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Abstract

A peripheral circuit in a (possibly infinite) matroid M is a circuit C of M such
that M/C is connected. In the case of a 3-connected graph G, this is equivalent to
C being chordless and G− V (C) being connected. Two classical theorems of Tutte
assert that, for a 3-connected graph G: (i) every edge e of G is in two peripheral
cycles that intersect just on e and its incident vertices; and (ii) the peripheral cycles
generate the cycle space of G [12].

Bixby and Cunningham generalized these to binary matroids, with (i) requiring a
small adaptation. Bruhn generalized (i) and (ii) to the Freudenthal compactification
of a locally finite graph. We unify these two generalizations to “cofinitary, binary
B-matroids”. (Higgs introduced the B-matroid as an infinite matroid; recent works
show this should now be accepted as the right notion of infinite matroid. Cofinitary
means every cocircuit is finite.)
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1 Introduction

A peripheral circuit in a (possibly infinite) matroid M is a circuit C of M such that M/C
is connected. In the case of a 3-connected graph G, this is equivalent to C being chordless
and G − V (C) being connected. Two classical theorems of Tutte [12] assert that, for a
3-connected graph G: (i) every edge e of G is in two peripheral cycles that intersect just
on e and its incident vertices; and (ii) the peripheral cycles generate the cycle space of G.

Bixby and Cunningham [1] generalized these to binary matroids, with (i) requiring a
small adaptation. Bruhn [4] generalized (i) and (ii) to the Freudenthal compactification
of a locally finite graph. We unify these two generalizations to “cofinitary, binary B-
matroids”. (Higgs [8] introduced the notion of B-matroid as an infinite matroid; in view
of [5], this should now be accepted as the right notion of infinite matroid. Cofinitary
means every cocircuit is finite; binary means no U2,4-minor.)

All these previous results are proved by considering the “C-bridges” and proving that,
from any circuit C that is not peripheral, there is a circuit C ′ so that the C ′-bridges are
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“better” than the C-bridges. For example, to prove that every edge e in a 3-connected
graph is in a peripheral cycle, we start with any circuit C containing e, and fix a C-bridge
B. If there is a second C-bridge B′, then a new circuit C ′ can be found so that, for

some C ′-bridge B̂, B ( B̂. Our proof takes the same tack, with many aspects being
modifications of Bruhn’s argument.

The next section introduces infinite matroids and Section 3 presents several basic facts
about them that we need. Section 4 introduces C-bridges of a subset C of the elements
of a matroid; these are the foundation for all proofs about peripheral cycles. Section 5
gives the proof of Theorem 2.3, while Section 6 discusses the specialization of our result
to graph-like continua, giving a positive answer to an open question from Bruhn [4]: his
theorem generalizes perfectly to a very natural setting.

This article was originally prepared by Christian and Richter. Bowler was the referee,
and, over the course of several iterations of reviewing the article, made many substantial
suggestions for improving the accuracy, scope, and style of the article. This final version
is very different, and much better, than the original. Therefore, after the acceptance of
the article for publication, the original authors invited the referee to be a co-author.

2 Matroids
sc:matroids

In this section, we introduce the basic notions of a matroid and precisely state our main
result. The definition here is Oxley’s characterization of B-matroid [9].

Definition 2.1 A matroid is an ordered pair (S, I) consisting of a set S and a set I of
subsets of S satisfying:

it:notEmpty (M1) ∅ ∈ I;

it:subsets (M2) if I ∈ I and J ⊆ I, then J ∈ I;

it:maximal (M3) if I ⊆ X ⊆ S and I ∈ I, then there is a maximal subset J of X so that I ⊆ J
and J ∈ I (J is a base of X);

it:exchange (M4) if X ⊆ S and B1, B2 ⊆ X are two bases of X, then, for any x ∈ B1 \ B2, there
is a y ∈ B2 \B1 so that (B1 \ {x}) ∪ {y} is a base of X.

We remark that, when X is finite, (M3) is a triviality. For infinite X, this condition
is required for the existence of bases. Also, this is a slightly different version of the
independence axioms of [5]. Axiom (I3) from [5] applies to all non-maximal independent
sets, whereas (M4) applies only to those of the form B \ x, for B a base.

As usual, let M denote the matroid (S, I). The dual of M is the matroid (Higgs
proved this) (S,J ), where the maximal elements of J are precisely the complements of
the maximal elements of I. The dual of M is denoted M∗ and, evidently, (M∗)∗ = M .
A subset X of S is independent if X ∈ I and dependent if X /∈ I. A circuit of M is
minimally dependent in I and a cocircuit if X is a circuit of M∗. The matroid M is
finitary if each of its circuits is finite and cofinitary if each of its cocircuits is finite.

The matroid M = (S, I) is connected if, for every partition (X, Y ) of S, there is
a circuit C of M so that C ∩ X and C ∩ Y are both non-empty. More generally, let

2



(X, Y ) be a partition of S and let BX and BY be bases of X and Y , respectively. Let
d(X,Y )(BX , BY ) = min{|F | : F ⊆ X and (BX ∪ BY ) \ F ∈ I}. The following facts are
proved by Bruhn and Wollan [6, Lemmas 3 and 14].

Lemma 2.2 ([6]) Let B and B′ be bases of a matroid M = (S, I), let (X, Y ) be a
partition of S, and let BX and BY be bases of X and Y , respectively.

1. If |B \B′| <∞, then |B \B′| = |B′ \B|.

2. If F ⊆ BX and (BX ∪BY ) \ F is a base for M , then d(X,Y )(BX , BY ) = |F |.

3. d(X,Y )(BX , BY ) = d(Y,X)(BY , BX).

4. If B′X and B′Y are bases of X and Y , respectively, then
d(X,Y )(BX , BY ) = d(X,Y )(B

′
X , B

′
Y ).

This lemma allows us to unambiguously introduce the connectivity function λM(X) =
d(X,S\X)(BX , BS\X), where BX and BS\X are bases of X and S \ X, respectively. For
a positive integer k, the matroid is k-connected if, for every subset X of S with both
|X| ≥ k and |S \X| ≥ k, then λM(X) ≥ k.

A matroid M is binary if it does not have U2,4 as a minor. If M is binary, the cycle
space Z(M) of M is the set of all subsets of M that are edge-disjoint unions of circuits
of M . We shall see in the next section that Z(M) is closed under symmetric differences,
and so is a vector space. We will need something slightly stronger than this.

Let T be a set of elements in a matroid M . A T -bridge in M is a component (that is,
a maximal connected submatroid) of M/T . The set T is peripheral if there is only one
T -bridge.

main Theorem 2.3 Let M be a 3-connected, binary, cofinitary matroid with ground set S.

it:exist 1. For distinct e, f ∈ S, there is a peripheral circuit in M containing e and not con-
taining f .

it:span 2. If M is countable, then the peripheral circuits generate the cycle space of M .

Some condition on M , in addition to being 3-connected and binary, is required for the
conclusions in Theorem 2.3. Bruhn [4] gives some discussion of limitations (see the end
of P. 239 and Figures 3 and 4). It would be interesting to have the right hypothesis here.
It would also be interesting to know if Theorem 2.3 (2) holds in case the matroid is also
uncountable.

We note that Bruhn asks if his version of Theorem 2.3 for the Freudenthal compacti-
fication of a locally finite graph generalizes. Theorem 2.3 does so to matroids; we discuss
briefly in Section 6 that his theorem generalizes to graph-like continua. This generalization
is an easy consequence of our matroidal result.
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3 Elementary facts
sc:matroidFacts

In this section, we provide some elementary properties of circuits, cocircuits, T -bridges,
and binary matroids. Our first elementary result is the following useful fact about T -
bridges.

lm:Tbridge Lemma 3.1 Let T and T ′ be sets of elements of a matroid M and let B be a T -bridge
in M . If B ∩ T ′ = ∅, then there is a T ′-bridge B′ in M such that B ⊆ B′.

Proof. Since B is a T -bridge, (B ∪ T )/T is connected. Thus, any two elements of B
lie in a cocircuit of (B ∪ T )/T , and so in a cocircuit of M . Since B ∩ T ′ = ∅, any two
elements of B lie in a cocircuit of (B ∪ T ′)/T ′, so B is contained in a T ′-bridge.

Our next lemma gives a necessary condition for a matroid of finite rank to be binary.
Recall that, for a matroid M , the simplification si(M) of M is obtained from M by
removing all loops and all but one element from each parallel class in M .

lm:simpleU24 Lemma 3.2 Suppose M is a matroid with finite rank. Then either si(M) is finite or M
has a U2,4-minor.

Proof. Let B be a base of si(M) (and so of M). For each element e of si(M) not in
B, let Ce denote the unique circuit in B ∪ {e}. We first show that, if there are distinct
elements e, f of si(M) for which Ce \ {e} = Cf \ {f}, then M has a U2,4-minor. Set
Be,f = Ce \ {e} = Cf \ {f}.

For each x ∈ Be,f , there is a circuit Cx ⊆ (Ce ∪ Cf ) \ {x}. Note that e ∈ Cx, as
otherwise, Cx ⊆ (B ∪ {f}) \ {x} and x ∈ Cf \ Cx, contradicting the uniqueness of the
circuit in B ∪ {f}. Likewise f ∈ Cx.

Since {e, f} is independent, there is a y ∈ Cx\{e, f}. Then y ∈ (Ce∪Cf )\{e, f} = Be,f ,
so y ∈ Ce ∩ Cf . Therefore, there is a circuit Cy ⊆ (Ce ∪ Cf ) \ {y}.

Note that y ∈ Cx\Cy, so there is some z in Cy \Cx. Evidently, e, f, y, z are all distinct.
Let N be the minor of M obtained by deleting all the elements of M not in Ce ∪ Cf and
then contracting all the elements of (Ce ∪ Cf ) \ {e, f, x, z}. Thus, the ground set of N is
{e, f, x, z}.

Notice that Ce ∩ {e, f, x, z} = {e, x, z}, Cf ∩ {e, f, x, z} = {f, x, z}, Cx ∩ {e, f, x, z} =
{e, f, z}, and Cy ∩ {e, f, x, z} = {e, f, z}. It follows that all four 3-subsets of {e, f, x, z}
are dependent in N .

On the other hand, because each is properly contained in either Ce or Cf , the sets
{e, y}, {e, z}, {f, y}, {f, z}, and {y, z} are all independent in N . The proof that N is U2,4

is completed by showing that {e, f} is independent in N . Otherwise, it is a circuit in N ,
so there is a circuit C contained in (Ce ∪ Cf ) \ {y, z}; as above, C necessarily contains e
and f . Therefore, there is a circuit contained in (Cx ∪ C) \ {e}. But this is contained in
Cf \ {z}, which is an independent set.

Thus, if there are elements e, f of si(M) for which Ce \ {e} = Cf \ {f}, then M
contains U2,4. Otherwise, each element of si(M) distinctly determines one of the finitely
many subsets of B, so si(M) has the finitely many elements of B plus finitely many
elements not in B.

To move a little deeper into the theory, we have the following general paradigm. For
a set X of matroids, ex(X ) denotes the set of all matroids not having an element of X as
a minor. This and the subsequent lemma were developed in joint work with Paul Wollan.
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lm:finiteMinor Lemma 3.3 Let X be a set of finite matroids. Let P be a minor-closed set of matroids.
If: (i) the finite matroids in ex(X ) are the same as the finite matroids in P; and (ii) for
every matroid M /∈ P, there is a finite minor N of M so that N /∈ P, then P = ex(X ).

Proof. Since P is closed under minors, if M ∈ P , then any finite minor N of M is also
in P . Hypothesis (i) implies N is also in ex(X ). Since each element of X is finite, we
conclude that M ∈ ex(X ).

Conversely, if M ∈ ex(X ), then no finite minor of M is in X . Therefore, each finite
minor of M is in P . Hypothesis (ii) implies that M is in P .

The immediate application of Lemma 3.3 is the following characterization of binary
matroids. We remark that these are only some of the known characterizations for finite
binary matroids. A more comprehensive discussion can be found in [3, Sec. 3].

lm:binaryCharacterization Lemma 3.4 The following are equivalent for a matroid M :

it:u24 1. M does not have U2,4 as a minor;

it:even 2. for every circuit C and cocircuit K of M , |C ∩K| is either infinite or even; and

it:not3 3. for every circuit C and cocircuit K of M , |C ∩K| 6= 3.

Proof. These statements are known to be equivalent for finite matroids [10]. We will
first show:

cl:yesDownToMinor Claim 1 If M is a matroid satisfying either (1), (2), or (3), then every minor of M
satisfies the same statement.

Proof. We note that the claim is obvious for Statement 1. Let N be the minor of
M obtained by deleting the elements in D and contracting the independent set I: N =
M/I \ D. Suppose N does not satisfy Statement 2 (respectively, Statement 3). Then
there is a circuit C and a cocircuit K of N such that |C ∩K| is odd (respectively, equal
to 3). There is a subset IC of I so that C ∪ IC is a circuit of M and there is a subset DK

of D such that K ∪DK is a cocircuit of M . Evidently, |(C ∪ IC)∩ (K ∪DK)| = |C ∩K| is
odd (respectively, equal to 3), showing that M does not satisfy Statement 2 (respectively,
3).

The proof for the equivalence of (2) and (3) is essentially completed by proving the
next claim.

cl:noDownToFiniteMinor Claim 2 If M is a matroid that does not satisfy either (2) or (3), then either M has U2,4

as a minor or some finite minor of M does not satisfy the same statement.

Proof. Suppose that M does not satisfy Statement 2 (respectively, 3). Then there is a
circuit C and a cocircuit K of M such that |C ∩K| is odd (respectively, equal to 3). In
particular, |C ∩K| is finite and non-empty.

Letting x be any element of C∩K, we see that C\{x} is independent and so extends to
a base B of M that is disjoint from the coindependent set K\C. Set N = M/(B\(C∩K)).
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Since (C ∩K)\{x} is a base for N , N has finite rank. Also, K is disjoint from the set
B \ (C ∩K) of contracted elements, so K is a cocircuit of N . Since C is the only circuit
in B ∪ {x}, C ∩K is the contraction of C and so is dependent in N . On the other hand,
every proper subset of C ∩K is independent in N , so C ∩K is a circuit in N . Evidently,
|(C ∩K) ∩K| = |C ∩K|. Since N is a finite rank minor of M , Lemma 3.2 shows that
si(N) either has a U2,4-minor or is finite. If si(N) is finite, then some finite minor of N
has a circuit and cocircuit with intersection odd (respectively, equal to 3) and so has a
U2,4-minor.

To complete the proof of the lemma, we first consider the equivalence of Statements
1 and 2; the equivalence with (3) is similar. If M ∈ ex({U2,4}), then no finite minor of M
has a circuit C and a cocircuit K such that |C ∩K| is odd. Claim 2 shows that M has
no such circuit and cocircuit, as required.

Conversely, suppose M satisfies Statement 2. Then Claim 1 shows every minor of M
satisfies Statement 2. From the equivalence for finite matroids, no finite minor of M has
a U2,4-minor, and, therefore, M has no U2,4 minor.

For two sets A,B, the set A4B is the symmetric difference (A∪B)\(A∩B) of A and
B. It is not clear to us that the cofinitary assumption is required for the first assertion of
the following corollary. This form is sufficient for our purposes.

co:symmDiff Corollary 3.5 Let M be a matroid. If M is cofinitary and binary, then, for every pair
of distinct circuits C1, C2 of M , C14C2 is dependent.

If M is not binary, then M has two circuits C1 and C2 such that C14C2 is indepen-
dent.

Proof. For the first assertion, every cocircuit K of M is finite. Since M is binary,
Lemma 3.4 (2) implies that, for any two circuits C1 and C2 of M , |K ∩ C1| and |K ∩ C2|
are both even. Thus, for every cocircuit K of M , |K∩ (C14C2)| is even, whence C14C2

is dependent.
For the second assertion, let I be independent in M and let D be disjoint from I so

that M/I \D is a U2,4 minor of M . Let x1, x2, x3, x4 be its four elements and let C1 and
C2 be the circuits x1, x3, x4 and x2, x3, x4, respectively. Since {x1, x2} is independent in
U2,4, {x1, x2} ∪ I is independent in M .

On the other hand, for i = 1, 2, there is a subset Ii of I such that Ci ∪ Ii is a circuit
in M . But now (C1 ∪ I1)4 (C2 ∪ I2) ⊆ {x1, x2} ∪ I is independent.

The proof of our next lemma is based on Vella and Richter [14, Thm. 14].

lm:vellaRichter Lemma 3.6 Let M = (S, I) be a cofinitary, binary matroid, and X ⊆ S. If, for every
cocircuit K of M , |X ∩K| is even, then X is a disjoint union of circuits of M .

Proof. Let X denote the set of all sets of disjoint circuits contained in X, ordered by
inclusion.

To apply Zorn’s Lemma, let C1 ⊆ C2 ⊆ · · · be an increasing sequence of elements of
X . Set C = ∪i≥1Ci, so C is a set of circuits, all contained in X. Moreover, any two circuits
in C are, for some i ≥ 1, both in Ci and, therefore, are disjoint. Thus, C ∈ X , so Zorn’s
Lemma implies X has a maximal element, which we also denote by C.

6



Set X ′ = X \(∪C∈CC) and observe that the maximality of C shows X ′ does not contain
any circuit of M , and so is independent. On the other hand, X ′ has even intersection
with every cocircuit of M . Unless X ′ = ∅, the preceding two sentences are contradictory,
as every non-empty independent set meets some cocircuit in just one element.

The following is an immediate corollary of Lemmas 3.4 and 3.6.

co:binaryUnionCircuits Corollary 3.7 Let M = (S, I) be a cofinitary, binary matroid.

it:circInCtr (3.7.1) If F is a subset of S and C is a circuit of M , then C \F is a disjoint union of
circuits of M/F .

it:disjtUnionCircs (3.7.2) If C1 and C2 are disjoint unions of circuits of M , then C14C2 is a disjoint
union of circuits of M .

As introduced earlier, the cycle space Z(M) of a binary matroid M is the set of all
edge-disjoint unions of cycles. Let A be a set of sets of elements of M . Then A is thin if,
for every element e of M , e is in only finitely many elements of A. A principal property of
a thin family is that the symmetric difference of its elements is well-defined. The following
fact is central to the cycle space theory for infinite graphs and generalizes 3.7.2.

lm:thin Lemma 3.8 Let M be a cofinitary, binary matroid and let A be a thin set of elements of
Z(M). Then the symmetric difference of the elements of A is in Z(M).

Proof. Let K be any cocircuit of M . Since M is cofinitary, K is finite. Because A
is thin, only finitely many elements of A have non-empty intersection with K. Letting⊕
A denote the symmetric difference of all the elements of A, K4(

⊕
A) is actually the

symmetric difference of K with finitely many disjoint unions of circuits.
It follows from Lemma 3.4 (2) that K4(

⊕
A) is even. Now Lemma 3.6 implies

⊕
A

is a disjoint union of circuits, as required.

4 Bridges in a matroid
sc:bridges

In this section we present the elements we require about bridges in a matroid. The main
point of this section is the following result, proved at the end of the section, that is quite
familiar for graphs.

th:bridgeGrow Theorem 4.1 Let M be a 3-connected, binary, cofinitary matroid, let C be a non-
peripheral circuit of M , and let B be a C-bridge. Then either:

it:twoCircuits 1. there exist circuits C1 and C2 in M such that C = C14C2 and, for i ∈ {1, 2}, there
is a Ci-bridge Bi that properly contains B; or

it:threeCircuits 2. there exist circuits C1, C2, and C3 in M so that C = C14C24C3 and, for i ∈
{1, 2, 3}, there is a Ci-bridge Bi that properly contains B.

For a circuit C in a finite graph G, a residual arc of a C-bridge B is one of the paths
in C joining cyclically consecutive attachments of B. In the case of infinite circuits, this
is not quite so easily defined. Here is a definition for matroids.
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df:segments Definition 4.2 Let C be a circuit in a matroid M and let B be a C-bridge.

1. A B-segment is a series class of the restriction M |C∪B that is contained in C.

2. If B′ is a second C-bridge, then B and B′ avoid each other if C is the union of a
B-segment and a B′-segment. Otherwise, B and B′ overlap.

3. The overlap diagram O(C) is the graph that has as its vertices the C-bridges, with
distinct C-bridges adjacent if they overlap.

4. A primary arc in B is a circuit of M/C contained in B and not a circuit of M . If
A is a primary arc of B, then a primary segment for A is a subset D of C such that
A ∪D is a circuit of M .

The following technical fact will be helpful for showing that the overlap diagram of a
circuit in a 3-connected, binary, cofinitary matroid is connected.

lm:2separation Lemma 4.3 Let C be a circuit in a matroid M and let B be a C-bridge.

it:unionSegments 1. If D is a primary segment for a primary arc A in B, then D is a union of B-
segments.

it:not3connected 2. Suppose C is the disjoint union of the non-empty sets S1 and S2 such that, for every
C-bridge B, there is a B-segment that contains one of S1 and S2. If M has at least
4 elements and, for each i = 1, 2, either |Si| ≥ 2 or there is a C-bridge B such that
S3−i is not contained in a B-segment, then M is not 3-connected.

Proof. For (1), A ∪D is a circuit in the restriction of M to B ∪C, so every series class
in B ∪ C is either contained in A ∪D or is disjoint from A ∪D.

For (2), if |C| ≤ 2, then, for E the ground set of M , (C,E \ C) is a |C|-separation of
M . Therefore, we may assume |C| ≥ 3.

Let B1 be the set of C-bridges B so that some B-segment contains S1 and let B2 be
the set of the remaining C-bridges. Then each B ∈ B2 has a B-segment containing S2.
Let X1 denote the union of S2 and all the C-bridges in B1 and let X2 denote the union of
S1 and all the C-bridges in B2. Extend S2 to a base J1 of X1 and S1 to a base J2 of X2.
We show that the only circuit contained in J1 ∪ J2 is C = S1 ∪ S2. The final hypothesis
implies that, for i = 1, 2, |Xi| ≥ 2, so (X1, X2) is a 2-separation, as required.

Suppose by way of contradiction that C ′ is another circuit contained in J1 ∪ J2. Then
C ′ \ C is a union of circuits in M/C; let C ′′ be one of these and let B′′ be the C-bridge
in M containing C ′′. Deleting any of the series classes of C ′′ ∪ C yields a circuit of M ,
so there is a partition P of C such that, for each P ∈ P , C ′′ ∪ (C \ P ) is a circuit of M .
Since the circuit C ′′ is not contained in the independent set J1, k ≥ 2.

We suppose that B′′ ∈ B1 (the alternative is that B′′ ∈ B2 as the argument is identical).
For every B′′-segment, there is a P ∈ P such that B” ⊆ P . Thus, there exists P ∈ P
such that S1 is contained in a B′′-segment S ′′ such that S ′′ ⊆ P . Observe that C \ P ⊆
C \ S1 = S2 and C ′′ ⊆ B′′ ∈ B1. Thus, C ′′ ∩X2 = ∅. Since C ′′ ⊆ J1 ∪ J2, C ′′ ⊆ J1. Since
C \ P ⊆ J1, we have the contradiction that the circuit C ′′ ∪ (C \ P ) is a circuit in the
independent set J1.

For binary, cofinitary matroids, we can expand on Lemma 4.3 (1).
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lm:primaryCircuit Lemma 4.4 Let M be a 3-connected, binary, cofinitary matroid, let C be a circuit in M ,
and let B be a C-bridge. If D is a primary segment for a primary arc A in B, then:

it:otherPrimarySegment 1. C \D is a primary segment for A;

it:noOtherPrimarySegment 2. no other subset of C is a primary segment for A; and

it:onlyThreeCircuits 3. C, A ∪D, and A ∪ (C \D) are the only circuits in C ∪ A.

Proof. For (1), we note that A ∪ (C \ D) = (A ∪ D)4C, so Corollary 3.7.2 shows
A ∪ (C \ D) is the disjoint union of circuits. Since A is a circuit in M/C, no circuit
contained in A∪C other than C can contain a proper subset of A. Therefore, A∪ (C \D)
is a circuit, as required.

For (2), if D′ ⊆ C is such that A∪D′ is a circuit, then (A∪D)4 (A∪D′) is a disjoint
union of circuits contained in C. Therefore, D4D′ is either empty or C, so either D′ = D
or D′ = C \D , as required.

Item (3) is an immediate consequence of the two preceding items.

We can now show that overlap diagrams are connected, a fact well known for graphs.

lm:overlapDiagram Lemma 4.5 If M is a 3-connected matroid and C is a circuit of M , then O(C) is con-
nected.

Proof. Let B be a component of O(C) and suppose by way of contradiction that there
is a C-bridge B0 not in B.

cl:oneSegment Claim 1 There is a B0-segment S0 such that, for each C-bridge B in B, there is a B-
segment S(B) with C = S0 ∪ S(B).

Proof. Let B1 and B2 be overlapping C-bridges in B. Since B0 does not overlap either
B1 or B2, for i = 1, 2, there is a B0-segment Si

0 and a Bi-segment Si such that C = Si
0∪Si.

If S1
0 6= S2

0 , then S2
0 ⊆ S1. But then C = S2 ∪ S2

0 ⊆ S2 ∪ S1, implying the contradiction
that B1 and B2 do not overlap. The connection of B completes the proof.

Let S∗ =
⋂

B∈V (B) S(B) and S∗ = C \ S∗.

cl:S*S* Claim 2 If B is a C-bridge, then there is a B-segment S so that either S∗ ⊆ S or S∗ ⊆ S.

Proof. If B is in B, then S∗ ⊆ S(B), as required. Thus, we may suppose B is not in B.
By Claim 1, there is a single B-segment S so that, for every C-bridge B′ in B, there is a
B′-segment S ′(B′) so that C = S ∪ S ′(B′).

Suppose that S∗ \ S 6= ∅. Then S∗ ∩ S ′(B′) 6= ∅. Since S∗ ⊆ S(B′) (as in Claim 1 for
B0), we deduce that S(B′) = S ′(B′). Since, for each x ∈ S∗, there is a B′ in B so that
x /∈ S(B′), it must be that x ∈ S. Thus, S∗ ⊆ S, as claimed.

In particular, S∗ ⊆ S0. Thus, Claim 2 and Lemma 4.3 yield the contradiction that M
is not 3-connected.

One more small observation is required before we can give a combinatorial character-
ization of overlapping C-bridges.
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lm:segmentsToPrimary Lemma 4.6 Let M be a matroid, let C be a circuit in M , and let B be a C-bridge. If
S1 and S2 are distinct B-segments, then there is a primary arc A of B and a primary
segment of A that contains S1 but not S2.

Proof. For i = 1, 2, let xi ∈ Si. Extend C − x2 to a base I of C ∪ B. Let D be
the fundamental cocircuit of C ∪ B that contains x1. Because x1 and x2 are in different
B-segments, {x1, x2} is coindependent. Therefore, D 6⊆ C; let z ∈ D \ C. Then the
fundamental circuit in I ∪ {z} is the required primary arc.

The following is an immediate consequence of Lemma 4.6.

co:segmentsAndPrimarySegments Corollary 4.7 Let M be a matroid, let C be a circuit in M , and let B be a C-bridge.
Then every B-segment is the intersection of primary segments of primary arcs in B.

One more definition brings us to a principal intermediate result.

Definition 4.8 Let M be a binary, cofinitary matroid, let C be a circuit in M , and let
B1 and B2 be distinct C-bridges.

1. The C-bridges B1 and B2 are skew if, for i = 1, 2, there is a primary Bi-segment Si

so that the four sets S1 ∩ S2, S1 \ S2, S2 \ S1, and C \ (S1 ∪ S2) are all non-empty.

2. For a positive integer k, the C-bridges B1 and B2 are k-equipartite if they both
partition C into the same k segments.

th:overlapCharacterization Theorem 4.9 Let M be a cofinitary, binary matroid, let C be a circuit of M , and let B1

and B2 be overlapping C-bridges. Then B1 and B2 are either skew or 3-equipartite.

For finite binary matroids, this theorem is proved by Tutte [13, 8.44, p. 35]. We shall
deduce it from that result.

Proof. For i = 1, 2, let fi be an element of a primary arc of Bi. In particular, fi is in the
same component of M as C. We begin by observing that f1 and f2 are not parallel either
to each other or to any element of C. If they were parallel, then, since they are in different
C-bridges, they are both loops of M/C. In particular, for i = 1, 2, {fi} = Bi and there
are precisely two Bi-segments. Because f1 and f2 are parallel, these segments are the
same and C is the union of them, showing B1 and B2 avoid each other, a contradiction.

If, say, f1 were parallel to e ∈ C, then again {f1} = B1. Now the two B1-segments
are {e} and C − {e}. Letting S be the B2-segment containing e, C = (C − {e}) ∪ S and
again B1 and B2 avoid each other, as required.

Let F be any base of M such that |C \ F | = 1 and let F ′ be a finite subset of F . Set
N = M/(F \ F ′) and let CN denote the set of elements of C in N .

If I is a proper subset of CN , then I ∪ (F \ F ′) is independent in M . Thus, I is
independent in N . Since CN ∪ (F \ F ′) contains C, it is dependent in M . Thus, CN is a
circuit in N .

Let C ′ be a circuit in M containing f1, f2. Since f1 and f2 are not parallel in M , there
is an element e of C ′ \ {f1, f2}. Let K1, K2 be cocircuits of M such that, for i = 1, 2,
Ki ∩ C ′ = {e, fi}. Since K1 ∪ K2 is finite, there is a finite subset F0 of F such that
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F ∩ (K1∪K2) ⊆ F0 and |F0∩C| ≥ 3. Let F ′ be a finite set such that F0 ⊆ F ′ ⊆ F . Then
K1 ∪K2 is disjoint from F \ F ′.

Let N0 = M/(F \F0). Suppose that, for some i ∈ {1, 2}, fi is parallel in N0 to ei ∈ C.
Then there is a circuit Ci in M containing ei and fi. As ei, fi are not parallel in M , there
is a third element e′i of Ci. Let K ′i be a cocircuit in M such that K ′i ∩ Ci = {e′i, fi}. Now
set F ∗ = F ∩ (K1 ∪K2 ∪K ′1 ∪K ′2) (using K ′1 and K ′2 only when they exist).

For any finite subset F ′ of F such that F ∗ ⊆ F ′, set NF ′ = M/(F \ F ′). Then
C ′/(F \ F ′) is a disjoint union of circuits in NF ′ ; let C ′′ be the one containing e. For
i = 1, 2, e ∈ (C ′′/(F \ F ′)) ∩ Ki ⊆ C ′ ∩ Ki = {e, fi}. Since Ki is a cocircuit of NF ′ ,
|Ki ∩ C ′′| is even, so Ki ∩ (C ′′/(F \ F ′) = {e, fi}. In particular, e, f1, f2 are all in C ′′, so
f1 and f2 are not parallel in NF ′ .

Now suppose that, for some i ∈ {1, 2}, fi is parallel in NF ′ to some element f ′i of CNF ′ .
The cycle {fi, f ′i} contracts to a cycle in NF0 , in which case either fi and f ′i are parallel in
NF0 or fi is a loop in NF0 . The latter does not happen, as |Ki ∩ {fi}| is not even. Thus,
in NF0 , f

′
i is parallel to fi, which in turn is parallel to ei in NF0 .

The only possibility is that f ′i = ei. By definition, {fi, ei} is a cycle in NF ′ and K ′i is a
cocircuit in NF ′ . However, K ′i ∩{ei, fi} = {fi}, the final contradiction that shows neither
f1 nor f2 is parallel in NF ′ to any element of CNF ′ .

Let F denote the set of all minors of M of the form si(M/(F \ F ′)), where F ′ is a
finite subset of F that contains F ∗. Lemma 3.2 shows that every matroid in F is finite.
The preceding discussion shows that f1 and f2 may be chosen as the representatives of
their parallel classes in M/(F \ F ′). For N ∈ F , N/CN is a minor of M/C, so f1 and f2
are in distinct CN -bridges BN

1 and BN
2 , respectively.

Let N,N ′ ∈ F be such that N is a minor of N ′. If BN ′
1 and BN ′

2 avoid one another,
then it is a routine verification that BN

1 and BN
2 avoid one another.

In view of Theorem 4.9 for finite matroids, one of the following holds for F :

1. for all N ∈ F , BN
1 and BN

2 avoid each other;

2. for some N ∈ F , BN
1 and BN

2 are skew to each other; and

3. for every N ∈ F , there is an N ′ ∈ F such that N is a minor of N ′ and BN ′
1 and

BN ′
2 are 3-equipartite.

In the next four claims, we show that these imply the corresponding result for M . We
start with an important observation.

cl:segments Claim 1 For j = 1, 2, the elements x, y of C are in the same Bj-segment if and only if,
for every N ∈ F , there is an N ′ ∈ F having N as a minor and such that x, y are in the
same BN ′

j -segment.

Proof. The only if direction is trivial. Conversely, suppose by way of contradiction that
x and y are in different Bi-segments in C. Lemma 4.6 and Corollary 4.7 imply there is a
primary Bi-segment S containing x but not y. By definition, there is a primary arc A in
Bj such that S∪A is a circuit of M . Let K be a cocircuit of M such that C∩K = {x, y}.

Since |K ∩ (S ∪ A)| is even and |K ∩ S| = 1, we see that |K ∩ A| is odd. Since K is
finite, there is an N ∈ F such that the finite set K ∩ A is contained in BN

j and K is a
cocircuit of N .
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Suppose by way of contradiction that x and y are in the same BN
j -segment. Then {x, y}

is a cocircuit of CN∪BN
j . Consequently, N has a cocircuit K ′ such that K ′∩(CN∪BN

j ) =

{x, y}. In particular, K ′ is disjoint from BN
j .

Since N is a finite binary matroid, K4K ′ is a disjoint union of cocircuits of N and
is evidently disjoint from CN . Since K ∩ A has an odd number of elements, there is an
element w of K ∩A. By choice of N , w ∈ BN

j . Since K ′ ∩BN
j = ∅, w /∈ K ′, so there is a

cocircuit K ′′ ⊆ K4K ′ such that w ∈ K ′′.
We know that (K4K ′) ∩ CN = ∅, so K ′′ ∩ CN = ∅. Since K does not properly

contain another cocircuit, K ′′ 6⊆ K. Therefore, there is a z ∈ K ′′ ∩ (K ′ \ {x, y}). Since
K ′ \ {x, y} is disjoint from CN ∪BN

j , z /∈ CN ∪BN
j .

But K ′′ is a cocircuit of N that is disjoint from CN , so K ′′ is contained in a component
of N/CN . However, w is in the component BN

j of N/CN , while z is not. This is the desired
contradiction.

The next claim treats the case that the CN -bridges are “eventually” k-equipartite.

cl:k-equipartite Claim 2 Suppose k is a positive integer such that, for every N ∈ F , there is an N ′ ∈ F
such that N is a minor of N ′ and BN ′

1 and BN ′
2 are k-equipartite in N ′. Then B1 and B2

are k-equipartite.

Proof. For each N ∈ F such that BN
1 and BN

2 are k-equipartite, let SN
1 , SN

2 , . . . , SN
k be

the k distinct BN
1 -segments. (Of course, they are also the k distinct BN

2 -segments.) Let N0

be a particular element of F such that BN0
1 and BN0

2 are k-equipartite. For i = 1, 2, . . . , k,
let e0i be an arbitrary element of SN0

i . Finally, let F0 consist of those N ∈ F having N0

as a minor and such that BN
1 and BN

2 are k-equipartite.
Let N ∈ F0. If two elements of N0 are in the same BN

1 -segment, then evidently they
are in the same BN0

1 -segment. In particular, no two of the e0i are in the same BN
1 -segment.

Thus, we may choose the labelling of these segments so that e0i ∈ SN
i .

Let N,N ′ ∈ F0 both contain e ∈ C. We claim that if e ∈ SN
i , then e ∈ SN ′

i . There is
a j such that e ∈ SN ′

j and there is an N ′′ ∈ F0 having both N and N ′ as minors. Let ` be

such that e ∈ SN ′′

` . Then e, e` ∈ SN ′′

` , and so e, e` are in the same BN
1 - and BN ′

1 -segments.
Hence ` is equal to both i and j; in particular, i = j.

It follows that the sets Si =
⋃

N∈F0
SN
i , for i = 1, 2, . . . , k, form a partition of C into

k non-empty sets. Claim 1 shows that each Si is a B1-segment.

The following determines when B1 and B2 are skew.

cl:skew Claim 3 Suppose there is an N ∈ F such that BN
1 and BN

2 are skew. Then B1 and B2

are skew.

Proof. For j = 1, 2, let AN
j be a primary arc in BN

j and let SN
j be a primary segment

for AN
j such that all of SN

1 ∩ SN
2 , SN

1 \ SN
2 , SN

2 \ SN
1 , and C \ (SN

1 ∪ SN
2 ) are non-empty.

For j = 1, 2, AN
j ∪ SN

j is a circuit in N , so there is a subset Fj of F such that

AN
j ∪SN

j ∪Fj is a circuit of M . Corollary 3.7.1 implies (AN
j ∪SN

j ∪Fj) \C is the disjoint

union of circuits of M/C. Each of these circuits is contained in AN
j ∪ Fj; let Aj be one

that contains an element of AN
j . Since Bj is a component of M/C, Aj ⊆ Bj. It follows

that Aj is a primary arc of Bj.
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Let Sj be a primary segment for Aj. Applying Corollary 3.7.1 again, the elements of
A1∪S1 that are also in N is a disjoint union of circuits of N . These circuits are contained
in CN ∪ BN

j and, therefore, each consists of a primary arc and corresponding primary

segment, or else is the whole of CN .
The same argument applies with C \Sj in place of Sj, so each of the primary segments

with respect to A1 contains one of SN
j and CN \SN

j . In particular, each primary segment
for A1 has non-empty intersection with each primary segment for A2, as required.

Finally, we deal with the case B1 and B2 avoid each other.

cl:avoid Claim 4 Suppose, for every N ∈ F , BN
1 and BN

2 avoid each other on CN . Then B1 and
B2 avoid each other on C.

Proof. By way of contradiction, we suppose that B1 and B2 overlap. That is:

it:notTwoUnion (i) for any B1- and B2-segments S1 and S2, respectively, C 6= S1 ∪ S2.

Let e ∈ C and, for i = 1, 2, let Se
i be the Bi-segment containing e. By (i), there is some

f ∈ C \ (Se
1 ∪ Se

2). Let Sf
2 be the B2-segment containing f . Repeating with C 6= Se

1 ∪ S
f
2 ,

there is a g ∈ C \ (Se
1 ∪ S

f
2 ). For N ∈ F containing e, f , let SN

1 and SN
2 be the BN

1 - and
BN

2 -segments containing e and f , respectively.
Let N0 ∈ F contain e, f, g such that neither f nor g is in SN0

1 and neither e nor g is
in SN0

2 . Let F0 consist of those elements of F having N0 as a minor.
For each N ∈ F0, neither f nor g is in SN

1 and neither e nor g is in SN
2 . By hypothesis,

there are BN
1 - and BN

2 -segments TN
1 and TN

2 , respectively, such that CN = TN
1 ∪ TN

2 . If
e ∈ TN

1 , then f, g ∈ TN
2 , a contradiction. Thus, e ∈ TN

2 and, likewise, f ∈ TN
1 . Evidently,

C =

( ⋃
N∈F0

TN
1

)
∪

( ⋃
N∈F0

TN
2

)
.

Let N,N ′ ∈ F0. Then there is an N ′′ ∈ F0 having both N and N ′ as minors. Thus,
for i = 1, 2, TN

i ∪ TN ′
i ⊆ TN ′′

i . Thus, Claim 1 shows
⋃

N∈F0
TN
1 and

⋃
N∈F0

TN
1 are B1-

and B2-segments. In particular, B1 and B2 avoid each other, a contradiction.

As we mentioned just before Claim 1, one of three possibilities occurs: for all i, Bi
1

and Bi
2 do not overlap; or, there exists an N such that BN

1 and BN
2 are skew; or, for

every N ∈ F , there is an N ′ ∈ F such that N is a minor of N ′ and BN ′
1 and BN ′

2 are
3-equipartite. In order, these imply: B1 and B2 do not overlap (Claim 4); B1 and B2 are
skew (Claim 3); or B1 and B2 are 3-equipartite (Claim 2).

We are now set for the proof of the main result in this section.

Proof of Theorem 4.1. Lemma 4.5 implies that, if C is not peripheral, then there is
a C-bridge that overlaps B. We begin with two claims.

cl:overlapNewBridge Claim 1 Let B′ be a C-bridge different from B, let A′ be a primary arc in B′ and let S ′

be a primary segment for A′. Then C ′ = A′ ∪S ′ is a circuit, there is a C ′-bridge B′′ such
that B ⊆ B′′, and C \ S ′ is a circuit of M/C ′.
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Proof. Definition 4.2 shows C ′ is a circuit. Evidently, B ∩B′ = ∅, so B ∩A′ = ∅. Also,
B ∩ C = ∅, so B ∩ S ′ = ∅. Lemma 3.1 implies that there is a C ′-bridge B′′ such that
B ⊆ B′′.

Let C ′′ = A′ ∪ (C \ S ′). Corollary 3.7.1 implies C \ S ′ is the disjoint union of circuits
of M/C ′. Pick arbitrarily x ∈ C \ S ′ and let Cx ⊆ C \ S ′ be a circuit of M/C ′ containing
x. Let Yx ⊆ C ′ be such that Cx∪Yx is a circuit of M . Lemma 4.4 (3) implies that Cx∪Yx
is one of C, C ′, and C ′′. In particular, since x ∈ (C \ S ′) ∩ Cx, S ′′ ⊆ Cx ∪ Yx. Thus,
S ′′ ⊆ Cx. It follows that S ′′ = Cx, as required.

cl:noSkew Claim 2 If C is not peripheral and no C-bridge is skew to B, then there are precisely
three B-segments, each with size 1. In particular, |C| = 3.

Proof. Lemma 4.5 and Theorem 4.9 imply that C has precisely three B-segments
S1, S2, S3. By way of contradiction, suppose S1 has more than one element.

Let B1 be the set of C-bridges having a segment containing C \S1 and let B2 be the set
of all C-bridges that have a segment containing S1. Every C-bridge 3-equipartite with B
is in B2. On the other hand, if B′ is a C-bridge that avoids B, then there is a B′-segment
S ′ such that, for some j ∈ {1, 2, 3}, S ′ ∪ Sj = C. If j = 1, then C \ S1 ⊆ S ′ and B′ ∈ B1.
If j 6= 1, then S1 ⊆ S ′ and B′ ∈ B2. Since no C-bridge is skew to B, we conclude that
every C-bridge is in B1 ∪ B2.

Since |S1| ≥ 2 and |S2 ∪ S3| ≥ 2, Lemma 4.3 implies the contradiction that M is not
3-connected. This shows that, for i = 1, 2, 3, |Si| = 1.

Case 1: there is a C-bridge skew to B.

Let B′ be a C-bridge skew to B. There are primary arcs A and A′ in B and B′,
respectively, with primary segments S and S ′, for A and A′, respectively, such that S∩S ′,
S \ S ′, S ′ \ S and C \ (S ∪ S ′) are all non-empty. Letting C ′ = A′ ∪ S ′, Claim 1 shows
that there is a C ′-bridge B′′ containing B.

In order to show B 6= B′′, it suffices to show that there is a circuit of M/C ′ that
intersects both B and C \ S ′. Let x ∈ S \ S ′. Corollary 3.7.1 implies (A ∪ S) \ C ′ is a
disjoint union of circuits of M/C ′; let C ′x be a circuit of M/C ′ containing x.

Skewness implies S \ S ′ is a proper subset of C \ S ′. By Claim 1, C \ S ′ is a circuit of
M/C ′. Thus, S \ S ′ is independent in M/C ′. Therefore, C ′x ∩ A is not empty. That is,
C ′x intersects both B and C \ S ′, so S ′ ⊆ B′′ \B.

The preceding argument applies equally well to the primary segment C \ S ′ for A′.
Therefore, the two circuits A′ ∪ S ′ and A′ ∪ (C \ S ′) show that Conclusion 1 holds, as
required.

Case 2: no C-bridge is skew to B.

Claim 2 shows that |C| = 3. As above, we let S1, S2, and S3 be the three B-segments.
For any C-bridge B′, there is at least one primary arc for B′, so some Si is a primary
segment; choose the labelling so that i = 1. Lemma 4.6 shows that there is a primary
segment containing S2 and not containing S3. Therefore, at least one of S2 and S3 is also
a primary segment for B′. Thus, at least two of S1, S2, S3 are primary segments for B′.

Since each of B and B′ has at least two of the Si as primary segments, there is at least
one Si that is a primary segment for both B and B′; choose the labelling so that S1 is
one such.
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Let A1 be a primary arc in B′ with primary segment S1, so S2 ∪ S3 is also a primary
segment for A1. Let C1 = A1∪S1 and C2 = A1∪S2∪S3. By Claim 1, there is a C1-bridge
B1 such that B ⊆ B1 and S2 ∪ S3 is a circuit of M/C1.

Choose the labelling so that S2 is also a primary segment for B, corresponding to the
primary arc A2 ⊆ B. Then A2 ∪ S2 is a circuit in M , so Corollary 3.7 implies A2 ∪ S2

is a disjoint union of circuits in M/C1. If x ∈ S2, then there is a circuit Cx of M/C1

containing x and contained in A2 ∪ S2.
Since S2 ∪ S3 is a circuit of M/C1, S2 is not a circuit of M/C1. Therefore, Cx 6= S2,

so Cx ∩ A2 6= ∅. Therefore, x ∈ B1 \B, as required for the first pair C1 and B1.
By Lemma 3.1, there is a C2-bridge B2 such that B ⊆ B2. Since M is 3-connected,

|A1 ∪ S1| ≥ 3. As |S1| = 1, |A1| ≥ 2 and, therefore, |C2| ≥ 4. There are two possibilities
that arise from Claim 2.

If C2 is peripheral, then S1 is a subset of the unique C2-bridge B2, so Conclusion 1
applies with the pairs (C1, B1) and (C2, B2), as required.

Otherwise, there is a C2-bridge B3 that is skew to B2. We can apply Case 1 to C2 and
B2 to obtain cycles C ′2 and C ′3, with C ′2- and C ′3-bridges B′2 and B′3, respectively, properly
containing B2 (and therefore B). Now the three pairs (C1, B1), (C ′2, B

′
2), and (C ′3, B

′
3)

satisfy Conclusion 2, as required.

We need one other tool to combine with Theorem 4.1 in order to prove our main result
Theorem 2.3. Here we use E(M) to denote the ground set of the matroid M .

lm:maximalBridge Lemma 4.10 Let M be a cofinitary, binary matroid, let F be any finite subset of E(M),
and let X ⊆ F .

it:maximalBridge (1) Let B(F,X) denote the set of all subsets B of E(M) such that, for some z ∈ Z(M)
with z ∩ F = X, there is a z-bridge containing B. For every B ∈ B(F,X), there is
a maximal element B′ of B(F,X) containing B.

it:minimalCycleElement (2) Let B ⊆ E(M) \ X. Let X (F,X,B) be the set of those z in Z(M) such that
z ∩ F = X and there is a z-bridge containing B. If X (F,X,B) 6= ∅, then there is
a minimal element of X (F,X,B).

In particular, for each pair (z,B) consisting of z ∈ Z(M) with z ∩F = X and a z-bridge
B, there is a pair (z∗, B∗) such that B∗ is a maximal element of B(F,X) containing B,
z∗ is a minimal element of X (F,X,B∗), B∗ is a z∗-bridge, and z∗ ∩F = X. Such a z∗ is
necessarily a finite disjoint union of circuits.

Let (F,X,B) be a triple such that: F is a finite subset of E(M); X ⊆ F ; and
B ⊆ E(M) \X is such that there is a z ∈ Z(M) such that z ∩F = X and B is contained
in a z-bridge. A minimax pair for (F,X,B) is any pair (z∗, B∗) from the “in particular”
statement of Lemma 4.10. Thus, B∗ is a maximal element of B(F,X) that contains B,
z∗ ∈ Z(M), z∗ ∩ F = X, B∗ is a z∗-bridge; and z∗ is minimal with respect to all these
properties.

Proof. For (1), let C be a non-empty chain in B(F,X) such that, for each C ∈ C, B ⊆ C.
For each C ∈ C, let zC ∈ Z(M) be such that zC ∩F = X and C is a zC-bridge. We prove
that there is a C∗ ∈ B(F,X) such that, for all C ∈ C, C ⊆ C∗. The result then follows
immediately from Zorn’s Lemma. Obviously, we may assume C has no maximal element.
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Let A denote the set of elements e of M such that, for every C ∈ C, there is a C ′ ∈ C
such that C ⊆ C ′ and e ∈ zC′ . Since, for every C ∈ C, zC∩F = X, we see that F ∩A = X.
Furthermore, for each C ∈ C, let e ∈ C. Then, for all C ′ ∈ C such that C ⊆ C ′, e ∈ C ′.
For all such C ′, e /∈ zC′ , so e /∈ A. That is, for all C ∈ C, C ∩ A = ∅.

We claim there is a z∗ ∈ Z(A) for which z∩F = X and there is a z∗-bridge C∗ that is
an upper bound for C. We proceed by induction on |X|. The base case |X| = 0 is trivial:
we may choose z∗ = ∅. Since every C ∈ C is contained in the same component N of M ,
N is a z∗-bridge and contains C. Moreover, z∗ ∩ F = ∅ = X, as required.

For the induction step, let x ∈ X and set Y = X \ {x}. There is an element zY of
Z(A) such that (F \ {x}) ∩ zY = Y and there is a zY -bridge that is an upper bound
for C. If x ∈ zY , then we are done. As a second simple case, if there is a circuit z in
A \Y that contains x, then z4 zY is the desired element of Z(A). To see this, note that:
F ∩ z = {x}; F ∩ zY = Y ; z4 zY ⊆ A is disjoint from each element C of C; Lemma 3.1
implies C is contained in some (z4 zY )-bridge; and the fact that C is a chain implies it
is the same (z4 zY )-bridge for all elements of C.

Thus, we may assume that x /∈ zY and there is no circuit in A \ Y containing x;
that is, x is a coloop in A \ Y . Consequently, there is a cocircuit K of M such that
x ∈ K ⊆ X ∪ (E(M) \ A). Since K is finite, the definition of A implies that there is a
C0 ∈ C such that, for all C ∈ C such that C0 ⊆ C, K \A is disjoint from zC . Henceforth,
we redefine C to be the subchain consisting of all those C ∈ C such that C0 ⊆ C.

By definition, for each C ∈ C, X ⊆ zC and, from the preceding paragraph, K∩zC ⊆ A.
Since K ⊆ X∪(E(M)\A), we conclude that K∩zC ⊆ X. On the other hand the induction
gave us zY ⊆ A, so also K ∩ zY ⊆ X.

However, X ∩ zC = X and zY ∩ X = Y , so X ∩ (zC4 zY ) = {x}. Since x ∈ K and
K ∩ (zC4 zY ) ⊆ X, we conclude that K ∩ (zC4 zY ) = {x}. However, this contradicts
Lemma 3.4 (2), proving (1).

For (2), let C be a chain of elements of X (F,X,B). We claim z∗ =
⋂

z∈C z ∈
X (F,X,B), providing the desired lower bound. This is obvious if C has a minimal element,
so we assume it does not.

Let K be any cocircuit of M . Then Lemma 3.4 (2) implies that, for every z ∈ C,
|z ∩K| is even (recall K is finite). Since C is a chain, {z ∩K | z ∈ C} is also a chain. As
K is finite, this new chain has a lower bound. In particular, there is a z ∈ C such that,
for every z′ ∈ C, z ∩ K ⊆ z′ ∩ K. It follows that z∗ ∩ K = z ∩ K, so |z∗ ∩ K| is even.
Since this holds for every cocircuit K, Lemma 3.6 implies z∗ ∈ Z(M).

Evidently, F ∩z∗ = X. For each z ∈ C, there is a z-bridge Bz containing B. As z∗ ⊆ z,
Lemma 3.1 shows there is a z∗-bridge containing Bz and, therefore, B. Consequently,
z∗ ∈ X , as required.

For the “in particular” statement, (1) implies there is a subset B∗C of M and a z1C ∈
Z(M) such that:

it:sameK (i) z1C ∩ F = C ∩K;

it:containsB (ii) B∗C is a z1C-bridge containing BC ; and

(iii) over all z1C satisfying (i) and (ii), B∗C is maximal.

On the other hand, (2) implies there is an element z∗C ∈ Z(M) such that:

it:sameKint (i) z∗C ∩ F = C ∩K;
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it:sameB (ii) B∗C is contained in a z∗C-bridge Bz; and

(iii) over all z∗C satisfying (i) and (ii), z∗C is minimal.

Because the z∗C-bridge Bz is a candidate for the maximal B∗C , Bz = B∗C , so B∗C is a
z∗C-bridge.

Finally, z∗C is a disjoint union of circuits. Only finitely many of those circuits have

non-empty intersection with F ; let these be C1, C2, . . . , Ck and let z =
⋃k

i=1Ci. Evidently,
z ⊆ z∗C and z ∩ F = z∗C ∩ F = X. Lemma 3.1 implies there is a z-bridge B containing
B∗C . Maximality of B∗C implies B = B∗C and minimality of z∗C implies z = z∗C .

5 Peripheral circuits span the cycle space
sc:proofMain

In this section we prove Theorem 2.3. The first part is to prove that, given any two
elements e and f of M , there is a peripheral circuit containing e and not containing f .
The second part is to prove that, when M is countable, the cycle space is generated by
all the peripheral cycles.

As it is helpful for the next section, we provide a slightly more detailed version of
Theorem 2.3 (1).

Theorem 2.3 (1) Let e, f be distinct elements in a 3-connected, cofinitary, binary matroid
M . Then:

1. there is a circuit C in M containing e but not f ; and

2. if C is any circuit containing e but not f , then, letting B be the C-bridge containing
f , there is a peripheral circuit C ′ in M containing e such that the unique C ′-bridge
contains B.

Proof. Since M is 3-connected, M \ f is connected and, therefore, there is a circuit C0

of M \ f containing e; let B0 be the C0-bridge in M containing f . Lemma 4.10 implies
there is a minimax pair (z∗, B∗) for ({e, f}, {e}, B0). We claim that z∗ is a peripheral
circuit containing e but not f .

By definition of Z(M), z∗ is the disjoint union of circuits; let C be the one containing e.
Lemma 3.1, there is a C-bridge B containing B∗. Thus, e ∈ C and f ∈ B, so maximality
of B∗ tells us that B = B∗. On the other hand, C ⊆ z∗, so minimality of z∗ implies
C = z∗. In particular, z∗ is a circuit.

If z∗ is not peripheral, then Theorem 4.1 implies that there a set C of two or three
circuits, with z∗ as their symmetric difference, and for each C ∈ C, there is a C-bridge
BC that properly contains B∗. Choosing C ∈ C to be the one containing e, we see that
BC violates the maximality of B∗.

What remains is to show that, when M is countable, the peripheral cycles generate
the cycle space. In outline, the proof follows the same pattern as Bruhn’s proof for the
Freudenthal compactification of a locally finite graph.
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Theorem 2.3 (2) If M is a countable, 3-connected, cofinitary, binary matroid, then the
peripheral circuits generate the cycle space of M .

Proof. Let z0 ∈ Z(M) and let e1, e2, . . . be an enumeration of the elements of M .
Starting with an arbitrary z0-bridge B0, for each i ≥ 0, we will determine zi ∈ Z(M)
and a zi-bridge Bi such that e1, . . . , ei ∈ Bi and, for i ≥ 1, there are peripheral circuits
P 1
i , . . . , P

ki
i , all disjoint from Bi−1, and zi = zi−14P 1

i 4 · · · 4P ki
i .

It is important to note that, for each i, j with j > i, ei is not in any P `
j , so that the

set of all P `
j is thin and, moreover, the symmetric difference of all the P `

j is z0.
While the intent at each iteration is to grow the bridge, the peripheral circuits need

to be more carefully chosen than has previously been the case. Bruhn introduced the
notion of an extension tree to deal with this and we shall work with a small variation of
his notion.

To be sure that ei is in Bi, we begin with a cocircuit K such that ei ∈ K and
K ∩ Bi−1 6= ∅. (To see that K exists, let f ∈ Bi−1. Since M is connected, there is a
circuit C in M containing ei and f . There is a cocircuit K of M such that K∩C = {ei, f}.)
We will use “extension trees” to determine zi and Bi.

An extension tree with respect to K is a rooted tree T whose vertices are finite se-
quences of subsets of K, together with, for each vertex t of T , a label (CT

t , B
T
t ), such

that:

it:exTrRoot (ET1) for some z ∈ Z(M), K0 = z ∩K, and a z-bridge B, the root r is a sequence
(K0) of length one with label a minimax pair for (K,K0, B);

it:exTrLabel (ET2) for ` > 0, the vertex t = (K`, K`−1, . . . , K0) of T has label (zTt , B
T
t ) that is a

minimax pair for (K,K`, B);

it:exTrIntermediary (ET3) if t′ is a vertex on the path in T from r to t and t′ 6= t, then BT
t′ is a proper

subset of BT
t ;

it:exTrChildSequence (ET4) each vertex (K`, K`−1, . . . , K0) that is not a leaf has at least two, but only
finitely many, children and each child is of the form (Ki

`+1, K`, K`−1, . . . , K0);
and

it:exTrChildProperty (ET5) if (K`, K`−1, . . . , K0) has children (K1
`+1, K`, K`−1, . . . , K0), (K2

`+1, K`, K`−1, . . . ,
K0), . . . , (Kk

`+1, K`, K`−1, . . . , K0), thenK1
`+1, K

2
`+1, . . . , Kk

`+1 are distinct, non-
empty, their symmetric difference is K`, and no proper subset of the Ki

`+1 has
symmetric difference K`.

Suppose that (K`, K`−1, . . . , K0) is a vertex of an extension tree. For 0 ≤ i < j ≤ `,
(zi, Bi) and (zj, Bj) are minimax pairs for (K,Ki, B) and (K,Kj, B), respectively. As
Bi ( Bj, it follows that Ki 6= Kj. That is, the sets Ki, i = 0, 1, 2, . . . , `, are distinct.

Thus, each vertex of an extension tree has at most 2|K| children and each path starting
from the root has at most 2|K| vertices. Therefore, an extension tree has size bounded by
a function of |K|. This is a slight simplification of Bruhn’s extension trees.

Let t1, . . . , tn be the leaves of an extension tree T with respect to K. If each ti =
(Ki, . . . ), then K0 (the root is (K0)) is the symmetric difference K14 · · · 4Kn. If ti
is distance `i from the root r of T , then ti is a sequence of length `i + 1, and all the
intermediate vertices on the rti-path in T are the non-empty tails of the sequence ti.
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The following claim shows that only finitely many peripheral circuits are required to
make K disjoint from the symmetric difference of Z with the peripheral circuits.

cl:clearK Claim 1 Let z ∈ Z(M), B a z-bridge, and K a cocircuit. Then there are periph-
eral circuits P1, . . . , Pk (depending on z, B, and K), each disjoint from B, such that
(P14 · · · 4Pk) ∩K = z ∩K and there is a (z4P14 · · · 4Pk)-bridge containing B.

Proof. We obtain a sequence {Ti} of extension trees with respect to K such that, for
every i, |V (Ti+1)| > |V (Ti)|. As remarked above, |V (Ti)| is bounded by a function of |K|,
so the sequence {Ti} is necessarily finite. The induction below that creates the Ti shows
that, for each leaf ` of the last tree in the sequence, the label of ` consists of a peripheral
circuit C and the unique C-bridge.

Let T0 have the single node (z∩K) and give it as label a minimax pair for (K, z∩K,B).
We obtain the sequence {Ti} of extension trees with respect to K as follows. As long as
some leaf t of Ti has label (zt, Bt) such that zt is not a peripheral circuit, we construct an
extension tree Ti+1 such that |V (Ti+1)| > |V (Ti)|.

Because (zt, Bt) is a minimax pair for (K, zt ∩ K,Bt), zt is a finite disjoint union of
circuits C1, C2, . . . , Ck. The minimality of zt also shows that, for each proper subset J
of {1, 2, . . . , k}, (

⋃
j∈J Cj) ∩K 6= zt ∩K, while (

⋃k
j=1Cj) ∩K = zt ∩K. Thus, each Cj

has non-empty intersection with K. For each j = 1, 2, . . . , k, let Bj be the Cj-bridge
containing Bt.

By way of contradiction, suppose that, for some j ∈ {1, 2, . . . , k}, both Cj is peripheral
and Bj = Bt. Then E(M) is the disjoint union of Cj and Bj and, therefore, zt ⊆ Cj,
yielding the contradiction that zt = Cj.

For those Cj that are not peripheral, we apply Theorem 4.1 to obtain a set Cj of two
or three circuits such that Cj = 4C∈CjC and, for each C ∈ Cj, there is a C-bridge BC

that properly contains Bj. We note that no C ∈ Cj can have C ∩ K = zt ∩ K, as BC

properly contains Bt.
Let C consist of all the Cj that are peripheral and, for those Cj that are not peripheral,

a minimal subset C ′j of Cj such that Cj ∩K is the symmetric difference of the elements of
C ′j with K. This ensures (ET5).

We note that, for C ∈ C, C ∩ K 6= zt ∩ K. Thus, there are at least two, and only
finitely many, elements C of C, each C ∈ C has non-empty intersection with K. This is
(ET4).

For each C ∈ C, let BC be the C-bridge containing B. Note that, if C = Cj is
peripheral, then BC properly contains Bt, while if C ∈ Cj, then BC properly contains Bj,
which in turn contains Bt. We construct Ti+1 from Ti by adding, for each C ∈ C, a child
of t. The new coordinate in the vertex term is C ∩K and its label is any minimax pair
(zC , B

′
C) for (K,C ∩K,BC). This gives (ET3).

Evidently, Ti+1 satisfies (ET1), (ET2). Thus, Ti+1 is an extension tree.
Let T be an extension tree with respect to K such that its leaves have labels (z1, B1)

,(z2, B2), . . . , (zk, Bk). As remarked earlier, z ∩ K = 4k
i=1(zi ∩ K), as claimed. In

particular, this holds for an extension tree with respect to K such that the corresponding
zi are all peripheral cycles, as required.

Finally, each Bi contains B, so B is disjoint from each of z, z1, . . . , zk. Lemma 3.1
implies B is contained in a (z4 z14 · · · 4zk)-bridge, as required.
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Recall that we start with z0 ∈ Z and an enumeration e1, e2, . . . of the ground set of
M . We begin with an arbitrary z0-bridge B0.

Let i ≥ 0 be such that (zi, Bi) satisfies {e1, . . . , ei} ⊆ Bi. We show there exist
peripheral circuits P 1

i , . . . , P
ki
i such that: for zi+1 = zi4P 1

i 4 · · · 4P ki
i , there is a zi+1-

bridge Bi+1 with Bi ⊆ Bi+1 and ei+1 ∈ Bi+1. A trivial first case is if ei+1 ∈ Bi: set
zi+1 = zi and Bi+1 = Bi. Thus, we may assume ei+1 /∈ Bi.

As mentioned at the beginning of the proof, there is a cocircuit Ki of M such that
ei+1 ∈ Ki and Ki ∩ Bi 6= ∅. Claim 1 shows there are peripheral circuits P 1

i , . . . , P
ki
i

such that each P j
i is disjoint from Bi and (P 1

i 4 · · · 4P ki
i ) ∩ Ki = zi ∩ Ki. We set

zi+1 = zi4P 1
i 4 · · · 4P ki

i .
Since zi+1 is disjoint from Bi, Lemma 3.1 implies there is a zi+1-bridge Bi+1 that

contains Bi. The choice of the P j
i implies Ki ∩ zi+1 = ∅. Thus, Ki is a cocircuit of

M/zi+1. Since Ki ∩ Bi 6= ∅ and Bi ⊆ Bi+1, Ki ∩ Bi+1 6= ∅. Thus, Ki ⊆ Bi+1, so
ei+1 ∈ Bi+1, as required.

6 Graph-like continua
sc:continua

A graph-like continuum is a connected, compact topological space G having a totally
disconnected subspace V such that every component of G− V is homeomorphic to R. In
this section, we show that Bruhn’s results extend perfectly to graph-like continua: in a
3-connected graph-like continuum, every edge is in at least two peripheral cycles and the
peripheral cycles span the cycle space.

In this context, a cycle in a graph-like continuum G is a homeomorph of a unit circle
in the Euclidean plane. A spanning tree of G is a connected subspace containing V and
not containing a cycle; these exist and form the bases of a binary matroid [14, Cor. 4].

th:(i)ForContinua Theorem 6.1 Let e be an edge of a 3-connected graph-like continuum G. Then G con-
tains two peripheral cycles whose intersection is e and its ends.

Proof. To prove the existence of a peripheral cycle, it suffices to show that the peripheral
circuits of the cycle matroid M(G) are peripheral cycles of G. If C is peripheral in
M(G), then there is only one C-bridge; that is M(G)/C is a connected matroid. Since
M(G)/C = M(G/C), any two edges in G/C are in a cycle together. Letting c be the
vertex of G/C to which C contracts, this implies that (G/C) − c is an open, connected,
locally connected subset of G/C. In particular, for any two points x, y in G that are
not points of C (including in edges not in C but incident with a vertex of C), there is
an xy-arc in G − C joining x and y. Thus, (G/C) − c is the unique C-bridge in G, as
required.

Let C be a peripheral cycle containing e with unique C-bridge B. The set att(B) is,
by definition, closed in C. Therefore, every point of C − att(B) is in the interior of an
open arc in C. If v ∈ C − att(B) is not in the interior of an edge, then let I be the open
arc in C containing v. Clearly I − v has two components; each either contains a vertex
or is contained in an edge of G. Either way, we get a 2-cut in G with v on one side,
contradicting the assumption that G is 3-connected.
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It follows that each vertex of G incident with e is an attachment of B, so there is a
C-avoiding arc A ⊆ B joining these vertices. Therefore, A + e is a cycle C ′ such that
C − e is contained in a C ′-bridge B′.

For the second peripheral cycle, we apply the revised version of Theorem 2.3 (1) as
stated in Section 5 to C ′ and B′. Thus, there is a peripheral cycle C ′′ in G such that B′,
and therefore C − e, is contained in the unique C ′′-bridge.

We conclude with the generalization of Tutte’s cycle space theorem to graph-like con-
tinua.

th:(ii)ForContinua Theorem 6.2 Let G be a 3-connected graph-like continuum. Then the peripheral cycles
of G generate the cycle space of G.

For this theorem, there is actually nothing to prove. Thomassen and Vella [11] prove
there are only countably many edges in a graph-like continuum. The peripheral circuits
of M(G) are peripheral cycles of G. Since the two cycle spaces are the same and the
peripheral circuits of M(G) span the cycle space, the peripheral cycles of G span the
cycle space.
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