieren. Das andere Hauptresultat jenes Abschnitts beinhaltet die Bestätigung
der Vermutung für diverse Klassen von gerichteten Graphen.
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Publications related to this dissertation

The following articles are related to this dissertation:

Chapter I:

1. Section A is based on [37].

2. Section B is based on [28].

3. Section C is based on [27].

Chapter II:

Section D is based on [38].

Chapter III:

1. Section E is based on [26].

2. Section F is based on [29].

180



Declaration on my contributions

I am the sole contributor for the whole Section A in Chapter I and for all of
Chapter II. All other sections are based on articles together with J. Pascal Gollin
as my only co-author, as mentioned in the section ‘Publications related to this
dissertation’. On the articles J. Pascal Gollin and I worked together, we share an
equal amount of work.
The research which led to the results in Section B of Chapter I was inspired

by and started after a research seminar talk of Prof. Dr. Reinhard Diestel at the
University of Hamburg, in which J. Pascal Gollin and I both participated.
The main result in Section C of Chapter I answers a question of Georgakopou-

los [25]. I studied the corresponding article of Georgakopoulos [25] for my work in
the field of topological infinite graph theory, especially during my work concerning
the content of Chapter II. I came up with a first proof idea for locally finite graphs.
Later J. Pascal Gollin and I improved it and generalised it to arbitrary graphs.
Prof. Dr. Reinhard Diestel encouraged J. Pascal Gollin and me to extend

Edmonds’ Branching Theorem to infinite digraphs, which is the topic of Section E
in Chapter III. After common work and research on this topic I drafted a first
version of the article this section is based on.

During my studies regarding directed graphs I learned about the theorem of
Lucchesi and Younger F.1.3 for finite directed graphs. On my own I tried to prove
a version of this theorem for infinite directed graphs. I came up with the example
in Section F whose conclusion is that a direct extension, also respecting infinite
dicuts, is not possible. Then I made Conjecture F.1.5 and proved some special
cases, covered in Lemma F.4.2. Afterwards I worked together with J. Pascal Gollin
on this topic, which led to the mentioned article this section is based on.

181



Acknowledgement

First of all, I want to thank my supervisor Reinhard Diestel. You had pulled me
into graph theory beginning with a proseminar and I am very happy for that. I
have learned a lot from you, in math and beyond, and I am very thankful for
this. It is a pleasure studying in the great environment you have build with your
research group in Hamburg. Let me also thank you for your great and diverse
support as well as for your trust in me to also let me find my own research projects.
Next I want to thank Pascal Gollin, my colleague, co-author and friend. For

me, it is always an immense pleasure and fun to think and work on mathematical
questions together with you. Thank you for this as well as for all the great research
sessions and discussions we had, and of course also for all the funny times we had
beyond work.
I also want to thank my other colleagues of the discrete math group at the

University of Hamburg. You provided a unique and friendly working climate.
Thank you for all the great discussions and the open invitations to them. Thank
you also for the great times beyond work.

Let me thank all of my friends for supporting me and making me laugh whenever
we meet.

Finally, I want to deeply thank my mother for her love, encouragement and
support, especially during the hard and sad times in our both lives.

182



Bibliography

[1] R. Aharoni and E. Berger. Menger’s Theorem for infinite graphs. Invent. Math., 176(1):1–62,
2009.

[2] R. Aharoni and C. Thomassen. Infinite, highly connected digraphs with no two arc-disjoint
spanning trees. J. Graph Theory, 13(1):71–74, 1989.

[3] J. Bang-Jensen and G. Gutin. Digraphs: Theory, Algorithms and Applications. Corr. first
ed., Springer-Verlag, 2007.

[4] P. Bellenbaum and R. Diestel. Two short proofs concerning tree-decompositions. Combin.
Probab. Comput., 11(6):541–547, 2002.

[5] R. C. Brewster and D. Funk. On the hamiltonicity of line graphs of locally finite, 6-edge-
connected graphs. J. Graph Theory, 71(2):182–191, 2012.

[6] H. Bruhn and M. Stein. MacLane’s planarity criterion for locally finite graphs. J. Combin.
Theory Ser. B, 96(2):225–239, 2006.

[7] H. Bruhn and M. Stein. On end degrees and infinite cycles in locally finite graphs. Combi-
natorica, 27(3):269–291, 2007.

[8] H. Bruhn and X. Yu. Hamilton cycles in planar locally finite graphs. SIAM J. Discrete
Math., 22(4):1381–1392, 2008.

[9] J. Carmesin, R. Diestel, M. Hamann and F. Hundertmark. k-blocks: a connectivity invariant
for graphs. SIAM J. Discrete Math., 28(4):1876–1891, 2014.

[10] T. L. Chan. Contractible edges in 2-connected locally finite graphs. Electronic. J. Comb.,
22:P2.47, 2015.

[11] G. Chartrand and F. Harary. Planar permutation graphs. Ann. Inst. Henri Poincaré Sect.
B (N.S.), 3:433–438, 1967.

[12] R. Diestel. Graph Theory. Fourth ed., Springer-Verlag, 2012.

[13] R. Diestel. Locally finite graphs with ends: a topological approach. arXiv:0912.4213v3,
2012.

[14] R. Diestel. A short proof of Halin’s grid theorem. Abh. Math. Sem. Univ. Hamburg,
74:137–242, 2004.

[15] R. Diestel. Tree sets. Order, 35(1):171–192, 2018.

183

http://arxiv.org/abs/0912.4213v3


[16] R. Diestel, K. Yu. Gorbunov, T. R. Jensen and C. Thomassen. Highly connected sets and
the excluded grid theorem. J. Combin. Theory Ser. B, 75(1):61–73, 1999.

[17] R. Diestel and D. Kühn. On infinite cycles I. Combinatorica, 24(1):69–89, 2004.

[18] R. Diestel and D. Kühn. On infinite cycles II. Combinatorica, 24(1):91–116, 2004.

[19] R. Diestel and D. Kühn. Graph-theoretical versus topological ends of graphs. J. Combin.
Theory Ser. B, 87(1):197–206, 2003.

[20] R. Diestel and D. Kühn. Topological paths, cycles and spanning trees in infinite graphs.
Europ. J. Comb., 25(6):835–862, 2004.

[21] J. Edmonds. Edge-disjoint branchings. In Combinatorial Algorithms, pages 91–96. Academic
Press, 1973.

[22] A. Frank. Connections in Combinatorial Optimization. Oxford University Press, 2011.

[23] H. Fleischner. The square of every two-connected graph is hamiltonian. J. Combin. Theory
Ser. B, 16:29–34, 1974.

[24] J. Geelen and B. Joeris. A generalization of the Grid Theorem. arXiv:1609.09098, 2016.

[25] A. Georgakopoulos. Infinite Hamilton cycles in squares of locally finite graphs. Adv. Math.,
220(3):670–705, 2009.

[26] J. P. Gollin and K. Heuer. An analogue of Edmonds’ Branching Theorem for infinite
digraphs. Submitted; preprint available at arXiv:1805.02933, 2018.

[27] J. P. Gollin and K. Heuer. Infinite end-devouring sets of rays with prescribed start vertices.
Discrete Math., 341(7):2117–2120, 2018.

[28] J. P. Gollin and K. Heuer. k-connected sets in infinite graphs: a characterisation by an
analogue of the Star-Comb Lemma for higher connectivity. In preparation.

[29] J. P. Gollin and K. Heuer. On the Infinite Lucchesi-Younger Conjecture. In preparation.

[30] R. Halin. Über die Maximalzahl fremder unendlicher Wege in Graphen. Math. Nachr.,
30:63–85, 1965.

[31] R. Halin. Simplicial decompositions of infinite graphs. Ann. of Discrete Math., 3:93–109,
1978.

[32] M. Hamann, F. Lehner and J. Pott. Extending cycles locally to Hamilton cycles. Electronic.
J. Comb., 23:P1.49, 2016.

[33] F. Harary and A. Schwenk. Trees with hamiltonian square. Mathematika, 18:138–140, 1971.

[34] P. Haxell, B. Seamone and J. Verstraete. Independent dominating sets and hamiltonian
cycles. J. Graph Theory., 54(3):233–244, 2007.

[35] K. Heuer. A sufficient condition for Hamiltonicity in locally finite graphs. Europ. J. Comb.,
45:97–114, 2015.

184

http://arxiv.org/abs/1609.09098
http://arxiv.org/abs/1805.02933


[36] K. Heuer. A sufficient local degree condition for Hamiltonicity in locally finite claw-free
graphs. Europ. J. Comb., 55:82–99, 2016.

[37] K. Heuer. Excluding a full grid minor. Abh. Math. Sem. Univ. Hamburg, 87(2)(Rudolf
Halin memorial issue):265–274, 2017.

[38] K. Heuer. Hamiltonicity in locally finite graphs: two extensions and a counterexample.
Electronic. J. Comb., to appear; preprint available at arXiv:1701.06029, 2017.

[39] B. Joeris. Connectivity, tree-decompositions and unavoidable-minors. PhD dissertation,
University of Waterloo, 2015. https://uwspace.uwaterloo.ca/handle/10012/9315.

[40] A. Joó. Edmonds’ branching theorem in digraphs without forward-infinite paths. J. Graph
Theory, 83(3):303–311, 2016.

[41] J. Karaganis. On the cube of a graph. Canad. Math. Bull., 11:295–296, 1968.

[42] K. Kunen. Set Theory. An introduction to independence proofs. North-Holland Publishing
Co., 1980.

[43] F. Lehner. On spanning tree packings of highly edge connected graphs. J. Combin. Theory
Ser. B, 105:93–126, 2014.

[44] http://lemon.cs.elte.hu/egres/open/Infinite_Lucchesi-Younger

[45] L. Lovasz. On two minimax theorems in graph. J. Combin. Theory Ser. B, 21(2):96–103,
1976.

[46] C. L. Lucchesi and D. H. Younger. A minimax theorem for directed graphs. J. London
Math. Soc., 17(3):369–374, 1978.

[47] B. Mohar. http://www.fmf.uni-lj.si/~mohar/Problems/P0703_

HamiltonicityInfinite.html

[48] C. St. J. A. Nash-Williams. Edge-disjoint spanning trees of finite graphs. J. London Math.
Soc., 36:445–450, 1961.

[49] B. Oporowski, J. Oxley and R. Thomas. Typical subgraphs of 3- and 4-connected graphs.
J. Combin. Theory Ser. B, 57(2):239-257, 1993.

[50] J. G. Oxley. On a packing problem for infinite graphs and independence spaces. J. Combin.
Theory Ser. B, 26(2):123–130, 1979.

[51] M. Pitz. Hamilton cycles in infinite cubic graphs. Electronic. J. Comb., to appear.

[52] R. B. Richter and C. Thomassen. 3-connected planar spaces uniquely embed in the sphere.
Trans. Amer. Math. Soc., 354(11):4585–4595, 2002.

[53] N. Robertson, P. Seymour and R. Thomas. Excluding infinite clique minors. Memoirs Amer.
Math. Soc., 118, no.566, 1995.

[54] N. Robertson, P. Seymour and R. Thomas. Excluding infinite minors. Discrete Math.,
95(1–3):303–319, 1991.

185

http://arxiv.org/abs/1701.06029
https://uwspace.uwaterloo.ca/handle/10012/9315
http://lemon.cs.elte.hu/egres/open/Infinite_Lucchesi-Younger
http://www.fmf.uni-lj.si/~mohar/Problems/P0703_HamiltonicityInfinite.html
http://www.fmf.uni-lj.si/~mohar/Problems/P0703_HamiltonicityInfinite.html


[55] M. Sekanina. On an ordering of the set of vertices of a connected graph. Spisy přirod. Fak.
Univ. Brně, 412:137–141, 1960.

[56] J. Sheehan. The multiplicity of Hamiltonian circuits in a graph. In Recent advances in
graph theory, pages 477–480. Academia, 1975.

[57] M. Stein. Extremal infinite graph theory. Discrete Math., 311(15):1472–1496, 2011.

[58] M. M. Sysło. Characterizations of outerplanar graphs. Discrete Math., 26(1):47–53, 1979.

[59] P. G. Tait. Listing’s Topologie. Phil. Mag., 5th Series, 17:30–46, 1884.

[60] R. Thomas. A menger-like property of tree-width: The finite case. J. Combin. Theory
Ser. B, 48(1):67-76, 1990.

[61] A. G. Thomason. Hamiltonian cycles and uniquely edge colourable graphs. Ann. Discrete
Math., 3:259–268, 1978.

[62] C. Thomassen. Edmond’s branching theorem in digraphs without backward-infinite paths.
unpublished manuscript, personal communication.

[63] C. Thomassen. Hamiltonian paths in squares of infinite locally finite blocks. Ann. Discrete
Math., 3:269–277, 1978.

[64] C. Thomassen. Independent dominating sets and a second Hamiltonian cycle in regular
graphs. J. Combin. Theory Ser. B, 72(1):104–109, 1998.

[65] C. Thomassen and W. Woess. Vertex-transitive graphs and accessibility. J. Combin. Theory
Ser. B, 58(2):248–268, 1993.

[66] W. T. Tutte. On Hamiltonian circuits. J. London Math. Soc., 21(2):98–101, 1946.

[67] W. T. Tutte. On the problem of decomposing a graph into n connected factors. J. London
Math. Soc., 36:221–230, 1961.

186



Eidesstattliche Versicherung

Hiermit versichere ich an Eides statt, die vorliegende Dissertation selbst verfasst und
keine anderen als die angegebenen Hilfsmittel benutzt zu haben. Darüber hinaus
versichere ich, dass diese Dissertation nicht in einem früheren Promotionsverfahren
eingereicht wurde.


	Introduction
	Overview about the chapters
	The sections of Chapter I
	The section in Chapter II
	The sections of Chapter III

	General infinite graph theory
	Excluding a full grid minor
	Introduction
	Preliminaries
	Proof of the main theorem

	k-connected sets in infinite graphs: a characterisation by an analogue of the Star-Comb Lemma for higher connectivity
	Introduction
	Preliminaries
	Typical graphs with k-connected sets
	k-typical graphs
	Generalised k-typical graphs
	Statement of the Main Theorem

	k-connected sets, minors and topological minors
	Structure within ends
	End defining sequences and combined end degree
	Constructing uniformly connected rays

	Minors for regular cardinalities
	Complete bipartite minors
	Minors for regular k-blueprints
	Characterisation for regular cardinals

	Minors for singular cardinalities
	Cofinal sequence of regular bipartite minors with disjoint cores.
	Frayed complete bipartite minors
	Minors for singular k-blueprints
	Characterisation for singular cardinals

	Applications of the minor-characterisation
	Nested separation systems

	Infinite end-devouring sets of rays with prescribed start vertices
	Introduction
	Preliminaries
	Theorem
	Ends of uncountable degree


	Topological infinite graph theory
	Hamiltonicity in locally finite graphs: two extensions and a counterexample
	Introduction
	Preliminaries
	Topological caterpillars
	Graphs without K4 or K2,3 as minor
	A cubic infinite graph with a unique Hamilton circle


	Directed infinite graphs
	An analogue of Edmonds' Branching Theorem for infinite digraphs
	Introduction
	Preliminaries
	Topological notions for undirected multigraphs
	Topological notions for digraphs
	Basic lemmas

	Fundamental statements about topological directed walks in locally finite digraphs
	Packing pseudo-arborescences
	Structure of pseudo-arborescences

	On the Infinite Lucchesi-Younger Conjecture
	Introduction
	Preliminaries
	Quotients

	Reductions for the Infinite Lucchesi-Younger Conjecture
	Special cases



