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Abstract

We construct an in�nite planar graph that contains every planar

graph as a minor.

1 Introduction

Answering a question of Ulam, Pach [7] proved that there is no `universal

planar graph', i.e. no planar graph that contains every other planar graph as

a subgraph. The purpose of this paper is to show that the answer becomes

positive if we replace the subgraph relation by the (weaker) minor relation:

we shall construct a planar graph G� that contains every other planar graph

as a minor. See [5] for a survey of universality results based on the subgraph

relation.

Following a short section on terminology, the construction of G� is pre-

sented in Section 3. Its universality is then proved in two stages. In Section

4 we show that every planar graph G is the minor of some planar graph H

of maximum degree at most three. In Section 5 we show how any such H

may be embedded in G� as a minor. In Section 6 �nally, we mention a few

open problems about minor-universality.

2 Terminology

Our basic notation follows [1]. All the graphs in this paper are countable,

and we assume that the edges of plane graphs are polygonal arcs. We impose

no restrictions on graph drawings in terms of accumulation points. (Thus,

a sequence of points from a plane graph G may converge to any point of the

plane, either on or o� G.) Universal graphs for such restricted drawings are

considered in [6].

Minors for in�nite graphs are de�ned exactly as for �nite graphs (see [1]).

Note that their branch sets, the connected vertex sets to be contracted, may

be in�nite.
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We further assume a �xed orientation of R2 . If C is a cycle embedded in

R
2 , we denote by ~C (respectively

 �
C ) the cycle C oriented in the direction

agreeing with (respectively opposite) this orientation of R2 . We shall also

call this direction clockwise (respectively anticlockwise). Hence, if f is a

face in a plane graph, and ~e is an oriented edge on the boundary of f , then

f lies on the right of ~e or on its left (or both) in a natural way. (Think of

`clockwise' as a right turn.) For two vertices v; w on C we write v ~Cw for

the subpath of C from v to w following the clockwise orientation of C. The

path v
 �
C w is de�ned correspondingly.

Whenever v1 � � � vnv1 is a cycle, we put vn+1 := v1. The inner face of a

plane cycle C will be denoted by f(C). A path in C [ f(C) that avoids C

except possibly in its �rst and last vertex is said to run through f(C).

3 Construction of G�

Since every �nite planar graph is a minor of some large enough �nite grid,

a �rst candidate for G� might be the in�nite grid. Unfortunately this does

not work: the graph obtained from K4 by joining to each of its four vertices

in�nitely many new vertices of degree one is planar but not a minor of the

in�nite grid. Our plan is to construct G� inductively, accommodating at

each step all the possible ways in which a plane graph to be embedded in

G� as a minor might unfold vertex by vertex.

Let a cycle of type n denote a plane cycle of length 2n+3 whose vertices are

coloured red and blue alternately. We shall construct an in�nite sequence

G�

0 � G�

1 � : : : of �nite plane graphs and, for each G�

n, a set Cn of disjoint

cycles of type n in G�

n each bounding an inner face of G�

n.

Let G�

0 be a drawing of the 8-cycle C8, colour its vertices red and blue

alternately, and let C0 consist of the cycle G�

0. Now suppose we have con-

structed G�

0; : : : ; G
�

n
and C0; : : : ; Cn as desired. In the inner face of each cycle

C =: u1 � � � u2n+3u1 in Cn insert a cycle C 0 of type n + 1 and 2n+3 disjoint

paths of length 2n+2 � 1 linking the vertices of C to the blue vertices of C 0.

Denote the path linking a vertex v on C to C 0 by Pv and the vertex of Pv
on C 0 by v0 (Fig. 1).

Let Ci := uiui+1 [Pui+1 [u
0

i
~C 0u0

i+1[Pui . Each of these cycles Ci bounds

an inner face in the plane graph thus obtained. Insert a new cycle C 0

i
of

type n+1 in this face, and join its blue vertices bijectively to the vertices of

Pui [Pui+1 , to obtain another plane graph (Fig. 2). Let this graph be G�

n+1.

For each cycle C 2 Cn, we call C
0 the large cycle of G�

n+1 inside C and
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Figure 1: Adding C 0 for n = 0

each C 0

i
the small cycle of G�

n+1 inside C preceding ui+1. Setting

Cn+1 : = fC
0
j C 2 Cng [ fC

0

i
j C 2 Cn; i = 1; : : : ; 2n+3g

= fD j 9C 2 Cn : D is the large cycle or a small cycle of G�

n+1 inside Cg

then completes the induction step of our construction.

Finally, we de�ne the plane graph G� by setting G� :=
S
1

n=0G
�

n:

Let us �x some more notation. Let C0 be a cycle in Cn, v0 a vertex on

C0, k � 1 and Ck a cycle in Cn+k. We say that Ck is the large cycle of G�

n+k

inside C0 if there exist Ci 2 Cn+i (i = 1; : : : ; k � 1) such that each Ci is

the large cycle of G�

n+i inside Ci�1 (i = 1; : : : ; k). In this case G� contains

a unique path P k
v0

from v0 to Ck that is the union of Ci�1-Ci paths of the

form Pv. Indeed, let P 0
v0

:= v0 and inductively de�ne P i+1
v0

:= P i

v0
[ Pvi ,

where vi is the vertex of P i

v0
on Ci and 0 � i � k � 1.

For distinct vertices v; w on some cycle C 2 Cn we put Cvw :=

v ~CwPww
0
 �
C 0v0Pvv, where C

0 (as in the construction of G�

n+1) is the large

cycle of G�

n+1 inside C.
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Figure 2: Inserting the cycles C 0

i
for n = 0 to form G�

1

Lemma 1 Let C 2 Cn, k � 0 and let vk; : : : ; v0; w0; : : : ; wk be distinct

blue vertices on C in clockwise order. Then G�

n+k contains disjoint paths

P0; : : : ; Pk such that Pi joins vi to wi (i = 0; : : : ; k), P0 is a subpath of C,

and P1; : : : ; Pk run through f(C).

Proof. Let C0 := C, and for i = 1; : : : ; k let Ci be the large cycle of G�

n+i

inside C0. For i = 0; : : : ; k let Pi be the unique vi-wi path in P i

vi
[Ci [ P

i

wi

whose segment in Ci follows the clockwise orientation of Ci (Fig. 3). �

Lemma 2 Let v; w be distinct vertices on C 2 Cn. Let Pv =: v0 � � � v2n+2�1
and Pw =: w0 � � �w2n+2�1 where v0 = v and w0 = w. Let k � 2n+2 � 2.

Then G�

n+k contains disjoint paths P1; : : : ; Pk running through f(Cvw), such

that for all i = 1; : : : ; k:

(i) Pi joins vi to wi;
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Figure 3: Joining up vertices of C 2 Cn in G�

n+k

(ii) for every vertex u 2 v ~Cw, the path Pi meets Pu =: u0 � � � u2n+2�1
exactly in ui.

Proof. We apply induction on the number m of inner vertices of the path

v ~Cw. If m = 0 then Cvw is one of the cycles Ci from the construction of

G�

n+1, and the vertices of Pv [ Pw are joined bijectively to the blue vertices

of C 0

i
2 Cn+1. Applying Lemma 1 to the neighbours of vk; : : : ; v1, w1; : : : ; wk

on C 0

i
, we may join the vj to the wj by paths through f(Ci) as required.

The induction step follows from (ii) by concatenating paths. �

4 Degree reduction to � � 3

Lemma 3 For every planar graph G there exists a connected planar graph

H such that �(H) � 3 and G is a minor of H.
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The idea is to replace each vertex of G by a tree of maximum degree at

most three, and to join up the leaves of these trees according to the edges

of G, retaining planarity. This cannot be done arbitrarily, since we may

inadvertently create K3;3 minors in this way (Fig. 4). In our proof of the

v

Figure 4: A planar and a non-planar expansion of the vertex v

lemma, we shall therefore construct H as a plane graph, designed with

reference to a �xed drawing of G. Thus we assume in the following that G

is a plane graph.

We start with some de�nitions. Let X be a �nite plane graph and v a

vertex of X, and let e1; : : : ; ek be the edges incident with v (in clockwise

order). Let ek+1 := e1. For all i = 2; : : : ; k + 1 we call ei the successor of

ei�1 at v and ei�1 the predecessor of ei at v. (If k = 1, then e1 is its own

successor and predecessor.)

Let T be a plane tree with distinct leaves v1; v2; v3. Let P = x1 � � � xn be

the v1-v2 path in T (so v1 = x1 and v2 = xn), and let P 0 = y1 � � � ym be the

v3-P path in T , with ym = xl say. Thus 1 < l < n. If xlxl+1 is the successor

of ym�1ym at xl = ym in the plane graph P [P 0, we say that v3 lies between

v1 and v2 in T ; note that the order of v1 and v2 matters here. For distinct

leaves v1 6= v2 of T , we also say that v2 lies between v1 and v1.

Proof of Lemma 3. We may assume that G is connected and has at least

two vertices. Indeed, if G is not connected, then adding a new vertex to G

and joining it to one vertex in every component of G does not create a K5

or K3;3 minor. Thus, by the in�nite version of Kuratowski's theorem the
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graph obtained is planar, and we may consider this graph instead of G.

Let us �x an in�nite sequence (Gn)
1

n=0 of �nite connected plane subgraphs

of G such that

(i) if Gn = G then Gn+1 = G; if not, then Gn+1 is obtained from Gn

either by adding a new edge or by adding a new vertex and joining it

to a vertex of Gn;

(ii) G =
S
1

n=0Gn;

(iii) jG0j = 2.

We shall inductively construct �nite connected plane graphs H0 � H1 � : : :

together with partitions fV n
x
j x 2 V (Gn)g of V (Hn), satisfying the following

conditions for all n 2 N:

(a) V n

x
� V n+1

x
for all x 2 Gn.

(b) For all x 2 Gn the subgraph T n

x
of Hn induced by V n

x
is a tree of

maximum degree at most three, whose leaves have degree at most two

in Hn.

(c) For distinct x; y 2 Gn, there is a V
n
x -V

n
y edge in Hn if and only if xy

is an edge of Gn. This V
n

x
-V n

y
edge is unique, and its end vxy in V

n

x
is

a leaf of T n

x
.

(d) If x1; x2 are neighbours of x in Gn (not necessarily distinct), then T n

x

has a leaf between vxx1 and vxx2 .

(e) If x; x1; x2 2 Gn and xx2 is the successor of xx1 at x in Gn (x1 and x2
may coincide), then every leaf of T n

x
between vxx1 and vxx2 has degree

one in Hn.

(f) There is a bijection 'n between the faces of Gn and those of Hn, with

the following property: if f is a face of Gn lying on the left of an edge
�!xy of Gn, then 'n(f) lies on the left of ���!vxyvyx in Hn.

Clearly, the graph

H :=

1[
n=0

Hn

will have maximum degree at most three and contain G as a minor (with

branch sets Vx :=
S
1

n=0 V
n

x
for all x 2 G).
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Denote the vertices of G0 by x1 and x2. Let H0 be a drawing of the path

v1v2v3v4, and let V 0
x1

:= fv1; v2g and V 0
x2

:= fv3; v4g. Let '0 be the obvious

bijection.

Now suppose we have de�ned H0; : : : ;Hn and fV i
x
j x 2 Gig for all i =

0; : : : ; n, satisfying (a){(f). We may assume that G 6= Gn, for if not let

Hm := Hn; V
m

x
:= V n

x
and 'm := 'n for all m � n and all vertices x 2 G.

In the construction of Hn+1 we will make use of the following property

of Hn. Suppose f is a face of Gn, xx2 is the successor of xx1 at x in Gn,

and f lies on the left of �!x1x (x1 and x2 may coincide). Let v be a leaf of

T n

x
between vxx1 and vxx2 (which exists by (d)). Then (c),(e) and (f) imply

that v has degree one in Hn and lies on the boundary of 'n(f) (Fig. 5).

Gn

x1

f

x2

x

T
n

x1

vx1x

'n(f)

vxx1

T
n

x Hn

vxx2

v

T
n

x2

Figure 5: Expanding Gn to Hn

Case 1: Gn+1 was obtained from Gn by adding an edge e = xy with

x; y 2 Gn.

Then there exist faces f of Gn and f1; f2 of Gn+1 such that f = f1[f2[
�

e

and f1 lies on the left of �!xy in Gn+1. (Note that f1 6= f2, since Gn is

connected.) Let xx1; yy1 be the predecessors of xy in Gn+1 at x and y,

respectively, and let xx2; yy2 be the successors of xy in Gn+1 at x and y,

respectively. By (d) we can �nd leaves vx 2 T
n

x
and vy 2 T

n

y
such that vx lies

between vxx1 and vxx2 , and vy lies between vyy1 and vyy2 Observe that f lies

on the left of both �!x1x and �!y1y. Thus, as noted above, vx and vy both have

degree one inHn and lie on the boundary of 'n(f). Join vx to vy inside 'n(f)

by a path P = vxu1 � � � u6vy, so as to obtain another plane graph H 0

n. Since

Hn is connected, H 0

n has two faces f 01 and f 02 such that f 01 [ f
0

2 [
�

P = 'n(f)

and f 01 lies on the left of ��!u3u4. Now insert two new vertices u01; u
0

6 inside f
0

1

and two new vertices u02; u
0

5 inside f
0

2. For i = 1; 2; 5; 6 join u0
i
to ui so as to

obtain another plane graph Hn+1 (Fig. 6).
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Figure 6: Extending Hn to Hn+1 in Case 1

For all vertices z 2 Gn+1 let

V n+1
z :=

8><
>:
V n

x [ fu1; u2; u3; u
0

1; u
0

2g if z = x;

V n

y
[ fu4; u5; u6; u

0

5; u
0

6g if z = y;

V n

z otherwise:

Note that every face g 6= f1; f2 of Gn+1 is also a face of Gn, and 'n(g) is a

face of Hn+1. For these faces g we let 'n+1(g) := 'n(g), and de�ne 'n+1(fi)

as the unique face of Hn+1 inside f
0

i
(i = 1; 2).

It remains to check (a){(f). The conditions (a){(e) are straightforward.

To verify (f), it is su�cent to show that it holds for the faces f1 and f2. We

consider f1; the case for f2 is similar. First note the following. Consider any

three vertices z0; z1; z2 2 Gn+1 such that z1z2 is the successor of z1z0 at z1
and f1 lies on the left of ��!z0z1. Then f1 lies on the left also of ��!z1z2. Suppose

that 'n+1(f1) does indeed lie on the left of ������!vz0z1vz1z0 . Then the validity of

(e) for n+1 implies that 'n+1(f1) lies on the left also of ������!vz1z2vz2z1 . Second,

if f1 lies on the left of some edge ��!z1z2, there exist vertices a0; : : : ; ak 2 Gn+1

such that ��!a0a1 = �!xy, ����!ak�1ak = ��!z1z2, and for all i = 1; : : : ; k � 1 the edge

aiai+1 is the successor of ai�1ai in Gn+1 at ai. Thus, by induction, (f) holds
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for the face f1, since 'n+1(f1) lies on the left of ��!u3u4 =
���!vxyvyx by de�nition.

Case 2: Gn+1 was obtained from Gn by adding a new vertex x and joining

it to some vertex y 2 Gn.

Then there exist faces f of Gn and f1 of Gn+1 such that xy n fyg � f

and f1 = f n xy. Let yy1 be the predecessor and yy2 the successor of xy in

Gn+1 at y. By (d) we can �nd a leaf v of T n
y
between vyy1 and vyy2 . As

before, v has degree one in Hn and lies on the boundary of 'n(f). Insert

a new vertex u inside 'n(f) and join it to v by a path P = uu1u2u3u4v

inside 'n(f). Now insert two new vertices u03; u
0

4 inside 'n(f) n P , and for

i = 3; 4 join u0
i
to ui, to obtain another plane graph Hn+1 in which u3u

0

3

is the successor of u2u3 at u3 while u04u4 is the predecessor of u4u3 at u4
(Fig. 7).

vyy2

V
n

y

vyy1

v
u4

u
0

4

u
0

3

u3 u2 u1 u

'n(f)

Figure 7: Extending Hn to Hn+1 in Case 2

For all vertices z 2 Gn+1 let

V n+1
z

:=

8><
>:
fu; u1g if z = x;

V n

y [ fu2; u3; u4; u
0

3; u
0

4g if z = y;

V n

z
otherwise:

Once more all faces g 6= f1 of Gn+1 are also faces of Gn, and we let

'n+1(g) := 'n(g). Finally, we let 'n+1(f1) be the unique face of Hn+1

inside 'n(f).

This time all the conditions (a){(f) are readily checked. �
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5 Universality of G�

Theorem 4 Every countable planar graph is a minor of G�.

Proof. We show that every countably in�nite connected plane graph H of

maximum degree at most three is a minor of G�. The theorem then follows

by Lemma 3. Subdividing an edge if H is cubic, we may assume that H has

a vertex x0 of degree two.

Note that there exists a sequence (Hn)1
n=0 of �nite connected subgraphs

of H such that:

(i) H0 = fx0g;

(ii) Hn+1 is obtained from Hn either by adding a new vertex a and joining

it to some vertex of Hn or by adding a new edge between two vertices

of Hn;

(iii) Hn+1 is obtained from Hn by adding a new edge between two vertices

x; y 2 Hn only if neither x nor y has a neighbour in H �Hn;

(iv) H =
S
1

n=0H
n.

Our plan is to construct the branch set Vx � V (G�) of each vertex x 2 H

inductively along the construction of G�, as follows. For all x 2 H and all

n 2 N we shall de�ne connected vertex sets V n
x � V (G�) such that:

(a) V n

x
� V n+1

x
;

(b) V n
x 6= ; if and only if x 2 Hn, V n

x \ V
n
y = ; if x 6= y, and for every

edge xy in Hn there is a V n
x -V

n
y edge in G�;

(c) there exists m(n) � n such that

(c1) V n
x � V (G�

m(n)
) for every x 2 Hn;

(c2) for each vertex x 2 Hn, the set V n
x meets a cycle in Cm(n) if and

only if dHn(x) < dH(x); moreover, if dHn(x) < dH(x) then V n
x

meets exactly one cycle Cn

x
2 Cm(n), and it does so in a blue

singleton vn
x
;

(d) if P = x � � � y is a nontrivial Hn-path in H (i.e. x; y are the only

vertices of P in Hn and no edge of P lies in Hn) then V n

x and V n

y

meet the same cycle of Cm(n), i.e. C
n
x = Cn

y ;
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(e) if x1 � � � y1 and x2 � � � y2 are disjoint nontrivial Hn-paths in H with

Cn
x1

= Cn
x2

=: C, then vnx2 and vny2 lie in the same component of

C � fvnx1 ; v
n

y1
g.

(If vnx2 and v
n
y2
lie in di�erent components of C�fvnx1 ; v

n
y1
g, we say that

x1 � � � y1 and x2 � � � y2 cross. Thus, (e) says that there are no crossing

Hn-paths.)

Let V 0
x0

consist of any blue vertex v0
x0

on G�

0, and for all vertices x 2 H�H0

let V 0
x
:= ;. Then (a){(e) hold with m(0) = 0. Now let n � 0, and suppose

we have de�ned V i

x
for all vertices x 2 H and all i = 0; : : : ; n.

The following two claims will be used to establish condition (e) in the

induction step for the case that Hn+1 was obtained from Hn by adding a

new vertex a and joining it to some vertex x of Hn (Case 1 below). Suppose

that x has another neighbour b 6= a in H (which may or may not lie in Hn),

such that xb is not an edge of Hn. Since x has degree at most three in

H (degree two if x = x0), and x has at least one neighbour in Hn (unless

n = 0), any such b is unique.

Claim 1. Suppose that b 2 Hn. Let P be the set of Hn-paths P in H

that start with the edge xa. Let z(P ) denote the last vertex of P . Then

either vn
z(P )

lies in vn
b
~Cn

x
vn
x
for all paths P 2 P (and we say that a belongs

between b and x on Cn

x
) or vn

z(P )
lies in vn

x
~Cn

x
vn
b
for all paths P 2 P (and we

say that a belongs between x and b on Cn
x ).

Proof of Claim 1. Suppose the claim is false. Then we can �nd P; P 0 2 P

such that fvn
b
; vnxg separates v

n

z(P )
from vn

z(P 0)
in Cn

x . Then P [ P 0 contains

an Hn-path z(P ) � � � z(P 0) that crosses xb, contradicting (e).

Claim 2. Suppose that b 2 H � Hn. Let P be the set of pairs (P1; P2)

of Hn-paths in H of the form P1 = xa � � � z(P1) and P2 = xb � � � z(P2), and

such that P1 and P2 meet only in x. Then either vn
z(P1)

lies in vn
z(P2)

~Cn

xv
n

x for

every pair (P1; P2) 2 P (and we say that a belongs between b and x on Cn

x
),

or vn
z(P1)

lies in vn
x
~Cn

x
vn
z(P2)

for every pair (P1; P2) 2 P (and we say that a

belongs between x and b on Cn
x ).

Proof of Claim 2. Suppose the claim is false. Let C := Cn

x and v := vnx ,

and choose (P1; P2); (P3; P4) 2 P so that, with zi := z(Pi) and vi := vnzi for

i = 1; : : : ; 4,

(�) v1 2 v2 ~Cv while v3 2 v ~Cv4;
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(�) subject to (�), jv1 ~Cvj+ jv ~Cv2j+ jv ~Cv3j+ jv4 ~Cvj is minimum.

Let us show the following:

(1) If v4 lies in v1 ~Cv then z1 = z4.

Suppose not and let w be the �rst vertex of z4P4b which also lies in

P2. If z4P4w avoids P1, then z2P2wP4z4 and P1 are crossing Hn-

paths contradicting (e). So z4P4w has a (�rst) vertex w0 on P1.

But now (xP1w
0P4z4; P2); (P3; P4) would have been a better choice than

(P1; P2); (P3; P4).

In the same way one can show:

(2) If v1 lies in v4 ~Cv then z1 = z4.

Taken together, (1) and (2) imply that z1 = z4. Similarly it follows that

z2 = z3. Let P be a z1-z2 path in Hn and P 0 = x � � � y an x-P path in Hn

(Fig. 8). Note that x 6= y since dH(x) � 3. Since z1 6= z2, y cannot be equal

z2 = z3

z1 = z4

P4

P1
a

b

P2 P3
P

0

x
H

n

P

y

or

z1 = z4

z2 = z3

P2

P3

a

b

P4

P1
y

P

Hn

P
0

x

Figure 8: The proof of Claim 2

to both z1 and z2. We assume that y 6= z2; the case of y 6= z1 is analogous.

Now either the cycle z1P4xP
0yPz1 separates a from z2 = z3 or the cycle

z1P1xP
0yPz1 separates b from z2 = z3. This contradicts either the fact that

aP3z3 avoids z1P4xP
0yPz1 or the fact that bP2z2 avoids z1P1xP

0yPz1.

Case 1: Hn+1 was obtained from Hn by adding a new vertex a and joining

it to x 2 Hn.

Let m(n + 1) := m(n) + 1. For all cycles C of the form Cn

z
let Cn+1

z
be

the large cycle of G�

m(n+1)
inside C. For all vertices z 2 Hn let

V n+1
z

:=

(
V n

z [ V (Pvnz ) if dHn+1(z) < dH(z);

V n

z
otherwise:
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Suppose �rst that x has a neighbour b 6= a in H (which may or may not lie

in Hn) such that xb is not an edge of Hn. Recall that b is unique, so either

Claim 1 or Claim 2 applies (but not both). If a belongs between x and b,

let u be the �rst (red) vertex on ~Cn
x
after vnx . If a belongs between b and x,

or if x has no such neighbour b in H, let u be the �rst (red) vertex on
 �
C n

x

after vn
x
. Hence, u is adjacent to vn

x
. De�ne

V n+1
a

:=

(
fug if dHn+1(a) = dH(a)

V (Pu) otherwise,

and for each z 2 H �Hn+1 let

V n+1
z

:= ;:

It remains to check that the sets V n+1
z

satisfy (a){(e) for all z 2 H. The

conditions (a){(d) are straightforward. For (e) note that for all z 2 Hn the

cyclic order of the vertices vn+1
z

on any given cycle Cn+1
y
2 Cm(n+1) agrees

with the cyclic order of the corresponding vertices vn
z
on Cn

y
. This together

with the validity of (e) for n implies that crossing paths P; P 0 must be such

that P (say) ends in a (otherwise P; P 0 cross also for n) and P 0 ends in x

(otherwise P 0 crosses Pax for n). Let P =: a � � � z and P 0 =: xb � � � z0 (where

possibly b = z0). If a belongs between x and b then both vn+1
a

; vn+1
z

lie

in vn+1
x

~Cn+1
x

vn+1
z0 (irrespective of whether b 2 Hn), i.e. P and P 0 do not

cross. If not, then a belongs between b and x, so both vn+1
a

; vn+1
z

lie in

vn+1
z0

~Cn+1
x

vn+1
x

, and again P and P 0 do not cross.

Case 2. Hn+1 was obtained from Hn by adding an edge xy, for some

vertices x; y of Hn.

By (d), V n
x and V n

y meet the same cycle of Cm(n), i.e. Cn
x = Cn

y =: C.

Let s0 be the red neighbour of vn
x
in vn

x
~Cvn

y
and t0 the red neighbour of vn

y

in vn
y
~Cvnx . Let s1; : : : ; sk be the inner vertices of vnx

~Cvny of the form vnz (in

order). Similarly, let t1; : : : ; tl be the inner vertices of v
n

y
~Cvnx of the form vnz

(in order). Let sk+1 be the red neighbour of vn
y
in vn

x
~Cvn

y
and tl+1 the red

neighbour of vnx in vny
~Cvnx .

Now let

m(n+ 1) := maxfm(n) + k + 2;m(n) + l + 2g

and

N := m(n+ 1)�m(n):
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For all vertices z 2 Hn such that V n
z does not meet C, extend V n

z by setting

V n+1
z

:=

(
V n
z
[ V (PN

vn
z
) if dHn+1(z) < dH(z);

V n

z
otherwise.

Note that k + 1 � n � m(n) � 2m(n)+2 � 2 by (c). Thus we may apply

Lemma 2 to obtain disjoint Ps0-Psk+1 paths P1; : : : ; Pk+1. Let P0 := s0. For

each i = 0; : : : ; k + 1, let R(si) be the path through f(Cvnxv
n
y
) that starts

at si, follows Psi until it hits Pi, then follows Pi to Ps0 , then traverses the

unique edge pq from its vertex p on Ps0 to the small cycle of G�

m(n)+1
inside C

preceding s0, and �nishes with the path PN�1
q

to end on, say, C 0

s0
2 Cm(n+1)

(Fig. 9). Similarly de�ne C 0

t0
and, for all i = 0; : : : ; l + 1, disjoint ti-C

0

t0

v
n

x

s0
s1 s2

C sk+1

v
n

y

R(sk+1)

P2
R(s2)

Ps0

R(s1)
R(s0)

C
0

s0

Figure 9: Joining the si to C
0

s0
by paths R(si)

paths R(ti) through f(Cvny v
n
x
).

For all vertices z 2 Hn such that z 6= x; y and V n
z meets C, de�ne

V n+1
z

:= V n

z
[ V (R(vn

z
)):

Note that if dHn+1(x) < dH(x), then H has a unique vertex y0 such that

x is adjacent to y0 in H but not in Hn+1. Then y0 2 Hn by condition (iii)

on the choice of the sequence (Hn)1
n=0, and vn

y0 2 C by (d). Extend V n

x
by
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setting

V n+1
x

:=

8><
>:
V n
x
[ V (Pvnx ) if dHn+1(x) = dH(x);

V n

x
[ V (Pvn

x
[R(s0)) if dHn+1(x) < dH(x) and vn

y0 2 fs1; : : : ; skg;

V n

x
[ V (Pvn

x
[R(tl+1)) if dHn+1(x) < dH(x) and vn

y0 2 ft1; : : : ; tlg.

Let C 0 be the large cycle of G�

m(n)+1
inside C, and let W denote the set

of inner vertices of the subpath of C 0 between the endpoints of Pvny and

Pvnx that follows the clockwise orientation of C 0. As before denote by x0 the

vertex adjacent to y in H but not in Hn+1, if it exists. De�ne

V n+1
y

:=

8><
>:
V n

y
[W [ V (Pvny ) if dHn+1(y) = dH(y);

V n

y
[W [ V (Pvny [R(t0)) if dHn+1(y) < dH(y) and vn

x0 2 ft1; : : : ; tlg;

V n

y
[W [ V (Pvny [R(sk+1)) if dHn+1(y) < dH(y) and vn

x0 2 fs1; : : : ; skg.

(Fig. 10.) For all vertices z 2 H �Hn+1 let V n+1
z

:= ;. Again, the sets V n+1
z

t0

t1

t2

tl

tl+1

v
n

x

s0

s1

s2

C

sk

sk+1

v
n

y

W

C
0

Figure 10: Accommodating the edge xy

16



satisfy (a){(e). Indeed, checking the conditions (a){(c) is straightforward.

Any counterexample to (d) would be an Hn-path crossing xy, contradicting

(e) for n. Finally, (e) for n+ 1 follows from (e) for n since the cyclic order

of the vertices vn+1z
on C 0

s0
and on C 0

t0
re
ects that of the corresponding

vertices vn
z
on C (and similarly for the other cycles in Cm(n+1)).

For all vertices x 2 H let Vx :=
S
1

n=0 V
n
x
. By (a), these sets Vx inherit

connectedness in G� from the sets V n
x
. Hence by (b), H is a minor of G�

with branch sets Vx, for all x 2 H. �

6 Open Problems

As the construction of our universal graph G� shows at once, G� is locally

�nite; indeed �(G�) = 8. Thus if G is a planar graph with a vertex x of

in�nite degree, the branch set of x in any embedding of G in G� as a minor

will be in�nite. One obvious question that we have not addressed is whether

this can be avoided:

Problem 5 Is there a planar graph G� such that every planar graph can be

embedded in G� as a minor with �nite branch sets?

Another obvious strengthening of Theorem 4 would be to ask for a uni-

versal planar graph with respect to the topological minor relation:

Problem 6 Is there a planar graph G� that contains a subdivision of every

planar graph as a subgraph?

Abstracting from planarity, one might ask which other minor-closed graph

properties have a (countable) universal graph. For example:

Problem 7 For which graphs X is there a countable graph G� without an

X minor such that every countable graph without an X minor is a minor of

G�?

For the complete graphs X = K3 and X = K4, there are graphs with-

out an X minor that are universal for this property even with respect to

the subgraph relation. Indeed, the @0-regular tree contains every countable

graph without a K3 minor as a subgraph, and a universal graph for K4

can be obtained by recursively pasting triangles together along edges (see

[1, Prop. 8.3.1]). For n � 5, there is no (countable) subgraph-universal

graph without a Kn minor [2], but we do not know whether these classes
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have minor-universal elements. By a result of Halin [4], the edge-maximal

graphs without a K5 minor are precisely those that have a certain tree-

decomposition into countable maximal planar graphs and copies of the Wag-

ner graph W (see [1]); thus, Theorem 4 may help in the construction of any

minor-universal graph for X = K5. Similarly, the graphs without a K@0

minor have a characterization by their tree-decompositions that involves

planar graphs [3], so here too Theorem 4 might conceivably be of help.

Interestingly, the sphere stands out in that for no other closed surface S

does the class of graphs embeddable in S have a minor-universal element

(C. Thomassen, personal communication). Indeed, any such graphG� would

contain a cycle C� whose deletion reduces the Euler genus of G�. Then every

minor of G� can be embedded in a smaller surface than S after the deletion

of at most jC�j vertices. This, however, will not be the case for every graph

embeddable in S.
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