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Abstract

We adapt the cycle space of a finite graph to locally finite infinite
graphs, using as infinite cycles the homeomorphic images of the unit
circle S1 in the graph compactified by its ends. We prove that this cycle
space consists of precisely the sets of edges that meet every finite cut
evenly, and that the spanning trees whose fundamental cycles generate
this cycle space are precisely the end-faithful spanning trees. We also
generalize Euler’s theorem by showing that a locally finite connected
graph with ends contains a closed topological curve traversing every
edge exactly once if and only if its entire edge set lies in this cycle space.

1 Introduction

One of the basic and well-known facts about finite graphs is that their funda-
mental cycles Ce (those consisting of a chord e = xy on some fixed spanning
tree T together with the path xTy joining the endvertices of e in T ) generate
their entire cycle space: every cycle of the graph can be written as a sum
mod 2 of fundamental cycles. Richter [11] asked if and how this fact might
generalize appropriately to locally finite infinite graphs. We show that this
question, if viewed in the right way, admits a surprisingly elegant positive
answer involving ‘infinite cycles’. As a spin-off, we obtain infinite general-
izations of some other properties of the cycle space of a finite graph, such
as cycle-cut orthogonality and Euler’s theorem.

Of course, the finite fundamental cycle theorem transfers verbatim to
infinite graphs as long as we consider only the usual finite cycles, and stick
to the usual definition of the cycle space as the subspace of the edge space
generated by these cycles. Our motivation to introduce infinite cycles was,
originally, just to make the problem more natural and more interesting. But
it has since turned out that the cycle space we propose here appears to be
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the ‘right’ notion for locally finite graphs in a more technical sense too.1

(For an overview, as well as a non-technical introduction to the subject, we
refer the reader to [5].)

To motivate our ideas, let us look at an informal example. Let L be the
2-way infinite ladder viewed as a 1-complex, and compactify it by adding
two points ω, ω′ at infinity, one for each end of the ladder (Figure 1). Let
a circle in the resulting topological space L be any homeomorphic image of
the unit circle S1 in the Euclidean plane. Then every cycle of L is a circle
in L, but there are more circles than these. For example, the two sides of the
ladder (each a 2-way infinite path) form a circle C1 together with the points
ω and ω′, and for every rung vw the two horizontal 1-way infinite paths
from v or w towards ω form a circle C2 together with ω and the edge vw.
Both these circles contain infinitely many edges, and they are determined
by these edges as the closure of their union.
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ω′

ω′

Figure 1: Two infinite circles in the double ladder plus ends

Now consider a spanning tree T of L. If T consists of the bottom side
of L and all the rungs, then every edge e of the top side of L induces a
fundamental cycle Ce. The sum (mod 2) of all these fundamental cycles
is precisely the edge set of C1, the set of horizontal edges of L. Similarly,
the edge set of C2 is the sum all the fundamental cycles Ce with e left of v
(Figure 2).

However, for the spanning tree T ′ consisting of the two sides of L and the
one rung vw, neither C1 nor C2 can be expressed as a sum of fundamental
cycles. Indeed, as every fundamental cycle contains the edge vw, any sum of

1Since we wrote this paper, our notion of cycle space has been shown to permit the
extension to locally finite graphs of several classical finite theorems which, unlike the
fundamental cycle theorem, do not extend näıvely. Our extension of Eulers theorem is
one example; a more comprehensive list can be found in [5]. Graphs with infinite degrees
are treated in [6] and [7].
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Figure 2: Two spanning trees of the double ladder

infinitely many fundamental cycles will be ill-defined: it is not clear whether
the edge vw should belong to this sum or not.

So even this simple example shows that our task is interesting: while it
is possible and natural to extend the usual cycle space of a finite graph to
infinite graphs in a way that allows for both infinite (topological) cycles and
infinite sums generating such cycles, the answer to the question of whether
all infinite cycles and their sums can be generated from fundamental cycles
is by no means clear and will, among other things, depend on the spanning
tree considered.

Here is an overview of the layout of our paper and its main results. In
Section 2 we identify some minimum requirements which any topology on
an infinite graph with its ends—in the ladder example, these are the points
ω and ω′— should satisfy in order to reflect our intuitive geometric picture
of ends as distinct points at infinity. We then define the cycle space of a
locally finite graph more formally.

In Section 3 we introduce end-faithful spanning trees. We show that, in a
locally finite graph, these are precisely the spanning trees for which infinite
sums of fundamental cycles are always well-defined.2

In Section 4 we consider the question of how best to choose the topology
on an infinite graph with ends to obtain the most natural notion of a circle

2In [7] we extend the notion of end-faithful spanning trees fully to our new topological
setting. The topological spanning trees defined there are the path-connected subspaces of
the graph with ends that are made up of entire edges and contain all the graph’s vertices
and ends but no circle. The end-faithful spanning trees of a locally finite graph are
precisely those of its ordinary spanning trees whose closure is a topological spanning tree.
In general, however, a topological spanning tree need not induce a connected subgraph; its
path-connectedness may result from the existence of topological paths that contain ends.
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and the strongest possible infinite version of the fundamental cycle theorem.
For locally finite graphs we prove that this topology is essentially unique.

As our first main result we prove in Section 5 that, for the topology chosen
in Section 4 and for precisely the spanning trees identified in Section 3, every
infinite cycle of a locally finite graph is the (infinite) sum of fundamental
cycles, and so are the other elements of its cycle space.

In Section 6 we ask to what extent this result depends on the concrete
topology assumed. We find an abstract condition on the topology of a locally
finite graph such that our theorem holds, for any end-faithful spanning tree,
if and only if this condition is met.

As our second main result we show in Section 7 that the usual cycle-
cut orthogonality in finite graphs extends as follows: a set of edges in a
locally finite graph lies in its cycle space if and only if it meets every finite
cut in an even number of edges. As a corollary, we obtain an extension of
Nash-Williams’s theorem that a graph is an edge-disjoint union of cycles
if and only if all its cuts are even or infinite.3 Finally, we show that a
connected locally finite graph with ends admits a topological Euler tour , a
closed topological curve traversing every edge once, if and only if its entire
edge set lies in its cycle space.

2 Basic facts and concepts

The terminology we use is that of [2]. We shall freely view a graph either as
a combinatorial object or as the topological space of a 1-complex. (So every
edge is homeomorphic to the real interval [0, 1], the basic open sets around
an inner point being just the open intervals on the edge. The basic open
neighbourhoods of a vertex x are the unions of half-open intervals [x, z), one
from every edge [x, y] at x; note that we do not require local finiteness here.)
When E is a set of edges we let E̊ denote the union of their interiors, i.e.
the set of all inner points of edges in E.

Given a spanning tree T in a graph G, every edge e ∈ E(G) \ E(T ) is a
chord of T , and the unique cycle Ce in T + e is a fundamental cycle with
respect to T .

A family (Ai)i∈I of subsets of a set A will be called thin if no element of
A lies in Ai for infinitely many i, and the sum

∑
i∈I Ai of this family is the

set of those elements of A that lie in Ai for an odd number of indices i.
3In [6] we will prove more generally that an arbitrary set of edges (not just the entire

edge set) is a disjoint union of the edge sets of cycles as soon as it lies in the cycle space.
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A homeomorphic image (in the subspace topology) of [0, 1] in a topological
space X will be called an arc in X; a homeomorphic image of S1 in X is a
circle in X.

We shall frequently use the following well-known fact [1, Thm. 3.7]:

Lemma 2.1 Every continuous injective map from a compact space X to a
Hausdorff space Y is a topological embedding, i.e. a homeomorphism between
X and its image in Y under the subspace topology. �

We refer to 1-way infinite paths as rays, to 2-way infinite paths as double
rays, and to the subrays of rays or double rays as their tails. If we consider
two rays in a graph G as equivalent if no finite set of vertices separates them
in G, then the equivalence classes of rays are known as the ends of G. (The
ladder, for example, has two ends, the grid has one, and the binary tree has
continuum many; see [3] for more background.) We shall write G for the
union of G (viewed as a space, i.e. a set of points) and the set of its ends.
Topologically, ends may be thought of as additional ‘vertices at infinity’.
(The standard topology on G that we shall consider will bear this out in
the technical compactification sense of the word, but all we try to convey at
this point is the intended geometric intuition.)

We shall consider various topologies on G in this paper. But they will all
satisfy the following two minimum requirements, without which we feel the
resulting notion of a circle would seem unnatural and contrived.

The topology on G is Hausdorff, and it induces on G the given
topology of G as a 1-complex.

(1)

Moreover, every ray should converge to the end it belongs to:

If R ⊆ G is a ray and ω is the end of G containing R, then every
neighbourhood of ω contains a tail of R.

(2)

Together, conditions (1) and (2) imply that a subset of G is open in G
if and only if it is open in G; we shall use this fact freely throughout the
paper. It can be used to show—by elementary topological arguments, but
not completely trivially—that every arc in G whose endpoints are vertices
or ends, and similarly every circle in G, includes every edge of G of which
it contains an inner point. Thus in particular, every circle in G ‘has’ a
unique set of edges, and we may define the circuits of G as the edge sets of
its circles. Note that these include the edge sets of the usual finite cycles
in G, and in particular of its fundamental cycles (with respect to any given
spanning tree); we shall call these latter the fundamental circuits of G.
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Based on the concept of a circuit and our earlier definition of ‘sum’, we
may now define the cycle space C(G) of a locally finite graph G as the
set of sums of circuits in G. Then, just as for finite graphs, C(G) is a
subspace of the edge space of G, and the definition reduces to the standard
one for finite G. As a consequence of our main result (and hence assuming
a concrete topology for G) we shall see later that C(G) is closed also under
taking infinite sums. This does not appear to be obvious from the definition,
and we have not pursued the question of whether the definition implies it
(independently of the topology assumed).

Another condition that seems natural in a context where the circles of a
graph are to be represented by their edge sets is that every circle is uniquely
determined by its edges, as the closure of their union. Equivalently:

For every circle C ⊆ G, the set C ∩ G is dense in C. (3)

Although we shall not formally require (3), the topologies we shall consider
for G will turn out to satisfy this condition, too. However, (3) does not
follow from (1) and (2): in Section 4 we shall construct a graph with a
topology satisfying (1) and (2) that contains a circle consisting entirely of
ends.

3 Choosing the spanning tree for a locally finite
graph

Our ladder example seemed to suggest that choosing the right spanning tree
might be an essential and difficult part of our problem. Fortunately, this is
not the case: as we shall see, there is a canonical kind of spanning tree that
will always do the job, and none other will. Before we define these spanning
trees, however, let us recall a standard lemma about locally finite graphs;
the proof is not difficult and is included in [4, Lemma 1.2].

Lemma 3.1 Let U be an infinite set of vertices in a connected locally finite
graph G. Then there exists a ray R ⊆ G for which G contains an infinite
set of disjoint U–R paths. �

If T is a spanning tree of a graph G, then clearly every end ω of T is
a subset of a unique end ω′ of G. The tree T is called end-faithful in G
if this canonical projection ω �→ ω′ is 1–1 and onto, i.e. if after fixing an
arbitrary root t0 ∈ T we have exactly one ray in T starting at t0 in every
end of G. It is not difficult to show that every connected countable graph
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has an end-faithful spanning tree; for example, the normal spanning trees
constructed in [8] or [2, Ch. 1.5.5] are end-faithful when the graph is infinite.
See [3] for further details.

The following observation shows that we shall want to restrict our at-
tention to end-faithful spanning trees: the edge set of any other spanning
tree T would always contain a non-empty circuit, which is not only counter-
intuitive but would also put an end to our hopes of showing that all circuits
are sums of fundamental circuits. (Clearly, in any such sum each fundamen-
tal circuit present could be taken to occur exactly once, but then the sum
would contain its chord and hence not lie in E(T ).)

Lemma 3.2 Let T be a spanning tree of a locally finite graph G, and assume
that E(T ) contains no non-empty circuit of G. Then T is end-faithful in G.

Proof. If T is not end-faithful then the map ω �→ ω′ above fails to be 1–1,
since by Lemma 3.1 it cannot fail to be onto. (Given any ray R in G, apply
the lemma to T with U = V (R) to obtain a ray in T equivalent to R.) Then
we can find rays R1, R2 ⊆ T that start at the same vertex and are otherwise
disjoint, but belong to the same end ω′ of G. It is now straightforward to
check that, by (1) and (2), R1 ∪ R2 ∪ {ω′} is a circle in G. So E(R1 ∪ R2)
is a circuit of G, as desired. �

The converse of Lemma 3.2 will follow, for a concrete topology on G we
shall consider, from our main result that whenever T is end-faithful in G all
the circuits in G are sums of fundamental circuits (and hence, in particular,
not contained in T ). Conditions (1) and (2) do not imply the converse of
Lemma 3.2 for arbitrary topologies, though: in Section 4 we shall construct a
topology for the binary tree which satisfies (1) and (2), but under which the
edge set of a double ray in the tree occurs as a circuit. A more complicated
example at the end of Section 6 will show that the converse of Lemma 3.2
does not even follow from (1), (2) and (3).

End-faithful spanning trees have the pleasant property that every sum of
fundamental circuits is well-defined:

Lemma 3.3 Let T be an end-faithful spanning tree of a locally finite graph G.
Then the fundamental circuits of G with respect to T form a thin family.

Proof. Suppose there are infinitely many fundamental cycles C1, C2, . . . all
containing the same edge e = xy. Then xy is an edge of T ; let Tx and Ty be
the components of T − e containing x and y, respectively. For i = 1, 2, . . .
let ei = xiyi be the edge of Ci not on T ; since e ∈ Ci, we may assume that
xi ∈ Tx and yi ∈ Ty.
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Applying Lemma 3.1 to Tx with U = {x1, x2, . . . }, we obtain a ray Rx ⊆
Tx and an infinite index set I ⊂ N such that the paths Pi ⊆ Tx from xi

to Rx are disjoint for different i ∈ I. Applying Lemma 3.1 to Ty with
U = {yi | i ∈ I}, we likewise obtain a ray Ry ⊆ Ty and an infinite index set
I ′ ⊆ I such that the paths Qi ⊆ Ty from yi to Ry are disjoint for different
i ∈ I ′. As the rays Rx and Ry are disjoint, they belong to different ends
of T . But each of the paths PieiQi with i ∈ I ′ links Rx to Ry in G, and
these are infinitely many disjoint paths. Therefore Rx and Ry belong to a
common end of G, so T is not end-faithful. �

We remark that the converse of Lemma 3.3 holds too: if T is not end-
faithful, we can always find a family of fundamental circuits that is not
thin.

4 Choosing the topology on G

Since the meaning of our intended result (that the fundamental circuits of a
graph generate its cycle space) depends on the notion of a circle and hence
on the topology considered for G, we have to fix some such topology at some
point. But which topology should we choose? In Section 2 we laid down
two minimum requirements for any topology on G that we might consider
as natural, conditions (1) and (2). However, these two conditions do not
determine the topology on G.

For example, the following topology satisfies (1) and (2) and would not
seem unnatural. Given an end ω and a finite set S of vertices of G, there
is exactly one component C = CG(S, ω) of G − S which contains a tail
of every ray in ω. We say that ω belongs to C. Writing EG(S, ω) for
the set of all the S–C edges in G, let us consider the topology on G that
is generated by the open sets of G (as a 1-complex) and all sets of the
form {ω} ∪ CG(S, ω) ∪ E̊′

G(S, ω), where E̊′
G(S, ω) is any union of half-edges

(x, y] ⊂ e, one for every e ∈ EG(S, ω), with x ∈ e̊ and y ∈ C. Then the
circles in this topology resemble those of our ladder example:

Proposition 4.1 Let G be any infinite graph. Under the above topology,
every circle in G is either a finite cycle or the union of finitely many double
rays with their ends.

Proposition 4.1 is not difficult to prove, and it easily implies that every
circuit is the sum of finite circuits. If G is locally finite then this implies
by Lemma 3.3 that, given any end-faithful spanning tree, the fundamental
circuits do indeed generate the cycle space.
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Although the topology for G on which Proposition 4.1 is based may be
a natural one to consider, it does not yield the strongest possible theorem.
For note that if Top1 and Top2 are topologies on G such that Top2 is
Hausdorff and coarser than Top1, then every Top1-circle is also a Top2-
circle (cf. Lemma 2.1). Thus reducing the collection of open sets increases
the set of circles, and so we can strengthen our theorem by proving it for a
coarser topology. Our next aim, therefore, is to introduce a topology on G
that is coarser than that considered above. For locally finite G, this topology
will turn out to be coarsest possible with (1), and therefore yield the best
possible result.

Given an end ω and a finite set S of vertices of G, let CG(S, ω) denote
the union of C := CG(S, ω) with the set of all ends belonging to C. There
is an obvious correspondence between these ends of G and those of C, and
we shall not normally distinguish between them. (Thus, C will be treated
as a subset of G when this simplifies the notation.) Let Top denote the
topology on G generated by the open sets of the 1-complex G and all sets
of the form

ĈG(S, ω) := CG(S, ω) ∪ E̊′
G(S, ω) ,

where again E̊′
G(S, ω) is any union of half-edges (x, y] ⊂ e, one for every e ∈

EG(S, ω), with x ∈ e̊ and y ∈ C. So for each end ω, the sets ĈG(S, ω) with
S varying over the finite subsets of V (G) are the basic open neighbourhoods
of ω. The topology which Top induces on the end space G \ G of G is the
standard topology there as studied in the literature.

The following observation is not difficult to prove; see e.g. [3].

Lemma 4.2 If G is connected and locally finite, then G is compact in Top.
�

By Lemma 2.1, the topology of a compact Hausdorff space cannot be
made coarser without loss of the Hausdorff property. So for G locally finite,
there is no Hausdorff topology on G which is strictly coarser than Top,
and in this sense proving the theorem for Top (as we shall do in the next
section) will be best possible.

Lemma 4.3 For every infinite graph G, the topology Top satisfies (1), (2)
and (3).

Proof. Conditions (1) and (2) hold trivially; we prove (3). Suppose there is
a circle C in G such that C∩G is not dense in C. Then some point on C has
a neighbourhood N in C that consists entirely of ends. We may assume that
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N �⊃ C, and that N = O ∩ C for some basic open set O in G. Then O = D̂
for some component D of G−S with S ⊆ V (G) finite, and N = (D \G)∩C
is the intersection of two closed sets in G. So N is closed in G and hence
in C. Since N = O ∩ C is also open in C, the homeomorphism between C
and S1 takes N to an open and closed proper subset of S1, contradicting its
connectedness. �

Let us return to the case when G is locally finite. Since Top is best pos-
sible for our purposes among all topologies comparable with it, the question
arises whether there are topologies which satisfy our minimum requirements
(1) and (2) but are incomparable with Top. In the remainder of this sec-
tion, we first construct such an example. However we then show that a slight
strengthening of (2) will rule out such (pathological) examples and imply
that every topology on G satisfying this condition and (1) is indeed com-
parable with Top, making our theorem best possible also in a more global
sense.

So we are looking for a locally finite graph G with a topology that sat-
isfies (1) and (2) but is incomparable with Top. Since every Hausdorff
topology comparable with Top refines Top and hence inherits (3) from it
(Lemma 2.1), it suffices to construct a topology for G that violates (3). As
a spin-off, we thus obtain that conditions (1) and (2) do not imply (3):

Proposition 4.4 There exists a locally finite graph G with a topology that
satisfies (1) and (2) but not (3), and hence is incomparable with Top.

Proof. Our graph G will be the infinite binary tree T . We label its vertices
with finite 0–1 sequences in the obvious way: the root (which is considered
as the lowest point in T ) is labelled with the empty sequence, and if a vertex
has label � then its two successors are labelled �0 and �1. Then the rays from
the root (and hence the ends of T ) correspond bijectively to the infinite 0–
1 sequences and may be thought of as elements of the real interval [0, 1]
in their binary expansion. Let J be the set of all rationals in (0, 1) with a
finite binary expansion, and let J ′ := [0, 1]\J . Then each r ∈ J ′ comes from
exactly one ray Rr, while every q ∈ J comes from two: a ray Rq labelled
eventually 0, and a ray R′

q labelled eventually 1. (For example, the rays
1011000 . . . and 10101111 . . . both correspond to 11/16.) Let ωr, ωq and ω′

q

denote the ends containing Rr, Rq and R′
q, respectively. Let M ′ be the set

of the ends ω′
q, and let M be the set of all the other ends.

We now define the topology on T so as to turn the bijection between [0, 1]
and M into a topological embedding. Every point in T will have the same
basic open neighbourhoods as it does in T viewed as a 1-complex. The basic
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open neighbourhoods of an end ωp ∈ M are constructed as follows. Choose
an open neighbourhood I of p in [0, 1]. For each s ∈ I choose a point z on
Rs, and let Ns be the set consisting of ωs and all the points of T (not of T )
above z. Now take the union of the Ns over all s ∈ I to be a basic open
neighbourhood of ωp. The basic open neighbourhoods of the ends ω′

q ∈ M ′

will be as small as possible given (1) and (2), consisting just of the ‘open
final segments’ of R′

q: pick a point z ∈ R′
q, choose for every vertex ti on R′

q

above z a point zi in the interior of the edge at ti that does not lie on R′
q,

and take the union of the set of points on R′
q above z with all the partial

edges [ti, zi) to be a basic open neighbourhood of ω′
q.

It is straightforward to check that the topology generated in this way
satisfies (1) and (2). But it violates (3), since the union of M and the rays
R0 = 000 . . . and R1 = 111 . . . forms a circle. �

With only a slight modification, the above example will even contain a
circle consisting entirely of ends. Indeed, if we identify 0 and 1 in [0, 1] to
form a circle (and put ω1 in M ′ rather than M), then in the analogously
defined topology the set M of ends becomes a circle in T .

In Section 6 we shall construct a graph G with a topology that satisfies
(3) as well as (1) and (2) but is still incomparable with Top.

The topology on the binary tree constructed in the proof of Proposi-
tion 4.4 will hardly be considered as natural. But how unnatural did it have
to be? Our next Proposition answers this question in an unexpectedly clear-
cut way: any topology that witnesses Proposition 4.4 has to violate an only
slight and still pretty natural sharpening of condition (2). Or put another
way, every topology that satisfies (1) and this new condition is comparable
with Top.

In order to state the new condition we need a definition. A comb C with
back R is obtained from a ray R and a sequence x1, x2, . . . of distinct vertices
by adding for each i = 1, 2, . . . a (possibly trivial) xi–R path Pi so that all
the Pi are disjoint and R meets Pi+1 after Pi. The vertices xi will be called
the teeth of C. When we speak of a comb in G, however, we wish to admit
inner points of edges as teeth. We therefore call C a comb in G if C is a
comb in some subdivision of G (in which every edge may be assumed to be
subdivided at most once).

Clearly, condition (2) is a special case of the more general requirement
that the teeth of every comb converge to the end of its back:

Every neighbourhood of an end ω contains all but finitely many of
the teeth of every comb in G whose back lies in ω.

(4)
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Note that when G is locally finite, (4) holds in Top and (1) and (4)
imply (3). Indeed, we have the following stronger assertion:

Proposition 4.5 Let G be a locally finite connected graph, and let Top′ be
any topology on G that satisfies (1) and (4). Then Top′ is a refinement
of Top.

Proof. For a proof that the open sets of Top are open in Top′, it suffices to
show that for every end ω of G and every finite S ⊆ V (G) there exists a Top′-
neighbourhood of ω contained in C, where C := CG(S, ω). Suppose not, let
s1, s2, . . . be an enumeration of the vertices outside S and C, and put Si :=
S∪{s1, . . . , si}. Now consider any i. By (1), the vertices of Si together with
all their incident edges in G form a compact set Si = G[Si∪N(Si)] in Top′.
So every Top′-neighbourhood of ω contains a neighbourhood that avoids Si,
and hence meets one of the components of G − Si other than C. (Recall
that no such neighbourhood is contained in C, and apply (2).) As G − Si

has only finitely many components, this implies that there is a component
Di �= C of G − Si met by every Top′-neighbourhood of ω.

Choosing these components D1, D2, . . . in turn, we can ensure that D1 ⊃
D2 ⊃ . . . . Now pick a sequence of distinct points xi ∈ Di so that no two of
them lie inside the same edge. By Lemma 3.1 (applied to the subdivision of
G obtained by making every xi a vertex) there is a comb C in G with teeth
among the xi and back R, say. Since each Di contains all but finitely many
of the xj and is separated from the rest of G by the finite set Si, this ray R
has a tail in every Di. But any two rays with this property are equivalent
(because the Si eventually contain any finite separator of D1), so the end
ω′ of R is independent of the choice of x1, x2, . . . but depends only on the
sequence D1 ⊃ D2 ⊃ . . . .

Since Top′ is Hausdorff, there are disjoint Top′-neighbourhoods N of
ω and N ′ of ω′. As N meets every Di but no vertex or edge lies in more
than finitely many Di, we may choose all our points xi inside N and hence
outside N ′. Hence our comb C contradicts (4). �

5 The generating theorem for locally finite graphs

Let us now prove our main theorem: under Top, the fundamental circuits
with respect to any end-faithful spanning tree generate the entire cycle space
of a locally finite graph.
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Theorem 5.1 Let G be a locally finite connected graph, let G be endowed
with Top, and let T be any spanning tree of G. Then the following are
equivalent:

(i) Every circuit of G is a sum of fundamental circuits.

(ii) Every element of the cycle space C(G) of G is a sum of fundamental
circuits.

(iii) T is end-faithful.

Proof. Clearly, (ii) implies (i). Lemma 3.2 and the remark preceding it
show that (i) implies (iii). To show that (iii) implies (ii) it suffices to prove
the following:

If T is end-faithful, then every circuit C of G is equal to the sum of
all the fundamental circuits Ce with e ∈ C \ E(T ). (∗)

Indeed, every element Z of C(G) is by definition the sum of a thin family
F of circuits. By (∗), each C ∈ F is the sum of fundamental circuits Ce

with e ∈ C. Since F is thin, none of these edges e lies on more than finitely
many circuits in F , so all these fundamental circuits together form a family
in which none of them occurs infinitely often. By Lemma 3.3 this is again a
thin family, so it has a well-defined sum. Clearly, this sum equals Z.

To prove (∗) let C be given, and let C ′ be its defining circle in G. (Since
Top satisfies (3), C ′ is the closure of

⋃
C, so in particular C ′ is uniquely

determined.) Pick a homeomorphism σ : S1 → C ′. We have to show that
an edge f of G lies in C if and only if it lies in an odd number of the circuits
Ce in (∗). This is clear when f is a chord of T , as in that case f lies on Ce

only if f = e.
So consider an edge f ∈ T . Let G1 and G2 denote the subgraphs of G

induced by the two components of T − f , and let Ef be the set of G1–G2

edges in G (including f). Note that the edges e �= f in Ef are precisely
the chords e of T with f ∈ Ce. Since the family of these Ce is thin by
Lemma 3.3, the set Ef is finite. Hence for i = 1, 2, Gi is a component of
G−S for the finite set S = N(Gi) of its neighbours outside, every set of the
form Ĝi is open in Top , and Gi = Ĝi \ E̊f is open in G \ E̊f .

As σ is a homeomorphism, S1 \ σ−1(E̊f ∩ C ′) consists of finitely many
intervals, I1, . . . , Ik say. Each σ(Ii) is a connected subset of C ′ \ E̊f and
hence cannot meet both of the disjoint open subsets G1 and G2 of G \ E̊f .
Our circle C ′ therefore contains an even number of edges from Ef . Hence,
C contains f if and only if it contains an odd number of other edges from Ef ,
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which it does if and only if f lies on an odd number of the circuits Ce with
e ∈ C and hence in the sum of (∗). �

By the argument that showed (∗) to be sufficient for a proof of Theo-
rem 5.1, the theorem and Lemma 3.3 imply the following:

Corollary 5.2 If G is locally finite, then its cycle space in Top is closed
under taking sums. �

We conclude this section with an example illustrating how unlike our
initial ladder examples the circuits covered by Theorem 5.1 can become.
Adding just a few edges to the binary tree, we obtain a graph in which
all the fundamental circuits sum up to a single circle containing continuum
many ends and a ‘dense’ set of double rays (so that between any two double
rays there lies another).

Consider again the infinite binary tree T , and let J , J ′, Rq, R′
q, ωq and

ω′
q be defined as in the proof of Proposition 4.4. Let D0 be the double ray

formed by the rays R0 = 000 . . . and R1 = 111 . . . . For every q ∈ J add an
edge eq = tqt

′
q between disjoint tails of Rq and R′

q, so that if � is the label of
the last common vertex of Rq and R′

q, the vertex tq is labelled �011 and t′q
is labelled �100. Then the double rays Dq = (tqRq ∪ t′qR

′
q) + eq are disjoint

from D0 and from each other, and T is an end-faithful spanning tree of the
resulting graph G.

Let us show that the union C of all the Dq (for q ∈ J ∪ {0}) and the
set of ends of G is a circle in Top. Let I0 be a closed interval on S1. Let
σ : I0 �→ D0 ∪ {ω0, ω1} be a homeomorphism, and put x0 := σ−1(ω0) and
x1 := σ−1(ω1). Our aim is to extend σ to a homeomorphism between S1

and C.
Let I := S1 \ I̊0, and think of x0 as the left and x1 as the right endpoint

of I. Assign to the points q ∈ J disjoint closed subintervals Iq = [xq, x
′
q] of I̊,

so that Iq1 lies left of Iq2 whenever q1 < q2, and I is the closure of U :=
⋃

q Iq.
(For example, this could be done inductively in ω steps.) Then the points of
I̊ \U correspond bijectively to the points in J ′∩(0, 1) of the completion [0, 1]
of J ; let xr be the point of I̊ \U corresponding to r ∈ J ′∩ (0, 1). Finally, let
σ : S1 → C map each Iq continuously onto Dq ∪{ωq, ω

′
q} so that σ(xq) = ωq

and σ(x′
q) = ω′

q, and put σ(xr) = ωr for all r ∈ J ′ ∩ (0, 1). Then σ : S1 → C
is a homeomorphism, so C is indeed a circle.

Theorem 5.1 now says that all the fundamental ciruits in G together sum
to an infinite circuit: the edge set of our circle C. Once observed, this can
also easily be checked directly.
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6 A topological condition equivalent to the
generating theorem

Let G be a locally finite connected graph. In this section we shall identify a
condition just in terms of the topology on G that is equivalent to the validity
of Theorem 5.1 (ii). This has some interesting consequences.

First, since the elements of the cycle space of G are the same—the sums
of fundamental circuits of any end-faithful spanning tree—whenever this
condition holds, we find that the cycle space is independent of the topology
used as long as it satisfies this condition. In particular, refinements of Top
(which will all satisfy the condition) may have fewer circuits than Top
(recall Prop. 4.1) but will have the same cycle space. Second, since the new
condition will not follow from (1), (2) and (3), we also obtain a negative
answer to the question of whether these three (rather natural) conditions
alone can guarantee the validity of Theorem 5.1.

We will need the following lemma from elementary topology [9, p. 208].
A continuous image of [0, 1] in a topological space X is a (topological) path
in X; the images of 0 and 1 are its endpoints. By Lemma 2.1, a path in a
Hausdorff space is an arc if and only if the corresponding map [0, 1] → X is
injective.

Lemma 6.1 Every path with distinct endpoints x, y in a Hausdorff space
X contains an arc in X between x and y. �

As always, we consider only topologies on G that satisfy our two minimum
requirements (1) and (2). Then if E is any finite set of edges and C is a
component of G − E, the subspace C of G is path-connected. Our new
condition says that these C are in fact the whole path components of G\ E̊:

Whenever E is a finite set of edges of G, every path component of
the topological space G \ E̊ is of the form C, for some component
C of the graph G − E.

(5)

Note that (5) implies (3). Indeed if (3) fails, then G contains an arc [ω, ω′]
consisting entirely of ends. Let S be a finite set of vertices separating a ray
in ω from a ray in ω′, and let E be the set of edges incident with S. Then ω
and ω′ do not both lie in C for any component C of G − E, although they
do lie in the same path component of G \ E̊.

Although Top clearly satisfies (5), it is not difficult to construct locally
finite graphs with topologies that satisfy (1), (2), (3) and (5) but are incom-
parable with Top. (By Proposition 4.5, these topologies must violate (4).)
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The following result may thus be viewed as a topologically best-possible
strengthening of Theorem 5.1:

Theorem 6.2 Let G be a locally finite connected graph, let G carry any
topology satisfying (1) and (2), and let T be an end-faithful spanning tree
in G. Then the following two assertions are equivalent:

(i) G satisfies (5);

(ii) every element of the cycle space of G is the sum of fundamental cir-
cuits.

Proof. The proof of Theorem 5.1 shows that (i) implies (ii). Indeed, as G
satisfies (5), both G1 and G2 as considered there are path components of
G \ E̊f and thus again each σ(Ii) lies in either G1 or G2.

So let us prove the converse implication. If (5) fails, then for some finite
set E ⊆ E(G) there are components D1 �= D2 of G−E such that D1 and D2

are contained in the same path component of G \ E̊. By making E smaller,
we may assume that D1 and D2 are the only components of G − E. Let
f1, . . . , fk be the D1–D2 edges contained in T .

For each i = 1, . . . , k, let Ei be the set of the edges of G between different
components of T − fi. Since the edges e �= fi in Ei are precisely the chords
e of T with fi ∈ Ce, Lemma 3.3 implies that each Ei is finite.

By definition, D1 and D2 are joined in G \ E̊ by a topological path π;
since they are path-connected, we may assume that the endpoints of π are
vertices, and by Lemma 6.1 we may assume that π is an arc.

Since an arc between two vertices includes every edge of which it contains
an inner point, and since the Ei are finite, π \ (E̊1 ∪ · · · ∪ E̊k) consists of
finitely many closed segments whose endpoints are vertices. One of these,
π′ say, is again an arc from a vertex v1 ∈ D1 to a vertex v2 ∈ D2. (For since
π contains no D1–D2 edge, the endpoints of every missing edge lie in the
same Dj .)

Pick an edge fi ∈ {f1, . . . , fk} from the path v1Tv2, let P be the segment
of v1Tv2 that includes fi and meets π′ only in its endpoints, and let π′′ be
the segment of π′ between these points. Then P ∪ π′′ is a circle in G that
contains fi but no other edge from Ei. Its circuit is therefore not a sum of
fundamental circuits, so (ii) fails as required. �

Corollary 6.3 The cycle space of a locally finite graph G is independent of
the topology chosen for G, as long as the topology satisfies (1), (2) and (5).
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In particular, C(G) is the same for all refinements of Top (with (1) and (2)),
and thus uniquely determined for all topologies that satisfy (1) and (4).

Proof. For the second statement, let us first verify (5) for an arbitrary
refinement Top′ of Top that satisfies (1) and (2). Since rays converge
to their ends by (2), every C as in (5) is path-connected. So any path
component D of G \ E̊ is a disjoint union of such C. But every C is open in
G \ E̊, in Top and hence also in Top′. Hence D, being connected, consists
of a single C.

For the last statement, recall that every topology satisfying (1) and (4)
is a refinement of Top (Prop. 4.5). �

In the remainder of the section we construct an example which shows
that (5) does not follow from (1), (2) and (3). Hence, by Theorem 6.2, these
three conditions alone cannot guarantee the validity of Theorem 5.1.

Consider again the infinite binary tree T , and let J , J ′, Rq, R′
q, ωq and

ω′
q be as in the proof of Proposition 4.4. Add a new double ray D with ends

τ �= τ ′ which meets T exactly in its root t. Moreover for each q ∈ J add a
new double ray Dq with ends τq �= τ ′

q, together with an edge eq = vqv
′
q joining

a vertex vq on Dq to a vertex v′q on D; choose these edges eq independent.
Denote the graph thus obtained by G.

Let us now define the topology on G. G itself will carry the topology of a
1-complex. The basic open neighbourhoods of an end ν of the form τ, τ ′, ωq

or ω′
q with q ∈ J will consist of an ‘open final segment’ of the ray R ∈ ν

starting at t: pick a point z on R, as well as an inner point ze of every edge
e /∈ R incident with a vertex v ∈ z̊R; then take the union of z̊R with all the
partial edges [v, ze) ⊂ e to be a basic open neighbourhood of ν. The basic
open neighbourhoods of an end ωr for r ∈ J ′ are constructed as follows.
Choose an open neighbourhood I of r in [0, 1]. For each s ∈ I ∩ J ′ choose a
point z on Rs, and let Ns be the set consisting of ωs and all the points of T
above z. For each q ∈ I ∩ J pick an inner point zq of eq. Take the union of
the Ns over all s ∈ I∩J ′ together with the union of {τq, τ

′
q}∪Dq∪[vq, zq) over

all q ∈ I ∩ J to be a basic open neighbourhood N(I) of ωr. To construct a
basic open neighbourhood of an end τq (respectively τ ′

q) for q ∈ J , choose an
open neighbourhood I of q in (0, q] (respectively [q, 1)) and take the union
of N(I) (defined as before) together with τq (respectively τ ′

q) and an open
final segment of the subray of Dq − vq contained in τq (respectively τ ′

q) to
be a basic open set.

Clearly, the topology generated in this way satisfies (1) and (2). As in the
proof of Lemma 4.3 one can show (3). (Indeed, the open set N considered
there can again be chosen so that it is also closed.) Furthermore, using
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similar arguments as in the example in Section 5 one can show that all the
ends ωr (r ∈ J ′) and all the sets {τq} ∪ Dq ∪ {τ ′

q} with q ∈ J together form
an arc π whose endpoints belong to different components of G − t. Hence,
this topology does not satisfy (5).

Finally, since G is a tree and π forms a circle together with the rays R0

and R1, our example shows also that the converse of Lemma 3.2 can fail
even for topologies satisfying (1), (2) and (3).

7 Cycle-cut orthogonality, cycle decompositions,
and Euler tours

Let G be a locally finite connected graph, and let G be endowed with Top.4

Recall that a cut in G is the set of all the edges of G between the two
classes of some bipartition of V (G). When G is finite, the elements of its
cycle space are precisely those sets of edges that are orthogonal to every cut
in G, ie. contain an even number of edges from every cut [2]. This generalizes
as follows:5

Theorem 7.1 The following statements are equivalent for every E ⊆ E(G):

(i) E ∈ C(G);

(ii) |E ∩ F | is even for every finite cut F of G.

Proof. The fact that every circuit in G meets every finite cut in an even
number of edges is proved as in the proof of Theorem 5.1, using (5) instead
of the definition of Top if desired. Since sums (mod 2) of even sets are even,
this implies (i)→(ii).

For the converse implication, assume without loss of generality that G is
connected, and let T be an end-faithful spanning tree of G. Assuming (ii),
we show that E is equal to the sum Z ∈ C(G) of all the fundamental circuits
Ce with e ∈ E \E(T ). For every chord e of T in G, clearly e ∈ E if and only
if e ∈ Z. So consider an edge f ∈ T . Let Ef be the set of edges e �= f of G
between the two components of T − f . Since T is end-faithful and f ∈ Ce

for precisely those chords e of T that lie in Ef , Lemma 3.3 implies that Ef

is finite, and f ∈ Z if and only if |Ef ∩E| is odd. By (ii), the latter holds if
and only if f ∈ E, as desired. �

4We shall use Top explicitly only in the proof of Theorem 7.2. For Thm 7.1 it is enough
to assume that G satisfies the generating theorem, ie. satisfies (1), (2) and (5).

5In [6] we extend Theorem 7.1 to arbitrary infinite graphs, with appropriate adaptations
of the notions of cycle space and finite cut.
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We point out that an infinite circuit and an infinite cut of G may well
meet in an odd number of edges, because rays on either side of the cut may
belong (and hence converge) to the same end. The circuit C2 in the double
ladder (Fig. 1) is a simple example.

Let us now look at the special case of E = E(G). A classical theorem
of Nash-Williams [10] says that a connected graph (of any cardinality) is
an edge-disjoint union of finite cycles if and only if each of its cuts is either
infinite or even. By Theorem 7.1, a further property of G equivalent to these
is that E ∈ C(G).

When G is finite, this property is equivalent to yet another: that G
contains an Euler tour, a closed walk that traverses every edge exactly once.
For our locally finite graph G, we have the following infinite analogue. Call a
continuous (but not necessarily injective) map σ : S1 → G a topological Euler
tour of G if every inner point of an edge of G is the image of exactly one
point of S1. (Thus, every edge is traversed exactly once, and in a ‘straight’
manner.)

Theorem 7.2 The following statements are equivalent for E = E(G):

(i) E ∈ C(G);

(ii) every cut in G is either infinite or even;

(iii) E is a disjoint union of finite circuits;

(iv) E is a disjoint union of circuits;

(v) G admits a topological Euler tour.

Proof. The equivalence (i)↔(ii) follows from Theorem 7.1, the implication
(ii)→(iii) from Nash-Williams’s theorem. (In fact, as Nash-Williams ob-
served, it is easy for countable graphs.) As (iii)→(iv) is trivial and (v)→(ii)
again follows as in the proof of Theorem 5.1, it remains to prove (iv)→(v).

Let D be a set of disjoint circuits in G whose union is E. We shall define
a topological Euler tour σ : S1 → G as a limit of a sequence of continuous
maps σ1, σ2, . . . from S1 to G, each with the property that every inner point
of an edge of G is the image of at most one point of S1. The image of σn

will be the closure in G of
⋃ ⋃

Dn for some subset Dn ⊆ D of circuits, where
D1 ⊆ D2 ⊆ . . . and D1 ∪ D2 ∪ . . . = D.

Let σ1 be a homeomorphism between S1 and the defining circle of any
circuit D ∈ D, and put D1 := {D}. Given n ∈ N, assume inductively that σn

has been defined as stated. For the vertices v ∈ σn(S1) pick disjoint closed
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intervals Iv on S1 so that σn maps an inner point of Iv to v and σn(Iv) is
contained in the union of two edges at v. Let Dn+1 denote the set of circuits
in D \ Dn that contain an edge incident with a vertex in σn(S1), and put
Dn+1 := Dn ∪Dn+1. For every D ∈ Dn+1 pick such a vertex v(D) ∈ σn(S1).
Let σn+1 be obtained from σn by the following local changes inside some
of the intervals Iv with v ∈ σn(S1) \ σn−1(S1) (where σ0(S1) := ∅). Since
G is locally finite, v serves as v(D) for only finitely many D ∈ Dn+1, say
for D1, . . . , Dk. Write Iv as the union of k + 2 closed subintervals of equal
length (overlapping pairwise in at most one point), and choose as σn+1 � Iv

a topological path which maps all the intersection points between adjacent
subintervals to v, maps the union of the first and last subinterval onto σn(Iv),
and maps the ith inner subinterval onto the defining circle of Di, i = 1, . . . , k.

Note that as soon as σn and σn+1 agree on a point x ∈ S1 for some n,
we also have σm(x) = σn(x) for all m > n. For such a point x we let
σ(x) := σn(x). Now let x ∈ S1 be such that its images yn := σn(x) are all
distinct for different n. Then for each n there exists a circuit Dn+1 ∈ Dn+1

such that yn+1 lies on an edge in Dn+1 (possibly at its endpoint, if yn+1 is
a vertex). By Lemma 3.1, the set {y1, y2, . . . } has an end ω in its closure,
which we choose as σ(x).

It remains to check that σ is well defined and continuous at these points x.
Let ĈG(S, ω) be a basic open neighbourhood of ω. Choose n large enough
that all the edges at vertices in S lie in

⋃
Dn−1. (Since G is connected,

the definition of the sets Dn+1 implies that every edge lies in
⋃

Dn for
some n.) Then the closure of Dn+1 ∪Dn+2 ∪ . . . is path-connected, contains
yn+1, yn+2, . . . , and avoids S, and hence lies in ĈG(S, ω). Thus, ω = σ(x) is
the only end in the closure of {y1, y2, . . . }, and similarly σ maps the entire
interval Iv 
 x considered for the definition of σn+2 to ĈG(S, ω).

Since G is connected, σ traverses every edge of G. Moreover, if we chose
the maps σn+1 � Iv in the obvious ‘minimal’ way, it does so only once and
without repeating inner points of the edge. �

In [6] we extend the equivalence between (i) and (iv) in Theorem 7.2 to
arbitrary subsets E of E(G). This is much harder than Theorem 7.2 and
cannot easily be reduced to it, because a set E ∈ C(G) does not normally
lie in the cycle space of the subgraph of G it induces. (For example, a single
infinite circuit C in G is, as a graph by itself, merely a disjoint union of
double rays containing no cycles at all).
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