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Abstract. The topologies Etop and Mtop are two possible extensions of the

well known Freudenthal compactification of locally finite graphs to arbitrary

graphs. It is known that both of these topologies can be obtained by using
metric completion of a metric on graphs given by certain edge length functions.

In this paper we extend the family of functions that are able to achieve this.

1. Introduction

For locally finite graphs it is well-known that the Freudenthal compactification.
gives rise to a suitable notion of a boundary. If the graph contains vertices of
infinite degree it turns out to be more difficile and there are distinct notions of its
boundary, e.g. its vertex or its edge ends. These can also be obtained by a suitable
topology. In this paper we use two of them, called Etop and Mtop. For locally
finite graphs these two topologies coincide.

Given a function assigning lengths to edges one can define a metric space from a
graph. Georgakopoulos showed in [4] that certain such functions can be used such
that the completion of this metric space, the completion is called `-Top, can be
used to obtain Etop or Mtop. The functions used in [4] had the property that
the sum over length of all the edges is finite. We construct a larger natural family
of functions such that `-Top will still generate Etop or Mtop. That each of the
assumptions on this family is necessary can be shown by easy exposition, which
can be found in the an extended version of this paper. We prove the following two
theorems:

Theorem 1. Every 2-connected graph G and ` : E → R+ satisfy |G|` ≈ ||G|| if
every ray has finite `-length and the `-lengths of the spokes of any infinite fan or
edge bundle tend to 0.

Theorem 2. Every 2-connected graph G and ` : E → R+ satisfy |G|` ≈ |G|M if
|G| is metrizable, every ray has finite `-length, for every vertex v there is a δv ∈ R+

such that the `-lengths of all edges incident to v are at least δv, and the `-lengths
of the open spokes of any infinite fan tend to 0.

We use the terminology and notation of [2] and [4] unless explicitly stated oth-
erwise. All important definitions used in this paper can be found in Section 2. All
the necessary definitions and notations are given in Section 2. In Section 3 we give
some insight into the motivation of the premise of Theorem 1 and Theorem 2. We
give some lemma that are used for the proof of both theorems in Section 4. The
proof of Theorem 1 is in Section 5, and the proof of Theorem 2 is in Section 6.

1
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2. Notation

In this section we give the most important definitions and notations used in this
paper. We start with recalling the definitions of a ray, double ray, ends and tails
from [2]. An infinite graph G = (V,E) with

V = {x0, x1, . . .} and E = {x0x1, x1x2 . . .}
is call a ray. An infinite graph G = (V,E) with

V = {. . . x−2, x−1, x0, x1, . . .} and E = {. . . x−2x−1, x−1x0, x0x1, x1x2 . . .}
is called a double ray. The subrays of a ray or double ray are its tails. An end of a
graph G is an equivalence class of rays in G. For a ray R with vertex set r1, r2, . . .
and edge set r1r2, r2r3, . . . we will sometimes just write R = r1r2 . . ., analog for
double rays.

In this paper we consider two different equivalence relations on rays. For Mtop
two rays are equivalent, if and only if for every finite S ⊆ V , both rays have a
tail in the same component of G − S, those equivalence classes of rays are the
vertex-ends of G. For Etop two rays are equivalent, if and only if for every finite
F ⊆ E, both rays have a tail in the same component of G − F , those equivalence
classes of rays are the edge-ends of G. The set of ends of a graph G is denoted
by Ω(G). Note that depending on the context, Ω(G) might either mean vertex or
edge-ends. We say a vertex v dominates a vertex-end ω if there is no finite vertex
separator that separates v from the tail of any ray in ω. In this case we call ω a
dominated vertex-end. Analog we say that a vertex dominates an edge-end if there
is no finite edge separator that separates this vertex from any tail of any ray in this
edge-end. We call ends, vertex- and edge-, dominated if they are dominiated by
any vertex. An end that is not dominated is called an undominated end, vertex- or
edge-, respectively.

Next we define the topology `-Top, [4]. Given a connected graph G = (V,E)
and ` : E → R+, define on V 2

d`(u, v) = inf

{∑
e∈P

`(e) | P is a u− v path in G

}
,

and identify any v, u with d`(u, v) = 0 to obtain a metric space V/∼. The equiv-
alence relation used for identifying points in `-Top will be called ∼. Let (G, `)
be the metric space obtained from V/∼ by taking the disjoint union of isomet-
ric copies of [0, `(e)] for every edge e ∈ E(G) and identifying the end points of
the interval with points in V/∼ corresponding to the end vertices of the edge,
including edges between vertices which got identified in V/∼. We define the dis-
tance between a vertex v and an inner point of an edge, say x ∈ e = x1x2, to
be the miny∈{x1,x2}(d(y, v) + d(y, x)). We define the distance between two inner
points of edges, say x1 ∈ e1 = v1w1 and x2 ∈ e2 = v2w2, to be the minimum of
d(x1, v2) + d(v2, x2) and d(x1, w2) + d(w2, x2). Let |G|` be the metric completion
of (G, `), i.e. the unique1 complete metric space containing (G, `) as a dense sub-
space. For a ray R = r1r2 . . . in G we define `(R) =

∑
e=riri+1

`(e). Note that by

definition the premises of each of our theorems ensures that this sum will always
be finite.

We write |G| for topological spaces on a graph G, considered as a 1-complex,
and its ends. Depending on the topology we are considering, those ends might be
edge-ends or vertex-ends of G.

We will need to pick or be given some real numbers throughout this paper.
Whenever we write ε > 0 we mean that ε ∈ R+. In this paper we will use the term

1unique up to isometries fixing (G, `) pointwise
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tending to 0 at different occasions. We call a set of objects, mostly a set of real
numbers, tending to 0, if for every ε > 0 there are only finitely many elements of
this set larger than ε. We will mostly use tending to 0 for the `-lengths of sets of
edges or the `-lengths of paths in an infinite set of paths.

We recall the definition of Etop. see [4]. We endow the space consisting
of G = (V,E), considered as a 1-complex, and its edge-ends with the topology
Etop. Firstly, every edge e ∈ E inherits the open sets corresponding to open sets
of [0, 1]. Moreover, for every finite edge-set F ⊆ E, we declare all sets of the form

C ∪ Ω(C) ∪ E′(C)

to be open, where C is any component of G − F and Ω(C) denotes the set of all
edge-ends of G having a ray in C and E′(C) is any union of half-edges (z, y], one
for every edge e = xy in F with y lying in C. Let Etop ′(G) denote the topological
space of G ∪ Ω(G) endowed with the topology generated by the above open sets.
Moreover, let ETOP(G) denote the space obtained from Etop ′(G) by identifying
any two points that have the same open neighborhoods. Instead of Etop (G) we
will often just write G endowed with Etop or if G is fixed just Etop or ||G||.

Let us recall the definition of Mtop. see [4]. To define Mtop (G) we consider
each edge of G to be a copy of the real interval [0, 1], bearing the corresponding
metric and topology. The basic open neighborhoods of a vertex v are the open stars
of radius ε centered at v for any ε < 1. Those are call open ε-stars around v. For
a vertex-end ω ∈ Ω(G) we declare all sets of the form

Ĉε(S, ω) :=C(S, ω) ∪ Ω(S, ω) ∪ E̊ε(S, ω)

to be open, where S is an arbitrary finite subset of V (G), the unique component of

G − S containing a ray in ω is called C(S, ω), and E̊ε(S, ω) is the set of all inner
points of S −C(S, ω) edges at distance less than ε from their endpoint in C(S, ω).

We call E̊ε(S, ω) also the ε-collar of this open set. Let |G|M denote |G| endowed
with Mtop. To avoid possible confusion, as we will be working with both |G|M
and ||G|| in close proximity, we will always only consider vertex-ends when we are
looking at |G|M which might also be called the Mtop case and we will always only
consider edge-ends whenever we are working with ||G|| or |G| endowed with Etop.
which will sometimes be called the Etop case.

Sometimes we want to work with the graph G in the space |G|M. In slight abuse
of notation we will call G be also be a graph in |G|M. In addition we consider
subgraphs of G to also be a subgraph of |G|M. As there is a natural bijection
embedding G into |G|M so this does not pose a problem.

For ||G|| we do basically the same. But we also have consider the identification
that occurs when we from ||G||. This means that if in ||G|| there is an edge between
two vertices then either there is a edge between those vertices in G or there is no
finite edge separator separating those vertices in G. The later means, that there
are an infinite number of edge disjoint paths between those two vertices. So keep in
mind that when we look at path or ray in ||G|| this does not necessarily correspond
to a path of ray in G.

Let X,X ′ be topological spaces that contain a graph G, considered as a 1-
complex, as a topological space. We will write X ≈ X ′ if the identity on G extends
to a homeomorphism between X and X ′. In this paper we prove that |G|` ≈ ||G||
and |G|` ≈ |G|M if G is 2-connected and ` complies with some conditions.

We call a set of paths independent if they only meet at their end vertices but are
disjoint otherwise. For two vertices x, y we call a path starting in x and ending in
y an x− y path. For an end x, we call a ray starting in the vertex x and belonging
to the end y an y − x ray. If y is also an end, then we call a double ray with tails
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in both ends y and x an y − x double ray. For a vertex x and a vertex set A we
call a path an x−A path if it starts in x, ends in A and does contain no vertices in
A besides its terminal vertex. Let v be a vertex of G and A a set of vertices in G.
An infinite v − A fan is a subgraph H of G such that H consists of an infinite set
of v − A paths such that any two of those paths only have v in common and such
that H also contains a ray R that meets every vertex in A but is disjoint to v. It
follows that in H the vertex v has infinite degree and we will call v the vertex of
infinite of this fan. We call this ray R the ray of this infinite fan. We will call this,
in slight abuse of notation, just fan, as we will only ever need infinite fans. The
spokes of a fan are the paths from its vertex of infinite degree to its ray. The open
spokes of a fan are its spokes minus their edge at the vertex of infinite degree. A
bundle is a union of infinitely many independent paths between two fixed vertices;
the paths are its spokes. An edge bundle is a union of infinitely many edge disjoint
paths between two fixed vertices; we also call the paths its spokes.

We say for two vertices to have no finite edge separator between them if there is
no finite edge separator separating them. For a ray R = r1, r2, . . . and a vertex v or
another ray R′ = r′1, r

′
2, . . . we say there is no finite edge separator between R and v

or R′ if there is no finite edge separator that separates a tail of R from v or from a
tail of R′, i.e. for every N ∈ N there is a path from some ri with i ≥ N to v or r′i.
We define the analog for not having a finite vertex separator.

Let X be a topological space and let G, seen as a 1-complex, be embedded into
X. We call the the embedded image of a vertex or an edge of G in X also a vertex
or an edge, respectively. In addition we will also say X contains a vertex or an edge
of G if X contains the image of that vertex or edge under the embedding.

3. Motivation

In this section we give some motivation for the premises of Theorem 1 and
Theorem 2. We show that the premises of the theorems are necessary in the sense
that there are graphs together with length functions ` that make the theorems false
if one of the conditions in the premise of Theorem 1 or Theorem 2 is not fulfilled.
The first examples will work for both ||G|| and |G|M.

3.1. Example 1. In this example we show why 2-connectivity is necessary. To
define G first let R = r0r1 . . . be a ray. Then for every vertex ri in R we add a new
vertex r′i and join ri and r′i by an edge. We define ` to be the following: For edges
e = riri+1 we define `(e) = 1

2i , for edges e = rir
′
i we define `(e) = 1. This graph

and length function comply with every premise in Theorem 1 and Theorem 2 but
the 2-connectivity. As G is locally finite, ||G|| and |G|M are the same, see [3]. Let
O be any basic open set in either of those topologies around the only end ω of G.
There is some N ∈ N such that this open set will contain all of the vertices r′i for
i ≥ N as there is no finite edge or vertex separator separating those vertices from
the ray R. But in `-Top, any basic open set around the metric completion point
added for the ray R, say an ε-ball with 0 < ε < 1 will miss all the vertices r′i. This
graph is shown together with such an open set O in Figure 1 on the left.

3.2. Example 2. In this example we show why the `-length of the spokes of infinite
fans need to tend to 0. Next we show that just adding 2-connectivity to the premises
of the theorems is insufficient to make the theorems true. We start with the graph
and length function defined in Subsection 3.1. Now we add a vertex v to G and
join v to every vertex r′i. Here we have to be a bit careful with how to extend `
depending on if we want to look at Etop or Mtop. Say we want to look at the
Etop case first, then we can extend all for the edges e = vr′i to be `(e) = 1

2i .
For this graph and length function, every premise of Theorem 1 and Theorem 1 is
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Figure 1. Example 1 and the two versions of Example 2

fulfilled but that the spokes of any infinite fan must tend to 0. Again we can see
that for this length function ||G|| ≈ |G|` is false. One easy way to see that is, that
in ||G||, the end ω and the vertex v will get identified, as there is no finite edge
separator separating them. But in |G|`, every open ε-ball around v with 0 < ε < 1
will miss the metric completion point at the ray, and vice versa. So those points
will not get identified in |G|`. This graph is shown in Figure 1 as the middle figure.

For the Mtop case, we can extend ` by just giving every edge e = vr′i the
`-lengths 1. Now this graph and length function complies with every premise of
Theorem 2 but that the open spokes of any infinite fan must tend to 0. To see that
Mtop will not get induced by this length function ` we can again look at open
sets around the end in Mtop and open sets around the metric completion point in
`-Top the same way we have done in Subsection 3.1.

Another possible modification to get 2-connectivity to Example 1 is to extend G
not by adding a vertex of infinite degree but by adding another ray. Say adding
edges r′ir

′
i+1 for all i ∈ N, this yields an infinite ladder. We extend ` for the edges

r′ir
′
i+1 to be 1

2i . As G is again locally finite, Etop and Mtop coincide, so we
can check them together. It seems like this graph complies with every premise in
Theorem 1 and Theorem 2. But this time we have created a ray of infinite `-length.
Starting in r1 we move to r′1 taking an edge of `-length 1. Then we move up on
to r′2 and back to r2. By doing so, we used another edge of `-length 1. Repeating
this process yields a ray of infinite `-length. In this graph, there will be two metric
completion points, but G only contains one end. The Figure 1 shows this graph
in right together the ray of infinite `-length in gray and the two metric completion
points.

3.3. Example 3. In this example we will look at the remaining conditions in the
premise of Theorem 1 and Theorem 2. We start with the premise of Theorem 1
that for every two vertices v, w, such that there are infinitely many vertex disjoint
v − w paths, the `-lengths of those paths must tend to 0. To define G we start
with two vertices, call them v and w. Then we add infinitely many more vertices
v1, v2, . . . and join all of them to v and w. We define `(e) = 1 for all edges e in G.
This graph complies with every premise of Theorem 1 and Theorem 2 but that the
spokes of every bundle must tend to 0. In ||G|| the vertices v and w get identified,
but in `-Top they have distance 2, so they will not get identified.

For showing that in the Mtop case, the `-length of every edge must be bounded
from below we can reuse G. For that let G be the same as in the first part of the
Example 3. We change ` like follows: We define `(e) = 1

2i if e contains the vertex



6 EDGE LENGTH INDUCES END TOPOLOGIES

vi. Now we got the opposite of the above case. In Mtop v and w are not identified,
but in `-Top they are.

3.4. Example 4. In subsection we sketch examples that shows that Theorem 1
and Theorem 2 are not characterizations. We show that there are graphs together
with length functions such that for those graphs Etop or Mtop coincide with `-
Top, but some of the conditions in the premise of Theorem 1 and Theorem 2 are
not met.

If the graph G is only a single ray then any length function that gives this ray
a finite length induces the topologies Mtop and Etop on G as those coincide for
locally finite graphs. This example is shown in Figure 2 on the left hand side.
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Figure 2. Example in which topologies coincide

Next we give an example graph together with a length function ` such that not
every edge bundle tends to 0, but the topology of Etop still coincides with the
topology `-Top. We only sketch the proof that Etop and `-Top coincide.

We define the graph G together with the length function ` recursively. We start
with two vertices x1 and x2 and the edge x1x2 and set `(x1x2) = 1. Now we add
an x1 − x2 paths Pi to G such that Pi only meets x1 and x2 and is disjoint to
everything else defined so far and such that Pi contains i vertices outside of x1
and x2 and such that `(Pi) = 1 for all i. For that we set `(ei) = 1

i+1 for every
edge ei ∈ Pi. For each vertex pi in Pi we add the edge x1pi and x2pi to G unless G
already contains it. We also set the `-length of those edges to be 1

i+1 . This graph
is shown in Figure 2 after adding the paths P1, P2 and P3.

It is obvious that there is no finite edge separator separating x1 and x2. And
by definition the paths P1, P2, . . . form a bundle even tough each path Pi has `-
length 1. Still it is straight forward to check that d(x1, x2) = 0.2 We leave it up to
the interessted reader to check that the topologies coincide.

3.5. Example 5. Now we show an example of a graph together with a length
function such that for this graph Mtop and `-Top coincide but there are open
spokes such that their `-length does not tend to 0. Let G be a graph that consist
of a ray R = r1r2 . . . and a vertex v that is not on R. We set `(riri+1) = 1

2i . For
every i ∈ N+ we now add a cycle Ci to G. The cycle Ci contains the vertex v and
i + 1 additional vertices, that are disjoint to R and vertices contained in any Cj
with j <i. All edges incident with v get `-length 1. Each edge in Ci that does not

2Using the paths like the indicated path P ′2 in Figure 2.
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have an `-length so far gets the `-length 1
i+1 . For each vertex in Ci − v we add an

edge ei from this vertex to ri, those edges get `-length 1
i+1 . Figure 3 shows a part

of G containing the first three cycles.
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Figure 3. The graph G with addition of C1, C2 and C3

Each vertex in G besides v has finite degree by definition. We now show that
every ray in G has finite `-length. For that we look at 2-separators of G. For
every i ∈ N the set of vertices Si :={ri, v} is a 2-separator of G. The deletion of
any S1 leaves two components of G. The deletion of any other Si, i ≥ 2 leaves three
components and only one of those is infinite. Let R′ be a ray in G. Let G1 be the
component of G − Si that does not contain a tail of R. For i ≥ 2 let Gi and G′i
be the two components of G− Si that do not contain a tail of R. Suppose that R′

contains vertices of more than two different Gi or more than two different G′i, say R′

contains vertices of more than two different Gi, let say for i = j, k and i = l. Also
say that R′ meets Gk after it met Gj and before it meets Gl. If v was the last vertex
of R′ before it met Gk, then it has to use rk to leave Gk. But then it must use rl
to move into Gl, but this means the ray cannot leave Gl, which is a contraction
as Gl is finite. So we may assume that R′ meets Gk after using rk, but then is has
to leave Gk by using v. This yields the same contraction as before. So R′ has a tail
such that each vertex of that tail is in R. Then this tail of R′ has finite `-length,
and as initial segments do not add infinite ` to a ray, R′ has finite `-length. Now
we need to check that the graph G is metrizable. Any graph is metrizable if it has
a normal spanning tree by [1]. Any graph that does not contain a Kℵ0 as a minor
has a normal spanning tree by [2] and this is obviously true for G.

Now we show that for this graph G together with this length function ` there is
an infinite set of open spokes such that the `-lengths of those spokes do not tend to
zero. We define P ′i to be the path starting in v and moving along the cycle Ci. We
move along Ci until the we have met every vertex of Ci once. By definition of G,
we can now use an edge to R. This defines an infinite set of independent v − R
paths. By definition the path P ′i contains exactly i + 3 vertices and i + 2 edges.
Each edge in P ′i that not incident with v has `-length 1

i+1 , as we have i + 1 such

edges this sums to an `-length of 1 for all i ∈ N. As P ′i − v is exactly an open spoke,
the `-lengths of these open spokes do not tend to zero.

The interested reader may check that Mtop and `-Top coincide. This can be
done in the same way that we prove Theorem 2, see Section 4 and Section 6 for
details.
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4. General lemmas

In this section we will prove general lemmas that are mostly usable for the proofs
of Theorem 1 and Theorem 2. Before we start with those lemmas, we will state
the very general proof structure for the theorems of this paper. We will prove
Theorem 1 and Theorem 2 by following the same general steps that were used in
[4, Theorem 3.1]. First we will show that (G, `) and the two topological spaces, |G|M
and ||G||, without their respective (edge-)ends have the same points, so there is a
bijection between (G, `) and |G|M or ||G||, that is indifferent under the identity
on G. Note that in the in the case of ||G||, we will not remove dominated ends, as
those will be represented by a vertex. We then let those spaces without those ends
inherit the metric d from the metric d` of (G, `). We will extends this metric d to
all of |G|M and ||G|| in a way that makes d induce the existing topology on |G|M
and ||G|| such that both |G|M and ||G|| are complete and (G, `) is dense in ||G|| and
|G|M, respectively. As metric completions are, as stated above, unique, it follows
that the theorems are true.

We now continue with general lemmas that can be used for the Etop and the
Mtop case. For that we need the definition of the above mentioned metrics. In
this section we will just give the definition of the metrics used for ||G|| and |G|M
but skip the proof that those actually define metrics. We also skip the proof that
there is bijection between (G, `) and ||G|| or |G|M without, in the case of Etop.
undominated ends. All of this will be done in Section 5 for Etop and Section 6 for
Mtop. As the definition of the new metric d will be almost the same for the case
of Etop and Mtop. we will just handle both of them at the same time. But keep
in mind, that because the length function ` is different by assumption in the Etop
and the Mtop case, we are actually defining different metrics.

Let ` : E(G) → R+ be a length function. For the Etop case write Ω̃ for the
set of edge-ends of ||G|| that are not represented by a vertex, which are exactly the
undominated edge-ends of G. We call the metric given by `-Top d`. Let d` induce

a metric on ||G|| \ Ω̃ or |G|M \Ω, call this new metric d. We now extend this metric

to all of ||G|| or |G|M, respectively. For x ∈ Ω̃∪V and y ∈ Ω̃ in the Etop case and
x ∈ Ω ∪ V and y ∈ Ω in the Mtop case define

d(x, y) = inf {`(R) | R is an x− y ray or double ray} ,
where `(R) is the sum over the `-lengths of all edges contained in R. The premises
of Theorem 1 and Theorem 2 ensure that this sum will always be finite. This gives
us two slightly different metrics; one on ||G|| and one on |G|M. The metric space
on the point set of ||G|| induced by d will be called ||G||d and metric space on the
point set of |G|M induced by d will be called |G|d.

The first lemma we prove is a version of the Jumping Arc Lemma [2] for our
topological space ||G||. The core of the Jumping Arc Lemma states, that if there is
a finite cut F ⊆ E(G) with sides V1, V2 in G, then there is no arc in |G| that meets
both sides V1 and V2 without containing an inner point of an edge e ∈ F . For the
set inner points of an edge e we write e̊. For the set of inner points of edges within
an edge set F we write F̊ . For this paper it is sufficient to not consider general arcs
but only rays.

Lemma 1. Let G be a graph and let F be a finite cut of G with sides V1, V2. Then
there is no ray in ||G|| that has a tail in both V1 and V2.

Proof. Since F is finite and separates V1 from V2 in G, there is no equivalence class
of points in ||G|| that meets V1 and V2. If there would be such a class meeting V1
in a point x and V2 in a point y, then F would have separated those points, which
would have placed x and y in different equivalence classes.
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Let R = r1r2 . . . be any ray in ||G||. Let V ′i be the set of equivalence classes
whose representatives are in Vi. As F is finite there is a vertex ri on R, say ri ∈ V1
such that there is no rj in R such that rj ∈ V2 and j > i. This means that R
cannot have a tail in V2. �

Note that we might call edge-ends only ends for the remainder of this section,
but like states above, by end in the Etop case, we always mean edge-end. The
next lemma states that different rays in the same end converge to the same point
in ||G|| and |G|M, respectively.

Lemma 2. Let G be a graph and ω an undominated edge-end of G. Then for any
two rays R and R′ in ω there are infinitely many vertex disjoint R−R′ paths in G.

Proof. As R and R′ are in the same edge-end, we can find an infinite set of edge
disjoint paths P between them. Suppose that the paths in P are not vertex disjoint.
But as ω is an undominated edge-end, for every vertex v of G there is a finite edge
separator F separating v from any tail of any ray in ω. Each path in P only meets
finitely many other paths in P as all the paths in P are edge disjoint by assumption.
To find an infinite set of disjoint R − R′ paths now is easy. We start with P ′ = ∅
and in each step we pick any path still in P and add it to P ′ and then delete every
path in P from P that meets this just chosen path. As there are only finitely many
paths that do, we can repeat this infinitely many times. �

Lemma 3. Let ω ∈ Ω̃, for ||G||, or ω ∈ Ω, for |G|M. For any two rays R,R′ in
ω there is an infinite set P of disjoint R − R′ paths. And for every such P the
`-lengths of all paths in P tends to 0.

Proof. Let R and R′ be two rays in an end ω ∈ Ω̃ for ||G|| and ω ∈ Ω for |G|M.
Let R = v1v2v3 . . . and R′ = v′1v

′
2v
′
3 . . . be two rays, we set vi < vj if i < j, and

the same for the v′i and v′j . We assume that R ∩ R′ = ∅: if R and R′ intersect

only finitely often, we can delete the initial segments to get tails R and R
′

of R

and R′ such that R ∩ R′ = ∅ and instead work with those. If R and R′ meet an
infinite number of times the conclusion follows directly. As R and R′ belong to
the same end, there is no finite separator that separates them; in the case of Etop
edge separator, in the case of Mtop vertex separator. So in the case of Mtop.
we get the existence of an infinite set of disjoints R − R′ paths from the fact that
there is no finite vertex separator separating R from R′, as R and are R′ are in the
same end. Picking an R − R′ path, deleting this path and the initial segments on
R and R′ up to this path will only delete finitely many vertices. We pick tails of R
and R′ disjoint to everything defined so far. Now we can find another R−R′ path
between those tails that is disjoint to all paths found in an earlier stage. Repeating
this infinitely many times yields infinitely many vertex disjoint R − R′ paths. By
Lemma 2 there are infinitely many vertex disjoint R−R′ paths in G in the Etop
case. So we can find infinitely R−R′ paths both in ||G|| and |G|M, respectively.

Now assume that there is an infinite set of R − R′ paths P whose `-lengths do
not tend to 0. Chose δ > 0 such that there is an infinte set of paths P ′ ⊆ P such
that all paths in P ′ have `-lengths at least δ.

We can assume P ′ consists of paths P1, P2, . . . such that if Pi starts on R in vk
and Pj starts on R in vl if i <j and vk < vl. In addition we also assume that if
v′u is the end vertex of Pi on R′ and v′z is the end vertex of Pj on R′ and i < j,
then v′u < v′z. We define the ray of infinite `-length Rinf as follows: Starting in v1
we move up along R till we find the first vertex of P1, we use P1 to get to R′ and
move along R′ till we get to P2 and move along P2 to R. Repeating this process
infinitely many times defines a ray. This ray Rinf has infinite `-length as it contains
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infinitely many paths of P each of `-length at least δ > 0. This is a contraction to
our initial assumption on `. �

In the prove of Lemma 3 only used that boths rays were in the same end to find
an infinite set of disjoint paths between them. If such condition is given, we can
use the same arguments to show that the `-lenghts of those paths must tend to 0.

Lemma 4. Let R = r1r2 . . . and let R′ = r′1r
′
2 . . . and P be an infinite set of vertex

disjoint paths from R to R′. Then the `-lengths of the paths in P tends to 0. �

We will prove some lemmas that are true for both ||G||d and |G|d. We will make
the necessary distinctions but one should keep in mind, that the metric d will,
depending on the context, be different. The following lemma states, that if we take
a basic open set in the metric space on ||G||d or |G|d, those open sets are connected
as graphs for as long as ` complies with the appropriate theorem, so Theorem 1 for
Etop and Theorem 2 for Mtop.

Lemma 5. Let O be an open ε-ball around any point x in ||G||d or |G|d, with `
complying with the appropriate theorem. Then O is connected in the sense, that for
any two vertices z, y in O there is path in O from z to y.

Proof. We will prove the theorem simultaneously for both lemma. Let O be an
open ε-ball around any point x in either metric space ||G||d or |G|d. Now let y, z
be two vertices in O. We may assume that y 6= z. We want to find a path Pyz
from y to z that is contained in O. If x is a vertex, or in the case of Etop a class
representing vertices and maybe an edge-end, then there must be a path P1 from x
to z and a path P2 from x to y in O, by definition of d. If there were no path P1

from x to z in O, every path in G from x to z must have `-length at least ε. So
the infimum over the `-length of all those paths is at least ε, but d(x, v) < ε, which
would be contraction. So there is a path from z to y in O, as there is one contained
in P1 ∪ P2.

If x is an inner point of an edge e = x1x2, then at least one of its vertices is
contained in O, say x1. As any path from y, z to x either contains a paths to x1
or can be extend to x1 using the partial edge x1 − x, we use the same argument as
if x were a vertex by using x1 instead of x.

The last case is that x is an end, that is not represented by a vertex. We
define: dxy := d(x, y) and dxz := d(x, z). As z, y are in O it follows that dxy, dxy < ε.
Let dzy = min{y,z}{ε− (dxz), ε− (dxy)}. We now pick rays Ry, Rz starting in y, z,

respectively, belonging to x such that, `(Ry) < dxy +
dzy
3 and `(Rz) < dxz +

dzy
3

which is possible by the definition of `. In addition, by definition, the rays Ry
and Rz are contained in O. If Ry and Rz are not disjoint in O, then O obviously
does contain a path from z to y that is contained in O. So we assume that Rz
and Ry are disjoint in O. By the Lemma 4, the `-length of any paths in any infinite
set of disjoint paths between Rz and Ry tends to 0. As x is an end not represented
by a vertex, there is an infinite set of vertex disjoint paths between those two rays
by Lemma 2. Now we pick a path P from Ry to Rz such that d(u, x) < ε

2 for the
vertex u :=Ry ∩P and that `(P ) < ε

2 . As every point on P has distance less than ε
from x, the entire path P is contained in O.

We can now easily define a path from y to z contained in O. We start in y and
follow Ry till we meet P , we than follow P to Rz and follow that to z. �

Next we prove a lemma that states that for a ray R and a set B of vertices 1such
that d(R, b) ≥ δ for some δ ∈ R+ and for all b ∈ B there is a finite vertex separator
that separates R from every vertex in B.
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Lemma 6. Let G be a 2-connected graph and ` : E(G)→ R+ be a length function
such that the following is true: Each ray of G has finite `-length and the open spokes
of each infinite fan tend to 0. Let B be an infinite set of vertices and R = r1r2 . . .
be a ray. If d(ri, b) ≥ δ for some δ ∈ R+ for all ri in R and all b in B then there
are only finitely many vertex disjoint B −R paths in G.

Proof. Let G and ` fulfill the premise of Lemma 6. Suppose there is a set B of
vertices and a ray R = r1r2 . . . such that following is true: There are infinitely
many vertex disjoint B −R paths in G. And d(ri, b) ≥ δ for some δ ∈ R+ for all ri
in R and for all b in B.

As G is 2-connected, for every vertex b ∈ B there are two b−R paths in G that
only meet in b. Together with a subpath of R, these form a cycle Cb. Suppose
that we can find an infinite set of such cycles vertex disjoint. Then we create a

ray R̃ of infinite `-length: For each Cb we start in b and move on both paths to R,
let v+b and v−b be the first vertices of Cb that are also on R, such that if v+b = rj
and v−b = rk then k < j. To define R̃ we start in any vertex on R and move up

on R till we hit the first vertex v−b of such a cycle Cb. We then move on Cb to

the vertex v+b and then keep moving up along R and repeat. By the definition

of R, each such cycle Cb has `-length at least δ outside its part on R. So R̃ has
infinite `-length, which is a contraction to your assumptions.

So that there is no infinite set of disjoint cycles Cb. This means that after we
have found a finite number of such disjoint cycles Cb, there is no additional disjoint
cycle. Let p ∈ N be the largest natural number such that rp ∈ R gets met by one

of those finitely many cycles. We define S̃ to be the union of {r1, . . . , rp} and all
the vertices that are contained in those finitely many cycles. We now take a tail T

of R such that no vertex in S̃ is contained in T , this is possible because S̃ is finite.
By our assumptions we know that there is an infinite set of vertex disjoint B −R

paths, so there is also an infinite set of vertex disjoint B − T paths in G. Call this

set of paths Q. Let B̂ be subset of vertices in B which gets met by paths in Q.
For two sets of vertices B′ and T ′ of G we say a finite set S′ of vertices of G

almost disconnects B′ from T ′, if for every vertex b ∈ B′ there is a vertex x
in V (G) − (S′ ∪ {b}) such that in G − (S′ ∪ {x}), the vertex b is disconnected
from T ′. In other words, for every b ∈ B′ there is an x 6= b such that S′ ∪ {x}
separates b from T ′.

By our above argument, we know S′ almost disconnects B from T . Otherwise
we could find infinitely many disjoint cycle Cb. Note that for all but finitely many

vertices in B, the set of vertices S′ does not separate B̂ from T as there are infinitely

vertex disjoint B̂−T paths in G, one start in each vertex of B̂. We assume that S′

is disjoint to T . If not, we could just pick a tail of T instead of T such that this is
true. Say S′ = {s1, . . . , sn} and set S0 = ∅ and let Si = {s1, . . . , si}.

Let Bi be the set of vertices in B̂ that Si almost disconnects from T . Ob-
viously B0 = ∅ holds as G is 2-connected and Bn = B̂. Now we note that
for B0 there is finite vertex separator separating B0 from T . So there must be
some i ∈ {1, . . . .n−1} such that there is a finite vertex separator that separates Bi
from T but there is no finite vertex separator that separates Bi+1 from T .

Let G′ = G − Si and B′ = Bi+1 \ Bi. By assumption on i we know that B′ is
infinite. Otherwise we could extend the finite separator that separates Bi from T
by all the vertices in B′, and have a finite separator that separates Bi+1 from T .
By the definition of Bi+1 there is no 1-separator that separates any b ∈ B′ from T
in G′. So we know that for each vertex b in B′ there are two b−T paths in G′ that
only meet in b.
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We pick any vertex in B′, call that b1. By assumption on Bi+1 there is only a
2-separator containing si+1 and a vertex other than b1, say xb1 that separates b1
from T . Let P be any path from b1 to T that does not contain si+1. By definition,
any 2-separator containing si+1 that separates b1 from T must contain a vertex
of P . So there are only finitely many ways to choose the vertex xb1 . Under all those
finitely many candidates for xb1 we want to choose the one whose distance to T on P
is smallest with this property, counting edges not in terms of d or `. Suppose that
there is no unique vertex under all the candidates for xb1 that is closest to T . This
means there are two paths P1 and P2 from b1 to T that avoid si+1, such that for P1

the closest candidate for xb1 is a different one than for P2. Let c1 and c2 be those two
candidates, c1 for P1 and c2 for P2. So we know that the path P1 meets c2 before
it meets c1. It must meet c1 and c2, otherwise {c1} ∪ {si+1} and {c2} ∪ {si+1}
would not separates b1 from T in G′. Now we show that {c1} ∪ {si+1} does not
separate b1 from T in G′. We now take the path P1 from b1 to c2, and then use
the path P2 from c2 to T . By definition, this path does not use the vertex c1 nor
the vertex si+1, which is contraction. So let xb1 be the vertex closest to T such
that S′j+1 separates b1 from T .

Let S′1 be {si+1, xb1}. Now define A1 to be all the vertices of B′ that are con-
tained in the same component of G′ − S′1 as b1. Set B′1 to be B′ \A1. Again
by assumption on i, we know that B′1 is infinite, otherwise we would find a fi-
nite separator separating Bi+1 from T . Now we repeat this process, say we have
found b1, . . . , bj , let S′j be the 2-separator consisting of si+1 and xbj and let Aj
be all the vertices that are in the same component of G′ after deletion of S′j and
let B′j = B′j−1 \ Aj with B′0 = B′. By the above argument is B′j infinite. We now
choose any vertex bj+1 ∈ Bj . Again we choose a vertex xbj+1 closest to T such that
the union of xbj+1 and si+1 separates bj+1 from T . We repeat this process infinite
times. For each bj there are two independent paths from bj , one to si+1 and one
to xbj . Let P sj be the path to si+1 and P xj the path to xbj . By definition, there is

a path Qj in Q from bj to T that contains xbj . We define the path P̃ xj to be the
path P xj from bj to xbj and the path Qj from xbj to T .

We now note, that for different bj and bk, say j < k, the paths P sj and P sk only
meet in si+1. Otherwise they were to meet outside of si+1, say in a vertex v, we
would get a contraction to the choice of bk as follows: We move from bj to v without
using si+1,xbk or xbj . Then we move from v to xbk again without using si+1,xbk
or xbj But this would mean that bk ∈ Aj was it is in the same component as bj
of G′ − S′j as we have just seen.

We note that the paths P̃ xj and P̃ xk are vertex disjoint for j 6= k as P̃ xk cannot

meet P xj by definition of the paths in Q. Because the subpathsf P̃ xk and P̃ xj are
that are paths in Q, and those do not meet.

Now we have a contraction like follows. For all j ∈ N let Pj be the path from si+1

to bj by the path P sj and then from bj to T by P xj . This gives us infinitely many
independent paths from si+1 to T , as each contains a path from a vertex bj ∈ B
to T , all of those paths have `-length at least δ, so the open spokes of this infinite
fan do not tend to 0. �

We finish this section by quoting a useful lemma, the so called Star-Comb Lemma
from [2]. For that let us recall some definitions. Let R be a ray and let P be a set
of infinitely many vertex disjoint paths that have exactly their first vertex on R.
The graph that is the union of R and all the paths in P is called a comb, the paths
in P are called the teeth of the comb. The ray R is the spine of the comb. Let G
be a subdivided star or a comb, we call the set of vertices in G with vertex degree 1
the leaves of this subdivided star or comb.
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Lemma 7 (Star-Comb Lemma). Let U be an infinite set of vertices in a connected
graph G. Then G contains either a comb with all leaves in U or a subdivision of
an infinite star with all leaves in U .

5. Inducing Etop

In this section we prove Theorem 1. We split this section into three subsections.
In Subsection 5.1 we prove some lemmas that can only be used in the Etop case
as well as proving that the metric d defined in Section 4 is indeed a metric. In
Subsection 5.2. we prove the main lemma for the proof of Theorem 1. In the final
subsection Subsection 5.3 we put all those lemmas together and prove Theorem 1.
The challenge in this paper will be to find or use a finite edge set F used to generate
an open set O, choosing z for all the half edges (z, x] with x ∈ O in O will be easy.
Because of this we will most of the time just talk about the finite edge set F , instead
of referring to inner points of edges when searching or defining open sets in ||G||.
We will only make a distinction between the finite edge set F and the inner points
within it.

5.1. Basics Lemmas for Etop. We start by proving that the metric d is indeed a

metric. For that we need the lemma that (G, `) and ||G|| \ Ω̃ have the same points,

i.e. that there is a bijection between (G, `) and ||G|| \ Ω̃ that extends the identity
on G.

Lemma 8. Let G be a 2-connected graph, `: E(G) → R+ a function complying
with the premise of Theorem 1. If x, y, z are vertices in G such that d(x, y) = 0
and d(y, z) = 0, then d(x, z) = 0.

Proof. The union of the an x− y path with an y − z path always contains an x− z
path. When taking the infimum for the definition of d, all those x− z paths were
taken into account. It follows that d(x, z) is equal to 0. �

The following lemma states that rays in the same edge-end tend to a common
point. Should this edge-end be dominated by a vertex v, this point will be [v].

Lemma 9. Let G be a 2-connected graph, `: E(G) → R+ a function complying
with the premise of Theorem 1. Let ω be an edge-end of G, and let R = r1r2 . . .
and R′ = r′1r

′
2 . . . be two rays in G that are ω. Then infi∈N d(ri, r

′
i) = 0. If v

is a vertex such that there is no finite edge separator separating v from R in G,
then infi∈N d(v, ri) = 0.

Proof. Let G be a 2-connected graph, `: E(G) → R+ a function complying with
the premise of Theorem 1. Also let ω be an edge-end of G, let R = r1r2 . . .,
and R′ = r′1r

′
2 . . . be two rays in ω. Let v be a vertex such that there is no

finite edge separator separating v from R. We show that infi∈N d(v, ri) = 0.
Let P = {P1, P2, . . .} be a countable infinite set of edge disjoint v − R paths in G
such that each vertex in R gets met by at most one path in P. If there is an
infinite subset P ′ ⊆ P such that all the paths in P ′ are independent, then by our
assumptions on ` the infi∈N d(v, ri) is equal to 0.

We consider all the paths in P to be directed towards R. For the path Pi in P
let pi be the last vertex of Pi that meets infinitely many other paths in P. We can
now assume that the subpath of Pi from pi to R does not meet any other paths
in P as each vertex of this subpath only meets finitely many path in P, and we can
delete all of those for each of the finitely many vertices of that path, so P would
still be infinite after that, which is all we need. By our assumption on ` we know
that d(v, pi) = 0 for all paths Pi, as those form an edge bundle. If there are only
finitely many such vertices pi, then at least for one of those vertices, say pj , there
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are infinitely many independent pj−R paths. So the lengths of all those has to tend
to 0 this forms an infinite fan, and with d(v, pj) = 0 follows that infi∈N d(v, ri) = 0.
So we may assume that there are infinitely many such pi. For each path Pi ∈ P
that contains a vertex pi we define the subpath of Pi from pi to R as PRi , and the
path from v to pi as P vi . Now let H be a graph that is the union of all the paths P vi .
As all those paths contain v, the graph H is connected. We apply the Star-Comb
Lemma to H with the vertex set of all the vertices pi. If the Star-Comb Lemma
returns a subdivided star with center say c, then infi∈N d(v, ri) = 0 follows from
assumptions on `. Going from c to some leaf of this subdivided star and then to R
by the disjoint path gives us an infinite c−R fan, so the bundle must tend to 0. By
definition of c, there is no finite edge separator separating c from v, so d(v, c) = 0 by
our assumption on `. This means that infi∈N d(v, ri) = 0. If the Star-Comb Lemma
returns a comb with spine say R′ then the paths to the leaves extend to disjoint
paths to R. The Lemma 4 states that the `-length of all those paths must tend to
0, as they are disjoint paths between two rays. But each of those paths contains a
vertex pi, and as there is no finite edge separator separating pi from v, d(pi, v) = 0,
this means that infi∈N d(v, ri) = 0.

Now we prove the first part of this lemma. As there is no finite edge separator
separating R from R′, we can find an infinite set of edge disjoint paths P. Assume
we are able to find an infinite set of vertex disjoint R − R′ paths P. By Lemma 4
this means that the `-lengths of the paths in P tend to 0. Let ε > 0 be given.
We show that there is an N ∈ N such that d(ri, r

′
i) < ε for all i ≥ N . Let R1

and R′1 be tails of R and R′, respective, such that `(R1) < ε
3 and `(R′1) < ε

3 ,
as R and R′ have finite `-length, this is possible. Now we chose a path P ∈ P
with `(P ) < ε

3 that meets R and R′ in the tails R1 and R′1, respectively. For each
vertex ri in R1 the path P ensures that d(ri, r

′
j) ≤ ε for all vertices r′j ∈ R′1. It

follows that infi∈N d(ri, r
′
i) = 0. So we can assume that we can find a vertex x that

meets infinitely many paths in P. But now by the above argument, infi∈N d(x, ri) =
0 = infi∈N d(x, r′i), so infi∈N d(ri, r

′
i) = 0. �

Lemma 10. Let G be a 2-connected graph and `: E(G)→ R+ a function complying
with the premise of Theorem 1. Then the identity on G extends to a bijection

between (G, `) and ||G|| \ Ω̃.

Proof. As both (G, `) and ||G|| \ Ω̃ contain all the edges and no edge gets identified,
the identity on G induces a bijection between the edges of (G, `) and the edges

of ||G|| \ Ω̃. Neither (G, `) nor ||G|| \ Ω̃ contains any points not contained in G,
considered as a one complex. It remains to show that the identity on G for vertices

extends to a bijection between the vertices in (G, `) and ||G|| \ Ω̃. So we have to

show that in (G, `) and ||G|| \ Ω̃ the same vertices get identified. We start with the

direction, that vertices get identified in (G, `) get also identified in ||G|| \ Ω̃. If two
vertices x, y get identified in (G, `), they have distance 0 by definition. Suppose
there is a finite edge separator F separating x and y. But as `(e) > 0 for all e ∈ F
this means that d(x, y) 6= 0, a contraction to the assumption that x and y get
identified in (G, `).

Let x, y be the vertices that get identified in ||G|| \ Ω̃. We have to show
that d(x, y) = 0. This is true by our assumptions on `. �

The next lemma we prove shows that d is indeed a metric

Lemma 11. Let G be a 2-connected graph, `: E(G) → R+ a function complying

with the premise of Theorem 1, and let d be the metric on ||G|| \ Ω̃ inherited by the

metric d` from (G, `). Given an x ∈ Ω̃ ∪ V and y ∈ Ω̃ we define
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d`(x, y) = inf {`(R)|R is an x− y ray or double ray} ,
where l(R) :=

∑
e∈E(R) `(e) for any ray or double ray R. Then d is a metric on ||G||.

Proof. First we check d(x, y) = 0 if and only if x = y. Let x, y be two points
in ||G||: By the definition of ||G||, if x 6= y then there is a finite set F of edges that
separates x from y in G, and due to the fact that `(e) > 0 for all e ∈ E(G) follows
that d(x, y) ≥ min{`(e) | e ∈ F}, for d(x, y) = 0 if x = y.

Secondly we have d(x, y) = d(y, x) directly by the definition of d.

Last to check is the triangle inequality. We only consider the case x, y, z ∈ Ω̃,
the other cases are easier versions of the same proof or follow directly from the fact
that in the infimum over all the x− z paths, every path contained in the union of
an x−y and an y−z path was a candidate. We show that d(x, z) ≤ d(x, y) + d(y, z)
by showing that d(x, z) ≤ d(x, y) + d(y, z) + ε for every ε > 0, which is sufficient
because in the definition of d we take the infimum.

Let ε > 0 be given. Without loss of generality we assume d(x, z) 6= 0. We will
find double rays from x to y and from y to z that exceed d(x, y) and d(y, z) only
by ε

3 . We will find a path with total `-length less than ε
3 that connects these two

double rays. Together this will create the desired double rays. There are x − y
and y − z double ray that exceed the `-length of d(x, y) and d(y, z) by at most ε

3
by the definition of d. If there were no such double rays, then d(x, y) or d(y, z)
would be larger, by at least ε

3 . Call those double rays Rxy and Ryz. Now we need
to find a path with `-length at most ε

3 that connect Rxy and Ryz. For the double
rays Rxy and Ryz call a tail of those the y-tail, if this tail belongs to y. Since y is an
undominated end there is an infinite set of disjoint paths connecting those y-tails
by Lemma 2. Now we need to find a path with `-length at most ε

3 that connect Rxy
and Ryz. By Lemma 3 we know that the infimum over the `-lengths of all Rxy−Ryx
paths is 0, so such a path must exist, call this path Pxy. It follows that there is
a double ray Rxz from x to z with `-length less than d(x, y) + d(y, z) + ε. So d is
indeed a metric on ||G||. �
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5.2. Main Lemmas for Etop. In this subsection we will prove lemmas that are
only used for the proof of Theorem 1. The first part of this subsection will be
the proof the Main Lemma for ETOP. We start this subsection with a very basic
lemma version of the main lemma that we will use to prove Theorem 1. We state
the following lemma to give an idea about the proof of the main lemma.

Lemma 12. Give a graph G and an ` : E → R+ satisfying the premise of Theo-
rem 1. Then the `-length of edges incident with any vertex v of infinite degree tend
to 0.

Proof. Let G be a 2-connected graph and ` comply with the premise of Theorem 1
and let some δ ∈ R+ be given. Let v be a vertex of infinite degree and N be the set
of vertices that are adjacent to v. Assume that there is an infinite subset N ′ ⊆ N
such that d(v, n) ≥ δ for all n ∈ N ′. As G is 2-connected, G− v is connected. We
can use the Star-Comb Lemma on G− v with N ′ as the infinite set of vertices. If
the Star-Comb Lemma returns a comb with a ray R and leaves in N ′, this generates
an infinite fan. The length of the set of those paths from v to R must tend to 0
by assumption on `, so we get a contraction. If the Star-Comb Lemma returns
a subdivided star with center v′ and leaves in N ′, in G this extends to a bundle
between v and v′ and by assumption the `-lengths of its spokes tends to 0, so we
get a contraction. �

We want to extend this lemma to paths instead of edges, so we do not get a
star but a subdivision of a star. We now prove the main lemma that states that
the following: Let an ε > 0, a vertex v and an infinite set S of vertices such that
d(v, S) > ε be given. Then there is a finite edge set F that separates v from S.

Lemma 13 (Main Lemma for Etop ). Let G be a graph and let ` : E(G) → R+

satisfy the premise of Theorem 1. Let v be any vertex of G and S be an infinite set
of vertices such that d(v, s) ≥ δ for some δ ∈ R+ and for all s ∈ S. Then there is
a finite edge separator that separates v from S.

This proof is split into several claims that will be proved one at a time. For
easier understanding we give the general proof concept ahead of time without the
details. For that we measure distances always in metric d. When we say a vertex
or a set of vertices is far away from another vertex or set of vertices we also mean
this in terms of the metric d. We assume that the lemma is false and try to find a
contraction. For that we chose a vertex v and an infinite set of vertices that is at
least some δ far away from v.

First we show that almost all the paths in G between vertices in S have to contain
vertices that are in some sense close to v. If not we can split G into two connected
graphs, one whose vertices are close to v and the other whose vertices are far away
from v. We can now use the Star-Comb lemma on both graphs to find the desired
contraction to the assumptions on ` in either of the four possible results.

Secondly we use the results of the first part and the 2-connectivity of G to find
two independent paths from the vertices in S to v such that for different vertices S
those path do not meet as long as they are close to S. Then we will define some
auxiliary graphs that in which we replace those disjoint paths by edges to have
some easier to work with structures.

Proof. Let G be a graph and an ` : E(G)→ R+ satisfying the premise of Theorem 1.
Let δ ∈ R+ be given and let v be a vertex of G and S be an infinite set of vertices
such that d(v, s) ≥ δ for all s ∈ S. We assume that there is no finite edge separator
that separates S from v to find a contraction.

So let P be an infinite set of edge disjoint v − S paths in G. We now choose
a δ′ < δ.We may assume that each path in P only contains one vertex in S.
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Otherwise we cut off the finite number of additional vertices from each path that
contains more than one of those vertices. In addition we assume that each vertex
in S only gets met by a single path in P. We may do so because if there were a
vertex s ∈ S that gets met by infinitely many paths in P, then d(v, s) = 0 by the
assumptions on `, which contracts the definition of S.

(1) There is no infinite subset S′ ⊆ S such that between every two of those
vertices there is a path in G that does not contain any vertex with
distance less than δ′ from v.

We assume that contrary and precede as follows. For each pair of vertices in S′

we pick a path such that this path does not contain any vertices with distance
less than δ′ from v. Let P ′ be the set of all those paths. We define two auxiliary
graphs Hv and HS . Let Hv be the graph that is the union of all the paths in P.
Let HS be graph that is the union of all the paths in P ′.

(2) There is no infinite set of independent v − S′ paths in Hv.

If there were we apply the Star-Comb lemma to HS with the vertex set being
the end vertices of those infinitely many independent paths. If we get a star, say
with center c, then d(v, c) ≥ δ′. But as there are infinitely many independent v− c
paths there is no finite edge separator separating c from v. So we have an infinite
edge bundle whose `-lengths do not tend to 0. This is a contradiction to our
assumptions on `. Analog if we get a comb, say with spine R, then d(v, ri) ≥ δ′ for
all vertices ri ∈ R. So we have an infinite fan such that the `-lengths of its spokes
do not tend to 0. This also yields a contradiction to our assumptions on `. So
either result yields a contraction which proves (2).

We use (2) to finish the proof of (1). If there is no infinite set of independent v−S′
paths in Hv then each of the paths in P must have an infinite set of paths of P
outside of v. Now we look at any vertex hv of Hv that has infinite degree. By
definition of Hv we know that d(v, hv) = 0. Now we apply the Star-Comb lemma
to Hv with the vertex set S′. Finding a star with center cv again yields a contraction
because we know that d(v, cv) = 0 and d(v, s) ≥ δ′ for all s ∈ S. We can now use
this vertex instead of v in the above argument and find the same contraction. So we
may assume the Star-Comb lemma yields a comb in Hv with spine R. By definition
of Hv and since there is no infinite set of independent v−S′ paths we can conclude
that R contains infinitely many vertices that have infinite degree in Hv each of
which has distance 0 to v. As we have seen above the distance of each of those
vertices to v is 0. We may assume that the `-length of the ray is finite. But as there
are infinitely many vertices on R that have distance 0 to v we know that R has a

tail such that each vertex of that tail has distance least δ′

2 from every vertex in S′.
We assume that this is true for every vertex of R by redefining R as this tail. Now
apply the Star-Comb lemma to HS with the vertex set that is the subset of S′ that
gets met by the teeth of the just found comb.

As in the preceding paragraph we directly get a contraction. If we find a star

with center cS in HS then have d(cS , r) ≥ δ′

2 for all vertices r ∈ R while there being
no finite edge separator separating cS and R which is a contraction. If we find a
comb with spine RS then we have too rays in the same edge end such that the
distance between R and RS does not tend to 0 which is also a contraction. This
finishes the proof of (1)
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So for each vertex s in S there are only finitely many s′ such that there is a path
from s to s′ that does not contain any vertex that has distance less than δ′ from v.
Now we set δ′ to be δ

2 .
Next we want to define the before mentioned auxiliary graph H. For that we

need some definitions. Take a countable infinite subset S′ = {s1, s2, . . .} ⊆ S such
that from each vertex s ∈ S′ there is no path to any other vertex s′ ∈ S′ that does
not contains a vertex with distance less than δ′ from v. Let v′ be a neighbor of v
with distance less than δ′ from v. Such a vertex must exist by Lemma 12. For
each si ∈ S′ we now define a cycle C ′i that contains the vertex si and the edge vv′.
As G is 2-connected, G contains two independent si−{v, v′} paths. Together with
the edge vv′, those paths from a cycle, call that C ′i. Let Ci be C ′i without the

edge vv′. Now let Cvi be the path in Ci from si to v and let Cv
′

i be the path in Ci
from si to v′. Let C̃vi be the subpath of Cvi from si to the first vertex on Cvi that

has distance less than δ′ from si, and the same for C̃v
′
i . Let O be the open δ′-ball

around the vertex v. By definition of S′, the paths C̃v
′
i and C̃vi do not meet any C̃v

′
j

or C̃vj path outside of O for i 6= j.
We will now construct an auxiliary multigraph H recursively. We will still call H

a graph. The graph H will be 2-connected and countably infinite. To define H
we will define a sequence of graphs Hi with i ∈ N such that Hi ⊆ Hj for j >i. For
each Ci we will add some special path to H. In each step we modify Ci by replacing
some path in Ci be some edge ei. Those edges will be very important so we will
keep track of those. Call the set of those edges ER. Now we replace the path in Ci

that consists of C̃v
′
i ∪ C̃vi by the edge ei, call the resulting graph C̃i.

We briefly summarize our definition of the Hi. We start with a shortened version
of C1 for H1 and in each following step we add to Hi−1 the shortened version of Ci
up to the first time Ci meets any vertex with distance less than δ′ from v that we
have defined so far.

For H1 we start with C̃1 union the edge vv′. For C̃i with i ≥ 2 let v1i and v2i be

the two vertices of C̃i such that in G, when we move from si to v and v′ using Ci
the vertices v1i and v2i are the first vertices of Ci that meet Cj with j < i. As all C̃i
and all Ci contain v and v′ such vertices v1i , v

2
i must exists for all i ∈ N. Note that

by definition of Ci, for all i ∈ N the vertex v1i is never equal to the vertex v2i . We
assume that we have defined Hi−1. We define Hi to be Hi−1 union the path from v1i
to v2i in C̃i. Let H be the union of all the graphs Hi. Each Hi is 2-connected by
construction [2], so H is also 2-connected.

Let T be the subgraph of H that contains every vertex of H but no edges in ER.
By definition, T is connected and contains no cycle, so T is a tree, and as T contains
all the vertices of H, it is a spanning tree of H. Let ET be the edge set of T .

(3) The fundamental circuits and fundamental cuts of T in H are finite.

As T is an ordinary spanning tree, for every edge e in ER, the fundamental circuit
in T + e is finite. Let e be any edge in ET , and let F be the set of edges in H
that cross the fundamental cut of e. Let K1 be one component of T − e and K2

the other component of T − e. We assume that F is infinite. Let NF
i be the set

of end vertices of the edges in Ki. To show that the fundamental cut are finite we
make a case study. We distinguish the cases either NF

i is infinite and the case NF
i

is finite. If NF
i is finite, as F is infinite, there is a vertex vi ∈ NF

i that is incident
with infinitely many edges in F , we treat this case later.

So say NF
i is infinite, this means that Ki is also infinite. Then we can apply the

Star-Comb Lemma to Ki with the vertex set NF
i . Let MF

1 be the set of leaves in
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the resulting comb or subdivided star. Now let MF
2 be the subset of NF

2 such that
each vertex in MF

2 is adjacent to a vertex in MF
1 by an edge in F and vice versa.

Now we check what happens in K2.
If MF

2 is finite, they there must be a vertex v2 in MF
2 that is adjacent to infinitely

many vertex in MF
1 by edges in F . But in G that means that either result of

the Star-Comb Lemma for K1 leads to a contraction. Each edge in F , besides e,
corresponds in G to a path of `-length at least δ′. So there are either infinitely many
independent v2 − R paths in G, each of `-length at least δ′, in the case that the
Star-Comb Lemma returned a comb with spine R, or infinitely independent v2 − c
paths each of `-length at least δ′ in the case that the Star-Comb Lemma returned
a subdivided star with center c.

So we may assume that MF
2 is infinite. But then we can apply the Star-Comb

Lemma to K2 with the vertex set MF
2 . If we get a subdivided star, we have the

same situation as above. We may assume this does not happen.
If we get a comb with leaves, say L, in MF

2 we also get a contraction, like follows.
We look at the possible results of the Star-Comb lemma in K1. Suppose we also
have a comb in K1. We can define a ray alternating between the spine of the combs
in K1 and in K2, respectively. We start in the spine of the comb in K2, move to L
by the teeth of the comb in K2 and then use an edge in ER to move to K1. In K1

we then use the teeth of the comb in K1 to move to the spine in K1. We can repeat
this process infinitely often without using any vertex twice. Each time we use an
edge in ER, this corresponds in G to using a path of `-length at least δ

2 . So we can
find infinitely many disjoint paths between two rays such that the `-length of the
paths between them does not tend to 0, so by Lemma 4 we have a contradiction.

So we may assume that we get a comb in K2 and a subdivided star in K1, but
by swapping the names of K1 and K2, we already know that this also yields a
contraction.

So we may assume that K1 is finite. We can assume that K2 is also finite.
As we have already seen, that having one Ki infinite and the other finite yields a
contraction.

As K1 and K2 are both finite we can directly find two vertices u1 and u2 such
that there are infinitely many edges in F between them. But this also directly
translates to a contraction, as for those two vertices, in G there infinitely many
independent paths each of length at least δ′ between them which in G contradicts
the assumptions on `. This concludes the proof of (3).

So we have shown that the fundamental circuits and cuts of T are finite. Now we
define a new graph HR. The vertex set of HR is the set of edges of T union the
set of edges in ER. This also gives a partition into two classes. We now define
the edges of HR, those will only be between vertices in different classes. Let VT be
the set of vertices that are edges in T and let VER

be all the other vertices in HR.
In HR the vertex v1 ∈ VT is adjacent to a vertex v2 ∈ VER

, if and only if the
fundamental cut of T of the edge v1 contains the edge v2 in ER. This is exactly the
case if the fundamental circuit of T for the edge v2 contains the edge v1. Because
all the fundamental circuits and fundamental cuts are finite, every vertex in HR

has finite degree. The graph HR is an infinite graph, as there are infinitely many
edges in ER, this means that VT also must be infinite. We now use T to construct
our final contraction. For that we show

(4) T does not contain of infinite degree

(5) T does not contain ray.
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We start by proving (4). Assume that T contains a vertex w of infinite degree.
We now define a new auxiliary graph HS . Let T1, T2, . . . be the components of T−w.
We define the graph HS be the a star with center w and whose leaves are the
components of T − w. We now define a new graph using HS , this new graph will
be called H ′S . To define H ′S we start with HS and delete w from HS . For each
edge e = xy ∈ ER we now add an edge uu′ between the vertices u and u′ of H ′S if
the component u contains x, and the component u′ contains y.

As H is 2-connected the graph H ′S is connected. And as w has infinite degree
it follows that at least one of the following two is true for H ′S : Either H ′S contains
a vertex u of infinite degree, or there is a ray R in H ′S . If there is a such a
vertex u, let F be the set of edges in ER incident with u. We partition T into
the components u and T − u. So there are infinitely edges between u and T − u.
As those would form an infinite fundamental cut of T , which we have seen before,
cannot occur, we get a contraction.

For that we assume that we can find a ray R in H ′S . Now this ray has to
have infinitely many edges in ER, as those are the only edges in H ′S . Now we
can find a ray R′ = r′1r

′
2 . . . in H such that there is an infinite sequence of disjoint

fundamental circuits Zi of T that meet R′ such that if the circuit Zi meets R′ in
the two vertices rk and rj , say k < j, then no other circuit meets R′ in a vertex rl,
with i < l < j. It is easy to see, that if we find such a ray R′ and such a sequence,
that we get a contraction: When we move along R′, every time we see a vertex of
such a circuit, we can take that instead of R′ till we are back on R′. Each time we
do that, we use at least on edge in ER, and in G this corresponds to moving along
a path of `-length at least δ′. So we found a ray of infinite `-length. To find R′

we start by extending the ray R in H ′S to a ray in H, say R = r1r2 . . .. For each
edge in R we now pick a path in H. While in a component ri of T − w, we move
along T and when we cross over from a component of T −w to another component
of T −w, we use one edge in ER, and then start over. For that we start by picking
any vertex as r′1 in H that lies in the component of r1. Say we have defined a finite
part of the ray R′ and the last vertex in R′ is r′i, which lies in the component rj
of T − w. Let the edge rjrj+1 correspond to the edge e1e2 in H. We may assume
that e1 is in rj , and e2 is in rj+1. In rj there is a unique path from r′i to e1. We
extend R′ by this finite path and then add the edge from e1 to e2 and the vertex e2
to R′. This defines a ray R′ in H.

Now we will find the sequence of circuits described above. Suppose that we
found a finite number of those circuits. Let r′i be the last vertex of R′ that meets
such a circuit. To show that we can find such a sequence we have to look at the
graph HR again. Given a finite set of vertices S1 in VT of HR, there are only finitely
many neighbors of S in HR, as HR is locally finite. Call those S2. The set of of
neighbors of S2 in HR is also finite. Call this S3. For S1 we take all the edges
used in the finite number of circuits that are in VT as well as all the edges r′kr

′
k+1

in R′ with k + 1 ≤ i, those are always all in VT . Now we move along R′ till we
find a tail, such that no edge on this tail is in S3 in HR. Let xy be the next edge
on R′. By construction, for every edge in T there is a circuit in H containing this
edge and an edge in ER. Let Z be a circuit in H through xy. Suppose that this
circuit Z meets another circuit Z ′ found in an earlier step. Let e′ be the edge in ER
contained in this circuit. Then e′ is in S2. But this means that xy is in S3, which
is a contraction. This proves (4).

So we continue to proof (5). So we can assume that we can find a ray R = r1r2 . . .
in T . Without loss of generality we may assume that r1 = v. The idea for this part
of the proof is to use that the fundamental cuts in T are finite to construct a ray R′
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in H that uses infinitely many edges from ER. As above this yields a contradiction
because this R′ corresponds to a ray in G which has infinite `-length.

For an edge rjrj+1 in R let Fj denote the fundamental cut edges to this edge.
We introduce a notation for edges in Fj . For an edge e in Fj we write e = t−t+

and assume that e− is in the component of T − rjrr+1 that contains v and hence
that t+ is in the other component.By definition there is a unique path in T from t−

to R, call it P+
e

Let P+
j be the union set of all the paths P+

e taken over all the edge e in Fj .
Because Fj is a fundamental cut of T and as all the fundamental cuts of T are finite
we know that the number paths in P+

j is finite. For an edge rjrj+1 in R let j∗ ∈ N
be maximal such that rj∗ is contained in some path in P+

j . As P+
j is finite such

vertex must exist. Now we take a look at the edge rj∗rj∗+1 and the corresponding
set Pj∗ . Note that this is also finite. So there is a natural number j∗∗ such that j∗∗

is maximal such that r∗∗j is contained in a path in Pj∗ . We call the edge rj∗∗rj∗∗+1

the conclusion edge of the edge rjrj+1. Given any edge e on the ray R we define
the conclusion set Ce = {c1, c2, . . .} to be set of edges on R such that c1 is the
conclusion edge of e and for i ≥ 2 the edge ci is the conclusion edge of ci−1.

We now look at the fundamental cut of an edge rlrl+1 of R with l ≥ (j∗∗ + 1).
Let e be any edge of Fl. Let Q be the path from t− to R. We know by definition
of j∗∗ that Q does not meet any path in Pj∗ . If Q were to meet any path in Pj∗
then the edge e would be in Fj∗ , which it is not.

Now we can construct a ray R′ in H that contains infinitely many edges in ER. In
the first step we want to select the infinite set of edges in ER that will be contained
in R′. For that we chose any edge e of R. Let Ce = {c1, c2, . . .} be the conclusion
set of e. For every edge ci = rjrj+1 we now use any edge in its fundamental cut,
call it fi = f−i f

+
i . Again we assume that f−i is in the component of T − ci that

contains v. Let the paths from f−i and f+i to R be P−i and P+
i , respectively. To

define the ray R′ we start on the vertex v. We move along R till we find the first
vertex contained on a path P−i . We follow P−i till we meet the vertex f−i . Now
we take the edge fi and follow the path P+

i back to R where we move up along R
till we find the next vertex that is contained on a path P−j and repeat this process.

Call the resulting ray R′. As R′ contains infinitely many edges of ER replacing all
those edges by the paths that they represent in G yields a ray in G that contains
infinitely many paths that each have at least constant `-lengths. This proves (5)
and hence this finishes our proof. �

With the help of Lemma 13 and the Lemma 6 we can now prove that for any ray
R and any δ ∈ R+ there is no infinite set B of vertices such that every vertex in B
has distance more than δ from R unless there is a finite edge set F that separates
B from R. The following lemma makes that more precise.

Lemma 14. Let G be a graph and let ` : E(G) → R+ satisfy the premise of
Theorem 1. Furthermore let R = r1r2 . . . be ray in G and δ ∈ R+ and let B ⊆ V (G)
such that d(b, ri) ≥ δ for all b ∈ B and all i ∈ N. Then there is a finite edge set F
that separates B from R, i.e. F separates each vertex in R from B.

Proof. Let G be a graph and an ` : E(G)→ R+ satisfying the premise of Theorem 1.
In addition let R = r1r2 . . . and δ ∈ R+ and an infinite B ⊆ V (G) be given such
that d(b, ri) ≥ δ for all b ∈ B and all i ∈ N. We assume that there is no finite
edge separator that separates R from B. We now want to find a contraction to
Lemma 6. The premise of Lemma 6 is fulfilled by the assumptions of Lemma 14
on ` and G. To find the contraction we need to show that there is an infinite set of
vertex disjoint B −R paths in G. Using Lemma 13 we can conclude the following
structures of G: We may assume that there is no subdivided star in G with center
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in B and leaves in R. Even stronger we may assume that there is no vertex x
in G such that there is an N ∈ N such that d(x, ri) ≥ δ′ for some δ′ ∈ R+ for
all i ≥ N and such that there is no finite edge separator separating x from R. This
means that we may assume that B is infinite. On the other hand we also know,
that no vertex ri on R is center of a subdivided star with leaves in B. And even
stronger than that we know that there is no vertex x in G such that d(x, b) ≥ δ′for
some δ′ ∈ R+ and for infinitely many b ∈ B and such that there is no finite edge
separator separating x from the set of all those b ∈ B. Together this yields the
following: There is no vertex v in G such that d(v, b) ≥ ε and such d(v, rj) ≥ ε′

for infinitely many b ∈ B and infinitely many rj ∈ R and some ε, ε′ ∈ R+ unless
there is a finite edge separator separating v from those infinitely many b ∈ B and
all those infinitely many rj ∈ R.

Now we can find an infinite set of vertex disjoint B − R paths in G. Let P be
any infinite set of edge-disjoint B − R paths in G. We can assume that for each
vertex of any path P in P there are only finitely many other paths in P containing
this vertex: Suppose there was a vertex v such that v was contained in infinitely
many path in P. Call the set of those paths P ′. Let B′ ⊆ B be the set of vertices
in B that get met by paths in P ′ and let R′ be the set of vertices in R that gets
met by paths in P ′. By definition there is no finite edge separator v from B′ or R′,
as v is contained in infinitely many edge disjoint B′−R′ paths. As each path in P ′
has `-length at least δ, there must be a δ′ with 0 < δ′ < δ such that d(v, b) ≥ δ′ for
infinitely many b ∈ B′ or d(v, rj) ≥ δ′ for infinitely many rj ∈ R′. If neither were

to happen, then for δ′ = δ
3 we get that there are infinitely many vertices in b ∈ B

and rj ∈ R such that d(b, rj) ≤ 2δ′ < δ, which contradicts d(b, rj) ≥ δ for all b ∈ B
and all rj ∈ R. So we conclude that there is such a δ′ such that d(v, b) ≥ δ′

or d(v, rj) ≥ δ′ for infinitely many b ∈ B or rj ∈ R, respectively. By our above
assumptions this cannot happen, as by definition there is no finite edge separator
separating v from all those b ∈ B or all those rj ∈ R. It follows that there is no
such vertex v. In the above argument we have seen that each vertex in a path in P
only gets met by finitely many other paths in P. So we can always choose the paths
in P to be vertex disjoint while keeping P infinite. We now apply the Lemma 6
to B and R and get the desired contraction. �

The two above lemmas have the corollary that given some δ ∈ R+, a vertex v
and any infinite set S of vertices such that d(v, S) ≥ δ for all s ∈ S we find a finite
edge separator separating S from v.

Corollary 1. Let G be a graph and let ` : E(G) → R+ satisfy the premise of
Theorem 1. For every δ ∈ R+ and for every vertex v and every infinite set of
vertices S in G such that d(v, s) ≥ δ for every s ∈ S there is a finite edge set F
that separates v from S.

Proof. We can assume that s is a vertex of infinite degree, otherwise taking all the
edges incident with v for F would be sufficient. We assume that there are infinitely
many edge disjoint v − S paths in G, but only infinitely many independent v − S
paths. Let P be a set of infinitely many edge disjoint v − S paths. Define H to
be the graph that is the union of all the paths in P. Note that H is connected,
as every path in P contains v. So we apply the Star-Comb Lemma to H with
the vertex set S. We cannot get a subdivided star, as for the center of that star,
say c. There is no finite edge separator separating c from v as c is contained
in infinitely many edge disjoint v − S paths, so d(c, v) = 0 by assumptions on `.
By triangle inequality d(v, s) ≤ d(v, c) + d(c, s) and with d(c, v) = 0 this means
that d(c, s) ≥ δ for all s ∈ S which cannot happen by Lemma 13. We cannot get a
comb with spine, say R = r1r2 . . ., as there is no finite edge separator separating R
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from v as R consists of parts of infinitely many edge disjoint v − S paths and each
of those paths eventually never again contains another vertex on R. This means
that infi∈N d(v, ri is equal to zero by Lemma 9. This means that for δ′ ≤ δ

2 there is
an N ∈ N such that d(ri, v) ≤ δ′. By the triangle inequality follows that d(ri, s) ≥ δ′
for all i ≥ N and all s ∈ S, because d(ri, s) + d(ri, v) ≥ d(v, s) ≥ δ for all s ∈ S.
This is a contraction to Lemma 14. �

As corollary we can extend the statement of Corollary 1 to finite equivalence
classes of vertices in ||G||.

Corollary 2. Let G be a graph and let ` : E(G)→ R+ satisfy the premise of Theo-
rem 1. Furthermore let [x] in ||G|| be an equivalence class of V (G) that is containing
finitely many vertices and let δ ∈ R+ be given. Let B be an infinite set of vertices
such that d(x, b) ≥ δ for all b ∈ B. Then there is a finite edge separator F such
that F separates all the vertices in [x] from B in G. �

We will extend Corollary 2 to all equivalence classes in of G in the following
lemma. For an equivalence class [x] of G∪Ω(G) we say an edge set F separates [x]
from some set of vertices in B when one of the following is true: If [x] only contains
one end then for every tail of every ray in ω separates F a tail from that ray from B
or if [x] contains vertices, then F separates all the vertices contained in [x] from B.

Lemma 15. Let G be a graph and let ` : E(G) → R+ satisfy the premise of
Theorem 1. Let [x] in ||G|| be an equivalence class of G ∪ Ω(G) and let δ ∈ R+ be
given. Let B be a set of vertices in G with d(x, b) ≥ δ for all b ∈ B. Then there is
a finite edge separator that separates [x] from B in G.

Proof. We only need to prove this lemma for equivalence classes [x] that contains
infinitely many vertices and the case that [x] is an undominated edge-end ω by
Corollary 2. So first let [x] be an infinite equivalence class and let X be the set
of vertices in [x]. Let B be a set of vertices such that d(x, b) ≥ δ for all b ∈ B.
We may assume that B is infinite by Lemma 13. We have to show that there is a
finite edge separator F in G that separates X from B. We assume that there is
no finite edge separator separating X from B and conclude a contraction. We now
set δ′ = δ

2 . Let OX be the union of all open δ′-ball around vertices x ∈ X. Then
we add every edge e = v1v2 such that e is only partially in OX but v1 and v2 are
in OX to OX .

Let P ′ be an infinite set of edge disjoint B −X paths. For each path P ′ in P ′
let P be the subpath of P ′ from B to the first vertex of P ′ that is in OX , call the set
of those first vertices N and let P be the set of all those paths P . We have seen in
Lemma 5 that OX is connected. We may assume that N is infinite by Corollary 1.
So we can apply the Star-Comb Lemma to OX and with the vertex set N . By
Lemma 13 we cannot get a subdivided star, with center say c, because d(c, b) would
be greater than δ′ for all b ∈ B and as c meets infinitely many edge disjoint B −X
paths, there is no finite edge separator separating c from B. And analogous by
Lemma 14 we cannot get a comb with spine R = r1r2 . . . as d(ri, b) would be
greater than δ′ for all b ∈ B and all i ∈ N and as R meets infinitely many edge
disjoint B −X paths, there is no finite edge separator separating R from B.

Now let [x] only contain a single undominated end ω in G. Let δ ∈ R+ be given
and let B be an infinite set of vertices such that d(b, ω) ≥ δ for all b ∈ B. Pick
any ray R = r1r2 . . . in ω such that d(ri, ω) ≤ δ

2 for each vertex ri ∈ R. This is
possible because every ray has finite `-lengths. Now every vertex in B has distance
at least δ

2 from every vertex in R. By Lemma 14, there is a finite edge separator F
separating this ray R from each vertex in B. Because every other ray in ω is also
equivalent to R and because ω was undominated this F separates a tail of those
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other rays from each vertex of B. So this F also separates ω from each vertex
of B. �

5.3. Main proof. In this section we will prove Theorem 1. Before we start the
proof we will recall the basic concept of the proof that is already mentioned in

Section 4. Let Ω̃ be the set of edge-ends of G which are not represented by a
vertex in ||G||. We will use the following steps to prove the theorem. First we will

show that ||G|| \ Ω̃ and (G, `) have the ‘same’ points. Secondly we will define a

metric d on ||G|| \ Ω̃ by using the metric from (G, `). And then thirdly expanding
the metric d to all of ||G|| in a way that makes d induce the existing topology of ||G||
and makes ||G|| complete and ||G|| \ Ω̃ dense in it. By the uniqueness of completion
this proves the theorem. We use the phrase ‘same’ in the following sense: A set of
points in ||G|| and (G, `) is the ‘same’ if some homeomorphism maps those points
from ||G|| to (G, `). We now prove Theorem 1.

Proof. Let G = (V,E) be a 2-connected graph and ` : E → R+ satisfy: every
ray has finite `-length and the `-lengths of the spokes of any infinite fan or bundle

tend to 0. Let Ω̃ ⊆ Ω be the set of edge-ends of G in ||G|| whose points are not
represented by a vertex of G. We have seen in Lemma 10 that there is a bijection

between ||G|| \ Ω̃ and (G, `) that extends the identity on G. Let d be the metric
defined in Section 4. Now we the following:

(6) The metric d induces the same topology on G as Etop.

It is easy to see that d and Etop induce the same topology on inner points of edges.
In the following we will assume that x is a vertex or an end. Technically x is an
equivalents class of points with distance 0 that got identified, but there is no need
for a distinction here for the following reason: We showed that in Etop and in ||G||
the same points get identified, that means that when we take an ε-ball around a
point within an equivalent class of points, the ball will always contain all elements
of that class, since they have distance 0. In addition, in Etop. there is no way to
separate points within such a class by a finite edge set as d(x, y) = 0 with x, y ∈ V
means that there are infinitely many edge disjoint x− y paths in G. Deleting any
finite edge set F will always put all those points within a single component of G.

For the first direction we show that:

(7) For any basic open neighborhood U around a point x in ||G|| there is
a ε-ball contained in U that contains x.

Let any basic open neighborhood U around a point x in ||G|| be given. Any
basic open set in Etop comes from a finite set F of edges. We choose ε′ ≥ 0 to be
the smaller than mine∈F `(e). It follows that the ε′-ball around x will be disjoint to
any point outside of U besides inner points of the edges in F that are outside of U .
Here we need to be a little more precise and because, as stated above, in Etop open
sets are created by inner points of edges, rather then the edges themselves. So we
choose ε ≤ ε′ so that the ε-ball around x will not leave U , which can only happen
on the edges F . But this can be achieved by simply taking ε ≤ ε′ smaller than the
minimal distance from x to any inner point of F that was chosen to create U which
is possible as F is finite. This finishes the proof of (7). For the other direction we
show:

(8) For any open ε-ball U around a point in [x] in ||G||d there is open set
in ||G|| contained within U that contains x.

So let U be any ε-ball around any point [x] in ||G||d. Remember, that [x] is a
point in ||G||d, but it might be an equivalent class of points before identification.
As above, we assume [x] does not contain inner points of edges. We need to find
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a finite edge set F such that all edges of F are at least partially in U and the
component after deletion of F must contain [x] and be contained in U . We know
by Lemma 15, that there is a finite edge separator separating [x] from every vertex
outside of U . Now we need to check if there could be edges with both end vertices
in U that contain points outside of U that cause problems.

Let e = v1v2 be an edge which contains a point outside of U but v1 and v2
are both in U . To avoid having to make special cases for this kind of edge, we
do the following: Let y be an inner point of e outside of U . We know change the
graph from G to some G′ by subdividing e creating a new vertex at the point of y,
joining y to v1 and v2, let the ei be the edge from y to vi for i ∈ {1, 2}. We also
change ` such that `(e1) + `(e2) = `(e) and `(ei) = d(y, vi). We do this once for
every such edge. In this new graph, there are no edges that have both end vertices
in U but contain a point outside of U .

We show that G′ also complies with the premise of Theorem 1. The graph G′ is
2-connected by definition, subdividing edges does not change 2-connectivity. Also
by definition there is no ray R in G′ of infinite `-length. Let v1 and v2 be two
vertices in G′ such that there are infinitely many edge disjoint v1 − v2 paths in G′.
First note that because every vertex in G′ that is not a vertex in G has degree two,
call those vertices new. So v1 and v2 are vertices in G. So for every v1− v2 path P ′

in G′ there is a v1−v2 path P in G with `(P ) = `(P ′), this is again, because all the
new vertices have degree two. Similarly, for every infinite fan, the vertex of infinite
degree must be in G. Let T be the set of vertices on the ray of the fan that gets
met by the paths from the vertex of infinite degree. As each vertex of T has degree
three, every vertex in T must also be in G. So for each path in G′ from the vertex
of infinite degree to T there is a path in G connecting the same vertices such that
the `-length of those paths is identical.

As the premise of Theorem 1 is fulfilled we can find a finite edge separator F by
Lemma 15.

Now we need to take a look at this finite edge separator F we used to separate
every vertex and every edge-end outside of U from [x] and find inner points on each
of those edges to define an open set in ||G||. We can assume that every edge e in F
has at least one of its end vertices in U , say ve. As U is an open ε-ball around [x],
we know that d(ve, x) < ε. Define δ := ε − d(ve, x). Now pick any inner point y
of e with d(ve, y) < δ. Doing this for every edge in F gives us the inner points of
finitely many edges needed for the open set in ||G||. Note that, if an edge e has
both of its end vertices in U , we do this for both of its end vertices. As F is finite,
this will still give us a finite set of inner points of edges. This finished the proof of
(8) and hence proves (6).

So we have now shown that the topologies of ||G|| and |G|` coincide. It is obvious
that (G, `) is dense in ||G|| as there is a homeomorphism between the points in (G, `)

and ||G|| \ Ω̃ with the usual definition of Ω̃, and the topological closure of ||G|| \ Ω̃
is exactly ||G||. It remains to show that ||G|| is complete. As Etop is compact [4].
any Cauchy sequence (xn) in ||G|| has a limit point x in ||G|| which is also compact
[4, 5, 6]. As no Cauchy sequence can have more than one limit, the sequence
converges to x. �

6. Inducing Mtop

In this section we prove Theorem 2. This will follow the same general structure
as the proof for Etop. Throughout this section an end will always be a vertex-end
of G. We will write |G|M for the topology on the point set of |G|M given by Mtop
and |G|d for the topological space also on the point set of |G|M which is given by
the metric d introduced in Section 4.
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6.1. Lemmas for Mtop. In this subsection we prove the lemmas which help us
to prove Theorem 2. Like in Section 5, we start this section by proving that the
metric d defined in Section 4 is indeed a metric. We state the definition of d
again in Lemma 17. To show that d is a metric we need the lemma that (G, `)
and |G|M \ Ω(G) have the same points, i.e. that there is a bijection between (G, `)
and |G|M \Ω(G) that extends the identity on G, where Ω(G) is the set of ends of G.

Lemma 16. Let G be a 2-connected graph and `: E(G)→ R+ a function complying
with the premise of Theorem 2. Then the identity on G extends to a bijection
between (G, `) and |G|M \ Ω(G).

Proof. As both (G, `) and |G|M \ Ω(G) contain all the edges and vertices and no
edge or vertex gets identified and neither (G, `) nor |G|M \ Ω(G) contains points
that are not in G, considered as a 1-complex, this lemma is true. �

The next lemma shows that d is indeed a metric.

Lemma 17. Let G be a 2-connected graph and `: E(G)→ R+ a function complying
with the premise of Theorem 2. Furthermore let d be the metric on |G|M \ Ω(G)
inherited by the metric d` from (G, `). Given an x ∈ Ω(G) ∪ V (G) and y ∈ Ω(G)
we define

d(x, y) = inf {`(R) | R is an x− y ray or double ray} ,
where `(R) :=

∑
e∈E(R) `(e) for any ray or double ray R. Then d is a metric

on |G|M.

Proof. We first show that:

(9) d(x, y) = 0 if and only if x = y.

By the of definition d(x, y) is 0 if x = y. In the following we assume that x 6= y and
we show that d(x, y) 6= 0. We show that we may assume x and y are not inner points
on the same edge as each edge e is a copy of the interval [0, `(e)]. Suppose that x
is an inner point of an edge e = v1v2 and y is not contained in e. Then d(x, y) is at
least equal to min{d(x, v1), d(x, v2)} by definition of d. And as x was an inner point
of e we know min{d(x, v1), d(x, v2)} > 0 which we had to show. Now we assume
that neither x nor y are inner points of edges. We may also assume that neither x
nor y are vertices. By the premise of Theorem 2 if either x or y is a vertex, say x is
a vertex, d(x, y) 6= 0, as there is some δv ∈ R+ such that `(e) ≥ δv for each edge e
incident with x.

The only case that is left is that x and y are different ends of G. If x and y are
different ends of G, then there is a finite vertex separator S separating x from y.
By the premise of Theorem 2, for every vertex v ∈ V (G) there is δv ∈ R+ such that
for each edge e incident with v the `-length of e is greater than δv. Let δ′ be the
minimum of all δv for this finite vertex separator S. As S is finite, this minimum
does exist. Each double ray with tails in x and tails in y must go through S, so
each such double ray has `-length at least δ′. It follows that d(x, y) ≥ δ′ > 0. This
concludes the proof of (9). Next we show that:

(10) d(x, y) = d(y, x) for all x, y in |G|M
This follows directly by the definition of d`, since any x− y path, ray or double ray
is also a y − x path, ray or double ray, respectively. So lastly we show that:

(11) The triangle inequity holds for d.

This is analogous to the proof for ||G||, found in Lemma 11. We only consider
the case x, y, z ∈ Ω(G) as the other cases are easier version of the same proof or
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follow directly from the fact that in the infimum over all the x − z paths, every
path contained in every x− y − z walk3 is considered.

We show that d(x, z) ≤ d(x, y)+d(y, z)+ε for all ε > 0. Because of the infimum
in the definition of d this suffices to show that d(x, z) ≤ d(x, y) + d(y, z). Without
loss of generality we assume d(x, z) 6= 0. Given any ε > 0. By the definition
of d we can pick a double ray from x to y4 and one from y to z whose `-lengths
exceed d(x, y) and d(y, z) by at most ε

3 , respectively. Otherwise d(x, y) or d(y, z)
would be larger, by at least ε

3 . Call such double rays Rxy and Ryz. We will find a
path with total `-length less than ε

3 that connects these two double rays. The union
of this path and Rxy ∪ Ryz will contain the desired double ray. By Lemma 3 we
know that the infimum over the `-length of all Rxy − Ryx paths is 0. Hence there
is a path Pxy with `-length at most ε

3 that connects Rxy and Ryz. It follows that

there is a double ray Rxz from x to z with `-length less than ε+ d(x, y) + d(y, z).5

So d is indeed a metric on |G|M. �

In the next lemma we use Lemma 6 to prove that for every end ω and every
infinite set B of vertices such that all vertices in B has distance at least some δ ∈ R+

from ω, there is a finite vertex separator S that separates ω from B. As long as
the separator S is finite, S may contain all of B.

Lemma 18. Let G be a 2-connected graph and ` be a length function complying
with the premise of Theorem 2 and let ω be an end of G. For every set B of vertices
and every δ ∈ R+ such that d(ω, b) ≥ δ for all b ∈ B there is a finite S ⊂ V (G)
such that S separates ω from B.

Proof. Let δ ∈ R+, an end ω of G be given and let B be a set of vertices such that
there is no finite vertex separator separating ω from B and such that d(b, ω) ≥ δ
for all b ∈ B. We may assume that B is infinite, as if B were a finite set of vertices,
taking every vertex in B for S would be sufficient. Now we need to find a finite
set S of vertices that separates B from ω. We assume that there is no finite vertex
separator separating B from ω and find a contraction by using Lemma 6. If there
is no finite vertex separator separating B from ω, then for every ray R in ω there
also is no finite vertex separator separating every tail of R from B. As every ray
in ω as finite `-length, it has a tail such for each vertex r in this tail d(r, b) ≥ δ

2
for all b ∈ B. Let R = r1r2 . . . be such a ray and suppose that there is no finite
vertex separator separating B from ω. This means there are infinitely many vertex
disjoint R − B paths in G. The premise of Lemma 6 is fulfilled as graph G is
2-connected and ` complies by our initial assumptions. So we can apply Lemma 6
with B and R as by assumption there are infinitely vertex disjoint B − R paths
in G. This yields the desired contraction. �

We now state a corollary that later, when we are checking whether |G|M and |G|d
are inducing the same open sets around ends ensures that inner points of edges are
not a problem. We do this the same way we did in the Etop case by changing G
a little by subdividing edges that might cause a problem.

Corollary 3. Let G be a 2-connected metrizable graph and `: E(G)→ R+ comply
with the premise of Theorem 2. For an end ω of |G|M and any δ ∈ R+ and any set
of edges such that each of these edges contains an inner point x such that d(x, ω) ≥ δ
there is a finite vertex separator that separates all those edges from ω.

3A walk is a non-empty alternating sequence v0e0v1e1 . . . ek−1vk of vertices and edges such

that ei = vivi+1 for all i < k, an x− z − y walk is s a walk containing x, y, z in that order[2].
4A double ray from x to y is a double ray such that it has tails that belongs to x and y,

respectively
5Start in x follow Rxy to the first vertex on Pxy , use Pxy to Ryz and continue on Ryz towards z.
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Proof. Let G and ` fulfill the premise of this lemma and let ω be an end in |G|M.
Let F be a set of edges such that each edge contains a point x with d(x, ω) ≥ δ for
some δ ∈ R+. We may assume that F is infinite, otherwise we can just take all the
vertices incident with the edges in F for the finite separator. In addition we may
assume that each of the edges in F contains atleast one vertices in with distance less
than δ from ω by Lemma 18. We now set ε to be equal to δ

2 . Let F0 ⊆ F be the set
of edges in F such that each edge in F0 does not have contain a vertex with distance
greater ε from ω. We now pick a first finite vertex separator S0 by Lemma 18 that
separates all the edges in F0 from ω. We do this by applying Lemma 18 to ω with
the distance ε and for the vertex set we use all vertices contained in edges in F0.
Let F1 be all the edges in F that are not in F0. By definition of F0 all the edges
in F1 have `-length at least ε. We set δ′ to be equal to δ

4 .
Let e ∈ F1 and let δe ∈ R+ be the minimum of the lower bounds of `-lengths of

edges incident with the end vertices of e6, We now know the following:

(1) There is a point xe0 on e such that d(xe, ω) ≥ δ.
(2) There is a point xe on e such that d(xe, ω) ≥ 3δ

4 .

(3) The minimum distance7 from xe to the end vertices of e is at least δ′δe
8.

We get 2. by using 1. There is a point xe0 on e with distance at least δ from ω and
as the `-length of e is at least δ

2 we can conclude 2. We now show that:

(12) There is finite vertex set S1 that separates F1 from ω.

We may assume that F1 is infinite, otherwise taking all the end vertices of the
edges in F1 will be a viable choice for S1. To proof (12) we define a 2-connected
graph G′ with the same ends as G and a length function `′ which comply with
the premises of Theorem 2 by subdividing the edges in F1 at those points xe and
then using Lemma 18 to find a vertex separator S′1 that separates the new vertices
from ω. As F1 is infinite S′1 can only contain finitely many new vertices so we
can use S′1 to find the desired set S1 in G. Let G′ be the graph we obtain by
subdividing every edge in F1 at the point xe. Let the subdividing vertices for
the edge e of G be ve, we call all those vertices ve new and all the other vertices
of G′ old. As subdividing edges does not change 2-connectivity G′ is 2-connected.
Note that every new vertex has degree two. For every edge e = v1v2 of G, with
say d(v1, x) ≤ d(x, v2), we set `′(v1vx) = d(v1, x) and `′(vxv2) = `(v1v2)− `(v1vx).
It is straight forward to check that every ray in G′ has finite `′-length. In addition
it is clear that G′ and G have the same ends. By the definition of F1 we know
that for every vertex v of G′ that is also a vertex of G the product δ′δv is a lower
bound of the `-lengths of all the edges incident with v in G′ where δv is the lower
bound of the `-lengths of all the edges incident with v in G which exists by the
initial assumptions on `. Lastly we check if the `′-lengths of the open spokes of any
infinite fan in G′ tend to 0. Let any infinite fan in G′ be given and let y be the vertex
of infinite degree in this fan and R′ be the ray of this fan. Note that the vertex y is
also a vertex of G as it has more than degree two. The same is true for the vertices
in R′ that get met by spokes of this infinite fan. Because G′ is a subdivision of G
this means that paths in G′ between old vertices directly correspond to paths in G
between the same vertices. In addition the the `′ length of any path between old
vertices in G′ has by definition of `′ is at most equal to the `-length of the path
before the subdivision. Together this yields that the `′-lengths of the open spokes
of any infinite fan in G′ tend to 0. By Lemma 18 there is a finite vertex separators
in G′ that separates all new vertices from ω, call it S′1. We now use S′1 to define a

6Such exists by our initial assumptions on `
7Measured by the metric d
8Note that δ′ is fixed for all edges in F
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separator S1 in G. For S1 we star by taking all the old vertices of S′1. For every
new vertex in S′1 we add both its neighbors in G′ to S1, as those are old vertices
by definition of G′. Now S1 separates all the edges in F1 from ω, which proves (12)
and hence also finishes this proof. �

6.2. Main proof. In this section we prove Theorem 2.

Proof. Let G = (V,E) be a a 2-connected metrizable graph and ` : E → R+ be
a length function complying with the premise of Theorem 2. By Lemma 16 we
know that the identity on G extends to a bijection between (G, `) and |G|M \Ω(G).
Let d be the metric induced by d` on |G|M \ Ω(G). We extend this metric like in
Lemma 17 to all of |G|M. Now we show that

(13) The metric d induces the same topology on G as Mtop.

It is easy to see, that d and Mtop induce the same topology on inner points of
edges, as this is just the standard topology on intervals. In the following we will
assume that x is a vertex or an end.

(14) The basic open neighborhoods given by |G|M around any point x contain
an open ε-ball that also contains x.

Let any basic open neighborhood U around a point x in |G|M be given.. In Mtop.
there are two types of basic open set. The first one are the open stars with a
radius ε′ ∈ (0, 1) around vertices, the others are open sets around ends that come
from a finite vertex separator. If U is in the first class of open sets, as the `-length
of all edges incident with any given vertex are bounded by below by some δ ∈ R+,
we can chose an ε small enough such that in |G|d, an ε-ball around x is contained
in U . If U is of the second class of basic open sets, then there is a finite vertex
separator S that separates U from every point in |G|M outside of U . Let ε′ be the
length of the constant used to define U , such that for every edge from U to S the
first open ε′ interval belongs to U . Let δ ∈ R+ be such that the `-length of all the
edges incident with the vertices of S is at least δ. This must exist by assumption.
Now let ε be smaller than δ and small enough, such that the ε-ball in |G|d is in U .
This concludes the proof of (14). For the other direction

(15) The basic open ε-balls around a point x contain an open set of |G|M
which also contains x.

Let U be any ε-ball around any point x in |G|d. As above, we assume x is not an
inner points of an edges. We start by showing that we may assume that x is not
an end. If x is an end then by Lemma 18 and Corollary 3 there is a finite vertex
separator that separates every vertex and every inner points of an edge outside
of U from x. Let δ be the minimum of all the lower bounds for those finitely many
vertices such that each edge incident with those vertices has `-length at least δ.
There must be an ε small enough, that taking an ε-collar of all the edges leaving
the component containing x, after the deletion of this finite vertex separator, such
that all points in this ε-collar are in U . So the component that contains x after
deletion of this finite vertex separator together with this ε-collar forms an open set
contained in U .

So we can assume that x is a vertex. If x is a vertex then U is an open ε-ball
around x. As the `-lengths of all edges incident with x are bounded from below by
some δ, we can find an ε′ > 0 small enough, such that an open ε′-star around x
is contained in U . This concludes the proof of (15). Together (14) and (15) proof
(13). So we have seen, that d induces the existing topology of |G|M. We have also
shown, that the topologies of |G|M and |G|d coincide. To follow the same steps as
the ETOP proof we have to show that (G, `) is dense in |G|M. This is obvious as
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there is a homeomorphism between the points in (G, `) and |G|M \ Ω(G) and the
topological closure of |G|M \ Ω(G) is exactly |G|M. It remains to show that

(16) The space |G|M is complete.

For that we call two Cauchy sequences (xi)i∈N and (vj)j∈N equivalent if for ev-
ery δ ∈ R+ there is an N ∈ N such that |xi − vi| ≤ δ. If one Cauchy sequence of
two equivalent Cauchy sequence converges to some point a, then the other Cauchy
sequence also converges to the same point a.

To show (16), let (xi)i∈N be a Cauchy sequence of points in |G|M. We may
assume that (xi)i∈N does not become constant at some point, as then this point
is the converging point of this sequence. As (xi)i∈N is a Cauchy sequence, for
every ε ∈ R+ there is an N ∈ N such that d(xi, xj) ≤ ε for all i, j ≥ N . We now
show that we can make some assumptions on this sequence.

We may assume that the sequence (xi)i∈N does not contain infinitely many inner
points of the same edge, since then this edge would contain an accumulation point
as every edge is a homeomorphic copy of [0, 1], which is compact. And as each
Cauchy sequence only contains a single accumulation point, the sequence would
converge.

Next we may assume that the sequence contains at most one point within each
edge, so there is no edge such that there are two or more points of the sequence of
that edge. We may do so, as every subsequence of a Cauchy sequence is a Cauchy
sequence, and if this subsequence converges, so does the main sequence, as it is a
Cauchy sequence.

(17) We may assume that all the xi are vertices or ends.

Suppose that infinitely many xi are inner points of edges, say xi lies on the
edge viwi, and say d(vi, xi) ≤ d(xi, wi). Now we look at the sequence of (vi)i∈N.
We show that d(vi, vj) ≤ 2d(xi, xj). Say d(xi, xj) = δ, then

d(vi, vj) ≤ d(vi, xi) + d(xi, xj) + d(vj , xj)

This is the ‘path’ vi to xi, then going from xi to xj and then from xj to vj . We
have d(vi, xi) + d(vj , xj) ≤ δ by definition of (vi)i∈N, so d(vi, vj) ≤ 2δ. This shows
that (vi)i∈N is a Cauchy sequence and it shows that this sequence is equivalent
to (xi)i∈N. This finishes our argument for (17).

If (xi)i∈N contains infinitely many vertices, we let (vi)i∈N be the subsequence
of (xi)i∈N that only contains vertices. As (xi)i∈N and (vi)i∈N are equivalent, it is
sufficient to show that (vi)i∈N converges. So we may assume that (xi)i∈N either
contains no ends or only finitely many vertices. We now make a case study of the
two above possibilities.

(1) Suppose that (xi)i∈N contains only finitely many vertices. We define an-
other sequence (vi)i∈N that is equivalent to (xi)i∈N but only contains ver-
tices. For that we may assume that (xi)i∈N only contains ends. We may do
so because deleting a finite segment of a Cauchy sequence does not change
whether the new sequence is a Cauchy sequence nor if it converges or to
what point it converges. We define the sequence (vi)i∈N as follows: For
every xi in (xi)i∈N we choose a ray R in G that belongs to xi. By def-
inition of d there is a vertex vi on R such that d(vi, xi) ≤ 1

i . If there
were an end xj such that this fails to happen, then every vertex on the
ray R has distance at least 1

j from xj . But this means one of the follow-

ing two has to occur: Either that there is another ray R′ = r′1r
′
2 . . . in xj .

In which case there is an K ∈ N such that each vertex d(r′k, r) ≥ 1
2j for
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all k ≥ K and all r ∈ R, which yields a contraction by Lemma 3. Or
that d(xj , ri) ≥ 1

2j for all rays in xj , but this cannot happen by definition

of d. It follows that d(xi, vi) ≤ 1
i . So let some ε′ ∈ R+ be given. We

choose K1 greater than 1
2ε′ , this yields that d(xi, vi) ≤ ε′

2 for all i ≥ K1.

Now we choose K2 ≥ K1 such that d(xi, xj) ≤ ε′

2 for all i ≥ K2. Together
this yields that d(xi, vj) ≤ ε′ for all i, j ≥ K2 by the triangle inequality.
This means that (vi)i∈N is a Cauchy sequence that is equivalent to (xi)i∈N.

(2) We assume that (xi)i∈N only contains vertices. We now path Pi in G
from xi to xi+1 such that `(Pi) ≤ 2d(xi, xi+1) for every i ∈ N. This is
possible by the definition of d. Let Vi be the set of vertices contained in all
the paths P1, . . . , Pi. As those are finitely many, there is a δi ∈ R+ such
that each edge incident with any of those vertices has `-length at least δ by
our assumptions on `. For for every i ∈ N we choose an Ni ∈ N such that
all paths Pj with j ≥ Ni never meet Vi again. We can do this because the `-
length of all the edges incident with vertices in Vi is bounded from below
and the fact that (xi)i∈N is a Cauchy sequence and `(Pi) ≤ 2d(xi, xi+1).
Let H be the graph that is the union of all the path Pi. There is no
vertex of infinite degree in H by the argument that for each vertex vH in H
there are only finitely many paths Pi that meet vH , but H is connected
by construction. We apply the Star-Comb Lemma to H with the vertex
set X, where X is all the vertices in (xi)i∈N. We now show, that if the spine
of the comb is R = r1r2 . . . then for every ε ∈ R+ there is a K ∈ N such
that d(ri, xi) ≤ ε for all i ≥ K. Let ε be given, we choose K1 to be large
enough such that d(xi, xj) ≤ ε

4 for all i, j ≥ K1. We now choose K2 ≥ K1

such that for each vertex rj , j ≥ K2, the ray rjrj+1 . . . has `-length less
than ε

4 . By construction of R, there is a K3 ≥ K2 such that each path
in Pi that meets the ray rjrj+1 . . ., with j ≥ K3, has `-length less than ε

4 .
This means that d(ri, xj) ≤ ε for all i, j ≥ K3. The path from xj to R
has `-length at most ε

4 , moving up along R means moving at most ε
4 and

by definition of Pi, the path Pi has `-length at most ε
4 , in sum this means

that d(ri, xj) ≤ ε for all i, j ≥ K3. We know that every ray R has finite `-
length that there is a unique point in |G|M to which R converges. So the
sequence (xi)i∈N converges to the same point.

This finishes up the proof of Theorem 2. �
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