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Every end of an infinite graph G defines a tangle of infinite order in G.
These tangles indicate a highly cohesive substructure in the graph if and only
if they are closed in some natural topology.
We characterize, for every finite k, the ends ω whose induced tangles of

order k are closed. They are precisely the tangles τ for which there is a set of
k vertices that decides τ by majority vote. Such a set exists if and only if the
vertex degree plus the number of dominating vertices of ω is at least k.

1 Introduction
Our first object of study in infinite tangle theory are tangles in infinite graphs. In [2], it
was shown how the set Θ of tangles of infinite order of an arbitrary infinite graph can be
used to compactify that graph, much in the same way as the set Ω of ends of a connected
locally finite graph can be used to compactify it. Indeed, if a graph G is connected and
locally finite, these compactifications |G|Θ and |G|Ω of G coincide. This is because every
end ω of an infinite graph G induces a tangle τ = τω of order ℵ0 in G, and for locally
finite connected G the map ω 7→ τω is a bijection between the set Ω of ends of G and the
set Θ of its ℵ0-tangles. (Graphs that are not locally finite have ℵ0-tangles that are not
induced by an end.)

In [2], a natural topology on the set
→
S =

→
Sℵ0(G) of separations of finite order of G was

defined. A tangle τ induced by an end of G is a closed set in this topology if and only
if τ is defined by an ℵ0-block in G, that is, if there is an ℵ0-block K in G with K ⊆ B
for all separations (A,B) in τ .

Our research expands on this latter result. Every end ω of a graph induces not only a
tangle of infinite order in G, but for each k ∈ N the end ω induces a k-tangle in G. The
set

→
Sk of all separations (A,B) of G with |A ∩B| < k is a closed set in

→
S , and thus if

the tangle τ induced by ω in G is a closed set in
→
S , the k-tangle τ ∩

→
Sk induced by ω

will be closed as well. However, it is possible that a tangle τ in G of infinite order fails to
be closed in

→
S , while its restrictions τ ∩

→
Sk to

→
Sk are closed for some, or even all, k ∈ N.

In this paper we characterize the ends of G by the behaviour of their tangles, as follows:
We show that, for an end ω and its induced tangle τ , the restriction τ ∩

→
Sk to

→
Sk is a
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closed set in
→
S if and only if

deg(ω) + dom(ω) > k,

where deg(ω) and dom(ω) denote the vertex degree and number of vertices dominating ω,
respectively.

We further show that τ is closed in
→
S if and only if ω is dominated by infinitely many

vertices.
A question raised in [3] asks whether for a k-tangle τ in a finite graph G one can always

find a set X of vertices which decides τ by majority vote, in the sense that (A,B) ∈ τ if
and only if |A ∩X| < |B ∩X|, for all (A,B) ∈

→
Sk. This problem is still open in general,

although some process has been made recently (see [5, 6]). We establish an analogue in
the infinite setting: we show that for an end ω of G and its induced k-tangle τ ∩

→
Sk

in G, the existence of a finite set X which decides τ ∩
→
Sk in the above sense is equivalent

to τ ∩
→
Sk being a closed set in

→
S . In this way the global property of being topologically

closed can be linked to the local phenomenon of a finite set deciding the end tangle.
This paper is organized as follows: Section 2 contains the basic definitions and some

notation. Following that, in Section 3, we recall the core concepts and results from [2]
that are relevant to our studies, including the topology defined on

→
S . Finally, in Section 4,

we prove our main results Theorem 2 and Theorem 3. The first of these characterises
the ends of a graph by the behaviour of their tangles, and the second shows that τ ∩

→
Sk

being a closed set in
→
S for a k-tangle τ induced by some end ω of G is equivalent to

both deg(ω) + dom(ω) > k and to τ ∩
→
Sk being decided by some finite set of vertices.

2 Separations, tangles, and their topology
Throughout this paper G = (V,E) will be a fixed infinite graph. Let us recall the
relevant definitions for tangles in graphs, and their extensions to infinite graphs. For any
graph-theoretical notation not explained here we refer the reader to [1].
A separation of G is a set {A,B} with A ∪ B = V such that G contains no edge

between ArB and B rA. We call such a set {A,B} an unoriented separation with the
two orientations (A,B) and (B,A). Informally we think of the oriented separation (A,B)
as pointing towards B and pointing away from A. The separator of a separation {A,B}
is the set A ∩B.
The order of a separation (A,B) or {A,B} of G is the cardinality |A ∩ B| of its

separator. For a cardinal κ we write Sκ = Sκ(G) for the set of all unoriented separations
of G of order < κ. If S is a set of unoriented separations we write

→
S for the corresponding

set of oriented separations, that is, the set of all separations (A,B) with {A,B} ∈ S.
Consequently we write

→
Sκ for the set of all separations (A,B) of G with |A ∩B| < κ.

If S is a set of unoriented separations of G, an orientation of S is a set O ⊆
→
S such

that O contains precisely one of (A,B) or (B,A) for every {A,B} ∈ S. A tangle of S
in G is an orientation τ of S such that there are no (A1, B1), (A2, B2), and (A3, B3) in τ
for which G[A1] ∪G[A2] ∪G[A3] = G.
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Properties of sets of separations of finite graphs, including their tangles, often generalize
to sets of separations of infinite graphs but not always. Those sets of separations to
which these properties tend to generalize can be identified, however: they are the sets of
separations that are closed in a certain natural topology [4]. Let us define this topology
next. It is analogous to the topology of a profinite abstract separation system defined
in [4].1

From here on we denote by S = Sℵ0(G) the set of all (unoriented) separations of G of
finite order. Thus

→
S =

→
Sℵ0(G) is the set of all separations (A,B) of G with A ∩B finite.

We define our topology on
→
S by giving it the following basic open sets. Pick a finite

set Z ⊆ V and an oriented separation (AZ , BZ) of G[Z]. Then declare as open the
set O(AZ , BZ) of all (A,B) ∈

→
S such that A ∩ Z = AZ and B ∩ Z = BZ . We shall say

that these (A,B) induce (AZ , BZ) on Z, writing (AZ , BZ) =: (A,B)�Z, and that (A,B)
and (A′, B′) agree on Z if (A,B)�Z = (A′, B′)�Z.

It is easy to see that the sets O(AZ , BZ) do indeed form the basis of a topology on
→
S .

Indeed, (A,B) ∈
→
S induces (A1, B1) on Z1 and (A2, B2) on Z2 if and only if it induces

on Z = Z1∪Z2 some separation (AZ , BZ) which in turn induces (Ai, Bi) on Zi for both i.
Hence O(A1, B1) ∩O(A2, B2) is the union of all these O(AZ , BZ).

As we shall see, the intuitive property of tangles in finite graphs that they describe, if
indirectly, some highly cohesive region of that graph – however ‘fuzzy’ this may be in
terms of concrete vertices and edges – will extend precisely to those tangles of S that are
closed in

→
S .

3 End tangles of S

We think of an oriented separation (A,B) ∈
→
S as pointing towards B, or being oriented

towards B. In the same spirit, given an end ω of G, we say that (A,B) points towards ω,
and that ω lives in B, if some (equivalently: every) ray of ω has a tail in B. Furthermore,
if (A,B) points to an end ω, then (B,A) points away from ω.

Clearly, for every end of G and every {A,B} ∈ S, precisely one orientation of {A,B}
points towards that end. In this way, every end ω of G defines an orientation of S by
orienting each separation in S towards ω:

τ = τω := {(A,B) ∈
→
S | every ray of ω has a tail in B}

It is easy to see ([2]) that this is a tangle in G. We call it the end tangle induced on S by
the end ω.

Note that every end tangle contains all separations of the form (A, V ) for finite A ⊆ V ,
and thus no separation of the form (V,B). Furthermore, any two ends induce different
end tangles. Our aim in this section is to recall from [2] some properties of the end
tangles of S that we shall later extend to its subsets Sk. For the convenience of the

1Even though
→
S itself is not usually profinite in the sense of [4], the topology we define on

→
S is the

subspace topology of
→
S as a subspace of the (profinite) system of all oriented separations of G,

equipped with the inverse limit topology from [4].
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reader, and also in order to correct an inessential but confusing error in [2], we repeat
some of the material from [2] here to make our presentation self-contained.
Let us first see an example of an end tangle that is not closed in

→
S .

Example 3.1. If G is a single ray v0v1 . . . with end ω, say, then τ = τω is not closed
in

→
S .
Indeed, τ contains (∅, V ), and hence does not contain (V, ∅). But for every fi-

nite Z ⊆ V the restriction (Z, ∅) of (V, ∅) to Z is also induced by the separation
({v0, . . . , vn}, {vn, vn+1, . . . }) ∈ τ for every n large enough that Z ⊆ {v0, . . . , vn−1}.
So (V, ∅) ∈

→
S r τ has no open neighbourhood in

→
S r τ. �

Here is an example of an end tangle that is closed in
→
S . Unlike our previous example,

it describes a highly cohesive part of G.

Example 3.2. If K ⊆ V spans an infinite complete graph in G, then

τ = { (A,B) ∈
→
S | K ⊆ B } (1)

is a closed set in
→
S .

We omit the easy proof. But note that τ is indeed an end tangle: it is induced by the
unique end of G which contains all the rays in K.

Perhaps surprisingly, it is not hard to characterize the end tangles that are closed.
They are all essentially like Example 3.2: we just have to generalize the infinite complete
subgraph used appropriately. Of the two obvious generalizations, infinite complete
minors [8] or subdivisions of infinite complete graphs [7], the latter turns out to be the
right one.

Let κ be any cardinal. A set of at least κ vertices of G is (< κ)-inseparable if no twoof
them can be separated in G by fewer than κ vertices. A maximal (< κ)-inseparable set
of vertices is a κ-block. For example, the branch vertices of a TKκ are (< κ)-inseparable.
Conversely:

Lemma 3.3. When κ is infinite, every (< κ)-inseparable set of vertices in G contains
the branch vertices of some TKκ ⊆ G.

Proof. Let K ⊆ V be (< κ)-inseparable. Viewing κ as an ordinal we can find, inductively
for all α < κ, distinct vertices vα ∈ K and internally disjoint vα-vβ paths in G for
all β < α that also have no inner vertices among those vβ or on any of the paths chosen
earlier; this is because |K| > κ, and no two vertices of K can be separated in G by
the < κ vertices used up to that time.

The original statement of Lemma 3.3 in [2, Lemma 5.4] asserted that for infinite κ a
set K ⊆ V is a κ-block in G if and only if it is the set of branch vertices of some TKκ ⊆ G.
It turns out that both directions of that assertion were incorrect: the set of branch
vertices of a TKκ ⊆ G is certainly (< κ)-inseparable, but might not be maximal with
this property and hence not a κ-block. Conversely, if K is a κ-block, there might not be

4



a TKκ ⊆ G whose set of branch vertices is precisely K: if |K| > κ this is certainly not
possible, but even if |K| = κ one might not be able to find a TKκ in G whose branch
vertices are all of K. If for instance the graph G is a clique on κ vertices that is missing
exactly one edge, then K = V (G) is a κ-block in G but not the set of branch vertices of
a TKκ ⊆ G.
For the main theorem of this section we need one more observation:

Lemma 3.4. If τ is an end tangle of G that contains (A,B) and (C,D) then τ also
contains (A ∪ C , B ∩D).

Proof. Observe first that (A ∪ C , B ∩D) is a separation of G with finite order and thus
lies in

→
S . Moreover, if a ray of G has a tail in B and a tail in D, then that ray also has a

tail in B ∩D. From this it follows that (A ∪ C , B ∩D) ∈ τ , as claimed.

We can now re-prove and slightly extend the characterization from [2] of the tangles
that are closed in

→
S . Let us say that a set K ⊆ V is an absolute decider for a tangle τ

of S if τ satisfies (1).

Theorem 1 ([2]). For a tangle τ of S the following are equivalent:

(i) τ is closed in
→
S ;

(ii) τ is absolutely decided by some set K ⊆ V ;

(iii) τ is absolutely decided by an ℵ0-block K.

Proof. We will show (iii)⇒ (ii)⇒ (i)⇒ (iii). The first of these implications is clear.
To see that (ii) ⇒ (i) suppose that τ is a tangle of S that is absolutely decided by

some set K ⊆ V . Observe first that K must be infinite. To show that τ is closed, we
have to find for every (A,B) ∈

→
S r τ a finite set Z ⊆ V such that no (A′, B′) ∈

→
S that

agrees with (A,B) on Z lies in τ . Since (A,B) /∈ τ and hence (B,A) ∈ τ we have K ⊆ A;
pick z ∈ K rB. Then every (A′, B′) ∈

→
S that agrees with (A,B) on Z := {z} also also

lies in
→
S r τ , since z ∈ A′ rB′ and this implies K 6⊆ B′.

To see that (i)⇒ (iii) let

K :=
⋂
{B | (A,B) ∈ τ }.

No two vertices in K can be separated by in G by a finite-order separation: one
orientation (A,B) of this separation would be in τ , which would contradict the definition
of K since A r B also meets K. If K is infinite, it will clearly be maximal with this
property, and hence be an ℵ0-block. This ℵ0-block K will be an absolute decider for τ :
by definition of K we have K ⊆ B for ever (A,B) ∈ τ , while also every (A,B) ∈

→
S

with K ⊆ B must be in τ : otherwise (B,A) ∈ τ and hence K ⊆ A by definition of K,
but K 6⊆ A ∩B because this is finite. Hence τ will be decided absolutely by an ℵ0-block,
as desired for this implication.2

2Whether or not τ is closed in
→
S is immaterial; we just did not use this assumption.
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It thus suffices to show that if K is finite then τ is not closed in
→
S , which we shall do

next.
Assume that K is finite. We have to find some (A,B) ∈

→
S r τ that is a limit

point of τ , i.e., which agrees on every finite Z ⊆ V with some (A′, B′) ∈ τ . We
choose (A,B) := (V,K), which lies in

→
S r τ since (K,V ) ∈ τ .

To complete our proof as outlined, let any finite set Z ⊆ V be given. For every z ∈ ZrK
choose (Az, Bz) ∈ τ with z ∈ Az r Bz: this exists, because z /∈ K. Since (K,V ) ∈ τ ,
by Lemma 3.4 we have (A′, B′) ∈ τ for

A′ := K ∪
⋃

z∈ZrK
Az and B′ := V ∩

⋂
z∈ZrK

Bz .

As desired, (A′, B′) � Z = (A,B) � Z (which is (Z,Z ∩ K), since (A,B) = (V,K)):
every z ∈ Z rK lies in some Az and outside that Bz, so z ∈ A′ r B′, while every z ∈
Z ∩ K lies in K ⊆ A′ and also, by definition of K, in every Bz (and hence in B′),
since (Az, Bz) ∈ τ .

This proof of Theorem 1 concludes our exposition of material from [2].

4 End tangles of Sk

In Theorem 1 we characterised those tangles of S that are closed in
→
S =

→
Sℵ0 . However

even if an end tangle of S is not closed in
→
S its restrictions to

→
Sk ⊆

→
S may still be closed

in
→
S for some or even all k ∈ N. The set of values of k for which this is the case may

hold some combinatorial information about that tangle and the end that is inducing it.
In the remainder of this paper we will study the connection between the combinatorial
properties of an end and the set of values of k for which its end tangle’s restriction to

→
Sk

is closed. In particular we will show how these values of k relate to the vertex degree
and number of domination vertices of an end. Let us set up some terminology for this.
Observe first that the set

→
Sk is a closed subset of

→
S for each k ∈ N. Given an end ω

of G with end tangle τ = τω, clearly τ ∩
→
Sk is a tangle of Sk; we call it the tangle of Sk

induced by ω. Where we say that this tangle of Sk is closed, we mean that it is closed
in

→
Sk or, equivalently, in

→
S .

For ` < k the set
→
S ` is closed in

→
Sk, and hence any end inducing a closed tangle of Sk

also induces a closed tangle of S`. This motivates the following definition: for an end ω
of G let the cohesion of ω be

coh(ω) := sup
{
κ 6 ℵ1 | τω ∩

→
Sk is closed in

→
S for all k < κ

}
.

The ends of G then fall into three distinct categories: we say that an end ω has

(i) infinite cohesion if coh(ω) = ℵ1, i.e. if τω is closed;

(ii) unbounded cohesion if coh(ω) = ℵ0, i.e. if τω is not closed but τω ∩
→
Sk is for

all k ∈ N;
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(iii) bounded cohesion coh(ω) ∈ N otherwise.

If an end does not have infinite cohesion we say that it has finite cohesion.
Phrased in this language Theorem 1 characterised the ends of infinite cohesion: they

are those whose end tangle is decided absolutely by an ℵ0-block. In fact, as we shall show
later, the latter is equivalent to that end being dominated by infinitely many vertices.
Our goal in the remainder of this section is to obtain similar characterisations for ends of
finite cohesion, both in terms of vertex sets deciding the respective tangle and in terms
of combinatorial parameters of that end.

Let us first see examples of ends belonging to the third and second category, respectively:

Example 4.1. Let G be as in Example 3.1, that is, a single ray v0v1 . . . with end ω.
The same argument as in Example 3.1 shows that τ ∩

→
Sk is not closed in

→
Sk for k > 2.

However, ω does induce a closed tangle of S1: the set τ ∩
→
S1 = {(∅, V )} is closed in

→
S1.

Example 4.2. Let G be the infinite grid, ω the unique end of G and τ the tangle
induced by ω in S = S(G). Since G is locally finite it does not contain an ℵ0-block.
Therefore τ cannot be decided absolutely by an ℵ0-block and is thus not closed in

→
S

by Theorem 1. However for every k ∈ N it is easy to see that τ ∩
→
Sk is closed: indeed

for fixed k ∈ N the size of A is bounded in terms of k for every (A,B) ∈ τ ∩
→
Sk. Thus

for every (A′, B′) ∈
→
Sk r τ any Z ⊆ V (G) with |Z ∩ A′| sufficiently large witnesses

that (A′, B′) does not lie in the closure of τ : if Z is large enough that |Z ∩A′| > |A| for
every (A,B) ∈ τ ∩

→
Sk then no (A,B) ∈ τ ∩

→
Sk will agree with (A′, B′) on Z.

Example 4.2 shows that the end tangle τ of the infinite grid is not decided absolutely
by a set X ⊆ V in the sense of (1). In fact this is true even for τ ∩

→
Sk for k > 5:

there can be no set X ⊆ V with X ⊆ B for all (A,B) ∈ τ ∩
→
Sk since for each x ∈ X

the separation ({x} ∪ N(x) , V r {x}) lies in τ ∩
→
Sk. Thus even the tangles of Sk

that τ induces do not have absolute deciders. However they come reasonably close to
it: for X = V and any (A,B) ∈ τ the relative majority of X lies in B, that is, we
have |A∩X| < |B∩X|. In fact for any fixed k ∈ N every finite set X ⊆ V that is at least
twice as large as max{|A| | (A,B) ∈ τ ∩

→
Sk} has the property that |A ∩X| < |B ∩X|

for each (A,B) ∈ τ ∩
→
Sk. Therefore even though no τ ∩

→
Sk has an absolute decider we

can for each k ∈ N find a (finite) ‘relative decider’ of τ ∩
→
Sk.

Let us make the above observation formal. For an end tangle τ of G let us call a
set X ⊆ V a relative decider for τ (resp., for τ ∩

→
Sk) if we have |A ∩X| < |B ∩X| for

every (A,B) ∈ τ (resp., (A,B) ∈ τ ∩
→
Sk). Thus if we have a relative decider for an

end tangle τ then given a separation (A,B) ∈
→
S the decider set tells us which of (A,B)

and (B,A) lies in τ by a simple majority vote. Clearly each absolute decider of a tangle
is also a relative decider.
If ω is an end of infinite cohesion then by Theorem 1 its end tangle τ = τω has an

(infinite) absolute decider. In analogy with this we shall show that if an end tangle τ
is closed in

→
Sk then τ has a finite relative decider. Such a finite relative decider can be

thought of as a local encoding of the tangle or a local witness to the tangle being closed
in

→
Sk.
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In contrast it is easy to see that every end tangle has an infinite relative decider:

Proposition 4.3. For any end ω of G the end tangle τ induced by ω has an infinite
relative decider.

Proof. For any ray R ∈ ω its vertex set V (R) is a relative decider for τ .

Since no end tangle of S can have a finite decider (relative or absolute) studying
the existence of finite deciders for end tangles is thus only interesting for the tangles’
restrictions to some

→
Sk.

We shall complement this local witness of a given end tangle being closed with a more
global type of witness: the vertex degree and number of vertices dominating that end.
The latter two are well-studied parameters of ends; let us recall their definitions.

The (vertex) degree deg(ω) of an end ω of G is the largest size of a family of pairwise
disjoint ω-rays3. A vertex v ∈ V dominates an end ω if it sends infinitely many disjoint
paths to some (equivalently: to each) ray in ω. We write dom(ω) for the number of
vertices of G which dominate ω. An end ω is undominated if dom(ω) = 0; it is finitely
dominated if finitely many (including zero) vertices of G dominate ω; and, finally, ω is
infinitely dominated if dom(ω) =∞.

We are now ready to formally state the connection between the cohesion coh(ω) of an
end ω of G and these parameters deg(ω) and dom(ω):

Theorem 2. Let ω be an end of G. Then the following statements hold:

(i) ω has infinite cohesion if and only if dom(ω) =∞.

(ii) ω has unbounded cohesion if and only if deg(ω) =∞ and dom(ω) <∞.

(iii) ω has bounded cohesion coh(ω) = k if and only if deg(ω) + dom(ω) = k − 1.

Theorem 2 will be a consequence of Theorem 1 and the following theorem, which
characterises for which k ∈ N a given end tangle’s restrictions are closed and makes the
connection to relative decider sets:

Theorem 3. Let τ be the end tangle induced by an end ω of G and let k ∈ N. Then the
following are equivalent:

(i) τ ∩
→
Sk is closed;

(ii) deg(ω) + dom(ω) > k;

(iii) τ ∩
→
Sk has a finite relative decider;

(iv) τ ∩
→
Sk has a relative decider of size exactly k.

Let us first derive Theorem 2 from Theorem 1 and Theorem 3:

3Here our notation deviates from that in [1], where d(ω) is used for the degree of ω.
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Proof of Theorem 2. Let ω be an end of G and τ = τω its end tangle. We will show (i)
using Theorem 1 and derive (iii) from Theorem 3. Then (ii) is an immediate consequence
of the other two.
To see that (i) holds let us first suppose that ω has infinite cohesion, i.e. that τ is

closed in
→
S . Then by Theorem 1 τ is decided absolutely by an ℵ0-block K ⊆ V . It

is easy to see that each vertex of K dominates ω. Since K is infinite we thus indeed
have dom(ω) =∞.
For the converse suppose that ω is infinitely dominated and let us show that it has

infinite cohesion. For each separation (A,B) ∈ τ each vertex dominating ω must be
contained in B. Therefore K :=

⋂
{B | (A,B) ∈ τ} is infinite and thus, as seen in the

proof of Theorem 1, an absolute decider for τ , which is hence closed in
→
S .

Claim (iii) is a direct consequence of the definition of coh(ω) and the equivalence of
the first two statements of Theorem 3.

We will conclude this section by proving Theorem 3. For this we shall need two
preparatory lemmas. The first lemma can be seen as an analogue of Menger’s Theorem
between a vertex set and an end. Given a set X ⊆ V and an end ω we say that F ⊆ V
separates X from ω if every ω-ray which meets X also meets F .

Lemma 4.4. Let ω be an undominated end of G and X ⊆ V a finite set. The largest
size of a family of disjoint ω-rays which start in X is equal to the smallest size of a
set T ⊆ V separating X from ω.

Proof. Let T be a set separating X from ω of minimal size. Clearly a family of disjoint ω-
rays which all start in X cannot be larger than T since each ray in that family must
meet T . So let us show that we can find a family of |T | disjoint ω-rays starting in X.
Observe that since ω is undominated we can find for each vertex v ∈ V a finite

set Tv ⊆ V r {v} which separates v from ω. Thus, for every finite set Y ⊆ V we can find
a finite set in V r Y separating Y from ω: for instance, the set

⋃
{Tv r Y | v ∈ Y }.

Pick a sequence of finite sets Tn ⊆ V inductively by setting T0 := T and picking as Tn
a set of minimal size with the property that Tn−1 ∩ Tn = ∅ and that Tn separates Tn−1
from ω; these sets exist by the above observation. Let Cn be the component of G− Tn
that contains ω. Clearly Tn ⊆ Cn−1.

We claim that C :=
⋂
n∈NCn = ∅. To see this, consider any v ∈ C and a shortest v–X

path in G. This path must pass through Tn for every n ∈ N, which is impossible since
the separators Tn are pairwise disjoint. Therefore C must be empty.

By the minimality of each Tn, the sets Tn are of non-decreasing size, and furthermore
Menger’s Theorem yields a family of |Tn| many disjoint paths between Tn and Tn+1 for
each n ∈ N, as well as |T0| many disjoint paths between X and T0. By concatenating
these paths we obtain a family of |T0| = |T | many rays starting in X. To finish the proof
we just need to show that these rays belong to ω. To see this, let ω′ be another end of G,
and T ′ a finite set separating ω and ω′. Since C = ∅ we have Cn ∩ T ′ = ∅ for sufficiently
large n, which shows that the rays constructed do not belong to ω′ and hence concludes
the proof.
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An immediate consequence of Lemma 4.4 is that for an undominated end ω every finite
set X ⊆ V can be separated from ω by at most deg(ω) many vertices. In fact we can
state a slightly more general corollary:

Corollary 4.5. Let ω be a finitely dominated end of G and X ⊆ V a finite set. Then X
can be separated from ω by some T ⊆ V with |T | 6 deg(ω) + dom(ω).

Proof. Let D be the set of vertices dominating ω and consider the graph G′ := G−D
and the set X ′ := X rD. By Lemma 4.4 there is a set T ′ ⊆ V (G′) of size at most deg(ω)
separating X ′ from ω in G′. Set T := T ′ ∪D. Then T separates X from ω in G and has
size |T | = |T ′|+ |D| 6 deg(ω) + dom(ω).

The second lemma we shall need for our proof of Theorem 3 roughly states that for an
end of high degree we can find a large family of disjoint rays of that end whose set of
starting vertices is highly connected in G, even after removing the tails of these rays:

Lemma 4.6. Let ω be an end of G and k 6 deg(ω) + dom(ω). Then there are a set X ⊆
V of k vertices and a set R of disjoint ω-rays with the following properties: every
vertex in X is either the start-vertex of a ray in R, or dominates ω and does not lie on
any R ∈ R, and furthermore for any two sets A,B ⊆ X there are min(|A|, |B|) many
disjoint A–B-paths in G whose internal vertices meet no ray in R and no vertex of X.

Proof. Pick a set D of vertices dominating ω and a set R of disjoint ω-rays not meeting D
such that |D| + |R| = k; we shall find suitable tails of the rays in R such that their
starting vertices together with D are the desired set X.

Using the fact that the vertices in D dominate ω and that the rays in R belong to ω,
we can pick for each pair x1, x2 of elements of D ∪R an x1–x2-path in G in such a way
that these paths are pairwise disjoint with the exception of possibly having a common
end-vertex in D. Let P be the set of these paths. Now for each ray in R pick a tail of
that ray which avoids all the paths in P . Let R′ be the set of these tails and X the union
of their starting vertices and D. We claim that X and R′ are as desired.
To see this, let us show that for any sets A,B ⊆ X we can find min(|A|, |B|) many

disjoint A–B-paths in G whose internal vertices avoidD as well as V (R′) for every R′ ∈ R′.
Clearly it suffices to show this for disjoint sets A,B of equal size. So let A,B ⊆ X be
two disjoint sets with n := |A| = |B| and let RA,B be the set of all rays in R that contain
a vertex from A or B. For each pair (a, b) ∈ A×B there is a unique path P ∈ P such
that each of its end-vertices either is a or b (if a ∈ D or b ∈ D) or lies on a ray in RA,B
which contains a or b; let Pa,b be the a–b-path obtained from P by extending it, for each
of its end-vertices that is not either a or b, along the corresponding ray in R up to a or
b. Let PA,B be the set of all these paths Pa,b. Note that the internal vertices of each
path Pa,b ∈ PA,B meet none of the rays in R′ or vertices in X.

We claim that A and B cannot be separated by fewer than n = |A| vertices in

G′ :=
⋃

Pa,b∈PA,B

Pa,b ;
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the claim will then follow from Menger’s Theorem. So suppose that some set T ⊆ V (G′)
of size less than n is given. Let x and y be the number of vertices in A and B, respectively,
whose ray in RA,B does not meet T . There are xy many paths in PA,B between these
vertices in A and B. Since these paths are disjoint outside their corresponding ray
segments, each vertex of T can lie on at most one of them. Thus if xy > n there must be
a T -avoiding path in PA,B whose end-vertices’ rays in RA,B also do not meet T .

Since x+y > n+1 we have xy > x(n+1−x). The right-hand side of this inequality, as
a function of x with domain [n− 1], is minimized by taking x = 1, wherefore it evaluates
to n. Thus xy > n, which shows that T does not separate A and B in G′.

We can thus apply Menger’s Theorem to obtain n disjoint A–B-paths in G′, which are
the desired disjoint paths in G whose internal vertices avoid the rays in R′ and vertices
in X: the only vertices that are contained both in V (G′) as well as in either X or a ray
from R′ are vertices from A or B, which cannot be internal vertices of the n = |A| = |B|
disjoint A–B-paths.

We are now ready to prove Theorem 3:

Theorem 3. Let τ be the end tangle induced by an end ω of G and let k ∈ N. Then the
following are equivalent:

(i) τ ∩
→
Sk is closed;

(ii) deg(ω) + dom(ω) > k;

(iii) τ ∩
→
Sk has a finite relative decider;

(iv) τ ∩
→
Sk has a relative decider of size exactly k.

Proof. We will show (i)⇒ (ii)⇒ (iv)⇒ (iii)⇒ (i).
To see that (i)⇒ (ii), let us suppose that deg(ω) + dom(ω) < k and show that τ ∩

→
Sk

is not closed. Let D be the set of dominating vertices of ω. Since |D| = dom(ω) < k the
separation (V,D) lies in

→
Sk. By definition of τ we have (D,V ) ∈ τ and (V,D) /∈ τ . Thus

it suffices to show that (V,D) lies in the closure of τ ∩
→
Sk in

→
Sk. This will be the case if for

every finite set X ⊆ V there is a separation (A,B) ∈ τ ∩
→
Sk with (A,B)�X = (V,D)�X.

So letX be a finite subset of V . By Corollary 4.5 some set T of at most deg(ω) + dom(ω)
vertices separates X from ω. Let C be the component of G− T containing ω. We define
the separation (A,B) by setting A := V rC and B := T ∪C. Then (A,B) is a separation
of G with

|A ∩B| = |T | 6 deg(ω) + dom(ω) < k ,

giving (A,B) ∈
→
Sk. In fact (A,B) lies in τ ∩

→
Sk since ω lives in B. Furthermore we

have X ⊆ A and D ⊆ B since no vertex dominating ω can be separated from ω by T .
Therefore (A,B)�X = (X,X ∩D) = (V,D)�X, showing that (V,D) lies in the closure
of τ ∩

→
Sk in

→
Sk.

Let us now show that (ii)⇒ (iv). So let us assume that deg(ω) + dom(ω) > k. Then
by Lemma 4.6 we find a set X ⊆ V of size k and a family R of ω-rays such that every
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vertex of X either dominates ω or is the start-vertex of a ray in R, and such that for
any A,B ⊆ X we can find min(|A|, |B|) many disjoint A–B-paths in G whose internal
vertices meet neither X nor any ray in R.

We claim that X is the desired relative decider for τ ∩
→
Sk. To see this let (A,B) be

any separation in τ ∩
→
Sk; we need to show that |A∩X| < |B ∩X|. Let us write XArB :=

(ArB)∩X and XBrA := (B rA)∩X as well as XA∩B := (A∩B)∩X. It then suffices
to prove |XArB| < |XBrA|.

So suppose to the contrary that |XArB| > |XBrA|. Note first that no vertex in XArB
dominates ω as witnessed by the finite-order separation (A,B) ∈ τ ⊆ Sk. Therefore, for
every vertex in XArB, we have a ray in R starting at that vertex. Each of those disjoint
rays must pass through the separator A ∩B, and none of them hits XA∩B. Furthermore
by Lemma 4.6 there are |XBrA| many disjoint XArB–XBrA-paths whose internal vertices
avoid R and X. These paths, too, must pass the separator A∩B without meeting XA∩B
or any of the rays above. Thus we have

|A ∩B| > |XA∩B|+ |XArB|+ |XBrA| = |X| = k,

a contradiction since (A,B) ∈ Sk and hence |A∩B| < k. Therefore we must have |XArB| <
|XBrA|, which immediately implies |A ∩X| < |B ∩X|.

Finally, let us show that (iii)⇒ (i). So let X ⊆ V be a finite relative decider for τ ∩
→
Sk.

We need to show that no (A,B) ∈ Sk r τ lies in the closure of τ ∩
→
Sk. For this

let (A,B) ∈ Sk r τ be given; then X witnesses that (A,B) does not lie in the closure
of τ . To see this let any (C,D) ∈ τ be given. Since X is a relative decider for τ we
have |C∩X| < |D∩X|, and since (A,B) /∈ τ we have |A∩X| > |B∩X|. Therefore (A,B)
and (C,D) do not agree on the finite set X, which thus witnesses that (A,B) does not
lie in the closure of τ ∩

→
Sk in Sk.

Note that in our proof above that (iii) implies (i) we did not make use of the assumption
that the tangle τ is an end tangle: indeed every orientation of Sk that has a finite relative
decider is closed in

→
Sk.

For an end tangle τ that is closed in
→
S we can say slightly more about its restrictions’

relative deciders: for every k ∈ N the restriction τ ∩
→
Sk has a relative decider of size

exactly k which is a (< k)-inseparable set. Finding these (< k)-inseparable decider
sets is straightforward: such an end tangle τ is decided absolutely by an ℵ0-block K
by Theorem 1, and every subset X ⊆ K of size k is a (< k)-inseparable relative decider
for τ ∩

→
Sk. (Every such set is an absolute decider, in fact.) However, having a (< k)-

inseparable decider for τ ∩
→
Sk for all k ∈ N is not a characterizing property for the closed

end tangles of G:

Example 4.7. For n ∈ N let Kn be the complete graph on n vertices. Let G be the
graph obtained from a ray R = v1v2 . . . by replacing each vertex vn with the complete
graph Kn, making each vertex from the Kn replacing vn adjacent to all vertices from
the Kn+1 replacing vn+1. Then G has a unique end ω; let τ be the end tangle induced
by ω. Since ω is undominated τ is not closed in

→
S =

→
S(G) by Theorem 2. However, for
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every k ∈ N, the tangle τ ∩
→
Sk has a (< k)-inseparable absolute decider of size k: the

clique Kk which replaced the vertex vk of R is such a (< k)-inseparable decider.
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