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Abstract. We state a sufficient condition for the square of a locally finite
graph to contain a Hamilton circle, extending a result of Harary and Schwenk

about finite graphs.

We also give an alternative proof of an extension to locally finite graphs
of the result of Chartrand and Harary that a finite graph not containing K4

or K2,3 as a minor is Hamiltonian if and only if it is 2-connected. We show

furthermore that, if a Hamilton circle exists in such a graph, then it is unique
and spanned by the 2-contractible edges.

The third result of this paper is a construction of a graph which answers

positively the question of Mohar whether regular infinite graphs with a unique
Hamilton circle exist.

1. Introduction

Results about Hamilton cycles in finite graphs can be extended to locally finite
graphs in the following way. For a locally finite connected graph G we consider
its Freudenthal compactification |G| [7, 8]. This is a topological space obtained by
taking G, seen as a 1-complex, and adding the ends of G, which are the equivalence
classes of the rays of G under the relation of being inseparable by finitely many
vertices, as additional points. Extending the notion of cycles, we define circles [9,
10] in |G| as homeomorphic images of the unit circle S1 ⊆ R2 in |G|, and we call
them Hamilton circles of G, if they contain all vertices of G. As a consequence of
being a closed subspace of |G|, Hamilton circles also contain all ends of G. Following
this notion we call G Hamiltonian if there is a Hamilton circle in |G|.

One of the first and probably one of the deepest results about Hamilton circles
was Georgakopoulos’s extension of Fleischner’s theorem to locally finite graphs.

Theorem 1.1. [13] The square of any finite 2-connected graph is Hamiltonian.

Theorem 1.2. [14, Thm. 3] The square of any locally finite 2-connected graph is
Hamiltonian.

Following this breakthrough, more Hamiltonicity theorems have been extended to
locally finite graphs in this way [1, 4, 14, 15, 18, 19, 21].

The purpose of this paper is to extend two more Hamiltonicity results about
finite graphs to locally finite ones and to construct a graph which shows that another
result does not extend.

The first result we consider is a corollary of the following theorem of Harary and
Schwenk. A caterpillar is a tree such that after deleting its leaves only a path is
left. Let S(K1,3) denote the graph obtained by taking the star with three leaves,
K1,3, and subdividing each edge once.

Theorem 1.3. [16, Thm. 1] Let T be a finite tree with at least three vertices. Then
the following statements are equivalent:

(i) T 2 is Hamiltonian.
(ii) T does not contain S(K1,3) as a subgraph.
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(iii) T is a caterpillar.

Theorem 1.3 has the following obvious corollary.

Corollary 1.4. [16] The square of any finite graph G on at least three vertices
such that G contains a spanning caterpillar is Hamiltonian.

While the proof of Corollary 1.4 is immediate, the proof of the following exten-
sion of it, which is the first result of this paper, needs more work. We call the
closure H in |G| of a subgraph H of G a standard subspace of |G|. Extending
the notion of trees, we define topological trees as topologically connected standard
subspaces not containing any circles. As an analogue of a path, we define an arc
as a homeomorphic image of the unit interval [0, 1] ⊆ R in |G|. Note that for stan-
dard subspaces being topologically connected is equivalent to being arc-connected
by Lemma 2.4. For our extension we adapt the notion of a caterpillar to the space
|G| and work with topological caterpillars, which are topological trees T such that
T − L is an arc, where T is a forest in G and L denotes the set of vertices of degree
1 in T .

Theorem 1.5. The square of any locally finite connected graph G on at least three
vertices such that |G| contains a spanning topological caterpillar is Hamiltonian.

The other two results of this paper concern the uniqueness of Hamilton circles.
The first is about finite outerplanar graphs. These are finite graphs that can be
embedded in the plane so that all vertices lie on the boundary of a common face.
Clearly, finite outerplanar graphs have a Hamilton cycle if and only if they are
2-connected. It is also easy to see that any finite 2-connected outerplanar graph
has a unique Hamilton cycle, which consists precisely of the 2-contractible edges,
i.e., those edges each of whose contraction leaves the graph 2-connected (except for
the case where the graph is a K3), as pointed out by Sys lo. We summarise this
with the following proposition.

Proposition 1.6. (i) A finite outerplanar graph is Hamiltonian if and only if it
is 2-connected.

(ii) [26, Thm. 6] Finite 2-connected outerplanar graphs have a unique Hamilton
cycle, which consists precisely of the 2-contractible edges unless the graph is
isomorphic to a K3.

Finite outerplanar graphs can also be characterised by forbidden minors, which
was done by Chartrand and Harary.

Theorem 1.7. [6, Thm. 1] A finite graph is outerplanar if and only if it contains
neither a K4 nor a K2,3 as a minor.1

In the light of Theorem 1.7 we first prove the following extension of statement (i)
of Proposition 1.6 to locally finite graphs.

Theorem 1.8. Let G be a locally finite connected graph. Then the following state-
ments are equivalent:

(i) G is 2-connected and contains neither K4 nor K2,3 as a minor.1

(ii) |G| has a Hamilton circle C and there exists an embedding of |G| into a closed
disk such that C is mapped onto the boundary of the disk.

Furthermore, if statements (i) and (ii) hold, then |G| has a unique Hamilton circle.

From this we then obtain the following corollary, which extends statement (ii) of
Proposition 1.6.

1Actually these statements can be strengthened a little bit by replacing the part about not
containing a K4 as a minor by not containing it as a subgraph. This follows from Lemma 4.1.



3

Corollary 1.9. The edges contained in the Hamilton circle of a locally finite
2-connected graph not containing K4 or K2,3 as a minor are precisely the
2-contractible edges of the graph unless the graph is isomorphic to a K3.

We should note here that parts of Theorem 1.8 and Corollary 1.9 are already
known. Chan [5, Thm. 20 with Thm. 27] proved that a locally finite 2-connected
graph not containing K4 or K2,3 as a minor has a Hamilton circle that contains the
2-contractible edges of the graph, but no further ones. He deduces this from other
general results about 2-contractible edges in locally finite 2-connected graphs. In
our proof, however, we directly construct the Hamilton circle and show its unique-
ness without working with 2-contractible edges. Afterwards, we deduce Corol-
lary 1.9.

Our third result is related to the following conjecture Sheehan made for finite
graphs.

Conjecture 1.10. [25] For every r > 2 there is no finite r-regular graph with a
unique Hamilton cycle.

This conjecture is still open, but some partial results have been proved [17, 28, 29].
For r = 3 the statement of the conjecture was verified by Smith first. This was
noted in an article of Tutte [30] where the statement for r = 3 was published for
the first time.

For infinite graphs Conjecture 1.10 is not true in this formulation. It fails already
with r = 3. To see this consider the graph depicted in Figure 1, called the double
ladder.

Figure 1. The double ladder

It is easy to check that the double ladder has a unique Hamilton circle, but all ver-
tices have degree 3. Mohar has modified the statement of the conjecture and raised
the following question. To state them we need to define two terms. For a graph
G we call the equivalence classes of rays under the relation of being inseparable
by finitely many vertices the ends of G. We define the vertex- or edge-degree of
an end ω to be the supremum of the number of vertex- or edge-disjoint rays in ω,
respectively. In particular, ends of a graph G can have infinite degree even if G is
locally finite.

Question 1. [22] Does an infinite graph exist that has a unique Hamilton circle
and degree r > 2 at every vertex as well as vertex-degree r at every end?

Our result shows in contrast to Conjecture 1.10 and its known cases that there
are infinite graphs having the same degree at every vertex and end while being
Hamiltonian in a unique way.

Theorem 1.11. There exists an infinite connected graph G with a unique Hamilton
circle that has degree 3 at every vertex and vertex- as well as edge-degree 3 at every
end.

So with Theorem 1.11 we answer Question 1 positively and therefore disprove the
modified version of Conjecture 1.10 for infinite graphs in the way Mohar suggested
by considering degrees of both vertices and ends.
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The rest of this paper is structured as follows. In Section 2 we establish the
notation and terminology we need for the rest of the paper. We also list some
lemmas that will serve as auxiliary tools for the proofs of the main theorems.
Section 3 is dedicated to Theorem 1.5 where at the beginning of that section we
discuss how one can sensibly extend Corollary 1.4 and which problems arise when
we try to extend Theorem 1.3 in a similar way. In Section 4 we present a proof of
Theorem 1.8 and describe afterwards how a different proof of this theorem works
that is copying the ideas of a proof of statement (i) of Proposition 1.6. The last
section, Section 5, contains the construction of a graph witnessing Theorem 1.11.

2. Preliminaries

When we mention a graph in this paper we always mean an undirected and
simple graph. For basic facts and notation about finite as well as infinite graphs
we refer the reader to [7]. For a broader survey about locally finite graphs and a
topological approach to them see [8].

Now we list important notions and concepts that we shall need in this paper
followed by useful statements about them. In a graph G with a vertex v we denote
by δ(v) the set of edges incident with v in G. Similar for a subgraph H of G or just
its vertex set we denote by δ(H) the set of edges that have only one endvertex in H.
Although formally different, we will not always distinguish between a cut δ(H) and
the partition (V (H), V (G) \ V (H)) it is induced by. For two vertices v, w ∈ V (G)
let dG(v, w) denote the distance between v and w in G.

We call a finite graph outerplanar if it can be embedded in the plane such that
all vertices lie on the boundary of a common face.

For a graph G and an integer k ≥ 2 we define the k-th power of G as the
graph obtained by taking G and adding additional edges vw for any two vertices
v, w ∈ V (G) such that 1 < dG(v, w) ≤ k.

A tree is called a caterpillar if after the deletion of its leaves only a path is left.
We denote by S(K1,3) the graph obtained by taking the star with three leaves

K1,3 and subdividing each edge once.
We call a graph locally finite if each vertex has finite degree.
A one-way infinite path in a graph G is called a ray of G, while we call a two-way

infinite path in G a double ray of G. An equivalence relation can be defined on the
set of rays of a graph G by saying that two rays are equivalent if and only if they
cannot be separated by finitely many vertices in G. The equivalence classes of this
relation are called the ends of G.

For a locally finite and connected graph G we can endow G together with its
ends with a topology that yields the space |G|. A precise definition of |G| can be
found in [7, Ch. 8.5]. Let us point out here that a ray of G converges in |G| to the
end of G it is contained in. Another way of describing |G| is to endow G with the
topology of a 1-complex and then forming the Freudenthal compactification [11].

For a point set X in |G|, we denote its closure in |G| by X. We shall often write
M for some M that is a set of edges or a subgraph of G. In this case we implicitly
assume to first identify M with the set of points in |G| which corresponds to the
edges and vertices that are contained in M .

We call a subspace Z of |G| standard if Z = H for a subgraph H of G.
A circle in |G| is the image of a homeomorphism having the unit circle S1 in R2

as domain and mapping into |G|. Note that all finite cycles of a locally finite graph
G correspond to circles in |G|, but there might also be infinite subgraphs H of G
such that H is a circle in |G|. Similar to finite graphs we call a locally finite graph
G Hamiltonian if there exists a circle in |G| which contains all vertices of G. Such
circles are called Hamilton circles of G.
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We call the image of a homeomorphism with the closed real unit interval [0, 1] as
domain and mapping into |G| an arc in |G|. Given an arc α in |G|, we call a point x
of |G| an endpoint of α if 0 or 1 is mapped to x by the homeomorphism defining α.
Similar as for paths, we call an arc an x–y arc if x and y are the endpoints of the
arc. The possibly simplest example of a nontrivial arc is a ray together with the end
it converges to. However, the structure of arcs is more complicated in general and
they might contain up to 2ℵ0 many ends. We call a subspace X of |G| arc-connected
if for any two points x and y of X there is an x–y arc in X.

Using the notions of circles and arc-connectedness we now extend trees in a simi-
lar topological way. We call an arc-connected standard subspace of |G| a topological
tree if it does not contain any circle. Generalizing the definition of caterpillars, we
call a topological tree T in |G| a topological caterpillar if T − L is an arc, where T
is a forest in G and L denotes the set of all leaves of T , i.e., vertices of degree 1
in T .

Now let ω be an end of a locally finite graph G. We define the vertex- or edge-
degree of ω in G as the supremum of the number of vertex- or edge-disjoint rays
in G, respectively, which are contained in ω. By this definition ends may have
infinite vertex- or edge-degree. Similar we define the vertex- or edge-degree of ω
in a standard subspace X of G as the supremum of vertex- or edge-disjoint arcs
in X, respectively, that have ω as an endpoint. We should mention here that
the supremum is actually an attained maximum in both definitions. Furthermore,
these definitions coincide when we take X = |G|. The proofs of these statements
are nontrivial and since it is enough for us to work with the supremum, we will not
go into detail here.

We make one last definition with respect to end degrees which allows us to
distinguish the parity of degrees of ends when they are infinite. The idea of this
definition is due to Bruhn and Stein [3]. We call the vertex- or edge-degree of an
end ω ofG in a standard subspaceX of |G| even if there is a finite set S ⊆ V (G) such
that for every finite set S′ ⊆ V (G) with S ⊆ S′ the maximum number of vertex-
or edge-disjoint arcs in X, respectively, whose endpoints are ω and some s ∈ S′ is
even. Otherwise, we call the vertex- or edge-degree of ω in X, respectively, odd.

Next we collect some useful statements about the space |G| for a locally finite
graph G.

Proposition 2.1. [7, Prop. 8.5.1] If G is a locally finite connected graph, then |G|
is a compact Hausdorff space.

Having Proposition 2.1 in mind the following basic lemma helps us to work with
continuous maps and verify homeomorphisms, for example when considering circles
or arcs.

Lemma 2.2. Let X be a compact space, Y be a Hausdorff space and f : X −→ Y
be a continuous injection. Then f−1 is continuous too.

The following lemma tells us an important combinatorial property of arcs. To
state the lemma more easily, let F̊ denote the set of inner points of edges e ∈ F in
|G| for an edge set F ⊆ E(G).

Lemma 2.3. [7, Lemma 8.5.3] Let G be a locally finite connected graph and
F ⊆ E(G) be a cut with sides V1 and V2.

(i) If F is finite, then V1∩V2 = ∅, and there is no arc in |G|\F̊ with one endpoint
in V1 and the other in V2.

(ii) If F is infinite, then V1 ∩ V2 6= ∅, and there may be such an arc.
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The next lemma ensures that connectedness and arc-connectedness are equiva-
lent for the spaces we are mostly interested in, namely standard subspaces, which
are closed by definition.

Lemma 2.4. [12, Thm. 2.6] If G is a locally finite connected graph, then every
closed topologically connected subset of |G| is arc-connected.

Continuing with the idea of Lemma 2.3 of characterising important topological
properties of the space |G| in terms of combinatorial ones, the following lemma
about arc-connected subspaces was obtained, which will be convenient for us to use
in a proof later on.

Lemma 2.5. [7, Lemma 8.5.5] If G is a locally finite connected graph, then a
standard subspace of |G| is topologically connected (equivalently: arc-connected) if
and only if it contains an edge from every finite cut of G of which it meets both
sides.

The next theorem is actually part of a bigger one containing more equivalent
statements. Since we shall need only one equivalence, we reduced it to the following
formulation. For us it will be helpful to check or at least bound the degree of an
end in a standard subspace just by looking at finite cuts instead of dealing with the
homeomorphisms that actually define the relevant arcs.

Theorem 2.6. [8, Thm. 2.5] Let G be a locally finite connected graph. Then the
following are equivalent for D ⊆ E(G):

(i) D meets every finite cut in an even number of edges.
(ii) Every vertex and every end of G has even degree or edge-degree in D, respec-

tively.

The following lemma gives us a nice combinatorial description of circles and will
be useful especially in combination with Theorem2.6 and Lemma 2.5.

Lemma 2.7. [3, Prop. 3] Let C be a subgraph of a locally finite connected graph G.
Then C is a circle if and only if C is topologically connected and every vertex or
end x of G with x ∈ C has degree or edge-degree 2 in C, respectively.

We obtain the following corollary, which is a basic fact for finite graphs.

Corollary 2.8. Every locally finite connected Hamiltonian graph is 2-connected.

Proof. Let G be a locally finite connected Hamiltonian graph and suppose for a
contradiction that it is not 2-connected. Fix a subgraph C of G whose closure C
is a Hamilton circle of G and a cut vertex v of G. Let K1 and K2 be two different
components of G − v. By Theorem 2.6 the circle C uses evenly many edges of
each of the finite cuts δ(K1) and δ(K2). Since C is a Hamilton circle and therefore
topologically connected, we get also that it uses at least two edges of each of these
cuts by Lemma 2.5. This implies that v has degree at least 4 in C which contradicts
Lemma 2.7. �

3. Topological caterpillars

In this section we close a gap with respect to the general question when the k-th
power of a graph has a Hamilton circle. Let us begin by summarizing the results
in this field. We start with finite graphs. The first result to mention is the famous
theorem of Fleischner, Theorem 1.1, which deals with 2-connected graphs.

For higher powers of graphs the following theorem captures the whole situation.

Theorem 3.1. [20, 24] The cube of any finite connected graph on at least three
vertices is Hamiltonian.
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These theorems leave the question whether and when one can weaken the as-
sumption of being 2-connected and still maintain the property of being Hamiltonian.
Theorem 1.3 gives an answer to this question.

Now let us turn our attention towards locally finite infinite graphs. As mentioned
in the introduction, Georgakopoulos has completely generalized Theorem 1.1 to
locally finite graphs by proving Theorem 1.2. Furthermore, he also gave a complete
generalization of Theorem 3.1 to locally finite graphs with the following theorem.

Theorem 3.2. [14, Thm. 5] The cube of any locally finite connected graph on at
least three vertices is Hamiltonian.

What is left and what we do in the rest of this section is to prove lemmas about
locally finite graphs covering implications similar to those in Theorem 1.3, and
mainly Theorem 1.5, which extends Corollary 1.4 to locally finite graphs. Note
first that Theorem 1.3 remains true if we consider locally finite infinite trees T and
Hamilton circles in |T 2| where the definition of a caterpillar should now include
rays and double rays. Actually the same proof can be used to show this.

Corollary 1.4 is also true for locally finite graphs, but its proof is not trivial
anymore. The problem is that for a spanning tree T of a locally finite connected
graph G the topological spaces |T 2| and |G2| might differ not only in inner points
of edges but also in ends. More precisely, there might be two equivalent rays in G2

that belong to different ends of T 2. So the Hamiltonicity of T 2 does not directly
imply the one of G2. However, for T being a spanning caterpillar of G, this problem
can only occur when T contains a double ray such that all subrays belong to the
same end of G. Then the same construction as in the proof for the implication
from (iii) to (i) of Theorem 1.3 can be used to build a spanning double ray in T 2

which ends up being a Hamilton circle in |G2|. The idea for the construction which
is used for this implication is covered in Lemma 3.4.

For an infinite graph the assumption of having a spanning caterpillar is quite
restrictive. Such graphs can especially have at most two ends since having three
ends would imply that the spanning caterpillar must contain three disjoint rays,
which is impossible because it would force the caterpillar to contain a S(K1,3). For
this reason we have defined a topological version of a caterpillar, which allows graphs
with arbitrary many ends to have a spanning one and yields with Theorem 1.5 an
extension of Corollary 1.4 for locally finite graphs. We recall the definition of a
topological caterpillar T being a topological tree such that T − L is an arc, where
T is a forest in G and L denotes the set of all leaves of T , i.e., vertices of degree 1
in T .

The following basic lemma about topological caterpillars is easy to show and so
we omit its proof. It is an analogue of the equivalence of the statements (ii) and (iii)
of Theorem 1.3 for topological caterpillars.

Lemma 3.3. A topological tree T is a caterpillar if and only if T does neither
contain S(K1,3) as a subgraph nor an end of vertex-degree at least 3 in it.

Note that we do not get a full extension of Theorem 1.3 to locally finite graphs
because |T 2| has a Hamilton circle if and only if T is a topological caterpillar with
at most two ends, as noted above.

We continue with another basic lemma, which covers the idea of the proof that
statement (iii) of Theorem 1.3 implies statement (i) of Theorem 1.3. We shall also
need this in the proof of Theorem 1.5.

Lemma 3.4. Let T be a topological caterpillar in |G| for a locally finite connected
graph G. Then there exists a partition of the vertices of T and a linear order <T

of the partition classes such that:
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(i) Any two different vertices belonging to the same partition class have distance 2
from each other in T .

(ii) For consecutive partition classes Q, R and S with Q <T R <T S there is a
unique vertex in Q that is not a leaf of T and has distance 2 to every vertex
of S.

Proof. If T has only two vertices, the statement is obvious. So we may assume
that T has at least three vertices. Let L be the set of leaves of T . We know
by definition that T − L is an arc A. This arc induces a linear order <A of
the vertices of V (T ) − L. Using this linear order we define the desired partition
of V (T ). For consecutive vertices v, w ∈ V (T ) − L with v <A w we define the set
Pw = {w} ∪ (NT (v) ∩ L) (cf. Figure 2). If A has a maximal element m with respect
to <A, we define an additional set P+ = NT (m) ∩ L. Should A have a minimal
element s with respect to <A, we define another additional set P− = {s}. By
definition of topological caterpillars, the sets Pw together with P+ and P− form a
partition of V (T ) where all vertices in a partition class have distance 2 in T . This
proves part (i).

Note for statement (ii) that the linear order <A induces a linear order <T on the
partition classes in the following way. For vertices v, w ∈ V (T ) − L with v <A w
set Pv <T Pw. If P+ (resp. P−) exists, set Pv <T P+ (resp. P− <T Pv) for
every v ∈ V (T ) − L. Now the definition of the partition classes ensures that for
consecutive partition classes Pu, Pv and Pw with Pu <T Pv <T Pw the vertex u
has distance 2 in T to every vertex of Pw. For Pu = P− the same is true with the
unique vertex s ∈ P− by definition. �

v w

Pw

Figure 2. Partition classes as in Lemma 3.4.

Referring to statement (ii) of Lemma 3.4 let us call the vertex in a partition
class Q that is not a leaf of T the jumping vertex of Q.

We still need a bit of notation and preparation work before we can prove the
main theorem of this section.

Let T be a topological spanning caterpillar of a locally finite graph G. Next
take a partition and a linear order <T on its classes as in Lemma 3.4. For a ver-
tex v ∈ V (G) let Vv be the partition class containing v. For two vertices v, w ∈ V (G)
with Vv ≤T Vw let Ivw =

⋃
{Vu ; Vv ≤T Vu ≤T Vw}.

Now let T denote a topological caterpillar with only one graph-theoretical compo-
nent. Let (X1,X2) be a bipartition of the partition classes Vv such that consecutive
classes with respect to ≤T lie not both in X1 or X2. Furthermore, let v, w ∈ V (T )
be two vertices, say with Vv ≤T Vw, whose distance is even in T . We define a (v, w)
square string in T 2 as a path in T 2 which uses only vertices of partitions that lie
in the bipartition class Xi in which Vv and Vw lie and which contains all vertices of
partition classes Vu ∈ Xi for Vv <T Vu <T Vw, but only v and w from Vv and Vw,
respectively. Similarly, we define (v, w], [v, w) and [v, w] square strings in T 2, but
with the difference that they should also contain all vertices of Vw, Vv and Vv ∪Vw,
respectively. We call the first two types of square strings that were defined left
open and the latter ones left closed. The notion of being right open and right closed
is analogously defined. Lemma 3.4 contains the idea of how to construct square
strings.
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The next lemma gives us two possibilities to decompose a graph-theoretical com-
ponent of a topological caterpillar T that contains a double ray into two, possibly
infinite, paths of T 2. Later on we will use these decompositions to connect the parts
of all graph-theoretical components of T in a certain way such that a Hamilton circle
of G2 is formed in the end.

Lemma 3.5. For a locally finite connected graph G, let T be a topological caterpillar
in |G| with only one graph-theoretical component and which contains a double ray.
Furthermore, let v and w be vertices of T with Vv ≤T Vw.

(i) If dT (v, w) is even, then V (T ) can disjointly be decomposed into a v–w path
and a double ray of T 2 as well as into two rays Rv and Rw of T 2 with end-
vertices v and w, respectively, such that Rv ∩ Vx = ∅ for every Vx >T Vw and
Rw ∩ Vy = ∅ for every Vy <T Vv.

(ii) If dT (v, w) is odd, then V (T ) can disjointly be decomposed into two rays Rv

and Rw of T 2 with endvertices v and w, respectively, such that Rv ∩ Vx = ∅
for every Vx >T Vw and Rw ∩ Vy = ∅ for every Vy <T Vv as well as into
two rays Rv and Rw of T 2 with endvertices v and w, respectively, such that
Rv ∩ Vx = ∅ for every Vx <T Vv and Rw ∩ Vy = ∅ for every Vy >T Vw.

Proof. We sketch the proof of statement (i). As v–w path for the first decomposi-
tion, we take a square string Svw in T 2 with v and w as endvertices. Depending
whether v is a jumping vertex or not we take a left open or closed square string,
respectively. Depending on w we take a right closed or open square string if w is a
jumping vertex or not, respectively. Since dT (v, w) is even, we can find such square
strings. To construct a corresponding double ray start with a (v−, w−] square string
in T 2 where v− and w− denote the jumping vertices in the partition classes pro-
ceeding Vv and Vw, respectively. Using Lemma 3.4 the (v−, w−] square string can
be extend to a desired double ray containing all vertices of T that do not lie in Svw.

For the second decomposition, we start for the definition of Rv with a square
string Sv having v as one endvertex. For the definition of Sv we distinguish four
cases. If v and w are jumping vertices, we set Sv as a path obtained by taking a
(v, w] square string and deleting w from it. If v is not a jumping vertex, but w
is one, take a [v, w] square string, delete w from it and set the remaining path
as Sv. In the case that v is a jumping vertex, but w is none, Sv is defined as
a path obtained from a deleting w from a (v, w) square string. In the case that
neither v nor w is a jumping vertex, we take a [v, w) square string, delete w from
it and set the remaining path as Sv. Next we extend Sv using a square string to
a path with v as one endvertex containing all vertices in partition classes Vu with
Vv <T Vu <T Vw. We extend the remaining path to a ray that contains also all
vertices in partition classes Vu with Vu ≤T Vv, but none from partition classes Vx
for Vx >T Vw. The desired second ray Rw can now easily be build in T 2 −Rv.

The decompositions for statement (ii) are defined in a very similar way (cf. Fig-
ure 3). Therefore, we omit their definitions here. �

The following lemma is essential for connecting parts of decomposed graph-
theoretical components of T . Especially, here we make use of the structure of |G|
instead of arguing only inside of T . This allows us basically to build a Hamilton
circle using square strings and to “jump over” an end to avoid producing an edge-
degree bigger than 2 at that end.

Lemma 3.6. Let T be a topological spanning caterpillar of a locally finite connected
graph G and v, w ∈ V (G) where Vv ≤T Vw. Then for any two vertices x, y with
Vv <T Vx <T Vw and Vv <T Vy <T Vw there exists an x–y path in G[Ivw].
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v w

v w

v w

v w

Figure 3. Examples for decompositions as in Lemma 3.5.

Proof. Let the vertices v, w, x and y be as in the statement of the lemma. Now
suppose for a contradiction that there is no x–y path in G[Ivw]. Then we can find
an empty cut D of G[Ivw] with sides L and R such that x and y lie on different sides

of it. Since T ∩G[Ivw] contains an x–y arc, there must exist an end ω ∈ L ∩ R.
By definition, T contains an arc with all vertices of G that are no leaves in T ,
and every vertex of T is only adjacent to finitely many leaves, because G is locally
finite. Therefore, we can find an open set O in |G| containing ω, but no vertex of
V (G) \ Ivw. Inside O we can find a basic open set B around ω, which contains
a graph-theoretical connected subgraph with all vertices of B. Now B contains
vertices of R and L as well as a path between them, which must then also exist in
G[Ivw]. Such a path would have to cross D contradicting the assumption that D is
an empty cut in G[Ivw]. �

To figure out which parts of which decomposed graph-theoretical components
of T we can connect such that afterwards we are still able to extend this construction
to a Hamilton circle of G, we shall use the next lemma. For the formulation of the
lemma, we use the notion of splits.

Let G be a multigraph and v ∈ V (G). Furthermore, let E1, E2 ⊆ δ(v) such that
E1 ∪ E2 = δ(v) where Ei 6= ∅ for i ∈ {1, 2}. Now we call a multigraph G′ a v-split
of G if

V (G′) = V (G) \ {v} ∪ {v1, v2}
with v1, v2 /∈ V (G) and

E(G′) = E(G− v) ∪ {v1w ; wv ∈ E1} ∪ {v2u ; uv ∈ E2}.

We call the vertices v1 and v2 replacement vertices of v.

Lemma 3.7. Let G be a finite Eulerian multigraph and v be a vertex of degree 4
in G. Then there exist two v-splits G1 and G2 of G which are Eulerian too.

Proof. There are 1
2 ·
(
4
2

)
= 3 possible non-isomorphic v-splits of G such that v1

and v2 have degree 2 in the v-split. Assume that one of them, call it G′, is not
Eulerian. This can only be the case if G′ is not connected. Let (A,B) be an empty
cut of G′. Note that G − v has precisely two components C1 and C2 since G is
Eulerian and v has degree 4 in G. So C1 and C2 must lie in different sides of
(A,B), say C1 ⊆ A. Since G was connected, we get that v1 and v2 lie in different



11

sides of the cut (A,B), say v1 ∈ A. Therefore, A = C1 ∪ {v1} and B = C2 ∪ {v2}.
If δ(v) = {vw1, vw2, vw3, vw4} and {v1w1, v1w2}, {v2w3, v2w4} ⊆ E(G′), set G1 and
G2 as v-splits ofG such that the inclusions {v1w1, v1w3}, {v2w2, v2w4} ⊆ E(G1) and
{v1w1, v1w4}, {v2w2, v2w3} ⊆ E(G2) hold. Now G1 and G2 are Eulerian, because
every vertex has even degree in each of those multigraphs and both multigraphs
are connected. To see the latter statement, note that any empty cut (X,Y ) of Gi

for i ∈ {1, 2} would need to have C1 and C2 on different sides. If also v1 and v2 are
on different sides, we would have (A,B) = (X,Y ), which does not define an empty
cut of Gi by definition of Gi. But having v1 and v2 on the same side of the cut
(X,Y ), this would induce an empty cut in G after identifying v1 and v2 in Gi and
yield a contradiction to the assumption that G is Eulerian and therefore especially
connected. �

Now we have all tools together to proof Theorem 1.5.

Proof of Theorem 1.5. Let G be a graph as in the statement of the theorem and
let T be a topological spanning caterpillar of G. We fix a partition of V (G) and
an order ≤T on it as in Lemma 3.4 with respect to T where Vv shall denote the
partition class containing a vertex v ∈ V (G). We may assume by Corollary 1.4
that G has infinitely many vertices. Now let us fix an enumeration of the vertices,
which is possible since every locally finite connected graph is countable. We build
a Hamilton circle of G2 inductively in at most ω many steps where we have two
disjoint arcs Ai and Bi in |G2| in each step i ∈ N whose endpoints are vertices of
subgraphs Ai and Bi of G2, respectively. Let ai` and air (resp. bi` and bir) denote

the endvertices of Ai (resp. Bi) such that Vai
`
≤T Vai

r
(resp. Vbi` ≤T Vbir ). For the

construction we ensure the following properties in each step i ∈ N:

(1) The vertices air and bir are the jumping vertices of Vai
r

and Vbir , respectively.
(2) The partition sets Vai

`
and Vbi` as well as Vai

r
and Vbir are consecutive with

respect to ≤T .
(3) If Vv∩V (Ai∪Bi) 6= ∅ holds for any vertex v ∈ V (G), then Vv ⊆ V (Ai∪Bi).
(4) If for any vertex v ∈ V (G) there are vertices u,w ∈ V (G) such that

Vu, Vw ⊆ V (Ai ∪Bi) and Vu ≤T Vv ≤T Vw, then Vv ⊆ V (Ai ∪Bi) is true.
(5) Ai∩Ai+1 = Ai and Bi∩Bi+1 = Bi, but V (Ai+1∪Bi+1) contains the least

vertex with respect to the fixed vertex enumeration that was not already
contained in V (Ai ∪Bi).

We start the construction by picking two adjacent vertices t and t′ in T that are
no leaves in T . Then Vt and V ′t are consecutive with respect to ≤T . Since G2[Vt]
and G2[Vt′ ] are cliques by statement (i) of Lemma 3.4, we set A1 to be a Hamilton
path of G2[Vt] with endvertex t and B1 to be one of G2[Vt′ ] with endvertex t′. This
completes the first step of the construction.

Suppose we have already constructed An and Bn. Let v ∈ V (G) be the least
vertex with respect to the fixed vertex enumeration that is not already contained
in V (An∪Bn). We know by our construction that either Vv <T Vx or Vv >T Vx for
every vertex x ∈ V (An∪Bn). Consider the second case, since the argument for the
first works analogously. Let v′ ∈ V (G) be a vertex such that Vv′ is the predecessor
of Vv with respect to ≤T and w ∈ V (G) be a vertex such that Vw >T Van

r
, Vbnr

and Vw is the successor of either Van
r

or Vbnr , say Vbnr . By Lemma 3.6 there exists
a v′–w path P in G[Ibnr ,v]. We may assume that E(P ) \ E(T ) does not contain
an edge whose endvertices lie in the same graph-theoretical component of T and
that every graph-theoretical component of T is incident with at most two edges
of E(P ) \ E(T ). Otherwise we could use square strings to reduce the situation to
the assumptions we made.
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Next we inductively define a finite sequence of finite Eulerian auxiliary multi-
graphs H1, . . . ,Hk for some k ∈ N where every vertex has either degree 2 or 4 in
each of these multigraphs and we obtain Hi+1 from Hi as a h-split for some vertex
h ∈ V (Hi) of degree 4 until we end up with a multigraph Hk that is a cycle.

As V (H1) take the set of all graph-theoretical components T1, . . . , Tn of T that
are incident with an edge of E(P ) \ E(T ). Two vertices Ti and Tj are adjacent if
either there is an edge in E(P )\E(T ) whose endpoints lie in Ti and Tj or there is a

ti–tj arc A in T for a subgraph A of T and vertices ti ∈ V (Ti) and tj ∈ V (Tj) such

that no endvertex of any edge of E(P ) \ E(T ) lies in V (A) ∪NT (A). Since T is a
topological spanning caterpillar, the multigraph H1 is connected and by definition
of P it is also Eulerian where all vertices have either degree 2 or 4.

Now suppose we have already constructed Hi and there exists a vertex h ∈ V (Hi)
with degree 4 in Hi. Since Hi is obtained from H1 via repeated splitting operations,
we know that h is incident with two edges d, e in Hi that correspond to edges dP , eP
of E(P ) \ E(T ) and with two edges f, g that correspond to arcs Af and Ag, respec-

tively, of T for subgraphs Af and Ag of T such that neither V (Af ) ∪NT (Af ) nor
V (Ag) ∪ NT (Ag) contain an endvertex of an edge of E(P ) \ E(T ). Let Tj be the
graph-theoretical component of T in which each of dP and eP has an endvertex,
say wd and we, respectively. Here we consider two cases:

Case 1. The distance in Tj between wd and we is even.

In this case we define Hi+1 as a Eulerian h-split of Hi such that the edge in Hi+1

corresponding to d is either adjacent to the one corresponding to e or to the one
corresponding to either f or g with the property that the path in Tj connecting wd

and Af (resp. Ag) does not contain we. This is possible since two of the three
possible non-isomorphic v-splits of Hi are Eulerian by Lemma 3.7.

Case 2. The distance in Tj between wd and we is odd.

Here we set Hi+1 as a Eulerian h-split of Hi such that the edge in Hi+1 corre-
sponding to d is not adjacent to the one corresponding to e. As in the first case,
this is possible because two of the three possible non-isomorphic h-splits of Hi are
Eulerian by Lemma 3.7. This completes the definition of the sequence of auxiliary
multigraphs.

Now we use the last auxiliary multigraph Hk of the sequence to define the arcs
An+1 and Bn+1. Note that P is a w–v′ path in G[Ibnr ,v] where v′ and w lie in
the same graph-theoretical components Tv′ and Tw of T as v and bnr , respectively.
Since we may assume that E(P ) \ E(T ) 6= ∅ holds, let e ∈ E(P ) \ E(T ) denote
the edge which contains one endvertex we in Tw. Then either the distance between
we and anr or between we and bnr is even, say the latter one holds. Now we first
extend Bn via a (bnr , we] square string in T 2 and An by a (anr , w

+
e ] square string

in T 2 where Vw+
e

is the successor of Vwe
with respect to ≤T and w+

e is the jumping
vertex of Vw+

e
. Then we further extend An using a ray to contain all vertices of

partition classes Vx with Vx >T Vw+
e

for x ∈ Tw. This is possible by Lemma 3.4.
Next let P1 and P2 be the two edge-disjoint Tv′–Tw paths in Hk. Since every

edge of E(P ) \ E(T ) corresponds to an edge of Hk, we get that e corresponds
either to P1 or P2, say to the former one. Therefore, we will use P1 to obtain
arcs to extend Bn and P2 for arcs extending An. The way we have defined Hk

via splittings ensures that for any vertex Tj of H1 of degree 4 we have performed
a Tj-split such that the partition of the edges incident with Tj into pairs of edges
incident with a replacement vertex of Tj corresponds to a decomposition of Tj as in
Lemma 3.5. So for every vertex of H1 of degree 4 we take such a decomposition. For
every graph-theoretical component Tm of T such that there exist two consecutive
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edges TiTj and TjT` of P1 or P2 that do not correspond to edges of E(P )\E(T ) and
Vti <T Vtm <T Vtj or Vtj <T Vtm <T Vt` holds for every choice of ti ∈ Ti, tj ∈ Tj ,
t` ∈ T` and tm ∈ Tm, we take a spanning double ray of T 2

m. We can find such
spanning double rays using Lemma 3.4. Since Hk = P1 ∪ P2 is a cycle, we can use
these decompositions and double rays to extend An and Bn to be disjoint arcs αn

and βn with endvertices on Tv′ . With the same construction that we have used for
extending An and Bn on Tw, we can extend αn and βn to have endvertices v′j and
vj which are the jumping vertices of Vv′ and Vv, respectively, and containing all
vertices of partition classes Vy for y ∈ Tv′ and Vy ≤ Vv. Then we take these arcs

as An+1 and Bn+1 where An+1 and Bn+1 are the corresponding subgraphs of G2

whose closures give the arcs. By setting an+1
r and bn+1

r to be v′j and vj , depending

on which of the two arcs An+1 or Bn+1 ends in these vertices, we have guaranteed
all properties from (1) to (5) for the construction.

Now the properties (3) − (5) yield not only that A and B are disjoint arcs for
A =

⋃
i∈NA

i and B =
⋃

i∈NB
i, but also that V (G) = V (A ∪ B). If there exists

neither a maximal nor minimal partition class with respect to ≤T , the union A ∪B
forms a Hamilton circle of G2 by Lemma 2.7. Should there exist a maximal partition
class, say Van

r
for some n ∈ N with jumping vertex anr , the vertex anr will also be

an endvertex of A. In this case we connect the endvertices anr and bnr of A and B
via an edge. Such an edge exists since Van

r
and Vbnr are consecutive with respect

to ≤T by property (2) and anr as well as bnr are jumping vertices by property (1).
Analogously, we add an edge if there exists a minimal partition class. Therefore,
we can always obtain the desired Hamilton circle of G2. �

4. Graphs without K4 or K2,3 as minor

We begin this section with a small observation which allows to strengthen The-
orem 1.8 a bit by forbidding subgraphs isomorphic to a K4 instead of minors.

Lemma 4.1. For graphs without K2,3 as a minor it is equivalent to contain a K4

as a minor or as a subgraph.

Proof. One implication is clear. So suppose for a contradiction, we have a graph
without a K2,3 as a minor that does not contain K4 as a subgraph but as a subdivi-
sion, which is equivalent to containing a K4 as a minor since K4 is cubic. Consider
a subdivided K4 where at least one edge e of the K4 corresponds to a path Pe in
the subdivision whose length is at least two. Let v be an interior vertex of Pe and
a, b be the endvertices of Pe. Let the other two branch vertices of the subdivision
of K4 be called c and d. Now we take {a, b, c, d, v} as branch vertex set of a subdi-
vision of K2,3. The vertices a and b can be joined to c and d by internally disjoint
paths using the ones of the subdivision of K4 except the path Pe. Furthermore, the
vertex v can be joined to a and b using the paths vPea and vPeb. So we can find a
subdivision of K2,3 in the whole graph, which contradicts our assumption. �

Before we start with the proof of Theorem 1.8 we need to prepare two structural
lemmas. The first one will be very convenient to control end degrees because it
bounds the size of certain separators.

Lemma 4.2. Let G be a 2-connected graph without K2,3 as a minor and K0 be
a connected subgraph of G. Then |N(K1)| = 2 holds for every component K1 of
G− (K0 ∪N(K0)).

Proof. Let K0, G and K1 be defined as in the statement of the lemma. Since G
is 2-connected, we know that |N(K1)| ≥ 2 holds. Now suppose for a contradiction
that N(K1) ⊆ N(K0) contains three vertices, say u, v and w. Pick neighbours ui, vi
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and wi of u, v and w, respectively, in Ki for i ∈ {0, 1}. Furthermore, take a finite
tree Ti in Ki whose leaves are precisely ui, vi and wi for i ∈ {0, 1}. This is possible
because K0 and K1 are connected. Now we have a contradiction since the graph H
with V (H) = {u, v, w}∪V (T0)∪V (T1) and E(H) =

⋃1
i=0({uui, vvi, wwi}∪E(Ti))

forms a subdivision of K2,3. �

For a connected graph G with a subgraph K let GK denote the graph which
is formed by taking G and contracting all components of G −K where we delete
multiple edges or loops. Obviously GK is connected if G was connected. We
can push this observation a bit further towards 2-connectedness with the following
lemma.

Lemma 4.3. Let K be a connected subgraph with at least three vertices of a
2-connected graph G. Then GK is 2-connected.

Proof. Suppose for a contradiction that GK is not 2-connected for some G and K
as in the statement of the lemma. Since K has at least three vertices, we obtain
that GK has at least three vertices too. So there exists a cut vertex v in GK . If v
is also a vertex of G and therefore does not correspond to a contracted component
of G−K, then v would also be a cut vertex of G, which contradicts the assumption
that G is 2-connected.

Otherwise v corresponds to a contracted component of G − K. Since vertices
of GK that correspond to contracted components of G − K are not adjacent by
definition of GK and v, as a cut vertex in GK , must have at least one neighbour
in each component of GK − v, we get in particular that v separates two vertices,
say x and y, of GK that do not correspond to contracted components of G − K.
This yields a contradiction because K is connected and therefore contains an x–y
path, which still exists in GK and contradicts the statement that v separates x and
y in GK . �

With the lemmas above we are now prepared to prove Theorem 1.8.

Proof of Theorem 1.8. First we show that (ii) implies (i). Since G is Hamiltonian,
we know by Corollary 2.8 that G is 2-connected. Suppose for a contradiction that
G contains K4 or K2,3 as a minor. Then G has a finite subgraph H which already
has K4 or K2,3 as a minor. Now take any finite connected subgraph K0 of G which
contains H and set K = G[V (K0) ∪N(K0)]. Next let us take an embedding of
|G| as in statement (ii) of this theorem. It is easy to see using Lemma 4.2 that
our fixed embedding of |G| induces an embedding of GK into a closed disk such
that all vertices of GK lie on the boundary of the disk. This implies that GK is
outerplanar. So GK can neither contain K4 nor K2,3 as a minor by Theorem 1.7,
which contradicts that H is a subgraph of GK .

Now let us assume (i) to prove the remaining implication. We set K0 as an
arbitrary connected subgraph of G with at least three vertices. Next we de-
fine Ki+1 = G[V (Ki) ∪N(Ki)] for every i ≥ 0. By Lemma 4.3 we know that GKi

is 2-connected for each i ≥ 0. Furthermore, GKi
contains neither K4 nor K2,3 as

a minor for every i ≥ 0 since it would also be a minor of G contradicting our as-
sumption. So each GKi

is outerplanar by Theorem 1.7. Using statement (ii) of
Proposition 1.6 we obtain that each GKi has a unique Hamilton cycle Ci and that
there is an embedding σi of GKi into a fixed closed disk D such that Ci is mapped
onto the boundary ∂D of D. Set Ei = E(Ci) ∩ E(Ki) for every i ≥ 1.

Next we define an embedding of G into D and extend it to the desired embedding
of |G|. First take σ1 �K1

. Note that σ1(E1) lies on the boundary ∂D of D. Because
of Lemma 4.2 we can extend σ1 �K1 using σ2 �K2\K1

, maybe after rescaling it, to
obtain an embedding of K2 such that the image of E2 lies on ∂D. Proceeding in
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the same way, we get an embedding σ of all of G into D by σ1 �K1
together with

rescaled embeddings σi+1 �Ki+1\Ki
for every i ≥ 1 such that all vertices of G are

mapped to ∂D. Furthermore, we may assume that σ has the following property:

Let (Mi)i≥1 be an infinite sequence of components Mi of G−Ki where
Mi+1 ⊆Mi. Also, let {ui, wi} be the neighbourhood of Mi in G. Then it
holds that (σ(ui))i≥1 and (σ(wi))i≥1 converge to a common point on ∂D.

(∗)

It remains to extend this embedding σ to an embedding σ of all of |G| into D.
First we shall extend the domain of σ to all of |G|. For this we need to prove the
following claim.

Claim 1. For every end ω of G there exists an infinite sequence (Mi)i≥1 of com-

ponents Mi of G−Ki with Mi+1 ⊆Mi such that
⋂

i≥1Mi = {ω}.

Since Ki is finite, there exists a unique component of G−Ki in which all ω-
rays have a tail. Set this component as Mi. It follows from the definition that ω
lies in Mi. Furthermore, we get that

⋂
i≥1Mi does neither contain any vertex nor

an inner point of any edge. So suppose for a contradiction that
⋂

i≥1Mi contains

another end ω′ 6= ω. We know there exists a finite set S of vertices such that all
tails of ω-rays lie in a different component of G − S than all tails of ω′-rays. By
definition of the graphs Ki we can find an index j such that S ⊆ V (Kj). So ω lies

in Mj and ω′ in M ′j where M ′j is the component of G − Kj in which all tails of

ω′-rays lie. Since G is locally finite, the cut E(Mj ,Kj) is finite. Using Lemma 2.3

we obtain that Mj ∩M ′j = ∅. Therefore, ω′ /∈ Mj ⊇
⋂

i≥1Mi. This contradiction
completes the proof of the claim.

Now let us define the map σ. For every vertex or inner point of an edge x,
we set σ(x) = σ(x). For an end ω let (Mi)i≥1 be the sequence of components
Mi of G−Ki given by Claim 1 and {ui, wi} be the neighbourhood of Mi in G.
Using property (∗) we know that (σ(ui))i≥1 and (σ(wi))i≥1 converge to a common
point pω on ∂D. We use this to set σ(ω) = pω. This completes the definition of σ.

Next we prove the continuity of σ. For every vertex or inner point of an edge x,
it is easy to see that an open set around σ(x) in D contains σ(U) for some open
set U around x in |G| because G is locally finite and so it follows from the definition
of σ using the embeddings σi. Let us check continuity for ends. Consider an open
set O around σ(ω) in D, where ω is an end of G. Let (Mi)i≥1 be a sequence as in
Claim 1 for ω and {ui, wi} be the neighbourhood of Mi in G. By property (∗) and
the definition of σ, we get that (σ(ui))i≥1 and (σ(wi))i≥1 converge to σ(ω) on ∂D.
So there exists a j such that O contains σ(ui) and σ(wi) for every i ≥ j. By the
definition of σ and σ using the embeddings σi, it follows that σ(Mj) $ O. Since Mj

together with the inner points of the edges of E(Mj ,Kj) is a basic open set in |G|
containing ω whose image under σ is contained in O, continuity holds for ends too.

The next step is to check that σ is injective. If x and y are each either a vertex or
an inner point of an edge, then they already lie in some Kj . By the definition of σ
we get that σ(x) = σ(y) if and only if there exists a j such that x and y are mapped
to the same point by the embedding of Kj defined by σ1 �K1 and σi+1 �Ki+1\Ki

for
every i with 1 ≤ i ≤ j − 1. So x and y need to be equal.

For an and ω of G, let (Mi)i≥1 be a sequence of components of G − Ki such

that
⋂

i≥1Mi = {ω}, which exists by Claim 1, and {ui, wi} be the neighbourhood
of Mi in G. Since G is locally finite, there exists an integer j such that y lies in Kj

if it is a vertex or an inner point of an edge, or y lies in M ′j for some component

M ′j 6= Mj of G−Kj if y is an end of G. By the definition of σ and property (∗) we
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get that the arc on ∂D between σ(uj) and σ(wj) into which the vertices of Mj are
mapped contains also σ(ω) but not y. Hence, σ(ω) 6= σ(y) if ω 6= y. This shows
the injectivity of the map σ.

To see that σ−1 is continuous, note that |G| is compact by Proposition 2.1
and D is Hausdorff. So Lemma 2.2 immediately implies that σ−1 is continuous.
This completes the proof that σ is an embedding.

It remains to show the existence of a unique Hamilton circle of G that is mapped
onto ∂D by σ. For this we first prove that ∂D ⊆ Im(σ). This then implies that
σ−1 � ∂D is a homeomorphism defining a Hamilton circle of G since it contains all
vertices of G. We begin by proving the following claim.

Claim 2. For every infinite sequence (Mi)i≥1 of components Mi of G−Ki with

Mi+1 ⊆Mi there exists an end ω of G such that
⋂

i≥1Mi = {ω}.

Let (Mi)i≥1 be any sequence as in the statement of the claim. Since for every

vertex v there exists a j ∈ N such that v ∈ Kj , we get that
⋂

i≥1Mi is either empty
or contains ends of G. Using that each Mi is connected and that Mi+1 ⊆ Mi, we
can find a ray R such that in every Mi lies a tail of R. Therefore,

⋂
i≥1Mi contains

the end in which R lies. The argument that
⋂

i≥1Mi contains at most one end is
the same as in the proof of Claim 1. This completes the proof of Claim 2.

Suppose a point p ∈ ∂D does not already lie in Im(σ). Then it does neither lie
in Im(σ1 �K1) nor in any Im(σi+1 �Ki+1\Ki

). So there exists an infinite sequence
(Mi)i≥1 of components Mi of G−Ki with Mi+1 ⊆Mi such that p lies in the arc Ai

of ∂D between σ(ui) and σ(wi) into which the vertices of Mi are mapped, where
{ui, wi} denotes the neighbourhood of Mi in G. Using Claim 2 we obtain that
there exists an end ω of G such that

⋂
i≥1Mi = {ω}. By property (∗) of the map σ

the sequences (σ(ui))i≥1 and (σ(wi))i≥1 converge to a common point on ∂D, which
must be p since the arcs Ai are nested. Now the definition of σ tells us that σ(ω) = p.
Hence ∂D ⊆ Im(σ) and G is Hamiltonian.

We finish the proof by showing the uniqueness of the Hamilton circle of G. Sup-
pose for a contradiction that G has two subgraphs C1 and C2 yielding different
Hamilton circles C1 and C2. Then there must be an edge e ∈ E(C1) \ E(C2).
Let j ∈ N be chosen such that e ∈ E(Kj). By Lemma 4.2 we obtain that
GKj

[E(C1) ∩ E(GKj
)] and GKj

[E(C2) ∩ E(GKj
)] are two Hamilton cycles of GKj

differing in the edge e. Note that GKj is a finite 2-connected outerplanar graph.
The argument for this is the same as for GK in the proof that (ii) implies (i). This
yields a contradiction since GKj

has a unique Hamilton cycle by statement (ii) of
Proposition 1.6. �

Next we deduce Corollary 1.9.

Proof of Corollary 1.9. Let G be a locally finite 2-connected graph not isomorphic
to a K3 and not containing K4 or K2,3 as a minor. Further, let C be the subgraph of

G such that C is the Hamilton circle of G. First we show that each edge e ∈ E(C) is
a 2-contractible edge. Note for this that the closure of the subgraph of G/e formed
by the edge set E(C)\{e} is a Hamilton circle in |G/e|. Hence, G/e is 2-connected
by Corollary 2.8.

It remains to verify that no edge of E(G) \ E(C) is 2-contractible. For this we
consider any edge e = uv ∈ E(G) \ E(C). Let K be a finite connected induced
subgraph of G containing at least four vertices as well as N(u) ∪N(v), which is a
finite set since G is locally finite. Then we know by Lemma 4.3 and by using the
locally finiteness of G again that GK is a finite 2-connected graph not containing
K4 or K2,3 as a minor. So by Theorem 1.7 and Proposition 1.6 we get that GK has



17

a unique Hamilton cycle consisting precisely of its 2-contractible edges. However,
as we have seen in the proof of Theorem 1.8, GK [E(C)∩E(GK)] is then the unique
Hamilton cycle of GK and it does not contain e. Since GK is outerplanar, we get
that the vertex of GK/e corresponding to the edge e is a cut vertex in GK/e. By our
choice of K containing N(u) ∪N(v), we get that the vertex in G/e corresponding
to the edge e is a cut vertex of G/e too. So e is not 2-contractible. �

The question arises whether one could prove the more complicated part of Theo-
rem 1.8, the implication (i) =⇒ (ii), by mimicking a proof for finite graphs. To see
the positive answer for this question, let us summarize the proof for finite graphs
except the part about the uniqueness.

By Theorem 1.7 every finite graph without K4 or K2,3 as a minor can be em-
bedded into the plane such that all vertices lie on a common face boundary. Since
every face of an embedded 2-connected graph is bounded by a cycle, we obtain the
desired Hamilton cycle.

So for our purpose we would first need to prove a version of Theorem 1.7 for |G|
where G is a locally finite graph. This can be done similar to the way we have
defined the embedding for the Hamilton circle in Theorem 1.8 by decomposing the
graph into finite parts using Lemma 4.2. Since none of these parts contains a K4

or a K2,3 as a minor, we can fix appropriate embeddings of them and stick them
together. In order to obtain an embedding of |G|, we need furthermore to ensure
that the embeddings of finite parts that converge to an end in |G| also converge to
a point in the plane where we can map the corresponding end to.

The second ingredient of the proof is the following lemma pointed out by Bruhn
and Stein, but which is a corollary of a stronger and more general result of Richter
and Thomassen [23, Prop. 3].

Lemma 4.4. [2, Cor. 21] Let G be a locally finite 2-connected graph with an em-
bedding ϕ : |G| −→ S2. Then the face boundaries of ϕ(|G|) are circles of |G|.

These observations show that the proof idea for finite graphs is still applicable for
locally finite graphs.

5. A cubic infinite graph with a unique Hamilton circle

This section is dedicated to Theorem 1.11 by constructing an infinite graph with
a unique Hamilton circle where all vertices and ends of the graph have degree or
vertex- as well as edge-degree 3, respectively. The main ingredient in our con-
struction is a finite graph T for which we know where all Hamilton paths, i.e.,
spanning paths, proceed after deleting certain vertices. This graph has been used
by Tutte [30] to construct a counterexample to Tait’s conjecture [27], which said
that every 3-connected cubic planar graph is Hamiltonian. The following lemma
captures the facts about T we shall need. The proof is straightforward, but involves
several cases that need to be distinguished.

Lemma 5.1. There is no Hamilton path in T − u, but there are precisely two in
T − r (see Figure 4).

Proof. As mentioned already by Tutte [30], the graph T −u does not have a Hamil-
ton path. It remains to show that T − r has precisely two Hamilton paths. For this
we need to check several cases, but afterwards we can precisely state the Hamilton
paths. For convenience, we label each edge with a number as depicted in Figure 5
and refer to the edges just by their labels for the rest of the proof.

Obviously, the edges incident with ` and u would need to be in every Hamilton
path of T − r since these vertices have degree 1. Furthermore, the edges 2 and 3
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Figure 4. The fat edges in the most left picture are in every
Hamilton path of T − r. The fat edges in the other two pictures
mark the two Hamilton paths of T − r.
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Figure 5. Our fixed labelling of the relevant edges of T .

need to be in every Hamilton path of T − r since the vertex incident with 2 and 3
has degree 2 in T − r.

Claim 3. The edge 4 needs to be in every Hamilton path of T − r.

Suppose for a contradiction that there is a Hamilton path P in T − r that does
not use 4. Then it needs to contain 1. Since it also contains 2, we know 5 /∈ E(P ).
This implies further that 7, 8 ∈ E(P ). We can use 4 /∈ E(P ) also to deduce that
6, 10 ∈ E(P ) holds. Now we get 11 /∈ E(P ) since 6, 7 ∈ E(P ). This implies
20, 21 ∈ E(P ). But now 14 /∈ E(P ) holds because 10, 20 ∈ E(P ). From this we get
then 16, 18 ∈ E(P ). So 19 cannot be contained in P , which implies 13, 17 ∈ E(P ).
Now we arrived at a contradiction since the edges incident with l and u together
with the edges of the set {1, 2, 3, 13, 17, 16, 18} form a `-u path in T − r that is
contained in P and needs therefore to be equal to P . Then, however, P would not
be a Hamilton path T − r. This completes the proof of Claim 3

We immediately get from Claim 3 that 5 needs to be in every Hamilton path of
T − r and since 8 and 9 can not both be contained in any Hamilton path of T − r,
because they would close a cycle together with 5, 2 and 3, we also know that 12
needs to be in every Hamilton path of T − r.

Claim 4. The edges 14 and 16 lie in every Hamilton path of T − r.
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Suppose for a contradiction that the claim is not true. Then there is a Hamil-
ton path P of T − r containing 18. So P cannot contain 19, which implies
13, 17 ∈ E(P ). Since 3, 13 ∈ E(P ), we obtain 9 /∈ E(P ), from which we follow
that 8 ∈ P holds. Furthermore, 15 cannot be contained in P , because then the
edges 15, 17, 13, 3, 2, 5, 8, 12 would form a cycle in P . Therefore, 16 is an edge of
P . From 5, 8 ∈ E(P ) we can deduce that 7 /∈ E(P ) holds. So 6 and 11 are edges
of P , which that implies 10 /∈ E(P ). Then 14, 20 ∈ E(P ) needs to be true. Now,
however, we have a contradiction, because P would have a vertex incident with
three vertices, namely 14, 16 and 18. This completes the proof of Claim 4

It follows from Claim 4 that 19 is contained in every Hamilton path of T − r.
We continue with another claim.

Claim 5. The edges 6 and 20 lie in every Hamilton path of T − r.
Suppose for a contradiction that the claim is not true. Then there is a Hamil-

ton path P of T − r containing 10. This immediately implies that 6 /∈ E(P ),
yielding 7, 11 ∈ E(P ), and 20 /∈ E(P ), yielding 21 ∈ E(P ). We note that 8 can-
not be an edge of P since P would then contain a cycle spanned by the edge set
{8, 7, 11, 21, 12}. Therefore, 9 ∈ E(P ) must hold. Here we arrive at a contradiction,
since P now contains a cycle spanned by the edge set {9, 3, 2, 5, 7, 11, 21, 12}. This
completes the proof of Claim 5

Using all the observations we have made so far, we can now show that T − r has
precisely two Hamilton paths and state them by looking at the edge 11. Assume
that 11 is contained in a Hamilton path P1 of T − r. Then 7, 21 /∈ E(P1) follows,
because 6, 20 ∈ E(P1) holds by Claim 5. Since we could deduce from Claim 3
that 5, 12 ∈ E(P1) holds, we get furthermore 8, 15 ∈ E(P1). This now yields
9, 17 /∈ E(P1) and, therefore, 13 ∈ E(P1). As we can see, the assumption that 11 is
contained in a Hamilton path P1 of T − r is true. Also, P1 is uniquely determined
with respect to this property and consists of the fat edges in the most right picture
of Figure 4.

Next assume that there is a Hamilton path P2 of T − r that does not contain
the edge 11. Then 7 and 21 have to be edges of P2. Using again that 5, 12 ∈ E(P2)
holds, we deduce 8, 15 /∈ E(P2). Then, however, we get 9, 17 ∈ E(P ) and have
already uniquely determined P2, which corresponds to the fat edges in the middle
picture of Figure 4. �

Using Lemma 5.1 we will now prove Theorem 1.11 by constructing a prescribed
graph.

Proof of Theorem 1.11. We construct a sequence of graphs (Gn)n∈N inductively
and obtain the desired one G as a limit of the sequence. We start with G0 = T 1

0 = T .
Now suppose we have already constructed Gn for n ≥ 0. Furthermore, let

{T i
n ; 1 ≤ i ≤ 2n} be a specified set of disjoint subgraphs of Gn each of which each

is isomorphic to T . We define Gn+1 as follows. Take Gn and two copies Tc and Tv of
T for each T i

n ⊆ Gn. Then identify for every i the vertices of Tc that correspond to
u, ` and r, respectively, with the vertices of the related T i

n ⊆ Gn corresponding to
`, s and t, respectively. Also identify for every i the vertices of Tv corresponding to
u, ` and r, respectively, with the ones of the related T i

n ⊆ Gn corresponding to w, x
and y, respectively. Finally, delete in each T i

n ⊆ Gn the vertices corresponding to c
and v, see Figure 6. This completes the definition of Gn+1. It remains to fix the
set of 2n+1 many disjoint copies of T that occur as disjoint subgraphs in Gn+1.
For this we take the set of all copies Tc and Tv of T that we have inserted in the
subgraphs T i

n of Gn.
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Figure 6. A sketch of the construction of G1. The fat black,
grey and dashed edges incident with the grey vertices in the right
picture correspond to the ones in the left picture.

Using the graphs Gn we define a graph Ĝ as a limit of them. We set

Ĝ = G[Ê] where Ê =

e ∈ ⋃
n∈N

E(Gn) ; ∃N ∈ N : e ∈
⋂

n≥N

E(Gn)

 .

Note that an edge e ∈ E(Gn) is an element of Ê if and only if it was not deleted
during the construction of Gn+1 as an edge incident with one of the vertices that
correspond to c or v in T i

n for some i. Finally we define G as the graph obtained

from Ĝ by identifying the three vertices that correspond to u, ` and r of T 1
0 .

Next let us verify that every vertex and every end of G has degree or vertex-
as well as edge-degree, respectively, 3. Since every vertex of T except u, ` and r
has degree 3, the construction ensures that every vertex of G has degree 3 too. In
order to analyse the end degrees, we have to make some observations first. The
edges of G that are adjacent to vertices corresponding to u, ` and r of any T i

n

define a cut E(Ai
n, B

i
n) of G. Note that for any finite cut of a graph all rays in one

end of the graph have tails that lie completely on one side of the cut. Therefore,
the construction of G ensures that for every end ω of G there exists a function

f : N −→ N with f(n) ∈ {1, . . . , 2n} such that all rays in ω have tails in B
f(n)
n for

each n ∈ N and B
f(n)
n ⊇ Bf(n+1)

n+1 with
⋂

n∈NB
f(n)
n = ∅. Using that |E(Ai

n, B
i
n)| = 3

for every n and i, this implies that every end of G has edge-degree at most 3. Since
there are three disjoint paths from {u, `, r} to {s, `, t} as well as to {x,w, y} in T , we
can also easily construct three disjoint rays along the cuts E(Ai

n, B
i
n) that belong

to an arbitrary chosen end of G. So every end of G has vertex-degree 3. In total
this yields that every end of G has vertex- as well as edge-degree 3.

It remains to prove that G has precisely one Hamilton circle. We begin by
stating the edge set of the subgraph C defining the Hamilton circle C of G. Let
E(C) consist of those edges of E(G)∩T i

n for every n and i that correspond to the fat
edges of T in the most right picture of Figure 4. Now consider any finite cut D of G.
The construction of G yields that there exists an N ∈ N such that D is already
a cut of the graph obtained from Gn by identifying the vertices corresponding to
u, ` and r of T 1

0 ⊆ Gn for all n ≥ N . Using this observation we can easily see
that every vertex of G has degree 2 in C and that every finite cut is met at least
twice, but always in an even number of edges of C. By Lemma 2.5 we get that C is
topologically and also arc-connected. Therefore, every end of G has edge-degree at
least 1 and at most 3 in C. Together with Theorem 2.6 this implies that every end
of G has edge-degree 2 in C. Hence, Lemma 2.7 tells us that C is a circle, which is
Hamiltonian since it contains all vertices of G.
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We finish the proof by showing that C is the unique Hamilton circle of G. Since
any Hamilton circle H of G hits each cut E(Ai

n, B
i
n) precisely twice, H induces a

path through T that contains all vertices of T except one out of the set {u, `, r}.
By Lemma 5.1 we know that such paths must contain the edge adjacent to u. Let
us consider any T i

n in Gn and let T j
n+1 be the copy of T whose vertices of degree 1

we have identified with the vertices corresponding to the neighbours of c in T i
n

during the construction of Gn+1. The way we have identified the vertices implies
that path induced by H through T i

n must also use the edge adjacent to ` since the

induced path in T j
n+1 must use the edge adjacent to u. With a similar argument

we obtain that the induced path inside T i
n must use the edge corresponding to vw.

We know from Lemma 5.1 that there is a unique Hamilton path in T − r that uses
the edges `c and vw, namely the one corresponding to the fat edges in the most
right picture of Figure 4. So the edges which must be contained in every Hamilton
circle are precisely those of C. �
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