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Abstract

Let D be a �nite digraph, and let V0, . . . , Vk−1 be nonempty subsets of V (D). The (strong
form of) Edmonds' branching theorem states that there are pairwise edge-disjoint spanning
branchings B0, . . . ,Bk−1 in D such that the root set of Bi is Vi (i = 0, . . . , k − 1) if and only
if for all ∅ 6= X ⊆ V (D) the number of ingoing edges of X is greater than or equal to the
number of sets Vi disjoint from X. As was shown by R. Aharoni and C. Thomassen in [1], this
theorem does not remain true for in�nite digraphs. Thomassen also proved that for the class of
digraphs without backward-in�nite paths, the above theorem of Edmonds remains true. Our
main result is that for digraphs without forward-in�nite paths, Edmonds' branching theorem
remains true as well.

1 Notions and notation

The digraphs D = (V,A) considered here may have multiple edges and arbitrary size. Loops are
also allowed but are irrelevant to our subject. If B ⊆ V , then we write D[B] for the subgraph of
D spanned by B. For X ⊆ V let inD(X) and outD(X) be the set of ingoing and outgoing edges
respectively of X in D, and let %D(X), δD(X) be their respective cardinalities. By a path, we mean
a directed, possibly in�nite, simple path (the repetition of vertices is not allowed). We denote by
start(P ) and end(P ) the �rst and last vertex of the path P , if they exist. For an edge e from x to y,
let start(e) = x and end(e) = y. For X,Y ⊆ V , let eD(X,Y ) = {e ∈ A : start(e) ∈ X, end(e) ∈ Y };
for singletons we write e(x, y) instead of e({x}, {y}). We say that the path P goes from X to
Y if V (P ) ∩ X = {start(P )} and V (P ) ∩ Y = {end(P )} (start(P ) = end(P ) is allowed). We call
min{%D(X) : ∅ 6= X ⊆ V \ {r}} the edge-connectivity of D from r, and D is κ-edge-connected
from r if this cardinal is at least κ.

A digraph is an arborescence with root vertex r if it is a directed tree such that all vertices are
reachable from r. A digraph is a branching with root set W if its weakly connected components are
arborescences and the vertex set W consists of the roots of these arborescences. B is a k-branching
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in D i� it is a k-tuple B = (B0,B1, . . . ,Bk−1) such that the Bi = (Vi, Ai)'s are edge-disjoint
branchings in D (not necessarily with the same root sets), and we let D 
 B = (V,A \ ∪i<kAi). If
F is a branching and P is a path such that V (F ) ∩ V (P ) = {start(P )}, then we denote by F + P
the branching (V (F ) ∪ V (P ), A(F ) ∪A(P )).

2 Introduction

Edmonds proved in [3] his famous theorem (now called the weak form of Edmods' branching theorem)
which states that if a �nite digraph is k-edge-connected from a vertex r for some k ∈ N, then it has
k edge-disjoint spanning arborescences rooted at r. He also proved a generalization of this (called
the strong form of Edmods' branching theorem; see [4] p. 349 Theorem 10.2.1) which states the
following. If D is a �nite digraph and V0, . . . , Vk−1 ⊆ V (D), then there are pairwise edge-disjoint
spanning branchings B0, . . . ,Bk−1 in D such that the root set of Bi is Vi (i = 0, . . . , k − 1) if and
only if all ∅ 6= X ⊆ V (D) has at least |{i < k : Vi ∩X = ∅}| ingoing edges. L. Lovász gave a
new elegant proof for Edmods' branching theorem in [9], and his techniques opened the door for
further generalizations such as [7], [5], [2] and [8]. In�nite generalizations have been obstructed
by a negative result of R. Aharoni and C. Thomassen [1]. They constructed, for any k ∈ N, a
countably-in�nite, locally �nite, simple graph G such that G has a k-connected orientation but has
vertices u, v such that deleting the edges of an arbitrary path between u and v makes the remaining
graph disconnected.

Thomassen showed (unpublished) that if D = (V,A) does not contain backward-in�nite paths
and is k-edge-connected from r for some k ∈ N, then it has k edge-disjoint spanning arborescences
rooted at r. The main idea of his proof is the following: construct �rst a spanning subgraph
D′ = (V,A′) of D such that D′ is also k-edge-connected from r and all vertices of D′ have �nite
indegrees. After that, one can build the desired arborescences in D′ using the �nite version of
the theorem and compactness arguments. Thomassen's proof also works for the strong form of
the Edmonds' branching theorem. Our main result is that disallowance of forward-in�nite paths
instead of backward-in�nite paths is also su�cient. Our proof uses techniques very di�erent from
Thomassen's proof.

There is a general approach in �nite combinatorics based on separating by �tight� sets to smaller
subproblems and handling of these by induction independently. This approach works for example
for Menger's theorem and for Edmonds' branching theorem but obviously can not be used directly to
in�nite generalizations because it is possible that the subproblems have the same size as the original.
Even so we will de�ne the notion of �tightness� in the context of Edmonds' branching theorem and
it will play key role in our proof. An other proof for the �nite case given by Lovász in [9] makes
it possible (even without the restriction about in�nite paths) to create edge-disjoint branchings
with the prescribed root sets where all of them have in�nitely many vertices. Unfortunately using
Lovász's approach we can not guarantee that the resulting branchings will be spanning branching
(not even in the countable case) because we can not control that which vertex do we extend a
branching with. This controllability will be essential in our proof to ensure conditions after limit
steps in our recursive construction.
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3 Main result

In this section, we state and prove our main result. Instead of packing branchings with prescribed
root sets, we formulate this result in a formally more general (but in fact equivalent) form, in
which we want to extend some initial edge-disjoint branchings to edge-disjoint spanning branchings
without changing their root sets. If these initial branchings have no edges, then we get back the
�prescribed root sets�-approach.

Theorem 1. Let D = (V,A) be a digraph, k ∈ N and Bi = (Vi, Ai) (i < k) edge-disjoint branchings
in D and let D 
 B = (V,A \ ∪i<kAi). Suppose that D 
 B does not contain forward-in�nite paths.
Then the branchings can be extended to edge-disjoint spanning branchings of D without changing
their root sets if and only if

∀X (∅ 6= X ⊆ V =⇒ %D
B(X) ≥ |{i < k : Vi ∩X = ∅}|). (1)

If there is an r ∈ V such that Vi = {r} for all i < k, then we get the following special case.

Corollary 2. Let the digraph D be k-edge-connected from the vertex r for some k ∈ N, and suppose
that there are no forward-in�nite paths in D. Then there are k edge-disjoint spanning arborescences
in D rooted at r.

Remark 3. Our proof of Theorem 1 also works in a more general case when there is no restriction
on the quantity of the initial branchings, but all vertices belong to all but �nitely many of these
branchings.

Proof of Theorem 1. The necessity of condition (1) is obvious, so we show only that it is su�cient.
To do so, we need the following lemma.

Lemma 4. For any j < k and v ∈ V \ Vj, there is a path P in D 
 B from Vj to v such that

condition (1) holds for D and the k-branching B′, where B′i =

{
Bi + P if i = j

Bi otherwise
.

Without loss of generality, it is enough to prove Lemma 4 for j = 0, because the role of the
initial branchings are symmetric. Before the proof, we need to devolp some basic tools in the spirit
of Lovász's proof for the �nite version of the theorem in [9].

3.1 Basic tools

We will prove here some facts which are known from �nite branching-packing techniques and remain
true with the same proof in the in�nite case. In this subsection, we �x a digraph D = (V,A) and a
k-branching B (Bi = (Vi, Ai), i = 0, . . . , k − 1) of D, that satisfy condition (1).

Call a set ∅ 6= X ⊆ V tight (with respect to B), if %D
B(X) = |{i < k : Vi ∩X = ∅}|; and
dangerous, if it is tight and X ∩ V0 6= ∅. For example, V itself is dangerous. It is easy to see
that if e ∈ outD
B(V0), then the extension B′0 = B0 + e violates condition (1) if and only if e is an
ingoing edge of some dangerous set.

Proposition 5. If X,Y are dangerous and X ∩ Y 6= ∅, then X ∩ Y is also dangerous.
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Proof: Let s : P(V ) → N, s(X) = |{i < k : Vi ∩X = ∅}|. Then s is supermodular i.e., for
X,Y ⊆ V , we have s(X) + s(Y ) ≤ s(X ∪ Y ) + s(X ∩ Y ). Indeed, let i < k be arbitrary. If
Vi ∩X = ∅ and Vi ∩ Y = ∅, then Vi ∩ (X ∪ Y ) = ∅ and Vi ∩X ∩ Y = ∅, so Vi's contribution to
both sides of the inequality is 2. If Vi∩X = ∅ and Vi∩Y 6= ∅, then Vi's contribution to both sides
is 1. Observe that equality holds if and only if there is no Vi such that Vi ∩X 6= ∅, Vi ∩ Y 6= ∅
but Vi ∩ X ∩ Y = ∅. Let p(X) = %D
B(X) − s(X) (for an in�nite cardinal κ and n ∈ N let
κ − n = κ). Then condition (1) is equivalent with the requirement p(X) ≥ 0 for all X 6= ∅,
and the tightness of X means p(X) = 0. The function %D
B is submodular, therefore so is p i.e.
p(X)+p(Y ) ≥ p(X∪Y )+p(X∩Y ) holds for all X,Y ⊆ V . Let X,Y be dangerous, and X∩Y 6= ∅.
Then by submodularity and by condition (1), we get

0 + 0 = p(X) + p(Y ) ≥ p(X ∪ Y ) + p(X ∩ Y ) ≥ 0 + 0,

so X ∪ Y and X ∩ Y are tight. Therefore s(X) + s(Y ) = s(X ∪ Y ) + s(X ∩ Y ). By the observation
about the function s, we may conclude from X ∩ V0 6= ∅, Y ∩ V0 6= ∅ that X ∩ Y ∩ V0 6= ∅, so
X ∩ Y is dangerous.  

Proposition 6. Let B be a dangerous set. Then for any w ∈ B, there is a path R from V0 ∩B to
w in (D 
 B)[B].

Proof: Let B′ be the set of vertices which are reachable from V0 ∩B in (D 
B)[B]. Suppose, that
B′ 6= B. Then B \B′ violates condition (1), which is a contradiction.  

Proposition 7. For all w ∈ V , there is a system of edge-disjoint paths {Pi}i<k in D
B such that
Pi goes from Vi to w.

Proof: We extend D 
 B to H by adding new vertices and edges (see �gure 1). Let V (H) =
V ∪ {s} ∪ {vi}i<k , |eH(s, vi)| = 1 (i < k) and |eH(vi, u)| = ℵ0 (i < k, u ∈ Vi). If there are k
edge-disjoint paths from s to w in H, then we are done. Suppose, seeking a contradiction, that
there are not. By Menger's theorem, there is a w ∈ X ⊆ V (H) \ {s} with %H(X) < k. Let
l =

∣∣{vi}i<k \X∣∣. Note that 0 < l, otherwise svi ∈ inH(X) (i < k) and hence k ≤ %H(X) would
follow. Since there are in�nitely many parallel edges, X ∩ V is disjoint from at least l branchings.
Otherwise %H(X) = %D
B(X ∩V )+(k− l), so %D
B(X ∩V ) = l+(%H(X)−k) < l, but then X ∩V
violates condition (1) in D giving us a contradiction.  

Corollary 8. Let B1 ⊆ B0 be dangerous sets and let %D
B(B0) = %D
B(B0) = l ≥ 1. Let

sj = end(ej), where {e1, . . . , el} = inD
B(B0). Then there is a system of edge-disjoint paths {Pj}lj=1

in (D 
 B)[B0] such that Pj goes from sj to B1. Such a path system necessarily contains all of the
elements of eD
B(B0, B1 \B0), and the multiset of the endpoints of their elements is {end(e) : e ∈
inD
B(B1)}.
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v0

v1

v2
V0

V2

V1

X

Figure 1: The construction of H and the cut X from the proof above in the case k = 3, l = 1.
(Thick arrows stand for countably in�nite parallel edges).

B1

B0

P4P1

s4

s2, s3

s1

P3

P2

Figure 2: Corollary 8 in the case l = 4. We thickened the desired path system {Pj}4j=1. In this
example, s2 = s3 and P4 consists of the vertex s4.

Proof: B0 is disjoint from exactly l many of the sets Vi because B0 is dangerous and %D
B(B0) = l.
Without loss of generality, we may assume that these sets are V1, V2, . . . , Vl. By Proposition 7,
there is a system of edge-disjoint paths {P ′j}lj=1 in D 
 B such that P ′j goes from Vj to B1. Note
that such a path system necessarily contains all the edges in inD
B(B0) ∪ inD
B(B1), and all the
paths enter B0 exactly once. By deleting the initial segments of the paths P ′j that are not in B0,
we get the desired path system.  

3.2 Proof of the main Lemma

Now we are able to to prove Lemma 4.
Proof: Assume, seeking a contradiction, that Lemma 4 is false and v ∈ V \ V0 witnesses this. We
will construct three sequences: Bn0 = (V n0 , A

n
0 ), Bn, en (n ∈ N). Let B0 = V, B00 = B0 and let e0 be

an arbitrary edge. We will denote the k-branching (Bn0 ,B1, . . . ,Bk−1) by Bn.
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Let Q be a path from V0 to v in D 
 B (such a path exists by Proposition 6). Let u be the last

vertex of Q for which there is a path R from V0 to u in D 
 B such that B10
def
= B0 + R does not

violate condition (1). Since u cannot be the last vertex of Q, there is a unique outgoing edge e1 of
u which is in Q (see �gure 3). The extension B10 + e1 violates condition (1) because of the choice of
u, and thus e1 ∈ inD
B1(B1) where B1 is a set which is dangerous with respect to B1.

Our plan is to continue by doing the same but inside B1. Let Q1 be an arbitrary path from
V 1
0 ∩B1 to end(e1) in (D 
B1)[B1] (such a path exists by Proposition 6). Let u1 be the last vertex

of Q1 for which there is a path R1 in (D
B1)[B1] from V 1
0 ∩B1 to u1 such that B20

def
= B10 +R1 does

not violate condition (1). Since u1 6= end(e1), there is a unique outgoing edge e2 of u1 which is in
Q1. The extension B20 + e2 violates condition (1) because of the choice of u1, thus e2 ∈ inD
B2(B2),
where B2 ( B1 is a set which is dangerous with respect to B2 (if B2 6⊆ B1, then by Proposition 5,
we may replace B2 with B2 ∩B1).

V0

B1

B2Q

R

R1

Q1

e1

e2

u

v

u1

Q

Figure 3: The process described above. The path Q is represented with a normal line, R with a
thick line, Q1 with a dashed line and R1 with a very thick line.

By continuing the process recursively we get the desired sequences with the following properties:
for all n ∈ N:

1. Bn+1 ( Bn,

2. (a) Bn satis�es condition (1),

(b) the sets B0, . . . , Bn are dangerous with respect to Bn,
(c) inD
Bn(Bn) = inD
Bn+1(Bn),

3. en+1 ∈ eD
Bn+1(Bn \Bn+1, Bn+1), (and so the edges en+1 (n ∈ N) are pairwise distinct).

By throwing away the �rst �nitely many elements of the sequences constructed above and
reindexing them, we may assume that all the members of the monotone decreasing sequence Bn are
disjoint from exactly the same, say l many, of sets among V1, . . . , Vk−1. Without loss of generality
we may assume that these sets are V1, V2, . . . , Vl. Note that l ≥ 1 because Bn is dangerous with
respect to Bn and %D
Bn(Bn) ≥ 1 because en ∈ inD
Bn(Bn).
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For n ∈ N, let {Pnj }lj=1 be a system of obtained by applying Corollary 8 with Bn+1 ( Bn and

Bn+1. Note that en+1 ∈ eD
Bn+1(Bn \ Bn+1, Bn+1) ⊆
⋃l
j=1A(P

n
j ). The multisets {end(Pnj )}lj=1

and {start(Pn+1
j )}lj=1 are equal (they are {end(e) : e ∈ inD
Bn(Bn) = inD
Bn+1(Bn)}), so we can

concatenate the path systems {Pnj }lj=1 and {Pn+1
j }lj=1 for all n. Thus, we obtain a system of

edge-disjoint paths {Pj}lj=1 in D
B (see �gure 4 ) such that {en}∞n=1 ⊆
⋃l
j=1A(Pj), and therefore

at least one of them is forward-in�nite, which contradicts the conditions of Theorem 1.

e1

e2

e3

e4

P1

P3

P2

B0

B1

B2

B3

Figure 4: The (initial segment of) path system {Pj}lj=1 in the case l = 3.

3.3 Proof of the Theorem

Now, we continue the proof of Theorem 1. If v ∈ V , then by Lemma 4, we can extend the branchings,
without violating condition (1), with �nitely many new vertices and edges such that all of these
extensions contain v. In the countable case, we can construct the desired spanning branchings by
the following recursion. In the n-th step, do the extensions above with the branchings after the
previous step and with the next vertex vn where V = {vn}∞n=0. In the uncountable case, we have
to be more careful because we can not avoid limit steps, and we need to assure that we do not
violate condition (1) in these steps as well. The easy trick to handle this is that if we extend in one
step one of the branchings with some vertex v, then before the next limit step we put v into all the
branchings which missed it.

Let us make this precise. Let V
def
= {vα}α<λ, where λ = |V |. We extend the branchings by

trans�nite recursion on λ. Denote by Bαi = (V αi , A
α
i ) the branching which we get from Bi after the

α-th step, and let Bα = (Bα0 ,Bα1 , . . . ,Bαk−1) for α ≤ λ.

Let B0i = Bi (i < k).

If α < λ is a limit ordinal, then let Bαi = (
⋃
β<α V

β
i ,
⋃
β<αA

β
i ).

If α = β + 1 where β < λ is a limit ordinal and Bβ satis�es condition (1), then add vβ to all of the

branchings {Bβi }i<k by using Lemma 4 repeatedly. Denote the resulting k-branching by Bα.
If α = β + 2 where β < λ is an arbitrary ordinal and Bβ+1 satis�es condition (1) and the set

Nβ def
= {vβ+1} ∪

⋃
i<k V

β+1
i \ V βi is �nite, then add the elements of Nβ one by one to all of the

branchings {Bβ+1
i }i<k by using Lemma 4 repeatedly. Denote the resulting k-branching Bα.

Proposition 9. The trans�nite recursion above does not stop before the λ-th step.
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Proof: Suppose, seeking a contradiction, that it does. The limit steps are well de�ned. At succes-
sor steps, we do not violate condition (1), and we have extended the branchings with only �nitely
many new vertices and edges. Thus if Bγ+1 is well de�ned for some γ < λ, then so is Bγ+2. Hence
the �rst step where the recursion can not be continued is necessarily a successor of a limit ordi-
nal β. But then β is the �rst ordinal such that Bβ violates condition (1). Consider the function

sβ(X) = |{i < k : V βi ∩X = ∅}|, and �x an arbitrary ∅ 6= X ⊆ V . If inD
Bβ (X) = inD
B(X), then
%D
Bβ (X) = %D
B(X) ≥ s0(Y ) ≥ sβ(X). Otherwise there exists an e ∈ inD
B(X)\ inD
Bβ (X), and

so there is an i0 < k such that e ∈ Aβi0 . Let γ < β be the smallest ordinal such that e ∈ Aγi0 . Then γ
is a successor ordinal, so by the recursion we have end(e) ∈ V γ+1

i (i < k). Thus end(e) ∈ V βi (i < k),
and therefore %D
Bβ (Y ) ≥ 0 = sβ(X). Hence no set X violates condition (1) with respect to Bβ ,
which is a contradiction.  

Finally, Bλi (i = 0, . . . , k − 1) are the desired spanning branchings.

4 A conjecture about packing in�nitely many branchings

We show, by a counterexample, that the �niteness of the number of initial branchings is necessary
in Theorem 1, and formulate a conjecture with a very natural condition about paths (which is a
strengthening of the condition (1)) motivated by this counterexample.

We construct a digraph D and a system of edge-disjoint branchings B = 〈Bn : n ∈ N〉 of D such
that D 
 B does not contain in�nite paths and the system satis�es condition (1), but the desired
extensions of the branchings do not exist. Let D = (V,A) where V = {rn}n∈N ∪{v}, |eD(r0, rn)| =
ℵ0 (n ∈ N+), |eD(rn, v)| = 1 (n ∈ N+), |eD(v, r0)| = ℵ0 and Bn = ({rn},∅) (n ∈ N) (see �gure
5). We show that the system above does not violate condition (1). Let ∅ 6= X ⊆ V be arbitrary.
Assume �rst that r0 /∈ X. If rn ∈ X, for some n ∈ N+, then %D
B(X) = ℵ0; if not, then X = {v}
and %D
B(X) = ℵ0 again. Assume r0 ∈ X. If v /∈ X, then %D
B(X) = ℵ0. If v ∈ X, then
each element of {rn}n∈N+ \X has one outgoing edge to X, then there is equality in condition (1).
Otherwise, there obviously is no system of edge-disjoint paths {Pn}n∈N such that Pn goes from rn
to v, and thus we can not extend the branchings Bn to edge-disjoint spanning branchings.

v
r3r0

r2

r1

rn

Figure 5: The counterexample. (Thick arrows stand for countably in�nite parallel edges.)
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Conjecture 10. Assume that D = (V,A) is a digraph, κ is an in�nite cardinal and Bi =
(Vi, Ai) (i < κ) are edge-disjoint branchings in D. Let D
B = (V,A\∪i<κAi). Suppose D
B does
not contain forward-in�nite paths, and for all v ∈ V there is a system of edge-disjoint paths {Pi}i<κ
in D 
 B such that Pi goes from Vi to v. Then the branchings Bi can be extended to edge-disjoint
spanning branchings of D without changing their root sets.
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