
Ends and vertices of small degree in infinite

minimally k-(edge)-connected graphs

Maya Stein

November 10, 2009

Abstract

Bounds on the minimum degree and on the number of vertices at-
taining it have been much studied for finite edge-/vertex-minimally k-
connected/k-edge-connected graphs. We give an overview of the results
known for finite graphs, and show that most of these carry over to infinite
graphs if we consider ends of small degree as well as vertices.

1 Introduction

1.1 The situation in finite graphs

Four notions of minimality will be of interest in this paper. For k ∈ N, call a
graph G edge-minimally k-connected, resp. edge-minimally k-edge-connected if G
is k-connected resp. k-edge-connected, but G−e is not, for every edge e ∈ E(G).
Analogously, call G vertex-minimally k-connected, resp. vertex-minimally k-
edge-connected if G is k-connected resp. k-edge-connected, but G − v is not,
for every vertex v ∈ V (G). These four classes of graphs often appear in the lit-
erature under the names of k-minimal/k-edge-minimal/k-critical/k-edge-critical
graphs.

It is known that finite graphs which belong to one of the classes defined
above have vertices of small degree. In fact, in three of the four cases the trivial
lower bound of k on the minimum degree is attained. We summarise the known
results in the following theorem (some of these results, and similar ones for
digraphs, also appear in [1, 9]):

Theorem 1. Let G be a finite graph, let k ∈ N.

(a) (Halin [13]) If G is edge-minimally k-connected, then G has a vertex of
degree k.

(b) (Lick et al [6], Mader [19]) If G is vertex-minimally k-connected, then
G has a vertex of degree at most 3

2k − 1.

(c) (Lick [18]) If G is edge-minimally k-edge-connected, then G has a vertex
of degree k.
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(d) (Mader [24]) If G is vertex-minimally k-edge-connected, then G has a
vertex of degree k.

Note that in Theorem 1 (b), the bound of 3k/2 − 1 on the degree is best
possible. For even k, this can be seen by replacing each vertex of C`, a circle of
some length ` ≥ 4, with a copy of Kk/2, the complete graph on k/2 vertices, and
adding all edges between two copies of Kk/2 when the corresponding vertices
of C` are adjacent. This procedure is sometimes called the strong product1 of
C` and Kk/2. For odd values of k similar examples can be constructed, using
K(k+1)/2’s instead of Kk/2’s, and in the end deleting two vertices which belong
to two adjacent copies of K(k+1)/2.

In all four cases of Theorem 1, the minimum degree is attained by more than
one vertex2. For convenience let Vn = Vn(G) denote the set of all vertices of a
graph G that have degree at most n.

Theorem 2. Let G be a finite graph, let k ∈ N.

(a) (Mader [21]) In case (a) of Theorem 1, |Vk| ≥ ck|G|, where ck is a constant
depending only on k, unless k = 1, in which case |Vk| ≥ 2.

(b) (Hamidoune [15]) In case (b) of Theorem 1, |V3k/2−1| ≥ 2.

(c) (Mader [20, 23]) In case (c) of Theorem 1, |Vk| ≥ c′k|G|, where c′k is a
constant depending only on k, unless k = 1 or k = 3, in which case |Vk| is
at least 2 resp. 4.

(d) (Mader [24]) In case (d) of Theorem 1, |Vk| ≥ 2.

In case (a), actually more than the number of vertices of small degree is
known: If we delete all the vertices of small degree, we are left with a forest.
This was shown in [21], see also [1]. For extensions of this fact to infinite graphs,
see [26].

The difference in the case k = 1 in (a) and (c) is due to the paths. For
k = 3 there is no constant c′3 in (c): take the square3 of any long enough path
v1v2v3 . . . v`−2v`−1v` and add the edge v1v4, and the edge v`−3v`. Deleting v3v4
and v`−3v`−2 we obtain an edge-minimally 3-edge-connected graph with only
six vertices of degree 3.

The constant ck from (a) can be chosen as ck = k−1
2k−1 , and this is best

possible [21]. Actually one can ensure [21] that |Vk| ≥ max{ck|G|, k+ 1,∆(G)},
where ∆(G) denotes the maximum degree of G. In (c), the constant c′k may be
chosen as about 1/2 as well (for estimates, see [2, 5, 25]).

The bounds on the number of vertices of small degree are best possible in
(b) and (d), for4 k > 2. Indeed, for k ≥ 3 consider the following example. Take
any finite number ` ≥ 2 of copies Hi of the complete graph K2(k−1), and join

1The strong product of two graphs H1 and H2 is defined in [16] as the graph on V (H1)×
V (H2) which has an edge (u1, u2)(v1, v2) whenever uivi ∈ E(Hi) for i = 1 or i = 2, and at
the same time either u3−i = v3−i or u3−iv3−i ∈ E(H3−i).

2We remark that for uniformity of the results to follow, we do not consider the trivial graph
K1 to be 1-edge-connected/1-connected.

3The square of a graph is obtained by adding an edge between any two vertices of distance 2.
4And for k = 2 we have |V2| ≥ 4 (see [24] for a reference), and this is best possible, as the

so-called ladder graphs show. As for k = 1, it is easy to see that there are no vertex-minimally
1-(edge)-connected graphs (since we excluded K1).
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Figure 1: A finite vertex-minimally k-(edge)-connected graph with only two
vertices of degree < 2(k − 1), for k = 3.

every two consecutive Hi with a matching of size k − 1, in a way that all these
matchings are disjoint. Join a new vertex a to all vertices of H1 that still have
degree 2(k − 1)− 1, and analogously join a new vertex b to half of the vertices
of H`. Finally join a and b with an edge. See Figure 1.

The obtained graph is vertex-minimally k-connected as well as vertex-mini-
mally k-edge-connected. However, all vertices but a and b have degree 2(k− 1),
which, as k ≥ 3, is greater than max{k, 3

2k − 1}.

1.2 What happens in infinite graphs?

For infinite graphs, a positive result for case (a) of Theorem 1 has been ob-
tained by Halin [14] who showed that every infinite locally finite edge-minimally
k-connected graph has infinitely many vertices of degree k, provided that k ≥ 2.
Mader [22] extended the result showing that for k ≥ 2, every infinite edge-
minimally k-connected graph G has in fact |G| vertices of degree k (see Theo-
rem 3 (a) below). It is clear that for k = 1, we are dealing with trees, which, if
infinite, need not have vertices of degree 1.

Figure 2: An infinite vertex-minimally k-connected graph without vertices of
degree 3k/2− 1, for k = 2.

For the other three cases of Theorem 1, the infinite version fails. In fact,
for case (b) this can be seen by considering the strong product of the double-
ray (i.e. the two-way infinite path) with the complete graph Kk (cf. Figure 2).
The obtained graph is (3k − 1)-regular, and vertex-minimally k-connected. If
instead of the double-ray we take the r-regular infinite tree Tr, for any r ∈ N,
the degrees of the vertices become unbounded in k. For case (d) of Theorem 1
consider the Cartesian product5 of Kk with Tr (see Figure 3).

Counterexamples for an infinite version of (c) will be given now. For the
values 1 and 3 this is particularly easy, as for k = 1 we may consider the double

5The Cartesian product of two graphs H1 and H2 is defined [8, 16] as the graph on V (H1)×
V (H2) which has an edge (u1, u2)(v1, v2) if for i = 1 or i = 2 we have that uivi ∈ E(Hi) and
u3−i = v3−i.
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Figure 3: The strong and the Cartesian product of T3 with K2.

ray D, and for k = 3 its square D2. All the vertices of these graphs have degree
2 resp. 4, but D and D2 are edge-minimally 1- resp. 3-edge-connected.

For arbitrary values k ∈ N, we construct a counterexample as follows.
Choose r ∈ N and take the rk-regular tree Trk. For each vertex v in Trk,
insert edges between the neigbourhood Nv of v in the next level so that Nv

spans r disjoint copies of Kk (Figure 4 illustrates the case k = 4, r = 2).
This procedure gives an edge-minimally k-edge-connected graph, as one easily
verifies. However, the vertices of this graph all have degree at least rk.

Figure 4: An edge-minimally 4-edge-connected graph without vertices of de-
gree 4.

Hence a literal extension of Theorems 1 and 2 to infinite graphs is not true,
except for part (a). The reason can be seen most clearly comparing Figures 1
and 2: Where in a finite graph we may force vertices of small degree just because
the graph has to end somewhere, in an infinite graph we can ‘escape to infinity’.
So an adequate extension of Theorem 1 should also measure something like ‘the
degree at infinity’.

This rather vague-sounding statement can be made precise. In fact, the
points ‘at infinity’ are nothing but the ends of graphs, a concept which has been
introduced by Freudenthal [10] and later independently by Halin [11], and which
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is a mainstay of contemporary infinite graph theory. Ends are defined as equiv-
alence classes of rays (one-way infinite paths), where two rays are equivalent
if no finite set of vertices separates them. That this is in fact an equivalence
relation is easy to check. The set of all ends of a graph G is denoted by Ω(G).
For more on ends consult the infinite chapter of [8], see also [17].

The concept of the end degree has been introduced in [4] and [27], see also [8].
In fact we distiguish between two types of end degrees: the vertex-degree and the
edge-degree. The vertex-degree dv(ω) of an end ω is defined as the supremum of
the cardinalities of the sets of (vertex)-disjoint rays in ω, and the edge-degree
de(ω) of an end ω is defined as the supremum of the cardinalities of the sets of
edge-disjoint rays in ω. These suprema are indeed maxima [4, 12]. Note that
de(ω) ≥ dv(ω).

In light of this definition, we observe at once what happens in the case k = 1
of the infinite version of Theorem 1 (a) above. Edge-minimally 1-connected
graphs, otherwise known as infinite trees, need not have vertices that are leaves,
but if not, then they must have ‘leaf-like’ ends, that is, ends of vertex-degree 1.
In fact, it is easy to see that in a tree T , with root r, say, every ray starting
at r corresponds to an end of T , and that all ends of T have vertex- and edge-
degree 1. On the other hand, rayless trees have leaves.

This observation gives case (a’) in the following generalisation of Theorem 1
to infinite graphs. Cases (b)–(d) of Theorem 3, respectively their quantative
versions in Theorem 4, are the main result of this paper.

Theorem 3. Let G be a graph, let k ∈ N.

(a) (Mader [22]) If G is edge-minimally k-connected and k ≥ 2, then G has a
vertex of degree k.

(a’) If G is edge-minimally 1-connected, then G has a vertex of degree 1 or an
end of edge-degree 1.

(b) If G is vertex-minimally k-connected, then G has a vertex of degree ≤ 3
2k−1

or an end of vertex-degree ≤ k.

(c) If G is edge-minimally k-edge-connected, then G has a vertex of degree k or
an end of edge-degree ≤ k.

(d) If G is vertex-minimally k-edge-connected, then G has a vertex of degree k
or an end of vertex-degree ≤ k.

As in the finite case, one can give bounds on the number of vertices/ends of
small degree. Recall that Vn = Vn(G) denotes the set of all vertices of degree at
most n, and let Ωv

n = Ωv
n(G) resp. Ωe

n = Ωe
n(G) denote the set of ends of vertex-

resp. edge-degree at most n.

Theorem 4. Let G be a graph, let k ∈ N. Then

(a) (Mader [22]) In case (a) of Theorem 3, |Vk| = |G|,

(a’) In case (a’) of Theorem 3, |V1 ∪ Ωe
1| = |G| unless |G| ≤ ℵ0, in which case

|V1 ∪ Ωe
1| ≥ 2,

(b) In case (b) of Theorem 3, |V3k/2−1 ∪ Ωv
k| ≥ 2,
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(c) In case (c) of Theorem 3, |Vk ∪ Ωe
k| ≥ 2,

(d) In case (d) of Theorem 3, |Vk ∪ Ωv
k| ≥ 2.

Concerning part (c) we remark that we may replace graphs with multigraphs
(see Corollary 12). Also, in (a’) and (c), one may replace the edge-degree with
the vertex-degree, as this yields a weaker statement.

We shall prove Theorem 4 (b), (c) and (d) in Sections 2, 3 and 4 respectively.
Statement (a’) is fairly simple, in fact, it follows from our remark above that
every tree has at least two leaves/ends of vertex-degree 1. In general, this is
already the best bound, because of the (finite or infinite) paths. For trees T of
uncountable order we get more, as these have to contain a vertex of degree |G|,
and it is then easy to find |G| vertices/ends of (edge)-degree 1.

In analogy to the finite case, the bounds on the degrees of the vertices in (b)
cannot be lowered, even if we allow the ends to have larger vertex-degree. An
example for this is given at the end of Section 2. There, we also state a lemma
that says that the vertex-/edge-degree of the ends in Theorem 4 will in general
not be less than k.

Also, the bound on the number of vertices/ends of small degree in Theo-
rem 4 (b) and (d) is best possible. For (d), this can be seen by considering the
Cartesian product of the double ray with the complete graph Kk (for k = 2
that is the double-ladder). For (b), we may again consider the strong product
of the double ray with the complete graph Kk (see Figure 2 for k = 2). The
latter example also shows that in (b), we cannot replace the vertex-degree with
the edge-degree.

As for Theorem 4 (c), it might be possible that the bound of Theorem 2
(c) extends. For infinite graphs G, the positive proportion of the vertices there
should translate to an infinite set S of vertices and ends of small degree/edge-
degree. More precisely, one would wish for a set S of cardinality |V (G)|, or even
stronger, |S| = |V (G) ∪ Ω(G)|. Observe that it is necessary to exclude also in
the infinite case the two exceptional values k = 1 and k = 3, as there are graphs
(e.g. D and D2) with only two vertices/ends of (edge)-degree 1 resp. 3.

Question 5. For k 6= 1, 3, does every infinite edge-minimally k-edge-connected
graph G contain infinitely many vertices or ends of (edge)-degree k? Does G
have |V (G)| (or even |V (G) ∪ Ω(G)|) such vertices or ends?

Another interesting question is which k-(edge)-connected graphs have vertex-
or edge-minimally k-(edge)-connected subgraphs. Especially interesting in the
case of edge-connectivity would be an edge-minimally k-edge-connected sub-
graph on the same vertex set as the original graph. Finite graphs trivially
do have such subgraphs, but for infinite graphs this is not always true. One
example in this respect is the double-ladder, which is 2-connected but has no
edge-minimally 2-connected subgraphs on the same vertex set. This observa-
tion leads to the study of vertex-/edge-minimally k-(edge)-connected (standard)
subspaces rather than graphs. For more on this, see [7, 26], the latter of which
contains a version of Theorem 3 (a) for standard subspaces.

We finish the introduction with a few necessary definitions. The vertex-
boundary ∂vH of a subgraph H of a graph G is the set of all vertices of H
that have neighbours in G − H. The edge-boundary of H is the set ∂eH =
E(H,G − H). A region of a graph is a connected induced subgraph H with
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finite vertex-boundary ∂vH. If ∂vH = k, then we call H a k-region of G. A
profound region is a region H with H − ∂vH 6= ∅.

2 Vertex-minimally k-connected graphs

In this section we shall show part (b) of Theorem 4. For the proof, we need two
lemmas. The first of these lemmas may be extracted6 from [6] or from [22], and
at once implies Theorem 1 (b). For completeness, we shall give a proof.

Lemma 6. Let k ∈ N, let G be a vertex-minimally k-connected graph, and let
H be a profound finite k-region of G. Then G has a vertex v of degree at most
3
2k − 1.
Moreover, if |G−H| > |H − ∂vH|, then we may choose v ∈ V (H).

Proof. Note that we may assume H is inclusion-minimal with the above prop-
erties. Set T := ∂vH, set C1 := H − T , and set C2 := G −H. Let x ∈ V (C1),
and observe that since G is vertex-minimally k-connected, there is a k-separator
T ′ of G with x ∈ T ′. Let D1 be a component of G−T ′, set D2 := G−T ′−D1,
and set T ∗ := T ∩ T ′. Furthermore, for i, j = 1, 2 set Ai

j := Ci ∩ Dj and set
T i

j := (T ′ ∩ Ci) ∪ (T ∩Dj) ∪ T ∗. Observe that N(Ai
j) ⊆ T i

j .
We claim that there are i1, i2, j1, j2 with either (i1, j1) = (i2, 3 − j2) or

(i1, j1) = (3− i2, j2) such that for (i, j) ∈ {(i1, j1), (i2, j2)}:

|T i
j | ≤ k and Ai

j = ∅. (1)

In fact, observe that for j = 1, 2 we have that |T 1
j |+ |T 2

3−j | ≤ |T |+ |T ′| = 2k.
Thus either |T 1

j | ≤ k, which by the minimality of H implies that A1
j is empty, or

|T 2
3−j | < k, which by the k-connectivity of G implies that A2

3−j is empty. This
proves (1).

We hence know that there is an X ∈ {C1, C2, D1, D2} such that V (X) ⊆
T ∪ T ′. Now, as |T | = |T ′| = k, (1) implies that

2|X|+ k + |T ∗| ≤ |T i1
j1
|+ |T i2

j2
| ≤ 2k,

and hence,
|X|+ |T ∗| ≤ k/2. (2)

Thus, there is a vertex v ∈ X of degree at most

max{|T |+ |X| − 1, |T ′|+ |X| − 1} ≤ k + k/2− 1.

Clearly we may assume v ∈ V (H) unless both |T 1
1 | and |T 1

2 | are greater
than k. But then by (1), V (C2) ⊆ T ′, and thus by (2), |C2| ≤ k/2 − |T ∗|. So,
k/2 ≤ |T ′ ∩ C1| ≤ |C1|, and thus |C2| ≤ |C1|, as desired.

We also need a lemma from [27].

Lemma 7.[27, Lemma 5.2] Let G be a graph such that all its ends have vertex-
degree at least m ∈ N. Let C be an infinite region of G. Then there exists a
profound region C ′ ⊆ C for which one of the following holds:

6Although the graphs there are all finite, the procedure is the same.

7



(a) C ′ is finite and |∂vC
′| < m , or

(b) C ′ is infinite and |∂vC
′′| ≥ m for every profound region C ′′ ( C ′.

Observe that the outcome of Lemma 7 is invariant under modifications of
the structure of G−C. Hence in all applications we may assume that dv(ω) ≥ m
only for ends ω of G that have rays in C.

We are now ready to prove Theorem 4 (b).

Proof of Theorem 4 (b). First of all, we claim that for every infinite region H
of G it holds that:

There is a vertex v ∈ V (H) of degree ≤ 3
2k − 1 or an end of

vertex-degree ≤ k with rays in H.
(3)

In order to see (3), we assume that there is no end as desired and apply
Lemma 7 to H with m := k + 1. This yields a profound region H ′ ⊆ H. We
claim that (a) of Lemma 7 holds; then we may use Lemma 6 to find a vertex
w ∈ V (H ′) with d(w) ≤ 3k/2− 1.

So, assume for contradiction that (b) of Lemma 7 holds. Since G is k-
connected there exists a finite family P of finite paths in G such that each pair
of vertices from ∂vH

′ is connected by k otherwise disjoint paths from P. Set

S := ∂vH
′ ∪ V (

⋃
P),

and observe that H ′−S is still infinite. In particular, H ′−S contains a vertex v.
Since G is vertex-minimally k-connected, v lies in a k-separator T ′ of G. By the
choice of v /∈ S, all of ∂vH

′ is contained in one component of G − T ′. Let C ′′

be a component of G− T ′ that does not contain ∂vH
′. Then H ′′ := G[C ′′ ∪ T ′]

is a profound region with H ′′ ( H ′. Thus, because of (b), k + 1 ≤ |T ′| = k, a
contradiction as desired. This proves (3).

Now, let T ⊆ V (G) be any separator of G of size k (these exist by the vertex-
minimality of G). First suppose that G−T has at least one infinite component
C. Then we apply Lemma 6 or (3) to any component of G−C and find an end
of vertex-degree k with no rays in C, or a vertex v ∈ V (G−C) of degree at most
3k/2−1. Apply (3) to C to find the second end/vertex of small (vertex)-degree.

It remains to treat the case when all components of G − T are finite. As
we otherwise apply Theorem 2 (b), we may assume that G − T has infinitely
many components. Hence, as G has no (k − 1)-separators, each x ∈ T has
infinite degree. This means that we may apply Lemma 6 to any two k-regions
H1, H2 with ∂vH1 = T = ∂vH2 in order to find two vertices /∈ T of degree
≤ 3k/2− 1.

Observe that the bound on the degree given by Theorem 3 (b) is best pos-
sible. Indeed, by the following lemma, which follows from Lemma 7.1 from [3],
the vertex-degree of the ends of a k-connected locally finite graph has to be at
least k.

Lemma 8. Let k ∈ N, let G be a locally finite graph, and let ω ∈ Ω(G). Then
dv(ω) = k if and only if k is the smallest integer such that every finite set
S ⊆ V (G) can be separated7 from ω with a set of k vertices.

7We say a set T ⊆ V (G) separates a set S ⊆ V (G) from an end ω ∈ Ω(G) if the unique
component of G− T that contains rays of ω does not contain vertices from S.
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For non-locally finite graphs, the minimum size of an S–ω separator corre-
sponds to the vertex-/edge-degree of ω plus the number of dominating vertices
of ω. See [3].

Moreover, even if we allow a larger vertex-degree of the ends, we cannot
expect a lower bound on the degrees of the vertices. This is illustrated by the
following example for even k (and for odd k there are similar examples).

Figure 5: A vertex-minimally k-connected graph with d(v) ≥ 3
2k − 1 and

dv(ω)� k for all v ∈ V (G) and ω ∈ Ω(G) for k = 4.

Let ` ∈ N ∪ {ℵ0}, and take the disjoint union of ` double-rays R1, . . . , R`.
For simplicity, assume that k divides `. For each i ∈ Z, take `/k copies of the
strong product of C4 with Kk/2, and identify the vertices that belong to the
first or the last copy of Kk/2 with the ith vertices the Rj . This can be done in
a way so that the obtained graph, which is easily seen to be vertex-minimally
k-connected, has two ends of vertex-degree `, while the vertices have degree
either 3k/2− 1 or 3k/2 + 1.

3 Edge-minimally k-edge-connected graphs

We now prove part (c) of Theorem 4. We start by proving a lemma that will
be useful also in Section 4:

Lemma 9. Let G be a graph and let (Di)i∈N be a sequence of regions such that
Di+1 ⊆ Di − ∂vDi for all i ∈ N. Then there is an end ω ∈ Ω(G) that has a ray
in each of the Di so that

(i) if |∂vDi| ≤ k for all i, then dv(ω) ≤ k, and

(ii) if |∂eDi| ≤ k for all i, then de(ω) ≤ k.

Proof. As all the Di are connected, it is easy to construct a ray R which has a
subray in each of the Di. Say R belongs to the end ω ∈ Ω(G). We only show
(i), as (ii) can be proved analogously.

Suppose for contradiction that |∂vDi| ≤ k for all i, but dv(ω) > k. Then
ω contains a set R of k + 1 disjoint rays. Let S be the set of starting vertices
of these rays. Since Di ⊆ Di−1 − ∂Di−1 for all i, there is an n ∈ N such that
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S∩V (Dn) = ∅. (To be precise, one may take n := maxs∈S,v∈∂vD0 dist(s, v)+1.)
But then, it is impossible that all rays of R have subrays in Dn, as only k of
them can pass disjointly through ∂vDn.

We also need the following lemma from [27].

Lemma 10. [27, Lemma 3.2] Let m ∈ N and let D 6= ∅ be a region of a
graph G so that |∂eD| < m and so that |∂eD

′| ≥ m for every non-empty region
D′ ⊆ D − ∂vD of G. Then there is an inclusion-minimal non-empty region
H ⊆ D with |∂eH| < m.

Combined, the two lemmas yield a lemma similar to Lemma 7 from the
previous section:

Lemma 11. Let D 6= ∅ be a region of a graph G so that |∂eD| < m and so
that de(ω) ≥ m for every end ω ∈ Ω(G) with rays in D. Then there is an
inclusion-minimal non-empty region H ⊆ D with |∂eH| < m.

Proof. Set D0 := D and inductively for i ≥ 1, choose a non-empty region
Di ⊆ Di−1 − ∂vDi−1 such that |∂eDi| < m (if such a region Di exists). If at
some step i we are unable to find a region Di as above, then we apply Lemma 10
to Di−1 to find the desired region H. On the other hand, if we end up defining
an infinite sequence of regions, then Lemma 9 (ii) tells us that there is an end
ω with rays in D and de(ω) < m, a contradiciton.

We are now ready to prove part (c) of our main theorem:

Proof of Theorem 4 (c). Since G is edge-minimally k-edge-connected, G has a
non-empty region D such that |∂eD| = k, and such that G − D 6= ∅. We
shall find a vertex or end of small (edge)-degree in D; then one may repeat the
procedure for G−D in order to find the second point.

First, we apply Lemma 11 with m := k + 1 to obtain an end as desired or
an inclusion-minimal non-empty region H ⊆ D with |∂eH| ≤ k. If V (H) should
consist of only one vertex, then this vertex has degree k, as desired. So suppose
that V (H) has more than one vertex, that is, E(H) is not empty.

Let e ∈ E(H). By the edge-minimal k-edge-connectivity of G we know that e
belongs to some cut F of G with |F | = k. Say F = E(A,B) where A,B 6= ∅
partition V (G). Since e ∈ F , neither AH := A ∩ V (H) nor BH := B ∩ V (H) is
empty.

So, |∂eAH | > k and |∂eBH | > k, by the minimality of H. But then, since
|∂eH| ≤ k and |F | ≤ k, we obtain that

|∂e(A \AH)|+ |∂e(B \BH)| ≤ 2|∂eH|+ 2|F | − |∂eAH | − |∂eBH |
< 4k − 2k
= 2k.

Hence, either |∂e(A\AH)| or |∂e(B \BH)|, say the former, is strictly smaller
than k. Since G is k-edge-connected, this implies that A \ AH is empty. But
then A ( V (H), a contradiction to the minimality of H.

We dedicate the rest of this section to multigraphs, that is, graph with
parallel edges, which often appear to be the more appropriate objects when
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studying edge-connectivity. Defining the edge-degree of an end ω of a multigraph
in the usual way as the supremum of the cardinalities of the sets of edge-disjoint
rays from ω, and Vk and Ωe

k as for simple graphs, we may apply the proof of
Theorem 4 (c) with only small modifications8 to multigraphs. We thus get:

Corollary 12. Let G be an edge-minimally k-edge-connected multigraph. Then
|Vk ∪ Ωe

k| ≥ 2.

In particular, every finite edge-minimally k-edge-connected multigraph has
at least two vertices of degree k.

However, a statement in the spirit of Theorem 2 (c) does not hold for multi-
graphs, no matter whether they are finite or not. For this, it suffices to consider
the graph we obtain by multiplying the edges of a finite or infinite path by k.
This operation results in an edge-minimally k-edge-connected multigraph which
has no more than the two vertices/ends of (edge)-degree k which were promised
by Corollary 12.

4 Vertex-minimally k-edge-connected graphs

In this section we prove Theorem 4 (d). The proof is based on Lemma 14, which
at once yields Theorem 2 (d), the finite version of Theorem 4 (d). The proof
of this lemma (in particular Lemma 13) is inspired by Mader’s original proof of
Theorem 2 (d) in [24].

We need two auxiliary lemmas before we get to Lemma 14. For a set X ⊆
V (G) ∪ E(G) in a graph G write XV := X ∩ V (G) and XE := X ∩ E(G).

Lemma 13. Let k ∈ N. Let G be a graph, let S ⊆ V (G) ∪ E(G) with |S| ≤ k,
and let C be a component of G−S so that |C| ≤ |SE |. Then C contains a vertex
of degree at most k.

Proof. Suppose that the vertices of C all have degree at least k+ 1. Then each
sends at least k + 1− |SV | − (|C| − 1) edges to G− S − C. This means that

|C|(k + 1− |SV | − (|C| − 1)) ≤ |SE | = k − |SV |.

So |C|(k − |SV | − |C|+ 1) ≤ k − |SV | − |C|, which, as |C| ≥ 1, is only possible
if |C| > k − |SV |. But this is impossible, as |C| ≤ |SE | = k − |SV |.

As usal, the edge-connectivity of a graph G is denoted by λ(G). Also, in
order to make clear which underlying graph we are referring to, it will be useful
to write ∂G

e H = ∂eH for a region H of a graph G.

Lemma 14. Let k ∈ N, let G be a k-edge-connected graph, let x ∈ V (G) and
let C be an inclusion-minimal region of G with the property that C has a vertex
x so that |∂G−x

e C| = λ(G−x) < k. Suppose for each y ∈ V (C), the graph G−y
has a cut of size < k. Then C − x contains a vertex of degree k (in G).

8We will then have to use a version of Lemma 10 for multigraphs. Observe that such a
version holds, as we may apply Lemma 10 to the simple graph obtained by subdividing all
edges of the multigraph. This procedure will not affect the degrees of the ends. The rest of
the proof will then go through everywhere replacing ‘graph’ with ‘multigraph’.
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Proof. If every vertex of C has a neighbour in D := G − x − C then we may
apply Lemma 13 with S := {x} ∪ ∂G−x

e C and are done. So let us assume that
there is a vertex y all of whose neighbours lie in C∪x. By assumption, G−y has
a cut F of size λ(G− y) < k, which splits G− y into A and B, with x ∈ V (A),
say.

Since G is k-edge-connected, F is not a cut of G. Hence y has neighbours
in both A and B. Thus, as N(y) ⊆ V (C) ∪ x, and x ∈ V (A), it follows that
B∩C 6= ∅. By the choice of C and x we may thus assume that |∂G−y

e (B∩C)| >
λ(G− y) = |F |. So,

|∂G−x
e (A ∩D)| ≤ |∂G−x

e C|+ |F | − |∂G−y
e (B ∩ C)| < |∂G−x

e C| = λ(G− x),

implying that A ∩ D = ∅. That is, A ∪ y ( C, contradicting the minimality
of C.

Finite graphs clearly have inclusion-minimal regions C as in Lemma 14,
which hence implies Theorem 1 (d). Applying the lemma to any inclusion-
minimal region with the desired properties that is contained in G − (C − x)
in order to find a second vertex of small degree in a finite vertex-minimally
k-edge-connected graph, we get:

Corollary 15 (Theorem 2 (d)). Let G be a finite vertex-minimally k-edge-
connected graph. Then G has at least two vertices of degree k.

This means that for a proof of Theorem 4 (d) we only need to worry about
the infinite regions, which is accomplished in the next lemma.

Lemma 16. Let k ∈ N, let G be a vertex-minimally k-edge-connected graph and
let D be a region of G. Let x ∈ V (D) such that |∂G−x

e (D− x)| = λ(G− x) < k.
Suppose G has no inclusion-minimal region C ⊆ D with the property that C
contains a vertex y so that |∂G−y

e (C − y)| = λ(G− y) < k. Then G has an end
of vertex-degree ≤ k with rays in D.

Proof. We construct a sequence of infinite regions Di of G, starting with D0 :=
D which clearly is infinite. Our regions will have the property that Di ⊆ Di−1−
∂Di−1, which means that we may apply Lemma 9 (i) in order to find an end as
desired.

In step i ≥ 1, for each pair of vertices in ∂G
v Di−1, take a set of k edge-disjoint

paths joining them: the union of all these paths gives a finite subgraph H of G.
Since Di−1 was infinite, Di−1−H still is, and thus contains a vertex y. Since G
is vertex-minimally k-edge-connected, G− y has a cut of size less than k, which
splits G − y into A and B, say, which we may assume to be connected. Say A
contains a vertex of ∂G

v Di−1. Then ∂G
v Di−1 ⊆ V (A) (since y /∈ V (H)), and thus

B ⊆ Di−1. Observe that Di := B ∪ y is infinite, as otherwise it would contain
an inclusion-minimal region C as prohibited in the statement of the lemma.

We finally prove Theorem 4 (d).

Proof of Theorem 4 (d). Let x ∈ V (G), and let F be a cut of G− x with |F | =
λ(G−x) < k. Say F splits G−x into A1 and A2. For i = 1, 2, if Ai contains an
inclusion-minimal region C such that C has a vertex y with the property that
|∂G−y

e (C − y)| = λ(G− y) < k, we use Lemma 14 to find a vertex of degree at
most k in C − y ⊆ Ai. On the other hand, if Ai does not contain such a region,
we use Lemma 16 to find an end of the desired vertex-degree.
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[12] R. Halin. Über die Maximalzahl fremder unendlicher Wege in Graphen.
Math. Nachr., 30:63–85, 1965.

[13] R. Halin. A theorem on n-connected graphs. J. Combin. Theory, 7:150–154,
1969.

[14] R. Halin. Unendliche minimale n-fach zusammenhängende Graphen.
Abh. Math. Sem. Univ. Hamburg, 36:75–88, 1971.

[15] Y. O. Hamidoune. On critically k-connected graphs. Disc. Math., 32:257–
262, 1980.

[16] P. Hell and J. Nes̆etr̆il. Graphs and Homomorphisms. Oxford University
Press, Oxford, 2004.

[17] B. Krön and E. Teufl. Ends – Group-theoretical and topological aspects.
Preprint 2009.

[18] D. R. Lick. Minimally n-line connected graphs. J. Reine Angew. Math.,
252:178–182, 1972.

13



[19] W. Mader. Eine Eigenschaft der Atome endlicher Graphen. Arch. Math.,
22:333–336, 1971.

[20] W. Mader. Minimale n-fach kantenzusammenhängende Graphen. Math.
Ann., 191:21–28, 1971.

[21] W. Mader. Ecken vom Grad n in minimalen n-fach zusammenhängenden
Graphen. Arch. Math. (Basel), 23:219–224, 1972.
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