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1. Introduction

“It has been reported that Dénes König, the author of the classic Theorie der
endlichen und unendlichen Graphen (Leipzig, 1936), expressed a special liking
for infinite graphs, which certainly receive substantial attention in his book.
Nevertheless, the majority of combinatorialists seem to have concentrated on finite
combinatorics, to the extent that it has almost seemed an eccentricity to think that
graphs and other combinatorial structures can be either finite or infinite. However,
there seems to be no logical reason why combinatorial structures should ‘usually’
be finite, and indeed this would preclude many fascinating avenues of exploration.”
(C.St.J.A. Nash-Williams).

In this dissertation we will explore four exciting branches of structural infinite
graph theory. Each of these offers individual problems, some of which we will
solve. The techniques that we will use in our proofs span the whole breadth of
non-set-theoretic infinite graph theory and include tools from general topology.
Some of these techniques are new and we shall develop them in this dissertation.
The four branches that we will explore are:

(i) Ends and tangles
(ii) Stars and combs

(iii) End spaces
(iv) The Farey graph

This dissertation consists of four parts, one for each branch, and all parts consist
of several chapters, one for every problem in the branch that we solve. Here, then
is a brief overview of the parts and their chapters, using the terminology from [26].
We remark, however, that every chapter will feature its own independent and more
comprehensive introduction.

1.1. Part I: Ends and tangles

1.1.1. Chapter 3: Tangles and the Stone-Čech
compactification of infinite graphs

Every locally finite connected graph can be naturally compactified by its ends
to form its well-known end compactification, see e.g. [26, §8.6]. For graphs that
are not locally finite, however, adding their ends no longer suffices to compactify
them, and it has been a longstanding quest to decide what other ‘points at infinity’
besides the ends should be added to obtain a compactification, see e.g. Cartwright,
Soardi and Woess [21] and Polat [71].

Recently, Diestel [25] proposed a solution to this problem: he generalised the
end compactification from locally finite connected graphs to arbitrary graphs by
generalising ends to infinite-order tangles, yielding the tangle compactification.
Diestel then asked how the tangle compactification of an infinite graph relates to
its Stone-Čech compactification [25, §6]. Indeed, it is well-known that the end

1



1. Introduction

compactification of a locally finite connected graph G can be described naturally
in terms of its Stone-Čech compactification, namely, it is the quotient obtained
by collapsing each connected component of the Stone-Čech remainder to a single
point, see e.g. [1, §VI.3]. As our main result in this chapter, we show that this
correspondence extends to all graphs when ends are generalised to tangles; see
Theorem 3.1. Hence, even though Diestel’s reasoning and motivation behind
the tangle compactification was purely combinatorial, it naturally happens to
generalise the end compactification also in this second, more topological aspect.

1.1.2. Chapter 4: A tree-of-tangles theorem for
infinite-order tangles

The tree-of-tangles theorem, one of the cornerstones of Robertson and Seymour’s
proof of their graph-minor theorem, says:

Theorem. Every finite graph G has a nested set of separations which efficiently
distinguishes all the finite-order tangles in G that can be distinguished.

Recently, Carmesin [19] extended the tree-of-tangles theorem to the infinite-order
tangles of infinite graphs that are locally finite. Notably, Carmesin used his result
to prove a conjecture of Halin [47] (in amended form) that had remained open
for 50 years, and a conjecture of Diestel [28] (also in amended form) that had
remained open for 20 years.

As our main result in this chapter, we extend Robertson and Seymour’s tree-
of-tangles theorem to the infinite-order tangles of infinite graphs (and thus, we
extend Carmesin’s result from locally finite graphs to all graphs); see Theorem 4.1.
For our proof we develop a new concept called ‘corridors’, which we will use once
more in Chapter 8 of the next part.

Our result has four applications: one connectivity result, one topological result
about tangles, one application in the work of Elbracht, Kneip and Teegen [34],
and the final application is the foundation of Chapter 8; see the comprehensive
introduction of this chapter.

1.2. Part II: Stars and combs

1.2.1. Chapters 5–8: Duality theorems for stars and combs

Recall that a comb is the union of a ray R (the comb’s spine) with infinitely many
disjoint finite paths, possibly trivial, that have precisely their first vertex on R.
The last vertices of those paths are the teeth of this comb. Given a vertex set U ,
a comb attached to U is a comb with all its teeth in U , and a star attached to U
is a subdivided infinite star with all its leaves in U . Then the set of teeth is the
attachment set of the comb, and the set of leaves is the attachment set of the star.
The star-comb lemma, a standard tool in infinite graph theory [26], says:

Star-comb lemma. Let U be an infinite set of vertices in a connected graph G.
Then G contains either a comb attached to U or a star attached to U .

2



1. Introduction

The star-comb lemma is not primarily about the existence of one subgraph or
another. Rather, it tells us something about the nature of connectedness in infinite
graphs: that the way in which they link up their infinite sets of vertices can take
two fundamentally different forms, a star and a comb. These two possibilities
apply separately to all their infinite sets U of vertices, and clearly, the smaller U
the stronger the assertion.

Call two properties of infinite graphs dual, or complementary, in a class of infinite
graphs if they partition that class. The existence of stars or combs attached to
a given set U is not complementary (in the class of all infinite connected graphs
containing U). Hence it is natural to ask for structures, more specific than combs
and stars attached to U , whose existence is complementary to that of stars and
combs attached to U , respectively.

In the first chapter of this part, we determine structures that are complementary
to stars, and structures that are complementary to combs (always with respect to
a fixed set U).

As stars and combs can interact with each other, this is not the end of the story.
For example, a given set U might be connected in G by both a star and a comb,
even with infinitely intersecting sets of leaves and teeth. To formalise this, let us
say that a subdivided star S dominates a comb C if infinitely many of the leaves
of S are also teeth of C. A dominating star in a graph G then is a subdivided star
S ⊆ G that dominates some comb C ⊆ G; and a dominated comb in G is a comb
C ⊆ G that is dominated by some subdivided star S ⊆ G. In the remaining three
chapters of this series we shall find complementary structures to the existence of
these substructures (again, with respect to some fixed set U). Here, then is an
overview of the four chapters in our series, each naming the substructure for which
duality theorems are proved in its title:

i: arbitrary stars and combs (Chapter 5)
ii: dominating stars and dominated combs (Chapter 6)
iii: undominated combs (Chapter 7)
iv: undominating stars (Chapter 8)

Our duality theorems will usually be phrased in terms of normal trees and tree-
decompositions. We remark that the vast number of techniques that we will use
in this series of four chapters already spans the whole breadth of non-set-theoretic
infinite graph theory.

1.2.2. Chapter 9: End-faithful spanning trees in graphs
without normal spanning trees

Schmidt [26,78] characterised the class of rayless graphs by an ordinal rank function,
which makes it possible to prove statements about rayless graphs by transfinite
induction. At the turn of the millennium, Halin [44] asked in his legacy collection
of problems whether Schmidt’s rank can be generalised to characterise other
important classes of graphs besides the class of rayless graphs. In this chapter we

3



1. Introduction

answer Halin’s question in the affirmative: we characterise two important classes
of graphs by an ordinal rank function.

As our first main result in this chapter, we characterise for every uncountable
cardinal κ the class of graphs without a Tκ minor by an ordinal rank function
(recall that Tκ denotes the κ-branching tree); see Theorem 9.1. This extends
Seymour and Thomas’ characterisations [77].

Our second main result addresses another largely open problem raised by Halin.
Call a spanning tree T of a graphG end-faithful if the natural map ϕ : Ω(T )→ Ω(G)
satisfying ω ⊆ ϕ(ω) is bijective. Here, Ω(T ) and Ω(G) denote the set of ends
of T and of G, respectively. Halin [47] conjectured that every connected graph
has an end-faithful spanning tree. However, Seymour and Thomas [76] and
Thomassen [83] constructed counterexamples. Ever since, it has been an open
problem to characterise the class of graphs that admit an end-faithful spanning
tree. A well-studied subclass is formed by the graphs with a normal spanning tree.
In this chapter, we determine a larger subclass, the class of normally traceable
graphs, which consists of the connected graphs with a rayless tree-decomposition
into normally spanned parts; see Theorem 9.2. This subclass includes all other
subclasses that have been structurally characterised. Our proof of Theorem 9.2
relies on a characterisation of the class of normally traceable graphs by an ordinal
rank function that we provide; see Theorem 9.5.

1.3. Part III: End spaces

1.3.1. Chapter 10: Approximating infinite graphs by
normal trees

Normal spanning trees are perhaps the most useful structural tool in infinite graph
theory. Their importance arises from the fact that they capture the separation
properties of the graph they span, and so in many situations it suffices to deal with
the much simpler tree structure instead of the whole graph. For example, the end
space of G coincides, even topologically, with the end space of any normal spanning
tree of G. However, not every connected graph has a normal spanning tree, and
the structure of graphs without normal spanning trees is still not completely
understood [11,32].

In order to harness and transfer the power of normal spanning trees to arbitrary
connected graphs, we show that every connected graph can be approximated by a
normal tree, up to some arbitrarily small error phrased in terms of neighbourhoods
around its ends; see Theorem 10.1. The existence of such approximate normal
trees has consequences of both combinatorial and topological nature.

On the combinatorial side, we show that a graph has a normal spanning tree as
soon as it has normal spanning trees locally at each end; i.e., the only obstruction
for a graph to having a normal spanning tree is an end for which none of its
neighbourhoods has a normal spanning tree.

On the topological side, we show that end spaces of graphs are always paracom-
pact, which gives unified and short proofs for a number of results by Diestel [24],

4



1. Introduction

Sprüssel [80] and Polat [68], and answers an open question about metrizability of
end spaces by Polat; see the comprehensive introduction.

1.3.2. Chapter 11: Countably determined ends and graphs

The directions of an infinite graph G are a tangle-like description of its ends: they
are choice functions that choose compatibly for all finite vertex sets X ⊆ V (G) a
component of G−X.

Although every direction is induced by a ray, there exist directions of graphs
that are not uniquely determined by any countable subset of their choices. We
characterise these directions and their countably determined counterparts in terms
of star-like substructures or rays of the graph; see Theorems 11.1 and 11.2.

Curiously, there exist graphs whose directions are all countably determined
but which cannot be distinguished all at once by countably many choices. We
structurally characterise the graphs whose directions can be distinguished all at
once by countably many choices, and we structurally characterise the graphs
which admit no such countably many choices; see Theorems 11.3 and 11.4. Our
characterisations are phrased in terms of normal trees and tree-decompositions.

Our four (sub)structural characterisations imply combinatorial characterisations
of the four classes of infinite graphs that are defined by the first and second axiom
of countability applied to their end spaces: the two classes of graphs whose end
spaces are first countable or second countable, respectively, and the complements
of these two classes.

1.4. Part IV: The Farey graph

Figure 1.4.1.: The Farey graph Figure 1.4.2.: The graph Tℵ0∗ t

The Farey graph, shown in Figure 1.4.1 and surveyed in [22,49], plays a role in a
number of mathematical fields ranging from group theory and number theory to
geometry and dynamics [22]. Curiously, graph theory is not among these.

5



1. Introduction

1.4.1. Chapter 12: Every infinitely edge-connected graph
contains the Farey graph or Tℵ0∗ t as a minor

In this chapter we show that the Farey graph plays a central role in graph theory
too: it is one of two infinitely edge-connected graphs that must occur as a minor
in every infinitely edge-connected graph; see Theorem 12.1. The other graph is
Tℵ0 ∗ t, the graph obtained from the infinitely-branching tree Tℵ0 by joining an
additional vertex t to all its vertices; see Figure 1.4.2. Previously it was not known
that there was any set of graphs determining infinite edge-connectivity by forming
a minor-minimal list in this way, let alone a finite set.

Since both the Farey graph and Tℵ0∗ t are planar, our result implies that every
infinitely edge-connected graph contains a planar infinitely edge-connected graph
as a minor. Thus, in this sense, infinite edge-connectivity is an inherently planar
property.

1.4.2. Chapter 13: The Farey graph is uniquely
determined by its connectivity

In the previous chapter we showed that the Farey graph is one of two infinitely edge-
connected graphs that must occur as a minor in every infinitely edge-connected
graph. Infinite edge-connectivity, however, is only one aspect of the connectivity
of the Farey graph, and it contrasts with a second aspect: the Farey graph does
not contain infinitely many independent paths between any two of its vertices. In
this chapter we show that the Farey graph is uniquely determined by these two
contrasting aspects of its connectivity: up to minor-equivalence, the Farey graph
is the unique minor-minimal graph that is infinitely edge-connected but such that
every two vertices can be finitely separated; see Theorem 13.1. This is the first
graph-theoretic characterisation of the Farey graph.

1.4.3. Chapter 14: Ubiquity and the Farey graph

Figure 1.4.3.: The whirl graph, colourised

Let us call two u–v paths order-compatible if they traverse their common vertices in
the same order. In this chapter we construct the whirl graph shown in Figure 1.4.3

6



1. Introduction

and show that, for all pairs of vertices u and v, the whirl graph contains k edge-
disjoint order-compatible u–v paths for every integer k, but not infinitely many;
see Theorem 14.1.

But what does this have to do with the Farey graph? Everything! We shall
use the Cantor set to show that the whirl graph contains the Farey graph as a
minor with branch sets of size two, but that it contains neither the Farey graph
nor Tℵ0∗ t as a topological minor. This property makes the whirl graph the ideal
example to show that the main results of the two previous chapters are both best
possible; see the comprehensive introduction of this chapter.
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Any graph-theoretic notation not explained here can be found in Diestel’s text-
book [26]. A non-trivial path P is an A-path for a set A of vertices if P has its
endvertices but no inner vertex in A.

2.1. The star-comb lemma

The star-comb lemma [26, Lemma 8.2.2] is a standard tool in infinite graph theory.
A comb is the union of a ray R (the comb’s spine) with infinitely many disjoint
finite paths, possibly trivial, that have precisely their first vertex on R. The
last vertices of those paths are the teeth of this comb. Given a vertex set U , a
comb attached to U is a comb with all its teeth in U , and a star attached to U
is a subdivided infinite star with all its leaves in U . Then the set of teeth is the
attachment set of the comb, and the set of leaves is the attachment set of the star.

Star-comb lemma. Let U be an infinite set of vertices in a connected graph G.
Then G contains either a comb attached to U or a star attached to U .

2.2. Inverse limits

A partially ordered set (I,≤) is said to be directed if for every two i, j ∈ I there
is some k ∈ I with k ≥ i, j. Let (Xi | i ∈ I ) be a family of topological spaces
indexed by some directed poset (I,≤). Furthermore, suppose that we have a family
(ϕji : Xj → Xi )i≤j∈I of continuous mappings which are the identity on Xi in case of
i = j and which are compatible in that ϕki = ϕji ◦ϕkj for all i ≤ j ≤ k. Then both
families together are said to form an inverse system, and the maps ϕji are called
its bonding maps. We denote such an inverse system by {Xi, ϕji, I} or {Xi, ϕji}
for short if I is clear from context. Its inverse limit lim←−Xi = lim←− (Xi | i ∈ I ) is
the topological space

lim←−Xi = { (xi)i∈I | ϕji(xj) = xi for all i ≤ j } ⊆
∏
i∈I

Xi.

Whenever we define an inverse system without specifying a topology for the spaces
Xi first, we tacitly assume them to carry the discrete topology. If each Xi is (non-
empty) compact Hausdorff, then so is lim←−Xi. In particular, lim←−Xi is non-empty if
all Xi are non-empty and finite. See [36] or [72] for more.

2.3. Separation systems, S-trees and tree sets

Separation systems, S-trees and tree sets are standard tools in graph minor theory.
In this section we briefly recall the definitions from [23,26,29] that we need, without
detailed explanations: for these we refer to the citations. Tangles will be recalled
in the respective chapters; however, we remark that in this dissertation we will
only work with infinite-order tangles.

8



2. Tools and terminology

2.3.1. Separations of sets and abstract separation systems

A separation of a set V is an unordered pair {A,B} such that A ∪B = V . The
ordered pairs (A,B) and (B,A) are its orientations. Then the oriented separations
of V are the orientations of its separations. The map that sends every oriented
separation (A,B) to its inverse (B,A) is an involution that reverses the partial
ordering

(A,B) ≤ (C,D) :⇔ A ⊆ C and B ⊇ D

since (A,B) ≤ (C,D) is equivalent to (D,C) ≤ (B,A).
More generally, a separation system is a triple (

→
S,≤, ∗) where (

→
S,≤) is a partially

ordered set and ∗ :
→
S →

→
S is an order-reversing involution. We refer to the elements

of
→
S as oriented separations. If an oriented separation is denoted by →s , then we

denote its inverse →s
∗

as ←s, and vice versa. That ∗ is order-reversing means
→
r ≤ →s ↔ ←

r ≥ ←s for all
→
r , →s ∈

→
S.

A separation is an unordered pair of the form {→s ,←s}, and then denoted by s. Its
elements →s and ←s are the orientations of s. The set of all separations {→s ,←s} ⊆

→
S

is denoted by S. When a separation is introduced as s without specifying its
elements first, we use →s and ←s (arbitrarily) to refer to these elements. Every
subset S ′ ⊆ S defines a separation system

→
S ′ :=

⋃
S ′ ⊆

→
S with the ordering and

involution induced by
→
S.

Separations of sets, and their orientations, are an instance of this abstract setup
if we identify {A,B} with { (A,B) , (B,A) }. Here is another example: The set
→
E(T ) := { (x, y) | xy ∈ E(T ) } of all orientations (x, y) of the edges xy = {x, y}
of a tree T forms a separation system with the involution (x, y) 7→ (y, x) and the
natural partial ordering on

→
E(T ) in which (x, y) < (u, v) if and only if xy 6= uv

and the unique {x, y}–{u, v} path in T is x̊yT ův = yTu.
In the context of a given separation system (

→
S,≤, ∗), a star (of separations) is a

subset σ ⊆
→
S such that

→
r ≤ ←s for all distinct

→
r , →s ∈ σ; see [26, Fig. 12.5.1] for an

illustration.1 If t is a node of a tree T , then the set

→
Ft := { (x, t) | xt ∈ E(T ) }

is a star in
→
E(T ).

2.3.2. Orientations

An orientation of a separation system
→
S, or of a set S of separations, is a subset

O ⊆
→
S such that |O ∩ {→s ,←s} | = 1 for all s ∈ S. A partial orientation of S is

an orientation of a subset of S. A subset O ⊆
→
S is consistent if there are no two

distinct separations r, s ∈ S with orientations
→
r < →s and

←
r, →s ∈ O.

1Officially, in [23] a star σ is additionally required to consist only of oriented separations →s
satisfying →s 6= ←s . In this paper, however, all separations considered will satisfy this condition,
which is why we will hide it for the convenience of the reader.
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2.3.3. S-trees

An S-tree is a pair (T, α) such that T is a tree and α :
→
E(T )→

→
S propagates the

ordering on
→
E(T ) and commutes with inversion: that α(

→
e) ≤ α(

→
f ) if

→
e ≤

→
f ∈

→
E(T )

and (α(
←
e))∗ = α(

→
e) for all

→
e ∈

→
E(T ); see [26, Fig. 12.5.2] for an illustration. Thus,

every node t ∈ T is associated with a star
→
Ft in

→
E(T ) which α sends to a star α[

→
Ft]

in
→
S. A tree-decomposition (T,V), for example, makes T into an S-tree for the set

of separations it induces [26, §12.5]. For oriented edges (x, y) ∈
→
E(T ) we will write

α(x, y) instead of α((x, y)). Note that S-trees are ‘closed under taking minors’: if
(T, α) is an S-tree and T ′ 4 T , then (T ′, α �

→
E(T ′) ) is again an S-tree when we

view E(T ′) as a subset of E(T ).

2.3.4. Nested sets of separations and tree sets

Two separations are nested if they have comparable orientations. Two oriented
separations

→
r , →s are nested if r and s are nested. A set, either of separations or of

oriented separations, is nested if every two of its elements are nested. For example,
if T is a tree, then both E(T ) and

→
E(T ) are nested.

To state the definition of a tree set, we need the following definitions. An
oriented separation

→
r ∈

→
S is

(i) degenerate if
→
r =

←
r ,

(ii) trivial if there is a separation s ∈ S such that both
→
r < →s and

→
r < ←s, and

(iii) small if
→
r ≤ ←

r .

The only degenerate separation of a set V is (V, V ); its small separations are
precisely the ones of the form (A, V ) with A ⊆ V . All degenerate and trivial
separations are small.

A separation system is

(i) essential if it contains neither degenerate nor trivial elements, and
(ii) regular if it contains no small elements.

If (
→
S,≤, ∗) is essential or regular, then we also call

→
S and S essential or regular,

respectively. Regular implies essential.
A tree set is a nested essential separation system. If (

→
S,≤, ∗) is a tree set, then

we also call
→
S and S tree sets. If T is a tree, then

→
E(T ) is a tree set, the edge tree

set of T .
In this dissertation, separations usually will not be small, and hence separation

systems usually will be regular. This means that when we define a candidate for
a tree set and have to verify that it really is a tree set, it will usually suffice to
verify nestedness.

Gollin and Kneip [53] characterised the tree sets that are isomorphic to the edge
tree set of a tree. An isomorphism between two separation systems is a bijection
between their underlying sets that respects both their partial orderings and their
involutions. A chain C in a given poset is said to have order-type α for an ordinal
α if C with the induced linear order is order-isomorphic to α. The chain C is then
said to be an α-chain.

10



2. Tools and terminology

Theorem 2.3.1 ([53, Theorem 1]). A tree set is isomorphic to the edge tree set
of a tree if and only if it is regular and contains no (ω + 1)-chain.

2.3.5. Separations of graphs

A separation of a graph G is a separation {A,B} of the set V (G) (meaning
A ∪B = V (G)) such that G has no edge ‘jumping’ the separator A ∩B, meaning
that G contains no edge between ArB and B r A. Thus, (oriented) separations
of graphs are an instance of (oriented) separations of sets. The order of {A,B} is
the cardinal |A∩B|. The set of all finite-order separations of a graph G is denoted
by Sℵ0 = Sℵ0(G).

If (A,B) and (C,D) are two separations of G, then

(i) (A,B) ∨ (C,D) := (A ∪ C,B ∩D) is their supremum, and
(ii) (A,B) ∧ (C,D) := (A ∩ C,B ∪D) is their infimum.

Supremum and infimum satisfy De Morgan’s law: (
→
r ∨ →s )∗ =

←
r ∧ ←s.

The following non-standard notation often will be useful as an alternative
perspective on separations of graphs. For a vertex set X ⊆ V (G) we denote the
collection of the components of G−X by CX . If any X ⊆ V (G) and C ⊆ CX are
given, then these give rise to a separation of G which we denote by

{X,C } :=
{
V r V [C ] , X ∪ V [C ]

}
where V [C ] =

⋃
{V (C) | C ∈ C }. Note that every separation {A,B} of G with

A,B ⊆ V (G) can be written in this way. For the orientations of {X,C } we write

(X,C ) :=
(
V r V [C ] , X ∪ V [C ]

)
and (C , X) :=

(
V [C ] ∪X , V r V [C ]

)
.

If C is a component of G−X we write {X,C} instead of {X, {C}}. Similarly, we
write (C,X) and (X,C) instead of ({C}, X) and (X, {C}), respectively.

2.4. Ends of graphs

2.4.1. Definition and notation

We write X = X (G) for the collection of all finite subsets of the vertex set V
of G, partially ordered by inclusion. An end of G, as defined by Halin [47], is an
equivalence class of rays of G, where a ray is a one-way infinite path. Here, two
rays are said to be equivalent if for every X ∈ X both have a subray (also called
tail) in the same component of G−X. So in particular every end ω of G chooses,
for every X ∈ X , a unique component C(X,ω) = CG(X,ω) of G −X in which
every ray of ω has a tail. In this situation, the end ω is said to live in C(X,ω).
The set of ends of a graph G is denoted by Ω(G). We use the convention that Ω
always denotes the set of ends Ω(G) of the graph named G.

A vertex v of G dominates a ray R ⊆ G if there is an infinite v–(R− v) fan in G.
Rays not dominated by any vertex are undominated. An end of G is dominated and

11
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undominated if one (equivalently: each) of its rays is dominated and undominated,
respectively. If v does not dominate ω, then there is an X ∈ X which strictly
separates v from ω in that v /∈ X ∪C(X,ω). More generally, if no vertex of Y ∈ X
dominates ω, then there is an X ∈ X strictly separating Y from ω in that Y
avoids the union X ∪ C(X,ω). Let us say that an oriented finite-order separation
(A,B) strictly separates a set X ⊆ V (G) of vertices from a set Ψ ⊆ Ω of ends if
X ⊆ ArB and every end in Ψ lives in a component of G[B r A].

An end ω of G is contained in the closure of M , where M is either a subgraph
of G or a set of vertices of G, if for every X ∈ X the component C(X,ω) meets M .
Equivalently, ω lies in the closure of M if and only if G contains a comb attached
to M with its spine in ω. We write ∂ΩM for the subset of Ω that consists of the
ends of G lying in the closure of M . If M is a vertex set and ∂ΩM is empty, then
M is dispersed.

Note that ∂ΩH usually differs from Ω(H) for subgraphs H ⊆ G: For example, if
G is a ladder and H is its outer double ray, then ∂ΩH consists of the single end of
G while Ω(H) consists of the two ends of the double ray in H. Readers familiar
with |G| as in [26] will note that ∂ΩM is the intersection of Ω with the closure of
M in |G|, which in turn coincides with the topological frontier of M r E̊ in the
space |G|r E̊.

If an end ω of G does not lie in the closure of M , and if X ∈ X witnesses this
(in that C(X,ω) avoids M), then X is said to separate ω from M (and M from ω).

2.4.2. End spaces

If X ∈ X is any finite set of vertices of a graph G and C is any component of
G−X, then we write Ω(X,C) for the set of ends ω of G with C(X,ω) = C, and
abbreviate Ω(X,ω) := Ω(X,C(X,ω)). And if C is any collection of components
of G−X, we write Ω(X,C ) :=

⋃
{Ω(X,C) | C ∈ C }.

The collection of sets Ω(X,C) with X ∈ X and C a component of G−X form
a basis for a topology on Ω.

2.4.3. Directions

Another way of viewing the ends of a graph goes via its directions : choice maps
f assigning to every X ∈ X a component of G − X such that f(X ′) ⊆ f(X)
whenever X ′ ⊇ X. Every end ω defines a unique direction fω by mapping every
X ∈ X to C(X,ω). Conversely, Diestel and Kühn proved in [30] (Theorem 2.4.1
below) that every direction in fact comes from a unique end in this way, thus
giving a one-to-one correspondence between the ends and the directions of a graph.

The advantage of this point of view stems from an inverse limit description of
the directions: note that X is directed by inclusion; for every X ∈ X let CX consist
of the components of G−X; endow each CX with the discrete topology; and let
cX′,X : CX′ → CX for X ′ ⊇ X send each component of G−X ′ to the component
of G−X containing it; then {CX , cX′,X , X} is an inverse system whose inverse
limit, by construction, consists of the directions.
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Theorem 2.4.1 ([30, Theorem 2.2]). Let G be any graph. Then the map ω 7→ fω
is a bijection between the ends of G and its directions, i.e. Ω = lim←−CX .

Note that the bijection ω 7→ fω is in fact a homeomorphism between the end space
Ω and the inverse limit lim←−CX .
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Part I.

Ends and tangles
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3. Tangles and the Stone-Čech
compactification of infinite graphs

3.1. Introduction

Every locally finite connected graph can be naturally compactified by its ends
to form its well-known end compactification, see e.g. [26, §8.6]. For graphs that
are not locally finite, however, adding their ends no longer suffices to compactify
them, and it has been a longstanding quest to decide what other ‘points at infinity’
besides the ends should be added to obtain a compactification, see e.g. Cartwright,
Soardi and Woess [21] and Polat [71].

Recently, Diestel [25] proposed a solution to this problem employing Robertson
and Seymour’s notion of a tangle [73], which naturally generalises the end com-
pactification (using the terminology from [26, §12.5]): First, he observed that
an end ω of a graph G orients every finite-order separation {A,B} of G towards
the side that contains a tail from every ray in ω; and since these orientations
for distinct separations are consistent in a number of ways, every end naturally
induces an infinite-order tangle of G in this way. Diestel then proceeded to show
that, conversely, every infinite-order tangle of a locally finite connected graph G is
defined by an end in this way. Thus, if G is locally finite and connected, there is a
canonical bijection between its infinite-order tangles and its ends.

Finally, Diestel showed that every graph, in particular also the non-locally finite
ones, is compactified by its infinite-order tangles in much the same way as the
ends of a locally finite connected graph compactify it in its end-compactification.
The arising tangle compactification coincides with the end compactification if G is
locally finite and connected. Hence, for the tangle compactification, it is precisely
those infinite-order tangles not corresponding to an end which need to be added
as points at infinity besides the ends in order to compactify the graph.

Diestel concludes his paper with the question of how the tangle compactification
of an infinite graph relates to its Stone-Čech compactification [25, §6]. Indeed, it is
well-known that the end compactification of a locally finite connected graph G can
be described naturally in terms of its Stone-Čech compactification, namely, it is
the quotient obtained by collapsing each connected component of the Stone-Čech
remainder to a single point, see e.g. [1, §VI.3]. As our main result, we show that
this correspondence extends to all graphs when ends are generalised to tangles.
Hence, even though Diestel’s reasoning and motivation behind the tangle com-
pactification was purely combinatorial, it naturally happens to generalise the end
compactification also in this second, more topological aspect.

Theorem 3.1. The tangle compactification of any graph G is obtained from its
Stone-Čech compactification βG by first declaring G to be open1 in βG and then
collapsing each connected component of the Stone-Čech remainder to a single point.

1When G is locally compact, it is automatically open in βG, and so this step is redundant for
locally finite graphs.
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This chapter is organised as follows: First, in Section 3.2 we recall graph-theoretic
background and provide a brief summary of Diestel’s tangle compactification
of an infinite graph. In Section 3.3, we describe the remainder of the tangle
compactification as an inverse limit of finite discrete spaces. In Section 3.4, we
provide the necessary background on the Stone-Čech compactification, and explain
how the quotient relation defining the 1-complex G can be used to describe the
Stone-Čech compactification of an infinite graph as a ‘fake 1-complex’ on standard
intervals and non-standard intervals (where the non-standard intervals are the
standard subcontinua of the remainder of the positive half-line). Sections 3.5 and 3.6
contain the proof of our main theorem. We conclude this chapter in Section 3.7
with three additional observations about the tangle compactification that might
be of independent interest. In particular, we show that no compactification of a
non-locally finite graph can both be Hausdorff and have a totally disconnected
remainder.

3.2. Reviewing Diestel’s tangle compactification

From now on, we fix an arbitrary connected simple infinite graph G = (V,E).

3.2.1. The 1-complex of a graph

In the 1-complex of G which we denote also by G, every edge e = xy is a
homeomorphic copy [x, y] := {x} t e̊ t {y} of I = [0, 1] with e̊ corresponding to
(0, 1) and points in e̊ being called inner edge points. The space [x, y] is called a
topological edge, but we refer to it simply as edge and denote it by e as well. For
each subcollection F ⊆ E we write F̊ for the set

⊔
e∈F e̊ of inner edge points of

edges in F . By E(v) we denote the set of edges incident with a vertex v. The point
set of G is V t E̊, and an open neighbourhood basis of a vertex v of G is given
by the unions

⋃
e∈E(v)[v, ie) of half open intervals with each ie some inner edge

point of e. Note that the 1-complex of G is (locally) compact if and only if the
graph G is (locally) finite, and also that the 1-complex fails to be first-countable at
vertices of infinite degree. Note that if the graph G has no isolated vertices, then
its 1-complex can be obtained from the disjoint sum

⊕
e∈E Ie of copies Ie of the

unit interval by taking the quotient with respect to a suitable equivalence relation
on
⊕

e∈E{0, 1}.

3.2.2. Tangles

Next, we formally introduce a definition of ℵ0-tangles provided by Diestel [25]
which, as he proved, is equivalent to the original one due to Robertson and
Seymour [73]. In the next subsection, however, we explain a third, equivalent
viewpoint for tangles (due to Diestel), which describes ℵ0-tangles as the elements
of the compact Hausdorff inverse limit lim←− β(CX) and which we take as our point
of reference for the remainder of this chapter.

The interior of a star σ = { (Ai, Bi) | i ∈ I } ⊆
→
Sℵ0 is the intersection

⋂
i∈I Bi.
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Definition 3.2.1. An ℵ0-tangle (of G) is a consistent orientation of Sℵ0 that
contains no finite star of finite interior as a subset. We write Θ for the set of all
ℵ0-tangles.

3.2.3. Ends and Tangles

If ω is an end of G, then letting

τω := { (A,B) ∈
→
Sℵ0 | C(A ∩B,ω) ⊆ G[B r A] }

defines an injection Ω ↪→ Θ, ω 7→ τω from the ends of G into the ℵ0-tangles.
Therefore, we call the tangles of the form τω the end tangles of G. By abuse of
notation we write Ω for the collection of all end tangles of G, so we have Ω ⊆ Θ.

In order to understand the ℵ0-tangles that are not ends, Diestel studied an
inverse limit description of Θ. If τ is an ℵ0-tangle of the graph, then for each
X ∈ X it also chooses one big side from each bipartition {C ,C ′} of CX , namely
the K ∈ {C ,C ′} with (X,K ) ∈ τ . Since it chooses theses sides consistently, it
induces an ultrafilter U(τ,X) on CX , one for every X ∈ X , which is given by

U(τ,X) = {C ⊆ CX | (X,C ) ∈ τ },

and these ultrafilters are compatible in that they form a limit of the inverse system
{ β(CX) , β(cX′,X) , X }. Here, each set CX is endowed with the discrete topology
and β(CX) denotes its Stone-Čech compactification. Every bonding map β(cX′,X)
is the unique continuous extension of cX′,X that is provided by the Stone-Čech
property (see Theorem 3.4.1 (ii)). As one of his main results, Diestel showed that
the map

τ 7→ (U(τ,X) | X ∈ X )

defines a bijection between the tangle set Θ and the inverse limit lim←− β(CX). From
now on, we view the tangle space Θ as the compact Hausdorff space lim←− β(CX).

In his paper, Diestel moreover showed that the ends of G are precisely those
ℵ0-tangles whose induced ultrafilters are all principal. For every ℵ0-tangle τ we
write Xτ for the collection of all X ∈ X for which the induced ultrafilter U(τ,X)
is free. The set Xτ is empty if and only if τ is an end tangle; an ℵ0-tangle τ with
Xτ non-empty is called an ultrafilter tangle. For every ultrafilter tangle τ the set
Xτ has a least element Xτ of which it is the up-closure. We characterised the
sets of the form Xτ combinatorially in [62, Theorem 4.10]: they are precisely the
critical vertex sets of G, finite sets X ⊆ V whose deletion leaves some infinitely
many components each with neighbourhood precisely equal to X, and they can be
used together with the ends to compactify the graph, [62, Theorem 4.11].

We conclude our summary of ‘Ends and tangles’ with the formal construction
of the tangle compactification. To obtain the tangle compactification |G|Θ of a
graph G we extend the 1-complex of G to a topological space G tΘ by declaring
as open in addition to the open sets of G, for all X ∈ X and all C ⊆ CX , the sets

O|G|Θ(X,C ) :=
⋃

C ∪ E̊(X,
⋃

C ) ∪ { τ ∈ Θ | C ∈ U(τ,X) }

and taking the topology this generates. Notably, |G|Θ contains Θ as a subspace.
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Theorem 3.2.2 ([25, Theorem 1]). Let G be any graph, possibly disconnected.

(i) |G|Θ is a compactification of G with totally disconnected remainder.
(ii) If G is locally finite and connected, then |G|Θ coincides with the Freudenthal

compactification of G.

The tangle compactification is Hausdorff if and only if G is locally finite. However,
the subspace |G|Θ r E̊ is compact Hausdorff. Teegen [81] generalised the tangle
compactification to topological spaces.

3.3. Tangles as inverse limit of finite spaces

The Stone-Čech compactification of a discrete space can be viewed as the inverse
limit of all its finite partitions, where each finite partition carries the discrete
topology. In this section, we extend this fact to the tangle space.

We start by choosing the point set for our directed poset:

Γ := { (X,P ) | X ∈ X and P is a finite partition of CX }.

Notation. If an element of Γ is introduced just as γ, then we write X(γ) and P (γ)
for the sets satisfying (X(γ), P (γ)) = γ. Given X ⊆ X ′ ∈ X and a finite partition
P of CX we write P � X ′ for the finite partition

{ c−1
X′,X(C ) | C ∈ P }r {∅}

that P induces on CX′ .

Letting (X,P ) ≤ (Y,Q) whenever X ⊆ Y and Q refines P � Y defines a directed
partial ordering on Γ:

Lemma 3.3.1. (Γ,≤) is a directed poset.

Proof. Checking the poset properties is straightforward; we verify that it is directed:
Given any two elements (X,P ) and (Y,Q) of Γ let R be the coarsest refinement of
P � (X ∪ Y ) and Q � (X ∪ Y ). Then (X,P ), (Y,Q) ≤ (X ∪ Y,R) ∈ Γ.

For a reason that will become clear in the proof of our next theorem, we consider
a cofinal subset of Γ, namely

Γ′ := { γ ∈ Γ | ∀C ∈ P (γ) : V [C ] is infinite }.

Lemma 3.3.2. Γ′ is cofinal in Γ.

Proof. Given (X,P ) ∈ Γ we put

X ′ = X ∪
⋃
{V [C ] | C ∈ P with V [C ] finite }.

Then (X,P ) ≤ (X ′, P � X ′) ∈ Γ′ as desired.
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3. Tangles and the Stone-Čech compactification of infinite graphs

We aim to describe the tangle space as an inverse limit of finite Hausdorff spaces.
For this, we choose Γ as our directed poset, and for each γ ∈ Γ we let Pγ be the
set P (γ) endowed with the discrete topology. Our bonding maps fγ′,γ : Pγ′ →Pγ

send each C ′ ∈Pγ′ to the unique C ∈Pγ with C ′ � X(γ) ⊆ C . Since the spaces
Pγ are compact Hausdorff, so is their inverse limit

P := lim←− ( Pγ | γ ∈ Γ ).

By [36, Corollary 2.5.11] we may replace Γ with its cofinal subset Γ′ without
changing the inverse limit P , so we assume without loss of generality that Γ = Γ′.

Notation. If τ is an ℵ0-tangle and γ = (X,P ) ∈ Γ is given, then we write C (τ, γ)
for the unique partition class of P that is contained in the ultrafilter U(τ,X).

Theorem 3.3.3. For any graph G, its tangle space is homeomorphic to the inverse
limit P, i.e. Θ ∼= P.

Proof. Letting ϕγ : Θ→Pγ assign C (τ, γ) to each tangle τ ∈ Θ defines a collection
of maps that are compatible as tangles are consistent. To see that our maps are
continuous, it suffices to note that for all γ ∈ Γ and C ∈Pγ we have

ϕ−1
γ (C ) = { τ ∈ Θ | C ∈ U(τ,X(γ)) }.

The set V [C ] is infinite due to Γ = Γ′, so Diestel’s [25, Lemma 3.7] ensures that the
preimage ϕ−1

γ (C ) is non-empty, i.e. that our maps are surjective. Since the tangle
space Θ is compact and the inverse limit P is Hausdorff, the maps ϕγ combine
into a continuous surjection ϕ : Θ�P (cf. [36, Corollary 3.2.16]). Moreover, ϕ is
injective, so it follows from compactness that ϕ is a homeomorphism.

3.4. Background on the Stone-Čech

compactification of an infinite graph

3.4.1. Stone-Čech compactification of 1-complexes

The following characterisation of the Stone-Čech compactification is well-known:

Theorem 3.4.1 (Cf. [36],[39]). Let X be a Tychonoff space. The following are
equivalent for a Hausdorff compactification γX ⊇ X:

(i) γX = βX,
(ii) every continuous function f : X → T to a compact Hausdorff space T has a

continuous extension f̂ : γX → T with f̂ � X = f ,
(iii) every continuous function f : X → I has a continuous extension f̂ : γX → I

with f̂ � X = f .

Moreover, if X is normal2, then we may add

2In this chapter, the property normal always includes Hausdorff.
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3. Tangles and the Stone-Čech compactification of infinite graphs

(iv) any two closed disjoint sets Z1, Z2 ⊆ X have disjoint closures in γX,
(v) for any two closed sets Z1, Z2 ⊆ X we have

Z1 ∩ Z2
γG

= Z1
γG ∩ Z2

γG
.

Remarkably, from (iv) it follows that whenever X is normal and Y ⊆ X is closed,
then Y

βX
= βY . (Also cf. [36, Corollary 3.6.8].) In particular V

βG
= βV .

Ultrafilter limits

Consider a compact Hausdorff space X. If x = ( xi | i ∈ I ) is a family of points
xi ∈ X and U is an ultrafilter on the index set I, then there is a unique point
xU ∈ {xi | i ∈ I} ⊆ X defined by

{xU} =
⋂
J∈U

{xi | i ∈ J }.

Indeed, since U is a filter, the collection
{
{xi : i ∈ J}

∣∣ J ∈ U } has the finite
intersection property, and so by compactness of X, the intersection over their
closures is non-empty; and it follows from Hausdorffness of X that the intersection
can contain at most one point. We also write

xU = U -limx = U -lim (xi | i ∈ I )

and call xU the limit of (xi | i ∈ I ) along U , or U -limit of x. Note that if U is the
principal ultrafilter generated by i ∈ I, then xU = xi.

For an alternative description, put T = {xi | i ∈ I } ⊆ X and view I as a
discrete space, so that the index function

x̃ : I → {xi | i ∈ I } ⊆ T, i 7→ xi

is continuous and βI is given by the space of ultrafilters on I. Then the Stone-Čech
extension βx̃ : βI → T of the index function x̃ maps each ultrafilter U ∈ βI to xU .

More generally, if (Xi | i ∈ I ) is a family of subsets of a compact Hausdorff
space X and U is an ultrafilter on the index set I, then we write

XU = U -lim (Xi | i ∈ I ) :=
⋂
J∈U

⋃
i∈J

Xi ⊆ X

and call XU the U -limit of (Xi | i ∈ I ). Regarding ultrafilter limits, we have the
following well-known lemma.

Lemma 3.4.2. Suppose that f : X → D is a continuous surjection with X nor-
mal and D discrete. Then the fibres of βf : βX → βD are precisely the sets
U-lim ( f−1(d) | d ∈ D ) with U an ultrafilter on D.

Proof. First, for an arbitrary subset J ⊆ D the preimages f−1(J) and f−1(Dr J)
partition X into closed subsets, and hence induce a partition of βX into closed
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3. Tangles and the Stone-Čech compactification of infinite graphs

subsets f−1(J) and f−1(D r J). Since also (βf)−1(J) and (βf)−1(D r J) partition
βX, it follows from f−1(J) ⊆ (βf)−1(J) that f−1(J) = (βf)−1(J) for all J ⊆ D.

Therefore, for an arbitrary ultrafilter U ∈ βD we have

(βf)−1(U) = (βf)−1

( ⋂
J∈U

J
βD
)

=
⋂
J∈U

f−1(J)
βX

= U -lim ( f−1(d) | d ∈ D ),

which is the assertion of the lemma.

Two facts about continua

We shall need the following two simple lemmas about continua. Recall that a
continuum is a non-empty compact connected Hausdorff space.

Lemma 3.4.3. Let X be a compact Hausdorff space, and C ⊆ X a connected
subspace. Then C ⊆ X is a continuum.

A family (Ci | i ∈ I ) of subcontinua of some topological space is said to be
directed if for any i, j ∈ I there exists a k ∈ I such that Ck ⊆ Ci ∩ Cj.

Lemma 3.4.4 ([36, Theorem 6.1.18]). The intersection of any directed family of
continua is again a continuum.

The Stone-Čech compactification of a disjoint sum of intervals

Recall that the 1-complex of a connected graph G can be obtained from the
topological sum of disjoint unit intervals (one for each edge) by identifying suitable
endpoints, and using the quotient topology. To formalise this, consider the
topological space ME = I×E where E = E(G) carries the discrete topology. Then
G = ME/∼ for some suitable equivalence relation identifying endpoints. Write Ie
for I× {e} ⊆ME, and xe for (x, e) ∈ Ie, so ME =

⊕
e∈E Ie.

Our next results, and in particular Theorem 3.4.9, say that the Stone-Čech
compactification of a 1-complex G (which to our knowledge hasn’t been studied
at all) can be understood through the Stone-Čech compactification βME of ME

(which has been studied extensively over the past decades, see e.g. the survey [48]).

Lemma 3.4.5 ([48, Corollary 2.2]). Let X =
⊕

i∈I Ki be a topological sum of
continua, and view I as a discrete space. Consider the continuous projection
π : X → I, sending Ki to i ∈ I. The components of βX are the fibres of the map
βπ : βX → βI.

Suppose for a moment that X =
⊕

i∈I Ki has only countably many components,
i.e. that I = N. Write X∗ = βX rX for the Stone-Čech remainder. In the lemma,
βπ denotes the Stone-Čech extension of π, where we interpret π as a continuous
map from X into the compact Hausdorff space βN ⊇ N. And since π has compact
fibres (also called perfect map), the extension βπ restricts to a continuous map
π∗ = βπ � X∗ : X∗ → N∗, i.e. it maps the remainder of βX to the remainder of
βN, [36, Theorem 3.7.16]. The figure below illustrates this for X = MN:
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Now, for every ultrafilter U ∈ βN the fibre βπ−1(U) is a connected component
of βX, which is also denoted by KU . By Lemma 3.4.2 we have

βπ−1(U) = KU = U -lim (Ki | i ∈ I ) =
⋂
J∈U

⋃
i∈J

Ki

βX

.

Also, if (xi | i ∈ I ) is a family of points with xi ∈ Ki, then xU is the unique point

of KU ∩{xi | i ∈ I }
βX

. If the spaces Ki are homeomorphic copies of a single space
and the points xi ∈ Ki correspond to the same point ξ of the original space, then
we write ξU for xU . For example, if each Ki is a copy of the unit interval and xi
corresponds to 0 for all i ∈ I, then xU = 0U .

We shall also need the following lemma plus corollary:

Lemma 3.4.6 ([48, Lemma 2.3]). For a family (xi | i ∈ I ) of points xi ∈ Ki, the
point xU is a cut-point of KU if and only if { i | xi is a cut-point of Ki } ∈ U .

Notation. In the context of X = ME we write ǏU for IU r {0U , 1U}.

Corollary 3.4.7. The spaces IU r {0U}, IU r {1U} and ǏU are connected.

Proof. The non-standard interval [0U , (
1
2
)U ] is homeomorphic to IU (cf. [48, Propo-

sition 2.8]). Thus (0U , (
1
2
)U ] is connected by Lemma 3.4.6. So is [(1

2
)U , 1U). Since

both meet in (1
2
)U , so is their union ǏU .

Quotients

As we are interested in 1-complexes, i.e. in quotients of ME, we provide a theorem
how the quotient operation relates to the Stone-Čech functor. We need the following
lemma, which is easily verified (alternatively see Theorems 2.4.13 and 1.5.20
from [36]).

Lemma 3.4.8. Let V be a closed discrete subset of a normal space X, and suppose
that ∼ is an equivalence relation on V . Then X/∼ is again normal.
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3. Tangles and the Stone-Čech compactification of infinite graphs

Theorem 3.4.9. Let V be a closed discrete subset of a normal space X, and
suppose that ∼ is an equivalence relation on V . Let {Vi | i ∈ I } be the collection
of all ∼-classes. Consider the equivalence relation ∼β on V

βX
into equivalence

classes of the form

VU = U-lim (Vi | i ∈ I ) =
⋂
J∈U

⋃
i∈J

Vi
βX

,

one for each ultrafilter U on I, and singletons. Then X/∼ is again normal and

β(X/∼) = (βX)/∼β .

Proof. Let us write V/∼ = I where I is endowed with the discrete topology.
The quotient X/∼ is normal by Lemma 3.4.8, so its Stone-Čech compactifica-
tion exists. Also, the quotient map q : X → X/∼ is a continuous closed map
([36, Proposition 2.4.3]), and so q[V ] = I is closed in X/∼.

Now by the Stone-Čech property in Theorem 3.4.1 (ii), the map q : X → X/∼ ⊆
β(X/∼) extends to a continuous surjection βq : βX → β(X/∼).

We claim that each non-trivial fibre of βq is of the form VU for each ultrafilter
U on I. Since every continuous surjection f : Z � Y from a compact space Z
onto a Hausdorff space Y gives rise to a homeomorphism between the quotient
Z/{ f−1(y) | y ∈ Y } over the fibres of f and Y , this implies the desired result.

First, note that βq maps V
βX

onto I
β(X/∼)

, and restricts to a bijection on
the respective complements, as V is closed. Moreover, as I ⊆ X/∼ is closed
and discrete, we have I

β(X/∼)
= βI = {U : U is an ultrafilter on I}. Hence, by

Lemma 3.4.2 the fibres of βq are just (βq)−1(U) = VU , one for each ultrafilter U
on I.

Corollary 3.4.10. Let X be a normal space and V ⊆ X a closed discrete subset.
Then X/V is again normal and

β(X/V ) = βX/
(
V
βX)

.

Corollary 3.4.11. Let X and Y be two disjoint normal spaces, and suppose that
A = { ai | i ∈ I } ⊆ X and B = { bi | i ∈ I } ⊆ Y are infinite closed discrete
subspaces. Consider the quotient Z = (X ⊕ Y )/∼ where we identify pairs {ai, bi}
for all i ∈ I. Then

βZ = (βX ⊕ βY )/∼β
where we identify pairs {aU , bU} for all ultrafilters U on I.

3.4.2. Three examples

Before turning towards the proof of our main result, we illustrate the above
topological lemmas by three representative examples: We discuss the Stone-Čech
compactification of the infinite ray R, the infinite star Sλ of degree λ, and the
dominated ray D, and compare it side by side with the ℵ0 tangles of these examples.
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3. Tangles and the Stone-Čech compactification of infinite graphs

The infinite ray

Consider the infinite ray R with vertex set V = { vn | n ∈ N } and edge set
E = { vnvn+1 | n ∈ N }. Since R is locally finite, the space of ℵ0-tangles consists
solely of the single end of R, by Theorem 3.2.2 (ii). Moreover, the 1-complex
R is homeomorphic to the positive half line H = [0,∞), so they have the same
Stone-Čech remainder R∗ = H∗. The space H∗ has been extensively investigated,
see e.g. [48] for a survey. At this point, however, we are content to provide the
standard argument showing that the Stone-Čech remainder of the infinite ray is
indeed connected, confirming the connection between components in the remainder
of the Stone-Čech compactification and the ℵ0-tangles.

Example 3.4.12. The infinite ray has a connected Stone-Čech remainder.

Proof. Deleting a vertex vn from R leaves behind exactly one infinite component
Cn = R[vn+1, vn+2, . . .]. Then

⋂
n∈NCn

βR
is a continuum by Lemmas 3.4.3 and

3.4.4. We claim that
R∗ =

⋂
n∈N

Cn
βR
.

Indeed, “⊇” holds as any vertex and edge of R is removed eventually by the
intersection. For “⊆” note that for any n ∈ N we have R = R[v0, . . . , vn+1] ∪ Cn,
and hence

R∗ ⊆ R[v0, . . . , vn+1]
βR
∪ Cn

βR
,

since the closure operator distributes over finite unions. But R[v0, . . . , vn+1] is
compact, and hence closed in the Hausdorff space βR, implying

R[v0, . . . , vn+1]
βR

= R[v0, . . . , vn+1] ⊆ R.

It follows R∗ ⊆ Cn
βR

for all n ∈ N as desired.

The infinite star

10

11

12 13
14

15

1U

1U ′

S∗ℵ0

Figure 3.4.1.: The Stone-Čech compactification of the countable infinite star

For any cardinal λ we denote by Sλ the star of degree λ. Clearly, this star has no
end, so all ℵ0-tangles are ultrafilter tangles. As a consequence of [62, Theorem 4.10],
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3. Tangles and the Stone-Čech compactification of infinite graphs

the ultrafilter tangles correspond precisely to the free ultrafilters on λ. The 1-
complex of Sλ is obtained from ME (with E a discrete space of cardinality λ)
via

Sλ = ME/{ 0e | e ∈ E}.

Example 3.4.13. The Stone-Čech remainder of an infinite star Sλ is homeomor-
phic to M∗E r { 0U | U ∈ E∗}. Each connected component of S∗λ is homeomorphic
to IU r {0U} for some free ultrafilter U ∈ E∗.

Proof. Since Sλ = ME/{ 0e | e ∈ E }, it follows immediately from Corollary 3.4.10

that βSλ = βME/{ 0e | e ∈ E }
βME

. Since the equivalence class { 0e | e ∈ E }
βME

corresponds to the center vertex of Sλ, it follows for the remainder of βSλ that

S∗λ = M∗E r { 0e | e ∈ E }
βME

= M∗E r { 0U | U ∈ E∗ }.

By Lemma 3.4.5 and Corollary 3.4.7, the connected components of the remainder
M∗E r { 0U | U ∈ E∗ } are given by IU r {0U} for each free ultrafilter U on E.

The dominated ray

The dominated ray D is the quotient of an infinite star Sℵ0 and a ray R where the
leaves of Sℵ0 , denoted as in the previous example by { 1n | n ∈ N }, are identified
pairwise with vertices of the ray, denoted by { vn | n ∈ N } (see Fig. 3.4.2). Since
deleting any finite set of vertices from D leaves only one infinite component, the
sole end of D is the one and only ℵ0-tangle.

v0 v1 v2 v3 v4 v5 v6 v7

. . .

c

Figure 3.4.2.: The dominated ray with dominating vertex c

Example 3.4.14. The dominated ray D has a connected Stone-Čech remainder.

Proof. By Corollary 3.4.11, the Stone-Čech remainder of D is homeomorphic to the
quotient

(
S∗ℵ0
⊕R∗

)
/∼β where 1U ∼β vU for every ultrafilter U ∈ N∗ and 1U ∈ IU

and vU ∈ R∗. It follows that every connected component IU r {0U} of S∗ℵ0
(see

Example 3.4.13) is, via the identified points 1U ∼β vU , attached to the connected
remainder R∗ (see Example 3.4.12) of βR, and so D∗ is indeed connected.
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3.5. Comparing the Stone-Čech remainder with

the tangle space

3.5.1. The Stone-Čech remainder of the vertex set

Due to βG = (βME)/∼β for any representation ME/∼ of G (Theorem 3.4.9) we
may view βV = V

βG ⊆ βG as the closure of { [0e]∼β , [1e]∼β | e ∈ E } in the
quotient (βME)/∼β. In particular, the non-standard intervals IU (with U ∈ E∗)
may interact with V or its Stone-Čech remainder V ∗. In this subsection, we have
a closer look at this interaction.

In the next lemma, we write V ∗ = G∗ ∩ V βG
. Since βV = V

βG
, this potential

double meaning does no harm.

Lemma 3.5.1. Let ME/∼ be a representation of G, and let U ∈ E∗ be any free
ultrafilter. Then at most one of the endpoints 0U and 1U of IU is contained in
some ∼β-class that belongs to V , and at least one of them is contained in some
∼β-class that belongs to V ∗.

Proof. A vertex x ∈ G, viewed as ∼β-class (Theorem 3.4.9), contains an endpoint
of IU if and only if E(x) ∈ U . And since |E(x) ∩ E(y)| ≤ 1 for every distinct two
vertices x, y ∈ G, at most one vertex x ∈ G can satisfy E(x).

Lemma 3.5.2. Let G be a graph, and let C be a connected component of the Stone-
Čech remainder G∗. Then C ∩ V ∗ 6= ∅. In particular, the connected components
of G∗ induce a closed partition of V ∗.

Proof. Consider a representation G = ME/∼ of G, and recall that by Corol-
lary 3.4.7, every non-standard component IU of M∗E remains connected upon
deleting one or both of the endpoints 0U and 1U .

Consider some connected component C of G∗. Then for some IU ⊆M∗E we have
ǏU ⊆ C. Therefore, it suffices to show that for every free ultrafilter U ∈ E∗ at
least one of [0U ]∼β and [1U ]∼β is in V ∗. This is the content of Lemma 3.5.1.

3.5.2. An auxiliary remainder

The remainder G∗ not being compact prevents us from using topological machinery,
so we study a nice subspace G× ⊆ G∗ first. As usual, we start with some new
notation.

Notation. For a vertex v of G, write O(v) for its open neighbourhood E̊(v) t {v}
in G consisting of all half-open incident edges at v, and write

OβG(v) :=
⋃
E(v)

βG
rN(v)

βG
.

Due to βG =
⋃
E(v)

βG
∪ GrO(v)

βG
and

⋃
E(v)

βG
∩ GrO(v)

βG
= N(v)

βG

the set OβG(v) is open in βG, and it meets G precisely in O(v). The set OβG(v) is
also known as Ex O(v) = βG r GrO(v), the largest open subset of βG whose
intersection with G is O(v), cf. [36, p. 388].
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Observation 3.5.3. Put F = E(v) and write H for the subspace
⋃
F ⊆ G. Since

H is the 1-complex of a star, the set OβG(v) is homeomorphic to the space from
Example 3.4.13 without the “endpoints” (also see Fig. 3.4.1):

OβG(v) = H
βG rN(v)

βG ∼= βH rN(v)
βH

∼= (βMF/{ 0U | U ∈ βF })r { 1U | U ∈ βF }

Definition 3.5.4. The auxiliary remainder of G is the space

G× := βGrOβG[V ] ⊆ G∗

where we write OβG[W ] =
⋃
v∈W OβG(v) for all W ⊆ V .

Fact 3.5.5. Since βG is compact Hausdorff, so is G×.

Lemma 3.5.6. The vertex set V of any graph satisfies V ∗ ⊆ G×.

Proof. We show that, for every vertex v ∈ V , the set OβG(v) avoids V ∗:

⋃
E(v)

βG
∩ V ∗ =

(⋃
E(v)

βG
∩ V βG

)
rG = {v} tN(v)

βG
rG

=
(
{v} tN(v)

βG
)
rG = N(v)∗ ⊆ N(v)

βG

3.5.3. The components of the remainder can be
distinguished by finite separators

For the tangle compactification it is true that every open set O|G|Θ(X,C ) gives
rise to a clopen bipartition of the tangle space, namely(

O|G|Θ(X,C ) ∩Θ
)
⊕
(
O|G|Θ(X,CX r C ) ∩Θ

)
,

i.e. { τ ∈ Θ | C ∈ U(τ,X) } ⊕ { τ ∈ Θ | C /∈ U(τ,X) }.

In fact, for every two distinct ℵ0-tangles there exists such a clopen bipartition of
the tangle space separating the two. Our next target is to prove that any two
components of the remainder of a graph are—just as the ℵ0-tangles—distinguished
by a finite order separation. That is why we start by studying a possible analogue
OβG(X,C ) of O|G|Θ(X,C ) for βG.

Notation. Given X ∈ X and C ⊆ CX we write G[X,C ] for G[X ∪V [C ]]. If τ is an
ℵ0-tangle of G and γ is an element of Γ, then we write G[τ, γ] for G[X(γ),C (τ, γ)].

For every X ∈ X and C ⊆ CX we let

OβG(X,C ) := G[X,C ]
βG
rG[X]

which is open in βG as a consequence of βG = G[X,C ] ∪ G[X,CX r C ] and
G[X,C ]∩G[X,CX r C ] = G[X] = G[X] (see Theorem 3.4.1 (v)). Before we check
that OβG(X,C ) gives rise to clopen bipartitions of G∗ and G×, we prove a lemma:
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Lemma 3.5.7. For all X ∈ X and C ⊆ CX we have

G[X,C ]
βG
⊆ OβG[X] t

⋃
C
βG
.

In particular, for all γ ∈ Γ we have

βG = OβG[X(γ)] t
⊔

C∈P (γ)

⋃
C
βG
.

Proof. Due to βG =
⋃

C∈P (γ) G[X(γ),C ]
βG

it suffices to show the first statement:

G[X,C ] = G[X] ∪
⋃
x∈X

⋃
E(x,

⋃
C ) ∪

⋃
C

⊆
⋃
x∈X

(
OβG(x) tN(x) ∩

⋃
C
)
∪
⋃

C = OβG[X] t
⋃

C

where at the “⊆” we used Theorem 3.4.1 (v) for

⋃
E(x,

⋃
C ) =

(⋃
E(x,

⋃
C )rN(x)

)
t
(⋃

E(x,
⋃

C ) ∩N(x)
)

⊆ OβG(x) t (
⋃
E(x,

⋃
C )) ∩N(x) = OβG(x) tN(x) ∩

⋃
C .

Lemma and Definition 3.5.8. Let any (X,P ) ∈ Γ be given. Then

(i) P∗ :=
{
G[X,C ]

βG
∩G∗

∣∣C ∈ P } and

(ii) P× :=
{⋃

C
βG
∩G×

∣∣C ∈ P }
are finite separations of G∗ and G× into clopen subsets.

Proof. (i). First observe that

βG = G =
⋃

C∈P

G[X,C ] =
⋃

C∈P

G[X,C ].

At the same time, however, since every G[X,C ] is a subgraph, and hence a closed
subset of G, for all C 6= C ′ ∈ P it follows from Theorem 3.4.1 (v) that

G[X,C ] ∩G[X,C ′] = G[X,C ] ∩G[X,C ′] = G[X] = G[X] ⊆ G

where the last equality follows from the fact that compact subsets of Hausdorff
spaces are closed. Hence, we see that G∗ is a disjoint union of finitely many closed
sets G∗ =

⊔
C∈P

(
G[X,C ] ∩G∗

)
.

(ii) follows from (i) with Lemma 3.5.7.

Notation. We write ≈∗ and ≈× for the equivalence relations on G∗ and G× whose
classes are precisely the connected components of G∗ and G× respectively. If C is
a component of G× we write Ĉ for the unique component of G∗ including it.
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3. Tangles and the Stone-Čech compactification of infinite graphs

Our next lemma, the so-called Separating Lemma, can be considered as our
main technical result of this chapter, yielding that distinct components of G∗ can
be distinguished by a finite order separation of the graph G, see Corollaries 3.5.13
and 3.5.15 below. However, we state the lemma in a slightly more general form, so
that we can also apply it in Section 3.6 when proving Theorem 3.1. For this, we
shall need the following notion of “tame”:

Definition 3.5.9. We call a subset A ⊆ βG tame if it is ≈×-closed and for every
component C of G∗ meeting A in a point of OβG[V ] (cf. Def. 3.5.4) we have C ⊆ A.

Here, for a set M we say that M is R-closed for R an equivalence relation on
any set N , if for all m ∈ M and n ∈ N with mRn there holds n ∈ M (phrased
differently, whenever M meets an R-class then it contains that class entirely, but
M might also contain points that do not lie in any R-class).

Example 3.5.10. All ≈∗-closed subsets of βG and all ≈×-closed subsets of G×

are tame, but both G∗ rG× and OβG[V ] are not tame as soon as G is not locally
finite.

Lemma 3.5.11 (Šura-Bura Lemma [36, Theorem 6.1.23]). If C1 and C2 are
distinct components of a compact Hausdorff space X, there is a clopen bipartition
A⊕B of X with C1 ⊆ A and C2 ⊆ B.

Lemma 3.5.12 (Separating Lemma). Let A,B ⊆ βG be two disjoint closed and
tame subsets. Then there is a finite X ⊆ V (G) and a bipartition {C1,C2} of CX

with A ⊆ G[X,C1]
βG

and B ⊆ G[X,C2]
βG

.

Proof. Given A and B we use normality of G× and a compactness argument to
deduce from Lemma 3.5.11 that there is a clopen bipartition KA⊕KB of G× with
A ∩G× ⊆ KA and B ∩G× ⊆ KB. Put A′ = A ∪KA and B′ = B ∪KB so A′ and
B′ are closed and disjoint subsets of βG. Using that βG is normal we find disjoint
open sets OA, OB ⊆ βG with A′ ⊆ OA and B′ ⊆ OB. Next, since⋂

v∈V

(βGrOβG(v)) = G× = KA ⊕KB ⊆ OA tOB

is an intersection of closed sets which is contained in the open set OA t OB, it
follows from compactness that there are finitely many vertices v1, . . . , vn such that

n⋂
i=1

(βGrOβG(vi)) ⊆ OA tOB.

Put Ξ = {v1, . . . , vn}. Then OA tOB induces a clopen bipartition K ′A⊕K ′B of the
closed subspace βGrOβG[Ξ] of βG which in turn induces a bipartition Q = {A,B}
of CΞ via

A = {C ∈ CΞ | C ⊆ K ′A } and B = {C ∈ CΞ | C ⊆ K ′B }.

29



3. Tangles and the Stone-Čech compactification of infinite graphs

In particular, we have ⋃
A
βG
⊆ K ′A and

⋃
B
βG
⊆ K ′B. (3.5.1)

Moreover, by Lemma 3.5.8, Q× must be the clopen bipartition KA ⊕KB of G×.
Now we want that

A ⊆ G[Ξ,A]
βG

and B ⊆ G[Ξ,B]
βG
, (3.5.2)

but with the help of Lemma 3.5.7 and (3.5.1) we only get

A ⊆ βGr
⋃
B
βG

= G[Ξ,A]
βG
∪OβG[Ξ]

and B ⊆ βGr
⋃
A
βG

= G[Ξ,B]
βG
∪OβG[Ξ]

with A and B possibly meeting OβG[Ξ]. To resolve this issue, we will find a way to
widen Ξ by adding only finitely many vertices, and adjusting A and B accordingly
so as to make (3.5.2) true.

For this, we note first that

A ∩G∗ ⊆ G[Ξ,A]
βG
. (3.5.3)

Indeed, we know that A is tame, that each component of G∗ meets V ∗ ⊆ G× (see
Lemmas 3.5.2 and 3.5.6), and that

A ∩G× ⊆ KA =
⋃
A
βG
∩G× ⊆ G[Ξ,A]

βG

where G[Ξ,A]
βG
∩G∗ is clopen (Lemma 3.5.8); combining these facts yields (3.5.3).

Second, we show that there exists a finite set FA of edges of G with

A ∩G ⊆ G[Ξ,A] ∪
⋃
FA. (3.5.4)

Indeed, by A ⊆ G[Ξ,A]
βG
∪OβG[Ξ], it suffices to show that

FA := { e ∈ E(X,
⋃
B) | e̊ meets A }

is finite. Suppose for a contradiction that FA is infinite, and for every edge e ∈ FA
pick some ie ∈ e̊ ∩ A. Then { ie | e ∈ FA }

βG
⊆ A meets G∗ ∩G[X,B]

βG
∩OβG[Ξ]

in some component C of G∗. But we noted earlier that each component of G∗

meets V ∗ ⊆ G×, so the tame set A meeting C means that ∅ 6= C ∩G× ⊆ A ∩KB,
a contradiction. Of course, corresponding versions of (3.5.3) and (3.5.4) hold for
B.

Finally, we use (3.5.3) and (3.5.4) to yield a true version of (3.5.2). For this,
we let X be the finite vertex set obtained from Ξ by adding the endvertices of
the edges in FA ∪ FB, and we put C1 = c−1

X,Ξ(A) and C2 = c−1
X,Ξ(B). Due to

G[X,C1] ⊇ G[Ξ,A] ∪
⋃
FA and G[X,C2] ⊇ G[Ξ,B] ∪

⋃
FB, we may use (3.5.3)

and (3.5.4) to deduce that

A ⊆ G[X,C1]
βG

and B ⊆ G[X,C2]
βG
.

30



3. Tangles and the Stone-Čech compactification of infinite graphs

Using Lemma 3.5.7 we obtain the following corollary:

Corollary 3.5.13. For every pair of distinct components C1, C2 of G× there is a
finite X ⊆ V (G) and a bipartition P = {C1,C2} of CX such that the components
Ĉ1 ⊇ C1 and Ĉ2 ⊇ C2 of G∗ are separated by the clopen bipartition P∗ of G∗.

Lemma 3.5.14. The map C 7→ Ĉ defines a bijection between G×/≈× and G∗/≈∗.

Proof. Each component of G∗ meets V ∗ ⊆ G× (see Lemmas 3.5.2 and 3.5.6), so
the map C 7→ Ĉ is onto. It is injective by Corollary 3.5.13.

Corollary 3.5.13 and Lemma 3.5.14 yield another important result:

Corollary 3.5.15. For every pair of distinct components C1, C2 of G∗ there is a
finite X ⊆ V (G) and a bipartition P of CX such that the clopen bipartition P∗ of
G∗ separates C1 and C2.

Corollary 3.5.16. The quotients G×/≈× and G∗/≈∗ are Hausdorff.

Theorem 3.5.17. For any graph G, we have G×/≈× ∼= G∗/≈∗.

Proof. Let ι̂ : G×/≈× → G∗/≈∗ map C to Ĉ. By Lemma 3.5.14 this is a bijection.
Denote the quotient map G∗ → G∗/≈∗ by q∗. Clearly, the diagram

G× G∗

G×/≈× G∗/≈∗

ι

q∗

ι̂

commutes. Since G×/≈× is compact and G∗/≈∗ is Hausdorff (Corollary 3.5.16),
to show that ι̂ is a homeomorphism it suffices to verify continuity. But note that
by the quotient topology, ι̂ is continuous if and only if q∗ ◦ ι is continuous.

3.5.4. Comparing P with G×

Now that we are able to distinguish distinct components of the remainder by some
γ ∈ Γ, the next step is to use this to show Θ ∼= G∗/≈∗. Technically, we will achieve
this by showing P ∼= G×/≈× instead.

For every γ ∈ Γ let σγ : G× →Pγ map every point x ∈ G× to the C ∈Pγ whose

induced clopen partition class
⋃

C
βG
∩G× ∈ P (γ)× containing x, i.e. including

the connected component of G× containing x.

Lemma 3.5.18. The maps σγ are continuous surjections.

Proof. To see that σγ is continuous, observe that

σ−1
γ (C ) =

⋃
C
βG
∩G× ∈ P (γ)×

and recall that partition classes of P (γ)× are clopen in G×.
The map σγ is surjective: since every C ∈ Pγ is such that V [C ] is infinite,

Lemma 3.5.6 ensures that
⋃

C
βG
∩G× is non-empty.
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3. Tangles and the Stone-Čech compactification of infinite graphs

Lemma 3.5.19. The maps σγ are compatible.

Proof. For this assertion it suffices to show that whenever (X,P ) ≤ (X ′, P ′), then
we have P× � P ′×, i.e. the finite clopen partition P ′× refines that partition of G×

induced by P×. To see this, consider any C ′ ∈ P ′. Since P ′ refines P � X ′, there is
a unique C ∈ P with C ′ � X ⊆ C . Thus

⋃
C ′

βG
∩G× ⊆

⋃
C
βG
∩G× follows.

We put σ = lim←−σγ : G× → P, and we aim to show that σ gives rise to a
homeomorphism between G×/≈× and P.

Lemma 3.5.20. The map σ : G× →P is a continuous surjection.

Proof. We combine Lemmas 3.5.18 and 3.5.19 with the fact that compatible
continuous surjections from a compact space onto Hausdorff spaces combine into
one continuous surjection onto the inverse limit of their image spaces (cf. [36,
Corollary 3.2.16]).

Lemma 3.5.21. The fibres of σ are precisely the connected components of G×.

Proof. First, it is clear by the definition of the σγ that every σγ is constant on
connected components of G×. Conversely, we need to argue that for any pair of
distinct components C1 and C2 of G× there is some σγ with σγ � C1 6= σγ � C1.
Such a σγ is provided by Corollary 3.5.13.

Proposition 3.5.22. G×/≈× ∼= P.

Proof. It is well-known that every continuous surjection f : X � Y from a compact
space X onto a Hausdorff space Y gives rise to a homeomorphism between the
quotient X/{ f−1(y) | y ∈ Y } over the fibres of f , and the space Y . Thus, it
follows from Lemmas 3.5.20 and 3.5.21, that

G×/≈× = G×/{σ−1(ξ) | ξ ∈P } ∼= P.

We now have all ingredients to prove the following key result that is essential
for the proof our main theorem:

Theorem 3.5.23. The tangle space Θ of any graph G is homeomorphic to the
quotient G∗/≈∗ of the Stone-Čech remainder G∗ of G, where each connected
component of G∗ is collapsed to a single point.

Proof of Theorem 3.5.23. Theorem 3.5.17, Proposition 3.5.22 and Theorem 3.3.3
yield

G∗/≈∗ ∼= G×/≈× ∼= P ∼= Θ.
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3. Tangles and the Stone-Čech compactification of infinite graphs

We write τ∗ for the component of G∗ corresponding to τ and τ× for the component
τ∗ ∩G× of G× corresponding to τ (cf. Theorem 3.5.23 and Lemma 3.5.14).

Theorem 3.5.24. If τ is an ℵ0-tangle of G, then

(i) τ∗ = G∗ ∩
⋂
γ∈ΓG[τ, γ]

βG
and

(ii) τ× =
⋂
γ∈Γ

⋃
C (τ, γ)

βG
= G× ∩

⋂
γ∈ΓG[τ, γ]

βG
= τ∗ ∩G×

are the components of G∗ and G× corresponding to τ respectively.

In statement (i) of the theorem, the intersection with G∗ is really necessary—we
will see the reason for this in Proposition 3.7.3.

Proof of Theorem 3.5.24. We show (ii) first. The first equality is evident from the
definition of σ, and the centre equality follows from Lemma 3.5.7 with

G× =
⋂
γ∈Γ

(
βGrOβG[X(γ)]

)
.

(i). By Corollary 3.5.15, the right-hand side contains at most one connected
component of G∗. We have τ× ⊆ G[τ, γ] for all γ ∈ Γ by (ii), so τ∗ = τ̂× ⊆ G[τ, γ]
holds for all γ as well (see Lemma 3.5.8), finishing the proof.

3.6. Obtaining the tangle compactification

from the Stone-Čech compactification

Now that we know Θ ∼= G∗/≈∗, our next target is the proof of our main result,

Theorem 3.1. For this, recall that OβG(X,C ) = G[X,C ]
βG
r G[X], and that

Lemma 3.5.8 and Theorem 3.5.24 ensure that OβG(X,C ) is ≈∗-closed and includes
precisely the components τ∗ of G∗ with C ∈ U(τ,X).

Lemma 3.6.1. Let A ⊆ βG be closed and ≈∗-closed, and let τ be an ℵ0-tangle of G.
If A avoids τ∗, then there are X ∈ X and C ⊆ CX with τ∗ ⊆ OβG(X,C ) ⊆ βGrA.

Proof. By the Separating Lemma 3.5.12 there is X ∈ X and a bipartition {C1,C2}
of CX with A ⊆ G[X,C1] and τ∗ ⊆ G[X,C2]. Then τ∗ ⊆ OβG(X,C2) ⊆ βGrA.

We write β̂G for the topological space obtained from βG by declaring G to be
open, and we write Ĝ for the quotient β̂G/≈∗. Since βG contains G as a subspace,
all the open sets of G are open in β̂G as well; and since ≈∗ does not affect G, all
the open sets of G are also open in Ĝ. As a consequence, the open sets of βG plus
the open sets of G form a basis for the topology of β̂G, yielding that

Lemma 3.6.2. The open sets of (βG)/≈∗ plus the open sets of G form a basis
for the topology of Ĝ.

We define a bijection Ψ: Ĝ→ |G|Θ by letting it be the identity on G and letting
it send each ≈∗-class τ∗ to its corresponding ℵ0-tangle τ .
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3. Tangles and the Stone-Čech compactification of infinite graphs

Lemma 3.6.3. The map Ψ is continuous.

Proof. Since the open sets of G are open in both |G|Θ and Ĝ, it suffices to show
that the preimage of any O|G|Θ(X,C ) is open in Ĝ, and it is:

Ψ−1
(
O|G|Θ(X,C )

)
= OβG(X,C )/≈∗.

Lemma 3.6.4. The map Ψ is closed.

Proof. Let A be any closed subset of Ĝ; we show that Ψ[A] is closed in |G|Θ. For
this, let ξ be any point of |G|Θ rΨ[A], and let B be the basis for the topology of
Ĝ provided by Lemma 3.6.2.

If ξ is a point of G, then we find an open neighbourhood O of ξ in G avoiding
A since A is closed in Ĝ. Then O witnesses ξ /∈ Ψ[A] as well.

Otherwise ξ is an ℵ0-tangle τ ∈ ΘrΨ[A]. The set A is closed in Ĝ, but it need
not be closed in (βG)/≈∗. Let us consider the closure B of A in (βG)/≈∗ and
show B r A ⊆ G (actually, one can even show that B adds only some vertices of
infinite degree to A, but B r A ⊆ G suffices for our cause). Each point of ĜrG
that is not contained in A has an open neighbourhood from the basis B avoiding
A. Since all these neighbourhoods are not included in G, they must be open sets
of (βG)/≈∗, yielding BrA ⊆ G. Therefore, the closed set B′ =

⋃
B of βG avoids

the component τ∗ of G∗ corresponding to τ , and since B′ is also ≈∗-closed our
Lemma 3.6.1 yields X ∈ X and C ⊆ CX such that τ∗ ⊆ OβG(X,C ) ⊆ βG r B′.
Therefore, the open neighbourhood O|G|Θ(X,C ) of τ avoids Ψ[A].

Theorem 3.1. The tangle compactification |G|Θ of any graph G is homeomorphic
to the quotient (βG, τ ′)/≈∗ where τ ′ is the finer topology on βG obtained from βG
by declaring G to be open in βG and then collapsing each connected component of
G∗ to a single point.

Proof. Lemma 3.6.3 and Lemma 3.6.4 yield a homeomorphism.

3.7. Three observations about the Stone-Čech

compactification

Given ME and an ultrafilter U ∈ βE we write PU for the collection of all points
of IU that are of the form xU for some family (xe | e ∈ E ) of points xe ∈ Ie. By
[48, Proposition 2.6], the set PU r {0U , 1U} is dense in IU .

Theorem 3.7.1. If G is an infinite graph that is not locally finite, then no com-
pactification of G can both be Hausdorff and have a totally disconnected remainder.

Proof. Suppose for a contradiction that αG is a Hausdorff compactification of G
with totally disconnected remainder, and let v be a vertex of G of infinite degree.
Consider a representation ME/∼ of G, so Theorem 3.4.9 yields βG = (βME)/∼β
and we find a free ultrafilter U ∈ E∗ with [0U ]∼β = v, say. The set PU r {0U , 1U}

34



3. Tangles and the Stone-Čech compactification of infinite graphs

is dense in IU , so every open neighbourhood of v in βG meets PU r {0U , 1U}. In
order to use this to derive a contradiction, we need to know more about αG first.

The Hausdorff compactification αG can be obtained from βG as a quotient βG/≈
where ≈ is an equivalence relation on G∗. Since αG has a totally disconnected
remainder and since the (continuous) restriction of the quotient map to components
of G∗ preserves connectedness, we deduce that the equivalence relation ≈ must
refine ≈∗. Consequently, the connected subspace ǏU of G∗ (cf. Corollary 3.4.7) is
included in a single ≈-class x, say. To yield a contradiction, it suffices to show
that every open neighbourhood O of v in αG contains x. And indeed: if we view
αG as the quotient (βG)/≈ of βG, then

⋃
O is open in βG and ≈-closed. Using

that
⋃
O meets PU r {0U , 1U} and ≈ refines ≈∗ we deduce that x ⊆

⋃
O, i.e.

x ∈ O.

For our the second observation we need a short lemma and some notation: Since
G is dense in βG, so is the locally compact subspace formed by the inner edge
points and the vertices of finite degree, and hence [36, Theorem 3.3.9] yields:

Lemma 3.7.2. If G is a graph, then E̊ ⊆ G is open in βG.

Given an end ω of G we write ∆ω for the set of those vertices dominating it.
Our second observation describes explicitly how the connected components of the
Stone-Čech remainder of G interact with G.

Proposition 3.7.3. Let G be any graph, and let ME/∼ be a representation of G.

(i) If τ is an ultrafilter tangle of G, then τ∗
βG = τ∗ tXτ , and for each x ∈ Xτ

there is an ultrafilter U ∈ E∗ with [0U ]∼β = x, say, and with ǏU ⊆ τ∗.
(ii) If ω is an end of G, then ω∗

βG = ω∗ t∆ω, and for each x ∈ ∆ω there is an
ultrafilter U ∈ E∗ with [0U ]∼β = x, say, and with ǏU ⊆ ω∗.

Proof. (i). First, we show that τ∗
βG avoids G rXτ (where G is the 1-complex).

Since E̊ is open in βG (Lemma 3.7.2) we may assume that τ∗
βG∩G ⊆ V . Let v be

any vertex of G that is not in Xτ , and let C be the (graph) component of G−Xτ

with v ∈ C. Then v /∈ G[Xτ ,CXτ r {C}] implies v /∈ τ∗βG by Theorem 3.5.24 as
desired. Therefore, τ∗

βG ∩G ⊆ Xτ .
Now suppose that any vertex x ∈ Xτ is given. Write Γx for the set of all γ ∈ Γ

with x ∈ X(γ), and given γ ∈ Γx put Fγ = E(x,
⋃

C (τ, γ)). The sets Fγ are
infinite due to [62, Lemma 4.4]. We consider the filter on E(x) that is given by the
up-closure of the collection {Fγ | γ ∈ Γx } ⊆ 2E(x) (from the directedness of Γx
it follows that this collection is directed by reverse inclusion, which is enough to
ensure that we get a filter). Next, we extend this filter to an ultrafilter U on E(G),
and note that U must be free. Due to E(x) ∈ U we may assume without loss of
generality that there is some F ∈ U with F ⊆ E(x) and { 0e | e ∈ F } ⊆ x where

we view x as a ∼-class of ME. Then 0U ∈ { 0e | e ∈ F }
βME

implies [0U ]∼β = x
as a consequence of βG = (βME)/∼β, Theorem 3.4.9. If we can show that ǏU is

included in G[τ, γ]
βG

for all γ ∈ Γx, then we are done since Γx is cofinal in Γ and τ∗
can be written as the directed intersection G∗ ∩

⋂
γ∈ΓG[τ, γ] (cf. Theorem 3.5.24).
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For this, let any γ ∈ Γx be given. Since ǏU ⊆ G∗ is connected (cf. Corollary 3.4.7)
and G∗ ∩ G[τ, γ] is clopen in G∗ (cf. Lemma 3.5.8), it suffices to show that ǏU
meets G[τ, γ] in (1

2
)U . And indeed we have

(1
2
)U ∈ { (1

2
)e | e ∈ Fγ }

βME

which implies (1
2
)U ∈ G[τ, γ] as desired.

(ii). This is proved similar to (i), where to show ω∗
βG ∩G ⊆ ∆ω we use that for

every vertex v of G not dominating ω there is X ∈ X separating v from C(X,ω)

in that v /∈ X ∪ C(X,ω) so in particular v /∈ G[X, {C(X,ω)}]
βG
⊇ ω∗

βG.

For the study of locally finite connected graphs, the so-called Jumping Arc Lemma
(cf. [26, Lemma 8.5.3]) plays an important role. By considering subcontinua of the
Stone-Čech compactification instead of arcs in the Freudenthal compactification,
we obtain the following quite strong generalisation of this lemma:

Lemma 3.7.4 (Jumping ‘Arc’ Lemma for the Stone-Čech compactification).
Let F ⊆ E be a cut of G with sides V1, V2.

(i) If F is finite, then G[V1] ⊕ G[V2] is a clopen bipartition of (βG) r F̊ , and
there is no subcontinuum of (βG)r F̊ meeting both V1 and V2.

(ii) If F is infinite, then (βG)r F̊ might contain a subcontinuum meeting both
V1 and V2. This is the case, e.g., if both G[V1] and G[V2] are connected.

Moreover, two vertices of G lie in the same component (subcontinuum) of (βG)r E̊
if and only if they lie on the same side of every finite cut of the graph G.

Proof. (i) is immediate from Theorem 3.4.1 (v). For (ii), note that if both G[V1]
and G[V2] are connected then F is a bond so (βG) r F̊ ′ = clβG (G r F̊ ′ ) is a
continuum for every finite F ′ ⊆ F by Lemmas 3.4.3, 3.7.2 and Theorem 3.4.1 (v).
Hence (βG) r F̊ is also a continuum as directed intersection of the continua
(βG)r F̊ ′, see Lemma 3.4.4.

Finally, note that, by (i), for the ‘moreover’ part it suffices to show the backward
direction. For this, find infinitely many edge-disjoint paths P0, P1, . . . between
the two vertices inductively, and note that by Lemmas 3.4.3, 3.4.4 and 3.7.2 the
intersection ⋂

n∈N

⋃
m>n

Pm
βG

⊆ (βG)r E̊

is a continuum containing the two vertices as desired.
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4. A tree-of-tangles theorem for
infinite-order tangles

4.1. Introduction

The tree-of-tangles theorem, one of the cornerstones of Robertson and Seymour’s
proof of their graph-minor theorem, says (in the terminology of [26, §12.5]):

Theorem. Every finite graph G has a nested set of separations which efficiently
distinguishes all the finite-order tangles in G that can be distinguished.

This is Theorem 12.5.4 in [26], the original article is [73].
Recently, Carmesin [19] has extended the tree-of-tangles theorem to the infinite-

order tangles of infinite graphs that are locally finite. The precise statement of
Carmesin’s result reads:

Theorem. Every infinite connected graph G has a nested set of separations which
efficiently distinguishes all the ends of G.

Note that, in the wording of his theorem, Carmesin does not require the graph to
be locally finite, and he speaks of ends where one expects infinite-order tangles.
This is because his result is more general than an extension of the tree-of-tangles
theorem to the infinite-order tangles of locally finite infinite graphs. To understand
the difference, let us look at how the ends of a graph are related to its infinite-order
tangles.

An end ω of a graph G (see [26]) orients every finite-order separation {A,B} of
G towards the side that contains a tail from every ray in ω. Since these orientations
are, for distinct separations, consistent in a number of ways, they form an infinite-
order tangle of G. Conversely, every infinite-order tangle of a locally finite and
connected graph G is defined by an end in this way [25,30]. Thus, if G is locally
finite and connected, there is a canonical bijection between its infinite-order tangles
and its ends. In this way, Carmesin’s result extends the tree-of-tangles theorem to
the infinite-order tangles of locally finite graphs.

When G is not locally finite, however, there can be infinite-order tangles that are
not defined by an end. Then Carmesin’s result no longer extends the tree-of-tangles
theorem to the infinite-order tangles of G.

The infinite-order tangles that do not come from ends of the graph are funda-
mentally different from ends. They are closely related to free ultrafilters, and are
called ultrafilter tangles [25]. More explicitly, by a recent result from [62], there
is a canonical bijection between the ultrafilter tangles and the ultrafilter tangle
blueprints: pairs (X,U) of a critical vertex set X and a free ultrafilter U on C̆X ,
where a finite set X ⊆ V (G) is critical if the collection C̆X of the components of
G−X whose neighbourhood is equal to X is infinite. Therefore, every ultrafilter
tangle τ = (X,U) has two aspects: Its combinatorial aspect is captured by its
blueprint’s critical vertex set X, and its ultrafilter aspect is encoded by the free
ultrafilter U (see Section 4.2.2 for details). Since every vertex in a critical vertex set
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has infinite degree, it follows that locally finite connected graphs have no ultrafilter
tangles, so all their infinite-order tangles are ends.

Ultrafilter tangles are interesting also for topological reasons. Every locally finite
connected graph can be naturally compactified by its ends to form its well known
end compactification [26] introduced by Freudenthal [37]. But for a non-locally
finite graph, adding its ends no longer suffices to compactify it. Adding its ends
plus its ultrafilter tangles, however, (i.e. adding all its infinite-order tangles) does
again compactify the graph. This is Diestel’s tangle compactification [25]. The
tangle compactification generalises the end compactification twofold. On the one
hand, it defaults to the end compactification when the graph is locally finite and
connected. And on the other hand, the relation between the end compactification
of locally finite connected graphs and their Stone-Čech compactification extends
to all graphs when ends are generalised to tangles; see Chapter 3.

As our main result, we extend Robertson and Seymour’s tree-of-tangles theorem
to the infinite-order tangles of infinite graphs (and thus, we extend Carmesin’s
result from ends to all infinite-order tangles):

Theorem 4.1. Every infinite connected graph G has a nested set of finite-order
separations that efficiently distinguishes all the inequivalent infinite-order tangles
of G and is oriented in the same way by equivalent infinite-order tangles.

Here, two ultrafilter tangles are equivalent if their blueprints’ critical vertex sets
coincide. Therefore, our nested set of separations distinguishes precisely those
ultrafilter tangles that differ in their combinatorial aspects. As we will show, our
result is best possible in the following sense. If a graph G has an ultrafilter tangle τ ,
then no nested set of finite-order separations of G efficiently distinguishes all the
ultrafilter tangles of G that are equivalent to τ .

Applications

Our work has four applications.
Elbracht, Kneip and Teegen need it in their paper [34]. So do Bürger and the

second author in Chapter 8.
Our third application is the following structural connectivity result for infinite

graphs, which generalises the way in which the cutvertices of a graph decompose
it into its blocks in a tree-like fashion. Call a graph tough if deleting finitely
many vertices from it never leaves more than finitely many components. By the
pigeonhole principle a graph is tough if and only if it has no critical vertex set.

Theorem 4.2. Every connected graph G has a nested set of separations whose
separators are precisely the critical vertex sets of G and all whose torsos are tough.

(See Section 4.2.3 for definitions.)
Theorem 4.2 is interesting also from the perspective of topological infinite graph

theory, in view of the following two results. Diestel and Kühn [24] showed that a
graph is compactified by its ends if and only if it is tough (i.e., if and only if it has
no critical vertex sets), and in [62] it was shown that every graph is compactified
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by its ends plus critical vertex sets. So a graph is compactified by points that
come in two types, ends and critical vertex sets, and the second type decomposes
the graph into a nested set of separations all whose torsos are compactified by the
points of the first type.

Our fourth application answers a question that arises from the work of Polat and
of Sprüssel. End spaces of graphs, in general, are not compact. However, Polat [68]
and Sprüssel [80] independently showed that end spaces of graphs are normal.
Polat even showed that end spaces of graphs are collectionwise normal, which is
stronger than normal but weaker than compact Hausdorff. (In a collectionwise
normal space one can at once pairwise separate any collection of closed disjoint
sets with disjoint open neighbourhoods, cf. Definition 4.6.2.)

The infinite-order tangle space, endowed with the subspace topology of the tangle
compactification, contains the end space as a subspace. As Diestel [25] showed,
the infinite-order tangle space is compact Hausdorff, which implies collectionwise
normality by general topology.

The ultrafilter tangle space, endowed with the subspace topology of the infinite-
order tangle space, is not usually compact. Since the infinite-order tangle space
is the disjoint union of the end space and the ultrafilter tangle space, the ques-
tion arises whether the ultrafilter tangle space is collectionwise normal as well.
We answer this question in the affirmative:

Theorem 4.3. The ultrafilter tangle space of a graph is collectionwise normal.

Our chapter is organised as follows. Background knowledge is supplied in
Section 4.2. In Section 4.3 we study examples and show that our main result is
best possible. In Section 4.4 we give an overview on our overall proof strategy.
Our main technical results are stated and proved in Section 4.5. In Section 4.6 we
provide the applications of our main technical results. In Section 4.7 we introduce
an equivalence relation on a tree set given a consistent orientation of that tree set.
This is the foundation for the definition of the modified torsos and proxies as well
as for a ‘lifting’ process that we need in Section 4.8. In Section 4.8, finally, we
introduce the modified torsos and prove our main result.

Throughout this chapter, G = (V,E) is any connected graph.

Acknowledgement. We are grateful to Nathan Bowler, Christian Elbracht, Kon-
stantinos Stavropoulos and Maximilian Teegen for stimulating discussions that
contributed to the genesis of this chapter.

4.2. Ends, tangles and tree sets

4.2.1. Definition of ℵ0-tangles

In this subsection we formally introduce tangles for a particular type of separation
system. More precisely, we introduce a definition of ℵ0-tangles provided by
Diestel [25] which, as he proved, is equivalent to the original one due to Robertson
and Seymour [73]. A more detailed summary of [25] that does not rely on [23] can
be found in [62].
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The interior of a star { (Ai, Bi) | i ∈ I } ⊆
→
Sℵ0 is the intersection

⋂
i∈I Bi.

Definition 4.2.1. An ℵ0-tangle (of G) is a consistent orientation of Sℵ0 that
contains no finite star of finite interior as a subset. We write Θ for the set of all
ℵ0-tangles.

4.2.2. Properties of ℵ0-tangles

If ω is an end of G, then letting

τω :=
{

(A,B) ∈
→
Sℵ0

∣∣ C(A ∩B,ω) ⊆ G[B r A]
}

defines an injection Ω ↪→ Θ, ω 7→ τω. The ℵ0-tangles of the form τω are called end
tangles. All other ℵ0-tangles are ultrafilter tangles. For a better explanation of
ultrafilter tangles we need some notation first.

Given a subset X ⊆ V (G) we write CX for the collection of components
of G − X, and moreover if Y is a subset of X we write CX(Y ) for the set
{C ∈ CX | N(C) = Y } of components of G−X that have their neighbourhood
precisely equal to Y . In the special case of X = Y we abbreviate CX(X) to C̆X .

In this chapter, partition classes are required to be non-empty as usual, with
the exception that whenever we speak of a bipartition we do not formally mean
a partition and allow for at most one empty class. Now if τ is an ℵ0-tangle of
the graph, then for every X ∈ X it chooses one big side from each bipartition
{C ,C ′} of CX , namely the D ∈ {C ,C ′} with (X,D) ∈ τ . Since it chooses these
sides consistenly, it induces an ultrafilter

U(τ,X) = {C ⊆ CX | (X,C ) ∈ τ }

on CX , one for every X ∈ X . Diestel showed that the map

τ 7→ (U(τ,X) | X ∈ X )

is a bijection between Θ and the inverse limit lim←− β(CX); see the previous chapter.
He also showed that the end tangles are precisely the ℵ0-tangles with all induced
ultrafilters principal. Consequently, an ultrafilter tangle induces for some X ∈ X
a free ultrafilter on CX , and Diestel showed that each of these free ultrafilters
alone determines that tangle. Moreover, he showed that for an ultrafilter tangle τ
the collection Xτ of all X ∈ X with U(τ,X) free does have a least element Xτ of
which it is the up-closure. In [62], these insights have been employed to yield a
new view on ultrafilter tangles, as follows.

An ultrafilter tangle blueprint is a pair (X,U) of a critical vertex set X and a
free ultrafilter U on C̆X , where a set X ∈ X is critical if C̆X is infinite. Then by a
recent result, [62, Theorem 4.10], the map

τ 7→ (Xτ , U(τ,Xτ ) ∩ 2C̆Xτ )

is a bijection between the ultrafilter tangles and the ultrafilter tangle blueprints.
In particular, every ultrafilter tangle τ contains (Xτ , C̆Xτ ), the separation with
which τ naturally comes as stated in the introduction. Here is the inverse of the
bijection:
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4. A tree-of-tangles theorem for infinite-order tangles

Theorem 4.2.2 ([25, Theorem 3.5]). For every ultrafilter tangle τ and each
X ∈ Xτ the free ultrafilter U(τ,X) determines τ in that

τ =
{

(A,B) ∈
→
Sℵ0

∣∣ ∃C ∈ U(τ,X) : V [C ] ⊆ B r A
}
.

We will need the following notation from [62] for critical vertex sets. For every
X ∈ X and all critical Y that are not entirely contained in X we write CX(Y ) for
the unique component of G−X meeting Y (equivalently: including

⋃
CX∪Y (Y )).

The collection of all critical vertex sets of G is denoted by crit(G).

Lemma 4.2.3 ([62, Lemma 4.8]). For every ultrafilter tangle τ and each X ∈
X r Xτ we do have Xτ ⊆ X ∪ CX(Xτ ) and the ultrafilter U(τ,X) is generated by
{CX(Xτ )}.

The following lemma will be useful:

Lemma 4.2.4 ([25, Lemma 1.10]). Let τ be an ℵ0-tangle of G and (A,B) ∈ τ .
Let (A′, B′) be a separation of G with A4A′ and B4B′ finite. Then (A′, B′) ∈ τ .

We say that two ultrafilter tangles τ1, τ2 of G are equivalent and write τ1 ∼ τ2

if Xτ1 = Xτ2 . Identifying all equivalent ℵ0-tangles yields the quotient Θ/∼ =
Ω t crit(G) which is yet again a tangle space. For this, we need the concept of
tame finite-order separations:

Definition 4.2.5. A finite-order separation {X,C } of G and its orientations are
tame if for no Y ⊆ X both CX(Y ) ∩ C and CX(Y ) ∩ (CX r C ) are infinite.

We write St for the set of all tame finite-order separations of G. By [62,
Theorem 5.10], the ℵ0-tangles of St, infinite-order tangles that only orient the
separations in St, correspond precisely to the ends plus critical vertex sets which,
in turn, correspond precisely to the elements of the quotient Θ/∼. For details, see
Section 5 of [62]. When we construct the tree set for our main result, the following
fact will be useful:

Observation 4.2.6. If T is a set of tame finite-order separations of G, then
equivalent ℵ0-tangles induce the same orientation on T (i.e. ‘live’ in the same
part).

4.2.3. Tree sets

A tree set of G is a tree set of separations of G with the usual partial ordering and
involution. If T is a tree set of separations of G and O is a consistent orientation
of T , then the intersection Π =

⋂
{B | (A,B) ∈ O} is called the part of O. And

the graph that is obtained from G[Π] by adding an edge xy whenever x 6= y ∈ Π
lie together in the separator of some separation of O is called the torso of O (or of
Π if O is clear from context). We denote the torso of O by torso(G,O).

We will need the following lemma and its corollaries (the lemma is folklore and
has been proved, e.g., in [19]; we present an alternative proof for convenience):
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Lemma 4.2.7. If Π is a part of a tree set of G, then for every G[Π]-path P there
is some separation of the tree set whose separator contains both endvertices of P .

Proof. Let O be any consistent orientation of a tree set of G, write Π for its part
and suppose that P = xv1 . . . vny is a G[Π]-path (so n ≥ 1). For every k ∈ [n]
pick an oriented separation (Ak, Bk) ∈ O with vk ∈ Ak r Bk (so that (Ak, Bk)
witnesses vk /∈ Π). Let N consist of the ≤-maximal separations from the collection
{ (Ak, Bk) | k ∈ [n]}. Then for every vk there is a separation (A,B) ∈ N with
vk ∈ ArB. Our aim is to show that N is a singleton, since then the separator of
the sole separation in N must contain both x and y, so we would be done. By the
choice of N , every two oriented separations in N are ≤-incomparable. As O is a
consistent orientation of a tree set, this means that N must be a star. Then |N | = 1
is evident, since otherwise the sides G[ArB] for (A,B) ∈ N altogether induce a
disconnection of the subpath v1 . . . vn of P contradicting its connectedness.

Corollary 4.2.8. If Π is a part of a tree set of G and ω is an end of G in the
closure of Π while G[Π] coincides with the torso of Π, then ω has a ray in G[Π].

Proof. If ω lies in the closure of Π, we find a comb in G with its spine R in ω and
all of its teeth in Π. Without loss of generality the comb meets Π precisely in its
teeth. Then, as G[Π] coincides with the torso of Π, it has an edge between every
two consecutive teeth by Lemma 4.2.7, and so contains a ray equivalent to R.

Corollary 4.2.9. If Π is a part of a tree set of G and two rays of G[Π] are
equivalent in G, then they are equivalent in the torso of Π as well.

Proof. Given two rays of G[Π] that are equivalent in G, we inductively construct
infinitely many pairwise vertex-disjoint paths in G between them, and then employ
Lemma 4.2.7 to turn these into paths of the torso.

The next corollary has already been known to Carmesin [19]:

Corollary 4.2.10. The intersection of a connected set of vertices of G with a
part of a tree set of separations of G induces a connected subgraph of the part’s
torso.

Finally, we state Carmesin’s result that implies the tree-of-tangles theorem for
the infinite-order tangles of locally finite infinite graphs:

Theorem 4.2.11 ([19, Corollary 5.17]). Every connected graph G has a tree set
of finite order separations of G that efficiently distinguishes all the ends of G.

Very recently, Carmesin, Hamann and Miraftab [20] showed a canonical version
of this theorem, see their paper for definitions.

For more on tree sets, see e.g. [29] or [53].
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4.3. Example section

The aim of this section is twofold. First, we verify that our main result, Theo-
rem 4.1, is indeed best possible as claimed in the introduction. More precisely,
in Subsection 4.3.1 we show that tree sets of finite-order separations cannot dis-
tinguish all the ultrafilter tangles from the same equivalence class at once—for
any G.

Second, we study the candidate for a starting tree set that is formed by the
separations {X, C̆X} with X critical in G (recall that these are precisely the
separations which naturally accompany the ultrafilter tangles). More precisely,
in Subsection 4.3.2 we will see two example graphs showing that it is necessary
to modify the tree set candidate: For the first example graph, the separations
{X, C̆X} form a tree set but do not distinguish any two ultrafilter tangles at all.
For the second example graph, the separations {X, C̆X} are not even nested.

4.3.1. Ultrafilters and tree sets

In this subsection we show that, as soon as a graph G has some ultrafilter tangle
τ , it already cannot admit a tree set of finite-order separations that distinguishes
all the ultrafilter tangles that are equivalent to τ . As our first step, we translate
the problem from graphs to bipartitions of sets.

For this, we need to make some things formal first. Suppose that K is a non-
empty set. We let

→
B(K) := 2K . Thus, every subset of K is an oriented ‘separation’.

The partial ordering ≤ of
→
B(K) will be ⊇, the involution ∗ on

→
B(K) will be

complementation in the set K. If desired, we can think of a separation Z ⊆ K
as the oriented bipartition (Z∗, Z) of K, and then B(K) is the set of bipartitions
of K. Note that two separations Z1, Z2 ∈

→
B(K) are nested if Z1 ⊆ Z2 or Z1 ⊇ Z2

or Z1 ∪ Z2 = K or Z1 ∩ Z2 = ∅. A tree set of bipartitions of K is a tree set
contained in

→
B(K) with the induced partial ordering and involution. Note that

∅ is the sole small separation in
→
B(K) for Z ⊆ K r Z implies Z = ∅. Since an

ultrafilter on K happens to be an orientation of B(K), a tree set
→
T of bipartitions

of K distinguishes two distinct ultrafilters U 6= U ′ on K if there is some Z ∈
→
T

with Z ∈ U and Z∗ ∈ U ′. We are almost ready for the translation, we only need
one more lemma:

Lemma 4.3.1. Let τ be any ultrafilter tangle of G with blueprint (X,U) and let
any separation (Y,D) ∈ τ be given. Write C for the set of those components in
C̆X that avoid Y .

(i) If Y includes X, then (Y,D) ≤ (X,D ∩ C̆X) ∈ τ .
(ii) Otherwise (Y,D) ≤ (X,C ) ∈ τ .

In particular, the set
{

(X,C )
∣∣ C ∈ U } is cofinal in τ .

Proof. Since Y is finite, C is a cofinite subset of C̆X , giving C ∈ U .
(i) The intersection D ∩ C̆X can be written more complicated as (D � X) ∩ C

where C ∈ U as noted above and

D � X := {C ∈ CX | ∃D ∈ D : D ⊇ C }
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is known to be contained in U by [25, Lemma 2.2]. Hence (X,D ∩ C̆X) ∈ τ . It is
straightforward to check (Y,D) ≤ (X,D ∩ C̆X).

(ii) From C ∈ U we get (X,C ) ∈ τ . Lemma 4.2.3 deduces from (Y,D) ∈ τ
that CY (X) ∈ D . Finally, we calculate (Y,D) ≤ (Y,CY (X)) ≤ (X,C ) where for
the second inequality we use that every component in C sends an edge to the
non-empty X r Y ⊆ CY (X) to deduce

⋃
C ⊆ CY (X).

Now we are ready for the translation:

Lemma 4.3.2. Let X be a critical vertex set of G. Then every tree set of finite-
order separations of G that distinguishes all the ultrafilter tangles τ of G with
Xτ = X does induce a tree set of bipartitions of C̆X that distinguishes all the free
ultrafilters on C̆X .

Proof. Let
→
T be a tree set of finite order separations of G that distinguishes all the

ultrafilter tangles of G with Xτ = X. Without loss of generality every separation
(Y,D) ∈

→
T distinguishes some two such ultrafilter tangles, and so X ⊆ Y follows

for all (Y,D) ∈
→
T .

The candidate for a tree set of bipartitions of C̆X is { D̄ | (Y,D) ∈
→
T } where

D̄ = D ∩ C̆X . But when (Y,D ′) is the inverse of (Y,D) it can happen that D̄ ′ is
not the inverse of D̄ in

→
B(C̆X). For example, this happens when a finite component

C ∈ C̆X is contained in Y , for then both D̄ ′ and D̄ are missing C.
We overcome this obstacle as follows. First, we choose any consistent orientation

O of
→
T (such an orientation exists, e.g. by [23, Lemma 4.1] which essentially

applies Zorn’s lemma to find an inclusionwise maximal partial orientation). Then,
we define NO := { D̄ | (D , Y ) ∈ O }. Finally, we claim that

→
N := NO ∪ N∗O is a

tree set of bipartitions of C̆X that distinguishes all the free ultrafilters on C̆X .
To verify that

→
N is a tree set we show that

→
N is nested. For this, consider

any two separations (D1, Y1), (D2, Y2) ∈ O. Then, say, either (D1, Y1) ≤ (D2, Y2)
implies D̄1 ⊆ D̄2 or (D1, Y1) ≤ (Y2,D2) implies D1 ⊆ (D̄2)∗. So

→
N is a tree set.

Now let U 6= U ′ be any distinct two free ultrafilters on C̆X . Then there is
a separation (D , Y ) ∈ O that distinguishes the ultrafilter tangles τU and τU ′
corresponding to (X,U) and (X,U ′), say with (D , Y ) ∈ τU and (Y,D) ∈ τU ′ . By
Lemma 4.3.1 we have D̄ ∈ U ′. Similarly DY rD ∈ U , which then via the inclusion
DY rD ⊆ (D̄)∗ implies (D̄)∗ ∈ U .

As a consequence of this lemma, it suffices to show

Theorem 4.3.3. If K is an infinite set, then no tree set of bipartitions of K
distinguishes all the free ultrafilters on K.

in order to obtain our desired result:

Corollary 4.3.4. If τ is an ultrafilter tangle of G, then no tree set of finite-order
separations of G distinguishes all the ultrafilter tangles that are equivalent to τ .

Theorem 4.3.3 above has been proved independently from us by Bowler [6] in
2014 who did not publish his findings. The proof presented below is ours. For
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the proof we need the following lemma which is a tree set version of the fact that
every connected infinite graph contains either a ray or a vertex of infinite degree,
[26, Proposition 8.2.1]:

Lemma 4.3.5. Every regular infinite tree set contains either an ω-chain or an
infinite splitting star.

Proof. If a tree set contains no ω-chain, then it is isomorphic to the edge tree set
of a rayless tree by Kneip’s Theorem 2.3.1. This tree, then, must have an infinite
degree vertex if the tree set is infinite.

If U is an ultrafilter on a set K and K is a partition of K, then we write U .K
for the induced ultrafilter on K given by {A ⊆ K |

⋃
A ∈ U }. Notably, if U is

principal, then so is U .K. Conversely, every ultrafilter U on K gives a filter

b {
⋃
A | A ∈ U } cK := {A ⊆ K | ∃A ∈ U : A ⊇

⋃
A}

on K, and every ultrafilter U on K that extends this filter induces U in that
U = U .K. Phrased differently, the map U 7→ U .K is a surjection from the set of
ultrafilters on K onto the set of ultrafilters on K. Notably, free ultrafilters on K
are induced only by free ultrafilters on K.

Proof of Theorem 4.3.3. Let any infinite set K be given and assume for a con-
tradiction that

→
T is a tree set of bipartitions of K that distinguishes all the free

ultrafilters on K. If
→
T is finite, then there are only finitely many orientations of

→
T . But there are infinitely many free ultrafilters on K, so a finite tree set cannot
possibly distinguish all of them. Therefore,

→
T must be infinite. Since the empty

set does not distinguish any two ultrafilters on K we may assume without loss of
generality that

→
T is regular. Then by Lemma 4.3.5 we know that

→
T contains either

an ω-chain or an infinite splitting star.
Suppose first that

→
T contains an ω-chain; that is to say that we find a sequence

(Zn)n<ω in
→
T with Zn ) Zn+1 for all n. As

→
T is a tree-set, K r Z0 is non-empty.

Put Zω :=
⋂
n<ω Zn. Then Zω is nested with every separation in

→
T . More precisely,

every separation in T has an orientation Z such that either Z ⊇ Zn for some
n < ω or Zω ⊇ Z. We turn the transfinite sequence (Zα)α≤ω into a partition of K,
as follows. For every n < ω set Kn = Zn r Zn+1; and put Kω := (K r Z0) ∪ Zω.
Then K := {Kα | α ≤ ω} is an infinite partition of K. Let U be any free ultrafilter
on K, and pick some free ultrafilter U on K with U = U .K. The free ultrafilter
U contains all cofinite subsets {Km | n ≤ m < ω} ⊆ K with n < ω, and so
U contains all Zn r Zω with n < ω. Recall that every separation in T has an
orientation Z such that either Z ⊇ Zn for some n < ω or Zω ⊇ Z. Hence for every
separation {Z∗, Z} ∈ T we have that either Z ⊇ Zn with Zn r Zω ∈ U implies
Z ∈ U , or Zω ⊇ Z with Z0 r Zω ∈ U implies Z∗ ∈ U . Therefore, if U ′ is any free
ultrafilter on K other than U , and U ′ is a free ultrafilter on K inducing U ′, then U ′

orients every separation in T the same way as U . But then
→
T does not distinguish

U and U ′ from each other, a contradiction.
Finally suppose that T contains an infinite splitting star σ = {Ki | i ∈ I}. If
K := {K∗i | i ∈ I} is not yet a partition of K, then we add the non-empty interior
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⋂
i∈I Ki of σ to K to turn K into one. Let U be any free ultrafilter on K, and

pick some free ultrafilter U on K inducing U . The free ultrafilter U contains all
collections K −K∗i , and hence U contains all Ki. Now every separation in T has
an orientation Z with Z ⊇ Ki for some i ∈ I as σ is splitting, and then Ki ∈ U
implies Z ∈ U . Therefore, if U ′ is any free ultrafilter on K other than U , and U ′ is
a free ultrafilter on K inducing U ′, then U ′ orients every separation in T the same
way as U . But then

→
T does not distinguish U and U ′, a contradiction.

We remark that the proof above even shows the following stronger version of
Theorem 4.3.3: If K is an infinite set, then for every tree set of bipartitions of K
there is a collection of at least 22ℵ0 = 2c many free ultrafilters on K all of which
induce the same orientation of the tree set.1 So if G has precisely one critical vertex
set X with C̆X countable, then for every tree set of finite order separations of G
there is a collection O of ultrafilter tangles of G such that all ultrafilter tangles in
O induce the same orientation of the tree set and the cardinal |O| is equal to the
total number 2c of ultrafilter tangles of G.

4.3.2. The problem case

This subsection is dedicated to examples that show why we do need the function
X 7→ K (X) in our main result. More precisely, we will see two graphs whose
critical vertex sets give a very bad starting set{

{X, C̆X}
∣∣ X ∈ crit(G)

}
.

In both cases, all the critical vertex sets interact with each other in a particular
way, made precise as follows. Let us say that two critical vertex sets X and Y of
G form a problem case if X and Y are incomparable as sets and additionally both
CX(Y ) ∈ C̆X and CY (X) ∈ C̆Y hold.

Figure 4.3.1.: This graph’s critical vertex sets give an infinite star of small separa-
tions

Example 4.3.6. If G is the graph shown in Figure 4.3.1, then the collection{
(X, C̆X)

∣∣ X ∈ crit(G)
}

1By improving Lemma 4.3.5 it might be possible to replace 22
ℵ0

with 22
|K|

.
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is an infinite star of small separations, as we shall show in a moment. As every
ℵ0-tangle contains all the small separations (A, V ) with A finite (because these
can be written as (A,CA) and CA ∈ U(τ, A) for every ℵ0-tangle τ), it follows that
every ultrafilter tangle contains this star as a subset, and so no two ultrafilter
tangles are distinguished by this star’s underlying tree set.

Before we take a closer look at the critical vertex sets of G, however, we describe
G more precisely. For this, we define graphs Gn, one for each n ∈ N, by letting
Gn be a copy of K2,ℵ0 with 2-class {xn, a}, say, such that Gn meets all Gm with
n 6= m precisely in a. Then G is obtained from the union of all Gn by adding
a new vertex b and joining it precisely to every xn. Now Y := {a, b} and the
sets Xn := {xn, a} are critical, and these are all critical vertex sets. Moreover,
we have (Y, C̆Y ) = (Y, V ) and (Xn, C̆Xn) = (Xn, V ) with (Y, V ) ≤ (V,Xn) and
(Xn, V ) ≤ (V,Xm). Notably, every two distinct critical vertex sets of G form a
problem case.

Figure 4.3.2.: This graph’s critical vertex sets do not give nested separations

Example 4.3.7. If G is the graph shown in Figure 4.3.2, then the collection{
{X, C̆X}

∣∣ X ∈ crit(G)
}

is not even nested. Indeed, X and Y are the only two critical vertex sets of G.
Write V ′ for V − u. Then {X, C̆X} = {X + u, V ′} and {Y, C̆Y } = {Y + u, V ′}.
Now these two separations cannot be nested: as X and Y are incomparable as
sets, we have neither (X + u, V ′) ≤ (Y + u, V ′) nor (V ′, X + u) ≤ (V ′, Y + u). But
(X + u, V ′) ≤ (V ′, Y + u) and (V ′, X + u) ≤ (Y + u, V ′) are impossible as well
since X + u and Y + u are both incomparable with V ′ as sets. As in the previous
example we note that X and Y form a problem case.

4.4. The overall proof strategy

Our overall strategy to achieve our main result, Theorem 4.1, roughly goes as
follows. Let G be any infinite connected graph. Recall that every ultrafilter tangle
τ = (X,U) of G naturally comes with a finite-order separation (X, C̆X) ∈ τ . As
our first step, we carefully extend and refine the set of these separations into a
starting tree set T that already distinguishes all the inequivalent ultrafilter tangles
of G, but does not necessarily do so efficiently.
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G

η1

η2

Z
H

τ2τ1

Figure 4.4.1.: The separator Z of a separation efficiently distinguishing two in-
equivalent tangles τ1 and τ2; and a modified torso H with ends η1

and η2 representing the two tangles.

Next, we modify the torsos of T so that every ℵ0-tangle of G is represented
in every modified torso by some end of that modified torso. We then show the
following assertion (also see Figure 4.4.1): Let τ1 and τ2 be any two inequivalent
ℵ0-tangles of G which are not efficiently distinguished by the starting tree set T .
For every separator Z efficiently separating the τi in G there is a modified torso H
of T in which the ends ηi representing the tangles τi are efficiently separated by Z.
Now we apply Carmesin’s theorem as a black box in all the modified torsos H of T .
That is, for every modified torso H of T we obtain a tree set TH of finite-order
separations of H that efficiently distinguishes all the ends of H. Finally, we lift all
of Carmesin’s tree sets compatibly with each other and with T to obtain a tree set
T ′ of finite-order separations of G that extends T . In the end, every separation in
TH which efficiently distinguishes two ends ηi in H, with the ηi as in the assertion
above, gets lifted to a separation in T ′ that efficiently distinguishes the τi in G.

Phrased differently, we reflect the problem of efficiently distinguishing two
inequivalent ℵ0-tangles down to the modified torsos of T . There, the problem
reduces to efficiently distinguishing two proxy ends, a problem that has already
been solved by Carmesin. Finally, we lift the solutions for the modified torsos of
T up to the original graph G to solve the original problem.

4.5. From principal collections of separators to

tree sets

In this section, we show how the separations {X, C̆X} can be slightly modified
to give rise to a tree set that comes with quite a list of useful properties. Even
though our initial intention is to consider these separations for critical vertex sets
X of G, we can prove a much stronger result by more generally considering what
we call principal collections of vertex sets:

Definition 4.5.1. Given a collection Y of vertex sets of G we say that a vertex
set X of G is Y-principal if X meets for every Y ∈ Y at most one component of
G− Y . And we say that Y is principal if all its elements are Y-principal.

Notation. IfX ⊆ V (G) meets precisely one component ofG−Y for some Y ⊆ V (G),
then we denote this component by CY (X).

Definition 4.5.2. A set X ∈ X is principal if it is X -principal.
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Example 4.5.3. An X ∈ X is principal, e.g., if it induces a clique G[X] or is
included in a critical vertex set of G.

Since principal vertex sets behave like cliques it is possible to alter the graph
G so that all principal vertex sets actually induce cliques while the finite-order
separations stay the same:

Lemma 4.5.4. Suppose that Y is a collection of principal vertex sets of G and let
GY be obtained from G by turning each G[X] with X ∈ Y into a clique. Then the
finite-order separations of G are precisely the finite-order separations of GY . In
particular, Θ(G) = Θ(GY).

Proof. If {A,B} is a finite-order separation of G, then each principal X ∈ Y meets
at most one component of G− (A∩B). Therefore, no X adds an (ArB)–(BrA)
edge in GY , so {A,B} is also a finite-order separation of GY . The converse holds
due to E(GY) ⊇ E(G).

We will use this lemma in Section 4.8 to assume without loss of generality that,
for a certain tree set, the torsos coincide with the parts. Our next definition
extends ‘forming a problem case’ from critical vertex sets to arbitrary vertex sets:

Definition 4.5.5. Two vertex sets X and Y of G with {X, Y } principal are said
to form a problem case if X and Y are incomparable as sets and additionally
CX(Y ) ∈ C̆X and CY (X) ∈ C̆Y hold.

Y

CX(Y )

C̆Y r {CY (X)}C̆X r {CX(Y )}

CY (X)

X

Figure 4.5.1.: Two incomparable sets X and Y such that {X, Y } is principal.
Note that every component of G−X which is neither CX(Y ) nor
contained in CY (X) has its neighbourhood in X ∩Y and is thus also
a component of G− Y (black circles). Also, not every component

of G− Y which is contained in CX(Y ) has to be contained in C̆Y ,
as is depicted by the blue circle on the right. If CY (X) /∈ K (Y ),

then K (Y ) is a subset of C̆Y r {CY (X)} and thus (X,CX(Y )) ≤
(Y,K (Y )).

The following lemma will keep proofs short:

Lemma 4.5.6. If {X,C } and {Y,D} are separations of G satisfying X ∪V [C ] ⊇
Y ∪ V [D ] and that each component in D avoids X, then (X,C ) ≤ (Y,D).
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Proof. It remains to show V r V [C ] ⊆ V r V [D ] which is tantamount to V [D ] ⊆
V [C ], which in turn is evident from the assumptions.

In the previous section, we have seen that for two distinct critical (in particular
principal) vertex sets X 6= Y their separations {X, C̆X} and {Y, C̆Y } need not be
nested. This may happen, for example, if X and Y form a problem case. The
following two lemmas show that actually this may happen only if X and Y form a
problem case.

Lemma 4.5.7. Let X ( Y be two vertex sets of G such that {X, Y } is principal.
Then all of the components in C̆Y are properly contained in the component CX(Y ).
Notably, CX(Y ) ∈ C̆X if C̆Y is non-empty. Moreover, if we are given subsets
C ⊆ C̆X and D ⊆ C̆Y , then

→s ≤ (X,CX(Y )) ≤ (Y, C̆Y ) ≤ (Y,D) where

{ →s = (X,C ) if CX(Y ) ∈ C
→s = (C , X) otherwise

so in particular {X,C } and {Y,D} are nested with each other. If additionally D
is non-empty, then (X,C ) 6≤ (D , Y ).

Proof. Since every component C ∈ C̆Y has neighbourhood precisely equal to Y ,
it follows from X ( Y that

⋃
(C̆Y � X) ( CX(Y ). Hence Lemma 4.5.6 yields

(X,CX(Y )) ≤ (Y, C̆Y ). From this, the rest is evident.

Our next lemma is also illustrated in Figure 4.5.1.

Lemma 4.5.8. Let X and Y be two incomparable vertex sets of G such that {X, Y }
is principal. If we are given subsets C ⊆ C̆X and D ⊆ C̆Y with CY (X) /∈ D , then

→s ≤ (X,CX(Y )) ≤ (Y,D) where

{ →s = (X,C ) if CX(Y ) ∈ C
→s = (C , X) otherwise

so in particular {X,C } and {Y,D} are nested with each other and we have
(X,C ) 6≤ (D , Y ).

Proof. The assumption CY (X) /∈ D ensures that every component in D avoids X.
Let y be any vertex in Y rX. As every component in D avoids X and sends an
edge to y ∈ Y rX, we deduce that (Y rX)∪

⋃
D ⊆ CX(Y ). Hence Lemma 4.5.6

yields (X,CX(Y )) ≤ (Y,D). From this, the rest is evident.

We are now ready to prove our main technical result, Theorem 4.5.11. To allow
for more flexibility in its applications, we have extracted the following definition
and second main technical result from Theorem 4.5.11:

Definition 4.5.9. Suppose that Y is a principal collection of vertex sets of G.
A function that assigns to every X ∈ Y a subset K (X) ⊆ C̆X is called admissable
for Y if for every two X, Y ∈ Y that are incomparable as sets we have either
CX(Y ) /∈ K (X) or CY (X) /∈ K (Y ). If additionally |C̆X rK (X)| ≤ 1 for all
X ∈ Y , then K is strongly admissable for Y .
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Theorem 4.5.10. For every principal collection of vertex sets of a connected
graph there is a strongly admissable function.

Proof. Let Y be a principal collection of vertex sets of a connected graph G. We
write P for the collection of those principal vertex sets in Y that form a problem
case with some other principal vertex set in Y . Let us fix any well-ordering of P
and view P as well-ordered set from now on.

For each X ∈ P we put K(X) := CX(Y ) for the first Y ∈ P which forms
a problem case with X. Let us put K (X) := C̆X r {K(X)} for every X ∈ P,
and K (X) := C̆X for all other vertex sets X ∈ Y. We claim that K is strongly
admissable for Y .

For this, let X 6= Y be any two distinct vertex sets in Y that form a problem
case. We show that at least one of K(X) = CX(Y ) and K(Y ) = CY (X) holds.
Let Z ∈P be the first vertex set that forms a problem case with one of X and Y .
Without loss of generality we may assume that Z forms a problem case with X, so
we have K(X) = CX(Z) by the minimal choice of Z. Since we are done if Y and Z
meet the same component of G−X, we may assume that CX(Y ) 6= CX(Z). This
means that the three sets X, Y, Z are pairwise incomparable. Our plan is to show
that Y forms a problem case with Z, and that this gives K(Y ) = CY (Z) = CY (X)
as desired.

We already know that Y and Z are incomparable. Next, let us verify that
CY (Z) ∈ C̆Y . For this, pick any vertex x ∈ X r Y . As X and Z form a problem
case we have CX(Z) ∈ C̆X , so the vertex x sends some edge e to the component
CX(Z). Now x is not in Y and the component CX(Z) avoids Y as Y and Z live
in distinct components of G − X by assumption, so CX(Z) + e is a connected
subgraph of G− Y that meets both X and Z, yielding CY (Z) = CY (X). Since Y
and X form a problem case, giving CY (X) ∈ C̆Y , we get CY (Z) ∈ C̆Y as required.
By symmetry we have CZ(Y ) ∈ C̆Z , so Y and Z form a problem case as desired and
K(Y ) = CY (Z) follows from the minimal choice of Z. To see that K(Y ) = CY (X)
holds, recall that we proved CY (Z) = CY (X) three sentences earlier.

Finally, we go for Theorem 4.5.11, which considers tree sets of the following
form:

Notation. Given a principal collection Y of vertex sets of G and an admissable
function K for Y we write

T (Y ,K ) :=
{
{X,K (X)} , {X,K}

∣∣ X ∈ Y and K ∈ K (X)
}
.

For every vertex set X ∈ Y we write σK
X for the star that consists of the separation

(X,K (X)) and all the separations (K,X) with K ∈ K (X). Notably, each star
σK
X has interior X.
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X

K (X)

Y

K (Y )

Z

K (Z)

WK (W )

Figure 4.5.2.: A principal set Y = {W,X, Y, Z} of pairwise disjoint sets and the
separations of the form (K (X ′), X ′) for X ′ ∈ Y where K is some
admissable function for Y . Note that in accordance with part (i) of
Theorem 4.5.11 the depicted separations form a partial consistent
orientation.

Theorem 4.5.11. Let G be any connected graph, let Y be a principal collection
of vertex sets of G and let K be an admissable function for Y. Abbreviate
T (Y ,K ) = T and σK

X = σX . Then the following assertions hold:

(i) For every distinct two X, Y ∈ Y, after possibly swapping X and Y , either

(K (X), X) ≤ (Y,K (Y ))

or (X,K (X)) ≤ (X,CX(Y )) ≤ (Y,K (Y )).

The collection of all separations (K (X), X) with K (X) 6= ∅ forms a consis-
tent partial orientation of T .

(ii) The collection T of separations is nested.
It is a regular tree set if ∅ ( K (X) ( CX holds for all X ∈ Y.

(iii) Every star σX with X ∈ Y is a splitting star of
→
T .

Moreover, if all the vertex sets in Y are finite, then we may add:

(iv) If τ is an ultrafilter tangle of G with Xτ ∈ Y and K (Xτ ) ∈ U(τ,Xτ ), then
τ induces via τ 7→ τ ∩

→
T on T the consistent orientation which is given by

the infinite splitting star σXτ in that τ ∩
→
T = dσXτ e.

(v) If crit(G) ⊆ Y and C̆X r K (X) is finite for all X ∈ crit(G), then T
distinguishes every two inequivalent ultrafilter tangles τ1 and τ2 of G via
separations in σXτ1 and σXτ2 , and it distinguishes every end from every
ultrafilter tangle τ via a separation in σXτ .

Proof. (i) If X and Y are comparable with X ( Y , say, then we are done by
Lemma 4.5.7. Otherwise X and Y are incomparable, and then we are done by
Lemma 4.5.8 since K is admissable.
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(ii) That T is nested follows from (i). For the ‘moreover’ part note that requiring
∅ ( K (X) ( CX ensures that {X,K (X)} has no small orientation.

(iii) It suffices to show that every separation in T with separator Y 6= X has
an orientation that lies below some element of σX . So consider any Y ∈ Y other
than X. Since σY is a star, it suffices to show that some separation in (σY )∗ lies
below some element of σX . By (i) it suffices to consider the following cases. If
(K (Y ), Y ) ≤ (X,K (X)) we are done. Otherwise either

(X,K (X)) ≤ (X,CX(Y )) ≤ (Y,K (Y ))

or (Y,K (Y )) ≤ (Y,CY (X)) ≤ (X,K (X)).

In the first case we are fine since (K (Y ), Y ) ≤ (CX(Y ), X) ∈ σX . And in the
second case we are done by the second inequality.

(iv) Let τ be any ultrafilter tangle of G with Xτ ∈ Y and write X = Xτ . First,
we show that σX is included in O := τ ∩

→
T . The assumption K (X) ∈ U(τ,X)

means (X,K (X)) ∈ O. Moreover, we have (K,X) ∈ τ for every K ∈ K (Xτ )
as U(τ,X) is a free ultrafilter. Thus σX ⊆ O, and so dσXe ⊆ O by consistency.
Conversely, O ⊆ dσXe since σX ⊆ O is a splitting star of

→
T by (iii).

(v) If τ1 and τ2 are two ultrafilter tangles of G with Xτ1 6= Xτ2 , then the induced
orientations τi ∩

→
T come from distinct splitting stars σXτi of

→
T by (iii). Now if ω is

an end of G and τ is an ultrafilter tangle, then ω avoids the star σXτ since it has
finite interior (cf. [25, Corollary 1.7]) while τ contains it by (iii).

We close this section by showing that in general it is not possible to find an
admissable function K for which

→
T (crit(G),K ) is a tree set that is even isomorphic

to the edge tree set of a tree.

Figure 4.5.3.: A Tℵ0 (black) with 2ℵ0 many copies of K2,ℵ0 as ‘tops’ (visualised in
red for the right-most ray)

Example 4.5.12. If G is the graph shown in Figure 4.5.3, then there is no function
assigning to each critical vertex set X of G a cofinite subset K (X) ⊆ C̆X such
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that

N :=
{
{X,K (X)}

∣∣ X ∈ crit(G)
}

gives rise to a tree set
→
N that is isomorphic to the edge tree set of a tree (so

in particular it cannot be induced by an Sℵ0-tree or tree-decomposition of G).
First, however, we describe G more precisely. The graph G is obtained from the
ℵ0-regular tree T = Tℵ0 by fixing any root r and then proceeding as follows. For
every ray R ⊆ T starting at the root r we add a new copy of K2,ℵ0 with 2-class
{xR, yR}, say, and join xR to every vertex of the ray R. Readers familiar with the
‘binary tree with tops’ will note that G extends a ‘Tℵ0 with tops’.

Let us check that there really is no suitable function X 7→ K (X) as claimed.
Assume for a contradiction that there is. Then

→
N is a tree set that, by Theo-

rem 2.3.1, has no (ω + 1)-chains. Hence to yield a contradiction, it suffices to
find an (ω + 1)-chain. If t is a node of T ⊆ G, then its down-closure dte in T is a
critical vertex set of G, and the components in C̆dte are of the following form. If t′

is an upward neighbour of t in T , then the vertex set of the component of G− dte
containing t′ is given by the union of bt′c ⊆ T with all the copies of K2,ℵ0 whose
corresponding ray has a tail in bt′c. This gives a bijection between the upward
neighbours of t in T and the components in C̆dte. Next, we claim that there is a
ray R∗ = t0t1t2 . . . ⊆ T starting at the root r such that for all n > 0 the node tn
corresponds to a component in K (dtn−1e) for its predecessor tn−1. Indeed, since
K (dte) ⊆ C̆dte is infinite for all t ∈ T , such a ray can be constructed inductively.
But then we get a strictly ascending sequence

(dt0e,K (dt0e)) < (dt1e,K (dt1e)) < (dt2e,K (dt2e)) < · · ·

i.e. we get an ω-chain in
→
N . And this ω-chain extends to an (ω + 1)-chain as the

separation (Z,K (Z)) with Z = {xR∗ , yR∗} that comes from the K2,ℵ0 for R∗ is
greater than all separations (dtne,K (dtne)).

4.6. Applications

This section is dedicated to the applications of our work mentioned in the intro-
duction. All of the four applications are, in fact, applications of Theorems 4.5.10
and 4.5.11. Elbracht, Kneip and Teegen [34] use the following corollary of our two
theorems:

Corollary 4.6.1. Suppose that Y is a principal collection of vertex sets of G.
Then there is a function K assigning to each X ∈ Y a subset K (X) ⊆ C̆X that
misses at most one component from C̆X , such that the collection{

{V rK , X ∪K }
∣∣ X ∈ Y and K ∈ K (X)

}
is nested.

Chapter 8 will use Theorems 4.5.10 and 4.5.11 directly. In the remainder of this
section, we present applications three and four: a structural connectivity result for
infinite graphs, and the collectionwise normality of ultrafilter tangle spaces.
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4.6.1. A structural connectivity result for infinite graphs

We have already explained this application in detail in our introduction, now we
prove it:

Theorem 4.2. Every connected graph G has a tree set whose separators are
precisely the critical vertex sets of G and all whose torsos are tough.

Proof. By Theorems 4.5.10 and 4.5.11 it suffices to show that for Y := crit(G) and
a stronlgy admissable function K the torsos of the tree set T (Y ,K ) are tough.
For this, let O be any consistent orientation of T (Y ,K ), let Π be its part and
H its torso. In order to show that H is tough, let Ξ be a finite subset of V (H).
Let C ⊆ CΞ consist of those components of G− Ξ that meet Π. Then C must be
finite: otherwise Ξ contains a critical vertex set Ξ′ of G with C ′ := C̆Ξ′ ∩C infinite;
and then (Ξ′, C) ∈ O for all C ∈ C ′ ∩K (Ξ′) as these C meet Π, contradicting
the consistency of O. Thus G− Ξ has only finitely many components meeting Π.
By Corollary 4.2.10 each of these components induces a component of H − Ξ, and
so H − Ξ has only finitely many components.

4.6.2. Collectionwise normality of the ultrafilter tangle
space

For this subsection, we recall the following definitions from general topology
(cf. [36]):

Definition 4.6.2 (Normality and collectionwise normality). Let X be a topological
space in which all singletons are closed.

The space X is said to be normal if for every two disjoint closed subsets A1

and A2 of X there are disjoint open subsets O1 and O2 of X with A1 ⊆ O1 and
A2 ⊆ O2.

A collection {Ai | i ∈ I } of subsets Ai ⊆ X is discrete if every point x ∈ X has
an open neighbourhood that meets at most one of the Ai.

The space X is said to be collectionwise normal if for every discrete collection
{Ai | i ∈ I } of pairwise disjoint closed subsets Ai ⊆ X there exists a collection
{Oi | i ∈ I } of pairwise disjoint open subsets Oi ⊆ X with Ai ⊆ Oi for all i ∈ I.

The following implications are true for every topological space (the first implica-
tion is [36, Theorems 5.1.1 and 5.1.18] whereas the second is clear):

compact Hausdorff ⇒ collectionwise normal ⇒ normal.

The end space Ω(G) of a graph G is endowed with the topology whose basic open
sets are of the form {ω ∈ Ω(G) | C(A∩B,ω) ⊆ G[BrA] }, one for every oriented
finite-order separation (A,B) of G. In general, the end space Ω(G) is not compact,
e.g., if G is a union of infinitely many rays sharing precisely their initial vertices.

Polat [68] and Sprüssel [80] independently showed that the end space of every
graph G is normal, and Polat even showed that the end space is collectionwise
normal (this is Lemma 4.14 in [68], see Chapter 10 for a modern proof):
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Theorem. Every graph G has a collectionwise normal end space Ω(G).

The ℵ0-tangle space Θ(G) has been endowed with a natural topology by Di-
estel [25] that makes it compact Hausdorff while containing the end space as a
subspace. The basic open sets of Diestel’s topology are of the form { τ ∈ Θ(G) |
(A,B) ∈ τ }, one for every oriented finite-order separation (A,B) of G. Since
every compact Hausdorff space is collectionwise normal, the ℵ0-tangle space is
collectionwise normal as well:

Theorem. Every graph G has a collectionwise normal ℵ0-tangle space Θ(G).

This result, however, does not imply that the end space is collectionwise normal,
for usually the end space is not closed in the ℵ0-tangle space.

As the ℵ0-tangle space is the disjoint union Θ(G) = Ω(G) t Υ(G) of the end
space Ω(G) and the ultrafilter tangle space Υ(G), the question arises whether
the ultrafilter tangle space is collectionwise normal as well. Like the end space,
the ultrafilter tangle space usually is not closed in the ℵ0-tangle space, so the
ultrafilter tangle space does not obviously inherit the collectionwise normality from
the ℵ0-tangle space.

In this subsection we show that the ultrafilter tangle space is collectionwise
normal, Theorem 4.3 (i). For readers who are familiar with the compactification
|G|Γ = Gt crit(G)tΩ(G) from [62] we remark that our proof also shows that the
critical vertex set space (with the subspace topology from |G|Γ) is collectionwise
normal as well, Theorem 4.3 (ii).

Theorem 4.3. For every connected graph G the following two assertions hold:

(i) For every discrete collection {Ai | i ∈ I } of pairwise disjoint closed subsets
Ai ⊆ Υ(G) there exists a collection {Oi | i ∈ I } of pairwise disjoint open
subsets Oi ⊆ |G|Θ such that Ai ⊆ Oi for all i ∈ I.
In particular, the ultrafilter tangle space of G is collectionwise normal.

(ii) For every discrete collection {Ai | i ∈ I } of pairwise disjoint closed subsets
Ai ⊆ crit(G) there exists a collection {Oi | i ∈ I } of pairwise disjoint open
subsets Oi ⊆ |G|Γ such that Ai ⊆ Oi for all i ∈ I.
In particular, the critical vertex set space of G is collectionwise normal.

For the remainder of this subsection we assume familiarity with Section 2 of [62]
and use notation introduced therein.

Our proof of Theorem 4.3 will employ the following short lemma:

Lemma 4.6.3. For every two finite-order separations (X,C ) ≤ (Y,D) of G we
have O|G|Θ(X,C ) ⊇ O|G|Θ(Y,D).

Proof. Clearly, G ∩ O|G|Θ(X,C ) ⊇ G ∩ O|G|Θ(Y,D). And from the consistency of
ℵ0-tangles we deduce Θ ∩ O|G|Θ(X,C ) ⊇ Θ ∩ O|G|Θ(Y,D).

Proof of Theorem 4.3. (i) For this, let {Ai | i ∈ I } by any discrete collection of
closed subsets Ai ⊆ Υ(G). We are going to find a suitable collection {Oi | i ∈ I }.
To get started, we view the ℵ0-tangle space as inverse limit

Θ = lim←− ( β(CX) | X ∈ X )
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where each CX is endowed with the discrete topology. Since Θ is compact and all
β(CX) are Hausdorff, it follows from general topology that all of the (continuous)
projections prY : Θ = lim←− β(CX) → β(CY ) are open. Now consider any critical

vertex set X of G. The Stone-Čech remainder (C̆X)∗ = β(C̆X) r C̆X is a closed
subspace of β(C̆X) = cl β(CX) (C̆X) ⊆ β(CX). (This follows from general topology,
but it can also be seen more directly by considering the standard basis for the
Stone-Čech compactification of discrete spaces.) And for every U ∈ (C̆X)∗ the
preimage pr−1

X (U) is a singleton that consists precisely of the ultrafilter tangle of
which (X,U) is the blueprint. Therefore, for every i ∈ I the set

Ai,X := prX(Ai) ∩ (C̆X)∗ = prX
(
Ai

Θ ) ∩ (C̆X)∗

is closed in β(C̆X). Moreover, {Ai,X | i ∈ I } is a discrete collection of pairwise
disjoint closed subsets of β(C̆X). Now the Stone-Čech compactification β(C̆X) is
collectionwise normal since it is compact Hausdorff, and so we find a collection
{Oi,X | i ∈ I } of pairwise disjoint open subsets Oi,X ⊆ β(C̆X) satisfying the
inclusion Ai,X ⊆ Oi,X for all i ∈ I.

Next, we use Theorem 4.5.10 to find a strongly admissable function K for the
principal collection crit(G). For every index i ∈ I and every ultrafilter tangle
τ ∈ Ai we choose a component collection C (τ) ∈ U(τ,Xτ ) such that

� C (τ) ⊆ K (Xτ );
� C (τ) ⊆ Oi,Xτ ;
� Oi,τ := O|G|Θ(Xτ ,C (τ)) avoids all Aj with j 6= i.

We find C (τ) as follows. First, we recall that K (Xτ ) is contained in the free
ultrafilter U(τ,Xτ ). Second, we note that Oi,Xτ ∩ C̆Xτ is contained in U(τ,Xτ )
as well, for Oi,Xτ is an open neighbourhood of U = prXτ (τ) ∈ Ai,Xτ in β(C̆Xτ )
and U is contained in U(τ,Xτ ) as a subset. Therefore, if we find a component
collection C ⊆ C̆Xτ such that O|G|Θ(Xτ ,C ) avoids all Aj with j 6= i, then C (τ) :=
K (Xτ ) ∩Oi,Xτ ∩ C will satisfy all three requirements (for the third requirement
we apply Lemma 4.6.3 to (Xτ ,C ) ≤ (Xτ ,C (τ))). To find a suitable component
collection C , we proceed as follows. The union of all sets Aj with j ∈ I and j 6= i is
closed in Υ(G) since {Ai | i ∈ I } is a discrete collection of closed sets. Hence there
exists an open neighbourhood O|G|Θ(Y,D) of τ in |G|Θ which avoids this union.
Applying Lemma 4.3.1 to (Y,D) ∈ τ then yields a component collection C ⊆ C̆Xτ

satisfying (Y,D) ≤ (Xτ ,C ) ∈ τ . In particular, O|G|Θ(Xτ ,C ) ⊆ O|G|Θ(Y,D)
(Lemma 4.6.3 again) avoids all Aj with j 6= i.

Letting Oi :=
⋃
{Oi,τ | τ ∈ Ai } for every i ∈ I, we claim that the collection

{Oi | i ∈ I } is as desired. For this, it suffices to show that for all indices i 6= j
and ultrafilter tangles τ ∈ Ai and τ ′ ∈ Aj the open neighbourhoods Oi,τ and Oj,τ ′

are disjoint. By Theorem 4.5.11 (i) and by symmetry, only the following three
cases can possibly occur.

In the first case we have Xτ = Xτ ′ and write X = Xτ . Then Oi,X and Oj,X are
disjoint, ensuring that C (τ) and C (τ ′) are disjoint. (If we had not involved the
open sets Oi,X and Oj,X , then the component collections C (τ) and C (τ ′) might
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possibly have a non-empty finite intersection.) In particular, Oi,τ and Oj,τ ′ are
disjoint as well.

In the second case we have Xτ 6= Xτ ′ and (K (Xτ ), Xτ ) ≤ (Xτ ′ ,K (Xτ ′)), which
implies that Oi,τ and Oj,τ ′ are disjoint.

In the third case we have Xτ 6= Xτ ′ and

(Xτ ,K (Xτ )) ≤ (Xτ , C) ≤ (Xτ ′ ,K (Xτ ′))

where C is the component CXτ (Xτ ′). Since Oi,τ avoids Aj 3 τ ′ we deduce that the
component C is not contained in C (τ). Hence (C (τ), Xτ ) ≤ (Xτ ′ ,C (τ ′)) which
implies that Oi,τ and Oj,τ ′ are disjoint.

(ii) It is possible to deduce (ii) from (i) by a careful analysis of the properties
of the sets Oi,τ constructed in the proof of (i) above. But it is also possible
to follow the strategy of the proof of (i) and show (ii) directly, as follows. For
this, let {Ai | i ∈ I } be any discrete collection of closed subsets Ai ⊆ crit(G).
Using Theorem 4.5.10 we find a strongly admissable function K for the principal
collection crit(G). For every i ∈ I and X ∈ Ai we let C (X) be a cofinite subset of
K (X) such that O|G|Γ(X,C (X)) =: Oi,X avoids all Aj with j 6= i. Then letting
Oi :=

⋃
{Oi,X | X ∈ Ai } for all i ∈ I yields the desired collection as we verify

using Theorem 4.5.11.

4.7. Consistent orientation and lifting from

torsos

For this section, fix a graph G, a regular tree set N of finite-order separations of G,
and a consistent orientation O of N . Also define Π =

⋂
(C,D)∈OD.

This section deals with the problem of translating separations of torso(G,O) to
separations of G, as described in Section 4.4. More precisely, given a separation
(A,B) of torso(G,O), we want to find an extension of it in G, a separation
(U,W ) of G towards which all elements of O point such that U ∩W ⊆ Π and
(U ∩ Π,W ∩ Π) = (A,B). Note that every extension (U,W ) of (A,B) satisfies
U ∩W = A ∩B. In general, extensions are not unique. However, the information
contained in O already puts strong restrictions on the structure of extensions.

On the one hand, if x and y are vertices of G and (C,D) is a separation in O
with {x, y} ⊆ C then every extension (U,W ) of a separation of torso(G,O) has to
satisfy (C,D) ≤ (U,W ) or (C,D) ≤ (W,U) and thus {x, y} ⊆ U or {x, y} ⊆ W .
So here we have a relation on

⋃
(C,D)∈O C and related vertices cannot be separated

by extensions of separations of torso(G,O).
On the other hand, if (C,D) and (C ′, D′) are separations in O such that O also

contains some (C ′′, D′′) with (C,D) ≤ (C ′′, D′′) and (C ′, D′) ≤ (C ′′, D′′), then
(C,D) and (C ′, D′) cannot lie on different sides of (U,W ) because (C ′′, D′′) points
towards every extension (U,W ) of (A,B). So here we have a relation on O and no
extension of a separation of torso(G,O) can separate two related separations in O.

It turns out that the two relations describe two points of view on the same idea:
In this chapter we define ∼ as a relation on the set of separations of O, as that
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fits better in our framework of tree sets. But it is possible just as well to work
with the relation on vertices, as is done e.g. in [19], and several lemmas in this
section are inspired by similar lemmas in that paper. Indeed, we will associate
with every equivalence class γ of ∼ a set of vertices Aγ, thereby associating an
equivalence class of ∼ of separations with an equivalence class of vertices, and we
will work with both γ and Aγ.

Lemma 4.7.1. Define a relation ∼ on O where (C,D) ∼ (C ′, D′) if and only if
there is a separation in O above both (C,D) and (C ′, D′). Then ∼ is an equivalence
relation.

Proof. By definition the relation is reflexive and symmetric. In order to show tran-
sitivity, assume that (C,D) and (C ′, D′) are related, as witnessed by (U,W ) ∈ O,
and that (C ′, D′) and (C ′′, D′′) are related, as witnessed by (U ′,W ′) ∈ O. As O
is a consistent orientation, we have (U,W ) ≤ (U ′,W ′) or (W ′, U ′) ≤ (W,U) or
(U,W ) ≤ (W ′, U ′). But (U,W ) ≤ (W ′, U ′) implies (C ′, D′) ≤ (U,W ) ≤ (W ′, U ′) ≤
(D′, C ′) and thus that (C ′, D′) ≤ (D′, C ′) which contradicts the fact that N is
regular. So either (U,W ) ≤ (U ′,W ′) or (U ′,W ′) ≤ (U,W ) and in both cases the
bigger one of these separations shows that (C,D) and (C ′′, D′′) are related.

Definition 4.7.2. An equivalence class of the relation from Lemma 4.7.1 is a
corridor of O. For a corridor γ let Aγ be the union of all sets C where (C,D) ∈ γ.

Remark. Let γ be a corridor and (A,B) the supremum of all elements of γ. Then
A = Aγ and A ∩B = Aγ ∩ Π.

Lemma 4.7.3. If (C,D) and (C ′, D′) are elements of O and CrD′ is non-empty
then (C,D) and (C ′, D′) are comparable.

Proof. Because O is consistent and nested, any two separations in O either point
towards each other or are comparable. Let w be a vertex contained in C r D′.
Then w witnesses that (C,D) � (C ′, D′), hence (C,D) and (C ′, D′) do not point
towards each other.

Remark. Lemma 4.7.1 also holds in abstract separation systems with the same
proof. In particular, corridors are well-defined for abstract separation systems.

Lemma 4.7.4. Let γ be a corridor of O and U a finite subset of Aγ. Then there
is a separation (C,D) in γ such that C contains U and C rD contains U r Π.

Proof. First we consider the special case that U contains only one vertex v /∈ Π. As
v is a vertex of Aγ there is a separation (C,D) in γ such that v ∈ C. Furthermore
because v is not contained in Π there is a separation (C ′, D′) in O such that v is
contained in C ′ r D′. By Lemma 4.7.3 the separations (C,D) and (C ′, D′) are
comparable and thus contained in the same corridor, so (C ′, D′) is contained in γ.

Now consider an arbitrary finite subset U of Aγ. For every vertex v of U there
is a separation (Cv, Dv) in γ such that v ∈ Cv. We just showed that if v is not
contained in Π then (Cv, Dv) can be chosen such that Dv does not contain v. As
γ is a corridor and U is finite, there is a separation (C,D) in γ which is bigger
than or equal to all separations (Cv, Dv). In particular v ∈ Cv ⊆ C for all v ∈ U
and v ∈ Cv rDv ⊆ C rD for all v ∈ U r Π.
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Lemma 4.7.5. The sets Aγ r Π partition V (G)r Π.

Proof. By definition of Π every vertex v ∈ V (G)r Π is contained in Aγ for some
corridor γ, so the sets Aγ r Π cover V (G) r Π. To prove their disjointedness,
assume that some vertex is contained in Aγ and Aγ′ for two corridors γ and γ′. By
Lemma 4.7.4 there are separations (C,D) in γ and (C ′, D′) in γ′ respectively such
that both C rD and C ′ rD′ contain v. Thus by Lemma 4.7.3 the separations
(C,D) and (C ′, D′) are contained in the same corridor and hence γ = γ′.

Corollary 4.7.6. For a separation (C,D) of N and a corridor γ we have (C,D) ∈
γ if and only if C rD ⊆ Aγ.

Lemma 4.7.7. Let U be a connected set of vertices avoiding Π. Then there is a
corridor γ with U ⊆ Aγ.

Proof. By Lemma 4.7.5 it is sufficient to show the statement for U with exactly
two elements. Let v and w be two neighbours not in Π, and let (C,D) be a
separation in O such that v ∈ C rD. Because w is a neighbour of v and (C,D) is
a separation, w is contained in U and thus for the corridor γ containing (C,D) we
have that Aγ contains both v and w.

Corollary 4.7.8. Let F be a finite connected set of vertices not meeting Π. Then
there is a separation (C,D) ∈ O such that F ⊆ C rD.

Proof. By Lemma 4.7.7 we may apply Lemma 4.7.4.

Lemma 4.7.9. Let γ be a corridor and assume that all separators of separations
in N are cliques. Then Aγ ∩ Π is a clique, too.

Proof. Let v and w be two distinct vertices of Aγ ∩Π. Then by Lemma 4.7.4 there
is a separation (C,D) ∈ γ such that C contains both v and w. Because v and w
are contained in Π which in turn is a subset of D, both v and w are contained in
C ∩D. Because C ∩D is a clique by assumption, v is a neighbour of w.

4.8. Extending the tree set of the principal

vertex sets

In this section we prove our main result, Theorem 4.1. To obtain a starting tree set
T as described in our overall proof strategy in Section 4.4, we apply our technical
main result Theorem 4.5.11 (combined with Theorem 4.5.10) to a carefully chosen
collection Y of principal vertex sets of G. For choosing Y we need the following
definition:

Definition 4.8.1. A separation {X,C } is generous if both C and the complement
CX r C contain components whose neighbourhoods are precisely equal to X, i.e.
if C̆X meets both C and CX r C . A set X of vertices of G is generous if it is the
separator of some generous separation, i.e. if |C̆X | ≥ 2.
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Now we are ready to set up our starting tree set T and more, as follows.
Throughout this section we fix the following notation. We let Y be the
collection of all generous subsets of the critical vertex sets of G, in formula:

Y =
{
X ∈ X

∣∣ X is generous and ∃Y ∈ crit(G) : X ⊆ Y
}
.

Notably, crit(G) ⊆ Y . We assume, without loss of generality by Lemma 4.5.4, that
each X ∈ Y induces a clique G[X]. Using Theorems 4.5.10 and 4.5.11 we obtain
a strongly admissable function K for Y that deviates from all C̆X with X ∈ Y
by precisely one component, in formula |C̆X rK (X)| = 1 for all X ∈ Y. This
way we ensure that T := T (Y ,K ) is a regular tree set of generous finite-order
separations of G. For X ∈ Y we abbreviate σX = σK

X . Moreover, O always denotes
a consistent orientation of T , and then Π ⊆ V (G) denotes the part of O. At some
point in this section the concept of a ‘modified torso’ of O will be defined. From
that point onward, H will always denote the modified torso of O. Whenever we
speak of Π or H we tacitly assume that they stem from some O. This completes
the list of fixed notation for this section.

Next, we consider two inequivalent ℵ0-tangles τ1 and τ2 of G, we pick a finite-
order separation {A1, A2} of G that efficiently distinguishes τ1 and τ2, and we
write Z = A1 ∩ A2 for its separator. If Z is included entirely in a critical vertex
set of G, then T efficiently distinguishes τ1 and τ2:

Lemma 4.8.2. Let {Z,D} efficiently distinguish two ℵ0-tangles τ1 and τ2 of G.
Then {Z,D} is generous. If additionally τ1 and τ2 are inequivalent and Z is
included in some critical vertex set of G, then T efficiently distinguishes τ1 and τ2.

Proof. Let {D1,D2} := {D ,CY rD} such that (Z,Di) ∈ τi for both i = 1, 2. Our
proof starts with a more general analysis of the situation, as follows. Consider any
i ∈ {1, 2} and put j = 3− i.

If τi lives in a component C of G−Z in that (Z,C) ∈ τi, then by the consistency
of τj we deduce from (C,Z) ≤ (Z,Dj) ∈ τj that (C,Z) ∈ τj , so {Z,C} distinguishes
τ1 and τ2. But then so does {N(C), C} by Lemma 4.2.4, and hence N(C) = Z
follows by the efficiency of Z.

Otherwise τi is an ultrafilter tangle and Xi := Xτi is contained in Z. Then, as
U(τi, Z) is a free ultrafilter, we have (Z,D ′i) ∈ τi for D ′i := Di ∩ CZ(Xi). Hence
(Xi,D ′i) ∈ τi by Lemma 4.2.4. And (D ′i , Xi) ≤ (Z,Dj) ∈ τj implies (D ′i , Xi) ∈ τj
by the consistency of τj. Therefore, {Xi,D ′i} distinguishes τ1 and τ2, so Xi = Z
follows by the efficiency of Z.

From the two cases above we deduce that {Z,D} is generous. It remains to
show that if additionally τ1 and τ2 are inequivalent and Z is contained in a critical
vertex set of G, then T efficiently distinguishes τ1 and τ2. First, we have Z ∈ Y as
Z is generous. Next, we note that not both τ1 and τ2 can be ultrafilter tangles
with X1, X2 ⊆ Z for otherwise X1 = Z = X2 follows from our considerations
above, contradicting that τ1 and τ2 are inequivalent. So at least one of τ1 and τ2

lives in a component C of G− Z, say (Z,C) ∈ τ1, and then C ∈ C̆Z follows from
our considerations above. If C ∈ K (Z) then {Z,C} ∈ T efficiently distinguishes
τ1 and τ2. Otherwise {C} = C̆Z rK (Z), and we claim that {Z,K (Z)} ∈ T
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efficiently distinguishes τ1 and τ2. On the one hand, (K (Z), Z) ≤ (Z,C) ∈ τ1

implies (K (Z), Z) ∈ τ1 by the consistency of τ1. On the other hand, τ2 either
lives in a component in K (Z) or τ2 is an ultrafilter tangle with X2 = Z, and in
both cases we deduce (Z,K (Z)) ∈ τ2.

Therefore, we may assume that Z is not contained entirely in any critical vertex
set of G. Then Z is contained in a part of T , as follows.

Lemma 4.8.3. Let Z ∈ X be generous. If X is a principal vertex set of G that
does not contain Z entirely, then there is a unique component of G −X that Z
meets.

Proof. As Z is not contained in X as a subset, there is a component C of G−X
which Z meets. Assume for a contradiction that there is another component D of
G−X meeting Z. Pick vertices c ∈ Z ∩ C and d ∈ Z ∩D. Now note that every
component K ∈ C̆Z must meet X, for K plus its K–c and K–d edges admits a
c–d path connecting the distinct components C and D of G−X. But since X is
principal it meets at most one component of G− Z, namely CZ(X), contradicting
that |C̆Z | ≥ 2.

By Lemma 4.8.3 above the separator Z meets precisely one side from every
separation in T , and then orienting each separation in T towards that side results
in a consistent orientation O of T whose part Π contains Z. The remainder of this
section is dedicated to modifying the torso H of O so that

� τ1 and τ2 are ‘represented’ by ‘proxy’ ends η1 and η2 in H; and
� applying Carmesin’s theorem in H yields a tree set that lifts compatibly

with T to a tree set of tame finite-order separations of G that efficiently
distinguishes τ1 and τ2.

4.8.1. Modified torsos, proxies of corridors and lifting
from modified torsos

In this subsection we introduce modified torsos and show that there is an elegant
way to lift tree sets from modified torsos to the graph G itself. Proxies of corridors
are introduced as a technical tool whose purpose is twofold: first, they are key
to the elegant lifting of tree sets. And second, they will be employed in the next
subsection to define proxies for ℵ0-tangles.

Definition 4.8.4 (Modified torso). Whenever Π is non-empty we define the
modified torso H of O, as follows. Consider the set Z of all finite subsets of Π
that are separators of suprema of corridors of O. Then we obtain H from G[Π] by
disjointly adding for each X ∈ Z a copy of Kℵ0 that we join completely to X.

We remark that Π being non-empty ensures that the empty set is not an element
of Z, so modified torsos are connected. Since the copies of Kℵ0 are joined to finite
cliques of G[Π] by Lemma 4.7.9, no two ends of G[Π] are merged when we move
on to the modified torso H:
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Lemma 4.8.5. Every finite-order separation of G[Π] extends to some finite-order
separation of H. Thus sending each end η of G[Π] to the end ι(η) of H ⊇ G[Π]
with η ⊆ ι(η) defines an injection ι : Ω(G[Π]) ↪→ Ω(H). Moreover, the ends of H
that do not lie in the image of ι correspond bijectively to the copies of Kℵ0 that
were added to G[Π] in order to obtain H.

Now we tend to the lifting of separations from H to G. It is desirable to have
the separator of a separation remain unchanged when lifting it. But H usually will
contain many vertices that are not vertices of the original graph G. We solve this
as follows. When we consider finite-order separations of H, we are only interested
in ones that efficiently distinguish some two ends of H. And these H-relevant
separations have their separators consist of vertices of the original graph G:

Definition 4.8.6 (H-relevant). If a separation of H has finite order and efficiently
distinguishes some two ends of H, then we call it and its orientations H-relevant.

Lemma 4.8.7. If {A,B} is H-relevant, then A ∩B ⊆ Π.

Proof. Assume for a contradiction that A ∩B meets an added copy K of a Kℵ0

in a vertex v and write X = NH(K). Notably H[X] is a clique, and hence so is
H[X ∪K]. Without loss of generality H[X ∪K] ⊆ H[A], so K meets ArB while
H[X ∪K] avoids B r A. Now v ∈ A ∩ B ∩K sends its edges only to K and X,
and in particular v sends no edges to B r A. So {A,B − v} is again a separation
of H, but of order |A∩B|− 1, and this separation still distinguishes all the ends of
H that were distinguished by {A,B}, contradicting that {A,B} is H-relevant.

Now we are almost ready to define lifts of separations of H, all we miss is

Definition 4.8.8 (Proxy of a corridor). Suppose that Π is non-empty and γ is
a corridor of O. The proxy of γ in the modified torso H is the end η of H that
is defined as follows. Consider the separator X of the supremum of γ. If X is
finite, then η is the end of H containing the rays of the Kℵ0 that was added for X.
Otherwise G[X] ⊆ H is an infinite clique by Lemma 4.7.9, and then η is the end
of H that contains the rays of G[X].

Finally, we can lift separations from H to G:

Definition 4.8.9 (Lift from a modified torso). Let (A,B) be an H-relevant
separation of a modified torso H. By Lemma 4.8.7 the separator A∩B is included
in Π entirely. The lift (`(A), `(B)) of (A,B) is defined as follows. The set
`(A) ⊆ V (G) agrees with A on Π, and a vertex of G − Π is contained in `(A)
whenever its corridor’s proxy in H lives on the A-side. The set `(B) is defined
analogously.

We remark that {`(A), `(B)} does not depend on the orientation of {A,B}. In
order to verify that the lifts work as intended we need the following lemma:

Lemma 4.8.10. If {A,B} is H-relevant and γ is a corridor of O whose proxy
lives on the A-side, then Aγ ⊆ `(A).
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Proof. We have Aγ r Π ⊆ `(A) by the definition of `(A). It remains to show
Ξ ⊆ A for the separator Ξ = Aγ ∩Π of the supremum of γ. If Ξ is infinite, then
the proxy η of γ living on the A-side means G[Ξ] ⊆ H[A]. Otherwise Ξ is finite.
Then η stems from a copy K ⊆ H of Kℵ0 that is joined completely to the clique
G[Ξ], and so η living on the A-side means K ⊆ H[A]. Consequently, the infinite
clique H[K ∪ Ξ] is contained in H[A] as well, giving Ξ ⊆ A as desired.

Now we can check for ourselves that lifts work:

Lemma 4.8.11. The lift of an H-relevant separation is a separation of G with
the same separator.

Proof. Let {A,B} be any H-relevant separation, and recall that A ∩ B ⊆ Π by
Lemma 4.8.7. Every vertex of G− Π lies in Aγ for a unique corridor γ of O, and
hence is contained in precisely one of `(A) and `(B). Thus `(A) ∩ `(B) = A ∩B.
It remains to verify that G has no edge between `(A) r `(B) and `(B) r `(A).
For this, let e = xy be any edge of G. If both x and y are contained in Π, then
e ⊆ A say, and hence e ⊆ `(A). Otherwise one of x and y lies outside of Π, say
x ∈ `(A)r Π. Let γ be the corridor of O with x ∈ Aγ r Π, so the proxy η of γ
lives on the A-side. From x ∈ Aγ r Π we infer y ∈ Aγ. Then e ⊆ Aγ ⊆ `(A) by
Lemma 4.8.10.

Starting with an intuitive lemma we verify that our lifts are compatible with T
and lifts of other modified torsos:

Lemma 4.8.12. Let γ be a corridor of O and let η be the proxy of γ in H. If
{A,B} is H-relevant with η living on the A-side, then →s ≤ (`(A), `(B)) for all
→s ∈ γ. In particular, the lift of an H-relevant separation is nested with T .

Proof. Consider any (C,D) ∈ γ. We have to show (C,D) ≤ (`(A), `(B)). For the
inclusion C ⊆ `(A) we start with C ⊆ Aγ and employ Lemma 4.8.10 for Aγ ⊆ `(A).
Now the inclusion `(B) ⊆ D is tantamount to C r D ⊆ `(A) r `(B) which is
immediate from C ⊆ `(A) as CrD avoids Π ⊇ `(A)∩`(B) (cf. Lemma 4.8.11).

Corollary 4.8.13. If H ′ is the modified torso of a consistent orientation O′ of T
other than O, then all lifts of H-relevant separations are nested with all lifts of
H ′-relevant separations.

Lemma 4.8.14. If (A,B) and (C,D) are H-relevant with (A,B) ≤ (C,D), then
their lifts satisfy (`(A), `(B)) ≤ (`(C), `(D)). In particular, the lifts of two nested
H-relevant separations are again nested.

We close this subsection with the lemma that ensures that when we construct
the tree set for our main result, we are able to ensure the ‘moreover’ part stating
equivalent ℵ0-tangles orient the tree set the same way.

Lemma 4.8.15. Every H-relevant separation lifts to a tame separation of G.
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Proof. If H stems from a consistent orientation O of T that contains some star σX
with X ∈ Y , then O = dσXe (with the down-closure taken in

→
T ) by Theorem 4.5.11.

Consequently, H was obtained from the finite clique G[X] by disjointly adding
precisely one copy of a Kℵ0 and joining it completely to X, so the one-ended H
has no H-relevant separations. Therefore, we may assume that O avoids all of the
stars σX with X ∈ Y .

Let {A,B} be an H-relevant separation and recall that we have A ∩B ⊆ Π by
Lemma 4.8.7. And let X ⊆ A ∩B be a critical vertex set of G.

If there is a component K ∈ K (X) with (X,K) ∈ O, then the proxy of the
corridor of O that contains (X,K) ensures that all the components in K (X)r{K}
are contained in the same side of {`(A), `(B)}.

Otherwise, since O avoids the star σX , we have (K (X), X) ∈ O. Then the proxy
of the corridor of O that contains (K (X), X) ensures that all the components in
K (X) are contained in the same side of {`(A), `(B)}.

In either case, all but finitely many of the components in C̆X lie on the same side
of {`(A), `(B)}. Since A∩B ⊇ X meets at most finitely many components in C̆X ,
the collection CA∩B(X) forms a cofinite subset of C̆X , and therefore all but finitely
many components in CA∩B(X) lie on the same side of {`(A), `(B)} as desired.

4.8.2. Proxies of ℵ0-tangles

We start this subsection by introducing the technical notion of ‘walking a corridor’
and prove two technical lemmas about ends. This framework, together with
proxies of corridors, then enables us to give a comprehensible definition of proxies
of ℵ0-tangles. We emphasise that this technical layering is highly important to save
the key segments of our overall proof from being swamped with terrible amounts
of case distinctions.

Definition 4.8.16 (Walking). We say that an end ω of G walks a corridor γ of O
if for the supremum (A,B) of γ the end ω has a ray contained in G[ArB]. And
we say that an ultrafilter tangle τ of G walks a corridor γ of O if τ contains the
inverse of some separation in γ.

Lemma 4.8.17. Suppose that N is a tree set of generous finite-order separations
of G all whose separators induce cliques. Let ω be an end of G, let Π be the part
of the orientation O = ω ∩

→
N that ω induces on N , and suppose that ω walks a

corridor γ of O. If the separator Aγ ∩ Π of the supremum of γ is infinite, then
G[Π] contains a ray from ω.

Proof. By Lemma 4.7.9 it is sufficient to show that there are infinitely many
pairwise disjoint paths from R to Aγ ∩ Π. We will recursively construct such
paths Pn (n ∈ N) of which only the last vertex vn is contained in Π. Assume that
P0, . . . , Pn−1 have already been defined. Then there is a finite non-empty initial
segment R′ of R such that R′∪P0v̊0∪ · · · ∪Pn−1v̊n−1 is connected. Let (A,B) ∈ O
be a separation such that all vertices of R′ ∪ P0v̊0 ∪ · · · ∪ Pn−1v̊n−1 are contained
in ArB (such a separation exists by Corollary 4.7.8). Then (A,B) is contained
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in γ. Every vertex vk with k < n is a neighbour of a vertex in A r B and thus
contained in A.

As Aγ ∩Π is infinite, it contains a vertex v which is not contained in A∩B and
thus not contained in A. In particular, v is not contained in any path Pk with
k < n. Because v ∈ Aγ, there is a separation (A′, B′) in γ such that v ∈ A′ and
thus v ∈ A′ ∩B′. Let (C,D) be a separation in γ which is bigger than both (A,B)
and (A′, B′). Then all vertices contained in some Pk with k < n are contained in
(C rD) ∪Π. Furthermore v ∈ C ∩D and R contains a vertex of C rD. Because
(C,D) ∈ O, some tail of R is contained in DrC and thus R also contains vertices
of DrC. As (C,D) is a separation and R connected this implies that some vertex
w of R is contained in C ∩D. Because w is not a vertex of Π it is also not a vertex
of some Pk with k < n.

As (D,C) is generous, there is a component of G− (C ∩D) which is contained
in D r C and whose neighbourhood is precisely equal to C ∩D. Thus there is
a path P from w to v whose inner vertices are contained in D r C. We already
established that v and w are not vertices of any Pk with k < n. Hence P is disjoint
from all Pk with k < n. Let vn be the first vertex of P in Π and let Pn := wPvn.
By Corollary 4.7.8 there is a separation (I, J) ∈ O such that the vertices of Pnv̊n
are contained in I r J . Then (I, J) ∈ γ and vn ∈ I, so vn ∈ Aγ. As also vn ∈ Π
we have vn ∈ Aγ ∩ Π as required.

Lemma 4.8.18. If an end ω of G does not lie in the closure of Π, then ω walks a
unique corridor of O.

Proof. Since ω does not lie in the closure of Π, we in particular find a ray R ∈ ω
that avoids Π. As R is connected, it defines a corridor γ of O with R ⊆ Aγ rΠ.
Then ω walks the corridor γ, and so it remains to show that γ is unique.

If O 6⊆ ω, then ω contains the inverse ←s of some separation →s ∈ O, and then
γ is determined as the corridor of O containing →s . Otherwise O ⊆ ω. Then
we assume for a contradiction that there is another ray R′ ∈ ω that walks a
corridor γ′ of O other than γ. Since the suprema of γ and γ′ both separate R
and R′, their separators cannot be finite, and so they are infinite. But then
applying Lemma 4.8.17 to either γ or γ′ yields a ray of ω in G[Π], contradicting
the assumption that ω does not lie in the closure of Π.

Finally, we are ready for the definition of proxies of ℵ0-tangles. We split the
definition and consider ends and ultrafilter tangles separately.

Definition 4.8.19 (Proxy of an end). If ω is an end of G, then the proxy of ω in
H is the end η of H that is defined as follows.

� If ω lies in the closure of Π, then ω has a ray in G[Π] by Corollary 4.2.8, and
η is the end of such a ray in H (this is well-defined by Corollary 4.2.9).

� Otherwise ω does not lie in the closure of Π and by Lemma 4.8.18 walks a
unique corridor γ of O; then η is the proxy of γ in H.

Definition 4.8.20 (Proxy of an ultrafilter tangle). If τ is an ultrafilter tangle of
G and O avoids the star σXτ , then τ walks a unique corridor γ of O and the proxy
of τ in H is the end η of H that is the proxy of γ in H.
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G

Aγ1 Ξ1

Aγ2Ξ2

Kℵ0 ⊆ H rG

η1

Z
H

η2

∃

∃

Figure 4.8.1.: A graph G, a vertex set Z efficiently separating two inequivalent
ℵ0-tangles τ1 and τ2 of G, and a modified torso H(Z) which contains
Z. The ℵ0-tangles τi walk corridors γi and H(Z) has proxies η1 and
η2 for τ1 and τ2.

We close this subsection with a lemma on the interaction of lifts with proxies:

Lemma 4.8.21. Let τ be an ℵ0-tangle of G and suppose that the proxy η of τ in
H is defined. If {A,B} is H-relevant and (A,B) ∈ η, then (`(A), `(B)) ∈ τ .

Proof. If τ is an end of G that lies in the closure of Π, then this follows from
the fact that some ray of G[Π] is contained in both τ and η. Otherwise τ is an
ℵ0-tangle of G that walks a unique corridor γ of O. If additionally τ is an end,
then every ray in τ that avoids Π is contained in `(B), ensuring (`(A), `(B)) ∈ τ .
So we may assume that τ is an ultrafilter tangle. As the proxy η of τ is defined,
we know that O avoids the star σXτ so that τ walks a unique corridor γ of O. By
definition, this means that τ contains the inverse of some oriented separation from
γ. Then (`(A), `(B)) ∈ τ follows from Lemma 4.8.12 and the consistency of τ .

4.8.3. Efficiently distinguishing the proxies

In this subsection we provide the final key segments of our overall proof. We start
with an overview of the situation that is of interest.

Throughout this subsection we fix the following notation in addition
to the notation fixed throughout the ambient section. (See also Fig-
ure 4.8.1.) We are given two inequivalent ℵ0-tangles τ1 and τ2 of G that are
efficiently distinguished by a finite-order separation {A1, A2} of G with separator
Z = A1∩A2. The separator Z is not contained in a critical vertex set of G. Hence,
by Lemma 4.8.3 the separator Z meets precisely one side from every separation in
T , and then orienting each separation in T towards that side results in a consistent
orientation O of T whose part Π contains Z. For this special orientation we write
O(Z), and we write Π(Z) and H(Z) for its part and modified torso. Moreover,
η1 and η2 are the proxies of τ1 and τ2 in H(Z) (note that these are defined as
O(Z) avoids all stars σX with X ∈ Y). Whenever we write i we mean an arbitrary
i ∈ {1, 2}, and we write j = 3− i. If τi happens to be an ultrafilter tangle, then
we write Xi instead of Xτi . This completes the list of fixed notation for this
subsection.

The final key segments are Lemma 4.8.22 and Proposition 4.8.24 below. We
start with the lemma:
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Lemma 4.8.22. Every relevant finite-order separation of H that distinguishes η1

and η2 does lift to a separation of G that distinguishes τ1 and τ2.

Proof. Let {A,B} be a relevant finite-order separation of H that distinguishes η1

and η2, say with (B,A) ∈ η1 and (A,B) ∈ η2. Then Lemma 4.8.21 gives both
(`(B), `(A)) ∈ τ1 and (`(A), `(B)) ∈ τ2, so {`(A), `(B)} distinguishes τ1 and τ2.

For the key proposition, we need the following proposition whose proof we
postpone to after the proof of the key proposition.

Proposition 4.8.23. If τi walks a corridor γi of O(Z) where Ξi denotes the
separator of the supremum of γi, then G[Ξi r Z] is a non-empty clique that is
entirely contained in G[Ai r Aj].

The key final key segment is

Proposition 4.8.24. The proxies η1 and η2 are efficiently distinguished by Z.

Proof. If Z distinguishes the proxies η1 and η2 in H(Z), then it does so efficiently,
for otherwise the separation of order < |Z| doing so lifts to one distinguishing
τ1 and τ2 in G by Lemma 4.8.22, contradicting the efficiency of Z. Therefore, it
remains to show that η1 and η2 are distinguished by Z. For this, we check three
cases.

In the first case, both τ1 and τ2 lie in the closure of Π(Z). Then τ1 and τ2 are
distinct ends of G that lie in the closure of Π(Z), and so their proxies stem from
rays of τ1 and τ2 respectively. Now Z witnesses that these rays are inequivalent in
G and, in particular, that they are inequivalent in G[Π]. Thus Z distinguishes η1

and η2 in H(Z) by Lemma 4.8.5.
In the second case, neither τ1 nor τ2 lies in the closure of Π(Z), and both

walk corridors γ1 and γ2 of O(Z). We let Ξ1 and Ξ2 be the separators of the
suprema of γ1 and γ2. Then, by Proposition 4.8.23, for both i = 1, 2 the induced
subgraph G[Ξi r Z] is a non-empty clique that is entirely contained in G[Ai rAj ].
Consequently, Z distinguishes η1 and η2 in H(Z) by Lemma 4.8.5.

In the third case, τ1 does not lie in the closure of Π(Z) and walks a corridor γ1

of O(Z) while τ2 lies in the closure of Π(Z). Then τ2 must be an end of G. We let
Ξ1 be the separator of the supremum of γ1.

By Proposition 4.8.23 the induced subgraph G[Ξ1 r Z] is a non-empty clique
that is entirely contained in G[A1rA2]. Since η1 stems from the copy of Kℵ0 that
is attached to the clique G[Ξ1] ⊆ G[Π] while η2 stems from a ray of G[Π] in τ2, we
deduce that Z distinguishes η1 and η2 in H(Z) by Lemma 4.8.5.

In the remainder of this subsection we prove Proposition 4.8.23. For this, we
introduce the concept of a pointer. Basically, the idea is to have a connected
subgraph of G that can be employed as an oracle—like we employ rays as oracles
for their ends.

Definition 4.8.25. (Pointer) If τi walks a corridor γi of O(Z), then a pointer of τi
is a connected subgraph Ki of G[Aγi rΠ(Z)] ∩G[Ai rAj ] that is of the following
form. If τi is an end of G, then Ki is a ray in τi. Otherwise τi is an ultrafilter
tangle of G, and then Ki is a component in C̆Xi .
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Lemma 4.8.26. If τi walks a corridor of O(Z), then τi has a pointer.

Proof. If τi is an end, then τi has a ray avoiding Π(Z) ∪ Z for τi walks a corridor
of O(Z) and Z is finite, and every such ray is a pointer of τi. Otherwise τi is
an ultrafilter tangle. Then we let γi be the corridor of O(Z) walked by τi. Let
(C,D) ∈ γi witness that τi walks γi, so DrC ⊆ Aγi rΠ(Z). Using Theorem 4.2.2
we pick C ∈ U(τi, Xi) with V [C ] ⊆ AirAj and C ′ ∈ U(τi, Xi) with V [C ′] ⊆ DrC.
As U(τi, Xi) is a free ultrafilter, the intersection C ∩C ′∩ C̆Xi ∈ U(τi, Xi) is infinite,
and every component in this intersection is a pointer of τi.

Lemma 4.8.27. If the neighbourhood N(Ci) of the component Ci of G − Π(Z)
containing a pointer Ki of τi is finite, then N(Ci) is the separator of some finite-
order separation of G that distinguishes τ1 and τ2.

Proof. By the consistency of τj it suffices to find a separation (A,B) ∈ τi with
(B,A) ≤ (Ai, Aj) and A ∩B = Y where we write Y = N(Ci). As Ki is a pointer
we have Ki ⊆ G[Ai r Aj]. Since the separator Z = A1 ∩ A2 is included in Π(Z)
we have Ci ⊆ G[Ai r Aj] as well. If τi is an end then (Y,Ci) ∈ τi is as desired.
Otherwise τi is an ultrafilter tangle. If Ci = Ki then N(Ci) = N(Ki) = Xi,
and employing Theorem 4.2.2 we may pick C ∈ U(τi, Xi) with V [C ] ⊆ Ai, so
(Xi,C ) ∈ τi is as desired. Hence we may assume that Ci ) Ki must meet Xi.
Then Ci = CY (Xi), and by Lemma 4.2.3 we have (Y,CY (Xi)) ∈ τi as desired.

Proof of Proposition 4.8.23. By Lemma 4.8.26 we find a pointer Ki of τi, and we
let Ci be the component of G−Π(Z) containing Ki. Then Ki ⊆ G[Aγi rΠ(Z)]
implies Ci ⊆ G[Aγi r Π(Z)], so we have N(Ci) ⊆ Ξi. First, we show that Ci
has a neighbour in Ξi r Z. Otherwise N(Ci) ⊆ Ξi ∩ Z, and then N(Ci) = Z by
Lemma 4.8.27 and the efficiency of Z. Now Z ⊆ Ξi with Z being finite allows
us to find a separation (X,C ) ∈ γi with Z ⊆ X contradicting this subsection’s
assumption on Z. Therefore, Ci has a neighbour in Ξi r Z. Next, since G[Ξi] is
a clique, there is a unique component Di of G− Z containing G[Ξi r Z]. Then
Ci ⊆ Di as Ci has a neighbour in Ξi r Z, and so G[Ξi r Z] ⊆ G[Ai r Aj] follows
from the pointer Ki being included in G[Ai r Aj].

4.8.4. Proof of the main result

At last, we prove our main result:

Theorem 4.1. Every connected graph G has a tree set of tame finite-order sepa-
rations that efficiently distinguishes all its inequivalent ℵ0-tangles. In particular,
equivalent ℵ0-tangles induces same orientations on the tree set.

Proof. For every modified torso H of T we employ Carmesin’s Theorem 4.2.11 to
obtain a tree set TH of H-relevant separations that efficiently distinguishes all the
ends of H. Then we lift all the separations in all the tree sets TH and add these to
T to obtain an extension T ′ of T . Then T ′ is again a tree set by Lemma 4.8.12,
Corollary 4.8.13 and Lemma 4.8.14.
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First, we show that T ′ efficiently distinguishes every two inequivalent ℵ0-tangles
of G. For this, let τ1 and τ2 be two inequivalent ℵ0-tangles of G. We have to find
a separation in T ′ that efficiently distinguishes τ1 and τ2. Pick some finite-order
separation of G with separator Z say that efficiently distinguishes τ1 and τ2. If
Z is contained in some critical vertex set of G, then by Lemma 4.8.2 we find a
separation in T ⊆ T ′ that efficiently distinguishes τ1 and τ2. Otherwise Z is not
contained in any critical vertex set of G. However, Z is generous by Lemma 4.8.2,
and so by Lemma 4.8.3 induces a consistent orientation of T whose part contains Z.
Then by Proposition 4.8.24 the ℵ0-tangles τ1 and τ2 have distinct proxies η1 and η2

in the modified torso H of that orientation, and Z efficiently distinguishes η1 and
η2 in H. Thus there is a separation in TH of order |Z| that distinguishes η1 and
η2. By Lemma 4.8.22 this separation lifts to a separation of G that distinguishes
τ1 and τ2. This lift still has order |Z| and lies in T ′.

Second we show that all separations in T ′ are tame. Every separation in T is
tame. And by Lemma 4.8.15 the lifts of all TH are tame as well.
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Stars and combs
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5. Duality theorems for stars and combs
I: Arbitrary stars and combs

5.1. Introduction

The series

It is well known, and easy to see, that every finite connected graph contains either
a long path or a vertex of high degree. Similarly,

Every infinite connected graph contains either a ray or a vertex of
infinite degree

(∗)

[26, Proposition 8.2.1]. Here, a ray is a one-way infinite path. Call two properties
of infinite graphs dual, or complementary, in a class of infinite graphs if they
partition that class. Despite (∗), the two properties of ‘containing a ray’ and
‘containing a vertex of infinite degree’ are not complementary in the class of all
infinite graphs: an infinite complete graph, for example, contains both. Hence it is
natural to ask for structures, more specific than vertices of infinite degree and rays,
whose existence is complementary to that of rays and vertices of infinite degree,
respectively. Such structures do indeed exist.

For example, the property of having a vertex of infinite degree is trivially
complementary, for connected infinite graphs, to the property that all distance
classes from any fixed vertex are finite. This duality is employed to prove (∗): if all
the distance classes from some vertex are finite, then applying the infinity lemma
[26, Lemma 8.1.2] to these classes yields a ray.

Similarly, having a rank in the sense of Schmidt [78] is complementary for
infinite graphs to containing a ray, see [26, Lemma 8.5.2]. This duality allows for
an alternative proof of (∗) that avoids the use of compactness, as follows. If G
is rayless, connected and infinite, then it has some rank α > 0. Hence there is a
finite vertex set X ⊆ V (G) such that every component of G −X has rank < α.
Then G−X must have infinitely many components, and so by pigeonhole principle
some vertex in X has infinite degree in G.

A stronger and localised version of (∗) is the star-comb lemma [26, Lemma 8.2.2],
a standard tool in infinite graph theory. Recall that a comb is the union of a ray
R (the comb’s spine) with infinitely many disjoint finite paths, possibly trivial,
that have precisely their first vertex on R. The last vertices of those paths are the
teeth of this comb. Given a vertex set U , a comb attached to U is a comb with all
its teeth in U , and a star attached to U is a subdivided infinite star with all its
leaves in U . Then the set of teeth is the attachment set of the comb, and the set
of leaves is the attachment set of the star.

Star-comb lemma. Let U be an infinite set of vertices in a connected graph G.
Then G contains either a comb attached to U or a star attached to U .
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Although the star-comb lemma trivially implies assertion (∗), with U := V (G),
it is not primarily about the existence of one subgraph or another. Rather, it tells
us something about the nature of connectedness in infinite graphs: that the way
in which they link up their infinite sets of vertices can take two fundamentally
different forms, a star and a comb. These two possibilities apply separately to
all their infinite sets U of vertices, and clearly, the smaller U the stronger the
assertion.

Just like the existence of rays or vertices of infinite degree, the existence of stars
or combs attached to a given set U is not complementary (in the class of all infinite
connected graphs containing U). In this chapter, we determine structures that are
complementary to stars, and structures that are complementary to combs (always
with respect to a fixed set U).

As stars and combs can interact with each other, this is not the end of the story.
For example, a given set U might be connected in G by both a star and a comb,
even with infinitely intersecting sets of leaves and teeth. To formalise this, let us
say that a subdivided star S dominates a comb C if infinitely many of the leaves
of S are also teeth of C. A dominating star in a graph G then is a subdivided star
S ⊆ G that dominates some comb C ⊆ G; and a dominated comb in G is a comb
C ⊆ G that is dominated by some subdivided star S ⊆ G. In the remaining three
chapters of this series we shall find complementary structures to the existence of
these substructures (again, with respect to some fixed set U). Here, then is an
overview of the four chapters in our series, each naming the substructure for which
duality theorems are proved in its title:

i: arbitrary stars and combs (this chapter)
ii: dominating stars and dominated combs (Chapter 6)
iii: undominated combs (Chapter 7)
iv: undominating stars (Chapter 8)

Just like the original star-comb lemma, our results can be applied as structural
tools in other contexts. Examples of such applications can be found in parts i–iii
of our series.

This chapter

In this chapter we prove five duality theorems for combs, and two for stars.
The complementary structures they offer are quite different, and not obviously
interderivable.

Our first result is obtained by techniques of Jung [52]. Recall that a rooted tree
T ⊆ G is normal in G if the endvertices of every T -path in G are comparable in
the tree-order of T , cf. [26].

Theorem 5.1. Let G be any connected graph, and let U ⊆ V (G) be any vertex
set. Then the following assertions are complementary:

(i) G contains a comb attached to U ;
(ii) there is a rayless normal tree T ⊆ G that contains U .
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To see that (ii) implies that G—in fact, the normal tree T—contains a star attached
to U when U is infinite, pick from among the nodes of T that lie below infinitely
many vertices of T in U one that is maximal in the tree-order of T . Then its
up-closure in T contains the desired star.

Even though the normal tree from (ii) is in general not spanning, its separation
properties still tell us a lot about the ambient graph G. Our next result captures
this overall structure of G more explicitly (refer to [26] for the definition of
tree-decompositions and adhesion sets):

Theorem 5.2. Let G be any connected graph, and let U ⊆ V (G) be any vertex
set. Then the following assertions are complementary:

(i) G contains a comb attached to U ;
(ii) G has a rayless tree-decomposition into parts each containing at most finitely

many vertices from U and whose parts at non-leaves of the decomposition
tree are all finite.

Moreover, the tree-decomposition in (ii) can be chosen with connected adhesion
sets.

For U = V (G), this theorem implies the following characterisation of rayless graphs
by Halin [43]: G is rayless if and only if G has a rayless tree-decomposition into
finite parts.

While Theorems 5.1 and 5.2 tell us about the structure of the graph around U ,
they further imply a more localised duality theorem for combs. Call a finite vertex
set X ⊆ V (G) critical if the collection C̆X of the components of G −X having
their neighbourhood precisely equal to X is infinite.

Theorem 5.3. Let G be any connected graph, and let U ⊆ V (G) be any vertex
set. Then the following assertions are complementary:

(i) G contains a comb attached to U ;
(ii) for every infinite U ′ ⊆ U there is a critical vertex set X ⊆ V (G) such that

infinitely many of the components in C̆X meet U ′.

Critical vertex sets were introduced in [62]. As tangle-distinguishing separators,
they have a surprising background involving the Stone-Čech compactification of G,
Robertson and Seymour’s tangles from their graph-minor series, and Diestel’s
tangle compactification, cf. [25, 73] and Chapter 3. Moreover, it turns out that
Theorem 5.3 implies another characterisation of rayless graphs by Halin [41].

Schmidt’s ranking of rayless graphs was employed by Bruhn, Diestel, Geor-
gakopoulos and Sprüssel [13] to prove the unfriendly partition conjecture for the
class of rayless graphs by an involved transfinite induction on their rank. We will
show how the notion of a rank can be adapted to take into account a given set U ,
so as to give a recursive definition of those graphs that do not contain a comb
attached to U . This yields our fourth duality theorem for combs:
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Theorem 5.4. Let G be any connected graph, and let U ⊆ V (G) be any vertex
set. Then the following assertions are complementary:

(i) G contains a comb attached to U ;
(ii) G has a U-rank.

With these four complementary structures for combs at hand, the question arises
whether there is another complementary structure combining them all. Our fifth
duality theorem for combs shows that this is indeed possible:

Theorem 5.5. Let G be any connected graph, and let U ⊆ V (G) be any vertex
set. Then the following assertions are complementary:

(i) G contains a comb attached to U ;
(ii) G has a tree-decomposition that has the list (†) of properties.

For the precise statement of this theorem, see Section 5.3.5. Essentially, the list
(†) consists of the following four properties:

– its decomposition tree stems from a normal tree as in Theorem 5.1;
– it has the properties of the tree-decomposition in Theorem 5.2;
– the infinite-degree nodes of its decomposition tree correspond bijectively to

the critical vertex sets of G that are relevant in Theorem 5.3;
– the rank of its decomposition tree is equal to the U -rank of G

from Theorem 5.4.

Now that we have stated all the duality theorems for combs, let us turn to our
two duality theorems for stars. Recall that a vertex v of G dominates a ray R ⊆ G
if there is an infinite v–(R− v) fan in G. Rays not dominated by any vertex are
undominated, cf. [26]. Our first duality theorem for stars reads as follows:

Theorem 5.6. Let G be any connected graph, and let U ⊆ V (G) be any vertex
set. Then the following assertions are complementary:

(i) G contains a star attached to U ;
(ii) there is a locally finite normal tree T ⊆ G that contains U and all whose

rays are undominated in G.

To see that (ii) implies that G—in fact, the normal tree—contains a comb attached
to U when U is infinite, pick a ray in the locally finite down-closure of U in the
tree and extend it to a comb attached to U .

We have seen normal trees before in our first duality theorem for combs, The-
orem 5.1. Theorem 5.6 above compares with Theorem 5.1 as follows. The only
additional property required of the normal trees that are complementary to combs
is that they are rayless. Similarly, the normal trees that are complementary to
stars have the additional property that they are locally finite. However, they have
the further property that all their rays are undominated in G.

This further property is necessary to ensure that the normal trees and stars in
Theorem 5.6 exclude each other. To see this, let G be obtained from a ray R by
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completely joining its first vertex r to all the other vertices of R, and suppose that
U = V (G). Then R ⊆ G with root r is a locally finite normal tree containing U .
But the edges of G at r form a star attached to U , so the further property is
indeed necessary.

By contrast, we do not need to require in Theorem 5.1 that all the stars in the
normal trees that are complementary to combs are undominating in G: this is
already ensured by the nature of normal trees (see Lemma 5.3.4 for details).

Our second duality theorem for stars is phrased in terms of tree-decompositions,
similar to Theorem 5.2:

Theorem 5.7. Let G be any connected graph, and let U ⊆ V (G) be any vertex
set. Then the following assertions are complementary:

(i) G contains a star attached to U ;
(ii) G has a locally finite tree-decomposition with finite and pairwise disjoint

adhesion sets such that each part contains at most finitely many vertices
from U .

Moreover, the tree-decomposition in (ii) can be chosen with connected adhesion
sets.

This chapter is organised as follows. Section 5.2 provides the tools and termi-
nology that we use throughout this series. Section 5.3 and 5.4 are dedicated to
the duality theorems for combs and stars respectively.

Throughout this chapter, G = (V,E) is an arbitrary graph.

5.2. Tools and terminology

An independent set M of edges in a graph G is called a partial matching of A and
B for vertex sets A,B ⊆ V (G) if every edge in M has one endvertex in A and the
other in B.

5.2.1. The star-comb lemma

The predecessors of the star-comb lemma are the following facts:

Lemma 5.2.1 ([26, Proposition 9.4.1]). For every m ∈ N there is an n ∈ N such
that each connected finite graph with at least n vertices either contains a path of
length m or a star with m leaves as a subgraph.

Lemma 5.2.2 ([26, Proposition 8.2.1]). A connected infinite graph contains either
a ray or a vertex of infinite degree.

The latter is a direct consequence of the infinity lemma, [26, Lemma 8.1.2].
Lemma 5.2.1 has been generalised to higher connectivity, [38,51,65], and so has
Lemma 5.2.2 in [40,45,65]. For an overview we recommend the introduction of [40].

For locally finite trees, Lemma 5.2.2 already yields a comb:
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Lemma 5.2.3. If U is an infinite set of vertices in a locally finite rooted tree T ,
then T contains a comb attached to U whose spine starts at the root.

Proof. The down-closure of U in the tree-order of T induces a locally finite subtree
which, by Lemma 5.2.2 above, contains a ray starting at the root, say. This ray
can be extended recursively to the desired comb.

For rayless trees, the situation is simpler:

Lemma 5.2.4. If U is an infinite set of vertices in a rayless rooted tree T , then
T contains a star attached to U which is contained in the up-closure of its central
vertex in the tree-order of T .

Proof. Among all the nodes of T that lie below some infinitely nodes from U , pick
one node t, say, that is maximal in the tree-order of T . Then t has infinite degree
and we find the desired star with centre t in the up-closure of t.

We already stated the star-comb lemma in its basic form in the introduction,
but a stronger version is known:

Lemma 5.2.5 (Star–comb lemma). Let G be any connected graph and let U ⊆
V (G) be infinite. If κ ≤ |U | is a regular 1 cardinal, then U has a subset U ′ of size
κ such that at least one of the following assertions holds:

(i) G contains a comb attached to U whose attachment set is U ′;
(ii) G contains a star attached to U whose attachment set is U ′.

In particular, if κ is uncountable, then (i) fails and (ii) holds for every such U ′.

For singular cardinals κ this version of the star-comb lemma is not true in general,
as the following example demonstrates. Consider the singular cardinal κ = ℵω.
Let G be the rayless tree that is obtained from a K1,ω with ω as set of leaves by
adding pairwise disjoint copies of K1,ℵn , one for each non-zero n < ω, such that
K1,ℵn meets K1,ω precisely in n and n happens to be the central vertex of K1,ℵn .
Then the rayless tree G cannot contain a comb, and it cannot contain subdivision
of a star K1,κ since every vertex of G has degree < κ, but the vertex set of G has
size κ.

Recently, Gollin and Heuer [40] introduced a way more complex version of the
star-comb lemma above for the more difficult singular case, the Frayed-Star-Comb
Lemma, [40, Corollary 8.1].

The version for regular cardinals has been proved in, e.g., [30] and [40]. We
repeat the short proof here for the sake of convenience:

Proof of Lemma 5.2.5. Using Zorn’s lemma we find a maximal tree T ⊆ G all
whose edges lie on a U -path in T . Then T contains U .

If T has a vertex v of degree κ, then its incident edges extend to v–U paths
whose union is the desired star with U ′ its attachment set.

1A cardinal κ is regular if there is no family (κα | α < λ ) with λ < κ and all κα < κ such that⋃
α<λ κα = κ. For example, ℵ0 and ℵ1 are regular while ℵω =

⋃
n<ω ℵn is not.
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Otherwise every vertex of T has degree < κ. After fixing an arbitrary vertex,
an inductive argument—utilising the regularity of κ—shows that every distance
class of T has size < κ. As V (T ) is the countable union of these distance classes,
we deduce from the regularity of κ that κ = ℵ0 is the only possibility. This, then,
means that T is locally finite, and hence contains a ray by Lemma 5.2.2. As every
edge of T lies on a U -path in T , an inductive construction turns this ray into a
comb attached to U , and we may let U ′ consist of its ℵ0 = κ many teeth.

We remark that this version of the star-comb lemma can be proved alternatively
by means of [55, Lemma III.6.14].

5.2.2. Ends of graphs

We use the notation for ends from the tools of terminology chapter of the disserta-
tion, Chapter 2.

Carmesin [19] observed that

Lemma 5.2.6. Let G be any graph. If H ⊆ G is a connected subgraph and ω is
an undominated end of G lying in the closure of H, then H contains a ray from ω.

Proof. Since ω lies in the closure of H we find a comb in G attached to H with
spine in ω. And as ω is undominated in G, the star-comb lemma in H must return
a comb in H attached to the attachment set of the first comb. Then the two
combs’ spines are equivalent in G.

Another way of viewing the ends of a graph goes via its directions : choice maps
f assigning to every X ∈ X a component of G − X such that f(X ′) ⊆ f(X)
whenever X ′ ⊇ X. Every end ω defines a unique direction fω by mapping every
X ∈ X to C(X,ω). Conversely, Diestel and Kühn proved in [30] (Theorem 5.2.7
below) that every direction in fact comes from a unique end in this way, thus
giving a one-to-one correspondence between the ends and the directions of a graph.

The advantage of this point of view stems from an inverse limit2 description
of the directions: note that X is directed3 by inclusion; for every X ∈ X let CX

consist of the components of G−X; endow each CX with the discrete topology;
and let cX′,X : CX′ → CX for X ′ ⊇ X send each component of G − X ′ to the
component of G−X containing it; then {CX , cX′,X , X} is an inverse system whose
inverse limit, by construction, consists of the directions.

Theorem 5.2.7 ([30, Theorem 2.2]). Let G be any graph. Then the map ω 7→ fω
is a bijection between the ends of G and its directions, i.e. Ω = lim←−CX .

From now on we do not distinguish between Ω and the inverse limit space lim←−CX

with the inverse limit topology, and we call Ω the end space.
If a graph G is locally finite, then the star-comb lemma always yields a comb.

This fact has been generalised in Lemma 5.2.8 below, where the proof relies on
the combination of Halin’s combinatorial definition of an end with the topological
inverse limit point of view on ends as directions:

2For details on inverse limits, see e.g. [36] or [72].
3A poset (P,≤) is said to be directed if for all p, q ∈ P there is an r ∈ P with r ≥ p and r ≥ q.
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Lemma 5.2.8. Let G be any graph and let U ⊆ V (G) be infinite. If for every
X ∈ X only finitely many components of G−X meet U , then ∂ΩU is a non-empty
and compact subspace of Ω.

Proof. For every X ∈ X let KX ⊆ CX consist of the finitely many components of
G−X that meet U . Then the closed subspace ∂ΩU of the inverse limit Ω = lim←−CX

is non-empty and compact as inverse limit of its non-empty compact Hausdorff
projections KX , cf. [36, Corollary 2.5.7].

The combination of topology and infinite graph theory is known as topological
infinite graph theory.4 And in fact, Lemma 5.2.8 can be employed5 to deduce a
well-known result of Diestel from this field, [24, Theorem 4.1], which states that
a graph is compactified by its ends if and only if it is tough in that deleting any
finite set of vertices always leaves only finitely many components.

Since Lemma 5.2.8 yields combs even when there are both combs and stars (for
example if G is an infinite complete graph), this plus of control makes it a useful
addition to the star-comb lemma.

5.2.3. Critical vertex sets

We have indicated above that adding the ends generally does not suffice to com-
pactify a graph with the usual topologies.

However, every graph is naturally compactified by its ends plus critical vertex
sets, where a finite set X of vertices of an infinite graph G is critical if the collection

C̆X := {C ∈ CX | N(C) = X }

is infinite (cf. [25, 62] and Chapter 3). When G is connected, all its critical vertex
sets are non-empty, and so it follows that G having a critical vertex set is stronger
than G containing an infinite star: On the one hand, given a critical vertex set X,
each x ∈ X sends an edge to each of the infinitely many components C ∈ C̆X and
therefore is the centre of an infinite star. On the other hand, if G is obtained from
a ray R by completely joining its first vertex r to all the other vertices of R, then
G contains an infinite star but no critical vertex set.

Let us say that a critical vertex set X of G lies in the closure of M where M is
either a subgraph of G or a set of vertices of G, if infinitely many components in C̆X

meet M . The collection of all critical vertex sets of G is denoted by crit(G). The
combinatorial remainder of a graph G is the disjoint union Γ(G) := Ω(G)t crit(G).
As usual, Γ = Γ(G), and ∂ΓM consists of those γ ∈ Γ lying in the closure of M .
We obtain a slight strengthening of the star-comb lemma:

4An overview on this young field is presented in [26,27].
5If G is tough and a covering of GtΩ with basic open sets is given, first apply Lemma 5.2.8 to
V to obtain a finite subcover O of Ω, then apply Lemma 5.2.8 to U = V r

⋃
O to deduce

that U is finite and, therefore, Gr
⋃
O is compact.
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Lemma 5.2.9. Let G be any graph and let U ⊆ V (G) be infinite. Then at least
one of the following assertions holds:

(i) G has an end lying in the closure of U ;
(ii) G has a critical vertex set lying in the closure of U .

Proof. If there is a vertex set X ′ ∈ X such that infinitely many components of
G−X ′ meet U , then X ′ includes a critical vertex set X such that infinitely many
components in C̆X meet U , giving (ii). Otherwise Lemma 5.2.8 gives (i).

5.2.4. Normal trees

A rooted tree T ⊆ G, not necessarily spanning, is said to be normal in G if the
endvertices of every T -path in G are comparable in the tree-order of T , [26, p. 220].
We say that a vertex set W ⊆ V (G) is normally spanned in G if there is a normal
tree in G that contains W . A graph G is normally spanned if V (G) is normally
spanned, i.e., if G has a normal spanning tree.

The generalised up-closure bbxcc of a vertex x ∈ T is the union of bxc with
the vertex set of

⋃
C (x), where the set C (x) consists of those components of

G − T whose neighbourhoods meet bxc. Every graph G reflects the separation
properties of each normal tree T ⊆ G (we generalise [26, Lemma 1.5.5] to possibly
non-spanning normal trees):

Lemma 5.2.10. Let G be any graph and let T ⊆ G be any normal tree.

(i) Any two vertices x, y ∈ T are separated in G by the vertex set dxe ∩ dye.
(ii) Let W ⊆ V (T ) be down-closed. Then the components of G−W come in two

types: the components that avoid T ; and the components that meet T , which
are spanned by the sets bbxcc with x minimal in T −W .

Proof. (i) The proof is that of [26, Lemma 1.5.5 (i)].
(ii) In a first step, we prove that if a component C of G −W meets T and x

is minimal in C ∩ T , then C = G[bbxcc]. The backward inclusion holds because
bbxcc is connected, avoids W and contains x. The forward inclusion can be seen as
follows. On the one hand, C ∩ T ⊆ bxc. Indeed, by (i), any x–y path in C with
y ∈ C ∩ T contains a vertex below both x and y and every such vertex must be
the minimal vertex x itself. On the other hand, C − T ⊆

⋃
C (x). Indeed, every

component C ′ of C−T is a component of G−T since W ⊆ T , and by C∩T ⊆ bxc
each neighbour of C ′ inside C must be contained in bxc.

Now let us deduce (ii). Without loss of generality W is not empty. To begin, we
prove that each component C of G−W meeting T is spanned by bbxcc for some
minimal x in T −W . By the first step, it suffices to show that a minimal vertex x
of C ∩ T is also minimal in T −W , a fact that we verify as follows. The vertices
below x form a chain dte in T . As t is a neighbour of x, the maximality of C as a
component of G−W implies that t ∈ W , giving dte ⊆ W since W is down-closed.
Hence x is also minimal in T −W .

Conversely, if x is any minimal element of T −W , it is clearly also minimal in
C ∩ T for the component C of G −W to which it belongs. Together with the

80



5. Duality theorems for stars and combs I: Arbitrary stars and combs

first step we conclude that C is a component of G−W meeting T and spanned
by bbxcc.

As a consequence, the normal rays of a normal spanning tree T ⊆ G, those that
start at the root, reflect the end structure of G in that every end of G contains
exactly one normal ray of T , [26, Lemma 8.2.3]. More generally,

Lemma 5.2.11. If G is any graph and T ⊆ G is any normal tree, then every end
of G in the closure of T contains exactly one normal ray of T . Moreover, sending
these ends to the normal rays they contain defines a bijection between ∂ΩT and the
normal rays of T .

Proof. Let ω be any end of G in the closure of T . By Lemma 5.2.10 (i) at most
one normal ray of T is contained in ω, and so it remains to find a normal ray of T
that lies in ω. For this, we pick a comb in G attached to T with its spine in ω.
We construct a normal ray of T in ω, as follows.

Starting with the root v0 of T , recursively choose nodes v0, v1, v2, . . . of T such
that vn+1 is the minimal vertex of T −dvne for which bbvn+1cc spans the component
of G− dvne that contains all but finitely many vertices of the comb. Such a vertex
vn+1 exists by Lemma 5.2.10 (ii). And it is an upward neighbour of vn, which can
be seen by applying Lemma 5.2.10 (i) to vn and vn+1. In conclusion v0v1v2 . . . is a
normal ray of T that is equivalent in G to the spine of the comb.

The ‘moreover’ part holds as every normal ray of T has its end in G contained
in the closure of T .

Consequently, if G contains a comb attached to T , then T contains exactly one
normal ray that is equivalent in G to that comb’s spine.

Lemma 5.2.12. Let G be any graph and let T ⊆ G be any normal tree. Then
every critical vertex set of G in the closure of T is contained in T as a chain.

Proof. Let X be any critical vertex set of G that lies in the closure of T . For every
component C ∈ C̆X that meets T , pick a C–X edge from T . By the pigeonhole
principle, some infinitely many of these edges have the same endpoint x ∈ X,
giving rise to an infinite star in T . Then, by Lemma 5.2.10, dxe pairwise separates
all the leaves of the star above x at once; let us write L for the set of these leaves.
Since dxe is finite, all but finitely many of the infinitely many components in C̆X

that meet L are also components of G− dxe. And every vertex from X defines at
least one path of length two between distinct such components, by the definition
of critical vertex sets. Therefore, no vertex in X can be contained in a component
of G− dxe; in other words, X is contained in the chain dxe.

5.2.5. Containing vertex sets cofinally

We say that a rooted tree T ⊆ G contains a set W cofinally if W ⊆ V (T ) and W
is cofinal6 in the tree-order of T . Interestingly, our next lemma does not require T
to be normal.
6A subset X of a poset P = (P,≤) is cofinal in P , and ≤, if for every x ∈ X there is a p ∈ P

with p ≥ x.

81



5. Duality theorems for stars and combs I: Arbitrary stars and combs

Lemma 5.2.13. Let G be any graph. If T ⊆ G is a rooted tree that contains a
vertex set W cofinally, then ∂ΓT = ∂ΓW .

Proof. We first prove that ∂ΩT = ∂ΩW . The backward inclusion ∂ΩT ⊇ ∂ΩW
holds as T contains W . For the forward inclusion we prove equivalently that every
end of G that is not contained in the closure of W also does not lie in the closure
of T . So consider any end ω ∈ Ωr ∂ΩW , and pick a finite vertex set X ⊆ V (G)
separating W from ω. We claim that the finite set X ′ consisting of the vertices in X
and all vertices in the down-closure of X ∩V (T ) in T , i.e. X ′ := X ∪dX ∩V (T )eT ,
separates T from ω. Indeed, suppose for a contradiction that the component
C := C(X ′, ω) of G −X ′ meets T . Consider a vertex v ∈ C ∩ T . As X ′ ∩ V (T )
is down-closed in T , the up-closure bvcT is included in C. Hence—as T contains
W cofinally—the component C also contains a vertex from W , contradicting the
assumption that X ⊆ X ′ separates W from ω.

It remains to show that ∂ΓT and ∂ΓW coincide on crit(G). From W ⊆ T we
infer ∂ΓW ⊆ ∂ΓT , so it suffices to show that every critical vertex set that lies in
the closure of T does also lie in the closure of W . For this, let any critical vertex
set X ∈ ∂ΓT be given. We pick, for every component C ∈ C̆X meeting T , a vertex
u(C) of T in C. Then applying the star-comb lemma in T to this infinite vertex set
yields either a star or a comb attached to it. Since the finite vertex set X pairwise
separates every two vertices in the attachment set at once, we in fact get a star.
Consider the centre of the star. This is a vertex of T that has infinitely many
pairwise incomparable vertices u(C) above it. Using that T contains W cofinally,
we find a vertex w(C) in T ∩W above every u(C). As X is finite, we may assume
without loss of generality that every vertex w(C) is contained C. Then X lies in
the closure of the vertex set formed by the vertices w(C), and hence X ∈ ∂ΓW
follows.

5.2.6. Tree-decompositions and S-trees

We assume familiarity with [26, Section 12.3] up to but not including Lemma 12.3.2,
and with the concepts of oriented separations and S-trees for S a set of separations
of a given graph as presented in [26, Section 12.5]. Whenever we introduce a
tree-decomposition as (T,V) we tacitly assume that V = (Vt)t∈T . Usually we
refer to the adhesion sets of a tree-decompositions as separators. We call a tree-
decomposition rayless and locally finite if the decomposition tree T is rayless and
locally finite, respectively. A star-decomposition is a tree-decomposition whose
decomposition-tree is a star K1,κ for some cardinal κ. A rooted tree-decomposition
is a tree-decomposition (T,V) where T is rooted. We say that a rooted tree-
decomposition (T,V) of G covers a vertex set U ⊆ V (G) cofinally if the set of
nodes of T whose parts meet U is cofinal in the tree-order of T .

We will need the following standard facts about tree-decompositions:

Lemma 5.2.14 ([26, Lemma 12.3.1]). Let G be any graph with a tree-decomposition
(T,V) and let t1t2 be any edge of T and let T1, T2 be the components of T−t1t2, with
t1 ∈ T1 and t2 ∈ T2. Then Vt1 ∩ Vt2 separates A1 :=

⋃
t∈T1

Vt from A2 :=
⋃
t∈T2

Vt
in G.
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Corollary 5.2.15. Let (T,V) be any tree-decomposition of any graph G. If a
connected subgraph H ⊆ G avoids a part Vt, then there is a unique component T ′

of T − t with H ⊆
⋃
t′∈T ′ G[Vt′ ] and H avoids every part that is not at a node of

the component T ′.

A tree-decomposition (T,V) makes T into an S-tree for the set S of separations
it induces, cf. [26]. The converse is true, for example if T is rayless, but false in
general (it is no longer clear that every vertex of G lives in some part if T contains
a ray). By a simple distance argument, however, the converse holds in a special
case for which we need the following definition. Suppose that (T, α) is an S-tree
with T rooted in r ∈ T . We say that the separators of (T, α) are upwards disjoint
if for every two edges

→
e <

→
f pointing away from the root r the separators of α(

→
e)

and α(
→
f ) are disjoint. Then every S-tree with upwards disjoint separators induces

a tree-decomposition.

5.2.7. Tree-decompositions and S-trees displaying sets of
ends

In this section we give a brief summary of how the ends of G relate to the
decomposition trees of tree-decompositions and S-trees. For the sake of readability,
we introduce all needed concepts for S-trees and let the tree-decompositions inherit
these concepts from their corresponding S-trees.

Let (T, α) be any Sℵ0-tree. If ω is an end of G, then ω orients every finite-order
separation {A,B} ∈ Sℵ0 of G towards the side K ∈ {A,B} for which every ray
in ω has a tail in G[K]. In this way, ω induces a consistent orientation of

→
Sℵ0

and, via α, also induces a consistent orientation O of
→
E(T ). Then ω either lives

at a unique node t ∈ T in that the star
→
Ft = { (e, s, t) ∈

→
E(T ) | e = st ∈ T } at

t is included in O, or corresponds naturally to a unique end η of T in that for
some (equivalently: every) ray t1t2 . . . in η all oriented edges (tntn+1, tn, tn+1) are
contained in O. When (T, α) corresponds to a tree-decomposition (T,V) and ω
lives at t, then we also say that ω lives in the part Vt at t. Moreover, we remark
that ω lives in Vt if and only if some (equivalently: every) ray in ω has infinitely
many vertices in Vt. Likewise, ω corresponds to η if and only if some (equivalently:
every) ray R ∈ ω follows the course of some (equivalently: every) ray W ∈ η (in
that for every tail W ′ ⊆ W the ray R has infinitely many vertices in

⋃
t∈W ′ Vt). In

both cases ‘having infinitely many vertices in’ cannot be replaced with ‘having a
tail in’, e.g. consider decomposition trees that are infinite stars or combs whose
teeth avoid their spines.

Consider the map τ : Ω(G)→ Ω(T ) t V (T ) that takes each end of G to the end
or node of T which it corresponds to or lives at respectively. This map essentially
captures how the ends of G relate to the ends of T . We say that (T, α) displays a
set of ends Ψ ⊆ Ω(G) if τ restricts to a bijection τ � Ψ: Ψ→ Ω(T ) between Ψ and
the end space of T and maps every end that is not contained in Ψ to some node
of T .

It is a natural and largely open question for which subsets Ψ ⊆ Ω(G) a graph G
has a tree-decomposition (T,V) that displays Ψ. Only recently, Carmesin achieved
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a major breakthrough by providing a positive answer for Ψ the set of undominated
ends of G. In order to state his result in its full strength, we introduce two more
definitions and motivate them in a lemma.

Suppose that T is rooted in r ∈ T . Let us say that the separators of (T, α) are
upwards disjoint if for every two edges

→
e <

→
f pointing away from the root r the

separators of α(
→
e) and α(

→
f ) are disjoint. Here,

→
e = (e, s, t) points away from r if

r ≤T s <T t, i.e., if s ∈ rT t. If the finite separators of (T, α) are upwards disjoint,
then by the star-comb lemma and a simple distance argument, every end of T
has some ends of G corresponding to it (i.e. τ−1(η) 6= ∅ for every end η of T ).
And if additionally (T, α) is upwards connected in that for every edge

→
e pointing

away from the root r the induced subgraph G[B] stemming from (A,B) = α(
→
e)

is connected, then T already displays the set of those ends of G that correspond
naturally to ends of T (i.e. |τ−1(η)| = 1 for every end η of T ):

Lemma 5.2.16. Let G be any graph. Every upwards connected rooted Sℵ0-tree
(T, α) with upwards disjoint separators displays the ends of G that correspond to
the ends of T .

Proof. By our preliminary remarks it remains to show that for every end η of T
there is at most one end of G corresponding to η. Suppose for a contradiction that
η is an end of T such that two distinct ends ω 6= ω′ of G correspond to it, and write
R for the rooted ray of T that represents η. Pick X ∈ X such that ω and ω′ live
in distinct components of G−X. As the separators of (T, α) are upwards disjoint,
by a distance argument we find an edge e ∈ R with orientation

→
e away from the

root such that the separation (A,B) = α(
→
e ) satisfies B ∩X = ∅. Now both of the

two ends ω and ω′ have rays in G[B] because both of them correspond to η. And
in G[B] we find paths connecting these rays, since (T, α) is upwards connected.
But then these rays and paths avoid X, contradicting the choice of X.

Now we are ready to state the following result of Carmesin [19] that solved a
conjecture of Diestel [28] from 1992 (in amended form) and, as a corollary, also
solved a conjectured of Halin [47] from 1964 (again in amended form):

Theorem 5.2.17 (Carmesin 2014). Every connected graph G has an upwards
connected rooted tree-decomposition with upwards disjoint finite separators that
displays the undominated ends of G.

The theorem above accumulates Carmesin’s Theorem 1, Remark 6.6 and the
second paragraph of his ‘Proof that Theorem 1 implies Corollary 2.6’.

Our Lemma 6.3.7 in Chapter 6 will allow us to strengthen Carmesin’s theorem so
that it states that every connected graph G has a tree-decomposition with pairwise
disjoint finite connected separators that displays the undominated ends of G.

5.3. Combs

Jung [52] noted that, given any connected graph G and any vertex set U ⊆ V (G),
the absence of a comb attached to U is equivalent to U being dispersed in G,
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meaning that for every ray R ⊆ G there is a finite vertex set X ⊆ V (G) separating
R from U . This equivalence then gives another equivalence as U being dispersed
rephrases to ‘no end of G lies in the closure of U ’. For readers familiar with the
topological space |G| = G t Ω as in [26], this is to say that U is closed in |G|.
These assertions—while equivalent to the absence of a comb—are abstract and do
not immediately provide concrete structures that are complementary to combs.
Providing concrete complementary structures is the aim of this section.

5.3.1. Normal trees

In this section we prove

Theorem 5.1. Let G be any connected graph, and let U ⊆ V (G) be any vertex
set. Then the following assertions are complementary:

(i) G contains a comb attached to U ;
(ii) there is a rayless normal tree T ⊆ G that contains U .

Moreover, the normal tree T in (ii) can be chosen such that it contains U cofinally.

For this, we need the following key results of Jung’s proof of his 1967 charac-
terisation, Theorem 5.3.5, of the connected graphs that have normal spanning
trees.

Proposition 5.3.1 (Jung). Let G be any connected graph and let U ⊆ V (G) be
any vertex set. If U is a countable union

⋃
n∈N Un of dispersed sets Un ⊆ V (G)

and v is any vertex of G, then G contains an ascending sequence T0 ⊆ T1 ⊆ · · · of
rayless normal trees Tn ⊆ G such that each Tn contains U0 ∪ · · · ∪Un cofinally and
is rooted in v. In particular, the overall union T :=

⋃
n∈N Tn is a normal tree in G

that contains U cofinally and is rooted in v.

Proof. It suffices to show that, given a rayless normal tree Tn containing U≤n :=
U0 ∪ · · · ∪ Un cofinally, we find a rayless normal tree Tn+1 extending Tn and
containing U≤n+1 = U≤n ∪ Un+1 cofinally. For this, let any Tn be given. Consider
the collection of all normal trees T ⊇ Tn with T ∩ U≤n+1 cofinal in the tree-order
of T , partially ordered by letting T ≤ T ′ whenever T is extended by T ′ as normal
tree. Since Un+1 is dispersed and Tn is rayless, all of these trees must be rayless.
Let Tn+1 be a maximal tree that Zorn’s lemma provides for this poset. In the
following we show that Tn+1 is as desired.

Assume for a contradiction that some vertex u ∈ U≤n+1 is not contained in
Tn+1. Since Tn+1 is normal, the neighbourhood of the component C of G− Tn+1

that contains u forms a chain in the tree-order of Tn+1. As Tn+1 is rayless, this
chain has a maximal node x ∈ Tn+1. Let T ′ be the union of Tn+1 and an x–u path
P with P̊ ⊆ C. Then the neighbourhood in T ′ of any new component C ′ ⊆ C
of G − T ′ is a chain in T ′, so T ′ is again normal. But then T ′ contradicts the
maximality of Tn+1, completing the proof that Tn+1 is as desired.

Corollary 5.3.2 (Jung). Let G be any graph and let U ⊆ V (G) be any vertex set.
If U is dispersed itself and v is any vertex of G, then G contains a rayless normal
tree that contains U cofinally and is rooted in v.

85



5. Duality theorems for stars and combs I: Arbitrary stars and combs

Corollary 5.3.3 (Jung). Let G be any graph and let U ⊆ V (G) be any vertex set.
If U is countable and v is any vertex of G, then G contains a normal tree that
contains U cofinally and is rooted in v.

Lemma 5.3.4. Let G be any graph. The vertex set of any rayless normal tree
T ⊆ G is dispersed. In particular, the levels of any normal tree T ⊆ G are
dispersed.

Proof. Lemma 5.2.11.

Jung’s abstract characterisation of the normally spanned graphs goes as follows:

Theorem 5.3.5 (Jung, [52, Satz 6]). Let G be any graph. A vertex set W ⊆ V (G)
is normally spanned in G if and only if it is a countable union of dispersed sets.
In particular, G is normally spanned if and only if V (G) is a countable union of
dispersed sets.

For an excluded-minor characterisation of the connected graphs with normal
spanning trees see Diestel and Leader’s [32].

Proof of Theorem 5.3.5. The backward implication is provided by Proposition 5.3.1.
The forward implication holds as the levels of any normal tree are dispersed,
Lemma 5.3.4.

We are now ready to prove Theorem 5.1:

Proof of Theorem 5.1. First, to show that at most one of (i) and (ii) holds, we
show (ii)→ ¬(i). If T ⊆ G is a rayless normal tree containing U , then V (T ) is
dispersed by Lemma 5.3.4, and hence so is U ⊆ V (T ).

It remains to show that at least one of (i) and (ii) holds; we show ¬(i)→(ii).
Since the absence of a comb with all its teeth in U means that U is dispersed,
Corollary 5.3.2 yields a rayless normal tree in G that contains U cofinally.

5.3.2. Tree-decompositions

In this section, we show how the rayless normal tree from Theorem 5.1 gives rise
to a tree-decomposition that is complementary to combs.

Theorem 5.2. Let G be any connected graph, and let U ⊆ V (G) be any vertex
set. Then the following assertions are complementary:

(i) G contains a comb attached to U ;
(ii) G has a rayless tree-decomposition into parts each containing at most finitely

many vertices from U and whose parts at non-leaves of the decomposition
tree are all finite.

Moreover, the rayless tree-decomposition in (ii) displays ∂ΩU and may be chosen
with connected separators.

We start with a lemma which shows that at most one of (i) and (ii) holds.
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Lemma 5.3.6. Let G be any graph and let U ⊆ V (G) be any vertex set. Suppose
that G has a rayless tree-decomposition into parts each containing at most finitely
many vertices from U and whose parts at non-leaves of the decomposition tree are
all finite. Then for every infinite U ′ ⊆ U there is a critical vertex set of G that
lies in the closure of U ′.

Proof. Let such a tree-decomposition (T,V) of G be given for U , and let U ′ be
an arbitrary infinite subset of U . For every u ∈ U ′ we choose a node tu ∈ T with
u ∈ Vtu . Since each part of the tree-decomposition contains at most finitely many
vertices from U , we may assume without loss of generality (moving to an infinite
subset of U ′) that the nodes tu are pairwise distinct. Hence applying Lemma 5.2.4
in the rayless tree T yields a star S attached to { tu | u ∈ U ′ }. Without loss
of generality (as before) we may assume that the nodes tu form precisely the
attachment set of S and that no vertex u from U ′ is contained in the finite part
Vc at the central node c of S ⊆ T . For every u ∈ U ′ let Cu be the component
of G− Vc containing u. Then distinct vertices from U ′ are contained in distinct
components of G − Vc by Lemma 5.2.14. Since the finite part Vc contains the
neighbourhood of each component Cu, by pigeon-hole principle we find a subset
X ⊆ Vc which is precisely equal to the neighbourhood of Cu for some infinitely
many u ∈ U ′.

Proof of Theorem 5.2. By Lemma 5.3.6 at most one of (i) and (ii) holds. It remains
to show that at least one of (i) and (ii) holds.

We show ¬(i)→(ii). Let Tnt ⊆ G be a rayless normal tree containing U as
provided by Theorem 5.1. We construct the desired tree-decomposition from Tnt.
As Tnt is rayless and normal, the neighbourhood of any component C of G−Tnt is
a finite chain in the tree-order of Tnt, and hence has a maximal element tC ∈ Tnt.
Now, let the tree T be obtained from Tnt by adding each component C of G− Tnt
as a new vertex and joining it precisely to tC . The tree T will be our decomposition
tree; it remains to name the parts. For nodes t ∈ Tnt ⊆ T we let Vt consist of
the down-closure dteTnt of t in the normal tree Tnt. And for newly added nodes
C ∈ T − Tnt we let VC be the union of VtC and the vertex set of the component C,
i.e., we put VC = dtCeTnt ∪ V (C). It is straightforward to check that T with these
parts forms a tree-decomposition of G that meets the requirements of (ii) and
satisfies the theorem’s ‘moreover’ part.

Our next example shows that Theorem 5.2 (ii) cannot be strengthened so as to
get a star as decomposition tree or to have pairwise disjoint separators:

Example 5.3.7. Suppose that G consists of the first three levels of Tℵ0 , the tree
all whose vertices have countably infinite degree, and let U = V (G). Then G is
rayless so there is no comb attached to U .

First, G has no star-decomposition into parts each containing at most finitely
many vertices from U : Indeed, assume for a contradiction that G has such a
star-decomposition (S,V), and let c be the centre of the infinite star S. As the
part Vc contains at most finitely many vertices from U = V (G) it must be finite.
Then each component of G− Vc is contained in some G[V`] with ` a leaf of S by
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Corollary 5.2.15. As each part of (S,V) contains at most finitely many vertices
from U , this means that every component of G−Vc contains at most finitely many
vertices from U = V (G) and hence is finite. But as Vc is finite, G− Vc must have
an infinite component, a contradiction.

Second, G also has no rayless tree-decomposition with finite and pairwise disjoint
separators such that each part contains at most finitely many vertices from U :
Indeed, suppose for a contradiction that G has such a tree-decomposition (T,V).
Without loss of generality we may assume that all its parts are non-empty. The
rayless decomposition tree T has a vertex t of infinite degree, so Vt contains
infinitely many of the finite and pairwise disjoint separators. As G is connected,
all of these are non-empty by Lemma 5.2.14, so Vt is infinite, and hence so is
Vt ∩ U = Vt. But this contradicts our assumptions.

5.3.3. Critical vertex sets

The absence of a comb attached to U is equivalent to U being dispersed, which
is to say that no end of G lies in the closure of U . With the combinatorial
remainder Γ(G) = Ω(G) t crit(G) compactifying G in mind, this means that only
critical vertex sets of G lie in the closure of U , i.e. ∂ΓU ⊆ crit(G). Phrasing this
combinatorially gives

Theorem 5.3. Let G be any connected graph, and let U ⊆ V (G) be any vertex
set. Then the following assertions are complementary:

(i) G contains a comb attached to U ;
(ii) for every infinite U ′ ⊆ U there is a critical vertex set X ⊆ V (G) such that

infinitely many of the components in C̆X meet U ′.

Quantifying over all U ′ in Theorem 5.3 is necessary for (ii)→ ¬(i), e.g., if G
is an infinite star of rays with U = V (G). We remark that Theorem 5.3 implies
Halin’s [41, Satz 1] from 1965 which reads as follows: A graph G is rayless if and
only if every infinite M ⊆ V (G) has an infinite subset M ′ for which there is a
finite H ⊆ G such that every component of G − H contains only finitely many
vertices of M ′.

Since, by now, the right tools are at hand, we can prove Theorem 5.3 in two
efficient ways:

Combinatorial proof of Theorem 5.3 using Theorem 5.1 or 5.2. Clearly, at most
one of (i) and (ii) can hold. And if G contains no comb attached to U , then (ii)
holds by Theorem 5.1 with Lemma 5.2.4 or by Theorem 5.2 with Lemma 5.3.6.

Inverse limit proof of Theorem 5.3. Lemma 5.2.9 gives ¬(i)→(ii).

Note that condition (ii) yields a star attached to U .
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5.3.4. Rank

In 1983, Schmidt [78] introduced a notion that is now known as the rank of a
graph, cf. Chapter 8.5 of [26]. His rank provides a recursive definition of the class
of rayless graphs which enables us to prove assertions about rayless graphs by
transfinite induction. An outstanding application of this technique is the proof
of the unfriendly partition conjecture for rayless graphs, cf. [13, 26]. Since the
absence of a comb attached to U is equivalent to the existence of a rayless normal
tree containing U , Theorem 5.1, one may wonder whether there somehow is a link
to Schmidt’s rank. In this section we show that this is indeed the case.

Schmidt defines the rank of a graph as follows. He assigns rank 0 to all the finite
graphs. And given an ordinal α > 0, he assigns rank α to every (not necessarily
connected) graph G that does not already have a rank β < α and which has a
finite set X of vertices such that every component of G−X has some rank < α.

Lemma 5.3.8 ([26, Lemma 8.5.2]). Let G be any graph. Then the following
assertions are complementary:

(i) G contains a ray;
(ii) G has a rank.

Now we introduce the notion of a U -rank, based on Schmidt’s rank, which
additionally takes into account a fixed set U . For this, suppose that U is any set.
Even though, formally, U is an arbitrary set, we think of U as a set of vertices. Let
us assign U -rank 0 to all the graphs that contain at most finitely many vertices
from U . Given an ordinal α > 0, we assign U -rank α to every graph G that does
not already have a U -rank β < α and which has a finite set X of vertices such
that every component of G−X has some U -rank < α. Note that the rank of G is
equal to the V -rank of G.

The U -rank behaves quite similar to Schmidt’s rank, [26, p. 243]: When disjoint
graphs Gi have U -ranks αi < α, their union clearly has a U -rank of at most α; if
the union is finite, it has U -rank maxi αi. Induction on α shows that subgraphs of
graphs of U -rank α also have a U -rank of at most α. Conversely, joining finitely
many new vertices to a graph, no matter how, will not change its U -rank.

Not every graph has a U -rank. Indeed, a comb attached to U cannot have
a U -rank, since deleting finitely many of its vertices always leaves a component
that is a comb attached to U . As subgraphs of graphs with a U -rank also have a
U -rank, this means that only graphs without such combs can have a U -rank. But
all these do:

Theorem 5.4. Let G be any graph and let U be any set. Then the following
assertions are complementary:

(i) G contains a comb attached to U ;
(ii) G has a U-rank.

Phrased differently, the U -rank provides a recursive definition of the class of the
graphs in which U is dispersed.
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Proof of Theorem 5.4. We show the equivalence (i)↔¬(ii). The forward implica-
tion has already been pointed out above. For the backward implication suppose
that G has no U -rank; we show that G must contain a comb attached to U . As
G has no U -rank, one of its components, C0 say, has no U -rank as well. Pick
u0 ∈ U ∩ C0 arbitrarily. Since C0 has no U -rank, it follows that C0 − u0 has a
component C1 that has no U -rank; let u1 ∈ U ∩ C1 and pick a u0–u1 path P1 in
C0 with P̊1 ⊆ C1. Next, delete P1 from C1 and let C2 ⊆ C1 − P1 be a component
that has no U -rank. Let u2 ∈ U ∩ C2, pick any P1–u2 path P2 in C1 with P̊2 ⊆ C2

and note that P2 meets P1 in ů1P1. Therefore, if we continue inductively to find
paths P1, P2, . . . in G, then their union

⋃
n Pn is a comb with attachment set

{un | n ∈ N } ⊆ U .

There is a way to see immediately that for a connected graph G having a U -rank
is stronger than G containing a star attached to U when U is infinite. For this,
suppose that G has U -rank α. Then α > 0 as U ⊆ V (G) is infinite. Hence G has a
finite set X of vertices such that every component of G−X has some U -rank < α.
In particular, G−X must have some infinitely many components that meet U .
Each of these components gives some U–X path avoiding all other components, so
the pigeon-hole principle yields a star attached to U as desired.

The U -rank of a graph has many properties. In the remainder of this section,
we prove three such properties that we will put to use in the next section.

Lemma 5.3.9. Let G be any graph, let U be any set and suppose that G has
U-rank α. Then the following assertions hold:

(i) for every subset U ′ ⊆ U the graph G has U ′-rank ≤ α;
(ii) for every subgraph H ⊆ G the graph H has U-rank ≤ α.

Proof. Induction on α.

Lemma 5.3.10. Let U be any set. If T is a rooted rayless tree containing U∩V (T )
cofinally, then the U-rank of T is equal to the rank of T .

Proof. Let α be the U -rank of T and let β be the rank of T . Since the V (T )-rank
of T is the same as the rank of T , Lemma 5.3.9 (i) gives the inequality α ≤ β. An
induction on α shows the converse inequality (in the induction step consider a set
X ⊆ V (T ) witnessing that T has U -rank α and employ the induction hypothesis
to see that every component of T −X has rank < α; it is convenient to assume X
to be down-closed, which is possible by Lemma 5.3.9 (ii)).

Lemma 5.3.11. If G is any graph and T ⊆ G is a rayless normal tree containing
U ∩G cofinally, then the following three ordinals are all equal:

(i) the rank of T ;
(ii) the U-rank of T ;

(iii) the U-rank of G.
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Proof. The equality (i) = (ii) is the subject of Lemma 5.3.10. Lemma 5.3.9 gives
the inequality (ii) ≤ (iii). We show the remaining inequality (iii) ≤ (ii) by induction
on the U -rank of T , as follows.

If the U -rank of T is 0, then U ∩ T = U ∩G is finite, and thus the U -rank of
G is 0 as well. For the induction step, suppose that T has U -rank α > 0, and
let X ⊆ V (T ) be any finite vertex set such that every component of T −X has
U -rank < α. By Lemma 5.3.9 (ii) we may assume that X is down-closed in T . It
suffices to show that every component of G−X has a U -rank < α.

If C is a component of G−X, then either C avoids T ⊇ U ∩C and has U -rank
0 < α, or C meets T . In the case that C meets T , by Lemma 5.2.10 we know that
C is spanned by bbxcc with x minimal in T −X, so T ∩ C ⊆ C is a normal tree
containing U ∩ C cofinally. Finally, by the induction hypothesis,

(U -rank of C) ≤ (U -rank of T ∩ C) < α.

5.3.5. Combining the duality theorems

So far we have seen duality theorems for combs in terms of normal trees, tree-
decompositions, critical vertex sets and rank. With these four complementary
structures for combs at hand, the question arises whether it is possible to combine
them all. In this section we will answer the question in the affirmative. That is,
we will present a fifth complementary structure for combs that combines all of the
four above.

This fifth structure will be a tree-decomposition that is more specific than the
one listed above. It will stem from a normal tree in a way that we call ‘squeezed
expansion’. Just like the tree-decomposition listed above, all its parts will meet U
finitely, and all its parts at non-leaves will be finite. Moreover, it will display not
only the ends in the closure of U , but also the critical vertex sets in the closure of U .
In order to realise this, we will extend the definition of ‘display’ in a reasonable
way. Finally, the decomposition tree will have a rank that is equal to the U -rank
of the whole graph. The combined duality theorem reads as follows:

Theorem 5.5. Let G be any connected graph, and let U ⊆ V (G) be any vertex
set. Then the following assertions are complementary:

(i) G contains a comb attached to U ;
(ii) G has a rooted tame tree-decomposition (T,V) that covers U cofinally and

satisfies the following four assertions:

– (T,V) is the squeezed expansion of a normal tree in G that contains the
vertex set U cofinally;

– every part of (T,V) meets U finitely and parts at non-leaves are finite;
– (T,V) displays ∂ΓU ⊆ crit(G);
– the rank of T is equal to the U-rank of G.

Corollary 5.3.12. If a connected graph G is rayless (equivalently: if G has a
rank), then G has a tame tree-decomposition into finite parts that displays the
combinatorial remainder of G and has a decomposition tree whose rank is equal to
the rank of G.
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Here we remark that, in this chapter, we consider Schmidt’s ranking of rayless
graphs as discussed in Section 5.3.4. In particular, when we consider the rank of
a (possibly rooted) tree, we do not mean the rank for rooted trees that defines
recursive prunability (cf. [26, p. 242 & 243]).

The proof of the theorem above is organised as follows. First, we will state
Proposition 5.3.13, which lists some useful properties of squeezed expansions. Then,
we will employ this proposition in a high level proof of Theorem 5.5. In order
to follow the line of argumentation up to here, it is not necessary to know the
definitions of ‘display’ and ‘squeezed’ ‘expansion’, which is why we will introduce
them subsequently to our high level proof. Finally, we will prove Proposition 5.3.13.

Proposition 5.3.13. Let G be any graph and suppose that Tnt ⊆ G is a normal
tree such that every component of G − Tnt has finite neighbourhood, that (T,V)
is the expansion of Tnt and that (T ′,W) is a squeezed (T,V). Then the following
assertions hold:

(i) (T,V) is upwards connected;
(ii) both (T,V) and (T ′,W) display ∂ΓTnt;

(iii) all the parts of (T,V) and (T ′,W) meet Tnt finitely;
(iv) parts of (T ′,W) at non-leaves of T ′ are finite;
(v) T ′ is rayless if and only if T is rayless if and only if Tnt is rayless;

(vi) if one of T ′, T and Tnt is rayless, then the ranks of T ′, T and Tnt all exist
and are all equal.

The proposition has a corollary that is immediate because every normal spanning
tree will have an expansion, and expansions will be rooted and tame:

Corollary 5.3.14. Every normally spanned graph has a rooted tame tree-decom-
position displaying its combinatorial remainder.

Now we prove Theorem 5.5 using Proposition 5.3.13 above:

Proof of Theorem 5.5. (i) and (ii) exclude each other for various reasons we have
already discussed.

For the implication ¬(i)→(ii) suppose that G contains no comb attached to U .
By Theorem 5.1 there is a rayless normal tree Tnt ⊆ G that contains U cofinally. We
show that the squeezed expansion (T,V) of Tnt is as desired. By Proposition 5.3.13
every part of (T,V) meets Tnt ⊇ U finitely and parts at non-leaves of T are finite.
As we have ∂ΓTnt = ∂ΓU by Lemma 5.2.13, Proposition 5.3.13 also ensures that
the squeezed expansion (T,V) of Tnt displays ∂ΓU . Finally, the U -rank of G exists
by Theorem 5.4 and is equal to the rank of Tnt by Lemma 5.3.11, which in turn is
equal to the rank of T by Proposition 5.3.13.

Next, we provide all the definitions needed: First, we extend the definition
of ‘display’ to include critical vertex sets (Definition 5.3.16). Second, we define
the ‘expansion’ of a normal tree (Definition 5.3.17), which is a certain tree-
decomposition. Finally we define what it means to ‘squeeze’ a tree-decomposition
(Definition 5.3.18).
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Recall that the definition of ‘display’, as discussed in Section 5.2, highly relies
on the fact that the ends of a graph orient all its finite-order separations. Now,
critical vertex sets are closely related to ends, as they together with the ends turn
graphs into compact topological spaces. This is why we may hope that every
critical vertex set X orients the finite-order separations so as to lead immediately
to a notion of ‘displaying a collection of critical vertex sets’. Probably the most
natural way how a critical vertex set X could orient a finite-order separation
{A,B} towards a side K ∈ {A,B} is that X together with all but finitely many
of the components in C̆X are contained in K.

However, this is too much to ask: For example consider an infinite star. The
centre c of the star forms a critical vertex set X = {c}, and any separation with
separator X that has infinitely many leaves on both sides will not be oriented by
X in this way.

But focusing on a suitable class of separations, those that are tame, leads
to a natural extension of ‘display’ to include critical vertex sets: A finite-order
separation {X,C } of G is tame if for no Y ⊆ X both C and CX r C contain
infinitely many components whose neighbourhoods are precisely equal to Y . The
tame separations of G are precisely those finite-order separations of G that respect
the critical vertex sets:

Lemma 5.3.15. A finite-order separation {A,B} of a graph G is tame if and only
if every critical vertex set X of G together with all but finitely many components
from C̆X is contained in one side of {A,B}.

Proof. For the forward implication, note that every distinct two vertices of a
critical vertex set are linked in G[X ∪

⋃
C̆X ] by infinitely many independent paths,

so every critical vertex set of G meets at most one component of G− (A∩B).

We say that an Sℵ0-tree (T, α) is tame if all the separations in the image of α
are tame. And we say that a tree-decomposition is tame if it corresponds to a
tame Sℵ0-tree.

If X is a critical vertex set of G and (T, α) is a tame Sℵ0-tree, then X induces
a consistent orientation of the image of α by orienting every tame finite-order
separation {A,B} towards the side that contains X and all but finitely many of
the components from C̆X (cf. Lemma 5.3.15 above). This consistent orientation
also induces a consistent orientation of

→
E(T ) via α. Then, just like for ends, the

critical vertex set X either lives at a unique node t ∈ T or corresponds to a unique
end of T . In this way, we obtain an extension σ : Γ(G)→ Ω(T )t V (T ) of the map
τ : Ω(G)→ Ω(T ) t V (T ) from Section 5.2.7.

Since σ extends τ from the end space Ω(G) of G to the full combinatorial
remainder Γ(G) of G, it is reasonable to wonder why the target set of σ is that of τ ,
namely Ω(T ) t V (T ), rather than analogously taking the target set Γ(T ) t V (T ).
At a closer look, the critical vertex sets of T are already contained in the target
set Ω(T ) t V (T ), for they are precisely the infinite degree nodes of T . This, and
the fact that every critical vertex set X of G naturally comes with an oriented
tame separation (X, C̆X) of G, motivate the following definition.

93



5. Duality theorems for stars and combs I: Arbitrary stars and combs

Definition 5.3.16. [Display Ψ ⊆ Γ(G)] Let G be any graph. A rooted tame
Sℵ0-tree (T, α) displays a subset Ψ of the combinatorial remainder Γ(G) = Ω(G)t
crit(G) of G if σ satisfies the following three conditions:

� σ restricts to a bijection between Ψ ∩ Ω(G) and Ω(T );

� σ restricts to a bijection between Ψ ∩ crit(G) and the infinite-degree nodes
of T so that: whenever σ sends a critical vertex set X ∈ Ψ to t ∈ T , then t
has a predecessor s ∈ T with α(s, t) = (X,C ) such that C ⊆ C̆X is cofinite
and α restricts to a bijection between

→
Ft and the star in

→
Sℵ0 that consists of

the separation (X,C ) and all the separations (C,X) with C ∈ C ;

� σ sends all the elements of Γ(G)rΨ to finite-degree nodes of T .

Note that this definition of displays is not exactly an extension of the original
definition given in Section 5.2.7. Indeed, if (T, α) displays Ψ and ω ∈ Ψ is an end,
then with the original definition ω may correspond to an infinite degree vertex
of T , but not with the new definition. However, the new definition is stronger
than the original one: if (T, α) displays Ψ ⊆ Γ(G) in the new sense, then (T, α)
displays Ψ ∩ Ω(G) in the original sense.

We solve this ambiguity as follows. Whenever we say that a tree-decomposition
or Sℵ0-tree displays some set Ψ of ends of G and it is clearly understood that we
view Ψ as a subset of Ω(G), e.g. when we let Ψ consist of the undominated ends
of G or consider Ψ = ∂ΩU , then by ‘displays’ we refer to the original definition
from Section 5.2.7. But whenever we explicitly introduce Ψ as a subset of the
combinatorial remainder Γ(G) of G, e.g. when we let Ψ consist of critical vertex sets
or consider Ψ = ∂ΓU , then by ‘displays’ we refer to the new definition introduced
above.

We wish to make a few remarks on our new definition. If (T, α) is a rooted
tame Sℵ0-tree displaying some Ψ ⊆ Γ(G) and the tree-decomposition (T,V) cor-
responding to (T, α) exists, then Vσ(X) = X whenever X is a critical vertex set
in Ψ. We do not require C = C̆X in the definition of displays because there are
simply structured normally spanned graphs for which otherwise none of their tree-
decompositions would display their combinatorial remainder. See Examples 4.3.6
and 4.3.7 for details.

Now, let us turn to the expansion of a normal tree. Given vertex sets Y ⊆
X ⊆ V (G) we write CX(Y ) for the collection of all components C ∈ CX with
N(C) = Y .

Definition 5.3.17 (Expansion of a normal tree). In order to define the expansion,
suppose that G is any connected graph and Tnt ⊆ G is any normal tree such that
every component of G− Tnt has finite neighbourhood. From the normal tree Tnt
we obtain the expansion (T,V) of Tnt in G in two steps, as follows.

For the first step, let us suppose without loss of generality that for all nodes
t ∈ Tnt every up-neighbour t′ of t in Tnt is named as the component bbt′cc of G−dte
containing t′. We define a map β :

→
E(Tnt)→

→
Sℵ0 by letting β(t, C) := (N(C), C)

and β(C, t) := β(t, C)∗ whenever C is an up-neighbour of a node t in Tnt. Then
(Tnt, β) is a rooted tame Sℵ0-tree that displays ∂ΩTnt ⊆ Ω(G).
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In the second step, we obtain from (Tnt, β) a rooted tame Sℵ0-tree (T, α) dis-
playing ∂ΓTnt ⊆ Γ(G). Informally speaking we sort the separations of the form
β(t, C) with t ∈ Tnt an infinite degree-node and C an up-neighbour of t in Tnt by
the critical vertex sets X ⊆ dte in the closure of Tnt with C ∈ C̆X . Formally this
is done as follows (cf. Figure 5.3.1).

X X ′

Cdte(X)
Cdte(X

′)
Cdte(X

′′)Tnt

t

T

t

Figure 5.3.1.: The second step in the construction of the expansion of normal trees.
The critical vertex sets X and X ′ are in the closure of Tnt, while
X ′′ is not. The three sets X, X ′ and X ′′ are all the critical vertex
sets of G that contain t and are contained in dte.

For every infinite-degree node t ∈ Tnt and every critical vertex set X ∈ ∂ΓTnt
satisfying t ∈ X ⊆ dte we do the following:

(i) we add a new vertex named X to Tnt and join it to t;
(ii) for every component C ∈ Cdte(X) ⊆ C̆X we delete the edge tC (this is

redundant when Tnt avoids C) and add the new edge XC (note that in
particular the vertex C gets added as well, even if Tnt avoids C);

(iii) we let α(t,X) := (X,Cdte(X)), and for every component C ∈ Cdte(X) we let
α(X,C) := (X,C).

Then we take T to be the resulting tree, and we extend α to all of
→
E(T ) by letting

α(
→
e) := β(

→
e) whenever the edge e of T is also an edge of the normal tree Tnt. The

rooted tame tree-decomposition (T,V) corresponding to (T, α) is the expansion of
Tnt in G. ♦

And here is the definition of squeezing:

Definition 5.3.18 (Squeezing a tree-decomposition). Suppose that (T,V) and
(T ′,W) are tree-decompositions of G. We say that (T ′,W) is a squeezed (T,V)
if (T ′,W) is obtained from (T,V) as follows. The tree T ′ is obtained from T by
adding, for every node t ∈ T that has finite degree > 1 and whose part Vt is
infinite, a new node t′ to T and joining it to t. For all these nodes t the part Wt is
the union of the separators of (T,V) associated with the edges of T at t, and the
part Wt′ is taken to be the part Vt. For all other nodes t the part Wt is Vt.

Note that if (T ′,W) is the squeezed (T,V) and all separators of (T,V) are finite,
then all the infinite parts Vt with t an internal finite-degree node of T become
finite parts Wt. Thus, all parts Wt with t an internal finite-degree node of T ′ are
finite. Achieving this property is the purpose of squeezing.

Squeezing preserves tameness:
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Lemma 5.3.19. Let G be any graph, let (T,V) be any tree-decomposition of G
with finite separators and let (T ′,W) be the squeezed (T,V). If (T,V) is tame, then
(T ′,W) is tame as well.

Proof. Suppose that (T,V) is a tame tree-decomposition of G and that (T ′,W) is
the squeezed (T,V). Separations of G that are induced by (T ′,W) are tame when
they are induced by edges of T ′ that are also edges of T ⊆ T ′. Hence it suffices
to show that for every leaf ` ∈ T ′ − T with neighbour t ∈ T ⊆ T ′ the separation
induced by `t ∈ T ′ is tame. For this, let any edge `t ∈ T ′ be given and write
s0, . . . , sn for the finitely many neighbours of t in T . Let (T ′, α′) be the Sℵ0-tree
corresponding to (T ′,W), let (A,B) := α′(`, t) and define (Ai, Bi) := α′(t, si) for
all i ≤ n. Then, by the definition of (T ′,W), we have A =

⋂
iAi and B =

⋃
iBi.

Our aim is to show that the separation {A,B} is tame. By Lemma 5.3.15 it
suffices to show that for every critical vertex set X of G there is a cofinite subset
C ⊆ C̆X such that either G[X ∪

⋃
C ] ⊆ G[A] or G[X ∪

⋃
C ] ⊆ G[B]. For this,

let any critical vertex set X of G be given.
The critical vertex set X lives at or correspond to the unique node or end σ(X)

of T with regard to (T,V) because (T,V) is tame. If σ(X) is distinct from t,
then there is a cofinite subset C ⊆ C̆X such that G[X ∪

⋃
C ] ⊆ G[Bi] for some

i ≤ n, and G[X ∪
⋃

C ] ⊆ G[B] follows as desired. Hence we may assume that
σ(X) = t. Thus, for every i ≤ n there is a cofinite subset C (i) ⊆ C̆X such that
G[X ∪

⋃
C (i)] ⊆ G[Ai]. Then G[X ∪

⋃
C ] ⊆ G[A] as desired for the cofinite

subset C :=
⋂
i C (i) ⊆ C̆X .

Now that we have formally introduced all the definitions involved, we are ready
to prove Proposition 5.3.13:

Proof of Proposition 5.3.13. (i) The expansion is upwards connected by definition.
(ii) Using Lemma 5.2.11 and the fact that every component of G − Tnt has

finite neighbourhood, it is straightforward to check that (T,V) displays ∂ΩTnt ⊆
Ω(G). We verify that (T,V) even displays ∂ΓTnt ⊆ Γ(G). On the one hand,
by Lemma 5.2.12 every critical vertex set X ∈ ∂ΓTnt is contained in Tnt as a
chain, and hence appears precisely once as a node of T by the definition of the
expansion. On the other hand, every node of infinite degree of T stems from
such a critical vertex set. Together we obtain that (T,V) displays ∂ΓTnt. The
tree-decomposition (T ′,W) is tame because (T,V) is, cf. Lemma 5.3.19. From
here, it is straightforward to show that (T ′,W) displays ∂ΓTnt as well.

(iii) and (iv) are straightforward.
(v) follows from (ii) and Lemma 5.2.11.
(vi) It is straightforward to check by induction on the rank that the rank is

preserved under taking contraction minors with finite branch sets. Similarly, one
can show that two infinite trees have the same rank if one is obtained from the
other by adding new leaves to some of its nodes of infinite degree. Now we deduce
(vi) as follows. For every node t ∈ Tnt let us write St for the finite star with centre t
and leaves the critical vertex sets X ∈ ∂ΓTnt with t ∈ X ⊆ dte. The decomposition
tree T of the expansion of Tnt is obtained from an ITnt ⊆ T with finite branch
sets (the non-trivial branch sets are precisely the vertex sets of the stars St for the
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nodes t ∈ Tnt of infinite degree) by adding leaves to nodes of infinite degree (each
leaf is a component C ∈ Cdte(X) avoiding Tnt for some X ∈ St and gets joined to
X ∈ ITnt ⊆ T ). Therefore, the ranks of T and Tnt coincide. The decomposition
tree T ′ is obtained from T by adding at most one new leaf to each node of T , and
new leaves are only added to finite-degree nodes of T . An induction on the rank
shows that the rank is preserved under this operation, and so the ranks of T ′ and
T coincide as well.

Carmesin [19] showed that every connected graph G has a tree-decomposition
with finite separators that displays Ψ for Ψ the set undominated ends of G,
cf. Theorem 5.2.17. He then asked for a characterisation of those pairs of a graph
G and a subset Ψ ⊆ Ω(G) for which G has such a tree-decomposition displaying
Ψ. In the same spirit, our findings motivate the following problem:

Problem 5.3.20. Characterise, for all connected graphs G, the subsets Ψ ⊆ Γ(G)
for which G admits a rooted tame tree-decomposition displaying Ψ.

5.4. Stars

5.4.1. Normal trees

In this section we prove a duality theorem for stars in terms of normal trees.

Theorem 5.6. Let G be any connected graph, and let U ⊆ V (G) be any vertex
set. Then the following assertions are complementary:

(i) G contains a star attached to U ;
(ii) there is a locally finite normal tree T ⊆ G that contains U and all whose

rays are undominated in G.

Moreover, the normal tree T in (ii) can be chosen such that it contains U cofinally
and every component of G− T has finite neighbourhood.

Proof of Theorem 5.6 without the ‘moreover’ part. First, we show that at most
one of (i) and (ii) holds. Assume for a contradiction that both hold. Let T ⊆ G
be a normal tree as in (ii) and let U ′ ⊆ U form the attachment set of some star
attached to U . By Lemma 5.2.3 the locally finite tree T contains a comb attached
to U ′. That comb’s spine, then, is dominated in G by the centre of the star, a
contradiction.

It remains to show that at least one of (i) and (ii) holds; we show ¬(i)→(ii).
We have that U is countable, since otherwise the star-comb lemma yields a star
attached to U . By Corollary 5.3.3 we find a normal tree T ⊆ G that contains U
cofinally. Clearly, T must be locally finite since G contains no star attached to U .
For the same reason, every ray of T is undominated in G.

The remaining ‘moreover’ part is a consequence of Theorem 6.1 in Chapter 6
which is why its proof is placed in the second chapter of our series, cf. Section 6.2.
To see immediately that a locally finite normal tree T as in (ii) is more specific
than a comb when U is infinite, apply Lemma 5.2.3 to T .
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5.4.2. Tree-decompositions

For combs we have provided a duality theorem in terms of normal trees, and that
theorem then gave rise to another duality theorem in terms of tree-decompositions.
Since we have shown a duality theorem for stars in terms of normal trees in the
previous section, a natural question to ask is whether this theorem gives rise to a
duality theorem for stars in terms of tree-decompositions, just like for combs. It
turns out that stars have a duality theorem in terms of tree-decompositions. But
this theorem cannot be proved by imitating the proof of the respective theorem for
combs, and so we will have to come up with a whole new strategy. Our theorem
reads as follows:

Theorem 5.7. Let G be any connected graph, and let U ⊆ V (G) be any vertex
set. Then the following assertions are complementary:

(i) G contains a star attached to U ;
(ii) G has a locally finite tree-decomposition with finite and pairwise disjoint

separators such that each part contains at most finitely many vertices of U .

Moreover, the tree-decomposition in (ii) can be chosen with connected separators
and such that it displays ∂ΓU which consists only of ends.

We remark that (ii) is equivalent to the assertion that ‘G has a ray-decomposition
with finite and pairwise disjoint separators such that each part contains at most
finitely many vertices of U ’ since the distance classes of locally finite trees are
finite.

To see that a tree-decomposition as in (ii) is more specific than a comb, start
with a ray in the decomposition tree (cf. Lemma 5.2.3) and then inductively
construct a comb in the connected parts along that ray. To see that a locally finite
tree-decomposition (T,V) as in (ii) is more specific than a comb attached to U ,
consider the nodes of T whose parts meet U and apply Lemma 5.2.4 in T to find
a comb C attached to them. Then inductively construct a comb in G attached to
U working inside the connected parts along C ⊆ T .

To prove the theorem, we start by showing that (i) and (ii) exclude each other:

Lemma 5.4.1. In Theorem 5.7 the graph G cannot satisfy both (i) and (ii).

Proof. Let (T,V) be a tree-decomposition as in (ii) of Theorem 5.7. Assume for a
contradiction that G contains a star S attached to U . As the separators of (T,V)
are pairwise disjoint, the centre c of S is contained in at most two parts of (T,V).
Let T ′ ⊆ T be the finite subtree induced by the nodes of these parts plus their
neighbours in T . As the parts at the nodes of T ′ altogether contain at most finitely
many vertices from U , the star S must send infinitely many paths to vertices in
parts at T − T ′. But the centre c is separated from the parts at T − T ′ by the
finite union of the finite separators associated with the edges of T leaving T ′, a
contradiction.

Now, to prove Theorem 5.7 it remains to show ¬(i)→(ii). This time, however, it
is harder to see how the normal tree from Theorem 5.6 can be employed to yield a
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tree-decomposition. That is why we do not take the detour via normal trees and
instead construct the tree-decomposition directly. Still, this requires some effort.

First of all, assuming the absence of a star as in (i), we need a strategy to
construct a tree-decomposition as in (ii). Fortunately, we do not have to start
from scratch. In the proof of [30, Theorem 2.2], Diestel and Kühn proved the
following as a technical key result: If ω is an undominated end of G, then there
exists a sequence (Xn)n∈N of non-empty finite vertex sets Xn ⊆ V (G) such that,
for all n ∈ N, the component C(Xn, ω) contains Xn+1 ∪ C(Xn+1, ω). Now if ∂ΩU
is a singleton {ω}, then ω must be undominated as (i) fails, and we consider such a
sequence (Xn)n∈N. By making all the Xn+1 connected in C(Xn, ω) first, and then
moving to a suitable subsequence, we obtain a ray-decomposition of G that meets
the requirements of (ii). Our strategy is to generalise this fundamental observation
using that ∂ΩU is compact in our situation:

Lemma 5.4.2. If G contains no star attached to U , then ∂ΩU is non-empty,
compact and contains only undominated ends.

Proof. By the pigeonhole principle, for every X ∈ X only finitely many components
of G−X may meet U . Thus ∂ΩU is non-empty and compact by Lemma 5.2.8.

Our next lemma generalises the fact that a vertex can be strictly separated from
every end which it does not dominate.

Lemma 5.4.3. Suppose that X is a finite set of vertices in a (possibly disconnected)
graph G such that G−X is connected, and that Ψ ⊆ Ω(G) is a non-empty and
compact subspace consisting only of undominated ends. Then there is a finite-order
separation of G that strictly separates X from Ψ and whose separator is connected.

Proof. No end in Ψ is dominated and X is finite, so for every end ω ∈ Ψ we find a
finite vertex set Y (ω) ⊆ V (G) with Y (ω) ∪C(Y (ω), ω) disjoint from X. Since the
components C(Y (ω), ω) induce a covering of Ψ by open sets, the compactness of Ψ
yields finitely many ends ω1, . . . , ωn ∈ Ψ such that every end in Ψ lives in at least
one of the components C(Y (ωi), ωi). Let the vertex set Y be obtained from the
finite union of the finite sets Y (ωi) by adding some finitely many vertices from the
connected subgraph G−X so as to ensure that G[Y ] is connected. Note that Y
avoids X, and write D for the collection of the components of G−Y in which ends
of Ψ live. We claim that (Y,D) strictly separates X from Ψ. For this, let ω be any
end in Ψ. Pick an index k for which ω lives in the component C(Y (ωk), ωk) =: C.
Then, by the choice of Y (ωk), there is no X–C path in G− Y (ωk). By Y (ωk) ⊆ Y
and C(Y, ω) ⊆ C then there certainly is no X–C(Y, ω) path in G− Y . Therefore,
(Y,D) strictly separates X from Ψ.

Proposition 5.4.4. Let G be any connected graph and suppose that Ψ ⊆ Ω is a
non-empty and compact subspace that consists only of undominated ends. Then
there exists a locally finite Sℵ0-tree (T, α) with connected pairwise disjoint separators
that displays Ψ.
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Proof. We inductively construct a sequence
(
(Tn, αn)

)
n∈N of rooted Sℵ0-trees with

root r ∈ T0 ⊆ T1 ⊆ · · · and α0 ⊆ α1 ⊆ · · · , as follows.
To define (T0, α0), let T0 consist of one edge rt and put α0(r, t) := ({v}, V )

for an arbitrary vertex v of G. Now, to obtain (Tn+1, αn+1) from (Tn, αn), we do
the following for every edge t` of Tn at a leaf ` 6= r. Consider the separation
α(t, `) = (X,C ) with C1, . . . , Cn the finitely many components in C in which ends
of Ψ live (these are finitely many as Ψ is compact). For each component Ci apply
Lemma 5.4.3 in G[X ∪ Ci] to X and Ψ ∩ ∂ΩCi to obtain a finite-order separation
(Ai, Bi) of G[X ∪ Ci] that strictly separates X from Ψ ∩ ∂ΩCi in G[X ∪ Ci] and
has a connected separator Ai ∩ Bi. Then (A′i, B

′
i) with A′i := Ai ∪ (V r Ci) and

B′i := Bi is a finite-order separation of G that strictly separates X from Ψ ∩ ∂ΩCi
in G and has a connected separator A′i ∩B′i = Ai ∩Bi. We add each Ci as a new
node to Tn, join it precisely to the leaf ` and let αn+1(`, Ci) := (A′i, B

′
i). This

completes the description of our construction.
We claim that the pair (T, α) given by T :=

⋃
n Tn and α :=

⋃
n αn is as required.

Our construction ensures that T is locally finite and that the separators of (T, α)
are connected and pairwise disjoint. Furthermore, our construction ensures that
every end in Ψ corresponds to an end of T . It remains to show that (T, α) displays
Ψ. By Lemma 5.2.16 it suffices to show that, for every end of T , there is an
end in Ψ corresponding to it. And indeed, every ray in T avoiding the root is,
literally, a descending sequence C1 ⊇ C2 ⊇ · · · of components for which some end
of the compact Ψ lives in all Cn by the finite intersection property of the collection
{Ψ ∩ ∂ΩCn | n ∈ N }.

Proof of Theorem 5.7. By Lemma 5.4.1 at most one of (i) and (ii) can hold. To
establish that at least one of them holds, we show ¬(i)→(ii). Suppose that G
contains no star attached to U . By Lemma 5.4.2 we know that the subspace
∂ΩU ⊆ Ω consisting of the ends lying in the closure of U actually contains only
undominated ones, and is both non-empty and compact. Proposition 5.4.4 then
yields a locally finite Sℵ0-tree (T, α) with connected pairwise disjoint separators
that displays ∂ΩU . Let (T,V) be the tree-decomposition corresponding to (T, α).
As G contains no star attached to U , there is no critical vertex set in the closure
of U , and hence (T,V) even displays ∂ΓU . It remains to show that each part of
(T,V) contains at most finitely many vertices from U . Suppose for a contradiction
that some part Vt contains some infinitely many vertices from U , and write U ′

for that subset of U . As (i) fails, applying Lemma 5.4.2 in G to U ′ yields an end
in ∂ΩU

′. But then this end lies in Ψ but does not correspond to an end of T , a
contradiction.

100
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II: Dominating stars and dominated
combs

6.1. Introduction

Two properties of infinite graphs are complementary in a class of infinite graphs
if they partition the class. In a series of four chapters we determine structures
whose existence is complementary to the existence of two substructures that are
particularly fundamental to the study of connectedness in infinite graphs: stars
and combs. See Chapter 5 for a comprehensive introduction, and a brief overview
of results, for the entire series of four chapters (5, 7, 8 and this chapter).

In the first chapter of this series we found structures whose existence is com-
plementary to the existence of a star or a comb attached to a given set U of
vertices. A comb is the union of a ray R (the comb’s spine) with infinitely many
disjoint finite paths, possibly trivial, that have precisely their first vertex on R.
The last vertices of those paths are the teeth of this comb. Given a vertex set U ,
a comb attached to U is a comb with all its teeth in U , and a star attached to U
is a subdivided infinite star with all its leaves in U . Then the set of teeth is the
attachment set of the comb, and the set of leaves is the attachment set of the star.

As stars and combs can interact with each other, this is not the end of the story.
For example, a given vertex set U might be connected in a graph G by both a star
and a comb, even with infinitely intersecting sets of leaves and teeth. To formalise
this, let us say that a subdivided star S dominates a comb C if infinitely many
of the leaves of S are also teeth of C. A dominating star in a graph G then is
a subdivided star S ⊆ G that dominates some comb C ⊆ G; and a dominated
comb in G is a comb C ⊆ G that is dominated by some subdivided star S ⊆ G.
In this second chapter of our series we determine structures whose existence is
complementary to the existence of dominating stars and dominated combs. Note
that duality theorems for dominated combs are by nature also duality theorems for
dominating stars, because for a graph G and a vertex set U ⊆ V (G) the existence
of a dominated comb attached to U is equivalent to the existence of a dominating
star attached to U . For the sake of readability, we will state our duality theorems
only for dominated combs.

Our first duality theorem for dominated combs is phrased in terms of normal
trees. A rooted tree T ⊆ G is normal in G if the endvertices of every T -path in G
are comparable in the tree-order of T . A vertex v of G dominates a ray R ⊆ G
if there is an infinite v–(R − v) fan in G. For example, a comb is dominated
in G if and only if its spine is dominated in G. Rays not dominated by any
vertex are undominated. An end of G is dominated and undominated if one
(equivalently: each) of its rays is dominated and undominated, respectively. (See
Diestel’s textbook [26].)
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Theorem 6.1. Let G be any connected graph, and let U ⊆ V (G) be any vertex
set. Then the following assertions are complementary:

(i) G contains a dominated comb attached to U ;
(ii) there is a normal tree T ⊆ G that contains U and all whose rays are

undominated in G.

Moreover, the normal tree T in (ii) can be chosen such that it contains U cofinally
and every component of G− T has finite neighbourhood.

When a graph contains no star or no comb attached to U , then in particular it
contains no dominated comb attached to U . Hence, by our theorem, the graph
contains a certain normal tree. If there is no star, then this normal tree will
be locally finite; and if there is no comb, then it will be rayless. Therefore, our
duality theorem for dominated combs in terms of normal trees implies our duality
theorems for arbitrary stars and combs in terms of normal trees from Chapter 5,
Theorems 6.2.1 and 6.2.2. This is surprising given that infinite trees cannot be
locally finite and rayless at the same time.

As an application, we will partially generalise Diestel’s structural characterisa-
tion [24] of the graphs for which the topological spaces obtained by adding their
ends are metrisable. Depending on the topology chosen, Diestel characterised
these graphs in terms of normal spanning trees, dominated combs, and infinite
stars. Applying Theorem 6.1, we can now provide, for any given set U of vertices,
existence criteria for metrisable (standard) subspaces containing U in the various
topologies. Our criteria will be in terms of normal trees containing U , dominated
combs attached to U , and stars attached to U . For one of the topologies we
obtain a characterisation.

Theorem 6.1 is significantly strengthened by its ‘moreover’ part. It will be
needed in the proof of our second duality theorem for dominated combs which is
phrased in terms of tree-decompositions. For the definition of tree-decompositions
see [26]. ‘Essentially disjoint’ and ‘displaying’ are defined in Section 6.3. An end
ω of a graph G is contained in the closure of a vertex set U ⊆ V (G) in G if G
contains a comb attached to U whose spine lies in ω.

Theorem 6.2. Let G be any connected graph, and let U ⊆ V (G) be any vertex
set. Then the following assertions are complementary:

(i) G contains a dominated comb attached to U ;
(ii) G has a tree-decomposition (T,V) such that:

– each part contains at most finitely many vertices from U ;
– all parts at non-leaves of T are finite;
– (T,V) has essentially disjoint connected adhesion sets;
– (T,V) displays the ends of G in the closure of U in G.

Similar to Theorem 6.1, our duality theorem for dominated combs in terms of
tree-decompositions implies our duality theorems for arbitrary stars and combs in
terms of tree-decompositions from Chapter 5, Theorems 6.3.1 and 6.3.2.

102



6. Duality theorems for stars and combs II: Dominated combs

In our proof of Theorem 6.2 we employ a profound theorem of Carmesin [19],
which states that every graph has a tree-decomposition displaying all its undomi-
nated ends. As it will be the case in this chapter, Carmesin’s theorem might often
be used for graphs with normal spanning trees. For this particular case we provide
a substantially shorter proof.

This chapter is organised as follows. Section 6.2 establishes our duality theorem
for dominated combs in terms of normal trees. In Section 6.3 we prove our duality
theorems for dominated combs in terms of tree-decompositions. Our short proof
of Carmesin’s theorem for graphs with a normal spanning tree can be found there
as well.

Throughout this chapter, G = (V,E) is an arbitrary infinite graph. We assume
familiarity with the tools and terminology described in the first chapter of this
series, Section 5.2.

6.2. Dominated combs and normal trees

In this section we obtain the following duality theorem for dominated combs in
terms of normal trees:

Theorem 6.1. Let G be any connected graph, and let U ⊆ V (G) be any vertex
set. Then the following assertions are complementary:

(i) G contains a dominated comb attached to U ;
(ii) there is a normal tree T ⊆ G that contains U and all whose rays are

undominated in G.

Moreover, the normal tree T in (ii) can be chosen such that it contains U cofinally
and every component of G− T has finite neighbourhood.

The inconspicuous ‘moreover’ part will pave the way for our duality theorem for
dominated combs in terms of tree-decompositions (Theorem 6.2).

Before we provide a proof of Theorem 6.1 above, we shall discuss some conse-
quences and applications. As a first consequence, Theorem 6.1 above builds a bridge
between the duality theorems for combs (Theorem 6.2.1) and stars (Theorem 6.2.2)
in terms of normal trees, which we recall here.

Theorem 6.2.1 (Theorem 5.1). Let G be any connected graph, and let U ⊆ V (G)
be any vertex set. Then the following assertions are complementary:

(i) G contains a comb attached to U ;
(ii) there is a rayless normal tree T ⊆ G that contains U .

Moreover, the normal tree T in (ii) can be chosen so that it contains U cofinally.
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Theorem 6.2.2 (Theorem 5.6). Let G be any connected graph, and let U ⊆ V (G)
be any vertex set. Then the following assertions are complementary:

(i) G contains a star attached to U ;
(ii) there is a locally finite normal tree T ⊆ G that contains U and all whose

rays are undominated in G.

Moreover, the normal tree T in (ii) can be chosen such that it contains U cofinally
and every component of G− T has finite neighbourhood.

Our duality theorem for dominated combs in terms of normal trees implies the
corresponding duality theorems for combs and stars above. This becomes apparent
by a close look at Figure 6.2.1. The three columns of the diagram summarise
the three duality theorems. Arrows depict implications between the statements;
the dashed arrows indicate that further assumptions are needed to obtain their
implications. On the left hand side, the extra assumption is that there is no comb
attached to U ; on the right hand side, the extra assumption is that there is no
star attached to U .

@ dominated comb
attached to U

@ comb attached to U
∃ normal tree with

all rays undom-
inated and (∗)

@ star attached to U

∃ rayless normal tree
with (∗)

∃ locally finite normal
tree with all rays un-
dominated and (∗)

Figure 6.2.1.: The relations between the duality theorems for combs, stars and
dominated combs in terms of normal trees.
Condition (∗) says that the normal tree contains U cofinally and
every component of the graph minus the normal tree has finite
neighbourhood.

As a consequence of the two dashed arrows, we obtain the implications ¬(i)→(ii)
of Theorem 6.2.1 and of Theorem 6.2.2 from the corresponding implication of
Theorem 6.1. Indeed, if G does not contain a comb attached to U , then in particular
it does not contain a dominated comb attached to U . Hence Theorem 6.1 yields a
normal tree, which additionally must be rayless. Similarly, if G does not contain
a star attached to U , then in particular it does not contain a dominated comb
attached to U . Hence Theorem 6.1 yields a normal tree, which additionally must
be locally finite and satisfy that all its rays are undominated. Since (i) and (ii)
of Theorem 6.2.1 and of Theorem 6.2.2 exclude each other almost immediately
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we have, so far, derived these two duality theorems for combs and stars from
our duality theorem for dominated combs—except for the ‘moreover’ part of
Theorem 6.2.2.

We proved Theorem 6.2.2 without its ‘moreover’ part in Chapter 5 of our series.
There, instead of proving the ‘moreover’ part as well, we announced that we would
prove it in this second chapter of the series. And here we prove it, by deriving it
from the identical ‘moreover’ part of Theorem 6.1:

Proof of Theorem 6.2.2, including its ‘moreover’ part. We employ Theorem 6.1 as
above.

Another consequence of Theorem 6.1 is a fact whose previous proof, [24,
Lemma 2.3], relied on the theorem of Halin [45] which states that every con-
nected graph without a subdivided Kℵ0 has a normal spanning tree:

Corollary 6.2.3. If G is a connected graph none of whose ends is dominated,
then G is normally spanned.

For the proof of Theorem 6.1, we shall need the following four lemmas and a
result by Jung (cf. [52, Satz 6] or Theorem 5.3.5). The first lemma is from the
first chapter of this series and we remark that the original statement also takes
critical vertex sets in the closure of T or W into account.

Lemma 6.2.4 (see Lemma 5.2.13). Let G be any graph. If T ⊆ G is a rooted tree
that contains a vertex set W cofinally, then ∂ΩT = ∂ΩW .

Recall that for a graph G and a normal tree T ⊆ G the generalised up-closure
bbxcc of a vertex x ∈ T is the union of bxc with the vertex set of

⋃
C (x), where the

set C (x) consists of those components of G− T whose neighbourhoods meet bxc.

Lemma 6.2.5 (Lemma 5.2.10). Let G be any graph and T ⊆ G any normal tree.

(i) Any two vertices x, y ∈ T are separated in G by the vertex set dxe ∩ dye.
(ii) Let W ⊆ V (T ) be down-closed. Then the components of G−W come in two

types: the components that avoid T ; and the components that meet T , which
are spanned by the sets bbxcc with x minimal in T −W .

Lemma 6.2.6 (Lemma 5.2.11). If G is any graph and T ⊆ G is any normal tree,
then every end of G in the closure of T contains exactly one normal ray of T .
Moreover, sending these ends to the normal rays they contain defines a bijection
between ∂ΩT and the normal rays of T .

Lemma 6.2.7. Let G be a connected graph, let D0, D1, . . . be the distance classes
of G with respect to an arbitrary vertex of G, and let n ≥ 1. Then for every infinite
U ⊆ Dn the induced subgraph G[D0 ∪ · · · ∪Dn] contains a star attached to U .

Proof. By induction on n. For n = 1 there is a star in G[D0 ∪D1] with centre in
D0 and attachment set U . Now suppose that n > 1, and let any infinite U ⊆ Dn

be given. For every u ∈ U pick an edge eu at u incident with some vertex wu
in Dn−1, and let W ⊆ Dn−1 consist of the vertices wu. If some vertex w ∈ W
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is incident with infinitely many edges of the form eu, we have the desired star.
Otherwise every vertex w ∈ W is incident with only finitely many such edges. In
that case, we find an infinite subset W ′ ⊆ W together with a partial matching of
W ′ and an infinite subset of U formed by edges eu. Then we employ the induction
hypothesis to W ′ to yield a star S in G[D0 ∪ · · · ∪Dn−1] attached to W ′, and we
extend S to the desired star by adding edges of the partial matching.

Theorem 6.2.8 (Jung). Let G be any graph. A vertex set W ⊆ V (G) is normally
spanned if and only if it is a countable union of dispersed sets. In particular, G is
normally spanned if and only if V (G) is a countable union of dispersed sets.

Now we are ready to prove our first duality theorem for dominated combs:

Proof of Theorem 6.1. First, we show that at most one of (i) and (ii) holds. Assume
for a contradiction that both hold, let R be the spine of a dominated comb attached
to U and let T be a normal tree as in (ii). Then the end of R lies in the closure
of U ⊆ T , so by Lemma 6.2.6 the normal tree T contains a normal ray from that
end. But then the vertices dominating R in G also dominate that normal ray, a
contradiction.

It remains to show that at least one of (i) and (ii) holds; we show ¬(i)→(ii). For
this, pick an arbitrary vertex v0 of G and write Dn for the nth distance class of G
with respect to v0. If for some distance class Dn there was a comb in G attached
to Dn ∩ U , then that comb would be dominated by Lemma 6.2.7 contrary to our
assumptions. Therefore, all the sets Dn∩U with n ∈ N are dispersed. Now, Jung’s
Theorem 6.2.8 yields a normal tree T ′ ⊆ G that contains U , and by replacing T ′

with the down-closure of U we may assume that T ′ even contains U cofinally. The
normal rays of T ′ cannot be dominated in G because a normal ray of T ′ that is
dominated in G would give rise to a dominated comb attached to U .

For the ‘moreover’ part it remains to find a normal tree T ⊆ G just like T ′, but
such that additionally every component of G− T has finite neighbourhood. Our
proof proceeds in three steps, as follows.

It will turn out that if a component C of G − T ′ has infinite neighbourhood,
then there are rays in C whose ends in G lie in the closure of U . In step one we
define a superset Û ⊇ U that extends V (T ′) by carefully chosen vertex sets of such
rays, and we verify ∂ΩÛ = ∂ΩU . The choice of Û allows us in step two to apply
Theorem 6.1 (without the ‘moreover’ part) to Û , yielding a normal tree T ′′ ⊆ G
(which contains V (T ′) but in general does not extend T ′) for which we then verify
that every component of G − T ′′ has finite neighbourhood. As T ′′ contains Û
cofinally, it also contains U , but it need not do so cofinally. Hence in step three
we fix this by taking T to be the down-closure of U in T ′′, and we verify that T is
as desired.

As our first step, we prepare the construction of T ′′. Write DT ′ for the collection
of the components of G−T ′ that have infinite neighbourhood. For each component
C ∈ DT ′ the down-closure dN(C)e is a normal ray in T ′ which we denote by RC .

Using Zorn’s lemma we choose, for every component C ∈ DT ′ , an inclusionwise
maximal collection RC of pairwise disjoint rays in the end of RC in G such that

106



6. Duality theorems for stars and combs II: Dominated combs

all these rays are contained in C. We write UC for the vertex set of
⋃

RC and put

Û := V (T ′) ∪
⋃
{UC | C ∈ DT ′ }

while noting U ⊆ V (T ′) ⊆ Û .
We claim that ∂ΩÛ = ∂ΩU holds. The backward inclusion is immediate from

Û ⊇ U . For the forward inclusion, consider any end ω of G with ω /∈ ∂ΩU ; we
show ω /∈ ∂ΩÛ . As T ′ contains U cofinally, it follows from Lemma 6.2.4 that the
end ω does not lie in the closure of T ′ either. Let X ⊆ V (G) be a finite set of
vertices witnessing that ω does not lie in the closure of T ′. The plan is to slightly
expand X so that it witnesses that ω does not lie in the closure of Û as well. The
component C(X,ω) avoids T ′, and in particular C(X,ω) avoids U . But C(X,ω)
may meet some UC with C ∈ DT ′ . However, the rays in the union of all sets RC

over C ∈ DT ′ are pairwise disjoint by the choice of the sets RC , and none of these
rays’ ends lives in C(X,ω) ⊆ G− T ′. So as X is finite this means that at most
finitely many vertices of C(X,ω) belong to rays from the sets RC , and therefore
adding these vertices to X results in the finite X separating ω from Û as well.

Now that we have ∂ΩÛ = ∂ΩU we apply Theorem 6.1 (without its ‘moreover’
part which we are currently proving) to Û in G and obtain a normal tree T ′′ ⊆ G
that contains Û cofinally and all whose rays are undominated in G. We claim that
every component C of G− T ′′ has finite neighbourhood. For this, assume for a
contradiction that some component C of G− T ′′ has infinite neighbourhood. Let
R be the normal ray in T ′′ given by the down-closure of that neighbourhood in
T ′′, and write Z for the set of those vertices in C that send edges to T ′′. Since
T ′′ contains Û cofinally it follows from Lemma 6.2.4 that ∂ΩT

′′ = ∂ΩÛ and thus
also ∂ΩT

′′ = ∂ΩU . As a consequence we know that the end ω of R in G lies in the
closure of U .

If some z ∈ Z would send infinitely many edges to T ′′, then z would dominate R,
contradicting the choice of T ′′. Thus every vertex in Z may send only finitely many
edges to R, and in particular Z must be infinite. Therefore, we find an infinite
subset Z ′ ⊆ Z for which G contains a partial matching of Z ′ and an infinite subset
of V (R). Applying the star-comb lemma in C to Z ′ then, as R was just noted to
be undominated, must yield a comb in C attached to Z ′. That comb’s spine R′ is
equivalent in G to R. Now consider the component D of G− T ′ that contains C.
Having in mind that ω lies in the closure of U , we find that the normal tree T ′ that
contains U cofinally does contain a normal ray equivalent to R, cf. Lemma 6.2.6.
This normal ray in T ′ must be RD, so in particular we have D ∈ DT ′ . But then
the spine R′ ⊆ C is disjoint from all the rays in RD since C avoids UD ⊆ T ′′,
contradicting the maximality of RD. Thus, every component C of G− T ′′ must
have finite neighbourhood.

Finally, let T ⊆ G be the normal tree given by the down-closure of U in T ′′.
Then T contains U cofinally. We claim that every component of G− T has a finite
neighbourhood. Indeed, consider any component C of G − T . If C is also a
component of G− T ′′, then—as we have already seen—it has finite neighbourhood.
Otherwise, by Lemma 6.2.5, the component C is spanned by bbxcc with respect to
T ′′ for the minimal node x in C ∩T ′′. Now, as T ′′ is normal, C can only send edges
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to the finite set dxer {x}. Hence the component C has finite neighbourhood as
claimed.

Let us discuss an application of our duality theorem for dominated combs in
terms of normal trees. In [24], Diestel proves the following theorem that relates
the metrisability of |G| to the existence of normal spanning trees (we refer to
[24, Section 2] for definitions concerning |G|, MTop, VTop and Top):

Theorem 6.2.9 ([24, Theorem 3.1]). Let G be any connected graph.

(i) In MTop, |G| is metrisable if and only if G has a normal spanning tree.
(ii) In VTop, |G| is metrisable if and only if no end of G is dominated.

(iii) In Top, |G| is metrisable if and only if G is locally finite.

Assertions (ii) and (iii) of this theorem can be reformulated so as to speak about
normal spanning trees: By Theorem 6.1 with U = V (G), the graph G having
no dominated end is equivalent to G having a normal spanning tree all of whose
normal rays are undominated. And by Theorem 6.2.2 with U = V (G), the graph
G being locally finite is equivalent to G having a locally finite normal spanning
tree all of whose normal rays are undominated. That is why we may hope that
these theorems allow us to localise Theorem 6.2.9 above to arbitrary vertex sets
U ⊆ V (G). We will show that this is largely possible.

Recall that a standard subspace of |G| (with regard to MTop, VTop or Top)
is a subspace Y of |G| that is the closure H of a subgraph H of G (see Diestel’s
textbook [26, p. 246]).

Lemma 6.2.10. Let G be any graph, let T ⊆ G be any normal tree and consider
the spaces |T | and |G|, both in the same choice of one of the three topologies MTop,
VTop or Top. Then |T | is homeomorphic to the standard subspace T of |G|.

Proof. By Lemma 6.2.6, the identity on T extends to a bijection |T | → T ⊆ |G|
that sends every end of T to the unique end of G including it. Using Lemma 6.2.5
it is straightforward to verify that the bijection is a homeomorphism, no matter
which of the three topologies we chose.

Theorem 6.2.11. Let G be any connected graph and U ⊆ V (G) any vertex set.

(i) In MTop, |G| has a metrisable standard subspace containing U if and only
if there is a normal tree T ⊆ G that contains U .

(ii) In VTop, |G| has a metrisable standard subspace containing U whenever
there is no dominated comb in G attached to U .

(iii) In Top, |G| has a metrisable standard subspace containing U whenever there
is no star in G attached to U .

Proof. (i) First, suppose that there is a metrisable standard subspace containing U .
We imitate Diestel’s proof of the corresponding implication of Theorem 6.2.9 (i).
Recall from [24] that a set of vertices of G is dispersed in G if and only it is closed
in |G|. So by Jung’s Theorem 6.2.8, it suffices to show that U can be written as
a countable union of closed vertex sets. For this, the sets Un consisting of the
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vertices in U that have distance ≥ 1/n from every end can be taken: On the one
hand, every Un is the intersection of complements of open balls of radius 1/n, and
hence closed. On the other hand, every vertex u ∈ U is contained in Un for some
n ∈ N because G is open in |G|.

Now, suppose that there is a normal tree T ⊆ G containing U and consider the
standard subspace T . By Lemma 6.2.10 the spaces T and |T | are homeomorphic.
Since T normally spans itself, |T | is metrisable by Theorem 6.2.9 (i).

(ii) Suppose that G contains no dominated comb attached to U . By Theorem 6.1,
there is a normal tree T ⊆ G that contains U cofinally. Then T ∼= |T | by
Lemma 6.2.10, and |T | is metrisable by Theorem 6.2.9 (ii).

(iii) If G contains no star attached to U , then by Theorem 6.2.2 there is a locally
finite normal tree T ⊆ G that contains U cofinally. By Lemma 6.2.10 we have
that the standard subspace that arises from T is homeomorphic to |T | with Top.
Since T is locally finite, Top coincides with MTop on |T | which is metrisable by
Theorem 6.2.9 (i).

The statements (ii) and (iii) of Theorem 6.2.11 cannot be extended so as to
give equivalent statements: Let R be a ray, U = V (R) and consider the graph
G := R ∗ v where v /∈ R is any vertex (that is, G is obtained from R+ v by adding
all possible v–R edges). By Lemma 6.2.10 the standard subspace that arises from
R is homeomorphic to |R|, which in turn is metrisable by Theorem 6.2.9. But
R ⊆ G is a dominated comb attached to U .

6.3. Dominated combs and tree-decompositions

In the previous section, we have presented a duality theorem for dominated
combs in terms of normal trees. And we have deduced from this theorem the
hard implications ¬(i)→(ii) of Theorem 6.2.1 and of Theorem 6.2.2 (the duality
theorems for combs and stars in terms of normal trees).

Therefore we may expect from a duality theorem for dominated combs in terms
of tree-decompositions to reestablish the hard implications ¬(i)→(ii) of the duality
theorems for combs and stars in terms of tree-decompositions (Theorem 6.3.1
and Theorem 6.3.2 below)—by following arrows in Figure 6.3.1 like we did in
Figure 6.2.1.

Theorem 6.3.1 (Theorem 5.2). Let G be any connected graph, and let U ⊆ V (G)
be any vertex set. Then the following assertions are complementary:

(i) G contains a comb attached to U ;
(ii) G has a rayless tree-decomposition into parts each containing at most finitely

many vertices from U and whose parts at non-leaves of the decomposition
tree are all finite.

Moreover, the tree-decomposition in (ii) can be chosen with connected separators.

Recall from Chapter 5 that a tree-decomposition (T,V) of a given graph G
with finite separators displays a set Ψ of ends of G if τ restricts to a bijection

109



6. Duality theorems for stars and combs II: Dominated combs

τ � Ψ: Ψ→ Ω(T ) between Ψ and the end space of T and maps every end that is
not contained in Ψ to some node of T , where τ : Ω(G)→ Ω(T )t V (T ) maps every
end of G to the end or node of T which it corresponds to or lives at, respectively.

Theorem 6.3.2 (Theorem 5.7). Let G be any connected graph, and let U ⊆ V (G)
be any vertex set. Then the following assertions are complementary:

(i) G contains a star attached to U ;
(ii) G has a locally finite tree-decomposition with finite and pairwise disjoint

separators such that each part contains at most finitely many vertices of U .

Moreover, the tree-decomposition in (ii) can be chosen with connected separators
and so that it displays ∂ΩU .

In Section 6.3.1, we will prove a duality theorem for dominated combs in terms of
tree-decompositions, making the left but not the right dashed arrow in Figure 6.3.1
true. In Section 6.3.2, the situation is reversed: we will prove a duality theorem
making the right but not the left dashed arrow in Figure 6.3.1 true. Here we also
provide a short proof of Carmesin’s result [19], which states that every graph has
a tree-decomposition displaying all its undominated ends, for normally spanned
graphs. Finally, in Section 6.3.3, we will prove a duality theorem that makes both
the left and the right dashed arrow in Figure 6.3.1 true. This will be achieved by
combining our proof technique from Section 6.3.1 and our duality theorem from
Section 6.3.2.

@ dominated comb
attached to U

@ comb attached
to U

?
@ star attached

to U

∃ complementary
rayless tree-
decomposition

∃ complementary
locally finite tree-
decomposition

Figure 6.3.1.: The desired relation between stars, combs, dominated combs and
complementary tree-decompositions.
The left and right dashed arrow describe an implication whenever
there is no comb and no star attached to U , respectively.

6.3.1. A duality theorem related to combs

Here we present a duality theorem for dominated combs in terms of tree-decompo-
sitions making the left but not the right dashed arrow of Figure 6.3.1 true:
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Theorem 6.3.3. Let G be any connected graph, and let U ⊆ V (G) be any vertex
set. Then the following assertions are complementary:

(i) G contains a dominated comb attached to U ;
(ii) G has a tree-decomposition (T,V) that satisfies:

(a) each part contains at most finitely many vertices from U ;
(b) all parts at non-leaves of T are finite;
(c) every dominated end of G lives in a part at a leaf of T .

Moreover, the tree-decomposition in (ii) can be chosen with connected separators
and so that it displays ∂ΩU .

Before we provide a proof of this theorem, let us deduce the left dashed arrow
of Figure 6.3.1 from it (also see Figure 6.3.2 which shows the first two columns of
Figure 6.3.1 in greater detail and with Theorem 6.3.3 (ii) including the theorem’s
‘moreover’ part inserted for ‘?’): If G does not contain a comb attached to
U , then in particular it does not contain a dominated comb attached to U .
Hence Theorem 6.3.3 returns a tree-decomposition (T,V) of G which we may
choose so that it satisfies the theorem’s ‘moreover’ part; in particular (T,V)
displays ∂ΩU . Our assumption that there is no comb attached to U implies that
∂ΩU is empty and hence T is rayless. Using the corresponding conditions from
Theorem 6.3.3 (ii) including the theorem’s ‘moreover’ part, we conclude that (T,V)
is as in Theorem 6.3.1 (ii) including the theorem’s ‘moreover’ part.

@ comb attached to U
@ dominated comb

attached to U

∃ rayless tree-
decomposition
with (∗)

∃ tree-decomposition
with (∗) such that
dominated ends live
in parts at leaves and
that displays ∂ΩU

Figure 6.3.2.: The first two columns of Figure 6.3.1 with Theorem 6.3.3 (ii) includ-
ing the theorem’s ‘moreover’ part inserted for ‘?’.
Condition (∗) says that parts contain at most finitely many vertices
from U , that parts at non-leaves are finite and that the separators
are connected.

Finally, we prove Theorem 6.3.3:

Proof of Theorem 6.3.3. First, we show that at most one of (i) and (ii) holds.
Assume for a contradiction that G contains a dominated comb attached to U and
has, at the same time, a tree-decomposition (T,V) as in (ii). Let R be the comb’s
spine. Since every dominated end of G lives in a part at a leaf of T , and since
all parts at non-leaves are finite, we find without loss of generality a leaf ` of T
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with R ⊆ G[V`]. But each part contains at most finitely many vertices from U . In
particular, V` contains at most finitely many vertices from U . Therefore, the comb
must send some infinitely many pairwise disjoint paths to vertices in U r V`. But
the separator of G that is associated with the edge `t ∈ T at ` is contained in the
intersection V` ∩ Vt ⊆ Vt which is finite since Vt is, a contradiction.

Now, to show that at least one of (i) and (ii) holds, we show ¬(i)→(ii). By
Theorem 6.1 we find a normal tree Tnt ⊆ G containing U cofinally all whose
rays are undominated in G and such that every component of G− Tnt has finite
neighbourhood. We construct the desired tree-decomposition from Tnt.

Given a component C of G− Tnt the neighbourhood of C is a finite chain in the
tree-order of Tnt, and hence has a maximal element tC ∈ Tnt. We obtain the tree
T from Tnt by adding each component C of G− Tnt as a new vertex and joining
it precisely to tC .

Having defined the decomposition tree T it remains to define the parts of the
desired tree-decomposition. For nodes t ∈ Tnt ⊆ T we let Vt consist of the
down-closure dteTnt of t in the normal tree Tnt. And for newly added nodes C we
let VC be the union of VtC and the vertex set of the component C, i.e., we put
VC := dteTnt ∪ V (C).

Since Tnt is normal and contains U cofinally, it follows by standard arguments
employing Lemma 6.2.4 and Lemma 6.2.6 that (T,V) displays ∂ΩU . Conditions
(a) and (b) hold by construction. Combining (b) with (T,V) displaying ∂ΩU gives
(c), which in turn is—as the rest of the ‘moreover’ part—a direct consequence of
how the parts are defined.

Example 6.3.4. The tree-decomposition in Theorem 6.3.3 (ii) cannot be chosen
to additionally have pairwise disjoint separators, which shows that the theorem
does not make the right dashed arrow in Figure 6.3.1 true. To see this suppose
that G consists of the first three levels of Tℵ0 , the tree all whose vertices have
countably infinite degree, and let U = V (G). Then G contains no comb attached
to U . Suppose for a contradiction that G has a tree-decomposition (T,V) as in
Theorem 6.3.3 (ii) which additionally has pairwise disjoint separators. The graph G
being rayless and U being the whole vertex set of G together with our assumption
that (T,V) has pairwise disjoint separators makes sure that (T,V) also displays ∂ΩU .
In particular, by our argumentation in the text below Theorem 6.3.3, (T,V) is also
a tree-decomposition of G complementary to combs as in Theorem 6.3.1. But then
(T,V) cannot have pairwise disjoint separators, as pointed out in Example 5.3.7.

6.3.2. A duality theorem related to stars

Here we present a duality theorem for dominated combs in terms of tree-decompo-
sitions making the right but not the left dashed arrow in Figure 6.3.1 true.
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Theorem 6.3.5. Let G be any connected graph, and let U ⊆ V (G) be any vertex
set. Then the following assertions are complementary:

(i) G contains a dominated comb attached to U ;
(ii) G has a tree-decomposition with pairwise disjoint finite separators that dis-

plays ∂ΩU .

Moreover, the tree-decomposition in (ii) can be chosen with connected separators
and rooted so that it covers U cofinally.

Before we prepare the proof of our theorem, let us deduce the right dashed arrow
of Figure 6.3.1 from it (also see Figure 6.3.3 which shows the last two columns of
Figure 6.3.1 in greater detail and where Theorem 6.3.5 (ii) including the theorem’s
‘moreover’ part is inserted for ‘?’): If G does not contain a star attached to U ,
then in particular it does not contain a dominated comb attached to U . Hence
Theorem 6.3.5 yields a tree-decomposition (T,V) of G which we choose so that it
also satisfies the theorem’s ‘moreover’ part; in particular (T,V) is rooted so that
it covers U cofinally. By assumption, the star-comb lemma yields a comb in G
attached to U ′ for every infinite subset U ′ of U . Since (T,V) displays ∂ΩU this
means that no part can meet U infinitely. And additionally employing the pairwise
disjoint finite separators plus U being cofinally covered by the tree-decomposition,
we deduce that no node of T can have infinite degree: Suppose for a contradiction
that t ∈ T is a vertex of infinite degree. For every up-neighbour t′ of t we choose a
vertex from U that is contained in a part Vt′′ with t′′ ≥ t′ in T . Then applying
the star-comb lemma in G to the infinitely many chosen vertices from U yields
a comb. The end of the comb’s spine must then live at t because the separators
of (T,V) are all finite and pairwise disjoint. But this contradicts the fact that
(T,V) displays ∂ΩU which contains the end of the comb’s spine. Finally, (T,V)
inherits the properties of the ‘moreover’ part of Theorem 6.3.2 from the identical
properties of Theorem 6.3.5 (ii) including that theorem’s ‘moreover’ part.

@ dominated comb
attached to U

@ star attached to U

∃ tree-decomposition
with (∗) that covers
U cofinally

∃ locally finite tree-
decomposition with
all parts meeting U
finitely and with (∗)

Figure 6.3.3.: The last two columns of Figure 6.3.1 with Theorem 6.3.5 (ii) including
the theorem’s ‘moreover’ part inserted for ‘?’.
Condition (∗) says that the tree-decomposition displays ∂ΩU and
has pairwise disjoint finite connected separators.

In order to prove Theorem 6.3.5, we will employ the following result by Carmesin.
Recall that a rooted Sℵ0-tree (T, α) has upwards disjoint separators if for every
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two edges
→
e <

→
f pointing away from the root r of T the separators of α(

→
e) and

α(
→
f ) are disjoint. And (T, α) is upwards connected if for every edge

→
e pointing

away from the root r the induced subgraph G[B] stemming from (A,B) = α(
→
e)

is connected. A rooted tree-decomposition has upwards disjoint separators or is
upwards connected if its corresponding Sℵ0-tree is.

Theorem 6.3.6 (Carmesin 2014, Theorem 5.2.17). Every connected graph G
has an upwards connected rooted tree-decomposition with upwards disjoint finite
separators that displays the undominated ends of G.

Carmesin’s proof of this theorem in [19] is long and complex. However, in this
chapter we need his theorem only for normally spanned graphs. This is why we will
provide a substantially shorter proof for this class of graphs (cf. Theorem 6.3.10).
Furthermore, we prove that the separators of the tree-decomposition in Theo-
rem 6.3.6 can be chosen pairwise disjoint and connect, which makes it easier for
us to apply the theorem. The latter is essentially accomplished by the following
lemma:

Lemma 6.3.7. Let G be any connected graph and let Ψ be any set of ends of G.
Then the following assertions are equivalent:

(i) G has an upwards connected rooted tree-decomposition with upwards disjoint
finite separators that displays Ψ;

(ii) G has a tree-decomposition with pairwise disjoint finite connected separators
that displays Ψ.

Indeed, this lemma together with Theorem 6.3.6 yields the following theorem:

Theorem 6.3.8. Every connected graph G has a tree-decomposition with pairwise
disjoint finite connected separators that displays the undominated ends of G.

For the proof of Lemma 6.3.7 we need the following lemma from the first chapter
of our series:

Lemma 6.3.9 (Lemma 5.2.16). Let G be any graph. Every upwards connected
rooted Sℵ0-tree (T, α) with upwards disjoint separators displays the ends of G that
correspond to the ends of T .

Proof of Lemma 6.3.7. The implication (ii)→(i) is immediate, we prove (i)→(ii).
Let (T,V) be an upwards connected rooted tree-decomposition of G with upwards

disjoint finite separators that displays Ψ. We consider the Sℵ0-tree (T, α) corre-
sponding to (T,V). For every edge e = t1t2 of T with t1 ≤ t2 and α(t1, t2) = (A,B)
we use that (T, α) is upwards connected to find a finite connected subgraph He of
G[B] that contains A ∩ B. We define A′ := A ∪ V (He) and B′ := B so that the
separator A′ ∩B′ = V (He) is connected. Then we define α′(t1, t2) := (A′, B′) and
α′(t2, t1) := (B′, A′) to obtain another map α′ :

→
E(T )→

→
Sℵ0 . The pair (T, α′) does

not need to be an Sℵ0-tree, for some of its separations might cross. To fix this, we
will carefully ‘thin out’ the tree and, consequently, the set of separations associated
with it via α′. This will result in a contraction minor T̃ of T such that (T̃, α̃′) with
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α̃′ := α′ � E(T̃ ) is an Sℵ0-tree with upwards disjoint finite connected separators
that still displays Ψ. Then, in order to obtain the desired tree-decomposition, we
just have to contract all the edges of T̃ that are at an even distance from the root,
and restrict α̃′ to the smaller edge set of the resulting contraction minor of T̃ .

To begin the construction of T̃ , we partially order E(T ) by letting e ≤ f
whenever e precedes f on a path in T starting at the root. For every edge e of T
we do the following. We write Te for the component of T − e that does not contain
the root. Then, we let Fe ⊆ E(Te) consist of the down-closure in E(Te) of those
edges whose α′-separator (the separator of the separation that α′ associates with
the edge) meets the α′-separator of e. A distance argument employing the original
upwards disjoint α-separators ensures that Fe induces a rayless down-closed subtree
of Te.

In order to reasonably name edges of T whose contraction leads to T̃ , we
recursively construct a sequence E0, E1, . . . of pairwise disjoint subsets of E(T )
such that their overall union E ′ :=

⊔
n∈NEn induces a partition { {e}, Fe | e ∈ E ′ }

of E(T ). The construction goes as follows. Take E0 to be the set of minimal edges
of E(T ), i.e. take E0 to be the set of edges of T at the root. Then at step n > 0
consider the edges of E(T ) that are not contained in the down-closed edge set⋃
{ {e}, Fe | e ∈ E0 ∪ · · · ∪ En−1 }, and take the minimal ones to form En.
Once we have constructed E ′, we take T̃ to be the contraction minor of T that

is obtained by contracting all the edges occurring in some Fe with e ∈ E ′. Then
(T̃, α̃′) has upwards disjoint finite connected separators and displays Ψ, as we verify
now. Consider any distinct two edges e and f of T̃ , that is, edges e, f ∈ E ′. If the
two edges are comparable with e < f , say, then their α′-separators are disjoint as f
is not in Fe, and so in particular their α′-separations are nested. Otherwise e and
f are incomparable, and then their α′-separations are nested by the construction
of α′ from α. Therefore, the separators of (T̃, α̃′) are finite, connected and pairwise
disjoint. It remains to show that (T̃, α̃′) displays Ψ.

Since all Fe are rayless, we deduce that every ray of T meets E ′ infinitely.
Consequently, the rooted rays of T correspond bijectively to the rooted rays of T̃
via the map R 7→ R̃ satisfying E(R) ⊇ E(R̃). Now to see that (T̃, α̃′) displays Ψ,
consider any end ω of G. If ω is not contained in Ψ, then ω lives at a node t ∈ T
(with regard to (T, α)), and hence ω lives at the node t̃ ∈ T̃ (with regard to (T̃, α̃′))
that contains t. Otherwise ω lies in Ψ. Then ω corresponds to an end of T . This
end is uniquely represented by a rooted ray R of T . And then from E(R̃) ⊆ E(R)
it follows that ω corresponds to the end of R̃ in T̃ . So the ends in Ψ correspond
to ends of T̃ while all ends in Ω r Ψ live at nodes. Then by Lemma 6.3.9 this
correspondence is bijective, and hence (T̃, α̃′) displays Ψ as desired.

Theorem 6.3.10. Let G be any connected graph. If Tnt ⊆ G is a normal tree
such that every component of G−Tnt has finite neighbourhood, then G has a rooted
tree-decomposition (T,V) with the following three properties:

� the separators are pairwise disjoint, finite and connected;
� (T,V) displays the undominated ends in the closure of Tnt;
� (T,V) covers V (Tnt) cofinally.
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Proof. Given the normal tree Tnt, by Lemma 6.3.7 it suffices to find an upwards
connected rooted tree-decomposition (T,V) of G that diplays the undominated
ends in the closure of Tnt and that has upwards disjoint finite separators all of
which meet V (Tnt).

Let us write r for the root of Tnt. Recall that every component of G− Tnt has
finite neighbourhood by assumption. Hence every end ω ∈ Ωr ∂ΩTnt lives in a
unique component of G− Tnt; we define the height of ω to be the height of the
maximal neighbour of this component in Tnt.

Starting with T0 = r and α0 = ∅ we recursively construct an ascending1 sequence
of Sℵ0-trees (Tn, αn) all rooted in r and satisfying the following conditions:

(i) the separators of (Tn, αn) are upwards disjoint and they are vertex sets of
ascending paths in Tnt;

(ii) Tn arises from Tn−1 by adding edges to its (n− 1)th level;
(iii) undominated ends in the closure of Tnt live at nodes of the nth level of Tn

with regard to (Tn, αn);
(iv) if ω ∈ Ωr ∂ΩTnt has height < n, then ω lives at a node of Tn of height < n

with regard to (Tn, αn).

Before pointing out the details of our construction, let us see how to complete
the proof once the (Tn, αn) are defined. Consider the Sℵ0-tree (T, α) defined by
letting T :=

⋃
n∈N Tn and α :=

⋃
n∈N αn, and let (T,V) be the corresponding

tree-decomposition of G. By (i) we have that (T,V) is indeed a rooted tree-
decomposition with upwards disjoint finite connected separators all of which meet
V (Tnt). It remains to prove that (T,V) displays the undominated ends in the
closure of Tnt.

By Lemma 6.3.9 it suffices to show that the undominated ends in the closure of
Tnt are precisely the ends of G that correspond to the ends of T . For the forward
inclusion, consider any undominated end ω in the closure of Tnt. By (iii), it follows
that ω lives at a node tn of Tn (with regard to (Tn, αn)) at level n for every n ∈ N,
and these nodes form a ray R = t0t1 . . . of T . Then ω corresponds to the end of T
containing R.

For an indirect proof of the backward inclusion, consider any end ω of G that
is either dominated or not contained in the closure of Tnt. We show that ω does
not correspond to any end of T . If ω is dominated, then this follows from the fact
that (T,V) has upwards disjoint finite separators. Otherwise ω is not contained in
the closure of Tnt. Let n ∈ N be strictly larger than the height of ω. By (iv), it
follows that ω lives at a node tω of Tn of height < n with regard to (Tn, αn). And
by (ii), the tree Tn consists precisely of the first n levels of T . We conclude that ω
lives in the part of (T,V) corresponding to tω.

Now, we turn to the construction of the (Tn, αn), also see Figure 6.3.4. At step
n+ 1 suppose that (Tn, αn) has already been defined and recall that the separators
of (Tn, αn) are vertex sets of ascending paths in Tnt by (i). Let L be the nth
level of Tn. To obtain (Tn+1, αn+1) from (Tn, αn), we will add for each ` ∈ L new

1Here, we mean ascending in both entries with regard to inclusion, i.e., Tn ⊆ Tn+1 and
αn ⊆ αn+1 for all n ∈ N.
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X
Y
Z

y

Zy

Byz

y′

Zy′ = ∅

Figure 6.3.4.: The construction of the (Tn, αn) in the proof of Theorem 6.3.10.
Here the vertex set Z consists of all vertices that are contained in
some Zy with y ∈ Y . The depicted tree is Tnt.

vertices (possibly none) to Tn that we join exactly to ` and define the image of
the so emerging edges under αn+1. So fix ` ∈ L. Let X be the separator of the
separation corresponding to the edge between ` and its predecessor in Tn (if n = 0
put X = ∅). Recall that X is the vertex set of an ascending path in Tnt by (i).
In Tnt, let Y be the set of up-neighbours of the maximal vertices in X (for n = 0
let Y := {r}). For each y ∈ Y let Zy be the set of those z ∈ bycTnt that are
minimal with the property that G contains no Tnt-path starting in dyeTnt and
ending in bzcTnt . (Note that a normal ray of Tnt that contains y meets Zy if and
only if it is not dominated by any of the vertices in dyeTnt ; this fact together with (i)
will guarantee (iii) for n+ 1.) Then the vertex set of yTntz separates the connected
sets Ayz := (V r bbzccTnt) ∪ V (yTntz) and Byz := V (yTntz) ∪ bbzccTnt whenever
y ∈ Y and z ∈ Zy. Join a node tyz to ` for every pair (y, z) with y ∈ Y and z ∈ Zy,
and put αn+1(`tyz) := (Ayz, Byz). Then the Sℵ0-tree (Tn+1, αn+1) clearly satisfies
(i) and (ii). That it satisfies (iii) was already argued in the construction and (iv)
follows from (i) and the definition of αn+1(`tyz).

With Theorem 6.3.10 at hand, we are finally able to prove Theorem 6.3.5:

Proof of Theorem 6.3.5. First, we show that (i) and (ii) cannot hold at the same
time. For this, assume for a contradiction that G contains a dominated comb
attached to U and has a tree-decomposition (T,V) with pairwise disjoint finite
separators that displays ∂ΩU . We write ω for the end of G containing the comb’s
spine. Then ω lies in the closure of U , and since (T,V) displays ∂ΩU there is a
unique end η of T to which ω corresponds. But as the finite separators of (T,V)
are pairwise disjoint, it follows that ω is undominated in G, contradicting that ω
contains the spine of a dominated comb.

Now, to show that at least one of (i) and (ii) holds, we prove ¬(i)→(ii). Using
Theorem 6.1 we find a normal tree Tnt ⊆ G that contains U cofinally and all whose
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rays are undominated in G. Furthermore, by the ‘moreover’ part of Theorem 6.1
we may assume that every component of G− Tnt has finite neighbourhood, and
by Lemma 6.2.4 we have ∂ΩU = ∂ΩTnt. Then Theorem 6.3.10 yields a rooted
tree-decomposition (T ′,V ′) of G as in (ii) that has connected separators and covers
V (Tnt) cofinally. It remains to show that (T ′,V ′) can be chosen so as to cover U
cofinally. For this, consider the nodes of T ′ whose parts meet U , and let T ⊆ T ′

be induced by their down-closure in T ′. Then let (T ′, α′) be the Sℵ0-tree of G
that corresponds to (T ′,V ′) and consider the rooted tree-decomposition (T,V) of
G that corresponds to (T, α′ �

→
E(T ) ). Now (T,V) is as in (ii) and satisfies the

theorem’s ‘moreover’ part.

6.3.3. A duality theorem related to stars and combs

Finally, we present a duality theorem for dominated combs in terms of tree-
decompositions that makes both the left and the right dashed arrow in Fig-
ure 6.3.1 true. In order to state the theorem, we need one more definition. A
tree-decomposition (T,V) of a graph G has essentially disjoint separators if there
is an edge set F ⊆ E(T ) meeting every ray of T infinitely often such that the
separators of (T,V) associated with the edges in F are pairwise disjoint.

Theorem 6.2. Let G be any connected graph, and let U ⊆ V (G) be any vertex
set. Then the following assertions are complementary:

(i) G contains a dominated comb attached to U ;
(ii) G has a tree-decomposition (T,V) such that:

– each part contains at most finitely many vertices from U ;
– all parts at non-leaves of T are finite;
– (T,V) has essentially disjoint connected separators;
– (T,V) displays the ends in the closure of U .

Before we provide a proof of this theorem, let us see that it relates to the duality
theorems for stars and combs in terms of tree-decompositions as desired (also see
Figure 6.3.5, which shows Figure 6.3.1 in greater detail and where Theorem 6.2 (ii)
including the theorem’s ‘moreover’ part is inserted for ‘?’).

On the one hand, if G does not contain a comb attached to U , then in particular
it does not contain a dominated comb attached to U . Hence Theorem 6.2 returns
a tree-decomposition (T,V). By our assumption that there is no comb attached
to U , and since (T,V) displays ∂ΩU , it follows that the decomposition-tree T is
rayless. We conclude that (T,V) is as in Theorem 6.3.1 (ii) including the theorem’s
‘moreover’ part.

On the other hand, if G does not contain a star attached to U , then in particular
it does not contain a dominated comb attached to U . Hence Theorem 6.2 returns
a tree-decomposition (T,V) that, in particular, has essentially disjoint finite con-
nected separators and displays ∂ΩU . Write (T, α) for the Sℵ0-tree that corresponds
to (T,V). Let F ⊆ E(T ) witness that (T,V) has essentially disjoint separators
and root T arbitrarily. By possibly thinning out F , we may assume that each
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@ dominated comb
attached to U

@ comb attached to U

∃ tree-decomposition
with (∗), essentially
disjoint separators
and parts at non-
leaves finite

@ star attached to U

∃ rayless tree-decom-
position with (∗)
and parts at non-
leaves finite

∃ locally finite tree-
decomposition with
(∗) and pairwise
disjoint separators

Figure 6.3.5.: The relation between the duality theorems for combs, stars and
the final duality theorem for the dominated combs in terms of tree-
decompositions.
Condition (∗) says that parts contain at most finitely many vertices
from U , that the separators are finite and connected, and that the
tree-decomposition displays ∂ΩU .

edge in F meets a rooted ray of T . Consider the tree T̃ that is obtained from T
by contracting all the edges of T that are not in F and let α̃ be the restriction
of α to

→
F =

→
E(T̃ ). Then (T̃, α̃) corresponds to a tree-decomposition (T̃,W) of G

with pairwise disjoint finite connected separators that displays ∂ΩU . Thus, the
tree-decomposition (T̃,W) is one of the tree-decompositions of G that are com-
plementary to dominated combs as in Theorem 6.3.5 (ii) including the theorem’s
‘moreover’ part (it covers U cofinally as F meets every rooted ray of T while
(T,V) displays ∂ΩU). Then, as we have already argued below Theorem 6.3.5, the
tree-decomposition (T̃,W) must be locally finite and each part may contain at most
finitely many vertices of U . That is to say that (T̃,W) is as in Theorem 6.3.2 (ii)
including the theorem’s ‘moreover’ part.

As we work with contraction minors in the proof of Theorem 6.2 we need some
preparation. Let H and G be any two graphs. We say that H is a contraction minor
of G with fixed branch sets if an indexed collection of branch sets {Vx | x ∈ V (H) }
is fixed to witness that G is an IH. In this case, we write [v] = [v]H for the branch
set Vx containing a vertex v of G and also refer to x by [v]. Similarly, we write
[U ] = [U ]H := { [u] | u ∈ U } for vertex sets U ⊆ V (G).

The following notation will help us to translate between the endspace of G and
that of H. Consider a contraction minor H of a graph G with fixed finite branch sets.
Every direction f of G defines a direction [f ] of H by letting [f ](X) := [f(

⋃
X)]

for every finite vertex set X ⊆ V (H). In fact, it its straightforward to check that
every direction of H is defined by a direction of G in this way:
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Lemma 6.3.11. Let H be a contraction minor of a graph G with fixed finite
branch sets. Then the map f 7→ [f ] is a bijection between the directions of G and
the directions of H.

This one-to-one correspondence then combines with the well-known one-to-one
correspondence between the directions and ends of a graph (see Theorem 5.2.7),
giving rise to a bijection ω 7→ [ω] between the ends of G and the ends of H. The
natural one-to-one correspondence between the two end spaces extends to other
aspects of the graphs and their ends:

Lemma 6.3.12. Let H be a contraction minor of a graph G with fixed finite
branch sets, let ω be an end of G and let U ⊆ V (G) be any vertex set. Then ω lies
in the closure of U in G if and only if [ω] lies in the closure of [U ] in H; and ω is
dominated in G if and only if [ω] is dominated in H.

We remark that this extends [26, Exercise 82 (i)].

Proof. Write fω for the direction of G that corresponds to ω. Then the following
statements are equivalent:

(i) ω lies in the closure of U in G;
(ii) fω(X) meets U for every finite vertex set X ⊆ V (G);

(iii) [fω](X) meets [U ] for every finite vertex set X ⊆ V (H);
(iv) [ω] lies in the closure of [U ] in H.

Indeed, one easily verifies (i)↔(ii)↔(iii)↔(iv).
This establishes that the end ω of G lies in the closure of U in G if and only

if [ω] lies in the closure of [U ] in H. Similarly, it is straightforward to check that
the following statements are equivalent for any vertex v of G (except for (iii)→(ii)
which we will verify in detail):

(i) there is a vertex z ∈ [v] that dominates ω in G;
(ii) there is a vertex z ∈ [v] such that z ∈ fω(X) for every finite vertex set

X ⊆ V (G)r {z};
(iii) [v] ∈ [fω](X) for every finite vertex set X ⊆ V (H)r {[v]};
(iv) [v] dominates [ω] in H.

To see (iii)→(ii) we show ¬(ii)→¬(iii). Since (ii) fails, there is for every vertex
z ∈ [v] a finite vertex set Xz ⊆ V (G) r {z} such that z is not contained in
fω(Xz). Consider the finite vertex set X :=

⋃
zXz. Then no z ∈ [v] is contained

in the component fω(X) or is one of its neighbours, because fω(X) ⊆ fω(Xz) and
z /∈ Xz ∪ fω(Xz). Hence [v] /∈ [fω]([X ′]) for the neighbourhood X ′ of fω(X) in G
that avoids [v]. Therefore the end ω of G is dominated in G if and only if [ω] is
dominated in H.

Suppose that (T,V) is a tree-decomposition of a given graph G and that H is
a contraction minor of G with fixed branch sets. The tree-decomposition of H
that is obtained by passing on (T,V) to H is the tree-decomposition (T, ([Vt])t∈T ).
Note that this is indeed a tree-decomposition, cf. [26, Lemma 12.3.3].
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Lemma 6.3.13. Let G be any graph, let U ⊆ V (G) be any vertex set, and let
(T,V) be any tree-decomposition of G with finite separators. Furthermore, let H
be any contraction minor of G with fixed finite branch sets. Then (T,V) displays
the ends of G in the closure of U if and only if the tree-decomposition of H that is
obtained by passing on (T,V) to H displays the ends of H in the closure of [U ].

Proof. Let (T, α) be the Sℵ0-tree corresponding to (T,V) and let (T, α′) be the
Sℵ0-tree corresponding to the tree-decomposition of H that is obtained by passing
on (T,V) to H. The ends of G correspond bijectively to the ends of H through
the bijection Ω(G)→ Ω(H) that maps ω to [ω]. By Lemma 6.3.12, this bijection
restricts to a bijection between the ends of G in the closure of U and the ends of
H in the closure of [U ]. Hence it suffices to show that every end ω of G induces
the same orientation on

→
E(T ) with regard to (T, α) as [ω] does with regard to

(T, α′). For this, let ω be any end of G and write fω for the direction of G that
corresponds to ω. The following statements are equivalent for every oriented edge
(e, s, t) ∈

→
E(T ) and α(s, t) = (A,B):

(i) (e, s, t) is contained in the orientation of
→
E(T ) induced by ω;

(ii) every ray in ω has a tail in G[B];
(iii) fω(A ∩B) is included in G[B];
(iv) [fω]([A] ∩ [B]) is included in H[ [B] ];
(v) every ray in [ω] has a tail in H[ [B] ];

(vi) (e, s, t) is contained in the orientation of
→
E(T ) induced by [ω].

Indeed, having in mind that α′(s, t) = ([A], [B]) one easily verifies the implications
(i)↔(ii)↔(iii)↔(iv)↔(v)↔(vi) in the given order.

Lemma 6.3.14. Let G be any graph, let U ⊆ V (G) be any vertex set and let
H be any contraction minor of G with fixed finite branch sets. If assertion (ii)
of Theorem 6.2 holds with G and U replaced by H and [U ] respectively, then
assertion (ii) also holds for G and U .

Proof. Let (T,W) be any tree-decomposition of H that witnesses that assertion (ii)
holds with G and U replaced by H and [U ]. Then the tree-decomposition (T,W)
of H gives rise to a tree-decomposition (T,V) of G by replacing every part with
the union of the branch sets that correspond to its vertices. We claim that (T,V)
witnesses that assertion (ii) holds for G and U . For this, we have to show that
(T,V) satisfies four conditions, of which only the fourth condition—that (T,V)
displays the ends of G in the closure of U—is not immediate. This fourth condition,
however, is covered by Lemma 6.3.13.

Proof of Theorem 6.2. Since the tree-decomposition from (ii) displays ∂ΩU and
has essentially disjoint finite separators, it follows by standard arguments that not
both (i) and (ii) can hold at the same time.

In order to show that at least one of (i) and (ii) holds, we prove ¬(i)→(ii).
For this, suppose that G contains no dominated comb attached to U . Using
Theorem 6.3.5 we find a tree-decomposition Tdisj = (Tdisj,Vdisj) of G with pairwise
disjoint connected finite separators that displays the ends of G in the closure
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of U . Then the contraction minor H of G that is obtained from G by contracting
every separator of Tdisj does not contain any dominated comb attached to [U ] by
Lemma 6.3.12. By Lemma 6.3.14 it suffices to show assertion (ii) with G and U
replaced by H and [U ]. That is why in order to show assertion (ii) for G and U
we may assume that the separators of Tdisj are singletons.

By Theorem 6.1 we find a normal tree Tnt ⊆ G that contains U cofinally and
all whose rays are undominated. Furthermore, by the theorem’s ‘moreover’ part
we may choose Tnt so that every component of G− Tnt has finite neighbourhood.
As the nodes of Tdisj whose parts meet Tnt induce a subtree T ′disj of Tdisj, we may
additionally assume that Tnt meets every part of Tdisj: we may replace Tdisj with
the tree-decomposition of G that corresponds to the Sℵ0-tree (T ′disj, α �

→
E(T ′disj) )

where (Tdisj, α) is the Sℵ0-tree corresponding to Tdisj (here Lemma 6.2.4 ensures
that the new tree-decomposition still displays ∂ΩU).

As Tnt is normal, the neighbourhood of every such component C is a chain in
Tnt and thus has a maximal element tC . Now, let T ′ be the tree that is obtained
from Tnt by adding every component C of G− Tnt as a new vertex and joining
it precisely to tC . We define a tree-decomposition (T ′,V ′) of G that is almost as
desired.

Before we do that, let us have a closer look at how Tnt interacts with the
tree-decomposition Tdisj, also see Figure 6.3.6. For every node x ∈ Tdisj the normal
tree Tnt restricts to a normal tree T xnt := Tnt ∩ G[Vx] in G[Vx] that contains all
the vertices of U in the part Vx from Vdisj cofinally. We write rx for the root of
T xnt. As the tree-decomposition Tdisj of G displays all the ends in the closure of
U , each T xnt must be rayless. The normal trees T xnt intersect each other as follows.
For every two distinct nodes x, y ∈ Tdisj the normal trees T xnt and T ynt avoid each
other if xy is not an edge of Tdisj, and they intersect precisely in the single vertex
of the separator associated with the edge xy if xy is an edge of Tdisj.

Now let us define the parts V ′t of (T ′,V ′) for every node t ∈ T ′. For this, we
choose for every node t ∈ Tnt a root r(t) of some of the normal trees T xnt with
x ∈ Tdisj as follows. If just one of the normal trees T xnt contains t, then we let
r(t) be the root rx of T xnt. Otherwise there are two normal trees T xnt and T ynt
with xy ∈ Tdisj and we choose the smaller node of rx and ry with regard to the
tree-order of Tnt as r(t) (in particular, if rx < ry then r(ry) = rx). For all nodes
t ∈ Tnt ⊆ T ′ we let V ′t be the vertex set of the decreasing path tTntr(t) in Tnt.
For newly added nodes C ∈ T ′ − Tnt coming from components of G− Tnt we let
V ′C be the union of V ′tC and the vertex set of the component C.

In a final construction, we obtain the desired tree-decomposition (T,V) from
(T ′,V ′). For every vertex x ∈ Tdisj let Tx be the tree that is obtained from T xnt
as follows: Take a copy sx of rx (making sure that sx /∈ Tnt and sx 6= sy for all
x 6= y ∈ Tdisj) and join it precisely to the neighbours of rx in T xnt and to rx. Then
delete all edges incident to rx other than rxsx. We let T be the union of all the
trees Tx and define the parts of (T,V) as follows. For every node t ∈ V (T ′) ⊆ V (T )
we let Vt := V ′t and for all vertices sx ∈ T −T ′ we let Vsx be the singleton consisting
only of rx. Let us prove that (T,V) is as desired. Each part contains at most
finitely many vertices from U because U ⊆ V (Tnt) and Vt ∩ Tnt is the vertex set
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C
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Figure 6.3.6.: The construction of (T ′,V ′) in the proof of Theorem 6.2. The tree
depicted is the normal tree Tnt and the grey disks are the parts of
Tdisj. Here the root rx of T xnt agrees with the root of Tnt. Also we
have r(ry) = r(rz) = rx and r(t) = ry.

of a finite path (or a singleton) for every node t ∈ T . Quite similarly, all parts at
non-leaves of T ′ are finite because they are vertex sets of finite paths of Tnt.

To see that (T,V) has essentially disjoint separators, let F ⊆ E(T ) be the set
of all edges rxsx with x ∈ Tdisj and rx distinct from the root of Tnt. The latter
requirement becomes necessary when the root of Tnt forms a separator Z of Tdisj:
then the root is chosen as rx = ry for the edge xy ∈ Tdisj with which the separator
Z is associated in Tdisj, meaning that both edges rxsx and rysy of T have the
same separator {rx} = {ry} associated with them in (T,V). In particular, the
requirement affects at most two edges of T . Now, let us see that F witnesses
that (T,V) has essentially disjoint separators. On the one hand, the separators
of (T,V) associated with edges rxsx ∈ F are singletons of the form {rx} and thus
are pairwise disjoint. On the other hand, using that the trees T xnt with x ∈ Tdisj
are rayless, it is easy to see that every ray R ⊆ T passes through infinitely many
edges from F .

In order to see that (T,V) displays the ends in the closure of U it suffices to
show that (T ′,V ′) displays the ends in the closure of U . For this in turn, by
Lemma 6.2.4, it suffices to show that (T ′,V ′) displays the ends in the closure of
Tnt, which follows from standard arguments.

Example 6.3.15. The tree-decomposition in Theorem 6.2 (ii) cannot be chosen
with pairwise disjoint separators instead of essentially disjoint separators: Suppose
that G consists of the first three levels of Tℵ0 and let U := V (G). Then G contains
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no comb attached to U . In particular, as we have already argued in the text below
Theorem 6.2, every tree-decomposition (T,V) of G complementary to dominated
combs as in Theorem 6.2 is also a tree-decomposition of G complementary to combs
as in Theorem 6.3.1. But then (T,V) cannot be chosen with pairwise disjoint
separators, as pointed out in Example 5.3.7.
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7. Duality theorems for stars and combs
III: Undominated combs

7.1. Introduction

Two properties of infinite graphs are complementary in a class of infinite graphs
if they partition the class. In a series of four chapters we determine structures
whose existence is complementary to the existence of two substructures that are
particularly fundamental to the study of connectedness in infinite graphs: stars
and combs. See Chapter 5 for a comprehensive introduction, and a brief overview
of results, for the entire series of four chapters (5, 6, 8 and this chapter).

In the first chapter of this series we found structures whose existence is comple-
mentary to the existence of a star or a comb attached to a given set U of vertices,
and two types of these structures turned out to be relevant for both stars and
combs: normal trees and tree-decompositions. A comb is the union of a ray R (the
comb’s spine) with infinitely many disjoint finite paths, possibly trivial, that have
precisely their first vertex on R. The last vertices of those paths are the teeth of
this comb. Given a vertex set U , a comb attached to U is a comb with all its teeth
in U , and a star attached to U is a subdivided infinite star with all its leaves in U .
Then the set of teeth is the attachment set of the comb, and the set of leaves is
the attachment set of the star. Given a graph G, a rooted tree T ⊆ G is normal
in G if the endvertices of every T -path in G are comparable in the tree-order of T ,
cf. [26]. For the definition of tree-decompositions see [26].

As stars and combs can interact with each other, this is not the end of the story.
For example, a given vertex set U might be connected in a graph G by both a star
and a comb, even with infinitely intersecting sets of leaves and teeth. To formalise
this, let us say that a subdivided star S dominates a comb C if infinitely many
of the leaves of S are also teeth of C. A dominating star in a graph G then is a
subdivided star S ⊆ G that dominates some comb C ⊆ G; and a dominated comb
in G is a comb C ⊆ G that is dominated by some subdivided star S ⊆ G. Thus, a
comb C ⊆ G is undominated in G if it is not dominated in G. Recall that a vertex
v of G dominates a ray R ⊆ G if there is an infinite v–(R− v) fan in G, see [26].
A ray R ⊆ G is dominated if some vertex of G dominates it. Rays not dominated
by any vertex of G are undominated. Dominated combs are related to dominated
rays in that a comb is dominated in G if and only if its spine is dominated in G.

In the second chapter of our series we determined structures whose existence is
complementary to the existence of dominating stars or dominated combs—again
in terms of normal trees or tree-decompositions.

Here, in the third chapter of the series, we determine structures whose existence
is complementary to the existence of undominated combs. A candidate for a
normal tree that is complementary to an undominated comb in G attached to a
given set U of vertices is a normal tree T ⊆ G that contains U and all whose rays
are dominated in G, for if U = V (G) then T is spanning and hence its (dominated)
rooted rays are in a natural one-to-one correspondence to the ends of G. Such
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normal trees T are easily seen to be complementary structures for undominated
combs whenever G happens to contain some normal tree that contains U . But in
general, normal trees T ⊆ G containing U all whose rays are dominated in G are
not complementary to undominated combs, because the absence of an undominated
comb does not imply the existence of such a normal tree: for example if G is
an uncountable complete graph and U = V (G), then every normal tree in G
containing U must be spanning but G does not have any normal spanning tree.

As our first main result, we show that if U is contained in any normal tree T ⊆ G,
there is a more elementary structure that is complementary to undominated combs
attached to U and which obstructs undominated combs attached to U immediately:
a rayless tree containing U . Call a set U ⊆ V (G) of vertices of a graph G normally
spanned in G if U is contained in a tree T ⊆ G that is normal in G. The graph
G is normally spanned if V (G) is normally spanned in G, i.e., if G has a normal
spanning tree.

Theorem 7.1. Let G be any graph and let U ⊆ V (G) be normally spanned in G.
Then the following assertions are complementary:

(i) G contains an undominated comb attached to U ;
(ii) there is a rayless tree T ⊆ G that contains U .

This extends results of Polat [70,71] and Širáň [79], who proved the case U = V (G)
for countable G: A countable connected graph has a rayless spanning tree if and
only if all its rays are dominated.

There are uncountable graphs G for which this duality fails, even for U = V (G).
By Theorem 7.1, such graphs G cannot have a normal spanning tree. There are
two known constructions of such graphs, by Seymour and Thomas [76] and by
Thomassen [83]. Both these constructions are involved.

As a corollary of Theorem 7.1 we obtain a full characterisation of the graphs
that contain a rayless tree containing a given set U of vertices: they are precisely
the graphs G that have a subgraph H in which U is normally spanned and all
whose rays are dominated in H. In particular, we obtain the following corollary:

Corollary 7.2. Graphs with a normal spanning tree have a rayless spanning tree
if and only if all their rays are dominated.

The graphs with a normal spanning tree are well studied and are quite well known:
see [32, 52].

Our duality theorem for undominated combs in terms of rayless trees, Theo-
rem 7.1, has two applications, Theorems 7.3 and 7.5 below. In order to state our
first application we need the following notation for arbitrary graphs G. Suppose
that H is any subgraph of G and ϕ : Ω(H)→ Ω(G) is the natural map satisfying
η ⊆ ϕ(η) for every end η of H. Furthermore suppose that a set Ψ ⊆ Ω(G) of ends
of G is given. We say that H is end-faithful for Ψ if ϕ � ϕ−1(Ψ) is injective and
im(ϕ) ⊇ Ψ. And H reflects Ψ if ϕ is injective with im(ϕ) = Ψ. An end of G is
dominated and undominated if one (equivalently: each) of its rays is dominated
and undominated, respectively (see [26]).
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Carmesin [19] proved that every connected graph G has a spanning tree that
is end-faithful for the undominated ends of G. He also pointed out that his
result becomes false when ‘end-faithful’ is replaced with ‘reflecting’. As our first
application of Theorem 7.1 we characterise the graphs that have spanning trees
reflecting their undominated ends. An end ω of G is contained in the closure of a
vertex set U ⊆ V (G) in G if G contains a comb attached to U whose spine lies
in ω.

Theorem 7.3. Let G be any graph and let U ⊆ V (G) be any vertex set. Then the
following assertions are equivalent:

(i) There exists a tree T ⊆ G that contains U and reflects the undominated ends
of G in the closure of U in G;

(ii) G has a subgraph H with U ⊆ V (H) normally spanned in H and all whose
undominated ends are included in distinct undominated ends of G.

Corollary 7.4. Every graph that has a normal spanning tree does have a spanning
tree reflecting its undominated ends.

As a consequence of the star-comb lemma, every spanning tree of a graph G
contains a ray from every undominated end of G. Thus, rayless spanning trees
always reflect the undominated ends of the graphs they span. In this sense,
spanning trees reflecting the undominated ends can be seen as a generalisation of
rayless spanning trees.

Spanning trees reflecting the undominated ends are particularly interesting for
finitely separable graphs. A graph is finitely separable if every two of its vertices
can be separated by finitely many edges, cf. [12]. Our second application of
Theorem 7.1 reads as follows:

Theorem 7.5. Let G be any graph and let T ⊆ G be any spanning tree.

(i) All the fundamental cuts of T are finite if and only if G is finitely separable
and T reflects the undominated ends of G.

(ii) If G is finitely separable, then it has a spanning tree all whose fundamental
cuts are finite.

For a finitely separable graph G, the spanning trees of G all whose fundamental
cuts are finite are precisely the spanning trees of G whose closure in G̃ = (G̃, ITop)
contains no (topological) cycle, see [12] for definitions. The space G̃ was used
by Bruhn and Diestel [12] to extend Whitney’s theorem [26, 84]—which states
that a finite graph is planar if and only if it has an abstract dual—to finitely
separable infinite graphs. Bruhn and Diestel also showed that G̃ permits the
extension of another well known duality theorem for finite graphs: that the
complement of the edge set of any spanning tree of G defines a spanning tree in any
abstract dual of G, and conversely that any two graphs with the same edge sets
so that their spanning trees complement each other form a pair of abstract duals.
Their latter extension speaks of spanning trees whose closure in G̃ contains no
(topological) cycle instead of arbitrary spanning trees. Solving a problem of Diestel
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and Kühn [31, Problem 7.9], they showed that such spanning trees always exist
in connected finitely separable graphs. Our Theorem 7.5 provides an alternative
proof:

Corollary 7.6. Every connected finitely separable graph G has a spanning tree
whose closure in G̃ contains no topological cycle.

In contrast to Bruhn and Diestel’s proof, ours is rather methodic in that it combines
various structural results.

Let us return to our initial problem of finding complementary structures for
undominated combs. While it is not always possible to find normal trees or rayless
trees that are complementary to undominated combs, it turns out that suitable
tree-decompositions still serve as complementary structures:

Theorem 7.7. Let G be any connected graph, and let U ⊆ V (G) be any vertex
set. Then the following assertions are complementary:

(i) G contains an undominated comb attached to U ;
(ii) G has a star-decomposition with finite adhesion sets such that U is contained

in the central part and all undominated ends of G live in the leaves’ parts.

Moreover, we may assume that the adhesion sets of the tree-decomposition in (ii)
are pairwise disjoint and connected.

As discussed above, rayless trees are in general too strong to serve as com-
plementary structures for undominated combs. It turns out that less specific
structures than rayless trees, subgraphs all of whose rays are dominated, yield
another complementary structure for undominated combs:

Theorem 7.8. Let G be any connected graph, and let U ⊆ V (G) be any vertex
set. Then the following assertions are complementary:

(i) G contains an undominated comb attached to U ;
(ii) G has a connected subgraph that contains U and all whose rays are dominated

in it.

Moreover, the subgraph H in (ii) can be chosen so as to reflect the ends in the
closure of H.

This chapter is organised as follows. In Section 7.2, we prove our duality theorem
for undominated combs in terms of rayless trees, Theorem 7.1. In Section 7.3,
we discuss our applications of this duality theorem, i.e., we prove Theorem 7.3
and Theorem 7.5. In Section 7.4, we provide our two full duality theorems for
undominated combs: Theorem 7.7 and Theorem 7.8.

Throughout this chapter, G = (V,E) is an arbitrary graph. We use the graph
theoretic notation of Diestel’s book [26], and we assume familiarity with the tools
and terminology described in the first chapter of this series, Section 5.2.
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7.2. Undominated combs and rayless trees

In this section, we will consider rayless trees as structures that are complementary
to undominated combs. As usual, let G be any connected graph and let U ⊆ V (G)
be any vertex set. There are three reasons why rayless trees containing U are
good candidates. First, an undominated comb attached to U is more specific than
a comb attached to U and in Theorem 5.1 we proved that rayless normal trees
T ⊆ G that contain U are complementary to combs. Therefore, structures that are
complementary to undominated combs should be less specific than such normal
trees.

Second, by the star-comb lemma, G containing no undominated comb attached
to U can be rephrased as follows: for every infinite subset U ′ ⊆ U the graph G
contains a star attached to U ′. So combining such stars in a clever way might
lead to a rayless tree containing U .

Finally, a graph cannot contain both an undominated comb attached to U and
a rayless tree containing U at the same time:

Lemma 7.2.1 (Lemma 5.2.4). If U is an infinite set of vertices in a rayless rooted
tree T , then T contains a star attached to U which is contained in the up-closure
of its central vertex in the tree-order of T .

For U = V (G), Širáň [79] conjectured that G having a rayless spanning tree is
complementary to G containing an undominated comb attached to U . Surprisingly,
his conjecture has turned out to be false, as shown by Seymour and Thomas [76].
The counterexample they have found is also a big surprise. Recall that Tκ for a
cardinal κ denotes the tree all whose vertices have degree κ.

Theorem 7.2.2 ([76, Theorem 1.6]). There is an infinitely connected, in particular
one-ended, graph G of order 2ℵ0 which does not contain a subdivided Kℵ1, such
that every spanning tree of G contains a subdivision of Tℵ1.

Indeed, the end of a graph G as in Theorem 7.2.2 is dominated as G is infinitely
connected, but for U = V (G) the graph does not contain a rayless tree containing U .

A similar counterexample has been obtained independently by Thomassen [83].
Set-theoretic points of view are presented in both [76] and Komjáth’s [54]. Komjáth
even gives a positive consistency result under Martin’s axiom for graphs G with
< 2ℵ0 many vertices: If κ < 2ℵ0 is a cardinal, MA(κ) holds, and G is infinitely
connected with |V (G)| ≤ κ, then G has a rayless spanning tree.

Nevertheless, it is known that requiring G to be countable does suffice to ensure
the existence of a rayless spanning tree when G is connected and every end is
dominated, giving the following duality:

Theorem 7.2.3. Let G be any connected countable graph. Then the following
assertions are complementary:

(i) G contains an undominated comb attached to V (G);
(ii) G has a rayless spanning tree.
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Proofs are due to Polat [70, 71] and Širáň [79]. Our main result in this section
extends Theorem 7.2.3:

Theorem 7.1. Let G be any graph and let U ⊆ V (G) be normally spanned in G.
Then the following assertions are complementary:

(i) G contains an undominated comb attached to U ;
(ii) there is a rayless tree T ⊆ G that contains U .

Note that this extends Theorem 7.2.3 twofold: On the one hand, we localise the
statement to an arbitrary vertex set U ⊆ V (G). On the other hand, we extend
the statement to the class of all graphs in which U is normally spanned.

While our focus in this chapter is to find duality theorems for undominated combs,
Polat and Širáň were rather interested in a characterisation of those graphs that
have rayless spanning trees. The strongest sufficient condition for the existence of
a rayless spanning tree, other than Theorem 7.1 (to the knowledge of the authors),
is due to Polat [67]: If every end of a connected graph G is dominated and G
contains no subdivided Tℵ1, then G has a rayless spanning tree. His result does not
imply our Theorem 7.1, for example consider G to be the graph obtained from Tℵ1

by completely joining an arbitrarily chosen root to all other nodes, and U = V (G).
However, as a corollary of Theorem 7.1, we obtain a full characterisation of the
graphs that have rayless spanning trees. Our characterisation even takes an
arbitrary vertex set U ⊆ V (G) into account:

Corollary 7.2.4. Let G be any graph. Then the following assertions are equivalent:

(i) There is a rayless tree T ⊆ G that contains U ;
(ii) G has a subgraph H in which U ⊆ V (H) is normally spanned and all whose

rays are dominated in H.

If the graph G itself has a normal spanning tree, then our characterisation simplifies
as follows:

Corollary 7.2. Graphs with a normal spanning tree have a rayless spanning tree
if and only if all their rays are dominated.

This section is organised as follows. In Section 7.2.1 we will prove Theorem 7.1
for normally spanned graphs. Then, in Section 7.2.2, we will deduce Theorem 7.1.

7.2.1. Proof for normally spanned graphs

As a first approximation to Theorem 7.1 we prove the following:

Theorem 7.2.5. Let G be any normally spanned graph and let U ⊆ V (G) be any
vertex set. Then the following assertions are complementary:

(i) G contains an undominated comb attached to U ;
(ii) G contains a rayless tree that contains U .
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Our proof consists of three key ideas, organised in three lemmas: Lemma 7.2.6,
Lemma 7.2.7 and Lemma 7.2.9.

Lemma 7.2.6 (Lemma 5.2.13). Let G be any graph. If T ⊆ G is a rooted tree
that contains a vertex set W cofinally, then ∂ΩT = ∂ΩW .

Lemma 7.2.7. Let G be any graph and let U ⊆ V (G) be any vertex set. If Û is
the superset of U also containing all the vertices dominating an end in the closure
of U , then ∂ΩÛ = ∂ΩU . In particular, ∂ΩU

′ = ∂ΩU for all vertex sets U ′ with
U ⊆ U ′ ⊆ Û and Û contains all the vertices dominating an end in the closure
of Û .

Proof. Every end in the closure of U is contained in the closure of Û because Û
contains U . For the other inclusion consider any end ω in the closure of Û . Given
a finite vertex set X ∈ X we show that C(X,ω) contains a vertex from U . Fix a
comb attached to Û and with spine in ω, and pick any tooth v of the comb in the
component C(X,ω) of G−X. Then either v is contained in U , or v dominates
an end ω′ in the closure of U in which case U must meet C(X,ω′) = C(X,ω).
Therefore, C(X,ω) meets U for all X ∈ X , and so ω lies in the closure of U .

For our last key lemma, we shall need the following result of Jung (cf. Theo-
rem 5.3.5):

Theorem 7.2.8 (Jung). Let G be any graph. A vertex set W ⊆ V (G) is normally
spanned in G if and only if it is a countable union of dispersed sets. In particular,
G is normally spanned if and only if V (G) is a countable union of dispersed sets.

Lemma 7.2.9. Let G be any graph and let U ⊆ V (G) be normally spanned. If
every end in the closure of U is dominated by some vertex in U , then there is a
rayless tree T ⊆ G containing U .

Normal trees follow the concept of depth-first search trees. Speaking informally,
all ends of G are ‘far away’ from the perspective of any fixed vertex. This is why
normal spanning trees grow towards the ends of the underlying graph in the sense
that they contain (precisely) one normal ray from every end. We, however, seek to
avoid having any rays in our tree. This is why our construction of a rayless tree
containing U will follow the opposite concept of depth-first search trees, namely
that of breadth-first search trees.

Proof of Lemma 7.2.9. First we choose a well-ordering of U all whose proper initial
segments are dispersed: By Theorem 7.2.8, we have that U is a countable union⋃
n∈N Un of, say pairwise disjoint, dispersed sets Un. Choose a well-ordering �n of

every vertex set Un. Given u, u′ ∈ U with u ∈ Um and u′ ∈ Un, we write u � u′

if either m < n or m = n with u �m u′ holds. It is straightforward to show that
� defines a well-ordering of U that is as desired. From now on we view U as
well-ordered set (U,�).

We recursively construct an ascending sequence (Tα)α<κ of rooted trees Tα
sharing their root and satisfying that the overall union of the Tα is a rayless tree
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containing U . Let T0 be the tree consisting of and rooted in the smallest vertex
of U . In a limit step β > 0 we let Tβ be the tree

⋃
{Tα | α < β }. In a successor

step β = α + 1 we terminate and set κ = β if U is included in Tα. Otherwise we
let u be the smallest vertex in U r V (Tα). Following the concept of a breadth-first
search tree, among all u–Tα paths fix one Pβ whose endvertex in Tα has minimal
height in Tα. We obtain Tβ from Tα by adding the path Pβ.

Let T be the overall union of the trees Tα, i.e., T :=
⋃
{Tα | α < κ }. Then T

is a rooted tree that contains U cofinally. It remains to check that T is rayless.
Suppose for a contradiction that R is a ray in T starting in the root, say. By
Lemma 7.2.6 the end of the ray R is contained in the closure of U . As all ends in
∂ΩU are dominated by vertices in U , we find a vertex u∗ ∈ U dominating R. Let
Pα∗ be the path from the construction of T that added u∗.

We claim that every tree Tα meets R in a finite initial subpath. This can be seen
as follows. Since all proper initial segments of U are dispersed, by Lemma 7.2.6
it suffices to show that every Tα with α > 0 contains a subset of such a segment
cofinally. A transfinite induction on α shows that for Tα this subset may be chosen
as the set of starting vertices of the paths Pξ with ξ ≤ α a successor ordinal while
the proper initial segment may be chosen as the down-closure in U of the starting
vertex of Pα+1. Here we remark that α + 1 < κ for all α < κ (i.e. κ is a limit
ordinal): indeed, by our assumption that R ⊆ T we know that the vertex set U is
not dispersed and, therefore, meets infinitely many Un.

Finally, we derive the desired contradiction. Fix β > α∗ so that the endvertex
x of Pβ+1 in Tβ has larger height than u∗ has in Tβ and so that Pβ+1 contains an
edge of R. Let u be the first vertex of Pβ+1, i.e., the smallest vertex in U r V (Tβ).
Note that the first vertex w of Pβ+1 that is contained in R is distinct from x. (Also
see Figure 7.2.1.) As u∗ dominates R we find an infinite set Q of u∗–R paths in

Tβ

u∗

x

w

v

Q
Pβ+1

R
u

Figure 7.2.1.: The situation in the last paragraph of the proof of Lemma 7.2.9.
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G such that distinct paths in Q only meet in u∗. All but finitely many paths in
Q meet Tβ+1 precisely in u∗: Otherwise the end of R is contained in the closure
of Tβ+1 contradicting that the vertex set of Tβ+1 is dispersed. Fix a path Q ∈ Q
meeting Tβ+1 precisely in u∗ and having its endvertex v in ẘR. We conclude that
uPβ+1wRvQu

∗ would have been a better choice than Pβ+1 in the construction of
Tβ+1 (contradiction).

Proof of Theorem 7.2.5. By Lemma 7.2.1 at most one of (i) and (ii) holds at a time.
To verify that least one of (i) and (ii) holds, we show ¬(i)→(ii). By Lemma 7.2.7
we may assume that U contains all vertices dominating an end in the closure of U ,
and by Lemma 7.2.9 there is a rayless tree T ⊆ G that contains U .

7.2.2. Deducing our duality theorem in terms of rayless
trees

Let us analyse why the proof of our duality theorem for undominated combs
in terms of rayless trees for normally spanned graphs, Theorem 7.2.5, does not
immediately give a proof for arbitrary graphs. For this, consider any graph G and
let U ⊆ V (G) be any vertex set. Furthermore, suppose that there is a normal tree
T ⊆ G that contains U and that G contains no undominated comb attached to
U . In the proof of Theorem 7.2.5 we assume without loss of generality that U
contains all the vertices dominating an end in the closure of U . This is possible
because, by Lemma 7.2.7, adding all the vertices to U that dominate an end in the
closure of U does not change the set ∂ΩU of ends in the closure of U . However,
after adding all these vertices it may happen—in contrast to the situation in the
proof of Theorem 7.2.5 where G has a normal spanning tree—that U is no longer
normally spanned in G (e.g. consider any countably infinite set U of vertices in an
uncountable complete graph). And U being normally spanned in G is a crucial
requirement of the lemma that yields the desired rayless tree, Lemma 7.2.9.

But maybe adding all the vertices that dominate an end in the closure of U and
maintaining that U is normally spanned was too much to ask. Indeed, Lemma 7.2.9
only requires that U contains for every end ω ∈ ∂ΩU at least one vertex dominating
ω, and adding just one dominating vertex for every end ω might preserve the
property of U being normally spanned in G. The following example shows that
this is in general false:

Example 7.2.10. Let G be a binary tree with tops, i.e., let G be obtained from the
rooted infinite binary tree T2 by adding for every normal ray R of T2 a new vertex
vR, its top, that is joined completely to R (cf. Diestel and Leader’s [32]). Let U be
the vertex set of T2. Then ∂ΩU = Ω(G) and every end ω is dominated precisely
by the top that was added for the unique normal ray of T2 that is contained in
ω. Hence adding for every end in ∂ΩU a vertex dominating it to U results in the
whole vertex set of G. However, as pointed out in [32], the graph G does not have
a normal spanning tree.

Our way out is to work in a suitable contraction minor, which requires some
preparation: Let H and G be any two graphs. We say that H is a contraction minor
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of G with fixed branch sets if an indexed collection of branch sets {Vx | x ∈ V (H) }
is fixed to witness that G is an IH. In this case, we write [v] = [v]H for the branch
set Vx containing a vertex v of G and also refer to x by [v]. Similarly, we write
[U ] = [U ]H := { [u] | u ∈ U } for vertex sets U ⊆ V (G).

Lemma 7.2.11. Let G be any graph and let H be any contraction minor of
G with fixed branch sets that induce subgraphs of G with rayless spanning trees.
Furthermore, let U ⊆ V (G) be any vertex set. If H contains a rayless tree that
contains [U ], then G contains a rayless tree that contains U .

Proof. Let T ⊆ H be a rayless tree that contains [U ]. Fix for every branch set
W ∈ [V (T )] a rayless spanning tree TW in the subgraph that G induces on W .
Furthermore, select one edge ef ∈ EG(t1, t2) for every edge f = t1t2 ∈ T . It is
straightforward to show that the union of all the trees TW plus all the edges ef is
a rayless tree in G that contains U .

Let H be a contraction minor of a graph G with fixed branch sets. A subgraph
G′ = (V ′, E ′) of G can be passed on to H as follows. Take as vertex set the set
[V ′] and declare W1W2 to be an edge whenever E ′ contains an edge between W1

and W2. We write [G′] = [G′]H for the resulting subgraph of H and call it the
graph that is obtained by passing on G′ to H. If every vertex W ∈ [V ′] meets V ′

in precisely one vertex, then we say that G′ is properly passed on to H. Note that
if G′ is properly passed on to H, then [G′] and G′ are isomorphic.

Lemma 7.2.12. Let H be a contraction minor of a graph G with fixed branch sets
and let T ⊆ G be a tree that is normal in G. If T is properly passed on to H, then
[T ] ⊆ H is a tree that is normal in H.

Proof. Since T is properly passed on to G we have that T and [T ] are isomorphic
as witnessed by the bijection ϕ that maps every vertex t ∈ T to [t]. In order to see
that [T ] is normal in H when it is rooted in [r] for the root r of T , consider any [T ]-
path W0 . . .Wk in [H]. Using that branch sets are connected, it is straightforward
to show that there is T -path in G between the two vertices ϕ−1(W0) and ϕ−1(Wk)
of T . Hence W0 and Wk must be comparable in [T ].

We need two more lemmas for the proof of Theorem 7.1. Recall that the
generalised up-closure bbxcc of a vertex x ∈ T is the union of bxc with the vertex
set of

⋃
C (x), where the set C (x) consists of those components of G− T whose

neighbourhoods meet bxc.
Lemma 7.2.13 (5.2.10). Let G be any graph and T ⊆ G any normal tree.

(i) Any two vertices x, y ∈ T are separated in G by the vertex set dxe ∩ dye.
(ii) Let W ⊆ V (T ) be down-closed. Then the components of G−W come in two

types: the components that avoid T ; and the components that meet T , which
are spanned by the sets bbxcc with x minimal in T −W .

Lemma 7.2.14 (Lemma 5.2.11). If G is any graph and T ⊆ G is any normal
tree, then every end of G in the closure of T contains exactly one normal ray of T .
Moreover, sending these ends to the normal rays they contain defines a bijection
between ∂ΩT and the normal rays of T .
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Proof of Theorem 7.1. Given a normally spanned vertex set U ⊆ V (G) we have
to show that the following assertions are complementary:

(i) G contains an undominated comb attached to U ;
(ii) G contains a rayless tree that contains U .

By Lemma 7.2.1 at most one of (i) and (ii) holds at a time. To verify that at
least one of (i) and (ii) holds, we show ¬(i)→(ii). For this, we may assume by
Lemma 7.2.6 that U is the vertex set of a normal tree T ⊆ G. In the following we
will find a contraction minor H of G with fixed branch sets Vx such that:

– all G[Vx] have rayless spanning trees;
– T is properly passed on to H;
– and every end of H in the closure of [T ] ⊆ H is dominated in H by some

vertex of [T ].

Before we prove that such H exists, let us see how to complete the proof once H
is found. By Lemma 7.2.12, the tree [T ] is normal in H, and it has vertex set [U ]
because V (T ) = U . So, by Lemma 7.2.9, the graph H contains a rayless tree that
contains [U ]. Finally, by Lemma 7.2.11, this rayless tree in H containing [U ] gives
rise to a rayless tree in G containing U as desired.

In order to construct H, fix for every normal ray R of T a vertex vR dominating
R in G. Let R be the set of all normal rays R of T for which vR is contained in
a component CR of G− T . Note that the down-closure of the neighbourhood of
each CR is V (R) due to the separation properties of normal trees (Lemma 7.2.13).
Thus, we have CR 6= CR′ for distinct normal rays R,R′ ∈ R. Fix a vR–R path PR
for every R ∈ R. Then the overall union of the paths PR is a forest of subdivided
stars, each having its centre on T . Let us refer by SR to the subdivided star that
contains vR for R ∈ R, i.e., SR is the union of all the paths PR′ that contain the
last vertex of PR and this last vertex is the centre of SR. Let H be the contraction
minor of G with fixed branch sets defined as follows: if v is contained on a path
PR, then put [v] := SR; otherwise let [v] := {v}. Then, in particular, every branch
set of H induces a subgraph of G that has a rayless spanning tree.

As every star SR meets T precisely in its centre, the tree T is properly passed
on to H. By Lemma 7.2.12, the tree [T ] ⊆ H is normal in H and V ([T ]) = [U ]
since V (T ) = U . And by Lemma 7.2.14 it remains to show that every normal ray
of [T ] is dominated in H by some vertex of [T ]. For this, we consider three cases.
In all three cases, fix any normal ray R ⊆ T and some collection P of infinitely
many vR–R paths in G meeting precisely in vR.

First assume that R ∈ R. Note that only finitely many of the paths in P meet
v̊RPR, without loss of generality none. Then all graphs [P ] ⊆ H with P ∈ P are
[vR]–[R] paths that meet only in [vR]. This shows that [vR] ∈ [T ] dominates [R]
in H.

Second, suppose that R /∈ R and that every branch set of H other than [vR]
meets only finitely many of the paths in P. By thinning out P we may assume
that every branch set other than [vR] meets at most one of the paths in P . Then
the connected graphs [P ] with P ∈ P pairwise meet in [vR] but nowhere else and
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all contain a vertex of [R] other than [vR]. Taking one [vR]–([R]− [vR]) path inside
each [P ] yields a fan witnessing that [vR] ∈ [T ] dominates [R] in H.

Finally, suppose that R /∈ R and that some branch set S 6= [vR] of H meets
infinitely many of the paths in P, say all of them. We write c for the centre of
S. Without loss of generality none of the paths in P contains c. Also note that
c is contained in V (R) as otherwise all the paths in P need to pass through the
finite down-closure of c in T in vertices other than vR. Let R′ be the collection of
normal rays of T that satisfies S =

⋃
{V (PR′) | R′ ∈ R′ }. For every vR–R path

P ∈ P let vP be the last vertex on P that is contained in S, let wP be the first
vertex on P after vP in which P meets T and let QP be the unique wP–R path
in T . (See Figure 7.2.2.) For every path P ∈ P let P ′ = P ′(P ) := vPPwPQP , and
let P ′ = P ′(P) := {P ′ | P ∈ P }.

P ′

S

t ?

QP

vR

CR′

vR′

R

wP

R′

vP

Figure 7.2.2.: The final case in the proof of our duality theorem for undominated
combs in term of rayless trees.

Each path PR′ c̊ ⊆ S with R′ ∈ R′ meets only finitely many paths from P ′, and
these latter paths are precisely the paths in P ′ that meet CR′ : This is because
every path in P ′ that meets CR′ starts in a vertex vP ∈ CR′ and after leaving CR′
only traverses through vertices of T . Therefore, by replacing P with an infinite
subset of P, we can see to it that every component CR′ with R′ ∈ R′ meets at
most one of the paths in the then smaller set P ′ = P ′(P). In countably many steps
we fix paths P ′1, P

′
2, . . . in P ′ so that their last vertices are pairwise distinct: In

order to see that this is possible suppose for a contradiction that t ∈ R is maximal
in the tree order of T so that t is the last vertex of a path in P ′. Note that R
together with the paths vPP with P ∈ P forms a comb in G. Hence infinitely
many of the paths vPP are contained in the same component of G− dte as some
tail of R. By Lemma 7.2.13, this component is of the form bbt′cc for the successor
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t′ of t on R. In particular, we find some P ∈ P so that wP lies above t′ in the tree
order of T . But then the endvertex of QP in R lies above t′ and, in particular,
above t, contradicting the choice of t.

So let P ′1, P
′
2, . . . be paths in P ′ with pairwise distinct last vertices. We show

that the paths P ′i give rise to S–[R] paths [P ′i ] in H that form an infinite S–[R] fan
witnessing that S dominates [R] in H. Every path P ′i is an S–R path because every
path in P ′ is an S–R path by the choice of the vertices vP . Moreover, the paths P ′i
are pairwise disjoint: Every path P ′i starts in a component CR′ . Using the choice
of the vertices vP with P ∈ P as the last vertex on P that is contained in S we
have that the [P ′i ] are S–[R] paths of H that only share their first vertex S. Hence
the [P ′i ] form an infinite S–R fan in H and we conclude that S ∈ [T ] dominates
[R] in H.

7.3. Spanning trees reflecting the undominated

ends

In [47], Halin conjectured that every connected graph has a spanning tree that is
end-faithful for all its ends. However, Seymour and Thomas’ counterexample in
Theorem 7.2.2 shows that his conjecture is in general false. Recently, Carmesin [19]
amended Halin’s conjecture by proving the follwing:

Theorem 7.3.1 (Carmesin 2014). Every connected graph G has a spanning tree
that is end-faithful for the undominated ends of G.

Carmesin pointed out that his theorem is best possible in that it becomes false
when one replaces ‘is end-faithful for’ with the more specific ‘reflects’ in its wording:
by Theorem 7.2.2 there are connected graphs without rayless spanning trees all
whose rays are dominated. Characterising the graphs that have spanning trees
reflecting their undominated ends has remained an open problem, until today.

Our aim in this section is threefold. Our first goal is to prove Theorem 7.3
below which characterises the graphs that have spanning trees reflecting their
undominated ends. Thereafter, we will characterise in Theorem 7.5 (i) the spanning
trees of finitely separable graphs that reflect the undominated ends, and we will
establish in Theorem 7.5 (ii) that every connected finitely separable graph has such
a tree. Finally, we will deduce Corollary 7.6 which states that every connected
finitely separable graph G has a spanning tree whose closure in G̃ contains no
topological cycle.

Our characterisation of the graphs that have a spanning tree reflecting their
undominated ends even takes an arbitrary vertex set U into account:
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Theorem 7.3. Let G be any graph and let U ⊆ V (G) be any vertex set. Then the
following assertions are equivalent:

(i) There exists a tree T ⊆ G that contains U and reflects the undominated ends
in the closure of U ;

(ii) G has a subgraph H with U ⊆ V (H) normally spanned in H and all whose
undominated ends are included in distinct undominated ends of G.

Assume for a moment that Theorem 7.3 is already verified. If G is any graph
and U ⊆ V (G) is normally spanned in G, then statement (ii) of the theorem is
satisfied with H = G. Hence the implication (ii)→(i) yields the following theorem:

Theorem 7.3.2. Let G be any graph and let U ⊆ V (G) be normally spanned.
Then there is a tree T ⊆ G that contains U and reflects the undominated ends in
the closure of U .

Conversely, let us see that Theorem 7.3 can be deduced from Theorem 7.3.2. The
implication (i)→(ii) of Theorem 7.3 is immediate because any tree as in (i) serves
as a subgraph H ⊆ G that is sought in (ii).

For the reverse implication let H and U be as in Theorem 7.3 (ii). Then
Theorem 7.3.2 yields a tree T ⊆ H that contains U and reflects the undominated
ends of H in the closure of U in H. Let ΨH be the set of undominated ends of H
in the closure of U in H and let ΨG be the set of undominated ends of G in the
closure of U in G. Furthermore, let φ : ΨH → ΨG be the map satisfying η ⊆ φ(η)
for every end η ∈ ΨH . By (ii) the map is injective and really has ΨG as its target
set. Let us show that it is also onto. Given an undominated end ω of G in the
closure of U it follows from the star-comb lemma and U ⊆ T that T contains a
ray R ∈ ωand that the end of T containing R lies in the closure of U in T . Since
T is a subgraph of H, the end of H containing R lies in the closure of U in H, and
so the map φ sends the undominated end of H that contains R to ω, establishing
that φ is onto. Therefore, φ : ΨH → ΨG is bijective.

Now consider the natural map ϕ : Ω(T ) → Ω(H) that satisfies η ⊆ ϕ(η) for
every end η of T . Note that η ⊆ (φ ◦ ϕ)(η) for every end η of T . Since T reflects
the undominated ends of H in the closure of U and φ is bijective we conclude that
the map φ ◦ ϕ witnesses that T reflects the undominated ends of G in the closure
of U , as required by (i).

Hence in order to prove Theorem 7.3 me may equivalently prove Theorem 7.3.2:

Proof of Theorem 7.3. Employ Theorem 7.3.2 as above.

Furthermore, the case U = V (G) of Theorem 7.3.2 establishes our second main
corollary:

Corollary 7.4. Every graph that has a normal spanning tree does have a spanning
tree reflecting its undominated ends.

Our proof of Theorem 7.3.2 requires some preparation. First, we need the
following strengthening of a structural result by Carmesin. Recall from Chapter 5
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that a tree-decomposition (T,V) of a given graph G with finite separators displays
a set Ψ of ends of G if τ restricts to a bijection τ � Ψ: Ψ→ Ω(T ) between Ψ and
the end space of T and maps every end that is not contained in Ψ to some node of
T , where τ : Ω(G)→ Ω(T ) t V (T ) maps every end of G to the end or node of T
which it corresponds to or lives at, respectively.

Theorem 7.3.3 (Theorem 6.2.8). Every connected graph G has a tree-decomposi-
tion with pairwise disjoint finite connected separators that displays the undominated
ends of G.

For our purposes we need to strengthen Carmesin’s result further so as to take
an arbitrary vertex set U into account. Recall that a rooted tree-decomposition
(T,V) of a graph G covers a vertex set U ⊆ V (G) cofinally if the set of nodes of
T whose parts meet U is cofinal in the tree-order of T .

Theorem 7.3.4. Let G be any connected graph and let U ⊆ V (G) be any vertex
set. Then G has a rooted tree-decomposition with pairwise disjoint finite connected
separators that displays the undominated ends of G that lie in the closure of U .
Moreover, the tree-decomposition can be chosen so that it covers U cofinally.

Proof. By Theorem 7.3.3, we find a tree-decomposition (T,V) of G with pairwise
disjoint finite connected separators that displays the undominated ends of G.
Consider T rooted in an arbitrary node. Let U ′ be the set of vertices of T
whose parts meet U and let T ′ be the subtree of T obtained by taking the down-
closure of U ′ in T . Then we let (T, α) be the Sℵ0-tree corresponding to (T,V), so
(T ′, α �

→
E(T ′) ) is an Sℵ0-tree that induces the desired tree-decomposition.

Our construction of a tree reflecting the undominated ends in the closure of a
given set of vertices will employ a contraction minor H of the underlying graph G.
The following notation will help us to translate between the endspace of G and that
of H. Consider a contraction minor H of a graph G with fixed finite branch sets.
Every direction f of G defines a direction [f ] of H by letting [f ](X) := [f(

⋃
X)]

for every finite vertex set X ⊆ V (H). In fact, it its straightforward to check that
every direction of H is defined by a direction of G in this way:

Lemma 7.3.5. Let H be a contraction minor of a graph G with fixed finite branch
sets. Then the map f 7→ [f ] is a bijection between the directions of G and the
directions of H.

This one-to-one correspondence then combines with the well-known one-to-one
correspondence between the directions and ends of a graph (see Theorem 5.2.7),
giving rise to a bijection ω 7→ [ω] between the ends of G and the ends of H. The
natural one-to-one correspondence between the two end spaces extends to other
aspects of the graphs and their ends:

Lemma 7.3.6 (Lemma 6.3.12). Let H be a contraction minor of a graph G with
fixed finite branch sets, let ω be an end of G and let U ⊆ V (G) be any vertex set.
Then ω lies in the closure of U in G if and only if [ω] lies in the closure of [U ] in
H; and ω is dominated in G if and only if [ω] is dominated in H.
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Lemma 7.3.7. Let H be a contraction minor of a graph G with fixed branch sets
and let U ⊆ V (G) be any vertex set. If U is normally spanned in G, then [U ] is
normally spanned in H.

We remark that this is essentially [44, Lemma 7.2 (b)].

Proof. Without loss of generality both G and H are connected. By Theorem 7.2.8,
we have that U can be written as a countable union

⋃
n∈N Un with every Un

dispersed in G. Then every vertex set [Un] is dispersed in H, because every comb
attached to [Un] in H would give rise to a comb attached to Un in G, contradicting
that Un is dispersed in G. Hence [U ] =

⋃
n∈N[Un] is normally spanned in H by

Theorem 7.2.8.

We need one more lemma for the proof of Theorem 7.3.2:

Lemma 7.3.8. Let G be any graph and let U ⊆ V (G) be any vertex set. If
(T,V) is a rooted tree-decomposition of G with pairwise disjoint finite connected
separators that displays the undominated ends in ∂ΩU and covers U cofinally, then
∂ΩU = ∂ΩÛ for the superset Û of U that arises from U by adding all the vertices
that lie in the separators of (T,V).

Proof. The inclusion ∂ΩU ⊆ ∂ΩÛ holds because U ⊆ Û . For the backward
inclusion, consider any end ω in the closure of Û , and assume for a contradiction
that ω does not lie in the closure of U . Then ω lives at a node t ∈ T because
(T,V) displays the ends in the closure of U . Pick a comb in G attached to Û and
with spine in ω. As ω does not lie in the closure of U we may assume that the
comb avoids U . Furthermore, we may assume that every tooth of the comb lies
in a separator of (T,V) associated with an edge of T at and above t. Since the
separators of (T,V) are finite and pairwise disjoint, we may even ensure that no
separator contains more than one tooth. As (T,V) has connected separators and
covers U cofinally, we find infinitely many disjoint paths from the comb to U , one
starting in each tooth. Then the comb together with these paths witnesses that ω
lies in the closure of U , a contradiction.

Proof of Theorem 7.3.2. Let G be any graph and let U ⊆ V (G) be normally
spanned. Without loss of generality, G is connected. By Theorem 7.3.4 we find a
rooted tree-decomposition (Tdec,V) of G with pairwise disjoint finite connected
separators such that (Tdec,V) displays the undominated ends in the closure of U
and covers U cofinally. And by Lemma 7.3.8 we may assume that U contains all
the vertices that are contained in the separators of (Tdec,V).

We construct a tree T ⊆ G displaying the undominated ends in the closure of U
as follows. For every separator X of (Tdec,V) we pick a spanning tree TX of G[X].
As all X are finite and pairwise disjoint, so are the TX . Next, we choose for every
part Vt of (Tdec,V) a rayless tree Tt in G[Vt] containing Ut := Vt∩U and extending
all the trees TX for which X is a separator corresponding to some edge incident
with t, as follows. Given Vt, we first consider the contraction minor Ht of G[Vt]
with fixed branch sets that is obtained from G[Vt] by contracting each G[X] with
X a separator induced by an edge of Tdec at t to a single dummy vertex named X.
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As U is normally spanned in G it follows by Lemma 7.3.7 that [U ]H is normally
spanned in the contraction minor H obtained from G by contracting every G[X]
for every separator. It follows that the vertex sets [Ut]Ht are normally spanned
in Ht ⊆ H. Furthermore, since (Tdec,V) has disjoint finite connected separators
and displays the undominated ends of G in the closure of U , every end of G[Vt] in
the closure of Ut in the graph G[Vt] is dominated in G[Vt]. Thus, by Lemma 7.3.6
every end of Ht in the closure of [Ut] is dominated in Ht. Hence we may apply
Theorem 7.1 to Ht and [Ut] to obtain a rayless tree T̃t in Ht containing [Ut]. Then
by expanding each dummy vertex X of T̃t to TX we obtain a rayless tree Tt in
G[Vt] that contains Ut and extends all these TX .

Let T be spanned by the down-closure of U in the tree
⋃
t∈Tdec Tt with regard to

an arbitrary root. We claim that T contains U and reflects the undominated ends
in the closure of U . Clearly, T is a tree in G that contains U even cofinally. By
the star-comb lemma, every tree in G containing U contains for each undominated
end in the closure of U a ray from that end. In particular, T contains a ray from
every undominated end in the closure of U .

Next, the tree T contains at most one ray starting in the root for every un-
dominated end in the closure of U : Indeed, if T contains two (say) vertex-disjoint
rays from the same undominated end ω in the closure of U , then these give rise
to a subdivided ladder in T via the trees TX along any ray of Tdec to which ω
corresponds, and the ladder comes with infinitely many cycles, contradicting that
T is a tree.

That T contains only rays from ends in the closure of U is a consequence of
Lemma 7.2.6 and the fact that T contains U cofinally by construction.

Finally, the tree T contains no ray from dominated ends in the closure of U , for
if T contains a ray from such an end, then the vertex set of that ray intersects
some part Vt of (T,V) infinitely often, and then Lemma 7.2.1 applied in the rayless
tree Tt to that intersection yields infinitely many cycles in the tree T .

Now that we established the proof of Theorem 7.3.2, let us turn to an application.

Theorem 7.5. Let G be any graph and let T ⊆ G be any spanning tree.

(i) The fundamental cuts of T are all finite if and only if G is finitely separable
and T reflects the undominated ends of G.

(ii) If G is finitely separable and connected, then it has a spanning tree all whose
fundamental cuts are finite.

Before we prove Theorem 7.5, we show a corollary for the topological space G̃
(see [12] for definitions regarding G̃).

Corollary 7.6. Every connected finitely separable graph G has a spanning tree
whose closure in G̃ contains no topological cycle.

Proof. By Theorem 7.5 (ii) the graph G has a spanning tree all whose fundamental
cuts are finite. We claim that the closure of T in G̃ contains no topological cycles.
Indeed, suppose for a contradiction that C is a topological cycle in T and fix an
edge e of T that is contained in C as a topological edge. Let Fe be the fundamental
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cut of e with respect to T and let us write V1 and V2 for the two sides of Fe. Then
Cr e̊ is a topological arc A between V1 and V2 avoiding the interior of the edges in
the finite cut Fe. But then A is a connected subset of |G|r

⋃
{ f̊ | f ∈ Fe } that

is divided into the two closed disjoint sets G[V1] and G[V2] (contradiction).

Proof of Theorem 7.5. (i) For the forward implication suppose that the fundamen-
tal cuts of T are all finite. First let us see that G is finitely separable. For this
consider any two distinct vertices v, w ∈ V (G) and let e be an edge on the unique
path between v and w in T . Then the fundamental cut of e with respect to T is
finite and separates v from w in G.

Next, let us show that no ray of T is dominated. For this, consider any ray R ⊆ T
and any vertex v ∈ V (G). Let C be the component of T − v that contains a tail
of R and let e ∈ E(T ) be the unique edge between C and v. As the fundamental
cut of e with respect to T is finite, and as all the paths of any v-(R− v) fan need
to pass through this fundamental cut, the vertex v cannot dominate R.

The tree T contains a ray from every undominated end, because, by the star-
comb lemma, every spanning spanning tree of G does so. It remains to show that
every distinct two ends of T are included in distinct ends of G. For this consider
rays R,R′ ⊆ T that belong to distinct ends of T . Let e be an edge on a tail of R
that does not meet R′. Then the endvertices of the edges in the finite fundamental
cut of e form a finite vertex set that separates a tail of R from a tail of R′ in G.
Hence R and R′ belong to distinct ends of G.

For the backward implication suppose that G is finitely separable and that T
reflects the undominated ends of G. Consider any fundamental cut Fe of an edge
e ∈ E(T ) with respect to T . Write T1 and T2 for the two components of T − e.
Then Fe consists of the T1–T2 edges of G. Suppose for a contradiction that Fe is
infinite. Then Fe has infinitely many endvertices in at least one of T1 and T2. Let
us write Xi for the set of endvertices that Fe has in Ti for i = 1, 2. We consider
two cases and derive contradictions for both of them.

In the first case, some vertex x ∈ Xi is incident with infinitely many edges of Fe,
say for i = 1. Then, as G is finitely separable, applying the star-comb lemma
in T2 to the infinitely many endvertices that these edges have in T2 must yield a
comb whose spine is then dominated by x in G, contradicting that T reflects the
undominated ends of G.

In the second case, every vertex of G is incident with at most finitely many
edges from Fe. Then Fe contains an infinite partial matching of an infinite subset
of V (T1) and an infinite subset of V (T2). First, we apply the star-comb lemma in
T1 to the endvertices of this partial matching. This yields either a star or a comb,
and we write U1 for its attachment set. Then we apply the star-comb lemma in T2

to those vertices that are matched to U1. Since G is finitely separable, we cannot
get two stars. Like in the first case, we cannot get one star and one comb. So
we must get two combs. But then T contains two rays that are equivalent in G,
contradicting that T reflects some set of ends of G.

(ii) Connected finitely separable graphs are normally spanned due to a result of
Halin [45] which states: all connected graphs that do not contain a subdivided Kℵ0

as a subgraph are normally spanned. But it is also possible to construct a normal
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spanning tree in a connected finitely separable graph directly, as follows. Every
2-connected finitely separable graph G is countable, cf. [82] or [12, Lemma 4.4].
Indeed, if G is 2-connected and uncountable, then G contains a vertex v of
uncountable degree and G− v is connected. Hence the strong version of the star-
comb lemma, Lemma 5.2.5, applied to the neighbourhood N(v) of v in G returns
an infinite star attached to N(v) and it follows that G is not finitely separable.
Therefore, the blocks of any connected finitely separable graph G are all countable.
Now to show that any connected finitely separable graph G is normally spanned,
let us root the block graph of G arbitrarily (having in mind that the block graph
is a tree). The block that is the root does have a normal spanning tree because it
is countable (cf. Corollary 5.3.3), and we fix an arbitrary normal spanning tree.
Then we consider the blocks of height one. Each block B of height one intersects
the root block in precisely one vertex x, and we fix any normal spanning tree of B
that is rooted at x (Jung has shown that prescribing the root x is possible, see
Corollary 5.3.3). Proceeding in this fashion we fix for every block of G a normal
spanning tree, and the way we choose their roots ensures that the union of all
these normal trees forms a normal spanning tree of G. So G is normally spanned,
and hence Theorem 7.3.2 yields a spanning tree that reflects the undominated
ends of G. By the backward implication of (i), all the fundamental cuts of this
spanning tree are finite.

7.4. Duality theorems for undominated combs

In this section we prove our two duality theorems for undominated combs in full
generality. The first theorem is phrased in terms of star-decompositions:

Theorem 7.7. Let G be any connected graph, and let U ⊆ V (G) be any vertex
set. Then the following assertions are complementary:

(i) G contains an undominated comb attached to U ;
(ii) G has a star-decomposition with finite separators such that U is contained in

the central part and all undominated ends of G live in the leaves’ parts.

Moreover, we may assume that the separators of the tree-decomposition in (ii) are
pairwise disjoint and connected.

Proof. Clearly, at most one of (i) and (ii) can hold.
To establish that at least one of (i) and (ii) holds, we show ¬(i)→(ii). By

Theorem 7.3.3 we find a tree-decomposition (T,V) of G with pairwise disjoint
finite connected separators that displays the undominated ends of G. We let
W ⊆ V (T ) consist of those nodes t ∈ T whose parts Vt meet U . Then we root
T arbitrarily and let T ′ be the subtree dW e of T . Since U does not have any
undominated end of G in its closure, it follows that T ′ must be rayless. We obtain
the star S from T by contracting T ′ and all of the components of T − T ′. Then we
let (T, α) be the Sℵ0-tree corresponding to (T,V), so (S, α �

→
E(S) ) is an Sℵ0-tree

that induces the desired star-decomposition which even satisfies the ‘moreover’
part.
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The central part of the star-decomposition in Theorem 7.7 (ii) induces a subgraph
of G that seems to carry the information that there is no undominated comb
attached to U . Our second duality theorem for undominated combs confirms this
suspicion:

Theorem 7.8. Let G be any connected graph, and let U ⊆ V (G) be any vertex
set. Then the following assertions are complementary:

(i) G contains an undominated comb attached to U ;
(ii) G has a connected subgraph that contains U and all whose rays are dominated

in it.

Moreover, the subgraph H in (ii) can be chosen so as to reflect the ends in the
closure of H.

Proof. To see that at most one of (i) and (ii) holds, consider any connected
subgraph H ⊆ G containing U such that every ray of H is dominated in H. We
show that H obstructs the existence of an undominated comb in G attached to
U . Assume for a contradiction that such a comb exists. Then the undominated
end ω ∈ Ω(G) of that comb’s spine lies in the closure of U , and so applying
the star-comb lemma in H to the attachment set U ′ ⊆ U of that comb must
yield another comb attached to U ′. But this latter comb is dominated in H by
assumption, and at the same time its spine is equivalent in G to the first comb’s
spine, contradicting that ω is undominated in G.

To establish that at least one of (i) and (ii) holds, we show ¬(i)→(ii). Let (T,V)
be the star-decomposition from Theorem 7.7 (ii) also satisfying the ‘moreover’
part of the theorem. We claim that the graph H = G[Vc] that is induced by the
central part Vc of (T,V) is as desired. Clearly, H contains U . And H is connected
because the separators of (T,V) are connected. Now if R is any ray in H, it is
dominated in G by some vertex v ∈ Vc. This vertex v also dominates R in H
because every infinite v–(R− v) fan in G can be greedily turned into an infinite
v–(R− v) fan in H by employing the connectedness of the finite separators of the
star-decomposition.

Finally, let us prove that H is as in the ‘moreover’ part of the theorem, i.e., let
us show that H reflects ∂ΩH. For this let ϕ : Ω(H)→ Ω(G) be the natural map
satisfying η ⊆ ϕ(η). We have to show that ϕ is injective with im(ϕ) = ∂ΩH.

To see that ϕ is injective, consider any distinct two ends η and η′ of H and
let X ⊆ V (H) be a finite vertex set separating them in H. Since the separators
of (T,V) are pairwise disjoint and finite, we may assume that X includes all the
separators that it meets. We claim that X separates ϕ(η) and ϕ(η′) in G. Indeed,
otherwise some component of G−X, namely C(X,ϕ(η)) = C(X,ϕ(η′)), includes
rays R ∈ η and R′ ∈ η′ together with a path connecting them. As R and R′ are
rays in H, the path has both its endvertices in H. But then this R–R′ path can
be turned into an R–R′ path in H −X by replacing some of its path segments
with paths inside the connected separators that it meets (here we use that every
separator meeting the path must avoid X).

It remains to verify im(ϕ) = ∂ΩH. The forward inclusion is immediate, we
show the backward inclusion. Every ray in any end ω of G in the closure of H
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intersects H infinitely because the separators of the star-decomposition (T,V) are
all finite. Again we can employ the pairwise disjoint finite connected separators of
the star-decomposition (T,V) to turn the ray into a ray in H that intersects the
original ray infinitely often. Then the new ray’s end in H is included in ω.
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8. Duality theorems for stars and combs
IV: Undominating stars

8.1. Introduction

Two properties of infinite graphs are complementary in a class of infinite graphs
if they partition the class. In a series of four chapters we determine structures
whose existence is complementary to the existence of two substructures that are
particularly fundamental to the study of connectedness in infinite graphs: stars
and combs. See Chapter 6 for a comprehensive introduction, and a brief overview
of results, for the entire series of four chapters (5, 6, 7 and this chapter).

In the first chapter of this series we found structures whose existence is comple-
mentary to the existence of a star or a comb attached to a given set U of vertices,
and two types of these structures turned out to be relevant for both stars and
combs: normal trees and tree-decompositions. A comb is the union of a ray R (the
comb’s spine) with infinitely many disjoint finite paths, possibly trivial, that have
precisely their first vertex on R. The last vertices of those paths are the teeth of
this comb. Given a vertex set U , a comb attached to U is a comb with all its teeth
in U , and a star attached to U is a subdivided infinite star with all its leaves in U .
Then the set of teeth is the attachment set of the comb, and the set of leaves is
the attachment set of the star. Given a graph G, a rooted tree T ⊆ G is normal
in G if the endvertices of every T -path in G are comparable in the tree-order of T ,
cf. [26]. For the definition of tree-decompositions see [26].

As stars and combs can interact with each other, this is not the end of the story.
For example, a given vertex set U might be connected in a graph G by both a star
and a comb, even with infinitely intersecting sets of leaves and teeth. To formalise
this, let us say that a subdivided star S dominates a comb C if infinitely many
of the leaves of S are also teeth of C. A dominating star in a graph G then is a
subdivided star S ⊆ G that dominates some comb C ⊆ G; and a dominated comb
in G is a comb C ⊆ G that is dominated by some subdivided star S ⊆ G. Thus, a
star S ⊆ G is undominating in G if it is not dominating in G; and a comb C ⊆ G
is undominated in G if it is not dominated in G.

In the second chapter of our series we determined structures whose existence is
complementary to the existence of dominating stars or dominated combs. Like
for arbitrary stars and combs, our duality theorems for dominating stars and
dominated combs are phrased in terms of normal trees and tree-decompositions.

In the third chapter of the series we determined structures whose existence is
complementary to the existence of undominated combs. Our investigations showed
that the types of complementary structures for undominated combs are quite
different compared to those for stars, combs, dominating stars and dominated combs.
On the one hand, normal trees are too strong to serve as complementary structures,
which is why we considered more general subgraphs instead. Tree-decompositions
on the other hand are dynamic enough to allow for duality theorems, even in
terms of star-decompositions—which are too strong to serve as complementary
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structures for stars, combs, dominating stars or dominated combs.
Among all the combinations of stars and combs, there is only one combination

that we have yet to consider: undominating stars. Here, in the fourth and final
chapter of the series, we determine structures whose existence is complementary
to the existence of undominating stars. The types of complementary structures
for undominating stars differ from those for stars, combs, dominating stars and
dominated combs—surprisingly in the same way the types of complementary
structures for undominated combs differ from them.

To begin, normal trees are too strong to serve as complementary structures for
undominating stars: if G is an uncountable complete graph and U = V (G), then
G contains no undominating star attached to U but G has no normal spanning
tree. However, if G contains no undominating star attached to U and U happens
to be contained in a normal tree T ⊆ G, then the down-closure of U in T forms a
locally finite subtree H. In this situation H witnesses that U is tough in G in that
only finitely many components meet U whenever finitely many vertices are deleted
from G. This property gives a candidate for a subgraph that might serve as a
complementary structure, even when U is not contained in a normal tree. Call a
graph G tough if its vertex set is tough in G, i.e., if deleting finitely many vertices
from G always results in only finitely many components. It is well known that the
tough graphs are precisely the graphs that are compactified by their ends, cf. [24].
Our first duality theorem for undominating stars is formulated in terms of tough
subgraphs:

Theorem 8.1. Let G be any connected graph, and let U ⊆ V (G) be any vertex
set. Then the following assertions are complementary:

(i) G contains an undominating star attached to U ;
(ii) there is a tough subgraph H ⊆ G that contains U .

As our second duality theorem for undominating stars, we also find star-decom-
positions that are complementary to undominating stars:

Theorem 8.2. Let G be any connected graph, and let U ⊆ V (G) be any vertex
set. Then the following assertions are complementary:

(i) G contains an undominating star attached to U ;
(ii) G has a tame star-decomposition such that U is contained in the central part

and every critical vertex set of G lives in a leaf ’s part.

Here, a finite vertex set X ⊆ V (G) is critical if infinitely many of the components
of G−X have their neighbourhood precisely equal to X. Critical vertex sets were
introduced in [62]. As tangle-distinguishing separators, they have a surprising
background involving the Stone-Čech compactification of G, Robertson and Sey-
mour’s tangles from their graph-minor series, and Diestel’s tangle compactification,
cf. [25, 73] and Chapter 3. For the definitions of ‘tame’ and ‘live’, see Section 8.3.
Tame tree-decompositions have finite adhesion sets.

While the wordings of our two duality theorems for undominating stars are
similar to those of the duality theorems for undominated combs, their proofs are not.
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In fact, a whole new strategy is needed to prove these two theorems. The starting
point of our strategy will be a very recent generalisation, Chapter 4, of Robertson
and Seymour’s tree-of-tangles theorem from their graph-minor series [73].

This chapter is organised as follows. Section 8.2 establishes our duality theorem
for undominating stars in terms of end-compactified subgraphs. Section 8.3 proves
our duality theorem for undominating stars in terms of star-decompositions. In
Section 8.4 we summarise the duality theorems of the complete series.

Throughout this chapter, G = (V,E) is an arbitrary graph. We assume famil-
iarity with the tools and terminology described in the first chapter of this series,
Section 5.2.

8.2. Tough subgraphs

In this section, we prove our duality theorem for undominating stars in terms of
tough subgraphs:

Theorem 8.1. Let G be any connected graph, and let U ⊆ V (G) be any vertex
set. Then the following assertions are complementary:

(i) G contains an undominating star attached to U ;
(ii) G has a tough subgraph that contains U .

We remark that the tough graphs are precisely the graphs that are compactified
by their ends, see [24].

We prove that (i) and (ii) are complementary by proving that both ¬(i) and
(ii) are equivalent to the assertion that U is tough in G. That ¬(i) is equivalent
to U being tough in G will be shown in Lemma 8.2.1, and that (ii) is equivalent
to U being tough in G will be shown in Theorem 8.2.2. It will be convenient to
make this detour because U being tough in G is easier to work with than G not
containing an undominating star attached to U .

Lemma 8.2.1. A set U of vertices of a connected graph G is tough in G if and
only if G contains no undominating star attached to U .

Theorem 8.2.2. A set U of vertices of a graph G is tough in G if and only if G
has a tough subgraph that contains U .

Proof of Theorem 8.1. Combine Lemma 8.2.1 and Theorem 8.2.2 above.

While the proof of Theorem 8.2.2 takes the rest of this section, that of Lemma 8.2.1
is easy and we shall provide it straight away. Recall that a finite set X of vertices
of an infinite graph G is critical if the collection

C̆X := {C ∈ CX | N(C) = X }

is infinite, where CX is the collection of all components of G−X. A critical vertex
set X of G lies in the closure of M , where M is either a subgraph of G or a set of
vertices of G, if infinitely many components in C̆X meet M .
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Proof of Lemma 8.2.1. If U is tough in G then no critical vertex set of G lies in
the closure of U . We know by Lemma 5.2.9 that every infinite set of vertices in a
connected graph has an end or a critical vertex set in its closure. Therefore, every
infinite subset U ′ ⊆ U has an end of G in its closure and, in particular, there is
always a comb in G attached to U ′. Thus, every star in G attached to U must be
dominating.

Conversely, if U is not tough in G, then there is a finite vertex set X ⊆ V (G)
such that some infinitely many components of G−X meet U . Then infinitely many
of these components send an edge to the same vertex x ∈ X by the pigeonhole
principle. This allows us to make x the centre of a star S attached to U by taking
x–U paths in G[x + C], one for each of the infinitely many components C that
meet U and have x in their neighbourhood. Now X obstructs the existence of a
comb that has infinitely many teeth that are also leaves of S, and so S must be
undominating.

Before we turn to the proof of Theorem 8.2.2, we summarise a few elementary
properties that are complementary to containing an undominating star attached
to a given vertex set U :

Lemma 8.2.3. Let G be any connected graph, let U ⊆ V (G) be any vertex set
and let (∗) be the statement that G contains an undominating star attached to U .
Then the following assertions are complementary to (∗):

(i) U is tough in G;
(ii) G has no critical vertex set that lies in the closure of U ;

(iii) U is compactified by the ends of G that lie in the closure of U .

If U is normally spanned in G, then the following assertion is complementary to
(∗) as well:

(iv) G contains a locally finite normal tree that contains U cofinally.

Proof. By Lemma 8.2.1 we have that (i) is complementary to (∗). The assertions (i)
and (ii) are equivalent by the pigeonhole principle, and hence (ii) is complementary
to (∗) as well. Property (iii) is in turn equivalent to (ii) because every graph
is compactified by its ends and critical vertex sets in a compactification |G|Γ =
G ∪ Ω(G) ∪ crit(G) (see [62] for definitions): For (ii)→(iii) note that the closure
U = U ∪ ∂ΩU of U in |G|Γ is the desired compactification, and for ¬(ii)→¬(iii)
note that for every critical vertex set X in the closure of U the infinitely many
components of G −X meeting U give rise to an open cover of U ∪ ∂ΩU in |G|Γ
that has no finite subcover. That (iv) is complementary to (∗) has already been
discussed in the introduction.

Now we turn to the proof of Theorem 8.2.2. If a graph G has a tough subgraph
containing some vertex set U , then clearly U is tough in G. The reverse implication,
which states that that for every vertex set U that is tough in G the graph G contains
a tough subgraph containing U , is harder to show and needs some preparation.

If U is tough in G, then no critical vertex set of G lies in the closure of U ,
that is, for every critical vertex set X of G only finitely many components in C̆X
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meet U . The collection C (X) of these finitely many components gives rise to
a separation (C̆X r C (X), X) = (AX , BX) that we think of as pointing towards
BX . As U ⊆ BX for all critical vertex sets X, all the separations (AX , BX) point
towards the tough vertex set U . Hence we have a candidate for a tough subgraph:
the intersection

⋂
{G[BX ] | X ∈ crit(G) }. This candidate contains U because U

is contained in all G[BX ], but it can happen that our candidate is a non-tough
induced Kℵ0 ⊆ G with vertex set U , as the following example shows.

For every n ∈ N let An be some countably infinite set, such that An is disjoint
from every Am with m 6= n and also disjoint from N. Let G be the graph on
N∪

⋃
n∈NAn where every vertex in An is joined completely to {0, . . . , n}. Then the

critical vertex sets are precisely the vertex sets of the form {0, . . . , n}. For every
critical vertex set X = {0, . . . , n} the collection of components C̆X consists of the
singletons in An and the component of G−X that contains NrX. Therefore, if
we set U = N, then G[BX ] = G− An, and our candidate

⋂
X G[BX ] turns out to

be G[N] = Kℵ0 .
Although our approach in its naive form fails, this is not the end of it. We will

stick to the idea but perform the construction in a more sophisticated way. For
this we shall need the following notation and two structural results from Chapter 4
for critical vertex sets in graphs, Theorems 8.2.6 and 8.2.7 below. Essentially, these
two theorems together will reveal that the separations (AX , BX) with X critical
in G can be slightly modified to form a tree set.

A tree set is a nested separation system that has neither trivial elements nor
degenerate elements, cf. [29]. When (

→
S,≤, ∗) is a tree set, we also call

→
S and S

tree sets. In our setting, we shall not have to worry about trivial or degenerate
separations too much. Indeed, usually our nested sets of separations will consist of
separations (A,B) of a graph with neither ArB nor BrA empty, and these sets
are known to form regular tree sets: tree sets that do not contain small elements.

Let S be any tree-set consisting of finite-order separations of G. A part of S is
a vertex set of the form

⋂
{B | (A,B) ∈ O } where O is a consistent orientation

of S. Thus, if O is any consistent orientation of S, then it defines a part, which in
turn induces a subgraph of G. The graph obtained from this subgraph by adding
an edge xy whenever x and y are two vertices of the part that lie together in the
separator of some separation in O is called the torso of O (or of the part, if O is
clear from context). Thus, torsos usually will not be subgraphs of G. We need the
following standard lemma:

Lemma 8.2.4 (Corollary 4.2.10). Let G be any graph and let W ⊆ V (G) be any
connected vertex set. If B is a part of a tree set of separations of G, then W ∩B
is connected in the torso of B.

Given a collection Y of (in this chapter usually finite) vertex sets of G we say
that a vertex set X of G is Y-principal if X meets for every Y ∈ Y at most
one component of G− Y . And we say that Y is principal if all its elements are
Y-principal.

If X ⊆ V (G) meets precisely one component of G−Y for some Y ⊆ V (G), then
we denote this component by CY (X).
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Every critical vertex set of a graph is X -principal: since every two vertices in a
critical vertex set X are linked by infinitely many independent paths (these exist
as C̆X is infinite), no two vertices in X are separated by a finite vertex set.

Definition 8.2.5 (Definition 4.5.9). Suppose that Y is a principal collection of
vertex sets of a graph G. A function that assigns to every X ∈ Y a subset
K (X) ⊆ C̆X is called admissable for Y if for every two X, Y ∈ Y that are
incomparable as sets we have either CX(Y ) /∈ K (X) or CY (X) /∈ K (Y ). If
additionally | C̆X rK (X) | ≤ 1 for all X ∈ Y, then K is strongly admissable
for Y .

Theorem 8.2.6 (Theorem 4.5.10). For every principal collection of vertex sets of
a connected graph there is a strongly admissable function.

Theorem 8.2.7 (Theorem 4.5.11). Let G be any connected graph, let Y be any
principal collection of vertex sets of G and let K be any admissable function for Y.
Then for every distinct two X, Y ∈ Y, after possibly swapping X and Y ,

either (K (X), X) ≤ (Y,K (Y )) or (K (X), X) ≤ (CY (X), Y ) ≤ (K (Y ), Y ).

In particular, if ∅ ( K (X) ( CX for all X ∈ Y, then the separations {X,K (X)}
form a regular tree set for which the separations (K (X), X) form a consistent
orientation.

Suppose now that Y is a principal collection of vertex sets of a graph G and
that K is an admissable function for Y satisfying ∅ ( K (X) ( CX for all X ∈ Y .
If T is the regular tree set { {X,K (X)} | X ∈ Y } provided by Theorem 8.2.7,
then we call T a principal tree set of G. By a slight abuse of notation, we also
call the triple (T,Y ,K ) a principal tree set. In this context, we write OK for the
consistent orientation { (K (X), X) | X ∈ Y } of T .

Corollary 8.2.8. Let G be any connected graph and let U ⊆ V (G) be any vertex
set. If U is tough in G, then there is a principal tree set (T, crit(G),K ) of G
satisfying the following two conditions:

(i) no element of K (X) meets U for any critical vertex set X;
(ii) K (X) is a cofinite subset of C̆X for every critical vertex set X.

Proof. As U is tough in G, for every critical vertex set X of G only finitely many
components in C̆X meet U ; we write FX for this finite collection. Theorem 8.2.6
yields a strongly admissable function K for the collection crit(G) of all the critical
vertex sets of G. We alter this function by removing FX from K (X) for all X.
Then K is still admissable for crit(G), and K (X) is a cofinite subcollection of
C̆X rFX for all X. Now Theorem 8.2.7 says that the separations {X,K (X)}
with X critical form a tree set, and that the oriented separations (K (X), X) form
a consistent orientation of this tree set.

Proof of Theorem 8.2.2. If H is a tough subgraph of G covering U , then U is
tough in H; in particular, U is tough in G. Conversely, we need to show that for
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every vertex set U ⊆ V (G) that is tough in G there is a tough subgraph of G
containing U . By Corollary 8.2.8 we find a principal tree set (T, crit(G),K ) so
that no element of K (X) meets U for any critical vertex set X. We write B for
the part of T that is defined by OK . Note that U is included in B.

First we claim that the torso of the part B is tough. To see this, consider any
finite vertex set X ⊆ B. Only finitely many components of G−X meet B: indeed,
if infinitely many components of G−X meet B, then by the pigeonhole principle
we deduce that a subset X ′ of X is critical in G with infinitely many components
in C̆X′ meeting B. But then

⋃
K (X ′) must meet B, contradicting that B is the

part of T that is defined by OK = { (K (X), X) | X ∈ crit(G) }. Thus G − X
has only finitely many components meeting B. By Lemma 8.2.4 each of these
components induces a component of the torso minus X, and so deleting X from
the torso results in at most finitely many components.

The tough torso of the part B, however, usually is not a subgraph of G. And
the part B usually will not induce a tough subgraph of G. That is why as our
next step, we construct a subgraph H of G that imitates the torso of B to inherit
its toughness. More precisely, we obtain H from G[B] by adding a subgraph L of
G that has the following three properties:

(L1) Every vertex of L−B has finite degree in L.
(L2) For every finite X ⊆ B only finitely many components of L−X avoid B.
(L3) If x and y are distinct vertices in B that lie together in a critical vertex set

of G, then L contains a B-path between x and y.

Before we begin the construction of L, let us verify that any L satisfying these
three properties really gives rise to a tough subgraph H = G[B] ∪ L. For this,
consider any finite vertex set X ⊆ V (H). By (L1) every vertex of H −B has finite
degree in H, and hence deleting it produces only finitely many new components.
Therefore we may assume that X is included in B entirely. Every component of
H −X avoiding B is a component of L−X avoiding B, and there are only finitely
many such components by (L2). Hence it remains to show that there are only
finitely many components of H −X that meet B. We already know that the torso
of B is tough, so deleting X from it results in at most finitely many components.
Then property (L3) ensures that each of these finitely many components has its
vertex set included in a component of H−X. And hence there can only be finitely
many components of H −X that meet B.

Finally, we construct a subgraph L ⊆ G satisfying the three properties (L1), (L2)
and (L3). Choose ( {xα, yα} )α<κ to be a transfinite enumeration of the collection
of all unordered pairs {x, y} where x and y are distinct vertices in B that lie
together in a critical vertex set of G. Then we recursively construct L as a union
L =

⋃
α<κ Pα where at step α we choose Pα from among all B-paths P in G

between xα and yα so as to minimize the number |E(P ) r E(
⋃
ξ<α Pξ)| of new

edges. (There is a B-path in G between xα and yα since xα and yα lie together in
some critical vertex set X of G and K (X) ⊆ C̆X is non-empty.)

We verify that our construction yields an L satisfying (L1), (L2) and (L3).
(L1). For this, fix any vertex ` ∈ L− B. It suffices to show that the edges of

L at ` simultaneously extend to an `–B fan in L. To see that this really suffices,
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use that ` is not contained in B to find some critical vertex set X of G with
` ∈

⋃
K (X). Then the `–B fan at ` extending the edges of L at ` must have all

its `–B paths pass through the finite X, and so there can be only finitely many
such paths, meaning that ` has finite degree in L.

Now to find the `–B fan we proceed as follows. For every edge e of L at `
we write α(e) for the minimal ordinal α with e ∈ E(Pα). Then we write Pe for
Pα(e), and we write Qe for the `–B subpath of Pe containing e. The paths Qe form
an `–B fan, as we verify now. For this, we show that, if e 6= e′ are two distinct
edges of L at `, then Qe and Qe′ meet precisely in `. Let e and e′ be given. We
abbreviate α(e) = α and α(e′) = α′. If α = α′ then Qe∪Qe′ = Pα and we are done.
Otherwise α < α′, say. Then we assume for a contradiction that ˚̀Qe′ does meet
˚̀Qe. Without loss of generality we may assume that Qe′ starts in ` and ends in yα′ .
We let t be the last vertex of Qe′ in ˚̀Qe. But then the graph xα′Pe′` ∪ `QetPe′yα′
is connected and meets B precisely in the two vertices xα′ and yα′ . Consequently,
it contains a B-path P between xα′ and yα′ . But then P avoids the edge e′, so the
inclusion E(P )rE(

⋃
ξ<α′ Pξ) ⊆ E(Pe′)rE(

⋃
ξ<α′ Pξ) must be proper. Therefore,

P contradicts the choice of Pα′ as desired.
(L2). For this, fix any finite vertex set X ⊆ B. Let C be the set consisting of all

the components of L−X that avoid B. And let F consist of all the edges inside
components from C and all the edges of L between components from C and X,
i.e., F = E(

⋃
C ) ∪ EL(

⋃
C , X). As every component from C meets some edge

from F it suffices to show that F is finite, a fact that we verify as follows. Every
edge in F lies on a path Pα, and since Pα is a B-path between xα and yα we deduce
{xα, yα} ∈ [X]2. Thus the finite edge sets of the paths Pα with {xα, yα} ∈ [X]2

cover F . Since X is finite so is [X]2, and hence there are only finitely many such
paths, meaning that F is finite.

(L3). This property holds by construction.
As (L1), (L2) and (L3) are now verified we conclude that L is as desired, which

completes the proof of our first main result.

8.3. Star-decompositions

In this section we prove our second main result, a duality theorem for undominating
stars in terms of star-decompositions, Theorem 8.2 below.

Before we state the theorem, let us recall the following definitions from Sec-
tion 5.3.5. A finite-order separation {X,C } of a graph G is tame if for no Y ⊆ X
both C and CX r C contain infinitely many components whose neighbourhoods
are precisely equal to Y . The tame separations of G are precisely the finite-order
separations of G that respect the critical vertex sets:

Lemma 8.3.1 (Lemma 5.3.15). A finite-order separation {A,B} of a graph G is
tame if and only if every critical vertex set X of G together with all but finitely
many components from C̆X is contained in one side of {A,B}.

An Sℵ0-tree (T, α) is tame if all the separations in the image of α are tame. As a
consequence of Lemma 8.3.1, if X is a critical vertex set of G and (T, α) is a tame
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Sℵ0-tree, then X induces a consistent orientation of the image of α by orienting
every tame finite-order separation {A,B} towards the side that contains X and all
but finitely many of the components from C̆X . This consistent orientation, via α,
also induces a consistent orientation of

→
E(T ). Then, just like for ends, the critical

vertex set X either lives at a unique node t ∈ T or corresponds to a unique end
of T . As usual, these definitions for Sℵ0-trees carry over to tree-decompositions.

Theorem 8.2. Let G be any connected graph, and let U ⊆ V (G) be any vertex
set. Then the following assertions are complementary:

(i) G contains an undominating star attached to U ;
(ii) G has a tame star-decomposition such that U is contained in the central part

and every critical vertex set of G lives in a leaf ’s part.

The proof of this theorem is organised as follows. First, we state without proof
a technical theorem, Theorem 8.3.2 below, and then show how it implies our main
result, Theorem 8.2 above. In a last step we prepare and provide the proof of the
technical theorem.

Note that the part of a star σ of separations of a graph G is
⋂
{B | (A,B) ∈ σ }.

Given two oriented separations →s1,
→s2 of G we write →s1 .

→s2 if either →s1 ≤ →s2 or
there is a component C ∈ C for (C , X) = →s1 such that (C r {C}, X) ≤ →s2. Here
is the technical theorem:

Theorem 8.3.2. Let G be any graph, and let (T,Y ,K ) be any principal tree
set so that OK defines an infinite part. Then G admits a star σ of finite-order
separations such that the following two conditions hold:

(i) the part defined by OK is included in the part of σ;
(ii) for every →s ∈ OK there is some

→
r ∈ σ with →s . →

r .

The technical theorem implies our second main result, Theorem 8.2:

Proof of Theorem 8.2. First, we show that at most one of (i) and (ii) holds. By
Lemma 8.2.3 we know that if G contains an undominating star attached to U ,
then G has a critical vertex X that lies in the closure of U . But then X lives in a
leaf’s part of the star-decomposition provided by (ii), and it follows that this part
does contain infinitely many vertices from U , contradicting that U is contained in
the central part and that the separations of the star-decomposition are finite.

Now, to show that at least one of (i) and (ii) holds, we show ¬(i)→(ii). By
Lemma 8.2.3 we know that U is tough in G. Then, by Corollary 8.2.8, we find
a principal tree set (T, crit(G),K ) such that, for every critical vertex set X, no
element of K (X) meets U and the inclusion K (X) ⊆ C̆X is cofinite. We claim
that the star provided by Theorem 8.3.2 gives a star-decomposition of G meeting
the requirements of (ii), a fact that can be verified as follows: First, the separations
of the form (K (X), X) with X critical and K (X) a cofinite subset of C̆X are
tame and thus our star-decomposition is tame. Next, by Theorem 8.3.2 (i), we
have that U is contained in the central part of the star-decomposition. Finally, by
Theorem 8.3.2 (ii), every critical vertex set of G lives in a leaf’s part.
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Next, we prepare the proof of our technical theorem, Theorem 8.3.2. We will
need the following concept of a corridor from Chapter 4. Suppose that (

→
T ,≤, ∗)

is a tree set, and that O is a consistent orientation of
→
T . A corridor of O is

an equivalence class of separations in O, where two separations →s1,
→s2 ∈ O are

considered equivalent if there is
→
r ∈ O with →s1,

→s2 ≤ →
r , cf. Lemma 4.7.1 and

Definition 4.7.2. As corridors are consistent partial orientations of tree sets on the
one hand, and directed posets on the other hand, they come with a number of
useful properties.

The supremum supL of a set L of oriented separations of a graph is the oriented
separation (A,B) with A =

⋃
{C | (C,D) ∈ L } and B =

⋂
{D | (C,D) ∈ L }.

Lemma 8.3.3. Let T be any regular tree set of separations of any graph G, let O
be any consistent partial orientation of T and let γ be any corridor of O. Then
the supremum of γ is nested with

→
T .

Proof. Consider any unoriented separation r ∈ T . If there is a separation →s ∈ γ
such that r has an orientation

→
r with

→
r ≤ →s , then

→
r ≤ →s ≤ sup γ as desired. As

T is nested, r has for every separation →s ∈ γ an orientation
→
r (→s ) such that either

→
r (→s ) ≤ →s or →s ≤ →

r (→s ). By our first observation, we may assume that →s ≤ →
r (→s )

for all →s ∈ γ. It suffices to show that
→
r (→s1) =

→
r (→s2) for all →s1,

→s2 ∈ γ, since then
r has one orientation that lies above all elements of γ and, in particular, above
the supremum of γ. Given →s1,

→s2 ∈ γ consider any →s3 ∈ γ with →s1,
→s2 ≤ →s3. Then

→s1,
→s2 ≤ →s3 ≤ →

r (→s3). As T is regular,
→
r (→s3) =

→
r (→s1) =

→
r (→s2) follows.

Lemma 8.3.4. Let T be any tree set of separations of any graph G and let O be
any consistent orientation of T . Then the suprema of the corridors of O form a
star.

Proof. We have to show that for every two distinct corridors γ and δ of O the
supremum (A,B) of γ and the supremum (C,D) of δ satisfy (A,B) ≤ (D,C).
Let us write γ = { (Ai, Bi) | i ∈ I } and δ = { (Cj, Dj) | j ∈ J }. As γ is
distinct from δ we have (Ai, Bi) ≤ (Dj, Cj) for all i ∈ I and j ∈ J . Hence
(A,B) = (

⋃
iAi,

⋂
iBi) ≤ (

⋂
j Dj,

⋃
j Cj) = (D,C).

Lemma 8.3.5. Suppose that T is any tree set of separations of any graph G, that
O is any consistent orientation of T , and that γ is any corridor of O. Then every
finite subset of the separator of the supremum of γ is contained in the separator of
some separation in γ.

In particular, if the order of the separations in γ is bounded by some natural
number n, then the supremum of γ has order at most n.

Proof. Let us write (A,B) for the supremum of γ and let Y be any finite subset
of its separator X := A ∩ B. For every vertex y ∈ Y ⊆ A there is separation
(Cy, Dy) ∈ γ with y ∈ Cy. Since γ is a corridor we find a separation (C,D) ∈ γ
lying above all (Cy, Dy). Then Y ⊆ C as C includes all Cy, and Y ⊆ D because
(C,D) ≤ (A,B) gives Y ⊆ X ⊆ B ⊆ D.
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Before we start with the proof of Theorem 8.3.2 we need two final ingredients:
induced separation systems and parliaments. If

→
S = (

→
S,≤, ∗) is a separation system

and O ⊆
→
S is any subset (usually a partial orientation of S), then O induces a

separation system O ∪O∗ that is a subsystem of
→
S with the partial ordering and

involution induced by ≤ and ∗. We denote this subsystem by
→
S[O].

Next, we define parliaments. Suppose that G is any graph, that
→
T = (

→
T ,≤, ∗) is

any regular tree set of finite-order separations of G, and that O is any consistent
orientation of

→
T . For every number n ∈ N let O≤n be the subset of O formed

by the oriented separations in O whose separators have size at most n. Then,
by Lemma 8.3.5, every corridor of O≤n has a supremum of order at most n, and
these suprema form a star for fixed n (cf. Lemma 8.3.4) which we denote by πn(O).
The parliament of O, denoted by π(O), is the union

⋃
n∈N πn(O). Notably, the

parliament of O is a cofinal subset of O ∪ π(O). The parliament of O induces a
separation system

→
Sℵ0 [π(O)] that is a subsystem of

→
Sℵ0 whose separations are all

nested with each other. Furthermore,
→
Sℵ0 [π(O)] and

→
T are nested with each other

in
→
Sℵ0 by Lemma 8.3.3. Also, the parliament of O is a consistent orientation of

→
Sℵ0 [π(O)] where it defines the same part as O does for

→
T .

As one might expect, the inverses of corridors of parliaments have no ω-chains:

Lemma 8.3.6. Let G be any graph, let
→
T be any regular tree set of finite-order

separations of G, and let O be any consistent orientation of
→
T . Then the inverse

γ∗ of any corridor γ of
→
T has no ω-chain.

Proof. Suppose for a contradiction that there is a sequence ←s0 <
←s1 < · · · of

separations ←sn ∈ γ∗. Note that →s <
→
r with →s ∈ πm(O) and

→
r ∈ πn(O) implies

m < n. Hence the function g : ω → ω assigning to each n < ω the least k < ω with
→sn ∈ πk(O) is strictly decreasing in that g(m) > g(n) for all m < n, contradicting
that there are only finitely many natural numbers < g(0).

The corridors of a parliament usually stem from Sℵ0-trees:

Theorem 8.3.7. Let G be any graph, let
→
T be any regular tree set of finite-order

separations of G, and let O be any consistent orientation of
→
T such that

→
Sℵ0 [π(O)]

is regular. Then for every corridor γ of the parliament of O the corresponding
regular tree set

→
Sℵ0 [γ] is isomorphic to the edge tree set of a tree.

Proof. Let γ be any corridor of the parliament of O. By Theorem 2.3.1, it suffices
to show that

→
Sℵ0 [γ] has no (ω + 1)-chain. For this, suppose for a contradiction

that →s0 <
→s1 < · · · < →sω is an (ω + 1)-chain in

→
Sℵ0 [γ].

If →sω lies in γ, then so do all the other →sn as γ is consistent. Note that →s <
→
r

with →s ∈ πm(O) and
→
r ∈ πn(O) implies m < n. Hence the function f : ω + 1→ ω

assigning to each α ≤ ω the least n < ω with →sα ∈ πn(O) is strictly increasing in
that f(α) < f(β) for all α < β, contradicting f(ω) < ω.

Otherwise →sω lies in γ∗. If there is a number N < ω with →sn ∈ γ∗ for all
n ≥ N , without loss of generality N = 0, then γ∗ has an ω-chain contradicting
Lemma 8.3.6.

Therefore, we may assume that →sn ∈ γ for infinitely many n < ω. Since γ is
consistent, →sn ∈ γ for all n < ω follows. Using that γ is a corridor we find a
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separation
→
r ∈ γ with ←sω ≤ →

r and →s0 ≤ →
r . For every n < ω, either →sn ≤ →

r or
→sn ≤ ←

r or ←sn ≤ →
r or ←sn ≤ ←

r . We cannot have →sn ≤ ←
r for any n, since this would

imply →s0 <
→sn ≤ ←

r ≤ ←s0 contradicting that
→
Sℵ0 [π(O)] is regular. We cannot have

←sn ≤ →
r for any n because γ is consistent. And we cannot have ←sn ≤ ←

r , because
then ←sω ≤ →

r ≤ →sn <
→sω contradicts that

→
Sℵ0 [π(O)] is regular. Hence →sn ≤ →

r for
all n. As γ contains no (ω + 1)-chains by the first case, there must be an ` < ω
with →s` =

→
r . But this then contradicts

→
r = →s` <

→s`+1 ≤ →
r , completing the proof

that
→
Sℵ0 [γ] has no (ω + 1)-chains.

Finally, we prove our technical theorem:

Proof of Theorem 8.3.2. Let (TK ,Y ,K ) be any principal tree set of a connected
graph G so that OK defines an infinite part. We let O be the parliament of OK .
Then the tree set

→
Sℵ0 [O] is regular: for every n ∈ N and every (A,B) ∈ πn(OK ) ⊆

O we have that ArB contains the non-empty vertex set of the graph
⋃

K (X)
for some X ∈ Y , and B r A contains all but at most |A ∩B| ≤ n of the infinitely
many vertices of the infinite part defined by O. Therefore, by Theorem 8.3.7 we
find for every corridor γ of O an Sℵ0-tree (Tγ, αγ) such that αγ is an isomorphism
between the edge tree set

→
E(Tγ) of Tγ and

→
Sℵ0 [γ].

In a first step, we will use the Sℵ0-trees (Tγ, αγ) to define stars σγ , one for every
corridor γ of O, such that their union σ =

⋃
γ σγ is a candidate for the star that we

seek. Then, in a second step, we will verify that σ is indeed as desired, completing
the proof.

First step. We define stars σγ, one for each corridor γ of O, such that their
union σ :=

⋃
γ σγ is a candidate for the star that we seek. For this, consider any

corridor γ of O. Then γ, as it orients the image of αγ consistently, defines either a
node or an end of Tγ (see Section 5.2.7).

If γ defines a node t of Tγ , then t has precisely one neighbour in Tγ . Indeed, γ is
the down-closure in

→
Sℵ0 [γ] of the star αγ(

→
Ft) where

→
Ft = { (e, s, t) ∈

→
E(Tγ) | e =

st ∈ Tγ }. Note that all separations in αγ(
→
Ft) are maximal in γ. Hence, if t has two

distinct neighbours k1 and k2 in Tγ , then γ contains a separation
→
r that lies above

both αγ(k1, t) and αγ(k2, t), contradicting the maximality in the corridor γ of at
least one of these two separations (here we also use that αγ(k1, t) and αγ(k2, t) are
distinct for distinct neighbours k1 and k2 of t because αγ is injective). Therefore,
t is a leaf of Tγ . Call its neighbour k. Then αγ(k, t) is the maximal element of the
corridor γ, and we let σγ := {αγ(k, t) }.

Otherwise γ defines an end of Tγ from which we pick a ray Rγ = v0
γv

1
γ . . . all

whose edges are oriented forward by γ in that →s
n
γ := αγ(v

n
γ , v

n+1
γ ) lies in γ for

all n ∈ N. Then we let

σγ := { →s 0
γ } ∪ {

→s
n
γ ∧

←s
n−1
γ : n ≥ 1 }. (8.3.1)

(See Figure 8.3.1.)
Let us check that σγ really is a star. On the one hand, it follows from →s

0
γ ≤

→s
n−1
γ

that →s
0
γ ≤

←s
n
γ ∨

→s
n−1
γ = (→s

n
γ ∧

←s
n−1
γ )∗ for all n ≥ 1. And on the other hand, for

1 ≤ n < m, we infer from →s
n−1
γ ≤ →s

n
γ ≤

→s
m−1
γ ≤ →s

m
γ that

→s
m
γ ∧

←s
m−1
γ ≤ ←s

m−1
γ ≤ ←s

n
γ ≤

←s
n
γ ∨

→s
n−1
γ = (→s

n
γ ∧

←s
n−1
γ )∗.
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→s
0
γ

→s
n−1
γ

→s
n
γ

Rγ

v0
γ v1

γ vn−1
γ vnγ vn+1

γ

Figure 8.3.1.: The light grey area depicts BrA, the grey area depicts ArB and the
dark grey area depicts A ∩B of the separation (A,B) := →s

n
γ ∧

←s
n−1
γ

from the proof of Theorem 8.3.2.

Since all →s
n
γ have finite order, so do the infima of which σγ is composed. This

technique of turning a ray into a star of separations has been introduced by
Carmesin [19] in his ‘Proof that Lemma 6.8 implies Lemma 6.7’.

Second step. We prove that σ is as desired. First, we show condition (i), which
states that the part defined by OK is included in the part of σ. For every separation
→s ∈ σ there is some separation

→
r ∈ O satisfying →s ≤ →

r . Hence the part of σ
includes the part of O, which in turn includes the part of OK because O is the
parliament of OK .

It remains to verify condition (ii), which states that for every (K (X), X) ∈ OK

there is some →s ∈ σ with (K (X), X) . →s . For this, let any vertex set X ∈ Y be
given. As O is cofinal in OK ∪O, there is a separation →sX ∈ O above (K (X), X).
Let γ be the corridor of O containing →sX . We check the following two cases.

In the first case, σγ is a singleton, formed by the maximal element →s of γ, giving

(K (X), X) ≤ →sX ≤ →s ∈ σ.

In the second case, σγ is of the form (8.3.1). Then, as O is nested with
TK , the separation (K (X), X) induces a consistent orientation of the image
of αγ, as follows. The orientation consists of all

→
r ∈

→
Sℵ0 [γ] that satisfy either

→
r ≤ (K (X), X) or (K (X), X) <

←
r . Now this consistent orientation defines either

a node or an end of Tγ . Since →sX ∈ γ lies above (K (X), X) and since γ∗ contains
no ω-chains by Lemma 8.3.6, it must be a node t of Tγ. Let P = t0 . . . tk be the
t–Rγ path in Tγ and let n ∈ N be the number with vnγ = tk, see Figure 8.3.2 (the
ray Rγ = v0

γv
1
γ . . . was defined right above (8.3.1)).

We claim that we may assume n 6= 0. For this, it suffices to show that we
may assume that →s

0
γ lies in the orientation that defines t. So let us consider the
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→
rP

tk = vnγ

vn−1
γ

vn+1
γ

P

t = t0 t1 tk−1

(K (X), X)

Figure 8.3.2.: The orientation of the image
→
Sℵ0 [γ] of αγ and the path P in the

second step of the proof of Theorem 8.3.2.

case that ←s
0
γ instead of →s

0
γ lies in the orientation that defines t. In this case we

have either ←s
0
γ ≤ (K (X), X) or (K (X), X) < →s

0
γ . But actually, we cannot have

←s
0
γ ≤ (K (X), X) because otherwise (K (X), X) ≤ →sX would imply that ←s

0
γ ≤

→sX
meaning that ←s

0
γ and →sX violate the consistency of γ. Therefore, we must have

(K (X), X) < →s
0
γ , and then we are done because →s

0
γ is an element of σγ . Thus, we

may assume n > 0.
If the path P is non-trivial, i.e., if t0 = t is distinct from tk = vnγ , then we

consider the separation
→
rP = αγ(tk−1, tk) ∈ γ associated with the last edge tk−1tk

of P . By the definition of P , the separation
←
rP satisfies either

←
rP ≤ (K (X), X)

or (K (X), X) <
→
rP . The former inequality would violate the consistency of γ as

←
rP ≤ (K (X), X) ≤ →sX would follow (here we use that

→
Sℵ0 [γ] ⊆

→
Sℵ0 [O] is regular

to ensure
→
rP 6= →sX). Hence (K (X), X) <

→
rP . As tk−1 is distinct from vn−1

γ , and
both vertices have vnγ as a neighbour in Tγ, we obtain the inequalities

→
rP ≤ →s

n
γ

and
→
rP ≤ ←s

n−1
γ . Thus,

(K (X), X) ≤ →
rP ≤ →s

n
γ ∧

←s
n−1
γ ∈ σ.

Otherwise the path P is trivial, i.e., t0 = tk where t0 = t and tk = vnγ . By the
definition of t we have either →s

n−1
γ ≤ (K (X), X) or (K (X), X) < ←s

n−1
γ , and we

have either ←s
n
γ ≤ (K (X), X) or (K (X), X) < →s

n
γ . The case ←s

n
γ ≤ (K (X), X)

is impossible since otherwise (K (X), X) ≤ →sX ∈ γ would imply that ←s
n
γ ≤

→sX
meaning that →s

n
γ and →sX violate the consistency of γ. Therefore, we have either

(K (X), X) ≤ →s
n
γ ∧

←s
n−1
γ ∈ σ as desired, or we have →s

n−1
γ ≤ (K (X), X) < →s

n
γ . For

this latter case, we show that there is a component C ∈ K (X) such that →s
n−1
γ ≤

(C,X) holds. This suffices to complete the proof, because then the inequalities
(K (X)r {C}, X) ≤ (X,C) ≤ ←s

n−1
γ and (K (X)r {C}, X) ≤ (K (X), X) < →s

n
γ
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give

(K (X)r {C}, X) ≤ →s
n
γ ∧

←s
n−1
γ ∈ σ.

The separation →s
n−1
γ ∈ O is, by definition, the supremum of some corridor δ

of { (A,B) ∈ OK : |A ∩ B| ≤ ` } for some number ` ∈ N. Then every separation
(K (Y ), Y ) ∈ δ satisfies (K (Y ), Y ) ≤ →s

n−1
γ ≤ (K (X), X). In particular, as the

principal tree set TK satisfies the conclusions of Theorem 8.2.7, every separation
(K (Y ), Y ) ∈ δ satisfies (K (Y ), Y ) ≤ (CX(Y ), X). Hence in order to show
that →s

n−1
γ ≤ (C,X) for some component C ∈ K (X), it suffices to show that

CX(Y ) = CX(Y ′) for every two separations (K (Y ), Y ) and (K (Y ′), Y ′) in δ.
Given (K (Y ), Y ) and (K (Y ′), Y ′), consider any separation (K (Z), Z) ∈ δ above
the two. Then (K (Z), Z) ≤ (CX(Z), X) implies that both CX(Y ) and CX(Y ′)
are contained in CX(Z), giving CX(Y ) = CX(Y ′) as desired.

8.4. Overview of all duality results

In this section we summarise all duality theorems of this series. A very brief
overview of the complementary structures is given by the following table:

normal tree tree-decomposition other
combs 3 3 3

stars 3 3

dominated combs 3 3

dominating stars 3 3

undominated comb 7 3 3

undominating star 7 3 3

Here, a check mark means, for example, that we proved a duality theorem for
combs in terms of normal trees, whereas the two crosses mean that normal trees
cannot serve as complementary structures for undominated combs or undominating
stars.

Finally, we summarise our duality theorem for combs, stars and combinations of
the two explicitly in five theorems:
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Theorem (Combs). Let G be any connected graph and let U ⊆ V (G) be any vertex
set. Then the following assertions are equivalent:

(i) G does not contain a comb attached to U ;
(ii) there is a rayless normal tree T ⊆ G that contains U (moreover, T can be

chosen such that it contains U cofinally);
(iii) G has a rayless tree-decomposition into parts each containing at most finitely

many vertices from U and whose parts at non-leaves of the decomposition
tree are all finite (moreover, the tree-decomposition displays ∂ΩU and may be
chosen with connected separators);

(iv) for every infinite U ′ ⊆ U there is a critical vertex set X ⊆ V (G) such that
infinitely many of the components in C̆X meet U ′;

(v) G has a U-rank;
(vi) G has a rooted tame tree-decomposition (T,V) that covers U cofinally and

satisfies the following four assertions:

– (T,V) is the squeezed expansion of a normal tree of G that contains the
vertex set U cofinally;

– every part of (T,V) meets U finitely and parts at non-leaves are finite;
– (T,V) displays ∂ΓU ⊆ crit(G);
– the rank of T is equal to the U-rank of G.

Theorem (Stars). Let G be any connected graph and let U ⊆ V (G) be any vertex
set. Then the following assertions are equivalent:

(i) G does not contain a star attached to U ;
(ii) there is a locally finite normal tree T ⊆ G that contains U and all whose

rays are undominated in G (moreover, T can be chosen such that it contains
U cofinally and every component of G− T has finite neighbourhood);

(iii) G has a locally finite tree-decomposition with finite and pairwise disjoint
separators such that each part contains at most finitely many vertices of U
(moreover, the tree-decomposition can be chosen with connected separators
and such that it displays ∂ΓU ⊆ Ω(G));

Theorem (Dominating stars and dominated comb). Let G be any connected graph
and let U ⊆ V (G) be any vertex set. Then the following assertions are equivalent:

(i) G does not contain a dominating star attached to U ;
(ii) G does not contain a dominated comb attached to U ;

(iii) there is a normal tree T ⊆ G that contains U and all whose rays are
undominated in G (moreover, the normal tree T can be chosen such that it
contains U cofinally and every component of G−T has finite neighbourhood);

(iv) G has a tree-decomposition (T,V) such that

– each part contains at most finitely many vertices from U ;
– all parts at non-leaves of T are finite;
– (T,V) has essentially disjoint connected separators;
– (T,V) displays ∂ΩU .
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Theorem (Undominated combs). Let G be any connected graph and let U ⊆ V (G)
be any vertex set. Then the following assertions are equivalent:

(i) G does not contain an undominated comb attached to U ;
(ii) G has a star-decomposition with finite separators such that U is contained

in the central part and all undominated ends of G live in the leaves’ parts
(moreover, the star-decomposition can be chosen with pairwise disjoint and
connected separators);

(iii) G has a connected subgraph that contains U and all whose rays are dominated
in it (moreover, the subgraph can be chosen so as to reflect the ends in its
closure).

Moreover, if U is normally spanned in G, we may add

(iv) there is a rayless tree T ⊆ G that contains U .

Theorem (Undominating stars). Let G be any connected graph and let U ⊆ V (G)
be any vertex set. Then the following assertions are equivalent:

(i) G does not contain an undominating star attached to U ;
(ii) there is a tough subgraph H ⊆ G that contains U ;

(iii) G has a tame star-decomposition such that U is contained in the central part
and every critical vertex set of G lives in a leaf ’s part.

Moreover, if U is normally spanned, we may add

(iv) there is a locally finite normal tree T ⊆ G that contains U .
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9. End-faithful spanning trees in graphs
without normal spanning trees

9.1. Introduction

Schmidt [26,78] characterised the class of rayless graphs by an ordinal rank function,
which makes it possible to prove statements about rayless graphs by transfinite
induction. For example, Bruhn, Diestel, Georgakopoulos and Sprüssel [13, 26]
proved the unfriendly partition conjecture for the class of rayless graphs in this
way.

At the turn of the millennium, Halin [44] asked in his legacy collection of problems
whether Schmidt’s rank can be generalised to characterise other important classes
of graphs besides the class of rayless graphs. In this chapter we answer Halin’s
question in the affirmative: we characterise two important classes of graphs by an
ordinal rank function.

As our first main result, we characterise for every uncountable cardinal κ the
class of graphs without a Tκ minor by an ordinal rank function that we call the
κ-rank (recall that Tκ denotes the κ-branching tree):

Theorem 9.1. For every graph G and every uncountable cardinal κ the following
assertions are equivalent:

(i) G contains no Tκ minor;
(ii) G has a κ-rank.

This extends Seymour and Thomas’ characterisations [77]. We remark that, for
regular uncountable cardinals κ, they also showed that a graph contains a Tκ minor
if and only if it contains a subdivision of Tκ.

Our second main result addresses another largely open problem raised by Halin.
Call a spanning tree T of a graphG end-faithful if the natural map ϕ : Ω(T )→ Ω(G)
satisfying ω ⊆ ϕ(ω) is bijective. Here, Ω(T ) and Ω(G) denote the set of ends of T
and of G, respectively. Halin [47] conjectured that every connected graph has an
end-faithful spanning tree. However, Seymour and Thomas [76] and Thomassen [83]
constructed uncountable counterexamples; for instance, there exists a connected
graph that has precisely one end but all whose spanning trees must contain a
subdivision of Tℵ1 . Ever since, it has been an open problem to characterise the
class of graphs that admit an end-faithful spanning tree.

Normal spanning trees are important examples of end-faithful spanning trees.
Given a graph G, a rooted tree T ⊆ G is normal in G if the endvertices of every
T -path in G are comparable in the tree-order of T , cf. [26]. Call a set U of vertices
of a graph G normally spanned in G if U is contained in a tree T ⊆ G that is
normal in G. The graph G is normally spanned if V (G) is normally spanned in G,
i.e., if G has a normal spanning tree. Thus, every normally spanned graph has an
end-faithful spanning tree.

A second existence result for end-faithful spanning trees is due to Polat [67]
and directly addresses the counterexamples by Seymour and Thomas and by
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Thomassen: every connected graph that does not contain a subdivision of Tℵ1 has
an end-faithful spanning tree.

As our second main result, we determine a new subclass of the class of graphs
with an end-faithful spanning tree. Call a connected graph G normally traceable if
it has a rayless tree-decomposition into parts that are normally spanned in G. For
the definition of tree-decompositions see [26].

Theorem 9.2. Every normally traceable graph has an end-faithful spanning tree.

Our theorem easily extends the two known existence results for end-faithful
spanning trees: On the one hand, every normally spanned graph has a trivial
tree-decomposition into one normally spanned part. On the other hand, every
connected graph without a subdivision of Tℵ1 has a rayless tree-decomposition
into countable parts by the characterisation of Seymour and Thomas [77], and
countable vertex sets are normally spanned.

In both cases, the extension is proper: The ℵ1-branching trees with tops are
the graphs obtained from the rooted Tℵ1 by selecting uncountably many rooted
rays and adding for every selected ray R a new vertex, its top, and joining it to
infinitely many vertices of R [32]. Every Tℵ1 with tops has a star-decomposition
into normally spanned parts where Tℵ1 forms the central part and each top plus
its neighbours forms a leaf’s part. However, not every Tℵ1 with tops has a normal
spanning tree [32, 66], and every Tℵ1 with tops contains Tℵ1 as a subgraph.

Carmesin [19] has amended Halin’s conjecture about end-faithful spanning trees:
He showed that every connected graph G has a spanning tree T that is end-faithful
for its undominated ends in that every undominated end ω of G is uniquely
represented by an end η of T with η ⊆ ω. Recall that a vertex v of a graph G
dominates a ray R ⊆ G if there is an infinite v–R fan in G. Rays not dominated
by any vertex are undominated. An end of G is dominated or undominated if one
(equivalently: each) of its rays is dominated or undominated, respectively, see [26].

Carmesin pointed out that his result becomes false when one replaces ‘is end-
faithful for’ with ‘reflects’ in its wording. Here, a spanning tree T of a graph G
reflects the undominated ends of G if it is end-faithful for the undominated ends
of G and every end η of T represents an undominated end ω of G with η ⊆ ω.
Recently, it has been shown in Chapter 7 that normally spanned graphs have
spanning trees reflecting their undominated ends. As our third main result, we
extend this to the class of normally traceable graphs:

Theorem 9.3. Every normally traceable graph has a spanning tree that reflects
its undominated ends.

Our theorem extends two existence results on rayless spanning trees. For a
connected graph G, having a rayless spanning tree is equivalent to all the ends of
G being dominated if G is normally spanned (Chapter 7) or if G does not contain
a subdivision of Tℵ1 [67]. The following corollary extends these results, and any
Tℵ1 with all tops witnesses that this extension is proper.

Corollary 9.4. For every normally traceable graph G, having a rayless spanning
tree is equivalent to all the ends of G being dominated.
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Finally, as our fifth main result we characterise the class of normally traceable
graphs by an ordinal rank function that we call the normal rank:

Theorem 9.5. For every graph G the following assertions are equivalent:

(i) G is normally traceable;
(ii) G has a normal rank.

We use this in the proofs of all our results on normally traceable graphs.
This chapter is organised as follows. Section 9.2 provides the tools and terminol-

ogy that we use throughout this chapter. In Section 9.3 we introduce the κ-rank
and prove Theorem 9.1. Then, in Section 9.4 we introduce the normal rank and
prove Theorem 5. We prove Theorem 9.2 in Section 9.5 and we prove Theorem 9.3
in Section 9.6.

9.2. Tools and terminology

A subset X of a poset P = (P,≤) is cofinal in P , and ≤, if for every x ∈ X there
is a p ∈ P with p ≥ x. We say that a rooted tree T ⊆ G contains a set U cofinally
if U ⊆ V (T ) and U is cofinal in the tree-order of T . We remark that the original
statement of the following lemma also takes critical vertex sets in the closure of T
or U into account.

Lemma 9.2.1 (Lemma 5.2.13). Let G be any graph. If T ⊆ G is a rooted tree
that contains a vertex set U cofinally, then ∂ΩT = ∂ΩU .

Suppose that H is any subgraph of G and ϕ : Ω(H) → Ω(G) is the natural
map satisfying η ⊆ ϕ(η) for every end η of H. Furthermore, suppose that a set
Ψ ⊆ Ω(G) of ends of G is given. We say that H is end-faithful for Ψ if ϕ � ϕ−1(Ψ)
is injective and im(ϕ) ⊇ Ψ. And H reflects Ψ if ϕ is injective with im(ϕ) = Ψ. A
spanning tree of G that is end-faithful for all the ends of G is end-faithful.

Lemma 9.2.2 (Lemma 5.2.11). If G is any graph and T ⊆ G is any normal tree,
then T reflects the ends of G in the closure of T .

Given any graph G, a set U ⊆ V (G) of vertices is dispersed in G if there is no
end in the closure of U in G. Equivalently, U is dispersed if and only if G contains
no comb with all its teeth in U . In [52], Jung proved that normally spanned sets
of vertices can be characterised in terms of dispersed vertex sets:

Theorem 9.2.3 (Jung [52, Satz 6]; Theorem 5.3.5). Let G be any graph. A vertex
set U ⊆ V (G) is normally spanned in G if and only if it is a countable union
of dispersed sets. In particular, G is normally spanned if and only if V (G) is a
countable union of dispersed sets.
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9.3. Ranking Tκ-free graphs

In this section we characterise for every uncountable cardinal κ the class of graphs
without a Tκ minor by an ordinal rank function that we call the κ-rank.

Suppose that κ is any infinite cardinal. Let us assign κ-rank 0 to all the graphs
of order less than κ. Given an ordinal α > 0, we assign κ-rank α to every graph
G that does not already have a κ-rank < α and which has a set X of less than κ
many vertices such that every component of G−X has some κ-rank < α. Note
that the ℵ0-rank is Schmidt’s rank [26,78].

The κ-rank behaves quite similar to Schmidt’s rank [26, p. 243]: When disjoint
graphs Gi have κ-ranks ξi < α, their union clearly has a κ-rank of at most α; if
the union is finite, it has κ-rank maxi ξi. Induction on α shows that subgraphs of
graphs of κ-rank α also have a κ-rank of at most α. Conversely, joining less than
κ many new vertices to a graph, no matter how, will not change its κ-rank.

Not every graph has a κ-rank. Indeed, an inflated κ-branching tree cannot have
a κ-rank, since deleting less than κ many of its vertices always leaves a component
that contains another inflated κ-branching tree. As subgraphs of graphs with a
κ-rank also have a κ-rank, this means that only graphs without a Tκ minor can
have a κ-rank. But all these do:

Theorem 9.1. For every graph G and every uncountable cardinal κ the following
assertions are equivalent:

(i) G contains no Tκ minor;
(ii) G has a κ-rank.

Hence the κ-rank characterises the class of graphs without a Tκ minor.
Our proof relies upon a theorem by Seymour and Thomas [77] that we recall here.

For every set M we denote by [M ]<κ the set of all subsets of M of cardinality < κ.
Now, given a graph G, we write CX for the set of components of G−X for every
set X ⊆ V (G) of vertices. An escape of order κ in G is a function σ which assigns
to each X ∈ [V (G)]<κ the vertex set V [C ] :=

⋃
{V (C) | C ∈ C } of a subset

C ⊆ CX in such a way that:

(i) if X ⊆ Y , then σ(Y ) ⊆ σ(X),
(ii) if X ⊆ Y , then for σ(X) = V [C ] every component C ∈ C intersects σ(Y ),

and
(iii) σ(∅) 6= ∅.

We speak of (i), (ii) and (iii) as the first, second and third escape axioms. We
remark that Seymour and Thomas’ escapes can in fact be seen as more general
predecessors of directions which describe the ends of a graph by a theorem of
Diestel and Kühn [30].
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Theorem 9.3.1 ([77, Theorem 1.3]). For every graph G and every uncountable
cardinal κ the following assertions are equivalent:

(i) G contains a Tκ minor;
(ii) G has an escape of order κ.

We are now ready to prove Theorem 9.1:

Proof of Theorem 9.1. We show the equivalence ¬(i)↔¬(ii). The forward impli-
cation has already been pointed out above. For the backward implication suppose
that G has no κ-rank; we show that G must contain a Tκ minor. By Theorem 9.3.1
it suffices to find an escape of order κ in G. We define a candidate σ for such an
escape as follows. Given any vertex set X ∈ [V (G)]<κ we call a component C of
G−X bad if it has no κ-rank, and we let σ(X) := V [C ] for the collection C of all
the bad components of G−X. It remains to show that σ satisfies all three escape
axioms.

Having no κ-rank is closed under taking supergraphs, so the first axiom holds.
For the second axiom, let any two vertex sets X ⊆ Y ∈ [V (G)]<κ be given, and
consider any component C ∈ C for σ(X) = V [C ]. Then C − Y must have a
component that has no κ-rank, and this component then is bad as desired. Finally,
the third axiom holds because the graph G must have a bad component.

9.4. Normally traceable graphs

In this section we characterise the class of normally traceable graphs by an ordinal
rank function that we call the normal rank.

Let G be any connected graph. A connected subgraph H ⊆ G has normal rank 0
in G if the vertex set of H is normally spanned in G. Given an ordinal α > 0, a
connected subgraph H ⊆ G has normal rank α in G if it does not already have
a normal rank < α in G and if there is a vertex set X ⊆ V (H) that is normally
spanned in G such that every component of H −X has some normal rank < α
in G.

The graph G has normal rank α for an ordinal α if G has normal rank α in G.

Theorem 9.5. For every connected graph G the following assertions are equivalent:

(i) G is normally traceable;
(ii) G has a normal rank.

Moreover, if G has a tree-decomposition witnessing that G is normally traceable,
then G has normal rank at most the rank of the decomposition tree. Conversely,
if G has a normal rank, then G is normally traceable and this is witnessed by a
tree-decomposition whose decomposition tree has as rank the normal rank of G.

Before we prove this theorem, we point out a few properties of the normal rank.
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Lemma 9.4.1. Let G be any connected graph.

(i) If G has ℵ1-rank α, then G has some normal rank ≤ α.
(ii) There are graphs that have a normal rank but that have neither an ℵ1-rank

nor a normal spanning tree.

Proof. (i) We show that every connected subgraph H ⊆ G of ℵ1-rank α has normal
rank ≤ α in G, by induction on α; for H = G this establishes (i). Any connected
countable subgraph of G is normally spanned in G by Jung’s Theorem 9.2.3, so the
base case holds. For the induction step suppose that α > 0. We find a countable
vertex set X ⊆ V (H) so that every component of H −X has some ℵ1-rank < α.
As X is countable it is also normally spanned in G. By the induction hypothesis
every component of H −X has normal rank < α in G. Hence X witnesses that H
has normal rank ≤ α in G.

(ii) Let G be any Tℵ1 with tops. Then G has normal rank 1 because G − Tℵ1

consists only of isolated vertices. However, G has no ℵ1-rank by Theorem 9.1, and
G has no normal spanning tree as pointed out by Diestel and Leader [32].

Lemma 9.4.2. Let H ⊆ H ′ ⊆ G be any three connected graphs.

(i) If H ′ has normal rank α in G, then H has normal rank ≤ α in G.
(ii) If H has normal rank α in G, then H has normal rank ≤ α in H ′.

In particular, if H has normal rank α in G, then H has normal rank ≤ α.

Proof. (i) Induction on α. If α = 0, then the vertex set of H ′ is normally spanned
in G; in particular, the vertex set of H ⊆ H ′ is normally spanned in G.

Otherwise α > 0. Then there exists a vertex set X ⊆ V (H ′) that is normally
spanned in G such that every component of H ′ −X has normal rank < α in G.
Every component of H −X is contained in a component of H ′ −X and hence has
normal rank < α in G by the induction hypothesis. Thus, H has normal rank ≤ α
in G.

(ii) Induction on α. If α = 0, then the vertex set of H is normally spanned in G.
In particular, by Jung’s Theorem 9.2.3, the vertex set of H is normally spanned in
H ′ ⊆ G, so H has normal rank 0 in H ′ as desired.

Otherwise α > 0. Then there exists a vertex set X ⊆ V (H) that is normally
spanned in G such that every component of H −X has normal rank < α in G.
Note that X is also normally spanned in H ′ ⊆ G by Jung’s Theorem 9.2.3. By
the induction hypothesis, every component of H −X has normal rank < α in H ′.
Thus, H has normal rank ≤ α in H ′.

Proof of Theorem 9.5. Let G be any connected graph. To show the equivalence
(i)↔(ii) together with the ‘moreover’ part of the theorem, it suffices to show the
following two assertions:

(1) If G has a tree-decomposition witnessing that G is normally traceable, then
G has a normal rank which is at most the rank of the decomposition tree.

(2) If G has a normal rank, then G is normally traceable and this is witnessed by
a tree-decomposition whose decomposition tree has rank at most the normal
rank of G.
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(1) We show that every connected subgraph H ⊆ G that has a rayless tree-
decomposition (T,V) into parts that are normally spanned in G does have normal
rank ≤ α in G for α the rank of T . We prove this by induction on α; for H = G
and α equal to the rank of the decomposition tree of some tree-decomposition of
G witnessing that G is normally traceable we obtain (1). If H and (T,V) are such
that α = 0, then T is finite, and hence the union of all the parts in V is normally
spanned in G by Jung’s Theorem 9.2.3; in particular, V (H) is normally spanned
in G and hence has normal rank 0 in G.

Otherwise H and (T,V) are such that α > 0. Let W ⊆ V (T ) be any finite
vertex set such that every component of T −W has rank < α. Then the vertex set
X :=

⋃
t∈W Vt ⊆ V (H) is normally spanned in G by Jung’s Theorem 9.2.3. Every

component of H −X is contained in
⋃
t∈T ′ G[Vt] for some component T ′ of T −W ,

so by the induction hypothesis every component of H −X has normal rank < α
in G. Thus, H has normal rank ≤ α in G.

(2) Suppose that G is any connected graph that has a normal rank. We show
that every connected subgraph H ⊆ G of normal rank α in G has a rayless
tree-decomposition (T,V) into parts that are normally spanned in G such that
T has rank ≤ α, by induction on the normal rank α of H in G; for H = G this
establishes (2). If α = 0, then V (H) is normally spanned in G and the trivial
tree-decomposition of H into the single part V (H) is as desired.

Otherwise α > 0. Then there exists a vertex set X ⊆ V (H) that is normally
spanned in G such that every component of H − X has normal rank < α in
G. By the induction hypothesis, every component C of H − X has a rayless
tree-decomposition (TC ,VC) with VC = (V t

C | t ∈ TC ) such that every part is
normally spanned in G and the rank of TC is < α. Without loss of generality the
trees TC are pairwise disjoint. We choose from every tree TC an arbitrary node
tC ∈ TC . Then we let the tree T be obtained from the disjoint union

⋃
C TC by

adding a new vertex t∗ that we join to all the chosen nodes tC . We define the
family V = (V t | t ∈ T ) by letting V t := V t

C ∪X for all t ∈ TC ⊆ T and V t∗ := X.
Then (T,V) is a rayless tree-decomposition of H into parts that are normally
spanned in G by Jung’s Theorem 9.2.3, and the rank of T is ≤ α because every
component of T − t∗ has rank < α.

9.5. End-faithful spanning trees

In this section we prove that every normally traceable graph has an end-faithful
spanning tree. Our proof requires some preparation.

Lemma 9.5.1. Let G be any graph and let Ψ ⊆ Ω(G) be any set of ends of G. If
H ⊆ G is a spanning forest that reflects Ψ and T is a component of H such that
every other component of H has a neighbour in T , then G has a spanning tree that
reflects Ψ.

Proof. Fix for every component T ′ 6= T of H an edge eT ′ between T ′ and T . It is
straightforward to check that the spanning tree consisting of H plus all the edges
eT ′ reflects the ends in Ψ.

169



9. End-faithful spanning trees in graphs without normal spanning trees

Lemma 9.5.2. Let G be any graph with a spanning tree T ⊆ G that reflects a
set Ψ ⊆ Ω(G) and let R ⊆ G be a ray from some end in Ψ. Then there exists a
spanning tree T ′ ⊆ G that reflects Ψ and contains R.

Moreover, T ′ can be chosen such that no end other than the end of R lies in the
closure of the symmetric difference E(T )4E(T ′) (viewed as a subgraph of G).

The ‘moreover’ part of the lemma says that T and T ′ differ only locally. Note that
there may also be no end in the closure of E(T )4E(T ′).

Proof. Given T ⊆ G, Ψ and R, we root T arbitrarily and write ω for the end of R
in G. Furthermore, we write RT for the unique rooted ray in T that is equivalent
to R, and we pick a sequence P0, P1, . . . of pairwise disjoint R–RT paths in G. We
write C for the comb C := R ∪

⋃
n Pn consisting of R and all the paths Pn, and

we write U for the vertex set of the subtree dCeT of T . Note that RT ⊆ dCeT
because the paths P0, P1, . . . meet RT infinitely often. By standard arguments we
have ∂ΩC = {ω}, and so ∂ΩU = {ω} follows by Lemma 9.2.1. Since T reflects
Ψ and dCeT contains only rays from ω, we deduce that dCeT is either rayless or
one-ended. As dCeT contains the ray RT , it is one-ended.

Next, we define an edge set F ⊆ E(dCeT ), as follows. If R has a tail in RT ,
then we set F = ∅. Otherwise R has no tail in RT . Then we select infinitely many
pairwise edge-disjoint C-paths Q0, Q1, . . . in the ray RT (these exist because R
has no tail in RT ). We choose one edge of every path Qn and we let F consist of
all the chosen edges, completing the definition of F .

The graph (dCeT ∪C)−F is a connected subgraph of G and inside it, we extend
C arbitrarily to a spanning tree TR. Then TR has vertex set U , and TR reflects {ω}:
Every ray R′ in TR that is disjoint from R meets at most one component of C −R
because C and R′ are contained in the tree TR, and hence R′ must have a tail in
dCeT − C. But dCeT contains just one rooted ray, namely the ray RT , and either
RT contains a tail of R or F consists of infinitely many edges of RT , contradicting
the existence of R′ in TR ⊆ (dCeT ∪C)−F . It remains to extend TR to a spanning
tree of G reflecting Ψ. For this, we consider the collection {Ti | i ∈ I } of all the
components of T − U . By the choice of U , every end ω′ of G other than ω is still
represented by an end of one of the trees Ti: Indeed, if ω′ is an end of G other
than ω, then it does not lie in the closure of U , and hence every ray in ω′ has a
tail that avoids U . In particular, every ray in T that lies in ω′ has some tail that
avoids U . Therefore, the union of TR and all the trees Ti is a spanning forest of G
reflecting Ψ.

We extend this spanning forest to a spanning tree T ′ by adding all the Ti–TR
edges of T for every i ∈ I (note that T contains precisely one Ti–TR edge for every
i ∈ I as T ∩G[U ] = dCeT is connected). Then T ′ reflects Ψ again by Lemma 9.5.1.
To see ∂Ω(E(T )4E(T ′)) ⊆ {ω} recall ∂ΩG[U ] = {ω} and note that the symmetric
difference is contained in G[U ] entirely.
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Lemma 9.5.3. Let G be any graph and let X ⊆ V (G) be any vertex set.

(i) Every end of G is contained in the closure of X in G or in the closure of
some component of G−X in G.

(ii) Every end of G that is contained in the closure of two distinct components
of G−X in G is also contained in the closure of X in G.

Proof. (i) Let ω be any end of G and let R ∈ ω be any ray. Then either the vertex
set of R intersects X infinitely, or R has a tail that is contained in some component
C of G−X. In the first case, ω is contained in the closure of X, and in the second
case it is contained in the closure of C in G.

(ii) Let C and C ′ be two distinct components of G−X and suppose that ω is
any end of G that is contained in the closure of both C and C ′ in G. If S ⊆ V (G)
is any finite vertex set, then the component C(S, ω) meets both C and C ′. As X
separates C and C ′ in G it follows that C(S, ω) meets X as well. We conclude
that ω is contained in the closure of X in G.

Lemma 9.5.4. Let G be any connected graph, let X ⊆ V (G) be normally spanned
in G and let C be any component of G−X so that G[C ∪X] is connected. If C
has normal rank ξ in G, then G[C ∪X] has normal rank ≤ ξ.

Proof. Suppose that C is a component of G − X that has normal rank ξ in G.
If ξ = 0, then V (C) is normally spanned in G and C has a normal spanning tree
by Jung’s Theorem 9.2.3, so C has normal rank 0 as desired. Otherwise there
is a vertex set Y ⊆ V (C) that is normally spanned in G and satisfies that every
component of C − Y has normal rank < ξ in G. Note that X ∪ Y is normally
spanned in G by Jung’s Theorem 9.2.3. Therefore X ∪ Y witnesses that G[C ∪X]
has normal rank ≤ ξ in G. Finally, Lemma 9.4.2 (ii) implies that G[C ∪X] has
normal rank ≤ ξ.

Theorem 9.2. Every normally traceable graph has an end-faithful spanning tree.

Proof. By Theorem 9.5 we may prove the statement via induction on the normal
rank of G. If G has normal rank 0, then it has a normal spanning tree, and normal
spanning trees are end-faithful. For the induction step suppose that G has normal
rank α > 0, and let X ⊆ V (G) be any vertex set that is normally spanned in
G and satisfies that every component of G −X has normal rank < α in G. By
replacing X with the vertex set of any normal tree in G that contains X, we
may assume that X is the vertex set of a normal tree Tnt ⊆ G; indeed, every
component of G −X still has normal rank < α in G by Lemma 9.4.2 (i). Note
that, by Lemma 9.2.2, the tree Tnt reflects the ends of G in the closure of X.

By Lemma 9.5.3 (i), every end of G is contained in the closure of X in G or in
the closure of some component of G−X. And by Lemma 9.5.3 (ii), every end of
G that is contained in the closure of two distinct components of G−X in G is
also contained in the closure of X in G. Thus, by Lemma 9.5.1 it suffices to find
in each component C of G−X a spanning forest HC so that every component of
HC sends an edge in G to Tnt and so that HC reflects ∂ΩC r ∂ΩX.
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For this, consider any component C of G−X. Let P be the (possibly one-way
infinite) path in Tnt that is formed by the down-closure of N(C) in Tnt. Then by
Lemma 9.5.4 the graph G[C ∪ P ] has normal rank < α, and therefore satisfies the
induction hypothesis. Hence we find an end-faithful spanning tree TC of G[C ∪ P ].
By Lemma 9.5.2 we may assume that the path P is a subgraph of TC if this path
is a ray. It is straightforward to check that HC := TC −X is as desired.

9.6. Trees reflecting the undominated ends

In this section we prove that every normally traceable graph has a spanning tree
that reflects its undominated ends. Our proof requires the following theorem:

Theorem 9.6.1 (Theorem 7.3.2). Let G be any graph and let U ⊆ V (G) be
normally spanned in G. Then there is a tree T ⊆ G that contains U and reflects
the undominated ends in the closure of U .

Theorem 9.3. Every normally traceable graph has a spanning tree that reflects
its undominated ends.

Proof. By Theorem 9.5 we may prove the statement via induction on the normal
rank of G. If G has normal rank 0, then it is normally spanned. Thus, by
Theorem 9.6.1, the graph G has a spanning tree that reflects its undominated
ends. For the induction step suppose that G has normal rank α > 0, and let
X ⊆ V (G) be any vertex set that is normally spanned in G and satisfies that every
component of G−X has normal rank < α in G. By replacing X with any normal
tree in G that contains X, we may assume that X is the vertex set of a normal
tree Tnt ⊆ G; indeed, every component of G−X still has normal rank < α in G
by Lemma 9.4.2 (i).

We claim that it suffices to find in every component C of G− Tnt a spanning
forest HC such that every component of HC sends an edge in G to Tnt and HC

reflects the undominated ends of G in ∂ΩC r ∂ΩTnt. This can be seen as follows.
Suppose that we find such a spanning forest HC in every component C of G−X.
By Theorem 9.6.1 we find a tree Tud ⊆ G that contains X = V (Tnt) and reflects
the undominated ends of G in the closure of Tnt. Then we set H ′D := HC ∩D for
every component D of G−Tud and the component C of G−X containing it. Now
consider the spanning forest H of G that is the union of all forests H ′D with the
tree Tud. We show that H reflects the undominated ends of G.

On the one hand, all the rays in H belong to undominated ends of G, and H
contains no two disjoint rays from the same undominated end of G. On the other
hand, let ω be any undominated end of G. If ω lies in the closure of Tnt, then
Tud ⊆ H contains a ray from ω. Otherwise ω does not lie in the closure of Tnt.
Then ω lies in the closure of a component C of G− Tnt by Lemma 9.5.3 (i), so HC

contains a ray R from ω. Furthermore, ω does not lie in the closure of Tud because
by the star-comb lemma every tree in G contains a ray from every undominated
end in its closure, and Tud reflects only the undominated ends of G in the closure
of Tnt; in particular, R has a tail R′ ⊆ R that avoids Tud. Then R′ ⊆ H ′D ⊆ H for
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the component D of G−Tud that contains R′, completing the proof that H reflects
the undominated ends of G. It remains to show that G has a spanning tree that
reflects the undominated ends of G; such a tree arises from H by Lemma 9.5.1.

To complete the proof, we show that every component C of G − Tnt has a
spanning forest HC such that every component of HC sends an edge in G to Tnt
and HC reflects the undominated ends of G in ∂ΩC r ∂ΩTnt. So let C be any
component of G−X and let P be the (possibly one-way infinite) path in Tnt that
is formed by the down-closure of N(C) in Tnt. Then by Lemma 9.5.4 the graph
G[C ∪ P ] satisfies the induction hypothesis. Hence we find a spanning tree TC of
G[C ∪ P ] reflecting the undominated ends of G[C ∪ P ]. By Lemma 9.5.2 we may
assume that the path P is a subgraph of TC if this path is an undominated ray in
G[C ∪ P ]. It is straightforward to check that HC := TC −X is as desired.
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10. Approximating infinite graphs by
normal trees

10.1. Introduction

A rooted tree T contained in a graph G is normal in G if the endvertices of every
T -path in G are comparable in the tree-order of T . (In finite graphs, normal
spanning trees are their depth-first search trees; see [26] for precise definitions.)
Normal spanning trees are perhaps the most useful structural tool in infinite graph
theory. Their importance arises from the fact that they capture the separation
properties of the graph they span, and so in many situations it suffices to deal with
the much simpler tree structure instead of the whole graph. For example, the end
space of G coincides, even topologically, with the end space of any normal spanning
tree of G. However, not every connected graph has a normal spanning tree, and
the structure of graphs without normal spanning trees is still not completely
understood [11,32].

In order to harness and transfer the power of normal spanning trees to arbitrary
connected graphs G, one might try to find an ‘approximate normal spanning tree’:
a normal tree in G which spans the graph up to some arbitrarily small given error
term. To formalize this idea, recall that, as usual, a neighbourhood of an end
is the component of G − X which contains a tail of every ray of that end, for
some (arbitrarily large) finite set of vertices X ⊆ V (G). We say that a graph
G can be approximated by normal trees if for every selection of arbitrarily small
neighbourhoods around its ends there is a normal tree T ⊆ G such that every
component of G− T is included in one of the selected neighbourhoods and every
end of G has some neighbourhood in G that avoids T .

Our approximation result for normal trees in infinite graphs then reads as follows:

Theorem 10.1. Every connected graph can be approximated by normal trees.

Note that the normal trees provided by our theorem will always be rayless.
We indicate the potential of Theorem 10.1 by a number of applications. Our

first two applications are of combinatorial nature: we exhibit in Section 10.4
two new existence results for normal spanning trees that Theorem 10.1 implies.
One of these, Theorem 10.4.3, says that if every end of a connected graph G has
a neighbourhood which has a normal spanning tree then G itself has a normal
spanning tree.

Interestingly, Theorem 10.1 may not only be read as a structural result for
connected graphs: it also implies and extends a number of previously hard results
about topological properties of end spaces [24,28,30,68,69,80]. Denote by Ω(G)
the end space of a graph G, and by |G| the space on G∪Ω(G) naturally associated
with the graph G and its ends; see the next section for precise definitions. When
G is locally finite and connected, then Ω(G) is compact, and |G| is the well-known
Freudenthal compactification of G. For arbitrary G, the spaces Ω(G) and |G| are
usually non-compact and far from being completely understood.
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Polat has shown that Ω(G) is ultrametrizable if and only if G contains a topo-
logically end-faithful normal tree [68, Theorem 5.13], and has proved as a crucial
auxiliary step that end spaces are always collectionwise normal [68, Lemma 4.14].
Changing focus from Ω(G) to |G|, Sprüssel has shown that |G| is normal [80], and
Diestel has characterised when |G| is metrizable or compact [24] in terms of certain
normal spanning trees in G. Our combinatorial Theorem 10.1 provides, in just a
few lines, new and unified proofs for all these results. Additionally, Theorem 10.1
shows that metrizable end spaces are always ultrametrizable (Theorem 10.4.1),
answering an open question by Polat.

Finally, Theorem 10.1 brings new progress to an old problem of Diestel, which
asks for a topological charactersation of all end spaces [28, Problem 5.1]. Indeed,
note that Theorem 10.1 translates to the topological assertion that every open
cover of an end space can be refined to an open partition cover, Corollary 10.3.2.
This last property is known in the literature as ultra-paracompactness. It implies
that all spaces |G| are paracompact (Corollary 10.3.3), and that all end spaces
Ω(G) are even hereditarily ultra-paracompact (Corollary 10.5.3).

This chapter is organised as follows: The next section contains a recap on end
spaces and other technical terms. Section 10.3 contains the proof of our main
result, and Section 10.4 derives the consequences outlined above. Section 10.5
indicates a simple argument showing that subspaces of end spaces inherit their
property of being ultra-paracompact.

10.2. End spaces of graphs: a reminder

The collection of sets Ω(X,C) with X ⊆ V finite and C a component of G−X form
a basis for a topology on Ω. This topology is Hausdorff, and it is zero-dimensional
in that it has a basis consisting of closed-and-open sets. Note that when considering
end spaces Ω(G), we may always assume that G is connected; adding one new
vertex and choosing a neighbour for it in each component does not affect the end
space.

We now describe two common ways to extend this topology on Ω(G) to a
topology on |G| = G ∪ Ω(G), the graph G together with its ends. The first
topology, called Top, has a basis formed by all open sets of G considered as a
1-complex, together with basic open neighbourhoods for ends of the form

Ĉ∗(X,ω) := C(X,ω) ∪ Ω(X,ω) ∪ E̊∗(X,C(X,ω)),

where E̊∗(X,C(X,ω)) denotes any union of half-open edges from the edge cut
E(X,C(X,ω)) with endpoint in C(X,ω).

As the 1-complex topology on G is not first-countable at vertices of infinite
degree, it is sometimes useful to consider a metric topology on G instead: The
second topology commonly considered, called MTop, has a basis formed by all
open sets of G considered as a metric length-space (i.e. every edge together with
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its endvertices forms a unit interval of length 1, and the distance between two
points of the graph is the length of a shortest arc in G between them), together
with basic open neighbourhoods for ends of the form

Ĉε(X,ω) := C(X,ω) ∪ Ω(X,ω) ∪ E̊ε(X,C(X,ω)),

where E̊ε(X,C(X,ω)) denotes the open ball around C(X,ω) in G of radius ε.
Note that both topologies Top and MTop induce the same subspace topology on
V̂ (G) := V (G) ∪Ω(G) and Ω(G), the last of which coincides with the topology on
Ω(G) described above. Polat observed that V̂ (G) is homeomorphic with Ω(G+),
where G+ denotes the graph obtained from G by gluing a new ray Rv onto each
vertex v of G so that Rv meets G precisely in its first vertex v and Rv is distinct
from all other Rv′ , cf. [68, §4.16].

The tree-order of a rooted tree (T, r) is defined by setting u ≤ v if u lies on
the unique path rTv from r to v in T . Given n ∈ N, the nth level of T is the set
of vertices at distance n from r in T . The down-closure of a vertex v is the set
dve := {u : u ≤ v }; its up-closure is the set bvc := {w : v ≤ w }. The down-closure
of v is always a finite chain, the vertex set of the path rTv. A ray R ⊆ T starting
at the root is called a normal ray of T .

A rooted tree T contained in a graph G is normal in G if the endvertices of
every T -path in G are comparable in the tree-order of T . Here, for a given a
graph H, a path P is said to be an H-path if P is non-trivial and meets H exactly
in its endvertices. We remark that for a normal tree T ⊆ G the neighbourhood
N(D) of every component D of G− T forms a chain in T . A set U of vertices is
dispersed in G if for every end ω there is a finite X ⊆ V with C(X,ω) ∩ U = ∅, or
equivalently, if U is a closed subset of |G| (in either Top or MTop).

Theorem 10.2.1 (Jung [52], Chapter 5). A vertex set in a connected graph is
dispersed if and only if there is a rayless normal tree including it. Moreover,
a connected graph has a normal spanning tree if and only if its vertex set is a
countable union of dispersed sets.

If H is a subgraph of G, then rays equivalent in H remain equivalent in G; in
other words, every end of H can be interpreted as a subset of an end of G, so
the natural inclusion map ι : Ω(H)→ Ω(G) is well-defined. A subgraph H ⊆ G
is end-faithful if this inclusion map ι is a bijection. The terms end-injective and
end-surjective are defined accordingly. Normal trees are always end-injective;
hence, normal trees are end-faithful as soon as they are end-surjective. Given a
subgraph H ⊆ G, write ∂ΩH ⊆ Ω(G) for the set of ends ω of G which satisfy
C(X,ω) ∩H 6= ∅ for all finite X ⊆ V (G).

For topological notions we follow the terminology in [36]. All spaces considered
in this chapter are Hausdorff, i.e. every two distinct points have disjoint open
neighbourhoods. An ultrametric space (X, d) is a metric space in which the triangle
inequality is strengthened to d(x, z) ≤ max {d(x, y), d(y, z)}. A topological space
X is ultrametrizable if there is an ultrametric d on X which induces the topology
of X. A topological space is normal if for any two disjoint closed sets A1, A2 there
are disjoint open sets U1, U2 with Ai ⊆ Ui. A space is collectionwise normal if
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for every discrete family {As : s ∈ S } of disjoint closed sets, i.e. a family such
that

⋃
{As : s ∈ S ′ } is closed for any S ′ ⊆ S, there is a collection {Us : s ∈ S } of

disjoint open sets with As ⊆ Us.
A collection of sets A is said to refine another collection of sets B if for every

A ∈ A there is B ∈ B with A ⊆ B. A cover V of a topological space X is locally
finite if every point of X has an open neighbourhood which meets only finitely
many elements of V . A topological space X is paracompact if for every open cover
U of X there is a locally finite open cover V refining U . All compact Hausdorff
spaces and also all metric spaces are paracompact, which in turn are always normal
and even collectionwise normal [36, Chapter 5.1]. A space is ultra-paracompact if
every open cover has a refinement by an open partition.

Lastly, ordinal numbers are identified with the set of all smaller ordinals, i.e.
α = { β : β < α } for all ordinals α.

10.3. Proof of the main result

This section is devoted to the proof of our main theorem, which we restate more
formally:

Theorem 10.1. For every collection C = {C(Xω, ω) : ω ∈ Ω(G) } in a connected
graph G, there is a rayless normal tree T in G such that every component of G−T
is included in an element of C .

As every rayless normal tree T ⊆ G is dispersed in G by Jung’s Theorem 10.2.1,
this technical variant of our main result is clearly equivalent to the formulation
presented in the introduction.

Let us briefly discuss two other possible notions of ‘approximating graphs by
normal trees’: First, Theorem 10.1 is significantly stronger than just requiring
that (every component of) G − T is included in the union

⋃
C of the selected

neighbourhoods; the latter assertion is easily seen to be equivalent to Jung’s
Theorem 10.2.1. In the other direction, could one strengthen our notion of
‘approximating by normal trees’ and demand a normal rayless tree T such that for
every end ω of G, the component of G− T in which every ray of ω has a tail is
included in C(Xω, ω)? This notion, however, is too strong and such a T may not
exist: Consider the graph G = K+ (see Section 10.2) for an uncountable clique
K, and let C be the collection of all the ray-components of G−K (together with
an arbitrary neighbourhood of the end of the clique K). Any normal tree for G
satisfying our stronger requirements would restrict to a normal spanning tree of
K, an impossibility.

We now turn towards the proof of Theorem 10.1. As a first but crucial step, we
prove a result similar to our main theorem, but which is only concerned with the
end space of a graph.

Theorem 10.3.1. For every connected graph G and every open cover U of its
end space Ω(G) there is a rayless normal tree T in G such that the collection of
components of G− T induces an open partition of Ω(G) refining U .
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Proof. It suffices to prove the statement for open covers of basic type, i.e. open
covers U where each element U ∈ U is of the form U = Ω(XU ,CU). The proof
proceeds by induction on | U | = κ. As the statement clearly holds for finite such
covers of basic type, we may assume that κ is infinite and that the assertion
holds for any end space Ω(G′) and any open cover of basic type U ′ of Ω(G′) with
| U ′ | < κ.

Choose an enumeration U = {Uα : α < κ } of U in order type κ, and define a
rank function % on Ω(G) by

% : Ω(G)→ κ, ω 7→ min {α : ω ∈ Uα } < κ.

Call a subset A ⊆ Ω(G) bounded or unbounded depending on whether its image
%[A] ⊆ κ is bounded or unbounded in κ. Similarly, a subgraph H ⊆ G is called
bounded or unbounded if the set of ends in G with a ray in H is bounded or
unbounded.

We construct a sequence of rayless normal trees T1 ⊆ T2 ⊆ . . . extending each
other all with the same root r as follows: Let T1 be the tree on a single vertex
r (for some arbitrarily chosen vertex r ∈ G) and suppose that Tn has already
been constructed. For every unbounded component D of G − Tn there exists a
finite separator SD ⊆ V (D) such that D − SD has either zero or at least two
unbounded components: Otherwise, the map d sending each finite vertex set in D
to its unique unbounded component is a direction on D and hence defines an end ω
of D by Theorem 2.4.1. However, ω has a rank, say %(ω) = α, and since U consists
of open sets, there is a basic open neighbourhood Ω(S, ω) ⊆ Uα, implying that
d(S ∩D) ⊆ C(S, ω) is bounded, a contradiction. Now for every such unbounded D
let SD be a finite separator of the first kind in D if possible, and otherwise of the
second kind. Since G is connected, we may extend Tn simultaneously into every
unbounded component D of G− Tn so as to include SD in an inclusion minimal
way preserving normality (using the technique as in [26, Proposition 1.5.6]). Then
the extension Tn+1 ⊇ Tn is a rayless normal tree with root r. This completes the
construction.

Now consider the normal tree T ′ =
⋃
n∈N Tn. We claim that T ′ is rayless. Indeed,

suppose otherwise, that there is a normal ray R in T ′ belonging to the end ω ∈ Ω(G)
say.

Then, for every n ∈ N, the ray R has a tail in an unbounded component Dn

of G − Tn, and all finite separators SDn chosen for these components were of
the second kind, since we never extended Tn into a component that was already
bounded. In particular R meets each SDn in at least one vertex, sn say. Now, fix
for every SDn an unbounded component Cn+1 of Dn − SDn different from Dn+1.
Every Cn+1 has a neighbour, say un, in SDn . Moreover, the paths Pn = snTun
connecting sn to un in T are pairwise disjoint, as each of them was constructed in
the nth step.

From this, we obtain a contradiction as follows. Our end ω has rank %(ω) = α say.
Since κ is infinite and hence a limit ordinal, and since the Cn are all unbounded, we
may select for each n ≥ 1 a ray Rn in Cn belonging to an end ωn with %(ωn) > α.
We may choose Rn so that its starting vertex sends an edge to un−1.
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However, the union of the ray R with the rays Rn and the paths Pn witnesses
that ωn → ω in Ω(G) as n→∞. As Uα is an open neighbourhood of ω, we have
ωn ∈ Uα eventually, implying in turn that %(ωn) ≤ α, contradicting the choice of
ωn. This shows that ω cannot exist, and hence that T ′ is rayless.

Next, we claim that every component D of G− T ′ = G−
⋃
n∈N Tn is bounded.

Since T ′ is a normal tree, N(D) is a chain in T ′, and since T ′ is rayless, N(D) is
finite. Hence, there is m ∈ N such that N(D) ⊆ Tm, i.e. D is already a component
of G − Tm. The fact that we have not extended Tm into D means that D is
bounded.

In particular, for each component D of G− T ′, the subcollection

UD := {Uα : α ∈ %[Ω(N(D), D)] } ⊆ U

has size <κ. Every UD restricts to an open cover U ′D of basic type in Ω(D) of
size | U ′D| < κ as follows. Each Ω(X,C ) ∈ UD induces an open subset Ω(Y,D) of
Ω(D) of basic type by letting Y = X ∩D and letting D be the set of components
of D ∩

⋃
C . Indeed, every end of D contained in Ω(X,C ) is also contained in

Ω(Y,D): pick a ray from that end avoiding the finite X; then the ray lies in
D ∩

⋃
C and, as it is connected, it lies in a component of D ∩

⋃
C .

Hence, by the induction hypothesis, for every component D of G − T ′ there
exists a dispersed set XD in D for which the components of D −XD refine the
cover U ′D, which in turn refines UD. As T ′ is normal and rayless, the union of
the dispersed sets XD is dispersed as well. We extend T ′ to a rayless normal
tree T which also includes all these XD, by Jung’s Theorem 10.2.1. Then the
collection of the components of G− T induces an open partition of Ω(G) refining
U as desired.

From the observation that V̂ (G) ∼= Ω(G+) (see Section 10.2) we can deduce our
main result as a consequence of Theorem 10.3.1.

Proof of Theorem 10.1. Let G be a connected graph. Given a collection C =
{C(Xω, ω) : ω ∈ Ω(G) } in G, we need to find a rayless normal tree T in G such
that every component of G− T is included in an element of C .

Consider the graph G+. For v ∈ V (G) write ωv ∈ Ω+ := Ω(G+) for the end
containing the new ray Rv. The assertion follows by applying Theorem 10.3.1 to
the open cover

U = {Ω+(Xω, ω) : ω ∈ Ω(G) } ∪ {Ω+({v}, ωv) : v ∈ V (G) }

of the end space Ω+ of G+, and restricting the resulting rayless normal tree T+ of
G+ to the rayless normal tree T = T+ ∩G of G.

Corollary 10.3.2. All end spaces Ω(G) are ultra-paracompact.

Proof. Since we may assume without loss of generality that G is connected, this
follows directly from Theorem 10.3.1.

Corollary 10.3.3. All spaces |G| are paracompact in both Top and MTop.
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Proof. First, we consider |G| with MTop. To show that |G| is paracompact,
suppose that any open cover U of |G| consisting of basic open sets is given.
The cover elements come in two types: basic open sets of G, and basic open
neighbourhoods of ends. We write UΩ = { Ĉεi(Xi, ωi) : i ∈ I } for the collection
consisting of the latter. As UΩ covers the end space of G, applying Theorem 10.1
to the collection C := {C(Xi, ωi) : i ∈ I } yields a rayless normal tree T in G
such that {C(Yj, ωj) : j ∈ J }, the collection of components of G− T containing
a ray, refines C . For every j ∈ J we choose εj := εi for some i ∈ I with
C(Yj, ωj) ⊆ C(Xi, ωi), ensuring that the disjoint collection VΩ := { Ĉεj (Yj, ωj) : j ∈
J } refines UΩ.

Next, consider the quotient space H that is obtained from |G| by collapsing
every closed subset C(Yj, ωj) ∪ Ω(Yj, ωj) with j ∈ J to a single point. As the
open sets in VΩ are disjoint, the quotient is well-defined and we may view H as
a rayless multi-graph endowed with MTop. Now consider the open cover UH of
H that consists of the quotients of the elements of VΩ on the one hand, and on
the other hand, for every non-contraction point of H a choice of one basic open
neighbourhood in G that is contained in some element of U . Since metric spaces
are paracompact, H admits a locally finite refinement VH of UH consisting of basic
open sets of (H,MTop). Then the open cover V of |G| induced by VH gives the
desired locally finite refinement of U .

A similar argument shows that |G| with Top is paracompact. Here, (H,Top)
is paracompact because all CW-complexes are.

Note in particular that paracompactness implies normality and collectionwise
normality, and hence we reobtain the previously mentioned results by Polat
[68, Lemma 4.14] and Sprüssel [80, Theorems 4.1 & 4.2] as a straightforward
consequence of our Corollary 10.3.3.

10.4. Consequences of the approximation result

In [68, Theorem 5.13] Polat characterised the graphs that admit an end-faithful
normal tree as the graphs with ultrametrizable end space, and raised the question
[69, §10] whether metrizability of the end space is enough to ensure the existence
of an end-faithful normal tree. As our first application we show how using Theo-
rem 10.3.1 provides a much simplified proof for Polat’s result that simultaneously
answers his question about the metrizable case in the affirmative:

Theorem 10.4.1. For every connected graph G, the following are equivalent:

(i) The end space of G is metrizable,
(ii) the end space of G is ultrametrizable,

(iii) G contains an end-faithful normal tree.

Proof. The implication (iii) ⇒ (ii) is routine, as the end space of any tree is
ultrametrizable (see e.g. [50] for a detailed account), and Ω(T ) and Ω(G) are home-
omorphic for every end-faithful normal tree T of G (see e.g. [28, Proposition 5.5]).
The implication (ii) ⇒ (i) is trivial.
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Hence, it remains to prove (i) ⇒ (iii). For this, consider the covers Un for n ∈ N
of Ω(G) given by the open balls with radius 1/n around every end; with respect to
some fixed metric d inducing the topology of Ω(G). By applying Theorem 10.3.1
iteratively to the covers U1,U2, . . ., it is straightforward to construct a sequence
of rayless normal trees T1 ⊆ T2 ⊆ . . . all rooted at the same vertex such that the
partition of Ω(G) given by the components of G− Tn refines Un. Observe that any
two ends ω 6= η of G are separated by any Tn with 2/n < d(ω, η). Consider the
normal tree T ′ =

⋃
n∈N Tn. We claim that each end ω ∈ Ω(G)r ∂ΩT

′ belongs to a
component C of G−T ′ such that N(C) is finite. Otherwise N(C) lies on a unique
normal ray R of T belonging to some end η ∈ ∂ΩT

′, but then clearly, none of the
Tn would separate ω from η, a contradiction. Hence, N(C) is finite, and since C
contains at most one end, T ′ extends to an end-faithful normal tree of G.

From the new implication (i)⇒ (iii) in Theorem 10.4.1 one also obtains a simple
proof of Diestel’s characterisation from [24] when |G| is metrizable.

Corollary 10.4.2. For every connected graph G, the following are equivalent:

(i) |G| with MTop is metrizable,
(ii) the space V̂ (G) is metrizable,

(iii) G has a normal spanning tree.

Proof. The first implication (iii) ⇒ (i) is routine, see e.g. [24]. The implication (i)
⇒ (ii) is trivial. For (ii)⇒ (iii) apply Theorem 10.4.1 to the space Ω(G+) ∼= V̂ (G),
noting that every end-faithful normal tree of G+ is automatically spanning.

To motivate our next applications, suppose that a given graph G admits a
normal spanning tree. Let us call such graphs normally spanned. If G is normally
spanned, then every component of G−X is normally spanned, too, for any finite
X ⊆ V (G). Conversely, the question arises whether a graph admits a normal
spanning tree as soon as every end ω has some basic neighbourhood C(X,ω) that
is normally spanned. It turns out that the answer is yes:

Theorem 10.4.3. If every end of a connected graph G has a normally spanned
neighbourhood, then G itself is normally spanned.

Proof. Let C = {C(Xω, ω) : ω ∈ Ω(G) } be a selection of normally spanned
neighbourhoods for all ends of G, and apply Theorem 10.1 to C to find a rayless
normal tree T such that the collection of components of G − T refines C . By
Jung’s Theorem 10.2.1, each such component C of G−T is the union of countably
many dispersed sets, say V (C) =

⋃
n≥1 V

C
n . But then V0 = V (T ) together with all

the sets Vn :=
⋃
{V C

n : C a component of G− T }, for n ≥ 1, witnesses that V (G)
is a countable union of dispersed sets. Hence, G has a normal spanning tree by
Jung’s theorem.

There is also a more topological viewpoint of the above result: The assumptions
of Theorem 10.4.3 are by Corollary 10.4.2 equivalent to the assertion that V̂ (G)
is locally metrizable. But locally metrizable paracompact spaces are metrizable,
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[36, Exercise 5.4.A]. Hence, applying Corollary 10.4.2 once again to V̂ (G) yields
the desired normal spanning tree of G.

Continuing along these lines, we now address the question whether the existence
of some local end-faithful normal tree for every end of a graph already ensures the
existence of an end-faithful normal tree of the entire graph. For a graph G and an
end ω, we say that ω has a local end-faithful normal tree if there is a normal tree
T in G such that ∂ΩT is a neighbourhood of ω in Ω(G).

Theorem 10.4.4. If every end of a connected graph G has a has a local end-faithful
normal tree, then G has an end-faithful normal tree.

Proof. By Theorem 10.4.1 every end in Ω(G) has a metrizable neighborhood.
But (ultra-)paracompact spaces which are locally metrizable are metrizable, [36,
Exercise 5.4.A]. Consequently, we have by Corollary 10.3.2 that Ω(G) is metrizable.
Applying again Theorem 10.4.1 yields the desired end-faithful normal tree of G.

10.5. Paracompactness in subspaces of end

spaces

We conclude this chapter with an observation concerning the following fundamental
problem on the structure of end spaces raised by Diestel in 1992 [28, Problem 5.1]:

Problem 10.5.1. Which topological spaces can be represented as an end space
Ω(G) for some graph G?

In Corollary 10.3.2 we established that end spaces are always ultra-paracompact.
In this section we show that also all subspaces of end spaces inherit the property of
being ultra-paracompact, i.e. that end spaces are hereditarily ultra-paracompact.
This significantly reduces the number of topological candidates for a solution of
Problem 10.5.1, and for example shows that certain compact spaces cannot occur
as end space, which Corollary 10.3.2 wouldn’t do on its own.

It is known that paracompactness and ultra-paracompactness, along with a
number of other properties which are not per se hereditary such as normality and
collectionwise normality, have the property that they are inherited by all subspaces
as soon as they are inherited by all open subspaces. For the easy proof in case of
paracompactness see e.g. Didonné’s original paper [33, p. 68]. Hence, our assertion
follows at once from Corollary 10.3.2 given the following observation:

Lemma 10.5.2. Open subsets of end spaces are again end spaces.

Proof. Let G be any graph, and consider some open, non-empty set Γ ⊆ Ω(G).
Write Γ{ for its complement in Ω(G). Using Zorn’s lemma, pick a maximal
collection R of disjoint rays all belonging to ends in Γ{, and let W be the union⋃
{V (R) : R ∈ R} of their vertex sets. We claim that Γ is homeomorphic to the

end space of the graph G′ := G−W .
In order to find a homeomorphism ϕ : Ω(G′) → Γ, note first that, due to the

maximality of R, every ray in G′ is (as a ray of G) contained in an end of Γ.
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Consequently, every end ω′ of G′ is contained in a unique end ω of Γ and we define
ϕ via this correspondence.

To see that ϕ is surjective, consider an open neighbourhood Ω(X,ω) ⊆ Γ, for a
given ω ∈ Γ. Then W has only finite intersection with C(X,ω), as only finitely
many rays from R can intersect C(X,ω), but do not have a tail in C(X,ω). So
we may assume that C(X,ω) is contained in G′, by extending X. Now, every ray
of ω contained in C(X,ω) gives an end in G′ that is mapped to ω.

To see that ϕ is injective, suppose there are two rays R1, R2 in G′ that are not
equivalent in G′ but equivalent in G. Then, there are infinitely many pairwise
disjoint R1-R2 paths in G and all but finitely many of these paths hit W . Then
the end ω of G containing R1 and R2 is an end in Γ which lies in the closure of Γ{,
contradicting that Γ{ is closed.

Finally, let us show that ϕ is continuous and open. For the continuity of ϕ
remember that for any open set Ω(X,ω) ⊆ Γ we may assume that C(X,ω) is
contained in G′. In particular the preimage of Ω(X,ω) is open in G′.

For ϕ being open, consider an open set Ω(X,ω′) ⊆ Ω(G′) . Now, C(X,ω′) ⊆
G′ − X might not be a component of G − X. However, the set of vertices in
C(X,ω′) having a neighbour in W is dispersed. Again by extending X, we may
assume that C(X,ω′) is a component of G−X. Consequently, its image is open
in Ω(G).

Corollary 10.5.3. All end spaces are hereditarily ultra-paracompact.

Interestingly, a careful reading of Sprüssel’s proof that spaces |G| are normal
from [80] establishes that every end space Ω(G) is in fact completely normal, i.e.
that subsets with A ∩ B = ∅ = A ∩ B can be separated by disjoint open sets –
a property which is equivalent to hereditary normality, see [36, Theorem 2.1.7].
In any case, also this stronger result of hereditary normality is implied by our
paracompactness result in Corollary 10.5.3.
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11. Countably determined ends and
graphs

11.1. Introduction

Halin [47] defined the ends of an infinite graph ‘from below’ as equivalence classes
of rays in the graph, where two rays are equivalent if no finite set of vertices
separates them. As a complementary description of Halin’s ends, Diestel and
Kühn [30] introduced the notion of directions of infinite graphs. These are defined
‘from above’: A direction of a graph G is a map f , with domain the collection
X = X (G) of all finite vertex sets of G, that assigns to every X ∈ X a component
f(X) of G − X such that f(X) ⊇ f(X ′) whenever X ⊆ X ′. Every end ω of G
defines a direction fω of G by letting fω(X) be the component of G − X that
contains a subray of every ray in ω. Diestel and Kühn showed that the natural
map ω 7→ fω is in fact a bijection between the ends of G and its directions. This
correspondence is now well known and has become a standard tool in the study of
infinite graphs. See [24,25,62] and Chapters 3, 5 and 10 for examples.

The domain of the directions of G might be arbitrarily large as its size is equal
to the order of G. This contrasts with the fact that every direction of G is induced
by a ray of G and rays have countable order. Hence the question arises whether
every direction of G is ‘countably determined’ in G also by a countable subset
of its choices. A directional choice in G is a pair (X,C) of a finite vertex set
X ∈ X and a component C of G−X. We say that a directional choice (X,C) in
G distinguishes a direction f from another direction h if f(X) = C and h(X) 6= C.
A direction f of G is countably determined in G if there is a countable set of
directional choices in G that distinguish f from every other direction of G.

Curiously, the answer to this question is in the negative: Consider the graph G
that arises from the uncountable complete graph Kℵ1 by adding a new ray Rv for
every vertex v ∈ Kℵ1 so that Rv meets Kℵ1 precisely in its first vertex v and Rv is
disjoint from all the other new rays Rv′ . Then Kℵ1 ⊆ G induces a direction of G
that is not countably determined in G.

This example raises the question of which directions of a given graph G are
countably determined. In the first half of our chapter we answer this question: we
characterise for every graph G, by unavoidable substructures, both the countably
determined directions of G and its directions that are not countably determined.

If R ⊆ G is any ray, then every finite initial segment X of R naturally defines a
directional choice in G, namely (X,C) for the component C that contains R−X.
Let us call R directional in G if its induced direction is distinguished from every
other direction of G by the directional choices that are defined by R. By definition,
every direction of G that is induced by a directional ray is countably determined
in G. Surprisingly, our characterisation implies that the converse holds as well: if
a direction of G is distinguished from every other direction by countably many
directional choices (X,C), then no matter how the vertex sets X lie in G we can
always assume that the sets X are the finite initial segments of a directional ray:
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Theorem 11.1. For every graph G and every direction f of G the following
assertions are equivalent:

(i) The direction f is countably determined in G.
(ii) The direction f is induced by a directional ray of G.

As our second main result we characterise by unavoidable substructures the
directions of any given graph that are not countably determined in that graph, and
thereby complement our first characterisation. Our theorem is phrased in terms
of substructures that are uncountable star-like combinations either of rays or of
double rays. Recall that a vertex v of a graph G dominates a ray R ⊆ G if there
is an infinite v–R fan in G. An end of G is dominated if one (equivalently: each)
of its rays is dominated, see [26]. Given a direction f of G we write ωf for the
unique end ω of G whose rays induce f , i.e., which satisfies fω = f .

Theorem 11.2. For every graph G and every direction f of G the following
assertions are equivalent:

(i) The direction f is not countably determined in G.
(ii) The graph G contains either

– uncountably many disjoint pairwise inequivalent rays all of which start
at vertices that dominate ωf , or

– uncountably many disjoint double rays, all having one tail in ωf and
another not in ωf , so that the latter tails are inequivalent for distinct
double rays.

Note that (ii) clearly implies (i).
Does the local property that every direction of G is countably determined in G

imply the stronger global property that there is one countable set of directional
choices that distinguish every two directions of G from each other? We answer
this question in the negative; see Lemma 11.4.1. Let us call a graph G countably
determined if there is a countable set of directional choices in G that distinguish
every two directions of G from each other.

In the second half of our chapter we structurally characterise both the graphs
that are countably determined and the graphs that are not countably determined.
A rooted tree T ⊆ G is normal in G if the endvertices of every T -path in G are
comparable in the tree-order of T , cf. [26]. (A T -path in G is a non-trivial path
that meets T exactly in its endvertices.)

Theorem 11.3. For every connected graph G the following assertions are equiva-
lent:

(i) G is countably determined.
(ii) G contains a countable normal tree that contains a ray from every end of G.

Complementing this characterisation we structurally characterise, as our fourth
main result, the graphs that are not countably determined. If G is a graph and
(T,V) is a tree-decomposition of G that has finite adhesion, then every direction of
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G either corresponds to a direction of T or lives in a part of (T,V); see Section 11.2.2.
An uncountable star-decomposition is a tree-decomposition whose decomposition
tree is a star K1,κ for some uncountable cardinal κ.

Theorem 11.4. For every connected graph G the following assertions are equiva-
lent:

(i) G is not countably determined.
(ii) G has an uncountable star-decomposition of finite adhesion such that in every

leaf part there lives a direction of G.

Interestingly, countably determined directions and countably determined graphs
admit natural topological interpretations. Over the course of the last two decades,
the topological properties of end spaces have been extensively investigated, see
e.g. [24, 30, 68, 69, 80]. However, not much is known about such fundamental
properties as countability axioms. Recall that a topological space is first countable
at a given point if it has a countable neighbourhood base at that point. A direction
of a graph G is countably determined in G if and only if it is defined by an end
that has a countable neighbourhood base in the end space of G (Theorem 11.3.2).
Thus, Theorems 11.1 and 11.2 characterise combinatorially when the end space of a
graph is first countable or not first countable at a given end, respectively. Similarly,
a graph is countably determined if and only if its end space is second countable
in that its entire topology has a countable base (Theorem 11.4.7). Therefore,
Theorems 11.3 and 11.4 characterise combinatorially the infinite graphs whose end
spaces are second countable or not second countable, respectively.

This chapter is organised as follows: In the next section we give a reminder
on end spaces and recall all the results from graph theory and general topology
that we need. We prove Theorems 11.1 and 11.2 in Section 11.3 and we prove
Theorems 11.3 and 11.4 in Section 11.4.

11.2. Preliminaries

For topological notions we follow the terminology in [36].

11.2.1. Normal trees

The tree-order of a rooted tree T = (T, r) is defined by setting u ≤ v if u lies
on the unique path rTv from r to v in T . Given n ∈ N, the nth level of T is
the set of vertices at distance n from r in T . The down-closure of a vertex v is
the set dve := {u : u ≤ v }; its up-closure is the set bvc := {w : v ≤ w }. The
down-closure of v is always a finite chain, the vertex set of the path rTv. A ray
R ⊆ T starting at the root is called a normal ray of T .

A rooted tree T contained in a graph G is normal in G if the endvertices of every
T -path in G are comparable in the tree-order of T . Here, for a given a graph H,
a path P is said to be an H-path if P is non-trivial and meets H exactly in its
endvertices. We remark that for a normal tree T ⊆ G the neighbourhood N(C) of
every component C of G− T forms a chain in T .
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The generalised up-closure bbxcc of a vertex x ∈ T is the union of bxc with the
vertex set of

⋃
C (x), where the set C (x) consists of those components of G− T

whose neighbourhoods meet bxc. Every graph G reflects the separation properties
of each normal tree T ⊆ G:

Lemma 11.2.1 (Lemma 5.2.10). Let G be any graph and let T ⊆ G be any normal
tree.

(i) Any two vertices x, y ∈ T are separated in G by the vertex set dxe ∩ dye.
(ii) Let W ⊆ V (T ) be down-closed. Then the components of G−W come in two

types: the components that avoid T ; and the components that meet T , which
are spanned by the sets bbxcc with x minimal in T −W .

As a consequence, the normal rays of a normal spanning tree T ⊆ G, those that
start at the root, reflect the end structure of G in that every end of G contains
exactly one normal ray of T , [26, Lemma 8.2.3]. More generally,

Lemma 11.2.2 (Lemma 5.2.11). If G is any graph and T ⊆ G is any normal
tree, then every end of G in the closure of T contains exactly one normal ray of T .
Moreover, sending these ends to the normal rays they contain defines a bijection
between ∂ΩT and the normal rays of T .

Not every connected graph has a normal spanning tree. However, every countable
connected graph does; more generally:

Lemma 11.2.3 (Jung [52], Corollary 5.3.3). Let G be any graph and let U ⊆ V (G)
be any vertex set. If U is countable and v is any vertex of G, then G contains a
normal tree that contains U cofinally and is rooted in v.

If H is a subgraph of G, then rays equivalent in H remain equivalent in G; in
other words, every end of H can be interpreted as a subset of an end of G, so
the natural inclusion map ι : Ω(H)→ Ω(G) is well-defined. A subgraph H ⊆ G
is end-faithful if this inclusion map ι is a bijection. The terms end-injective and
end-surjective are defined accordingly. Normal trees are always end-injective; hence,
normal trees are end-faithful as soon as they are end-surjective.

11.2.2. Tree-decompositions, S-trees and ends

We assume familiarity with [26, Section 12.3] up to but not including Lemma 12.3.2,
and with the concepts of oriented separations and S-trees for S a set of separations
of a given graph as presented in [26, Section 12.5]. Whenever we introduce a
tree-decomposition as (T,V) we tacitly assume that V = (Vt)t∈T . Usually we refer
to the adhesion sets of a tree-decompositions as separators.

Next, we give a brief summary of how the ends of G relate to the decomposition
trees of tree-decompositions and S-trees. For the sake of readability, we introduce
all needed concepts for S-trees and let the tree-decompositions inherit these
concepts from their corresponding S-trees.

We write Sℵ0 = Sℵ0(G) for the set of all finite-order separations of G. Let (T, α)
be any Sℵ0-tree. If ω is an end of G, then ω orients every finite-order separation
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{A,B} ∈ Sℵ0 of G towards the side K ∈ {A,B} for which every ray in ω has a
tail in G[K]. In this way, ω induces a consistent orientation of

→
Sℵ0 and, via α,

also induces a consistent orientation O of
→
E(T ). Then ω either lives at a unique

node t ∈ T in that the star
→
Ft := { (s, t) ∈

→
E(T ) | st ∈ T } at t is included in O, or

corresponds naturally to a unique end η of T in that for some (equivalently: every)
ray t1t2 . . . in η all oriented edges (tn, tn+1) are contained in O. The direction fω
lives at the node of T or corresponds to the end of T that ω lives at or corresponds
to, respectively. When (T, α) corresponds to a tree-decomposition (T,V) and fω
and ω live at t, then we also say that fω and ω live in the part Vt at t.

Let G be any graph and let ω1, ω2 be any two ends of G. A finite-order separation
{A,B} of G distinguishes ω1 and ω2 if it satisifies C(A ∩B,ω1) ⊆ G[ArB] and
C(A∩B,ω2) ⊆ G[BrA] or vice versa. If {A,B} distinguishes ω1 and ω2 and has
minimal order |A ∩B| among all the separations of G that distinguish ω1 and ω2,
then {A,B} distinguishes ω1 and ω2 efficiently. The ends ω1 and ω2 are said to be
k-distinguishable for an integer k ≥ 0 if there is a separation of G of order at most
k that distinguishes ω1 and ω2. An Sℵ0-tree (T, α) distinguishes ω1 and ω2 if some
separation {A,B} ∈ Sℵ0 that α associates with an edge of T distinguishes ω1 and
ω2; it distinguishes ω1 and ω2 efficiently if {A,B} can be chosen to distinguish ω1

and ω2 efficiently.
The following theorem is a consequence of [20, Theorem 6.2] and its proof:

Theorem 11.2.4 ([20]). Every connected graph G has for every number k ∈ N a
tree-decomposition that efficiently distinguishes all the k-distinguishable ends of G.

(This chapter is based on an article [60] in preparation; my co-author and I will
ask the authors of [20] to include this theorem in their paper as a corollary.)

11.3. Countably determined directions and the

first axiom of countability

In this section we characterise for every graph G, by unavoidable substructures,
both the countably determined directions of G and its directions that are not
countably determined.

Given a graph G we call a ray R ⊆ G topological in G if the end ω of G that
contains R has a countable neighbourhood base {Ω(Xn, ω) : n ∈ N } in Ω(G) where
each vertex set Xn consists of the first n vertices of R. I remark that my co-author
and I will likely change the name ‘topological’ in the final version of the paper [60]
which this chapter is based on. Our first lemma shows that rays are topological if
and only if they are directional:

Lemma 11.3.1. For every graph G and every ray R ⊆ G the following assertions
are equivalent:

(i) R is directional in G.
(ii) R is topological in G.
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Proof. Let us write ω for the end of G that is represented by R, and let us denote
by Xn the set of the first n vertices of R.

(ii)⇒(i) By assumption, {Ω(Xn, ω) : n ∈ N } is a countable neighbourhood
base for ω ∈ Ω(G). Then fω is countably determined by the directional choices
(Xn, fω(Xn)) because the end space is Hausdorff.

(i)⇒(ii) We claim that {Ω(Xn, ω) : n ∈ N } is a neighbourhood base for
ω ∈ Ω(G). Now, suppose for a contradiction that there is a basic open neighbour-
hood Ω(X,ω) of ω in Ω(G) that contains none of the sets Ω(Xn, ω). We recursively
construct a sequence of pairwise disjoint rays Rn all having precisely their first
vertex on R and belonging to ends not in Ω(X,ω). Having these rays at hand
will give the desired contradiction; as X is finite one of these rays lies in C(X,ω)
contradicting that its end is not in Ω(X,ω).

So suppose we have found R0, . . . , Rn−1. In order to define Rn, choose k large
enough that (Xk, fω(Xk)) distinguishes fω from all directions induced by the rays
R0, . . . , Rn−1 (if n = 0 pick k = 0). Such k exists because R is directional. Since the
rays R0, . . . , Rn−1 have precisely their first vertex on R and Xk consists of vertices
of R, none of the rays R0, . . . , Rn−1 meets the component fω(Xk) = C(Xk, ω). By
our assumption there is an end, η say, that is contained in Ω(Xk, ω) but not in
Ω(X,ω). We choose any ray of η in C(Xk, ω) having precisely its first vertex on R
to be the nth ray Rn.

Theorem 11.3.2. For every graph G and every end ω of G the following assertions
are equivalent:

(i) The end space of G is first countable at ω.
(ii) The direction fω is countably determined in G.

(iii) The end ω is represented by a directional ray.
(iv) The end ω is represented by a topological ray.

This theorem clearly implies Theorem 11.1:

Proof of Theorem 11.1. Theorem 11.3.2 (ii)⇔(iii) is the statement of Theorem 11.1.

Proof. (i)⇒(ii) Let {Ω(Xn, ω) : n ∈ N } be a countable neighbourhood base of
basic open sets for ω ∈ Ω(G). Then fω is countably determined by its countably
many directional choices (Xn, fω(Xn)) because the end space is Hausdorff.

(ii)⇒(iii) Let {Ω(Xn, fω(Xn)) : n ∈ N } be a countable set of directional choices
that distinguish fω from every other direction. Fix any ray R ∈ ω and denote
by U the union of V (R) and all Xn. By Lemma 11.2.3 there is a normal tree
T ⊆ G that contains U cofinally. As V (R) ⊆ T we have that ω ∈ ∂ΩT . Now, by
Lemma 11.2.2, there is a normal ray Rω in T belonging to ω. We claim that Rω is
directional in G. For this, it suffices to show that for every other end η 6= ω of G
there is a finite initial segment of Rω separating ω from η. By assumption, there
is a number n ∈ N such that Xn separates ω from η. Let v be any vertex of the
ray Rω − dXne where the down-closure is taken in T . Since T is normal in G, we
have C(dve, ω) ⊆ C(Xn, ω) by Lemma 11.2.1. In particular, the initial segment
dve of Rω separates ω from η.
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ω

Figure 11.3.1.: The black rays form a sun centred at ω

(iii)⇒(iv) This is Lemma 11.3.1 (i)⇒(ii).
(iv)⇒(i) holds by the definition of a topological ray.

Our second main result, the characterisation by unavoidable substructures of
the directions of any given graph that are not countably determined in that graph,
needs some preparation.

Definition 11.3.3 (Generalised paths). Let G be any graph. A generalised path
in G with endpoints ω1 6= ω2 ∈ Ω(G) is an ordered pair (P, {ω1, ω2}) where P ⊆ G
is one of the following:

– a double ray with one tail in the end ω1 and another tail in the end ω2;
– a finite path v0 . . . vk such that v0 dominates the end ω1 and vk dominates

the end ω2;
– a ray in ω1 whose first vertex dominates ω2.

Two generalised paths (P,Ψ) and (P ′,Ψ′) are vertex-disjoint if P and P ′ are disjoint.
Two generalised paths (P,Ψ) and (P ′,Ψ′) are disjoint if they are vertex-disjoint
and Ψ ∩Ψ′ = ∅.

Definition 11.3.4 (Generalised star and sun). Let G be any graph. A generalised
star in G with centre ω ∈ Ω(G) is a collection of pairwise vertex-disjoint generalised
paths { (P i, {ω, ωi}) : i ∈ I } such that each end ωi is distinct from all other ends ωj

with j 6= i ∈ I. Then the ends ωi with i ∈ I are the leaves of the generalised star.
A generalised star { (P i, {ω, ωi}) : i ∈ I } is proper if either every path P i is

a double ray or every path P i is a ray in ωi whose first vertex dominates ω. A
proper generalised star in G with centre ω is also called a sun in G with centre ω.

In Figures 11.3.1 and 11.3.2 we see two examples of suns of size eight centred at
an end ω. If we increase their size from eight to ℵ1 in the obvious way, then the
direction fω is no longer countably determined.
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ω

Figure 11.3.2.: The black double rays form a sun centred at ω

Theorem 11.3.5. For every graph G and every end ω of G the following assertions
are equivalent:

(i) The end space of G is not first countable at ω.
(ii) There is an uncountable sun in G centred at ω.

This theorem clearly implies Theorem 11.2:

Proof of Theorem 11.2. Combine Theorem 11.3.5 with Theorem 11.3.2 (i)⇔(ii).

Proof of Theorem 11.3.5. (ii)⇒(i) Suppose for a contradiction that (ii) and ¬(i)
hold, i.e., let { (P i, {ω, ωi}) : i ∈ I } be an uncountable sun in G centred at ω, and
let {Ω(Xn, ω) : n ∈ N } be a countable open neighbourhood base for ω in Ω(G). As
all the vertex sets Xn are finite and all P i are pairwise disjoint, there is an index
i ∈ I such that P i misses all of the vertex sets Xn. Hence, the leaf ωi is contained
in all of the neighbourhoods Ω(Xn, ω) contradicting that Ω(G) is Hausdorff and
that {Ω(Xn, ω) : n ∈ N } is a neighbourhood base for ω ∈ Ω(G).

(i)⇒(ii) Suppose that the end space Ω(G) is not first countable at ω. Our
aim is to construct an uncountable sun in G centred at ω. Let ∆ be the set of
vertices dominating ω. By Zorn’s lemma there is an inclusionwise maximal set
R of pairwise disjoint rays all belonging to ω. Denote by V [R] the union of the
vertex sets of the rays in R, and let A := ∆ ∪ V [R]. Then ∂ΩA = {ω}. By Zorn’s
lemma there is an inclusionwise maximal set P of pairwise disjoint rays all starting
at A and belonging to ends of G other than ω.

First, note that P yields the desired sun if P is uncountable: Since ∂ΩA = {ω}
only finitely many rays in P belong to the same end and every ray in P has a
tail avoiding A. Hence, if P is uncountable, we pass to an uncountable subset
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P ′ ⊆ P such that all rays in P ′ belong to pairwise distinct ends and have precisely
their vertex in A. If uncountably many rays in P ′ start at ∆ we are done. So we
may assume that uncountably many rays in P ′ start at V [R]. As only countably
many rays in P ′ start at the same ray in R, we may pass to an uncountable subset
P ′′ ⊆ P ′ such that all rays in P ′′ start at distinct rays in R. Extending every ray in
P ′′ by a tail of the unique ray in R it hits yields again the desired uncountable sun.

Therefore, we may assume that P is countable. In the remainder of this
proof, we show that this is impossible: we deduce that then there is a countable
neighbourhood base for ω in Ω, contradicting our assumption.

We claim that if P is finite, then ω is an isolated point in Ω, that is, there
is a finite vertex set separating ω from all other ends of G simultaneously. Let
ω0, . . . , ωn be the ends of the rays in P. As these are only finitely many, there
is a finite vertex set X ⊆ V (G) separating ω from all of the ωi simultaneously.
Now, C(X,ω) contains only finitely many vertices of the rays in P; by possibly
extending X we may assume that C(X,ω) contains no vertex from any ray in P .
Then no end of G other than ω lies in Ω(X,ω), because any such end has a ray in
C(X,ω) starting at A and avoiding all rays in P, contradicting the maximality
of P .

Thus, P must be countably infinite. Then the vertex set V [P] is countable as
well. By Lemma 11.2.3 there is a normal tree T ⊆ G that contains V [P ] cofinally.
Moreover, as P is infinite we have ω ∈ ∂ΩT , and so there is a normal ray Rω ⊆ T
belonging to ω by Lemma 11.2.2.

We claim that for any end η 6= ω of G there is a finite initial segment of Rω

separating ω from η in G. This suffices to derive the desired contradiction, because
then Lemma 11.3.1 shows that the finite initial segments of Rω define a countable
open neighbourhood base for ω in Ω.

First, suppose η ∈ ∂ΩT . Then η has a normal ray Rη in T by Lemma 11.2.2.
As T is normal in G, the initial segment Rω ∩Rη of Rω separates ω from η in G.

Second, suppose η 6∈ ∂ΩT . Then there is a unique component C of G− T that
contains a tail of every ray in η. The neighbourhood N(C) of C in T is a chain.
If the neighbourhood N(C) of C is not cofinal in Rω, then any finite initial segment
of Rω containing N(C) ∩ Rω separates ω from η in G. So suppose that N(C) is
cofinal in Rω and denote by U the set of all the vertices in C having a neighbour
in Rω.

If a vertex u ∈ U dominates Rω, then we pick a ray in η that is contained in
C and starts at u ∈ ∆ ⊆ A, contradicting the maximality of P. Hence we may
assume that every vertex in U sends only finitely many edges to Rω; in particular,
U is infinite. Then we choose infinitely many distinct vertices u0, u1, . . . in U and
un–Rω edges en (n ∈ N) such that the edge set { en : n ∈ N } is independent. Next,
we apply the star-comb lemma in C to U ′ := {un : n ∈ N }. This cannot return a
star for the same reason the vertices u ∈ U cannot dominate Rω. Thus, we obtain
a comb in C attached to U ′. Then its spine, R say, is a ray belonging to ω. Thus,
by the maximality of R there is a vertex of V [R] on R and in particular in C.
Consequently, there is a ray in η that is contained in C and starts at V [R] ⊆ A,
contradicting the maximality of P . This completes the proof.
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For the interested reader we remark that, even though end spaces of graphs
are in general not first countable, it is straightforward to show that every end
space is strong Fréchet–Urysohn (which is a generalisation of the first axiom of
countability): A topological space X is called a strong Fréchet–Urysohn space
if for any sequence of subsets A0, A1, . . . of X and every x ∈

⋂
n∈NAn there is a

sequence of points x0, x1, . . . converging to x such that xn ∈ An for all n ∈ N.

Lemma 11.3.6. End spaces of graphs are strong Fréchet–Urysohn.

11.4. Countably determined graphs and the

second axiom of countability

In this section we structurally characterise both the graphs that are countably
determined and the graphs that are not countably determined.

Clearly, a graph G is countably determined if and only if every component
of G is countably determined and only countably many components of G have
directions. Similarly, the end space of a graph G is second countable if and only
if every component of G has a second countable end space and only countably
many components of G have ends. Thus, to structurally characterise the countable
determined graphs and the graphs that are not countably determined, and to link
this to whether or not the end space is second countable, it suffices to consider
only connected graphs.

The local property that every direction of G is countably determined in G
does not imply the stronger global property that G is countably determined, and
curiously we find a counterexample with a compact end space:

Lemma 11.4.1. There exists a connected graph G all whose directions are count-
ably determined in it but which is itself not countably determined. The graph G
can be chosen such that its end space is compact and first countable at every end,
but neither metrisable nor second countable nor separable.

Recall that a topological space is called separable if it admits a countable dense
subset. Every second countable space is separable, but the converse is generally
false. For end spaces, however, we shall see in Theorem 11.4.2 that the converse is
true: the end space of any graph is second countable if and only if it is separable.

Proof of Lemma 11.4.1. Let T be the rooted infinite binary tree. The graph G
arises from T by disjointly adding a new ray R′ for every rooted ray R ⊆ T such
that R′1 and R′2 are disjoint for distinct rooted rays R1, R2 ⊆ T , and joining the
first vertex vR′ of each R′ to all the vertices of R. Then for every rooted ray
R ⊆ T the two rays R′ and vR′R are directional in G. Since every direction of G
is induced by precisely one of these directional rays, all the directions of G are
countably determined.

The graph G, however, is not countably determined: If { (Xn, Cn) : n ∈ N } is
any countable collection of directional choices in G, then there is a rooted ray
R ⊆ T such that R′ avoids all Xn (because T contains continuum many rooted rays
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and
⋃
nXn is countable). But then, for all n ∈ N, the subgraph G−Xn contains

a double ray formed by R′ and a subray of R avoiding Xn (that is connected to R′

by one of the infinitely many vR′–R edges). These double rays then witness that
none of the directional choices (Xn, Cn) distinguishes the direction induced by R
from the direction induced by R′ or vice versa.

The end space of G is first countable at every end because every direction of G is
countably determined (Theorem 11.3.2). It is compact because the deletion of any
finite set of vertices of G leaves only finitely many components, cf. [24, Theorem 4.1]
or Lemma 5.2.8. However, the end space of G is not separable, because every
dense subset of Ω(G) must contain all the continuum many ends represented by
the rays R′. Thus, it its neither second countable nor metrisable.

When we showed this lemma and its graph construction to Max Pitz, he said
that it reminds him of the Alexandroff double circle.

Now we structurally characterise the countably determined graphs and the
graphs that are not countably determined, and structurally characterise the graphs
whose end spaces are second countable or not. Our introduction suggests that this
is the order in which we prove these results, but we will prove them in a different
order: First, we shall structurally characterise the graphs whose end spaces are
second countable or not. Then, we shall prove that the end space of a graph is
second countable if and only if the graph is countably determined. Finally, we
shall use this equivalence to immediately obtain structural characterisations of the
countably determined graphs and the graphs that are not countably determined.
Here, then is our structural characterisation of the graphs whose end spaces are
second countable:

Theorem 11.4.2. For every connected graph G the following assertions are equiv-
alent:

(i) The end space of G is second countable.
(ii) The end space of G is separable.

(iii) There is a countable end-faithful normal tree T ⊆ G.
(iv) The end space of G has a countable base that consists of basic open sets.

Proof. (i)⇒(ii) Every second countable space is separable.
(ii)⇒(iii) Let Ψ ⊆ Ω be any countable and dense subset. Pick a ray Rω ∈ ω for

every end ω ∈ Ψ and let U :=
⋃
{V (Rω) : ω ∈ Ψ }. By Lemma 11.2.3 there is a

countable normal tree T ⊆ G that contains U cofinally. We have to show that T is
end-faithful. As mentioned in Section 11.2, normal trees are always end-injective.
To show that T is end-surjective note that ∂ΩT is closed in Ω. Hence we have
Ω = Ψ ⊆ ∂ΩT = ∂ΩT . So by Lemma 11.2.2 the normal tree T contains a normal
ray of every end of G.

(iii)⇒(iv) Let T ⊆ G be any countable end-faithful normal tree. We claim that
the collection B := {Ω(dte, ω) : t ∈ T, ω ∈ Ω } is a countable base of the topology
on Ω. Note first that B is indeed countable: Since T is end-faithful and countable,
the deletion of finitely many vertices of T from G results in only countable many
components containing an end. Consequently, for every t ∈ T there are only
countable many distinct sets of the form Ω(dte, ω).
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Now, given a basic open set of Ω, say Ω(X,ω), our goal is to find a vertex t ∈ T
such that Ω(dte, ω) ⊆ Ω(X,ω). By Lemma 11.2.2, every end η of G in the closure
of T contains a normal ray Rη ⊆ T . By the normality of T and Lemma 11.2.1,
every end η 6= ω of G is separated from ω in G by the finite initial segment Rη∩Rω

of Rω. In particular, Rω is directional in G. Hence, by the implication (i)⇒(ii) of
Lemma 11.3.1 the ray Rω is topological. Thus, there is a vertex t ∈ Rω such that
Ω(dte, ω) ⊆ Ω(X,ω) holds.

(iv)⇒(i) is clear.

Next, we structurally characterise the graphs whose end spaces are not second
countable. The characterising structure is not the star-decomposition in Theo-
rem 11.4 that one would expect; that is because this result is an auxiliary result
that we will use in a second step to prove a second structural characterisation,
Theorem 11.4.4, which then is phrased in terms of the desired star-decomposition.

Theorem 11.4.3. For every connected graph G the following assertions are equiv-
alent:

(i) The end space of G is not second countable.
(ii) The graph G contains either

– an uncountable sun,
– uncountably many disjoint generalised paths, or
– a finite vertex set that separates uncountably many ends of G simulta-

neously.

Proof. Recall that, by Theorem 11.4.2, the end space of G is second countable if
and only if it has a countable base that consists of basic open sets. Then clearly
(ii)⇒(i).

(i)⇒(ii) For this, suppose that G is given such that the end space of G is not
second countable. We have to find one of the three substructures for G listed
in (ii). By Zorn’s lemma we find an inclusionwise maximal collection P of pairwise
vertex-disjoint generalised paths in G. Our proof consists of two halves. In the
first half we show that if P is uncountable, then we find either an uncountable sun
in G or uncountably many disjoint generalised paths in G. In the second half we
show that if P is countable, then we find a finite vertex set of G that separates
uncountably many ends of G simultaneously.

First, we assume that P is uncountable. In this case, we consider the auxiliary
multigraph that is defined on the set of ends of G by declaring every generalised
path (P, {ω1, ω2}) ∈ P to be an edge between ω1 and ω2. Note that the auxiliary
multigraph contains only finitely many parallel edges between any two vertices.
Thus, by replacing P with a suitable uncountable subset we may assume that the
auxiliary multigraph is in fact a graph.

If that auxiliary graph has a vertex ω of uncountable degree, then its incident
edges correspond to uncountably many generalised paths that form an uncountable
generalised star in G with centre ω. This uncountable generalised star need not
be proper in general. However, it shows that ω has no countable neighbourhood
base in Ω, so Theorem 11.3.5 yields an uncountable sun in G with centre ω.
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Otherwise, every vertex of the auxiliary graph has countable degree. Then we
greedily find an uncountable independent edge set, and this edge set corresponds
to an uncountable collection of disjoint generalised paths in G.

Second, we assume that P is countable. Then our goal is to find a finite vertex
set X ⊆ V (G) that separates uncountably many ends of G simultaneously. By
Lemma 11.2.3 there is a countable normal tree T ⊆ G that cofinally contains
the union of the vertex sets of the generalised paths in P. Then Ω r ∂ΩT is
uncountable, since otherwise applying Lemma 11.2.3 to the union of V (T ) with
the vertex set of a ray from every end in Ωr ∂ΩT gives a countable end-faithful
normal tree in G, contradicting Theorem 11.4.2.

Every ray from an end in Ωr ∂ΩT has a tail in one of the components of G− T
and this component is the same for any two rays in the same end. We say that an
end in ω ∈ Ωr ∂ΩT lives in the unique component of G− T in which every ray
in ω has a tail. By the maximality of P , distinct ends in Ωr ∂ΩT live in distinct
components of G− T . As Ω(G)r ∂ΩT is uncountable, we conclude that there are
uncountably many components of G− T in which an end of Ω(G)r ∂ΩT lives; we
call these components good.

We claim that every good component of G− T has finite neighbourhood. For
this, assume for a contradiction that there is a good component C of G− T whose
neighbourhood N(C) ⊆ T is infinite. We write ω for the end in Ω r ∂ΩT that
lives in C. The down-closure of N(C) in T forms a ray and we denote by η the
end in ∂ΩT represented by this ray. Consider the set U of all the vertices in C
sending an edge to T . If some vertex u ∈ U sends infinitely many edges to T , then
u dominates η; in particular, there is a generalised path (P, {ω, η}) in G where P
is a ray in ω that is contained in C and starts at u, contradicting the maximality
of P . Therefore, we may assume that every vertex in U sends only finitely many
edges to T ; in particular, U is infinite. Thus, we find an independent set M of
infinitely many U–T edges in G; we denote by U ′ the set of the endvertices that
these edges have in U .

Applying the star-comb lemma in C to U ′ gives either a star attached to U ′ or
a comb attached to U ′. The centre of a star attached to U ′ would dominate η,
yielding the same contradiction that would be caused by a vertex in U sending
infinitely many edges to T . Hence we obtain a comb attached to U ′. The comb’s
spine represents η, because of the edges in M . Consequently, there is a double ray
D ⊆ C defining a generalised path (D, {ω, η}) vertex-disjoint from all generalised
paths in P, contradicting the maximality of P. This completes the proof of the
claim that every good component of G− T has finite neighbourhood.

Finally, as all of the uncountably many good components of G − T have a
finite neighbourhood in T and T is countable, there are uncountably many such
components having the same finite neighbourhood X ⊆ V (T ). Then X is a finite
vertex set of G that separates uncountably many ends of G simultaneously, as
desired.

Next, we will prove the structural characterisation of the graphs whose end
spaces are not second countable, in terms of the desired star-decomposition:
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Theorem 11.4.4. For every connected graph G the following assertions are equiv-
alent:

(i) The end space of G is not second countable.
(ii) G has an uncountable star-decomposition of finite adhesion such that in every

leaf part there lives an end of G.

Our proof requires some preparation. Oriented separations of the form (C,N(C))
with C = C(X,ω) for some finite vertex set X ∈ X and an end ω of G are called
golden. A star σ of finite-order separations is golden if every separation in σ is
golden.

Lemma 11.4.5. Let G be any connected graph. If there is an uncountable sun in
G, then G admits an uncountable golden star of separations.

This lemma will be superseded by Lemma 11.4.6, but the cost for that will be
a huge increase in proof complexity that is hidden in the proof of the advanced
Theorem 11.2.4 which we will use. That is why we included Lemma 11.4.5 above
and its proof below nonetheless: to offer a glimpse of intuition which the proof of
Lemma 11.4.6 cannot offer.

Proof of Lemma 11.4.5. Suppose that we are given an uncountable sun S =
{ (P i, {ω, ωi}) : i ∈ I } in G with centre ω. An oriented finite-order separation
(A,B) of G is S-separating if (A,B) separates the centre of S from some leaf ωi of
S in that C(A ∩B,ω) ⊆ G[B] while C(A ∩B,ωi) ⊆ G[A].

Consider the set Σ of all the golden stars that are formed by S-separating
separations of G, partially ordered by inclusion, and apply Zorn’s lemma to (Σ,⊆)
to obtain a maximal element σ ∈ Σ. If σ is uncountable, we are done. We claim
that σ must be uncountable, and assume for a contradiction that σ is countable.
Let us write U for the union of the separators of the separations in σ. As U is
countable, some path P j avoids U . We consider the two cases that the end ωj lies
in the closure of U or not.

First, suppose that the end ωj does not lie in the closure of U . It is straight-
forward to find an S-separating golden separation (C,X) with ωj living in C
and C avoiding U . Note that (C,X) is not contained in σ. We claim that
σ′ := σ ∪ { (C,X) } is again a star contained in Σ. Since all the elements of σ′

are S-separating and golden, it remains to show that the separations in σ′ form
indeed a star. As σ ⊆ σ′ already is a star, it suffices to show (C,X) ≤ (Y,D) for
all separations (D, Y ) ∈ σ. For this, let any separation (D, Y ) ∈ σ be given. To
establish (C,X) ≤ (Y,D) it suffices to show that C avoids Y ∪D, because X is the
neighbourhood of C and Y is the neighbourhood of D. The component C avoids
Y because it avoids U which contains Y as a subset. Therefore, the component C
is contained in some component of G− Y . Now suppose for a contradiction that
C and D meet. Then C must be contained in D. Since P j avoids Y and contains
a ray that lies C, we deduce P j ⊆ D. But then ω must live in D, contradicting
that (D, Y ) is S-separating. Thus, σ′ is again an element of Σ, contradicting the
maximal choice of σ.
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Second, suppose that the end ωj lies in the closure of U . We show that this
implies ωj = ω, a contradiction. For this, let any finite vertex set X ⊆ V (G)
be given; we show C(X,ωj) = C(X,ω). To get started, we observe that all
but finitely many of the paths P i avoid X. Also, all but finitely many of the
separations (D, Y ) ∈ σ have their component D avoid X (the components are
disjoint for distinct separations in σ because σ is a star of separations). As U meets
C(X,ωj) infinitely, this allows us to find a separation (C(Y, ωi), Y ) ∈ σ that has its
separator Y meet the component C(X,ωj) while both C(Y, ωi) and P i avoid the
finite separator X. To show C(X,ωj) = C(X,ω), it suffices to find a P i–P j path
in G that avoids X. We find such a path as follows: In C(Y, ωi) we find a path
from P i to a vertex that sends an edge to a vertex v in the non-empty intersection
Y ∩ C(X,ωj). And in C(X,ωj) we find a path from P j to v. Then both paths
avoid X, and their union contains the desired P i–P j path avoiding X.

Lemma 11.4.6. Let G be any connected graph. If there exist uncountably many
pairwise vertex-disjoint generalised paths in G, then G admits an uncountable
golden star of separations.

Proof. Let { (P i, {ωi1, ωi2}) : i ∈ I } be any uncountable collection of pairwise vertex-
disjoint generalised paths in G. By the pigeonhole principle there exists a number
k ∈ N and an uncountable subset J ⊆ I such that for all j ∈ J the ends ωj1 and
ωj2 are k-distinguishable. Without loss of generality J = I. By Theorem 11.2.4
we find a tree-decomposition (T,V) of G that efficiently distinguishes all the
k-distinguishable ends of G. We write (T, α) for the Sℵ0-tree that corresponds to
the tree-decomposition (T,V).

Fix an arbitrary root r ∈ T and write F for the collection of all the edges e ∈ T
whose induced separation α(e) distinguishes two ends ωi1 and ωi2. Then let T ′ ⊆ T
be the subtree that is induced by the down-closure of the endvertices of the edges
in F in the rooted tree T , and put α′ := α �

→
E(T ′). Note that (T ′, α′) is again an

Sℵ0-tree. If T ′ has a vertex t of uncountable degree, then we are done. We claim
that T ′ must have a vertex of uncountable degree. Otherwise, T ′ is countable.
Then the union U of the separators of (T ′, α′) is a countable vertex set. In order
to obtain a contradiction note that every P i meets U in at least one vertex and
these vertices are distinct for distinct P i.

Proof of Theorem 11.4.4. Recall that, by Theorem 11.4.2, the end space of G is
second countable if and only if it has a countable base that consists of basic open
sets. Then clearly (ii)⇒(i).

(i)⇒(ii) Suppose that the end space of G is not second countable. We are done if
there is a finite vertex set separating uncountably many ends of G simultaneously.
Therefore, we may assume by Theorem 11.4.3 that either there is an uncountable
sun in G or G contains uncountably many disjoint generalised paths. In the
first case we are done by Lemma 11.4.5 and in the second case we are done by
Lemma 11.4.6.

Theorems 11.4.2 and 11.4.4 structurally characterise the graphs whose end spaces
are second countable or not, by the structures in terms of which Theorems 11.3
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and 11.4 are phrased. The next theorem allows us to deduce Theorems 11.3
and 11.4 from Theorems 11.4.2 and 11.4.4 immediately.

Theorem 11.4.7. The end space of a graph is second countable if and only if the
graph is countably determined.

Proof. Let G be any graph. For the forward implication, suppose that the end
space of G is second countable. Then, by Theorem 11.4.2, the end space of G has a
countable base {Ω(Xn, Cn) : n ∈ N } that consists of basic open sets Ω(Xn, Cn) ⊆
Ω(G). We claim that the directional choices (Xn, Cn) distinguish every two
directions of G from each other. For this, let any two distinct directions f, h of G
be given. Since the end space of G is Hausdorff, there is a number n ∈ N such that
Ω(Xn, Cn) contains ωf but not ωh; in particular, f(Xn) = Cn and h(Xn) 6= Cn as
desired.

For the backward implication suppose that G is countably determined, and
let { (Xn, Cn) : n ∈ N } be any countable set of directional choices (Xn, Cn) in
G that distinguish every two directions of G from each other. Let us assume
for a contradiction that the end space of G is not second countable. Then, by
Theorem 11.4.3, the graph G contains either

– an uncountable sun,
– uncountably many disjoint generalised paths, or
– a finite vertex set that separates uncountably many ends of G simultaneously.

If G contains an uncountable sun or uncountably many disjoint generalised paths,
then in either case G contains a generalised path (P, {ω1, ω2}) such that P avoids
all the countably many finite vertex sets Xn. But then no directional choice
(Xn, Cn) distinguishes fω1 from fω2 or vice versa, a contradiction. Thus, there
must be a finite vertex set X ⊆ V (G) that separates uncountably many ends ωi
(i ∈ I) of G simultaneously. We abbreviate C(X,ωi) as Di. By the pigeonhole
principle we may assume that X = N(Di) for all i ∈ I.

Let us consider the subset N ⊆ N of all indices n ∈ N whose directional choice
(Xn, Cn) distinguishes some fωi from some fωj . Every component Cn with n ∈ N
meets some component Di because there lives some end ωi in Cn. Then, for all
n ∈ N , either Cn is contained in some component Di entirely, or Cn meets X and
contains all of the components Di except possibly for the finitely many components
Di that meet Xn. This means that every directional choice (Xn, Cn) with n ∈ N
either distinguishes finitely many directions fωi from uncountably many directions
fωj or vice versa. Thus, for every n ∈ N there is a cofinite subset In ⊆ I such that
no fωi with i ∈ In is distinguished by (Xn, Cn) from any other fωj with j ∈ In. But
then the uncountably many directions fωi with i ∈

⋂
n∈N In are not distinguished

from each other by any directional choices (Xn, Cn), a contradiction.

Proof of Theorem 11.3. Theorem 11.4.2 and Theorem 11.4.7 together imply The-
orem 11.3.

Proof of Theorem 11.4. Theorem 11.4.4 and Theorem 11.4.7 together imply The-
orem 11.4.
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The Farey graph
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12. Every infinitely edge-connected
graph contains the Farey graph or
Tℵ0∗ t as a minor

Figure 12.0.1.: The Farey graph Figure 12.0.2.: The graph Tℵ0∗ t

12.1. Introduction

The Farey graph, shown in Figure 12.0.1 and surveyed in [22, 49], plays a role in a
number of mathematical fields ranging from group theory and number theory to
geometry and dynamics [22]. Curiously, graph theory is not among these. In this
chapter we show that the Farey graph plays a central role in graph theory too: it
is one of two infinitely edge-connected graphs that must occur as a minor in every
infinitely edge-connected graph. Previously it was not known that there was any
set of graphs determining infinite edge-connectivity by forming a minor-minimal
list in this way, let alone a finite set.

Ramsey theory and the study of connectivity intersect in the problem of finding
for any given connectivity k a small set of k-connected subgraphs that occur in
every k-connected graph, and thereby characterise k-connectedness. To keep these
unavoidable sets small for k ≥ 3, the subgraph relation referred to above is usually
relaxed to the graph minor relation. Here, a graph is a minor of a graph G if it
can be obtained from a subgraph of G by contracting connected (possibly infinite)
induced disjoint subgraphs [26]. We refer to [26, §9.4] or the introduction of [40] for
surveys on the known results for this problem and its variations [26,38,40,45,51,65].
Such sets of minor-minimal k-connected graphs are known only for k ≤ 4, and
only for finite graphs [65]. These results of Oporowski, Oxley and Thomas were
generalised to k > 4 by Geelen and Joeris [38] for finite graphs, and by Gollin and
Heuer [40] for infinite graphs, but with a different notion of connectivity.

For infinite connectivity, the problem asks for a small selection of infinitely
connected graphs such that every infinitely connected graph contains at least one
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12. Infinite edge-connectivity, the Farey graph and Tℵ0∗ t

of the selected graphs as a minor. Here, ‘infinitely connected’ can be understood
in two ways. When it is understood as ‘infinitely vertex-connected’, the answer is
already known: Every infinitely connected graph contains the countably infinite
complete graph Kℵ0 as a minor [26, §8.1]. But when ‘infinitely connected’ is
understood as ‘infinitely edge-connected’ then, as we shall see, Kℵ0 is not the
answer, and in fact no answer has been known. Indeed it is not even clear a priori
that there exists a finite set of unavoidable infinitely edge-connected minors. Any
such unavoidable infinitely edge-connected minors will be countable, because in
every infinitely edge-connected graph we can greedily find a countable infinitely
edge-connected subgraph. But the countable graphs are not known to be well-quasi-
ordered by the minor-relation. It is therefore not clear that any minor-minimal set
of infinitely edge-connected graphs must be finite, nor even that such a minimal
set exists.

In this chapter we find a pair of infinitely edge-connected graphs that occur
unavoidably as minors in any infinitely edge-connected graph, and which are unique
with this property up to minor-equivalence: the Farey graph F , and the graph
Tℵ0 ∗ t obtained from the infinitely-branching tree Tℵ0 by joining an additional
vertex t to all its vertices (Figure 12.0.2).

Theorem 12.1. Every infinitely edge-connected graph contains either the Farey
graph or Tℵ0∗ t as a minor.

The uniqueness of the pair {F, Tℵ0∗ t }, up to minor-equivalence, follows from the
fact that they are not minors of each other (Lemmas 12.3.1 and 12.3.2):

Theorem 12.2. Let M be any set of infinitely edge-connected graphs such that
every infinitely edge-connected graph has a minor in M and no element of M is a
minor of another. Then M consists of two graphs, of which one is minor-equivalent
to the Farey graph and the other is minor-equivalent to Tℵ0∗ t.

Theorem 12.1 is best possible also in the sense that one cannot replace ‘minor’
with ‘topological minor’ in its wording (Theorem 12.3.3).

Since both the Farey graph and Tℵ0∗ t are planar, our result implies that every
infinitely edge-connected graph contains a planar infinitely edge-connected graph
as a minor. Thus, in this sense, infinite edge-connectivity is an inherently planar
property.

This chapter is organised as follows. Section 12.2 formally introduces the Farey
graph. In Section 12.3 we show that the Farey graph and Tℵ0∗ t are not minors of
each other, and deduce Theorem 12.2. Theorem 12.3.3 above is proved there as
well. We outline the overall strategy of the proof of Theorem 12.1 in Section 12.4.
The proof itself consists of two halves. The first half of the proof is carried out in
Section 12.5, and the second half is carried out in Section 12.6.

Acknowledgement. I am grateful to Konstantinos Stavropoulos for stimulating
conversations.
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12.2. Preliminaries

Two graphs are minor-equivalent if they are minors of each other. If G is any
graph and X ⊆ V (G) is any vertex set, then we denote by ∂X = ∂GX the subset
of X formed by the vertices in X that send an edge in G to V (G)rX.

The Farey graph F is the graph on Q∪ {∞} in which two rational numbers a/b
and c/d in lowest terms (allowing also ∞ = (±1)/0) form an edge if and only if
det
(
a c
b d

)
= ±1, cf. [22]. In this chapter we do not distinguish between the Farey

graph and the graphs that are isomorphic to it. For our graph-theoretic proofs it
will be more convenient to work with the following purely combinatorial definition
of the Farey graph that is indicated in [22] and [49].

The halved Farey graph F̆0 of order 0 is a K2 with its sole edge coloured blue.
Inductively, the halved Farey graph F̆n+1 of order n+ 1 is the edge-coloured graph
that is obtained from F̆n by adding a new vertex ve for every blue edge e of F̆n,
joining each ve precisely to the endvertices of e by two blue edges, and colouring all
the edges of F̆n ⊆ F̆n+1 black. The halved Farey graph F̆ :=

⋃
n∈N F̆n is the union of

all F̆n without their edge-colourings, and the Farey graph is the union F = G1∪G2

of two copies G1, G2 of the halved Farey graph such that G1 ∩G2 = F̆0.

Lemma 12.2.1. The halved Farey graph and the Farey graph are minor-equivalent.

Proof. The halved Farey graph is a subgraph of the Farey graph. Conversely, the
Farey graph is a minor of the halved Farey graph: if e is a blue edge of F̆1, then
the Farey graph is the contraction minor of F̆ − e whose sole non-trivial branch
set is V (F̆0), i.e., (F̆ − e)/V (F̆0) ∼= F .

12.3. Uniqueness and topological minors

12.3.1. Uniqueness

In this section we show that the pair {F, Tℵ0∗ t } is unique up to minor-equivalence:

Theorem 12.2. Let H be any set of infinitely edge-connected graphs such that
every infinitely edge-connected graph has a minor in H and no element of H is a
minor of another. Then H consists of two graphs, of which one is minor-equivalent
to the Farey graph and the other is minor-equivalent to Tℵ0∗ t.

This will follow easily from the following two lemmas:

Lemma 12.3.1. The Farey graph is not a minor of Tℵ0∗ t.

Proof. The Farey graph contains two disjoint cycles, but Tℵ0∗ t does not.

Lemma 12.3.2. The graph Tℵ0∗ t is not a minor of the Farey graph.

Proof of Theorem 12.2. We write G = {F, Tℵ0∗ t } and note that neither element
of G is a minor of another by Lemmas 12.3.1 and 12.3.2. Every graph H ∈ H
contains a graph G ∈ G as a minor (Theorem 12.1) which in turn contains a graph
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H ′ ∈ H as a minor, and then H < G < H ′ implies H = H ′ because no element
of H is a minor of another. Thus, every graph in H is minor-equivalent to some
graph in G and, conversely, every graph in G is minor-equivalent to some graph in
H by symmetry. Since no two graphs in H or in G are comparable with regard to
the minor-relation, we deduce that minor-equivalence induces a bijection between
H and G.

Showing that Tℵ0∗ t is not a minor of the Farey graph requires more effort:

Proof of Lemma 12.3.2. Since K2,ℵ0 is a subgraph of Tℵ0 ∗ t, it suffices to show
that the Farey graph does not contain K2,ℵ0 as a minor. So let us assume for
a contradiction that the Farey graph contains a K2,ℵ0 minor. By applying the
star-comb lemma inside the branch sets of the two infinite-degree vertices of K2,ℵ0

if necessary, and using that the Farey graph does not contain infinitely many
independent paths between any two of its vertices, we find that our model of K2,ℵ0

contains a subdivision G of one of the following two graphs G1 and G2. The graph
G1 is the ladder with every rung subdivided exactly once, i.e., it is the disjoint
union of two rays R = v1v2 . . . and R′ = v′1v

′
2 . . . with infinitely many disjoint R–R′

paths vnznv
′
n (n ∈ N). And the graph G2 is obtained from G1 by contracting R′

to a single vertex that we call d.
In either case, the sole end of G ⊆ F is included in a unique end ω of F . The

end ω chooses, for every n ∈ N, a blue edge en ∈ Fn with vertex set Xn for which
it lives in the component Cn of F −Xn avoiding Fn. Then Cn has neighbourhood
Xn, and so does the other component Dn of F − Xn. We remark that, by the
construction of the Farey graph, for every vertex of F there is a number n such
that the vertex is not contained in Cn. For all n the two vertex sets Xn and Xn+1

together induce a triangle ∆n in F . We write xn for the vertex in which Xn and
Xn+1 meet, and we write Yn for vertex set consisting of the other two vertices of
the triangle ∆n. The graph F −∆n has precisely three components, namely Dn

and Cn+1 and a third component with neighbourhood Yn which we denote by Hn.
First, we consider the case that G ⊆ F is a subdivision of G1, and we write R̂

and R̂′ for the subdivisions of R and R′ in G. Then there cannot be a number
N such that xn = xN for all n ≥ N : Indeed, for every k ∈ N there is a number
f(k) ≥ k such that both vk and v′k are not contained in Cf(k) and, as a consequence,
xf(k) must be contained in vkR̂∪v′kR̂′. Thus, every vertex of F lies in a component
Dn eventually (and ω is undominated). Let N be the least number for which the
first vertices of R̂ and R̂′ lie in DN . To derive a contradiction from G ⊆ F , let
us consider any R̂–R̂′ path P ⊆ G that lies entirely in the component CN , and
consider the maximal number n for which P avoids Dn, noting n ≥ N . Since
the two rays R̂ and R̂′ induce a bipartition of the 2-set Xn+1, the path P cannot
meet Cn+1 without contradicting the maximality of n. Therefore, the path P is
contained entirely in F [Hn t ∆n]. Without loss of generality we have xn ∈ R̂.
Then Yn ⊆ R̂′ follows. But now the non-empty subpath P̊ must be contained in
Hn, contradicting that Hn has neighbourhood Yn ⊆ R̂′.

Second, we consider the case that G ⊆ F is a subdivision of G2, and again we
write R̂ for the subdivision of R in G. Since d ∈ G2 dominates the end of G2,
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the end ω is dominated in F by d. Let N be the least number such that both
d and the first vertex of R̂ are not contained in CN . Then d = xN = xn for all
n ≥ N because d dominates ω. Thus, Yn ⊆ R̂ for all n ≥ N . Now consider any
d–R̂ path P ⊆ G with d̊P ⊆ CN and choose n maximal with the property that the
non-empty subpath P̊ avoids Dn, noting n ≥ N . Then P̊ ⊆ Hn follows because of
Yn ⊆ R̂, contradicting that d = xn does not lie in the neighbourhood Yn of Hn.

12.3.2. Minor versus topological minor

Theorem 12.1 is best possible in the sense that one cannot replace ‘minor’ with
‘topological minor’ in its wording:

Theorem 12.3.3. There exists an infinitely edge-connected graph that contains
neither the Farey graph nor Tℵ0∗ t as a topological minor.

Proof. As we will show in Chapter 14, there exists an infinitely edge-connected
graph G which does not contain infinitely many edge-disjoint pairwise order-
compatible paths between any two of its vertices. Here, two u–v paths are order-
compatible if they traverse their common vertices in the same order. Then the
graph G does not contain a subdivision of the Farey graph or of Tℵ0∗t because both
the Farey graph and Tℵ0∗ t have pairs of vertices with infinitely many edge-disjoint
pairwise order-compatible paths between them.

12.4. Overall proof strategy

Our aim for the remainder of this chapter is to show that every infinitely edge-con-
nected graph contains either the Farey graph or Tℵ0∗ t as a minor (Theorem 12.1).
The proof consists of two halves. In the first half (Section 12.5) we show that
every infinitely edge-connected graph without a Tℵ0 ∗ t minor is ‘robust’ (Theo-
rem 12.5.13), explained below. Then, in the second half (Section 12.6), we employ
Theorem 12.5.13 to prove that every infinitely edge-connected graph without a Tℵ0∗t
minor must contain a Farey graph minor, completing the proof of Theorem 12.1.

The Farey graph and Tℵ0∗ t are both infinitely edge-connected, but in different
ways. The infinite edge-connectivity of the Farey graph, on the one hand, is
robust in that deleting the two endvertices of an edge always leaves only infinitely
edge-connected components. The infinite edge-connectivity of Tℵ0∗ t, on the other
hand, is fragile in that deleting t results in a tree. In the first half of the proof of
Theorem 12.1 we show that every infinitely edge-connected graph without a Tℵ0∗ t
minor is essentially robust, not fragile (Theorem 12.5.13).

In the second half of the proof of Theorem 12.1 we construct a Farey graph minor
in an arbitrary infinitely edge-connected Tℵ0∗ t free graph G. By Lemma 12.2.1
it suffices to construct a halved Farey graph minor. Using that G is robust by
Theorem 12.5.13, we shall essentially prove the following assertion:
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For every two vertices u and v of G there exist two induced subgraphs Hu, Hv ⊆ G
containing u and v respectively and which satisfy the following conditions:

(i) X := V (Hu) ∩ V (Hv) is finite, non-empty and connected in G;
(ii) both Hu/X and Hv/X are infinitely edge-connected;

(iii) X avoids u and v;
(iv) uX is an edge of Hu/X and vX is an edge of Hv/X.

If we choose u and v to form an edge of G, then the three vertices u, v and X span
a triangle F̆1 in (Hu ∪ Hv)/X. And since Hu/X and Hv/X are both infinitely
edge-connected and robust again, we can reapply the assertion in (Hu/X)−uX to
u and X, and in (Hv/X)− vX to v and X. By iterating this process, we obtain
a halved Farey graph minor in the original graph G at the limit, and this will
complete the proof of Theorem 12.1.

12.5. Robustness

The aim of this section is to prove Theorem 12.5.13 which has been outlined in the
previous section. Our proof proceeds in three steps. First, we provide some tools
that will help us to (i) identify infinitely edge-connected ‘parts’ of arbitrary graphs
and (ii) allow us to distinguish all these ‘parts’ at once in a tree-like way. In the
second step, then we employ these tools to analyse the components of G− u− v
for infinitely edge-connected graphs G and vertices u, v of G. In the third step, we
proceed to prove Theorem 12.5.13.

12.5.1. Finitely separating spanning trees

Let G be any graph. Two vertices of G are said to be finitely separable in G if
there is a finite set of edges of G separating them in G. If every two distinct
vertices of G are finitely separable, then G itself is said to be finitely separable.
An equivalence relation ∼ = ∼G is declared on the vertex set of G by letting
x ∼ y whenever x and y are not finitely separable. The graph G̃ is defined on
V (G)/∼ by declaring XY an edge whenever X 6= Y and there is an X–Y edge
in G. Note that the graph G̃ is always finitely separable. A spanning tree T of G
is finitely separating if all its fundamental cuts are finite. The following theorem is
Theorem 6.3 in [12] and Theorem 7.5 in Chapter 7.

Theorem 12.5.1. Every connected finitely separable graph has a finitely separating
spanning tree.

Usually, we will employ Theorem 12.5.1 to find a finitely separating spanning
tree T of G̃ that we will then use to analyse the overall structure of G with regard
to infinite edge-connectivity. In this context, the nodes of T ⊆ G̃ will also be
viewed as the vertex sets of G that they formally are. When we view a node of T
as a vertex set of G we will refer to it as part for clarity.

Every finitely separating spanning tree T ⊆ G̃ defines an S-tree (T, α) for the
set S = Bℵ0(G) of all the separations of the vertex set V (G) that are bipartitions

207



12. Infinite edge-connectivity, the Farey graph and Tℵ0∗ t

induced by finite bonds of G: Let the map α send every oriented edge (t1, t2) ∈
→
E(T )

to the ordered pair (
⋃
V (T1) ,

⋃
V (T2) ) for the two components T1 and T2 of

T − t1t2 containing t1 and t2 respectively. Then α(t1, t2) clearly is an oriented
bipartition of V (G). Moreover, we have α(

→
e) ≤ α(

→
f ) whenever

→
e ≤

→
f ∈

→
E(T )

and (α(
←
e))∗ = α(

→
e) for all

→
e ∈

→
E(T ). It remains to show that α(

→
e) always stems

from a finite bond of G. For this, it suffices to show that if {A,B} ∈ Bℵ0(G̃) then
{
⋃
A ,
⋃
B } ∈ Bℵ0(G), because all the fundamental cuts of T are finite bonds.

Between every two ∼-classes U and W of G there are only finitely many edges,
because u ∈ U is separated from w ∈ W by a finite cut of G and then U and W
must respect this finite cut. Hence the finitely many A–B edges in G̃ give rise to
only finitely many (

⋃
A)–(

⋃
B) edges in G, and these are all (

⋃
A)–(

⋃
B) edges

in G. Using that G contains for all ∼-equivalent vertices x and y an x–y path
avoiding the finitely many (

⋃
A)–(

⋃
B) edges, it is straightforward to show that

both G[
⋃
A ] and G[

⋃
B ] are connected.

The part of a star { (Ai, Bi) | i ∈ I } of separations of a given set is the
intersection

⋂
i∈I Bi. If (T, α) is a Bℵ0(G)-tree that is defined by a finitely separating

spanning tree T of G̃, then for every node t ∈ T the part of the star α[
→
Ft] ⊆

→
Bℵ0(G)

associated with t is equal to the part t ⊆ V (G). And the parts t ⊆ V (G) in turn
are precisely the ∼-classes of G. Thus, in this sense, by Theorem 12.5.1 every
connected graph admits a tree structure that displays all its ∼-classes.

Parts of infinite stars in
→
Bℵ0(G) can be made connected for a reasonable price:

Lemma 12.5.2. Suppose that G is a connected graph, that σ = { (Ai, Bi) | i ∈ I }
is an infinite star in

→
Bℵ0(G) and that i∗ ∈ I is given. Then there is an infinite subset

J ⊆ I containing i∗ such that the part of the infinite substar { (Aj, Bj) | j ∈ J } ⊆ σ
is connected in G.

Proof. For each i ∈ I we write Fi for the finite bond E(Ai, Bi) of G.
Inductively, we construct an ascending sequence T0 ⊆ T1 ⊆ · · · of finite trees

in G together with a sequence of distinct indices i0, i1, . . . in I r {i∗} such that,
for all n ∈ N and Jn := {i∗} t {i0, . . . , in−1}, the tree Tn is a subgraph of Gn :=
G[
⋂
j∈Jn Bj ] containing all ∂Bj with j ∈ Jn. Then the tree T :=

⋃
n∈N Tn will

ensure that G∞ := G[
⋂
j∈J Bj ] is connected for J :=

⋃
n∈N Jn. (For whenever a

path in G connecting two given vertices in G∞ uses vertices that are not in G∞,
then the path crosses one of the bonds Fj , and the number of bonds crossed can be
decreased by replacing path segments with detours in T ⊇ ∂Bj because T ⊆ G∞.
Therefore, choosing a path that crosses as few bonds Fj as possible will suffice to
find a path that lies entirely in G∞.)

To start the construction, let T0 be any finite tree in G[Bi∗ ] that contains ∂Bi∗ .
At step n+ 1 of the construction, suppose that we have already constructed Tn
and Jn. As Tn is finite, we find an index in ∈ I r Jn for which Ain avoids Tn,
ensuring Tn ⊆ Gn+1. To ensure that Tn can be extended in Gn+1 to a finite tree
Tn+1 that contains ∂Bin , it suffices to show that Gn+1 is connected. Given any two
vertices in Gn+1, consider any path between them in G[Bin ], chosen to cross as few
of the finite bonds Fj with j ∈ Jn as possible. Then the path avoids all these Fj,
for otherwise the number of bonds crossed could be decreased by replacing path
segments with detours in Tn ⊇

⋃
j∈Jn ∂Bj. Therefore, Gn+1 is connected.
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12.5.2. Analysing the components

Now we analyse the components of G−u−v for infinitely edge-connected graphs G
and vertices u, v of G. The main results here are the two Lemmas 12.5.3 and 12.5.8.
Here is the first main lemma:

Lemma 12.5.3. Suppose that G is an infinitely edge-connected graph, that u, v
are two distinct vertices of G, and that C is a component of G− u− v. If C̃ has a
finitely separating spanning tree that contains a subdivision of the infinite binary
tree, then G[C + u+ v] contains Tℵ0∗ t as a minor.

Proof. Consider any finitely separating spanning tree of C̃ that contains a sub-
division of the infinite binary tree. Then this spanning tree also contains Tℵ0 as
a contraction minor which gives rise to a Bℵ0(C)-tree (T, α). Next, we fix any
root r ∈ T , and for every edge e ∈ T we fix

→
e as its orientation pointing away

from the root r (the orientation
→
e = (x, y) of e = {x, y} satisfying x ∈ rTy). Let

O := {→e | e ∈ E(T ) }. Since G is infinitely edge-connected, O is equal to the union
Ou ∪Ov where

→
e ∈ Ow (for w = u, v) if and only if w sends an edge in G to B for

α(
→
e) = (A,B). Now Ou is cofinal1 in O ⊆

→
E(T ) or there is an oriented edge

→
e ∈ O

with Ov cofinal in b→ecO := {
→
f ∈ O | →e ≤

→
f }. In either case, there is

→
e ∈ O with

Ou or Ov cofinal in b→ecO. Without loss of generality Ou is cofinal in b→ecO for some
→
e ∈ O. By replacing T with one of its subtrees and restricting α accordingly, we
may even assume that Ou is cofinal in O. In fact, then Ou = O follows as Ou is
down-closed in O. We will use this to show Tℵ0∗ t 4 G[C + u].

For this, we enumerate the vertices of Tℵ0 as x0, x1, . . . such that every xn
is neighbour to some earlier xk (k < n). Inductively, we construct a sequence
W0,W1, . . . of disjoint connected vertex sets Wn ⊆ V (C), a sequence w0, w1, . . . of
vertices wn ∈ Wn, and a sequence t0, t1, . . . of distinct nodes tn ∈ T such that, for
all n ∈ N:

(i) uwn ∈ G;
(ii) C contains a Wi–Wj edge (i, j ≤ n) whenever xixj ∈ Tℵ0 ;

(iii) wn is contained in the part of the star α[
→
Ftn ];

(iv) for all k ≤ n there are infinitely many oriented edges
→
e ∈ O ∩ (

→
Ftk)

∗ such
that, for α(

→
e) = (B,A), the vertex set Wk contains ∂CB while A is avoided

by all Wi with i ≤ n.

Once the construction is completed, the sets Wn and {u} will give rise to a model
of Tℵ0∗ t in G[C + u] by (i) and (ii).

At the construction start, we choose any neighbour w0 of u in C (which exists as
Ou = O and T is infinite), guaranteeing (i). Then t0 is defined by (iii). Applying
Lemma 12.5.2 in C to the infinite star α[

→
Ft0 ] yields an infinite substar whose

connected part W0 ⊆ V (C) contains w0 and satisfies both (ii) and (iv) trivially.
At step n > 0 of the construction, consider the k < n for which xkxn is an edge

of Tℵ0 , and pick an edge
→
e ∈ O ∩ (

→
Ftk)

∗ that (iv) provides for k ≤ n − 1. If we

1A subset X of a poset P = (P,≤) is cofinal in P , and ≤, if for every x ∈ X there is a p ∈ P
with p ≥ x.
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write α(
→
e) = (B,A), then the vertex set Wk contains ∂CB while A is avoided by

all Wi with i ≤ n− 1. Using Ou = O we find a neighbour wn of u in A giving (i),
and wn defines tn by (iii). Then we apply Lemma 12.5.2 in C to the infinite star

{ (Ai, Bi) | i ∈ I } := α
[

(
→
FtnrO) ∪ {→e}

]
where we take i∗ ∈ I to be the index of the separation α(

→
e). This yields an infinite

substar whose connected part Wn ⊆ V (C) contains wn and satisfies (ii) because
Wn contains ∂CA while Wk contains ∂CB. Using the infinite substar and the choice
of
→
e it is straightforward to verify (iv) for all k ≤ n.

Our second main lemma, Lemma 12.5.8, requires some preparation.

Definition 12.5.4 (Arrow). Suppose that u and v are two distinct vertices.
An arrow from u to v is a graph G that arises from the two vertices u and v by

disjointly adding an infinitely edge-connected graph H, adding a u–H edge uh,
and adding infinitely many v–(H − h) edges. Then H is the arrow’s payload, u is
its nock and v is its head.

An arrow barrage from u to v is a countably infinite union
⋃
n∈NAn of arrows

An from u to v such that An and Am do not meet in any vertices other than u
and v for all n 6= m. Then u and v are the nock and head of the arrow barrage.

When we say that some graph contains an arrow (barrage) minor from x to y for
two vertices x and y, we mean that the graph contains an arrow (barrage) minor
such that the branch set corresponding to the arrow (barrage)’s nock contains x
while the branch set corresponding to the arrow (barrage)’s head contains y.

The next definition captures the concept of recursive pruning that Diestel
describes in his book [26] as follows:

Definition 12.5.5 (Recursive pruning). Let T be any tree, equipped with a root
and the corresponding tree-order on its vertices. We recursively label the vertices
of T by ordinals, as follows. Given an ordinal α, assume that we have decided for
every β < α which of the vertices of T to label β, and let Tα be the subgraph of T
induced by the vertices that are still unlabelled. Assign label α to every vertex t of
Tα whose up-closure btcTα = btcT ∩ Tα in Tα is a chain. The recursion terminates
at the first α not used to label any vertex; for this α we put Tα =: T ∗. We call T
recursively prunable if every vertex of T gets labelled in this way, i.e., if T ∗ = ∅.

Proposition 12.5.6 ([26, Proposition 8.5.1]). A rooted tree is recursively prunable
if and only if it contains no subdivision of the infinite binary tree.

The next lemma is an observation that we will use often:

Lemma 12.5.7. Suppose that G is an infinitely edge-connected graph, that u, v
are two distinct vertices of G, and that C is a component of G− u− v. If T is a
finitely separating spanning tree of C̃ and t ∈ T has finite degree in T , then C[t] is
infinitely edge-connected and either u or v sends infinitely many edges in G to the
part t ⊆ V (C).
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Proof. As t has finite degree in T , the finite fundamental cuts of the edges of T
incident with t together give rise to a finite cut of C with the part t as one of its
sides. Thus, in the graph G every vertex in the part t can send only finitely many
edges to C − t, at most one edge to each of u and v, and some edges to the rest of
the part t. As every vertex of the infinitely edge-connected graph G has infinite
degree, it follows that the part t must be infinite. And since no two vertices in t
are finitely separable in C while t is separated from the rest of C by a single finite
cut, it follows that C[t] is infinitely edge-connected. Finally, at least one of u and
v sends infinitely many edges to the part t, because otherwise t is separated from
the rest of G by a finite cut, contradicting that G is infinitely edge-connected.

Here is the second main lemma of this section:

Lemma 12.5.8. Suppose that G is an infinitely edge-connected graph, that u, v are
two distinct vertices of G, and that C is a component of G−u−v such that u sends
at least one edge to C. If C̃ has a recursively prunable finitely separating rooted
spanning tree T such that u sends no edges to parts t ∈ T that are finite-degree
nodes of T , then G[C + u+ v] contains an arrow barrage minor from u to v.

Proof. Given T , we let X ⊆ V (T ) consist of the 0-labelled nodes of T that are
minimal in the tree-order. Then the nodes in X form a maximal antichain in the
tree-order, giving T = bXc ∪ dXe, as T is recursively prunable. Note that all the
nodes in bXc have degree at most two in T . We claim that X must be infinite.
Indeed, if X is finite, then so is dXe, and in particular T is locally finite. But then
u may send no edges to C by assumption, contradicting our other assumption that
u does send an edge to C. Therefore, X must be infinite.

Recall that the finitely separating spanning tree T ⊆ C̃ gives rise to a Bℵ0(C)-
tree (T, α). For every x ∈ X let us write (Ax, Bx) := α(x, px) for the predecessor
px of x in T . As u sends some edges to C, but none to the parts in bXc, there is a
neighbour w of u in the part

⋂
x∈X Bx of the star σ := { (Ax, Bx) | x ∈ X }. By

Lemma 12.5.2 we find an infinite subset Y ⊆ X such that the part of the infinite
substar σ′ := { (Ay, By) | y ∈ Y } ⊆ σ is connected. Note that w is contained in
the part of σ′ because the part of σ is included in the part of σ′. We now find an
arrow barrage minor from u to v in G[C + u+ v] as follows. For the branch set
of the nock we take the part of σ′ plus the vertex u. For the branch set of the
head we take {v}. The payloads we let be modelled by the subgraphs C[y], one
for every y ∈ Y (here, each C[y] is infinitely edge-connected and sends infinitely
many edges in G to v by Lemma 12.5.7 and Y ⊆ X).

12.5.3. Football minors

We are almost ready now to prove Theorem 12.5.13. But first, we prove an
intermediate proposition, which requires the following lemma and definition:

Lemma 12.5.9. If G is an infinitely edge-connected graph and G′ is obtained from
G by contracting disjoint finite vertex sets that are possibly disconnected, then G′

is infinitely edge-connected as well.
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Proof. To show that G′ is infinitely edge-connected, consider any two distinct
vertices x and y of G′, and choose vertices x̌ ∈ x and y̌ ∈ y of G. Now, in the
infinitely edge-connected graph G we choose infinitely many pairwise edge-disjoint
x̌–y̌ paths P0, P1, . . . as follows. To get started, choose P0 arbitrarily. At step
n > 0, consider all the branch sets that are met by some Pk with k < n, and let
Xn be their union. Then Xn is finite, and we let Pn be an x̌–y̌ path in G that
avoids all the finitely many edges of G running inside Xn.

Now every x̌–y̌ path Pn ⊆ G gives rise to some x–y path P ′n ⊆ G′ satisfying
E(P ′n) ⊆ E(Pn) by a slight abuse of notation. We claim that the paths P ′0, P

′
1, . . .

are all edge-disjoint. For this, consider any two paths P ′n and P ′m with n < m,
and let e be any edge of P ′n. Then e, viewed as an edge of G, runs between two
branch sets that Pn meets because it uses e. Hence these two branch sets are both
included in Xm, and so Pm does not use any of the edges running between them.
In particular, P ′m does not use e.

Definition 12.5.10 (Football, Muscle). Suppose that u and v are two distinct
vertices.

A football with endvertices u and v is an infinitely edge-connected graph G
containing u and v such that G− u− v is again infinitely edge-connected.

When we say that some graph contains a football minor connecting two vertices
x and y we mean that the graph contains a football minor with some endvertices
u and v such that the branch set corresponding to u contains x and the branch
set corresponding to v contains y (or vice versa).

A muscle with endvertices u and v is a graph G that is obtained from the
vertices u and v by disjointly adding an infinitely edge-connected graph H and
adding one u–H edge ux and one v–H edge vy such that x 6= y.

A muscle barrage with endvertices u and v is a countably infinite union
⋃
n∈NGn

of muscles Gn with endvertices u and v such that Gn and Gm do not meet in any
vertices other than u and v for all n 6= m.

Muscle (barrage) minors connecting two vertices are defined like for footballs.

Proposition 12.5.11. Suppose that G is an infinitely edge-connected graph, that
u, v are two distinct vertices of G, and that C is a component of G−u−v to which
both u and v do send some edges. Then at least one of the following assertions
holds:

(i) G[C + u+ v] contains a Tℵ0∗ t minor;
(ii) G[C + u+ v] contains a football minor connecting u and v;

(iii) G[C + u + v] contains an arrow barrage minor either from u to v or from
v to u; in particular, G[C+u+v] contains a muscle barrage minor connecting
u and v.

Proof. We may assume that both u and v send infinitely many edges to C. Indeed,
if—say—u sends only finitely many edges to C, then consider the infinitely edge-
connected graph G′ := G[C + v] and let u′ be one of the neighbours of u in C. If
there is a component C ′ of G′− u′− v to which both u′ and v send infinitely many
edges, then we may replace G, u, v, C with G′, u′, v, C ′. Hence we may assume that
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there are infinitely many components C ′0, C
′
1, . . . of G′ − u′ − v such that, without

loss of generality, u′ sends only finitely many but at least one edge to each C ′n
while v sends infinitely many edges to each C ′n.

By Theorem 12.5.1, all C̃ ′n have finitely separating spanning trees. If one C̃ ′n
has a finitely separating spanning tree that contains a subdivision of the infinite
binary tree, then Lemma 12.5.3 provides a Tℵ0∗ t minor witnessing (i). Otherwise,
by Proposition 12.5.6, every C̃ ′n has a rooted finitely separating spanning tree Tn
that is recursively prunable. Then we pick for every n a finite-degree node tn ∈ Tn,
and we let Pn be a path in C ′n that links a neighbour of u′ to the subgraph C ′n[tn]
such that Pn has only its endvertex xn in C ′n[tn]. Now we obtain an arrow barrage
minor in G[C + u + v] from u to v that is sought in (iii), as follows. For the
branch set of the arrow barrage’s nock we take {u, u′}∪

⋃
n∈N V (Pnx̊n). The arrows’

payloads we let be modelled by the infinitely edge-connected subgraphs C ′[tn] (see
Lemma 12.5.7). And for the branch set of the arrow barrage’s head we take {v}
(that v sends infinitely many edges to each part tn is ensured by Lemma 12.5.7
and the assumption that u′ sends only finitely many edges to each C ′n).

Therefore, we may assume that both u and v send infinitely many edges to
C. By Theorem 12.5.1 we may let T be a finitely separating spanning tree of C̃,
rooted arbitrarily. We make the following two observations.

If T contains a subdivision of the infinite binary tree, then Lemma 12.5.3 yields
a Tℵ0∗ t minor giving (i).

If T has finite-degree nodes tu and tv (possibly tu = tv) such that u sends
infinitely many edges to the part tu ⊆ V (C) in G and v sends infinitely many edges
to the part tv ⊆ V (C) in G, then we deduce (ii), as follows. By Lemma 12.5.7 both
C[tu] and C[tv] are infinitely edge-connected. If tu = tv, then G[tu + u] ∪G[tv + v]
is a football subgraph connecting u and v. Otherwise tu and tv are distinct. Then
we let P be any tu–tv path in C, and (G[tu +u]∪G[tv + v]∪P )/V (P ) is a football
minor connecting u and v.

By these two observations and Proposition 12.5.6, we may assume that T is
recursively prunable and that, without loss of generality, whenever t ∈ T has finite
degree then v does send infinitely many edges to the part t ⊆ V (C) in G while u
may send only finitely many edges to it.

If u sends edges in G to infinitely many parts t ∈ T that have finite degree
in T , then we find an arrow barrage minor from u to v giving (iii), because v
sends infinitely many edges to all of the infinitely edge-connected subgraphs C[t]
(cf. Lemma 12.5.7) by our assumption above. Otherwise u sends, in total, only
finitely many edges in G to the parts t ∈ T that have finite degree in T . Since u
sends infinitely many edges in G to C, this means that we may assume without loss
of generality that u sends no edges to the parts t ∈ T that have finite degree in T .
Then Lemma 12.5.8 yields an arrow barrage minor from u to v giving (iii).

Now we have all we need to prove the main result of the section, Theorem 12.5.13.
In its proof, we will face the construction of a minor in countably many steps.
The following notation and lemma will help us to keep the technical side of this
construction to the minimum.

Suppose that G and H are two graphs with H a minor of G. Then there are
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a vertex set U ⊆ V (G) and a surjection f : U → V (H) such that the preimages
f−1(x) ⊆ U form the branch sets of a model of H in G. A minor-map ϕ : G < H
formally is such a pair (U, f). Given ϕ = (U, f) we address U as V (ϕ) and we write
ϕ = f by abuse of notation. Usually, we will abbreviate ‘minor-map’ as ‘map’. If
we are given two maps ϕ : G < H and ϕ′ : H < H ′, then these give rise to another
map ψ : G < H ′ by letting V (ψ) := ϕ−1(ϕ′ −1(V (H ′)) and ψ := ϕ′ ◦ (ϕ � V (ψ)).
On the notational side we write ϕ′ � ϕ = ψ.

Lemma 12.5.12. If G0, G1, . . . and H0 ⊆ H1 ⊆ · · · are sequences of graphs
Hn ⊆ Gn with maps ϕn : Gn < Gn+1 that restrict to the identity on Hn, then
G <

⋃
n∈NHn.

Proof. Recursively, each map ϕn : Gn < Gn+1 gives rise to a map ϕ̂n : G0 < Gn+1

via ϕ̂0 := ϕ0 and ϕ̂n+1 := ϕn+1 � ϕ̂n. For every n ∈ N we write V n
x = ϕ̂−1

n (x)
for all vertices x ∈ Hn+1. For every vertex x ∈ H :=

⋃
n∈NHn we denote by

N(x) the least number n with x ∈ Hn. As the maps ϕn restrict to the identity
on Hn, for every vertex x ∈ H the vertex sets V n

x form an ascending sequence
V
N(x)
x ⊆ V

N(x)+1
x ⊆ · · · whose overall union we denote by Vx. We claim that the

vertex sets Vx form the branch sets of an H minor in G.
Indeed, every branch set Vx is non-empty and connected in G because all V n

x

are. If xy is an edge of H, then G contains a V n
x –V n

y edge as soon as xy ∈ Hn, and
this edge is a Vx–Vy edge due to the inclusions V n

x ⊆ Vx and V n
y ⊆ Vy. It remains

to show that Vx and Vy are disjoint for distinct vertices x, y ∈ H. This follows at
once from the vertex sets V n

x and V n
y being disjoint for all n and the definition of

Vx and Vy as ascending unions of these vertex sets.

Finally, we prove the main result of the section:

Theorem 12.5.13. Suppose that G is any infinitely edge-connected graph, that
u, v are two distinct vertices of G, and that C is a component of G−u−v to which
both u and v do send some edges. Then at least one of the following assertions
holds:

(i) G[C + u+ v] contains a Tℵ0∗ t minor;
(ii) G[C + u+ v] contains a football minor connecting u and v.

Proof. Assume for a contradiction that both (i) and (ii) fail. We will use Proposi-
tion 12.5.11 to find the following graph H as a minor in G′ := G[C + u+ v]. Let
Tu be an ℵ0-regular tree with root ru, and let Tv be a copy of Tu that is disjoint
from Tu. We write rv for the root of Tv. The graph H is obtained from the disjoint
union of the two trees Tu and Tv by adding the perfect matching between their
vertex sets that joins every vertex of Tu to its copy in Tv. For every number n ∈ N
we write Hn for the subgraph of H that is induced by the first n levels of Tu
together with the first n levels of Tv. Thus, H =

⋃
n∈NHn. Finding an H minor

in G′ completes the proof, because H/Tu is isomorphic to Tℵ0∗ t.
A foresighted Hn is a graph that is obtained from Hn by adding for every edge

xy ∈ Hn that runs between the two nth levels of Tu and Tv a muscle barrage Bxy
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having endvertices x and y such that Bxy contains no vertices from Hn other than
x and y, and all muscle barrages added are pairwise disjoint.

By Lemma 12.5.12 it suffices to find a sequence G′ < Ĥ0 < Ĥ1 < · · · of graphs
Ĥn that are foresighted Hn with maps ϕn : Ĥn < Ĥn+1 that restrict to the identity
on Hn ⊆ Ĥn in order to find an H minor in Ĥ0 4 G′. To get started, we apply
Proposition 12.5.11 to G, u, v, C to obtain in G′ a muscle barrage minor connecting
u and v. By turning one of the muscles into an edge we obtain Ĥ0 4 G′.

At step n > 0, consider the muscle barrages Bxy that turn Hn into Ĥn. For
every muscle Mk

xy of each of these muscle barrages Bxy =
⋃
k∈NM

k
xy we apply

Proposition 12.5.11 in M := Mk
xy − x− y to the neighbours x′ and y′ of x and y

in Mk
xy and some component of M − x′ − y′ to which both x′ and y′ send some

edges to find a muscle barrage minor connecting x′ and y′. By turning one muscle
of each new barrage into an edge, we find ϕn : Ĥn < Ĥn+1.

12.6. Proof of the main result

In this section we employ the main result of the previous section (Theorem 12.5.13)
to prove the main result of this chapter (Theorem 12.1).

Lemma 12.6.1. If A and B are two infinite vertex sets in a graph G that does
not contain a subdivision of Kℵ0, then there are vertices a ∈ A and b ∈ B plus a
finite vertex set S ⊆ V (G)r {a, b} such that S separates a and b in G− ab.

Proof. The absence of such an S for a pair a 6= b means that, inductively, we
can find infinitely many independent a–b paths in G. So if there is no S for
every pair a 6= b, then inductively we find a TKℵ0,ℵ0 in G, and TKℵ0 ⊆ TKℵ0,ℵ0

(contradiction).

Lemma 12.6.2. Suppose that G is a football with endvertices u and v. If G does
not contain a subdivision of Kℵ0, then G contains an infinitely edge-connected
graph H as a minor with branch sets Vh (h ∈ H) such that u and v are contained
in distinct branch sets Vx and Vy, respectively, and there is a finite vertex set
S ⊆ V (H)r {x, y} separating x and y in H.

Proof. Write C for the infinitely edge-connected graph G − u − v. We apply
Lemma 12.6.1 in C to the infinite neighbourhoods N(u) and N(v) of u and v in G
to obtain vertices a ∈ N(u) and b ∈ N(v) plus a finite vertex set S ⊆ V (C)r{a, b}
that separates a and b in C − ab. Then H can be obtained from the infinitely
edge-connected graph G− ab as follows. We discard all the edges that are incident
with u or v, except for the two edges ua and vb each of which we contract. Then
H is infinitely edge-connected because it is isomorphic to the infinitely edge-con-
nected graph C − ab. And the way we treated the edges at u and v ensures that S
separates the two vertices {u, a} and {v, b} in H as desired.
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Lemma 12.6.3. Suppose that G is an infinitely edge-connected graph and that
u, v are two distinct vertices of G that are separated in G by some finite vertex set
S ⊆ V (G)r {u, v}. Then there exist induced subgraphs Hu, Hv ⊆ G containing u
and v respectively, such that the following assertions hold:

(i) X := V (Hu) ∩ V (Hv) is finite, non-empty and connected in G;
(ii) both Hu/X and Hv/X are infinitely edge-connected;

(iii) X avoids u and v;
(iv) uX is an edge of Hu/X and vX is an edge of Hv/X.

Proof. Given G, u, v, S let us write Cu and Cv for the distinct components of G− S
that contain u and v respectively. For both w ∈ {u, v} we abbreviate ∼G[Cw∪S] as
∼w. As G is infinitely edge-connected, we infer that every ∼w-class meets S. In
particular, there are only finitely many ∼w-classes in total, which means that each
of the non-singleton classes induces an infinitely edge-connected subgraph of G.
Let us write Ku and Kv for the infinitely edge-connected subgraphs induced by the
classes containing u and v respectively, i.e., Ku := G[ [u]∼u ] and Kv := G[ [v]∼v ].
To find Hu and Hv, we distinguish two cases.

In the first case, Ku and Kv are disjoint. For both w ∈ {u, v}, the finite partition
of V (Cw)∪S induced by ∼w has only finitely many cross-edges. Since G is infinitely
edge-connected, this means that we can find a (Ku ∩ S)–(Kv ∩ S) path P in G
avoiding all these finitely many edges. Then P , as it may not use these edges, is
a Ku–Kv path with endvertices in S. We let Pw be a w–P path in Kw for both
w ∈ {u, v}. Letting Hu := G[Ku ∪P ∪ v̊Pv] and Hv := G[Kv ∪P ∪ ůPu] completes
this case with X = V (Pu ∪P ∪Pv)r {u, v} because the graph Hw/X contains the
spanning subgraph Kw/V (ẘPw), and Kw/V (ẘPw) is infinitely edge-connected by
Lemma 12.5.9 and because Kw is infinitely edge-connected.

In the second case, Ku and Kv meet in a vertex s ∈ S. We write Du for
the component of Ku − u containing s. In Du we pick a finite tree T that
contains the finite intersection V (Du) ∩ V (Kv) ⊆ S and contains a neighbour
of u. Then T contains s but neither u nor v. We let Pv be any v–s path in
Kv. Letting Hu := G[Du ∪ v̊Pv + u] and Hv := G[Kv ∪ T ] completes this case
with X = V (T ∪ v̊Pv): On the one hand, the graph Hu/X is infinitely edge-
connected because it contains the spanning subgraph G[Du + u]/V (T ) which is
infinitely edge-connected by Lemma 12.5.9 and the fact that G[Du + u] is an
infinitely edge-connected subgraph of Ku. On the other hand, the graph Hv/X
contains the spanning subgraph Kv/Y for Y := (V (Kv) ∩ V (Du)) ∪ V (̊vPv), and
Kv/Y is infinitely edge-connected by Lemma 12.5.9 and because Kv is infinitely
edge-connected.

Definition 12.6.4 (Plows). Suppose that u and v are two distinct vertices. A
half-plow with endvertices u and v is an infinitely edge-connected graph containing
the edge uv. A plow with endvertices u and v and head h is a union of two
half-plows with end-vertices u, h and h, v that do not meet in any vertex other
than h. Plow minors connecting some two vertices are defined like for footballs
and muscles.
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Theorem 12.6.5. If G is an infinitely edge-connected graph and u, v are two
distinct vertices of G, then at least one of the following two assertions holds:

(i) G contains a Tℵ0∗ t minor;
(ii) G contains a plow minor connecting u and v.

Proof. Let G, u, v be given, we show ¬(i)→(ii). For this, suppose that G does not
contain a Tℵ0∗ t minor. By Theorem 12.5.13 and Lemma 12.6.2 we may assume
that there is a finite vertex set S ⊆ V (G) r {u, v} that separates u and v in G.
Then applying Lemma 12.6.3 provides induced subgraphs Hu, Hv ⊆ G containing
u and v respectively, such that the following assertions hold:

– X := V (Hu) ∩ V (Hv) is finite, non-empty and connected in G;
– both Hu/X and Hv/X are infinitely edge-connected;
– X avoids u and v;
– uX is an edge of Hu/X and vX is an edge of Hv/X.

Then (Hu ∪Hv)/X is a plow minor connecting u and v.

Theorem 12.1. Every infinitely edge-connected graph contains either the Farey
graph or Tℵ0∗ t as a minor.

Proof. If G contains Tℵ0∗ t as a minor, then we are done. So let us suppose that
G does not contain a Tℵ0∗ t minor. Our task then is to find a Farey graph minor
in G. By Lemma 12.2.1 it suffices to find a halved Farey graph minor.

Call a graph a foresighted halved Farey graph of order n ∈ N if it is the union
of F̆n with infinitely edge-connected graphs Axy, one for every blue edge xy ∈ F̆n,
such that:

(i) each Axy meets F̆n precisely in x and y but xy /∈ Axy;
(ii) every two distinct Ae and Ae′ meet precisely in the intersection e∩ e′ of their

corresponding edges (viewed as vertex sets).

By Lemma 12.5.12 it suffices to find a sequence H0, H1, . . . of foresighted halved
Farey graphs of orders 0, 1, . . . with maps ϕn : Hn < Hn+1 that restrict to the
identity on F̆n ⊆ Hn to yield a halved Farey graph minor in G =: H0.

To get started, pick any edge e of G, and note that G = H0 is a foresighted
halved Farey graph of order 0 when we rename e to the edge of which F̆0 = K2

consists. At step n + 1, suppose that we have already constructed Hn ⊇ F̆n,
and consider the infinitely edge-connected graphs Axy that were added to F̆n to
form Hn. Theorem 12.6.5 yields in each Axy a plow minor with head hxy that
connects x and y. These plow-minors combine with F̆n and with each other to
give a map ϕn : Hn < Hn+1 ⊇ F̆n+1 that sends the branch set of every head hxy to
the vertex vxy ∈ F̆n+1− F̆n that arises from the blue edge xy ∈ F̆n in the recursive
definition of F̆n+1.
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12.7. Outlook

Here are two open problems that came to my mind.

Problem 12.7.1. Can Theorem 12.1 be strengthened to always find one of the
two minors with finite branch sets?

Seymour and Thomas [77], together with Robertson [74,75], have characterised
the graphs without Kκ or Tκ minors in terms of tree-decompositions and, alterna-
tively, in terms of various other structures. Can their list be extended to include
the Farey graph? Tree-decompositions might not be the right complementary
structures for infinitely edge-connected substructures, but there might be other
structures (e.g. Bℵ0(G)-trees):

Problem 12.7.2. Characterise the graphs without a Farey graph minor in terms
of tree-decompositions or in terms of other structures.
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Figure 13.0.1.: The Farey graph

13.1. Introduction

The Farey graph, shown in Figure 13.0.1 and surveyed in [22, 49], plays a role in a
number of mathematical fields ranging from group theory and number theory to
geometry and dynamics [22]. Curiously, graph theory has not been among these
until very recently, when it was shown that the Farey graph plays a central role
in graph theory too: it is one of two infinitely edge-connected graphs that must
occur as a minor in every infinitely edge-connected graph; see Chapter 12. Infinite
edge-connectivity, however, is only one aspect of the connectivity of the Farey
graph, and it contrasts with a second aspect: the Farey graph does not contain
infinitely many independent paths between any two of its vertices. In this chapter
we show that the Farey graph is uniquely determined by these two contrasting
aspects of its connectivity: up to minor-equivalence, the Farey graph is the unique
minor-minimal graph that is infinitely edge-connected but such that every two
vertices can be finitely separated. This is the first graph-theoretic characterisation
of the Farey graph.

A Π-graph is an infinitely edge-connected graph that does not contain infinitely
many independent paths between any two of its vertices. A Π-graph is typical if
it occurs as a minor in every Π-graph. Note that any two typical Π-graphs are
minors of each other; we call such graphs minor-equivalent. Our main result reads
as follows:

Theorem 13.1. Up to minor-equivalence, the Farey graph is the unique typical
Π-graph.

We shall see that there exist Π-graphs that contain the Farey graph as a minor
but are not minors of the Farey graph (Theorem 13.3.1).
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Theorem 13.1 continues to hold if we require all minors to have finite branch
sets; see Section 13.3.2 and Theorem 13.3.2. This is best possible in the sense
that one cannot replace ‘minors with finite branch sets’ with ‘topological minors’
(Theorem 13.3.3).

This chapter is organised as follows. Section 13.2 formally introduces the Farey
graph. In Section 13.3 we prove Theorems 13.3.1–13.3.3. We outline the overall
strategy of the proof of Theorem 13.1 in Section 13.4. We prepare the proof of
Theorem 13.1 in Section 13.5 and we prove Theorem 13.1 in Section 13.6.

13.2. Preliminaries

We defined the Farey graph in Chapter 12. Two u–v paths are order-compatible if
they traverse their common vertices in the same order.

Lemma 13.2.1. The halved Farey graph contains the Farey graph as a minor with
finite branch sets.

Proof. If e is a blue edge of F̆1, then the Farey graph is the contraction minor of
F̆ − e whose sole non-trivial branch set is V (F̆0), i.e., (F̆ − e)/V (F̆0) ∼= F .

13.3. Atypical Π-graphs and variations of the

main result

In this section we provide details on and prove the three Theorems 13.3.1–13.3.3
that we briefly mentioned in the introduction.

13.3.1. Atypical Π-graphs

Even though every Π-graph contains the Farey graph as a minor by Theorem 13.1,
the converse is generally false:

Theorem 13.3.1. There exist Π-graphs that contain the Farey graph as a minor
but are not minors of the Farey graph.

Proof. Let the graph G be obtained from some union of uncountably many disjoint
copies of the Farey graph by selecting one vertex in every copy and identifying all
the selected vertices. Then G is an uncountable Π-graph that contains the Farey
graph as a subgraph. However, G is not a minor of the Farey graph, because every
minor of the Farey graph must be countable.

13.3.2. Variations of the main result

To prove Theorem 13.1 it suffices to show the following theorem. A tight minor is
a minor with finite branch sets.

Theorem 13.2. Every Π-graph contains the Farey graph as a tight minor.
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Theorem 13.2 also implies the following variation of Theorem 13.1 where all minors
are required to have finite branch sets. Two graphs are tightly minor-equivalent if
they are tight minors of each other. A Π-graph is tightly typical if it occurs as a
tight minor in every Π-graph.

Theorem 13.3.2. Up to tight minor-equivalence, the Farey graph is the unique
tightly typical Π-graph.

This raises the question whether Theorem 13.1 continues to hold if we require all
minors to be topological minors. We answer this question in the negative:

Theorem 13.3.3. There is a Π-graph that contains the Farey graph as a tight
minor but not as a topological minor.

Proof. As we will see in Chapter 14, there exists an infinitely edge-connected graph
G that does not contain infinitely many edge-disjoint pairwise order-compatible
paths between any two of its vertices; in particular, G is a Π-graph. By Theo-
rem 13.2, the graph G contains the Farey graph as a tight minor. However, G does
not contain a subdivision of the Farey graph because the Farey graph contains
infinitely many edge-disjoint pairwise order-compatible paths between any two of
its vertices.

13.4. Overall proof strategy

Our aim for the remainder of this chapter is to prove Theorem 13.1. As we discussed
in the previous section, to prove Theorem 13.1 it suffices to show that every Π-
graph contains the Farey graph as a minor with finite branch sets (Theorem 13.2).
And by Lemma 13.2.1 in turn it suffices to find a halved Farey graph minor with
finite branch sets in any given Π-graph. The key idea of the proof is summarised
in Theorem 13.6.1 which states:

Suppose that G is any subdivided Π-graph and that u, v are two distinct branch
vertices of G. Then there exist subgraphs Hu, Hv ⊆ G that satisfy the following
conditions:

(i) Hu[X] = Hv[X] is finite and connected for X := V (Hu) ∩ V (Hv) 6= ∅;
(ii) X avoids u and v;

(iii) both Hu/X and Hv/X are subdivided Π-graphs in which u,X and v,X are
branch vertices, respectively;

(iv) uX is an edge of Hu/X and vX is an edge of Hv/X.

With this theorem at hand, it is straightforward to construct a halved Farey
graph minor with finite branch sets in any given Π-graph G: Consider any edge
uv of G and apply the theorem in G to u and v to obtain subgraphs Hu, Hv and
a non-empty finite connected vertex set X ⊆ V (G). Then the three vertices u, v
and X span a triangle F̆1 in (Hu ∪Hv)/X. And since both Hu/X and Hv/X are
subdivided Π-graphs, we can reapply the theorem in Hu/X to u and X, and in
Hv/X to v and X. By iterating this process, we obtain a halved Farey graph minor
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with finite branch sets in the original graph G at the limit, and this will complete
the proof. Therefore, it remains to prove Theorem 13.6.1 on the one hand, and to
use it to formally construct a halved Farey graph minor on the other hand. In the
next section, we prepare the proof of Theorem 13.6.1, and in the section after next
we prove Theorem 13.6.1 which we then use to prove Theorems 13.1 and 13.2.

13.5. Grain lines

It is possible to prove Theorem 13.6.1 from first principles. In this chapter,
however, I favour a more methodic proof. The advantage of this proof is that it
introduces a new tool, an x–y grain line, that allows one to control infinite systems
of edge-disjoint x–y paths even when no two paths in the system are pairwise
order-compatible. In this section we introduce the concept of an x–y grain line,
we show that these exist whenever it matters (Theorem 13.5.4) and we show two
lemmas that will help us prove Theorem 13.6.1 using grain lines at the beginning
of the next section.

Informally, we may think of an x–y grain line as a pair (L,P) where P is a
sequence of pairwise edge-disjoint x–y paths P0, P1, . . . that need not be pairwise
order-compatible but solve all incompatibilities at their linearly ordered ‘limit’ L.
The limit L will not be a graph-theoretic path but will be a linearly ordered set
of vertices. We remark, however, that it is possible to use the limit L to define a
topological x–y path in a topological extension of any graph containing the grain
line, see [57, §6.3].

Here is the formal definition of an x–y grain-line:

Definition 13.5.1. An x–y grain line between two distinct vertices x and y is
an ordered pair (L,P) where L = (L,≤L) is a linearly ordered countable set
of vertices with least element x and greatest element y, and P = (Pn)n∈N is a
sequence of pairwise edge-disjoint x–y paths Pn, such that the following three
conditions are satisfied:

(GL1) L =
{
v
∣∣∣ {n ∈ N : v ∈ V (Pn) } is a final segment of N

}
;

(GL2) if a vertex of a path Pn is not contained in L, then it is not a vertex of any
other path Pm (m 6= n);

(GL3) for all n ∈ N, the x–y path Pn and the linearly ordered vertex set L induce
the same linear ordering on the vertex set L<n := L ∩

⋃
k<n V (Pk).

We remark that (GL3) allows Pn and L to induce distinct linear orderings on
the vertex set V (Pn) ∩ L if the inclusion L<n ⊆ V (Pn) ∩ L is proper; in particular,
Pn and Pn+1 need not be order-compatible. Allowing this becomes necessary, for
example, if an infinitely edge-connected graph does not contain infinitely many
edge-disjoint pairwise order compatible paths between x and y, see Example 13.5.3.

Clearly, L =
⋃
n L<n. Note that if (L, (Pn)n∈N) is a grain line, then a vertex v

lies in L if and only if it lies on all paths Pn with n ≥ N for N the first number with
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v ∈ PN if and only if it lies on at least two paths Pn, Pm (n 6= m). In particular,

V (Pn) ∩
⋃
k<n

V (Pk) = L<n for all n ∈ N.

We speak of an x–y grain line (L, (Pn)n∈N) in a graph G if
⋃
n∈N Pn ⊆ G (and

hence L ⊆ V (G)). Whenever a grain line is introduced as (L,P), we tacitly
assume P = (Pn)n∈N. In general, however, we also allow sequences P = (Pn)n≥N
whose indexing starts at an arbitrary number N > 0 in which case the definition
of a grain line adapts in the obvious way. We use the interval notation for L as
usual, i.e., we write [`1, `2]L = { ` ∈ L | `1 ≤L ` ≤L `2 } and so on.

Example 13.5.2. The blue Hamilton paths Pn ⊆ F̆n are pairwise edge-disjoint
and order-compatible, and hence give rise to an x–y grain line in F̆ for x and y
the two vertices of F̆0. In this case, L = V (F̆ ) is order-isomorphic to Q ∩ [0, 1].

Example 13.5.3. We will show in Chapter 14 that there exists an infinitely edge-
connected graph G that does not contain infinitely many edge-disjoint pairwise
order-compatible paths between any two of its vertices; in particular, G is a
Π-graph. We shall see that the graph G contains a grain line between any two
of its vertices because it is infinitely edge-connected; see Theorem 13.5.4 below.
However, since G does not contain infinitely many edge-disjoint pairwise order-
compatible paths between any two of its vertices, every grain line (L,P) in G has
two paths Pn and Pn+1 that are not order-compatible; in particular, Pn induces
the same linear ordering on L<n ( V (Pn) ∩ L as L does, but disagrees with L
on V (Pn) ∩ L = V (Pn) ∩ V (Pn+1) because L induces the ordering of Pn+1 on
V (Pn) ∩ V (Pn+1) = L<n+1. This is why we do not strengthen (GL3) to require
that Pn and L induce the same linear ordering on V (Pn) ∩ L ⊇ L<n.

Our first result on grain lines shows that they exist whenever it matters:

Theorem 13.5.4. Let x and y be any two distinct vertices of a graph G. Then
there exists an x–y grain line in G if and only if G contains infinitely many
edge-disjoint x–y paths.

Proof of Theorem 13.5.4. Every x–y grain line comes with a system of infinitely
many edge-disjoint x–y paths. For the backward implication let x and y be given,
and let Q be any countably infinite collection of edge-disjoint x–y paths in G.
Moreover, we let X be the collection of all finite subsets of the vertex set of the
subgraph

⋃
Q ⊆ G, directed by inclusion.

Given X ∈ X we write lin(X) for the finite collection of all linearly ordered
subsets of X. Letting, for all X ⊆ X ′ ∈ X , the map ϕX′,X : lin(X ′)→ lin(X) take
every linearly ordered subset of X ′ to its restriction with respect to X turns the
finite sets lin(X) into an inverse system { lin(X), ϕX′,X , X }.

Every x–y path P ∈ Q naturally induces a linear ordering ≤P on its vertex
set with x <P y, and for every X ∈ X we denote by ≤XP the linear ordering on
V (P )∩X induced by ≤P . Then for every X ∈ X we define a map ψX : Q → lin(X)
by letting

ψX(P ) := (V (P ) ∩X,≤XP )
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for all P ∈ Q, and we put

LX := { ξ ∈ lin(X) | ψ−1
X (ξ) ⊆ Q is infinite }

noting that LX ⊆ lin(X) is non-empty by the pigeonhole principle. Since the maps
ψX commute with the bonding maps ϕX′,X as pictured in the diagram below,

Q

lin(X) lin(X ′)

ψX ψX′

ϕX′,X

the restrictions of these bonding maps to the sets LX yield another inverse system,
namely {LX , ϕX′,X � LX′ , X }. And as the finite sets LX are all non-empty, this
inverse system has an element ( (LX ,≤X) | X ∈ X ) in its limit.

Finally, we define an x–y grain line (L,P), as follows. We let L :=
⋃
X∈X LX

and ≤L :=
⋃
X∈X ≤X . To obtain P = (Pn)n∈N we choose pairwise edge-disjoint

x–y paths P0, P1, . . . from Q inductively, as follows. Choose an enumeration
x0, x1, . . . of the countable vertex set

⋃
X of

⋃
Q. At step 0, we let X0 := {x0}

and choose P0 ∈ ψ−1
X0

(LX0) arbitrarily (we abbreviate LX = (LX ,≤X)). At step
n+ 1, we let Xn+1 := Xn ∪ V (Pn)∪ {xn+1} and we pick from the infinite preimage
ψ−1
Xn+1

(LXn+1) a path Pn+1 other than the previously chosen paths P0, . . . , Pn. It
is straightforward to check that (L,P) is an x–y grain line in G.

A grain line (L,P) is wild if L is order-isomorphic to Q∩ [0, 1]. We call a grain
line (L,P) wildly presented if, for every n ∈ N, whenever `1 <L `2 are elements of
L<n ⊆ L then ˚̀

1Pn˚̀2 has a vertex in (`1, `2)L. The grain line in Example 13.5.2 is
both wild and wildly presented. Wildly presented grain lines are wild. Conversely,
if a grain line (L,P) is wild, then P = (Pn)n∈N has a subsequence (Pnk)k∈N such
that (L, (Pnk)k∈N) is wildly presented.

Lemma 13.5.5. Every grain line in a subdivided Π-graph is wild; in particular,
in a subdivided Π-graph every grain line can be chosen to be wildly presented.

In the proof we use the following properties of grain lines. Given a grain line
(L,P) we say that a path Pn does (L,P)-grain a set U of vertices if, for all
m ≥ n, we have V (Pm) ∩ U = L ∩ U and the path Pm induces the same linear
ordering on this intersection as L does. If (L,P) is clear from context, we also
say that Pn grains U . Every path Pn grains the union

⋃
k<n V (Pk) by (GL3). And

for every finite vertex set X there is a number n ∈ N such that Pn grains X. We
will use this latter property frequently in the proofs to come.

Proof of Lemma 13.5.5. Suppose that (L,P) is any grain line in some given
subdivided Π-graph G. It suffices to show that (L,P) is wild. For this, consider
any two elements `1, `2 ∈ L with `1 <L `2. Then `1 and `2 must have infinite
degree in G; in particular, `1 and `2 must be branch vertices of G. Since G is a
subdivided Π-graph, we find a finite vertex set S ⊆ V (G)r {`1, `2} that separates
`1 and `2 in G− `1`2. Then we pick N ∈ N such that PN avoids the edge `1`2 and
grains the finite vertex set S ∪ {`1, `2}. Now `1PN`2 must meet S in a vertex s,
and then PN graining S ∪ {`1, `2} implies s ∈ L with `1 <L s <L `2 as desired.
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Grain lines can be restricted such that the restriction is again a grain line, and
restricting a grain line preserves wild presentations:

Lemma 13.5.6. If (L,P) is a grain line with `1 <L `2 and N ∈ N is such that
PN grains {`1, `2}, then ([`1, `2]L, (`1Pn`2)n≥N ) is an `1–`2 grain line that is wildly
presented if (L,P) is.

Proof. First, we show that ([`1, `2]L, (`1Pn`2)n≥N) is an `1–`2 grain line.
(GL1) We have to show the equality

[`1, `2]L =
{
v
∣∣∣ {n ∈ N≥N : v ∈ V (`1Pn`2) } is a final segment of N≥N

}
.

We start with the backward inclusion. If a vertex v lies on `1Pn`2 for all n in some
final segment of N≥N then it lies in L by (GL2) for (L,P), and in particular it
also lies on `1Pn`2 when Pn does (L,P)-grain {`1, v, `2} so v ∈ [`1, `2]L follows.
Conversely, if v is a vertex in [`1, `2]L and k ≥ N is minimal with v ∈ `1Pk`2,
then Pk+1 does (L,P)-grain {`1, v, `2}. Therefore, v is contained in `1Pn`2 for all
n ≥ k, and hence N≥k witnesses that v is contained in the right hand side of the
equation.

(GL2) Consider any vertex v ∈ (
⋃
n≥N `1Pn`2) − [`1, `2]L and let k ≥ N be

minimal such that `1Pk`2 contains v. If v is not contained in L, then Pk is the only
path from P containing v, and hence `1Pk`2 is the only path from (`1Pn`2)n≥N
containing v. Otherwise v is contained in Lr [`1, `2]L so, say, `2 <L v. Then, as
Pn with n > k does (L,P)-grain V (Pk), the vertex `2 precedes v on Pn, giving
v /∈ `1Pn`2 as desired.

(GL3) Consider any n ≥ N and write L′<n := [`1, `2]L ∩
⋃n−1
k=N V (`1Pk`2). By

the already shown (GL1) we have L′<n ⊆ V (`1Pn`2), so `1Pn`2 does induce a linear
ordering on L′<n, and it coincides with the linear ordering induced by [`1, `2]L by
(GL3) for (L,P).

Therefore, ([`1, `2]L, (`1Pn`2)n≥N) is an `1–`2 grain line; now we show that it is
wildly presented if (L,P) is. For this consider any n ≥ N with some two elements
` <L `

′ of L′<n. Then, as (L,P) is wildly presented and L′<n ⊆ L<n, the subpath
˚̀Pn˚̀

′ of `1Pn`2 has a vertex in (`, `′)L.
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13.6. Proof of the main result

In this section, we employ our results on grain lines to prove Theorem 13.6.1,
which we then use to prove Theorems 13.1 and 13.2.

Theorem 13.6.1. Suppose that G is any subdivided Π-graph and that u, v are two
distinct branch vertices of G. Then there exist subgraphs Hu, Hv ⊆ G that satisfy
the following conditions:

(i) Hu[X] = Hv[X] is finite and connected for X := V (Hu) ∩ V (Hv) 6= ∅;
(ii) X avoids u and v;

(iii) both Hu/X and Hv/X are subdivided Π-graphs in which u,X and v,X are
branch vertices, respectively;

(iv) uX is an edge of Hu/X and vX is an edge of Hv/X.

Proof. Without loss of generality we may assume that uv is not an edge of G.
Using that G is a subdivided Π-graph we find a finite vertex set S ⊆ V (G)r{u, v}
that separates u and v in G. We write Cu and Cv for the two distinct components
of G − S that contain u and v respectively. Next, we use Theorem 13.5.4 and
Lemma 13.5.5 to find a wildly presented u–v grain line (L,P) in G. Without loss
of generality we may assume that P0 grains the finite vertex set S. We let su be
the first vertex of the u–v path P0 in S, and we let sv be the last vertex of P0 in S.
That is to say that su and sv are the least and greatest vertex of L in S. Then, for
all n ∈ N, the paths uPnsu and svPnv are contained in G[Cu + su] and G[sv + Cv]
respectively.

Next, we let xu and xv be the least and greatest vertex of L in V (P̊0). Moreover,
we let Lu := [u, xu]L and Pu := (uPnxu)n≥1, and we let Lv := [xv, v]L and
Pv := (xvPnv)n≥1. Then (Lu,Pu) and (Lv,Pv) are wildly presented u–xu and
xv–v grain lines in G by Lemma 13.5.6. We claim that Hu := P0v̊ ∪

⋃
Pu and

Hv := ůP0 ∪
⋃

Pv are the desired subgraphs.
First, we show that X = V (P̊0) and that X satisfies (i), (ii) and (iv). For this, it

suffices to show that for every n ≥ 1 the paths uPnxu and xvPnv are u–P̊0 and P̊0–v
paths in G[Cu+su] and G[sv+Cv], respectively. The vertex su ∈ L∩S ⊆ L∩V (P̊0)
was a candidate for xu, implying xu ≤L su, and then for all n ≥ 1 the path Pn
graining V (P0) gives uPnxu ⊆ uPnsu ⊆ G[Cu + su] on the one hand and that xu
is the first vertex of Pn in P̊0 on the other hand; for the paths xvPnv we employ
symmetry.

(iii) follows from the facts that (Lu,Pu) and (Lv,Pv) are wildly presented and
that all paths uPnxu and xvPnv (n ≥ 1) are u–P̊0 and P̊0–v paths respectively.

Now we have almost all we need to prove Theorems 13.1 and 13.2. In the proof
of Theorem 13.2, we will face the construction of a minor with finite branch sets
in countably many steps. The following notation and lemma will help us to keep
the technical side of this construction to the minimum.

Suppose that G and H are two graphs with H a minor of G. Then there are
a vertex set U ⊆ V (G) and a surjection f : U → V (H) such that the preimages
f−1(x) ⊆ U form the branch sets of a model of H in G. A minor-map ϕ : G < H
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formally is such a pair (U, f). Given ϕ = (U, f) we address U as V (ϕ) and we
write ϕ = f by abuse of notation. Usually, we will abbreviate ‘minor-map’ as
‘map’. The proof of Lemma 12.5.12 shows:

Lemma 13.6.2. Let G0, G1, . . . and H0 ⊆ H1 ⊆ · · · be two sequences of graphs
Hn ⊆ Gn with maps ϕn : Gn < Gn+1 such that for every vertex x ∈ Gn+1 the
preimage ϕ−1

n (x) is finite if x /∈ Hn and equal to {x} if x ∈ Hn. Then G contains⋃
n∈NHn as a minor with finite branch sets.

Proof of Theorem 13.2. Let G be any Π-graph. We have to find a Farey graph
minor in G with finite branch sets. By Lemma 13.2.1 it suffices to find a halved
Farey graph minor with finite branch sets in G.

Call a graph a foresighted halved Farey graph of order n ∈ N if it is the edge-
disjoint union of F̆n with subdivided Π-graphs Auv, one for every blue edge uv ∈ F̆n,
such that:

– each Auv meets F̆n precisely in u and v but uv /∈ Auv;
– u and v are branch vertices of Auv;
– every two distinct Ae and Ae′ meet precisely in the intersection e∩ e′ of their

corresponding edges (viewed as vertex sets).

To find a halved Farey graph minor with finite branch sets in G, it suffices by
Lemma 13.6.2 to find a sequence G =: H0, H1, . . . of foresighted halved Farey
graphs of orders 0, 1, . . . with maps ϕn : Hn < Hn+1 such that ϕ−1

n (x) is finite for
all x ∈ Hn+1 − F̆n and ϕ−1

n (x) = {x} for all x ∈ F̆n.
To get started, pick any edge e of G, and note that G = H0 is a foresighted

halved Farey graph of order 0 with Ae = G− e when we rename e to the edge of
which F̆0 = K2 consists.

At step n+ 1 suppose that we have already constructed Hn ⊇ F̆n and consider
the subdivided Π-graphs Ae that were added to F̆n to form Hn. Theorem 13.6.1
yields in each Ae two subgraphs He

u, H
e
v for e = uv that satisfy the following

conditions:

(i) He
u[X

e] = He
v [X

e] is finite and connected for Xe := V (He
u) ∩ V (He

v) 6= ∅;
(ii) Xe avoids u and v;

(iii) both He
u/X

e and He
v/X

e are subdivided Π-graphs in which u,Xe and v,Xe

are branch vertices, respectively;
(iv) uXe is an edge of He

u/X
e and vXe is an edge of He

v/X
e.

Then we let Auve := He
u/X

e and Avev := He
v/X

e for every blue edge uv ∈ F̆n,
where we recall that ve is the vertex ve ∈ F̆n+1 − F̆n that arises from uv ∈ F̆n in
the recursive definition of F̆n+1. After renaming the vertex Xe to ve in both Auve
and Avev, we let

Hn+1 := F̆n+1 ∪
⋃
{Af | f ∈ F̆n+1 is a blue edge }

V (ϕn) := V (F̆n) ∪
⋃
{V (He

u) ∪ V (He
v) | e = uv ∈ F̆n is a blue edge }

and we let ϕn : V (ϕn) → V (Hn+1) send w to ve if w ∈ Xe for some blue edge
e ∈ F̆n and ϕn(w) := w otherwise. This completes the proof.

Proof of Theorem 13.1. Theorem 13.2 implies Theorem 13.1.
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14. Ubiquity and the Farey graph

Figure 14.0.1.: The whirl graph, colourised

14.1. Introduction

“One of the most basic problems in an infinite setting that has no finite equivalent
is whether or not ‘arbitrarily many’, in some context, implies ‘infinitely many’.”
(Diestel [26]). For example, Halin [26, 46] proved that if a graph contains k
disjoint rays for every integer k, then it contains infinitely many disjoint rays.
Substructures of a given type—subgraphs, minors, rooted minors or whatever—
of which there must exist infinitely many disjoint copies (for some notion of
disjointness) in a given graph as soon as there are arbitrarily (finitely) many such
copies are called ubiquitous [26]. Examples of ubiquity results can be found in
[2–5,7–10,26,42,46,64,85].

Usually, ubiquity problems are trivial as soon as the substructures considered are
finite. For example, if a graph G contains k disjoint u–v paths for every integer k
and some fixed vertices u and v, we can greedily find infinitely many disjoint u–v
paths in G. Similarly, edge-disjoint paths between two fixed vertices are clearly
ubiquitous. Interestingly, this changes as soon as we require our edge-disjoint
paths to traverse their common vertices in the same order.

Let us call two u–v paths order-compatible if they traverse their common vertices
in the same order. Our first aim in this chapter is to show that edge-disjoint
order-compatible paths between two given vertices are not ubiquitous: we shall
construct a graph G, the whirl graph shown in Figure 14.0.1, that has two vertices
u and v such that G contains k edge-disjoint order-compatible u–v paths for every
integer k, but not infinitely many. In fact, the whirl graph G will have this property
for all pairs of vertices:

Theorem 14.1. The whirl graph is a countable planar graph that contains k
edge-disjoint pairwise order-compatible paths between every two of its vertices for
every k ∈ N, but which does not contain infinitely many edge-disjoint pairwise
order-compatible paths between any two of its vertices.
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14. Ubiquity and the Farey graph

Applications

Our result has two applications.

Figure 14.1.1.: The Farey graph Figure 14.1.2.: The graph Tℵ0∗ t

The Farey graph, shown in Figure 14.1.1 and surveyed in [22,49], plays a role in
a number of mathematical fields ranging from group theory and number theory to
geometry and dynamics [22]. Curiously, graph theory has not been among these
until very recently, when it was shown that the Farey graph plays a central role in
graph theory too: it is one of two infinitely edge-connected graphs that must occur
unavoidably as a minor in every infinitely edge-connected graph. The second graph
is Tℵ0∗ t, the graph obtained from the infinitely-branching tree Tℵ0 by joining an
additional vertex t to all its vertices; see Figure 14.1.2.

Theorem 12.1. Every infinitely edge-connected graph contains either the Farey
graph or Tℵ0∗ t as a minor.

This result lies in the intersection of Ramsey theory and the study of connectivity;
see the introduction of Chapter 12. Related results can be found in [26,38,40,45,
51,65]; see [26, §9.4] or the introduction of [40] for surveys.

The obvious question this theorem raises is whether it is best possible in the
sense that one cannot replace ‘minor’ with ‘topological minor’ in its wording. The
whirl graph and Theorem 14.1 are needed in Chapter 12 to answer this question
in the affirmative:

Theorem 12.3.3. The whirl graph is infinitely edge-connected but contains neither
the Farey graph nor Tℵ0∗ t as a topological minor.

The second application of the whirl graph and Theorem 14.1 concerns the
first graph-theoretic characterisation of the Farey graph. Very recently it was
shown that the Farey graph is uniquely determined by its connectivity: up to
minor-equivalence, the Farey graph is the unique minor-minimal graph that is
infinitely edge-connected but such that every two vertices can be finitely separated.
A Π-graph is an infinitely edge-connected graph that does not contain infinitely
many independent paths between any two of its vertices. A Π-graph is typical if
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14. Ubiquity and the Farey graph

it occurs as a minor in every Π-graph. Note that any two typical Π-graphs are
minors of each other; we call such graphs minor-equivalent.

Theorem 13.1. Up to minor-equivalence, the Farey graph is the unique typical
Π-graph.

This theorem continues to hold if we require all minors to be tight: A tight minor
is a minor with finite branch sets. A Π-graph is tightly typical it it occurs as a
tight minor in every Π-graph. Note that any two tightly typical Π-graphs are tight
minors of each other; we call such graphs tightly minor-equivalent.

Theorem 13.3.2. Up to tight minor-equivalence, the Farey graph is the unique
tightly typical Π-graph.

The obvious question this theorem raises is whether it is best possible in the
sense that one cannot replace ‘tight’ with ‘topological’. The whirl graph and
Theorem 14.1 are needed in Chapter 13 to answer this question in the affirmative:

Theorem 13.3.3. The whirl graph is a Π-graph that contains the Farey graph as
a tight minor but not as a topological minor.

This theorem in turn raises the two questions how exactly the Farey graph is
contained in the whirl graph as a minor and how large the branch sets actually
are. We shall use the Cantor set to explicitly determine a Farey graph minor
in the whirl graph with branch sets of size two; see Section 14.3 for the explicit
description of the Farey graph minor.

Theorem 14.2. The whirl graph contains the Farey graph as a minor with branch
sets of size two, but not as a topological minor.

This chapter is organised as follows. We introduce the whirl graph in Section 14.2
where we also prove Theorem 14.1, and we prove Theorem 14.2 in Section 14.3.

14.2. Proof of Theorem 1

The whirl graph, shown in Figure 14.0.1, is the graph G = (V,E) on V :=
⋃∞
n=1 Vn

where Vn :=
{

0
3n
, 1

3n
, . . . , 3n

3n

}
and with edge set E :=

⋃∞
n=1 En where

En :=
{{

3k
3n
, 3k+2

3n

}
,
{

3k+1
3n

, 3k+2
3n

}
,
{

3k+1
3n

, 3k+3
3n

} ∣∣∣ k ∈ {0, 1, . . . , 3n−1 − 1
}}

.

For every integer n ≥ 1 we define the three subgraphs

G≤n := (Vn,
⋃n
k=1Ek) and Gn := (Vn, En) and G≥n := (V,

⋃∞
k=nEk);

see Figure 14.2.1 for an illustration. Note that Gn is a Hamilton path of G≤n for
all n.

For the proof of Theorem 14.1 we need another theorem and a lemma. At the end
of one of my talks at Hamburg that involved order-compatible paths, Joshua Erde
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14. Ubiquity and the Farey graph

0

1

Figure 14.2.1.: G1 = G≤1 is black, G≤2 is the union of black and red, G2 is red,
G≥2 is the union of red and blue, and G≥3 is blue

asked: Is there a function f : N→ N such that, for every graph H and every two
vertices u and v of H, the existence of at least f(k) many edge-disjoint u–v paths
in H implies the existence of k many edge-disjoint pairwise order-compatible u–v
paths in H? The next day, Jakob Kneip answered the question in the affirmative
for f(k) = k the identity on N:

Theorem 14.2.1 (Kneip). Let H be any graph, let u and v be any two distinct
vertices of H, and let n be any natural number. If H contains n edge-disjoint u–v
paths, then H also contains n edge-disjoint pairwise order-compatible u–v paths.

Proof. Given H, u, v, n we suppose that H contains n edge-disjoint u–v paths.
Choose a path-system P of n edge-disjoint u–v paths in H that uses as few edges
of H as possible. Then the paths in P are pairwise order-compatible: For this,
assume for a contradiction that P and Q are paths in P such that P traverses two
vertices x and y as x <P y while Q traverses them as y <Q x. Then uPx ∪ xQv
and uQy ∪ yPv are connected edge-disjoint subgraphs of P ∪Q, so we may choose
one u–v path in each of the two. Now replacing P and Q with these two new paths
yields a system of n edge-disjoint u–v paths using strictly fewer edges of H than P ,
since the edges of xPy and yQx are not used by the new paths (contradiction).

Lemma 14.2.2. Let u, v ∈ V be any two vertices with u <Q v and let n > 1 be
any integer with u, v ∈ Vn−1. If P ⊆ G≥n is any u–v path, then

Vn−1 ∩ [u, v] ⊆ V (P ) ⊆ V ∩ [u, v]

and P traverses the vertices in Vn−1 ∩ [u, v] in the natural order induced by Q.

Proof. Every vertex x ∈ Vn−1 r {0, 1} is a cutvertex of G≥n and the components
of G≥n − x are G≥n[V ∩ [0, x) ] and G≥n[V ∩ (x, 1] ]. This clearly implies the
statement of the lemma.

Now we prove Theorem 14.1:
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14. Ubiquity and the Farey graph

Proof of Theorem 14.1. Clearly, G is planar. It is infinitely edge-connected because
it can be written as the edge-disjoint union

⋃
n∈NGn = G. In particular, it follows

from Theorem 14.2.1 that G contains k edge-disjoint pairwise order-compatible
paths between any two vertices, for every k ∈ N.

It remains to show that G does not contain infinitely many edge-disjoint pairwise
order-compatible paths between any two vertices. For this, let any two vertices
u and v of G be given, say with u <Q v. We pick any integer N > 1 such that
u, v ∈ VN−1. Since all the edge sets E0, E1, . . . are finite, it suffices to show the
following assertion:

Whenever P is any u–v path in G≥N and M ≥ N is the minimal integer such
that G≤M contains P , no u–v path in G≥M+1 is order-compatible with P .

Let P and M be given. By the minimality of M the path P must have an edge e
in EM . Let x and y be the two consecutive elements of VM−1 ⊆ Q bounding an
interval [x, y] that contains the endvertices of e. We claim that P contains the
subpath xGMy of the 0–1 Hamilton path GM of G≤M .

Indeed, on the one hand the edge e lies on P , so P has a vertex in VM ∩ (x, y).
On the other hand, the separator of the separation {VM r (x, y), VM ∩ [x, y] } of
G≤M is {x, y} while u, v ∈ VM−1 ⊆ VM r (x, y) and G≤M [VM ∩ [x, y] ] = xGMy.
Thus, the u–v path P meeting VM ∩ (x, y) implies that P contains both vertices
x and y and that either xPy = xGMy or yPx is the reverse of xGMy. In either
case, P contains xGMy.

Now let Q be any u–v path in G≥M+1. We show that Q is not order-compatible
with P . For this, we consider the path xGMy that is contained in P . We
apply Lemma 14.2.2 twice: First, we apply it to u, v,N and P to establish
V (P ) ⊆ V ∩ [u, v] which ensures u ≤ x < y ≤ v in Q. And the second time we
apply it to u, v,M + 1 and Q to establish VM ∩ [u, v] ⊆ V (Q) and that Q traverses
the vertices in VM ∩ [u, v] in the natural order induced by Q. Altogether, we
deduce that Q traverses the vertices in V (xGMy) ⊆ VM ∩ [x, y] ⊆ VM ∩ [u, v] in
the natural order induced by Q. Since P contains xGMy and xGMy is the path

3k
3M

3k+2
3M

3k+1
3M

3k+3
3M

for the appropriate integer k, the paths P and Q certainly are not order-compatible,
completing the proof.

14.3. Finding the Farey graph in the whirl graph

For the definition of the Farey graph, see Chapter 12. We have shown in Chapter 13
that any graph contains the Farey graph as a minor with finite branch sets if it is
infinitely edge-connected and does not contain infinitely many independent paths
between any two vertices. As independent paths are order-compatible, it follows
that the whirl graph contains the Farey graph as a minor with finite branch sets.
The result in Chapter 13, however, does not provide an explicit description of the
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14. Ubiquity and the Farey graph

Farey graph minor in the whirl graph, nor does it tell us how large the branch sets
actually are. In our particular situation, the latter is especially unsatisfactory, as
we already know that infinitely many branch sets must be non-trivial because the
whirl graph does not contain the Farey graph as a topological minor. That is why
in this section we use the Cantor set to explicitly determine a Farey graph minor
in the whirl graph with branch sets of size two.

Recall that the Cantor set is C :=
⋂∞
n=0

⋃
Cn where C0 := { [0, 1] } and Cn+1 is

obtained from Cn by replacing each interval [a, a+ ∆] ∈ Cn with the two intervals
[a, a+ 1

3
∆] and [a+ 2

3
∆, a+ ∆].

We define the subgraph G∗ := (C∗, E∗) ⊆ G on C∗ :=
⋃∞
n=1 C

∗
n and with edge

set E∗ :=
⋃∞
n=1 E

∗
n where

C∗n :=
{
a, a+ 1

3
∆, a+ 2

3
∆, a+ ∆

∣∣ [a, a+ ∆] ∈ Cn−1

}
= {x, y | [x, y] ∈ Cn } = Vn ∩ C and

E∗n :=
{
{a, a+ 2

3
∆}, {a+ 1

3
∆, a+ 2

3
∆}, {a+ 1

3
∆, a+ ∆}

∣∣ [a, a+ ∆] ∈ Cn−1

}
⊆ En.

We shall find the halved Farey graph (minus one edge) as a contraction minor
of G∗. For this, we write G∗≤n := (C∗n,

⋃n
k=1E

∗
k) and M :=

⋃∞
n=1Mn where

Mn :=
{
{a+ 1

3
∆, a+ 2

3
∆}

∣∣ [a, a+ ∆] ∈ Cn−1

}
⊆ E∗n;

see Figure 14.3.1 for an illustration. We write M≤n :=
⋃n
k=1 Mk. If D is an

independent set of edges and H is any graph, then we denote by H/D the
contraction minor of H obtained by contracting the edges in D ∩ E(H).

0

1

x y

Figure 14.3.1.: On the left: The red edges form M , and together with the blue
edges they form G∗. On the right: F̆ − E(F̆0) with blue edge set
and red vertex set.

Lemma 14.3.1. There exists an isomorphism G∗/M ∼= F̆ −E(F̆0) that associates
0 and 1 with the two vertices of F̆0.

Proof. Let x and y be the two endvertices of F̆0.
On the one hand, for every n ∈ N the x–y Hamilton path of F̆n formed by the

blue edges of F̆n induces a linear ordering on the vertex set of F̆n in which x is the
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least element and y is the greatest, and these orderings are compatible for distinct
numbers n.

On the other hand, for every integer n ≥ 1 the vertex set {0, 1}∪M≤n of G∗≤n/M
inherits the linear ordering ≤n from Q in which 0 <n e <n 1 for all e ∈M≤n and
{u, v} <n {s, t} if and only if min{u, v} <Q min{s, t} for all uv 6= st ∈M≤n, and
again these linear orderings are compatible for distinct numbers n.

An induction on n ≥ 1 shows that the unique order-isomorphism ϕn between
the linearly ordered finite vertex sets of G∗≤n/M and F̆n − E(F̆0) is a graph-
isomorphism such that ϕ1 ⊆ · · · ⊆ ϕn. Then the ascending union

⋃∞
n=1 ϕn of these

isormorphisms is the desired graph-isomorphism between G∗/M and F̆ − E(F̆0)
that associates 0 and 1 with the two vertices of F̆0.

In order to find a Farey graph minor in G, we must find two halved Farey
graph minors in G. For this, we consider copies of G∗ in G that arise by linear
transformation. Every permutation π of Q acts on both the set of graphs H with
V (H) ⊆ Q and the set of edge sets D with D ⊆ [Q]2 by renaming every vertex v
to π(v). Then we write πH and πD for the resulting graph and edge set. Now let
us consider the two permutations π1(x) := (1/9)x+ 3/9 and π2(x) := (1/9)x+ 5/9.
These send G∗ to copies π1G

∗ and π2G
∗ of G∗ that are subgraphs of G. By

Lemma 14.3.1 we have π1G
∗/π1M ∼= F̆ − E(F̆0) and π2G

∗/π2M ∼= F̆ − E(F̆0)
by isomorphisms that associate the vertices 3/9, 4/9 and 5/9, 6/9 with the two
vertices of F̆0. Joining these two halved Farey graph minors appropriately yields
the desired Farey graph minor, as shown in Figure 14.3.2:

3
9

4
9

5
9

6
9

Figure 14.3.2.: This is G[V ∩ [3/9, 6/9] ]. The two subgraphs π1G
∗ and π2G

∗ are
drawn using both red and blue, like in Figure 14.3.1. Theorem 14.2
states that the Farey graph arises from the subgraph consisting of
the coloured edges by contracting red and orange while keeping
blue and cyan.
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Theorem 14.2. The whirl graph contains the Farey graph as a minor with branch
sets of size two:

F ∼=
(
π1G

∗ ∪ π2G
∗ +

{
3
9
, 5

9

}
+
{

4
9
, 6

9

}
+
{

3
9
, 6

9

}) /(
π1M ∪ π2M +

{
3
9
, 5

9

}
+
{

4
9
, 6

9

})
where π1G

∗ ∪ π2G
∗ +

{
3
9
, 5

9

}
+
{

4
9
, 6

9

}
+
{

3
9
, 6

9

}
⊆ G. But the whirl graph does not

contain the Farey graph as a topological minor.
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15. English summary

Part I:

Chapter 3. We show that the tangle space of a graph, which compactifies it,
is a quotient of its Stone-Čech remainder obtained by contracting the connected
components.

Chapter 4. Carmesin has extended Robertson and Seymour’s tree-of-tangles
theorem to the infinite-order tangles of locally finite infinite graphs. We extend it
further to the infinite-order tangles of all infinite graphs.

Our result has a number of applications for the topology of infinite graphs, such
as their end spaces and their compactifications.

Part II:

Chapter 5. Extending the well-known star-comb lemma for infinite graphs, we
characterise the graphs that do not contain an infinite comb or an infinite star,
respectively, attached to a given set of vertices.

We offer several characterisations: in terms of normal trees, tree-decompositions,
ranks of rayless graphs and tangle-distinguishing separators.

Chapter 6. In a series of four chapters we determine structures whose existence is
dual, in the sense of complementary, to the existence of stars or combs. Here, in the
second chapter of the series, we present duality theorems for combinations of stars
and combs: dominating stars and dominated combs. As dominating stars exist if
and only if dominated combs do, the structures complementary to them coincide.
Like for arbitrary stars and combs, our duality theorems for dominated combs (and
dominating stars) are phrased in terms of normal trees or tree-decompositions.

The complementary structures we provide for dominated combs unify those for
stars and combs and allow us to derive our duality theorems for stars and combs
from those for dominated combs. This is surprising given that our complementary
structures for stars and combs are quite different: those for stars are locally finite
whereas those for combs are rayless.

Chapter 7. In a series of four chapters we determine structures whose existence is
dual, in the sense of complementary, to the existence of stars or combs. Here, in the
third chapter of the series, we present duality theorems for a combination of stars
and combs: undominated combs. We describe their complementary structures in
terms of rayless trees and of tree-decompositions.

Applications include a complete characterisation, in terms of normal spanning
trees, of the graphs whose rays are dominated but which have no rayless span-
ning tree. Only two such graphs had so far been constructed, by Seymour and
Thomas [76] and by Thomassen [83]. As a corollary, we show that graphs with a
normal spanning tree have a rayless spanning tree if and only if all their rays are
dominated.

Another application settles a problem left unsolved by Carmesin [19]: The

237



15. English summary

graphs whose undominated ends are reflected by a suitable spanning tree can be
characterised in terms of normal spanning trees. In particular, we show that every
graph that has a normal spanning tree does have a spanning tree reflecting its
undominated ends.

Chapter 8. In a series of four chapters we determine structures whose existence
is dual, in the sense of complementary, to the existence of stars or combs. In the
first chapter of our series we determined structures that are complementary to
arbitrary stars or combs. Stars and combs can be combined, positively as well
as negatively. In the second and third chapter of our series we provided duality
theorems for all but one of the possible combinations.

In this fourth and final chapter of our series, we complete our solution to the
problem of finding complementary structures for stars, combs, and their combi-
nations, by presenting duality theorems for the missing piece: for undominating
stars. Our duality theorems are phrased in terms of end-compactified subgraphs,
tree-decompositions and tangle-distinguishing separators.

Chapter 9. Schmidt characterised the class of rayless graphs by an ordinal
rank function, which makes it possible to prove statements about rayless graphs
by transfinite induction. Halin asked whether Schmidt’s rank function can be
generalised to characterise other important classes of graphs. In this chapter we
answer Halin’s question in the affirmative: we characterise two important classes
of graphs by an ordinal rank function.

Seymour and Thomas have characterised for every uncountable cardinal κ the
class of graphs without a Tκ minor. We extend their characterisations by an ordinal
rank function, one for every uncountable cardinal κ.

Another largely open problem raised by Halin asks for a characterisation of
the class of graphs with an end-faithful spanning tree. A well-studied subclass is
formed by the graphs with a normal spanning tree. We determine a larger subclass,
the class of normally traceable graphs, which consists of the connected graphs with
a rayless tree-decomposition into normally spanned parts. Investigating the class
of normally traceable graphs further, we prove that all its graphs have spanning
trees reflecting their undominated ends. Our proofs rely on a characterisation of
the class of normally traceable graphs by an ordinal rank function that we provide.

Part III:

Chapter 10. We show that every connected graph can be approximated by a
normal tree, up to some arbitrarily small error phrased in terms of neighbourhoods
around its ends. The existence of such approximate normal trees has consequences
of both combinatorial and topological nature.

On the combinatorial side, we show that a graph has a normal spanning tree as
soon as it has normal spanning trees locally at each end; i.e., the only obstruction
for a graph to having a normal spanning tree is an end for which none of its
neighbourhoods has a normal spanning tree.

On the topological side, we show that the end space Ω(G), as well as the spaces
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|G| = G ∪ Ω(G) naturally associated with a graph G, are always paracompact.
This gives unified and short proofs for a number of results by Diestel, Sprüssel and
Polat, and answers an open question about metrizability of end spaces by Polat.

Chapter 11. The directions of an infinite graph G are a tangle-like description
of its ends: they are choice functions that choose compatibly for all finite vertex
sets X ⊆ V (G) a component of G−X.

Although every direction is induced by a ray, there exist directions of graphs
that are not uniquely determined by any countable subset of their choices. We
characterise these directions and their countably determined counterparts in terms
of star-like substructures or rays of the graph.

Curiously, there exist graphs whose directions are all countably determined
but which cannot be distinguished all at once by countably many choices. We
structurally characterise the graphs whose directions can be distinguished all at
once by countably many choices, and we structurally characterise the graphs which
admit no such countably many choices. Our characterisations are phrased in terms
of normal trees and tree-decompositions.

Our four (sub)structural characterisations imply combinatorial characterisations
of the four classes of infinite graphs that are defined by the first and second axiom
of countability applied to their end spaces: the two classes of graphs whose end
spaces are first countable or second countable, respectively, and the complements
of these two classes.

Part IV:

Chapter 12. We show that every infinitely edge-connected graph contains the
Farey graph or Tℵ0∗ t as a minor. These two graphs are unique with this property
up to minor-equivalence.

Chapter 13. We show that, up to minor-equivalence, the Farey graph is the
unique minor-minimal graph that is infinitely edge-connected but such that every
two vertices can be finitely separated.

Chapter 14. We construct a countable planar graph which, for any two vertices
u, v and any integer k ≥ 1, contains k edge-disjoint order-compatible u–v paths
but not infinitely many. This graph has applications in Ramsey theory, in the
study of connectivity and in the characterisation of the Farey graph.
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16. Deutsche Zusammenfassung

Part I:

Chapter 3. Wir zeigen, dass der Tangle-Raum eines Graphen G, welcher ihn
kompaktifiziert, ein Quotient seines Stone-Čech Restes (βG) r G ist der durch
Kontraktion der Zusammenhangskomponenten entsteht.

Chapter 4. Carmesin hat Robertson und Seymours Baum-von-Tangles Satz für
Tangles unendlicher Ordnung von lokal endlichen unendlichen Graphen verallge-
meinert.

Unser Resultat hat einige Anwendungen für die Topologie unendlicher Graphen,
insbesondere für die Endenräume und Kompaktifizierungen unendlicher Graphen.

Part II:

Chapter 5. Das Stern-Kamm Lemma für unendliche Graphen erweiternd, charak-
terisieren wir die Graphen die keinen unendlichen Kamm oder unendlichen Stern
an einer gegebenen Eckenmenge enthalten.

Wir präsentieren mehrere Charakterisierungen: durch normale Bäume, Baumzer-
legungen, Ränge von strahlenlosen Graphen und Tangle-unterscheidende Trenner.

Chapter 6. In einer Serie von vier Kapiteln bestimmen wir Strukturen, deren Exis-
tenz dual ist, im Sinne von komplementär, zur Existenz von Sternen oder Kämmen.
Hier, im zweiten Kapitel der Serie, präsentieren wir Dualitätssätze für Kombinatio-
nen von Sternen und Kämmen: dominierende Sterne und dominierte Kämme. Da
dominierende Sterne genau dann existieren, wenn dominierende Kämme existieren,
fallen ihre komplementären Strukturen zusammen. Wie für beliebige Sterne und
Kämme sind unsere Dualitätssätze für dominierte Kämme (und dominierende
Sterne) formuliert hinsichtlich normaler Bäume und Baumzerlegungen.

Die komplementären Strukturen für dominierte Kämme, die wir bereitstellen,
vereinigen jene für Sterne und Kämme und erlauben uns, unsere Dualitätssätze
für Sterne und Kämme aus denen für dominierte Kämme herzuleiten. Das ist
überraschend vor dem Hintergrund, dass unsere komplementären Strukturen für
Sterne und Kämme recht verschieden sind: jene für Sterne sind lokal endlich
wohingegen jene für Kämme strahlenlos sind.

Chapter 7. In einer Serie von vier Kapiteln bestimmen wir Strukturen, deren
Existenz dual ist, im Sinne von komplementär, zur Existenz von Sternen oder
Kämmen. Hier, im dritten Kapitel der Serie, präsentieren wir Dualitätssätze
für eine Kombination von Sternen und Kämmen: undominierte Kämme. Wir
beschreiben ihre komplementären Strukturen durch strahlenlose Bäume und durch
Baumzerlegungen.

Anwendungen beinhalten eine vollständige Charakterisierung durch normale
Bäume, von den Graphen, deren Strahlen dominiert sind, die aber keine strahlen-
losen Bäume haben. Nur zwei solche Graphen wurden zuvor konstruiert, von
Seymour und Thomas [76] und von Thomassen [83]. Als Korollar zeigen wir, dass
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Graphen mit normalen Spannbäumen genau dann einen strahlenlosen Spannbaum
haben, wenn alle ihre Strahlen dominiert sind.

Eine weitere Anwendung löst ein Problem, das Carmesin [19] offen gelassen
hat: Die Graphen, deren undominierte Enden durch einen geeigneten Spannbaum
reflektiert werden, können durch normale Spannbäume charakterisiert werden.
Insbesondere zeigen wir, dass jeder Graph, der einen normalen Spannbaum hat,
auch einen Spannbaum hat der seine undominierten Enden reflektiert.

Chapter 8. In einer Serie von vier Kapiteln bestimmen wir Strukturen, deren
Existenz dual ist, im Sinne von komplementär, zur Existenz von Sternen oder
Kämmen. Im ersten Kapitel unserer Serie haben wir Strukturen bestimmt, die
komplementär sind zu beliebigen Sternen und Kämmen. Sterne und Kämme können
kombiniert werden, positiv wie negativ. Im zweiten und dritten Kapitel unserer
Serie haben wir Dualitätssätze für alle bis auf eine der möglichen Kombinationen
bereitgestellt.

In diesem vierten und finalen Kapitel unserer Serie vervollständigen wir unsere
Lösung des Problems, komplementäre Strukturen für Sterne, Kämme und ihre Kom-
binationen zu finden, indem wir Dualitätssätze für das letzte Puzzleteil finden: für
undominierende Sterne. Unsere Dualitätssätze sind formuliert hinsichtlich Enden-
kompaktifizierter Teilgraphen, Baumzerlegungen und Tangle-unterscheidender
Trenner.

Chapter 9. Schmidt hat die Klasse der strahlenlosen Graphen durch eine ordi-
nale Rangfunktion charakterisiert, was es ermöglicht, Aussagen über strahlenlose
Graphen durch transfinite Induktion zu beweisen. Halin hat gefragt, ob Schmidts
Rangfunktion verallgemeinert werden kann, um andere wichtige Graphenklassen
zu charakterisieren. In diesem Kapitel beantworten wir Halins Frage positiv: wir
charakterisieren zwei wichtige Graphenklassen durch eine ordinale Rangfunktion.

Seymour und Thomas haben für jede überabzählbare Kardinalzahl κ die Klasse
der Graphen ohne einen Tκ Minor charakterisiert. Wir erweitern ihre Charakter-
isierungen um eine ordinale Rangfunktion, eine für jede überabzählbare Kardi-
nalzahl κ.

Ein weiteres weitgehend offenes Problem von Halin fragt nach einer Charakter-
isierung der Klasse der Graphen, die einen endentreuen Spannbaum haben. Eine
gründlich studierte Teilklasse besteht aus den Graphen mit normalen Spannbäumen.
Wir bestimmen eine größere Teilklasse, die Klasse der normal verfolgbaren Graphen,
welche aus den zusammenhängenden Graphen besteht, die eine strahlenlose Baumz-
erlegung in normal aufgespannte Teile besitzen. Die Klasse der normal verfolgbaren
Graphen weiter studierend zeigen wir, das alle ihre Graphen Spannbäume besitzen,
welche ihre undominierte Enden reflektieren. Unsere Beweise bauen auf eine
Charakterisierung der Klasse der normal verfolgbaren Graphen durch eine ordinale
Rangfunktion, die wir bereitstellen.

Part III:

Chapter 10. Wir zeigen, dass jeder zusammenhängende Graph durch einen
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normalen Baum approximiert werden kann, bis auf einen beliebig kleinen Fehler
formuliert hinsichtlich Nachbarschaften um seine Enden. Die Existenz von solchen
approximierenden normalen Bäumen hat Konsequenzen von sowohl kombina-
torischer als auch topologischer Natur.

Auf der kombinatorischen Seite zeigen wir, dass jeder Graph einen normalen
Spannbaum hat, sobald er normale Spannbäume lokal an jedem seiner Enden hat;
das heißt, das einzige Hindernis dafür, dass ein Graph einen normalen Spannbaum
hat, ist ein Ende ohne normal aufgespannte Nachbarschaft.

Auf der topologischen Seite zeigen wir, dass jeder Endenraum Ω(G), als auch
die Räume |G| = G ∪ Ω(G) die natürlicherweise mit einem Graphen G assoziiert
werden, immer parakompakt sind. Dies ermöglicht einheitliche und kurze Beweise
von einigen Resultaten von Diestel, Sprüssel und Polat, und beantwortet eine
offene Frage von Polat betreffend die Metrisierbarkeit von Endenräumen.

Chapter 11. Die Richtungen eines unendlichen Graphen G sind eine Tangle-artige
Beschreibung seiner Enden: sie sind Auswahlfunktionen, die kompatibel für jede
endliche Eckenmenge X ⊆ V (G) eine Komponente von G−X auswählen.

Obwohl jede Richtung von einem Strahl induziert ist, gibt es Richtungen von
Graphen, die nicht eindeutig bestimmt sind durch eine abzählbare Teilmenge
ihrer Entscheidungen. Wir charakterisieren diese Richtungen und ihre abzählbar
bestimmten Gegenstücke durch Stern-artige Teilstrukturen oder Strahlen des
Graphen.

Kurioserweise gibt es Graphen, deren Richtungen alle abzählbar bestimmt aber
nicht alle gleichzeitig durch abzählbar viele Entscheidungen unterscheidbar sind.
Wir charakterisieren strukturell die Graphen, deren Richtungen sich alle gleichzeitig
durch abzählbar viele Entscheidungen unterscheiden lassen, und wir charakter-
isieren strukturell die Graphen, die keine solche abzählbar vielen Entscheidungen
aufweisen. Unsere Charakterisierungen sind formuliert hinsichtlich normaler Bäume
und Baumzerlegungen.

Unsere vier (teil)strukturellen Charakterisierungen implizieren kombinatorische
Charakterisierungen der vier Klassen unendlicher Graphen, die definiert sind
durch das erste und zweite Axiom der Abzählbarkeit, angewandt auf ihre En-
denräume: die zwei Klassen von Graphen, deren Endenräume das erste oder zweite
Abzählbarkeitsaxiom erfüllen, und die Komplemente dieser zwei Klassen.

Part IV:

Chapter 12. Wir zeigen, dass jeder unendlich kantenzusammenhängende Graph
den Farey-Graphen oder Tℵ0 ∗ t als Minor enthält. Diese zwei Graphen sind
eindeutig mit dieser Eigenschaft bis auf Minoren-Äquivalenz.

Chapter 13. Wir zeigen, dass der Farey-Graph, bis auf Minoren-Äquivalenz, der
eindeutige Minoren-minimale Graph ist, der unendlich kantenzusammenhängend
ist aber sodass alle zwei Ecken endlich trennbar sind.

Chapter 14. Wir konstruieren einen abzählbaren planaren Graphen, welcher
für alle zwei Ecken u, v und jede ganze Zahl k ≥ 1 eine Anzahl von k kantendis-

242



16. Deutsche Zusammenfassung

junkten paarweise ordnungskompatiblen u–v Wegen enthält, aber nicht unendlich
viele. Dieser Graph hat Anwendungen in der Ramseytheorie, im Studium des
Zusammenhangs und in der Charakterisierung des Farey-Graphen.
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The following articles are related to this dissertation:
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