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Abstract

Given a closed surface S, we characterise the graphs embeddable in S
by an algebraic condition asserting the existence of a sparse generating
set for their cycle space. When S is the sphere, the condition defaults to
MacLane’s planarity criterion.

1 Introduction

MacLane’s well-known planarity criterion [6, 3] characterises the finite planar
graphs in terms of their cycle space. As the (unoriented) cycle space C(G) of a
graph G we take the Z2-vector space generated by the edge sets of cycles in G,
with symmetric difference as addition. Its elements are those sets F ⊆ E(G)
such that every vertex of G is incident with an even number of edges in F .
Call a family F of sets F ⊆ E(G) sparse if every edge of G lies in at most two
members of F .

MacLane’s planarity criterion can then be stated as follows:

MacLane’s Theorem. A finite graph is planar if and only if its cycle space is
generated by some sparse family of (edge sets of) cycles.

In this paper we generalise MacLane’s theorem to embeddability criteria for
arbitrary closed surfaces.

Our approach is motivated by simplicial homology, as follows. Let a con-
nected graph G be embedded in a closed surface S of minimum Euler genus ε :=
2−χ(S). Then S can be viewed as the underlying space of a 2-dimensional CW-
complex C with 1-skeleton G. Its first homology group Z1(C; Z2)/B1(C; Z2)
is Zε

2, the direct product of ε copies of Z2.
In graph theoretic language this means that the subspace B (= B1(C; Z2))

spanned in C(G) (= Z1(C; Z2)) by the set of face boundaries of G in S has
codimension ε in C(G). Now the set of face boundaries is a sparse set of cycles.
Thus, if G embeds in a surface of small Euler genus, at most ε, then G has a
sparse set of cycles spanning a large subspace in C(G), one of codimension at
most ε.

MacLane’s theorem says that, for ε = 0, the converse implication holds too:
if G has a sparse set of cycles whose span in C(G) has codimension at most
ε = 0, then G embeds in the (unique) surface of Euler genus at most ε = 0, the
sphere.
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We shall generalise this to arbitrary surfaces in two ways. We first char-
acterise, by a condition similar to MacLane’s, the graphs of any given Euler
genus. We then refine this condition to characterise embeddability in a given
surface. All our conditions will be both necessary and sufficient. Following a
brief section on terminology, we state our results in Section 3. Proofs are given
in Section 4.

Some previous work in this direction can be found in the literature. Lef-
schetz [5] characterises the graphs that are embeddable in a given surface so
that every face is bounded by a cycle. His theorem for orientable surfaces
will follow from Theorem 2 (i). Lefschetz’s theorem for non-orientable surfaces,
stated in [5] without formal proof, is incorrect; our Theorem 2 (ii) corrects and
strengthens his result. Mohar [7] starts out from the necessary condition dis-
cussed earlier for embeddability in a surface of Euler genus at most ε, namely,
that the graph must have a sparse set of cycles whose span in its cycle space has
codimension at most ε. Unlike our plan here, Mohar does not strengthen this
condition to one that is also sufficient, but establishes how much it implies as it
is; the (best possible) result is that it implies embeddability in a surface of Euler
genus at most 2ε. Širáň and Škoviera [9, 10] investigate when a given family of
closed walks in a graph G can appear as face boundaries in an embedding of
G in some surface, not necessarily of small genus (as will be our aim). We will
make use of some of their techniques and refer the reader to their work for more
details. We shall also use techniques of Edmonds [4], who studies embeddability
in arbitrary surfaces in terms of duality.

Although our proofs are self-contained and some standard definitions are
included, the exposition of this paper has been trimmed to suit a reader with
a background in topological graph theory. An extended version aimed at a
non-specialist reader is available at [2]. This includes more background, and it
explains by a natural sequence of examples how our characterising conditions
came about, and why they are necessary.

2 General definitions and background

All graphs we consider are finite. Our notation will be that of [3], except that
instead of ‘multigraph’ we say ‘graph’. (Thus, our graphs may have loops and
multiple edges, and degrees and connectivity are defined as they are in [3] for
multigraphs. In particular, 2-connected graphs cannot have loops.) In the
statements of some of our results we do not allow loops, but only to avoid
unnecessary complication in our terminlogy: those theorems can be applied to
graphs with loops by subdividing (and thereby eliminating) these.

The set of edges of a graph G = (V,E) incident with a given vertex v is
denoted by E(v). When W is a walk in G, we denote the subgraph of G that
consists of the edges on W and their incident vertices by G[W ]; note that this
need not be an induced subgraph of G. The (unoriented) edge space of G is the
Z2 vector space of all functions E → Z2 under pointwise addition. We usually
write these as subsets of E, so vector addition becomes symmetric difference
of edge sets. The (unoriented) cycle space C(G) of G is the subspace of E(G)
generated by circuits, the edge sets of cycles.
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A triple (e, u, v) consisting of an edge e = uv together with its ends listed in a
specific order is an oriented edge. The two oriented edges corresponding to e are
its two orientations, denoted by →e and ←e. Thus, {→e, ←e} = {(e, u, v), (e, v, u)},
but we cannot generally say which is which. Given a set E of edges, we write
→
E for the set of their orientations, two for every edge in E.

The oriented edge space
→
E (G) of G = (V,E) is the real vector space of all

functions φ :
→
E → R satisfying φ(←e) = −φ(→e) for all →e ∈

→
E. When v0 . . . vk−1v0

is a cycle and ei := vivi+1 (with vk := v0), the function mapping the oriented
edges (ei, vi, vi+1) to 1, their inverses (ei, vi+1, vi) to −1, and every other ori-
ented edge to 0, is an oriented circuit. The oriented cycle space

→
C (G) is the

subspace of
→
E (G) generated by the oriented circuits.

If G is connected and has n vertices and m edges, its oriented and its unori-
ented cycle space both have dimension

dim C(G) = dim
→
C (G) = m− n + 1. (1)

A (closed) surface is a compact connected 2-manifold without boundary.
It is orientable if it admits a triangulation whose 2-simplices (triangles) can be
compatibly oriented. Equivalent conditions are that every triangulation has this
property, and that the surface does not contain a Möbius strip [1].

Every graph G is a 1-dimensional CW-complex, or 1-complex, with vertices
as 0-cells and edges as 1-cells. A topological embedding of G in another space
S is a 2-cell-embedding if G is the 1-skeleton of a 2-complex C such that the
embedding of G in S extends to a homeomorphism ϕ : |C| → S. The images
under ϕ of the 2-cells of C are the faces of G in S. If S is a surface, their
attachment maps define closed walks in G. These walks are unique up to cyclic
shifts and orientation, a difference we shall often ignore. We thus have one
such walk (with two orientations) assigned to each face, and call this family the
(unique) family of facial walks. If W is the facial walk of some face f , then
ϕ maps the subgraph G[W ] onto the frontier of f in S, and we call G[W ] the
boundary of the face f .

Given a surface S, consider any 2-cell-embedding of any graph in S. Let n
be its number of vertices, m its number of edges, and ` its number of faces in S.
Euler’s theorem tells us that n −m + ` is equal to a constant χ(S) depending
only on S (not on the graph), the Euler characteristic of S. The Euler genus
ε(S) of S is defined as the number 2 − χ(S). Euler’s theorem then takes the
following form, which we refer to as Euler’s formula:

ε(S) = m− n− ` + 2. (2)

Given a graph G, let ε = ε(G) be minimum such that G has a topological
embedding ϕ in a surface of Euler genus at most ε. This ε is the Euler genus
of G, and any such ϕ is a genus-embedding of G. Every connected graph has
a genus-embedding that is a 2-cell-embedding [8, p. 95]. If G has components
G1, . . . , Gn, then ε(G) = ε(G1) + · · · + ε(Gn), a fact referred to as genus addi-
tivity [8]. (The same is true for blocks rather than components, but we do not
need this.)
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We say that a family W of walks covers a subgraph H of G (often given in
terms of its edge set) if every edge of H lies on some walk of W. It covers an
edge e k times if k =

P
W∈W kW (e), where kW (e) is the number of occurrences

of e on W (irrespective of the direction in which W traverses e). W is a double
cover of G if it covers every edge of G exactly twice. A walk is non-trivial if it
contains an edge.

Given a walk W in G, we write c(W ) : E(G) → Z2 for the function that
assigns to every edge e the number of times that W traverses e (in either di-
rection), taken mod 2. Informally, we think of c(W ) as its support, the set of
edges that appear an odd number of times in W . The dimension of a family
W of walks, dimW, is the dimension of the subspace spanned in E(G) by the
functions (or sets) c(W ) with W ∈W. If the walks are closed, their c(W ) lie in
C(G); then the codimension of W in C(G) is the number dim C(G)− dimW.

Taking the natural orientation of W into account, we write →c(W ) for the
function that assigns to every →e ∈

→
E the number of times that W traverses e in

the direction of →e minus the number of times that W traverses e in the direction
of ←e, and assigns 0 to any →e with e not on W . The oriented dimension of a
family W of walks, →dimW, is the dimension of the subspace of

→
E (G) spanned

by the functions →c(W ) with W ∈ W. If the walks are closed, their →c(W ) lie
in

→
C (G); then the codimension of W in

→
C (G) is the number dim

→
C (G)− →dimW.

3 Statement and discussion of results

Recall that a family F of subsets of E(G) is sparse if every edge of G lies in at
most two members of F . Similarly, we shall call a family of walks sparse at an
edge e if it covers e at most twice.

Our first aim is to characterise the graphs of given Euler genus, at most ε
say, by something like the existence of a family of closed walks in G—destined
to become the facial walks of the embedding—that is sparse at edges but whose
codimension in C(G) is at most ε. However, as several authors [5, 7, 10] have
noted, not every such family of walks can be turned into one of facial walks,
even if G is embeddable in a surface of Euler genus ε. Rather, some additional
local property is necessary to guarantee the existence of a flat neighbourhood
around each vertex. We will ensure this by the following sparseness requirement
at vertices.

Given a family W of walks and a vertex v, let us call a non-empty subfamily
U of the walks in W through v a cluster at v if

P
W∈U c(W ) ∩E(v) = ∅ but U

fails to cover E(v). We say that W is sparse if it is sparse at all edges and does
not have a cluster at any vertex. For families of edge sets rather than walks we
retain our earlier notion of sparseness, meaning sparseness at edges.

We can now state our first extension of MacLane’s theorem. It can be read
as a characterisation of the graphs of given Euler genus:

Theorem 1. For every integer ε ≥ 0, a graph G can be embedded in some
surface of Euler genus at most ε if and only if there is a sparse family of closed
walks in G whose codimension in C(G) is at most ε.
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For ε = 0, Theorem 1 implies MacLane’s theorem. This is not immediately
obvious: one has to show that a sparse family B of edge sets of cycles generat-
ing C(G) (as in MacLane’s theorem) must be sparse also as a family of walks,
i.e., that it does not have any clusters. We may assume that G is 2-connected.
Suppose that B has a cluster at a vertex v. Thus, there is a non-empty sub-
family F of B whose edges at v sum to zero but which fails to cover some other
edge vw at v. Choose F minimal, and pick an edge uv from a cycle in F . As G
is 2-connected, G− v contains a u–w path P ; then C = uPwvu is a cycle. We
claim that no set B0 ⊆ B can sum to C, contradicting the choice of B. Indeed,
since B is sparse and F sums to zero at v, every edge in D := E(v) ∩

S
F lies

on exactly two cycles in F but not on any cycle in B \ F . The set of cycles in
B0 with an edge in D, therefore, is precisely B0 ∩F . In particular, if uv ∈

P
B0

then uv ∈ E0 :=
P

(B0 ∩ F). Since every cycle in B0 ∩ F has two edges in D,
we know that |E0 ∩D| is even. Hence if uv ∈

P
B0, there must be another edge

e 6= uv in E0 ∩D = (
P

B0) ∩D. This edge cannot be vw /∈ D, so it does no lie
on C. Thus,

P
B0 differs from C either in uv or in e, i.e.

P
B0 6= C as claimed.

The forward implication of Theorem 1 is well known, and its proof will not
be hard. The converse implication, however, is new. Our overall approach to its
proof will be to mimic the standard topological proof of MacLane’s theorem: to
attach a disc to each walk in the given sparse family of walks, and then to prove
that the resulting identification space is a surface of the correct Euler genus.
However, our sparseness condition is not always strong enough to rule out the
formation of singularities when the discs are identified at their boundaries.

For example, consider in a graph drawn on the sphere two vertices that
lie on a common face boundary W . Identifying these two vertices into a new
vertex v turns the sphere into a pseudosurface S on which the old facial walks
still bound discs, so attaching discs to the walks after identification yields this
pseudosurface. But those facial walks also still form a sparse family: any non-
empty subfamily summing to zero at v must contain W , but then it contains
edges from both of the ‘two disjoint disc neighbourhoods’ of v on S and hence
contains all the facial walks through v and thus covers E(v).

For the proof of Theorem 1, we shall overcome this problem by modifying the
given walks before we attach the discs. Another option would be to strengthen
our notion of sparseness to a condition that does prevent singularities. The
above example suggests that we might try to localise our current condition:
instead of summing edges over entire subfamilies of walks, we should consider
their various passes through a vertex v, each consisting of two edges, and forbid
the existence of ‘clusters’ of such passes. (Our example would have two such
local clusters at v, each consisting of the passes through v in one of its two ‘flat
neighbourhoods’.)

We shall indeed need this second option for Theorem 2 below, so let us make
it precise. In order to keep our terminology simple we shall now ban loops; this
will be easy to undo later. Let W = v1e1 . . . vnenv1 be a closed walk in a
loopless graph G, where the vi are vertices and the ei are edges. For a vertex v
we call a subsequence ej−1vjej of W with vj = v (where e0 := en) a pass of
W through the vertex v. Extending our earlier notation for walks, we write
c(ej−1vjej) := {ej−1, ej} if ej−1 6= ej , and c(ej−1vjej) := ∅ if ej−1 = ej . In
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order keep track of how often a given walk passes through a given vertex, we shall
consider the family of all passes of W through v, the family (ej−1vjej)j∈J where
J = {j : vj = v, 1 ≤ j ≤ n}. Similarly, if W = (Wi)i∈I is a family of walks then
the family of all passes of W through v is the family A(W, v) := (pij)i∈I,j∈Ji

where, for each i, (pij)j∈Ji is the family of all passes of Wi through v. Let us
call a non-empty subfamily F ⊆ A(W, v) a local cluster at v if

P
p∈F c(p) = ∅

but F fails to cover E(v). We say that W is locally sparse if W is sparse at
all edges and has no local cluster at any vertex. Note that any locally sparse
family of closed walks in G is sparse, since for every vertex v and every closed
walk W we have c(W ) ∩E(v) =

P
p∈A((W ),v) c(p).

While Theorem 1 characterises the graphs of given Euler genus, our initial
aim was to characterise the graphs embeddable in a given surface S. This will
be achieved by the following theorem, which is our main result:

Theorem 2. Let S be any surface, and let ε denote its Euler genus. Let G be
any loopless graph, and let k denote the number of its components.

(i) If S is orientable, then G can be embedded in S if and only if G has a
double cover by a locally sparse family W of closed walks whose oriented
dimension is at most |W|−k and which has codimension at most ε in

→
C (G).

(ii) If G is connected and S is not orientable, then G can be embedded in S
if and only if there is a sparse family W of closed walks in G whose codi-
mension in

→
C (G) is at most ε− 1.

We conjecture that ‘locally sparse’ cannot be replaced by ‘sparse’ in (i).
And we remark that the connectivity requirement in (ii) cannot be dropped.
Indeed, consider a graph G consisting of k disjoint copies of a graph that can
be embedded in the projective plane but not in the sphere. By (ii), G can be
covered by a sparse family of closed walks that has codimension 0 in

→
C (G).

However, G cannot be embedded in any surface of Euler genus less than k.

4 The proofs

Let W be a family of closed walks in a loopless graph G that is sparse at edges.
Recall that, for each vertex v ∈ G, we denoted by A(W, v) the family of all
passes of W through v. As a tool for our proofs, let us define for every vertex v
an auxiliary graph H = H(W, v) with vertex set A(W, v). Its edge set will be
a subset of E(G), with incidences defined as follows. Whenever two distinct
vertices p, q of H (i.e., passes that are distinct as family members—they may
be equal as triples) share an edge e ∈ G, we let e be an edge of H joining p
and q. If W contains a pass p = eve, we let e be a loop at p. Clearly, H has
maximum degree at most 2, since a pass evf can be incident only with the
edges e and f . (For example, if there are three edges e, f, g at v in G, and W
contains the passes evf, fvg, gve, then these three passes and the three edges
e, f, g form a triangle in H. As another example, if W has two passes consisting
of the triple evf , or one pass evf and another pass fve, then these two passes
are joined by the pair {e, f} of double edges in H and have no other incident
edge.) If W is a double cover of G, then every H(W, v) is 2-regular.
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Note that if W covers E(v), then W has a local cluster at v if and only
if H = H(W, v) contains a non-spanning cycle. Thus, W is locally sparse if
and only if (it is sparse at edges and) each of the graphs H(W, v) is either a
forest—possibly empty—or, if W covers E(v), a single cycle.

We begin with a lemma which says that sparse double covers by closed walks1
are nearly independent: that dimW = |W|− 1.

Lemma 3. Let G = (V,E) be a connected graph, and let W be a sparse family
of non-trivial walks.

(i) For every non-empty subfamily U of W that is not a double cover of G,
the family ( c(U) : U ∈ U ) is linearly independent in C(G).

(ii) If W is a double cover then dimW = |W|− 1.

Proof. It suffices to prove (i), since this implies that dimW ≥ |W|−1: then (ii)
follows, since W covers every edge twice and hence

P
W∈W c(W ) = ∅.

For a proof of (i), let U be given as stated. Suppose the assertion fails; then
U has a non-empty subfamily U 0 ⊆ U such that

P
U∈U0 c(U) = ∅. Then any

edge covered by U 0 is covered by it twice, so as U is not a double cover there
exists an edge not covered by U 0. On the other hand, since U 0 is non-empty
and its walks are non-trivial, U 0 covers some edge of G. Since G is connected,
it therefore has a vertex v that is incident both with an edge that is covered by
U 0 and an edge that is not. Denote by U 0(v) the non-empty family of all walks
in U 0 containing v. As

X

U∈U0(v)

c(U) ∩E(v) ⊆
X

U∈U0
c(U) = ∅,

and as U 0(v) does not cover E(v), U 0(v) is a cluster at v, contradicting that W
is sparse.

Next, we show that locally sparse families extend to double covers. It is
possible to deduce this from results of Širáň and Škoviera [10], but for simplicity
we sketch a direct proof.

Lemma 4. Let G be a loopless graph and W a locally sparse family of closed
walks in G. Then W can be extended to a locally sparse double cover W 0 of G
by closed walks.

Proof. Let W 0 ⊇W be a maximal family of closed walks that is locally sparse.
We show that W 0 is a double cover.

Suppose not. Let F be the set of edges in G not covered twice. Our aim is
to find a closed walk W in (V, F ) such that W 00 := W 0 ∪ {W} is again locally
sparse; this will contradict our maximal choice of W 0.

For every vertex v incident with an edge in F , consider the auxiliary graph
H(v) := H(W 0, v) defined at the start of this section. Let us show that H(v) is
a (possibly empty) forest. Suppose not, and let U be the vertex set of a cycle

1Indeed by any edge sets without clusters: our proof of Lemma 3 will not use the fact that
W is a family of walks.
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in H(v). Then
P

u∈U c(u) = 0. By assumption v is incident with an edge f ∈ F ,
which thus lies in at most one pass of W 0 through v. As this pass has degree at
most 1 in H(v) it cannot be in U , which implies that U , as a family of passes,
does not cover E(v). Then, however, U is a local cluster at v—a contradiction
to our assumption that W 0 is locally sparse.

The components of H(v), therefore, are paths. The edges of these paths are
precisely the edges at v which W 0 covers twice, those in E(v) \ F . For every
such path P put ∂P :=

P
p∈V (P ) c(p); this is a set of two edges in F ∩ E(v),

and all these 2-sets are disjoint. Let C(v) be a cycle on F ∩ E(v) as its vertex
set such that E(C(v)) ⊇ { ∂P : P is a component of H(v) }. Call the edges in
this last set red , and the other edges of C(v) green. (We allow C(v) to be a
loop or to consist of two parallel edges.) Call the number of green edges of C(v)
incident with a given vertex f of C(v) the green degree of f in C(v).

The green degree in C(v) of an edge f ∈ F ∩E(v) equals 2− k,
where k ∈ {0, 1} is the number of times that W 0 covers f . (3)

To construct our additional walk W in (V, F ), we start by picking a vertex v0

of G that is incident with an edge f0 ∈ F . Then H(v0) and C(v0) are defined.
Let us construct a maximal walk W = v0f0v1f1 . . . fn−1vn in (V, F ) such that
fi−1fi is a green edge of C(vi) and these green edges are distinct for different i.
To ensure that we do not use a green edge again, let us delete the green edges
as we construct W inductively, fi−1fi at the time we add fi−1vifi to W . Note,
for i = 1, . . . , n−1 inductively, that assertion (3) still holds for fi−1 and fi at vi

with Wi := v0f0 . . . fivi+1 added to W 0 and the green edges fj−1fj deleted for
all j with 1 ≤ j ≤ i. This implies that when W gets to vi via fi−1, there is still
a green edge fi−1f in C(vi) at fi−1 at that time, so W can continue and leave
vi via f =: fi—unless vi = v0 and f = f0, for which the extended assertion (3)
does not hold (and was not proved above). Hence when our construction of W
terminates we have vn = v0, and fn−1 is joined to f0 by a green edge of C(v0).
Thus, W is indeed a closed walk, and W 00 := W ∪ {W} is again sparse at edges.

It remains to show that W 00 has no local clusters at vertices. The passes of
W through a vertex v are all triples evf such that ef is a green edge of C(v).
Adding these passes as new vertices to H(v), with adjacencies as defined before,
turns H(v) into a graph H 0(v) that is either a single cycle containing all of
E(v) (if W ‘traverses’ every green edge of C(v)) or a disconnected graph whose
components are still paths: H 0(v) cannot contain cycles other than a Hamilton
cycle, because C(v) is a single cycle. Therefore, as any family F of passes of
W 00 through v with

P
p∈F c(p) = ∅ induces a cycle in H 0(v), this can happen

only when F covers E(v). Thus, W 00 is again locally sparse, contradicting the
maximal choice of W 0.

We remark that Lemma 4 remains true if we replace ‘locally sparse’ with
‘sparse’, but we will not need this.

The following equivalence, whose implication (ii)→(i) will be a lemma in our
proof of the backward implication of Theorem 1, is weaker than that implication
in that it requires local sparseness rather than just sparseness in (ii). But it is
also stronger, in that it allows us to make our given walks into face boundaries.
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Lemma 5. Let G = (V,E) be a loopless connected graph, W a family of closed
walks in G, and ε ≥ 0 an integer. Then the following two statements are
equivalent:

(i) There is a surface S of Euler genus at most ε in which G can be 2-cell-
embedded so that W is a subfamily of the family of facial walks.

(ii) There is a locally sparse family of closed walks in G that has codimension
at most ε in C(G) and includes W.

Proof. (i)→(ii) Extend W to the family W 0 of all the facial walks of G in S.
Since S is locally homeomorphic to the plane, W 0 covers every edge of G twice,
and elementary topological arguments show that W 0 cannot have a local cluster
at any vertex. Hence dimW 0 = |W 0|−1 by Lemma 3 (ii). Using (1) and Euler’s
formula (2), we deduce that

dim C(G)− ε = |E(G)|− |V (G)|+ 1− ε ≤ |W 0|− 1 = dimW 0

as desired.
(ii)→(i) Replacing W with the extension of W whose existence is asserted

in (ii), we may assume that W itself is locally sparse and has codimension at
most ε in C(G). Extending W by Lemma 4 if necessary, we may further assume
that W is a double cover of G.

Let C be the 2-dimensional CW-complex obtained as follow. We start with
G as its 1-skeleton. As the 2-cells we take disjoint open discs DW ⊆ R2, one for
each walk W ∈ W, divide the boundary of DW into as many segments as W
is long, and map consecutive segments homeomorphically to consecutive edges
in W.

In order for S := |C| to be a surface, we have to check that every point has
an open neighbourhood that is homeomorphic to R2. For points in the interior
of 2-cells or edges, this is clear; recall that W is a double cover. Now consider a
vertex v of G. Define H(v) as earlier. Since W is a double cover, H(v) is now
2-regular, and since W has no local cluster at v it contains no cycle properly.
Hence, H(v) is a cycle. For each pass p = evf ∈ V (H(v)) we let D(p) be a
closed disc whose interior lies inside a disc DW such that p is a pass of W ,
choosing each D(p) so that its boundary contains v and intersects W in one
segment contained in e ∪ f and meeting both e and f . These discs D(p) can
clearly be chosen with disjoint interiors for different p. Using the elementary
fact that the union of two closed discs intersecting in a common segment of
their boundaries is again a disc, one easily shows inductively that the interior of
the union of all the discs D(p) is an open disc, and hence homeomorphic to R2.
This completes the proof that S is a surface.

Since C is finite, S is compact. Since G is connected, so is S. Finally,
Euler’s formula (2) applied to C, together with (1), the trivial inequality of
Lemma 3 (ii), and our assumption that W has codimension at most ε in C(G),
yields

ε(S) = 2− (|V (G)|− |E(G) + |W|)
= (|E(G)|− |V (G)] + 1)− (|W|− 1)
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= dim C(G)− dimW
≤ ε .

Thus, (i) is proved.

We need an easy technical lemma relating →dimW to dimW.

Lemma 6. Let G = (V,E) be a connected graph, and let W = (W1, . . . ,Wn) be
a sparse family of non-trivial walks.

(i) →dimW ≥ dimW.2

(ii) If →dimW < |W| then there exist µi ∈ {1,−1} such that
Pn

i=1 µi
→c(Wi) = 0.

Proof. Assertation (i) will follow at once from the following claim:

If there exist λ1, . . . ,λn ∈ R \ {0} such that
Pn

i=1 λi
→c(Wi) = 0

in
→
E (G), then there are also µ1, . . . , µn ∈ {−1, 1} such thatPn

i=1 µi
→c(Wi) = 0.

(4)

Indeed, whenever two walks Wi, Wj share an edge e, we have |λi| = |λj | because
W is sparse at e. Let H be the graph on {1, . . . , n} in which ij is an edge
whenever Wi and Wj share an edge. Then the values of |λi| coincide for all i in
a common component C of H, and letting µj := λj/λi for some fixed i and all
j in C satisfies (4).

Let us now prove (ii). If →dimW < |W| there are λ1, . . . ,λn ∈ R not all zero
such that

Pn
i=1 λi

→c(Wi) = 0. By (4), we may assume the λi to be in {1, 0,−1}.
Applying Lemma 3 (i) to the subfamily U of the Wi with λi 6= 0 we see that
the λi are in fact all non-zero, as desired.

In order to make Lemma 5 usable for the proof of Theorem 1, we next have
to address the task of turning a sparse family W of closed walks into a locally
sparse family W 0 without changing its codimension in C(G). In fact, we shall
be able to do much more: we shall obtain W 0 from W by merely changing the
order in which a walk traverses its edges. This is not unremarkable: it means,
for example, that by merely changing the order in which the offending boundary
walk W in the example discussed after Theorem 1 traverses its edges we can
turn the resulting pseudosurface into a surface. The proof employs a trick from
surface surgery to dissolve singularities, which we learnt from Edmonds [4].

To do this formally, consider any family W of closed walks in G. Call a
family W 0 = (W 0 : W ∈W ) of closed walks similar to W if, for every e ∈ E(G)
and every W ∈ W, the edge e occurs on W 0 as often as it does on W . Thus if
W 0 is similar to W then G[W 0] = G[W ] and c(W 0) = c(W ) for every W ∈ W,
and in particular dimW 0 = dimW. Note that although a family similar to a
locally sparse family need not itself be locally sparse (which indeed is our reason
for defining similarity), a family similar to a sparse family will always be sparse.

2This is true regardless of whether W is sparse. But the special case proved here is all we
need.
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Lemma 7. For every sparse family W of closed walks in a connected loopless
graph G there exists a locally sparse family W 0 similar to W. If W is not locally
sparse, then W 0 can be chosen so that →dimW 0 = |W 0|.
Proof. For families W 0 of closed walks, define γ(W 0) :=

P
v∈V (G) γW0(v) where

γW0(v) denotes the number of components of H(W 0, v). Assuming that W
is not locally sparse, we will construct a family W 0 similar to W such that
γ(W 0) < γ(W); we will further ensure that →dimW 0 = |W 0|. Since γ(W) is
bounded below by 0, this will prove the lemma.

Let us construct W 0. As W is not locally sparse, there must exist a local
cluster at some vertex v. Seen in H := H(W, v) this local cluster forms a
cycle. Since W is sparse, one of the vertices of C must be a pass p = eve0

of a walk W ∈ W which also contains a pass q = fvf 0 that is a vertex in
another component D 6= C of H. Choose these passes so that W has a subwalk
ve0 . . . fv not containing e or f 0. Let W 0 be the closed walk obtained from W by
reversing this subwalk (Figure 1), and let W 0 be obtained from W by replacing
W with W 0. Clearly, W 0 is again a closed walk, and W 0 is similar to W.

v
f f

e e′ e e′

f ′

W

vf ′

W ′

Figure 1: Turning W into W 0 by reversing the segment ve0 . . . fv

Let us show that γ(W 0) < γ(W). For vertices u 6= v of G we have H(W 0, u) =
H(W, u), so γW0(u) = γW(u). At v, however, we have γW0(v) < γW(v), so
γ(W 0) < γ(W). Indeed, H 0 := H(W 0, v) arises from H by the replacement
of p = eve0 ∈ V (C) and q = fvf 0 ∈ V (D) with two new vertices, p0 := evf
and q0 := e0vf 0, and redefining the incidences for the edges e, f, e0, f 0 ∈ E(H) =
E(H 0) accordingly. As one easily checks (see Figure 2), this has the effect of
merging the components C and D of H into one new component, leaving the
other components of H intact. Thus, the components of H 0 are those of H other
than C and D, plus one new component arising from (C−p)∪(D−q) by adding
the new vertex p0 incident with e and f and the new vertex q0 incident with e0

and f 0 (leaving the other incidences of e, e0, f, f 0 in H 0 as they were in H).

fe

e′ f ′

p q

p′

C − p D− qC D

fe

e′ f ′
q ′

Figure 2: Merging the components C and D of H to form H 0

It remains to show that →dimW 0 = |W 0|. First note that, if C = e1 . . . em

where e = e1 and e0 = em then fe1 . . . emf 0 is a subpath of C0, the new compo-
nent that arose from merging C and D.

11



Suppose now that →dimW 0 < |W 0|. Then for all U ∈ W 0 there are µU ∈
{1,−1} such that

P
U∈W0 µU

→c(U) = 0 (Lemma 6 (ii)), and we may assume
that µW 0 = 1. Reversing the orientation of each U ∈ W 0 with µU = −1
we obtain

P
U∈W0

→c(U) = 0. Since the orientation of W 0 has not changed,
p0 = e1vf and q0 = emvf 0 are still subwalks of W 0. The orientations of the
walks in W 0 induce orientations on the passes at v; therefore

P
U∈W0

→c(U) = 0
implies that

P
r∈V (C0)

→c(r) = 0, the passes r being interpreted as subwalks.
Hence as p0 = e1vf ∈ V (C0), each of the passes ei+1vei is traversed by some
walk in W 0 in this order: ei+1 towards v, and ei away from v (i = 1, . . . ,m−1).
In particular, em is traversed towards v in the pass emvem−1 6= q0. However, this
is also the case in q0. As W 0 is sparse at edges, this implies

P
r∈V (C0)

→c(r) 6= 0,
a contradiction.

Using Lemmas 5 and 7 we will prove the following equivalence, a more ex-
plicit version of Theorem 1 for connected graphs:

Lemma 8. Let G be a connected graph, W a family of closed walks in G, and
ε ≥ 0 an integer. Then the following statements are equivalent:

(i) There is a surface of Euler genus at most ε in which G can be 2-cell-
embedded so that the family of facial walks has a subfamily similar to W.

(ii) There is a sparse family of closed walks in G that has codimension at
most ε in C(G) and includes W.

Proof. Denote by Ġ the loopless graph obtained from G by subdividing every
loop once. Note that there is an obvious isomorphism C(G) .= C(Ġ), and in
particular, the two spaces have the same dimension.

To prove the implication (i)→(ii), consider an embedding of G as in (i). The
embedding of G immediately induces an embedding of Ġ, so that there is a 1-1
correspondence between the facial walks U̇ of the embedding of Ġ and the facial
walks U of the embedding of G. Applying Lemma 5 to U̇ , which is a double
cover, we see that U̇ is locally sparse and of codimension ≤ ε in C(Ġ). Then
the same holds for U with respect to C(G). Replacing in U the subfamily of U
similar to W with W preserves both the sparseness of U and its dimension, so
(ii) follows.

For a proof of the implication (ii)→(i), let W 0 ⊇ W be the sparse family
of codimension ≤ ε in C(G) provided by (ii). Then the subdivided walks Ẇ 0

in Ġ are still sparse and have codimension ≤ ε in C(Ġ). We use Lemma 7 to
turn Ẇ 0 into a locally sparse family Ẇ 00 similar to W 0, which, by Lemma 5, is
a subfamily of the family U̇ of facial walks of an embedding of Ġ in a surface of
Euler genus at most ε. If each walk W in U̇ is a subdivision of a walk in G then
the embedding of Ġ induces one of G in which W is similar to a subfamily of
the facial walks, since U̇ contains Ẇ 00 ∼ Ẇ 0. This can fail only if W contains a
pass eve through a subdividing vertex v. If it does, let f be the other edge of Ġ
at v. Then the subfamily F = {eve} of U̇ satisfies

P
p∈F c(p) = 0, but fails to

cover f . Thus the local cluster F at v contradicts that U̇ is locally sparse.

To complete the proof of Theorem 1, it remains to reduce the disconnected
to the connected case.
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Proof of Theorem 1. For the forward direction, let G and ε be such that G
embeds in a surface of Euler genus at most ε. Our aim is to find a certain
family of closed walks of codimension at most ε, so there is no loss of generality
in choosing ε minimum, i.e., in assuming that ε = ε(G). Let G1, . . . , Gn be the
components of G. For each i = 1, . . . , n choose a genus-embedding Gi ↪→ Si.
These can be chosen to be 2-cell-embeddings, and by genus additivity (see [8,
Section 4.4]) we have ε1 + · · · + εn = ε for εi := ε(Si) = ε(Gi). For each i let
Wi be the family of facial walks of Gi in Si. By Lemma 8, the Wi are sparse
and have codimension at most εi in C(Gi): as Wi already covers every edge
of Gi twice, it cannot be extended to a larger sparse family. Since the Gi are
vertex-disjoint, W := W1 ∪ · · · ∪Wn is again sparse, and it has codimension at
most ε1 + · · ·+εn = ε in C(G), since C(G) is the direct sum of the spaces C(Gi).

For a proof of the backward direction, let W be a sparse family of closed
walks in G that has codimension at most ε in C(G). If G has components
G1, . . . , Gk, say, write Wi for the subfamily of walks contained in Gi, and εi

for the codimension of Wi in C(Gi). Then ε(Gi) ≤ εi, by (ii)→(i) of Lemma 8.
Moreover,

Pk
i=1 εi ≤ ε, since C(G) is the direct sum of the spaces C(Gi). Hence,

by genus additivity,

ε(G) =
kX

i=1

ε(Gi) ≤
kX

i=1

εi ≤ ε .

Thus, G can be embedded in a surface of Euler genus at most ε.

We finally come to the proof of Theorem 2. We need another easy lemma.

Lemma 9. Let G be a loopless and connected graph. If W is the family of facial
walks of an embedding of G in a surface S, then S is orientable if and only if
→dimW < |W|.

Proof. If W is the family of facial walks of an embedding of G in S, insert
a new vertex in every face and join it to all the vertices on the boundary of
that face. This yields a triangulation of S. If S is orientable, we can orient
the 2-simplices of this complex C (i.e., the newly created triangles) compatibly,
so that every edge receives opposite orientations from the orientations of the
two 2-simplices containing it. Then the 2-simplices triangulating a given face
induce orientations on the edges of its boundary walk W ∈ W that either all
coincide with their orientations induced by W or are all opposite to them. Let
λW := 1 or λW := −1 accordingly. Then

P
W∈W λW

→c(W ) = 0, showing that
→dimW < |W|.

Conversely, if →dimW < |W| then, by Lemma 6 (ii), there are µW ∈ {1,−1},
W ∈ W, so that

P
W∈W µW

→c(W ) = 0. Reversing the orientation of every
W with µW = −1 yields

P
W∈W

→c(W ) = 0. These new orientations of the
boundary walks W therefore extend to compatible orientations of the 2-simplices
of C, showing that S is orientable.

Proof of Theorem 2. (i) We assume that G is connected; the general case
then follows as in the proof of Theorem 1.3 Suppose first that G can be embed-
ded in S. Replacing S with a surface of smaller oriented genus if necessary, we

3Use the additivity of oriented genus rather than of Euler genus.
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may assume that this is a 2-cell embedding. (Any such replacement reduces ε,
so this assumption entails no loss of generality.) By Lemma 5, the family W
of facial walks is locally sparse and has codimension at most ε in C(G). Its
codimension in

→
C (G) is no greater, since →dimW ≥ dimW by Lemma 6 (i), and

dim
→
C (G) = dim C(G) by (1). It remains to show that →dimW ≤ |W|− 1, which

follows from Lemma 9.
For the converse implication of (i), Lemmas 3 (ii) and 6 (i) and our assump-

tion about →dimW give

dimW ≤ →dimW ≤ |W|− 1 = dimW,

with equality. By (1), then, also the codimension of W is the same in C(G) as
in

→
C (G), at most ε. By (ii)→(i) of Lemma 5, there exists a surface S0 with

ε0 := ε(S0) ≤ ε in which G has a 2-cell-embedding with W =: (W1, . . . ,Wn)
as the family of facial walks. By Lemma 9, S0 is orientable. Adding (ε− ε0)/2
handles turns S0 into a copy of S with G embedded in it, as desired.

(ii) For the forward implication let W be the family of facial walks of the
given embedding. By Lemma 5, W is sparse. By Lemma 9, →dimW = |W|. By
(1) and (2), the codimension of W in

→
C (G) is ε− 1.

For the backward implication in (ii), let us assume first that the (unoriented)
codimension of W in C(G) is also at most ε− 1. By Theorem 1, we can embed
G in a surface S0 of Euler genus ε0 ≤ ε− 1. The addition of ε− ε0 ≥ 1 crosscaps
turns S0 into a copy of S with G embedded in it.

We may therefore assume that W has codimension at least ε in C(G). Let us
show that W is a double cover of G. If not, then Lemmas 6 (i) and 3 (i) imply

|W| ≥ →dimW ≥ dimW = |W|

with equality, so →dimW = dimW. By (1), this contradicts our assumption that
the codimensions of W in C(G) and

→
C (G) differ. Moreover, by assumption and

Lemma 3 we have

dim C(G)− ε ≥ dimW ≥ |W|− 1 ≥ →dimW − 1 ≥ dim
→
C (G)− ε.

By (1), we have equality throughout. In particular, W has codimension exactly ε
in C(G), and →dimW = |W|. By Lemma 7 there is a locally sparse family W 0

similar to W such that →dimW 0 = |W 0|. Since W 0, like W, is a double cover,
W 0 is by Lemma 5 the family of facial walks of an embedding of G in a surface
S0 of Euler genus ε0 ≤ ε. By Lemma 9, S0 is not orientable. Adding ε − ε0

crosscaps we turn S0 into a copy of S with G embedded in it.
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