
PLANAR TRANSITIVE GRAPHS

MATTHIAS HAMANN

Abstract. We prove that the first homology group of every planar transitive
locally finite graph G is a finitely generated Aut(G)-module. Corollaries of
our main theorem include Droms’s theorem that planar groups are finitely
presented and Dunwoody’s theorem that planar transitive locally finite graphs
are accessible.

1. Introduction

A finitely generated group is planar if it has some locally finite planar Cayley
graph. Droms [2] proved that finitely generated planar groups are finitely presented.
This is a hint that a similar result is true for transitive planar graphs. Indeed, we
shall show the following:

Theorem 1.1. Let G be a locally finite transitive planar graph. Then the first
homology group of G is a finitely generated Aut(G)-module.

Theorem 1.1 directly implies Droms’s theorem. Whereas Droms’s proof uses an
accessibility result of Maskit [9] for planar groups, our self-contained proof does
not. Instead, our proof will be based on Theorem 1.2. But before we state that
theorem, we have to make some definitions first.

We call a graph finitely separable if no two distinct vertices are joined by infinitely
many edge disjoint paths, or equivalently, any two vertices are separated by finitely
many edges.

Let G be a planar graph with planar embedding ' : G ! R2. Two cycles C1, C2

in G are nested if no Ci has vertices or edges in distinct faces of '(C3�i). A set of
cycles is nested if every two of its elements are nested.

Theorem 1.2. Every 3-connected finitely separable planar graph has a canonical
nested set of cycles generating the first homology group.

Here, canonical means mostly that the set of cycles is invariant under the au-
tomorphisms of the graph. But in addition, our proof is constructive and this
construction commutes with graph isomorphisms, i. e. whenever we run this con-
struction for two isomorphic graphs G and H, then this isomorphism maps the set
of cycles in G we obtain to that of H.

Note that Theorem 1.2 is easy to prove if the graph has no accumulation points
in the plane, i. e. if it is VAP-free, as you may then take the finite face boundaries
as generating set, see e. g. [5, Lemma 3.2].

Theorem 1.2 has various analogues in the literature: in [7] the author proved the
corresponding result for the cycle space1 of 3-connected finitely separable planar

1The cycle space of a graph is the set of finite sums of cycles over F2.
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graphs and, previously, Dicks and Dunwoody [1] proved the analogous result for
the cut space2 of arbitrary graphs.

The mentioned theorem of Dicks and Dunwoody is one of the central theorems
for the investigation of transitive graphs with more than one end and hence of
accessible graphs and of accessible groups. (We refer to Section 6 for definitions.)
Even though, accessibility has a priori more in common with the cut space than
with the cycle space or the first homology group, the main result of [6] exhibited a
connection between accessibility and the cycle space:

Theorem 1.3. [6] Every transitive graph G whose cycle space is a finitely generated
Aut(G)-module is accessible.

As an application of our results and Theorem 1.3 we shall obtain Dunwoody’s [4]
theorem that locally finite transitive planar graphs are accessible.

2. Indecomposable cycles

We call a cycle indecomposable if it is not generated in H1(G) by cycles of strictly
smaller length. Note that no indecomposable cycle C has a shortcut, i. e. a path
between any two of its vertices that has smaller length than their distance on C.
Indeed, let P be a shortest shortcut of C and Q1, Q2 be the two subpaths of C
whose end vertices are those of P . Then Q1 [ P and Q2 [ P sum to C if we run
through P in di↵erent directions. (This is necessary as we are taking sums over Z
for the first homology group.) For a path P and x, y on P , we denote by xPy the
subpath of P from x to y.

Lemma 2.1. Let G be a planar graph and let C1, C2 ✓ G be two indecomposable
cycles of lengths n1, n2, respectively, that are not nested. Let P1 ✓ C1 be a non-
trivial path of shortest length that meets C2 in precisely its end vertices. Let P2 ✓ C2

be a shortest path with the same end vertices as P1. Then one of the following is
true.

(i) |P1| = |P2| and P2 meets C1 only in its end vertices;
(ii) |P1| � |P2| and P1 [ P2 = C1;
(iii) |P1| � |P2| and (C1 � P1) [ P2 = C2.

Proof. Let v, w be the end vertices of P1. Note that C2 is the sum of vP1wQ1v and
vQ2wP1v where Q1 and Q2 are the two subpaths of C2 with end vertices v and w.
First, assume |P1| < |P2|. By the choice of P2, we have |P2|  |Q1| and |P2|  |Q2|,
so P1 is a shortcut of C2, which is impossible. Hence, we have |P1| � |P2|.

If P2 ✓ C1, then we directly have P2[P1 = C1 and (ii) holds. So we may assume
that P2 contains an edge not on C1.

Let us suppose that P2 has an inner vertex on C1. So any subpath xP2y that
intersects C1 in precisely its end vertices has shorter length than P1. Note that
such a subpath exists as P2 has an edge outside C1. But xP2y cannot be a shortcut
of C1. So the distance between x and y on C1 is at most |xP2y|. The subpath Q
of C1 realising the distance of x and y on C1 together with xP2y does not contain V
and W , so it cannot be C2. Thus, some edge of Q does not lie on C2 and hence Q
contains some subpath that contradicts the choice of P1.

So P2 meets C1 only in its end vertices. Then C1 is the sum of C1 � P1 + P2

and P1 +P2. As C1 is indecomposable, P2 is not a shortcut of C1 and thus we have

2The cut space of a graph is the set of finite sums over F2 of minimal separating edge sets.
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either |P2| = |P1| or |P2| = |C1 � P1|. The first case implies (i) while, if the first
case does not hold, we have |P1| > |P2| = |C1 � P1|. Thus, the minimality of |P1|
implies that C1 � P1 lies on C2. So we have (C1 � P1) [ P2 = C2 as P2 meets C1

only in its end vertices. This shows (iii) in this situation. ⇤

If C is a cycle in a planar graph G, we denote by f0
C the bounded face of C and

by f1
C the unbounded face.

For two cycles C,D ✓ G, we call a non-trivial maximal subpath P of C that has
precisely its end vertices in D a D-path in C. By n(C,D) we denote the number
of C-paths in D.

Lemma 2.2. Let G be a planar graph and let C,D ✓ G be two indecomposable
cycles. Then there are nested indecomposable cycles eC and eD with |C| = | eC| and
|D| = | eD| that are either the boundaries of f0

C\f0
D and of f1

C\f1
D or the boundaries

of f0
C \ f1

D and f1
C \ f0

D.
In addition, we may choose eC and eD so that, if E is a set of cycles generating all

cycles of length smaller than |C|, then E generates C or D as soon as it generateseC or eD.

Proof. If C and D are nested, then the assertion holds trivially. This covers the
situation that n(D,C) is either 0 or 1, as it implies that C and D are nested. Thus,
C contains some smallest D-path P1. Note that the cases (ii) and (iii) of Lemma 2.1
imply n(D,C) = 1. Hence, Lemma 2.1 implies that D contains a C-path Q1 with
the same end vertices as P1 and with |P1| = |Q1|. By definition, neither P1 nor Q1

has an inner vertex of D or C, respectively. Let D0 := D and C0 := (C �P1)[Q1.
Inductively, we obtain two sequences (Pi)in and (Qi)in of D-paths in C and
C-paths in D, respectively, which are ordered by the length of the paths Pi. Note
that – just as above – Lemma 2.1 ensures |Pi| = |Qi| for all but at most one i  n.
(The case with |Pi| 6= |Qi| occurs if C and D are nested and either (ii) or (iii) of
Lemma 2.1 holds.)

Consider a cyclic ordering of C and let i1, . . . , in 2 {1, . . . , n} be pairwise dis-
tinct such that Pi1 , . . . , Pin appear on C in this order. Then, using planarity, it
immediately follows by their definitions as C-path or D-path, respectively, that
Qi1 , . . . , Qin appear in this order on D. Note that one face of Pi [ Qi contains
no vertices or edges of C [ D. The assertion follows except for the fact that the
obtained cycles are indecomposable and the additional statement.

Let E be a set of cycles generating in H1(G) all cycles of length smaller than |C|.
Assume that the boundaries C0 and D0 of f0

C\f0
D and f1

C\f1
D, respectively, have the

desired property up to being indecomposable. Let us assume that C0 is generated
by E . (Note that this covers also the case that C0 is not indecomposable.)

If all cycles Pi [Qi have length less than |C| and |D|, then we add every cycle
Pi [Qi to C0 for which Qi lies on the boundary of f0

C \ f0
D and we obtain C. So C

is generated by E as C0 and all of the added cycles are generated by E .
If all but exactly one of the cycles Pi [ Qi have length less than |C| and |D|,

then Pn [ Qn has largest length of all those cycles. If Pn lies on the boundary of
f0

C \f0
D, then we add every cycle Pi[Qi to C0 for which Qi lies on the boundary of

f0
C \ f0

D. As before, we obtain that C is generated by E . If Pn lies on the boundary
of f1

C \f1
D, then we add every cycle Pi[Qi to C0 for which Pi lies on the boundary

of f0
C \ f0

D and obtain D. So D is generated by E .
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If at least two cycles Pi [ Qi have length at least min{|C|, |D|}, then n = 2
follows immediately. Hence, also the boundaries C00 and D00 of f0

C\f1
D and f1

C\f0
D,

respectively, are cycles. So we may have chosen them instead of C0 and D0. If one
of them, C00 say, is generated by E , too, then C0 + C00 is generated by E . As this
sum is either C or D, the assertion follows. ⇤

Note that it follows from the proof of Lemma 2.2 that there is a canonical
bijection between the C-paths in D and the D-paths in C. In particular, we have
n(C,D) = n(D,C).

3. Counting crossing cycles

Our restiction to finitely separable graphs implies that each cycle in such a graph
is nested with all but finitely many cycles of bounded length. In general, this is not
true if we omit that assumption.

Proposition 3.1. Let i 2 N. Every cycle in a finitely separable planar graph is
nested with all but finitely many cycles of length at most i.

Proof. Let us assume that some cycle C is not nested with infinitely many cycles of
length at most i. Then there are two vertices x1, x2 of C that lie on infinitely many
of these cycles and thus we obtain infinitely many distinct x1–x2 paths of length
at most i � 1. Either there are already infinitely many edge disjoint x1–x2 paths
or infinitely many share another vertex x3. In the latter situation, there are either
infinitely many distinct x1–x3 or x2–x3 paths of length at most i� 2. Continuing
this process, we end up at some point with two distinct vertices and infinitely many
edge disjoint paths between them, since we reduce the length of the involved paths
in each step by at least 1. So we obtain a contradiction to finite separability. ⇤

Let E be a set of cycles of length at most i in a finitely separable graph G and
C ✓ G be a cycle. We define µE(C) to be the number of cycles in E that are not
nested with C. Note that Proposition 3.1 says that µE(C) is finite. If F is another
set of cycles of length at most i, we set µE(F) as minimum over all µE(C) with
C 2 F .

Proposition 3.2. Let G be a finitely separable planar graph. Let E be a set of
cycles in G of length at most i 2 N and let C,D be two indecomposable cycles in G
that are not nested. Then we have

µE(C) + µE(D) � µE( eC) + µE( eD),

where eC and eD are the cycles obtained by Lemma 2.2. Furthermore, if D 2 E, then
the inequality is a strict inequality.

Proof. Using homeomorphisms of the sphere, we may assume that eC is the bound-
ary of f0

C \ f0
D and eD is the boundary of f1

C \ f1
D. Let F 2 E be nested with C

and D. We may assume that F avoids f0
C . Thus, it is nested with eC. If F avoids

f0
D, too, then it lies in f1

C \ f1
D with its boundary and is nested with eD. So let us

assume that it avoids f1
D. Thus, F does not contain any points of f1

C \f1
D and thus

is nested with eD.
Now consider the case that F 2 E is nested with C but not with D. We may

assume that F avoids f0
C . Hence, it avoids f0

C \ f0
D, too, and is nested with eC.
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This shows that every F 2 E that is not counted on the left side of the inequality
is not counted on the right side either and that every F 2 E that is counted on the
left side precisely once is counted on the right side at most once. This shows the
first part of the assertion.

To see the additional statement, just note that D is counted on the left for µE(C)
but not for µE(D) and that both cycles eC and eD are nested with D. ⇤

4. Finding a nested generating set

The main theorem of [7] says that the cycle space of any 3-connected finitely
separable planar graph G is generated by some canonical nested set of cycles as F2-
vector space. We will prove the analogous result for the first (simplicial) homology
group H1(G) as module over Z.

Throughout this section, let G be a 3-connected planar finitely separable graph.
Let Hi := Hi(G) be the submodule of H1(G) generated by all cycles of length at

most i. So H1(g) =
S

i2N Hi. We shall recursively define canonical nested subsets
Ci of Hi that generate Hi and consist only of indecomposable cycles of length at
most i. So

S
i2N Ci will generate H1(G). For the start, let Ci = ; for i  2. Let us

assume that we already defined Ci�1. Then we shall define Ci recursively.
In order to define Ci, we construct another sequence of nested Aut(G)-invariant

sets C
i of indecomposable cycles. Set C0

i := Ci�1. Let  be some ordinal such
that C�

i is defined for all � < . If  is a limit ordinal, then set C
i =

S
�< C�

i .
So let  be a successor ordinal, say  = ⌫ + 1. Any cycle of length i that is not
generated by C⌫

i must be indecomposable by definition of Ci�1. If there is not such
a cycle, set Ci := C⌫

i . So in the following, we assume that there is at least one
indecomposable cycle of length i that is not generated by C⌫

i . Hence, the set D
i of

all indecomposable cycles that are not generated by C⌫
i and that have length i is

not empty.

Lemma 4.1. The set D
i 6= ; contains a cycle that is nested with C⌫

i .

Proof. Let C 2 D
i with minimum µC⌫

i
(C). We shall show µC⌫

i
(C) = 0. So let us

suppose that C is not nested with some D 2 C⌫
i . Since C and D are indecomposable

cycles, we obtain by Lemma 2.2 two indecomposable cycles eC and eD with |C| = | eC|
and |D| = | eD| such that Proposition 3.2 implies

µC⌫
i
(C) = µC⌫

i
(C) + µC⌫

i
(D) > µC⌫

i
( eC) + µC⌫

i
( eD).

Note that, if eC and eD are generated by C⌫
i , then C being the sum of D, eC, andeD is generated by C⌫

i , too. But then it lies outside D
i . As this is not the case,

either eC or eD is not generated by C⌫
i . In particular, this cycle must lie in D

i , a
contradiction to the choice of C. ⇤

Let E
i be the set of all cycles in D

i that are nested with C⌫
i . By Lemma 4.1,

this set is not empty.
For a set E of cycles of length at most i, we call C 2 E optimally nested in E if

µE(C) = µE(E). Note that µE(E) is finite by Proposition 3.1 and, furthermore, as
3-connected planar graphs have (up to homeomorphisms) unique embeddings into
the sphere due to Whitney [12] for finite graphs and Imrich [8] for infinite graphs,
µE(C) = µE(C↵) for all ↵ 2 Aut(G).

Lemma 4.2. The set F
i of optimally nested cycles in E

i is non-empty and nested.
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Proof. Since E
i is non-empty, the same is true for F

i . Let us suppose that F
i

contains two cycles C,D that are not nested. Let eC and eD be the indecomposable
cycles obtained by Lemma 2.2 with |C| = | eC| and |D| = | eD| each of which is not
generated by C⌫

i and such that Proposition 3.2 yields

µC⌫
i
(C) + µC⌫

i
(D) � µC⌫

i
( eC) + µC⌫

i
( eD).

As E
i is nested with C⌫

i by definition, we have µC⌫
i
(C) + µC⌫

i
(D) = 0. Note thateC and eD lie in D

i by definition. As both are nested with C⌫
i , they lie in E

i . We
apply Proposition 3.2 once more and obtain

µE
i
(C) + µE

i
(D) > µE

i
( eC) + µE

i
( eD).

Thus either eC or eD is not nested with less cycles in E
i than C. This contradiction

to the choice of C shows that E
i is nested. ⇤

So we set C
i := C⌫

i [ F
i . Then C

i is nested as C⌫
i is nested and by the choice

of E
i all elements of C

i are indecomposable.
This process will terminate at some point as we strictly enlarge the sets C in

each step but we cannot put in more cycles than there are in G. Let Ci be the
union of all C

i . Note that we made no choices at any point, i. e. all sets Ci are
Aut(G)-invariant and canonical. Thus, we proved Theorem 1.2. More precisely, we
have proved the following theorem.

Theorem 4.3. For every finitely separable 3-connected planar graph G there is a
sequence (Ci)i2N of sets of cycles in G such that

(i) Ci�1 ✓ Ci;
(ii) Ci r Ci�1 consists of indecomposable cycles of length i;
(iii) Ci generates Hi(G);
(iv) Ci is canonical and nested.

Note that the only situation where we used 3-connectivity was when we concluded
that we have µE(C) = µE(C↵) for any cycle C, set E of cycles of bounded length
and automorphism ↵. That is, the above proof also give us the existence of a
nested generating set for lower connectivity, but we lose canonicity. Note that, in
general, the statement of Theorem 1.2 is false if we do not require the graph to be
3-connected: let G be the graph obtained by two vertices joined by four internally
disjoint paths of length 2. Then all cycles have length 4 and lie in the same Aut(G)-
orbit, but it is not hard to find two of them which are not nested. So you cannot
find a canonical nested generating set of H1(G).

5. Finding a finite generating set

Let us introduce the notion of a degree sequence of orbits because the general
idea to prove Theorem 1.1 will mainly be done by induction on this notion.

For a connected locally finite quasi-transitive graph G with |V (G)| > 1 we call
a tupel (d1, . . . , dm) of positive integers with di � di+1 for all i < m the degree
sequence of the orbits of G if for some set {v1, . . . , vm} of vertices that contains
precisely one vertex from each Aut(G)-orbit the degree of vi is di. We consider the
lexicographic order on the finite tupels of positive integers (and thus on the degree
sequences of orbits), that is, we set

(d1, . . . , dm)  (c1, . . . , cn)
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if either m  n and di = ci for all i  m or di < ci for the smallest i  m with
di 6= ci. Note that any two finite tupels of positive integers are -comparable.

A direct consequence of this definition is the following lemma.

Lemma 5.1. Any strictly decreasing sequence in the set of finite tupels of positive
integers is finite. ⇤

We call a graph quasi-transitive if its automorphism group has only finitely many
orbits on the vertex set.

Lemma 5.1 for quasi-transitive graphs and their degree sequences of orbits reads
as follows and enables us to use induction on the degree sequence of the orbits of
graphs:

Lemma 5.2. Every sequence of locally finite quasi-transitive graphs whose corre-
sponding sequence of degree sequences of the orbits is strictly decreasing is finite. ⇤

Lemma 5.3. Let G be a locally finite quasi-transitive graph and let S ✓ V (G) and
H ✓ G be such that the following conditions hold:

(i) G� S is disconnected;
(ii) each S↵ with ↵ 2 Aut(G) meets at most one component of G� S;
(iii) such that no vertex of S has all its neighbours in S;
(iv) H is a maximal subgraph of G such that no S↵ with ↵ 2 Aut(G) discon-

nects H.

Then the degree sequence of the orbits of H is smaller than the one of G.

Proof. First we show that all vertices in H that lie in a common Aut(G)-orbit of G
and whose degrees in G and in H are the same also lie in a common Aut(H)-orbit.
Let x, y be two such vertices and ↵ 2 Aut(G) with x↵ = y. Suppose that H↵ 6= H.
Then there is some S� that separates some vertex of H from some vertex of H↵ by
the maximality of H. But as y and all its neighbours lie in H and in H↵, they lie in
S�, which is a contradiction to (iii). Thus, ↵ fixes H and induces an automorphism
of H that maps x to y.

We consider vertices x such that {x} [ N(x) lies in no H↵ with ↵ 2 Aut(G)
and such that x has maximum degree with this property. Let {x1, . . . , xm} be a
maximal set that contains precisely one vertex from each orbit of those vertices. If
xi lies outside every H↵, then no vertex of its orbit is considered for the degree
sequence of the orbits of H. If xi lies in H, then its degree in some H↵ is smaller
than its degree in G. By replacing xi by xi↵�1, if necessary, we may assume
dH(xi) < dG(xi). So its value in the degree sequence of orbits of H is smaller than
its value in the degree sequence of orbits of G; but it may be counted multiple times
now as the Aut(G)-orbit containing xi may be splitted into multiple Aut(H)-orbits.
Nevertheless, the degree sequence of orbits of H is smaller than that of G. ⇤

Remember that a block of a graph is a maximal 2-connected subgraph. As any
cycle lies completely in some block and as any locally finite quasi-transitive graph
has only finitely many orbits of blocks, we directly have:

Proposition 5.4. For a locally finite quasi-transitive graph G, we have that H1(G)
is a finitely generated Aut(G)-module over Z if and only if the same is true for every
block. ⇤
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Remark 5.5. In the situation of Proposition 5.4 we can take the orbits of the
cutvertices one-by-one and apply Lemma 5.3 for each such orbit. It follows recur-
sively that each block has a smaller degree sequence of its orbits than the original
graph.

For the reduction to the 3-connected case for graphs of connectivity 2, we apply
Tutte’s decomposition of 2-connected graphs into ‘3-connected parts’ and cycles.
Tutte [11] proved it for finite graphs. Later, it was extended by Droms et al. [3] to
locally finite graphs.

A tree-decomposition of a graph G is a pair (T,V) of a tree T and a family
V = (Vt)t2T of vertex sets Vt ✓ V (G), one for each vertex of T , such that
(T1) V =

S
t2T Vt;

(T2) for every edge e 2 G there exists a t 2 V (T ) such that both ends of e lie in Vt;
(T3) Vt1 \ Vt3 ✓ Vt2 whenever t2 lies on the t1–t3 path in T .

The sets Vt are the parts of (T,V) and the intersections Vt1 \ Vt2 for edges t1t2
of T are its adhesion sets; the maximum size of such a set is the adhesion of (T,V).
Given a part Vt, its torso is the graph with vertex set Vt and whose edge set is

{xy 2 E(G) | x, y 2 Vt} [ {xy | {x, y} ✓ Vt lies in an adhesion set}.
The automorphisms of G act canonically on vertex sets of G. If every part of

the tree-decomposition is mapped to another of its parts and this map induces an
automorphism of T then we call the tree-decomposition Aut(G)-invariant.

Theorem 5.6. [3, Theorem 1] Every locally finite 2-connected graph G has an
Aut(G)-invariant tree-decomposition of adhesion 2 each of whose torsos is either
3-connected or a cycle or a complete graph on two vertices. ⇤

Remark 5.7. In addition to the conclusion of Theorem 5.6, we may assume that
the tree-decomposition is such that the torsos of tree vertices of degree 2 are either
3-connected or cycles and that no two torsos of adjacent tree vertices t1, t2 are
cycles if Vt1 \ Vt2 is no edge of G. (Remember that edges are two-element vertex
sets.) We call a tree-decomposition as Theorem 5.6 with this additional property
a Tutte decomposition.

Now we reduce the problem for finding a finite set of cycles generating H1(G)
as Aut(G)-module over Z from 2-connected graphs to 3-connected ones.

Proposition 5.8. The cycles space of a locally finite quasi-transitive 2-connected
graph G is a finitely generated Aut(G)-module if and only if the same is true for
each of its torsos in every Tutte decomposition.

Proof. Let (T,V) be a Tutte decomposition of G. Note that every vertex lies in only
finitely many 2-separators (cf. [10, Proposition 4.2]). Thus, the graph H given by G
together with all edges xy, where {x, y} forms an adhesion set, is also locally finite
and quasi-transitive. There are only finitely many orbits of (the action induced
by) Aut(G) on T , since any 2-separator of G uniquely determines the parts Vt

of (T,V) it is contained in and since there are only finitely many Aut(G)-orbits of
2-separators. Obviously, the restriction of H to any Vt 2 V is the torso of Vt.

Let us assume that H1(G) is finitely generated as Aut(G)-module and let C be a
finite set of cycles generating it over Z. Every C 2 C can be written as the sum of
(finitely many) induced cycles C1, . . . , Cn in H. So the set D of all those Ci for all
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C 2 C generates H1(H) as Aut(H)-module. Each of the cycles Ci lies in a unique
part Vt of (T,V) as they are induced and as every adhesion set in H is complete.
Note that cycles which lie in the same Aut(G)-orbit and in some Vt also lie in the
same orbit with respect to the automorphisms of the torso Gt of Vt. Let Dt be the
set of all cycles in D that lie in Gt. Let C be a cycle in Gt. Then it is the sum
of C1, . . . , Cn 2 D. Since all Ci 6✓ Gt sum to 0, those Ci ✓ Gt sum to C. Thus,
H1(Gt) is a finitely generated Aut(Gt)-orbit.

For the converse, let H1(Gt) for every torso Gt of (T,V) be a finitely generated
Aut(Gt)-orbit and let Ct be a finite set of cycles in Gt that generates H1(Gt) as
Aut(Gt)-module. We may choose the sets Ct so that Ct = Ct0↵ if ↵ 2 Aut(G)
maps Vt to Vt0 . Let A be a set of ordered adhesion sets (x, y) of (T,V) consisting
of one element for each Aut(G)-orbit. For every (x, y) 2 A with xy /2 E(G) we
fix an x–y path Pxy in G. Then Pxy + xy is a cycle Cxy in H. If xy 2 E(G),
let Pxy = xy and, for later conveniences, Cxy = ;. Note that for an adhesion set
{x, y} we may have fixed two distinct paths Pxy and Pyx. We canonically extend
the definition of the paths Pxy and cycles Cxy to all ordered adhesion sets (x, y),
i.e. if (x, y) = (x0, y0)↵ with (x0, y0) 2 A, set Pxy := P(x0y0)↵ and Cxy := C(x0y0)↵.

We notice that every orbit of cycles in Gt contains elements of only finitely many
Aut(H)-orbits since each of its cycles has the same length ` and by local finiteness
and quasi-transitivity there are only finitely many orbits of cycles in H whose cycles
have length `. Note that there are only finitely many Aut(G)-orbits and hence only
finitely many Aut(H)-orbits of parts of (T,V). So the union C of all Ct is a set of
cycles in H meeting only finitely many Aut(H)-orbits and generating H1(H), as
it has a generating set of induced cycles, each of those lies in some Gt and thus is
generated by C. For every C 2 C let CC be the set of all elements of H1(G) that
are obtained from C by adding for the edges xy that form an adhesion set {x, y}
of (T,V) the cycle Cxy in any possible way such that xy does not lie in the sum.3
We can write each element of CC as sum of cycles of G – possibly in more than
just one way. Let C0C be obtained from CC by replacing each element by any cycle
in G that occurs in any of the just mentioned sums. Let C0 :=

S
C2C C0C . Then each

element in any CC has a bounded number of edges and thus the cycles in C0 have
bounded length and lie in finitely many Aut(G)-orbits. Obviously, every element
of CC can be generated by C0.

To see that C0 generates H1(G), let C be any cycle of G. Thus it is also a cycle
of H and can be written as sum of cycles C1, . . . , Cm 2 C. Now let us fix for
each edge xy on any of these Ci that form an adhesion set of (T,V) an orientation
(x, y) and thus a cycle Cxy. Let C0

i be the sum of Ci with all our fixed cycles Cxy.
Then C0

i is an element of H1(G) since it contains no edge of H r G. Note thatPm
i=1 Ci =

Pm
i=1 C0

i and that each C0
i lies in CCi . So C can be generated by

Sm
i=1 CCi

and thus by C0. ⇤

Remark 5.9. Unfortunately, we are not able to apply Lemma 5.3 directly for
Proposition 5.8 to see that the torsos in a Tutte decomposition have a smaller
degree sequence of orbits, as the orbits are not subgraphs of G. But as not both
vertices of any adhesion set have degree 2, it is possible to follow the argument

3Note that if C contains only one such edge xy, we may add either Cxy or (the negative of)
Cyx and thus can obtain up to two possibilities. So if C has n edges that form adhesion sets
of (T,V), we may obtain up to 2n possibilities.
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of the proof of Lemma 5.3 for each of the finitely many orbits of the 2-separators
one-by-one to see that each torso has a smaller degree sequence of orbits than G.

Now we are able to attack the general VAP-free case.

Proposition 5.10. Let G be a locally finite quasi-transitive VAP-free planar graph.
Then H1(G) is a finitely generated Aut(G)-module.

Proof. Due to Propositions 5.4 and 5.8, it su�ces to show the assertion if G is
3-connected. As 3-connected planar graphs have (up to homeomorphisms) unique
embeddings into the sphere, every automorphism of G induces a homeomorphism
of the plane. So faces are mapped to faces and cycles that are face boundaries are
mapped to such cycles. As G is quasi-transitive and locally finite, there are only
finitely many Aut(G)-orbits of finite face boundaries.

Every cycle in G determines an inner face and an outer face in the plane. The
inner face contains only finitely many vertices as G is VAP-free. Hence, every cycle
is the sum of all face boundaries of the faces that lie in its inner part in the plane
and the assertion follows. ⇤

Now we are able to prove a strengthened version of our main theorem, Theo-
rem 1.1.

Theorem 5.11. Let G be a locally finite quasi-transitive planar graph. Then H1(G)
is a finitely generated Aut(G)-module.

Proof. Due to Propositions 5.4 and 5.8, we may assume that G is 3-connected and
due to Proposition 5.10 we may assume that G is not VAP-free. Let ' : G ! R2

be a planar embedding of G. Let C be a non-empty Aut(G)-invariant nested set of
cycles that generates H1(G), which exists by Theorem 1.2. Since G is not VAP-
free, there is some cycle C of G such that both faces of R2 r'(C) contain infinitely
many vertices of G. As C generates H1(G) as Aut(G)-module, one of the cycles
in C has the same property as C. Hence, we may assume C 2 C. In particular,
{C↵ | ↵ 2 Aut(G)} is nested.

We consider maximal subgraphs H of G such that no C↵ with ↵ 2 Aut(G)
disconnects H. In particular, H is connected and for every C↵ with ↵ 2 Aut(G)
one of the faces of R2 r '(C↵) is disjoint from H. Note that there are only finitely
many Aut(G)-orbits of such subgraphs H as we find in each orbit some element
that contains vertices of C by maximality of H. Due to Lemma 5.3, the graph H
has a strictly smaller degree sequence of its orbits than G as C disconnects G. As
H is again a locally finite quasi-transitive planar graph, we conclude by induction
on the degree sequence of the orbits of such graphs (cf. Lemma 5.2) with base
case if G is VAP-free that H1(H) is a finitely generated Aut(H)-module. Let
EH be an Aut(H)-invariant set of cycles with only finitely many Aut(H)-orbits
generating H1(H).

There are only finitely many pairwise non-Aut(G)-equivalent such subgraphs H.
So let H be a finite set of such subgraphs consisting of one per Aut(G)-orbit. Let

E :=
[

H2H

[
↵2Aut(G)

EH↵.

Then E is Aut(G)-invariant and has only finitely many orbits. We shall show that
E generates H1(G).
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Let D be a cycle of G. If D lies entirely inside some of the subgraphs H 2 H
or its Aut(G)-images, then, obviously, it is generated by E . So let us assume that
there is some ↵ 2 Aut(G) such that both faces of C↵ contain vertices or edges of D.
By considering D↵�1 instead of D, we may assume ↵ = id. We add all edges of C
to D that lie in the bounded face of D to obtain a subgraph F of G. Then D is
the sum over all boundaries C1, . . . , Ck of bounded faces of F .

Assume that C� with � 2 Aut(G) is not nested with Ci and suppose that it is
nested with D. Remember that C and C� are nested. Since C� contains points in
both faces of Ci, there is some (possibly trivial) common path P of Ci and C� such
that the edges on C� incident with the end vertices of P lie in di↵erent faces of Ci

and also the edges of Ci incident with the end vertices of P lie in di↵erent faces
of C�. As C� is nested with C and with D, one of these edges belongs to C and
the other to D. Thus, C and D must lie in distinct faces of C� and hence must be
nested. This contradiction shows that every C� that is not nested with Ci is not
nested with D either.

As C is not nested with D but with every Ci, every Ci is not nested with less
cycles C� than D and this is a finite number by Proposition 3.1 as all cycles C�
have the same length. Induction on the number of cycles C� the current cycle is
not nested with implies that each Ci is generated by E and so is D. ⇤

6. Applications

Droms [2] proved that planar groups are finitely presented. His proof uses an
accessibility result of Maskit [9]. We prove his result without any accessibility
result. But before, we recall the following well-known lemma.

Lemma 6.1. Let � be a Cayley graph of the group G with presentation hS | Ri.
Then the set of walks in � induced by relators in R generates H1(�).

Conversely, if R0 is a set of relations of G over S such that the set of closed
walks of � induced by R0 generates H1(�), then hS | R0i is a presentation of G. ⇤

As an application of Theorem 1.1 we obtain a self-contained proof of Droms’s
result.

Theorem 6.2. [2] Every finitely generated planar group is finitely presented. ⇤

A ray is a one-way infinite path and two rays are equivalent if they lie in the same
component whenever we remove a finite vertex set. This is an equivalence relation
whose classes are the ends of the graph. We call a quasi-transitive graph accessible
if there is some n 2 N such that any two ends can be separated by removing at
most n vertices.

In [6] the author proved the following accessibility result for quasi-transitive
graphs.

Theorem 6.3. [6, Theorem 3.2] Every quasi-transitive graph G whose cycle space
is a finitely generated Aut(G)-module is accessible.

As a further corollary of Theorem 5.11 together with Theorem 6.3, we obtain
Dunwoody’s theorem of the accessibility of locally finite quasi-transitive planar
graphs, a strengthened version of Theorem 1.3. (Note that any generating set of
the first homology group of a graph is also a generating set of its cycle space.)

Theorem 6.4. [4] Every locally finite quasi-transitive planar graph is accessible.
⇤
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Note that, in order to prove Theorem 6.4, we do not need the full strength of
a nested canonical generating set for the first homology group. Indeed, instead of
applying Theorem 1.2, we could just do the same arguments as in Section 5 using
a nested canonical generating set for the cycle space obtained from [7, Theorem 1]
to obtain a finite set of cycles generating the cycle space as module.
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