A universal planar graph under the minor relation

Reinhard Diestel Daniela Kithn

Abstract

We construct an infinite planar graph that contains every planar
graph as a minor.

1 Introduction

Answering a question of Ulam, Pach [7] proved that there is no ‘universal
planar graph’; i.e. no planar graph that contains every other planar graph as
a subgraph. The purpose of this paper is to show that the answer becomes
positive if we replace the subgraph relation by the (weaker) minor relation:
we shall construct a planar graph G* that contains every other planar graph
as a minor. See [5] for a survey of universality results based on the subgraph
relation.

Following a short section on terminology, the construction of G* is pre-
sented in Section 3. Its universality is then proved in two stages. In Section
4 we show that every planar graph G is the minor of some planar graph H
of maximum degree at most three. In Section 5 we show how any such H
may be embedded in G* as a minor. In Section 6 finally, we mention a few
open problems about minor-universality.

2 Terminology

Our basic notation follows [1]. All the graphs in this paper are countable,
and we assume that the edges of plane graphs are polygonal arcs. We impose
no restrictions on graph drawings in terms of accumulation points. (Thus,
a sequence of points from a plane graph G may converge to any point of the
plane, either on or off G.) Universal graphs for such restricted drawings are
considered in [6].

Minors for infinite graphs are defined exactly as for finite graphs (see [1]).
Note that their branch sets, the connected vertex sets to be contracted, may
be infinite.



We further assume a fixed orlentatlon of R?. If C is a cycle embedded in
2, we denote by C (respectively T ) the cycle C oriented in the direction
agreeing with (respectively opposite) this orientation of R?. We shall also
call this direction clockwise (respectively anticlockwise). Hence, if f is a
face in a plane graph, and € is an oriented edge on the boundary of f, then
f lies on the right of € or on its left (or both) in a natural way. (Think of
‘clockwise’ as a right turn.) For two vertices v, w on C we write vCw for
the subpath of C from v to w following the clockwise orientation of C'. The
path v Cw is defined correspondingly.

Whenever v; ---v,v1 is a cycle, we put v,41 := v1. The inner face of a
plane cycle C will be denoted by f(C). A path in C U f(C) that avoids C
except possibly in its first and last vertex is said to run through f(C).

3 Construction of G*

Since every finite planar graph is a minor of some large enough finite grid,
a first candidate for G* might be the infinite grid. Unfortunately this does
not work: the graph obtained from K* by joining to each of its four vertices
infinitely many new vertices of degree one is planar but not a minor of the
infinite grid. Our plan is to construct G* inductively, accommodating at
each step all the possible ways in which a plane graph to be embedded in
G* as a minor might unfold vertex by vertex.

Let a cycle of type n denote a plane cycle of length 2”3 whose vertices are
coloured red and blue alternately. We shall construct an infinite sequence
Gy € G C ... of finite plane graphs and, for each Gy, a set C, of disjoint
cycles of type n in G7, each bounding an inner face of G7,.

Let G} be a drawing of the 8-cycle C®, colour its vertices red and blue
alternately, and let Cy consist of the cycle Gj. Now suppose we have con-
structed G§, ..., Gy, and Cy, . ..,Cy as desired. In the inner face of each cycle
C =: uy - Ugn+suy in C, insert a cycle C' of type n + 1 and 2713 disjoint
paths of length 2"*2 — 1 linking the vertices of C to the blue vertices of C'.
Denote the path linking a vertex v on C to C' by P, and the vertex of P,
on C' by v' (Fig. 1).

Let C; := wjuiy1 U P, Uu; 'C'y u; 1 UPy,. Each of these cycles C; bounds
an inner face in the plane graph thus obtalned Insert a new cycle C;] of
type n+ 1 in this face, and join its blue vertices bijectively to the vertices of
Py, UP,,,,, to obtain another plane graph (Fig. 2). Let this graph be G7, ;.

For each cycle C € Cy, we call C' the large cycle of G}, inside C' and
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Figure 1: Adding C' for n =0

each Cj the small cycle of G}, | inside C preceding u;;1. Setting

Coi1:={C"|CeClU{CI|CECy; i=1,...,2"3)

={D | 3C €, : D is the large cycle or a small cycle of G}, ; inside C'}

then completes the induction step of our construction.
Finally, we define the plane graph G* by setting G* := |J;° , G.

Let us fix some more notation. Let Cy be a cycle in C,, vg a vertex on
Co, k > 1 and C} a cycle in Cy, . We say that Cy, is the large cycle of G},
inside Cy if there exist C; € Cpyy (i = 1,...,k — 1) such that each Cj is
the large cycle of Gn_H inside C;_1 (i = 1,...,k). In this case G* contains
a unique path P vo from vy to C}, that is the union of C;_1-C; paths of the
form P,. Indeed, let P := vg and inductively define Pg'0+1 = P;'O U Py,
where v; is the vertex of P}, on C; and 0 <1 <k — 1.

For dlstlnct vertices v,w on some cycle C € C, we put Cyy, :=
vCwPyw' C'v' P, v, where C’ (as in the construction of Gy, ;) is the large
cycle of Gy, inside C.
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Figure 2: Inserting the cycles C] for n = 0 to form G}

Lemma 1l Let C € C,, k > 0 and let vg,...,vo,wp,...,wg be distinct
blue vertices on C in clockwise order. Then G} . contains disjoint paths
Py, ..., Py such that P; joins v; to w; (i =0,...,k), Py is a subpath of C,
and Py, ..., Py run through f(C).

Proof. Let Cy := C, and for ¢ = 1,...,k let C; be the large cycle of G*

4 n+i
inside Cy. For ¢ =0,...,k let P; be the unique v;-w; path in P, UC; U P},
whose segment in C; follows the clockwise orientation of C; (Fig. 3). O

Lemma 2 Let v,w be distinct vertices on C € C,,. Let P, =: vg - - Vgn+2_1
and P, =: wg--- Won+2_, where vg = v and wg = w. Let k < 2"2 —2,
Then Gy, contains disjoint paths Pi, ..., P running through f(Cyy), such
that for allt=1,... k:

(i) P; joins v; to w;;
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Figure 3: Joining up vertices of C € C;, in G,

(ii) for every vertex u € vCw, the path P; meets P, =: ug--- Ugn+z_;
exactly in u;.

Proof. We apply induction on the number m of inner vertices of the path
vCw. If m = 0 then Cyw 1s one of the cycles C; from the construction of
G;,.1, and the vertices of P, U P, are joined bijectively to the blue vertices
of C! € Cp41. Applying Lemma 1 to the neighbours of vg, ..., v1, wy, ..., wy
on Cf, we may join the v; to the w; by paths through f(C;) as required.
The induction step follows from (ii) by concatenating paths. O

4 Degree reduction to A <3

Lemma 3 For every planar graph G there exists a connected planar graph
H such that A(H) < 3 and G is a minor of H.



The idea is to replace each vertex of G by a tree of maximum degree at
most three, and to join up the leaves of these trees according to the edges
of G, retaining planarity. This cannot be done arbitrarily, since we may
inadvertently create K33 minors in this way (Fig. 4). In our proof of the

Figure 4: A planar and a non-planar expansion of the vertex v

lemma, we shall therefore construct H as a plane graph, designed with
reference to a fixed drawing of G. Thus we assume in the following that G
is a plane graph.

We start with some definitions. Let X be a finite plane graph and v a
vertex of X, and let ej,...,e; be the edges incident with v (in clockwise
order). Let exyq :=e1. For alli =2,... k + 1 we call e; the successor of
ei—1 at v and e;_1 the predecessor of e; at v. (If k = 1, then e; is its own
successor and predecessor.)

Let T be a plane tree with distinct leaves v1,v9,vs. Let P = x1-- -z, be
the v1-vg path in T' (so v1 = 21 and vo = zy,), and let P! = y; - - - y,, be the
v3-P path in T, with y,,, = 2; say. Thus 1 <l < n. If 2;2;14 is the successor
of Ym_1Ym at ; = Y, in the plane graph P U P’, we say that vs lies between
v1 and vo in T; note that the order of v; and vo matters here. For distinct
leaves v1 # vy of T', we also say that vy lies between v, and vy.

Proof of Lemma 3. We may assume that G is connected and has at least
two vertices. Indeed, if G is not connected, then adding a new vertex to G
and joining it to one vertex in every component of G does not create a K5
or K33 minor. Thus, by the infinite version of Kuratowski’s theorem the



graph obtained is planar, and we may consider this graph instead of G.
Let us fix an infinite sequence (G)22 , of finite connected plane subgraphs
of G such that

(i) if G, = G then G,4+1 = G; if not, then G,; is obtained from G,
either by adding a new edge or by adding a new vertex and joining it
to a vertex of Gy;

(ii) G =UpZo Gns
(iii) |Go| = 2.
We shall inductively construct finite connected plane graphs Hy C H; C ...

together with partitions {V' | « € V(G,)} of V(H,,), satisfying the following
conditions for all n € N:

(a) VP C VI for all z € Gy,

(b) For all x € Gy, the subgraph T' of H, induced by V' is a tree of
maximum degree at most three, whose leaves have degree at most two
i H,.

(c) For distinct z,y € Gp, there is a V-V edge in H,, if and only if zy
is an edge of G,,. This V'-V* edge is unique, and its end vgy in V* is
a leaf of T}

(d) If 1,z are neighbours of z in G, (not necessarily distinct), then T
has a leaf between v;4, and vgg,.

(e) If x, 21,29 € Gy, and zxy is the successor of zz; at  in G, (1 and x5
may coincide), then every leaf of T} between vz, and vz,, has degree
one in H,.

(f) There is a bijection ¢, between the faces of G,, and those of H,, with
the following property: if f is a face of G,, lying on the left of an edge
7y of Gp, then ¢, (f) lies on the left of vzv,z in Hy.

Clearly, the graph
o
H = U H,
n=0

will have maximum degree at most three and contain G as a minor (with
branch sets Vg := (Joo, V! for all z € G).



Denote the vertices of Gy by x1 and xo. Let Hy be a drawing of the path
v1V9V34, and let onl :={v1,v2} and V$02 := {vs,v4}. Let g be the obvious
bijection.

Now suppose we have defined Hy, ..., H, and {V! | z € G;} for all i =
0,...,n, satisfying (a)—(f). We may assume that G # G,, for if not let
H,, :=H,, V" :=V and ¢, := ¢, for all m > n and all vertices x € G.

In the construction of H,; we will make use of the following property
of H™. Suppose f is a face of G, zxs is the successor of xx1 at = in G,
and f lies on the left of z12 (x; and xo may coincide). Let v be a leaf of
T7 between vzg, and vgze, (which exists by (d)). Then (c),(e) and (f) imply
that v has degree one in H,, and lies on the boundary of ¢, (f) (Fig. 5).
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T

Figure 5: Expanding G, to H,

Case 1: Gpi1 was obtained from G, by adding an edge e = zy with
z,y € Gy.

Then there exist faces f of G, and f1, fo of G417 such that f = f; Ufgué
and f; lies on the left of g in G,,1. (Note that f; # fo, since G, is
connected.) Let zxy, yy; be the predecessors of zy in Gpy1 at ¢ and y,
respectively, and let zza, yys be the successors of zy in G471 at ¢ and y,
respectively. By (d) we can find leaves v, € T} and v, € T} such that v, lies
between vz, and vzg,, and vy lies between vy, and vyy, Observe that f lies
on the left of both 7z and 773. Thus, as noted above, v, and vy both have
degree one in Hy, and lie on the boundary of ¢, (f). Join v, to vy inside ¢y (f)
by a path P = vyus - - - ugvy, SO as to obtain another plane graph Hj,. Since

H, is connected, H], has two faces fi and fj such that f{ U f3 UP = ¢u(f)
and f{ lies on the left of u3uj. Now insert two new vertices u, ug inside f]
and two new vertices uf, ug inside f5. For i = 1,2,5,6 join u] to u; so as to
obtain another plane graph Hy,1 (Fig. 6).
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Figure 6: Extending H,, to Hy4; in Case 1

For all vertices z € Gp41 let

I . .
ViU {ug, ue, us, uj,uh} if z = x;

n+l . _ oo : —
V2=V U {ug, us, ue, ug, ugt  if 2 =y

Vi otherwise.

Note that every face g # f1, fo of G141 is also a face of Gy, and ¢, (g) is a
face of Hy,41. For these faces g we let ¢,11(9) := ¢n(g), and define ., 1(f;)
as the unique face of Hy 1 inside f] (i = 1,2).

It remains to check (a)—(f). The conditions (a)—(e) are straightforward.
To verify (f), it is sufficent to show that it holds for the faces fi and fo. We
consider fi; the case for fs is similar. First note the following. Consider any
three vertices 2g, 21, 22 € Gpy1 such that z329 is the successor of 2129 at z;
and f; lies on the left of Zpz{. Then f; lies on the left also of z1z5. Suppose
that o, 11(f1) does indeed lie on the left of ¥,,,,0,,,.. Then the validity of
(e) for n+1 implies that ¢, 1(f1) lies on the left also of ¥,,,,v5,,,. Second,
if f1 lies on the left of some edge z123, there exist vertices ay,...,a; € Gni1
such that agai = TY, ar_1a} = 2125, and for all i = 1,...,k — 1 the edge
a;a;11 is the successor of a;_1a; in Gy 41 at a;. Thus, by induction, (f) holds



for the face fi1, since ¢, +1(f1) lies on the left of Wzui = Uzyvys by definition.

Case 2: Gpy1 was obtained from G, by adding a new verter x and joining
it to some verter y € G,.

Then there exist faces f of G, and f1 of Gn 1 such that zy \ {y} C f
and f; = f \ zy. Let yy; be the predecessor and yys the successor of zy in
Gnt1 at y. By (d) we can find a leaf v of T, between vy,, and vyy,. As
before, v has degree one in H,, and lies on the boundary of ¢,(f). Insert
a new vertex u inside ¢, (f) and join it to v by a path P = wujususuqv
inside ¢, (f). Now insert two new vertices uj, u)y inside ¢, (f) \ P, and for
i = 3,4 join u} to w;, to obtain another plane graph H,y; in which uguf
is the successor of usus at uz while uﬁluzl is the predecessor of usug at ug
(Fig. 7).
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Figure 7: Extending H,, to Hyy; in Case 2

For all vertices z € Gp41 let

{u,u1} if z = x;

n+l ,__ ] . .

Vo= gV U {ug, us, ug, ug, ug o if 2 =y
v otherwise.

Once more all faces g # f1 of Gp41 are also faces of G, and we let
¢n+1(9) := ¢n(g). Finally, we let ¢pt1(f1) be the unique face of Hy g

inside ¢, (f).
This time all the conditions (a)—(f) are readily checked. O

10



5 Universality of G*
Theorem 4 Every countable planar graph is a minor of G*.

Proof. We show that every countably infinite connected plane graph H of
maximum degree at most three is a minor of G*. The theorem then follows
by Lemma 3. Subdividing an edge if H is cubic, we may assume that H has
a vertex x( of degree two.

Note that there exists a sequence (H™)2° , of finite connected subgraphs
of H such that:

(i) H® = {zo};

(ii) H™*! is obtained from H™ either by adding a new vertex a and joining

it to some vertex of H" or by adding a new edge between two vertices
of H™;

(iii) H™! is obtained from H™ by adding a new edge between two vertices
x,y € H™ only if neither  nor y has a neighbour in H — H";

(iv) H = U H"

Our plan is to construct the branch set V, C V(G*) of each vertex x € H
inductively along the construction of G*, as follows. For all z € H and all
n € N we shall define connected vertex sets V' C V(G*) such that:

(a) V' SVt

(b) V' # 0 if and only if x € H", V' NV = 0 if x # y, and for every
edge zy in H" there is a V'-V/' edge in G¥;

(c) there exists m(n) > n such that

(c1) VI C V(G:‘n(n)) for every x € H™;

(c2) for each vertex € H", the set V' meets a cycle in Cy,y,) if and
only if dgn(x) < dg(z); moreover, if dgn(z) < dg(z) then V!
meets exactly one cycle C3f € Cpy(n), and it does so in a blue
singleton v7;

(d) if P = x---y is a nontrivial H"-path in H (i.e. z,y are the only
vertices of P in H" and no edge of P lies in H") then V' and V!
meet the same cycle of Cpyp), 1. CF = Cy;

11



(e) if 1---y1 and zy---yy are disjoint nontrivial H"-paths in H with
Cz, = Cz, = C, then vy, and vy, lie in the same component of
C —{vg,, vy }-
(If vy, and vy, lie in different components of C' —{vj,, vy, }, we say that
x1---y1 and xg - - y2 cross. Thus, (e) says that there are no crossing

H"™-paths.)

Let V) consist of any blue vertex v) on G}, and for all vertices z € H — H°
let V0 := (). Then (a)—(e) hold with m(0) = 0. Now let n > 0, and suppose
we have defined V; for all vertices € H and all i = 0,...,n.

The following two claims will be used to establish condition (e) in the
induction step for the case that H"*! was obtained from H" by adding a
new vertex a and joining it to some vertex x of H" (Case 1 below). Suppose
that x has another neighbour b # a in H (which may or may not lie in H"),
such that zb is not an edge of H". Since = has degree at most three in
H (degree two if = x¢), and z has at least one neighbour in H™ (unless
n = 0), any such b is unique.

Claim 1. Suppose that b € H". Let P be the set of H"-paths P in H
that start with the edge za. Let z(P) denote the last vertex of P. Then
either v?( P) lies in vy Clvy for all paths P € P (and we say that a belongs
between b and x on CJ') or vy py lies in vy Cvy' for all paths P € P (and we
say that a belongs between x and b on C7).

Proof of Claim 1. Suppose the claim is false. Then we can find P, P’ € P
such that {vy, vy} separates v] p) from v p,) in C3. Then PU P’ contains
an H"-path z(P)--- z(P') that crosses zb, contradicting (e).

Claim 2. Suppose that b € H — H". Let P be the set of pairs (Py, P3)
of H"-paths in H of the form P, = za---z(P;) and P, = zb--- z(P»), and
such that Py and P, meet only in 2. Then either v7 p ) lies in v} P2)C_";‘vg for
every pair (P, P») € P (and we say that a belongs between b and x on CJ),

or vg( P) lies in vgégv?( Py) for every pair (P, P2) € P (and we say that a

belongs between = and b on C}).

Proof of Claim 2. Suppose the claim is false. Let C := C}} and v := 0],
and choose (P, P2),(Ps, Py) € P so that, with z; := 2(F;) and v; := v, for
i=1,...,4,

(a) v € v2Cv while v3 € vév4;

12



(8) subject to (), [v1Cv| + [vCus| + |vCus| + |v4Cv| is minimum.
Let us show the following:
(1) If vy lies in v1Cv then 21 = 24.

Suppose not and let w be the first vertex of z4P;b which also lies in
Py, If z4Pyw avoids Pj, then z9PowP4z4 and P, are crossing H"-
paths contradicting (e). So 24P;w has a (first) vertex w' on Pj.
But now (zPjw'Pyz4, Py),(Ps, Py) would have been a better choice than
(Pl,P2), (P3,P4).

In the same way one can show:

(2) If vy lies in v4Cv then 21 = 24.

Taken together, (1) and (2) imply that z; = z4. Similarly it follows that
29 = z3. Let P be a 21-20 path in H" and P' = z---y an x-P path in H"
(Fig. 8). Note that z # y since dgy(z) < 3. Since z; # z2, y cannot be equal

Figure 8: The proof of Claim 2

to both z; and zo. We assume that y # zo; the case of y # z; is analogous.
Now either the cycle z1 PyxP'yPz; separates a from z3 = 23 or the cycle
21 Pz P'yPz separates b from z3 = z3. This contradicts either the fact that
aP3z3 avoids zy PyxP'yPz or the fact that bPsz9 avoids zy PizP'yPz.

Case 1: H™! was obtained from H™ by adding a new vertex a and joining
it tox € H™.

Let m(n + 1) := m(n) + 1. For all cycles C of the form C” let C"*! be
the large cycle of G:‘n(n +1) inside C. For all vertices z € H" let

yntl . VIUV(Py)  ifdgeai(z) < dp(z);
= v otherwise.

13



Suppose first that = has a neighbour b # a in H (which may or may not lie
in H™) such that «b is not an edge of H". Recall that b is unique, so either
Claim 1 or Claim 2 applies (but not both). If a belongs between z and b,
let u be the first (red) vertex on C™ after v”. If a belongs between b and x,
or if z has no such neighbour b in H, let u be the first (red) vertex on C n
after v}. Hence, u is adjacent to v};. Define

yrtl {u} if dgn+1(a) = dg(a)
© V(P,) otherwise,

and for each z € H — H"'1 let

V'zn+1 = (Z)

It remains to check that the sets V**! satisfy (a)—(e) for all z € H. The
conditions (a)—(d) are straightforward. For (e) note that for all z € H™ the
cyclic order of the vertices ¥7! on any given cycle 054-1 € Cin(n+1) agrees
with the cyclic order of the corresponding vertices v; on Cy. This together
with the validity of (e) for n implies that crossing paths P, P’ must be such
that P (say) ends in a (otherwise P, P’ cross also for n) and P’ ends in z
(otherwise P’ crosses Pax for n). Let P =:a---z and P' =: xb--- 2’ (where
possibly b = 2z'). If a belongs between z and b then both v"“ oL lie
in v2+1én+1v"+1 (irrespective of whether b € H"), i.e. P and P’ do not
cross. If not, then a belongs between b and x, so both v7T! v7*1 lie in
o Oty g“, and again P and P’ do not cross.

Case 2. H™' was obtained from H™ by adding an edge xy, for some
vertices x,y of H".

By (d), V;' and V;' meet the same cycle of Cp,(,), ie. Cp = Cy =: C.
Let so be the red neighbour of vz in v;Cvy and o the red neighbour of vy
in vy Cvy. Let s1,...,s; be the inner vertices of vy Cvy of the form v} (in
order). Similarly, let ¢1,...,# be the inner vertices of vy Cvy of the form v7
(in order). Let sgi1 be the red neighbour of v in vyCvy and t;11 the red
neighbour of vy in vy Cug.

Now let

m(n + 1) := max{m(n) + k +2,m(n) + 1+ 2}

and
N :=m(n+1) —m(n).

14



For all vertices z € H" such that V' does not meet C, extend V* by setting

yntl.— ViU V(P&{) if dgni1(2) < du(2);
= v otherwise.

Note that k + 1 < n < m(n) < 2™W+2 _2 by (c). Thus we may apply
Lemma 2 to obtain disjoint Ps,-Ps, ., paths Pp,..., Pyy;. Let Py := so. For
each ¢ = 0,...,k +1, let R(sz) be the path through f(Cunop) that starts
at s;, follows Pst until it hits P;, then follows P; to P;, then traverses the
unique edge pq from its vertex p on Py, to the small cycle of G m(n)+1 inside C'
preceding sg, and finishes with the path PqN 1 to end on, say, C;, € Crn(n+1)
(Fig. 9). Similarly define Cy and, for all i = 0,...,1 + 1, disjoint t;-C},

So S1 S2
C Sk11

Figure 9: Joining the s; to C§ by paths R(s;)

paths R(t;) through f( Unvn)
For all vertices z € H™ such that z # x,y and V* meets C, define

VP = VI U VRGED).
Note that if dgnt1(z) < dg(z), then H has a unique vertex y' such that

z is adjacent to ¥’ in H but not in H™*!. Then 3’ € H™ by condition (iii)
on the choice of the sequence (H");2, and vy, € C by (d). Extend V' by

15



setting

Ve UV (Pyr) if dgn+1(z) = du(z);
vt .= vy V(Pyp UR(s0))  if dgn+1(2) < dpm(z) and vy € {s1,...,s5};
an U V(Pvg U R(tl—i—l)) if dHn+1 (.23) < dH(a:) and UZ, S {tl, ce ,tl}.

Let C' be the large cycle of G;kn(n)—l—l inside C, and let W denote the set
of inner vertices of the subpath of C’ between the endpoints of Pyp and
Pyn that follows the clockwise orientation of C'. As before denote by z' the
vertex adjacent to y in H but not in H™+1 if it exists. Define

Vg UW UV () if dgn+1(y) = du(y);
V= (VP UW UV (P UR(t))  if dgani(y) < d
Vyiuwu V(Pvg UR(sgy1)) ifdgnti(y) <d

(Fig. 10.) For all vertices z € H — H"1let V**1 := (). Again, the sets V**!

t2

Figure 10: Accommodating the edge zy

16

H(y) and ’Ug/ € {tl,. .. ,tl};
u(y) and v2 € {s1,..., s}



satisfy (a)—(e). Indeed, checking the conditions (a)—(c) is straightforward.
Any counterexample to (d) would be an H"-path crossing zy, contradicting
(e) for n. Finally, (e) for n + 1 follows from (e) for n since the cyclic order
of the vertices v?* on C} and on Cj, reflects that of the corresponding
vertices v} on C (and similarly for the other cycles in Cpy(y41))-

For all vertices z € H let V, := (J;—, V*. By (a), these sets V inherit
connectedness in G* from the sets V'. Hence by (b), H is a minor of G*
with branch sets V,, for all x € H. O

6 Open Problems

As the construction of our universal graph G* shows at once, G* is locally
finite; indeed A(G*) = 8. Thus if G is a planar graph with a vertex z of
infinite degree, the branch set of z in any embedding of G in G* as a minor
will be infinite. One obvious question that we have not addressed is whether
this can be avoided:

Problem 5 Is there a planar graph G* such that every planar graph can be
embedded in G* as a minor with finite branch sets?

Another obvious strengthening of Theorem 4 would be to ask for a uni-
versal planar graph with respect to the topological minor relation:

Problem 6 Is there a planar graph G* that contains a subdivision of every
planar graph as a subgraph?

Abstracting from planarity, one might ask which other minor-closed graph
properties have a (countable) universal graph. For example:

Problem 7 For which graphs X is there a countable graph G* without an
X minor such that every countable graph without an X minor is a minor of
G*?

For the complete graphs X = K3 and X = K*, there are graphs with-
out an X minor that are universal for this property even with respect to
the subgraph relation. Indeed, the Ny-regular tree contains every countable
graph without a K minor as a subgraph, and a universal graph for K*
can be obtained by recursively pasting triangles together along edges (see
[1, Prop. 8.3.1]). For n > 5, there is no (countable) subgraph-universal
graph without a K™ minor [2], but we do not know whether these classes

17



have minor-universal elements. By a result of Halin [4], the edge-maximal
graphs without a K® minor are precisely those that have a certain tree-
decomposition into countable maximal planar graphs and copies of the Wag-
ner graph W (see [1]); thus, Theorem 4 may help in the construction of any
minor-universal graph for X = K®°. Similarly, the graphs without a Ko
minor have a characterization by their tree-decompositions that involves
planar graphs [3], so here too Theorem 4 might conceivably be of help.

Interestingly, the sphere stands out in that for no other closed surface S
does the class of graphs embeddable in S have a minor-universal element
(C. Thomassen, personal communication). Indeed, any such graph G* would
contain a cycle C* whose deletion reduces the Euler genus of G*. Then every
minor of G* can be embedded in a smaller surface than S after the deletion
of at most |C*| vertices. This, however, will not be the case for every graph
embeddable in S.
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