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Chapter 1

Introduction

Our topic is infinite graph theory, with our focus on the ends of an infinite
graph (which can be informally viewed as endpoints of rays), and their role
in extensions of results known for finite graphs. Often, these extensions fail,
if one does not take into account the ends of the graph, but otherwise hold.
In other cases, results become more interesting when ends are considered as
well as vertices.

An example for the latter is the Erdős-Menger conjecture for infinite graphs
(recently proved by Aharoni and Berger): we shall prove a generalisation
which allows for ends in the considered paths and separators. This means
that in an infinite graph, we allow paths to be infinite. Moreover, considering
ends on a par with vertices, we will allow these paths, then called arcs, to
start or end in ends, and to pass through them. Similarly, the notion of a
cycle will be generalized to that of a (possibly infinite) circle, which may pass
through ends. This leads to a different notion of forests (so-called topological
forests) in infinite graphs.

Another aspect of the ends is that since in many ways they behave like
vertices, they should be attributed a degree. We introduce such a notion as
well as a concept of parity for ends. For ends of finite degree the parity will
coincide with the parity of the degree, while ends of infinite degree will be
classified into ‘even’ and ‘odd’. Using these concepts (arcs, circles, topological
forests, degrees and parities of ends) we extend several results from finite
graph theory verbatim to infinite graphs.

Formally, an end of an infinite graph is an equivalence class of rays, where two
rays are equivalent if no finite set of vertices separates them. The origin of
this notion dates back to the 1940’s when it was first introduced by Hopf [27]
and Freudenthal [23], later it was reintroduced independently by Halin [24].
An infinite graph G together with its ends can be viewed as a topoloogical
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2 Introduction

space |G| (for locally finite graphs also known as the Freudenthal compactifi-
cation of G); the topology we endow |G| with is due to Freudenthal [22] and
Jung [29].

From now on, we will view the graph G with its ends topologically rather
than in the usual combinatorial way, attaching equal importance to the ends
of G as to the vertices. So our analogues of paths in the topological space |G|
will be homeomorphic images of the unit interval, so-called arcs, which may
start in, pass through, and end in ends. All of these topological concepts as
well as some basic terminology will be introduced in detail in Chapter 2.

We adopt our topological viewpoint in Chapter 3, whose topic is a well-known
conjecture of Erdős (see [38]), concerning a non-trivial extension of Menger’s
theorem to infinite graphs. It asks whether, given an infinite graph G and
sets A, B ⊆ V (G), there exists a family of disjoint A–B paths P together
with an A–B separator X consisting of a choice of one vertex from each path
in P.

A topological extension to infinite graphs of this conjecture is to consider
arcs instead of paths, and to allow A, B and X to contain ends as well as
vertices. It then becomes necessary to require disjointness of the closures of
A and B. If the disjointness is attained, then the purely topological version
can be reduced [13] to the following alternative natural extension, which only
allows ends as starting and ending points of paths, and in the separator.

Theorem 3.1.1. Let G = (V, E, Ω) be a graph and let A, B ⊆ V ∪Ω be such
that A ∩ B = ∅ = A ∩ B, the closures being taken in |G|. Then G satisfies
the Erdős-Menger conjecture for A and B.

We prove this extension by reducing it to the vertex version, which was
recently established by Aharoni and Berger [1]. We shall further see that the
condition A ∩ B = ∅ = A ∩ B cannot be dropped, not even for graphs that
are poor in structure, such as trees. [9]

In the same way as paths in infinite graphs are generalized to arcs, the notion
of cycles should be generalized in a way that allows them to pass through
ends. This leads to a definition of a circle as a homeomorphic image of the
unit circle in the compactified graph |G|. For example, a double-ray whose
subrays are equivalent in some underlying graph G, forms a circle in |G| if
we add this end. On the other hand, viewed on its own, the double-ray has
two ends, together with which it will not form a circle. Not only infinite
circles will be admitted, but also certain thin infinite sums (these are such
that no vertex or edge is repeated infinitely often). The resulting cycle space
C(G) introduced by Diestel and Kühn [17, 18] (sometimes referred to as the
topological cycle space) retains all the basic properties of the cycle space of a



3

finite graph.

One of these is the characterisation of a cycle space element as the edge set
of a subgraph H that has all degrees even. This characterisation does not
extend to elements of the topological cycle space of an infinite graph, if we
only consider degrees of vertices. To see this, consider again the example of
the double-ray: it does not form a circle (together with its ends), although
all vertices have even degree.

This motivates us to introduce a degree concept for the ends of an infinite
graph. [12] In the same way as the degree of a vertex is the number of incident
edges, the degree of an end should be related to its rays. So there seem to be
two sensible notions of the degree of an end ω: the first is the vertex-degree,
defined as the maximal cardinality of a set of vertex-disjoint rays in ω, the
second is the edge-degree, defined as the maximal cardinality of a set of edge-
disjoint rays in ω (both possibly infinite). That these maxima do indeed exist
is non-trivial, but a result of Halin [25] resp. Chapter 4/ [12]. Observe that
with either of these two notions the counterexample of the double ray above
ceases to be one, as its ends have vertex- and edge-degree 1.

Which of the two different concepts is adequate depends on the situation. In
the case of cycle space problems, the edge version is more natural, and in fact,
the vertex version is not sufficient. (In Chapter 5, we will encounter a situa-
tion where the vertex-degree is appropriate and needed.) Introducing also a
concept of parity for ends of infinite edge-degree, we show in Chapter 4 the
following special case of the characterisation of the cycle space elements. [12]

Theorem 4.1.4. Let G be a locally finite graph. Then E(G) ∈ C(G) if and
only if every vertex and every end of G has even edge-degree.

The definition of the edge-degree of an end in a subgraph H is slightly more
complicated: it turns out that instead of counting ω-rays one should count
arcs converging to ω. With this notion we show that the cycles of a locally
finite graph are precisely those connected subgraphs in which all vertices
and all ends have degree resp. edge-degree 2. [12] This is a straightforward
generalisation of the fact that in a finite graph the cycles are the 2-regular
connected subgraphs.

In Chapter 5 (see also [43]), we gain insight into the main difference of the two
degree concepts for ends. While the edge-degree is appropriate in situations
where edges matter, as in questions concerning the cycle space, the vertex-
degree is needed in situations where vertices play the more important role.

This becomes clear when we try to extend a well-known theorem of Mader [35]
to locally finite graphs. It states that if a finite graph has average (and hence
minimum) degree at least 4k + 1, then it contains a k-connected subgraph.



4 Introduction

Now, in locally finite graphs it is necessary to require not only high minimum
degree for the vertices (which alone will not force any interesting substruc-
ture, as there are infinite trees of arbitrarily high minimum degree), but
also high minimum vertex-degree for the ends of the graph in order to ob-
tain a highly connected subgraph. More precisely, with a minimum degree
resp. vertex-degree of order k2 in vertices and ends we are able to force a
k-connected subgraph. [43]

Theorem 5.1.2. Let k ∈ N and let G be an infinite locally finite graph such
that each vertex has degree at least 6k2−5k+3, and each end has vertex-degree
at least 6k2 − 9k + 4. Then G has a k-connected subgraph.

If, on the other hand, in addition to the high degrees at the vertices, we only
require high edge-degree for the ends, Mader’s theorem does not extend to
infinite graphs. We exhibit a counterexample in respect to this. But, high
minimum edge-degree at the ends (together with high minimum degree at
the vertices) suffices to force highly edge-connected subgraphs in locally finite
graphs. [43] In fact, the minimum (edge-)degree we require for a locally finite
graph in order to have a k-connected subgraph is only linear in k.

Another application of the end degree concept will be given in Chapter 6
(see also [41]), where we extend Nash-Williams’ arboricity theorem [37] to
locally finite graphs. This states that a finite graph is the edge-disjoint union
of at most k forests if no set of ℓ vertices induces more than k(ℓ − 1) edges.
The theorem extends easily, if the usual notion of a forest is used, which is
that of a graph that contains no finite cycles. But in our topological setting,
considering only such forests is not appropriate. The strengthening we prove,
forbids the partitioning forests (or more precisely their closures) to contain
circles, i.e. requires them to be topological forests. [41]

This can only be achieved by a further condition: we have to place an upper
bound on the degrees of the ends of the graph. Here, again, we consider the
edge-degrees of the ends, which yield a smaller resriction and are more natural
in the situation (as we are dealing with topological forests, i.e. circles).

Theorem 6.1.2. Let k ∈ N, and let G be a locally finite graph in which no
set of ℓ vertices induces more than k(ℓ − 1) edges. Further, let every end of
G have edge-degree < 2k. Then |G| is the edge-disjoint union of at most k
topological forests in |G|.

Next, we shall give extensions to infinite graphs of results that concern cycles,
or the cycle space. We start in Chapter 7 with the generalisation to locally
finite graphs of a result by Gallai (see Lovász [32]). This states that every
finite graph G has a vertex partition into two parts such that each induces an
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element of the cycle space of G. We showthat the theorem fails for infinite
graphs if the cycle space is defined as the span of the edge sets of finite cycles
in G, but extends with the topological cycle space C(G). [8]

Theorem 7.1.4. For every locally finite graph G there is a partition of V (G)
into two (possibly empty) sets V1, V2 such that E(G[Vi]) ∈ C(G) for both
i = 1, 2.

Using similar techniques we prove that if Seymour’s faithful cycle cover con-
jecture [40] is true for finite graphs then it also holds for locally finite graphs
when infinite cyles are allowed in the cover, but not otherwise. We also
consider extensions of both results to certain classes of graphs with infinite
degrees. [8]

The next chapter, Chapter 8, is devoted to an extension of MacLane’s pla-
narity criterion to locally finite graphs. The original version of this theo-
rem [33] states that a finite graph is planar if and only if its cycle space
has a basis B such that every edge is contained in at most two members
of B. Solving a problem of Wagner [45], we show that the topological cycle
space allows a verbatim generalization of MacLane’s criterion to locally finite
graphs. [11]

Theorem 8.1.3. Let G be a countable locally finite graph. Then, G is planar
if and only if C(G) has a simple generating set.

This extension then enables us to extend also Kelmans’ planarity criterion [?].
Both MacLane’s and Kelmans’ theorem fail in infinite graphs if only finite
cycles are allowed. We again prove extensions to certain classes of graphs
with infinite degrees. [11]

We now turn to a question on finite graphs due to Locke [31]. He asked
under which conditions the cycle space of a finite graph is spanned by its
long cycles. More precisely, the question is whether there exists a smallest m,
such that if in a finite graph G, every two vertices are joined by a path of
length mk, where k ∈ N, then the cycle space C(G) is generated by the cycles
of length ≥ k.

Locke proves [31] his conjecture for the case that m is allowed to depend
on k: then m ≤ k. We show that m ≤ 2, which also holds for infinite
locally finite graphs. For such, we generalise the problem to infinite k, which
leads inevitably to a topolgical reformulation of the problem. We prove that
if every two vertices are linked by an arc of infinite length (i.e. an arc that
passes through an end), then the cycle space is spanned by the infinite circles
(more precisely, by their edge sets, which we shall call circuits). Together,
this amounts to the following theorem. [10]
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Theorem 9.1.2. Let k ∈ N∪∞. If every two vertices of a locally finite graph
G are the endvertices of an arc of length 2k, then the circuits of length ≥ k
generate the cycle space C(G) of G.

It is easily seen by a Mengerian argument that in an infinite locally finite
2-connected graph the condition of Theorem 9. 1. 2. is satisfied. Thus, the
topological cycle space of an infinite locally finite 2-connected graph is gen-
erated by its infinite circuits.



Chapter 2

Terminology and basic facts

2.1 Basics: rays, ends and separators

The basic terminology we use can be found in Diestel [16]. Our graphs are
undirected, and, unless otherwise stated, simple. When A is a set, we write
⋃

A for the union of all its elements.

Let G be a fixed infinite graph. A 1-way infinite path is called a ray, a 2-way
infinite path is a double ray, and the subrays of a ray are its tails. Two rays
in a graph G are equivalent if no finite set of vertices separates them. As one
easily observes, this condition holds if and only if there are infinitely many
disjoint (finite) R1–R2 paths. This in turn is equivalent to the existence
of a ray that meets both R1 and R2 infinitely often. The corresponding
equivalence classes of rays are the ends of G. We denote the set of ends of G
by Ω(G). An ω-ray is simply a ray of ω ∈ Ω(G).

A set S of vertices or edges of G is said to separate a set V ′ ⊆ V (G) from
an end ω ∈ Ω(G) if it meets every ω-ray that starts in V ′. This is equivalent
to that the (unique) component C of G − S with ω ∈ C is disjoint from V ′.
Similarily, S separates two ends ω and ω′, if the closure of each component
of G − S contains at most one of ω, ω′.

For a subgraph H ⊆ G, the boundary ∂∗
GH of H (or ∂∗H , where no confusion

is possible) is the set N(G−H) of all neighbours in H of vertices of G−H .
Analogously, the co-boundary ∂GH of H (or ∂H) is the cut EG(H, G − H).
In particular, ∂∗G, ∂G, ∂∗∅, and ∂∅ are all empty.

A region of G is an induced subgraph H which is connected and whose co-
boundary is finite. Then H ′ ⊆ H is a region of G if and only if it is a region
of H . The region H is even resp. odd if |∂H| is even resp. odd. Note that
given a subgraph H ⊆ G and an end ω ∈ Ω(G) with ω /∈ H its boundary

7



8 Terminology and basic facts

∂∗H separates ω from V (H). The same is true for the co-boundary ∂H .

A standard tool in infinite graph theory is König’s infinity lemma (see for
example Diestel [16] for a proof):

Lemma 2.1.1. Let W1, W2, . . . be an infinite sequence of disjoint non-empty
finite sets, and let H be a graph on their union. For every n ≥ 2 assume that
each vertex in Wn has a neighbour in Wn−1. Then H contains a ray v1v2 . . .
with vn ∈ Wn for all n.

2.2 The topological space |G|

Let us define a topology, which we call VTop, on G together with its ends;
if G is locally finite, it is known as its Freudenthal compactification. At
the end of Chapter 7, we introduce a topology on certain classes of graphs
with infinite degree, which is called ITop. For locally finite graphs, VTop

and ITop coincide.

We begin by viewing G itself (without ends) as the point set of a 1-complex.
Then every edge is a copy of the real interval [0, 1], and we give it the corre-
sponding metric and topology. For every vertex v we take as a basis of open
neighbourhoods the open stars of radius 1/n around v. (That is to say, for
every integer n ≥ 1 we declare as open the set of all points on edges at v
that have distance less than 1/n from v, in the metric of that edge.)1

In order to extend this topology to Ω(G), we take as a basis of open neigh-
bourhoods of a given end ω ∈ Ω(G) the sets of the form

Ĉ(S, ω) := C(S, ω) ∪ Ω(S, ω) ∪ E̊(S, ω) ,

where S ⊆ V (G) is a finite set of vertices, C(S, ω) is the unique component
of G − S in which every ray in ω has a tail, Ω(S, ω) is the set of all ends
ω′ ∈ Ω(G) whose rays have a tail in C(S, ω), and E̊(S, ω) is the set of all
inner points of edges between S and C(S, ω). We also write C(S, ω) for the
union of C(S, ω) and Ω(S, ω). Let |G| denote the topological space on the
point set V (G) ∪ Ω(G) ∪

⋃

E(G) thus defined. We shall freely view G and
its subgraphs either as abstract graphs or as subspaces of |G|. Note that in
|G| every ray converges to the end of which it is an element.

Given a set X ⊆ |G|, put V (X) := X ∩V , and let E(X) be the set of edges e
with e ⊆ X. We write X for the closure of X in |G|. For example, the

1If G is locally finite, this is the usual identification topology of the 1-complex. Vertices
of infinite degree, however, have a countable neighbourhood basis in VTop, which they
do not have in the 1-complex.
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set C(S, ω) defined above is the closure in |G| of the set C(S, ω). Generally,
the difference between a subgraph H and its closure H is always a set of
ends of G (possibly empty). These need not correspond to ends of H and
should not be confused with them. For example, if G is the 1-way infinite
ladder and H consists of all the rungs, then H \ H consists of one point,
the unique end ω of G. But H itself has no ends. Similarly, the subgraph
H ′ = G−E(H) of G consists of two disjoint rays and thus has two ends, but
H ′ \ H ′ = {ω} as before.

2.3 Arcs, circles and topological forests

Let us first see how the notion of a path generalizes in our topological setting.
A continuous image of the unit interval [0, 1] in |G| is a topological path. The
images of 0 and 1 are the endpoints of the topological path. A homeomorphic
image of [0, 1] in |G| is called an arc in |G|. Observe that this definition
includes all finite paths. Analogously to ω-rays, let us say that an arc is an
ω-arc, if the end ω is one of its endpoints.

Similarly, a set C ⊆ |G| is a circle if it is homeomorphic to the unit circle.
Then C includes every edge of which it contains an inner point, and the
graph consisting of these edges and their endvertices is the cycle defined
by C. Conversely, it is not hard to show [17] that C ∩ G is dense in C, so
every circle is the closure in |G| of its cycle and hence defined uniquely by it.
Note that every finite cycle in G is also a cycle in this sense, but there can
also be infinite cycles. The edge set of a cycle is called a circuit. See [17, 18]
for more details on infinite cycles.

Having adapted the notion of a cycle to our topological viewpoint, we must
do the same for forests and, in particular, spanning trees. The closure H
in |G| of a subgraph H of G is a topological forest if it contains no circles.
A topological spanning tree is a path-connected topological forest in |G| that
contains all vertices of G (it then also contains all ends and all edges of which
it contains inner points). See [19] for more details on topological spanning
trees.

A fundamental property of a tree is that it contains a path between any two of
its vertices. That is the reason why topological spanning trees are required
to be path-connected rather than only topologically connected. The next
theorem shows that this makes no difference in locally finite graphs2.

Theorem 2.3.1.[19] If G is locally finite, then every closed connected subset

2Although the topology considered in [19] is slightly different, it coincides with ours for
locally finite graphs. See also the footnote following Theorem 2.5.1.
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of |G| is path-connected.

2.4 Degrees of ends

Let us now introduce our (two) concepts of end degrees. As ends are equiv-
alence classes of rays, the degree of an end should in some way be related to
its rays. Also, the rays may be seen as somewhat analoguos to the incident
edges of a vertex, whose number is the degree of the vertex.

Thus there are basically two possibilities how the degree notion can be ex-
tended to ends. The vertex-degree (also known as the multiplicity) of an end
ω ∈ Ω(G) is defined as the supremum of the cardinalities of sets of vertex-
disjoint rays in ω. Similarly, the edge-degree of ω is the supremum of the
cardinalities of sets of edge-disjoint rays in ω. These two suprema are in-
deed maxima: this is shown in [25] for the vertex-degree, and in Chapter 4,
Lemma 4.4.5 (see also [12]), for the edge-degree (in this respect, Andreae [3]
proves a similar result).

For a definition of the (edge-) degree of an end in a subgraph H ⊆ G, and
for a definition of the parity of an end, consult Chapter 4.

2.5 The cycle space C(G)

Call a family (Di)i∈I of subsets of E(G) thin if no vertex of G is incident with
an edge in Di for infinitely many i. (Thus in particular, no edge lies in more
than finitely many Di.) Let the sum

∑

i∈I Di of this family be the set of all
edges that lie in Di for an odd number of indices i, and let the topological
cycle space C(G) of G be the set of all sums of (thin families of) circuits, finite
or infinite. Symmetric difference as addition makes C(G) into an F2 vector
space, which coincides with the usual cycle space of G when G is finite. We
remark that C(G) is closed under taking infinite thin sums [17, 18], which is
not obvious from the definitions.

As with finite graphs, elements of the cycle space can be decomposed into
cycles:

Theorem 2.5.1. [18] Every element of the topological cycle space C(G) of a
graph G is the edge-disjoint union of cycles.

We remark that, although the topology for |G| considered in [17, 18, 19] is
slightly larger than ours3, Theorem 2.5.1, as well as Theorem 2.3.1 above

3There, some more basic open sets are allowed: in the place of E̊(S, ω) we could take
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and Theorem 2.5.2 below, are nevertheless applicable in our context. This is
because the cycles in |G| coincide for these topologies: as one readily checks,
the identity on |G| between the two spaces is bicontinuous when restricted
to a circle in either space.

The orthogonality to every cut of G is another basic characterisation of the
elements of the cycle space of a finite graph. The straightforward generalisa-
tion of this fact will serve as one of our main tools to decide whether a given
set of edges is an element of the cycle space.

Theorem 2.5.2 (Diestel and Kühn [17]). Let G be a locally finite graph,
and let Z ⊆ E(G). Then Z ∈ C(G) if and only if |F ∩ Z| is even for every
finite cut F of G.

an arbitrary union of open half-edges from C towards S, one from every S–C edge. When
G is locally finite, this yields the same topology. When G has vertices of infinite degree,
it is easy to see that our topology is slightly sparser but still yields the same topological
cycle space.
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Chapter 3

The Erdős-Menger conjecture
with ends

3.1 Introduction

Erdős conjectured (see [38]) that Menger’s theorem should extend to infinite
graphs as follows:

Erdős-Menger Conjecture. For every graph G = (V, E) and any two
sets A, B ⊆ V there is a set P of disjoint A–B paths in G and an A–B
separator X consisting of a choice of one vertex from each of the paths in P.

A proof of this conjecture has recently been obtained by Aharoni and Ber-
ger [1].

There is a natural extension of the Erdős-Menger conjecture in which the
sets A and B may contain ends as well as vertices. Here, the A–B paths in P
can be either finite paths linking two vertices, or rays linking a vertex to an
end, or double rays linking two ends. Similarly, the separator X may contain
ends (that lie in A or B), thus blocking any ray belonging (= converging) to
that end. These notions will be precisely defined in the next section.

We prove the extended ends version of the conjecture by reducing it to the
vertex version. Our proof uses a refinement of techniques developed in [13],
where this reduction was carried out for countable graphs.

The Erdős-Menger conjecture for ends is not true for arbitrary sets A and B
(of vertices and ends): a necessary condition is that the closure of A in |G|
does not meet B, and vice versa. This condition cannot even be dropped, if
the considered graph G is a tree. An example is this respect will be given in
Section 3.3.3.

13
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The main result of this chapter is the following.

Theorem 3.1.1. [9] Let G = (V, E, Ω) be a graph and let A, B ⊆ V ∪ Ω
be such that A ∩ B = ∅ = A ∩ B, the closures being taken in |G|. Then G
satisfies the Erdős-Menger conjecture for A and B.

As mentioned in the introduction, one may also consider a purely topological
version of the Erdős-Menger conjecture, in which P is any set of A–B arcs
in the space |G|, and the set X is required to meet every A–B arc in |G|.
This version of the conjecture can fail unless A and B have disjoint closures
in |G|. But in that case it can be reduced to Theorem 3.1.1 (see [13]), so the
purely topological version offers nothing new.

3.2 Discussion of the ends version

Let us make clear the definitions of paths and separators, which differ slightly
from the usual ones (as they may contain ends), but are vital for the precise
meaning of our result. Throughout this chapter, paths in G can be finite
paths (which contain at least one vertex), rays, double rays, or singleton sets
{ω}, where ω is an end of G. The closure of an infinite path P contains one
or two ends of G. (Even if P is a double ray, its closure may contain only
one end, as in the ladder example above.) We will often consider such an end
as the first or last point of P , and when we say that two paths are disjoint
then these points too shall be distinct. (The first and last point of a path
P = {ω}, of course, is ω.) For A, B ⊆ V ∪ Ω, a path is an A–B path if its
first but no other point lies in A and its last but no other point lies in B.

The union of a ray R and infinitely many disjoint paths starting on R but
otherwise disjoint from R is a comb with spine R. The last points (vertices
or ends) of those paths are the teeth of the comb. We will frequently use the
following simple lemma:

Lemma 3.2.1. [9] In the graph G = (V, E, Ω) let R be a ray of an end ω,
and let X ⊆ V ∪ Ω such that ω /∈ X. Then ω ∈ X if and only if G contains
a comb with spine R and teeth in X.

A set X ⊆ V ∪ Ω is an A–B separator in a subspace T ⊆ |G| if every path
P in T with its first point in A and its last point in B satisfies P ∩ X 6= ∅.
(We express this informally by saying that “P meets X”, though strictly
speaking we shall mean P rather than just P .) We say that a set Y ⊆ V ∪Ω
lies on a set P of disjoint A–B paths if Y consists of a choice of exactly
one vertex or end from every path in P. We say that G satisfies the Erdős-
Menger conjecture for A and B, or that the Erdős-Menger conjecture holds for
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G, A, B, if |G| contains a set P of disjoint A–B paths and an A–B separator
on P. (Thus, officially, we always refer to the ends version of the conjecture.
But this is compatible with the traditional terminology: if neither A nor B
contains an end then neither can any A–B path, so the conjecture with ends
automatically defaults to the original conjecture in this case.)

The terms needed to state the main result of this chapter are now precisely
defined. We shall prove the following slight strengthening of Theorem 3.1.1
which, as in the vertex case, allows the intersection of A and B itself to be
non-empty:

Theorem 3.2.2.[9] Let G = (V, E, Ω) be a graph, and let A, B ⊆ V ∪ Ω be
such that A∩ (B \B) = ∅ = (A\A)∩B. Then G satisfies the Erdős-Menger
conjecture for A and B.

We remark that the disjointness condition in Theorem 3.2.2 is necessary, even
if the considered graph has a simple structure, e.g. is a tree; a counterexample
for when the condition is violated is given in Section 3.3. The disjointness
condition means that any ray whose end lies in A can be separated from B by
a finite set of vertices, and vice versa with A and B interchanged. Note that
this does not imply the much stronger condition that A and B can be finitely
separated, in which case the proof is immediate by standard alternating path
techniques [13]. A more typical example for the disjointness condition is to
take as A and B distinct levels of vertices in a tree: if the tree is ℵ0-regular,
for example, it contains infinitely many disjoint paths between these levels,
so A and B have disjoint closures (in fact, are closed and disjoint) but cannot
be finitely separated.

3.3 Trees are not easier

Let T be obtained from the infinite binary tree by adding a copy v′ of each
vertex v and joining v and v′ with an edge. Denote by A the set of all newly
added vertices, and choose as B the set Ω(T ). Observe that A ∩ B 6= ∅. In
fact, this violation of the disjoint closures condition makes the Erdős-Menger
conjecture fail.

Suppose that there is a set of disjoint A–B paths P and an A–B separator
X on P. We claim that X ⊆ B. Indeed, otherwise there is path P ∈ P that
meets X in a vertex x. Let y be the vertex that follows x on P , and let z be
the one that follows y. Then zP fails to meet X, implying that z′ ∈ X, since
X separates z′ from B. But then the path P ′ ∈ P that starts in z′ meets P .
As x 6= z′, and hence P 6= P ′, this contradicts the disjointness of the paths
in P.
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We have thus shown that X ⊆ B. Now, as |A| is countable, while |B| is not,
there is an end ω ∈ B which P and hence also X misses. But then we easily
find an A–ω path that misses X, yielding the desired contradiction, as X is
an A–B separator.

3.4 Proof of the theorem

Our aim is to reduce the ends version of the Erdős-Menger conjecture, The-
orem 3.2.2, to the original vertex version as stated in the Introduction and
recently proved by Aharoni and Berger.

We begin by showing that, as in the vertex case of the conjecture, we may
assume without loss of generality that A ∩ B = ∅. In the vertex case, one
simply deletes A ∩ B from the graph, finds a path system and separator in
G− (A∩B), and then adds the deleted vertices both to the path system (as
singleton A–B paths) and to the separator, to obtain a solution for G. When
A∩B is infinite, however, deleting it can result in the destruction or splitting
of ends. Before we allow ourselves to assume that A ∩ B = ∅, therefore, we
have to make sure that this will not affect any ends in A or B. Our first
lemma ensures this, and thereby reduces the stronger form of our theorem
(Theorem 3.2.2) to the version stated in the introduction, Theorem 3.1.1.

Lemma 3.4.1.[9] Let G = (V, E, Ω) be a graph, and let A, B ⊆ V ∪Ω satisfy

A ∩ (B \ B) = ∅ = (A \ A) ∩ B.

Then for the graph G′ := G−(A∩B∩V ) there are sets A′, B′ ⊆ V (G′)∪Ω(G′)
satisfying the following conditions:

(i) if A ⊆ V then A′ ⊆ A, and if B ⊆ V then B′ ⊆ B;

(ii) A′ ∩ B′ = ∅ = A′ ∩ B′;

(iii) if G′ satisfies the Erdős-Menger conjecture for A′ and B′, then G sat-
isfies it for A and B.

Proof. Put A′ := A \ B and B′ := B \ A, both of which are subsets of |G|.
Consider a ray R of an end α in A′ or B′, say in A′. Then R has a tail
in G′. Indeed, if not then there are vertices of A ∩ B ∩ V ⊆ B in every
neighbourhood of α ∈ A \ B. Consequently, α ∈ A ∩ (B \ B), which is a
contradiction. Similarly, two rays R1, R2 in G′ of which R1 is a ray of an
end ω ∈ A′ ∪ B′ are equivalent in G′ if and only if they are equivalent in G.
Indeed, if R1 and R2 are equivalent in G then there is a ray R3 ∈ ω that
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meets both of R1 and R2 infinitely often. Now R3 has a tail in G′, showing
that R1 and R2 are also equivalent in G′.

Thus, mapping every end of G in A′∪B′ to the unique end of G′ that contains
tails of its rays defines a bijection between the ends in A′ ∪ B′ and certain
ends in G′. Using this bijection (and a slight abuse of notation) we may
view A′ and B′ also as subsets of V (G′) ∪ Ω(G′). Clearly, these satisfy (i).
Moreover, A′ ∩B′ is still empty, so the disjointness assumption stated in the
lemma implies (ii).

For (iii), let X ′ be an A′–B′ separator on a set of disjoint A′–B′ paths P ′ in
G′. Adding to P ′ the trivial paths {x} for all x ∈ A ∩ B yields a set P of
disjoint A–B paths with the A–B separator X := X ′ ∪ (A ∩ B) on it.

In Lemma 3.4.5, we shall need a family of disjoint subgraphs of G (with
certain properties) such that every end of A lies in the closure of one of these
subgraphs. Such a family cannot always be found. But our next lemma finds
instead a family of subgraphs such that the ends of A not contained in their
closures form a set I that can be ignored: those ends will automatically be
separated from B by any (A\ I)–B separator on a set of disjoint A–B paths.

Lemma 3.4.2. [9] Let G = (V, E, Ω) be a graph, and let A, B ⊆ V ∪ Ω be
such that A ∩ B = ∅ = A ∩ B. Then for every set AΩ ⊆ A ∩ Ω there exist
a set I ⊆ AΩ, an ordinal µ∗, and families (Gµ)µ<µ∗ and (Sµ)µ<µ∗ such that,
for every µ < µ∗, the graph Gµ −Sµ is a component of G−Sµ with Sµ as its
finite set of neighbours, and

(i) Gµ − Sµ ∩ B = ∅;

(ii) if Gµ 6= ∅ then Gµ ∩ AΩ 6= ∅;

(iii) V (Gν ∩ Gµ) ⊆ Sν ∩ Sµ for all ν < µ.

Moreover,

(iv) for every end α ∈ AΩ \ I there is a µ < µ∗ with α ∈ Gµ;

(v) every (A \ I)–B separator on a set of disjoint (A \ I)–B paths is also
an A–B separator.

Proof. We construct the families (Gµ)µ<µ∗ and (Sµ)µ<µ∗ and a transfinite
sequence I0 ⊆ I1 ⊆ . . . ⊆ AΩ recursively. The sets Iµ (µ < µ∗) will serve as
precursors to I. To simplify notation, we write Cµ := Gµ − Sµ for every µ.
For the construction, we will in addition to (i)–(iii) require for every µ that

(vi) Iµ ∩ Gν = ∅ for all ν ≤ µ.
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We start by setting I0, G0, S0 := ∅. Consider the least ordinal µ > 0 such
that the above sets are already defined for all λ < µ. If µ is a limit, we set

Iµ :=
⋃

λ<µ

Iλ

and Gµ, Sµ := ∅. This choice clearly satisfies (i)–(iii) and (vi).

Suppose now that µ is a successor, µ = λ + 1 say. If every end in AΩ \ Iλ

lies in some Gν with ν < µ, we set µ∗ := µ and terminate the recursion.
So suppose there is an end α ∈ AΩ \ Iλ that lies in no earlier Gν . Then, if
possible, choose a finite vertex set S such that C(S, α) avoids all Gν with
ν < µ.

Such a choice of S is impossible if and only if

for every finite S ⊆ V there is a ν < µ with C(S, α) ∩ Gν 6= ∅. (3.1)

In this case we choose to ignore α, i.e. set Iµ := Iλ ∪ {α} and Gµ, Sµ := ∅.
Again the requirements (i)–(iii) are clearly met, while (vi) holds by the choice
of α.

Now suppose we can find S as desired. As A∩B = ∅, we can also find a basic
open neighbourhood Ĉ(S ′, α) of α in |G| that is disjoint from B. We now
define Sµ as the set of neighbours of C(S∪S ′, α) and Gµ := G[Sµ∪C(Sµ, α)].
Then (i) holds since Sµ ⊇ S ′, while (ii) holds as α ∈ Gµ. To see (iii), first
note that

Gν ∩ Cµ = ∅ for all ν < µ

by the choice of S. So, all we have to show is that Gν ∩ Sµ ⊆ Sν . Consider
a vertex v ∈ Gν ∩ Sµ. Since Sµ is the set of neighbours of Cµ, there is a
vertex w ∈ Cµ adjacent to v. As noted above, w /∈ Gν . So v is a vertex in
Gν = Cν ∪ N(Cν) with a neighbour outside Gν , implying v /∈ Cν and hence
v ∈ Sν , as desired.

Let us finally set Iµ := Iλ and verify (vi). We only need to show that
Iµ ∩ Gµ = ∅. Suppose that intersection contains an end α′. Let µ′ < µ be
minimal such that α′ ∈ Iµ′ . Then (3.1) should have been satisfied for µ′ and
α′, but fails with S := Sµ as C(Sµ, α′) = Cµ, a contradiction.

Having defined Iµ, Gµ and Sµ for all µ < µ∗ so that (i)–(iii) and (vi) are
satisfied, we put

I :=
⋃

µ<µ∗

Iµ.

Together with the definition of µ∗ this implies (iv). Observe that from (vi)
we obtain I ∩ Gµ = ∅ for all µ < µ∗.
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To establish (v) let P be a system of disjoint (A \ I)–B paths and X an
(A \ I)–B separator on P. Now suppose that X is not an A–B separator in
|G|, i.e. there is a path Q from A to B that avoids X. By turning Q into a
path Q̃ from A \ I to B that avoids X, we will obtain a contradiction.

We may assume that Q starts at an end α ∈ I. Let µ be the step at which α
was added to I, i.e. let µ be minimal with α ∈ Iµ. Choose a finite vertex set
S such that C(S, α) is disjoint from B (this is possible, as A∩B = ∅). Then
any path of P that meets C(S, α) must pass through S. Hence only finitely
many paths of P can meet C(S, α), and so Xα := X ∩ C(S, α) is also finite.
Conditions (iii) and (iv) ensure that every end in Xα lies in exactly one Cλ;
let {λ1, . . . , λm} be the set of these λ. Then for

S ′ := S ∪ (Xα ∩ V ) ∪
m
⋃

i=0

Sλi

we have

C(S ′, α) ∩ X = ∅.

Now, all we need is a point of A \ I that lies in C(S ′, α) (and thus can be
used to change Q into the desired path). Indeed, if there is an ordinal λ < µ
such that Gλ 6= ∅ and

Cλ ⊆ C(S ′, α), (3.2)

we can complete the proof as follows. By (ii) for λ there will be an end α′ ∈ A
in Cλ ⊆ C(S ′, α). Since I ∩ Gλ = ∅, we have α′ ∈ A \ I. Take an α′–Q path
P in C(S ′, α) with last vertex x, say. Then P avoids X, and hence so does
the path Q̃ := PxQ. Thus, Q̃ is as desired.

So suppose there is no ordinal λ < µ satisfying (3.2). Then for all λ < µ we
have either Cλ∩C(S ′, α) = ∅ or Cλ∩S ′ 6= ∅. As all the Cλ are disjoint by (iii),
only finitely many of them meet S ′; let λm+1, . . . , λn be the corresponding
ordinals. Then

S ′′ := S ′ ∪
n
⋃

i=m+1

Sλi

satisfies C(S ′′, α) ∩ Cλ = ∅ for all λ < µ.

However, Gλ ∩ C(S ′′, α) cannot be empty for all λ < µ, as this would con-
tradict (3.1) for step µ with S := S ′′. So there exists an ordinal λ < µ with
Sλ ∩ C(S ′′, α) 6= ∅. A vertex v in this intersection must have a neighbour in
Cλ, which then also lies in S ′ ∪C(S ′, α) because C(S ′′, α) ⊆ C(S ′, α). Thus,

(S ′ ∪ C(S ′, α)) ∩ Cλ 6= ∅.
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Since Cλ * C(S ′, α) by assumption, this implies that Cλ meets S ′. But then
λ ∈ {λm+1, . . . , λn} and hence Sλ ⊆ S ′′, contradicting the fact that v lies in
both Sλ and C(S ′′, α).

For our end-to-vertex reduction we need two more lemmas.

Lemma 3.4.3 (Diestel [13]). Let H be a subgraph of a graph G, let S ⊆
V (H) be finite, and let T ⊆ V (H) ∪ Ω(G) be such that T ⊆ H. Then H
contains a set P of disjoint S–T -paths and an S–T -separator (in H) on P.

For a set T of vertices in a graph H , a T -path is a path that meets T only in
its first and last vertex. A set of paths will be called disjoint outside a given
subgraph Q ⊆ H if distinct paths meet only in Q.

Lemma 3.4.4. [42] Let H be a graph, T ⊆ V (H) finite, and k ∈ N. Then
H has a subgraph H ′ containing T such that for every T -path Q = s . . . t in
H meeting H − H ′ there are k distinct T -paths from s to t in H ′ that are
disjoint outside Q.

Our next lemma allows us to replace the set A ⊆ V ∪ Ω in Theorem 3.1.1
with a set A′ consisting only of vertices.

Lemma 3.4.5. [9] Let G = (V, E, Ω) be a graph, and let A, B ⊆ V ∪ Ω be
such that A ∩ B = ∅ = A ∩ B. Then there exist a minor G′ = (V ′, E ′, Ω′)
of G and sets A′ ⊆ V ′ and B′ ⊆ V ′ ∪ Ω′ satisfying the following conditions:

(i) if B ⊆ V then B′ ⊆ B;

(ii) A′ ∩ B′ = ∅ = A′ ∩ B′;

(iii) G satisfies the Erdős-Menger-conjecture for A and B if G′ satisfies it
for A′ and B′.

Proof. Applying Lemma 3.4.2 with AΩ := A ∩ Ω we obtain an ordinal µ∗,
subgraphs Gµ, finite vertex sets Sµ and a set of ends I ⊆ A. Our aim is to
change G into G′ by deleting and contracting certain connected subgraphs
of our graphs Gµ − Sµ. By Lemma 3.4.2 (iii) we shall be able to do this
independently for the various Gµ: for each µ < µ∗ separately, we shall find
in Gµ − Sµ a set D1(µ) of connected subgraphs to be deleted, and another
set D2(µ) of connected subgraphs that will be contracted.

Fix µ < µ∗. If Gµ is empty we let D1(µ) = D2(µ) = ∅. Assume now that
Gµ 6= ∅. Put Aµ := A∩Gµ. Applying Lemma 3.4.3 to H = Gµ we find in Gµ

a finite set P of disjoint Sµ–Aµ paths and an Sµ–Aµ separator Xµ on P. We
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write Xµ = Uµ ∪ Oµ, where Uµ = Xµ ∩ V and Oµ = Xµ ∩ Ω, both of which
are finite since |Xµ| ≤ |P| ≤ |Sµ|. Moreover,

Uµ separates Sµ from Aµ \ Oµ in G. (3.3)

Indeed, every Sµ–(Aµ \ Oµ) path in G lies in Gµ and hence meets Xµ, and
since it cannot meet Oµ unless it ends there, it meets Xµ in Uµ.

We define D1(µ) as the set of all the components D of G−Uµ whose closure
D meets Aµ \Oµ. By (3.3), these components satisfy D ⊆ Gµ−Sµ, and their
neighbourhood N(D) ⊆ Uµ in G is finite. In addition,

D ∩ Oµ = ∅ for all D ∈ D1(µ). (3.4)

For if α ∈ D ∩ Oµ, say, and P is the Sµ–Aµ path in P that ends in α, then
P has a tail in D. Since P does not meet Uµ ⊇ N(D), this implies P ⊆ D.
Consequently, Sµ ∩ D is not empty as it contains at least the first vertex of
P . This contradicts D ⊆ Gµ − Sµ.

Put

Hµ := Gµ −
⋃

D1(µ).

Note that, as every v ∈ Uµ lies on a path in P,

Gµ contains a set of disjoint Hµ–Aµ paths whose set of first points
is Uµ.

(3.5)

By (3.3) and the definition of Hµ, we have Hµ∩A ⊆ Uµ∪Oµ = Xµ. Since Oµ

is finite, we can extend Uµ ∪Sµ to a finite set Tµ ⊆ V (Hµ) that separates the
ends in Oµ pairwise in G. Let H ′

µ be the finite subgraph of Hµ containing Tµ

which Lemma 3.4.4 provides for k := |Sµ| + 1, and for each α ∈ Oµ let Dα

be the component of G − H ′
µ to which α belongs. Finally, we conclude our

definitions for µ by setting D2(µ) := {Dα |α ∈ Oµ}.

Define for i = 1, 2

Di :=
⋃

µ<µ∗

Di(µ).

Observe that, by Lemma 3.4.2 (iii) and since their neighbourhoods in G are
finite, the elements of D1 ∪ D2 have pairwise disjoint closures.

Before we can define G′, we first have to introduce a graph G̃ = (Ṽ , Ẽ, Ω̃)
from which we will obtain G′ by deleting certain vertices. Let G̃ be obtained
from G −

⋃

D1 by contracting every Dα ∈ D2 to a single vertex aα, and put

A∗ := {aα |Dα ∈ D2}.
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Then for Z :=
⋃

D1 ∪
⋃

D2 we have

G − Z = G ∩ G̃ = G̃ − A∗.

By Lemma 3.4.2 (iii) and by (3.3), the union of the sets of paths in (3.5) for
all µ < µ∗ is a set of disjoint paths. Thus, for U :=

⋃

µ<µ∗ Uµ

there is a set of disjoint U–A paths whose set of first points is U ,
and whose paths meet G̃ only in U .

(3.6)

An important property of G̃ is that the ends of G in B∩Ω correspond closely
to ends of G̃. To establish this correspondence formally, we begin with the
following observation:

Every ray of an end β ∈ B has a tail in G − Z. (3.7)

To see this, recall that all the D ∈ D1 ∪ D2 have pairwise disjoint closures,
and that each of them is a connected subgraph of G whose closure contains
an end or a vertex of A. Hence, a ray R of β meets only finitely many
D ∈ D1 ∪D2, as we could otherwise find infinitely many disjoint R–A paths,
giving A ∩ B 6= ∅ by Lemma 3.2.1 – a contradiction. Also, R meets every
D ∈ D1 ∪ D2 only finitely often. Indeed, D lies in Gµ for some µ < µ∗ and
is thus, by Lemma 3.4.2 (i), separated from β by its finite set of neighbours
N(D). This establishes (3.7).

Let R1, R2 be two rays in G ∩ G̃, and assume that the end of R1

lies in B. Then R1 and R2 are equivalent in G if and only if they
are equivalent in G̃.

(3.8)

To prove (3.8), suppose first that R1, R2 are equivalent in G, i.e. belong to the
same end β ∈ B. Then there is a ray R3 that meets both R1 and R2 infinitely
often, and hence ends in β. By (3.7), R3 has a tail in G−Z = G̃−A∗, showing
that R1 and R2 are equivalent also in G̃.

Conversely, if R1 and R2 are joined in G̃ by infinitely many disjoint paths,
we can replace any vertices aα ∈ Ṽ \ V = A∗ on these paths by finite paths
in Dα to obtain infinitely many disjoint R1–R2 paths in G. This completes
the proof of (3.8).

We can now define our correspondence between the ends in B and certain
ends of G̃. For every end β ∈ B there is by (3.7) an end β ′ ∈ Ω̃ such that
β ∩ β ′ 6= ∅. By (3.8), this end β ′ is unique and the map β 7→ β ′ is injective.
Moreover,

B̃ := (B ∩ V ) ∪ {β ′ | β ∈ B ∩ Ω} ⊆ Ṽ ∪ Ω̃
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by Lemma 3.4.2 (i). For each µ < µ∗, let

Ãµ := Uµ ∪ {aα |α ∈ Oµ},

if Gµ 6= ∅; if Gµ = ∅, put Aµ, Ãµ := ∅. Then let

Ã :=

(

A \

(

⋃

µ<µ∗

Aµ ∪ I

))

∪
⋃

µ<µ∗

Ãµ,

which is a subset of Ṽ by Lemma 3.4.2 (iii),(iv). Finally, let

G′ := G̃ − (Ã ∩ B̃).

To show the assertions (i)–(iii), we will apply Lemma 3.4.1 to the graph G̃
and the sets Ã and B̃.

So, let us show that

(Ã \ Ã) ∩ B̃ = ∅ = Ã ∩ (B̃ \ B̃)

(with closures taken in |G̃|). We trivially have Ã ∩ (B̃ \ B̃) = ∅ because

Ã ⊆ Ṽ . To prove that (Ã \ Ã) ∩ B̃ = ∅, consider an end β ′ ∈ B̃. The
corresponding end β ∈ B has a neighbourhood C := Ĉ(S, β) in |G| that
avoids A. By (3.6), and since S is finite, the intersection C ∩ U =: UC is
finite. Also, as in the proof of (3.7), C may meet only finitely many Dα ∈ D2.
Denote by OC the set of the corresponding aα ∈ G̃. Adding to S \ Z the
sets UC and OC then yields a finite set S ′ ⊆ Ṽ such that the neighbourhood
Ĉ ′(S ′, β ′) in |G̃| even avoids Ã.

Thus, Lemma 3.4.1 is applicable and yields sets A′ ⊆ V ′ and B′ ⊆ V ′∪Ω′ sat-
isfying (ii). Assertion (i) follows from the definition of B̃ and Lemma 3.4.1 (i).

We now prove assertion (iii) of the lemma. Suppose G′ satisfies the Erdős-
Menger conjecture for A′ and B′. Then, by Lemma 3.4.1, there is also in G̃
a set P̃ of disjoint Ã–B̃ paths and an Ã–B̃ separator X̃ on P̃ . In order to
turn P̃ into a set P := {P | P̃ ∈ P̃} of disjoint A–B paths in G, consider
any P̃ ∈ P̃. If the first point a of P̃ lies in A we leave P̃ unchanged, i.e. set
P := P̃ . If a ∈ Ã \ (A ∪ A∗), then a ∈ Uµ for some µ < µ∗, and we let P be
the union of P̃ with an Aµ–Uµ path in Gµ that ends in a; this can be done
disjointly for different P̃ ∈ P̃ if we use the paths from (3.6). Moreover, the
Aµ–Hµ path concatenated with P̃ in this way has only its last vertex in G̃,
so it will not meet any other vertices on P̃ . Finally if a = aα ∈ A∗, we let P
be obtained from P̃ by replacing a with a path in Dα that starts at the end
α and ends at the vertex of Dα incident with the first edge of P̃ (the edge
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incident with a). In all these cases we have P ⊆ G, because P̃ has no vertex
in A∗ other than possibly a. And no vertex of P other than possibly its last
vertex lies in B, because B ∩ V = B̃ ∩ Ṽ and any new initial segment of P
lies in a subgraph Gλ − Sλ of G which avoids B by Lemma 3.4.2 (i).

It remains to check that the paths P just defined have distinct last points in
B even when the last points of the corresponding paths P̃ are ends. However
if P̃ ends in β ′ ∈ B̃ then its tail P̃ − a ⊆ P ⊆ G is equivalent in G̃ to some
ray in β ′ ∩ β, by definition of β ′. By (3.8) this implies P̃ − a ∈ β, so the last
point of P is β ∈ B. And since the map β 7→ β ′ is well defined, these last
points differ for distinct P , because the corresponding paths P̃ have different
endpoints β ′ by assumption.

We still need an A–B separator on P. The only vertices x ∈ X̃ that do not
lie on the path P obtained from the path P̃ containing x are points in A∗.
So let X be obtained from X̃ by replacing every end β ′ ∈ X̃ ∩ B̃ with the
corresponding end β ∈ B and replacing every aα ∈ X̃ ∩ A∗ with the end
α ∈ A. Since P ∈ P starts in α if P̃ starts in aα (and P ends in β if P̃ ends
in β ′), this set X consists of a choice of one point from every path in P.

Let us then show that

X is an A–B separator in G. (3.9)

Suppose there exists a path Q ⊆ G − X that starts in A and ends in B.
Lemma 3.4.2 (v) enables us to choose Q as a path starting in A\ I. Our aim
is to turn Q into an Ã–B̃ path Q′ in G̃ that avoids X̃, which contradicts the
choice of X̃.

If Q meets
⋃

D1, it has a last vertex there by (3.7), in D ∈ D1(λ), say. Its
next vertex a lies in Uλ, by the definition of D. We then define (for the time
being) Q′ as the final segment aQ of Q starting at a. If Q has no vertex in
⋃

D1, then either the first point of Q is a vertex a ∈ A∩ Ã (in which case we
put Q′ := Q), or Q starts at an end α ∈ A \ I. By Lemma 3.4.2 (iv), there
exists a λ < µ∗ such that α ∈ Gλ, which implies α ∈ Oλ. We make a := aα

the starting vertex of Q′ and continue Q′ along Q, beginning with the last
Dα–G̃ edge on Q. Our assumption of α /∈ X implies that aα /∈ X̃, by the
definition of X. Thus in the first two cases, Q′ is now a path in G−

⋃

D1; in
the third, Q′ is a path in (G −

⋃

D1)/Dα, which starts at the vertex a ∈ Ã
and avoids X̃.

However, Q′ may still meet D2. And although we know from (3.7) that Q′

has a last vertex in
⋃

D2, say in Dα′ , we cannot simply shorten Q′ to a
path aα′Q′ in G̃, because it may happen that aα′ ∈ X̃. Instead, we will use
Lemma 3.4.4 to replace any segments of Q′ that meet some Dα ∈ D2 (with
aα 6= a) by paths through the corresponding Gµ that avoid X̃. As we only
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have to deal with a finite initial segment of Q′ and the Dα are all disjoint,
we are able to modify Q′ step by step. Eventually, we will obtain a (walk
that can be pruned to a) path Q′ in G̃ that avoids X̃, yielding the desired
contradiction.

So consider a segment of Q′ that meets some Dα ∈ D2. By definition of Dα

we may assume that segment to be a Tµ-path sQ′t in Hµ, where µ is such that
Dα ⊆ Gµ. By definition of H ′

µ (which is a subgraph of G̃ by Lemma 3.4.2

(iii), i.e. no parts of H ′
µ were deleted or contracted when we defined G̃), there

are |Sµ| + 1 paths from s to t in H ′
µ that are disjoint outside sQ′t. But H ′

µ

contains at most |Sµ| vertices from X̃: since these lie on disjoint paths ending
in B̃ and Sµ separates H ′

µ ⊆ Gµ from B in G and hence from B̃ in G̃, all of

these paths must meet Sµ. So one of our |Sµ|+ 1 s–t paths in H ′
µ avoids X̃,

and we can use this path to replace sQ′t on Q′. This completes the proof of
(3.9).

Proof of Theorem 3.2.2: Let G = (V, E, Ω) be given, and let A, B ⊆ V ∪Ω
be such that A∩(B\B) = ∅ = (A\A)∩B. By Lemma 3.4.1, we may assume
that A ∩ B = ∅ = A ∩ B. Applying Lemma 3.4.5 twice, first for A and then
for B, we may further assume that A ∪ B ⊆ V . Now the statement to be
proved is Erdős’s conjecture as stated in the Introduction, which has been
proved by Aharoni and Berger [1]. �
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Chapter 4

Degree and parity of ends

4.1 Introduction

One of the most basic characterisations of the elements of the cycle space of
a finite graph is the following (see, for example Diestel [16]):

Theorem 4.1.1. Let H be a subgraph of a finite graph G. Then E(H) is
an element of the cycle space of G if and only if every vertex of G has even
degree in H.

Simple examples show that for infinite graphs it is not sufficient to consider
vertex degrees. Consider, for instance, the double ray D. Since |D| is home-
omorphic to the unit interval, it contains no circles, hence, it follows that
C(D) = {∅}. Thus E(D) /∈ C(D), even though every vertex of D has de-
gree 2 in D. The problem here seems to arise from the ends rather than the
vertices of the considered graph.

In this respect, Diestel and Kühn [18] raised the following problem:

Problem 4.1.2. Characterise the circles and the elements of the cycle space
of an infinite graph in purely combinatorial terms, such as vertex degrees and
‘degrees of ends’.

Now, if we use the vertex-degree defined in Chapter 2, then Theorem 4.1.1
fails for infinite graphs, as the graph G in Figure 4.1 demonstrates. The
degrees resp. vertex-degrees of all vertices and ends are even, but since G
contains an odd cut, its edge set is not an element of C(G) by Theorem 2.5.2.

Looking more closely we see that although the vertex-degree of each end is
even, their edge-degree is odd, namely three. Thus with this measure instead
we would have correctly decided that E(G) /∈ C(G).

27
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Figure 4.1: Both ends have even vertex-degree, but E(G) /∈ C(G).

In fact, it is not a complete surprise that for problems concerning the cycle
space, which is a subspace of the edge space, the edge-degree should be the
more adequate concept. In Chapter 5 we shall encounter a situation where
the vertex-degree is more appropriate.

For measuring edge-degrees in subgraphs, it will be necessary to substitute
‘rays’ with ‘arcs’; the reasons for this will be discussed in Section 4. 4.3.
This notion allows us to solve the first part of Problem 4.1.2; we prove a
straightforward adaption of the well-known fact that the cycles in a finite
graph are exactly its 2-regular connected subgraphs.

Theorem 4.1.3.[12] Let C be a subgraph of a locally finite graph G. Then
C is a circle if and only if C is topologically connected and every vertex or
end x of G with x ∈ C has degree resp. edge-degree two in C.

Depending on its edge-degree, an end can be assigned a parity, ie. the label
‘even’ or ‘odd’—as long as the degree is finite. Inspired by Laviolette [30],
who introduced a concept to measure the parity of vertices of infinite degree,
we assign a parity also to ends of infinite edge-degree [12]. A classification of
ends into even and odd ends has already been achieved by Nash-Williams [36]
for the case of eulerian graphs with only finitely many ends. Our definition
coincides with Nash-Williams’ in these graphs but covers all locally finite
graphs. Moreover, with our definition the following important special case
of Problem 4.1.2 becomes true, which is the main result of this chapter.

Theorem 4.1.4.[12] Let G be a locally finite graph. Then E(G) ∈ C(G) if
and only if every vertex and every end of G has even edge-degree.

An extension of this characterisation to arbitrary subgraphs of G would solve
Problem 4.1.2 completely. We shall offer a conjecture in that respect (see
Section 4.4.4).

We introduce and discuss our parity concept as well as the edge-degree notion
for subgraphs in Sections 4.4.2, 4.4.3, and 4.4.4. Theorem 4.1.4 will be proved
in Section 4.4.5. In Section 4.4.6, we show Theorem 4.1.3 and other results,
and in the last section, we briefly discuss an alternative notion of parity.
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4.2 Parity

Our edge-degree concept clearly divides the ends of finite edge-degree into
even and odd ends, but how are we to deal with ends of infinite edge-degree?
We may not simply treat them as odd ends, since the edge set of the infinite
grid obviously is an element of its cycle space but the only end of the grid
has infinite edge-degree.

On the other hand, classifying all ends of infinite edge-degree as even is
not any better: consider the graph G in Figure 4.2. All vertices have even
degree and both ends have infinite edge-degree, but G has an odd cut (which
together with Theorem 2.5.2 implies that E(G) /∈ C(G)).

Figure 4.2: Both ends have infinite edge-degree, but E(G) /∈ C(G).

Consequently, the edge-degree, if infinite, is not sufficiently fine enough to
determine the parity of an end. For an adequate refinement we will use the
following characterisation of ends with even finite edge-degree.

Lemma 4.2.1. [12] In a locally finite graph G let ω ∈ Ω(G) have finite
edge-degree k. Then the following statements are equivalent:

(i) k is even;

(ii) there is a finite S ⊆ V (G) such that for every finite set S ′ ⊇ S of
vertices the maximal number of edge-disjoint ω-rays starting in S ′ is
even.

Proof. Consider a set R of edge-disjoint ω-rays of maximal cardinality |R| =
k, and let U be the set of starting vertices of R. Then, for every finite set
S ′ ⊇ U , R has maximal cardinality among all sets of edge-disjoint ω-rays
starting in S ′. Thus, putting S := U , we deduce that (i) implies (ii). Also,
(ii) implies (i), which we see by choosing S ′ = S ∪ U .
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Observe that as every finite set S ⊆ V (G) gives (essentially) rise to a neigh-
bourhood Ĉ(S, ω) of ω, condition (ii) in Lemma 4.2.1 can be alternatively
formulated using these neighbourhoods, or using regions whose closures con-
tain ω:

(ii′) There is a region A of G with ω ∈ A such that for every region B ⊆ A
of G with ω ∈ B the maximal number of edge-disjoint rays of ω starting
outside B is even.

This motivates the following definition [12] of the parity of an end: an end
ω of a locally finite graph is said to be even if ω satisfies (ii) of Lemma 4.2.1.
Otherwise ω is odd. Thus, ω is odd if and only if for all finite S ⊆ V (G)
there is a finite set S ′ ⊇ S such that the maximal number of edge-disjoint
ω-rays starting in S ′ is odd. By Lemma 4.2.1, an end ω of finite edge-degree
is even if and only if d(ω) is even.

Observe that our notion of parity is not symmetric. Indeed, roughly speaking,
while an even end ω has a neighbourhood, inside which there will always be
even maximal sets of ω-rays, an odd end ω′ just allows arbitrarily ‘close’ sets
S in which start odd maximal sets of ω′-rays.

Let us turn back to the examples that motivated our struggle for a concept
of parity, the infinite grid, and the graph G from Figure 4.2. Their ends turn
out to have the expected even resp. odd degree. Indeed, for the infinite grid
we can choose S = ∅, and for G it suffices for S to separate the two ends of
G. Then |E(S, C)| is odd for any infinite component C of G − S, and so is
|E(S ′, C ′)| for any S ′ ⊇ S and infinite component C ′ of G − S ′ (because all
vertex degrees are even).

4.3 Edge-degrees in subgraphs

It is not possible to extend our edge-degree notion literally to subgraphs H
of G. The are two obstacles (as also observed in [12]).

First, we cannot simply measure the edge-degrees of the ends of H (as op-
posed to those of G). This is not surprising as H is embedded in the space
|G|. If H is a double ray, for instance, then (viewed as a graph on its own
and not as a subgraph) it has two ends, each of which has edge-degree 1. On
the other hand, the tails of H may lie in the same end of G, in which case
H is a circle in |G|. Thus the ends contained in H should have edge-degree
2 in H , not 1. Therefore, we only consider ends of G (and not of H).

Second, even taking that into account, the literal extension to subgraphs fails:
Consider the bold subgraph of the graph in Figure 4.3, and let ω be the end
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of G “to the right”. Then, if we count the edge-disjoint ω-rays that lie in H ,
we find that apart from tail-equivalence there is only one ω-ray. But as H is
a circle, we would expect the end to have edge-degree 2. In contrast, if we

...

Figure 4.3: In subgraphs, counting edge-disjoint rays is not enough.

consider the maximal number of edge-disjoint ω-arcs in H instead of counting
edge-disjoint ω-rays in H we obtain the desired edge-degree 2. Counting arcs
will indeed turn out to be successful, and the following proposition, which
we shall prove in the next section, shows that in G it makes actually no
difference whether we count rays or arcs:

Proposition 4.3.1.[12] Let G be a locally finite graph, and let ω ∈ Ω(G).
Then for every finite S ⊆ V (G) the maximal number of edge-disjoint ω-rays
starting in S equals the maximal number of edge-disjoint ω-arcs starting in S.

Hence, for a subgraph H of a locally finite graph G, and ω ∈ Ω(G), we define,
analogously to the definition of d(ω) given above, the edge-degree of ω in H
as

dH(ω) := sup{|R| : R is a set of edge-disjoint ω-arcs in H} ∈ N ∪ {∞}.

We note that the supremum is attained (see Lemma 4.4.5). Further, observe
that d(ω) = dG(ω). Indeed, suppose otherwise, ie. d(ω) < dG(ω). So, in
particular, d(ω) is finite. For a set of d(ω) + 1 edge-disjoint ω-arcs, let
S ⊆ V (G) be a choice of exactly one vertex from each of the arcs. Then, by
Proposition 4.3.1, there are also d(ω) + 1 edge-disjoint ω-rays starting in S,
a contradiction.

The parity of an end in H is defined as follows:

Definition 4.3.2.[12] An end ω of G is even in H if there is a finite S ⊆
V (G) such that for every finite S ′ ⊆ V (G) with S ′ ⊇ S the maximal number
of edge-disjoint ω-arcs in H starting in S ′ is even. Otherwise, ω is odd in H.

Note that by Proposition 4.3.1, the definition of parity is consistent with the
one given previously. Furthermore, it can be seen similarly as in the proof
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of Lemma 4.2.1 that for an end ω with finite edge-degree in H , ω has even
edge-degree in H if and only if dH(ω) is even.

A complete solution of Problem 4.1.2 requires an analogon of Theorem 4.1.4
for subgraphs H of G. The forward direction of such an analogon can be
proved easily with the same methods as used for Theorem 4.1.4. Further-
more, if G has only countably many ends the problem is not overly difficult
(Proposition 4.7.3). In view of this, and in view of Theorems 4.1.3 and 4.1.4,
and two more results in Section 4.6, which demonstrate that the edge-degrees
of the ends behave in many aspects similar to the degrees of vertices, we offer
the following conjecture:

Conjecture 4.3.3.[12] Let H be a subgraph of a locally finite graph G. Then
E(H) ∈ C(G) if and only if every vertex has even degree in H, and every
end has even edge-degree in H.

4.4 A cut criterion

In this section we prove Proposition 4.3.1. The other result of this section is
Corollary 4.4.7, which yields a criterion for the parity of an end in terms of
cut cardinalities. Let us start with a simple lemma that shows how we can
construct a topological path by piecing together infinitely many arcs.

Lemma 4.4.1.[12] Let G be a locally finite graph, and let for n ∈ N, φn :
[0, 1] → |G| be a homeomorphism such that if An := φn([0, 1]) it holds that:

(i) An ∩ Am ⊆ V (G) ∪ Ω(G) for n 6= m; and

(ii) φn(1) = φn+1(0) for all n.

Then there is an x ∈ |G| such that
⋃∞

n=1 An ∪ {x} is a topological path from
φ1(0) to x.

Proof. Instead of the φn let us consider compositions with suitable home-
omorphisms φ′

n : [1 − 2−(n−1), 1 − 2−n] → An. Together the φ′
n define, by

(ii), a continuous function φ′ : [0, 1) → |G|. As |G| is compact, the sequence
φ1(0) = φ′(1/2), φ2(0) = φ′(3/4), . . . has an accumulation point x. We claim
that φ : [0, 1] → |G| defined by φ(s) := φ′(s) for s ∈ [0, 1) and by φ(1) := x
is continuous.

Let a neighbourhood V of x be given, and note that because of (i) and (ii),
none of the φn(0) is an inner point of an edge, and thus x is an end. Then
there is a basic open neighbourhood Ĉ(S, x) ⊆ V that contains all but finitely
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many of the φn(0). By (i), only finitely many of the An meet the finite cut
∂C(S, x). So, there is an N such that An ⊆ Ĉ(S, x) for n ≥ N . Consequently,
φ−1(V ) contains the open set (1 − 2−N , 1], and thus is a neighbourhood of 1
in [0, 1].

Menger’s theorem applied to the line graph implies that between any two
finite edge sets E1, E2 in a graph there are as many edge-disjoint E1–E2

paths as the minimal number of edges needed in order to separate E1 and
E2. The following lemma generalises this result to arcs. Let us say that an
arc A is an E1–E2 arc if it has exactly one edge in E1, exactly one in E2, and
these are incident with an endpoint of A.

Lemma 4.4.2. [12] Let H be a subgraph of a locally finite graph G. Let
E1, E2 ⊆ E(H) be finite. Then the maximal number of edge-disjoint E1–
E2 arcs in H ⊆ |G| equals the minimum k such that there is a finite set
X ⊆ E(G) separating E1 from E2 in G with k = |X ∩ E(H)|.

Proof. Let S be a finite vertex set such that E1∪E2 ⊆ E(G[S]), let v1, v2, . . .
be an enumeration of V (G), and put Gn := G[S ∪ {v1, . . . , vn}] for n ∈ N.
Let Ln be the set of all sets M satisfying

(i) M is a set of pairwise edge-disjoint subgraphs of H ;

(ii) for each L ∈ M there is an E1–E2 path P with P ∩ Gn = L; and

(iii) |M | ≥ k.

Let us show that Ln is non-empty for each n. Contract each component of
G − Gn to a vertex (keeping parallel edges but deleting loops), and denote
the resulting finite graph by G̃n. Let H̃n be the subgraph of G̃n that consists
of the edges in E(H) ∩ E(G̃n) together with the incident vertices. Now, let
M̃ be a set of edge-disjoint E1–E2 paths in H̃n of maximal cardinality. By
Menger’s theorem applied to the line graph, there is a finite set X̃ ⊆ E(H̃) of
cardinality |M̃ | that separates E1 from E2 in H̃n. Then X := X̃ ∪ (E(G̃n) \
E(H̃n)) separates E1 from E2 in G̃n, and |X ∩ E(H)| = |M̃ |. Next, observe
that X is also an E1–E2 separator in G, implying |M̃ | = |X ∩ E(H)| ≥ k.
Put M := {L̃ ∩ Gn : L̃ ∈ M̃}, and note that this choice satifies (i) and
(iii). Furthermore, by replacing each vertex of G̃n − G that L̃ meets with
a path through the respective component of G − Gn, we easily find for the
corresponding L ∈ M a path such that (ii) is satisfied. Thus, Ln 6= ∅.

Define a graph on the vertex set
⋃∞

n=1 Ln with edges MnMn+1 for Mn ∈ Ln

and Mn+1 ∈ Ln+1 if Mn = {L ∩ Gn : L ∈ Mn+1}. As every M ∈ Ln+1

has a neighbour in Ln we may apply the infinity lemma 2.1.1, which yields
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a ray M1M2 . . . with Mn ∈ Ln for all n ≥ 1. For each L1 ∈ M1 there is
a sequence L1, L2, . . . with Ln ∈ Mn and Ln = Ln+1 ∩ Gn. More precisely,
there are, by (iii), k such sequences so that their respective unions L1 =
⋃

L1
n . . . , Lk =

⋃

Lk
n are mutually edge-disjoint. Furthermore, Li ⊆ H , and

Li ∩ Gn = Li
n ∈ Mn for i = 1, . . . , k.

We claim that each of the Li contains an E1–E2 arc. Indeed, consider an
i ∈ {1, . . . , k}, and let v and w be the endvertices of the path P for which
P ∩G1 = Li

1. Introduce a new vertex z to G, and link it to v and w. Denote
by Q the resulting v–w path vzw. We want to show that E(Li ∪ Q) is an
element of the cycle space of G′ := G ∪ Q. To this end, let F be a finite cut
of G′, and choose n large enough so that F ⊆ E(Gn ∪Q). Denote by Pn the
v–w path with Pn ∩ Gn = Li

n, which exists by (ii). Then

F ∩ E(Li ∪ Q) = F ∩ (E(Gn ∩ Li) ∪ Q)

= F ∩ (E(Gn ∩ Li
n) ∪ Q) = F ∩ E(Pn ∪ Q).

The last intersection is an even set as E(Pn ∪ Q) is a circuit in G′, and
hence, E(Li ∪ Q) an element of the cycle space of G′, by Theorem 2.5.2.
Thus, by Theorem 2.5.1 there is a circle D with Q ⊆ D ⊆ Li ∪ Q. Hence,
Ai := D \ (Q \ {v, w}) is an arc from v to w. Therefore, there are k edge-
disjoint E1–E2 arcs A1, . . . Ak in H .

Since there is a finite set X ⊆ E(G) separating E1 from E2 in G such that
k = |X ∩ E(H)|, there cannot be more than k + 1 arcs in H connecting E1

and E2, as each of them meets X.

Corollary 4.4.3. [12] Let G be a locally finite graph, let H be a subgraph,
and let C1 ⊇ C2 be regions of G. Then the maximal number of edge-disjoint
∂C1 ∩E(H)–∂C2 ∩E(H) arcs in H equals the minimum k such that there is
a region D with C1 ⊇ D ⊇ C2 and |∂D ∩ E(H)| = k.

Proof. By Lemma 4.4.2, the maximal number of edge-disjoint ∂C1 ∩ E(H)–
∂C2 ∩ E(H) arcs in H equals the minimal k′ ∈ N such that there is a finite
X ⊆ E(G) with |X ∩ E(H)| = k′ which separates ∂C1 ∩ E(H) from ∂C2 ∩
E(H) in G. Any such X with |X| minimal gives rise to a region D as above,
hence k = k′.

We obtain a Mengerian criterion:

Lemma 4.4.4.[12] Let G be a locally finite graph, let H be a subgraph, let
ω ∈ Ω(G), and let S ⊆ V (G) be finite. Then the maximal number of edge-
disjoint ω-arcs in H starting in S equals the minimum |F ∩ E(H)| over all
cuts F separating S from ω.
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Proof. First, choose a region C1 ⊆ C0 := C(S, ω) with ω ∈ C1 such that
|∂C1 ∩ E(H)| is minimal among all regions C ⊆ C0 with ω ∈ C. To prove
the assertion it suffices to find a set of edge-disjoint ω-arcs in H starting in
S, where each of the arcs uses exactly one edge from ∂C1 ∩ E(H).

Next, observe that the closure of one of the components C of C1−N(G−C1)
contains ω. Choose C2 such that |∂C2 ∩E(H)| is minimal among all regions
C ⊆ C1 satisfying C ∪ N(C) ⊆ C1 and ω ∈ C. Continuing in this manner,
we obtain regions Ci with ω ∈ Ci that satisfy for i ≥ 1:

Ci+1 ∪ N(Ci+1) ⊆ Ci; and (4.1)

|∂Ci ∩ E(H)| ≤ |∂D ∩ E(H)| for every region D with Ci ⊇ D ⊇ Ci+1.(4.2)

We claim that

there exists a set A of edge-disjoint ω-arcs in H starting outside C1

such that |∂C1 ∩ E(H)| = |A|.
(4.3)

Indeed, because of (4.2), Corollary 4.4.3 yields for every i ≥ 1 a set Pi of edge-
disjoint (∂Ci ∩ E(H))–(∂Ci+1 ∩E(H)) arcs in H, with |Pi| = |∂Ci ∩ E(H)|.
Hence, for any edge e ∈ ∂C1 ∩ E(H) there is an A1 ∈ P1 that starts in e.
The arc A1 ends in an edge e′ ∈ ∂C2 ∩ E(H), and thus there exists an arc
A2 ∈ P2 such that A1∩A2 = e′. In this manner we find a sequence A1, A2, . . .
so that Ai and Ai+1 overlap in exactly one edge of ∂Ci+1 ∩ E(H). As each
Ai ∈ Pi is an (∂Ci ∩ E(H))– (∂Ci+1 ∩ E(H)) arc, Ai and Aj are disjoint
for |i − j| > 1. Thus, by deleting the last vertex and all inner points of
the last edge in each Ai, we obtain a sequence of edge-disjoint arcs to which
we may apply Lemma 4.4.1. This yields an x ∈ |G| together with an arc
Ae ⊆

⋃∞
i=1 Ai ∪ {x} in H that starts in e and ends in x, which uses exactly

one edge in each ∂Ci ∩ E(H).

Suppose x 6= ω. Then, there exists a finite set T ⊆ V (G) that separates ω
and x. By (4.1), there is an N ∈ N such that T ∩ V (CN) = ∅. Thus, CN is
completely contained in one component of G − T , and only one of ω, x lies
in CN , a contradiction. So, we obtain for each e an ω-arc Ae, and all these
arcs are edge-disjoint since for each i the arcs in Pi are.

Finally, using Corollary 4.4.3 we lengthen the Ae in order to obtain a set of
edge-disjoint ω-arcs which start in S (this is possible by the minimal choice
of C1). Note that each of these arcs indeed uses exactly one edge from
∂C1 ∩ E(H).

Similarly we can show that for a given subgraph H of G and an end ω ∈ Ω(G)
there indeed exists a maximal set of edge-disjoint ω-arcs in H.
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Lemma 4.4.5. [12] Let G be a locally finite graph, let H be a subgraph,
and let ω ∈ Ω(G) such that dH(ω) = ∞. Then there is an infinite set of
edge-disjoint ω-arcs in H.

Proof. As in the proof of Lemma 4.4.4 we define a sequence of regions Ci

satisfying (4.1) and (4.2). Again, Corollary 4.4.3 yields for each i ∈ N a set
of edge-disjoint (∂Ci−1 ∩E(H))–(∂Ci ∩E(H)) arcs, which we piece together
with the help of Lemma 4.4.1 to obtain a set of edge-disjoint ω-arcs in H
(whose union contains all edges of all of the ∂Ci ∩ E(H)). Note that this
set is indeed infinite, since dH(ω) = ∞, and hence by Lemma 4.4.4, we may
assume ∂Ci−1 ∩ E(H) < ∂Ci ∩ E(H) for all i ∈ N.

We finally prove Proposition 4.3.1, which we restate:

Proposition 4.4.1.[12] Let G be a locally finite graph, and let ω be an end
of G. Then for every finite set S ⊆ V (G) the maximal number of edge-
disjoint ω-rays starting in S equals the maximal number of edge-disjoint ω-
arcs starting in S.

Proof. By Lemma 4.4.4, the maximal number of edge-disjoint ω-arcs starting
in S equals the minimal cardinality of a finite cut that separates S from ω.
This minimal cardinality, on the other hand, equals the maximal number of
edge-disjoint ω-rays starting in S: there clearly cannot be more ω-rays, and
conversely, using Menger’s theorem applied to the line graph, we can piece
together the rays we need along minimal separating cuts, in a similar fashion
as in Lemma 4.4.4.

Two further results that follow immediately from Lemma 4.4.4 are charac-
terisations of edge-degrees of ends in terms of cut cardinalities:

Corollary 4.4.6. [12] Let G be a locally finite graph, let H be a subgraph,
and let ω ∈ Ω(G). Then dH(ω) = k ∈ N if and only if k is the smallest
integer such that every finite S ⊆ V (G) can be separated from ω with a finite
cut that shares exactly k edges with E(H).

Corollary 4.4.7. [12] Let G be a locally finite graph, let H be a subgraph,
and let ω ∈ Ω(G). Then ω has even edge-degree in H if and only if there is
a finite S ⊆ V (G) such that for every finite S ′ ⊆ V (G) with S ′ ⊇ S it holds:
if F ⊆ E(G) is a finite cut separating S ′ and ω with |F ∩ E(H)| minimal,
then |F ∩ E(H)| is even.
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4.5 Proof of Theorem 4.1.4

This proof can also be found in [12]. The forward direction follows from
Theorem 2.5.2, which ensures that every finite cut of G is even, and thus
together with Corollary 4.4.7 implies the assertion.

For the backward direction suppose that E(G) /∈ C(G). Observe that we may
assume G to be connected, which means in particular that G is countable.
We shall find a sequence C1 ⊇ C2 ⊇ . . . of regions of G that satisfy

(i) ∂GCn is an odd cut, for n ≥ 1;

(ii) Cn ∪ N(Cn) ⊆ Cn−1, for n ≥ 2; and

(iii) if D is a region of G with Cn−1 ⊇ D ⊇ Cn then |∂GD| ≥ |∂GCn−1|, for
n ≥ 2,

Then G has an odd end, contradicting the assumption, as desired. Indeed,
by piecing together paths in the Cn, we see that there is a ray R which has
a tail in every Cn. Let ω be the end with R ∈ ω, and consider any finite
S ⊆ V (G). Choose I large enough such that CI ⊆ C(S, ω), which is possible
by (ii). So, every cut that separates S ′ := N(CI) from ω has cardinality at
least |∂GCI |, by (iii). Thus by (i) and Corollary 4.4.7, ω has odd edge-degree.

For our construction, we need a further condition for n ≥ 1. Let us call a
region C of a graph H a k-region if |∂HC| = k.

(iv) for every k-region D ⊆ Cn of G with k < |∂GCn| there is an ℓ ∈ N
and even regions K1, . . . , Kℓ ⊆ Cn such that |∂GKi| ≤ k for all i, and
V (D) ⊆

⋃ℓ

i=1 V (Ki).

This condition, of course, is trivially satisfied if k is even.

As E(G) /∈ C(G), Theorem 2.5.2 ensures the existence of odd regions in G.
Choose any odd region C1 such that ∂GC1 has minimal cardinality. This
choice satisfies (i) and (iv), and that is all we required for n = 1.

Now, suppose the Ci to be defined for i ≤ n. In order to find a suitable Cn+1,
we shall contract certain even k-regions D of G (contained in Cn) for which
k < |∂GCn|. In the resulting minor, which has only big cuts, we will choose
a small odd cut, which in G induces the desired region Cn+1.

We will construct this minor in several steps. More precisely, for each even
integer m < |∂GCn| we define a minor Gm of G =: G0, which will have the
properties:

(a) Gm is obtained from Gm−2 by contracting disjoint infinite m-regions K
of Gm−2 with E(K) ⊆ E(Cn) for m ≥ 2; and
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(b) |E(D)∩E(Gm)| < ∞ for every k-region D of G with D ⊆ Cn and k ≤ m.

Observe that, by (a) and as all vertices of G are even, all vertices of Gm

have even degree too. We claim that (b) together with (iv) implies for m <
|∂GCn| − 2:

(c) every k-region D of Gm with E(D) ⊆ E(Cn) and k ≤ m + 1 is finite.

Indeed, consider a k-region D of Gm with E(D) ⊆ E(Cn) and k ≤ m + 1.
By uncontracting, we obtain from D a region D′ of G with ∂GD′ = ∂GmD
and E(D) ⊆ E(D′). Since by assumption m < |∂GCn| − 2, we get that
k < |∂GCn|. Then (iv) implies that there is a finite set K of regions K ⊆ Cn

such that their union contains all vertices of D′ (and thus also all but finitely
many edges of D′). Each K ∈ K is an ℓ-region with even ℓ ≤ k = m + 1. As
m + 1 is odd we get ℓ ≤ m, and hence by (b), that E(K) ∩ E(Gm) is finite.
Thus |E(D′) ∩ E(Gm)| < ∞, and hence D is finite. This establishes (c).

As G is connected, G0 = G obviously satisfies (b), which is all we required for
m = 0. So, assume m ≥ 2, and Gi to be constructed for all even i < m. We
define a sequence (Lj)j∈N of (not necessarily induced) subgraphs of Gm−2; by
contracting the components of their union L we obtain Gm.

Consider an enumeration R1, R2, . . . of all infinite m-regions of Gm−2 with
E(Ri) ⊆ E(Cn) (such an enumeration is possible since E(Gm−2) ⊆ E(G) is
countable). Put L1 := R1, and let for j > 1,

Lj := Lj−1 ∪ Rj if ∂Gm−2Rj ∩ E(Lj−1) = ∅ (4.4)

and Lj := Lj−1 otherwise. Note that in the former case each component of
Lj−1 is either contained in Rj or disjoint from Rj. Thus, by induction on j,
every component K of Lj is an infinite m-region of Gm−2.

Put L :=
⋃

j∈N
Lj , and consider a component K of L. Certainly, K is an

infinite induced subgraph in Gm−2 with E(K) ⊆ E(Cn). We claim that
k := |∂Gm−2K| = m. Clearly, k ≤ m as otherwise there would already be
a component K ′ ⊆ K of some Lj with |∂Gm−2K ′| > m, which is impossible.
On the other hand, k ≥ m, by (c) for m−2; thus k = m, as desired. We now
obtain Gm from Gm−2 by contracting the components of L to one vertex each
(keeping multiple edges but deleting loops). Obviously, Gm satisfies (a).

Before we show the validity of (b), let us prove for all even i < m < |∂GCn|
that it holds that:

(∗) for every region D ⊆ Cn of G with ∂GD ⊆ E(Gi) there is a (possibly
empty) induced subgraph D′ ⊆ Cn that satisfies
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(I) there are finitely many regions K1, . . . , Kℓ of G each of which
contracts to a vertex of degree ≤ i + 2 in Gi+2 such that V (D) \
V (D′) ⊆

⋃ℓ

j=1 V (Kj);

(II) if there is a region C of G with D ⊆ C and ∂GC ⊆ E(Gi+2), then
also D′ ⊆ C;

(III) |∂GD′| ≤ |∂GD|; and

(IV) ∂GD′ ⊆ E(Gi+2).

Observe that D′ has at most |∂GD′| components (since G is connected). Each
of these is a region of G with properties (II)–(IV).

Let us now show (∗). Given D as above, choose an induced subgraph D̃ ⊆ Cn

such that |∂GD̃ \ E(Gi+2)| is minimal among all induced subgraphs that
satisfy (I), (II), (III) and ∂GD̃ ⊆ E(Gi) (which is possible as D itself has
these four properties). If |∂GD̃ \ E(Gi+2)| = 0, we may put D′ := D̃, so
suppose otherwise. Then, by (a), there is an (i + 2)-region K of Gi with
E(K) ⊆ E(Cn), which is contracted to a vertex in Gi+2 and for which holds
that ∂GD̃ ∩ E(K) 6= ∅. Denote by D̃i the image of D̃ in Gi, ie. the induced
subgraph of Gi with ∂GiD̃i = ∂GD̃ and E(D̃) ∩ E(Gi) = E(D̃i).

Suppose that one of |EGi(K ∩ D̃i, D̃i \ K)|, |EGi(K \ D̃i, Gi − (D̃i ∪ K))|
is smaller than or equal to |EGi(K ∩ D̃i, K \ D̃i)|. Then, putting either
D̂i = D̃i \ K or D̂i = Gi[D̃i ∪ K] we get

|∂GiD̂i| ≤ |∂GiD̃i| = |∂GD̃|. (4.5)

Observe that ∂GiD̂i ∩ E(K) = ∅, and denote by D̂ the induced subgraph of
G that we obtain from D̂i by uncontracting. Then ∂GD̂ = ∂GD̂i has fewer
edges outside E(Gi+2) than ∂GD̃. We claim that this contradicts the minimal
choice of D̃. Indeed, ∂GD̂ ⊆ E(Gi), and also (I) and (III) hold for D̂: the
latter by (4.5), and for the former observe that each Ki either still contracts
to a vertex of degree ≤ i + 2 in Gi+2 or is contained in a region which does
so. Adding K to these regions, we obtain the Ki as desired for (I).

To see that D̂ satisfies (II), consider a region C ⊇ D with ∂GC ⊆ E(Gi+2).
Observe that D̃ ⊆ C because D̃ satisfies (II). Now, since ∂GC ∩ E(K) = ∅,
either E(K) ⊆ E(C) or E(K) ⊆ E(G − C) because K is connected. The
latter case is impossible, as ∂GD̃ ∩ E(K) 6= ∅. Hence, E(K) ⊆ E(C), and
thus, as D̂i ⊆ Gi[D̃i∪K], we get D̂ ⊆ C, as desired. Note also that D̂ ⊆ Cn,
as ∂GCn ⊆ E(Gi+2) by (a).

We may therefore assume that

|EGi(K ∩ D̃i, K \ D̃i)| < |EGi(K ∩ D̃i, D̃i \K)|, |EGi(K \ D̃i, Gi − (D̃i ∪K))|,
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and thus |∂Gi(K∩D̃i)|, |∂Gi(K\D̃i)| < |∂GiK|. As K is infinite and as K∩D̃i

and K \ D̃i have only finitely many components (since G is connected), one
of these components, say K ′, is infinite. Now, K ′ is a region of Gi with
∂GiK ′ ⊆ ∂Gi(K ∩ D̃i) or ∂GiK ′ ⊆ ∂Gi(K \ D̃i). In both cases, |∂GiK ′| <
|∂GiK| = i+2. Because E(K ′) ⊆ E(K) ⊆ E(Cn) and i ≤ m−2 < |∂GCn|−2,
this contradicts (c). We have thus shown (∗).

Let us prove that Gm also satisfies (b). For this, consider a region D ⊆ Cn of
G with |∂GD| ≤ m, and suppose that E(D)∩E(Gm) is infinite. Assume D to
be chosen among all such regions such that i is maximal with ∂GD ⊆ E(Gi).
Now, if i < m, then (∗) yields a subgraph D′. By (I), all but finitely many
of the edges in E(D) ∩ E(Gm) lie in E(D′). Since D′ has only finitely many
components, there is one, C say, such that E(C) ∩ E(Gm) is infinite. Since,
by (III), |∂GC| ≤ |∂GD|, and since, by (IV), ∂GC ⊆ E(Gi+2), we obtain
a contradiction to the choice of D. Thus, we may assume that i = m,
ie. ∂GD ⊆ E(Gm).

Therefore, by performing the according contractions we obtain from D an
infinite region D̃ of Gm−2 such that ∂Gm−2D̃ = ∂GD and E(D̃) ⊆ E(Cn).
Because of (c) for m − 2 and because of |∂GD| ≤ m, we get |∂Gm−2D̃| =
m. Hence, the region D̃ appears in the enumeration R1, R2, . . . used in the
construction of Gm, ie. there is a j with D̃ = Rj . Since ∂Gm−2Rj ⊆ E(Gm) it
follows from (4.4) that E(Rj) ⊆ E(Lj) ⊆ E(L). Thus, in Gm all edges of D̃ =
Rj are contracted, and consequently, E(D)∩E(Gm) = E(Rj)∩E(Gm) = ∅,
a contradiction to |E(D) ∩ E(Gm)| = ∞.

Having constructed Gm for all m ≤ M := |∂GCn| − 1, we finally find the
region Cn+1. Observe that, by (a), ∂GCn is a cut of GM , and that the cut
F of GM that consists of those edges in E(GM) ∩ E(Cn) that in GM are
adjacent to ∂GCn has odd cardinality (because by (a), all vertices of GM are
even). Thus, since F is also a cut of G, there exists a region C of G with
∂GC ⊆ E(GM) that satisfies (i) and (ii) for n + 1.

We claim that

any region C of G that for n+1 satisfies, (i), (ii) and ∂GC ⊆ E(GM)
also satisfies (iii).

(4.6)

Indeed, consider a k-region D of G with Cn ⊇ D ⊇ C. Then E(C)∩E(GM)
is infinite, by (i). (For this, contract all edges in E(GM) \ (E(C) ∪ ∂GC),
and recall that a finite graph always has an even number of odd vertices.)
From (b) for m = M it follows that k ≥ M + 1 = |∂GCn|, as desired for (iii).

Now, choose Cn+1 such that ∂GCn+1 has minimal (odd) cardinality among
all regions satisfying (i), (ii) and (iii) for n + 1.

To see (iv) for n + 1, consider a k-region D ⊆ Cn+1 with k < |∂GCn+1|. If
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k ≤ M , then we can apply (iv) for n, so suppose k > M . Furthermore, we
may assume that k is odd, as otherwise we can choose ℓ := 1 and K1 := D.
Then D satisfies (i) and (ii) for n+1, and we should have chosen D as Cn+1,
if not (iii) and thus, by (4.6), also ∂GD ⊆ E(GM) fails for D. Repeated use
of (∗), where we apply (∗) in each step to every component of the subgraph
D′ obtained in the previous step, yields a subgraph D∗ of Cn such that each
of its components K1, K2, . . . , Kℓ has properties (II)–(IV) for m = M . In
particular, (II) implies for 1 ≤ i ≤ ℓ that Ki ⊆ Cn+1. Let {Kℓ+1, . . . , KL} be
the set of all regions that arose as one of the Ki in one of the applications of
(∗). Then V (D) ⊆

⋃L

i=1 V (Ki), by (I).

By (III), |∂GKi| ≤ k for i = 1, . . . , ℓ. Now, if there is an j ∈ {1, . . . , ℓ} such
that |∂GKj| is odd, then Kj ⊆ Cn+1 satisfies (i), (ii), and, by (IV) and (4.6),
also (iii) for n + 1, contradicting the choice of Cn+1. So, |∂GKi| is even and
≤ k for i = 1, . . . , L (for i > ℓ this follows from (I) and k > M). As ∂GCn+1 ⊆
E(GM), and thus ∂GCn+1 ∩

⋃L
i=ℓ+1 E(Ki) = ∅, and as K1, . . . , Kℓ ⊆ Cn+1,

each of the K1, . . . , KL either lies completely in Cn+1 or is disjoint from
it. Together with D ⊆ Cn+1 this implies that V (D) ⊆

⋃

K∈K V (K) for
K := {Ki : Ki ⊆ Cn+1 and 1 ≤ i ≤ L}, which proves (iv) for n + 1. This
completes the proof of the theorem.

4.6 Properties of edge-degree and parity

As an indication that the edge-degree and the parity of an end indeed behave
as expected, we extend three basic properties of the degree in finite graphs
to edge-degrees and parity in locally finite graphs. At the end of this section,
however, we present two examples where edge-degrees of ends differ in their
behaviour from degrees of vertices.

The number of odd vertices in a finite graph is always even. We prove the
following easy analogon.

Proposition 4.6.1.[12] Let G be a locally finite graph. Then the number of
odd vertices and ends in G is even or infinite.

Proof. Suppose that the set O of odd vertices and ends has odd cardinality.
Observe that there is a finite set S ⊆ V (G) that contains all vertices of O
and separates the ends in O pairwisely. By Corollary 4.4.7, there is for each
end ω ∈ O an odd region Aω ⊆ G−S with ω ∈ Aω. Observe that the Aω are
pairwise disjoint. So, contracting each Aω to a vertex aω we arrive at a graph
G′ that has an odd number of odd vertices, and in which all ends have even
edge-degree. Now, consider two copies of G′ and add all edges vv′, where v is



42 Degree and parity of ends

an odd vertex of G′ and v′ its copy. The resulting graph has an odd cut, but
no odd vertices or ends, a contradiction to Theorems 4.1.4 and 2.5.2.

Dirac [20] observed that if a finite graph has minimum vertex degree k ≥ 2
then it contains a circuit of length k + 1. This becomes false for infinite
graphs: an easy counterexample is the k-regular infinite tree. But the tree
ceases to be a counterexample if a minimum degree is also imposed on the
ends, and indeed, then Dirac’s result extends to locally finite graphs:

Theorem 4.6.2. [12] Let G be a locally finite graph, and let H ⊆ G be a
subgraph so that every vertex and every end x ∈ H has degree resp. edge-
degree at least k ≥ 2 in H. Then there is a circuit C ⊆ E(H) of G with
length ≥ k + 1.

First, note that the theorem is best possible, even for infinite graphs. Indeed,
consider disjoint copies G1, G2, . . . of Kk+1. Identify a vertex in G1 with a
vertex in G2. Then identify a different vertex in G2 with a vertex of G3 and
so on. In the resulting graph the minimum vertex degree is k, and it is easy
to see that the single end has edge-degree k too, but there is no circuit of
length greater than k + 1. See Figure 4.4 for an example with k = 2.

...

Figure 4.4: Theorem 4.6.2 is best possible for k = 2.

Next, let us remark that the long circuit provided by the theorem may be
infinite, and indeed the result becomes false if we require finite circuits. To
see this, consider a k-regular tree H with root r. Let G be the graph obtained
by adding an edge between any two vertices which the same distance to r.
Then G has a single end, which has infinite edge-degree in H , but H does
not contain any finite circuits.

For the proof of Theorem 4.6.2, we need the following lemma, which can be
found in Hall and Spencer [26, p. 208].

Lemma 4.6.3. Every topological path with distinct endpoints x, y in a Haus-
dorff space X contains an arc between x and y.

Proof of Theorem 4.6.2. First, observe that if H has an infinite block then
H contains two disjoint rays that are equivalent in H (and thus also in G).
By linking these by a path in H we obtain a double ray whose edge set is an
infinite circuit of G.
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Therefore, we may assume that every block of H is finite. Next, suppose that
there is a block B of H that contains at most one vertex v with dB(v) < k.
Pick a longest path in B. One of the endvertices has at least k neighbours
on that path, and hence there is a finite circuit of length ≥ k + 1 in B.

So, every block B of H is finite and contains at least two vertices of H with
degree < k in B, which then are cutvertices of H . Now, replace every block B
of H by a tree T ⊆ B whose leaves are exactly the cutvertices of H incident
with B. Then every vertex of the resulting forest H ′ ⊆ H has degree ≥ 2 as
every block contains two cutvertices.

Assume that E(H ′) does not contain infinite circuits, and let v1, v2, . . . be an
enumeration of V (H ′). We will inductively construct for n ∈ N homeomor-
phisms φn : [0, 1] → H ′ ⊆ |G|. Choosing b0 as any vertex in H ′ and putting
An := φn([0, 1]), we require that for n ≥ 1 both an := φn(0) and bn := φn(1)
are vertices, and satisfy:

(i) an = bn−1 for n ≥ 2;

(ii) Am ∩ An = ∅ for 1 ≤ m ≤ n − 2 and An−1 ∩ An = {bn−1};

(iii) there is a cutvertex v incident with two blocks B, B′ of H such that
dB(v) < k and such that An contains two edges incident with v, one
in E(B) and the other in E(B′) (let us call any arc with that property
deficient); and

(iv) if there is a topological path in H ′ from bn−1 to vn that is edge-disjoint
from Bn−1 :=

⋃n−1
i=1 Ai, then vn ∈ An.

Note that for n ≥ 1, Bn is a topological path.

In order to construct φn, assume φ1, . . . , φn−1 to be defined already. First,
suppose there is a topological path as required by (iv). By Lemma 4.6.3,
either bn−1 and vn are the endpoints of an arc A that is edge-disjoint from
Bn−1, or bn−1 = vn, in which case we put A := {vn}. We claim that A ∩
Bn−1 = {bn−1}. Indeed, otherwise let v be the vertex with bn−1v ⊆ A. Then
A ∪ Bn−1 contains a topological path from v to bn−1 that avoids all inner
points of bn−1v, and hence, by Lemma 4.6.3, also a bn−1–v arc A′. Thus,
A′ ∪ bn−1v ⊆ A ∪ Bn−1 ⊆ H ′ is a circle, contradicting our assumption.

We now lengthen A so that it also satisfies (iii). Because every vertex has
degree ≥ 2 in H ′, and because H ′ does not contain any circles, vn has a
neighbour in H ′ \ A ∪ Bn−1. Continuing in this way, we obtain a vn–B
path in H ′ that meets A ∪ Bn−1 only in vn, where B is a block of H which
is adjacent to the block that contains vn. As B ∩ H ′ is connected and as
H ′ does not contain any circles, B is disjoint from A ∪ Bn−1. So, since B
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has a cutvertex b with dB(b) < k, there is a deficient path P ⊆ H ′ that
starts in vn and is otherwise disjoint from A ∪ Bn−1. Thus, we easily find a
homeomorphism φn : [0, 1] → A ∪ P which satisfies (i)–(iv).

So suppose there is no topological path as in (iv). Again we find a deficient
path P ⊆ H ′ starting in bn−1 which is disjoint from Bn−1 \ {bn−1}, and the
respective homeomorphism φn : [0, 1] → P has properties (i)–(iv).

This process yields a set of arcs An, to which we apply Lemma 4.4.1. We
obtain an x ∈ |G|, which is necessarily an end, such that A∗ :=

⋃∞
n=1 An∪{x}

is a topological path from b0 to x.

The end x has edge-degree k in H , and hence there are k edge-disjoint arcs
R1, . . . , Rk ⊆ H that start in x. Each of the Ri meets A∗ \ {x} in every
neighbourhood of x. Indeed, suppose there is a neighbourhood U of x and
an index j such that Rj ∩U is disjoint from A∗ \{x}. Since Rj is continuous,
there is a subarc of Rj which starts in x and is completely contained in U .
Pick a vertex vm on this subarc, and denote by R the subarc of Rj between x
and vm. Then

⋃∞
n=m−1 An ∪ R clearly is a topological path from bm−1 to vm

which is edge-disjoint from Bm−1, a contradiction to (iv) as vm /∈ A∗ ⊇ Am.

Let φ : [0, 1] → A∗ be a continuous function with range A∗ and φ(1) = x.
Choose an s ∈ [0, 1) such that each of the Ri hits A∗ in a φ(ri) with ri < s.
Because of (iii), we may assume that v := φ(s) is a cutvertex incident with
two blocks B, B′ of H such that dB(v) < k and such that A∗ contains two
edges incident with v, one in E(B) and the other in E(B′). Not all of
the k arcs Ri can go through the cut F := EH(v, B − v) of H , which has
cardinality dB(v) < k; so assume Rj does not contain any edge of F . Let
uw be the (unique) edge in E(A) ∩ F , and assume φ−1(u) ≤ φ−1(w). Then
(A ∪ Rj) \ uw ∪ {u, w} contains a topological path from w to u (simply run
from w to x along A, then from x to φ(rj) along Rj and finally from φ(rj)
to u along A). Therefore, there is also an arc R ⊆ (A ∪ Rj) \ uw ∪ {u, w}
with endpoints u and w, by Lemma 4.6.3. Consequently, R ∪ uw ⊆ H is a
circle. Since E(R) is disjoint from F and every B–(B′ − v) path in H has
to go through F , |E(R)| is infinite. Thus, E(R ∪ uw) ⊆ E(H) is an infinite
circuit, as desired.

In a finite graph the cycles are exactly the connected 2-regular subgraphs.
We extend this characterisation to locally finite graphs.

Theorem 4.6.3.[12] Let C be a subgraph of a locally finite graph G. Then
C is a circle if and only if C is topologically connected and every vertex or
end x of G with x ∈ C has degree resp. edge-degree two in C.

Proof. If C is a circle, then it is clearly topologically connected and every
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vertex and every end x ∈ C has degree resp. edge-degree two in C.

For the converse direction, Theorem 4.6.2 implies that there is a circle D ⊆ C.
Suppose there exists a point z ∈ C \ D. Theorem 2.3.1 yields an arc A ⊆ C
that starts at z and ends in D. As both A and D are closed, A has a first
point in D, ie. a point x such that the subarc A′ of A between z and x meets
D only in x. Thus, there are three edge-disjoint arcs in C with common
endpoint x, two in D and the arc A′. So, x is either a vertex or an end
and has degree resp. edge-degree at least 3 in C, a contradiction. Thus,
C = D.

Let us now turn to two areas in which the edge-degree of ends differs from
the degree of vertices. The two examples we exhibit can also be found in [12].

For a subgraph H of a graph G, deleting E(H) reduces the degree of a vertex
v ∈ V (G) by its degree in H , ie. dG(v) = dH(v) + dG−E(H)(v). Although for
an end ω it clearly holds that dG(ω) ≥ dH(ω) + dG−E(H)(ω), equality is in
general not ensured. Consider the 4 × ∞-grid, which has a single end. As
depicted in Figure 4.5, the removal of (the edge set of) a ray R leads to a
decrease of the edge-degree from 4 to any of 3, 2, 1 or 0, depending on how
R is chosen. Similarly, deleting a circuit can lead to an odd decrease in the
edge-degree.

Figure 4.5: Removal of a ray lets the edge-degree decrease by 1 or more.

The second area where considering the edge-degree differs from the degree is
in its behaviour concerns extremal results. A classical theorem by Mader [34],
for instance, states that high average degree forces a finite graph to contain
a large complete minor. This, however, fails for locally finite graphs even if
every end has high edge-degree. Figure 4.6 indicates how for every k ≥ 5
a planar k-regular graph with a single end of infinite edge-degree can be
constructed. Being planar, such a graph can never contain even a K5 as a
minor.
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...

...

...

...

Figure 4.6: High degree in all vertices and high edge-degree in the single end
but planar.

4.7 Weakly even ends

Finally, let us briefly discuss an alternative parity concept, which arises from
the observation [12] that (ii) of Lemma 4.2.1 is equivalent to:

(iii) for every finite S ⊆ V (G) there is a finite set S ′ ⊇ S of vertices such
that the maximal number of edge-disjoint ω-rays starting in S ′ is even.

Lemma 4.2.1 (ii) was our main motivation for our definition of an even end.
In the same vein, (iii) leads to the following alternative definition of parity,
which differs only in that the quantifiers are exchanged:

Definition 4.7.1.[12] Let H be a subgraph of a locally finite graph G. Call
ω weakly even in H if for every finite S ⊆ V (G) there is a finite set S ′ ⊇ S of
vertices such that the maximal number of edge-disjoint ω-arcs in H starting
in S ′ is even. Otherwise, ω is strongly odd in H.

Observe that an even end is weakly even, and that a strongly odd end is
odd. For ends of finite edge-degree the two parity concepts are equivalent;
this can be seen in a similar way as the equivalence of (ii) and (iii). For
ends of infinite edge-degree, however, this need not be true: consider a ray
v1v2 . . ., and replace each edge vivi+1 by i (subdivided) parallel edges. The
obtained graph has a single end, which is both odd and weakly even.

This construction only works because there are odd vertices present. But
could an odd end exist in a graph that has all vertices even and all ends
weakly even? Or, on the contrary:

Problem 4.7.2.[12] Does Theorem 4.1.4 remain true if we substitute “even
ends” by “weakly even ends”?
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We have been unable to settle the problem. However, we can answer both
this question and Conjecture 4.3.3 positively for locally finite graphs with
only countably many ends:

Proposition 4.7.3.[12] Let G be a locally finite graph with only countably
many ends, and let H a subgraph. Then E(H) ∈ C(G) if and only if every
vertex has even degree in H and if every end has weakly even edge-degree in
H.

Proof. The forward direction follows immediately from Theorem 2.5.2 and
Corollary 4.4.7. For the backward direction, suppose E(H) /∈ C(G), which
by Theorem 2.5.2 means that G has a finite cut F with |F ∩ E(H)| odd.
Let ω1, ω2, . . . be an enumeration of Ω(G). We successively define a sequence
A0 ⊆ A1 ⊆ . . . of finite sets of disjoint regions A ⊆ G − F of G with
|∂A ∩ E(H)| even and such that for each ωi with i ≤ n there is an A ∈ An

with ωi ∈ A. Put A0 := ∅. In order to define the set An first check whether
there is an A ∈ An−1 such that ωn ∈ A, in which case we put An := An−1.
Otherwise consider the (finite) set S of all neighbours of each A ∈ An−1 and
of the endvertices of the edges in F . As ωn is weakly even, Lemma 4.4.4
yields a region B ⊆ G−F with ωn ∈ B and A∩B = ∅ for all A ∈ An−1. Put
An := An−1 ∪ {B}. Finally, contracting all the disjoint regions A ∈

⋃∞
n=1 An

to a vertex each yields a finite graph with all vertex degrees even in H that
has a cut F with |F ∩ E(H)| odd, a contradiction.
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Chapter 5

Forcing highly connected
subgraphs

5.1 Introduction

In a finite graph, high average degree forces the existence of a highly con-
nected subgraph:

Theorem 5.1.1 (Mader [35]). Any finite graph G of average degree at least
4k has a k-connected subgraph.

In infinite graphs, there is no adequate notion of the ‘average degree’. So
for an extension of the theorem to infinite graphs we must replace ‘average
degree’ with ‘minimum degree’.

As in finite graphs, we define a graph G to be k-connected if |G| > k and no set
of fewer than k vertices separates G. Then, simply requiring high minimum
degree for the vertices is not enough, as the counterexample of the infinite
r-regular tree T r demonstrates. Now, since an infinite tree has rather ’thin’
ends, this suggests, as conjectured by Diestel [15], that a minimum degree
condition has to be imposed also on the ends of the graph.

So, let us require the ends of the graph to have high minimum degree as
well, in the sense that their vertex-degree is high. Then the T r ceases to be
a counterexample, as each of its ends has vertex-degree 1. And indeed, with
this further condition on the vertex-degrees of the ends, highly connected
subgraphs can be forced in locally finite graphs. This will be our main
theorem in this chapter.

Theorem 5.1.2.[43] Let k ∈ N and let G be an infinite locally finite graph
such that each vertex has degree at least 6k2 − 5k + 3, and each end has
vertex-degree at least 6k2 − 9k + 4. Then G has a k-connected subgraph.

49
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It follows from the following stronger result, which we prove in Section 5.5.4:

Theorem 5.1.3.[43] Let k ∈ N and let G be a locally finite graph such that
each vertex has degree at least 6k2−5k+3, and each end has vertex-degree at
least 6k2 − 9k + 4. Then every infinite region of G has a k-connected region.

What happens if we weaken the condition on the ends, and only require
high edge-degree instead of high vertex-degree? It turns out that this is not
enough, i.e. high edge-degrees at the ends and high degrees at the vertices
together are not sufficient to force highly connected subgraphs, or even highly
connected minors, in infinite graphs. Indeed, in Section 5.5.3 we exhibit for
all r ∈ N a locally finite graph of minimum degree and minimum edge-degree
r that has no 4-connected subgraph and no 6-connected minor.

But, the assumption of high edge-degree does suffice to force highly edge-
connected subgraphs in locally finite graphs (where a subgraph H is k-edge-
connected if |H| > 1 and no set of fewer than k edges separates H). Moreover,
such can be found in every infinite region:

Theorem 5.1.4.[43] Let k ∈ N and let G be a locally finite graph such that
each vertex has degree at least 4k + 1 and each end has edge-degree at least
2k − 1. Then every infinite region of G has a k-edge-connected region.

We remark that in general, it is not possible to force finite highly (edge-)
connected subgraphs in infinite graphs by assuming high minimum degree
and vertex- (or edge-) degree. Neither can we force infinite highly (edge-)
connected subgraphs (see discussion after Corollary 5.2.2).

5.2 Forcing highly edge-connected subgraphs

We start by proving our second result, Theorem 5.1.4, which is easier. For
this, we need a lemma.

Lemma 5.2.1.[43] Let k ∈ N and let G be a locally finite graph such that
each vertex has degree at least δV ≥ 4k + 1. Then every finite non-empty
region C of G with |∂C| ≤ δV

2
has a k-connected subgraph.

Proof. Let v ∈ V (C), and set ∂C. By assumption, v has degree at least δV

in G, and thus degree at least δV −|∂C| ≥ |∂C| in C. Hence C contains more
than |∂C| vertices, and therefore has average degree d(C) ≥ δV − 1 ≥ 4k.
Thus Theorem 5.1.1 yields a k-connected subgraph of C.
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Theorem 5.1.4.[43] Let k ∈ N and let G be a locally finite graph such that
each vertex has degree at least 4k + 1 and each end has edge-degree at least
2k − 1. Then every infinite region of G has a k-edge-connected region.

Proof. Let C be an infinite region of G, and assume that C has no finite
k-edge-connected subgraph. We prove that then C has an infinite k-edge-
connected region H .

First, suppose that for every infinite region C ′ of C there is a non-empty
region C ′′ ⊆ C ′ − ∂∗C ′ of C such that |∂C ′′| < 2k − 1. Then any such C ′′

is infinite, by Lemma 5.2.1 and by the assumption that C contains no finite
k-edge-connected (and thus in particular no finite k-connected) subgraph.
Hence there exists a sequence C =: C0, C1, . . . of infinite regions of C such
that for i ≥ 1

(i) Ci ⊆ Ci−1 − ∂∗Ci−1; and

(ii) |∂Ci| < 2k − 1.

Now, as each of the Ci is connected, there is a sequence (Pi)i∈N of ∂∗Ci–
∂∗Ci+1 paths such that for i ≥ 1 the path Pi+1 starts in the last vertex of Pi.
By (i), the paths Pi are non-trivial, and hence their union P :=

⋃∞
i=1 Pi is a

ray which has a tail in each of the Ci. Let ω be the end of G that contains
P . As, by assumption, ω has edge-degree at least 2k− 1, there is a family R
of 2k − 1 edge-disjoint ω-rays in G. For each ray R ∈ R let nR denote the
distance its starting vertex has to ∂∗C1. Set n := max{nR : R ∈ R}. Then
by (i), all of the 2k − 1 disjoint rays in R start outside Cn+1. But each ray
in R is equivalent to P , and hence eventually enters Cn+1, a contradiction
as |∂Cn+1| < 2k − 1 by (ii).

Hence, there is an infinite region C ′ of C so that for each non-empty region
C ′′ ⊆ C ′ − ∂∗C ′ of C holds that

|∂C ′′| ≥ 2k − 1. (5.1)

Observe that as G is locally finite, there exist regions ⊆ C ′−∂∗C ′ of C which
are infinite: take, for example, any infinite component of C ′ − ∂∗C ′. Now,
choose an infinite region H ⊆ C ′ − ∂∗C ′ of C with |∂H| minimal. By (5.1),
∂H consists of at least 2k − 1 edges.

We claim that H is the desired k-edge-connected region of C. Indeed, suppose
otherwise. Then (here we need that H is non-trivial), H has a cut F with
|F | < k. We may assume that F is a minimal cut, i.e. leaves only two
components D, D′ in H − F . One of the two, say D, is infinite. Then, by
the choice of H , the cut ∂D ⊆ F ∪ ∂H contains at least |∂H| edges. Hence,
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D is incident with all but at most |F | edges of ∂H . Thus D′ ⊆ C ′ − ∂∗C ′ is
a (non-empty) region of C with

|∂D′| ≤ |∂H| − |∂H ∩ ∂D| + |F | ≤ 2|F | < 2k − 1,

a contradiction to (5.1).

Theorem 5.1.4 is best possible in the sense that high edge-degree is not
sufficient to force highly connected subgraphs, as we shall see in the next
section. Furthermore, it has two interesting corollaries.

Corollary 5.2.2.[43] Let k ∈ N and let C be an infinite region of a locally
finite graph G which has minimum degree 4k+1 at the vertices and minimum
edge-degree 2k − 1 at the ends. Then C has either infinitely many disjoint
finite k-edge-connected regions or an infinite k-edge-connected region.

Proof. Take an inclusion-maximal set D of disjoint finite k-edge-connected
regions of C (which exists by an easy application of Zorn’s Lemma), and
assume that |D| < ∞. Since C ′ := C −

⋃

D∈D D ⊆ C is an infinite region of
G, we may use Theorem 5.1.4 to obtain a k-edge-connected region H of C.
Then H is infinite by the choice of D.

The two configurations of Corollary 5.2.2 of which one necessarily appears
need not both exist. Indeed, for given r ∈ N, it is easy to construct an
infinite locally finite graph G which has minimum degree and vertex- (and
thus edge-) degree r but no infinite 3-edge-connected subgraph. We obtain G
from the r × N grid by joining each vertex to r disjoint copies of Kr+1. Any
infinite subgraph of G which is at least 2-edge-connected is also a subgraph
of the r × N grid, and hence is at most 2-edge-connected.

On the other hand, there are also locally finite graphs of high minimum degree
and vertex-degree that have no finite highly edge-connected subgraphs. For
given r ∈ N, add some edges to each level Si of the r-regular tree T r so that
in the obtained graph T̃ r each Si induces a path. The only end of T̃ r has
infinite vertex- and edge-degree, and the vertices of T̃ r have degree at least r.
Now, for every finite subgraph H of T̃ r there is last level of T̃ r that contains
a vertex v of H . Then v has degree at most 3 in H , and hence, H is not
4-edge-connected.

Our second corollary of Theorem 5.1.4 describes how the graph G decomposes
into subgraphs that either are highly edge-connected or only have subgraphs
that send many edges to the outside:

Corollary 5.2.3. [43] Let k ∈ N, and let G be a locally finite graph with
minimum degree 4k + 1 at the vertices and minimum edge-degree 2k − 1 at
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the ends. Then there is a countable set D of disjoint k-edge-connected regions
of G such that |∂H| ≥ max{2k, |H|} for each subgraph H of G −

⋃

D∈D D.

Proof. Let D be an inclusion-maximal set D of disjoint k-edge-connected
regions of G (which exists by Zorn’s Lemma). Since G is locally finite and we
may assume it to be connected, G is countable, and therefore D is countable.

Observe that it suffices to show |∂H| ≥ max{2k, |H|} for induced connected
subgraphs H of G −

⋃

D∈D D, and consider such an H . If H is infinite, then
Theorem 5.1.4 and the (maximal) choice of D imply that H is not a region
of G, i.e. that |∂H| is infinite, as desired.

So assume that H is finite. Then in particular, H is a region of G, and thus
Lemma 5.2.1 ensures that |∂H| ≥ 2k. Also, |∂H| ≥ |H|, as otherwise H has
average degree d(H) ≥ δV − 1 ≥ 4k, and hence H has a k-edge-connected
subgraph by Theorem 5.1.1, contradicting the choice of D.

5.3 High edge-degree is not enough

For given r ∈ N we will construct a locally finite graph Gr of minimum degree
r (at the vertices) and minimum edge-degree ≥ r at the ends that has no
4-connected subgraph and no 6-connected minor. This construction can also
be found in [43].

We start with an infinite rooted tree Tr in which each vertex sends r edges
to the next level. The graph Gr will be obtained from Tr in the following
manner. Let S0 consist of the root of Tr and for i ≥ 1 denote by Si the i-th
level of Tr. Now, successively for i ≥ 1, we add some vertices to Si, which
results in an enlarged ith level S ′

i, and then add some edges between S ′
i − Si

and Si+1. For this, consider those subsets of Si whose elements have the
same neighbour in Si−1. For each maximal such set S, fix an enumeration
s1, s2, . . . , sr of S, and add r − 1 new vertices vS

1 , vS
2 , . . . , vS

r−1 to Si. Denote
by S ′

i the set thus obtained from Si. Then for each j ≤ r − 1 and each S as
above add all edges between vS

j and NSi+1
({sj, sj+1}). This yields a graph

Gr on the disjoint union of sets S ′
1, S

′
2, . . . as depicted in Figure 5.1 for r = 3.

Lemma 5.3.1.[43] Gr has minimum degree r at the vertices and minimum
edge-degree ≥ r at the ends.

For the proof, we need a lemma which follows immediately from Corol-
lary 4.4.6:

Lemma 5.3.2. If a locally finite graph G has no cuts of cardinality < k ∈ N,
then each of its ends has edge-degree at least k.
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Figure 5.1: The graph G3.

Proof of Lemma 5.3.1. By construction, Gr has mimimum degree r at the
vertices. To see that the ends of Gr have edge-degree at least r, we use
Lemma 5.3.2; hence, it suffices to show that Gr has no cuts of cardinality
less than r. This will be done by proving inductively for n ∈ N that the
vertices in

⋃n

i=0 S ′
i cannot be separated in Gr by less than r edges. The

assertion clearly holds for n = 0, as S ′
0 = S0 consists of only one vertex. So

suppose n > 0. By assumption, S ′
n−1 cannot be separated in Gr by less that

r edges, and by construction, Sn−1 cannot be separated in Gr by less than r
edges from any of the maximal subsets S of Sn whose elements have the same
neighbour in Sn−1. Hence, we only need to show that no such S together
with the corresponding vS

1 , vS
2 , . . . , vS

r−1 ∈ S ′
n − Sn can be separated in Gr by

less than r edges. But this is easy: any two vertices of S ∪ {vS
1 , vS

2 , . . . , vS
r−1}

are connected by r edge-disjoint paths in Gr[S
′
n ∪ Sn+1].

Observe that every finite set A of vertices can be separated from any end ω
by at most three vertices (namely by the neighbours of the unique component
of Gr − S ′

i that contains a ray in ω, where i is large enough so that A ⊆ S ′
i).

Hence, each end of Gr has vertex-degree at most 3.

In fact, Theorem 5.1.3 ensures that every graph of high minimum degree (at
the vertices) has either an end of small vertex-degree or a highly connected
subgraph. We shall see now that the latter is not the case for Gr.

Lemma 5.3.3.[43] Gr has no 4-connected subgraph.
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Proof. Suppose Gr has a 4-connected subgraph H , and let i ∈ N so that
V (H) ∩ S ′

i 6= ∅. Now, if there is vertex v ∈ V (H) − S ′
i+1, then it can be

separated in Gr (and thus also in H) from V (H)∩S ′
i by at most three vertices

(namely by the neighbours of the component of Gr − S ′
i+1 that contains v).

So, as H is 4-connected, V (H) − S ′
i+1 must be empty. Hence, H is finite,

implying that there is a maximal j ∈ N such that V (H) ∩ S ′
j 6= ∅. But then

by construction of Gr, any vertex in V (H) ∩ S ′
j has degree at most three in

H , a contradiction as H is 4-connected.

It is slightly more difficult to prove that Gr has no highly connected minor.

Lemma 5.3.4.[43] Gr has no 6-connected minor.

Proof. Suppose that Gr has a 6-connected minor M . Then there is an n ∈ N
so that each branch-set of M has a vertex in

⋃n

i=0 S ′
i. Furthermore, since

M is 6-connected, each separator T ⊆
⋃n

i=0 S ′
i of Gr with |T | ≤ 5 leaves

a component C of Gr − T such that V (C) ∪ T meets one and hence every
branch-set of M . So as each S ′

i can be separated in Gr from any component
of G− S ′

i by at most three vertices, there is an i < n such that each branch-
set of M meets S ′

i ∪ S ′
i+1. Moreover, there is a maximal set S of neighbours

in Si+1 of the same vertex in Si such that each branch-set of M has a vertex
in S ′ := S ∪ NS′

i
(S) ∪ {vS

1 , vS
2 , . . . , vS

r }. Then |S ′ ∩ S ′
i| ≤ 3.

We claim that M is also a minor of the finite graph G′
r (see Figure 5.2) which

Figure 5.2: The graph G′
5 for |S ′ ∩ S ′

i| = 3.

is obtained from Gr[S
′] by adding an edge between every two vertices that

are neighbours of the same component of Gr−S ′. Indeed, each component C
of Gr−S ′ has at most three neighbours in S ′. Hence, since M is 6-connected,
C meets only (if at all) those branch-sets of M that also meet NS′(C). It is
easy to see that M is still a minor of the graph we obtain from Gr by deleting
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C and adding all edges between vertices in NS′(C). Arguing analogously for
the other components of Gr − S ′, we see that M is also a minor of G′

r.

As |S ′∩S ′
i| ≤ 3, all but at most 3 branch-sets of M in G′

r have all their vertices
in |S ′ ∩ S ′

i+1|. Then these give rise to a 3-connected minor of G′
r − S ′

i. But
each non-trivial block of G′

r − S ′
i is a triangle and hence has no 3-connected

minor, yielding the desired contradiction.

Note that the two latter results are best possible, since Gr has a 3-connected
subgraph, the K4, and a 5-connected minor, the K6.

5.4 Forcing highly connected subgraphs

We finally prove the main result of this chapter, which we restate:

Theorem 5.1.3.[43] Let k ∈ N and let G be a locally finite graph such that
each vertex has degree at least 6k2−5k+3, and each end has vertex-degree at
least 6k2 − 9k + 4. Then every infinite region of G has a k-connected region.

Proof. Let C be an infinite region of G, and assume that C has no finite
k-connected subgraph. We shall then find an infinite region H of C which is
k-connected. Set δV := 6k2 − 5k + 3 and δΩ := 6k2 − 9k + 4. Note that we
may assume that k > 1.

First, suppose that for every infinite region C ′ of C there is a region C ′′ ⊆
C ′ − ∂∗C ′ of C such that |∂∗C ′′| < δΩ and V (C ′′) 6= ∂∗C ′′. Observe that
each such C ′′ is infinite, as otherwise C ′′−∂∗C ′′ has minimum degree δ(C ′′−
∂∗C ′′) ≥ δV − δΩ + 1 ≥ 4k. Then Theorem 5.1.1 yields a finite k-connected
subgraph of C ′′ ⊆ C, contradicting our assumption. Hence, there exists a
sequence C =: C1, C2, . . . of infinite regions of C such that Ci ⊆ Ci−1−∂∗Ci−1

and |∂∗Ci| < δΩ for all i > 1.

As in the proof of Theorem 5.1.4, we see that there is an end ω ∈ Ω(G) that
has a ray R such that each of the Ci contains a tail of R. As ω has vertex-
degree at least δΩ, there are δΩ disjoint ω-rays in G. The starting vertices
of these lie at finite distance to ∂∗C1, hence, since Ci ⊆ Ci−1 − ∂∗Ci−1 for
i > 1, there is an n ∈ N so that all of the δΩ disjoint ω-rays start outside
Cn. But (being equivalent to R) each of these rays eventually enters Cn, a
contradiction because |∂∗Cn| < δΩ.

Hence, there is an infinite region C ′ of C such that

|∂∗C ′′| ≥ δΩ for each region C ′′ ⊆ C ′−∂∗C ′ of C with V (C ′′) 6= ∂∗C ′′. (5.2)
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For a region H ⊆ C ′ − ∂∗C ′ of C write

ΣH :=
∑

v∈V (H)

max{0, δV − dH(v)},

and choose an infinite region H ⊆ C ′ − ∂∗C ′ of C such that k|∂∗H| + ΣH is
minimal. Observe that this sum is finite, since all vertices of H but those in
∂∗H have degree ≥ δV in H , and it is possible to choose H ⊆ C ′− ∂∗C ′ with
|∂∗H| < ∞ because G is locally finite. Then |∂∗H| ≥ δΩ by (5.2).

Assume that there is a vertex v ∈ V (H) that has degree at most 2k − 1 in
H . Then dH−v(w) = dH(w)− 1 for each of the at most 2k − 1 neighbours w
of v in H , and dH−v(w

′) = dH(w′) for all other vertices w′ in H . Therefore,

k|∂∗(H − v)| + ΣH−v ≤ k|∂∗H| + k(2k − 2) + ΣH + (2k − 1) − (δV − dH(v))

≤ k|∂∗H| + ΣH + 2k(k + 1) − δV

< k|∂∗H| + ΣH .

So any infinite component of H−v is a better choice than H , a contradiction.
We thus have shown that

dH(v) ≥ 2k for all v ∈ V (H). (5.3)

We shall now prove that H is the desired k-connected region of C. Indeed,
suppose otherwise. Then H has a separator T of cardinality < k, which we
may assume to be a minimal separator. Note that each such separator leaves
a component D of H − T such that H − D is an infinite region of C. We
claim that T and D can be chosen such that for H ′ := H − D

dH′(v) ≥ 2 for each vertex v ∈ T. (5.4)

Indeed, choose a separator T of minimal cardinality in H and a component
D of H −T such that the number of vertices in T that have degree at most 1
in H ′ is minimal. Suppose that there is a v ∈ T so that dH′(v) ≤ 1. Then the
minimality of T implies that dH′(v) = 1, and that the neighbour w of v in H ′

does not lie in T . By (5.3), w has degree at least 2k ≥ 3 in H . Hence, since
w /∈ T , also dH′(w) ≥ 3. Thus the number of vertices in T ′ := T \ {v} ∪ {w}
that have degree at most 1 in H − (D ∪ {v}) is smaller than the number of
vertices in T that have degree at most 1 in H ′. Now, the minimality of |T |
ensures that T ′ is a minimal separator of H , and has minimal cardinality.
Furthermore, D∪{v} is a component of H −T ′ (as T is a minimal separator
and hence v sends an edge to D), and H − (D ∪ {v}) is infinite (as H ′ is), a
contradiction to the choice of T . This establishes (5.4).
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We claim that
|V (D) ∩ ∂∗H| ≥ δΩ − |T |. (5.5)

Then we obtain for the infinite region H ′ ⊆ C ′ − ∂∗C ′ of C that

|∂∗H ′| ≤ |∂∗H| − |V (D) ∩ ∂∗H| + |T |

≤ |∂∗H| − δΩ + 2|T |.

Furthermore, by (5.4),

ΣH′ ≤ ΣH +
∑

v∈T

max{0, δV − dH′(v)}

≤ ΣH + (δV − 2)|T |,

and so

k|∂∗H ′| + ΣH′ ≤ k|∂∗H| + ΣH − kδΩ + (δV + 2k − 2)|T |

≤ k|∂∗H| + ΣH − kδΩ + (6k2 − 3k + 1)(k − 1)

< k|∂∗H| + ΣH ,

contradicting the choice of H .

It remains to show the validity of (5.5). Suppose otherwise, i.e. that |V (D)∩
∂∗H| < δΩ − |T |. Then for the region D̃ := G[V (D) ∪ T ] ⊆ C ′ − ∂∗C ′ of C
holds that

|∂∗D̃| = |T ∪ (V (D) ∩ ∂∗H)| ≤ |T | + |V (D) ∩ ∂∗H| < δΩ.

Hence by (5.2), V (D̃) = ∂∗D̃, implying that V (D) ⊆ ∂∗H . In particular,
|D| < δΩ −|T |. So each vertex v ∈ V (D) has degree at most |D∪T −{v}| ≤
δΩ − 1 = δV − 4k in H . Then δV − dH(v) ≥ 4k, and thus

ΣH′ ≤ ΣH −
∑

v∈V (D)

max{0, δV − dH(v)} +
∑

v∈T

(dH(v) − dH′(v))

≤ ΣH − 4k|D| + |T ||D|

< ΣH .

On the other hand, (5.3) ensures that |D| ≥ k. So

|∂∗H ′| ≤ |∂∗H| − |D| + |T | < |∂∗H|,

and thus
k|∂∗H ′| + ΣH′ < k|∂∗H| + ΣH ,

a contradiction to the choice of H . This completes the proof of (5.5), and
hence the proof of the theorem.
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Theorem 5.1.3 has two corollaries. The proof of the first is analogous to that
of Corollary 5.2.2.

Corollary 5.4.1.[43] Let k ∈ N and let C be an infinite region of a locally
finite graph of minimum degree 6k2 − 5k + 3 at the vertices and minimum
vertex-degree 6k2 − 9k + 4 at the ends. Then C has either infinitely many
disjoint finite k-connected regions or an infinite k-connected region.

Again, these two configurations need not both exist, as the examples following
Corollary 5.2.2 illustrate. (For this, observe that if a graph has no highly
edge-connected subgraph then it clearly has no highly connected subgraph.)

The second corollary of Theorem 5.1.3 is an analogon of Corollary 5.2.3.

Corollary 5.4.2. [43] Let k ∈ N, and let G be a locally finite graph with
minimum degree δV ≥ 6k2 − 5k + 3 at the vertices and minimum vertex-
degree δΩ ≥ 6k2 − 9k + 4 at the ends. Then there is a countable set D of
disjoint k-connected regions of G such that |∂∗H| ≥ max{δΩ, k−1

k
|H|+1} for

each non-empty subgraph H of G −
⋃

D∈D D.

Proof. Similarly as in the proof of Corollary 5.2.3, take an inclusion-maximal
set D of disjoint k-connected regions of G, which then is countable.

Observe that we only need to consider induced connected non-empty sub-
graphs H of G −

⋃

D∈D D. So let H be a such. If H is infinite, then Theo-
rem 5.1.3 and the choice of D imply that H is not a region, i.e. that |∂∗H|
is infinite, as desired.

So assume that H is finite. Then |∂∗H| ≥ δΩ, as otherwise H − ∂∗H has
minimum degree d(H − ∂∗H) ≥ δV − δΩ + 1 ≥ 4k, and hence H has a
k-connected subgraph by Theorem 5.1.1, contradicting the choice of D.

Also, |∂∗H| > k−1
k
|H|. Indeed, suppose otherwise. Then H has average

degree

d(H) ≥
δV |H − ∂∗H| + |∂∗H|

|H|
≥ δV − (δV − 1)

|∂∗H|

|H|
≥

δV + k − 1

k
≥ 4k,

since we may assume that k ≥ 2. Thus Theorem 5.1.1 yields a k-connected
subgraph of H , a contradiction to the choice of D.
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Chapter 6

Arboricity

6.1 Introduction

A criterion for the smallest number of acyclic subgraphs of a finite graph
whose union contains the entire graph is given by Nash-Williams’ arboricity
theorem:

Theorem 6.1.1 (Nash-Williams [37]). Let k ∈ N, and let G be a finite
multigraph in which no set of ℓ vertices induces more than k(ℓ − 1) edges.
Then G is the edge-disjoint union of at most k forests.

Theorem 6.1.1 easily extends to locally finite graphs by compactness, if a
forest is defineded as a graph that contains no finite cycles. However, in
our setting the forests of an appropriate infinite analogue of Nash-Williams’
theorem should not be allowed to contain infinite cycles either, i.e. be topo-
logical forests. Such a result would be much stronger. So much so, in fact,
that without additional constraints it is false.

Indeed, consider the infinite ladder in which each rung except the first has
been subdivided and all other edges duplicated (see Figure 6.1). This multi-

Figure 6.1: Every two forests partitioning the multigraph contain infinite
cycles
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graph satisfies the condition of Theorem 6.1.1 for k = 2, because it is an
edge-disjoint union of two (ordinary) forests, but clearly, every two such
forests must each contain a double ray. That double ray forms an infinite
cycle as its closure contains the graph’s single end.

We can easily generalise this counterexample to arbitrary k ∈ N and simple
graphs. Simply replace each of the subgraphs of the form ({v, w}, {vw, vw})
with a simple finite graph H that is the union of k edge-disjoint spanning
trees (for example H = K2k), identifying v, w with distinct vertices of H .
Then, as before, G is an edge-disjoint union of k ordinary forests, and hence
satisfies Nash-Williams’ condition that no set of ℓ vertices spans more than
k(ℓ−1) edges. But any partition of G into k forests induces such a partition
in each copy of H , ie. into spanning trees of H . Each of these contains a
v–w path, so each of our k forests contains a double ray and thus an infinite
cycle. These counterexamples are due to Bruhn and Diestel (unpublished).

In order to generalise Theorem 6.1.1 to topological forests, we thus need to
impose some further conditions. One natural way to do this is to require local
sparseness not only for all finite subgraphs (as in Nash-Williams’ condition)
but also around ends, eg. by placing an upper bound on their edge-degrees.
Observe that this is a weaker condition than the same restriction on the
vertex-degree of the ends. Also, it is more natural: the arboricity theorem
deals with forests, i.e. in the considered subgraphs we forbid cycles.

Further note that the counterexamples above each have an end of edge-degree
≥ 2k. It is not difficult to construct others whose end has edge-degree exactly
2k. Just choose H such that it contains a vertex of degree k and identify this
vertex with v.

The following conjecture of Diestel [15], whose proof is the main result of
this chapter, is therefore best possible in this sense:

Theorem 6.1.2.[41] Let k ∈ N, and let G be a locally finite graph in which
no set of ℓ vertices induces more than k(ℓ − 1) edges. Further, let every end
of G have edge-degree < 2k. Then |G| is the edge-disjoint union of at most
k topological forests in |G|.

Although, as we have seen, the bound of 2k in Theorem 6.1.2 cannot be
reduced, the theorem has no direct converse: a partition into k topological
forests does not force all edge-degrees to be small. The N × N grid, for
example, is an edge-disjoint union of two topological forests (its horizontal
vs. its vertical edges), but its unique end has infinite edge-degree.
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6.2 Finitely many small cuts cut off all ends

Consider a locally finite graph G, a finite set S ⊆ V (G) and an end ω ∈ Ω(G)
of finite degree < k. Then Corollary 4.4.6 yields a cut of cardinality < k that
separates S from ω, and therefore induces a region Kω ⊆ G−S whose closure
contains ω.

Now, instead of ω consider a finite set of ends, each of which has edge-degree
< k. Again we want to find regions Kω of small co-boundary whose closures
contain the respective end ω. These can easily be chosen disjoint, because
there is a finite set S ′ ⊇ S which separates our ends pairwisely.

Finally, consider the set of all ends of edge-degree < k. Cleary, there is still
a (possibly infinite) set of regions K ⊆ G − S with |∂K| < k such that
every such end lies in the closure of one of them. But are we still able to
choose these regions disjoint? The next lemma gives a positive answer to
this question.

Lemma 6.2.1. [41] Let k ∈ N, let G be a locally finite graph and let S ⊆
V (G) be finite. Then there is a set K of disjoint regions K ⊆ G − S of G
with |∂K| < k, such that for every ω ∈ Ω(G) with d(ω) < k there is a K ∈ K
with ω ∈ K.

Proof. If S is empty, then K := {G} is as desired, so assume S 6= ∅. We use
induction on k to prove the existence of a set Kk of disjoint regions of G such
that for all K ∈ Kk:

(i) K ⊆ G − S and |∂K| < k;

(ii) there is no finite set H such that V (K) =
⋃

H∈H V (H) and |∂H| < |∂K|
for all H ∈ H.

In addition, we require for all regions K ′ ⊆ G − S:

(iii) if |∂K ′| < k then E(K ′) −
⋃

K∈Kk E(K) is finite.

We claim that then Kk is the desired set K of the lemma. Indeed, consider
an end ω ∈ Ω(G) with d(ω) < k, and let R ∈ ω. By Corollary 4.4.6, there
is a region K ′ ⊆ G − S of G with ω ∈ K ′ such that |∂K ′| < k. By (iii),
E(K ′) −

⋃

K∈Kk E(K) is finite. Hence, R has only finitely many of its edges
outside

⋃

K∈Kk E(K). Thus, since the K ∈ K are pairwise disjoint, there is

a K ∈ K such that R has a tail in K, implying ω ∈ K, as desired.

Put K1 := ∅, a choice which trivially satisfies (i) and (ii), and also (iii) because
S 6= ∅ and we may suppose G to be connected (thus, the only K ′ ⊆ G − S
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with |∂K ′| < 1 is K ′ = ∅). So assume we already found a set Kk−1 satisfying
(i)–(iii); we show the existence of the set Kk.

Let H1, H2, . . . be an enumeration of all regions H ⊆ G − S of G with
|∂H| < k and E(H)−

⋃

K∈Kk−1 E(K) infinite (there are only countably many
such regions as E(G) is countable). From the Hi and Kk−1 we construct a
sequence of subgraphs Li ⊆ G−S as follows. Put L0 :=

⋃

K∈Kk−1 K, and let
for i ∈ N

Li := Li−1 ∪ Hi if ∂Hi ∩ E(Li−1) = ∅

and Li := Li−1 otherwise. It is easily shown by induction that for all i ∈ N
each component of Li is a region that sends less than k edges to the rest of
G.

Now, put L :=
⋃∞

i=1 Li and let Kk be the set of the components of L. Note
that

⋃

K∈Kk K = L ⊆ G − S and that the K ∈ Kk are induced subgraphs
of G. Furthermore, |∂K| < k for each K ∈ Kk, as otherwise there would
already have been a component K ′ of Li with |∂K ′| ≥ k for some i ∈ N (just
choose i such that Li contains at least k vertices which are incident with
edges in ∂K plus finite paths that connect these vertices pairwisely). Thus,
Kk is a set of disjoint regions for which (i) holds.

Let us show (ii). Suppose there are a K ∈ Kk and a finite set H such that
V (K) =

⋃

H∈H V (H) and |∂H| < |∂K| for all H ∈ H. By (i), |∂K| <
k, thus, |∂H| < k − 1 for all H ∈ H. Then (iii) for k − 1 yields that
E(H) −

⋃

K ′∈Kk−1 E(K ′) is finite for all H ∈ H. As |H| < ∞ and ∂H is
bounded for all H ∈ H, also E(K) −

⋃

H∈H E(H) is finite, implying that
E(K) −

⋃

K ′∈Kk−1 E(K ′) is finite. Hence K contains none of the Hi used in
the construction of Kk, and thus K = K ′ for some K ′ ∈ Kk−1, contradicting
(ii) for k − 1.

Finally, we prove (iii). Suppose there is a region K ′ ⊆ G − S of G with
|∂K ′| < k such that E(K ′) −

⋃

K∈Kk E(K) = E(K ′) − E(L) is infinite.
Assume K ′ is chosen with |∂K ′ ∩E(L)| minimal. Because K ′ = Hj for some
j ∈ N, there is a K ∈ Kk that contains edges of ∂K ′, as otherwise ∂K ′ ∩
E(Lj−1) = ∅, resulting in K ′ ⊆ Lj ⊆ L, which contradicts our assumption
that E(K ′) − E(L) is infinite.

Hence ∂K ′ ∩ E(K) 6= ∅, but ∂K ∩ E(L) = ∅, implying that |∂(K ∪ K ′) ∩
E(L)|, |∂(K ′ − K) ∩ E(L)| < |∂K ′ ∩ E(L)|. As G is connected, K ′ − K
has only finitely many components, one of which is a region K ′′ ⊆ G − S
such that E(K ′′) − E(L) is infinite and |∂K ′′ ∩ E(L)| < |∂K ′ ∩ E(L)|. Also
K ∪ K ′ is such a region. Thus, the choice of K ′ ensures that |∂(K ∪ K ′)|,
|∂(K ′ − K)| ≥ k.
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Then

|∂(K ∩ K ′)| + k ≤ |∂(K ∩ K ′)| + |∂(K ∪ K ′)|

= |E(K ∩ K ′, K − K ′)| + |E(K ∩ K ′, K ′ − K)|

+ |E(K − K ′, G − (K ∪ K ′))|

+ |E(K ′ − K, G − (K ∪ K ′))|

+ 2|E(K ∩ K ′, G − (K ∪ K ′))|

= |∂K| + |∂K ′| − 2|E(K − K ′, K ′ − K)|

≤ |∂K| + |∂K ′|

< |∂K| + k,

and similarly

|∂(K − K ′)| + k ≤ |∂(K − K ′)| + |∂(K ′ − K)|

≤ |∂K| + |∂K ′|

< |∂K| + k.

Thus, |∂(K ∩ K ′)|, |∂(K − K ′)| < |∂K|. But then each of the finitely many
components of K ∩ K ′ and of K − K ′ sends < |∂K| edges to the rest of G,
while V (K) = V (K ∩ K ′) ∪ V (K − K ′), a contradiction to (ii).

If, as is the case in Theorem 6.1.2, d(ω) is bounded for all ω ∈ Ω(G), the set
K from Lemma 6.2.1 has to be finite:

Lemma 6.2.2. [41] Let k ∈ N, let G be a locally finite graph, and let S ⊆
V (G) be finite. Suppose that every ω ∈ Ω(G) has edge-degree < k. Then
there is a finite number of disjoint regions K1, K2, . . . , Kn ⊆ G − S with
|∂Ki| < k for all i = 1, . . . , n such that for every ω ∈ Ω(G) there is an i ≤ n
with ω ∈ Ki.

For the proof, we need a standard lemma:

Lemma 6.2.3 (Diestel [16]). A locally finite connected graph G contains
for every infinite set U ⊆ V (G) a ray R together with infinitely many disjoint
U–V (R) paths.

Proof of Lemma 6.2.2. Lemma 6.2.1 supplies us with a set K of disjoint re-
gions K of G that have the desired properties. If we can show that K is finite,
we are done. So suppose otherwise, and let U ⊆ V (G) contain exactly one
vertex of each K ∈ K. Then, as we may assume G is connected, Lemma 6.2.3
yields a ray R together with infinitely many disjoint U–V (R) paths. As the
end ω that contains R lies in the closure of one of the K ∈ K, a tail of R is
contained in the region K, which contradicts the existence of infinitely many
disjoint U–V (R) paths.
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6.3 Arboricity for locally finite graphs

In our proof of Theorem 6.1.2 we shall successively define certain finite sets
S1 ⊆ S2 ⊆ . . . of vertices, together with partitions of E(G[Si]). In order
to extend the partition of E(G[Si]) to a partition of E(G[Si+1]), we want to
use Theorem 6.1.1 on the graph G̃ obtained from G[Si+1] by contracting Si

to a vertex, which we can do if the arboricity condition holds for G̃. The
following lemma ensures that there is a way to choose the Si so that it does:

Lemma 6.3.1.[41] Let k ∈ N, and let G be a locally finite graph in which
no set of ℓ vertices induces more than k(ℓ − 1) edges. Then for every finite
S ⊆ V (G) there is a finite S ′ ⊆ V (G) with S ′ ⊇ S such that ||G[X]|| +
|E(X, S ′)| ≤ k|X| for each X ⊆ V (G − S ′).

Proof. Put S0 := S, and for i ≥ 1 successively define Si as Si−1 ∪Xi if there
is an Xi ⊆ V (G − Si−1) such that ||G[Xi]||+ |E(Xi, Si−1)| > k|Xi|. Observe
that then Xi is finite. Either the process stops at some I ∈ N in which case we
put S ′ := SI and are done, or we obtain an infinite sequence S0 ⊆ S1 ⊆ . . .
together with the corresponding Xi. In the latter case, consider for n := k|S|
the set Sn. By choice of the Xi,

||G[Sn]|| ≥
n
∑

i=1

(k|Xi| + 1) = k(

n
∑

i=1

|Xi| + |S|) = k|Sn| > k(|Sn| − 1),

contradicting our assumption that the arboricity condition holds for G.

We define for a vertex v ∈ V (G) and for i ∈ N the set Ni(v) to be the set of
all vertices with distance i to v (thus, in particular, N1(v) = N(v)). For the
set {Ni(x) : x ∈ X}, where X ⊆ V (G) and i ∈ N, we write Ni(X).

Proof of Theorem 6.1.2. We successively define for all i ∈ N finite sets Si ⊆
V (G), together with k edge-disjoint forests F i

1, . . . , F
i
k, such that

(i) Si−1 ∪ N(Si−1) ⊆ Si, for i ≥ 2;

(ii) F i−1
j ⊆ F i

j , for j = 1, . . . , k and i ≥ 2;

(iii)
⋃k

j=1 E(F i
j ) = E(G[Si]); and

(iv) If C ⊆ G is a cycle so that C ∩G[Si] ⊆ F i
i mod k, then V (C)∩Si−1 = ∅,

for i ≥ 2.
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We claim that the (by (ii) well-defined) unions
⋃∞

i=1 F i
1, . . . ,

⋃∞
i=1 F i

k are the
desired topological forests. Indeed, (i) and (iii) ensure that their edge sets
partition E(G). Suppose that there is a j ∈ {1, . . . , k} so that

⋃∞
i=1 F i

j

contains an infinite cycle C of G. Let v be a vertex in V (C). By (i), we can
choose i ≥ 2 so that v ∈ Si−1 and j = i mod k. This contradicts (iv).

A further condition is needed to make the successive choice of the forests F i
j

possible. We require that for i ∈ N

(v) ||G[X]|| + |E(X, Si)| ≤ k|X| for every X ⊆ V (G − Si).

Let S1 be any one-elemented subset of V (G) and put F 1
1 , . . . , F 1

k := ∅; this
choice obviously satisfies (iii) and (v), which is all we required for i = 1. So
suppose i ≥ 2, and that Sℓ, F

ℓ
1 , . . . , F

ℓ
k are already defined for ℓ < i and satisfy

(i)–(v). Since Si−1 is finite, Lemma 6.2.2 yields a finite number of regions
K1, . . . , Kn ⊆ G − Si−1 of G such that |∂Km| < 2k for all m = 1, . . . , n
and such that every end of G lies in the closure of one of the Km. Then
T := V (G −

⋃n
m=1 Km) has only finitely many components, none of which

may contain a ray. Thus T is finite, hence, as |
⋃n

m=1 ∂Km| < ∞, also
S := T ∪

⋃n
m=1 N(G − Km) is finite. So Lemma 6.3.1 yields a finite S ′ ⊇ S.

Put Si := S ′ and observe that conditions (i) and (v) are satisfied.

In order to define the forests F i
1, . . . , F

i
k, we consider the multigraph G̃ ob-

tained from G[Si] by contracting Si−1 to the vertex si−1, keeping multiple
edges but deleting loops (if necessary, we first make Si−1 connected by adding
some extra edges). Note that Km∩G[Si] = Km∩ G̃ ⊆ G̃ and furthermore, as
∂Km ⊆ E(G[Si]), also ∂Km ⊆ E(G̃). Condition (v) for i − 1 (together with
the arboricity condition for G) implies that in the finite multigraph G̃, no
set of ℓ vertices induces more than k(ℓ − 1) edges. Hence, by Theorem 6.1.1
there is a partition of E(G̃) into the edge sets of k forests F̃1, . . . , F̃k ⊆ G̃.
Let I := i mod k and assume the F̃j are chosen so that |E(F̃I)∩

⋃n

m=1 ∂Km|
is minimal.

We claim that for m = 1, . . . , n:

all edges in E(F̃I) ∩ ∂Km are incident with the same component
of F̃I ∩ Km.

(6.1)

Then the partition of E(G̃) into E(F̃1), . . . , E(F̃k) corresponds to a partition
of E(G[Si]) − E(G[Si−1]) into the edge sets of k forests F1, . . . , Fk ⊆ G[Si].
Put F i

j := F i−1
j ∪Fj for j = 1, . . . , k, and observe that F i

j is a forest since F i−1
j

as well as Fj is acyclic, and any cycle meeting both contains a subgraph that
corresponds to a cycle of F̃j. This choice satisfies (ii) and (iii). In order to
see (iv), let C ⊆ G be a cycle with C∩G[Si] ⊆ F i

I , and suppose V (C)∩Si−1 6=
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∅. By Theorem 2.5.2, C meets each ∂Km in an even number of edges. For
every two edges in E(C)∩∂Km there is a path in F i

I ∩Km that connects their
endvertices in Km, because of (6.1). So, if E(C)∩∂Km 6= ∅, we can substitute
C ∩ Km with the union of these paths. Doing so successively for all m, we
obtain a finite subgraph of the forest F i

I , that has only vertices of degree ≥ 2,
and thus contains a cycle, which is impossible. This establishes (iv).

So, let us prove (6.1). Consider an m ∈ {1, . . . , n}. As otherwise (6.1) is
clearly satisfied for m, suppose that |E(F̃I)∩∂Km| ≥ 2. Because |∂Km| < 2k,
there is then a j ∈ {1, . . . , k} such that |E(F̃j)∩ ∂Km| ≤ 1. We may assume
that there indeed is an edge e ∈ E(F̃j) ∩ ∂Km, as otherwise taking any edge
from E(F̃I) ∩ ∂Km and adding it to F̃j clearly yields a better choice of the
forests F̃1, . . . , F̃k. Let e = vw with v ∈ V (Km) and w ∈ V (G̃ − Km).

Now, consider the graph F̃ obtained from F̃I by contracting the components
of F̃I ∩ Km and of F̃I − Km, deleting loops. Then E(F̃ ) = E(F̃I) ∩ ∂Km;
furthermore, F̃ is a forest, as F̃I is one. Let ṽ ∈ V (F̃ ) be the vertex whose
branch-set in F̃I contains v. Choose X ⊆ V (F̃ ) with ṽ ∈ X such that
the branch-set of each x ∈ X lies in Km and that every non-trivial com-
ponent of F̃ has exactly one vertex in X. Now, put E1 := E(X, N1(X)) ∪
E(N2(X), N3(X)) ∪ . . . and E2 := E(N1(X), N2(X)) ∪ E(N3(X), N4(X)) ∪
. . . ; these two sets clearly partition E(F̃ ). Observe that in G̃

each component of F̃I − Km is adjacent to at most one edge of E1, (6.2)

and

each component of F̃I ∩Km is adjacent to at most one edge of E2∪e. (6.3)

Put Hℓ := F̃ℓ for ℓ ∈ {1, . . . , k} \ {I, j} and let HI , Hj be subgraphs of G̃
with

E(HI) := E(F̃I − Km) ∪ E1 ∪ E(F̃j ∩ Km),

E(Hj) := E(F̃j − Km) ∪ E2 ∪ e ∪ E(F̃I ∩ Km).

We claim that HI and Hj are forests. Indeed, any cycle in HI contains edges
of E1, and thus a path in F̃I − Km that connects two edges of E1, which is
impossible, by (6.2). On the other hand, any cycle in Hj must contain edges
of E2 ∪ e, and thus a path in F̃I ∩ Km that connects two edges of E2 ∪ e, a
contradiction to (6.3).

Hence, as E(H1), . . . , E(Hk) clearly partition E(G̃), and E(F̃I∩
⋃n

m=1 ∂Km) =
E(HI ∩

⋃n

m=1 ∂Km) ∪ E2, the choice of F̃1, . . . , F̃k implies that E2 = ∅.
Suppose there is an edge e′ ∈ E1 = E1 ∪ E2 = E(F̃I) ∩ ∂Km, with end-
vertex x in Km, such that there is no v–x path in F̃I ∩ Km. Then put
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H ′
I := (V (HI), E(HI) − {e′}) and H ′

j := (V (Hj), E(Hj) + {e′}). Observe
that H ′

j is a forest, as any cycle in H ′
j contains both e and e′, and thus a

v–x path in F̃I ∩ Km, which is impossible. But since H ′
I has less edges in

⋃n
m=1 ∂Km than F̃I , this contradicts the choice of F̃1, . . . , F̃k.

So every edge in E(F̃I) ∩ ∂Km is incident with the component of F̃I − Km

that contains v, establishing (6.1).



70 Arboricity



Chapter 7

Cycle-cocycle partitions

7.1 Introduction

By a result of Gallai (see Lovász [32]), every finite graph has a ‘cycle-cocycle’
partition of its edge set induced by a bipartition of its vertex set:

Theorem 7.1.1. Every finite graph G admits a vertex partition into (possibly
empty) sets V1, V2 such that both E(G[V1]) and E(G[V2]) are elements of the
cycle space of G.

Let us see what happens if we disallow infinite cycles in infinite graphs. Then,
Gallai’s theorem does not extend to infinite graphs. Indeed, a partition into
finite sums of finite cycles does not exist, for instance, when G is an infinite
disjoint union of triangles.

One way to deal with the problem is to look for an equivalent reformulation
of Theorem 7.1.1 and extend that. For example:

Theorem 7.1.2. Every locally finite graph G admits a vertex partition into
(possibly empty) sets V1, V2 such that in both G[V1] and G[V2] all vertex de-
grees are even.

(The proof of Theorem 7.1.2 is an easy exercise in compactness. It is also an
immediate corollary of Theorem 7.1.4 below.)

However, the requirement that all vertex degrees of a subgraph H of a finite
graph G should be even is only one equivalent reformulation among many
of saying that E(H) lies in the cycle space of G. Another is that H should
be an edge-disjoint union of cycles (and isolated vertices). But if in this
latter reformulation we only allow finite cycles, then Theorem 7.1.1 no longer
extends to infinite graphs:

71
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u1 u2 u3

v1 v2 v3

w1 w2 w3 w4 w5

Figure 7.1: A graph with no bipartition into edge-disjoint unions of finite
cycles

Example 7.1.3. [8] The graph G shown in Figure 7.1 has a unique vertex
partition into two induced even-degree subgraphs. One of these is edgeless,
the other a double ray.

Proof. Consider any partition (V1, V2) of V (G). Note that if two vertices x, y
(such as u1 and w1) have a common neighbour z (such as v1) not adjacent to
any other vertex, then x and y must lie in the same partition class: otherwise,
z would have degree 1 in its partition class. Thus if u1 ∈ V1, say, we deduce
inductively that w1, w3, w5, . . . ∈ V1 and hence also u2, u3, u4, . . . ∈ V1. But
u2, u3, u4 . . . must not have degree 3 in G[V1], so v2, v3, v4, . . . ∈ V2. Finally,
v1 lies in V1 because u2 does, so inductively w2, w4, . . . ∈ V1.

Thus, V2 is the independent set {v2, v3, . . . }, while V1 consists of the remain-
ing vertices, which span a double ray.

We will see in this chapter that, despite Example 7.1.3, Theorem 7.1.2 is
not the strongest possible extension of Theorem 7.1.1. Indeed, the double
ray G[V1] in Figure 7.1 forms an infinite cycle in the topological cycle space
C(G). So for our space C(G), the graph of Figure 7.1 is no longer a coun-
terexample to Theorem 7.1.1. And indeed, we have the following extension
of Theorem 7.1.1 to infinite graphs, which implies Theorem 7.1.2 but is quite
a bit stronger:

Theorem 7.1.4. [8] For every locally finite graph G there is a partition of
V (G) into two (possibly empty) sets V1, V2 such that E(G[Vi]) ∈ C(G) for
both i = 1, 2.

We shall prove Theorem 7.1.4 in Section 7.7.2. In Section 7.7.3 we use similar
techniques to extend the cycle double cover conjecture and Seymour’s faithful
cycle cover conjecture to locally finite graphs: if these conjectures are true
for finite graphs, they also hold for locally finite graphs with our notion of
an infinite topological cycle space. (The latter conjecture fails unless infinite
cycles are admitted; for the former we have been unable to decide whether
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infinite cycles are really needed.) In Section 7.7.4 we generalize our results
to graphs with infinite degrees, as far as this can be reasonably expected.

7.2 Cycle-cocycle partitions

The purpose of this section is to prove Theorem 7.1.4. This proof will also
serve as a model for other proofs later in this chapter, which will refer to this
proof and skip the corresponding details.

Our proof of Theorem 7.1.4 will be a compactness proof, but we shall need the
non-trivial Theorem 2.5.2 from [17] to make this possible. Recall that while
Theorem 7.1.2 has a straightforward compactness proof, the näıve extension
of Theorem 7.1.1 to locally finite graphs does not (and is in fact false).
The reason is, roughly speaking, that having all degrees even is a ‘local’
property of finite subsets S ⊆ V (G) (one that S will satisfy in every large
enough induced subgraph or in none), while inducing part of an element of
the (combinatorial) cycle space based on finite cycles is not: the sequence of
finite cycles Cn = Pn + en, for example, where the Pn = v−nv−(n−1) . . . vn−1vn

are nested paths and en is the edge v−nvn, ‘tends’ for n → ∞ to the double
ray D = . . . v−1v0v1 . . . whose edge set does not lie in the combinatorial
cycle space of

⋃

n∈N
Cn. However, D is an infinite cycle in

⋃

n∈N
Cn, and

more generally it turns out that all such ‘limits’ of finite cycles in a graph G
are elements of C(G) (though not necessarily single infinite cycles).

We shall cast our compactness proof in terms of König’s infinity lemma 2.1.1
as stated in Chapter 2.

Proof of Theorem 7.1.4. By treating the components of G separately, we may
assume that G is connected. Hence, being locally finite, G is countable. Let
v1, v2, . . . be an enumeration of V (G). For n ∈ N set Sn := {v1, . . . , vn}, and
define Wn as the set of all quadruples (V1, V2, E1, E2) such that

(i) (V1, V2) is a partition of Sn into two (possibly empty) sets; and

(ii) for i = 1, 2, Ei is a partition of E(G[Vi]) such that for each E ∈ Ei

there is a finite cycle C ⊆ G − V3−i with E(C ∩ G[Vi]) = E.

Each set Wn is clearly finite. It is non-empty by Theorem 7.1.1 applied
to G[Sn]; recall that every element of the cycle space of a finite graph is a
disjoint union of edge sets of cycles, which we can take as the partition sets
for E1 and E2.

Let us define a graph H on
⋃∞

n=1 Wn. For n ≥ 2, let (V1, V2, E1, E2) ∈ Wn be
adjacent to (V ′

1 , V
′
2 , E

′
1, E

′
2) ∈ Wn−1 if and only if, for both i = 1, 2,
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(iii) V ′
i ⊆ Vi;

(iv) for each E ′ ∈ E ′
i there is an E ∈ Ei such that E ∩ E(G[V ′

i ]) = E ′.

Observe that for n ≥ 2 every vertex in Wn has a neighbour in Wn−1.

By the infinity lemma (2.1.1), there is a ray v1v2 . . . in H with (V n
1 , V n

2 , En
1 , En

2 ) :=
vn ∈ Wn for all n. Clearly, V1 :=

⋃∞
n=1 V n

1 and V2 :=
⋃∞

n=1 V n
2 form a parti-

tion of V (G). By (iv), there is for every non-empty element En
i of a set En

i

a unique ascending chain En
i ⊆ En+1

i ⊆ . . . with Em
i ∈ Em

i for all m ≥ n.
Let Ei be the set consisting of the unions of such ascending chains, i = 1, 2.
By (ii), the sets in Ei are disjoint and cover all of E(G[Vi]). Thus, Ei is a
partition of E(G[Vi]).

We shall use Theorem 2.5.2 to show that all the sets E ∈ E1∪E2 are elements
of C(G); since disjoint unions are thin sums (as G is locally finite), this will
imply that

⋃

E1 and
⋃

E2 too are elements of C(G). Let E ∈ E1∪E2 be given,
and write En := E ∩ E(G[V n

i ]) for each n.

Consider a finite cut F of G. Choose n large enough that F ⊆ E(G[Sn]).
By (ii), there is a finite cycle C ⊆ G − V n

3−i with E(C ∩ G[V n
i ]) = En. Then

F ∩ E = F ∩ E(G[Sn]) ∩ E = F ∩ En = F ∩ E(C ∩ G[V n
i ]) = F ∩ E(C).

Since C is a cycle, the last intersection is even. Hence E ∈ C(G) by Theo-
rem 2.5.2, as desired.

7.3 Related problems

Another problem concerning cycles is the well-known cycle double cover con-
jecture, which states that every bridgeless finite graph has a cycle double
cover. (A cycle double cover of a graph G is a family of cycles such that each
edge of G lies on exactly two of those cycles.) Using the same techniques as
in the proof of Theorem 7.1.4 one can show that if the cycle double cover
conjecture is true for finite graphs then it also holds for locally finite graphs,
possibly with infinite cycles. However, we have been unable to construct an
example where infinite cycles are really needed.

The situation is different for the following related conjecture of Seymour,
which extends with infinite cycles but fails with finite cycles only. For a
graph G and a map p : E(G) → N (∋ 0) a faithful cycle cover of (G, p) is a
family of cycles such that every edge e ∈ G lies on exactly p(e) of those cycles.
Such a map p is admissible if p(F ) =

∑

f∈F p(f) is even and p(e) ≤ p(F )/2 for
every finite cut F and every edge e ∈ F . We call p even if all its values p(e)
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are even numbers. If (G, p) is to have a faithful cycle cover, then obviously
p has to be admissible, and we shall see below that for some G it has to
be even. Since the constant map with value 2 is admissible for bridgeless
graphs, the following faithful cycle cover conjecture extends the cycle double
cover conjecture:

Conjecture 7.3.1 (Seymour [40]). Let G be a finite graph, and p an even
admissible map. Then (G, p) has a faithful cycle cover.

Unlike the cycle double cover conjecture, we know that Conjecture 7.3.1 fails
for locally finite graphs unless we allow infinite cycles. Here is a simple
example. Let G be the double (= two-way infinite) ladder, and let p assign
0 to every rung and 2 to all the other edges. By our current definition
of admissibility (which requires p(e) ≤ p(F )/2 only for finite cuts F ), the
function p is admissible. But G contains no finite cycle that avoids all rungs,
so (G, p) has no faithful cover consisting of finite cycles. (It does, however,
have a faithful cover consisting of two copies of the infinite cycle spanned by
the edges for which p = 2.)

The above example is no longer a counterexample to the infinite analogue
of Conjecture 7.3.1 if we require of an admissible map p that it satisfies
p(e) ≤ p(F )/2 also for infinite cuts F (and edges e ∈ F ): if e is any edge
with p(e) = 2 and R is a maximal ray in the subgraph of G − e spanned by
all its remaining edges with p = 2, then e and the edges with p = 0 incident
with R form an infinite cut F such that p(e) = p(F ). Thus, p is no longer
admissible, and we no longer have a contradiction.

Our next example, however, shows that strengthening the definition of ‘ad-
missible’ as above is not enough to make Conjecture 7.3.1 true for locally
finite graphs—if only finite cycles are admitted. Consider the ladder G
shown in Figure 7.2 and the admissible map p : E(G) → N defined by
p(ei) = p(e′i) = 2i and p(fi) = 2 for all i. (Since p(e) > 0 for all e, we
trivially have p(e) ≤ p(F )/2 also for infinite cuts F .) Suppose there is a
faithful cycle cover which contains a finite cycle D. Obviously, D contains
exactly two rungs fm, fn, with m < n, say. Let C be the subfamily of the
cover consisting of those cycles which pass through the edge en. Each but at
most one (which might go through fn) of the cycles in C must use the edge
en−1. Thus, at least |C| − 1 = 2n − 1 cycles of the cover meet the edge en−1,
contradicting p(en−1) = 2n − 2. Therefore, the only faithful cycle cover that
(G, p) can have (and which is easily seen to exist) must be one consisting of
infinite cycles.

As soon as we allow infinite cycles, however, Conjecture 7.3.1 does extend to
locally finite graphs:
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e1 e2 e3 e4

f1 f2 f3 f4

e′1 e′2 e′3 e′4

Figure 7.2: The unique faithful cycle cover consists of infinite cycles only

Theorem 7.3.2. [8] Let G be a locally finite graph and p : E(G) → N an
even admissible map. If Conjecture 7.3.1 is true then (G, p) has a faithful
cycle cover.

Proof. We sketch how the proof of Theorem 7.1.4 has to be amended for
Theorem 7.3.2. As before, we may assume that G is connected. Let v1, v2, . . .
be an enumeration of its vertices, and set Gn := G[{v1, . . . , vn}]. We define
Wn as the set of all families E of edge sets E ⊆ E(Gn) such that

(i) every edge e ∈ Gn lies in exactly p(e) members of E ; and

(ii) for every E ∈ E there is a finite cycle C ⊆ G with E(C ∩ Gn) = E.

The sets Wn are nonempty. Indeed, consider the multigraph obtained by
contracting the components of G − Gn to one vertex each, keeping parallel
edges but deleting loops. Subdividing the parallel edges we obtain a simple
finite graph G′

n. The map p induces an even and admissible map on G′
n, for

which there is a faithful cycle cover by assumption. It is easy to see that the
corresponding edges in G satisfy (i) and (ii).

The rest of the proof is analogous to that of Theorem 7.1.4: applying the
infinity lemma to an auxiliary graph H , we obtain a family of elements of
C(G) such that every edge e lies on exactly p(e) members of this family. By
Theorem 2.5.1, we can modify this into a faithful cover consisting of single
cycles. Therefore, if the faithful cycle cover conjecture holds for finite graphs,
it is also true for locally finite graphs.

Conjecture 7.3.1 requires p to be even, and indeed if p is allowed to assume
odd values the conjecture becomes false: take the Petersen graph, and give
p the value 2 on a perfect matching and 1 on all other edges.

Take any subgraph of an infinite graph G, and contract some—possibly in-
finitely many—of its edges; the resulting graph will be called a minor of
G. Then the following result, whose finite version is a theorem of Alspach,
Goddyn and Zhang [2], can be proved like Theorem 7.3.2.
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Theorem 7.3.3. [8] Let G be a locally finite graph not containing the Pe-
tersen graph as a minor, and let p : E(G) → N be any admissible map (even
or not). Then (G, p) has a faithful cycle cover.

7.4 Graphs with infinite degrees

Theorem 7.1.4 does not extend to arbitrary graphs with vertices of infinite
degree. For example, consider the graph G obtained by joining a vertex v0

to every vertex of a ray R := v1v2v3 . . .. Suppose there is a partition as in
Theorem 7.1.4, and assume that v0 ∈ V1. By the definition of thin sums, no
element of C(G) can have infinitely many edges incident with v0. So there
is a maximal n ≥ 0 with vn ∈ V1. But then vn+1 has degree 1 in G[V2], a
contradiction.

The problem here is that no element of the topological cycle space is allowed
to have a vertex of infinite degree. Indeed if we weaken our concept of
infinite sums, forbidding only those where some edge lies in infinitely many
of the summands (i.e. making no restrictions on vertices), our counterexample
ceases to be one: for V1 := {v3, v6, v9, . . .}, the set V2 := V \ V1 induces an
element of the cycle space. Of course, there was a good reason for forbidding
these sums: summing up the triangles v0v1v2v0, v0v2v3v0, v0v3v4v0, . . . yields
the ray v0v1R, which should then also be a member of the cycle space. But
this is not unreasonable: as v0 cannot be separated finitely from the ray R,
this ray may be seen as converging to v0. Indeed, although R does not
converge to v0, it nearly does: VTop cannot separate its end from v0 by two
disjoint open sets. If we adjust our topology so that R does converge against
v0, by identifying v0 with the end containing R, the ray v0v1R becomes a
cycle as desired.

Let us make that precise. We say that a vertex v dominates an end ω in G if
there is ray R ∈ ω and an infinite set of v–R paths that meet pairwise only
in v. Assuming that

every end of G is dominated by at most one vertex, (7.1)

we now identify each vertex with all the ends it dominates, to obtain space G̃
whose (quotient) topology we denote by ITop. Note that, by (7.1), the
vertices of G remain distinct in this identification. The identification space
G̃ is Hausdorff (unlike |G|, when G has a dominated end), and compact [14]
if G is 2-connected and satisfies condition (7.2) below. See [7, 19] for more
on ITop.1

1Here, we obtain Itop from VTop, which is slightly sparser than the topology Top
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To obtain a cycle space which retains the natural properties of the topological
cycle space of a locally finite graph, we have to impose another restriction
on our graph G. Indeed, consider two vertices x and y that are linked by
infinitely many independent paths. Then we can generate each of these
paths P as a sum of cycles, so P should be in our cycle space. To avoid this,
we require the following:

No two vertices of G are joined by infinitely many independent
paths.

(7.2)

Note that (7.2) implies (7.1). As before, we define as cycles those subgraphs
of G whose closure in G̃ is homeomorphic to the unit circle, and the topological
cycle space C(G̃) of G̃ is defined as the span of all sums of cycles such that
no edge appears in infinitely many of the summands. For the rest of this
section, we assume that the graphs G we consider satisfy (7.2), and that all
cycles are defined with respect to G̃.

Theorem 7.1.4 now extends to graphs with infinite degrees, as follows:

Theorem 7.4.1. [8] Let G be a graph satisfying (7.2). Then there is a
partition of V (G) into two (possibly empty) sets V1, V2 such that E(G[Vi]) ∈
C(G̃) for both i = 1, 2.

For the proof of Theorem 7.4.1 we may assume G to be 2-connected, because
the topological cycle space of a graph is the direct product of the topological
cycle spaces of its blocks. (Recall that vertices are now allowed to lie in
infinitely many summands as long as no edge does.) Then G is countable [19].
We now proceed exactly as in the proof of Theorem 7.1.4, except that instead
of Theorem 2.5.2 we use the following analogous result:

Lemma 7.4.2 (Diestel and Kühn [19]). Let G be a graph satisfying (7.2).
Then C(G̃) consists of precisely those sets of edges that meet every finite cut
in an even number of edges.

Our results of Section 7.3 can also be extended to graphs with infinite degrees,
but we require the following strengthening of (7.2):

No two vertices of G are joined by infinitely many edge-disjoint
paths.

(7.3)

This is indeed stronger than (7.2), see [19].

We need another lemma.

from which ITop is derived in [19]. However, it is not difficult to see that both topologies
yield the same cycle space. In particular, Lemma 7.4.2 is still applicable.
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Lemma 7.4.3.[8] Let G be a 2-connected multigraph satisfying (7.3), and let
U be a finite set of vertices in G. Then we can contract edges of G, deleting
loops but keeping any multiple edges that arise, so that no two vertices from
U are identified, the multigraph H obtained has only finitely many edges and
vertices, and every cut of H is also a cut of G.

Proof. First, note that the set K of components of G − U is finite. Indeed,
as G is 2-connected, every component C of G − U has distinct neighbours
u, v in U . If K is infinite, then infinitely many C ∈ K are joined to the same
two vertices u, v (because U is finite), so these are linked by infinitely many
independent paths. This contradicts (7.3).

Next, consider a component C ∈ K. For every two vertices u, v ∈ U that both
send infinitely many edges to C there is a finite cut Fu,v ⊆ E(C) separating
N(u)∩ V (C) from N(v)∩ V (C) in C, because of (7.3). Let FC be the union
of all such cuts Fu,v. Note that FC is finite, as there are only finitely many
pairs u, v. Then the set KC of components of C − FC is also finite, and so is
K′ :=

⋃

C∈K KC . Each D ∈ K′ sends only finitely many edges to G−U −D,
and at most one vertex in U sends infinitely many edges to D. If such a
vertex exists, we denote it by uD.

In G, contract every D ∈ K′ to a vertex vD, keeping parallel edges but
deleting loops. If two vertices of the resulting multigraph are joined by
infinitely many edges, then these are uD and vD for some D ∈ K′. In a
second step, we now contract all these edges uDvD, again keeping parallel
edges. We obtain a finite multigraph H in which no two vertices from U are
identified. (Note in particular that the edge set of H is finite, despite the
parallel edges that arose in the contraction.) Since we did not delete any
edges except loops, every cut of H is also a cut of G.

Theorem 7.4.4.[8] Let G be a graph satisfying (7.3), and let p : E(G) → N
be an even admissible map. If Conjecture 7.3.1 is true then (G, p) has a
faithful cycle cover.

Proof. Consider a block B of G. Every cut of B is a cut of G, so the restriction
of p to B is an even admissible map on B. As C(G) is the direct product of
the topological cycle spaces of the blocks of G, we may therefore assume G
to be 2-connected. (Note that p assigns zero to bridges, so we need not cover
these.) Then G is countable [19].

Consider an enumeration v1, v2, . . . of V (G), and set Gn := G[{v1, . . . , vn}].
Define Wn as the set of all families E of sets E ⊆ E(Gn) such that

(i) every edge e ∈ E(Gn) lies in exactly p(e) members of E ; and
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(ii) for every E ∈ E there is a finite cycle C ⊆ G with E(C ∩ Gn) = E.

Let us show that the sets Wn are not empty. Apply Lemma 7.4.3 with
U = {v1, . . . , vn}, and denote the multigraph H obtained by G′

n. Since every
cut of G′

n is also one of G, the map p induces an admissible even map p′n
on G′

n. By subdividing edges we obtain from G′
n a simple graph G′′

n with
admissible even map p′′n (induced by p′n). Then by assumption there is a
faithful cycle cover of (G′′

n, p
′′
n). Every cycle in that cover can be extended to

a finite cycle in G. The family of these cycles then satisfies (i) and (ii), thus
proving Wn 6= ∅.

The rest of the proof is again analogous to that of Theorem 7.1.4, since every
element of C(G̃) is an edge-disjoint union of cycles [19].

Using the same techniques as above, we can also extend Theorem 7.3.3:

Theorem 7.4.5.[8] Let G be a graph that satisfies (7.3) and does not contain
the Petersen graph as a minor, and let p : E(G) → N be any admissible map.
Then (G, p) has a faithful cycle cover.



Chapter 8

MacLane’s planarity criterion

8.1 Introduction

A set (or family) E of edge sets E ⊆ E(G) is called simple, if every edge of
G lies in at most two elements of E . MacLane’s planarity criterion states:

Theorem 8.1.1 (MacLane [33]). A finite graph G is planar if and only if
its cycle space has a simple generating set.

Wagner [45] raised the question if MacLane’s result could be extended so that
it characterises planar graphs which are infinite. Rather than modifying the
planarity criterion, Thomassen [44] describes all infinite graphs that satisfy
MacLane’s condition. For this, recall that a vertex accumulation point, ab-
breviated VAP, of a plane graph Γ is a point p of the plane such that every
neighbourhood of p contains an infinite number of vertices of Γ.

Theorem 8.1.2 (Thomassen [44]). Let G be an infinite 2-connected graph.
Then G has a VAP-free embedding in the plane if and only if there is a simple
set of finite circuits that generate all finite circuits.

Bonnington and Richter [5] also provide a generalization of MacLane’s theo-
rem using the even cycle space Z(G), defined as the set of all subgraphs of G
with all vertex degrees even. With this space they investigate which graphs
have an embedding with k VAPs.

Our main result in this chapter is a verbatim generalization of MacLane’s
theorem to locally finite graphs:

Theorem 8.1.3.[11] Let G be a countable locally finite graph. Then, G is
planar if and only if C(G) has a simple generating set.

81



82 MacLane’s planarity criterion

This, together with Tutte’s generating theorem for locally finite graphs proved
by Bruhn [6], enables us to extend also Kelmans’ planarity criterion [?] to
locally finite graphs.

Theorem 8.1.4. [11] Let G be a locally finite 3-connected graph. If G is
planar then every edge appears in exactly two peripheral circuits. Conversely,
if every edge appears in at most two peripheral circuits then G is planar.

We discuss Theorem 8.1.3 in Section 8.8.2. In Section 8.8.3 we investigate
some properties of simple generating sets. The main result of the chapter
will be proved in the course of Sections 8.8.4 and 8.8.5. In Section 8.8.6
we extend Kelmans’ planarity criterion to locally finite graphs. Finally, we
briefly discuss in Section 8.8.2 extension to certain classes of non-locally finite
graphs.

8.2 Infinite circuits in generating sets

First let us make the notion of a generating set more precise. A generating
set of the topological cycle space will be a set F ⊆ C(G) such that every
element of C(G) can be written as a thin sum of elements of F . Thus, in
contrast to a generating set in the vector space sense we allow (thin) infinite
sums. There are two reasons for this. First, thin sums are integral to the
topological cycle space of an infinite graph, so it seems unnatural to forbid
them. Second, MacLane’s criterion is false if we insist that every Z ∈ C(G)
is a finite sum of elements of a simple subset of C(G), as we shall see in
Proposition 8.3.2.

To show that, in a certain sense, Theorem 8.1.3, is as strong as possible, we
need the following theorem, which is of interest on its own. It will be proved
in Section 4. For a circle C ⊆ |G|, call the circuit E(C) peripheral if the
subgraph C ∩ G of the graph G is induced and non-separating.

Theorem 8.2.1. [11] Let G be a 3-connected graph, and let F be a simple
generating set of C(G) consisting of circuits. Then every element of F is a
peripheral circuit.

First note that because of Theorem 2.5.1, if the topological cycle space has
a simple generating set then it also has a simple generating set consisting of
circuits.

Theorem 8.1.3 is formulated for locally finite graphs, and indeed it is false
for arbitrary infinite graphs. Indeed, consider the 3-connected graph G in
Figure 8.1, which is not locally finite. By Theorem 8.2.1 and the remark
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... ...

e

Figure 8.1: A planar graph whose topological cycle space has no simple
generating set.

following it, we may assume that a simple generating set F of C(G) consists of
peripheral circuits (finite or infinite). In particular, no circuit which contains
the edge e is in F . But then such a circuit cannot be generated by any sum
of circuits of F . Thus, there is no simple generating set of C(G), but G is
clearly planar.

e

Figure 8.2: A locally finite graph without a simple generating set of finite
circuits.

Infinite circuits are inevitable in a certain sense: there is not always in a pla-
nar graph a simple generating set comprised of only finite circuits. Consider
the graph G in Figure 8.2, and suppose there is a simple generating set F of
C(G) consisting of finite circuits. Since G is 3-connected, every C ∈ F is, by
Theorem 8.2.1, a peripheral circuit. Now, if a finite circuit C contains the
edge e then the the subgraph consisting of the edges in C with their incident
vertices is clearly separating, and thus C not peripheral. Consequently, the
circuits in F are not even sufficient to generate every finite circuit (namely
any one containing e).

8.3 Simple generating sets

As a tool, we introduce the notion of a 2-basis. For this, let B ⊆ C(G) be a
simple generating set of the topological cycle space of G. We call B a 2-basis
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of C(G) if for every element Z ∈ C(G) there is a unique (thin) subset of
B, henceforth denoted by BZ , with Z =

∑

B∈BZ
B. Observe that in a finite

graph the 2-bases are exactly the simple bases of C(G), and thus conform
with the traditional definition of a 2-basis in a finite graph.

Since we have left linear algebra with our definition of a 2-basis (allowing thin
infinite sums), it is not clear if the properties usually expected of a basis are
still retained. One of these, which we shall need later on, is that a generating
set always contains a basis. For simple sets this is true:

Lemma 8.3.1. [11] Let G be a 2-connected graph, and let F be a simple
generating set of C(G). If F is not a 2-basis, then for any Z ∈ F the set
F \ {Z} is a 2-basis of C(G).

Proof. Observe first that it suffices to check the uniqueness required in the
definition of a 2-basis for the empty set: a simple generating subset B of
C(G) is a 2-basis if and only if for every B′ ⊆ B with

∑

B∈B′ B = ∅ it follows
that B′ = ∅.

Let us assume there is a non-empty set D ( F with
∑

B∈D B = ∅. Since G
is 2-connected every edge of G appears in a finite circuit, and thus in at least
one element of F . But as F is simple and

∑

B∈D B = ∅ no edge of G can lie
in an element of D and at the same time in an element of F \ D.

So, E1 :=
⋃

D and E2 :=
⋃

(F \ D) define a partition of E(G) (note that
both sets are non-empty). Because G is 2-connected there is, by Menger’s
theorem, for any two edges a finite circuit through both of them. Therefore,
there is a circuit D which shares an edge e1 with E1 and another edge e2 with
E2. Let D′ ⊆ F be such that D =

∑

B∈D′ B. Then D′ :=
∑

B∈D∩D′ B ⊆ D,
since for any edge e ∈ D′ \D both D′ \D and D∩D′ have an element which
contains e; thus e ∈ E1 ∩ E2, which is impossible. Therefore, D′ is a subset
of the circuit D, and thus either D′ = ∅ or D′ = D. Since e1 ∈ D′ the former
case is impossible; the latter, however, is so too, as D′ ⊆ E1 cannot contain
e2 ∈ E2, a contradiction.

We thus have shown:

∑

B∈D

B = ∅ for D ⊆ F implies D = ∅ or D = F .

So, if F is not a 2-basis, then none of its subsets but itself generates the
empty set. In particular, F is thin. For any Z ∈ F ,

Z =
∑

B∈F\{Z}

B,
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thus, the thin simple set F \ {Z} certainly generates the topological cycle
space. It also is a 2-basis, as none of its non-empty subsets generates the
empty set.

With our definition of a generating set, which allows infinite sums, we shall
show that MacLane’s criterion holds for locally finite graphs. Since, in a
vector space context, one usually allows only finite sums for a generating set,
there is one obvious question: Does Theorem 8.1.3 remain true if we consider
simple generating sets in the vector space sense? The answer is a strikingly
clear no:

Proposition 8.3.2.[11] There is no locally finite 2-connected infinite graph
in which the topological cycle space has a simple generating set in the vector
space sense (i.e. allowing only finite sums).

Proof. Suppose there is such a graph G so that C(G) has a simple set A ⊆
C(G) which generates every Z ∈ C(G) through a finite sum. We determine
the cardinality of C(G) in two ways.

First, since A is simple, every of the countably many edges of G lies in at
most two elements of A. Therefore, A is a countable set, and thus, C(G)
also.

Second, there is, by Lemma 8.3.1, a 2-basis B ⊆ A. As C(G) is an infinite
set (since G is infinite and 2-connected), so is B. Hence, there are distinct
B1, B2, . . . ∈ B. Also, as G is locally finite and B simple, all subsets of B are
thin. Therefore, all the sums

∑

i∈I

Bi for I ⊆ N

are distinct elements of C(G). Since the power set of N has uncountable
cardinality, it follows that C(G) is uncountable, a contradiction.

The rest of this section is devoted to the proof of Theorem 8.2.1, which we
restate:

Theorem 8.3.1. [11] Let G be a 3-connected graph, and let F be a simple
generating set of C(G) consisting of circuits. Then every element of F is a
peripheral circuit.

A basic tool when dealing with finite circuits are bridges, see for instance
Bondy and Murty [4]. As our circuits may well be infinite, we need an
adaption of the notion of a bridge, which we introduce together with a number
of related results before proving the theorem.
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Definition 8.3.3 (Bruhn [6]). Let C ⊆ |G| be a circle in a graph G. We
call the closure B of a topological component of |G| \ C a bridge of C. The
points in B ∩ C are called the attachments of B in C.

There is a close relationship between bridges and peripheral circuits. Indeed,
in a 3-connected graph a circuit D is peripheral if and only if the circle D
has a single bridge (see Bruhn [6]).

For the subgraph H := C ∩ G, the following can be shown: a set B ⊆ |G|
is a bridge of C if and only if it is induced by a chord of H or if there is
a component K of G − H such that B is the closure of K plus the edges
between K and H together with the incident vertices. Thus, our definition
coincides with the traditional definition of a bridge in a finite graph.

Lemma 8.3.4 (Bruhn [6]). Let C ⊆ |G| be a circle in a graph G, and let
B be a bridge of C. Let x be an attachment of B. Then:

(i) x is a vertex or an end;

(ii) if x is an end then every neighbourhood of x contains attachments of B
that are vertices;

(iii) every edge of which B contains an inner point lies entirely in B; and

(iv) either B is induced by a chord of C or the subgraph (B ∩G)− V (C) is
non-empty and connected.

We define a residual arc of the bridge B in the circle C to be the closure of a
topological component of C \B. Note that if B has at least two attachments
every residual arc is indeed an arc (if not then the circle C itself is a residual
arc, and it is the only one).

Lemma 8.3.5 (Bruhn [6]). Let G be a 2-connected graph, and let C ⊆ |G|
be a circle with a bridge B. Then:

(i) the endpoints of a residual arc L of B in C are attachments of B; and

(ii) for a point x ∈ C \ B there is exactly one residual arc L of B in C
containing x.

We say a bridge B of C avoids another bridge B′ of C if there is a residual
arc of B that contains all attachments of B′. Otherwise, they overlap. Note
that overlapping is a symmetric relation. Two bridges B and B′ of C are
called skew if C contains four (distinct) points v, v′, w, w′ in that cyclic order
such that v, w are attachments of B and v′, w′ attachments of B′. Clearly,
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if two bridges B and B′ are skew, they overlap. On the other hand, in a
3-connected graph, overlapping bridges are either skew or 3-equivalent, i.e.
they both have only three attachments which are the same:

Lemma 8.3.6.[11] Let G be a 3-connected graph. Let C ⊆ |G| be a circle,
and let B and B′ be two overlapping bridges of C. Then B and B′ are either
skew or 3-equivalent.

Proof. First, if either B or B′ is induced by a chord, it is easy to see, that
they are skew because they overlap. Thus, by Lemma 8.3.4 (iv), we may
assume that each of the bridges has three attachments. Next, assume that
B ∩ C = B′ ∩ C. If |B ∩ C| = 3 then B and B′ are 3-equivalent, otherwise
they are clearly skew.

So, suppose there is an attachment u of B with u /∈ B′. The attachment u is
contained in a residual arc L of B′. Its endpoints u′, v′ are attachments of B′.
Since B and B′ are overlapping, not all all attachments of B may lie in L.
Thus, there is an attachment v ∈ C \ L of B. Then, the sequence u, u′, v, v′

shows that B and B′ are skew.

For a set X ⊆ |G|, an X-path is a path that starts in X, ends in X and is
otherwise disjoint from X.

Lemma 8.3.7.[11] Let B and B′ be two skew bridges of a circle C ⊆ |G| in
a graph G. Then there are two disjoint C-paths P = u . . . v and P ′ = u′ . . . v′

such that u, u′, v, v′ appear in that order on C.

Proof. Since B and B′ are skew there are points x, x′, y, y′ appearing in that
cyclic order on C such that x, y are attachments of B and x′, y′ are attach-
ments of B′. If x is a vertex put u := x. If not, then there is a whole arc
A ⊆ C around x disjoint from any of the other points. In A we find, by
Lemma 8.3.4 (ii), an attachment u of B that is a vertex. Doing the same for
x′, y and y′, if necessary, we end up with vertices u, u′, v, v′ appearing in that
cyclic order on C such that u, v ∈ B and u′, v′ ∈ B′. As (B ∩ G) − V (C) is
connected, by Lemma 8.3.4 (iv), we find an u–v path P through B, and anal-
ogously an u′–v′ path P ′ through B′. Since bridges meet only in attachments,
P and P ′ are disjoint.

We need that in a 3-connected graph, for any circle, there are always two
overlapping bridges (if there is more than one bridge at all). For this, we
define for a circle C in the graph G the overlap graph of C in G as the graph
on the bridges of C such that two bridges are adjacent if and only if they
overlap. The next lemma ensures that there are always overlapping bridges.
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Lemma 8.3.8 (Bruhn [6]). For every circle C in a 3-connected graph G
the overlap graph of C in G is connected.

The next simple lemma will be used repeatedly in the proof of Theorem 8.2.1.

Lemma 8.3.9.[11] Let G be a 3-connected graph, and let B be a 2-basis of
C(G) consisting of circuits. Let C and D be circuits in G such that C ∩D is
an arc. Suppose that BC ∩ BD 6= ∅. Then, either BC ⊆ BD or BD ⊆ BC .

Proof. Put K :=
∑

B∈BC∩BD
B and consider an edge e /∈ C ∪ D. Then both

BC and BD contain either both or none of the at most two circuits B ∈ B
with e ∈ B. Thus, both or none of them is in BC ∩ BD, and hence e /∈ K.
Therefore, K is an element of the topological cycle space contained in C∪D.
These are precisely ∅, C, D and C + D (since C ∩ D is an arc). Note that
K 6= ∅ as BC ∩ BD 6= ∅. Also, K 6= C + D, since otherwise

BC ∩ BD = BK = BC+D = BC△BD,

which is impossible. Consequently, we obtain either K = C and thus, BC ⊆
BD, or K = D and BD ⊆ BC .

Proof of Theorem 8.2.1. Note that it suffices to prove the theorem for a 2-
basis B. Indeed, if F is not a 2-basis, consider two distinct elements Z1 and
Z2 of F . By Lemma 8.3.1, both F \{Z1} and F \{Z2} are a 2-basis of C(G),
and, if Theorem 8.2.1 holds for these, it clearly also holds for F .

Consider a non-peripheral circuit C. Then, the circle C has more than one
bridge [6]. Two of these, B and B′ say, are, by Lemma 8.3.8, overlapping.
By Lemma 8.3.6, they are either skew or 3-equivalent. We show that C /∈ B
for each of the two cases.

(i) Suppose that B and B′ are skew. By Lemma 8.3.7, there are two disjoint
C-paths P = u . . . v and P ′ = u′ . . . v′ such that u, u′, v, v′ appear in this
order on C. Denote by Luu′, Lu′v, Lvv′ , Lv′u the closures of the topological
components of C \{u, u′, v, v′} such that x, y are the endpoints of Lxy. Define
the circuits

C1 := E(Luu′ ∪ Lu′v ∪ P ), C2 := E(Lvv′ ∪ Lv′u ∪ P ),

D1 := E(Lu′v ∪ Lvv′ ∪ P ′) and D2 := E(Lv′u ∪ Luu′ ∪ P ′).

Observe that C1 + C2 = C = D1 + D2, and additionally, that Ci ∩ Dj is an
arc for any i, j ∈ {1, 2}.

Suppose C ∈ B. Since

BC1
△BC2

= BC1+C2
= BC = {C},
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not both of BC1
and BC2

may contain C. As the same holds for D1 and D2

we may assume that
C /∈ BC1

and C /∈ BD1
. (8.1)

Consider an edge e ∈ C1 ∩ D1 ⊆ C. Both of BC1
and BD1

must contain a
circuit which contains e. By (8.1), this cannot be C. Therefore, and since B
is simple, BC1

and BD1
contain the same circuit K with e ∈ K. Consequently,

BC1
∩ BD1

6= ∅, and applying Lemma 8.3.9 we may assume that

BC1
⊆ BD1

. (8.2)

Now, consider an edge e′ ⊆ Luu′ , hence e ∈ C1 ∩ D2. There is a circuit
K ′ ∈ BC1

with e′ ∈ K ′ 6= C. By (8.2), K ′ ∈ BD1
, but since e′ lies in Luu′ we

have e′ /∈ D1. Thus, BD1
also contains the other circuit in B that contains

e′, which is C, a contradiction to (8.1). Therefore, C /∈ B.

(ii) Suppose that B and B′ are 3-equivalent. Let v1, v2, v3 be their attach-
ments, which then are vertices (by Lemma 8.3.4 (ii)). Then there is a vertex
x ∈ V (B \ C) and three x–C paths Pi = x . . . vi ⊆ B, i = 1, 2, 3 whose
interiors are pairwise disjoint. Let Qi = y . . . vi be analogous paths in B′.
The closures of the topological component of C \ {v1, v2, v3} are three arcs;
denote by Li,i+1 the one that has vi and vi+1 as endpoints (where indices are
taken mod 3). For i = 1, 2, 3, define the circuits

Ci := E(Li,i+1 ∪ Pi ∪ Pi+1) and Di := E(Li,i+1 ∪ Qi ∪ Qi+1).

Note that C1 + C2 + C3 = C = D1 + D2 + D3.

Now suppose C ∈ B. As

BC1
△BC2

△BC3
= BC1+C2+C3

= BC = {C},

either C lies in all of the BCi
or in only one of them, in BC3

, say. In both
cases, we have C /∈ BC1+C2

. We obtain the same result for the Di: either C
lies in all of the BDi

or in only one of them. In any case, we can define D as
either D1 or D2 + D3 such that C /∈ BD. Put D′ := C + D, and note that
BD′ = BD ∪ {C}.

Then, since C1 + C2 shares an edge in C with D, and neither BC1+C2
nor BD

contains C, we have BC1+C2
∩ BD 6= ∅. Applying Lemma 8.3.9, we obtain

that one of the two sets BC1+C2
,BD is contained in the other.

First assume that BC1+C2
⊆ BD, and consider an edge e ∈ C that lies in both

C1 + C2 and D′. Such an edge exists since D′ = D1 or D′ = D2 + D3. Since
C /∈ BC1+C2

, e lies in a circuit K 6= C in BC1+C2
, and thus also K ∈ BD. On

the other hand, e ∈ C ∈ BD′ contradicts e ∈ D′.
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So, we may assume that BD ⊆ BC1+C2
. Because BD′ = BD ∪ {C} we even

have BD ⊆ BC1+C2
∩ BD′ . Thus, by Lemma 8.3.9, either BC1+C2

⊆ BD′ or
BD′ ⊆ BC1+C2

. The latter is impossible as C /∈ BC1+C2
. Therefore, we obtain

BD ⊆ BC1+C2
⊆ BD′ = BD ∪ {C}.

Now, from C /∈ BC1+C2
follows that BC1+C2

= BD, contradicting C1+C2 6= D.
Thus, C /∈ B.

8.4 The backward implication

In this section, we show the backward implication of Theorem 8.1.3, namely
that if the topological cycle space has a simple generating set then G is
planar. But first, let us remark that it is sufficient to show Theorem 8.1.3 for
2-connected graphs. Indeed, the Kuratowski planarity criterion for countable
graphs below asserts that a countable graph is planar if and only if its blocks
are planar.

Theorem 8.4.1 (Dirac and Schuster [21]). Let G be a countable graph.
Then, G is planar if and only if G contains neither a subdivision of K5 nor
a subdivision of K3,3.

The backward direction will follow from the next lemma.

Lemma 8.4.2. [11] Let G be a 2-connected graph such that C(G) has a 2-
basis, and let H ⊆ G be a finite 2-connected subgraph. Then C(H) has a
2-basis.

Proof. Let B be the 2-basis of C(G). Since H is finite, there are Z ∈ C(H)
with a non-empty generating set BZ ⊆ B which is ⊆-minimal among all BZ

with Z ∈ C(H). Let us denote these by Z1, . . . , Zk.

Consider a D ∈ C(H) with BD∩BZi
6= ∅ for some i. We claim that BZi

⊆ BD.
First, note that

C :=
∑

B∈BD∩BZi

B ⊆ E(H).

Indeed, consider an edge e /∈ E(H). Since Zi, D ⊆ E(H), and since B is
simple, e either lies on exactly two or on none of the elements of BZi

, and
the same holds for BD. Furthermore, if e lies on two elements of BZi

and on
two of BD, these must be the same. So, e /∈ C.

Therefore, C ⊆ E(H), and thus C ∈ C(H). As BC ⊆ BZi
we obtain, by the

minimality of BZi
, that C = Zi. Consequently, BZi

= BC ⊆ BD, as claimed.
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This result also implies BZi
∩ BZj

= ∅ for all 1 ≤ i < j ≤ k. Thus, every
edge of H appears in at most two of the Zi. Furthermore, we claim that
{Z1, . . . , Zk} is a generating set for C(H). Then, {Z1, . . . , Zk} contains a
2-basis of C(H), and we are done.

So consider a D ∈ C(H), and let I denote the set of those indices i with
BZi

∩ BD 6= ∅. We may assume I = {1, . . . , k′} for a k′ ≤ k. Then, by
BZi

⊆ BD and BZi
∩ BZj

= ∅ for i, j ∈ I, it follows that BD is the disjoint
union of the sets BZ1

,BZ2
, . . . ,BZk′

and

B′ := BD \
k′

⋃

i=1

BZi
.

Consequently,

∑

B∈B′

B =
∑

B∈BD

B +
∑

B∈BZ1

B + . . . +
∑

B∈BZ
k′

B = D + Z1 + . . . + Zk′ ⊆ E(H)

as all the summands lie in H . Now, if B′ 6= ∅ then there is a Z ∈ C(H)
with a non-empty and minimal BZ ⊆ B′ which then must be one of the Zi,
a contradiction. Thus, B′ is empty and we have D =

∑k′

i=1 Zi.

For the backward implication of Theorem 8.1.3, we use the well-known fact
that the cycle space of every subdivision of K5 or of K3,3 fails to have a
2-basis (see, for instance, Diestel [16]).

Lemma 8.4.3.[11] Let G be a locally finite 2-connected graph such that C(G)
has a simple generating set. Then G is planar.

Proof. Suppose not. Then G contains, by Theorem 8.4.1, a subdivision H of
K5 or of K3,3 as subgraph. By Lemma 8.3.1, C(G) has a 2-basis. Then, by
Lemma 8.4.2, C(H) also has a 2-basis, which is impossible.

8.5 The forward implication

To show the forward implication of Theorem 8.1.3, i.e. that the topological
cycle space of a planar graph has a simple generating set, we proceed as in
the finite case: we embed our graph G in the sphere and then show that the
set of the face boundaries’ edge sets is a simple generating set. So, our first
priority is to ensure that every face is indeed bounded by a circle of |G|. As
for the backward direction we may assume that G is 2-connected.



92 MacLane’s planarity criterion

This, however, is certainly not the case when a VAP of the embedded graph
coincides with a vertex or an inner point of an edge. To avoid this problem
we consider topological embeddings of the space |G| in the sphere (rather
than graph embeddings of G), which, in our context, is no restriction:

Theorem 8.5.1 (Richter and Thomassen [39]). Let G be a locally finite
2-connected planar graph. Then |G| embeds in the sphere.

We call a topological space 2-connected if it is connected and remains so after
the deletion of any point. Thus, any embedding of the (standard) compact-
ification |G| of a 2-connected graph G in the sphere clearly is 2-connected.
Note that also, any such embedding is compact if G is locally finite and
connected. A face of a compact subset K of the sphere is a component of
the complement of K. A face boundary ∂f ⊆ K of a face f is simply the
boundary of f . If K is the image of |G| under an embedding, then it can be
shown in a similar way as for finite plane graphs (see for instance Diestel [16])
that if an inner point of an edge lies in a face boundary then the whole edge
lies in it.

Theorem 8.5.2 (Richter and Thomassen [39]). Every face of a compact
2-connected locally connected subset of the sphere is bounded by a simple
closed curve.

Another result of Richter and Thomassen [39] states that |G| is locally con-
nected if G is locally finite and connected1. As a simple closed curve by
definition is homeomorphic to the unit circle, we obtain:

Corollary 8.5.3. [11] Let G be a locally finite 2-connected graph with an
embedding ϕ : |G| → S2. Then the face boundaries of ϕ(|G|) are circles of
|G|.

Showing the forward implication, we now complete the proof of Theorem 8.1.3:

Lemma 8.5.4.[11] Let G be a locally finite 2-connected planar graph. Then,
C(G) has a simple generating set.

Proof. By Theorem 8.5.1, |G| has an embedding ϕ : |G| → S2 in the sphere.
Put Γ := ϕ(|G|). We show that the set F which we define to consist of the
edge sets of the face boundaries of Γ, is a simple generating set of C(G).
Certainly, F is simple, and, by Corollary 8.5.3, a subset of C(G). So, we only

1They show this to be true for all pointed compactifications of G, which are those
obtained from the standard compactification by identifying some ends.
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have to prove that every element of the topological cycle space is the sum of
certain elements of F .

Fix a face f ∗ of Γ. First, consider a circuit C in G. Then for the circle C,
ϕ(C) is homeomorphic to the unit circle and, thus, bounds two faces (by
the Jordan-curve theorem). Let fC be the face not containing f ∗. As G
is 2-connected, every edge e lies on a finite circuit, and therefore on the
boundaries of exactly two faces of Γ, which we denote by fe and f ′

e. Hence,
the set

BC := {E(∂f) : f ⊆ fC is a face of Γ}

is thin. Moreover, as we have fe, f
′
e ⊆ fC or fe, f

′
e * fC if and only if e /∈ C,

it follows that
∑

B∈BC

B = C. (8.3)

Now, consider an arbitrary element Z of the topological cycle space. By
definition, there is a thin family D of circuits with Z =

∑

C∈D C. If none of
the elements of F appears in BC for infinitely many C ∈ D, then the family
B, which we define to be the (disjoint) union of all BC with C ∈ D, is thin
(since every edge lies on exactly two face boundaries). Then, Z =

∑

B∈B B,
and we are done. Therefore, if F (Γ) is the set of faces of Γ, it suffices to show
that the set

F := {f ∈ F (Γ) : f ⊆ fC for infinitely many C ∈ D}

is empty.

So suppose F 6= ∅. By definition of fC , we have f ∗ * fC for all C ∈ D, and
thus also F 6= F (Γ). Hence, there is an edge e such that one of its adjacent
faces, say fe, lies in F and the other, f ′

e, in F (Γ) \ F . Then, E(∂fe) appears
in infinitely many BC while e lies on only finitely many C ∈ D. Thus, also
E(∂f ′

e) lies in infinitely many BC , which implies f ′
e ∈ F , a contradiction.

8.6 Kelmans’ planarity criterion

For finite 3-connected graphs there is another well-known planarity criterion,
namely Kelmans’ criterion. It follows from MacLane’s criterion together
with Tutte’s theorem. The latter has been shown by Bruhn for locally finite
graphs:

Theorem 8.6.1 (Bruhn [6]). Let G be a locally finite 3-connected graph.
Then the peripheral circuits generate the topological cycle space.



94 MacLane’s planarity criterion

We know from Corollary 8.5.3 that the face boundaries of a locally finite
2-connected planar graph are circles. When G is 3-connected then, as for
finite graphs (see Diestel [16]), the Jordan curve theorem implies that these
circles are precisely the closures in |G| of the peripheral circuits of G:

Lemma 8.6.2. Let G be a locally finite 3-connected graph with an embedding
ϕ : |G| → S2 in the sphere. Then, the face boundaries are precisely the
closures in ϕ(|G|) of the peripheral circuits of G.

Now, we easily obtain a verbatim generalization of Kelmans’ criterion for
locally finite graphs.

Theorem 8.1.4. [11] Let G be a locally finite 3-connected graph. If G is
planar then every edge appears in exactly two peripheral circuits. Conversely,
if every edge appears in at most two peripheral circuits then G is planar.

Proof. If G is planar then there is, by Theorem 8.5.1, also an embedding of
|G|, in which, by Lemma 8.6.2, the closure of every peripheral circuit is a
face boundary. Since G is 2-connected every edges lies in exactly two face
boundaries, hence in exactly two peripheral circuits of G.

For the backward implication let F be the set of all peripheral circuits of G,
which then is simple. Thus, F is, by Theorem 8.6.1, a simple generating set,
and hence G planar, by Theorem 8.1.3.

x

u w

y

z

v

Figure 8.3: Infinite circuits are necessary for Kelmans’ criterion

As MacLane’s planarity criterion, Kelmans’, too, fails when infinite circuits
are prohibited. Indeed, there are 3-connected non-planar graphs in which
every edge lies on at most two finite peripheral circuits. The graph G shown
in Figure 8.3 is such an example. It consists of a K3,3 (bold) to which three
disjoint infinite 3-ladders are added. First observe that any finite peripheral
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circuit that contains edges of G − {u, w} cannot contain any edge incident
with either one of u, w, as otherwise it also contains (the edges of) a finite
{x, y, z}–{x, y, z} path in G − {u, w}, and thus is separating. Therefore,
every finite peripheral circuit of G has either none or all of its edges incident
with {u, w}; in the latter case, it is a circuit of G[u, w, x, y, z].

Now, assume that there is an edge of G that appears in three finite peripheral
circuits. All of these circuits then lie either in G−{u, w} or in G[u, w, x, y, z],
where they are also peripheral. Now, it is easy to check that none of the edges
of the finite graph G[u, w, x, y, z] lies on three peripheral circuits, and by
Theorem 8.1.4 this is also impossible for any edge of the planar 3-connected
graph G − {u, w}. This shows that Kelmans’ criterion fails if only finite
circuits are admitted.

8.2 Graphs with infinite degrees

Let us briefly return to non-locally finite graphs. We have seen in Section 8.2
that MacLane’s planarity criterion fails for arbitrary infinite graphs. In this
section, we prove the criterion for graphs G that satisfy

no two vertices are joined by infinitely many edge-disjoint paths, (∗)

using the space G̃, which has the topology ITop, as defined in Section 7.4.

With C(G̃), MacLane’s planarity criterion holds:

Theorem 8.2.1.[11] Let G be a countable graph satisfying (∗). Then G is
planar if and only if C(G̃) has a simple generating set.

The backward direction of Theorem 8.2.1 can be shown in exactly the same
way as for locally finite graphs (detailed in Section 8.4).

For the forward direction, we need another tool. Let G be a multigraph
satisfying (∗), and let G∗ be another multigraph with a bijection ∗ : E(G) →
E(G∗). Call G∗ a dual of G if the following holds for every set F ⊆ E(G):
F is a circuit in G̃ if and only if F ∗ := {f ∗ : f ∈ F} is a minimal non-empty
cut in G∗. Using C(G̃), Bruhn and Diestel [7] showed the following analogon
of Whitney’s planarity criterion:

Theorem 8.2.2 (Bruhn and Diestel [7]). Let G be a countable graph
satisfying (∗).

(i) G has a dual if and only if G is planar.
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(ii) If G∗ is a dual of G and F ⊆ E(G), then F ∈ C(G̃) if and only if F ∗

is a cut in G∗.

Now, the forward direction of Theorem 8.2.1 follows as in the finite case.
Since G is planar, there is, by Theorem 8.2.2, a dual G∗ of G. We claim
that B := {F : F ∗ = E(v) for some v ∈ V (G∗)} is a simple generating set of
C(G̃). Certainly, B is simple, and, by Theorem 8.2.2, each of its elements is
a member of the topological cycle space. In addition, any Z ∈ C(G̃) can be
generated by B. Indeed, Theorem 8.2.2 implies that Z∗ is a cut in G∗. Let
(A, B) be the corresponding partition of V (G∗), i.e. Z∗ = EG∗(A, B). Then,

Z∗ =
∑

v∈A

E(v), and therefore Z =
∑

F∈B′

F,

where B′ := {F : F ∗ = E(v), v ∈ A} ⊆ B. This completes the forward
direction of Theorem 8.2.1.



Chapter 9

Long circuits generate the cycle
space

9.1 Introduction

Locke [31] conjectured that there is a constant m so that the cycle space
of any finite graph, in which every two vertices can be joined by a path of
length at least mk, is generated by the cycles of length ≥ k. To motivate the
conjecture he shows that if between any two vertices there is a path of length
≥ (k − 1)2 + 1 then the circuits of length ≥ k generate the cycle space.

We prove that the conjecture is true, even for locally finite graphs. Moreover,
we show that the constant can be chosen as m = 2.

Theorem 9.1.1. Let k ∈ N. If every two vertices of a locally finite graph G
are the endvertices of a path of length 2k, then the cycles of length ≥ k
generate the cycle space C(G) of G.

On the other hand, m has to be at least 1. Indeed, otherwise choose k large
enough so that mk + 1 < k. Consider the graph G which is obtained by
identifying an edge of two cycles of length mk+1, i.e. that consists of a cycle
of length 2mk plus an additional edge (that joins two vertices of maximal
distance). Then every two vertices of G are linked by a path of length mk,
but, as mk + 1 < k, the only cycle of length ≥ k does not generate C(G).

We then consider a natural extension of Theorem 9.1.1, which allows k also to
be infinite. It is in fact a topological version of Locke’s conjecture. Therefore,
we have to consider arcs instead of paths. We define the length of an arc as
the number of edges it contains.

Theorem 9.1.2. [10] Let k ∈ N ∪ ∞. If every two vertices of a locally
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finite graph G are the endvertices of an arc of length 2k, then the cycles of
length ≥ k generate the cycle space C(G) of G.

Observe that the possibly more natural condition that every two points of
|G| are joined by an arc of length 2k, is at once implied by the condition we
chose.

Since an infinite locally finite graph is 2-connected if and only if every two
vertices of an locally finite graph G are joined by an arc of infinite length1,
Theorem 9.1.2 for k = ∞ is equivalent to the following:

Theorem 9.1.3.[10] The cycle space of an infinite locally finite 2-connected
graph is generated by its infinite circuits.

9.2 Locke’s conjecture with finite k

Let us replace the original condition of Theorem 9.1.1 with a more natural
one.

Lemma 9.2.1.[10] If every two vertices of a locally finite graph G are the
endvertices of a path of length 2k, then every edge lies on a cycle of length
≥ 2k.

Proof. Just take the union of the edge considered with the long path con-
necting its endvertices.

The reverse is true if G is connnected. Hence, the following theorem is
equivalent to Theorem 9.1.1.

Theorem 9.2.2.[10] If every edge of a locally finite graph connected G lies
on some cycle of length 2k, then the cycles of length ≥ k generate the cycle
space C(G) of G.

Proof. Suppose otherwise. Then G has a cycle which cannot be generated
by cycles of length ≥ k. Choose such a C, together with a cycle C ′ of length
≥ 2k, and a path QC ⊆ C ∩C ′ so that |E(C)−E(QC)| is minimal. Then, as
there is a cycle of length ≥ 2k through every edge, C and C ′ share at least
one edge. Consequentely, QC is non-trivial. Moreover, C ′ contains a C-path
(since C and C ′ cannot be identical).

1Indeed, if G is 2-connected, then in any two vertices start disjoint ω-rays for any end
ω ∈ Ω(G). For the other implication, note that every arc linking two vertices of the same
block lies entirely in that block. Hence, G has only one block, i.e. it is 2-connected.
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Assume that C ′ contains only one C-path P . Then C + C ′ cannot be gener-
ated with cycles of length ≥ k (because by assumption, we cannot generate C
with these). In particular, C+C ′ has length < k. But then, C ′ = C+(C+C ′)
has length < 2k, a contradiction.

Thus, C ′ contains at least two C-paths. For any such C-path P , denote by xP

and yP its starting vertex resp. its endvertex. Let CP be the xP –yP path in C
that is edge-disjoint from QC . Suppose that CP ∪E(P ) cannot be generated
by cycles of length ≥ k. Then CP ∪E(P ), C ′ and P are a better choice than
C, C ′ and QC , because |E(CP ∪E(P ))\E(P )| = |E(CP )| < |E(C)\E(QC)|,
where the last inequality is due to the fact that C ′ contains a second C-path.
This contradicts our choice of C.

So for every C-path P ⊆ C ′ the corresponding cycle CP ∪ E(P ) can be
generated with cycles of length ≥ k. Thus, also C ′′ := C ′+

∑

P∈P(CP ∪E(P ))
can be generated with cycles of length ≥ k, where we sum over the set P of
all C-paths P ⊆ C ′. Clearly, C ′′ ⊆ C, and so, as C is a cycle and C ′′ 6= ∅
since E(QC) ⊆ C ′′, it follows that C = C ′′. This, again, contradicts the
choice of C.

9.3 Locke’s conjecture with infinite k

Let us now allow k to be infinite. As shown in the introduction, we only need
to prove Theorem 9.1.3, which together with Theorem 9.1.1 yields a proof of
Theorem 9.1.2. Define a double ray-circuit to be a circuit which is the edge
set of a double ray. Then, Theorem 9.1.3 is an immediate corollary of the
following theorem.

Theorem 9.3.1. [10] Let G be an infinite 2-connected locally finite graph.
Then there is a thin set of double ray-circuits that generates the cycle space
C(G).

Diestel and Kühn [17] show that there is always a thin generating set consist-
ing of finite circuits. Thus, Theorem 9.3.1 may be understood as a converse
of that fact. A spanning tree T is end-faithful if for an arbitrary root r, T
has exactly one ray starting in r in every end of G.

Theorem 9.3.2 (Diestel and Kühn [17]). Let G be a locally finite con-
nected graph, and let T be any spanning tree of G. Then every element of the
cycle space C(G) is generated by fundamental circuits of T if and only if T
is end-faithful. Also, if T is end-faithful, then the set of fundamental circuits
of T is a thin set.
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Since every countable graph has a normal spanning tree (Jung [28]), and
since every normal spanning tree is end-faithful, there is always a thin set of
finite circuits that generates the cycle space in a locally finite graph.

Lemma 9.3.3. [10] Let C be a finite circuit in a graph G, and let D be
a double ray-circuit which shares an edge with C. Then there are double
ray-circuits D1, D2 ⊆ C ∪ D such that D1 + D2 = C.

Proof. As C is finite, there are two vertices v, w ∈ V (C) that are linked by
an arc D′ with E(D′) ⊆ D which is internally disjoint from C. Choose a v–w
path P in C, and put D1 := E(D′ ∪ P ) and D2 := D1 + C.

Lemma 9.3.4. [10] Let G be an infinite 2-connected locally finite graph.
Then there is for every edge vw of G a double ray D containing vw such that
E(D) is a double ray-circuit.

Proof. Choose an end ω ∈ Ω(G). Put S1 := {v, w} and for i = 2, 3, . . . choose
Si with minimal cardinality subject to Si ∪ C(Si, ω) ⊆ C(Si−1, ω). (Thus,
Si separates Si−1 from the end ω.) Then Si is a minimal Si–Si+1 separator
(which for i = 1 is ensured by the 2-connectivity of G and for i = 2, 3, . . . by
the minimal choice of the Si). Thus for each i Menger’s Theorem yields |Si|
disjoint Si–Si+1 paths, the union of which contains two disjoint rays in ω one
starting in v and the other in w. Using these we obtain the desired double
ray D.

Proof of Theorem 9.3.1. Fix a vertex u in G. By Lemma 9.3.4, there is for
each e ∈ E(G) a double ray-circuit De containing e; let us assume De to be
chosen such that d(u, De) is maximal (which is possible as the endvertices of
e are at finite distance from u). We claim that

the set D := {E(De) : e ∈ E(G)} is thin. (9.1)

Assume (9.1) to be true. By Theorem 9.3.2 there is a thin set C of finite
circuits that generates the cycle space. For each C ∈ C pick an edge eC ∈
C. Lemma 9.3.3 yields two double ray-circuits DC

1 , DC
2 ⊆ C ∪ DeC with

DC
1 + DC

2 = C. As both C and D are thin, the set {DC
1 , DC

2 : C ∈ C} is a
thin set that generates the cycle space of G (since C is a generating set).

So, suppose that (9.1) does not hold. Then, there is an edge e∗ which is met
by infinitely many of the De. Denote by S the set of all vertices of G with
distance ≤ d(u, e∗) + 1 to u. Then G − S has a component K that contains
an infinite number of edges e with e∗ ∈ De. If we can show that

the number of blocks of K is finite, (9.2)
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we are done: then, there is an infinite block B∞ of K that contains an edge
e with e∗ ∈ De. Lemma 9.3.4 yields a double ray-circuit containing e in B∞,
which, having a greater distance to u than De has, contradicts the choice of
De.

Since G is 2-connected, there is, by Menger’s theorem, for every block B of
K an NK(S)–NK(S) path PB in K containing an edge of B. Assume that
K has an infinite number of blocks. Then there are two vertices in NK(S)
that are the endvertices of PB for infinitely many blocks B of K. We fix B
as one of these blocks, and then choose B′ as another which is disjoint from
the finite path PB. This yields two finite blocks B, B′ of K such that PB and
PB′ have the same endvertices and PB ∩ E(B′) = ∅.

Let x be the last vertex on PB′ that also lies on PB before PB′ enters B′, and
let y be the next vertex on PB′ that also lies on PB. Then, E(xPB′y∪xPBy)
is a circuit of K that meets both E(B′) and E(K)\E(B′), and thus contains
a cutvertex of B′. This yields the desired contradiction, as a cutvertex may
not lie on a circuit.

9.4 Graphs with infinite degrees

Note that Theorem 9.1.2 becomes false for graphs with infinite degrees. In-
deed, observe that every infinite circuit that contains an edge of one of the
triangles in Figure 9.1 is incident with both x and y and is disjoint from
any other triangle. Thus, the union of the (edge-sets of the) triangles, which
is certainly an element of the cycle space, cannot be generated by a set of
infinite circuits. Finally, note, that every two vertices can be joined by an
arc of infinite length.

...

x

y

Figure 9.1: Result false for graphs with infinite degrees

Finally, let us remark that in a non-locally finite graph also the finite circuits
may not be sufficient to generate the cycle space (although this is still true in
any countable graph). Let v1, v2, . . . be some distinguished vertices, and let
there be a double ray Dr = . . . wr

−1w
r
0w

r
1 . . . for every r ∈ R. Join vn to wr

−n

and to wr
n for all n and r. Suppose Z :=

∑

r∈R
Dr =

⋃

r∈R
Dr ∈ C(G) is the
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sum of finite circuits. Since Z is uncountable the sum contains uncountably
many distinct finite circuits, each of which is incident with one of the vn.
Thus, there is a vn which is incident with infinitely many of the summands,
a contradiction.
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[25] R. Halin. Über die Maximalzahl fremder unendlicher Wege in Graphen.
Math. Nachr., 30:63–85, 1965.

[26] D.W. Hall and G.L. Spencer. Elementary Topology. John Wiley, New
York 1955.
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