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Infinite Highly Connected Planar Graphs of Large Girth

Angelos Georgakopoulos

Abstract

We construct infinite planar graphs of arbitrarily large connectivity
and girth, and study their separation properties. Every finite cycle in
the graphs separates them, but they corroborate Diestel’s conjecture
that every k-connected locally finite graph contains a possibly infinite
cycle — see [ 3 ] — whose deletion leaves it (k− 3)-connected.

Introduction

For finite graphs, it is well known that large enough connectivity
forces arbitrarily large complete minors [ 2 ]. For infinite graphs, this is
not true: there are planar graphs of arbitrarily high finite connectivity.
(Planar graphs cannot be infinitely connected, as infinite connectivity
clearly forces an infinite complete topological minor.) In this paper we
construct planar graphs whose girth, as well as connectivity, exceeds any
given finite bound.

We present constructions of two quite different types of such planar
graphs. The graphs of the first type, presented in Section 1, are one-
ended, whereas the graphs of the second type, presented in Section 2,
have continuum many thin ends.

By a theorem of Thomassen [ 2 ], every finite (k + 3)-connected
graph of girth at least 4 contains a cycle whose deletion leaves the graph
k-connected. Aharoni & Thomassen [ 1 ] showed that this is not true
for infinite graphs, even for locally finite ones. Their counter-example is
constructed by a non-trivial recursion. Our graphs of the second type are
also counter-examples, but this requires no further proof: their planarity
implies at once that every cycle separates them.

Diestel [ 3 ] conjectured that Thomassen’s theorem might generalise
to locally finite graphs if we allow infinite cycles (as defined in [ 3 ]). We
do not prove this but show that our counter-examples confirm Diestel’s
conjecture: each of these graphs contains an infinite cycle whose deletion
reduces the connectivity by at most two.
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1. Arbitrarily Large Connectivity and Girth I

The problem of constructing infinite planar graphs with arbitrarily
large connectivity and girth was suggested by Diestel (personal commu-
nication). The following 1-ended example is due to Diestel and Stein.

For a given k ∈ N, let Γk be the graph constructed as follows. Begin
with a k-cycle C1, add a new vertex x, and join it to all vertices of C1.
Then perform ω steps of the following type: In step i, i > 1, substitute
every edge of Ci−1 with a path of length k − 2. Call the cycle that
consists of the vertices of Ci−1 and the newly added paths C ′

i−1. Then
add to the graph a new cycle Ci of length k|C ′

i−1| and join every vertex
of C ′

i−1 to k consecutive vertices of Ci, so that consecutive vertices of
C ′

i−1 are joined to consecutive k-tuples of vertices of Ci (fig 1.1).
For every vertex v �= x of Γk, let l(v) be the unique integer such

that v ∈ C ′
l(v), and let l(x) = 0. For any finite set U ⊂ V (Γk) let

l(U) = max v∈U l(v).

Theorem 1: Γk is a k- connected 1-ended planar graph of girth
k.

Proof: Γk is obviously planar. To see that it is 1-ended, note
that every finite set of vertices is contained in a finite set of the form
W = {x } ∪C ′

1 ∪ . . .∪C ′
n so that Γk −W is connected. Thus, no finite

set of vertices can seperate two rays.

C′
1 C′

2 C′
3

x

Figure 1.1: An embedding of Γk for k = 4. The thin vertices repre-
sent vertices in C ′

i but not in Ci.
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To prove that Γk is k-connected, consider a set B ⊂ V (Γk) with
|B| ≤ k − 1 and pick any two vertices a, b of Γk − B. We will show
that there is an a-b-path in Γk −B. Because in Γk any vertex v has k
neighbours in C ′

l(v)+1, at least one of them is not in B and thus there are
in Γk −B paths from a, b to C ′

L, where L = max{ l(B) + 1, l(a), l(b) }.
Because no vertex of C ′

L lies in B, this yields a path from a to b in
Γk −B.

Finally, we show that Γk has girth k. Consider a cycle C of Γk and
let n = l(V (C)). Either all vertices of C lie on C ′

n, in which case it is
obvious that its length is > k, or C contains an edge vw, with v ∈ C ′

n

and w ∈ C ′
n−1. By construction, no vertex of C ′

n sends more than one
edge to C ′

n−1, so C must contain another edge v′w′, with v �= v′ ∈ C ′
n,

w′ ∈ C ′
n−1, and a path from v to v′ that consists of edges of C ′

n only. By
construction, any path between distinct vertices of C ′

n that send edges
to C ′

n−1 has length at least k− 2. This means that C has length ≥ k.
�

2. Arbitrarily Large Connectivity and Girth II

In this section we describe another type of infinite planar graphs,
also suggested by Diestel. Their girth can be chosen arbitrarily large. We
confirm Diestel’s conjecture that their connectivity grows in proportion
to their girth. Unlike the graphs of the previous section, these graphs
have no thick end but continuum many thin ones.

Let ∆k
M , k ∈ N, M ≤ ℵ0 be the graph constructed as follows (we

define ∆k
M as a plane graph, but we will be using the same symbol

to denote the corresponding abstract graph, letting the context decide
which of the two we are reffering to):

Starting with a plane cycle C of length 2k + 1, perform ω steps of
the following type. At each step, add a new vertex in every inner face
of the current plane graph (we call these vertices centers), and join it
by independent paths of length k to all the vertices on the boundary of
that face that are less than M steps old (we call such a path a radius).
Clearly, this graph has girth 2k + 1. We show that:

Theorem 2: ∆k
M has continuum many, thin ends.

and that:

Theorem 3: For every k there is an M0 ∈ N such that ∆k
M is

2k− 1-connected for M > M0.
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We will call the cycles that bound a face at some step primitive. In
what follows C denotes an arbitrary primitive cycle.

Define the father of C as the primitive cycle whose interior contains
C and which was constructed in the step immediately preceding the step
in which C was constructed. C is a child of C ′ if C ′ is C’s father. Define
the ancestor relation between primitive cycles as the reflexive transitive
closure of the father relation.

proof of theorem 2: Note that because any ray can cross a given
primitive cycle only finitely often, it must have a subray that lies entirely
inside or entirely outside it, and a ray that lies inside a primitive cycle
cannot be equivalent with one that lies outside it. Thus any infinite
sequence of primitive cycles each of which is a child of the previous one,
uniquely specifies an end, namely the class of rays equivalent with a ray
that lies inside all cycles of the sequence. Because there are continuum
many such sequences, ∆k

M has continuum many ends. Since no infinite
set of independent rays can enter any given primitive cycle, the ends are
thin.

�

We now set off to prove theorem 3. In what follows we will consider
k fixed and prove lemmata 1-4 for a sufficiently large M . Our main task
is to show the following lemma:

Lemma 1: Any center can be connected to any other with (at
least) 2k− 1 independent paths.

Then, because any non-center is connected to a lot of centers with
independent paths, if M is large enough theorem 3 will follow easily.

In order to prove lemma 1, we will make use of lemmata 2 and 3 (to
be proved later).

For any primitive cycle and any center c that lies in its inside, lemma
2 allows us to draw them as shown in fig 2.1, where the heavy dots
represent the young vertices. This lemma makes use of the following
definitions:

The construction of any primitive cycle C other than C is completed
with the addition of 2k−1 vertices in one step (that belong to two radii).
We call them the young vertices of C. The rest of C ’s vertices we call
its old vertices. Pick any two consecutive vertices of C and call them
its old vertices, calling the rest its young vertices. Note that the young
vertices of any primitive cycle form a subpath of it.

If C is any (plane) cycle, let Ĉ = C ∪ Ċ where Ċ is the bounded
component of R2\C.
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Call the first center constructed inside C the center of C, and call
C the father of its center. C is an ancestor of a center if it is an ancestor
of its father.

.
.
.

.
.
.

c

C

Figure 2.1: The paths described in lemma 2.

Lemma 2 : For every center c and any of its ancestors C, there
are in Ĉ independent paths from c to all of its young vertices,
meeting C only at their endpoints.

Lemma 3 allows us to draw any primitive cycle as shown in fig 2.2,
where the heavy dots represent the young vertices.

.
.
.

.
.
.

u1(R)

u0(R)

u1(S)

u2(S)

C

R

S

Figure 2.2: The paths described by lemma 3.

For any vertex a of C, we denote the radius that connects the center
of C to a, if one exists, by Ra = Ra(C).

If Ra is any radius, then name its vertices with ui = ui(Ra), 0 ≤
i ≤ k, so that R = u0(= a)u1u2 . . . uk.
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If R, S are radii of C, let C(R, S) denote the cycle bounded by these
radii and by that path on C that connects their endpoints that contains
less young vertices of C (fig 2.3).

a

b

R

Rb

Ra

u1

u2

u
0(R)

C(Ra, Rb)

C

..
.

Figure 2.3

Lemma 3 : For every primitive cycle C = C(R, S) there are k−1
disjoint paths between { ui(R)|1 ≤ i ≤ k − 1 } and { ui(S)|1 ≤ i ≤
k− 1 } that lie in Ĉ meeting it only at their endpoints.

Figures 2.4 a and 2.4 b show how we make use of fig 2.1 (lemma 2)
and fig 2.2 (lemma 3) to prove lemma 1. The former figures correspond to
the two possible relative positions of any two centers within a primitive
cycle. In both of them, x, y denote the arbitrary centers to be connected
with k− 1 independent paths.
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Figure 2.4
Our next lemma, will help prove both lemmata 2 and 3, and is thus

the cornerstone of the whole proof.
We will say that a primitive cycle C = C(R, S) satisfies Al, if

there are l disjoint paths in Ĉ from the first l inner vertices of R (i.e.
{ui(R)|1 ≤ i ≤ l }) to the first l vertices of S (i.e. {ui(S)|0 ≤ i ≤ l−1 })
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that meet C only at their endpoints. (Note that by construction the roles
of R and S can be interchanged.)

Similarly, we will say C satisfies Bl, if there are l disjoint paths in
Ĉ from the first l vertices of R to the first l vertices of S that meet C
only at their endpoints.

C is called young if it does not meet any old vertices of its father.

Lemma 4: Every young primitive cycle satisfies Ak−1 and Bk−1.

Proof: We will perform induction.
Let C ′ = C(R, S) be an arbitrary primitive cycle and let ai = ui(R)

and bi = ui(S) for 0 ≤ i ≤ k.
It is obvious that C ′ satisfies A1 (respectively B1) if M > 1: The

desired path can be constructed by joining Ra1 to Rb0 (respectively Ra1

to Rb1).
So suppose that every young primitive cycle satisfies Am and Bm

for some m < k − 1, and pick any young primitive cycle C. We will
prove that C satisfies Am+1 and Bm+1.

In order to prove that C satisfies Am+1 (respectively Bm+1), join
Ra1 to Rb0 (respectively Ra1 to Rb1) to get one of the desired paths.
The rest of the paths will be constructed in three steps.

For the first step, for 2 ≤ i ≤ m + 1 the primitive cycle Ci =
C(Rai

, Rai+1) is young, so by the induction hypothesis it satisfies Am,
which means that there are in Ĉi disjoint paths from the first i − 1
vertices of Rai

to the first i−1 inner vertices of Rai+1 . The union of these
paths for all i gives a set of disjoint paths between { ai|2 ≤ i ≤ m + 1 }
and {ui(Ram+2)|1 ≤ i ≤ m } (fig 2.5).

.
.
.

a1

am+2
C

Ram+2

a0

a2
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Figure 2.5: The wavy curves represent the paths of the first step.

In the second step, repeating the argumentation of the first on the
children of C between Rb1 and Rbm+1 (respectively between Rb2 and
Rbm+2 in order to prove that C satisfies Bm+1), we obtain a set of disjoint
paths between { bi|1 ≤ i ≤ m } and {ui(Rbm+1)|1 ≤ i ≤ m } (respectively
between { bi|2 ≤ i ≤ m + 1 } and {ui(Rbm+2)|1 ≤ i ≤ m }).

For the third step, note that all children of C in Ĉ(Ram+2 , Rbm+1)
(respectively Ĉ(Ram+2 , Rbm+2)) are young. By joining the paths pro-
vided by the satisfaction of Bm for every of those, we obtain disjoint
paths between the first m inner vertices of Ram+2 and the first m inner
vertices of Rbm+1 (respectively Rbm+2) (fig 2.6). Note that if m = k− 2
then Ram+2 = Rbm+2 and no paths are constructed in this step.

.
.
.

bm+2

am+2

C

Figure 2.6: The paths of the third step.

By joining the paths constructed in all three steps we obtain the
desired paths (fig 2.7 shows the paths that prove the satisfaction of
Am+1). Because C was chosen arbitrarily, every primitive cycle satisfies
Am+1 and Bm+1. This concludes the inductive step.

.
.
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.
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a0

a1

a2

b0

b1

b2

am+1

am+2

bm+1

bm+2
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Figure 2.7: The paths obtained by joining the paths of steps 1-3
(thick).

�

Lemma 3 seems at first glance to be a special case of lemma 4 but it
is not, because the latter demands that the cycle be young, so we have
to prove the former separately:

Proof of Lemma 3: Let ai = ui(R) and bi = ui(S) for 1 ≤ i ≤
k− 1.

All children of C in Ĉ1 = Ĉ(Ra1 , Rak
) are young, so we can imitate

the first step of the proof of lemma 4 (this time using directly the fact
that all primitive cycles satisfy Ak−1 instead of any induction hypothesis)
to construct a set of disjoint paths in Ĉ1 between { ai|1 ≤ i ≤ k−1 } and
the first k − 1 inner vertices of Rak

. In the same way we can construct
a set of disjoint paths in Ĉ2 = Ĉ(Rb1 , Rbk

) between { bi|1 ≤ i ≤ k− 1 }
and the first k − 1 inner vertices of Rbk

. Since Rak
= Rbk

joining the
paths of these two sets in pairs yields the desired paths.

�

Proof of lemma 2: If C is the father of c, then the radii of C
do the job. So all that we need to show is that for any primitive cycle
C ′ �= C there is a set of disjoint paths that connect every young vertex
of C ′ to a young vertex of its father C ′′ and lie in Ĉ ′′ and out of Ĉ ′.
If this is true, we can perform induction on the number of generations
between c and C to prove the lemma.

So let C ′ be any primitive cycle and C ′′ its father. Let Ra, Rb be
the radii of C ′′ that delimit C ′, where a, b are vertices of C ′′ (and C ′).

Let a1a2 . . . ak(= bk)bk−1 . . . b1 be the subpath of C ′′ that consists
of its young vertices with a1 nearest (possibly equal) to a and b1 nearest
to b.

Applying lemma 3 to all children of C ′′ except C ′ and joining the re-
sulting paths, we obtain a set of disjoint paths {Pi|1 ≤ i ≤ k−1 }, where
Pi connects ui(Ra) to ui(Rb). Then the paths ui(Ra)Piu

i(Rai
)Rai

ai, 1 ≤
i ≤ k − 1 and ui(Rb)Piu

i(Rbi
)Rbi

bi, 1 ≤ i ≤ k − 1 are disjoint. Adding
the path Rak

, which is also disjoint to the former, we have the desired
set of paths (fig 2.8).
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a = a1 b

Rak

ak−1

ak = bk

bk−1

a2

b2

b1

Figure 2.8: The paths between the young vertices of C ′′ and C ′

(thick). In the figure a happens to coincide with a1. The thin vertices
next to b represent old vertices of C ′′.

�

We now have all what we need to prove lemma 1.

Proof of Lemma 1: Let x, y be any two centers, and let C be
their last common ancestor and c its center. Suppose without loss of
generality that y �= c. There are two cases:

1. x = c (fig 2.4 a).

Let C ′ = C(R, S) be the child of C in whose inside y lies. Lemma
2 gives us for each young vertex v of C ′ an independent y − v-path Pv

in Ĉ ′. Our plan is to find a v−x path P ′
v outside C ′, so that for v′ �= v

P ′
v and P ′

v′ are independent. Joining these paths to the aforementioned
in pairs, we obtain the 2k− 1 paths we are looking for.

One of the young vertices of C ′ coincides with x, so for this one we
simply set P ′

v = x.
Applying lemma 3 to all children of C except C ′ and joining the

resulting paths, we obtain a set of disjoint paths {Pi|1 ≤ i ≤ k − 1 },
where Pi connects ui(R) to ui(S).

For v = ui(R) (respectively ui(S)) P ′
v is constructed as follows:

Travel k − 1− i steps along Pi, one step being a subpath between two
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consecutive radii of C, and then use the radius of C on which you landed
to reach x. (fig 2.4 a) Note that C has at least 2k− 1 radii, so a path of
this form that begins at a R vertex cannot meet one that begins at a S
vertex.

2. x �= c (fig 2.4 b).

Let Cx (respectively Cy) be the child of C in whose inside x (respec-
tively y) lies. Cx cannot coincide with Cy, because if this was the case
we would have chosen Cx rather than C as the first common ancestor of
x, y.

Again making use of lemma 2 we get inside Cx a set of independent
paths from x to all young vertices of Cx, and similarly for y and Cy. One
path from each of those sets ends at c, so joining these two we obtain our
first x− y-path. Apply lemma 3 to all children of C except Cx and Cy.
Joining the resulting paths and the former yields the rest of the desired
paths.

�

Theorem 3 now follows easily:

Proof of Theorem 3: Pick M0 so large that at least 2k− 1 radii
begin at any non-center of ∆k

M0
and lemma 1 holds.

Suppose there is a set B of at most 2k− 2 vertices that disconnects
∆k

M . By Lemma 1, all centers of ∆k
M − B lie in the same component

K. Pick any vertex v from some component K ′ �= K. This must be a
non-center, and by the choice of M at least 2k−1 radii begin at it. Since
these radii are independent paths from v to a center, at least one center
is still connected to v in ∆k

M −B, contradicting the fact that K ′ �= K.
�

3. Separation Properties

Let ∆̇k
M be the graph obtained from ∆k

M by copying the inner face of C
on its outer. Then Theorem 3 transfers verbatim to ∆̇k

M :

Theorem 3’: For every k there is an M0 ∈ N such that ∆̇k
M is

2k− 1-connected for M > M0.

Proof: Set M0 equal to the respective value of theorem 3, and
suppose there is a set B of ≤ 2k − 2 vertices that disconnects ∆̇k

M . By
theorem 3, there is a component K that contains all vertices in Ĉ not
it B. As |V (C)| > |V (B)|, K meets C and again by theorem 3 contains
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all vertices outside C and not in B as well and thus K = ∆̇k
M − B, a

contradiction.
�

∆̇k
M has yet another interesting property. By a theorem of Thomassen

[ 2 ], every (k + 3)-connected finite graph of girth at least 4 contains
a cycle after whose deletion the resulting graph is still k-connected.
This is not true for infinite graphs, even locally finite ones. Aharoni
& Thomassen constructed a locally finite counter-example [ 1 ]. Their
graph is constructed by a fairly complicated recursion, where in each
step they attach a copy of some fixed graph to all the cycles in the graph
of the previous step. It is easy to see that ∆̇k

M is also such a counter-
example for k � 3 and M large enough but finite: because no cycle of
this graph bounds a face, the deletion of every cycle separates the graph.

Diestel & Kühn [ 4,5 ] have suggested a topological generalization
of finite cycles for infinite graphs called circles. These are defined as the
homeomorphic images of S1 in the graph’s — seen as a 1-complex —
Freudenthal compactification |G| (see [ 3 ] for details; we do not need
more here). By replacing cycles with these circles it has been possible to
extend to infinite graphs some standard results about finite graphs, that
would otherwise fail. In this context, Diestel [ 3 ] poses the following
question in an attempt to extend Thomassen’s theorem:

Problem 1: If G is (k +3)-connected, does |G| contain a circle C
such that G−C is k-connected?.

We want to show that the answer to this question is positive for
the graphs that we have just seen to be counter-examples to the naive
extension of Thomassen’s theorem.

An example of a circle is a double ray whose rays are disjoint and
belong to the same end, together with this end. Let G = ∆̇k

M , where M
is finite but large enough to guarantee that G is (2k− 1)-connected. We
will find such a circle C in G, and prove that G−C is (2k−4)-connected.

We will define C recursively. Pick an edge w1v1 of C and let C1 be
the child of C that contains w1, v1. For the recursive step, suppose that
we have already defined a path wn . . . w2w1v1v2 . . . vn that lies on some
primitive cycle Cn and for any i ∈ { 1, . . . , n− 1 }, vi, wi are at least M
steps older than vn and wn. Because by construction no radius reaches
vi, wi for 1 < i < n after the appearance of wn, vn, any primitive cycle
that contains such a path, has a child that also contains the path. So
let Cn+1 be the most distant descendant of Cn that has young vertices
that send edges to wn and vn, and name these vertices wn+1 and vn+1

respectively (note that this guarantees that wn+1, vn+1 are at least M
steps younger than the other wi, vi). Repeating ad infinitum we define
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a double ray D = . . . w2w1v1v2 . . .. Because the young vertices of the Ci

form disjoint paths between its two rays, the latter belong to the same
end. Let C be this double ray together with that end.

Theorem 4: G−C is (2k− 3)-connected.

Proof: Pick two vertices of G − C arbitrarily, and let P be a set
of 2k − 1 independent paths between them in G (P exists by theorem
3’). We will show that C cannot meet more that two elements of P , and
thus that there are at least (2k− 3) independent paths between any two
vertices of G−C.

Pick a j ∈ N such that Cj (as described in the definition of C) was
constructed later than all (finitely many) vertices in Ĉ that lie on a path
in P . Then, as no primitive cycle contains vertices constructed before it,
no such path meets Ĉj −Cj . Since the Graph is plane, these paths are
curves that meet only at their endpoints, and so Ĉj can meet at most
two of them.

Because Ci+1 is a child of Ci, Ĉi+1 always lies in Ĉi, so D lies in
Ĉi for all i, in particular in Ĉj . This means that D as well cannot meet
more that two elements of P .

�
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