
On end degrees and infinite cycles

in locally finite graphs

Henning Bruhn Maya Stein

Abstract

We introduce a natural extension of the vertex degree to ends. For the
cycle space C(G) as proposed by Diestel and Kühn [4, 5], which allows for
infinite cycles, we prove that the edge set of a locally finite graph G lies
in C(G) if and only if every vertex and every end has even degree. In the
same way we generalise to locally finite graphs the characterisation of the
cycles in a finite graph as its 2-regular connected subgraphs.

1 Introduction

The cycle space of a finite graph is the Z2-vector space consisting of all sums of
edge sets of cycles. In its naive extension to infinite graphs, where the elements
of the cycle space are finite edge sets, many theorems known for finite graphs
become false. Recent studies, see Diestel [2] for an introduction and a survey,
strongly suggest that these issues arise because in infinite graphs, certain ‘infinite
cycles’ should be allowed. This idea leads to a definition of the cycle space
C(G) for locally finite graphs G, in which the cycles are those subgraphs of G
whose closure in |G|, the compactification of G by its ends, is a circle, i.e. a
homeomorphic image of the unit circle. We will introduce C(G), which has been
proposed by Diestel and Kühn [4, 5], formally in the next section.

Using C(G), almost all properties of the cycle space of a finite graph can be
extended to locally finite graphs. Yet, to date there is no generalisation of one
of the most basic characterisations of the elements of the cycle space:

Theorem 1. Let H be a subgraph of a finite graph G. Then E(H) is an element
of the cycle space of G if and only if every vertex of G has even degree in H.

Simple examples show that for infinite graphs it is not sufficient to consider
vertex degrees. Consider, for instance, the double ray D. Since |D| is homeo-
morphic to the unit interval, it does not contain any circles, hence, it follows that
C(D) = {∅}. Thus E(D) /∈ C(D), even though every vertex of D has degree 2
in D. The problem here seems to arise from the ends rather than the vertices
of the considered graph. Diestel and Kühn [5] raised the following problem:

Problem 2. Characterise the circles and the elements of the cycle space of an
infinite graph in purely combinatorial terms, such as vertex degrees and ‘degrees
of ends’.

We introduce a concept of end degrees that is a natural extension of vertex
degrees; instead of incident edges we count edge-disjoint rays (for degrees in
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subgraphs it will be necessary to substitute ‘rays’ with ‘arcs’). This notion
allows us to solve the first part of Problem 2. We prove a straightforward
adaption of the well-known fact that the cycles in a finite graph are exactly its
2-regular connected subgraphs.

Proposition 3. Let C be a subgraph of a locally finite graph G. Then C is a
circle if and only if C is topologically connected and every vertex or end x of G
with x ∈ C has degree two in C.

Depending on its degree, an end can be assigned a parity, i.e. the label
‘even’ or ‘odd’—as long as it has finite degree. Inspired by Laviolette [10], who
introduced a concept to measure the parity of vertices of infinite degree, we
assign a parity also to ends of infinite degree. A classification of ends into even
and odd ends has already been achieved by Nash-Williams [12] for the case
of eulerian graphs with only finitely many ends. Our definition coincides with
Nash-Williams’ in these graphs but covers all locally finite graphs. Moreover,
with our definition the following important special case of Problem 2 becomes
true, which is the main result of this paper.

Theorem 4. Let G be a locally finite graph. Then E(G) ∈ C(G) if and only if
every vertex and every end of G has even degree.

An extension of this characterisation to arbitrary subgraphs of G would solve
Problem 2 completely. We shall offer a conjecture in that respect (see Section 4).

The paper is organised as follows. After some basic definitions in Section 2,
we introduce and discuss our end degree concept in Sections 3 and 4. Theorem 4
will be proved in Section 5. In Section 6, we prove Proposition 3 and some other
results, and in the last section we briefly discuss an alternative notion of parity.

2 Definitions

The basic terminology we use can be found in Diestel [3]. Let G = (V,E) be
a fixed locally finite graph. A 1-way infinite path in G is called a ray, a 2-way
infinite path is a double ray, and the subrays of a ray or double ray are its tails.
Two rays in G are equivalent if no finite set of vertices separates them; the
corresponding equivalence classes of rays are the ends of G. We denote the set
of these ends by Ω = Ω(G). A ray R in an end ω will also be called an ω-ray.

Let us define a topology on G together with its ends, which is known as
the Freudenthal compactification of G. We begin by endowing G itself (without
ends) with the usual topology of a 1-complex. (Thus, every edge is homeomor-
phic to the real interval [0, 1], and the basic open neighbourhoods of a vertex v
are the unions of half-open intervals [v, z), one for every edge e at v with z an
inner point of e.) In order to extend this topology to G ∪ Ω, we take as a basis
of open neighbourhoods of a given end ω ∈ Ω the sets of the form

Ĉ(S, ω) := C(S, ω) ∪ Ω(S, ω) ∪ E̊(S, ω) ,

where S ⊆ V is a finite set of vertices, C(S, ω) is the (unique) component of
G−S in which every ray from ω has a tail, Ω(S, ω) is the set of all ends ω′ ∈ Ω
whose rays have a tail in C(S, ω), and E̊(S, ω) is the set of inner points of edges
between S and C(S, ω). Let |G| denote the corresponding topological space on
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the point set V ∪ Ω ∪⋃E. We shall freely view G and its subgraphs either as
abstract graphs or as subspaces of |G|. We note that |G| is a Hausdorff space.
Later on, we shall need the following fact.

Theorem 5 (Diestel and Kühn [6]). When a graph G is locally finite, every
closed connected subset of |G| is path-connected.

A continuous image of the unit interval [0, 1] in |G| is a topological path. The
images of 0 and 1 are the endpoints of the topological path. A homeomorphic
image of [0, 1] in |G| is called an arc in |G|. Analogously to ω-rays, let us say
that an arc is an ω-arc if the end ω is one of its endpoints. The following lemma
can be found in Hall and Spencer [9, p. 208].

Lemma 6. Every topological path with distinct endpoints x, y in a Hausdorff
space X contains an arc between x and y.

A set C ⊆ |G| is a circle if it is homeomorphic to the unit circle. Then C
includes every edge of which it contains an inner point, and the graph consisting
of these edges and their endvertices is the cycle defined by C. Conversely, it is
not hard to show [4] that C ∩ G is dense in C, so every circle is the closure in
|G| of its cycle and hence defined uniquely by it. Note that every finite cycle in
G is also a cycle in this sense, but there can also be infinite cycles; see [2] for
examples. The edge set of a cycle is called a circuit.

Call a family (Di)i∈I of subsets of E thin if no edge lies in infinitely many of
the Di. Let the sum

∑
i∈I Di of this family be the set of all edges that lie in Di

for an odd number of indices i, and let the cycle space C(G) of G be the set of
all sums of (thin families of) circuits, finite or infinite. Symmetric difference as
addition makes of C(G) a Z2-vector space, which coincides with the usual cycle
space of G when G is finite. We remark that C(G) is itself closed under taking
infinite thin sums [4, 5], which is not obvious from the definitions.

The following theorem will serve as our main tool to decide whether a graph
is an element of its own cycle space, namely if and only if it contains no odd
cut.

Theorem 7 (Diestel and Kühn [4]). Let G be a locally finite graph, and let
Z ⊆ E(G). Then Z ∈ C(G) if and only if |F ∩ Z| is even for every finite cut F
of G.

A finite cut F of G separates a set S ⊆ V (G) from an end ω ∈ Ω if it
meets every ray of ω that starts in S. This is equivalent to that the (unique)
component C of G − F with ω ∈ C is disjoint from S. Similarily, F separates
two ends ω and ω′, if the closure of each component of G− F contains at most
one of ω, ω′.

If C is a subgraph of G, write ∂GC or, where no confusion is possible, ∂C,
for the cut EG(C,G−C). Call a connected induced subgraph C of G a region,
if the cut ∂C is finite. The region C is even resp. odd if |∂C| is even resp. odd.

3 End degrees and parity

As ends are equivalence classes of rays, the degree of an end should in some way
be related to its rays. Also, the rays may be seen as somewhat analogous to the
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incident edges of a vertex, whose number is the degree of the vertex. Therefore,
as a first try, we might count the maximal number of disjoint rays in an end
(sometimes called the multiplicity of the end). For this notion of an end degree,
however, Theorem 4 fails as the graph G in Figure 1 demonstrates. Since G
contains an odd cut, its edge set is not an element of C(G), by Theorem 7. But
each vertex degree is even, and the maximal number of disjoint rays in each end
is two.

Figure 1: The multiplicity of each end is even, but E(G) /∈ C(G).

Looking more closely we see that although the maximal number of disjoint
rays in each end is even, the maximal number of edge-disjoint rays is odd,
namely three. Thus with this measure instead we would have correctly decided
that E(G) /∈ C(G). Formally, let us define the degree of an end ω in a graph G
as

d(ω) := sup{|R| : R is a set of edge-disjoint ω-rays} ∈ N ∪ {∞}.
Although we will not use this, we remark that it is not difficult to prove that
the supremum is attained, i.e. if d(ω) = ∞, then there exists an infinite set of
edge-disjoint ω-rays. Andreae [1] proves a similar result.

Our degree concept clearly divides the ends of finite degree into even and
odd ends, but how are we to deal with ends of infinite degree? We may not
simply treat them as odd ends, since the edge set of the infinite grid obviously
is an element of its cycle space but the only end of the grid has infinite degree.

On the other hand, classifying all ends of infinite degree as even is not any
better: consider the graph G in Figure 2. All vertex degrees are even and both
ends have infinite degree, but G has an odd cut (which by Theorem 7 implies
that E(G) /∈ C(G)).

Figure 2: Both ends have infinite degree, but E(G) /∈ C(G).

Consequently, the degree, if infinite, is not a sufficiently fine notion to deter-
mine the parity of an end. For an adequate refinement we will use the following
characterisation of ends with even finite degree.
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Lemma 8. In a locally finite graph G let ω ∈ Ω(G) have finite degree k. Then
the following statements are equivalent:

(i) k is even;

(ii) there is a finite S ⊆ V (G) such that for every finite set S ′ ⊇ S of vertices
the maximal number of edge-disjoint ω-rays starting in S ′ is even.

Proof. Consider a set R of edge-disjoint ω-rays of maximal cardinality |R| = k,
and let U be the set of starting vertices of R. Then, for every finite set S ′ ⊇ U ,
R has maximal cardinality among all sets of edge-disjoint ω-rays starting in S ′.
Thus, putting S := U , we deduce that (i) implies (ii). Also, (ii) implies (i),
which we see by choosing S ′ = S ∪ U .

As every finite set S ⊆ V (G) gives (essentially) rise to a neighbourhood
Ĉ(S, ω) of ω, condition (ii) in Lemma 8 can be alternatively formulated using
these neighbourhoods, or using regions whose closures contain ω:

(ii′) There is a region A of G with ω ∈ A such that for every region B ⊆ A
of G with ω ∈ B the maximal number of edge-disjoint rays of ω starting
outside B is even.

This motivates the following definition of the parity of an end: an end ω of
a locally finite graph is said to be even if ω satisfies (ii) of Lemma 8. Otherwise
ω is odd. Thus, ω is odd if and only if for all finite S ⊆ V (G) there is a finite set
S′ ⊇ S such that the maximal number of edge-disjoint ω-rays starting in S ′ is
odd. By Lemma 8, an end ω of finite degree is even if and only if d(ω) is even.

Observe that our notion of parity is not symmetric. Indeed, the quantifiers
are exchanged: while for an even end the quantifiers read ∃S ∀S ′ ⊇ S . . ., we
require ∀S ∃S′ ⊇ S . . . for an odd end. We will return to this issue in Section 7.

Let us turn back to the examples that motivated our struggle for a concept
of parity, the infinite grid, and the graph G in Figure 2. Their ends turn out
to have the expected even resp. odd degree. Indeed, for the infinite grid we can
choose S = ∅, and for G it suffices for S to separate the two ends of G. Then
|E(S,C)| is odd for any infinite component C of G−S, and so is |E(S ′, C ′)| for
any S′ ⊇ S and infinite component C ′ of G−S′ (because all vertex degrees are
even).

4 Degrees and parity in subgraphs

It is not possible to extend our degree notion literally to subgraphs H of G.
There are two obstacles.

First, we cannot simply measure the degrees of the ends of H (as opposed
to those of G). This is not surprising as H is embedded in the space |G|. If H
is a double ray, for instance, then (viewed as a graph on its own and not as a
subgraph) it has two ends, each of which has degree 1. On the other hand, the
tails of H may lie in the same end of G, in which case H is a circle in |G|. Thus
the ends contained in H should have degree 2 in H , not 1. Therefore, we only
consider ends of G (and not of H).

Second, even taking that into account, the literal extension to subgraphs
fails: Consider the bold subgraph of the graph in Figure 3, and let ω be the
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end of G “to the right”. Then, apart from tail-equivalence ω has only one ray,
i.e. the maximal number of edge-disjoint ω-rays is 1. But as H is a circle, we
would expect the end ω to have degree 2. In contrast, if we consider the maximal

ω1

ω2

ω3

ω4

...

Figure 3: In subgraphs, counting edge-disjoint rays is not enough.

number of edge-disjoint ω-arcs in H instead of counting edge-disjoint ω-rays in
H we obtain the desired degree 2, as ω is the endpoint not only of the ray at the
bottom, but also of a disjoint arc going through the ends ω1, ω2, . . .. Counting
arcs will indeed turn out to be successful, and the following proposition shows
that in G it makes actually no difference whether we count rays or arcs:

Proposition 9. Let G be a locally finite graph, and let ω be an end of G.
Then for every finite set S ⊆ V (G) the maximal number of edge-disjoint ω-rays
starting in S equals the maximal number of edge-disjoint ω-arcs starting in S.

For its proof we need the following lemma, which can be proved in a similar
fashion as a corresponding result by Halin [8] for disjoint (rather than edge-
disjoint) rays:

Lemma 10. Let G be a locally finite graph, let ω ∈ Ω(G), and let S ⊆ V (G) be
finite. Then the maximal number of edge-disjoint rays in ω starting in S equals
the minimum cardinality of a cut separating S from ω.

Proof of Proposition 9. By Lemma 10, the maximal number of edge-disjoint
rays in ω starting in S equals the minimal cardinality of a finite cut F that
separates S from ω. Since F is finite every ω-arc starting in S needs to use
one of the edges in F . Therefore, the number of ω-arcs starting in S cannot be
higher than the number of rays in ω starting in S.

Hence, for a subgraph H of a locally finite graph G, and ω ∈ Ω(G), we
define, analogously to the definition of d(ω) given above, the degree of ω in H
as

dH(ω) := sup{|R| : R is a set of edge-disjoint ω-arcs in H} ∈ N ∪ {∞}.

We note that the supremum is attained, a fact that we will, however, neither
make use of nor prove. Furthermore, observe that d(ω) = dG(ω). Indeed,
suppose otherwise, i.e. d(ω) < dG(ω). So, in particular, d(ω) is finite. For a
set of d(ω) + 1 edge-disjoint ω-arcs, let S ⊆ V (G) be a choice of exactly one
vertex from each of the arcs. Then, by Proposition 9, there are also d(ω) + 1
edge-disjoint ω-rays starting in S, a contradiction.
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It is possible to prove a version of Lemma 10 for subgraphs and ω-arcs. Then
the following two characterisations of end degrees in terms of cut cardinalities
are immediate. Since we will only use Corollary 12 in the whole graph for the
proof of our main result (in which case the corollary follows from Lemma 10 as
it is stated), we will not provide the subgraph version of Lemma 10.

Corollary 11. Let G be a locally finite graph, let H be a subgraph, and let
ω ∈ Ω(G). Then dH (ω) = k ∈ N if and only if k is the smallest integer such
that every finite S ⊆ V (G) can be separated from ω with a finite cut that shares
exactly k edges with E(H).

Corollary 12. Let G be a locally finite graph, let H be a subgraph, and let
ω ∈ Ω(G). Then ω has even degree in H if and only if there is a finite S ⊆ V (G)
such that for every finite S ′ ⊆ V (G) with S′ ⊇ S it holds: if F ⊆ E(G) is a
finite cut separating S ′ and ω with |F ∩ E(H)| minimal, then |F ∩ E(H)| is
even.

Analoguos to the degree, the parity of an end in H is defined with arcs:

Definition 13. An end ω of G is even in H if there is a finite S ⊆ V (G) such
that for every finite S ′ ⊆ V (G) with S′ ⊇ S the maximal number of edge-disjoint
ω-arcs in H starting in S′ is even. Otherwise, ω is odd in H.

Note that by Proposition 9, the definition of parity is consistent with the one
given previously. Moreover, it can be seen similarly as in the proof of Lemma 8
that for an end ω with finite degree in H , ω has even degree in H if and only if
dH(ω) is even.

Problem 2 seeks a characterisation of the cycle space elements in ‘purely
combinatorial terms’. While our notion of an end degree in a subgraph is based
on topological concepts, we argue that because of Corollary 12, which gives a
combinatorial descripition of parity, our end degrees still stay within the bounds
set by Problem 2. A complete solution of the problem requires an analogue of
Theorem 4 for subgraphs H of G. The forward direction of such an analogue
can be proved easily with the same methods as used for Theorem 4. Further-
more, if G has only countably many ends the problem is not overly difficult
(Proposition 20). In view of this, and in view of Theorems 3 and 4, and two
more results in Section 6, which demonstrate that the end degrees behave in
many aspects similar to vertex degrees in finite graphs, we offer the following
conjecture:

Conjecture 14. Let H be a subgraph of a locally finite graph G. Then E(H) ∈
C(G) if and only if every vertex and every end has even degree in H.

5 Proof of Theorem 4

The forward direction follows from Theorem 7, which ensures that every finite
cut of G is even, and thus together with Corollary 12 implies the assertion.

For the backward direction suppose that E(G) /∈ C(G). Observe that we
may assume G to be connected, which means in particular that G is countable.
We shall find a sequence C1 ⊇ C2 ⊇ . . . of regions of G that satisfy

(i) ∂GCn is an odd cut, for n ≥ 1;
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(ii) Cn ∪N(Cn) ⊆ Cn−1, for n ≥ 2; and

(iii) if D is a region of G with Cn−1 ⊇ D ⊇ Cn then |∂GD| ≥ |∂GCn−1|, for
n ≥ 2,

Then G has an odd end, contradicting the assumption, as desired. Indeed, it
is easy to see that there is a ray that has a tail in every Cn; denote by ω the
corresponding end. Consider any finite S ⊆ V (G), and choose I large enough
such that CI ⊆ C(S, ω), which is possible by (ii). By applying Menger’s theorem
(in the line graph version) between ∂GCn and ∂GCn+1 for each n ≥ I and by
piecing together the resulting paths we obtain a set of |∂GCI | edge-disjoint rays
in ω that start in N(CI ). Therefore, every cut separating S ′ := N(CI) ∪ S
from ω has cardinality at least (and also at most) |∂GCI |. Thus, by (i) and
Corollary 12, ω has odd degree.

Let us give an outline of the idea of how the desired sequence C1, C2, . . . will
be constructed. Since by assumption G has an odd cut, we can start with a
smallest such, and take one of the corresponding odd regions as C1. It is not
difficult to find a region C2 that satisfies conditions (i) and (ii), as they hold
for any one of the odd components of C1 − N(G − C1). Observe that such a
component C ′ indeed exists, since G is locally finite and all its vertices have
even degree.

Now, choosing for C2 an infinite odd region in C1−N(C1) that has minimal
odd cut ensures already half of condition (iii): then, for every odd region D
with C1 ⊇ D ⊇ C2, clearly |∂D| ≥ |∂C1|. But what about the even regions
sandwiched between C1 and C2? This is the main problem in our proof of
Theorem 4.

To overcome this problem we first contract all infinite even regions D ⊆ C1

with |∂D| < |∂C1|. Only then we choose a region C ′2 with minimal odd cut as
above, which can be decontracted to a regionC2 ofG that satisfies condition (iii).
When we contract the even infinite regions with small cut we need to be careful
that in the obtained minor G′ each vertex still has even degree. In order to
guarantee this, the regions we contract have to be disjoint. This makes it
impossible to contract each infinite region with too small cut, but by contracting
a suitable selection of them we accomplish that all vanish.

Having found C2, we proceed analogously with C3, C4, . . ., which gives the
desired sequence.

So let us now formally construct the sequence C1, C2, . . . satisfying (i)–(iii).
For this, we need a further condition for n ≥ 1. Let us call a region C of a graph
H a k-region if |∂HC| = k.

(iv) for every k-region D ⊆ Cn of G with k < |∂GCn| there is an ` ∈ N
and even regions K1, . . . ,K` ⊆ Cn such that |∂GKi| ≤ k for all i, and

V (D) ⊆ ⋃`i=1 V (Ki).

This condition, of course, is trivially satisfied if k is even.
As E(G) /∈ C(G), Theorem 7 ensures the existence of odd regions in G.

Choose any odd region C1 such that ∂GC1 has minimal cardinality. This choice
satisfies (i) and (iv), and that is all we required for n = 1.

Now, suppose the Ci to be defined for i ≤ n. In order to find a suitable
Cn+1, we shall contract certain even k-regions D of G (contained in Cn) for
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which k < |∂GCn|. In the resulting minor, which has only big cuts, we will
choose a small odd cut, which in G induces the desired region Cn+1. We should
point out that whenever we contract an edge we keep parallel edges but delete
all loops.

We will construct this minor in several steps. More precisely, for each even
integer m < |∂GCn| we define a minor Gm of G =: G0, which will have the
properties:

(a) Gm is obtained from Gm−2 by contracting disjoint infinite m-regions K of
Gm−2 with E(K) ⊆ E(Cn) for m ≥ 2; and

(b) |E(D) ∩ E(Gm)| <∞ for every k-region D of G with D ⊆ Cn and k ≤ m.

Observe that, by (a) and as all vertices of G are even, all vertices of Gm have
even degree too. In (a), we think of K being contained in Cn. However, this
is formally incorrect because K lies in a minor of G but Cn is a region of G.
Therefore, we use the slightly awkward requirement that E(K) ⊆ E(Cn).

We claim that (b) together with (iv) implies for m < |∂GCn| − 2:

(c) every k-region D of Gm with E(D) ⊆ E(Cn) and k ≤ m+ 1 is finite.

Note that, in a way, (c) may be viewed as a small improvement on (b). To
prove (c), consider a k-region D of Gm with E(D) ⊆ E(Cn) and k ≤ m + 1.
By uncontracting, we obtain from D a region D′ of G with ∂GD

′ = ∂GmD and
E(D) ⊆ E(D′). Since by assumption m < |∂GCn| − 2, we get that k < |∂GCn|.
Then (iv) implies that there is a finite set K of regions K ⊆ Cn such that
their union contains all vertices of D′ (and thus also all but finitely many edges
of D′). Each K ∈ K is an `-region with even ` ≤ k = m + 1. As m + 1
is odd we get ` ≤ m, and hence by (b), that E(K) ∩ E(Gm) is finite. Thus
|E(D′) ∩E(Gm)| <∞, and hence D is finite. This establishes (c).

Let us now start defining the minors Gm. As G is connected, G0 = G
obviously satisfies (b), which is all we required for m = 0. So, assume m ≥ 2,
and Gi to be constructed for all even i < m. We define a sequence (Lj)j∈N of
(not necessarily induced) subgraphs of Gm−2; by contracting the components
of their union L we obtain Gm.

Consider an enumeration R1, R2, . . . of all infinite m-regions of Gm−2 with
E(Ri) ⊆ E(Cn) (such an enumeration is possible since E(Gm−2) ⊆ E(G) is
countable). Put L1 := R1, and let for j > 1,

Lj := Lj−1 ∪ Rj if ∂Gm−2Rj ∩ E(Lj−1) = ∅ (1)

and Lj := Lj−1 otherwise. Note that in the former case each component of
Lj−1 is either contained in Rj or disjoint from Rj . Thus, by induction on j,
every component K of Lj is an infinite m-region of Gm−2.

Put L :=
⋃
j∈N Lj , and consider a component K of L. Certainly, K is

an infinite induced subgraph in Gm−2 with E(K) ⊆ E(Cn). We claim that
k := |∂Gm−2K| = m. Clearly, k ≤ m as otherwise there would already be a
component K ′ ⊆ K of some Lj with |∂Gm−2K ′| > m, which is impossible. On
the other hand, k ≥ m, by (c) for m−2; thus k = m, as desired. We now obtain
Gm from Gm−2 by contracting the components of L to one vertex each (keeping
multiple edges but deleting loops). Obviously, Gm satisfies (a).
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At first glance, it might look simple to prove (b): since when defining Gm we
contract (most of the) infinite m-regions, surely there should not be any infinite
k-regions with small k left in Gm. While this is true and not difficult to show, it
is not enough for (b). The problem here is that (b) is a statement about regions
of G rather than of Gm. For instance, while contracting G to Gm, we might
contract edges of ∂GD for some region D of G. Then, D will not correspond to
a region D′ of Gm, and we cannot (directly) use our knowledge on regions in
Gm to deduce anything about D.

To circumvent this problem, before we show the validity of (b) we first
present a tool that will allow us to transform a region D of G into an induced
subgraph D′ for which ∂GD

′ ⊆ Gm and which does not differ from D “too
much”. More precisely, we prove that for all even i < m < |∂GCn| it holds that:

(∗) for every region D ⊆ Cn of G with ∂GD ⊆ E(Gi) there is a (possibly
empty) induced subgraph D′ ⊆ Cn that satisfies

(I) there are finitely many regions K1, . . . ,K` of G each of which con-
tracts to a vertex of degree ≤ i+2 in Gi+2 such that V (D)\V (D′) ⊆⋃`
j=1 V (Kj);

(II) if there is a region C of G with D ⊆ C and ∂GC ⊆ E(Gi+2), then
also D′ ⊆ C;

(III) |∂GD′| ≤ |∂GD|; and

(IV) ∂GD
′ ⊆ E(Gi+2).

Observe that D′ has at most |∂GD′| components (since G is connected). Each
of these is a region of G with properties (II)–(IV).

Let us now prove (∗). Given D as above, choose an induced subgraph D̃ ⊆
Cn such that |∂GD̃ \ E(Gi+2)| is minimal among all induced subgraphs that
satisfy (I), (II), (III) and ∂GD̃ ⊆ E(Gi) (which is possible as D itself has these
four properties). If |∂GD̃ \ E(Gi+2)| = 0, we may put D′ := D̃, so suppose
otherwise. Then, by (a), there is an (i+2)-region K of Gi with E(K) ⊆ E(Cn),
which is contracted to a vertex in Gi+2 and for which holds that ∂GD̃∩E(K) 6=
∅. Denote by D̃i the image of D̃ in Gi, i.e. the induced subgraph of Gi with
∂GiD̃

i = ∂GD̃ and E(D̃) ∩ E(Gi) = E(D̃i).
Suppose that one of |EGi(K ∩ D̃i, D̃i \K)|, |EGi(K \ D̃i, Gi − (D̃i ∪K))| is

smaller than or equal to |EGi(K∩D̃i,K\D̃i)|. Then, putting either D̂i = D̃i\K
or D̂i = Gi[D̃i ∪K] we get

|∂GiD̂i| ≤ |∂GiD̃i| = |∂GD̃|. (2)

Observe that ∂GiD̂
i ∩ E(K) = ∅, and denote by D̂ the induced subgraph of G

that we obtain from D̂i by uncontracting. Since the edges of K are contracted in
Gi+2 and since, by construction, no new edges outside E(Gi+2) are introduced in
∂GD̂ = ∂GiD̂

i it follows that ∂GD̂ has fewer edges in E(G)\E(Gi+2) than ∂GD̃.
We claim that this contradicts the minimal choice of D̃. Indeed, ∂GD̂ ⊆ E(Gi),
and also (I) and (III) hold for D̂: the latter by (2), and for the former observe
that each Ki either still contracts to a vertex of degree ≤ i in Gi+2 or, failing
that, is contained in a region that contracts to a vertex of degree i + 2 (this
might happen if the vertex vKi to which Ki is contracted in Gi lies in a region
of Gi that gets contracted when going from Gi to Gi+2). Adding K to these
regions, we obtain the Ki as desired for (I).

10



PSfrag replacements

D̃i

K
Gi − (D̃i ∪K)

D̃i ∩K

Figure 4: D̃i and K in Gi

To see that D̂ satisfies (II), consider a region C ⊇ D with ∂GC ⊆ E(Gi+2).
Observe that D̃ ⊆ C because D̃ satisfies (II). Now, since ∂GC ∩ E(K) = ∅,
either E(K) ⊆ E(C) or E(K) ⊆ E(G−C) because K is connected. The latter
case is impossible, as ∂GD̃ ∩ E(K) 6= ∅. Hence, E(K) ⊆ E(C), and thus, as
D̂i ⊆ Gi[D̃i ∪ K], we get D̂ ⊆ C, as desired. Note also that D̂ ⊆ Cn, as
∂GCn ⊆ E(Gi+2) by (a).

We may therefore assume that

|EGi(K ∩ D̃i,K \ D̃i)| < |EGi(K ∩ D̃i, D̃i \K)|, |EGi(K \ D̃i, Gi − (D̃i ∪K))|,

and thus |∂Gi(K ∩ D̃i)|, |∂Gi(K \ D̃i)| < |∂GiK|. As K is infinite and as K ∩ D̃i

and K \ D̃i have only finitely many components (since G is connected), one of
these components, say K ′, is infinite. Now, K ′ is a region of Gi with ∂GiK

′ ⊆
∂Gi(K ∩ D̃i) or ∂GiK

′ ⊆ ∂Gi(K \ D̃i). In both cases, |∂GiK ′| < |∂GiK| =
i + 2. Because E(K ′) ⊆ E(K) ⊆ E(Cn) and i ≤ m − 2 < |∂GCn| − 2, this
contradicts (c). We have thus shown (∗).

Let us prove that Gm also satisfies (b). For this, consider a region D ⊆ Cn
of G with |∂GD| ≤ m, and suppose that E(D) ∩ E(Gm) is infinite. Assume D
to be chosen among all such regions such that i is maximal with ∂GD ⊆ E(Gi).
Now, if i < m, then (∗) yields a subgraph D′. By (I), all but finitely many
of the edges in E(D) ∩ E(Gm) lie in E(D′). Since D′ has only finitely many
components, there is one, C say, such that E(C) ∩ E(Gm) is infinite. Since,
by (III), |∂GC| ≤ |∂GD|, and since, by (IV), ∂GC ⊆ E(Gi+2), we obtain a
contradiction to the choice of D. Thus, we may assume that i = m, i.e. ∂GD ⊆
E(Gm).

Therefore, by performing the according contractions we obtain from D an
infinite region D̃ of Gm−2 such that ∂Gm−2D̃ = ∂GD and E(D̃) ⊆ E(Cn). Be-
cause of (c) for m−2 and because of |∂GD| ≤ m, we get |∂Gm−2D̃| = m. Hence,
the region D̃ appears in the enumeration R1, R2, . . . used in the construction
of Gm, i.e. there is a j with D̃ = Rj . Suppose that E(Rj) * E(Lj). Then,
by (1), ∂Gm−2Rj ∩ E(Lj−1) 6= ∅, but each edge in Lj−1 will be contracted in
the construction of Gm, contradicting ∂Gm−2Rj ⊆ E(Gm). Therefore, it holds

that E(Rj) ⊆ E(Lj) ⊆ E(L). Thus, in Gm all edges of D̃ = Rj are contracted,
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a contradiction to |E(D) ∩ E(Gm)| =∞. This establishes (b).
Having constructed Gm for all m ≤ M := |∂GCn| − 1, we finally find the

region Cn+1. Observe that, by (a), ∂GCn is a cut of GM , and that the cut F of
GM that consists of those edges in E(GM )∩E(Cn) that in GM are adjacent to
∂GCn has odd cardinality (because by (a), all vertices of GM are even). Thus,
since F is also a cut of G, there exists a region C of G with ∂GC ⊆ E(GM ) that
satisfies (i) and (ii) for n+ 1.

We claim that

any region C of G that for n+ 1 satisfies (i), (ii), and ∂GC ⊆ E(GM ),
also satisfies (iii).

(3)

First, observe that E(C) ∩ E(GM ) is infinite. Indeed, by ∂GC ⊆ E(GM ) and
by (i), C contracts to an odd region in GM . An odd region in a graph in which
all vertices are even is always infinite (and all vertices of GM are indeed even,
by (a)).

Now, consider a k-region D of G with Cn ⊇ D ⊇ C. From (b) for m = M it
follows that k ≥M + 1 = |∂GCn|, as desired for (iii). This establishes (3).

Choose Cn+1 such that ∂GCn+1 has minimal (odd) cardinality among all
regions satisfying (i), (ii) and (iii) for n+ 1.

To see (iv) for n+ 1, consider a k-region D ⊆ Cn+1 with k < |∂GCn+1|. If
k ≤M , then we can apply (iv) for n, so suppose k > M . Furthermore, we may
assume that k is odd, as otherwise we can choose ` := 1 and K1 := D. Hence D
satisfies (i) and (ii) for n+ 1, and we should have chosen D as Cn+1, if not (iii)
and thus, by (3), also ∂GD ⊆ E(GM ) fails forD. Take the smallest iD ≤M such
that ∂GD 6⊆ E(GiD ). Then, repeated use of (∗) for i = iD − 2, iD, . . . ,M − 2,
where we apply (∗) in each step to every component of the subgraph D′ obtained
in the previous step, yields a subgraphD∗ of Cn such that each of its components
K1,K2, . . . ,K` has properties (II)–(IV) for m = M . In particular, (II) implies
for 1 ≤ i ≤ ` that Ki ⊆ Cn+1. Let {K`+1, . . . ,KL} be the set of all regions that
arose as one of the Ki in one of the applications of (∗). Then, by (I),

V (D) ⊆ V (D∗) ∪
L⋃

i=`+1

V (Ki) =

L⋃

i=1

V (Ki).

By (III), |∂GKi| ≤ k for i = 1, . . . , `. Now, if there is an j ∈ {1, . . . , `} such
that |∂GKj | is odd, then Kj ⊆ Cn+1 satisfies (i), (ii), and, by (IV) and (3), also
(iii) for n+ 1, contradicting the choice of Cn+1. So, |∂GKi| is even and ≤ k for
i = 1, . . . , L (for i > ` this follows from (I) and k > M). As ∂GCn+1 ⊆ E(GM ),

and thus ∂GCn+1 ∩
⋃L
i=`+1 E(Ki) = ∅, and as K1, . . . ,K` ⊆ Cn+1, each of the

K1, . . . ,KL either lies completely in Cn+1 or is disjoint from it. Together with
D ⊆ Cn+1 this implies that V (D) ⊆ ⋃K∈K V (K) for K := {Ki : Ki ⊆ Cn+1

and 1 ≤ i ≤ L}, which proves (iv) for n + 1. This completes the proof of the
theorem.

6 Properties of the end degree

As an indication that the end degree indeed behaves as expected of a degree,
we extend three basic properties of the vertex degree in finite graphs to end

12



degrees in locally finite graphs. At the end of this section, however, we present
two examples where end degrees differ from vertex degrees.

The number of odd vertices in a finite graph is always even. We prove the
following easy analogue.

Proposition 15. Let G be a locally finite graph. Then the number of odd
vertices and ends in G is even or infinite.

Proof. Suppose that the set O of odd vertices and ends has odd cardinality.
Observe that there is a finite set S ⊆ V (G) that contains all vertices of O and
separates the ends in O pairwisely. By Corollary 12, there is for each end ω ∈ O
an odd region Aω ⊆ G − S with ω ∈ Aω . Observe that the Aω are pairwise
disjoint. So, contracting each Aω to a vertex aω we arrive at a graph G′ that
has an odd number of odd vertices. Moreover, all ends of G′ have even degree.
Indeed, each end ω of G′ corresponds to an even end in G, and we easily find a
region D ⊆ G∩G′ to which ω belongs. Since parity is a local property ω is thus
not only even in G but also in G′. Now, consider two copies of G′ and add all
edges vv′, where v is an odd vertex of G′ and v′ its copy. The resulting graph
has an odd cut, but no odd vertices or ends, a contradiction to Theorems 4
and 7.

Dirac [7] observed that if a finite graph has minimum vertex degree k ≥ 2
then it contains a circuit of length k+ 1. This becomes false for infinite graphs:
an easy counterexample is the k-regular infinite tree. But the tree ceases to be
a counterexample if a minimum degree is also imposed on the ends, and indeed,
then Dirac’s result extends to locally finite graphs:

Theorem 16. Let G be a locally finite graph, and let H ⊆ G be a subgraph so
that every vertex and every end x ∈ H has degree at least k ≥ 2 in H. Then
there is a circuit C ⊆ E(H) of G with length ≥ k + 1.

First, note that the theorem is best possible, even for infinite graphs. Indeed,
consider disjoint copiesG1, G2, . . . ofKk+1. Identify a vertex in G1 with a vertex
in G2. Then identify a different vertex in G2 with a vertex of G3 and so on. In
the resulting graph the minimum vertex degree is k, and it is easy to see that
the single end has degree k too, but there is no circuit of length greater than
k + 1. See Figure 5 for an example with k = 2.

...

Figure 5: Theorem 16 is best possible for k = 2

Next, let us remark that the long circuit provided by the theorem may be
infinite, and indeed the result becomes false if we require finite circuits. To see
this, consider a k-regular tree H with root r. Let G be the graph obtained by
adding an edge between any two vertices which the same distance to r. Then
G has a single end, which has infinite degree in H , but H does not contain any
finite circuits.

For the proof, we need a simple lemma that shows how we can construct a
topological path by piecing together infinitely many arcs.
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Lemma 17. Let G be a locally finite graph, and let for n ∈ N, φn : [0, 1]→ |G|
be a homeomorphism such that if An := φn([0, 1]) it holds that:

(i) An ∩ Am ⊆ V (G) ∪ Ω(G) for n 6= m; and

(ii) φn(1) = φn+1(0) for all n.

Then there is an x ∈ |G| such that
⋃∞
n=1An ∪ {x} is a topological path from

φ1(0) to x.

Proof. Instead of the φn let us consider compositions with suitable homeo-
morphisms φ′n : [1 − 2−(n−1), 1 − 2−n] → An. Together the φ′n define, by
(ii), a continuous function φ′ : [0, 1) → |G|. As |G| is compact, the sequence
φ1(0) = φ′(1/2), φ2(0) = φ′(3/4), . . . has an accumulation point x. We claim
that φ : [0, 1] → |G| defined by φ(s) := φ′(s) for s ∈ [0, 1) and by φ(1) := x is
continuous.

Let a neighbourhood V of x be given, and note that because of (i) and (ii),
none of the φn(0) is an inner point of an edge, and thus x is an end. Then there
is a basic open neighbourhood Ĉ(S, x) ⊆ V that contains all but finitely many
of the φn(0). By (i), only finitely many of the An meet the finite cut ∂C(S, x).
So, there is an N such that An ⊆ Ĉ(S, x) for n ≥ N . Consequently, φ−1(V )
contains the open set (1−2−N , 1], and thus is a neighbourhood of 1 in [0, 1].

Proof of Theorem 16. First, observe that if H has an infinite block then H
contains two disjoint rays that are equivalent in H (and thus also in G). By
linking these by a path in H we obtain a double ray whose edge set is an infinite
circuit of G.

Therefore, we may assume that every block of H is finite. Next, suppose
that there is a block B of H that contains at most one vertex v with dB(v) < k.
Pick a longest path in B. One of the endvertices has at least k neighbours on
that path, and hence there is a finite circuit of length ≥ k + 1 in B.

So, every block B of H is finite and contains at least two vertices of H with
degree < k in B, which then are cutvertices of H . Now, replace every block
B of H by a (not necessarily spanning) tree T ⊆ B whose leaves are exactly
the cutvertices of H incident with B. Then every vertex of the resulting forest
H ′ ⊆ H has degree ≥ 2 as every block contains at least two cutvertices.

Assume that E(H ′) does not contain infinite circuits, and let v1, v2, . . . be
an enumeration of V (H ′). We will inductively construct for n ∈ N homeomor-
phisms φn : [0, 1] → H ′ ⊆ |G|. Choosing b0 as any vertex in H ′ and putting
An := φn([0, 1]), we require that for n ≥ 1 both an := φn(0) and bn := φn(1)
are vertices, and satisfy:

(i) an = bn−1 for n ≥ 2;

(ii) Am ∩ An = ∅ for 1 ≤ m ≤ n− 2 and An−1 ∩An = {bn−1};

(iii) there is a cutvertex v incident with two blocks B,B ′ of H such that
dB(v) < k and such that An contains two edges incident with v, one
in E(B) and the other in E(B′) (let us call any arc with that property
deficient); and

(iv) if there is a topological path in H ′ from bn−1 to vn that is edge-disjoint

from Bn−1 :=
⋃n−1
i=1 Ai, then vn ∈ An.

14



Note that for n ≥ 1, Bn is a topological path.
In order to construct φn, assume φ1, . . . , φn−1 to be defined already. First,

suppose there is a topological path as required by (iv). By Lemma 6, either
bn−1 and vn are the endpoints of an arc A that is edge-disjoint from Bn−1, or
bn−1 = vn, in which case we put A := {vn}. We claim that A∩Bn−1 = {bn−1}.
Indeed, otherwise let v be the vertex with bn−1v ⊆ A. Then A∪Bn−1 contains
a topological path from v to bn−1 that avoids all inner points of bn−1v, and
hence, by Lemma 6, also a bn−1–v arc A′. Thus, A′ ∪ bn−1v ⊆ A ∪ Bn−1 ⊆ H ′

is a circle, contradicting our assumption.
We now lengthen A so that it also satisfies (iii). Because every vertex has

degree ≥ 2 in H ′, and because H ′ does not contain any circles, vn has a neigh-
bour in H ′ \ A ∪ Bn−1. Continuing in this way, we obtain a vn–B path in H ′

that meets A ∪ Bn−1 only in vn, where B is a block of H which is adjacent to
the block that contains vn. As B ∩H ′ is connected and as H ′ does not contain
any circles, B is disjoint from A ∪ Bn−1. So, since B has a cutvertex b with
dB(b) < k, there is a deficient path P ⊆ H ′ that starts in vn and is otherwise dis-
joint from A∪Bn−1. Thus, we easily find a homeomorphism φn : [0, 1]→ A∪P
which satisfies (i)–(iv).

So suppose there is no topological path as in (iv). Again we find a deficient
path P ⊆ H ′ starting in bn−1 which is disjoint from Bn−1 \ {bn−1}, and the
respective homeomorphism φn : [0, 1]→ P has properties (i)–(iv).

This process yields a set of arcs An, to which we apply Lemma 17. We
obtain an x ∈ |G|, which is necessarily an end, such that A∗ :=

⋃∞
n=1An ∪ {x}

is a topological path from b0 to x.
The end x has degree k in H , and hence there are k edge-disjoint arcs

R1, . . . , Rk ⊆ H that start in x. Each of the Ri meets A∗ \ {x} in every
neighbourhood of x. Indeed, suppose there is a neighbourhood U of x and an
index j such that Rj ∩U is disjoint from A∗ \{x}. Since Rj is continuous, there
is a subarc of Rj which starts in x and is completely contained in U . Pick a
vertex vm on this subarc, and denote by R the subarc of Rj between x and vm.
Then

⋃∞
n=m−1An ∪ R clearly is a topological path from bm−1 to vm which is

edge-disjoint from Bm−1, a contradiction to (iv) as vm /∈ A∗ ⊇ Am.
Let φ : [0, 1] → A∗ be a continuous function with range A∗ and φ(1) = x.

Choose an s ∈ [0, 1) such that each of the Ri hits A∗ in a φ(ri) with ri < s.
Because of (iii), we may assume that v := φ(s) is a cutvertex incident with two
blocks B,B′ of H such that dB(v) < k and such that A∗ contains two edges
incident with v, one in E(B) and the other in E(B′). Not all of the k arcs Ri can
go through the cut F := EH(v,B − v) of H , which has cardinality dB(v) < k;
so assume Rj does not contain any edge of F . Let uw be the (unique) edge in
E(A) ∩ F , and assume φ−1(u) ≤ φ−1(w) (note that either u = v or w = v).
Then (A ∪ Rj) \ uw ∪ {u,w} contains a topological path from w to u (simply
run from w to x along A, then from x to φ(rj) along Rj and finally from φ(rj)
to u along A). Therefore, there is also an arc R ⊆ (A ∪ Rj) \ uw ∪ {u,w} with
endpoints u and w, by Lemma 6. Consequently, R ∪ uw ⊆ H is a circle. Since
E(R) is disjoint from F and every B–(B′ − v) path in H has to go through F ,
|E(R)| is infinite. Thus, E(R∪uw) ⊆ E(H) is an infinite circuit, as desired.

In a finite graph the cycles are exactly the connected 2-regular subgraphs.
The same is true for locally finite graphs.
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Proposition 3. Let C be a subgraph of a locally finite graph G. Then C is a
circle if and only if C is topologically connected and every vertex or end x of G
with x ∈ C has degree two in C.

We deduce Proposition 3 from Theorem 16. However, there is also a direct
proof1 of the proposition, which is not much more complicated.

Proof of Proposition 3. If C is a circle, then it is clearly topologically connected
and every vertex and every end x ∈ C has degree two in C.

For the converse direction, Theorem 16 implies that there is a circle D ⊆ C.
Suppose there exists a point z ∈ C \D. Theorem 5 yields an arc A ⊆ C that
starts at z and ends in D. As both A and D are closed, A has a first point in
D, i.e. a point x such that the subarc A′ of A between z and x meets D only in
x. Thus, there are three edge-disjoint arcs in C with common endpoint x, two
in D and the arc A′. So, x is either a vertex or an end and has degree at least
3 in C, a contradiction. Thus, C = D.

Let us now turn to two areas in which end degrees differ in their behaviour
from vertex degrees in finite graphs.

For a subgraph H of a graph G, deleting E(H) reduces the degree of a vertex
v ∈ V (G) by its degree in H , i.e. dG(v) = dH(v)+dG−E(H)(v). Although for an
end ω it clearly holds that dG(ω) ≥ dH (ω) + dG−E(H)(ω), equality is in general
not ensured. Consider the 4 ×∞-grid, which has a single end. As depicted in
Figure 6, the removal of (the edge set of) a ray R leads to a decrease of the end
degree from 4 to any of 3, 2, 1 or 0, depending on how R is chosen. Similarly,
deleting a circuit can lead to an odd decrease in the degree.

Figure 6: Removal of a ray lets the end degree decrease by 1 or more

The second area where the end degree differs in its behaviour concerns ex-
tremal results. A classical theorem by Mader [11], for instance, states that high
average degree forces a finite graph to contain a large complete minor. This,
however, fails for locally finite graphs even if every end has high degree. Figure 7
indicates how for every k ≥ 5 a planar k-regular graph with a single end of in-
finite degree can be constructed. Being planar, such a graph can never contain
even a K5 as a minor.

1Here is a sketch of the backward direction: Choose an edge xy ∈ C, and pick a maximal
arc A in C − xy that starts in x, which exists by Zorn’s lemma. The endpoint z of this arc
has degree 2 in C. Thus, if z 6= y, then A meets both z-arcs in C. But this is impossible as
every vertex and end in C has degree 2.
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...

...

...

...

Figure 7: High degree in all vertices and in the single end but planar

7 Weakly even ends

Finally, let us briefly discuss an alternative degree concept, which arises from
the observation that (ii) of Lemma 8 is equivalent to:

(iii) for every finite S ⊆ V (G) there is a finite set S ′ ⊇ S of vertices such that
the maximal number of edge-disjoint ω-rays starting in S ′ is even.

Lemma 8 (ii) was our main motivation for our definition of an even end. In
the same vein, (iii) leads to the following alternative definition of parity, which
differs only in that the quantifiers are exchanged:

Definition 18. Let H be a subgraph of a locally finite graph G. Call ω weakly
even in H if for every finite S ⊆ V (G) there is a finite set S ′ ⊇ S of vertices
such that the maximal number of edge-disjoint ω-arcs in H starting in S ′ is
even. Otherwise, ω is strongly odd in H.

Observe that an even end is weakly even, and that a strongly odd end is
odd. For ends of finite degree the two parity concepts are equivalent; this can
be seen in a similar way as the equivalence of (ii) and (iii). For ends of infinite
degree, however, this need not be true: consider a ray v1v2 . . ., and replace each
edge vivi+1 by i (subdivided) parallel edges. The obtained graph has a single
end, which is both odd and weakly even.

This construction only works because there are odd vertices present. But
could an odd end exist in a graph that has all vertices even and all ends weakly
even? Or, on the contrary:

Problem 19. Does Theorem 4 remain true if we substitute “even ends” by
“weakly even ends”?

We have been unable to settle the problem. However, the following propo-
sition answers both this question and Conjecture 14 positively for locally finite
graphs with only countably many ends. It should be noted that its proof uses
Corollary 12 in its full generality, the proof of which we did not provide for the
sake of brevity.

Proposition 20. Let G be a locally finite graph with only countably many ends,
and let H a subgraph. Then E(H) ∈ C(G) if and only if every vertex has even
degree in H and if every end has weakly even degree in H.
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Proof. The forward direction follows immediately from Theorem 7 and Corol-
lary 12. For the backward direction, suppose E(H) /∈ C(G), which by Theorem 7
means that G has a finite cut F with |F ∩E(H)| odd. Let ω1, ω2, . . . be an enu-
meration of Ω(G). We successively define a sequence A0 ⊆ A1 ⊆ . . . of finite sets
of disjoint regions A ⊆ G−F of G with |∂A∩E(H)| even and such that for each
ωi with i ≤ n there is an A ∈ An with ωi ∈ A. Put A0 := ∅. In order to define
the set An first check whether there is an A ∈ An−1 such that ωn ∈ A, in which
case we put An := An−1. Otherwise consider the (finite) set S of all neighbours
of each A ∈ An−1 and of the endvertices of the edges in F . As ωn is weakly
even, Lemma 10 yields a region B ⊆ G− F with ωn ∈ B and A ∩B = ∅ for all
A ∈ An−1. Put An := An−1 ∪ {B}. Finally, contracting all the disjoint regions
A ∈ ⋃∞n=1An to a vertex each yields a finite graph with all vertex degrees even
in H that has a cut F with |F ∩E(H)| odd, a contradiction.
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