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Abstract

Applying a recent extension (2015) of a structure theorem of Robertson,
Seymour and Thomas from 1993, in this paper we establish Robertson’s magic-
tree conjecture from 1997.

1 Introduction

We begin by explaining our motive for this work. A major motive for this paper is the
Graph Minor Theorem (GMT). In [15], Robertson and Seymour establish Wagner’s
conjecture that finite graphs are ‘well-quasi-ordered’ (wqo) under the minor relation.
This is indeed “among the deepest theorems that Mathematics has to offer” [1]. The
depth and the scope of the theorem can be guessed by the mere fact that a series of
twenty articles, Graph Minors I.-XX. had to appear in the span of two decades for
the complete establishment of the conjecture. However, it is not known if the minor
ideals (sets of finite graphs closed under taking minors) are wqo under the subset
relation. The result in this paper is a preliminary to what we believe will be a proof
of this open problem. Why is this interesting?

Due to Rado’s example, [11], there exists a set Q, such that Q is wqo but the set
LQ of ideals of Q (the set of all classes closed under ≤ in Q) is not wqo under ⊆.
However, if LQ is wqo under ⊆, then Q is wqo under ≤. This is easy as shown by
Lemma 3. Rado’s example is very interesting since it shows that Higman’s famous
wqo extension lemma [3] for finite sequences is not generalizable to infinite sequences.
However, if LQ is wqo under ⊆, then by a similar argument as in Lemma 3 one can
easily prove that the infinite sequences of Q are wqo under the embedding relation
[2] (similar to Higman’s embedding for finite sequences).

Furthermore, Kruskal has shown by an unpublished example (cited in [6]) that for
each n ≥ 1, there exists a set Qn such that LnQn is wqo, but Ln+1Qn is not wqo.
Also see [2] for a discussion and exercise on this particular problem. So for each n
the wqo condition is increasingly stronger.

Motivated by Kruskal’s examples Nash-Williams proved in [6] that the iterated sets
of topological minor ideals of finite trees ‘LnF ’ is wqo under ⊆, for every integer
n ≥ 1. Nash-Williams in fact expresses his opinion [6] that most ‘natural’ wqo sets
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have this extended wqo property, even if we iterate the ideals beyond the finite case.
Iteration by transfinite induction is very interesting from the perspective of a theory
called ‘better-quasi-ordering’ (‘bqo theory’), introduced by Nash-Williams [7], but
for simplicity we will not address this problem in this paper.

In parallel to Nash-Williams’ motive, we are interested in proving that the iterated
graph minor ideals are wqo under ⊆. The result in this paper is a first step towards
this goal. In Graph Minors IV, [14], it is shown that the Friedman gap-condition
imposed on the ‘linked tree-decomposition’ of graphs plays a key role in verifying
Wagner’s conjecture for finite graphs of bounded tree-width. In fact, the authors
prove that finite trees are wqo under a bit stronger form ‘Robertson-Seymour gap-
condition’ (RS gap-condition) to achieve their goal. Without going into technical
details we can state that the RS gap-condition in [14] requires strict equality of
certain edge labels (in addition to the usual gap-condition). There is already a
flavour of the RS gap-condition [14] concept in this paper. That is to say, in this
paper, we allow the vertices of trees to be labelled by an arbitrary wqo set, while
their edges are labelled by a well-ordered set. In [14, 15], the vertex labels correspond
to what the authors call ‘bags’, and the edge labels correspond to the ‘cut-size’ at
each vertex.

A pioneering work on finite structure is given by Robertson, Seymour and Thomas
(RST). In [16], they show that every topological minor ideal I of finite trees has a
finite ‘structure-tree’ TI that contains all structural information about I. In other
words, the encoded information in TI enables us to construct an arbitrary element
of I. This result was recently generalized for Friedman ideals in [8].

To prove that iterated graph minor ideals are wqo, we need to strengthen the finite
structure theorem in [8], so that it is also valid for the stronger RS gap-condition.
In [8], we have given an algorithm that computes the finite structure of a Friedman
ideal I, given the obstruction set of I. Currently, we focus on Friedman ideals to
avoid further complication.

Robertson conjectured that perhaps the structure-tree TI has a more ‘magical’ use
than merely holding instructions on how to construct the trees of I. This additional
and more dramatic benefit of TI is known as the ‘lifting property’ of TI . Can an
embedding relation between two finite trees ‘lift’ to imply that two infinite ideals
are related by the subset relation, or is this wishful thinking? We will answer this
question for Friedman ideals and call the tree a “magic-tree” for the purpose of
dramatizing its surprising consequence. Prior to that we define the ‘lifting’ method
formally in (1.1).

The main result of this paper is Theorem 6 which establishes the conjecture of
Robertson discussed above. This is formally stated after some necessary definitions.

1.1 Basic definitions, a brief history and main results

A quasi-order, ≤, on a set Q is a reflexive and transitive relation. Let I ⊆ Q. If for
every y ∈ Q and x ∈ I such that y ≤ x we have y ∈ I then we say I is an ideal of
Q. Let LQ denote the set of all ideals of Q quasi-ordered (qo, for short) under ‘⊆’.
As usual, the notation I ⊂ I ′ means strict inclusion, i.e. I ⊆ I ′ ̸⊆ I.
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If I ∈ LQ andQ any qo, then an obstruction set of I is a maximal set of incomparable
minimal elements of Q− I. It is not hard to check that any two obstruction sets are
the same up to equivalence of elements within Q. To avoid having to worry about
this triviality, we fix for each ideal I a particular choice of obstruction set, to be
denoted Ω(I). For S ⊆ Q, we define the ideal Q/S = {q ∈ Q|s ≰ q for all s ∈ S}.

For basic terminology and notations such as vertex set V , edge set E, a directed
graph D and so forth, we follow standard conventions in [1]. Let N = {0, 1, 2, . . . }.
For each m ∈ N, we denote the set {0, 1, 2, . . . ,m} by [[m]] and assume that both N
and [[m]] are well-ordered by the usual integer inequality. We also use, for a directed
graph D, the following succinct notation inspired by [1]: A directed path from a
vertex v to a vertex w in D is a sequence (v0, v1, . . . , vn) such that v0 = v, vn = w
and for any i with 1 ≤ i ≤ n there is an edge in D from vi−1 to vi. If there
is a unique such directed path, we shall denote it by vDw. For the special case
where V (D) = {v0, v1, . . . , vn} and E(D) = {v0v1, v1v2, . . . , vn−1vn}, we write
D = [v0, v1, . . . , vn] to be explicit.

1.1.1 Let m ∈ N, and Q be a non-empty qo set. An (m,Q)-tree is a quadruple
T = (V,E, l, r), such that:

(i) V is a finite set, r ∈ V, and E ⊆ V × V ,
(ii) for every v ∈ V there is a unique directed path rTv, and
(iii) l : V → [[m]]×Q is a labelling function, where l(v) = (lE(v), lV (v)).

We denote the set of all (m,Q)-trees by F(m,Q).

Remark 1 In this paper we work with (m,Q)-trees almost exclusively. In Section
3 we study ideals of unlabelled trees for simplicity. In this case we ignore all labels,
by assuming m = 0 and Q = {0}, and write F instead of F(0, {0}). However, we
shall ‘represent’ ideals of unlabelled trees by trees in F(2,N). So, even in Section 3,
it is the trees of F(2,N) that are interesting due to Theorem 11 and Theorem 15.

As usual, elements of V are called vertices, and elements of E are called edges of T .
We denote an edge e = (u, v) ∈ V × V by uv (for short). Also, if V (T ) = {r}, then
we denote the tree T by [r]. This avoids confusion with the notation r ∈ V (T ). So,
by (1.1.1), [r] = ({r}, ∅, l, r). Also note that [r] is a special case of a directed path
rTr as described above. We write l(r) = (p, q), p ∈ [[m]], q ∈ Q, when it is necessary
to be explicit about the labels.

We often write T without specifying that T ∈ F(m,Q) when it is obvious that we are
considering (m,Q)-trees. The same is true about the notation [r]. When the label
set [[m]]×Q is obvious from the context, we use the term tree for short. The vertex
r is called the root of T . When we need to be more explicit, we use the notation
root(T ) instead of r. We call lE(r), the root-edge label. On the other hand, if v is not
a root, then there is a unique vertex u, such that the edge uv is directed into v (so
v is an out-neighbour of u). Then, we can treat lE(v) as labelling the edge e = uv
and will sometimes refer to it as the edge-label of e. Where no misunderstanding
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occurs we will write l(e) instead of lE(v), for clarity and emphasis. If v ∈ V (T ),
then sometimes we write v ∈ T (as this is widely used). The out-degree of a vertex
v ∈ T is the number of out-neighbours of v. A leaf of T is v ∈ T with out-degree
zero. If v ∈ T is not a leaf, then it is an interior vertex. The height of T, height(T ),
is the maximum number of edges in a directed path in T . If v ∈ T , then T v denotes
the maximal subtree of T rooted at v. Thus, T r = T , and T v = [v] if and only if v
is a leaf of T . If uv is an edge of T , then T v is a child of u. The set of all children
of u is denoted by Chil(u). If X ⊆ F(m,Q), then we define

Chil(X) =
⋃
T∈X

Chil(root(T )).

1.1.2 Let T, T ′ ∈ F(m,Q), with roots r, r′, respectively. We say that T is a
topological minor of T ′ (and write T ⪯ T ′) if there is an injective mapping f :
V (T ) → V (T ′), such that

(i) for every u, v ∈ T, f(u ∧ v) = f(u) ∧ f(v), (where u ∧ v means the last vertex
that belongs to both rTv and rTu), and

(ii) lV (v) ≤Q lV (f(v)) for each v ∈ V (T ).

Note that the relation ⪯ ignores the edge labels lE(v). Moreover, if T ⪯ T ′, then
f maps every edge uv = e of T to a unique directed path f(e) = f(u)T ′f(v) in T ′.
Thus, extending f so that it also maps E(T ) to a set of directed paths of T ′, we
define the following:

1.1.3 Let T, T ′ ∈ F(m,Q), with roots r, r′, respectively. Then, T ⪯F T ′ if

(i) T ⪯ T ′,

(ii) l(e) ≤ l′(e′) for all e′ ∈ E(f(e)) and l(e) = l′(e′′) for the last edge of f(e), and

(iii) lE(r) ≤ lE(v), for every vertex v in r′T ′f(r).

The function f is said to satisfy the Friedman gap-condition, if (i), (ii) and (iii)
of (1.1.3) hold. The set of rooted finite trees without edge labels (but with vertex
labels) is denoted by F(Q).

Remark 2 In (1.1.3)(ii) Robertson and Seymour further assume that equality holds
for the first edge label of f(e) with l(e) (we write T ⪯RS T ′ when this additional
condition is assumed).

In F(m,Q), unless specified otherwise we always assume that trees are ordered by
⪯F . A sequence X = (q1, q2, . . . ) of elements of Q is good if there exist indices i, j,
such that i < j and qi ≤ qj . Otherwise X is bad. A qo set Q is well-quasi-ordered
(wqo, for short) if every infinite sequence of Q is good.

Suppose that Q,Q′ are qo sets such that Q′ is wqo. Suppose also that we have a
relation R from Q to Q′ such that
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1. for any x in Q there is some x′ in Q′ with xRx′.

2. for any x, y in Q and x′, y′ in Q′ with xRx′, yRy′ and x′ ≤ y′ we also have
x ≤ y.

Then the wqo property of Q′ is said to lift to Q. This is exactly how we are going
to prove that Friedman ideals are wqo under the subset relation. We start with the
following easy but fundamental lemma.

Lemma 3 Let Q be a qo set. Then, the following are equivalent: (a) Q is wqo
under ≤. (b) LQ is well founded. (c) Q is well founded and contains no infinite
anti-chain. In particular, if LQ wqo under ⊆, then Q is wqo under ≤.

Proof. The equivalence of (a), (b), and (c) is easy and standard. Next, assume
LQ is wqo and let X = (q1, q2, . . . ) be an infinite sequence of Q. Let ↓qi↓ = {q ∈ Q
| q ≤ qi}. Then consider the sequence (↓q1↓ , ↓q2↓ , . . . , ) of ideals in LQ. For all i, i′,
↓qi↓ ⊆ ↓qi′↓ if and only if qi ≤ qi′ and thus X is good if LQ is wqo. 2

The following theorem of Kruskal [5] is generalized by Friedman as Theorem 5 and
by Robertson and Seymour as Theorem 5′.

Theorem 4 (Kruskal, [5]) Let Q be wqo. Then F(Q) is wqo under ⪯.

Theorem 5 (Friedman, [13]) Let Q be wqo and m ∈ N. Then F(m,Q) is wqo
under ⪯F .

Theorem 5′ (Robertson and Seymour, [14]) Let Q be wqo and m ∈ N. Then
F(m,Q) is wqo under ⪯RS.

In Section 2 we prove Theorem 15. In Section 3 we prove the following theorem
which was a conjecture of Robertson, [12].

Theorem 6 Let m ∈ N and let Q be a wqo set. Then there is an m′ ∈ N and a
qo set Q′, so that for every I ∈ LF(m,Q), there is a tree TI ∈ F(m,Q′) with the
property that TJ ⪯F TK implies J ⊆ K, for all ideals J ,K of F(m,Q). Moreover,
if LQ is wqo, then Q′ can be chosen to be wqo.

Remark 7 In [9], we conjecture that no finite necessary and sufficient characteri-
zation of the subideal inclusion by finite tree inclusion exists.

To explain Remark 7 in more detail we note that the construction we give later will
not have the property that if I ⊆ J then TI ⪯F TJ . We believe there is no way to
improve the construction to gain this additional property.
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2 Robertson-Seymour-Thomas (RST) Finite Structure

The three authors are the original architects of a finite structure for every topological
ideal of finite trees, [16]. We owe it to the remarkable original work given by them
that we are able to produce the results presented in this paper and in [8].

The labels on the edges of trees become a powerful tool when we impose the ‘gap-
condition’, [13]. For simplicity, until Section 4 we assume trees have no labels and
are ordered by the topological embedding ⪯. To make this paper self contained
we introduce each concept assuming no prior knowledge. In Section 4 all the new
concepts introduced here will be easily extended for F(m,Q).

2.1 What is a tree-sum?

The null-graph, Γ, is defined by V (Γ) = E(Γ) = ∅. Clearly, Γ is not a tree as it has
no root. However, just as it is convenient to allow 0 as a natural number in order
to have an additive identity, it is helpful to use Γ formally as the identity for the
following ‘tree-sum’:

2.1.1 Let T1, T2, . . . , Tn, n ≥ 0, be pairwise vertex disjoint trees or Γ. A tree-sum
of T1, T2, . . . , Tn is a new tree

T = Tree(T1, T2, . . . , Tn),

where V (T ) = V (T1)∪ · · · ∪V (Tn)∪{r0}, r0 = root(T ) is a new vertex and E(T ) =
E(T1) ∪ · · · ∪E(Tn) ∪ {r0root(Ti);Ti ̸= Γ, i = 1, 2, . . . n}. So each Ti is a child of r0.

Note that Tree(Γ) is the vertex tree with no child.

2.2 What is a bit?

We now define a basic constructive tool called a ‘bit’, introduced in [16].

2.2.1 B = (I1, I2, . . . , In; k; In+1) is said to be a bit, if

(i) n ≥ 0 and for 1 ≤ i ≤ n+ 1, Ii ∈ LF , and

(ii) k ∈ N.

If 1 ≤ i ≤ n, then Ii is called a left component of B and In+1 is the right component
of B, and k is the width of B. We do not distinguish between bits differing only by
a permutation of their left components

2.3 What is I(B)?

We define a special ideal denoted by I(B) where B is a set of bits. Three examples
that can help grasp the definition of I(B) easily are presented following (2.3.1).
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2.3.1 Let B be a finite set of bits. Then, a set S ⊆ F is said to be B-closed if
the following two conditions hold:

1. If B = (I1, I2, . . . , In; k; In+1) ∈ B, then Ii ⊆ S, for all i = 1, 2, . . . , n+1, and

2. for every integer s ≥ 0 and bit B = (I1, I2, . . . , In; k; In+1) ∈ B, every tree
T = Tree(T1, T2, . . . , Tn+k+s), which satisfies, (a)-(c) belongs to S, where

(a) for i = 1, 2, . . . , n, Ti ∈ Ii ∪ {Γ},
(b) for i = 1, 2, . . . , k, Tn+i ∈ S ∪ {Γ},
(c) for i = 1, 2, . . . , s, Tn+k+i ∈ In+1.

2.3.2 We define I(B) to be the intersection of all B-closed sets. We will show
below that I(B) is always an ideal.

Example 2 Let P denote the ideal of all finite directed paths. Consider the bit B =
(; 1; ∅). Any {B}-closed set must contain the ideal {Tree(Γ), T ree(Tree(Γ)), . . . } =
P, and P itself is {B}-closed. Hence I({B}) = P, is the path ideal.

Example 3 Let S denote the ideal of all trees of height at most 1. Consider the
bit B′ = (; 0; {[v]}), where {[v]} is the singleton vertex tree ideal. Any {B′}-closed
ideal needs to contain the ideal {Tree([v1], [v2], . . . , [vs])| for i = 1, 2, . . . , s, [vi] ∈
{[v]}, s ∈ N} = S, and S itself is {B′}-closed. Hence I({B′}) = S, is the star ideal.

Example 4 Consider the set of bits {B,B′}, where B = (; 1; ∅) and B′ = (; 0; {[v]}).
Let I be the set of all trees obtained by taking each P ∈ P, each S ∈ S, and gluing
root(S) to the leaf of P . Any {B,B′}-closed ideal needs to contain I, and I itself is
{B,B′}-closed. Hence, I({B,B′}) = I, is the broom ideal. As yet another example,
let I ′ = P ∪S, (the union of paths and stars), and let B′′ = (P; 0; ∅). It is trivial to
see that I({B′, B′′}) = I ′.

2.4 What does conforming to a bit mean?

As we construct trees using bits, we need a terminology to relate a tree T and a bit
B that is used to construct it.

2.4.1 Let T be a tree and B be a set of bits and B = (I1, I2, . . . , In; k; In+1) ∈ B.

1. If T ∈ Ii, for 1 ≤ i ≤ n+ 1, then we say that T conforms to B by base, and

2. if T = Tree(T1, T2, . . . , Tn+k+s) and it has three parts as listed in (2.3.1)(2),
(a), (b) and (c), such that the trees in (b) are in I(B)∪ {Γ}, then we say that
T conforms to B in I(B), by tree-sum.

We also say T conforms to B in I(B), (when specifying “by base” or “by tree-sum”
is not necessary).

Lemma 8 [16] Let B be a set of bits. Let T be a tree. Then, T ∈ I(B) if and only
if T conforms to B in I(B), for some B ∈ B.
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Proof. First, suppose that T conforms to B in I(B) for some B ∈ B. For any
B-closed set X the set I(B) is a subset of X and so T also conforms to B in X and
so (since X is B-closed) T is in X. Since X was arbitrary, it follows that T ∈ I(B).

Conversely assume T ∈ I(B) and define Y to be the set of all trees conforming to
B in I(B) for some B ∈ B. Then any tree conforming to B in Y for some B ∈ B
also conforms to B in I(B), and so is in Y. Thus Y is B-closed and so must be the
whole of I(B). Thus if T is in I(B) then it is in Y and so it conforms to B in I(B)
for some B ∈ B. 2

Lemma 9 For any set of bits B, I(B) is an ideal.

Proof. Suppose not for a contradiction, and let T ∈ I(B) be a tree with |T |minimal
such that there is some tree T ′ ⪯F T and T ′ ̸∈ I(B). Let f be the map witnessing
T ′ ⪯F T . By Lemma 8 T conforms to B in I(B), for some B ∈ B, and it cannot
do so by base since in that case so would T ′. Thus T conforms to B by tree-sum:
say T = Tree(T1, T2, . . . , Tn+k+s) with three parts as listed in (2.3.1)(2) (a), (b) and
(c) such that the trees in (b) are in I(B) ∪ {Γ}. By minimality of T , f must map
the root r′ of T ′ to the root r of T . For any i with 1 ≤ i ≤ n + k there is at most
one out-neighbour r′i of r

′ such that f(r′i) is in Ti; if there is such a neighbour then
we set T ′

i := (T ′)r
′
i and otherwise we set T ′

i := Γ. Let r′n+k+1, . . . r
′
n+k+s′ be the

remaining out-neighbours of r′ and for n + k + 1 ≤ i ≤ n + k + s′ set T ′
i := (T ′)r

′
i .

Say B = (I1, I2, . . . In; k; In+1). Then for 1 ≤ i ≤ n we have T ′
i ∈ Ii ∪ {Γ} since

Ii is an ideal, for 1 ≤ i ≤ k we have T ′
n+i ∈ I(B) by the minimality of T and for

1 ≤ i ≤ s′ there is some j with 1 ≤ j ≤ s such that f(r′n+k+i) ∈ Tn+k+j and so
T ′
i ∈ In+1 since In+1 is an ideal. Thus T ′ conforms to B in I(B) by tree-sum and

so since I(B) is B-closed we have T ′ ∈ I(B), contradicting our assumption. 2

2.5 RST proper description

The following tool called a ‘proper description’ of a tree ideal is a basic tool that
lets us represent ideals by finite label trees. Recall that X ⊂ Y means X ⊆ Y ̸⊆ X.

2.5.1 (A proper description) Let I be a topological tree ideal. Let B be a
finite set of bits. Then, B is a proper description of I if

(N1) If (I1, I2, . . . , In; k; In+1) ∈ B, then Ii ⊂ I, for all i = 1, 2, . . . , n+ 1.
(N2) I(B) = I.

Example 5 Let B0 = (; 0; ∅). Note that {B0} is the proper description for the
singleton ideal {[v]}, as B0 has nothing in its base, and I({B0}) = {Tree(Γ)} =
{[v]}.

Theorem 10 [16] Every I ∈ LF has a proper description B.
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2.6 Representing topological ideals by labelled trees

Now, using Theorem 10 we show that for every I ∈ LF there is at least one tree
T ∈ F(2,N) ∪ {Γ} that represents I. We do not construct this tree. In a platonic
sense, it already exists by Theorem 11 below. In this section we work only with
proper ideals I ⊂ F .

2.6.1 Let I ∈ LF . If I = ∅, then we represent I by Γ. Otherwise, a tree
T ∈ F(2,N) represents I ∈ LF if T = Tree(T1, T2, . . . , Tq) is a tree-sum of q trees
with q ≥ 1 such that

(i) Ti, for i = 1, 2, . . . , q represents a bit Bi where B = {B1, B2, . . . , Bq} is a proper
description of I, lE(root(T )) ∈ {0, 1}, and

(ii) a tree S ∈ F(2,N) represents a bit B = (I1, I2, . . . , In; k; In+1), if S =
Tree(S1, S2, . . . , Sn+1) is a tree-sum of n+1 trees representing I1, I2, . . . , In+1

in B, such that lE(root(Sn+1)) = 1 and l(root(S)) = (2, k).

Any other label not mentioned here is taken to be 0.

Theorem 11 For every ideal I ∈ LF , I /∈ {∅,F} there exists a tree T ∈ F(2,N)
representing I.

Proof. Suppose the contrary and by Lemma 3 and Theorem 4 choose I to be a sub-
set minimal counterexample. Let B = {B1, B2, . . . , Bq}, q ≥ 1 be a proper descrip-
tion of I, where i = 1, 2, . . . , q, and Bi = (Ii

1, Ii
2, . . . , Ii

n ; ki; Ii
ni+1). By (N1), for all

l = 1, 2, . . . , ni+1, Ii
l ⊂ I and hence by minimality of I we have a tree T i

l ∈ F(2,N)
representing Ii

l . Therefore, for all i = 1, 2, . . . , q with l(root(Si)) = (2, ki) the tree
Si = Tree(T i

1, T
i
2, . . . , T

i
ni+1) ∈ F(2,N) represents Bi. Then with l(root(T )) = (2, 0)

the tree T = Tree(S1, S2, . . . , Sq) ∈ F(2,N) represents I, contrary to the assump-
tion. The result follows. 2

Remark 12 For the rest of Section 2 we will use the notation “TI” for a tree
representing I (instead of repeating the phrase “T is a tree representing I”). Though
it is not unique there is at least one by Theorem 11. The layers in this tree are of
two alternating kinds. Starting with an ideal-layer, the odd level vertices are bit-layer
vertices. For a bit-layer vertex u, lE(u) = 2. For an ideal-layer v, 0 ≤ lE(v) ≤ 1
and so the following is easy.

Lemma 13 Let I, I ′ ∈ LF and TI , TI′ ∈ F(2,N) be given. If f is a witness
to TI ⪯F TI′, then for any edge e ∈ E(TI), if l(e) = 2, then f(e) = e′ where
e′ ∈ E(TI′).

Remark 14 Thus, while normally f(e) can be a long directed path, by Lemma 13,
if l(e) = 2, then f(e) is an edge. It also follows that f is layer preserving. That is,
f sends an ideal- to an ideal- and a bit- to a bit-layer vertex.

Theorem 15 Let I, I ′ ∈ LF and TI , TI′ ∈ F(2,N). If T ⪯F T,′ then I ⊆ I ′.
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The edge labels play a key role here: if we used ⪯ rather than ⪯F then Theorem 15
would no longer hold, as the following example shows:

Example 6 Let I, I ′, B,B′, and B′′ be as defined in Example 4. Then, TI =
Tree(TB, TB′) ⪯ TI′ = Tree(TB′′ , TB′), but I ̸⊆ I ′. However, TI ̸⪯F TI′ as the edge
labelled by 2 is mapped to a long path violating (1.1.3)(ii) (see Figure 1).

Proof. (of Theorem 15) Let I, I ′ ∈ LF be a pair and TI , TI′ ∈ F(2,N). Suppose
that TI ⪯F TI′ by an embedding f . For a contradiction, assume that I ̸⊆ I ′. By
Lemma 3 and Theorem 4, we may take I to be a subset minimal counterexample.
Let B and B′ be the proper descriptions of I and I ′, respectively that correspond
to TI and TI′ according to (2.6.1).

Let rI = root(TI) and rI′ = root(TI′). Since I ̸= ∅, we have B ̸= ∅. So rI has at
least one incident edge, say rIrB, labelled 2, where B ∈ B and root(TB) = rB and
TB represents B. By Lemma 13, f(rI) is an ideal layer vertex. We may assume
f(rI) = rI′ by assuming I ′ subset minimal. Since l(rIrB) = 2 by Lemma 13 we
have f(rIrB) = rI′rB′ for some B′ ∈ B′. Say, B = (I1, I2, . . . , In; k; In+1) and
B′ = (I ′

1, I ′
2, . . . , I ′

n′ ; k′; I ′
n′+1). From lV (rB) ≤ l′V (rB′), we have

k ≤ k′. (1)

Let ri = root(Ti) for i = 1, 2, . . . , n + 1 such that Ti represents Ii. Similarly, let
r′i = root(T ′

i ) for i = 1, 2, . . . , n′ + 1 such that T ′
i represents I ′

i. By (1.1.3), there is
an injection ι : {1, 2, . . . , n+ 1} → {1, 2, . . . , n′ + 1} such that

Tj ⪯F T ′
ι(j), (2)

for j = 1, 2, . . . , n+ 1. Since lV (rn+1) = 1 > 0, we have

ι(n+ 1) = n′ + 1. (3)

For each j = 1, 2, . . . , n+ 1, by (N1), Ij ⊂ I. Then, by (2) and by minimality of I,

Ij ⊆ I ′
ι(j) for j = 1, 2, . . . , n+ 1. (4)
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Let T ∈ I − I ′ be a tree of minimal height h, h ≥ 0. We may assume that T
conforms to B in I(B), as B is arbitrary. By (4), T cannot conform to B by base as
I ′ ⊇ I ′

ι(j) ⊇ Ij for all j = 1, 2, . . . , n+ 1, and so has to conform by tree-sum. That

is, (2.4.1)(2) holds so that T = Tree(T1, T2, . . . , Tn+k+s), such that
(a) for i = 1, 2, . . . n, Ti ∈ Ii ∪ {Γ},
(b) for i = 1, 2, . . . , k, Tn+i ∈ I ∪ {Γ}, and
(c) for i = 1, 2, . . . , s, Tn+k+i ∈ In+1.

In (a), by (4), we may replace Ii by I ′
ι(i); in (b), by minimality of h, Tn+i ∈ I ′∪{Γ},

for all i = 1, 2, . . . , k. Also, by (1), k ≤ k′ and so, in (b) replace I by I ′; in (c) by
(3) and by (4), replace In+1 by I ′

n′+1. So, T conforms to B′ in I(B′). By Lemma 8
and by (N2), T ∈ I ′, contrary to the choice of T . The result follows. 2

Corollary 16 LF is wqo under ‘⊆’.

3 From unlabelled to labelled tree ideals, tiny changes

In this section, we slightly modify each RST tool that we introduced in (2.1)-(2.5),
by (3.1)-(3.5), respectively and generalize Theorem 15 by Theorem 6.

3.1 From tree-sum to labeled-tree-sum, a tiny change on (2.1)

The tree-sum we defined in (2.1) had nothing to do with labels. As in (2.1) the root
r of a tree-sum is a new vertex, but we have to be clear about l(r). The null-graph,
Γ, with V (Γ) = E(Γ) = ∅ is exactly as defined in (2.1).

3.1.1 (Labeled-tree-sum) Let p ∈ [[m]], q ∈ Q and T1, T2, . . . , Tn, be pairwise
vertex disjoint elements of F(m,Q) ∪ {Γ} where n ≥ 0. Then, we say that T is a
labelled-tree-sum of T1, T2, . . . , Tn, if

T = Tree(T1, T2, . . . , Tn)

such that (as in (2.1.1)), V (T ) = V (T1) ∪ · · · ∪ V (Tn) ∪ {r0}, r0 = root(T ) is a new
vertex and E(T ) = E(T1) ∪ · · · ∪ E(Tn) ∪ {r0root(Ti), Ti ̸= Γ, i = 1, 2, . . . , n}. The
labels of the children T1, T2, . . . , Tn, remain as given, and l(r0) = (p, q). For the rest
of the paper, (unless specified otherwise) by writing T = Tree(T1, T2, . . . , Tn), we
mean that T is a labelled-tree-sum of T1, T2, . . . , Tn. When we need to be specific
about the root label, we will explicitly write down the root labels. Mostly, however,
we can be less specific and only need to specify from which ideal the labels come.
See (3.3.1)(2)(d), for example.

3.2 From a bit to a rooted-bit, a tiny change on (2.2)

When we work with F(m,Q) we introduce one more component on bits, called ‘root
component of a bit’ besides the familiar left and right components.
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3.2.1 B = (I0; I1, I2, . . . , In; k; In+1) is said to be a rooted-bit, if

(i) n ≥ 0 and for 0 ≤ i ≤ n+ 1, Ii ∈ LF(m,Q),

(ii) k ∈ N ∪ {∞}, and

(iii) every tree in I0 has height zero.

I0 is called the root component of B, and k is the width of B.

Remark 17 In contrast to (2.2.1), here we allow k = ∞. In (2.2.1) allowing k = ∞
is not interesting as such a bit simply constructs every tree in F . In F(m,Q), we
may have a bit B of width ∞, and yet we cannot construct every tree of F(m,Q),
unless the root component of B allows every possible labelling from [[m]]×Q.

From now on by a bit it is understood that we mean a rooted-bit. For emphasis,
however, at times we use the word rooted-bit. We also continue to assume that bits
are invariant under permutation of their left components.

3.3 Revising I(B), a tiny change on (2.3)

We specify how we use a rooted-bit. In particular the use of a root-component, and
a bit of width ∞ will be elaborated here as these are new concepts.

3.3.1 Let B be a finite set of rooted-bits. Then I ∈ LF(m,Q) is said to be
B-closed if the following two conditions hold:

1. If B = (I0; I1, I2, . . . , In; k; In+1) ∈ B, then Ii ⊆ I, for all i = 1, . . . , n+ 1.

2. For every s, k̃ ∈ N and B = (I0; I1, I2, . . . , In; k; In+1) ∈ B, and every tree
T = Tree(T1, T2, . . . , Tn+k̃+s), which satisfies (a),(b),(c) and (d) belongs to I,
where k̃ ≤ k and

(a) for i = 1, 2, . . . , n, Ti ∈ Ii ∪ {Γ},
(b) for i = 1, 2, . . . , k̃, Tn+i ∈ I ∪ {Γ},
(c) for i = 1, 2, . . . , s, Tn+k̃+i ∈ In+1,

(d) [root(T )] ∈ I0.

We define I(B) to be the intersection of all B-closed sets.

Remark 18 In (3.3.1)(2)(b), if k = ∞, then k̃ < k as k̃ ∈ N. This is necessary
since we work with finite trees only. Note also that we have a new condition (d).

3.4 Revising ‘conforming to a bit’, a tiny change on (2.4)

From (2.4) a couple of changes are added as follows:

12



3.4.1 Let T ∈ F(m,Q). Suppose B is a set of rooted-bits and B = (I0; I1, I2,
. . . , In; k; In+1) ∈ B. Then,

1. if T ∈ Ii, 1 ≤ i ≤ n+ 1, then we say that T conforms to B by base, and

2. if T = Tree(T1, T2, . . . , Tn+k̃+s), k̃ ∈ N, k̃ ≤ k, has four parts as listed in
(3.3.1)(2), (a), (b), (c), and (d), such that the trees in (b) are contained in
I(B), then we say that T conforms to B by labelled-tree-sum in I(B).

We also say T conforms to B in I(B), (when specifying “by base” or “by labelled-
tree-sum” is not necessary). Observe that the new condition in (3.4.1) that is not in
(2.4.1) is that we add condition (d) and also we have to choose k̃ ∈ N, since k = ∞
is a possibility now.

In (3.4.1)(1), we put i ≥ 1 because if T ∈ I0, then height(T ) = 0 and T conforms
to B by labelled-tree-sum in I(B) as T satisfies (3.4.1)(2) trivially. Explicitly, if
T = [root(T )], then (3.3.1)(a)-(c) are satisfied vacuously, whereas [root(T )] ∈ I0,
thus also satisfying (d). Now we have analogs of Lemma 8 and Lemma 9 with similar
proofs.

Lemma 19 Let B be a set of rooted-bits. Let T be a tree. Then, T ∈ I(B) if and
only if T conforms to B in I(B), for some B ∈ B.

Lemma 20 For any set of rooted-bits B, I(B) is an ideal.

For any nonempty set X ⊆ F(m,Q), let µ(X) = max{lE(root(T )) | T ∈ X}, and
let ϵ(X) = min{lE(root(T )) | T ∈ X}. For X = ∅ let µ(X) = ϵ(X) = 0.

3.5 Proper description of (2.5) generalized

3.5.1 Let I ∈ LF(m,Q) such that µ(I) = m. Let B be a finite set of rooted-bits.
Then, B is a proper description of I if it satisfies the following:

(N1) If (I0; I1, I2, . . . , In; k; In+1) ∈ B, then Ii ⊂ I,∀i, 0 < i ≤ n+ 1.
(N2) I(B) = I.

(3.5.1′) Let I ∈ LF(m,Q) such that µ(I) < m. Then, we define {(∅; 0; I)} to be the
proper description of I.

3.6 A Structure Theorem

3.6.1 A structure theorem from [8] We will rely on the following structure
theorem given in [8].

Theorem 21 [8] For any ideal I ∈ LF(m,Q) with µ(I) = m there is a proper
description B of I such that for any T ∈ I we have one of the following:

(a) there exists a bit B ∈ B−{tsb(I)} where T conforms to B in I(B) by a tree-sum,
or

(b) lE(root(T )) < lE(root(S)) for some S ∈ Ω(I).
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3.6.2 For every ideal I one canonical proper description B(I) From this
stage onward, for every I ∈ LF(m,Q) with µ(I) = m we fix one canonical proper
description as specified by Theorem 21 and use the notation B(I) to refer to it.
If µ(I) < m, then it is easy to see that there is a unique J ∈ LF(m,Q) such
that µ(J ) = m and I = ||J ||µ(I)+1. Hence we associate I the number µ(I) along
with B(J ). This is free from ambiguity as B(I) is derived from Ω(I). That is, for
any I ∈ LF(m,Q) as we have a fixed Ω(I) that unambiguously identifies I by
obstruction (from without), so do we have a fixed proper description B(I) given by
Theorem 21 that unambiguously identifies I by structure (from within). For the
special case where I = F(m,Q), we have the following.

Proposition 22 F(m,Q) has a canonical proper description

B(F(m,Q)) = {(P0; ∅;∞; ∅)} ,

where P0 is the ideal of all height zero trees of F(m,Q).

4 Refraction of ideals

Our construction will rely on an important operation, which we call refraction of
ideals relative to other ideals. Before introducing this operation, we will need two
simpler operations on ideals: truncation and refraction (but not relative to other
ideals).

Definition 23 Let I ∈ LF(m,Q) be an ideal and let 0 ≤ i ≤ m. Then we define
the ith truncation ||I||i of I to be the ideal containing all trees in I whose root edge
label is less than i.

We define the ith refraction Ri(I) to be the ideal containing all trees T such that
if the root edge label l of T is lowered to min(i, l) then the resulting tree is in I.

If I = Ri(I) then we say that I is i-refracted.

Remark 24 If I is i-refracted then the root edge label of any element of Ω(I) is
necessarily at most i. This allows us to prove the variant of Theorem 21 which we
will need for our construction.

Theorem 25 Let I be any i-refracted ideal and let T ∈ I. If lE(root(T )) = i, then
µ(I) = m and there is a bit B ∈ B(I) such that T conforms to B in I by tree-sum.

Proof. As I is i-refracted we have i ≥ µ(Ω(I)). So the tree obtained from T by
replacing the root edge label with m is also in I. We have µ(I) = m. So we may
apply Theorem 21 to I and T . Alternative (b) cannot hold since for any S ∈ Ω(I)
we have lE(root(T )) = i ≥ lE(root(S)). So alternative (a) must hold, as required.
2

We can now also define refraction of an ideal relative to another ideal.

Definition 26 Let J ⊆ I be ideals of F(m,Q). Then the ith refraction Ri(J , I)
of J relative to I is

Ri(J ) ∪ ||I||i .
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Note that Ri(J , I) is an ideal as it is a union of two ideals. Clearly Ri(J , I) is
i-refracted.

Lemma 27 Let J ⊆ I be ideals of F(m,Q). If i ≤ µ(J ) then µ(Ri(J , I)) = m.

Proof. For brevity set K = Ri(J , I). By assumption i ≤ µ(J ), and so we can
choose a tree T ∈ J with root-edge label i. By definition J ⫅ K and so T ∈ K.
Next let T ∗ be the tree obtained from T by changing the root-edge label of T to
m. Since by Remark 24 we know that K is i-refracted, we have T ∗ ∈ K, that is
µ(K) = m as required. 2

Lemma 27 assures us that Theorem 21 will yield a proper description of the refraction
Ri(J , I) for all i ∈ [[m]] and all J ⊆ I of F(m,Q). There will be some values of i
for which these refractions will be particularly useful in our later constructions.

Definition 28 For ideals J ⊆ I of F(m,Q) we define ∆(J , I) to be the set of
i ∈ [[µ(J )]] for which there is at least one tree with root edge label i in I − J .

For i ∈ ∆(J , I), there is a clear sense in which the refraction Ri(J , I) is simpler
than I.

Definition 29 For any ideal I ∈ LF(m,Q) we define the truncation sequence ts(I)
of I to be the sequence (||I||1, ||I||2, . . . , ||I||m+1). We then say that I ⊴ I ′ if ts(I)
is less than ts(I ′) in the lexicographic order defined with respect to the subset order
on LF(m,Q).

Remark 30 The order ⊴ is wellfounded since the subset order on LF(m,Q) is.
Further, by construction we have Ri(J , I) ◁ I for any i ∈ ∆(J , I).

4.1 Trees representing ideals, truncated ideals and bits

Our next aim is to explain the construction of trees representing ideals. However,
the construction is a little involved, and proceeds by means of a definition of various
different kinds of representation by a mutual nested recursion. We will define what
it means for a tree T to represent an ideal, a refraction of an ideal or a bit. In
the cases of an ideal or a bit, for technical reasons the representation will be given
relative to another ideal.

More precisely, we will now explain when a tree counts as a representation of a bit
B relative to an ideal I. We will then explain when a tree counts as a representation
of an ideal J relative to another ideal I. Finally, we will explain when a tree counts
as a refraction-representation of an ideal I. The representations of ideals will be
divided into two kinds: righty and lefty. All of these definitions will be given in terms
of each other, which may at first appear circular. But in fact, to determine if a tree
is a representation of one of these kinds, it will only be necessary to check whether
children of that tree are representations of the other kinds. Thus by induction on
the heights of the trees involved all the notions given below are well-defined.

Now we are ready for the main construction.
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First of all, we say that a tree TB,I with root r is a representation of a bit B =
(I0, . . . , In; k; In+1) relative to an ideal I if it is of the form Tree(T1, T2, . . . , Tn+1),
where each Ti is a representation of Ii relative to I, righty if i = n + 1 and lefty
otherwise, and we have:

lV (r) = (k, I0) and lE(r) = m+ 1 .

Secondly, for an ideal J we say that a tree TJ ,I with root r is a representation
of J relative to an ideal I if it is of the form Tree(T0, T2, . . . Tm), where each Ti

is an i-refraction representation of the ith refraction Ri(J , I) of J relative to I if
i ∈ ∆(J , I) and is Γ otherwise and we have

lV (r) = (µ(J ),∆(J , I), δ) and lE(r) = m+ 1 ,

where δ ∈ {0, 1}. We say the representation is lefty if δ = 0 and righty if δ = 1.
When we talk of representations of an ideal without explicitly saying which other

ideal they are relative to or whether they are righty or lefty, we always mean lefty
representations relative to F(m,Q).

Finally for any i ∈ [[m]] and for any i-refracted ideal I with µ(I) = m and
with proper description {B1, B2 . . . Bq} we will say that a tree TI,i with root r is an
i-refraction-representation of I if it is of the form Tree(T0, T1, . . . Tq), where each Tj

is a representation of Bj relative to I and we have

lV (r) = lE(r) = i .

It follows straightforwardly from the construction that any ideal has at most one
representation, which if it exists we will call the representation of the ideal and will
denote by TI . Our next aim is to show that such representations always exist.

Lemma 31 For any l ∈ [[m]] and any l-refracted ideal I in F(m,Q) with µ(I) = m
there is an l-refraction-representation SI,l of I.

Proof. Suppose not for a contradiction, and choose I to be ⊴-minimal such that
this fails. Let B = {B1, B2, . . . Bq} be the canonical proper description of I. For
each 1 ≤ i ≤ q let Bi = (Ii

0, . . . , Ii
ni
; ki; Ii

ni+1).
For any 1 ≤ i ≤ q, 0 ≤ j ≤ ni and l ∈ ∆(Ii

j , I) we have Rl(Ii
j , I) ◁ I by Remark

30. Furthermore, since ∆(Ii
j , I) ⊆ [[µ(Ii

j)]] we have l ≤ µ(Ii
j). By Lemma 27

µ(Rl(Ii
j , I)) = m, and so by our minimal choice of I there is a tree Ti,j l-refraction-

representing Rl(Ii
j , I).

Now following the recipe above we may construct for each 1 ≤ i ≤ q and each
0 ≤ j ≤ ni + 1 a tree Ti,j representing Ii

j relative to I, righty if j = ni + 1 and lefty
otherwise. Following the recipe above again we may find for each 1 ≤ i ≤ q a tree
Ti representing Bi relative to I. Following the recipe one final time we may now
construct a tree SI,i i-refraction-representing I, giving the desired contradiction. 2

Corollary 32 For any ideal I of F(m,Q) there is a tree TI representing I.

Proof. For any i ∈ ∆(I,F(m,Q)) ⊆ [[µ(I)]], by Lemma 27 we have the equa-
tion µ(Ri(I,F(m,Q))) = m, and so by Lemma 31 there is a tree Ti,j l-refraction-
representing Ri(I,F(m,Q)).

Now following the recipe above we may construct a tree T representing I. 2
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4.2 Well-quasi-ordering Q0 (the label set of trees representing I)

For an integer d ≥ 1 and a qo Q, let Qd denote Q×Q×· · ·×Q (with d coordinates).
For any m ∈ N define ]]m[[= {0, 1, . . . ,m} to be a set qo under equality so that for
all i, j ∈]]m[[, i ≤ j in ]]m[[ if and only if i = j in N so that ]]m[[ is an anti-chain. Let
N̄ = N ∪ {∞}. Recall that P0 = {T ∈ F(m,Q), height(T ) = 0.}. If Q1, Q2, . . . , Qr

are sets such that each Qi is qo under ≤Qi , then Q1×Q2×· · ·×Qr = {(x1, x2, . . . , xr)
| xi ∈ Qi} is qo by (x1, x2, . . . , xr) ≤ (x′1, x

′
2, . . . , x

′
r) if and only if xi ≤Qi x

′
i for all

i = 1, 2, . . . , r. The following is an easy folklore lemma.

Lemma 33 For i = 1, 2, . . . , r if each Qi is wqo under ≤i, then Q1×Q2× . . . Qr is
wqo under ≤.

So, trivially LP0 is wqo if and only if LQ is wqo, by Lemma 33 (by viewing LP0 as a
label ideal rather than as a tree ideal). The label sets Q1, Q2, Q3 below (highlighted
by bullets) correspond to labels defined in Subsection 4.1 such that Q1 is a label set
for bit-layer vertices, whereas Q2 is for ideal-layer vertices, and Q3 is for refraction-
layer vertices. For Q2 we use an arbitrary identification of the subsets of [[m]] with
the numbers from 0 to 2m+1−1. Their quasi-order, ‘≤0’, is defined below in (4.2.2).

4.2.1 Let Q0 = Q1 ∪Q2 ∪Q3 where

• Q1 = N̄× LP0,

• Q2 =]]m[[×]]2m+1 − 1[[×]]1[[, and

• Q3 =]]m[[.

Let us define a quasi-order ≤0 on Q0 as follows.

4.2.2 Let x, x′ ∈ Q0. Then x ≤0 x
′ if and only if either

(a) x, x′ ∈ Q1, x = (k, I0), x′ = (k′, I ′
0), k ≤ k′ and I0 ⊆ I ′

0, or

(b) x, x′ ∈ Q2 ∪Q3, x = x′.

Lemma 34 Q0 is wqo under ≤0 if and only if LQ is wqo under ⊆. □

4.3 Proof of the lifting

Our aim in this section is to show that that I ⊆ I ′ follows from TI ⪯F TI′ for
ideals I and I ′. Before doing this, we must first establish a more technical result
in a similar vein about refraction-representations. However, we begin with a small
lemma which will be useful both for this technical interlude and for the final proof.

Lemma 35 Let ∆ be any finite totally ordered set and let g : ∆ → ∆ be any injective
function with g(i) ≥ i for all i ∈ ∆. Then g is the identity on ∆.

Proof. For any i ∈ ∆, let ⌊i⌋ be {j ∈ ∆: j ≥ i}. Then g|⌊i⌋ is an injective map
from ⌊i⌋ into itself and so must be a bijection. But the only element of ⌊i⌋ which
can possibly map to i is i, so we must have g(i) = i as required. 2
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Theorem 36 Let 0 ≤ i ≤ i′ ≤ m. Let I ∈ LF(m,Q) be an i-refracted ideal with
µ(I) = m and let I ′ ∈ LF(m,Q) be an i′-refracted ideal with µ(I ′) = m. Let T and
T ′ in F(m + 1, Q0) be trees i- and i′-refraction-representing I and I ′ respectively,
and suppose that T ⪯F T ′. Let T ∗ ∈ I with lE(root(T

∗)) = i. Suppose further that
for any tree T ∗∗ ∈ I of smaller height with lE(root(T

∗∗)) < i we have T ∗∗ ∈ I ′.
Then we also have T ∗ ∈ I ′.

Proof. Suppose not for a contradiction. Let (I, I ′, T, T ′, T ∗) be a five-tuple wit-
nessing this with the height of T ∗ minimal and, subject to this, with the height of
T ′ minimal. Let f be a map witnessing T ⪯F T ′. Let r and r′ be the roots of T
and T ′.

Case 1: f(r) = r′: We have i′ = lV (r
′) = lV (r) = i and so I ′ is i-refracted.

Claim 1 For any tree T ∗∗ ∈ I of height less than that of T ∗, we have T ∗∗ ∈ I ′.

Proof. This is true by assumption if lE(root(T
∗∗)) < i. Otherwise, let T ∗∗∗ ∈

I be the tree obtained from T ∗∗ by reducing the root edge-label to i. By the
minimality of the height of T ∗ we have T ∗∗∗ ∈ I ′, and so since I ′ is i-refracted
we have i ≥ µ(Ω(I ′)) and so T ∗∗ ∈ I ′. 2

By Lemma 25 we know that there is a bit B ∈ B(I) such that T ∗ conforms to
B in I by tree-sum. Let u be an out-neighbour of r such that T u represents B
relative to I. By construction u has at least one out-neighbour v. For any such
v the path obtained by concatenating f(ru) with f(uv) is a path beginning at
r′ in which all edges have label m+1, and so has length at least two. But any
such path in T ′ has length at most two, so it must have length exactly two.
This implies that f(u) is an out-neighbour of r′ and f(v) is an out-neighbour
of f(u). In particular, (T ′)f(u) represents some bit B′ ∈ B(I ′) relative to I ′.

Say B = (I0, . . . , In; k; In+1) and B′ = (I ′
0, . . . , I ′

n′ ; k′; I ′
n′+1). Since lV (u) ≤

lV (u
′) we have k ≤ k′ and I0 ⊆ I ′

0. By construction we can index the out-
neighbours of u as v1 . . . vn+1 where T vi represents the ideal Ii relative to I
and is lefty for i ≤ n and righty for i = n + 1. Similarly we can index the
out-neighbours of u′ as v′1 . . . v

′
n′+1 where (T

′)v
′
i represents the ideal I ′

i relative
to I ′ and is lefty for i ≤ n′ and righty for i = n′ + 1.

Since lV (vn) ≤ lV (f(vn)), it follows that (T ′)f(vn) is righty and so f(vn) =
v′n′ . Since we consider bits to be invariant under permutation of their left
components we may also assume without loss of generality that f(vi) = v′i for
any i ≤ n.

Claim 2 For 1 ≤ i ≤ n, any tree T ∗∗ ∈ Ii with height strictly less than that
of T ∗ is also in I ′

i.

Proof. Since lV (vi) ≤ lV (v
′
i) we have µ(Ii) = µ(I ′

i) and ∆(Ii, I) = ∆(I ′
i, I ′),

and we call these common values µ and ∆ respectively.
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For each j ∈ ∆, let wj be the out-neighbour of vi with lE(wj) = j. By Lemma
35 the function g sending each j in ∆ to the label of the first edge v′iw

′
j of the

path f(viwj) is the identity. That is, that label is simply j.

Now fix j = lE(root(T
∗∗)). We must have j ≤ µ.

If j ∈ ∆ then note that for any tree T ∗∗∗ ∈ Rj(Ii, I) of height less than
that of T ∗∗ with lE(root(T

∗∗∗)) < j we have T ∗∗∗ ∈ I and so by assumption
T ∗∗∗ ∈ I ′. Hence, T ∗∗∗ ∈ ||I ′||j ⊆ Rj(I ′

i, I ′). By construction, Twj is a j-

refraction representation of Rj(Ii, I) and (T ′)w
′
j is a j-refraction representation

of Rj(I ′
i, I ′) and f |Twj witnesses that Twj ⪯F (T ′)w

′
j . Since T ∗∗ ∈ Rj(Ii, I),

by the minimality of the height of T ∗ in any five-tuple we have T ∗∗ ∈ Rj(I ′
i, I ′).

Since lE(root(T
∗∗)) = j, we know that T ∗∗ ̸∈ ||I ′||j , Hence T ∗∗ ∈ Rj(I ′

i) by
Definition 26. Next, by Definition 23 for j = lE(root(T

∗∗)) we have T ∗∗ ∈ I ′
i.

On the other hand, if j ̸∈ ∆ then since T ∗∗ ∈ Ii ⊂ I we have T ∗∗ ∈ I ′ by mini-
mality of height(T ∗). But then, by Definition 28, j ̸∈ ∆ and lE(root(T

∗∗)) = j
implies that T ∗∗ ∈ I ′

i. 2

A similar argument shows that any tree T ∗∗ ∈ In+1 with height strictly less
than that of T ∗ is also in I ′

n′+1.

Since T ∗ conforms to B in J by tree-sum, it must be of the form

Tree(T1, T2, . . . , Tn+k̃+s)

with k̃ ∈ N and k̃ ≤ k ≤ k′ and such that:

(a) for i = 1, 2, . . . , n, Ti ∈ Ii ∪ {Γ},
(b) for i = 1, 2, . . . , k̃, Tn+i ∈ I ∪ {Γ},
(c) for i = 1, 2, . . . , s, Tn+k̃+i ∈ In+1,

(d) [root(T ∗)] ∈ I0.

We now take T ′
i to be Ti for i ≤ n, to be Γ for n < i ≤ n′, and to be Ti−(n′−n)

for n′ < i ≤ n′ + k̃ + s. Since the height of each Ti is strictly less than that of
T ∗, the argument above shows that (a) and (c) hold with the Ii and Ti replaced
by the corresponding I ′

i and T ′
i . The minimality of the height of T ∗ implies

that (b) holds with I replaced by I ′ and the Ti replaced by the corresponding
T ′
i . Finally, comparing the vertex labels of u and f(u) implies that I0 ⊆ I ′

0,
so that (d) holds with I0 replaced by I ′

0. Thus T ∗ also conforms to B′ in I ′

by tree-sum, and it follows that T ∗ ∈ I ′, contradicting our choice of the tuple
(I, I ′, T, T ′, T ∗).

Case 2: f(r) ̸= r′: Since there is a path of length 2 beginning at r in which both
edges have the label m+ 1, the same must be true of f(r). This implies that
the path from r′ to f(r) in T ′ has length at least 3. Let the first four vertices on
this path be r′, u, v, w in that order. Then f also witnesses that T ⪯F (T ′)w.
By construction there is an ideal J ⊆ I ′ such that (T ′)v represents J relative
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to I ′ and there is some j ∈ ∆(J , I ′) such that (T ′)w j-refraction represents
Rj(J , I ′). Since vw lies on the path from r′ to f(r) we have j ≥ lE(r) = i.

For any tree T ∗∗ ∈ I of smaller height than T ∗ with lE(root(T
∗∗)) < i we

have T ∗∗ ∈ I ′ by assumption and so T ∗∗ ∈ Rj(J , I ′) since j ≥ i and ||I ′||j ⊆
Rj(J , I ′). Thus the five-tuple (I, Rj(J , I ′), T, (T ′)w, T ∗) fulfills the conditions
of the statement, and so by the minimality of the height of T ′ we have T ∗ ∈
Rj(J , I ′). Now since i ≤ j, either T ∗ ∈ ||I ′||j and so T ∗ ∈ I ′ as required,
or T ∗ ∈ Rj(J ). Then, i = min(i, j) and Definition 23 imply that T ∗ ∈ J as
required since J ⊆ I ′.

2

Theorem 37 Let I and I ′ be ideals of F(m,Q). If TI ⪯F TI′ then I ⊆ I ′.

Proof. Let f be a map witnessing that TI ⪯ TI′ . Let r and r′ be the roots of T
and T ′ respectively. Since lE(r) = m + 1 but the label of any edge out of r′ is at
most m, we must have f(r) = r′. Comparing the labels of these vertices, we see that
also µ(I) = µ(I ′) and ∆(I,F(m,Q)) = ∆(I ′,F(m,Q)) and we call these common
values µ and ∆ respectively.

For each i ∈ ∆, let ui be the out-neighbour of r with lE(ui) = i. By Lemma 35
the function g sending each i in ∆ to the label of the first edge of the path f(rui) is
the identity. That is, that label is simply i.

Now let T ∗ ∈ I and set i := lE(root(T
∗)). Thus i ≤ µ. If i ̸∈ ∆ then it follows

that every tree of F(m,Q) with root edge label i is in I ′, and so in particular T ∗ ∈ I ′.
If instead i ∈ ∆ then let r′u be the first edge of the path f(rui). Then T ui i-

refraction-representsRi(I,F(m,Q)) and (T ′)u i-refraction-representsRi(I ′,F(m,Q)).
The restriction of f to T ui witnesses that T ui ⪯F (T ′)u. For any tree T ∗∗ ∈
Ri(I,F(m,Q)) of smaller height than T ∗ with lE(root(T

∗∗)) < i we have T ∗∗ ∈
Ri(I ′,F(m,Q)) because T ∗∗ ∈ F(m,Q). By Theorem 36 follows T ∗ ∈ Ri(I ′,F(m,Q))
and so T ∗ ∈ I ′ in this case too, completing the proof. 2

5 Conclusion

It is now easy to prove recursively for each n ∈ N that if LnQ is wqo, then LnF(m,Q)
is wqo, because we can represent every ideal I ∈ LF(m,Q) by a finite tree T ∈
F(m + 2, Q0) such that if LQ is wqo, then Q0 wqo. So studying ideals of ideals of
trees reduces to studying ideals of trees except for the fact that the labels are taken
from a more complicated wqo set. This generalizes a theorem of Nash-Williams in
[6]. It is however more interesting to prove that iterations that are not bounded by
any n ∈ N are wqo. For this purpose we need to relax some of the strict quasi-orders
we introduced in (3.8). See [2] for a deeper theory that involves a concept known
as ‘better-quasi-ordering’, (bqo, for short). The concept of bqo was introduced by
Nash Williams [7] in preparation for a proof that infinite trees are wqo under ⪯.
However the proof becomes quite complicated. A goal of this paper is to pave the
way for an easier finite tree representation of infinitely iterated ideals of finite trees
so that we will have a better understanding of bqo theory.
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