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The Cantor-Bernstein theorem says that if for two infinite sets A and B there
are injective functions f :A→B and g: B→A then there is a bijection A ↔ B.
Perhaps the simplest and most intuitive proof considers the connected com-
ponents of the bipartite graph whose vertex set is A ∪B and whose edge set
is

{
{ a, f(a) } : a ∈ A

}
∪

{
{ b, g(b) } : b ∈ B

}
.

As every vertex of this graph has one “outgoing” and at most one “incoming”
edge, each of those components is a cycle or an infinite path. In each of these
paths and cycles we now select every other edge to mark the desired bijection.

The Cantor-Bernstein problem, rephrased as above for graphs, has a nat-
ural generalization to paths. Let G be any graph, and let A and B be disjoint
sets of vertices in G. Assume that we can find in G a set of disjoint paths from
A to B that covers all of A (but not necessarily all of B), and a similar set of
disjoint paths from all of B to A. Is there a set of disjoint A–B paths in G

that covers both A and B?
Indeed there is. This was first shown in 1969 by Pym [ 3 ], and his proof is

not short. Later [ 4 ], Pym also gave a short but indirect proof, which applies
the Rado Selection Principle (an equivalent of the axiom of choice) to a suitably
strengthened technical statement. Further interesting background, including a
deduction of Pym’s theorem from Tarski’s fixed point theorem for lattices [ 5 ],
can be found in Fleiner [ 2 ].

Our aim in this note is to give two short and direct proofs. Both are
elementary, and they can be read independently. Our first proof is simpler, as
long as readers are at ease with sequences indexed by ordinals and how to define
such sequences inductively. The second proof avoids using the Axiom of Choice,
which makes it a little more technical but perhaps also more illuminating.

A path in a graph G is a finite subgraph with distinct vertices v1, . . . , vk

and edges v1v2, v2v3, . . . , vk−1vk. We often refer to a path by the sequence of its
vertices (in this or the reverse order); it then has a natural first and a natural
last vertex. If these lie in sets A and B, and no other vertex of the path lies in
A∪B, we call it an A–B path. A set P of paths in G covers a set U of vertices
if every vertex in U is the first or the last vertex of some path in P. Any other
notation we use can be found (online) in [ 1 ].

Theorem. Let G = (V, E) be a graph, and let A, B ⊆ V . Suppose that G

contains a set P of disjoint A–B paths covering A, and a set Q of disjoint A–B

paths covering B. Then G contains a set of disjoint A–B paths covering A∪B.
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First proof. Our aim is to construct a sequence (Pα)α�α∗ (indexed by ordinals)
of sets of disjoint A–B paths each covering A so that Pα∗ also covers B. We
shall define these Pα “recursively”, ie. for α = 0, 1, . . . in turn and so that the
definition of Pα may depend on that of Pβ for any or all β < α.

For each α, every path P ∈ Pα will have the form P = a . . . c . . . b, where
c = c(P ) is some specified vertex on P . The initial segment a . . . c of P will
always be an initial segment of some path in P, and its final segment c . . . b will
be a final segment of some path in Q. We write Aα for the set of all vertices
on such initial segments a . . . c, ie. put Aα :=

⋃
P ∈Pα

V (Pc) where Pc denotes
the initial segment a . . . c of P . Note that A ⊆ Aα, since by assumption Pα

covers A.
For each α, every b ∈ B will have an ‘index’ iα(b) ∈ N, defined as follows.

Given b ∈ B, let Q be the path in Q ending at b. Let x be the last vertex of Q

in Aα; this exists, because Q begins in A ⊆ Aα. Then let iα(b) be the length
of xQ, the final segment of Q starting at x. (If Pα happens to cover b, then xQ

coincides with the final segment c . . . b of the path in Pα covering b.) We shall
define the sets Pα in such a way that for all β < α we have iβ � iα (pointwise)
and iβ(b) < iα(b) for some b ∈ B. In particular, iβ �= iα, giving |α∗| � ℵ|B|

0 .
Thus, our process of definition will terminate.

We start the definition of the Pα with P0 := P, putting c := b for each
path. For the recursion step at successor ordinals α + 1, let Pα+1 be obtained
from Pα as follows. If Pα covers B, put α =: α∗ and stop the recursion.
Suppose now that some b′ ∈ B does not lie on any path in Pα. Let Q′ be the
path in Q ending in b′, and let x be the last vertex of Q′ that lies on some
path P = a . . . c . . . b in Pα (where c = c(P )). As c . . . b is a final segment of
some path Q �= Q′ in Q but x does not lie on any other path in Q, the vertex
x precedes c on P (Figure 1). Let Pα+1 be obtained from Pα by replacing P

with P ′ := aPxQ′b′, and put c′ = c(P ′) := x.

a c bx = c′

Q ∈ Q

Q′ ∈ Q

αP ∈ P
Q

P

Q′

P ′

b′

P̃ ∈ P

FIGURE 1. Modifying P ∈ Pα into P ′ ∈ Pα+1

Clearly the new path P ′ again has the required form a . . . c′ . . . b′, and Pα+1

covers A. Moreover, we have iα+1(b) > iα(b). Indeed, iα(b) is the length of the
final segment cQ of the path Q ∈ Q ending in b. But cQ avoids Pα+1, so the
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final segment yQ of Q whose length is iα+1(b) contains cQ properly. Finally,
we have iα+1 � iα on all of B, because Aα+1 ⊆ Aα.

It remains to consider the limit step in our recursion. Let α be a (non-zero)
limit ordinal, and assume that Pβ has been defined as required for all β < α.
Recall that when P is changed into P ′ in the successor step, its initial segment
a . . . c gets shorter. Thus, the path containing a given vertex a ∈ A changes
only finitely often as β approaches α. Hence for every a there is a path P

starting in a that lies in Pβ for every β greater than some β0 < α, and we take
this path as the path in Pα starting at a. To define the function iα:B → N,
notice that for every b ∈ B the value of iβ(b) is bounded by the length of the
path in Q ending in b, and so again the values of iβ(b) agree for all β greater
than some β0 < α depending on b. We may thus take as iα the pointwise limit
of the functions iβ (β < α). �

Formally, the path system constructed in the above proof depends on the
choices of the uncovered vertex b′ ∈ B made at each step in the recursion. One
can show, however, that these choices influence only the (transfinite) route by
which the proof arrives at the final path system: that system itself is actually
independent of the choices made in its construction.

The above observation suggests that it should be possible to rewrite the
proof in a way that does not appeal to the axiom of choice. This is indeed
possible. In the following proof we define the paths of the final system directly.
This complicates the proof somewhat, because we now have to show that our
‘locally’ defined paths are disjoint and cover B.

Second proof of the Theorem (avoiding AC).
We shall consider various families (Pa)a∈A of disjoint A–B paths such that

a ∈ Pa for all a; let us call such a family an A-family . Every such path Pa will
have a specified vertex c = c(Pa) such that its initial segment Pac is contained
in a path from P and its final segment cPa is contained in a path from Q. (For
the paths P ∈ P we specify their last vertex as c(P ).) We shall write P̄a := P c̊

for the initial segment of Pa up to but not including c.
If a vertex x lies on P̄a ∩Q for some Q ∈ Q, and replacing Pa with the path

P ′
a := PaxQ results in another A-family (which is the case iff xQ∩Pa′ = ∅ for

all a′ �= a), we say that this new family is obtained from the old by a switch
at x, and specify c(P ′

a) := x (Figure 2). Note that since x lies on at most one
path Pa and on at most one Q ∈ Q, this switch (i.e., the new A-family) is well
defined just by the vertex x.

Lemma. If (Pa), (P ′
a), (P ′′

a ) are A-families such that (P ′
a) and (P ′′

a ) are each

obtained from (Pa) by a finite sequence of switches, then an A-family (Ra)
with R̄a = P̄ ′

a ∩ P̄ ′′
a for all a can be obtained from (Pa) by a finite sequence of

switches.
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a c b

Q ∈ Q b′

Pa Pa

Q
Q ∈ Q˜

cPa ⊆ Q̃ ∈ QP ′
a

P̃ ∈ P

x =: c(P ′
a)

FIGURE 2. Changing Pa into P ′
a by a switch at x

Proof of the lemma: Let (P ′′
a ) have been obtained from (Pa) by switches at the

vertices x1, . . . , xn (in this order), with interim families (P i
a) after switching

at xi. Now consider the family (P ′
a), and apply switches at x1, . . . , xn (in this

order) whenever possible. More formally, we ask for x1, . . . , xn in turn whether
xi defines a switch in the A-family (Ri−1

a ) obtained from (P ′
a) by switches at

x1, . . . , xi−1 (whenever possible). If so, we perform this switch and call the
resulting family (Ri

a); if not, we leave the current family unchanged, ie. put
Ri

a := Ri−1
a for all a. Induction on i shows that, for all i,

• R̄i−1
a = P̄ i−1

a ∩ P̄ ′
a for all a ∈ A;

• xi defines a switch in (Ri−1
a ) whenever xi ∈ R̄i−1

a for some a;

• R̄i
a = P̄ i

a ∩ P̄ ′
a for all a ∈ A.

For i = n this is yields the desired result with Ra := Rn
a �

We start our second proof by rewriting P as an A-family (Pa)a∈A. For
each d ∈ A separately, let xd be the first vertex on Pd such that a suitable finite
sequence of switches turns (Pa) into an A-family (P d

a )a∈A with c(P d
d ) = xd.

We claim that (P a
a )a∈A is an A-family covering B.

Every path P = P a
a is taken from some A-family, and hence has a vertex

c = c(P ) such that Pc is an initial segment of a path in P and cP is a final
segment of a path in Q. To show that the paths P a

a are disjoint for different a,
let a′ �= a and consider P ′ := P a′

a′ . It suffices to show that cP ∩P ′c′ = ∅, where
c′ := c(P ′). The minimality of xa′ = c′ implies that P ′c′ ⊆ P a

a′ . But P a
a′ lies

in a common A-family with P = P a
a , and hence avoids cP .

To show that the paths P a
a cover B, consider any uncovered b ∈ B and let Q

be the path in Q containing b. Let x be the last vertex of Q that lies on P a
a =: P

for some a =: a0. Then x ∈ P̄ , since otherwise P ⊇ xQ 
 b. Consider the finite
set A′ := { a �= a0 | xQ∩Pa �= ∅ }. By our lemma, there is a finite sequence
of switches that turns P into a family (P ′′

a ) such that P̄ ′′
a′ =

⋂
d∈A′ P̄ d

a′ = P̄ a′

a′

for all a′ ∈ A′. Since xQ avoids all these P a′

a′ and x ∈ P̄ ⊆ P̄ ′′
a0

, it follows that
x defines a switch in (P ′′

a ). This switch produces an A-family containing the
path PxQ with c(PxQ) = x ∈ P̄ , contradicting the minimality of c(P ) = xa0

on Pa0 . �
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