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Carl Phillip Bürger

Abstract

In the 1970s, Richard Rado showed that the vertex set of an edge-colored complete
graph of countably infinite order with r ∈ N many colors has a partition into vertex
sets of monochromatic paths of different colors. He asked whether this remains true
for uncountable complete graphs and generalized paths. In 2016, Daniel Soukup
answered this in the affirmative and conjectured that a similar result should hold
for complete bipartite graphs with bipartition classes of the same infinite cardinality
and up to 2r − 1 monochromatic generalized paths of not necessarily different colors
allowed — Soukup already confirmed this in the countably infinite case. As one of
our main result of this thesis, we prove the smallest uncountable case of Soukup’s
conjecture, i.e., we show that the vertex set of an r-edge-colored complete bipartite
graph with bipartition classes of size ℵ1 admits a partition into 2r−1 monochromatic
generalized paths. Furthermore, we study analog statements for countably infinite
graphs, where this time we partition the vertex set into more general classes of locally
finite graphs than just paths.
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1 Introduction

In 1978, R. Rado published the following result by P. Erdős:

Theorem 1.1 (P. Erdős, [9]). Every 2-edge-colored, complete, countably infinite graph
has a partition of its vertex set into two monochromatic paths of different colors1.

Here, paths are trivial graphs, finite paths, or 1-way infinite paths. Rado generalized
this theorem to finite edge-colorings, i.e., edge-colorings which use only finitely many
colors:

Theorem 1.2 (R. Rado, [9]). Every finitely edge-colored, complete, countably infinite
graph has a partition of its vertex set into monochromatic paths of different colors.

Since then, numerous authors have studied questions. Rado was interested in further
results as well. He asked whether Theorem 1.2 remains true for complete graphs of
arbitrary infinite order and the following notion of generalized paths:

Definition 1.3 (R. Rado, [9]). 2 Let G be a graph, P a set of vertices, and � be a
well-order on P . The pair 〈P,�〉 is a generalized path in G iff for every vertex p ∈ P the
set

{q : q ≺ p} ∩NG(p)

of �-down-neighbors is cofinal in {q : q ≺ p}. (Cf. Figure 1.)

P

Figure 1: Generalized Path.

If the situation is clear, we will write P instead of 〈P,�〉. The well-order � on
P will be referred to as �P .

Only recently, M. Elekes, D. Soukup, L. Soukup, and Z. Szentmiklóssy proved in [6]
that Theorem 1.2 remains true for 2-edge-coloured complete graphs of order ℵ1 and D.
Soukup gave a proof of the full statement shortly after:

Theorem 1.4 (D. Soukup, [11]). Every finitely edge-colored, complete, infinite graph
has a partition of its vertex set into monochromatic generalized paths of different colors.

1In this thesis, we allow partition classes to be empty.
2R. Diestel and I. Leader have studied so called T -graphs and generalized paths are exactly the T -graphs

for which T is an ordinal (cf. [4]).
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1 Introduction

At the end of his paper, D. Soukup conjectures that a similar statement holds for
complete bipartite infinite graphs:

Conjecture 1.5 (D. Soukup, [11]). Every r-edge-colored complete bipartite graph with
bipartition classes of some fixed infinite size has a partition its vertex set into 2r − 1
monochromatic generalized paths.

In [10] D. Soukup gives a proof of the countably infinite case. We prove the first
uncountable case:

Theorem 1.6. Let r be a positive integer. Every r-edge-colored complete bipartite graph
with bipartition classes of size ℵ1 has a partition of its vertex set into 2r−1 monochromatic
generalized paths.

The crux of the proof of Theorem 1.4 was to recursively constructed and reconstructed
generalized paths using nice chains of countable elementary submodels. We will adopt
this technique.

Now, turning to partitions of the vertex set of a graph into the vertex sets of cycles, a
prominent result in the spirit of Theorem 1.2 is the following, which verifies a conjecture
of J. Lehel:

Theorem 1.7 (S. Bessy, S. Thomassé, [1]). Every 2-edge-colored, complete, finite
graph has a partition of its vertex set into the vertex sets of two, differently colored,
monochromatic graphs that are cycles, single edges, or trivial graphs.

Evidently, this statement cannot be generalized directly to infinite complete graphs,
because a finite number of finite cycles cannot cover the whole vertex set of an infinite
graph. R. Diestel asked, whether the statement becomes true again when ”cylce” is
substituted by his notion of topological circle. We prove the following:

Theorem 1.8. Every r-edge-colored, complete, countably infinite graph has a partition
of its vertex set into the vertex sets of monochromatic hamiltonian graphs of different
colors.3

Furthermore, we prove a related statement on complete bipartite graphs with countably
infinite bipartition classes:

Theorem 1.9. Every r-edge-colored complete bipartite graph with countably infinite
bipartition classes has a partition of its vertex set into the vertex sets of 2r−1 monochromatic
hamiltonian graphs.

At the beginning of this thesis, we clarify the most basic definitions and nomenclature
for our theorems and proofs. Most of the notation is standard and intuitive. However,
it is important to be precise at this point, because of the model-theoretic techniques
that are used. In Section 3, results on inseparability are listed. The reader may skip
this section and come back whenever statements are needed. Theorem 1.8 and Theorem

3Trivial graphs are hamiltonian in this thesis.
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1.9 are discussed in Section 4. The output hamiltonian graphs are either trivial graphs,
cycles, or 1-way infinite ladders. In Section 5, we discuss Theorem 1.6 which is the main
result of this thesis. Section 4 and Section 5 can be considered separately. However, the
discussion of cycle decompositions is a good introduction to the proof of Theorem 1.6.
We conclude this thesis with two open problems and notes on locally finite edge-colorings.
These are edge-colorings, which possibly use infinitely many colors, but only finitely
many in the neighborhood of every vertex.

It is assumed that the kind reader is knowledgeable about infinite graph theory and set
theory. All the proofs that use model-theoretic arguments are included in an additional
subsection so that large parts of this thesis can be understood without knowledge about
elementary submodels.
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2 Notation

2 Notation

Mostly we follow the established textbooks Graph Theory by Diestel [3] and Set Theory
by K. Kunen [7]. Everything not mentioned can be found there. For edge-colorings we
mainly adopt the notation that Soukup et al. use in [6].

Definition 2.1. Let ≤ be a partial order on a set A, let B ⊆ A and let y, z ∈ A.

Z y↓ := {x ∈ A : x < y}.

Z B is an initial segment of A iff ∀a ∈ A, b ∈ B[a ≤ b→ a ∈ B].

Z [y, z) := {x ∈ A : y ≤ x < z}.

Definition 2.2. Let ≤ be a well-order on a set W and x ∈W .

Z x is a ≤-successor iff W has a smallest element above x.

Z x is a ≤-limit iff it is no ≤-successor. If x is the smallest limit above y, then we
refer to x by y + ω.

The orders in Definition 2.1 and Definition 2.2 will always belong to generalized paths
or von Neumann ordinals.

Definition 2.3. Let x be a set.

Z S(x) := x ∪ {x}.

Z x is transitive iff ∀y ∈ x[y ⊆ x].

Z x is a (von Neumann) ordinal iff it is transitive and well-ordered by ⊆.

Now, we list some helpful notation for graphs:

Definition 2.4. Let X be a set, G = 〈V,E〉 a graph, A,B ⊆ V disjoint sets of vertices
and M ⊆ E.

Z G[A,B] := G[A tB]\(E(A) t E(B)).

Z G[X] := G[V ∩X].

Z NG[A] :=
⋂
{NG(a) : a ∈ A}.

Z The graph G covers A iff A ⊆ V (G).

Z A copy of G is a pair 〈G′, φ〉 where G′ is a graph and φ is a graph isomorphism
between G and G′.

Z M is a matching iff the edges in M are pairwise non-adjacent.

Z M is a perfect matching iff M is a matching and every vertex is incident to an edge
in M .

Z If M is a matching and xy ∈M , then x is the matching partner of y and vice versa.
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Definition 2.5. Let G = 〈V,E〉 be a graph and κ a cardinal. An edge-coloring or
κ-edge-coloring of G is a function c : E → κ.

The cardinal κ will be a positive integer for the main part of this thesis. However, in
Section 6, we give some notes on ω-edge-colorings of graphs.

Definition 2.6. Let G = 〈V,E〉 be a graph, v ∈ V a vertex, A a set of vertices, c : E → κ
an edge-coloring, and i ∈ κ.

Z The elements of κ are the colors.

Z An edge e ∈ E has color i if and only if c(e) = i.

Z A subgraph H ⊆ G has color i if and only if c(E(H)) = {i}.

Z A subgraph H ⊆ G is monochromatic (with color j) if and only if it has color j for
some j ∈ κ.

Z The coloring c is finite if and only if κ is finite.

Z Gi := 〈V, c−1(i)〉.

Z G6=i := 〈V,E\c−1(i)〉.

Z NG(v, i) := NGi(v).

Z NG[A, i] := NGi [A] =
⋂
{NG(a, i) : a ∈ A}.
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3 Inseparability

In this section, we discuss highly connected sets of vertices — those which are<κ-inseparable
for some infinite cardinal κ:

Definition 3.1. Let κ be a cardinal number and G a graph. A set U of vertices is
<κ-inseparable in G iff no two distinct vertices in U can be separated by a set of less
than κ many vertices.

Three notations for <κ-inseparability can be found in the literature: Soukup et al. call
it κ-linked in [6] and D. Soukup calls it κ-unseparable in [11]. We adobt the notation
that Carmesin et al. use in [2].

Countable <ℵ0-inseparability sets of vertices are easily seen to be covered by a
generalized path: If Y is a countable <ℵ0-inseparable set of vertices in a given graph,
then recursively define a generalized path by adding in each step the next vertex of
some fixed enumeration of Y (which can be done since Y is <ℵ0-inseparable). However,
ℵ1 sized sets of vertices which are <ℵ1-inseparability cannot always be covered by a
generalized path: D. Soukup shows in [11] that there is a graph G satisfying that NG[F ]
is uncountable for every finite set F of vertices and has no uncountable generalized path.
The following lemma is a Menger type characterisation of <κ-inseparability:

Lemma 3.2. Let κ be a cardinal and G a graph. A set U of vertices is <κ-inseparable
iff each two distinct vertices u, u′ ∈ U are linked by κ many independent paths.

Proof. First, suppose that U is <κ-inseparable. Fix distinct vertices u, u′ ∈ U and let P
be a maximal set of independent u–u′-paths in G. Then P has size at least κ: otherwise
the set {V (P ) : P ∈ P} would be a separator contradicting the <κ-inseparability of U .

Now, assume that for each two distinct vertices u, u′ ∈ U there is a set P of κ many
independent u–u′-paths. Again, fix vertices u, u′ ∈ U . Then every less than κ sized set
X that is included in V (G)\{u, u′} meets less than κ many of paths in P. Hence u and
u′ are part of the same connected component of G−X.

We will need κ-uniform ultrafilters in order to obtain <κ-inseparable sets of vertices —
these are special free ultrafilters:

Definition 3.3. [8, p.144] Let A be non-empty set. A filter F is κ-uniform iff every set
X ∈ F has size at least κ.

For infinite κ it is always possible to find a κ-uniform ultrafilter on a given κ sized set:
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Lemma 3.4. [8, p.144] If κ is an infinite cardinal and A is a set of size κ, then there is
a κ-uniform ultrafilter on A.

Proof. Let κ be an infinite cardinal and A a set of size κ. Consider the (generalized)
Fréchet filter

F := {X ∈ P(A) : |A\X| < κ}

on A. Let us check that this is indeed a filter. The ground set A is contained in F since
A\A = ∅ has size κ and ∅ is not part of F since A\∅ = A has size κ. If X and Y are
elements of F , then

A\(X ∩ Y ) = (A\X) ∪ (A\Y )

and (A\X) ∪ (A\Y ) has size less than κ (using that κ is infinite). Hence A\(X ∩ Y ) has
size less than κ, in other words, the intersection X ∩ Y is contained in F . Finally, if X is
an element of F and Y is a subset of A that includes X, then |A\Y | ≤ |A\X| < κ and it
follows that Y is contained in F .

Extending F to an ultrafilter U yields the desired κ-uniform ultrafilter. Indeed, if X
is a subset of A that has size less than κ, then A\X is contained in F which itself is a
subset of U . Thus, X is not contained in U .

We often want to say that a set of vertices is nearly joined complete to another one:

Definition 3.5 (cf. [11]). Let κ be a cardinal, G a graph, and B a set of vertices. A set
A of vertices is κ-complete in B iff B\NG(a) has size less than κ for every vertex a ∈ A.

Every κ-complete set of vertices (more precisely, every set of vertices that is κ-complete
in some other set of vertices) in an r-edge-colored graph has a partition with partition
classes that are κ-inseparable for different colors:

Lemma 3.6 ([6]). Let κ be a cardinal, G a graph, B a set of κ many vertices, and A
a set of vertices that is κ-complete in B. Moreover, let c : E → {0, . . . , r − 1} be an
edge-coloring. Then there is a partition {Ai : i < r} of A satisfying that for every finite
partition {Bi : i ∈ J} of B there is an index j ∈ J such that NG[F, i] ∩Bj has size κ for
every finite F ⊆ Ai and every i < r.

A B

Ai

Bi

F
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3 Inseparability

Proof. Fix a κ-uniform ultrafilter UB of B (possible by Lemma 3.4) and a partition
{Bi : i ∈ J} of B. We find for every vertex a ∈ A a unique color i = i(a) such that
NG(a, i) is contained in UB. Let Ai be the set of vertices whose i colored neighborhood
lies in the ultrafilter, i.e. Ai := {a ∈ A : i(a) = i}. Consider the partition {Ai : i < r} of
A. Now, it holds that for every color i and every finite F ⊆ Ai the set NG[F, i] is an
element of the ultrafilter UB. This is because

NG[F, i] =
⋂
{NG(v, i) : v ∈ F},

i.e. it can be written as a finite intersection of filter elements.
Finally, if j is the unique index satisfying that Bj is contained in the ultrafilter UB,

then for each color i the set NG[F, i] ∩Bj is contained in UB as well. Thus, also using
that UB is κ-uniform, the intersection NG[F, i] ∩ Bj has size κ for every finite F ⊆ Ai
and every color i < r.

The next lemmas give criteria of sets of vertices being <ℵ1-inseparable. The statements
are extracted from proofs written by Soukup et al. in [6] or D. Soukup in [11].

Lemma 3.7. Let G be graph, A a set of vertices and A1, A2 ⊆ A. Moreover, suppose
that A1 and A2 are both <ℵ1-inseparable, the intersection A1 ∩ A2 has size ℵ1, and
A = A1 ∪A2. Then A is <ℵ1-inseparable.

Proof. Let a1 and a2 be distinct vertices that lie in the intersection A1 ∩A2 and let X
be a countable set of vertices that is included in V (G)\{a1, a2}. We show that a1 and a2
belong to the same connected component of G−X. If both a1 and a2 are contained in
either A1 or A2, then this follows by the <ℵ1-inseparability of A1 and A2 respectively.
So suppose that a1 ∈ A1 and a2 ∈ A2 or vice versa. By symmetry we may assume that
a1 ∈ A1 and a2 ∈ A2. Since the intersection A1 ∩ A2 is uncountable, we find a vertex
ã ∈ (A1 ∩ A2)\X. By our assumption that A1 and A2 are <ℵ1-inseparable, it follows
that ai and ã are part of the same component of G−X for i = 1, 2. By transitivity, the
vertices a1 and a2 are part of the same component of G−X as well.

14
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Lemma 3.8. Let G be a graph and A a <ℵ1-inseparable set of vertices that has size ℵ1.
Moreover, suppose that B is a set of vertices that is disjoint from A and satisfying that
every vertex in B has ℵ1 many neighbors in A. Then the union A∪B is <ℵ1-inseparable.

<ℵ1-inseparable

ℵ1

A B

Proof. Let us fix distinct vertices v1, v2 ∈ A ∪B and a countable set X that is included
in V (G)\{v1, v2}. We show that X does not separate v1 and v2 in G. If both v1 and v2
lie A, then X does not separate them because A is <ℵ1-inseparable.

Now, suppose that v1 ∈ A and v2 ∈ B or vice versa. By symmetry, we may assume
that v1 ∈ A and v2 ∈ B. Then v2 has ℵ1 many neighbors in A and thus we find a
vertex ã ∈ A\X that is linked to v2 by an edge. The previous case shows that X does
not separate a0 and v1. Moreover, X does not separate ã and v2 by the choice of ã.
Transitivity implies that X does not separate v1 and v2.

Finally, suppose that both v1 and v2 lie in B. We find a vertex ã ∈ A\X (using that
A is uncountable). By the previous case, the set X neither separates v1 nor v2 from ã.
Transitivity completes our proof.

15



3 Inseparability

Lemma 3.9. Let G be graph and A,B disjoint sets of vertices. Moreover, suppose that
there is a set A′ ∈ [A]ℵ1 of vertices such that A′ is <ℵ1-inseparable, G[A′, B] has a
perfect matching, and every vertex in A\A′ has ℵ1 many neighbors in B. Then A is
<ℵ1-inseparable.

<ℵ1-inseparable

A B

A′

A\A′ ℵ1

Proof. Let us fix a perfect matching M of G[A′, B], distinct vertices a1, a2 ∈ A, and
a countable set X ⊆ V (G)\{a1, a2}. We show that X does not separate a1 and a2 in
G. If both vertices a1 and a2 lie in A′, then X does not separate them because A′ is
<ℵ1-inseparable.

Now, suppose that either a1 ∈ A\A′ and a2 ∈ A′ or vice versa. By symmetry, we may
assume that a1 ∈ A\A′ and a2 ∈ A′. Let B′ consist of those neighbors of a1 in B that
are not part of X. Then B′ has size ℵ1 because X is countable and a1 has ℵ1 many
neighbors in B. The set

A′′ := {a ∈ A′ : ∃b ∈ B′[ab ∈M ]}

of matching partners of vertices in B′ has size ℵ1 as well. Hence A′′\X is non-empty and
we find a vertex a0 ∈ A′′\X. Let b0 ∈ B′ be the matching partner of a0. By the first
case (both vertices lie in A′), the set X does not separate a0 and a2. Moreover, the path
a1b0a0 shows, that a0 and a1 belong to the same component of G−X. Now, transitivity
implies that X does not separate a1 and a2.

Finally, suppose that both a1 and a2 lie in A\A′. Since X is countable and A′ has size
ℵ1, we find a vertex ã in A′\X. By the previous case, X neither separates the vertex a1
nor the vertex a2 from ã in G. Again, transitivity implies that X does not separate a1
and a2.

We conclude this section with a lemma that will help us to find a situation as in Lemma
3.9:
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Lemma 3.10. Let G = 〈A tB,E〉 be a graph with bipartition classes A,B both of size
ℵ1 and suppose that NG[F ] is uncountable for every finite F ⊆ A. Then there are disjoint
sets B′, B′′ ⊆ B of vertices such that the intersection NG[F ]∩B′ is uncountable for every
finite F ⊆ A and G[A,B′′] has a perfect matching.

Proof. Let us fix an enumeration 〈aα : α < ω1〉 of A and denote Aα := {aξ : ξ ≤ α}.
Simultaneously define countable sets Bα ⊆ B and distinct vertices bα ∈ B satisfying the
following for α < ω1 (cf. Figure: 3):

(1) aαbα is an edge of G.

(2) bα is not contained in B′α.

(3) Bξ ( Bα whenever ξ < α.

(4) NG[F ] ∩ (B′α\Bξ) is non-empty for every finite F ⊆ Aα and every ordinal ξ < α.

F

a0

a1

aα

A B

b0

b1

bα

Bξ

Bα

Figure 2: The Construction of bα and Bα.

We begin with B0 := ∅ and an arbitrary neighbor b0 of a0. Now, assume that Bα and bα
have been define for α < β. If β is a limit ordinal, then let Bβ :=

⋃
{Bα : α < β} and bβ

an arbitrarily vertex in

NG(aβ)\(Bβ ∪ {bα : α < β}).

Otherwise, if β = α+ 1, then we define Bβ by adding for every finite F ⊆ Aβ a vertex in
the common neighborhood of the vertices in F that is distinct from everything defined
so far to Bα, i.e. a vertex in the set

NG[F ]\(Bα ∪ {bξ : ξ < β}).

As before, choose bβ arbitrarily in

NG(aβ)\(Bβ ∪ {bα : α < β}).
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3 Inseparability

Consider the disjoint sets B′ :=
⋃
{Bα : α < ω1} and B′′ := {bα : α < ω1}. By condition

(1), the graph G[A,B′′] has a perfect matching, namely the set {aαbα : α < ω1}. We
want to show that NG[F ] ∩B′ is uncountable for every finite F ⊆ A. For this purpose,
it suffices to show that if X ⊆ V (G) is a countable set of vertices and F ⊆ A is finite,
then (NG[F ] ∩B′)\X is non-empty. Fix such sets F and X. We find an ordinal α such
that F ⊆ Aα and X ∩B′ ⊆ Bα. By condition (3), we have that NG[F ] ∩ (Bα+1\Bα) is
non-empty. Hence (NG[F ] ∩B′)\X is non-empty as well.

18
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4 Circle Decomposition for Kℵ0 and Kℵ0,ℵ0

Many well known theorems that deal with cycles in finite graphs are false for infinite
graphs. However, there is loophole in the case of locally finite graphs: often theorems
become true again when ”cycle” is replaced by an appropriate notion of topological circle.
The topological space |G| considered here is a certain compactification of G together
with its ends. For example, the outer double ray (fat) of the 1-way infinite latter seen
below defines a topological circle that ’meets’ the unique end of the ladder.

Figure 3: 1-Way Infinite Ladder.

The reader should keep in mind that this circle defines a Hamilton circle and that the
1-way infinite ladder is hamiltonian. We will not discuss these definitions in detail. For
an introduction to the topological approach to locally finite graphs and cycles see Diestel
and Sprüssel’s survey [5].

The purpose of this section is to prove an appropriate version of Lehel’s conjecture for
infinite graphs (cf. Theorem 1.8). Furthermore, we prove a similar result for bipartite
graphs (cf. Theorem 1.9). The proof of Theorem 1.8 imitates those of Theorem 1.2 that
can be found in [6]. In contrast, our proof of Theorem 1.9 has some more changes to its
template (Daniel Soukup’s theorem that every r-colored complete bipartite graph with
bipartition classes of countably infinite size has a partition into 2r − 1 paths). Originally,
all the decomposition graphs are built simultaneously in one step. Instead, we will first
simultaneously define disjoint, monochromatic, hamiltonian graphs of different colors
that cover a bipartition class of the given bipartite graph. Afterwards, we throw away
one of the hamiltonian graphs and simultaneously define hamiltonian graphs picking up
everything still uncovered. Technically, it is also possible to simultaneously built the
decomposition graphs in one single step. However, our strategy is a good preparation for
Section 5.

Lemma 4.1. Let G be a graph and F a finite set of vertices. If NG[F ] is infinite, then
F is covered by finite or trivial subgraphs of G.

Proof. Fix F ′ ⊆ NG[F ] and note that G[F, F ′] is complete bipartite. If F contains less
then two vertices, then it is clearly covered by a trivial graph. Otherwise, the graph
G[F, F ′] is hamiltonian and it follows that G is covered by a cycle.

Next, we introduce a class of graphs, which will help to construct 1-way infinite ladders:

19



4 Circle Decomposition for Kℵ0 and Kℵ0,ℵ0

Definition 4.2. Z Let n be an odd positive integer. A ladder fragment (of size n) is
a finite path v0 . . . v2n with additional edges v2iv2i+3 for i < n− 1 (cf. Figure 4).
The vertices v2n−2 and v2n are the connection points of the ladder fragment.

v0

v1 v2

v3 v4

v5 v6

v7 v2n−1

v2n−2

v2n

Figure 4: Ladder Fragment of size n. The path v0 . . . v2n is indicate fat.

Z Let G be a graph. A ladder fragment L ⊆ G with connection points v2n−2 and
v2n has an extension iff there are vertices v2n+1, v2n+2 ∈ V (G)\V (L) such that
v2n−2v2n+1, v2nv2n+1 and v2n+1v2n+2 are edges of G (cf. Figure 5). The graph

L+ E(vn+1, {vn−2, vn, vn+2})

is an extension of L.

v2n

v2n+1 v2n+2v2n−2

v2n−1

Figure 5: Extending a ladder Fragment.

Z Let L0, . . . , Ln be ladder fragments satisfying that Li+1 is an extension of Li for
i < n. Then Ln is an extension of L0.

The following lemma does the most work for the proof of Theorem 1.8:

Lemma 4.3. Let G = 〈V,E〉 be a countable graph and suppose that A and B are
sets of vertices satisfying that A is ℵ0-complete in B and B is countably infinite.
Moreover, let c : E → {0, . . . , r − 1} be an edge-coloring. Then A can be covered by
disjoint monochromatic graphs that are trivial, cycles, or 1-way infinite ladders of different
colors.

Proof. By Lemma 3.6, we find a partition {Ai : i < r} of A such that NG[F, i] is countably
infinite for every finite F ⊆ Ai and by Lemma 4.1, we may assume that every Ai is
infinite. Let us fix an enumerations 〈an : n < ω〉 of A. By recursion on n, we define
simultaneously sequences 〈Lni : n < ω〉 satisfying the following:
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(1) Lni is a ladder fragment of size n+ 1 in Gi and has connection points in Ai.

(2) Lni has color i.

(3) Ln+1
i is an extension of Lni .

(4) Lni and Lnj have disjoint vertex sets for different colors i and j.

(5) The vertex an is contained in Wn :=
⋃
{V (Lni ) : i < r}.

Once the Lni are defined we are done. Indeed, for each color i let Li be the graph⋃
{Lni : n < ω}. By condition (1) and condition (3), the graph Li is a 1-way infinite

ladder for i < r and by condition (2), Li has color i for i < r. Moreover, by condition
(4), all the Li have disjoint vertex sets for i < r and by condition (5), the union⋃
{V (Li) : i < r} covers A.
In the recursion base construct disjoint ladder fragments L0

i for colours i < r that
satisfy the conditions (1)-(5). This can be done by recursion on i using that NG[F, i] is
infinite for every finite F ⊆ Vi and every color i < r (a ladder fragment of size one is just
a finite path of length three and the end vertices of the path are exactly the connection
points of the ladder fragment).

Now, assume that Lni has already been defined. We find pairwise distinct vertices an+1
i

that are contained in Ai\Wn for i < r; if possible choose an+1
i as the vertex an+1. Let

Fn+1
i consist of the connection points of Lni and the vertex an+1

i for i < r. Using the
second part of (1), we find a vertex bn+1

i that is contained in NG[Fn+1
i , i]. Since all the

sets Ai are infinite, we can choose the vertices bn+1
i pairwise distinct. Letting

Ln+1
i := Lni + E(Fn+1

i , bn+1
i )

completes our construction (cf. Figure 6).

bn+1
i an+1

iLni

Fn+1
i

Figure 6: Construction of Ln+1
i .

Corollary 4.4. Let G = 〈V,E〉 be a graph and suppose that A and B are sets of vertices
satisfying that A is ℵ0-complete in B, that A is countable, and that B is infinite. Moreover,
let c : E → {0, . . . , r − 1} be an edge-coloring. Then A can be covered by the vertex sets
of disjoint monochromatic graphs that are trivial, finite paths, or 1-way infinite paths of
different colors.
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4 Circle Decomposition for Kℵ0 and Kℵ0,ℵ0

Proof. Every cycle contains a spanning path and every 1-way infinite ladder contains a
1-way infinite path.

Theorem 1.8. Every r-edge-colored, complete, countably infinite graph has a partition
of its vertex set into the vertex sets of monochromatic hamiltonian graphs of different
colors.4

Proof of Theorem 1.8. Apply Lemma 4.3 to the graph G for A = B = V .

Theorem 1.8 is optimal because sometimes r trivial graph, finite cycles, or 1-way
infinite ladders are needed to partition the whole vertex set:

Example 4.5. (1) Let G = 〈V,E〉 be a countably infinite complete graph and fix
vertices v0, . . . , vr−2 ∈ V . Assign color i to the edges in E(vi, V \{v0, . . . vr−2}) for
i < r − 1 and color r − 1 to the rest (cf. Figure 7 ).

v0 v1 v2 vr−2

V \{v0, . . . , vr−2}

Figure 7: Edge-Coloring of G.

Suppose that H is a set of monochromatic trivial graphs, cycles, or 1-way infinite
ladders in G such that

⋃
{V (H) : H ∈ H} is a partition of V . Since all graphs in

H have finite maximum degree, infinitely many of the vertices in V must belong to
a graph H ∈ H that has color r − 1. Using that graphs from H are connected, it
follows that the vertices vi cannot belong to H. Moreover, vi and vj must belong
to different graphs from the set H whenever i and j are different colours. Hence H
has size at least r.

(2) There is an edge-coloring such that all the decomposition graphs in Theorem 1.8
must be 1-way infinite ladders. Indeed, let G = 〈V,E〉 be a countably infinite
complete graph. By recursion on n, define a partition {Vn : n < ω} such that
|V<n| < |Vn| − (r− 2) where V<n is the set

⋃
{Vm : m < n}. For every i < r, assign

an edge vw with the color i if v ∈ Vn, w ∈ Vm with m ≤ n and m ≡ i (mod r). Let
H be a set of r monochromatic trivial graphs, cycles, or 1-way infinite ladders in G
such that

⋃
{V (H) : H ∈ H} is a partition of V . Suppose for a contradiction that

H contains a finite graph H and let j be the color of H. Choose N large enough
such that V (H) is included in V<N and let N ′ be a positive integer of size at least

4Trivial graphs are hamiltonian in this thesis.
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N with N ′ ≡ j (mod r). All the vertices in VN ′ must belong to graphs in H that
have a color different to j. Estimating the summed degrees of vertices in VN ′ with
respect to the graphs in H to that they belong generates a contradiction to the
choice of the set VN ′ .

Before we proof Theorem 1.9, we need just one more lemma, which helps us to pick up
certain vertices with 1-way infinite ladders:

Lemma 4.6. Let G = 〈A tB,E〉 be a bipartite graph with bipartition classes A and B
both countably infinite, b ∈ B a vertex of infinite degree, and L a ladder fragment with
connection points in A. Moreover, suppose that NG[F ] is infinite for every finite F ⊆ A.
Then there is an extension L′ of L that contains b and has connection points in A.

Proof. Let a0 and a1 be the connection points of L. Since b has infinite degree, we find
neighbors a2, a3 and a4 of b that are not part of L. Moreover, using that NG[F ] is infinite
for every finite F ⊆ A, we find vertices

b0 ∈ NG[{a0, a1, a2}]\(V (L) ∪ {b})
b1 ∈ NG[{a1, a2, a3}]\(V (L) ∪ {b, b0}).

Letting

L′ := L+ E(b0, {a0, a1, a2}) + E(b1, {a1, a2, a3}) + E(b, {a2, a3, a4})

yields an extension of L containing b with connection points a3 and a4 that are contained
in A (cf. Figure 8).

a0 b0 a2 b a4

a1 b1 a3

Figure 8: Construction of L′.

Theorem 1.9. Every r-edge-colored complete bipartite graph with countably infinite
bipartition classes has a partition of its vertex set into the vertex sets of 2r−1 monochromatic
hamiltonian graphs.

Proof of Theorem 1.9. By Lemma 4.3, we find disjoint graphs C0, . . . , Cr−1 such that
each Ci is a trivial graph, a cycles, or a 1-way infinite ladder and has color i. Our plan is
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4 Circle Decomposition for Kℵ0 and Kℵ0,ℵ0

to keep r − 1 of these graphs for the partition of V and to simultaneously define r new
decomposition graphs that pick up all the vertices still being uncovered.

Let Ai be the intersection A ∩ V (Ci), let Bi be the intersection B ∩ V (Ci) for i < r,
and let Br be the set B\

⋃
{Bi : i < r}. Consider the partition {Ai : i < r} of A and the

partition {Bi : i ≤ r} of B (cf. Figure 9). A look at the proof of Lemma 4.3 shows that
{Ai : i < r} appeared through the application of Lemma 3.6. Hence we find an index

A B

A0

A1

Ar−1

Ar−1

B0

B1

Br−2

Br−1
Br

Figure 9: Cover A with Hamiltonian Graphs

j such that NG[F, i] ∩ Bj is infinite for every finite F ⊆ Ai and every i < r. We may
assume that j is either the index r − 1 or the index r and that Br−1 is infinite. Note
that the intersection NG[F, i] ∩ (Br−1 tBr) is infinite for every finite F ⊆ Ai and every
i < r. Consider the partition {B′, B′′} of Br−1 tBr where

B′ := {b ∈ Br−1 tBr : |NG(b, r − 1) ∩Ar−1| = ℵ0}
B′′ := (Br−1 tBr)\B′.

Observe that B′′ is ℵ0-complete in Ar−1 referring to the graph G 6=r−1. By Lemma 3.6,
we find a partition {B′′i : i < r − 1} of B′′ such that NG[F, i] ∩Ar−1 is infinite for every
finite F ⊆ B′′i and every i < r. We may assume that all the B′′i are infinite (cover finite
sets B′′i by finite cycles using Lemma 4.1). Let us fix an enumeration 〈an : n < ω〉 of
Ar−1, an enumeration 〈b′n : n < |B′|〉 of B′ and an enumeration 〈b′′n : n < ω〉 of B′′. By
recursion on n we simultaneously define sequences 〈Lni : n < ω〉 for i < r satisfying the
following:
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(1) Lni is a ladder fragment of size n+ 1 whenever i < r − 1.

(2) Lni has color i.

(3) Lni has connection points in Ar−1.

(4) Ln+1
i is an extension of Lni .

(5) All the Lni have pairwise disjoint vertex sets.

(6) Wn :=
⋃
{V (Lni ) : i < r} contains the vertices an, b′n and b′′n where b′n := b0 for

n ≥ |B′|.

Once the Lni are defined we are done. Indeed, {V (Li) : i < r} will be a partition of
Ar−1 t Br−1 t Br into 1-way infinite ladders of different colors where Li is the 1-way
infinite ladder

⋃
{Lni : n < ω} and as a consequence the vertex sets of the monochromatic

hamiltonian graphs
L0, . . . , Lr−1, C0, . . . , Cr−2

will define a suitable partition of V (G).
The ladder fragments L0

i can be defined by recursion on i < r − 1 using that
NG[F, i] ∩Ar−1 is infinite for every finite F ⊆ B′′i . For the definition of Lni , let

W 0
<r−1 :=

⋃
{V (L0

i ) : i < r − 1}.

If B′\W 0
<r−1 is empty, then all the vertices in B′ have already been picked up by

previously defined ladder fragments and L0
r−1 can be defined using that the intersection

NG[F, r − 1] ∩ (B′ tB′′) is infinite for every finite F ⊆ Ar−1.
Otherwise, if B′\W 0

<r−1 is non-empty, then choose ã0 minimal in Ar−1\W 0
<r−1 with

respect to the enumeration of Ar−1 and choose b̃′0 minimal in B′\W 0
<r−1 with respect

to the enumeration of B′. Fix a ladder fragment L̃0
r−1 of size one that does not meet

W 0
<r ∪ {b̃′0}, has ã0 as one of its connection point, and is monochromatic with color r− 1.

By Lemma 4.6 applied to the graph

Gr−1[Ar−1, Br−1 tBr]−W 0
<r,

the vertex b̃′0, and the ladder fragment L̃0
r−1, we find an extension L0

r−1 of L̃0
r−1 satisfying

the conditions (1)-(6).
Now, suppose that Lni has already been defined for i < r. By recursion on i < r − 1,

define extensions Ln+1
i of Lni satisfying (1)-(6) as in the proof of Theorem 1.8. For the

construction of Ln+1
r−1 , let us write

Wn+1
<r−1 :=

⋃
{V (Ln+1

i ) : i < r}.

If B′\(Wn+1
<r−1 ∪ Lnr−1) is empty, then all the vertices in B′ have already been picked up

by previously defined ladder fragments and as before Ln+1
r−1 can be defined using that

NG[F, r − 1] ∩ (B′ tB′′) for every finite F ⊆ Ar−1.
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4 Circle Decomposition for Kℵ0 and Kℵ0,ℵ0

Otherwise, if B′\(Wn+1
<r−1 ∪ Lnr−1) is non-empty, then choose ãn+1 minimal in the set

Ar−1\(Wn+1
<r−1 ∪ Lnr−1) with respect to the enumeration of Ar−1 and b̃′n+1 minimal in the

set B′\(Wn+1
<r−1 ∪Lnr−1) with respect to the enumeration of B′. By Lemma 4.6 applied to

the graph
Gr−1[Ar−1, Br−1 tBr]−Wn+1

<r ,

the vertex b̃′n+1, and the ladder fragment Lnr−1, we find an extension Ln+1
r−1 of Lnr−1

satisfying (1)-(6).

Note that at most two of the hamiltonian graphs we found have the same color.
Furthermore, Theorem 1.9 is optimal because sometimes 2r−1 non-empty decomposition
graphs are needed:

Example 4.7 ([10]). Let G = 〈AtB,E〉 be a complete bipartite graph with bipartition
classes A and B both of size ℵ0. Let us fix a partition {Ai : i < r} of A and a partition
{Bi : i < r} of B such that A1, . . . , Ar−1 are singletons and every other partition class
is countably infinite. Assign an edge ab with color i whenever a ∈ Ai1 , b ∈ Bi2 , and
i ≡ i1 + i2 (mod r). Suppose that H is a set of monochromatic trivial graphs, cycles, or
1-way infinite ladders in G such that

⋃
{V (H) : H ∈ H} is a partition of V (G). Since all

graphs in H are connected and by the definition of our coloring, it follows that the r − 1
vertices that lie in singleton partition classes are part of different trivial graph from H.
Moreover, vertices that are contained in different partition classes of the partition of B
must lie in different graphs from H as well. Hence H has size at least 2r − 1.
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5 Path Decomposition for Kℵ1,ℵ1

5.1 The Decomposition Theorem

In this section, we prove one of our main result: Theorem 1.6. The rough structure will
remind the reader to Theorem 1.9. First, we show that bipartition class can be covered
by disjoint monochromatic generalized paths of different colors. In addition, we ensure
that one of these generalized paths P is X-robust for some set X of uncountable size.
X-robust informally means that deleting vertices from X does not destroy the generalized
path. In a second step, we substitute P by disjoint monochromatic generalized paths,
whose union contains the vertices of P and all the vertices that were not covered yet.

The section is organized as follows: After clarfying our notation, we state two main
lemmas for the proof of Theorem 1.6 and show how they imply the theorem. In Subsection
5.1, we give an overview of elementary submodels and discuss some of their properties
that are crucial for our proof. Finally, in a second subsection we prove the two main
lemmas.

Definition 5.1 ([11]). Let P and Q be generalized paths.

Z Q extends P iff P is an initial segment of Q.

Z Suppose that P andQ are disjoint and thatNG(q0) is cofinal in P where q0 := min(Q).
Then P_Q is the generalized path 〈P tQ,P ×Q∪ �P ∪ �Q〉. If Q = {q0} is a
singleton, then we simply write P_q0 instead of P_{q0}.

Z Suppose that p1, p2 ∈ P with p1 ≺P p2. The restriction P � [p1, p2) to [p1, p2) is
the generalized path 〈[p1, p2),�P ∩[p1, p2)

2〉 in G.

Z The ordinal type(P ; �P ) is the order type of P .

An important example of a graph, whose vertex set defines a generalized path is the
graph Hµ,µ:

Definition 5.2 ([6]). Let µ be an ordinal. The bipartite graph Hµ,µ has bipartition
classes µ × {0} and µ × {1}. Two vertices 〈α, 0〉 and 〈β, 1〉 are adjacent iff α ≤ β.
We call µ × {0} the main class of Hµ,µ. The Hµ,µ-order �Hµ,µ is defined by letting
〈α, i〉 �Hµ,µ 〈β, j〉 whenever α ≤ β and j ≤ i. (Cf. Figure 10.)
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5 Path Decomposition for Kℵ1,ℵ1

〈0, 0〉

〈β, 0〉

〈1, 0〉
〈0, 1〉
〈1, 1〉

〈β, 1〉

µ× {1}µ× {0}

Figure 10: The graph Hµ,µ and its partial order (dashed).

It is easily seen, that the Hµ,µ-order defines a well-order, which together with the vertex
set of Hµ,µ defines a generalized path (in each graph G that has Hµ,µ as a subgraph). In
this thesis, we will always have µ = ω or µ = ω1. For both of these two cases, it holds
that the generalized path 〈Hµ,µ,�Hµ,µ〉 has order type µ.

Definition 5.3. Let G be a graph. Let µ be an ordinal and 〈H,φ〉 a copy of Hµ,µ in G.
The main class of H is the set φ(µ× {0}). Moreover, �H is the partial ordering defined
by letting v �H w whenever φ−1(v) �Hµ,µ φ−1(w) for v, w ∈ H.

The next lemma will be used in situations where we want cover a set of vertices by a
generalized path.

Lemma 5.4 (cf. [11]). Let G = 〈A tB,E〉 be a bipartite graph with bipartition classes
A and B. Suppose that A is ℵ1-complete in B, that A has size µ ≤ ℵ1 and B has size ℵ1
(cf. Figure 11). Then there is a subgraph H ⊆ G that is a copy of Hµ,µ with main class
A.

A

B

µ

<ℵ1

ℵ1

Figure 11: The assumptions for Lemma 5.4.

Proof. Let us fix an enumeration {aα : α < µ} of A and for α < µ, let Aα be the set
{aξ ∈ A : ξ ≤ α}. By the equation

NG[Aα] = B\
⋃
{B\NG(aξ) : ξ ≤ α},
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each of the sets NG[Aα] for α < µ must lie cocountable in B (using that the set⋃
{B\NG(aξ) : ξ ≤ α} is countable as a countable union of countable sets).

By recursion on α, we find distinct vertices bα ∈ NG[Aα] for α < µ. Let B′ consist of all
these vertices, that is to say, B′ := {bα : α < µ}. Since by construction Aα ⊆ N(bα) for
every α ≤ µ, the induced subgraph H := G[A tB′] has a spanning subgraph isomorphic
to Hµ,µ with main class A where 〈α, 0〉 is mapped to aα and 〈α, 1〉 is mapped to bα under
the isomorphism for α < µ.

Definition 5.5. Let G be a graph and X ⊆ V (G). A generalized path P is X-robust iff
for every X ′ ⊆ X, there is a well-order �P\X′ on P\X ′ such that the following holds:

Û 〈P\X ′,�P\X′〉 is a generalized path.

Û 〈P,�P 〉 and 〈P\X ′,�P\X′〉 have the same order type.

Û min�P (P ) = min�P\X′ (P\X
′).

If X = {x} is a singleton, then we just say that P is x-robust. (Cf. Figure 12.)

P
∈ X ′ ∈ X ′

Figure 12: X-robust generalized path.

If P is X-robust and we want to cover the vertices that are contained in P plus some
other vertices by r disjoint generalized paths, then it suffices to construct further r − 1
disjoint generalized paths that meet P only in a subset of X. The rest of P will still be
a generalized path and can be added to our collection.

For the recursive constructions of generalized paths it will help to have local conditions
that imply X-robustness — the next definitions will turn out to be useful.

Definition 5.6 ([11]). Let G be a graph and A a set of vertices. A generalized path P
is concentrated on A iff

A ∩ P � [p1, p2) ∩NG(p2)

is non-empty whenever p2 is a �P -limit and p1 ≺P p2. (Cf. Figure 13.)
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p1 p2

P

∈ A

∃

∃

Figure 13: Generalized path P that is concentrated on A.
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Definition 5.7. Let G be a graph, P a generalized path and X a set of vertices.

Z S ⊆ P is a standard interval of P iff S = P � [p, p+ ω) for some �P -limit p.

Z X ⊆ V (G) is scattered on P iff X meets every standard interval S in at most
one vertex and if X meets S in x, then x is not the first vertex on S, that is,
x 6= min(S).

Z P is locally X-robust iff for every x ∈ X every standard interval S of P is x-robust.

Note that standard intervals are generalized paths of order type ω by definition.

Lemma 5.8. Let G = 〈V,E〉 be a graph, A,X sets of vertices and P a locally X-robust
generalized path of order type ω1 that is concentrated on A\X. Moreover, suppose that X
is scattered on P . Then P is X-robust.

Proof. Fix a set X ′ ⊆ X. Let S denote the set of all standard intervals of P . Then S
partitions P . Moreover, let us write S(p) for the unique standard interval of P that
contains p for each p ∈ P . We define a well-order �S on S by letting S1 �S S2 whenever
v1 �P v2 for two vertices v1 ∈ S1 and v2 ∈ S2. Clearly, the well-order �S does not
depend on the choice of vi ∈ Si for i = 1, 2.

Let S ′ := {S′ : S ∈ S} where S′ := S\X ′. Since X is scattered on P and P is locally
X-robust we find for every S′ ∈ S ′ a well-order �S′ such that 〈S′,�S′〉 is a generalized
path of order type ω and the first vertex on S′ coincides with the first vertex on S.

Now, let / be the lexicographic product of �S and �P on S × P and let �P ′ on P ′ by
letting p1 �P ′ p2 iff 〈S(p1), p1〉 / 〈S(p2), p2〉 for each two vertices p1, p2 ∈ P ′.

By definition, 〈P ′,�P ′〉 and 〈S ×P ′, /∩ (S ×P ′)2〉 are order isomorphic and the latter
partial order is a well-order (here we use that lexicographic products of two well-orders
are well-orders and that subsets of well-ordered sets are well-ordered). Hence �P ′ is a
well-order on P ′.

Next we will show that 〈P ′,�P ′〉 is a generalized path. For this purpose let p2 be a
vertex on P ′. If p2 is the �P ′-successor, then NG(p2) ∩ {p2}↓ is cofinal in {p2}↓ because
S(p2)

′ is a generalized path. Now, suppose that p2 is a �P ′-limit. Fix a vertex p1 in
the down-closure {p2}↓ (with respect to �P ′). Note that p2 is also a �P -limit and that
p1 ≺P p2. Since P is concentrated on A\X, we find a vertex a that is contained in

P � [p∗1, p2) ∩ (A\X) ∩NG(p2)

where p∗1 is the vertex

p∗1 := max{r ∈ S(p1)
′ : r �S(p1)′ p1}+ 1,

where the maximum is taken with respect to the well-order ≺S(p1)′ . Note that

{r ∈ S(p1)
′ : r �S(p1)′ p1}

is a finite set and thus this maximum indeed exists. Furthermore, note that p∗1 lies in the
standard interval S(p1)′. By the definition of �P ′ , this vertex a satisfies p1 ≺P ′ a ≺P ′ p2.
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5 Path Decomposition for Kℵ1,ℵ1

P ′ has order type ω1 since P is still uncountable after deleting X ′ and X is scattered
on P . The first vertex on P ′ coincides with the first vertex on P by the definition of �P ′
and because X is scattered on P .
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Definition 5.9. Let G = 〈V,E〉 be a graph and A a set of vertices. A generalized path
P is strong on A iff there is a set X ∈ [A ∩ P ]ℵ1 satisfying the following:

Û P is locally X-robust.

Û P is concentrated on A\X.

Û X is scattered on P .

Lemma 5.10 (First Main Lemma). Let G be a bipartite graph with bipartition classes
A,B both of size ℵ1 and Y a <ℵ1-inseparable set of vertices. Moreover, suppose that
A is included in Y . If G has a generalized path that is strong on A, then it also has a
generalized path that is strong on A and covers Y . (Cf. Figure 14.)

<ℵ1-inseparable

A B A B

Figure 14: Blowing up a generalized path.
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Lemma 5.11 (Second Main Lemma). Let G = 〈A t B,E〉 be a bipartite graph with
bipartition classes A,B, both of size ℵ1 and suppose that A is ℵ1-complete in B. Moreover,
let c : E → {0, . . . , r − 1} be an edge-coloring of G. Then there is a partition {Ai : i < r}
of A, disjoint sets B0, . . . , Br−1 ⊆ B, well-orders �A0tB0 , . . . ,�Ar−1tBr−1, and distinct
colors i0, . . . , ir−1 satisfying the following:

1 A0 is <ℵ1-inseparable in Gi0 [A0, B0].

1 〈A0 tB0,�A0tB0〉 is a generalized path of order type ω1 in the graph Gi0, that is
strong on A.

1 〈Aj tBj ,�AjtBj 〉 is a generalized path in the graph Gij for j = 1, . . . , r − 1.

(Cf. Figure 15.)

<ℵ1-inseparable

A B

A0
B0

A1 B1

Ar−2 Br−2

Ar−1 Br−1

Figure 15: Covering A by disjoint generalized paths of different colors.

Theorem 1.6. Let r be a positive integer. Every r-edge-colored complete bipartite graph
with bipartition classes of size ℵ1 has a partition of its vertex set into 2r−1 monochromatic
generalized paths.

Proof. Let G = 〈A tB,E〉 be a complete bipartite graph with bipartition classes A,B
and let c : E → {0, . . . , r − 1} be an edge-coloring. First, apply Lemma 5.11 and find a
partition {Ai : i < r} of A, disjoint set of vertices B0, . . . , Br−1 ⊆ B, well-orders �AitBi
for i < r, and distinct colors i0, . . . , ir−1 as in the lemma. By symmetry, we may assume
that ij = j for j < r.

Let Pi be the generalized path Pi := 〈Ai t Bi,�AitBi〉 for 0 < i < r. Let B̃0 be
the superset of B0 that consists of the vertices in B0 and all the vertices that are not
covered yet by generalized paths, that is to say B̃0 := B\

⋃
{Bi : 1 ≤ i < r}. Consider
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the partition {B′, B′′} of B̃0 where B′ is the set of vertices from B̃0 sending uncountably
many 0 colored edges to A0, i.e.,

B′ := {b ∈ B̃0 : |NG(b, 0) ∩A0| = ℵ1}

and B′′ := B̃0\B′. Then Y := B′ ∪A0 is <ℵ1-inseparable in G0[A0, B̃0] by Lemma 3.8.
Apply Lemma 5.10 to G0[A0, B̃0] and Y in order to find a generalized path P ′0 of order
type ω1 that is strong on A0 and covers Y .

By Lemma 5.8 and the definition of strong, we find a set X ∈ [A0 ∩ P ]ℵ1 such that P ′0
is X-robust. Moreover, since B̃0\P ′0 is included in B′′, every vertex in B̃0\P ′0 sends at
most countably many 0-colored edges to A0; in particular to X. Hence every vertex in
B̃0\P ′0 sends cocountably many edges to X that have not color 0. By Lemma 5.11 and
Corollary 4.4 respectively applyed with reversed roles of A and B (the set B̃0\P ′0 takes
the role of A and X takes the role of B), we find monochromatic disjoint generalized
paths Pr, . . . , P2r−2 in G6=0[X, B̃0\P ′0] that cover B̃0\P ′0. Let us define

P0 := P ′0\
⋃
{Pi : r ≤ i < 2r − 1}.

Since P ′0 is X-robust, we find a well-order �P0 such that 〈P0,�P0〉 is a generalized path.
Now, {Pi : i < 2r − 1} is a partition of V (G) into monochromatic generalized paths.

Note that at most two of the generalized paths that we have found are of the same
color. Furthermore, Theorem 1.6 is optimal in the sense that there are colorings such that
2r − 1 decomposition generalized paths are needed. Indeed, exchange all the partition
classes of size ℵ0 by partition classes of size ℵ1 in Example 4.7. The argumentation is
the same because graphs that are induced by generalized paths are connected.

5.2 Elementary Submodels

In this subsection, we discuss elementary submodels and provide some lemmas that
help us in subsection 5.2. Elementary submodels are used in infinite combinatorics as
follows: If a graph G is contained in H(θ) (for some big cardinal θ), then Downward
Löwenheim-Skolem-Tarski Theorem guarantees the existence of a countable elementary
submodel M of H(θ) that contains G. Often properties of G can be modeled within M .
One says, that the properties of G are reflected from H(θ) to M . If this is the case, the
intersection G ∩M will have these properties as well (possibly in a weakened form). The
fact that M is countable makes it then possible to use results on countable graphs.

It is also common to use increasing ∈-chains of countable elementary submodels that
cover G, so that every element of G can be considered in large enough submodels of the
chain.

We begin this subsection with the definition of elementary submodels and list some
facts. Afterwards, we discuss properties that are needed for the proofs of the two main
lemmas. Finally, we show how nice chains of elementary submodels are generated.

More information on elementary submodels can be found in [7]. For an introduction
to the use of elementary submodels in infinite combinatorics see [12].

35



5 Path Decomposition for Kℵ1,ℵ1

Definition 5.12 ([7, p. 87]). Let A and B be structures for some lexicon L. We say
that A is an elementary submodel of B written A � B, if the following holds:

(1) A ⊆ B.

(2) A |= ϕ[σ] iff B |= ϕ[σ], for every formula ϕ and every assignment σ.

Theorem 5.13 (Downward Löwenheim-Skolem-Tarski Theorem, [7, p. 88]). Let
B be a structure for some lexicon L. Moreover, let κ be a cardinal satisfying that
max(L,ℵ0) ≤ κ ≤ |B| and let S ∈ [B]<κ. Then B has an elementary submodel A with
S ⊆ A and |A| = κ.

It can be recommended to look up the proof of Theorem 5.13 as it takes some of the
magic out of the statement.

Definition 5.14 ([7, p. 93]). Let A be a structure for some lexicon L, P ⊆ A, and
k a positive integer. S ⊆ Ak is definable with parameters in Ak iff there is a formula
ϕ(~x, ~y) and ~b ∈ P such that S = {~x : A |= ϕ(~x,~b)}. An element a ∈ A is definable with
parameters in P iff {a} is definable with parameters in P . If P is empty, then we simply
say that S (and a respectively) is definable.

Lemma 5.15. Suppose that θ is an uncountable cardinal and that M is a countable
elementary submodel of H(θ). If a ∈ H(θ) is definable with parameters in M , then a is
contained in M .

Proof. Let ~b ∈ M and ϕ(x, ~y) be a formula such that x = a iff H(θ) |= ϕ(x,~b). Since
a ∈ H(θ), we have that H(θ) |= ∃xϕ(x,~b) and by elementarity M |= ∃xϕ(x,~b). So there
is some a′ ∈ M with M |= ϕ(a′,~b). Again, by elementarity, H(θ) |= ϕ(a′,~b). Now, by
definition of definable, we have a = a′.

The next lemma will be used frequently. It roughly says that most of mathematics can
be modeled in H(θ) for big enough ordinals θ.

Lemma 5.16 ([7, p. 110]). If κ is a regular uncountable cardinal, then H(θ) is a model
of ZFC − P .
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Here are some properties for elementary submodels:

Lemma 5.17 ([7, p. 230]). Suppose that θ is an uncountable cardinal and that M is a
countable elementary submodel of H(θ). Then

(1) ω ∪ {ω, ω1} ⊆M .

(2) M ∩ ω1 is a countable limit ordinal.

(3) If f ∈M is a function and x ∈ dom(f) ∩M , then f(x) ∈M .

(4) If x ∈M and |x| ⊆M , then x ⊆M .

(5) If 〈P,≤〉 ∈M is a well ordering of type ω1, then M ∩ P is an initial segment of P
and min≤(P\M) is a ≤-limit.

Proof. For (1) let us show that ordinals smaller than ω as well as ω and ω1 are definable.
The set ∅ is definable witnessed by the formula ∀y[y /∈ x]. If n is a positive integer, then
n is definable by the formula x = Sn(∅). The ordinal ω is definable by the formula ’x is
the smallest limit ordinal’ and ω1 is definable by ’x is the smallest uncountable ordinal’.

(2) can be seen as follows: Since H(θ) |= ∀x ∈ ω1 ∀y ∈ x ∃z[z = y] and M � H(θ) we
have that M ∩ω1 is an initial segment of ω1; in particular M ∩ω1 is an ordinal. Moreover,
H(θ) |= ∀x ∃y[y = S(x)]. Again by M � H(θ) we have that ξ + 1 is contained in M
whenever ξ ∈M . It follows that M ∩ ω1 is a limit ordinal.

For (3) suppose that f ∈M and x ∈ dom(f)∩M . Then H(θ) |= ∃y[〈x, y〉 ∈ f ] and by
M � H(θ), there is some y ∈M such that f(x) = y.

For (4) let x ∈ M and λ := |x| ⊆ M . Then H(θ) |= ’there is a bijective function
f with dom(f) = λ and ran(f) = x’. By M � H(θ), we find a bijection f ∈ M with
dom(f) = λ and ran(f) = x. Now, (3) implies x is included in M .

Finally, let us check (5). We have that H(θ) |= ’there is an order preserving bijection
φ, with dom(φ) = ω1 and ran(φ) = P ’. By M � H(θ), we find such a function φ in
M . Now, (3) implies that the intersection M ∩ P is an initial segment of P as well and
min≤{p ∈ P : p /∈M} is a ≤-limit because the intersection M ∩ ω1 is a limit by (2).

Lemma 5.18. Let θ be an uncountable cardinal and M a countable elementary submodel
of H(θ). Moreover, let G ∈M be a graph and Y ∈M a set of vertices in G that satisfies
NG[F ] is uncountable for every finite F ⊆ Y . If X ∈ M is a countable set of vertices,
then NG−X [F ] ∩M is infinite for every finite F ⊆ (Y ∩M)\X.

Proof. First, recall that M � H(θ) implies M ⊆ H(θ) and thus G, Y , and X lie in H(θ).
Let us fix finite sets F ⊆ (Y ∩M)\X and X ′ ⊆ Y ∩M . Note that X ′ and F lie in M
(since X ′ and F are finite and X ′, F ⊆M). We show that NG[M ]−X [F ]\X ′ is non-empty.
Consider the formulas

37



5 Path Decomposition for Kℵ1,ℵ1

- ϕ1(f
′, F ′, V ′) := f ′ is a function, dom(f ′) = F ′, and ran(f ′) = V ′.

- ϕ2(f
′, E′) := ∀〈x, y〉 ∈ f ′[xy ∈ E′].

- ϕ3(f
′) := ∃y ∈ ran(f ′) ∀x ∈ dom(f ′)[〈x, y〉 ∈ f ′].

Since NG[F ] is uncountable, we have that

H(θ) |= ∃f [ϕ1(f, F, V (G)\(X ∪X ′)) ∧ ϕ2(f,E(G)) ∧ ϕ3(f)].

∀F

X′

X

M

Y

∃f(x)

Now, by M � H(θ), we find such a function f ∈ M and by (3) of Lemma 5.17, it
follows that f(x) ∈M .

Lemma 5.19. Let θ be an uncountable cardinal and M a countable elementary submodel
of H(θ). Moreover, let 〈P,�P 〉 ∈ M be a generalized path, G ∈ M a graph, X ∈ M a
countable set of vertices, and Y ∈M a <ℵ1-inseparable set of vertices in G. If p ∈ P ∩M ,
then (M ∩ Y )\(X ∪ p↓) is <ℵ0-inseparable in the graph G[M ]− (X ∪ p↓).

Proof. Note that 〈P,�P 〉, G, p, and X lie in H(θ) (since M � H(θ)). Let us fix vertices
u,w ∈ (M ∩ Y )\(X ∪ p↓) and let X ′ ⊆ Y ∩M be finite. Since X ′ is finite and X ′ ⊆M
it follows that X ′ is contained in M . We show that there is an u–w-path in the graph
G[M ]− (X ∪ p↓ ∪X ′). Consider the formulas:
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- ϕ1(f
′, u′, w′,m′, G′) := f ′ is a finite u′–w′-path5 of length m′.

- ϕ2(f
′,�′, p′) := ∀y ∈ ran(f ′) [y 6�′, p′].

Since Y is <ℵ1-inseparable in G, we have that

H(θ) |= ∃f ∃m ∈ ω[ϕ1(f,m, u, w,G− (X ∪X ′)) ∧ ϕ2(f,�P , p)].

X′
X

M

Y

P

u

wp

By M � H(θ), we can find such sets m and f in M and by (3) of Lemma 5.17, it
follows that f(k) is contained in M for every k < m.

Lemma 5.20. Let θ be a regular uncountable cardinal and M an elementary submodel
of H(θ). Moreover, suppose that G ∈M is a graph, 〈P,�P 〉 ∈M is a generalized path of
G, and that A ∈M is a countable set. If X ∈M is an uncountable set of vertices with
X that is contained in P , then there is a vertex x ∈ X\A such that x+ ω lies in M .

Proof. Note that G, 〈P,�P 〉, and A are contained in H(θ) (by M � H(θ)). Since X is
uncountable, the set X ′ := {x + ω : x ∈ X} is uncountable as well (otherwise, the set⋃
{[x, x+ ω) : x+ ω ∈ X ′} would be countable and contain the uncountable set X as a

subset). Using that A is countable, we obtain that X ′\A is uncountable. Hence we find
x ∈ X with x+ ω ∈ X ′\A. It follows that

H(θ) |= ∃x′[∃x ∈ X\A[x′ is the smallest �P -limit above x]].

Since M � H(θ), we can find such a vertex x′ in the submodel M .

5Here, we identify a finite path with an injective function f ′ that has dom(f ′) = m′, ran(f ′) ⊆ V (G)
and satisfies that f ′(k)f ′(f + 1) is an edge of G′ for k < m′ − 1.
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Lemma 5.21. Let θ be a regular uncountable cardinal and M an elementary submodel
of H(θ). Moreover, suppose that G ∈M is a graph, 〈P,�P 〉 ∈M is a generalized path of
order type ω1 in G, and that A ∈M is a countable set. Then (P ∩M)\A is non-empty.

Proof. Note that G, 〈P,�P 〉, and A are contained in H(θ) (by M � H(θ)). Consider
the formula ϕ(P ′, A′) := ∃v[v ∈ P ′\A′]. Since P ′ is uncountable and A′ is countable we
find a vertex v in P\A and such a vertex is contained in H(θ) (using that G ∈ H(θ)).
Hence H(θ) |= ϕ(P,A) and by elementarity it follows that M |= ϕ(P,A).

Definition 5.22 ([7, p. 238]). Let θ be an uncountable regular cardinal. The sequence
〈Mα : α < ω1〉 is a nice chain (of countable elementary submodels for H(θ)) if the
following holds:

(1) M0 = ∅ and Mα � H(θ) for 0 < α < ω1.

(2) Mα is countable for α < ω1.

(3) The sequence is increasing, i.e., Mα ⊆Mβ for ordinals α ≤ β < ω1.

(4) Mα ∈Mβ for ordinals α < β < ω1.

(5) Mβ =
⋃
{Mα : α < β} for every limit ordinal β < ω1.

Lemma 5.23. Let θ be an uncountable regular cardinal, M = 〈Mα : α < ω1〉 a nice
chain for H(θ) and C a club of ω1 with 0 ∈ C. Moreover, let φ be the unique order
preserving bijection with dom(f) = ω1 and ran(f) = C where C inherits the well order
on ω1. Then 〈M ′α : α < ω1〉 is a nice chain for H(θ) where M ′α := Mφ(α).

Proof. Let us check conditions (1)-(5) from the definition of nice chain. The first part of
(1) holds since 0 is contained in C. The second part of (1) and statement (2) follow right
from the definition of M ′α. Conditions (3) and (4) hold since φ is order preserving. For
(5) let β < ω1 be a limit ordinal. Then

M ′β = Mφ(β)

(a)
=

⋃
{Mα : α ∈ φ(β)}

(b)
=

⋃
{Mα : α ∈ φ(β) ∩ C}

=
⋃
{Mφ(α) : φ(α) < φ(β)}

(c)
=

⋃
{Mφ(α) : α < β}

=
⋃
{M ′α : α < β}.

This needs some further explanation: (a) holds by condition (5) of the definition of nice
chain. For the non-trivial inclusion of (b), we claim that sup(φ(β) ∩ C) = φ(β). Indeed,
since C is closed, it follows that sup(φ(β) ∩ C) lies in C. By assumption, the bijection φ
is order preserving, which implies that φ(β) is a limit in C. Now, if sup(φ(β)∩C) < φ(β),
then φ(β) would be a successor in C; a contradiction. Finally, (c) holds, since φ is order
preserving.
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The next lemma is a characterisation of elementarity and is very useful in proofs where
elementary submodels are constructed directly.

Lemma 5.24 (Tarski-Vaught criterion, [7, p. 88]). Let A and B be structures for
some lexicon L. Then the following are equivalent:

(1) A � B.

(2) If B |= ∃yψ(~a, y] for a formula ψ(~x) and ~a ∈ A, then there exists b ∈ A such that
B |= ψ(~a, b).

Lemma 5.25 ([7, p. 238]). Let θ be a regular uncountable cardinal and x ∈ H(θ). Then
there is a nice chain 〈Mα : α < ω1〉 of elementary submodels for H(θ) with x ∈M1.

Proof. We define a nice chain 〈Mα : α < ω1〉 of elementary submodels for H(θ) with
x ∈M1 by recursion on α. The recursion base starts by letting M0 := ∅. Now assume
that Mα has already been defined for α < β. If β = α + 1 choose Mβ as a countable
elementary submodel of H(θ) with Mα ∪ {Mα} ∪ {x} ⊆Mβ (possible by Theorem 5.13).

Otherwise, if β is a limit ordinal let Mβ :=
⋃
{Mα : α < β}. We need to check that

Mβ is an elementary submodel of H(θ). By Lemma 5.24, it suffices to show that given
an existential formula ϕ(~x) = ∃yψ(~x, y) and ~a ∈Mβ with H(θ) |= ϕ(~a) we find b ∈Mβ

with H(θ) |= ψ[~a, b]. This is seen as follows: the sets that define ~a are contained in Mα

for some large enough ordinal α. Hence we can find b ∈ Mα, also using that Mα is an
elementary submodel of H(θ). Finally, b also lies in Mβ, since Mα ⊆Mβ (by condition
(3) of the definition of nice chain).
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Definition 5.26. Let G = 〈A t B,E〉 be a bipartite graph on ω1 with bipartition
classes A,B and let X ∈ [A]ℵ1 . We say that 〈A,B,X〉 is a trail iff there is a nice chain
〈Mα : α < ω1〉 of countable elementary submodels for H(ℵ2) satisfying the following:

(1) For every α < ω1 there are vertices aα ∈ A\(Mα ∪ X) and bα ∈ B\Mα with
aαbα ∈ E and

NG(bα) ∩ (Mα\Mξ) ∩ (A\X)

is infinite for every ξ < α < ω1.

Mξ Mα

bα

aα
A

B

(2) X ∩ (Mα+1\Mα) consists of exactly one vertex.

(3) G,A ∈M1.

Lemma 5.27. Let G = 〈AtB,E〉 be a bipartite graph on ω1, with bipartition classes A,
B and X ⊆ A. Moreover, suppose that 〈A,B,X〉 is a trail. Then there is a set X ′ ⊆ X
such that 〈A,B,X ′〉 is a trail and a nice chain 〈M ′α : α < ω1〉 witnessing that 〈A,B,X〉
is a trail with the additional property that a′α and b′α lie in M ′α+1.

Proof. Let M := 〈Mα : α < ω1〉 be a nice chain of countable elementary submodels
witnessing that 〈A,B,X〉 is a trail. Moreover, let aα and bα be vertices for α < ω1

witnessing that 〈A,B,X〉 is a trail and appending to M. By recursion on α we define a
sequence 〈ξα : α < ω1〉 of ordinals satisfying the following:

(1) The sequence is increasing, i.e., ξα < ξβ whenever α < β.

(2) If sup(Cβ ∩ ζ) = ζ for some ζ ≤ ξβ, then ζ lies in Cβ := {ξα : α ≤ β}.

(3) aξβ , bξβ ∈Mξβ+1
.

(4) NG(bξβ ) ∩ (Mξβ\Mξα) ∩ (A \X) is infinite whenever α < β.

We begin our recursion by letting ξ0 := 0. Now suppose that ξα has already been
defined for α < β. If β is a limit ordinal, then let ξβ :=

⋃
{ξα : α < β}. Condition (1)

follows right from the definition of ξβ . For (2) let ζ ≤ ξβ with sup(Cβ ∩ ζ) = ζ. If ζ ≤ ξα
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for some α < β, then ζ is contained in Cα, which implies together with Cα ⊆ Cβ that
ζ is contained in Cβ. Otherwise, by choice of ξβ, we have that ζ is the ordinal ξβ and
thus ζ is contained in Cβ . Condition (3) only needs to be checked in the case that β is a
successor and condition (4) holds by the definition of trail and (1).

Now suppose that β = α + 1. Choose ξβ > ξα minimal with the property that
aξα , bξα ∈Mξβ . Then (1),(3), and (4) hold. For (2) fix ζ ≤ ξβ with sup(Cβ ∩ ζ) = ζ. If
ζ ≤ ξα, then ζ ∈ Cα and Cα ⊆ Cβ imply that ζ is contained in Cβ. Otherwise, ζ is the
ordinal ξβ and thus ζ is contained in Cβ. This completes our construction.

Let a′α := aξα , b′α := bξα for α < ω1, and C := {ξα : α < ω1}. We want to show that
C is a club, that is, C is closed and unbounded. Unbounded follows from (1), so let us
check that C is closed. If ζ is a countable ordinal with sup(C ∩ ζ) = ζ, then fix some
ordinal β satisfying ζ ≤ ξβ. It then holds that

sup(Cβ ∩ ζ) = sup(C ∩ ζ) = ζ.

Now, by (2) we have that ζ is contained in Cβ , which implies that ζ is contained in C as
well.

Let φ be the unique order preserving bijection with dom(φ) = ω1 and ran(φ) = C.
An application of Lemma 5.23 to the sequence 〈M ′α : α < ω1〉 shows that 〈A,B,X ′〉 is a
trail, where M ′α := Mφ(α) and X ′ is a suitable subset of X. The conditions (3) and (4)
guarantee that a′α and b′α have the desired property.

5.3 Proof of the Main Lemmas

We begin this subsection with the proof of the first main lemma (Lemma 5.10). It uses
a nice chain of elementary submodels in order to rebuilt the given generalized path so
that it has all the properties we want. The rest of this subsection is aimed at proving
the second main lemma (Lemma 5.11). For this purpose, we show how to constructed
generalized paths of uncountable order type (that have some additional properties) using
nice chains of elementary submodels. Such generalized paths are the starting point of
the proof of Lemma 5.11. Covers of bipartition classes by disjoint monochromatic graphs
of different colors are carried out by induction on the number of colors.

Lemma 5.10 (First Main Lemma). Let G be a bipartite graph with bipartition classes
A,B both of size ℵ1 and Y a <ℵ1-inseparable set of vertices. Moreover, suppose that
A is included in Y . If G has a generalized path that is strong on A, then it also has a
generalized path that is strong on A and covers Y . (Cf. Figure 14.)

Proof. We may assume that G has vertex set ω1 (then H(ℵ2) contains the graph G). Let
X be an uncountable set of vertices witnessing that the generalized path P is strong
on A and let us fix a nice chain 〈Mα : α < ω1〉 of countable elementary submodels for
H(ℵ2) satisfying that G, 〈P,�P 〉, and X lie in M1 (possible by Lemma 5.25). Let us
write Vα := Mα ∩ V (G) and choose the vertex pα to be the �P -minimal vertex in P\Vα
for α < ω1. Then, by (5) of Lemma 5.17, the vertex pα is a �P -limit and Vα is an initial
segment of P . By recursion on α, we define sequences 〈Qα : α < ω1〉, 〈�Qα : α < ω1〉 and
〈xα+1 : α < ω1〉 satisfying the following:
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(1) 〈Qα,�Qα〉 is a generalized path.

(2) If α is not 0, then the order type of Qα is a limit ordinal.

(3) Yα := Y ∩Mα ⊆ Qα ⊆Mα.

(4) Q_α pα is a generalized path concentrated on A\Xα, where Xα := {xξ+1 : ξ < α}.

(5) Qβ extends Q_α pα, whenever α ≤ β < ω1.

(6) Xα is scattered on Qα and xα+1 ∈ (Qα+1\Qα) ∩X.

(7) Qα is locally Xα-robust.

The union of all the generalized paths Qα will be our desired generalized path and the
set of all the vertices xα+1 will witness that this generalized path is strong on A. We
begin our recursion by letting Q0 =�Q0= ∅. Then suppose that Qα, �Qα , and xα+1 have
been defined for ordinals α < β. We consider the usual cases:

Case 1. If β is a limit ordinal, then let Qβ :=
⋃
{Qα : α < β} and choose the set

�Qβ :=
⋃
{�Qα : α < β} as partial order of Qβ. We first show that Qα is an initial

segment of Qβ for α < β. For this purpose, consider vertices q1 ∈ Qβ and q2 ∈ Qα
satisfying that q1 �Qβ q2. We find an ordinal α ≤ ζ < β such that q1 is contained in Qζ .
By condition (5), the ordered set Qα is an initial segment of Qζ and thus q1 is contained
in Qα.

Next, we show that condition (1) holds for β. The binary relation �Qβ is by construction
a total order. In order to show that it is well-founded let us fix a non-empty set U ⊆ Qβ .
We find an ordinal α such that the intersection Qα ∩U is non-empty and using condition
(1) for α, it follows that Qα ∩ U has a �Qα-minimal element u0. Since Qα is an initial
segment of Qβ, this vertex u0 is also �Qβ -minimal in the intersection Qβ ∩ U .

To complete the proof that 〈Qβ,�Qβ 〉 is a generalized path, consider a vertex q ∈ Qβ .
We find an ordinal α < β satisfying that Qα contains q and that the set q↓ of
�Qα-down-neighbors is cofinal in q↓. Since Qα is an initial segment of Qβ, we also
have that q↓ ∩NG(q) is cofinal in q↓ with respect to the well order 〈Qβ,�Qβ 〉.

The first inclusion of condition (3) holds, since every vertex in Yβ lies in some Qα with
α < β and condition (3) for this Qα. The second inclusion holds by Mβ =

⋃
{Mα : α < β},

the definition of Qβ, and condition (3) for ordinals less than β.

For condition (4), consider two vertices q1, q2 ∈ Q_β pβ with q1 ≺Q_β pβ q2 and suppose
that q2 is a �Q_β pβ -limit. If q2 is not the vertex pβ, then we find an ordinal α < β

satisfying that q1 and q2 are contained in Qα. Since Qα is concentrated on A\Xα, there
is a vertex q that is contained in

(A\Xα) ∩Qα � [q1, q2) ∩NG(q2).

By condition (5) and the second part of condition (6) for α, we also have that q is
contained in

(A\Xβ) ∩Qβ � [q1, q2) ∩NG(q2).
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Now suppose that q2 and pβ coincide. We find an ordinal α < β satisfying that q1
is contained in Qα. By Lemma 5.21, we have that the intersection P ∩ (Mα\Mα+1) is
non-empty and it follows that pα is contained in Mα+1 (also using the choice of pα). As
a consequence we have that pα ≺Q_β pβ pβ . Since the generalized path P is concentrated

on A\X, we find a vertex q in

(A\X) ∩ P � [pα, pβ) ∩NG(pβ).

Note that Xβ is included in X by the second part of condition (6). Furthermore, note
that the intersection A ∩ P � [pα, pβ) coincides with A ∩ (Q_β pβ) � [pα, pβ) by condition
(3) and using that A is included in Y . It follows that q is contained in

(A\Xβ) ∩ (Q_β pβ) � [q1, q2) ∩NG(q2)

as well.

Condition (5) is right from the definitions. For condition (6) let us fix a standard
interval S of Qβ. We find an ordinal α < β such that S is included in Qα (also using
condition (2)). Since Qα is an initial segment of Qβ, we have that S is also a standard
interval of Qα. Hence Xα∩A consists of at most one vertex and if a vertex x is contained
in Xα ∩ S, then x is not the first vertex on S. By the second part of condition (6) for α,
we also have that the intersection Xα ∩Qα coincides with the intersection Xβ ∩Qα and
it follows that Xβ ∩ S = Xα ∩ S.

For condition (7) let us fix a vertex x ∈ Xβ and a standard interval S of Qβ that
contains x. We find an ordinal α < β satisfying that S is included in Qα. By the second
part of condition (6) for ordinals less than β, we have that x is contained in Xα. Now,
condition (7) for α implies that S is x-robust.

Case 2. Suppose that β = α+ 1 is a successor ordinal. By Lemma 5.20 applied to the
elementary submodel Mβ of H(ℵ2), the countable set Mα, the generalized path P , and
the uncountable set X we find a vertex xβ ∈ X\Mα satisfying that xβ + ω is contained
in Mβ (cf. Figure 16). Let y be the �P -minimal vertex in y above xβ + ω and let Q[pα,y)

be the restricted generalized path Q_α P � [pα, y).
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Mα Mβ

A

B

Qα

P

pα pβxβ

Figure 16: Construction Qβ when β is a successor ordinal.

Let us fix an enumeration y0, y1, . . . of the countably infinite set Yβ\Q[pα,y) with y0 = y.
Note that Yβ\Q[pα,y) is indeed infinite: the intersection A∩P � [y, y+ω) has size ℵ0 and
is included in Yβ\Q[pα,y). Moreover, A is included in Y .

By recursion on n, we define an increasing sequence 〈Sn : n < ω〉 of finite generalized
paths satisfying that Sn is a subset of Vβ\Q[pα,y), that Sn contains the vertex yn and
that the last vertex of Sn is contained in Y . Let S0 := y and suppose that Sn has already
been defined. If yn+1 is contained in Sn, then just let Sn+1 := Sn. Otherwise, let ỹn
denote the last vertex on Sn. By Lemma 5.19 applied to the elementary submodel Mβ,
the generalized path P , the countable set Vα, and y = p we find a finite ỹn–yn-path T in
Vβ\(Vα ∪ y↓ ∪ Sn). Letting Sn+1 := S_n T completes our construction of the Sn.

We define Qβ as the generalized path Q _
[pα,y)

S, where S :=
⋃
{Sn : n < ω}. Then

(1)-(3) and (5) follow straight from the construction (using (1)-(3) and (5) for α). For
condition (4) consider vertices q1, q2 ∈ Q_β pβ with q1 ≺Q_β pβ q2 and suppose that q2 is a
�Q_β pβ -limit. We need to find a vertex q that is contained in the set

(A\Xβ) ∩ (Q_β pβ) � [q1, q2) ∩NG(q2).

If q2 is part of Qα, then we find q using condition (4) and the second part of condition (6)
for α. Otherwise, if q2 lies on the generalized path Q[pα,y), then we let q̃1 be the vertex
max�Q[pα,y)

{q1, pα} and we find q in

(A\X) ∩ P � [q̃1, q2) ∩NG(q2)

since P is concentrated on A\X. Finally, if q2 is the vertex pβ , then let q̃1 be the vertex
max�Qβ {q1, y} and find q in the set

(A\X) ∩ (S\S � [y, q̃1)) ∩NG(q2)

again using that P is concentrated on A\X.
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For (6) consider a standard interval S′ of Qβ. If S′ is included in Qα, then S′ is also
a standard interval of Qα and xβ is not contained in S′. Hence (6) for α shows that
Qα ∩Xβ consists of at most one vertex and if x is such a vertex that besides is contained
in S′ ∩Xβ , then x is not the first vertex on S′. On the other hand, if S′ is not included
in Qα, then S′ ∩Xβ is either empty or consists only of the vertex xβ . In the second case
S′ is also a standard interval of P and thus xβ is not the first vertex on S′ since X is
scattered on P .

For (7) let x ∈ Xβ and let S′ be a standard interval of Qβ that contains x. If S′ is
included in Qα, then x is contained in Xα and S′ is x-robust by (7) for α. Otherwise, x
is the vertex xβ and S′ is a standard interval of P . It follows that S′ is x-robust using
that P is locally X-robust and xβ is contained in X.

Now, let Q :=
⋃
{Qα : α < ω1}, �Q:=

⋃
{�Qα : α < ω1}, and X ′ :=

⋃
{Xα : α < ω1}.

We show that 〈Q,�Q〉 is a generalized path of order type ω1 that is strong on A (witnessed
by X ′) and covers Y .

The pair 〈Q,�Q〉 is a generalized path by (1) and (5) and Q covers Y by condition (3).
The set A\X ′ is concentrated on Q by (4) and by the second part of (6). To see that X ′

is scattered on Q fix a standard interval S of Q. Then there is some ordinal α < ω1 such
that S meets Qα. By condition (2), we have that S is also a standard interval of Qα.
Now by (6), it follows that Qα ∩Xα = Q ∩X ′ and that Xα is scattered on Qα. Thus
|S ∩X ′| = |S ∩Xα| = 1 and if x ∈ S ∩X ′, then x is not the first vertex on S.

Finally, let us show that Q is locally X ′-robust. Fix a vertex x ∈ X ′ and a standard
interval S of Q that contains x. As above we find an ordinal α such that S is also a
standard interval of Qα. By condition (6), we have that Qα ∩Xα = Qα ∩X ′ and thus
condition (7) shows that S is x-robust.

Lemma 5.28. Let G = 〈AtB,E〉 be a bipartite graph with bipartition classes A,B both
of size ℵ0. Moreover, suppose that NG[F ] is infinite for every finite F ⊆ A and that ab is
an edge of G with a ∈ A and b ∈ B. If x ∈ A\{a} is a vertex, then there is an x-robust
generalized path S of order type ω that covers A and starts with b_a.

Proof. Let us fix an edge ab ofG with a ∈ A and b ∈ B. Moreover, let A = {an : n < ω} be
an enumeration of A satisfying that a0 = a, a1 = x and let b0 := b. By recursion on n, we
find vertices b1, b2 . . . such that bn ∈ B\{b0, . . . , bn−1} and bn+1 ∈ NG[{an, an+1, an+2}]
for every positive integer n (using that NG[{an, an+1, an+2}] is infinite for every n < ω).
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S S\{x}

a0

a1 = x

a2

a3

a0

a1 = x

a2

a3

b0

b1

b2

b3

b0

b1

b2

b3

Figure 17: The well-orderings of S and S\{x} respectively.

Let S := A ∪B′ where B′ := {bn : n < ω} and assign S with the well order �S that is
induced by the enumeration

b0, a0, b1, a1, b2, a2, . . . .

Then 〈S,�S〉 is a generalized path of order type ω and S is x-robust for x := a1. Indeed,
we can assign S\{x} with the well ordering �S\{x} that is induced by the enumeration

b0, a0, b1, a2, b2, a3, b3, . . .

(cf. Figure 17).

Lemma 5.29. Suppose that G = 〈A tB,E〉 is a bipartite graph with bipartition classes
A,B both of size ℵ1. If 〈A,B,X〉 is a trail and NG[F ] is uncountable for every finite
F ⊆ A, then there is a generalized path P of order type ω1 that is strong on A (witnessed
by a set X ′ ⊆ X) and covers A.

Proof. We may assume that G is a graph on ω1 (then G is contained in H(ℵ2)). By
Lemma 5.27, we find a set X ′ ⊆ X, a nice chain M = 〈Mα : α < ω1〉 of countable
elementary submodels for H(ℵ2), and vertices aα, bα ∈Mα+1 for α < ω1 witnessing that
〈A,B,X ′〉 is a trail. Let us write Vα := V (G) ∩Mα.

By recursion on α, we define sequences 〈Pα : α < ω1〉, 〈�Pα : α < ω1〉 and 〈xα+1 : α < ω1〉
satisfying the following:
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(1) 〈Pα,�Pα〉 is a generalized path.

(2) If α is not 0, then the order type of Pα is a limit ordinal.

(3) Aα := A ∩Mα ⊆ Pα ⊆Mα.

(4) P_α bα is a generalized path concentrated on A\Xα where Xα := {xξ+1 : ξ < α}.

(5) Pβ extends P_α bα, whenever α ≤ β < ω1.

(6) Xα is scattered on Pα and xα+1 ∈ (Pα+1\Pα) ∩X ′.

(7) Pα is locally Xα-robust.

Let P0 =�P0= ∅ and then suppose that Pα, �Pα , and xα+1 have been defined for
α < β. We consider the usual cases:

Case 1. If β is a limit ordinal, then we let Pβ be the union Pβ :=
⋃
{Pα : α < β} and

similar �Pβ :=
⋃
{�Pα : α < β}. Let us check condition (4) (all the other conditions can

be seen as in the proof of Lemma 5.10). Consider vertices p1, p2 ∈ P_β bβ and suppose
that p2 is a �P_β bβ -limit. If p2 is not the vertex bβ, then we find an ordinal α < β

satisfying that p1 and p2 both lie in Pα. Since Pα is concentrated on A\Xα, there is a
vertex p that is contained in the set

(A\Xα) ∩ Pα � [p1, p2) ∩NG(p2).

By condition (5) and the second part of condition (6) for α, we also have that p is
contained in

(A\Xβ) ∩ Pβ � [p1, p2) ∩NG(p2).

Now, suppose that p2 and bβ coincide. We find an ordinal α < β satisfying that p1 is
contained in Pα. By the choice of bβ, we have that

NG(bβ) ∩ (Mβ\Mα) ∩ (A\X ′)

is infinite and thus contains a vertex p that is not part of the finite set Pβ � [bα, p̃1), where
p̃1 := max�_Pβ bβ

{p1, bα}. Using condition (3), one finds out that p is also contained in

(A\Xβ) ∩ Pβ � [p1, p2) ∩NG(p2).

Case 2. Suppose that β = α + 1. Let xβ be the unique vertex in the intersection
X ′ ∩ (Mβ\Mα). Note xβ is distinct from the vertex aα that is not contained in X ′ (by
the definition of trail). By Lemma 5.18 applied to G, the countable elementary submodel
Mβ of H(ℵ2), the countable set Vα, and Y = A we have that NG−Vα [F ] ∩Mβ is infinite
for every finite F ⊆ Aβ\Vα. Hence Lemma 5.28 applied to G[Mβ]− Vα, the vertex xβ
and the edge bβaβ yields an xβ-robust generalized path S that starts with b_α aα and
covers Aβ\Vα. Let us define Pβ as the generalized path Pβ := P_α S. Then (1)-(3) and
(5) hold right from the definitions.
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For condition (4), consider vertices p1, p2 ∈ P_β bβ with p1 ≺P_β bβ p2 and suppose that
p2 is a �P_β bβ -limit. We need to find a vertex p that is contained in the set

(A\Xβ) ∩ (P_β bβ) � [p1, p2) ∩NG(p2).

If p2 is part of Pα, then we find p using condition (4) and the second part of condition
(6) for α. Otherwise, p2 is the vertex bβ. We can pick the vertex p in the infinite set

NG(bβ) ∩ (Mβ\Mα) ∩ (A\X ′)

and outside of Pβ � [p̃1, bα) where p̃1 := max�_Pβ bβ
{p1, bα}.

For condition (6), consider a standard interval S′ of Pβ. If S′ is included in Pα, then
S′ is also a standard interval of Pα and xβ is not contained in S′. Hence condition (6) for
Pα shows that the intersection Pα ∩Xβ consists of at most one vertex and if x ∈ S′ ∩Xβ

is a vertex, then x is not the first vertex on S′. On the other hand, if S′ is not included
in Pα, then S′ coincides with S. Hence the intersection S′ ∩Xβ consists exactly of the
vertex xβ and xβ is not the first vertex on S′.

For condition (7) let x ∈ Xβ and S′ be a standard interval of Pβ that contains x. If S′

is included in Pα, then x is contained in Xα and S′ is x-robust by condition (7) for α.
Otherwise, x is the vertex xβ and S′ = S. It follows that S′ is x-robust.

Now, let P :=
⋃
{Pα : α < ω1}, �P :=

⋃
{�Pα : α < ω1}. The set X ′ witnesses that

〈P,�Pα〉 is a generalized path that is strong on A and covers A (cf. the proof of Lemma
5.10).

Lemma 5.30 (cf. [11]). Let G = 〈A tB,E〉 be a bipartite graph with bipartition classes
A,B both of size ℵ1 and suppose that A is ℵ1-complete in B. Moreover, let c : E → {0, 1}
be an edge-coloring of G. If 〈A,B,X〉 is not a trail in color 0 for any X ⊆ A, that is,
〈A,B,X〉 is not a trail in the graph G0, then we can find a set A′ ⊆ A and a copy of
Hω1,ω1 in color 1 with main class A′.

Proof. We may assume that G has vertex set ω1 (then G is contained in H(ℵ2)).
Let 〈Mα : α < ω1〉 be a nice chain of countable elementary submodels for H(ℵ2)
with G,A ∈M1 and let Vα := V (G) ∩ Mα for α < ω1. Fix a set X ⊆ A with
|X ∩ (Mα+1\Mα)| = 1 for every α < ω1. Moreover, let W consist of exactly those
ordinals β < ω1 such that there are vertices a ∈ A\(Vβ ∪ X) and b ∈ B\Vβ with
ab ∈ E(G0) and

(NG(b, 0) ∩ Vβ)\(Vα ∪X)

is infinite for every α < β. We claim that S := ω1\W is stationary. Indeed suppose for
a contradiction that C is a club of ω1 that fails to meet S. Note that C is included in
W . Let φ be the unique order preserving bijection with dom(φ) = ω1 and ran(φ) = C.
By Lemma 5.23, the sequence 〈M ′α : α < ω1〉 is a nice chain of elementary submodels for
H(ℵ2), where M ′α := Mφ(α). Let X ′ be a subset of X with |X ′ ∩ (M ′α+1\Mα)| = 1. Then
〈A,B,X ′〉 is a trail in color 0. Indeed let β < ω1. By C ⊆W , the choice of W , and the
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definition of M ′β we find vertices a ∈ A\(M ′β ∪X ′) and b ∈ B\Vφ(β) such that ab is an
edge of G0 and the set

(NG(b, 0) ∩M ′β)\(M ′α ∪X ′)

is infinite for every α < β. We now consider two cases:
Case 1. Suppose that there is an ordinal α ∈ S such that every vertex a ∈ A\(Vα∪X)

is adjacent to only countably many vertices in G0. Let us fix such an ordinal α < ω1.
Then A′ is ℵ1-complete in B in color 1, for A′ := A\(Vα ∪X). Moreover, A′ has size ℵ1
(using that A has size ℵ1, that Vα is countable and that Vα+1\(Vα ∪X) is non-empty for
every α < ω1 by elementarity). Hence Lemma 5.4 yields a copy of Hω1,ω1 in color 1 with
main class A′.

Case 2. Suppose that for every ordinal α ∈ S there is a vertex a ∈ A\(Vα ∪ X)
satisfying that NG(a, 0) is uncountable. For α < ω1 let us fix vertices aα ∈ A\(Vα ∪X)
and bα ∈ B\Vα, pairwise distinct and satisfying that aαbα is an edge of color 0. By choice
of S we find for every ordinal β an ordinal α = α(β) with α < β and NG(bβ, 0)\(Vα ∪X)
is finite. If β is a limit ordinal, then we can even achieve that NG(bβ, 0)\(Vα ∪ X) is
empty. Fix such ordinals α(β) for every limit ordinal β ∈ S.

Apply Fodor’s Pressing Down Lemma (see [7, p. 220]) to the stationary set

S ∩ {ξ < ω1 : ξ limit}

in order to obtain a stationary set T and an ordinal α̃ such that NG(bβ, 0)\(Vα̃ ∪X) = ∅
for every ordinal β ∈ T . In other words, every vertex a ∈ A\Vα̃ is linked to every vertex
bβ with β ∈ T by a 1-colored edge. We can now apply Lemma 5.4 to the graph G1[A′, B′]
where A′ := A\(Vα̃ ∪X) and B′ := {bβ : β ∈ T} in order to obtain a copy of Hω1,ω1 in
color 1 with main class A′.

Lemma 5.31 (cf. [11]). Let 〈H,φ〉 be a copy of Hω1,ω1 with main class A. Then
〈V (H),�H〉 contains a generalized path P of order type ω1 that is strong on A and covers
A.

We give a short proof using elementary submodels and some of our preliminary results.
However, one can prove Lemma 5.31 by hand as well.

Proof. We may assume that H has vertex set ω1 (then H is contained in H(ℵ2). For each
ordinal α < ω1 let aα := φ(〈α, 0〉) and bα := φ(〈α, 1〉). We show that NH [F ] has size ℵ1
for every finite F ⊆ A and that there is an uncountable set X ⊆ A such that 〈A,B,X〉 is a
trail, where B := V (H)\A. Then Lemma 5.29 applied to H yields the desired generalized
path. So suppose that F = {aα1 , . . . aαn} ⊆ A is finite and let α∗ := max{αk : k < n}.
Then NG[F ] has the uncountable subset {bβ : α∗ ≤ β}, which shows the first statement.

For the second statement let 〈Mα : α < ω1〉 be a nice chain of countable elementary
submodels for H(ℵ2) with G, 〈V (H),�H〉 ∈M1. Let us fix a set X ⊆ A satisfying that
X ∩ (Mα+1\Mα) consists of exactly one vertex for every α < ω1. For each β < ω1 let ξβ
be the smallest ordinal such that bξβ is not contained in Mβ, i.e.,

ξβ := min{α < ω1 : bα /∈Mβ}.
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By (5) of Lemma 5.17, the vertex bξβ is a �H -limit and Mβ ∩ V (H) is a �H-initial
segment of V (H) for every β < ω1. Hence the set

NH(bξβ ) ∩ (Mβ\Mα) ∩ (A\X)

is infinite whenever α < β < ω1 (using that V (H) ∩ (Mβ\(Mα ∪ X)) is infinite by
elementarity). So the triple 〈A,B,X〉 is indeed a trail.

Lemma 5.32. Let G = 〈AtB,E〉 be a bipartite graph with bipartition classes A,B both
of size ℵ1 and suppose that A a is ℵ1-complete in B. Moreover, let c : E → {0, . . . , r− 1}
be an edge-coloring. Then there is a color j, an uncountable subset A′ ⊆ A and disjoint
sets B′, B′′ ⊆ B of vertices satisfying the following:

1 There is a generalized path P of Gj [A
′, B′] that is strong on A′, has order type ω1,

and satisfies that A′ ∩ P is <ℵ1-inseparable in Gj [A
′, B′].

1 Gj [A
′, B′′] has a perfect matching.

Proof. The proof is via induction on r. If the edges of G are colored with only one color,
then Lemma 3.10 yields disjoint uncountable subsets B′, B′′ ⊆ B such that G[A,B′′] has
a perfect matching and A is ℵ1 complete in B′ (for the second statement we only need
that B′ is uncountable, which is clearly satisfied by the lemma). By Lemma 5.4, we
find a copy H of Hω1,ω1 with main class A in G[A,B′] and by Lemma 5.31, this graph
H together with the Hω1,ω1-ordering is a generalized path that is strong on A and A is
<ℵ1-inseparable. Letting A′ := A completes the induction base.

Now assume that the lemma holds for edge-colorings with less than r colors. By
Lemma 3.6, we find a set A′ ∈ [A]ℵ1 and a color k such that NG[F, k] is uncountable
for every finite F ⊆ A′. We may assume that k is the color 0. By Lemma 3.10 we find
disjoint sets B′, B′′ ⊆ B such that NG[F, 0] ∩B′ is uncountable for every finite F ⊆ A′
and G0[A

′, B′′] has a perfect matching. Let c′ : E → {0, 1} be the coloring that assigns
an edge e with color 0 if it has color 0 with respect to c and color 1 else. We consider the
following two cases: If there is a 1-colored copy H of Hω1,ω1 in G[A′, B′] (with respect to
c′) whose main class is included in A′, then we can find everything we need in H using
the induction hypothesis.

Otherwise, by Lemma 5.30 applied to G[A′, B′] and c′, there is a set X ⊆ A such that
the triple 〈A′, B′, X〉 is a trail in G0[A

′, B′]. Applying Lemma 5.29 to G0[A
′, B′] yields

the desired generalized path.
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Lemma 5.11 (Second Main Lemma). Let G = 〈A t B,E〉 be a bipartite graph with
bipartition classes A,B, both of size ℵ1 and suppose that A is ℵ1-complete in B. Moreover,
let c : E → {0, . . . , r − 1} be an edge-coloring of G. Then there is a partition {Ai : i < r}
of A, disjoint sets B0, . . . , Br−1 ⊆ B, well-orders �A0tB0 , . . . ,�Ar−1tBr−1, and distinct
colors i0, . . . , ir−1 satisfying the following:

1 A0 is <ℵ1-inseparable in Gi0 [A0, B0].

1 〈A0 tB0,�A0tB0〉 is a generalized path of order type ω1 in the graph Gi0, that is
strong on A.

1 〈Aj tBj ,�AjtBj 〉 is a generalized path in the graph Gij for j = 1, . . . , r − 1.

(Cf. Figure 15.)

Proof. The proof is via induction on r. For the induction base suppose that the edges of
G are colored with only one color. By Lemma 5.4, we find a copy H of Hω1,ω1 with main
class A and by Lemma 5.31 this H together with the Hω1,ω1-ordering is a generalized
path of order type ω1 that is strong on A and A is <ℵ1-inseparable.

Now, assume that the lemma holds for edge-colorings of G with less than r colors. Let
us fix a color j, sets A′, B′, B′′ of vertices and a generalized path P ′0 as in Lemma 5.32.
By symmetry, we may assume that j = 0. Let Y ′ := P ′0 ∩A and let Y consist of all the
vertices in A that lie in Y ′ or send uncountably many 0-colored edges to B′′, i.e.,

Y := Y ′ ∪ {a ∈ A : |NG(a, 0) ∩B′′| = ℵ1}.

We consider the following two cases:
Case 1. Suppose that Y and Y ′ coincide. Then the set A\Y is ℵ1-complete in B with

respect to the graph G6=0[A\Y,B′′]. By the induction hypothesis if A\Y is uncountable
and by Corollary 4.4 else, we find disjoint monochromatic generalized paths P1, . . . , Pr−1 of
different colors in the graph G6=0[A\Y,B′′] covering A\Y . Letting P0 := P ′0, Ai := Pi ∩A,
Bi := Pi ∩B, and �AitBi :=�Pi for i < r completes the proof.

Case 2. Suppose that Y ′ is a proper subset of Y . Let us fix a sequence 〈yα : α < ω1〉
of vertices in Y \Y ′ satisfying that every vertex in Y \Y ′ occurs uncountably often. By
recursion on α, we find distinct vertices biα ∈ B′′ for i = 0, 1 and α < ω1 such that b0αyα
is an edge of G0 (the vertices b1α will serve as a buffer). Indeed if the biα have already
been defined for α < β, then let B<β := {biα : α < β, i = 0, 1}. Since B<β is countable
and since yα sends uncountably many 0-colored edges to B′′, we can pick the vertex b0β
inside B′′\B<β . The vertex b1β can be chosen arbitrarily in B′′\B<β ∪ {b0β} (again using
that B<β is countable).

Let B′′′ be the set {b0α : α < ω1}. By Lemma 3.7 and Lemma 3.9, we have that the
set Y is <ℵ1-inseparable in G0[Y,B

′ ∪ B′′′]. Hence Lemma 5.10 yields a generalized
path P0 of order type ω1 that is strong on Y and covers Y with respect to the graph
G0[Y,B

′ ∪ B′′′]. Note that A\Y is ℵ1-complete in B′′\B′′′ with respect to the graph
G6=0. By the induction hypothesis if A\Y is uncountable and by Corollary 4.4 else, we
can find disjoint monochromatic generalized paths P1, . . . , Pr−1 of different colors in
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G6=0[A\Y,B′′] covering A\Y . Letting Ai := Pi ∩ A, Bi := Pi ∩ B and �AitBi :=�Pi for
i < r completes the proof.
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6 Open Problems

It remains an open problem whether Theorem 1.6 can be generalized to complete bipartite
graphs with bipartition classes of arbitrary uncountable size:

Conjecture 6.1 ([11]). For every positive integer r, every infinite cardinal κ and every
r-edge-coloring of the complete bipartite graph with bipartition classes of size κ, there is
a partition of the vertex set into 2r − 1 monochromatic generalized paths.

In [11] Daniel Soukup discusses ω-edge-colorings of complete infinite graphs and it
turns out, that there are ω-edge-colorings of the complete graph on ω1 such that there is
no monochromatic uncountable generalized path. In particular, Theorem 1.4 can not be
generalized to ω-edge-colorings. However, considering locally finite edge-colorings might
yield some interesting problems:

Definition 6.2. Let G = 〈V,E〉 be a graph. An edge-coloring c : E → κ is locally finite
iff the image of E(v) under c is finite for every vertex v ∈ V .

Problem 6.3. Let G = 〈V,E〉 be an infinite complete graph and let c : E → ω be a
locally finite edge-coloring of G. Is it true that G has a partition P of its vertex set
into monochromatic generalized paths of different colors? Moreover, if |G| has cofinality
greater than ℵ0, can then P be chosen finite?

This would be best possible because if |G| has cofinality ℵ0, then there is a locally finite
edge coloring c : E → ω such that every partition P of V into monochromatic generalized
paths of different colors needs to be infinite:

Example 6.4. Let κ be an infinite cardinal, let G = 〈V,E〉 be a complete graph of order
κ, and suppose that κ has cofinality ℵ0. Moreover, let 〈κn : n < ω〉 be an increasing
sequence of cardinals which exhaust κ, that is,

⋃
{κn : n < ω} = κ. Since G has order κ,

we find a partition {Vn : n < ω} of V such that Vn has size κn.
Consider the locally finite edge-coloring c : E → ω of G defined as follows. Let e = vw

be an edge. Additionally, suppose that v ∈ Vm, w ∈ Vn and that m ≤ n are positive
integers. If m and n coincide, then c assigns the edge e with color 0; else with color
m+ 1.

We claim that there is no partition of V into finitely many monochromatic generalized
paths of different colors. Indeed if P is such a partition, then there is a generalized path
P contained in P that has size κ. However, this is not possible: The graph G0 has no
set of κ many vertices that is connected and each of the graphs Gn for positive integers
n 6= 0 can be considered as bipartite graph with bipartition classes having size κn (such
graphs can only have generalized path of size at most κn).
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6 Open Problems

The ’moreover’ part of Problem 6.3 is motivated by the following observation:

Example 6.5. Let G = 〈V,E〉 be an infinite complete graph and let c : E → ω be a
locally finite edge-coloring. Moreover, suppose that |G| has cofinality greater than ℵ0.
Then there is a bipartition {V1, V2} of V with bipartition classes both of size |G| and
a positive integer N , satisfying that all the edges in E(V1) ∪ E(V1, V2) have color less
than N . Indeed, let n < ω the set Ṽ≤n consist of those vertices of G that are only
incident with edges of color at most n. Consider the partition {Ṽn : n < ω} of V , where
Ṽn := Ṽ≤n\

⋃
{Ṽm : m < n}. Since |G| has cofinality greater than ℵ0, we find a positive

integer N such that ṼN has size |G|. Every bipartition {V1, V2} of V with bipartition
classes both of size |G| and satisfying that V1 is included in ṼN can be taken.

Maybe one could slightly modify the proof of Theorem 1.4 given in [11], such that the
above example leads to a proof that confirms the ’moreover’ part of Problem 6.3.
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