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Abstract

We prove a tree-of-tangles the;orem and a tangle-tree duality theorem
for abstract separation systems S that are submociular in the structural
sense that, for every pair of oriented separations, S contains either their
meet or their join defined in some universe U of separations containing s.

This holds,ﬁand is widely used, if U comes with a submodular order
function and S consists of all its separations up to some fixed order. Our
result is that for the proofs of these two theorems, which are central to ab-
stract tangle theory, it suffices to assume the above structural consequence
for S, and no order function is needed.

1 Introduction

This paper is, in a sense, the capstone of a comprehensive project [2, 3,4, 5, 8, 9,
10, 11, 13, 12, 17, 18] whose aim has been to utilize the idea of tangles familiar
from Robertson and Seymour’s graph minors project as a way of capturing
clusters in other contexts, such as image analysis [14], genetics [6], or the social
sciences [7]. The idea is to use tangles, which in graphs are certain consistent
ways of orienting their low-order separations, as an indirect way of capturing
‘fuzzy’ clusters — ones that cannot easily be described by simply listing their
elements — by instead orienting all those low-order separations towards them.
We can then think of these as a collection of signposts all pointing to that
cluster, and of clusters as collective targets of such consistent pointers.

Once clusters have been captured by ‘abstract tangles’ in this way, one can
hope to generalize to such clusters Robertson and Seymour’s two fundamental
results about tangles in graphs [21]. One of these is the tree-of-tangles theorem.
It says that any set of distinguishable tangles — ones that pairwise do not contain
each other — can in fact be distinguished pairwise by a small and nested set of
separations: for every pair of tangles there is a separation in this small and
nested collection that distinguishes them. Formally, this means that these two
tangles orient it differently; informally it means that one of its two orientations
points to one of the tangles, while its other orientation points to the other
tangle. Since these separations are nested, they split the underlying structure
in a tree-like way, giving it a rough overall structure.



The other fundamental result from [21], the tangle-tree duality theorem, tells
us that if there are no tangles of a desired type then the entire underlying struc-
ture can be split in such a tree-like way, i.e. by some nested set of separations,
so that the regions corresponding to a node of the structure tree are all small.
(What exactly this means may depend on the type of tangle considered.)

This research programme required a number of steps, of which this paper
constitutes the last.

The first step was to make the notion of tangles independent from their
natural habitat of graphs. In a graph, tangles are ways of consistently orienting
all its separations {4, B} up to some given order, either as (A, B) or as (B, A).
If we want to do this for another kind of underlying structure than a graph, this
structure will have to come with a notion of ‘separation’, it must be possible
to ‘orient’ these separations, and there must be a difference between doing this
‘consistently’ or ‘inconsistently’. If we wish to express, and perhaps prove, the
two fundamental tangle theorems in such an abstract context, we further need
a notion of when two ‘separations’ are nested.

There are many structures that come with a natural notion of separation. For
sets, for example, we might simply take bipartitions. The notion of nestedness
can then be borrowed from the nestedness of sets and applied to the bipartition
classes. Thinking of a bipartition as an unordered pair of subsets, we can also
naturally orient it ‘towards one or the other of these subsets’ by ordering the
pair. Finally, we have to come up with natural notions of when orientations
of different separations are consistent: we think of this as ‘roughly pointing
the same way’, and it is another prerequisite for defining tangles to make this
formal. This is both trickier to do in an abstract context and one of our main
sources of freedom; we shall address this question in Section 2.

The completion of the first step in our research programme thus consisted in
abstracting from the various notions of separation, and of consistently orienting
separations, a minimum set of requirements that might serve as axioms for an
abstract notion of tangle applicable to all of them. This resulted in the concept
of separation systems and their (‘abstract’) tangles [8].

The second step, then, was to generalize the proofs of the tree-of-tangles
theorem and the tangle-tree duality theorem to the abstract setting of separation
systems. This was done in [11] and [13], respectively.

In order to prove these theorems, or to apply them to concrete cases of ab-
stract separation systems, e.g. as in [12, 14], one so far still needed a further
ingredient of graph tangles: a submodular order function on the separation sys-
tem considered. Our aim in this paper is to show that one can do without this:
we shall prove that a structural consequence of the existence of a submodular
order function, a consequence that can be expressed in terms of abstract sep-
aration systems, can replace the assumption that such a function exists in the
proofs of the above two theorems. We shall refer to separation systems that
satisfy this structural condition as submodular separation systems.!

IThere is also a notion of submodularity for separation universes. Separation universes
are special separation systems that are particularly large, and they are always submodular



With this third step, then, the programme sketched above will be complete:
we shall have a notion of tangle for very general abstract separation systems,
as well as a tree-of-tangles theorem and a tangle-tree duality theorem for these
tangles that can be expressed and proved without the need for any submodulary
order function on the separation systems considered.

Formally, our two main results read as follows:

Theorem 1. FEvery submodular separation system S contains a tree set of sep-
arations that distinguishes all the abstract tangles of S.

Theorem 2. Let S be a submodular separation system without degenerate ele-
ments in a distributive universe U. Then exactly one of the following holds:

(i) S has an abstract tangle.

(ii) There exists an S-tree over T* (witnessing that S has no abstract tangle).

(See Section 2 for definitions.) Three further theorems, which partly strengthen
or generalize the above two, will be stated in Section 2 (and proved later) when
we have more terminology available.

One may ask, of course, whether weakening the existence of a submodular
order function to ‘structural submodularity’ in the premise of these two theorems
is worth the effort. We believe it is. For a start, the entire programme of
developing abstract separation systems, and a theory of tangles for them, served
the purpose of identifying the few structural assumptions one has to make of a
set of objects called ‘separations’ in order to capture the essence of tangles in
graphs, and thereby make them applicable in much wider contexts. It would
then seem oblivious of these aims to stop just short of the goal: to continue
to make unnecessarily strong assumptions of an extraneous and non-structural
kind when weaker structural assumptions can achieve the same.

However, there is also a technical advantange. As we shall see in Sections 5.2
and 5.4, there are interesting abstract separation systems that are structurally
submodular but which do not come with a natural submodular order function
that implies this.

2 Abstract separation systems

Abstract separation systems were first introduced in [8]; see there for a gentle
formal introduction and any terminology we forgot to define below. Motivation
for why they are interesting can be found in the introductory sections of [11,
13, 12] and in [14]. In what follows we provide a self-contained account of just
the definitions and basic facts about abstract separation systems that we need
in this paper.

A separation system (S <,*)isa partlally ordered set with an order-reversing
involution *: § - S. The elements of § are called ( omented) separations. The
inverse of § € S is §* , which we usually denote by §. An (unoriented) sep-

as separation systems. For separation universes, therefore, submodularity is used with the
narrower meaning of being endowed with a submodular order function [8].



aration is a set s = {8, §} consisting of a separation and its inverse and we
then refer to § and § as the two orientations of s. Note that it may occur
that § = §, we then call § degenerate. The set of all separations is denoted
by S. When the context is clear, we often refer to oriented separations simply
as separations in order to improve the flow of text.

If the partial order (S,<) is a lattice with join V and meet A, then we
call (§,§,*,V,A) a universe of (oriented) separations. It is distributive if it
is distributive as a lattice. Typically, the separation systems we are interested
in are contained in a universe of separations. In most applications, one starts
with a universe ((7, <,*,V,A) and then defines S as a set of separations of low
order with respect to some order function on U, a map [-]: U— [0,00) that is
symmetric in that | 5| = | 5|, and submodular in that | 5V € |[+|§AE| < |3|+]| T ]
forall 5, ¢ € U. Submodularity of the order function in fact plays a crucial role
in several arguments. One of its most immediate consequences is that whenever
both &, ¢ € Sy := {1 € U: |u| < k}, then at least one of §V ¢ and § A ¢
again lies in ,S?k

In order to avoid recourse to the external concept of an order function if
possible, let us turn this last property into a definition that uses only the lan-
guage of lattices. Let us call a subset M of a lattice (L, V,A) submodular if for
all z,y € M at least one of x Vy and z Ay lies in M. A separation system S
contained in a given universe U of separations is (structurally) submodular if it
is submodular as a subset of the lattice underlying U.

We say that s € S is small (and § is co-small) if § < §. An element §
is trivial in S (and § is co—trwlal) if there exists ¢t € .S whose orientations
satisfy § < t as well as § < . Notice that trivial separations are small.

Two separatlons 55 te S are nested if there exist orientations § of s and ¢
of t such that § < . Two oriented separations are nested if their underlying
separations are. We say that two separations cross if they are not nested. A
set of (oriented) separations is nested if any two of its elements are. A nested
separation system without trivial or degenerate elements is a tree set. A Set o
of non—degenerate oriented separations is a star if for any two distinct §, t €o
we have § < t. A family F C 27 of sets of separations is standard for S if for
any trivial § € § we have {5} € F. Given F C 20 we write F* for the set of
all elements of F that are stars.

An orientation of S is a set O C S which contains for every s € S, exactly
one of §, 3. An orientation O of S is consistent if whenever r, s € S are distinct
and 7 < § € O, then ¥ ¢ O. The idea behind this is that separations ¥ and &
are thought of as pointing away from each other if ¥ < §. If we wish to orient r
and s towards some common region of the structure which they are assumed
to ‘separate’, as is the idea behind tangles, we should therefore not orient them
as 7 and 3.

Tangles in graphs also satisfy another, more subtle, consistency requirement:
they never orient three separations , s,t so that the region to which they point

collectively is ‘small’.?2 This can be mimicked in abstract separation systems by
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2Formally: so that the union of their sides to which they do not point is the entire graph.



asking that three oriented separations in an ‘abstract tangle’ must never have a
co-small supremum; see [8, Section 5]. So let us implement this formally.

Given a family F C 2V, we say that O avoids F if there is no o C O with
o € F. A consistent F-avoiding orientation of S is called an F-tangle of S.
An F-tangle for F = T with

T:={{7,5,{}CU: VSV iscosmall}

is an abstract tangle.

A separation s € S distinguishes two orientations O1,05 of S if O1 Ns #
0> N s. Likewise, a set N of separations distinguishes a set O of orientations if
for any two O1, 05 € O, there is some s € N which distinguishes them.

Let us restate our tree-of-tangles theorem for abstract tangles of submodular
separation systems:

Theorem 1. Fvery submodular separation system S contains a tree set of sep-
arations that distinguishes all the abstract tangles of S.

We now introduce the structural dual to the existence of abstract tangles.
An S-tree is a pair (T, ) consisting of a tree T and a map « E(T) — S from
the set E(T) of orientations of edges of T' to S such that a(y,z) = a(z,y)* for
all zy € E(T). Given F C 20 we call (T, @) an S-tree over F if a(F;) € F for
every t € T, where

Fy:={(s,t): st € E(T)}.

It is easy to see that if S has an abstract tangle, then there can be no S-tree
over T.

Our tangle-tree duality theorem for abstract tangles of submodular separa-
tion systems, which we now re-state, asserts a converse to this. Recall that 7*
denotes the set of stars in T .

Theorem 2. Let S be a submodular separation system without degenerate ele-
ments in a distributive universe U. Then exactly one of the following holds:

(i) S has an abstract tangle.

(ii) There exists an S-tree over T*.

Here, it really is necessary to exclude degenerate separations: a single degen-
erate separation will make the existence of abstract tangles impossible, although
there might still be 7*-tangles (and therefore no S-trees over 7*). We will actu-
ally prove a duality theorem for 7*-tangles without this additional assumption
and then observe that T *-tangles are in fact already abstract tangles, unless S
contains a degenerate separation.

In applications, we do not always wish to consider all the abstract tangles of
a given separation system. For example, if S consists of the bipartitions {A, B}
of some finite set V' (see [8] for definitions), then every v € V induces an abstract
tangle .

7= {(A,B) € S: v € B},

the principal tangle induced by v. In particular, abstract tangles trivially exist



in these situations. In order to exclude principal tangles, we could require that
every tangle 7 of S must satisfy ({v}, V '\ {v}) € 7 for every v € V.

More generally, we might want to prescribe for some separations s of S that
any tangle of S we consider must contain a particular one of the two orientations
of s rather than the other. This can easily be done in our abstract setting, as
fOHOWb Given @ C U let us say that an abstract tangle 7 of S extends @ if
QN S C 7. It is easy to see that 7 extends @ if and only if 7 is Fp-avoiding,
where

Fo :={{§}: § € Q non-degenerate}.

We call Q C U down-closed if ¥ < 5 € Q implies ¥ € Q for all ¥, 5 ¢ U.
Here, then, is our refined tangle-tree duality theorem for abstract tangles of
submodular separation systems.

Theorem 3. Let S be a submodular separation system without degenerate ele-
ments in a distributive universe U and let QQ C U be down-closed. Then exactly
one of the following assertions holds:

(i) S has an abstract tangle extending Q.
(ii) There exists an S-tree over T* U Fq.

Observe that Theorem 3 implies Theorem 2 by taking Q = 0.

The abstract tangles in Theorem 3 are not the only F-tangles for which
such a statement holds. In [12] the tangle-tree duality theorem of [13] is used to
prove such a statement for a broad class of F-tangles, albeit under a stronger
assumption: one needs there that S is not just structurally submodular, as is
our assumption here throughout our paper, but that U has a submodular order
function and S is the set separations up to some fixed order (and therefore, in
particular, submodular).

In Section 4, however, we will show that the weaker assumption that S itself
is submodular is in fact sufficient to establish the only property of S whose
proof in [12] requires a submodular order function: this is the fact that S is
‘separable’. (We shall repeat the definition of this in Section 4.)

The other ingredient one needs for all those applications of the tangle-tree
duality theorem from [13] is a property of F: that F is ‘closed under shifting’.
Sometimes, a submodular order function on U is needed also to establish this
property of F. But if it is not, we can now prove the same application without
a submodular order function, assuming only that S itself is submodular:

Theorem 4. Let U be a universe of separations and S CUa submodular
separation system. Let F C 27 be a set of stars which is standard for S and
closed under shifting. Then exactly one of the following holds:

(i) There exists an F-tangle of S.

(ii) There exists an S-tree over F.

We shall prove Theorem 4 in Section 4.



Our last result is an example of Theorem 4 for a concrete F, a tangle-tree
duality theorem for F-tangles of bipartitions of a set that are used particularly
often in applications [6, 7]. Let U be the universe of oriented bipartitions (A, B)
of a set V (see [8] for definitions). Let m > 1 and n > 2 be integers, and define

Fn={FCU:| () Bl<m}
(A,B)eF
and
Fr={FeF,:|Fl<n}.

m

To subsume F,,, under this latter notation we allow n = oo, so that F3° = Fp,.
Given any collection F C 2Y of sets of oriented separations, we write F* for its
subcollection of those sets F' € F that are stars (of oriented separations).

We shall prove in Section 4 that the set of stars in F,, is closed under shifting.
Building on Theorem 4, we then use this in Section 5 to prove the following:

Theorem 5. Let S - U be a submodular separation system, let 1 < m € N
and 2 <n € NU{oo}, and let F = F. Then exactly one of the following two
statements holds:

(i) S has an F-tangle;

(ii) There exists an S-tree over F*.

The bound n on the size of the sets in F is often taken to be 4. In (i) we could
replace F with F*, since for these F the F-tangles are precisely the F*-tangles;
see Section 5.3.

3 The tree-of-tangles theorem

In this section we will prove Theorem 1. In fact, we are going to prove a slightly
more general statement. Let P := {{5,¢,(3V £)*}: §,¢ € U}. The P-
tangles are known as profiles. A profile of S is reqular if it contains all the small
separations in S,

Theorem 6. Let S be a submodular separation system and I1 a set of profiles
of S. Then S contains a tree set that distinguishes 11.

This implies Theorem 1, by the following easy observation.
Lemma 7. FEvery abstract tangle is a profile.
Proof. Let §,¢ €U and 7 := §V ¢. Then

VEVF=TFVF

)

is co-small, so {§, t,7} € T. Therefore P C T and every T-tangle is also a
P-tangle. O



We first recall a basic fact about nestedness of separations. For s,t € S, we
define the corners S AT, SAt, §At and §A L.

Lemma 8 ([8]). Let S be a separation system in a universe U of separations.
Let s,t be two crossing separations and T one of the corners. Then every
separation that is nested with both s and t is nested with r as well.

In the proof of Theorem 6, we take a nested set N of separations that dis-
tinguishes some set I of regular profiles and we want to exchange one element
of A/ by some other separation while maintaining that Il is still distinguished.
The following lemma simplifies this exchange.

Lemma 9. Let S be a separation system, O a set of consistent orientations of S
and N C S an inclusion-minimal nested set of separations that distinguishes O.
Then for every t € N there is a unique pair of orientations O1,09 € O that are
distinguished by t and by no other element of N.

Proof. Tt is clear that at least one such pair must exist, for otherwise N\ {t}
would still distinguish O, thus violating the minimality of V.

Suppose there was another such pair, say O}, 0}. After relabeling, we may
assume that ¢ € Oy N O} and t€0yn O4. By symmetry, we may further
assume that O1 # O}. Since N distinguishes O, there is some r € AN with
¥ e0,, T el

As t is the only element of A distinguishing O1, Os, it must be that 7 € O,
as well, and similarly ¥ € O5. We hence see that for any orientation 7 of
{r,t}, there is an O € {O1,02,07,04} with 7 C O. Since N is nested, there
exist orientations of 7 and ¢ pointing away from each other. But then one of
01, 04,01, O} is inconsistent, which is a contradiction. O

Proof of Theorem 6. Note that it suffices to show that there is a nested set N
of separations that distinguishes II: Every consistent orientation contains every
trivial and every degenerate element, so any inclusion-minimal such set N gives
rise to a tree-set.

We prove this by induction on |II|, the case |II| = 1 being trivial.

For the induction step, let P € II be arbitrary and Il := II\ {P}. By
the induction hypothesis, there exists a nested set N of separations that distin-
guishes IIy. If some such set N distinguishes II, there is nothing left to show.
Otherwise, for every nested N' C S which distinguishes Il there is a P’ € Il
which A does not distinguish from P. Note that P’ is unique. For any s € S
that distinguishes P and P’, let d(/V, s) be the number of elements of N which
are not nested with s.

Choose a pair (N, s) so that d(N, s) is minimum. Clearly, we may assume A
to be inclusion-minimal with the property of distinguishing Iy. If d(NV,s) = 0,
then N'U{s} is a nested set distinguishing IT and we are done, so we now assume
for a contradiction that d(N,s) > 0.

Since A does not distinguish P and P’, we can fix an orientation of each
t € N such that ¢ € PN P’. Choose a t € N such that t and s cross and ¢ is
minimal. Let (P;, P») be the unique pair of profiles in I which are distinguished



by ¢ and by no other element of N, say t € P, t € P,. Let us assume without
loss of generality that § € P;. The situation is depicted in Figure 1. Note that
we do not know whether s € P, or § € P,. Also, the roles of P and P’ might
be reversed, but this is insignificant.

Figure 1: Crossing separations

Suppose first that 7} == §V £ € S. Let Q € {P,P'}. If § € @, then
7 € Q, since ¢ € PN P and Q is a profile. If /1 € Q, then § € Q since Q is
consistent and § < 7] € Q: it cannot be that § = 77, since then s and ¢ would
be nested. Hence each @Q € {P, P’} contains 71 if and only if it contains §. In
particular, 7y distinguishes P and P’. By Lemma 8, every u € N that is nested
with s is also nested with r;. Moreover, t is nested with 71, but not with s, so
that d(NV,r) < d(N s). This contradicts our choice of s.

Therefore 3V t ¢ S. Since S is submodular, it follows that 73 T3i= 8 /\t es.
Moreover, 7 is nested with every w € N'\ {t}. This is clear if ¢ < @ or ¢ < u,
since 73 < t. It cannot be that & < ¢, because @, ¢ € P and P is consistent.
Since A is nested, only the case 4 < ¢ remains. Then, by our choice of ¢, u
and s are nested and it follows from Lemma 8 that v and ry are also nested.
Hence N := (M '\ {t}) U {rz2} is a nested set of separations.

To see that N’ distinguishes Iy, it suffices to check that ry distinguishes P
and P,. We have 75 € P, since P, is consistent and 75 < ¢ € Py: if 75 = 1,
then s and ¢ would be nested. Since 7 = §V t and §, ¥ € Py, we find 5 € P;.
Any element of A/ which is not nested with s lies in M. Since t € N'\ N is not
nested with s, it follows that d(N’,s) < d(N,s), contrary to our choice of N
and s. O

4 Tangle-tree duality

Our agenda for this section is first to prove Theorem 4, and then to derive from
it Theorem 3, which as we have seen implies Theorem 2. Our proof will be an
application of the basic tangle-tree duality theorem from [13].

For this we need to introduce the notion of separability, and then prove
that submodular separation systems are separable (Lemma 13). This lemma
not only lies at the heart of our proof of Theorem 4: it will also be central to
any other result that asserts a tangle-tree type duality for separation systems



(§ ,<,*) that are structurally submodular, but are not so simply as a corollary
of the existence of a submodular order function on S.

A separation § € S emulates 7 in S if § > 7 and for every ¢ € 5\ {F}
with £ > 7 we have 3V £ € S. For §E§,0§§and T € o, define

= {ZVEIU{GAS: g eo\{T})

8|«

(o

Lemma 10. Suppose § € S emulates a Qon—trivial roin §, and let o C S be
a star such that ¥ < ¥ € 0. Then O’;j C S is a star.

Proof. Note that for every yEo \{ } we have ¥ < §. Tt is clear that for any
two distinct u v e O'H we have © < ¥, so we only need to show that every
element of O'H is non-degenerate and hes in §. For every TS O'H there is a
non—degenerate T e § with 7 < ¢ such that elther i=tVsoru=t \/
Let le S be non-degenerate with 7 < t. Slnce 5 emulates 7 in S we
find £V § € S. Assume for a contradiction that ¢ V § was degenerate. Slnce v
is non-degenerate, we find that ¢ < ¢ V §, so that ¢ is trivial. But then so
is 7, because 7 < £. This contradicts our assumption on 7. O

The Se_Paratlon system S is separable if for all non-trivial and non—degenerate
71,79 € S with 71 < 75 there ex1sts an § € S which emulates r1 in S while
simultaneously § emulates 75 in S,

leen some F C 2U we say that 5 emulates 7 in S for F if § emulates 7
in S and for every star 0 C S\ {r} with 0 € F and every ¥ € o with @ > 7
we have O'? e F.

The separatlon system Sis F- separable if for all non-trivial and non-degener—
ate 71,79 € S w1th 1 < 715 and {1}, {r3} §é F there exists an § € S which

emulates 77 in S for F while simultaneously § emulates 75 in S for F.

Theorem 11 ([13, Theorem 4.3]). Let U be a universe of separations and
S cUa separation system. Let F C 20 be a set of stars, standard for S, If S
is F-separable, then exactly one of the following holds:

(i) There exists an F-tangle of S.

(ii) There exists an S-tree over F.

In applications of Theorem 11 it is often easier to split the proof of the main
premise, that S is F-separable, into two parts: a proof that S is separable and
one that F is closed under shifting in S: that whenever § € S emulates (in S )
some nontrivial and nondegenerate ¥ < § not forced by F, then it does so
for F. Indeed, the following is immediate from the definitions:

Lemma 12. Let U be a unwerse of separations, S - Ua separation system,
and ]-" C 20 a set of stars. If S s separable and F is closed under shifting,
then S is - separable. O

It is shown in [12] that if U is a universe of separations with an order function,
then the sets Sy, of all separations of order less than some fixed positive integer k

10



are separable for all k, and virtually all the applications of Theorem 11 that are
given in [13] involve a separation system of the form §k

While many applications of the submodularity of an order function use only
its structural consequence that motivated our abstract notion of submodularity,
the use of submodularity in the proof that Sy is separable — see [12, Lemma 3.4] —
uses it in a more subtle way. There, the orders of opposite corners of two crossing
separations § and ¢ are compared not with any fixed value of k but with the
(possibly distinct) orders of s and ¢ directly. This kind of argument is naturally
difficult, if not impossible, to mimic in our set-up.

However, we can prove this nevertheless, choosing a different route. The
following lemma is, in essence, the main result of this section:

Lemma 13. Let U be a_universe of separations and S C U a submodular
separation system. Then S is separable.

We will actually prove a slightly more general statement about submodular
lattices. Let (L,V,A) be a lattice and let M C L. Given z,y € M, we say
that x pushes y if x < y and for any z € M with z < y we have z A z € M.
Similarly, we say that z lifts y if x > y and for any z € M with z > y we have
xVz € M. Observe that both of these relations are reflexive and transitive:
Every € M pushes (lifts) itself and if = pushes (lifts) y and y pushes (lifts) z
then x pushes (lifts) z. We say that M is strongly separable if for all x,y € M
with z <y there exists a z € M that lifts  and pushes y.

The definitions of lifting, pushing and separable extend verbatim to a sepa-
ration system within a universe of separations when regarded as a subset of the
underlying lattice. These notions are 5trengthen1ngb of the notions of emulatlng
and separable: If § € S lifts 7 € S then § emulates 7 in S and S pushes 7
if and only if § lifts ¥. Similarly, if S is strongly separable, then S is separable.
Lemma 13 is then an immediate consequence of the following:

Lemma 14. Let L be a finite lattice and M C L submodular. Then M is
strongly separable.

Proof. Call a pair (a,b) € M x M bad if a < b and there is no € M that lifts a
and pushes b. Assume for a contradiction that there was a bad pair and choose
one, say (a,b), such that I(a,b) :=={u € M: a <wu < b} is minimal.

We claim that a pushes every z € I(a,b) \ {b}. Indeed, assume for a con-
tradiction a did not push some such z. By minimality of (a,b), the pair (a, 2)
is not bad, so there is some & € M which lifts a and pushes z. By assumption,
x # a and so by minimality, the pair (z,b) is not bad, yielding a y € M which
lifts  and pushes b. By transitivity, it follows that y lifts a. But then (a,b)
is not a bad pair, which is a contradiction. An analogous argument establishes
that b lifts every z € I(a,b) \ {a}.

Since (a,b) is bad, a does not push b, so there is some x € M with = < b
for which a A ¢ M. Similarly, there is a y € M with y > a for which
bVy¢ M. Since M is submodular, it follows that a V x,b Ay € M. Note that
aVz,bAy € I(a,b). Furthermore, x < aVx and a Ax ¢ M, so a does not
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push a V z. We showed that a pushes every z € I(a,b) \ {b}, so it follows that
aV x =b. Similarly, we find that b A y = a. But then

xVy=zV(aVy =bVy¢g M,
xAy=(xAb)Ay=xzNad¢ M.

This contradicts the submodularity of M. O

As a result we obtain our tangle-tree duality theorem for F-tangles of sub-
modular separation systems, which we restate:

Theorem 4. Let U be a universe of separations and ScUa submodular
separation system. Let F C 27 be a set of stars which is standard for S and
closed under shifting. Then exactly one of the following holds:

(i) There exists an F-tangle of S.

(ii) There exists an S-tree over F.

Proof. Since S is submodular, Lemma 13 implies that Si s separable. Since F
is closed under shifting, it follows from Lemma 12 that Sis F- separable. The
result then follows by Theorem 11. O

We will now use Theorem 4 to prove Theorem 3, which in turn implies
Theorem 2. Recall that we are considering a downclosed subset Q C U oj
a distributive universe of separations, and a submodular separation system .S
without degenerate elements in C U, and we wish to prove a tangle-tree duality
theorem for abstract tangles of § extending (). Note that these are precisely the
(T U Fg)-tangles of S, However, since the family F in Theorem 4 is assumed
to be a set of stars, we cannot work directly with 7. Instead we will work
with 77, the set of stars in 7. It will turn out that, since S has no degenerate
elements, this will not change the set of T-tangles (cf. Lemma 17). So, we will
first show that we can apply Theorem 4 with F = Tg, where Tg := T U Fy,
and then show that the 7 *-tangles are precisely the 7-tangles. Theorem 3 will
then follow.

Let us first prove the following simple fact, which will be useful in a few
different situations.

Lemma 15. Let U be a distributive universe of separations. Let @, v, w € U.
If ¥ < ¥ and ¥ V W is co-small, then ¥ V (W0 A &) is co-small.

Proof. Let @ := ¥ V (@ A ). By distributivity of U
T=(WVO)A(UVE)>(VVW)A(U V).

Let §:= v V@and ¢ := 4V Then § < § by assumption and § <o < t.
Further ¥ < 4 < £ and t < @ < ¥. Therefore

T<SVE<IANELT O
In order to apply Theorem 4 with F = 7¢, we need to show that T¢, is closed
under shifting.
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Lemma 16. If Q C U is down-closed and U is distributive, then Tg is closed
under shifting.

Proof. Let 7" € S non-trivial and non- degenerate with {r} ¢ F. Let § € s
emulate 7 in S, let Tog20C S\ {7} and 7 < ¥ € 0. We have to show that
aﬁ € TQ From Lemma 10 we know that 0'? is a star, so we only need to verify
that 0_, €T U Fg.

Suppose first that o € T*. Let w := \/(oc \ {Z}). Applying Lemma 15 with
U =258 and ¥ = ZV 5, we see that

Vol =(ZVvs)V(wns)

is co-small. Since a;: has at most three elements, it follows that O';: eT.
Suppose now that o € Fg. Then o = {Z} and T € Q. As Q is down-closed,
we have T A § € Q. Since ag is a star, ¥ A § is non-degenerate and therefore

oS ={ZV3}={(TA5)}eFq
O

Lemma 17. Let U be a distributive universe of separations and let S CUbea
submodular separation system without degenerate elements. Then the T *-tangles
are precisely the abstract tangles.

Proof. Since T* C T, every abstract tangle is also a 7*-tangle. We only need
to show that, conversely, every T *-tangle in fact avoids 7.

For o € T, let d(c) be the number of pairs §, ¢ € ¢ which are not nested.
Let O be a consistent orientation of S and suppose O was not an abstract
tangle. Choose 7 2 o C O such that d(o) is minimum and, subject to this, o is
inclusion-minimal. We will show that ¢ is indeed a star, thus showing that O
is not a 7 *-tangle.

If o contained two comparable elements, say § < t, then o’ := o \ {5}
satisfies 0/ € T, 0/ C O and d(¢’) < d(o), violating the fact that o is inclusion-
minimal. Hence o is an antichain. Since S has no degenerate elements, it follows
from the consistency of O that any two nested &, ¢ € o satisfy § < ¢. To
show that o is a star, it thus suffices to prove that any two elements are nested.

Suppose that o contained two crossmg separatlons say §,t € 0. By sub-
modularity of S at least one of s A f and § A £ liesin S. By symmetry we
may assume that 7i=5At €S Leto = (c\{% })U{ }. Since O is
consistent, ¥ < § and r # s, it follows that 7 € O and so ¢’ C O as well. Let
W= \/( \ {t}). As t Vv w = \/ o is co-small, we can apply Lemma 15 with

—

==t todeduce that t V(W A t) is co-small as well. But

tvwat)y=tv \/ (Zat)<\/o,
Teo\{T}

so \/ ¢’ is also co-small and ¢’ € T.
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We now show that d(¢’) < d(o). Since s and ¢ cross, while r and ¢ do
not, it suffices to show that every @ € o \ {§} which is nested with § is also
nested with 7. But for every such ¥ we have § < ¥. Since ¥ < 5, we get
7 < ¥ as well, showing that r and x are nested. So in fact d(¢’) < d(c), which
is a contradiction. This completes the proof that o is nested and therefore a
star. 0

We are now in a position to prove Theorem 3.

Proof of Theorem 3. By Lemma 13, S is separable, and by Lemma 16, 7¢ is
closed under shifting. Therefore, by Theorem 4, there is no S-tree over 7 U Fy,
if and only if S has a Tp-tangle, that is, a 7 *-tangle extending Q.

However, since U is distributive and S contains no degenerate elements,
Lemma 17 implies that S has a 7T *-tangle extending @ if and only if S has an
abstract tangle extending Q. O

5 Special cases and applications

5.1 Tangles in graphs and matroids

We briefly indicate how tangles in graphs and matroids can be seen as special
cases of abstract tangles in separation systems. Tangles in graphs and hyper-
graphs were introduced by Robertson and Seymour in [21], but a good deal of
the work is done in the setting of connectivity systems. Geelen, Gerards and
Whittle [20] made this more explicit and defined tangles as well as the dual
notion of branch-decompositions for connectivity systems, an approach that we
will follow.

Let X be a finite set and A : 2% — Z a map assigning integers to the subsets
of X such that A\(X \ A) = A(A) for all A C X and

AMAUB) + MAN B) < A(A) + \(B)

for all A, B C X. The pair (X, \) is then called a connectivity system.

Both graphs and matroids give rise to connectivity systems. For a given
graph G, we can take X := E(G) and define A(F') as the number of vertices
of G incident with edges in both F' and E \ F. Given a matroid M with
ground-set X and rank-function r, we take A to be the connectivity function
MA) :=r(A) +r(X\ A) —r(X).

Now consider 2% as a universe of separations with set-inclusion as the partial
order and A* = X\ A as involution. For an integer k, the set Sy, of all sets A with
A(A) < k is then a submodular separation system. Let Q := {0}U{{z}: z € X}
consist of the empty-set and all singletons of X and note that @ is down-closed.

A tangle of order k of (X, A), as defined in [20], is then precisely an abstract
tangle extending Q. It is easy to see that (X, ) has a branch-decomposition
of width <k if and only if there exists an Sy-tree over 7* U Fg. Theorem 3
then yields the classic duality theorem for tangles and branch-decompositions
in connectivity systems, see [21, 20].
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5.2 Clique separations

We now describe a submodular separation system that is not derived from a sub-
modular order function, and provide a natural set of stars for which Theorem 4
applies.

Let G = (V, E) be a finite graph and U the universe of all separations of G,
that is, pairs (A, B) of subsets of V with V' = AU B such that there is no edge
between A\ B and B\ A. Here the partial order is given by (A, B) < (C, D) if
and only if A C C and B D D, and the involution is simply (4, B)* = (B, A).
For (A,B) € U, we call AN B the separator of (A, B). It is an a-b-separator
ifae A\ B and b € B\ A. We call AN B a minimal separator if there exist
a € A\ B and b € B\ A for which AN B is an inclusion-minimal a-b-separator.

Recall that a hole in a graph is an induced cycle on more than three vertices.
A graph is chordal if it has no holes.

Theorem 18 (Dirac [15]). A graph is chordal if and only if every minimal
separator is a clique.

Let S be the set of all (A,B) € U for which G[A N B] is a clique. We
call these the clique separations. Note that S is closed under involution and
therefore a separation system. To avoid trivialities, we will assume that the
graph G is not itself a clique. In particular, this implies that S contains no
degenerate elements.

Lerglma 19. Let s,t € S. At least three of the four corners of s and t are again
in S. In particular, S is submodular.

Proof. Let § = (A,B) and t = (C, D). Since G[ANB] is a clique and (C, D) is
a separation, we must have AN B C C or AN B C D, without loss of generality
AN B C C. Similarly, it follows that C N D C A or CN D C B; we assume the
former holds. For each corner other than § A ¥ = (ANC, BU D), the separator
is a subset of either AN B or C'N D and therefore the subgraph it induces is a
clique. This proves our claim. O

Suppose that the graph G contains a hole H. Then for every (A, B) € §,
either H C A or H C B. In this way, every hole H induces an orientation

Op :={(A,B)e S: HC B}

of S. We now describe these orientations as tangles over a suitable set of stars.
Let 7 C 2Y be the set of all sets {(A1, By),...(A,, B,)} C U for which
G| Bi] is a clique (note that the graph without any vertices is a clique). As
usual, we denote by F* the set of all elements of F which are stars.
Theorem 20. Let O be an orientation of S. Then the following are equivalent:
(i) O is an F*-tangle.
(ii) O is an F-tangle.
(iii) There exists a hole H with O = Oyy.
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It is easy to see that every orientation Oy induced by a hole H is an F-tangle.
To prove that, conversely, every JF-tangle is induced by a hole, we use Theo-
rem 18 and an easy observation about clique-separators, Lemma 21 below. The
proof that every F*-tangle is already an F-tangle, the main content of Lemma 22
below, is similar to the proof of Lemma 17, but some care is needed to keep
track of the separators of two crossing separations.

For a set 7 C U, let J(7) := ) A,B)e- B be the intersection of all the right
sides of separations in 7, where J(0)) := V(G).

Lemma 21. Let 7 be a set of clique separations, J = J(7) and K C J. Let
a,be J\ K. If K separates a and b in G[J|, then it separates them in G.

Proof. We prove this by induction on |7|, the case T = () being trivial. Suppose
now |7| > 1 and let (X,Y) € 7 arbitrary. Put 7" := 7\ {(X,Y)} and J' := J(7').
Note that J =J NY. Let G' := G[J'] and (X', Y") := (X NnJ, Y N.J).

Then K C J' and a,b € J'\ K. Suppose K did not separate a and b in G’
and let P C J’ be an induced a-b-path avoiding K. Since G'[X’'NY”] is a clique,
P has at most two vertices in X’ NY” and they are consecutive vertices along P.
As a,b € Y’ and (X',Y”’) is a separation of G’, it follows that P C Y'. But
then K does not separate a and b in J = J' NY, contrary to our assumption.

Hence K separates a and b in G’. By inductive hypothesis applied to 7/, it
follows that K separates a and b in G. O

Lemma 22. Fvery F*-tangle is an F-tangle and a regular profile.

Proof. Let P be an F*-tangle. It is clear that P contains no co-small separation,
since {(V,A)} € F* for every co-small (V,A) € S. Since P is consistent, it
follows that P is in fact down-closed.

We now show that P is a profile. Let (A, B),(C,D) € P and assume for
a contradiction that (E,F) := ((A,B) V (C,D))* € P. Recall that either
CnNnDCAorCnDCB.

Figure 2: The case CND C B

Suppose first that CND C B; this case is depicted in Figure 2. Lgt (X,Y):=
(A,B) A (D,C) and note that X NY C AN B, so that (X,Y) € S. It follows
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from the consistency of P that (X,Y) € P. Let 7 := {(C,D),(E,F),(X,Y)}
and observe that 7 C P is a star. However

J(r)=DN(AUC)N(BUC) = (DNB)N(AUC),

which is the separator of (E, F). Since (E, F) € §, G[J(7)] is a clique, thereby
contradicting the fact that P is an F*-tangle.

Suppose now that CND C A. Let (X,Y) := (B, A) A (C, D) and note that
XNY C AN B, so that (X,Y) € S. Since P is down-closed, it follows that
(X,Y) € P. Therefore 7 := {(A,B),(E,F),(X,Y)} C P. But 7 is a star and

J(r)=BN(AUC)N(AUD)=Bn(AU(CND)) =BnNA,

and so G[J(7)] is a clique, which again contradicts our assumption that P is an
F*-tangle. This contradiction shows that P is indeed a profile.

We now prove that for any 7 C P there exists a star o C P with J(o) = J(7).
It follows then, in particular, that P is an F-tangle.

Given 7 C P, choose ¢ C P with J(o) = J(7) so that d(¢), the number of
crossing pairs of elements of ¢, is minimum and, subject to this, ¢ is inclusion-
minimal. Then o is an antichain: If (A, B) < (C, D) and both (A, B), (C,D) €
o, then ¢’ := o \ {(A, B)} satisfies J(¢') = J(0), thus violating the minimality
of 0. Since ¢ C P and P is consistent, no two elements of o point away from
each other. Therefore, any two nested elements of ¢ point towards each other.
To verify that o is a star, it suffices to check that o is nested.

Assume for a contradiction that o contained two crossing separations (A, B)
and (C,D). If (E,F) := (A,B)V (C,D) € S, obtain ¢’ from o by deleting
(A, B) and (C, D) and adding (E, F). We have seen above that P is a profile,
so o/ C P. By Lemma 8, every element of o \ {(4, B),(C, D)} that is nested
with both (A, B) and (C, D) is also nested with (E, F). Since ¢’ misses the
crossing pair {(A4, B), (C, D)}, it follows that d(¢’) < d(o). But J(o') = J(0),
contradicting the minimality of o.

Hence it must be that (E, F) ¢ 5,50 ANB Z C and CND ¢ A. Therefore
(X,Y) = (A4, B)A(D,C) € §. Let o’ := (¢ \ {(4, B)}) U{(X,Y)}. Note that
(X,Y) < (A,B) € P,so o’ CP. Moreover YND = (BUC)ND = BnND,
since C N D C B. Therefore J(¢') = J(o). As mentioned above, any (U, W) €
o\ {(4, B)} that is nested with (A, B) satisfies (A, B) < (W,U). Therefore
(X,Y) < (A,B) < (W,U), so (X,Y) is also nested with (U, W). It follows that
d(c’) < d(o), which is a contradiction. This completes the proof that ¢ is nested
and therefore a star. O

Proof of Theorem 20. (i) — (ii): See Lemma 22.

(ii) — (iii): Let O be an F-tangle and J := J(O). We claim that there is a
hole H of G with H C J. Such a hole then trivially satisfies Oy = O.

Assume there was no such hole, so that G[J] is a chordal graph. Since O is
F-avoiding, G[J] itself cannot be a clique, so there exists a minimal set K C .J
separating two vertices a,b € J\ K in G[J]. By Theorem 18, K induces a clique
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in G. By Lemma 21, K separates a and b in G, so there exists a separatlon
(A,B) € S with AﬂB K,ae A\Bandbe B\A As O orients S, it must
contain one of (4, B), (B, A) say without loss of generality (A, B) € O. But
then J C B, contrary to a € J. This proves our claim.

(iii) — (i): We have H C J(Op), so J(O) does not induce a clique. Since
every star o C O has J(O) C J(o) there is no star o C O such that G[J(0)] is
a clique, and so O is F*-avoiding. Furthermore, O is clearly consistent, and
so O is an F*-tangle. O

The upshot of Theorem 20 is that a hole in a graph, although a very concrete
substructure, can be regarded as a tangle. This is in line with our general
narrative, set forth e.g. in [12, 6, 7], that tangles arise naturally in very different
contexts, and underlines the expressive strength of abstract separation systems
and tangles.

What does our abstract theory then tell us about the holes in a graph? The
results we will derive are well-known and not particularly deep, but it is none-
theless remarkable that the theory of abstract separation systems, emanating
from the theory of highly connected substructures of a graph or matroid, is able
to express such natural facts about holes.

Firstly, by Lemma 22, every hole induces a profile of S. Hence Theorem 6
applies and yields a nested set N of clique-separations distinguishing all holes
which can be separated by a clique. This is similar to, but not the same as, the
decomposition by clique separators of Tarjan [22]: the algorithm in [22] essen-
tially produces a maximal nested set of clique separations and leaves ‘atoms’ that
do not have any clique separations, whereas our tree set merely distinguishes
the holes and leaves larger pieces that might allow further decomposition.

Secondly, we can apply Theorem 4 to find the structure dual to the existence
of holes. It is clear that F* is standard, since /™ contains {(V, A)} for every
(V,A) € S.

Lemma 23. F* is closed under shifting.

Proof. Let (X,Y) € S emulate a non-trivial (U, W) € S with {W,U)} ¢ F,

let 0 ={(4;,B;):0<i<n}C S with o € F* and (U, W) < (Ao, Bp). Then
o' =0y py ={(AoUX,BonY)}U{(ANY,BiUX): 1<i<n}.

By Lemma 10, ¢’
Let (A, B) =
star. Then

c
Vi

S is a star. We need to show that G[J(d")] is a clique.
i>1(4i, B;) and note that (A4, B) < (Bo, Ao), since o is a

(B,A) A (V,By) = (B, Bo) € U.

But G[B N By] = G[J(0)] is a clique, so in fact (B, By) € S. Since U,w) <
(Ao, Bo) < (B, A), we see that (U, W) < (B,Bp). As (X,Y) emulates (U, W)
in S, we find that (E, F) := (X,Y) V (B, Bp) € S. It thus follows that

J(@)=(XUuB)N(YNBy)=ENF
and so G[J(0")] is indeed a clique. Therefore o’ € F*. O
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Theorem 24. Let G be a graph. Then the following are equivalent:
(i) G has a tree-decomposition in which every part is a clique.
(i)
(iii) S has no F*-tangle.
(iv) G is chordal.

There exists an S-tree over F*.

Proof. (i) — (ii): Let (T, V) be a tree-decomposition of G in which every part is
a clique. For adjacent s,t € T', let T, ; be the component of T'— st containing ¢
and let V;; be the union of all V,, with v € T;;. Define « : E(T) — U as
a(s,t) == (Vis, Vst). Then a(s,t) = a(t, s)*. The separator of a(s,t) is Vs N V4,
which is a clique by assumption. Hence (T, «) is in fact an S-tree. It is easy
to see that «(F}) is a star for every ¢t € T and that J(a(F;)) = V;. Therefore
(T, @) is an S-tree over F*.

(ii) — (i): Given an S-tree (T, «) over F*, define V; := J(a(Fy)) for t € T.
It is easily verified that (T, V) is a tree-decomposition of G. Each V; is then a
clique, since a(F;) € F. .

(ii) «» (iii): Follows from Theorem 4, since F* is standard for S and closed
under shifting by Lemma 23.

(iii) ¢+ (iv): Follows from Theorem 20. O

The equivalence of (i) and (iv) is a well-known characterization of chordal
graphs that goes back to a theorem Gavril [19] which identifies chordal graphs
as the intersection graphs of subtrees of a tree.

5.3 Tangle-tree duality in cluster analysis

Let us now apply Theorem 4 to a generic scenario in cluster analysis [6, 7], where
V is thought of as a data set, .S is a set of certain ‘natural’ bipartitions of V,
and we are interested in certain F-tangles as ‘clusters’. The idea is that clusters
should be described by these F-tangles in the same way as the vertex set of
a large grid in a graph is captured by the graph tangle 7 it induces: although
every oriented separation § in 7 points to most of the vertices of the grid, the
cluster can be ‘fuzzy’ in that these are not the same points for every § € 7.
Indeed, there need not be a single vertex to which all the § € 7 point.

To mimic this idea, we want to choose F so that, whenever we consider just
a few separations in S, any F-tangle 7 of S must orient these so that they all
point to at least some m (say) points in V, while we do not require that the
intersection of all the sets B for (A, B) € 7 must be large (or even non-empty).

Formally, then, let U be the universe of all oriented bipartitions (A4, B)
of some non-empty set V) including (@, V) and (V,0), with § = (B, A) for
§ = (A,B) and (A,B) A (C,D) := (ANC,BUD), and let § C U be any
submodular separation system in U. Let 1 <m € Nand 2 <neNU{oo}. For
these m and n, define

fm;:{Fgﬁ:| ﬂ B|<m}
(A,B)eF
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and
n={FeF,:|F|<n}

There is only one small separation in U , the separation (0, V). Hence re-
gardless of what S may be, it has no trivial separation other than ((}, V). Since
{(V,0)} € F}, for all m and n, this makes F,}, standard for .

Recall that, for any F C ZS we write F* for the set of stars in F.

Lemma 25. Let1 <m € N and2 <n € NU{oco}. For F = F}}, the F*-tangles
of S are precisely its F-tangles.

Proof. Since F* C F, it is clear that F-tangles are F*-tangles. To show the
converse, suppose there is an F*-tangle 7 that fails to be an F-tangle, because
it contains some F' € F as a subset.

Clearly F € F\ F*, so F contains two Crossmg separatlons 7 and § s. Since
S is submodular, one of their opp031te corners ¥ A § and § A¥ lies in S let us
assume 7’ := 7 A § does. Since 77 < ¥ € 7, the consistency of 7 implies that 7
lies in 7 (rather than its inverse 77). Indeed, this follows from the definition of
consistency if 7 # r. But if ' = r then by 7 < 7 either ' = ¥ € 7 as desired,
or r’ < 7 =7 with 7" small but 7 € 7. Since (), V) is the only small separatlon
in S and is in fact trivial, the consistency of 7 once more implies that 7’ € 7.

Let F’ be obtained from F by replacing 7 with 77. Note that ﬂ(A pyer B =
ﬂ( A BY)EF B’ has remained unchanged: although we replaced the set B from

= (A, B) in the first intersection with the bigger set B’ from 1’ = (A’, B) in
the second, the additional B’ \ B has empty intersection with the set D from
= (C, D), and therefore does not increase the second intersection. Hence our
assumption of F' € F = F;} implies that also F' € F}}, = F.

Note that while ¥ and & crossed, " and 3 are nested; indeed, {r’, 5} is a
star. Moreover, replacing an element of this star by a smaller separation will
yield another star; in particular, it cannot result in another pair of crossing sep-
arations. This means that iterating the above uncrossing procedure of replacing
in F' an element 7 € 7 with a smaller separation 77 € 7 in a way that keeps
F in F will end after at most (IFl) steps: for every 2-set {7, 5} C F we will
consider only once in this iterated process a pair {r’, s’} where 7’ is either 7 or
a replacement of 7, and s is either s or a replacement of .

Since the above process turns every pair of crossing separations from F' into
a 2-star of separations, and a set of separations is a star as soon as all its 2-
subsets are stars, the set we turn F' into will be a star in F, an element of F*.
As it will also still be a subset of 7, this contradicts our assumption that 7 is
an F*-tangle. O

Lemma 26. Let 1 < m € N and 2 < n € NU{oco}. The set F* of stars in
F = F)} is closed under shifting.

Proof. Suppose that § € S emulates in S some nontrivial ¥ not forced by F.
We have to show that for every star 0 C s \ {7} with o € F* and every ¥ € ¢
with Z > ¥ we have o’ := of, c F*.
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Let § = (U,W), and for (A, B) € o write (4’,B’) € o’ for the separation
that (A, B) shifts to: if (A, B) = T then (A, ’) = (AU U, BN W), while
if (A,B) € o\ {Z} then (4',B') := (ANW,BUU). From these explicit
representations of the elements of ¢’ it is clear that

N B= (VB < () B,

(A",B")eo’ (A,B)ec (A,B)€c

since B’ \ B C U for every (A,B) € o\ {Z} while UNB’ =0 for (A,B) = ¥
so that the overall intersection of all the B’ equals that of all the B. And since
these sets did not change, nor did their cardinality: as o € F = F]} we also
have ¢/ € F' = F. By Lemma 10, this implies ¢/ € F* as desired. O

Together with Lemmas 25 and 26, Theorem 4 implies our last main theorem:

Theorem 5. Let S C U be a submodular separation system, let 1 < m € N
and 2 <n € NU{oo}, and let F = F. Then exactly one of the following two
statements holds:

(i) S has an F-tangle;

(ii) There exists an S-tree over F*. O

5.4 Phylogenetic trees from tangles of circle separations

Finally, let us describe an application of Theorem 1 and Theorem 5 in biology.
Let V be a set, which we think of as a set of species, or of (possibly unknown)
organisms, or of DNA samples. Our aim is to find their Darwinian ‘tree of life’:
a way of dividing V recursively into ever-smaller subsets so that the leaves of
this division tree correspond to the individual elements of V.

This tree can be formalized by starting with a root node labelled §) at level 0,
a unique node labelled V at level 1, and then recursively adding children to each
node, labelled A C V, say, corresponding to the subsets of A into which A is
divided and labelling these children with the subsets to which they correspond.
Furthermore, let us label the edges from level kK — 1 to k by k.

Every edge e of this tree naturally defines a bipartition of V, to which we
assign the label k of e as it ‘order’. Species that are fundamentally different are
then separated by a bipartition of low order, while closely related but distinct
species are only separated by bipartitions of higher order.

If we draw that tree in the plane, the leaves — and hence V' — will be arranged
in a circle, C' say. The bipartitions {A, B} of V defined by the edges of the tree
are given by circle separations: A and B are covered by disjoint half-open
segments of C' whose union is C.

The way in which this tree is found in practice is roughly as follows. One
first defines a metric on V in which species u,v are far apart if they differ in
many respects. Then one applies some clustering algorithm, such as starting
with the singletons {v} for v € V' as tiny clusters and then successively amalga-
mating close clusters (in terms of this distance function) into bigger ones. The
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bipartitions of V' corresponding to pitching a single cluster against the rest of V'
will be nested and can therefore be represented as edge-separations of a tree as
above, which is then output by the algorithm. If we draw the tree in the plane,
the bipartitions then become circle separations of V as earlier.

A known problem with this approach is that, since every cluster found in
this process defines a bipartition of V' that ends up corresponding to an edge of
the final tree, inaccuracies in the clustering process immediately affect this tree
in an irreversible way. Bryant and Moulton [1] have suggested a more careful
clustering process which produces not necessarily a tree but an outerplanar
graph G on V, together with a set of particularly important bipartitions of V'
that are not necessarily nested but are still circle separations of V with respect
to the outer face boundary of G. The task then is to select from the set S of
these bipartition a nested subset that defines the desired phylogenetic tree, or
perhaps to generate such a set from S in some other suitable way such as adding
corners of crossing separations already selected.

This is where tangles can help: in a general way, but also in a rather specific
way that finds the desired nested set from a set of circular separations of V.

Let us just briefly indicate the general way in which tangles can be used for
finding phylogenetic trees in a novel way [6], without the need for any distance-
based clustering. As input we need a collection of subsets of V to be used as
similarity criteria, such as the set of species v € V that can fly or lay eggs,
the set of DNA molecules that have base T' in position 137, or the set of those
organisms that respond to some test in a certain way. Then we define an order
function on all the bipartitions of V| assigning low order to those bipartitions
that do not cut accross many of our criteria sets so as to split them nearly in
half. For example, we might count for s = {A, B} the number of triples (a, b, ¢)
such that a € A and b € B and both a and b satisfy (are elements of) the
criterion c.

This order function is easily seen to be submodular on the universe U of all
oriented bipartitions of V' [7]. For suitable F whose F-tangles are profiles, e.g.
the F = F} with n > 3 considered in Section 5.3, we can then compute the
(canonical) tree of tangles as in [11], or an S-tree over F as in [12, 13] if there
are no tangles. In the first case, the tree of tangles for 73 has a good claim to
be the phylogenetic tree for the species in V, see [6].

In the concrete scenario of [1], we further have the following specific appli-
cation of tangles as studied in this paper. Let S be the set of circle separations
of V| taken with respect to its circular ordering found by the current algorithm
of [1]. We can now define F-tangles on this S just as we did earlier on the set
of all bipartitions of V, and consider the same order function as earlier.

This order function is not, however, submodular on our restricted set S':
this would require that S is not just a separation system but a universe of
separations, i.e., that corner separations of elements of S are again in S — which
is not always the case. In particular, we do not get a tree-of-tangles theorem
for S from [11], or a tangle-tree duality theorem from [12, 13].3

3This is not to say that no submodular order function on S exists that returns the sets Sy,
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However, we do get a tree-of-tangles theorem for S as a corollary of Theo-
rem 1, and a tangle-tree duality theorem as a corollary of Theorem 5. For this
we need the following easy lemma. Let U be the universe of all oriented bi-
partitions of V' (see Section 5.3), equipped with any submodular order function
under which {@), V'} has order 0. Let S be the set of all circle separations of V'
with respect to some fixed cyclic ordering of V.

Lemma 27. For every k > 0, the set Sy of all circle separations of order < k
is submodular.

Proof. Consider two oriented circle separations ¥ = (A, B) and § = (C,D)
of V. Clearly, ¥ V 5 is again a circle separation unless the circle segments
representing A and C are disjoint and both segments that join them on the
circle meet V. In that case, however, the union of the segments representing B
and D is the entire circle, so ¥ A § = (), V'), which is a circle separation.

As (0,V) has order 0 < k by assumption, and our order function is submod-
ular on the set of all blpartltlons of V, this 1mphes that Si is submodular: given
r, s 5 € Sk, either both # V & and 7 A 7 are in S and hence one of them is
in Sy, or one of them is (i, V) or (V,0) and therefore in Sj,. O

Consider any 1 <m € N and 3 <n € NU{oco}. Let F = F}}, be as defined
in Section 5.3. Here is our first tree-of-tangles theorem for circle separations:

Theorem 28. For every k > 0, the set Sy of circle separations of V of order < k
contains a tree set of separations that distinguishes all the F-tangles of Sk.

Proof. In order to apply Theorem 1, we have to show that all F-tangles of Sk
are abstract tangles, i.e., that they contain no triple (H g, t H) with 7VSVE =
(V,0) (which is the unique co-small separation in U). But any such triple lies
in F for the values of m and n we specified, so no F-tangle of Sy contains it.
Lemma 27 and Theorem 1 thus imply the result. O

Applying very recent work of Elbracht, Kneip and Teegen [16], we can unify
the assertions of Theorem 28 over all k, as follows. Let us say that an element s
of S distinguishes two orientations p, 7 of subsets of S if these orient s differently,

e., if s has orientations § € p and § € 7. If s has minimum order amongst
the separations in S that distinguish p from 7, we say that s distinguishes p
and 7 efficiently. Similarly, a set T' C S distinguishes a set T of orientations of
subsets of S efficiently if for every pair of distinct p, 7 € T there exists an s € T'
that distinguishes p from 7 efficiently.

Orientations p and 7 as above are called distinguishable if they are distin-
guished by some s € S. Note that orientations p of Sy and 7 of Sy for k < ¢ are
indistinguishable if and only if p = 7N Sz

Here is our tree-of-tangles theorem for circle separations of mixed order:

Theorem 29. [16] The set S of all circle separations of V contains a tree set
that efficiently distinguishes all the distinguishable F-tangles of subsets Sy of S.

we are interested in as sets Sy for some other k’. One can indeed construct such a function,
but it is neither obvious nor natural.
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Elbracht, Kneip and Teegen [16] showed that the tree set in Theorem 29 can
in fact be chosen canonical, i.e., so that every separation system automorphism
(see [8]) of S acts on T as a set of automorphisms of 7.

Finally, our tangle-tree duality theorem for circle separations:

Theorem 30. For every k > 0, the set Sy of circle separations of V of order < k
satisfies exactly one of the following two assertions:

(i) Sk has an F-tangle;

(ii) There exists an Si-tree over F*.

Proof. Apply Lemma 27 and Theorem 5. O
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