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Abstract

Thin sums matroids were introduced to extend the notion of repre-
sentability to non-finitary matroids. We give a new criterion for testing
when the thin sums construction gives a matroid. We show that thin sums
matroids over thin families are precisely the duals of representable ma-
troids (those arising from vector spaces). We also show that the class of
tame thin sums matroids is closed under duality and under taking minors,
by giving a new characterisation of the matroids in this class. Finally, we
show that all the matroids naturally associated to an infinite graph are
tame thin sums matroids.

1 Introduction

If we have a family of vectors in a vector space over some field k, we get a ma-
troid structure on that family whose independent sets are given by the linearly
independent subsets of the family. Matroids arising in this way are called rep-
resentable matroids. Although many interesting finite matroids (eg. all graphic
matroids) are representable, it is clear that any representable matroid is finitary
and so many interesting examples of infinite matroids are not of this type. How-
ever, since the construction of many of these examples, including the algebraic
cycle matroids of infinite graphs, is suggestively similar to that of representable
matroids, the notion of thin sums matroids was introduced in [2]: it is a gener-
alisation of representability which captures these infinite examples.

The basic idea is to take the vector space to be of the form kA for some set A,
and to allow the linear combinations involved in the definition of dependence to
have nonzero coefficients at infinitely many vectors, provided that they are well
defined pointwise, in the sense that for each a ∈ A there are only finitely many
nonzero coefficients at vectors with nonzero component at a. Further details
are given in Section 2. Thin sums matroids need not be finitary.

There are some obvious questions about how well-behaved the objects given
by this definition are. The first, and most obvious, question is whether the

1



systems of independent sets defined like this are all really infinite matroids
(in the sense of [3]). Sadly, it is known that there are examples of set systems
definable this way which are not matroids. Accordingly, we refer to such systems
in general as thin sums systems, and only call them thin sums matroids if they
really are matroids.

Open question 1.1. Which thin sums systems are matroids?

A sufficient condition is given in [2]: a thin sums system over a family of
vectors in kA is always a matroid when this family is thin - that is, when for
each a ∈ A there are only finitely many vectors in the family whose component
at a is nonzero. We show that, just as every representable matroid is finitary,
so also every thin sums matroid over a thin family is cofinitary. Thus to get
examples which are neither finitary nor cofinitary new ideas are needed. In fact
we prove something stronger.

Theorem 1.2. A matroid arises as a thin sums matroid over a thin family for
the field k if and only if it is the dual of a k-representable matroid.

We will also provide a complete, if somewhat cumbersome, characterisation
answering Question 1.1. Although this characterisation allows us to simplify the
proof of an old result of Higgs [5] characterising when the algebraic cycle system
of a graph is a matroid, it is not completely satisfactory. The most nontrivial
condition in the definition of matroids has not been removed. We will explore
an analogy between thin sums systems and IE-operators which suggests that
there is unlikely to be a simpler characterisation than the one we give.

The class of matroids representable over a field k is very well behaved: It is
closed under taking minors and (for finite matroids) under duality. This leads
us naturally to ask the same questions about thin sums matroids.

Open question 1.3. Is the class of thin sums matroids over k closed under
duality? Is it closed under taking minors?

The first part of this question is answered negatively in [6], where it is
shown that there is a thin sums matroid whose dual is not a thin sums matroid.
However, this counterexample is a very unusual matroid, in that it has a circuit
and a cocircuit whose intersection is infinite. Such matroids are called wild, and
matroids in which all circuit-cocircuit intersections are finite are called tame.
Almost all standard examples of infinite matroids are tame - in fact, [6] is the
first paper to show that any matroid at all is wild. We are able to establish the
following result:

Theorem 1.4. The class of tame thin sums matroids over k is closed under
duality and under taking minors.

We do this by giving an alternative characterisation of tame thin sums ma-
troids for which this good behaviour is far more transparent.

Any finite graphic matroid is representable over every field. The situation
for infinte graphs is a little more complex, in that there is more than one natural
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way to build a matroid from an infinite graph. In [2], 6 matroids associated to
a graph are defined in 3 dual pairs. We show that all 6 of these matroids are
thin sums matroids over any field (this was already known for 1 of the 6, and
one of the others was already known to be representable).

In Section 2, we will introduce some of the basic concepts, such as matroids,
representability, and thin sums. We will also introduce the 6 graphic matroids
mentioned above. Section 3 will be devoted to thin sums matroids on thin
families, and their duality with representable matroids. In Section 4 we will
develop our criterion for when a thin sums system is a matroid, and in Section 5
we will explain why we think there is unlikely to be a simpler characterisation.
In Section 6 we will prove that the class of tame thin sums matroids is closed
under duality and taking minors. Our account of why the various matroids
associated to an infinite graph are thin sums matroids will be dispersed over all
these sections: we give a summary of this aspect of the theory in Section 7.

2 Preliminaries

In this section, we introduce some terminology and concepts that we will use
later. We also prove a few simple results about representability.

For any set E let P(E) be the power set of E. Recall that a matroid
M consists of a set E (the ground set) and a set I ⊆ P(E) (the set of its
independent sets), where I satisfies the following conditions:

(I1) ∅ ∈ I.

(I2) I is closed under taking subsets.

(I3) For all I, I ′ ∈ I with I ′ maximal in I but I not maximal in I, there is an
x ∈ I ′ \ I such that I + x ∈ I.

(IM) Whenever I ⊆ X ⊆ E and I ∈ I, the set {I ′ ∈ I|I ⊆ I ′ ⊆ X} has a
maximal element.

Subsets of the ground set which are not independent are called dependent,
and minimal dependent sets are called circuits of the matroid. Maximal inde-
pendent sets are called bases. All the information about the matroid is contained
in the set of its circuits, or of its bases. Further details can be found in [3], from
which we take much of our notation. If all the circuits of a matroid M are finite
then M is called finitary. We use M∗ to denote the dual of M .

For any base B and any e ∈ E \ B, there is a unique circuit oe with e ∈
oe ⊆ B + e, called the fundamental circuit of e with respect to B. Dually,
since E \ B is a base of M∗, for any f ∈ B there is a unique cocircuit bf with
f ∈ bf ⊆ E \B + f , called the fundamental cocircuit of f .

Lemma 2.1. There is no matroid M with a circuit o and a cocircuit b such that
|o ∩ b| = 1.
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Proof. Suppose for a contradiction that there were such an M , o and b, with
o∩b = {e}. Let B be a base of M whose complement includes the coindependent
set b − e. Let I be a maximal independent set with o − e ⊆ I ⊆ E \ b - this
can’t be a base of M since its complement includes b, so by (I3), there is some
f ∈ B \ I such that I + f is independent. Then by maximality of I, f ∈ b, and
so f = e, so o is independent. This is the desired contradiction.

Lemma 2.2. Let M be a matroid and B be a base of M . Let oe and bf a
fundamental circuit and a fundamental cocircuit with respect to B, then

1. oe ∩ bf is empty or oe ∩ bf = {e, f} and

2. f ∈ oe if and only if e ∈ bf .

Proof. (1) is immediate from Lemma 2.1 and the fact that oe ∩ bf ⊆ {e, f}. (2)
is a straightforward consequence of (1).

Lemma 2.3. For any circuit o, and any elements e, f of o there is a cocircuit b
such that o ∩ b = {e, f}.

Proof. Let B be a base extending the independent set o \ e, so that o is the
fundamental circuit of e with respect to B. Then the fundamental cocircuit of
f has the desired property.

Lemma 2.4. Let M be a matroid with ground set E = C∪̇X∪̇D and let o′ be a
circuit of M ′ = M/C\D. Then there is an M -circuit o with o′ ⊆ o ⊆ o′ ∪ C.

Proof. Let B be any base of M�C . Then B ∪ o′ is M -dependent since o′ is
M ′-dependent. On the other hand, B∪o′−e is M -independent whenever e ∈ o′
since o′− e is M ′-independent. Putting this together yields that B∪ o′ contains
an M -circuit o, and this circuit must not avoid any e ∈ o′, as desired.

Corollary 2.5. Let M be a matroid with ground set E = C∪̇{x}∪̇D. Then
either there is a circuit o of M with x ∈ o ⊆ C + x or there is a cocircuit b of
M with x ∈ b ⊆ D + x, but not both.

Proof. Note that (M/D\C)∗ = M∗/C\D, and apply Lemmas 2.1 and 2.4.

In [7], a space is defined to consist of a set E together with an operator
PE S−→ PE such that S preserves the order ⊆ and satisfies X ⊆ SX for any
X ⊆ E. For example, for any matroid M with ground set E the associated
closure operator clM , which sends X to the set

X ∪ {x ∈ E|(∃o ∈ C(M))x ∈ o ⊆ X + x}

gives a space on the set E.
If (E,S) is a space, the dual space is given by (E,S∗), where S∗ is the dual

operator to S, sending X to X ∪ {x ∈ E|x 6∈ S(E \ (X + x)). Thus for sets X
and Y with X∪̇Y ∪̇{x} = E, we have

x ∈ SX ⇐⇒ x 6∈ S∗Y , (†)
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and this completely determines S∗ in terms of S. Thus S∗∗ = S. Also, by
Corollary 2.5, for any matroid M we have clM∗ = cl∗M .

For a space (S,E), we say S is idempotent if S2 = S, and exchange if S∗ is
idempotent. If S is both idempotent and exchange, we call it an idempotent-
exchange operator, or an IE-operator on E. Note that if S is an IE-operator
then so is S∗. For any matroid M the operator clM is an IE-operator. On the
other hand, there are lots of IE-operators that don’t come from matroids in this
way. Some strong condition akin to IM is needed to pick out which IE-operators
correspond to matroids.

We always use k to denote an arbitrary field. The capital letter V always
stands for a vector space over k. For any set A, we write kA to denote the set
of all functions from A to k. For any function E

d−→ k the support supp(d) of
d is the set of all elements e ∈ E such that d(e) 6= 0. A linear dependence of

E
φ−→ V is a map E

c−→ k such that∑
e∈E

c(e)φ(e) = 0

(here, as in the rest of this paper, we take this statement as including the
claim that the sum is well-defined, i.e. that only finitely many summands are
nonzero). For a subset E′ of E, we say such a c is a linear dependence of E′ if it
is zero outside E′. Recall that a representable matroid is traditionally defined
as follows.

Definition 2.6. Let V be a vector space. Then for any function E
φ−→ V we

get a matroid M(φ) on the ground set E, where we take a subset E′ of E to be
independent if there is no nonzero linear dependence of E′. Such a matroid is
called a representable or vector matroid.

Note that this is exactly the same as taking a family of vectors as the ground
set and saying that a subfamily of this family is independent if it is linearly
independent.

In [2], there is an extension of these ideas to a slightly different context.

Suppose now that we have a function E
f−→ kA. A thin dependence of f is a map

E
c−→ k such that, for each a ∈ A,∑

e∈E
c(e)f(e)(a) = 0

This is not quite the same as a linear dependence (in kA considered as a vector
space over k), since it is possible that the sum above might be well defined for
each particular a in A, but the sum∑

e∈E
c(e)f(e)

might still not be well defined. To put it another way, there might be infinitely
many e ∈ E such that there is some a ∈ A with c(e)f(e)(a) 6= 0, even if there
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are only finitely many such e for each particular a ∈ A. We may also say c is a
thin dependence of a subset E′ of E if it is zero outside of E′.

The word thin above originated in the notion of a thin family - this is an
f as above such that sums of the type given above are always defined; that is,
for each a in A, there are only finitely many e ∈ E so that f(e)(a) 6= 0. Notice

that, for any E
f−→ kA, and any thin dependence c of f , the restriction of f to

the support of c is thin.
Now we may define thin sums systems.

Definition 2.7. Consider a family E
f−→ kA of functions and declare a subset

of E as independent if there is no nonzero thin dependence of that subset. Let
Mts(f) be the set system with ground set E and the set of all independent sets
given in this way. We call Mts(f) the thin sums system corresponding to f .
Whenever Mts(f) is a matroid it is called a thin sums matroid.

Note that every dependent set in a representable matroid or thin sums system
induces a linear or thin dependence and vice versa; therefore, we normally talk
about such dependences instead of dependent sets.

Not every thin sums system is a matroid1 but it is known that if f is thin
then Mts(f) always is a matroid. The existing proof for this is technical and
we shall not review it here. However, this fact will follow from the results in
Section 3. Next we explore the connection between representable and thin sums
matroids. Recall that for any infinite matroid M , the finite circuits of M give
the circuits of a new matroid2, called the finitarisation of M .

Proposition 2.8. For any thin sums matroid Mts(f), the finitarisation of
Mts(f) is a representable matroid.

Proof. For any family E
f−→ kA of functions, a thin dependence of f with finite

support is also a linear dependence of f as a family of vectors, and conversely
any linear dependence of f as a family of vectors is a thin dependence of f .

Now let’s try to answer to the question: Which matroids arising from graphs
are representable or thin sums matroids? It is easy to see that any algebraic
cycle matroid is a thin sums matroid (in fact, this was one motivation for the
definition of thin sums matroids). Recall that for any graph G which does not
contain a subdivision of the Bean graph,

· · · •oo • • •

@@@@@@@

OOOOOOOOOOOOOO

UUUUUUUUUUUUUUUUUUUU

···

• • • • // · · ·

the edge sets of cycles and double rays of G are circuits of a matroid3 MA(G)
on the edge set of G, called the algebraic cycle matroid of G. In fact, even when

1See Section 4 for a couple of examples.
2This is easy to prove. See [1].
3This has been proved in [5]. However, later we will be able to give a simpler proof of this.
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G does contain a subdivision of the Bean graph we shall still denote this system
of sets by MA(G), and call it the algebraic cycle system of G.

Proposition 2.9. For any graph G the algebraic cycle system of G is a thin
sums system over every field.

Proof. First we give an arbitrary orientation to every edge of G, making G a

digraph. For any edge e of G define a function V (G)
f(e)−−→ k where for any

v ∈ V (G) f(e)(v) is 1 if e originates from v, −1 if it terminates in v, and 0 if e
and v are not incident. We show that D is dependent in MA(G) if and only if
it is dependent in Mts(f). If D is dependent in MA(G), then it contains a cycle
or a double ray. Let D′ ⊆ D be the edge set of this cycle or double ray. Give a
direction to D′. For any edge e ∈ D, define c(e) to be 1 if e is an edge of D′ and
they have the same directions, −1 if e is in D′ and they have different directions,
and 0 if they don’t meet. Now clearly we have

∑
e∈D′ c(e)f(e)(v) = 0 for any

vertex v of G, so c is a thin dependence of D. Conversely if D is dependent in
Mts(f), then whenever a vertex v is an end of an edge in D, it has to be the end
of at least two edges in D. Now it is not difficult to see that D has to contain
a cycle or a double ray.

Recall that the edge sets of finite cycles give the circuits of a matroid
MFC(G), the finite cycle matroid of G. An argument almost identical to the
one above shows that this matroid is always representable. Dually, the edge sets
of finite bonds give the circuits of a matroid MFB(G), the finite bond matroid
of G4. Similar ideas allow us to show that for any graph G, MFB(G) is also
representable.

Proposition 2.10. For any graph G MFB(G) is representable over every field
k.

Proof. We start by giving fixed directions to every edge, cycle and finite bond.
Let O be the set of all cycles of G and for any edge e ∈ E(G) define a function

O
φ(e)−−−→ k such that for any o ∈ O, φ(e)(o) is 1 if e ∈ o and they have the same

directions, −1 if e ∈ o and they have different directions, and 0 if e isn’t an edge
of o. This defines a map E(G)

φ−→ kO. We will show M(φ) = MFB(G).
We need to show that D ⊆ E(G) is dependent in MFB(G) if and only if the

it is dependent in M(φ). If D is dependent in MFB(G) then it contains a finite
bond D′. For any edge e ∈ D′ define c(e) to be 1 if D′ and e have the same
directions, and −1 if they have different directions, and 0 if they don’t meet.
Now consider a fixed cycle o which meets D′. Clearly D′ has two sides and this
cycle has to traverse D′ from the first side to the second side as many times as
it traverses D′ from the second side to the first. As a result, for any o ∈ O we
have

∑
e∈E c(e)φ(e)(o) = 0 and so c is a linear dependence of D.

Conversely, suppose that D is dependent in M(φ), and let D′ be the support
of any thin dependence of D. Whenever the edge set of a cycle meets D′, they

4See [2] for a description of the various cycle and bond matroids which may be associated
to a graph.

7



have to meet in at least two edges, which means D′ (and so also D) meets
every spanning tree. Thus D includes a bond and so it is a dependent set in
MFB(G).

Recall that for any graph G the (possibly infinite) bonds of G are the circuits
of a matroidMB(G) on the edge set ofG5. In the above proof, we could exchange
the role of finite bonds and arbitrary bonds and see that MB(G) is a thin sums
matroid. We could also exchange the role of finite cycles and arbitrary bonds,
and finite bonds and finite cycles, to get another proof of the fact that MFC(G)
is representable. It is not difficult to see that the finite cycle matroid and the
bond matroid of a graph G are dual to each other6.

As has been shown in [2], for any graph G the circuits of the dual of the
finite bond matroid of G are given by the topological circles in a topological
space associated to G. For this reason, M∗FB(G) is called the topological cycle
matroid of G, and denoted MC(G). In the next section, we shall show that
MC(G) is also a thin sums matroid.

We will only give a brief summary of the construction of the topological
space behind the topological cycle matroid. A ray is a one-way infinite path.
Two rays are edge-equivalent if for any finite set F of edges there is a connected
component of G \F that contains subrays of both rays. The equivalence classes
of this relation are the edge-ends of G; we denote the set of these edge-ends by
E(G). Let us view the edges of G as disjoint topological copies of [0,1], and let
XG be the quotient space obtained by identifying these copies at their common
vertices. The set of inner points of an edge e will be denoted by e

o

. We now
define a topological space ||G|| on the point set of XG ∪ E(G) by taking as our
open sets the union of sets C̃, where C is a connected component of XG \ Z
for some finite set Z ⊂ XG of inner points of edges, and C̃ is obtained from
C by adding all the edge-ends represented by a ray in C. For any X ⊆ ||G||
we call {e ∈ E(G)|eo ⊆ X} the edge set of X. A subspace C of ||G|| that is
homeomorphic to S1 is a topological circle in ||G||. In [2] is shown that the edge
sets of these circles in ||G|| are the circuits of M∗FB(G).

3 Representable matroids and thin sums

In this section we elucidate the connections between representable matroids and
thin sums matroids. First we show that any representable matroid is a thin sums
matroid, so thin sums matroids are a generalisation of representable matroids.
After that we will characterise the dual of an arbitrary representable matroid
and show that not only is every representable matroid a thin sums matroid
but every matroid whose dual is representable is also a thin sums matroid. In
fact, our last result even is stronger; we show that the duals of representable
matroids are precisely the thin sums matroids for thin families. Since the finite

5See [2].
6See [2].
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bond matroid of any graph is representable, this implies in particular that its
dual, the topological cycle matroid, is a thin sums matroid.

As usual, let V ∗ be the dual of the vector space V (that is, the vector space
consisting of all linear maps from V to k).

Theorem 3.1. Consider a map E
φ−→ V and the representable matroid M(φ).

For any e ∈ E and α ∈ V ∗ define E
f−→ kV

∗
by f(e)(α) := α.φ(e). Then,

M(φ) = Mts(f).

In particular, M(φ) is a thin sums matroid.

Proof. We show that I is independent in Mts(f) if and only if I is independent
in M(φ). Suppose that I is independent in Mts(f). Suppose that E c−→ k is any
linear dependence of φ that is 0 outside I. For any α ∈ V ∗ we have,

∑
e∈E

c(e).f(e)(α) =
∑
e∈E

c(e)α.φ(e) = α

(∑
e∈E

c(e)φ(e)

)
= 0.

Thus c is a thin dependence of f , and since I is independent in Mts(f) we get
that c must be the 0 map. So I is also independent in M(φ).

Conversely, suppose that I is independent in M(φ). Suppose E c−→ k is any
thin dependence of f that is 0 outside I. Let I ′ = supp(c). Since I ′ ⊆ I,
I ′ is also independent in M(φ), so (by extending the image of I ′ by φ to a
basis of V ) we can define a linear map V

αI′−−→ k such that for any i ∈ I ′,
αI′(φ(i)) = 1. As the restriction of f to I ′ = supp(c) is thin and for any i ∈ I ′
f(i)(αI′) = αI′(φ(i)) = 1, I ′ has to be finite. So for every α ∈ V ∗,

α

(∑
e∈E

c(e)φ(e)

)
=
∑
e∈E

c(e)α.φ(e) =
∑
e∈E

c(e)f(e)(α) = 0.

Since this is true for every α ∈ V ∗, we get that
∑
e∈I′ c(e)φ(e) = 0 which means

c must be a linear dependence and so must be 0. Therefore I is also indpendent
in Mts(f).

Now let’s see how we can move from a representable matroid to its dual.
Let’s start with a family E

φ−→ V . let Cφ be the set of all linear dependences

of φ. We now define a map E
bφ−→ kCφ by setting φ̂(e)(c) := c(e) for any e ∈ E

and c ∈ Cφ. Clearly φ̂ is a thin family of functions. On the other hand, if we

let Df be the set of thin dependences of a thin family E
f−→ kA, we get a map

E
f−→ kDf by setting f(e)(d) := d(e) for e ∈ E and d ∈ Df . These processes

are, in a sense, inverse to each other.

Lemma 3.2. For any thin family E
f−→ kA, a map d : E → k is a thin dependence

of f if and only if it is a thin dependence of f̂ .
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Proof. First, suppose that d is a thin dependence of f . Then for any c ∈ Cf we
have ∑

e∈E
d(e)f̂(e)(c) =

∑
e∈E

d(e)c(e) =
∑
e∈E

c(e)f(e)(d) = 0,

so d is also a thin dependence of f̂ .
Now suppose that d is a thin dependence of f̂ . For any a ∈ A, let E ca−→ k

be defined by the equation ca(e) = f(e)(a). Since f is thin, ca(e) is nonzero for
only finitely many values of e. Now for any thin dependence d′ of f we have∑

e∈E
ca(e)f(e)(d′) =

∑
e∈E

ca(e)d′(e) =
∑
e∈E

d′(e)f(e)(a) = 0,

and so ca ∈ Cf . Now, since d is a thin dependence of f̂ , we have∑
e∈E

d(e)f(e)(a) =
∑
e∈E

d(e)ca(e) =
∑
e∈E

d(e)f̂(e)(ca) = 0.

Since a was arbitrary, this says exactly that d is a thin dependence of f .

An analogous argument shows that for any map φ : E → V , the linear
dependences of φ̂ are exactly those of φ. We can also show that these inverse
processes correspond to duality of matroids.

Theorem 3.3. For any map φ : E → V we have,

M∗(φ) = Mts(φ̂).

Proof. Suppose we have a set E1 which is dependent in the dual of M(φ): that
is, it meets every base of M(φ). Let E2 = E \ E1, so E2 doesn’t include any
base of E - that is, E2 doesn’t span this matroid, and we can pick e1 ∈ E1 such
that φ(e1) isn’t in the span of the family (φ(e)|e ∈ E2). Consider a basis B2 for
this span, and extend B2 + φ(e1) to a basis B for V, and define a map B h0−→ F
such that h0(φ(e1)) := 1, and otherwise 0. Finally, extend h0 to a linear map
V

h−→ F . Now, for any linear dependence c of φ we have

∑
e∈E

(h · φ)(e)φ̂(e)(c) = h

(∑
e∈E

c(e)φ(e)

)
= 0

So h · φ is a thin dependence of φ̂, and since it is 0 outside E1, E1 is dependent
with respect to φ̂.

Conversely, suppose that E1 is dependent in Mts(φ̂), so that there is a
nonzero thin dependence d of φ̂ which is 0 outside E1. We want to show that
E1 meets every base of M(φ), so suppose for a contradiction that there is such
a base B which it doesn’t meet. Pick e1 ∈ E1 so that d is nonzero at e1. We can
express φ(e1) as a linear combination of vectors from the family (φ(e)|e ∈ B) -
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that is, there is a linear dependence c of φ which is nonzero only on B and at
e1, with c(e1) = 1. But then

d(e1) =
∑
e∈E

d(e)c(e) =
∑
e∈E

d(e)φ̂(e)(c) = 0,

which is the desired contradiction. Thus E1 does meet every basis of M(φ), so
it is dependent in the dual of M(φ).

Corollary 3.4. For any thin family E
f−→ kA we have,

Mts(f) = M∗(f).

In particular Mts(f) is a cofinitary matroid.

Proof. This is immediate from theorem 3.3, since by lemma 3.2 we haveMts(f) =

Mts(f̂).

4 A sufficient condition for Mts to be a matroid

Throughout this section, f will denote a map E
f−→ kA for some sets A and E

and field k. Since so many examples of matroids are of the form Mts(f) for
some such f , it would be good to be able to characterise when the set system
Mts(f) is a matroid. Although this set system clearly satisfies the axioms (I1)
and (I2), it need not satisfy either (I3) or (IM). Thus the algebraic cycle system
of the Bean graph satisfies (IM) but not (I3) (as we shall soon show).

On the other hand, we can also define a thin sums system which fails to
satisfy (IM). Let E = N×{0, 1}, and define a function E

f−→ QN by f((n, 0))(i) =
in and f((n, 1))(i) = −1 if n = i and 0 otherwise. Thus for any thin dependence
c of f , there can only be finitely many n ∈ N with c((n, 0)) nonzero, and the
remaining values of c are determined by the polynomial expression

c((i, 1)) =
∑
n∈N

c((n, 0))in . (1)

In particular, if c is 0 outside of N × {0}, then this polynomial must be the
0 polynomial and so c must be the 0 function. This shows that N × {0} is
thinly independent for f . To show that Mts(f) doesn’t satisfy (IM), we shall
show that there is no maximal thinly independent superset of N × {0}. More
precisely, we shall show that, for a subset X of N, the set N× {0} ∪X × {1} is
thinly independent if and only if N\X is infinite. In fact, the same argument as
that above shows that this set is thinly independent whenever N \X is infinite,
since the only polynomial which is zero in infinitely many places is the zero
polynomial. Conversely, if N \ X is finite, then pick some nonzero polynomial∑N
n=0 anx

n with roots at all elements of N \X, and define c((n, 0)) to be an for
n ≤ N and 0 otherwise. Define c((i, 1)) by the polynomial formula (1). Then c
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is a nontrivial thin dependence which is 0 outside N × {0} ∪ X × {1}, so that
set is thinly dependent.

We shall argue in the next section that some condition like (IM) is unavoid-
able, but we can at least get rid of the condition (I3). We do this by defining
for each f a different set system M co

ts (f), which satisfies (I3) in addition to (I1)
and (I2), and such that if it satisfies (IM) then Mts(f) is a matroid (in fact, in
such cases M co

ts (f) = M∗ts(f)).
We will make use of a compactness lemma, corresponding to the compactness

of a topological space which (so far as we know) has not been introduced in the
literature. We therefore introduce it here.

Definition 4.1. An affine equation over a set I with coefficients in k consists
of a sequence (λi ∈ k|i ∈ I) such that only finitely many of the λi are nonzero
and an element κ of k.

A sequence (xi|i ∈ I) is a solution of the equation (λ, κ) if
∑
i∈I λixi = κ

(we shall also slightly abuse notation by using expressions like this as names for
equations). x is a solution of a set E of equations if it is a solution of every
equation in E.

The proof of the following lemma is based on an argument of Bruhn and
Georgakopoulos [4].

Lemma 4.2. If every finite subset of a set E of affine equations over I with
coefficients in k has a solution then so does E.

Proof. Let I be the set of all subsets I ′ of I such that every finite subset of
E ∪ {xi = 1|i ∈ I ′} has a solution. I is nonempty since it contains ∅, and the
union of any chain of elements of I is an upper bound for those elements in I. So
by Zorn’s lemma, I has a maximal element Im. Let Em = E ∪{xi = 1|i ∈ Im}.

Sublemma 4.3. For any i ∈ I there is a finite set Ki ⊆ Em and an element
ui ∈ k such that every solution x of Ei has xi = ui.

Proof. Suppose for a contradiction that we can find i0 ∈ I where this fails -
it follows that i0 6∈ Im. We shall show that Im ∪ {i0} ∈ I, contradicting the
maximality of Im. Let K be any finite subset of Em. By assumption, K has two
solutions s and t with si0 6= ti0 . Since k is a field, we can find A and B in k such
that A+B = 1 and Asi0 +Bti0 = 1. Then for each equation

∑
i∈I λixi = κ in

K we have
∑
i∈I λi(Asi + Bti) = A

∑
i∈I λisi + B

∑
i∈I λiti = Aκ + Bκ = κ,

so As+Bt is a solution of K, and since Asi0 +Bti0 = 1 it is even a solution of
K ∪ {xi0 = 1}, as required.

It is now enough to show that the ui introduced above form a solution
of E. Let e, given by

∑
i∈I λixi = κ, be any equation in E, and let S be

the finite subset of I on which the λi are nonzero. Let K =
⋃
i∈S Ki ∪ {e}.

Since K is finite, it has a solution x. For each i ∈ S we have xi = ui, so∑
i∈I λiui =

∑
i∈I λixi = κ, so the ui form a solution of e and, since e was

arbitrary, they form a solution of E.

12



This lemma is all we will really need. However, it looks like it ought to
correspond to some sort of compactness, and indeed it does.

Definition 4.4. For any affine equation e over I with coefficients in k, let
Ce be the set of solutions of e. For any finite set E of affine equations, let
CE =

⋃
e∈E Ce. The affine Zariski topology on kI is that with the CE as its

basic closed sets.

The reason for this name is the analogy between this definition and the
Zariski topology on k[X] for a finite set X.

Theorem 4.5. The affine Zariski topology is compact.

Proof. Let E be a set of finite sets of affine equations, such that for any finite
subset K of E the set

⋂
E∈K CE is nonempty. What we need to show is that⋂

E∈E CE is also nonempty. Let X be
∏
E∈E E, with the product topology. For

each finite K ⊆ E , let XK be the subset of X consisting of all (eE |E ∈ E) such
that {eE |E ∈ K} has a solution. XK is closed and nonempty since K is finite.
For any finite family (Kj |j ∈ J) of such K we have that

⋂
j∈J XKj ⊇ XS

j∈J Kj
,

so it is nonempty. Since X is compact, the intersection of all the XK is also
nonempty, so we can pick an element e. Then we know that every finite subset
of {eE |E ∈ E} has a solution, so by Lemma 4.2 there is a solution x of the whole
set of equations. But then x lies in

⋂
E∈E CE , which is therefore nonempty.

Lemma 4.6. Let d be a thin dependence of f . Then supp(d) is a union of
minimal dependent sets of Mts(f).

Proof. Let I = supp(d). It suffices to show that for any e0 ∈ I there is a minimal
dependent set which contains e0 and is a subset of I. We begin by fixing such
an e0.

For any a ∈ A there are only finitely many e ∈ I with f(e)(a) 6= 0, so for any
a ∈ A we get an affine equation

∑
e∈I f(e)(a)xe = 0 over I. Let E be the set of

all affine equations arising in this way. Let S be the set of all subsets I ′ of I such
that every finite subset of E ∪ {xe = 0|e ∈ I ′} ∪ {xe0 = 1} has a solution. Since
d�I is a solution of all equations in E , (d�I)/d(e0) is a solution of all equations
in E ∪ {xe0 = 1}, so ∅ ∈ E . S is also closed under unions of chains, so by Zorn’s
lemma it has in has a maximal element Em. Now by Lemma 4.2 there is some
solution d′ of all the equations in E

⋃
{xe = 0|e ∈ E′}

⋃
{xe0 = 1}. Since d′

solves all the equations in E , its extension to E taking the value 0 outside I is
a thin dependence of f .

We shall show that D := supp(d′) = E\Em is the desired minimal dependent
set. If it were not, there would have to be a nonzero thin dependence d′′ with
supp(d′′) ⊆ supp(d′) − e0. But then for any e1 ∈ supp(d′′), we have that
d′ − d′(e1)

d′′(e1)d
′′�I is a solution of xe1 = 0 in addition to the equations solved by

d′, which contradicts the maximality of Em.

Corollary 4.7. If Mts(f) is a matroid, and E′ ⊆ E, then e 6∈ E′ is in the
closure of E′ if and only if there is a thin dependence d with supp(d) ⊆ E′∪{e}
and d(e) = 1.
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Proof. If there is such a d, by Lemma 4.6 we can find a minimal dependent
set D with e ∈ D ⊆ supp(d). As D \ {e} ⊆ E′ is independent, e ∈ cl(E′). If
e ∈ cl(E′) then there is a circuit D with e ∈ D ⊆ E′ ∪ {e}. Let d be a thin
dependence with supp(d) = D. Then d(e) 6= 0 since D − e0 is independent:
scaling if necessary, we can take d(e) = 1.

Corollary 4.8. Let Mts(f) be a matroid. Then a subset I is independent in
M∗ts(f) if and only if for every i ∈ I there is a thin dependence di of f such that
di(i) = 1 and di is 0 on the rest of I.

Proof. We recall that I is independent in M∗ts(f) if and only if cl(Ic) = E. Now
apply Lemma 4.7.

This motivates the definition we promised at the start of this section, of the
set system M co

ts .

Definition 4.9. A subset I of E is coindependent if for every i ∈ I there is a
thin dependence di of f such that di(i) = 1 and di is 0 on the rest of I. The
set system M co

ts (f) has ground set E and consists of the coindependent subsets
of E.

Thus by Corollary 4.8, when Mts(f) is a matroid, M co
ts (f) = M∗ts(f).

Lemma 4.10. Let I be coindependent and i0 6∈ I. If there is a thin dependence
d which is nonzero at i0 and 0 on I, then I + i0 is coindependent.

Proof. Suppose that (di|i ∈ I) witnesses the coindependence of I. Let d′i0 =
d/d(i0), and for i ∈ I let d′i = di − di(i0)d′i0 . Then (d′i|i ∈ I + i0) witnesses the
coindependence of I + i0.

We can now show that M co
ts (f) is always dual, in a sense, to Mts(f).

Lemma 4.11. Let I ⊆ E. I is a maximal independent set with respect to f if
and only if E \ I is a maximal coindependent set with respect to f .

Proof. Suppose first of all that I is a maximal independent set, and let i ∈ E \I.
Let di witnesses the dependence of I ∪ {i}. We must have di(i) 6= 0, so without
loss of generality di(i) = 1. But then the di witness the coindependence of E \I.
We can’t have (E \ I) + i coindependent for any i ∈ I, since the corresponding
di would witness dependence of I.

So suppose instead for a contradiction that E\I is a maximal coindependent
set but I is dependent, as witnessed by some thin dependence d of I. There
must be i0 ∈ I with d(i0) 6= 0 so, by Lemma 4.10, (E \ I) + i0 is coindependent,
contradicting the maximality of E\I. Thus I is independent. For each i ∈ E\I,
I ∪ {i} is dependent, as witnessed by di, and so I is also maximal.

M co
ts (f) evidently satisfies (I1) and (I2).

Lemma 4.12. M co
ts (f) satisfies (I3).

14



Proof. Suppose we have a maximal coindependent set J , and a nonmaximal
coindependent set I. We have to show that we may extend I with a point from
J . Since I is nonmaximal, we can choose i0 6∈ I with I + i0 still coindependent.
Since by Lemma 4.11 E \ J is independent, there is i1 ∈ J with di0(i1) 6= 0.
Then by Lemma 4.10 I + i1 is coindependent.

We can now give our slightly simplified criterion for when a thin sums system
is a matroid.

Theorem 4.13. If M co
ts (f) satisfies (IM), then

(M co
ts (f))∗ = Mts(f).

In particular, Mts(f) is a matroid.

Proof. M co
ts (f) evidently satisfies (I1) and (I2), and satisfies (I3) by Lemma 4.12,

so it is a matroid. It is clear from Lemma 4.11, that every independent set of
(M co

ts (f))∗ is also independent Mts(f). Conversely, let I be an independent set
of Mts(f). Then let J be a maximal independent set of M co

ts (f) not meeting I.
It suffices to show that J is a base of M co

ts (f). Suppose not, for a contradiction:
then there is some i ∈ I with J + i coindependent. But then since I is inde-
pendent, the corresponding di is nonzero at some j 6∈ I, and by Lemma 4.10 we
deduce that J + j is coindependent, contradicting the maximality of J .

We now return to the question of when the algebraic cycle system MA(G)
of a graph G is a matroid. It evidently satisfies (I1) and (I2). A little trickery
shows that MA(G) has a maximal independent set B. First, we pick a maximal
collection A of disjoint rays in G, then we can take B to be any maximal set of
edges including all the rays in A but not including any cycle and not connecting
any 2 of the rays in A (both these steps are possible by Zorn’s Lemma). B can’t
include a double ray, by maximality of A. A slight refinement of this argument
shows that MA(G) always satisfies (IM). So we just need to determine whether
MA(G) satisfies (I3).

In fact, as we mentioned in Section 2, it was shown by Higgs in [5] that
MA(G) is a matroid if and only if G doesn’t contain any subdivision of the
Bean graph:

· · · •oo_ _ _ ___ • ___ v′ v
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···

• ___ • ___ • ___ • //___ · · ·

The algebraic cycle system of this graph doesn’t satisfy (I3) - the dashed edges
above form a maximal independent set, but there is no way to extend the
nonmaximal independent set consisting of the edges meeting v and those to the
left of v′ by an edge from this set. It is, however, not at all easy to see that if
G doesn’t contain a subdivision of the Bean graph then MA(G) satisfies (I3).
In fact, Higgs didn’t follow this route - the interested reader can check that his
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claim (3) (which is the combinatorial heart of the paper) is exactly the criterion
obtained from Theorem 4.13 in this case. We are now in a position to give a
more direct argument.

Theorem 4.14 (Higgs). Suppose that G includes no subdivision of the Bean
graph. Then MA(G) is a matroid.

Proof. We say a cut b of G is a nibble if one side (called the small side: the
other side is the large side) of b is connected and includes no rays. Suppose,
for a contradiction, that there are a nibble b and an algebraic cycle a meeting
b infinitely often. Then a must be a double ray. Let T be a spanning tree of
the small side of b. We can pick any vertex v0 in this tree to serve as its root,
and consider the subtree T ′ consisting of the paths from v0 to a in T . Since T ′

is rayless and has infinitely many leaves there must (by König’s Lemma) be a
vertex v in this tree of infinite degree. The paths from v to a in T ′, together
with a itself, now include a subdivision of the Bean graph, contrary to our
supposition. So we can conclude that a nibble and an algebraic cycle can only
meet finitely often.

In fact we can say more, using the ideas of Section 2. Pick directions for
every edge, algebraic cycle and nibble of G. Let A be the set of all agebraic

cycles of G, and for any edge e ∈ E(G) define a function A
f(e)−−→ k such that for

any a ∈ A, f(e)(a) is 1 if e ∈ a and they have the same directions, −1 if e ∈ a
and they have different directions, and 0 if e isn’t an edge of a. This gives a
map E(G)

f−→ kA. We shall show that M co
ts (f) = MA(G).

First, we show that any coindependent set I for f is MA(G)-independent.
Suppose for a contradiction that I includes an algebraic cycle a, and pick any i ∈
a. Then

∑
e∈E di(e)f(e)(a) = f(i)(a) 6= 0, which is the desired contradiction.

For any nibble b of G, define the map E(G) db−→ k such that db(e) is 1 if
e ∈ b and they have the same directions, −1 if e ∈ b and they have different
directions, and 0 if e isn’t an edge of b. For any algebraic cycle a, a must
traverse b the same number of times in each direction (if it is a double ray, the
rays in both directions must eventually end up in the large side of b). Traversals
one way contribute a +1 term to

∑
e∈E db(e)f(e)(a), and traversals the other

way contribute a −1 term, so this sum is always 0. That is, each db is a thin
dependence of f .

Now if a set I isn’t coindependent then there is some i ∈ I such that no thin
dependence is nonzero at i and 0 on the rest of I. In particular, considering
the thin dependences db above, there is no nibble b with b ∩ I = {i}. Thus if
the connected components of I − i containing the endpoints of i are distinct
then each contains a ray, so I contains a double ray. Otherwise, both ends of i
are in the same component, so I contains a cycle. In either case, I contains an
algebraic cycle.

We have shown that the MA(G)-independent sets are exactly the coinde-
pendent sets, so they satisfy (I3) by Lemma 4.12. We have already checked the
remaining axioms.
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Remark 4.15. This argument also shows a little more - namely that the dual
of MA(G) is the thin sums matroid Mts(f). We have shown that every nibble
is thinly dependent. On the other hand, if a set I contains no nibble, so that
every connected component of the complement of I contains a ray, then for each
i in I there is an algebraic cycle meeting I only in i, so I is thinly independent.
Thus the cycles of the dual of MA(G) are exactly the minimal nibbles. This is
also shown in [2], where minimal nibbles are called skew cuts.

5 Galois Connections

In this section, we will present a new perspective on the definition of thin sums
set systems, which we believe shows that it is unlikely that any criterion much
simpler than (IM) will allow us to distinguish which such systems are matroids.
To do this, we shall show that thin sums systems are determined by closed
classes for a particular Galois connection. We shall note that each IE-operator
gives a closed class for a very similar Galois connection. Since in that case (IM)
seems to be necessary to pick out the class of matroids, we think something
similar will be needed for thin sums systems also. This section is not essential
for what follows, and may be skipped.

Since Galois connections are not widely known, we shall review here the
small portion of the theory that we shall require.

Definition 5.1. Let A be a set, and R a symmetric relation on A. The Galois
connection induced by R is the function (PA p−→ PA) given by p(A′) = {a ∈
A|(∀a′ ∈ A′)aRa′}.

For the remainder of this section we shall always take A, R and p to refer in
this way to the constituents of a general Galois connection.

Example 5.2. Let V be a vector space with an inner product 〈−,−〉. We say
2 vectors v and w are orthogonal if 〈v, w〉 = 0. This gives a relation from V to
itself, and so induces a Galois connection as above. p is given by the function
PV → PV that sends a subset of V to its orthogonal complement, which is
always a subspace of V .

Lemma 5.3.

• For A′ ⊆ A′′ ⊆ A, p(A′′) ⊆ p(A′)

• For A′ ⊆ A, A′ ⊆ p2(A′)

Proof. To prove the first property, note that for any a ∈ p(A′′), for any a′ ∈
A′ ⊆ A′′ we have aRa′, so that a ∈ p(A′). To prove the second property, note
that for any a′ ∈ A′, for any a ∈ p(A′) we have a′Ra, so that a′ ∈ p2(A′).

Lemma 5.4. For A′ ⊆ A, the following are equivalent:

• A′ = p2(A′).
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• A′ is in the image of p.

Proof. The first statement clearly implies the second. Suppose the second is
true, and let A′ = p(A′′). Then we have A′′ ⊆ p2(A′′), so p(A′′) ⊇ p3(A′′),
that is A′ ⊇ p2(A′). Since we also know A′ ⊆ p2(A′), we have A′ = p2(A′) as
required.

In such cases, we say A′ is a closed subset of A (with respect to this Galois
connection). It is immediate from Lemma 5.4 that p restricts to an order re-
versing idempotent automorphism of the poset of closed subsets of A. For any
closed set A′, p(A′) is called the dual closed set to A′.

Example 5.5. If, in Example 5.2, V is finite dimensional, then the closed sets
for this Galois connection are precisely the subspaces of V .

Example 5.6. Let G be a finite graph, and let V be the free vector space FE2
over F2 on the set of E edges of G. We can identify subsets of E with vectors
in V : each subset gets identified with its characteristic function. There is a
standard inner product on this space, with 〈v, w〉 =

∑
e∈E v(e)w(e). Then the

cuts of G form a subspace of V , which is the orthogonal complement of the
subspace of V generated by the cycles of G. Thus the cycles and the bonds of
G generate dual closed classes in the associated Galois connection.

Let E be any set, and define a relation R1 from PE to itself by letting XR1Y
when |X ∩ Y | 6= 1. This slightly odd relation is motivated by the fact that it
holds between any circuit and any cocircuit in a matroid. We shall show that
each matroid with ground set E induces a closed subset of PE in the associated
Galois connection, and that the dual matroid induces the dual closed subset. In
fact, we can go further and get such a result for idempotent-exchange operators
(see Section 2 for a definition of this concept).

Definition 5.7. Let S be an IE-operator on a set S. A set X ⊆ E is S-closed
if SX = X. A subset X is an S-scrawl if for each x ∈ X it is true that
x ∈ S(X − x). The set of S-scrawls is denoted S(S).

Thus if M is a matroid then a set is clM -closed if and only if it is M -closed
and is a clM -scrawl if and only if it is a union of M -circuits.

Lemma 5.8. Let S be an IE-operator on E, and let X ⊆ E. Then X is S-closed
if and only if E \X is an S∗-scrawl.

Proof. Note that by (†) of Section 2 for any x ∈ E \X we have x 6∈ SX if and
only if x ∈ S∗(E \X − x).

Corollary 5.9. Let M be a matroid with ground set E, and let s ⊆ E be a
set which never meets an M -cocircuit in just one point. Then s is a union of
M -circuits. �

Theorem 5.10. Let S be an IE-operator on a set E, and let p be given as above
by the Galois connection associated to R1. Then S(S) = p(S(S∗)).
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Proof. We must show that a subset X of E is in S(S) if and only if it is in
p(S(S∗)).

First of all, suppose that X ∈ S(S), and pick any X ′ ∈ S(S∗). Suppose for a
contradiction that |X ∩X ′| = 1, and call the unique element of this set x. Then
x ∈ S(X − x) and so x ∈ S(E \X ′), which contradicts the fact that by Lemma
5.8, E \X ′ is S-closed. Since X ′ was arbitrary we get that X ∈ p(S(S∗)).

Now suppose instead that X ∈ p(S(S∗)). For any x ∈ X, S(X − x) is
S-closed, since S is idempotent, so E \ S(X − x) ∈ S(S∗) by Lemma 5.8. So
X ∩ (E \ S(X − x)), which is a subset of {x}, can’t have just one element. So
x 6∈ E \ S(X − x) and so x ∈ S(X − x). Since x was arbitrary, X ∈ S(S).

Thus although every matroid corresponds to a closed class for such a Galois
connection, not every such closed class corresponds to a matroid: the far more
general collection of IE-operators gives rise to many such closed classes which
don’t come from matroids. Thus, in order to determine which closed classes for
these Galois connections correspond to matroids, some condition akin to (IM)
is essential.

However, there is a similar Galois connection whose closed classes capture
the information behind thin sums systems. Let E be a set, and k a field. We
have a relation R2 from kE to itself with cR2d when∑

e∈E
c(e)d(e) = 0 .

Here, as usual, we take this to include the statement that the sum is well defined,
i.e. that only finitely many of the summands are nonzero.

Just as in Example 5.2, any closed set is necessarily a subspace of the vector
space kE . The link between this relation and the relation R1 defined above is
that, since no sum evaluating to zero can have precisely one nonzero term, if
cR2d then there can’t be just one e ∈ E at which both are nonzero. Explicitly,
cR2d⇒ supp(c)R1 supp(d).

From any closed class, we can define a corresponding set system.

Definition 5.11. For any closed set C with respect to R2, we say a subset I of
E is C-independent if the only c ∈ C which is zero outside I is the 0 function.
Otherwise, I is C-dependent. The thin sums system MC corresponding to C is
the system of C-independent subsets of the ground set E.

We shall now show that this notion corresponds to the usual notion of a thin
sums system.

Proposition 5.12. Suppose we have a function E
f−→ kA. Let D be the set of

functions da : e 7→ f(e)(a) with a ∈ A. Then Mts(f) = Mp(D).

Proof. It is enough to show that the elements of p(D) are exactly the thin
dependences for f . But using the substitution given above, the condition that
c ∈ p(D), namely that for each a ∈ A∑

e∈E
c(e)da(e) ,
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becomes the condition that for each a ∈ A∑
e∈E

c(e)f(e)(a)

which is the condition for c to be a thin dependence for f .

Because thin sums systems correspond in this way to closed classes for the
Galois connection correponding to R2, and a condition like (IM) seems necessary
to pick out the matroids amongst the closed classes for R1, it is likely that some
condition akin to (IM) will also be needed to distinguish which thin sums systems
are matroids. On the other hand, the evident similarity of this connection to
the sort employed in example 5.6 provides another indication of why the various
types of cycle and bond matroids corresponding to a graph are all thin sums
systems.

6 Tameness and duality

One very natural question about the class of thin sums matroids is whether or
not it is closed under matroid duality: the fact that the class of representable
matroids was not closed under duality was a key motivation for introducing
extensions of this class, such as the class of thin sums matroids. Sadly, the class
of thin sums matroids is not closed under duality: a counterexample is given
in [6]. However, that counterexample involves a matroid with a very unusual
property: it has a circuit and a cocircuit whose intersection is infinite. Matroids
with this property are called wild matroids, and those in which every circuit-
cocircuit intersection is finite are called tame. The main result of this section
will be that the class of tame thin sums matroids is closed under duality.

This class includes all the interesting examples arising from graphs: any
finitary or cofinitary matroid must be tame, and this includes the finite and
topological cycle matroids as well as the bond and finite bond matroids of a
given graph. We showed in the proof of Theorem 4.14 that the algebraic cycle
and skew cuts matroids are also tame.

A natural strategy for showing that the dual of a thin sums matroid is again
a thin sums matroid is suggested by the results of Section 3. These results

suggest that in attempting to construct the representation E
f−→ kA of M∗ts(f)

we should take A to be the set of all thin dependencies of f , and define f(e)(c)
to be c(e). However, this natural attack fails to work, even if Mts(f) is tame,
as our next example shows.
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Example 6.1. Let G be the graph
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We may represent the algebraic cycle matroid of G as Mts(f) as in the proof of

Proposition 2.9. Recall that for any edge e of G the function V (G)
f(e)−−→ k is

given by taking f(e)(v) to be 1 if e originates from v, −1 if it terminates in v,
and 0 if they don’t meet each other. Thus the function which takes the value 1
on the dotted edges and 0 elsewhere is a thin dependence of f . So no function
with support given by the skew cut consisting of the vertical dotted edges can
be a thin dependence of f as given above. That is, for this matroid and this
definition of f , we have M∗ 6= Mts(f).

Our approach will be a little different in character, although our results will
imply that the restriction of the f defined above to the set of thin dependences
whose supports are circuits does give a representation of the dual of Mts(f).
We shall proceed by giving a self-dual characterisation of the class of tame thin
sums matroids.

Lemma 6.2. Let M be a tame matroid with ground set E. Then M is a thin
sums matroid over the field k if and only if there is for each circuit o of M a
function o

co−→ k∗ (here k∗ is the set of nonzero elements of k) and for each
cocircuit b of M a function b

db−→ k∗ such that for any circuit o and cocircuit b
we have ∑

e∈o∩b

co(e)db(e) = 0 . (2)

Proof. Suppose first of all that we have such co and db. Let A be the set of
cocircuits of M , and let E

f−→ kA be defined by f(e)(b) = db(e) if e ∈ b and
0 otherwise. We shall show that M = Mts(f), by showing that a set I ⊆ E
is M -dependent if and only if it is Mts(f)-dependent. If I is M -dependent, it
includes some circuit o, and then the function extending co to E and taking
the value 0 everywhere outside o is a nontrivial thin dependence of f which is 0
outside of I. If I is Mts(f)-dependent, then let c be a nontrivial thin dependence
of f which is 0 outside of I, and let s = supp(c). Then for any M -cocircuit b
we have ∑

e∈E
c(e)db(e) = 0 .
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The collection of those e such that c(e)db(e) 6= 0 is s ∩ b, which therefore can’t
have just one element. So by Corollary 5.9 s is a union of M -circuits. Since s
is nonempty, it is therefore M -dependent, and therefore so is I.

Conversely, let M be given as Mts(f) for some E
f−→ kA. For each circuit

o of M , pick some thin dependence ĉo of f with support o, and let co = ĉo�o.
Now let b be any cocircuit of M , and fix some eb ∈ b. By Lemma 2.3, we can
find for each e ∈ b− eb some circuit o(e) of M such that o(e) ∩ b = {eb, e}. We
define the map b db−→ k∗ to be 1 at eb and − co(e)(eb)co(e)(e)

for e ∈ b− eb (note that this
choice ensures that (2) holds for b and each o(e)).

Let o be any circuit of E. It remains to show that
∑
e∈o∩b co(e)db(e) = 0.

Plugging in the values for db(e), this means that we need to show

ĉo(eb)−
∑

e∈o∩(b−eb)

co(e)co(e)(eb)
co(e)(e)

= 0 .

That is, we need c(eb) = 0, where

c = ĉo −
∑

e∈o∩(b−eb)

co(e)
co(e)(e)

ĉo(e) .

As c is a finite linear combination of thin dependences, it is again a thin
dependence. But for any e ∈ b− eb, we have c(e) = ĉo(e)− ĉo(e)

co(e)(e)
co(e)(e) = 0.

If c(eb) 6= 0, then by Lemma 4.6, there is a circuit o such that eb ∈ o ⊆ supp(c),
which gives o ∩ b = {eb}, a contradiction. Thus c(eb) = 0, as desired.

Theorem 6.3. The class of tame thin sums matroids is closed under duality
and under taking minors.

Proof. The closure under duality follows from the fact that the characterisation
given in Lemma 6.2 is self-dual. For the closure under taking minors, let M be
a tame thin sums matroid with functions co, db given as in Lemma 6.2, and let
N = M/C\D be a minor of M . For each circuit o of N , let ô be a circuit of M
with o ⊆ ô ⊆ o∪C (such a circuit exists by Lemma 2.4), and take co to be cô�o.
Similarly, for each cocircuit b of N let b̂ be a cocircuit of M with b ⊆ b̂ ⊆ b ∪D
and let db = db̂�b. These co and db satisfy the conditions of Lemma 6.2, so that
N is also a thin sums matroid over k.

7 Overview of the connections to graphic ma-
troids

Our results on graphic matroids have been scattered through the paper. We
can now make use of Proposition 2.8 and Theorem 6.3, and go on a short tour
of the standard matroids arising from an infinite graph G. We shall recall why
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all of them are tame thin sums matroids over any field, and a couple of them
are representable over any field. Since we want our results to apply to any field,
we continue to work over an arbitrary fixed field k.

Our starting point is the most algebraic of examples, the algebraic cycle
matroid, for which we gave a thin sums representation in Proposition 2.9. Ap-
plying Theorem 6.3, we deduce that the dual M∗A(G), the skew cuts matroid of
G, is also a thin sums matroid. We can also apply Proposition 2.8 to deduce
that the finitarisation MFC(G) = MA(G)fin, the finite cycle matroid MFC(G),
whose circuits are the cycles of G, is representable.

Applying Theorem 6.3, its dual, the bond matroid MB(G), whose circuits
are (possibly infinite) bonds, is a thin sums matroid. So by Proposition 2.8, the
finite bond matroid MFB(G) is representable. Applying Theorem 6.3 one more
time, we recover the fact that the topological cycle matroid MC(G) is a thin
sums matroid.

We could, of course, continue this process further, but it quickly becomes
periodic, as sketched out in the following diagram:

Algebraic cycles dual //

fin

��

Skew cuts

Finite cycles
(representable)

dual //Bonds

fin

��
Topological cycles

fin

��

Finite bonds
(representable)dual

oo

Finite cycles
of FSep(G)

(representable) dual
// Bonds
of FSep(G)

fin

OO

Here FSep(G) is the finitely separable quotient of G, obtained from G by
identifying any two vertices which cannot be separated by removing only finitely
many edges from G.

It would be interesting to explore the consequences of applying a similar
process in other contexts, such as the simplicial setting.
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