
The countable Erdős-Menger conjecture with ends

Reinhard Diestel

Erdős conjectured that, given an infinite graph G and vertex sets
A, B ⊆ V (G), there exist a set P of disjoint A–B paths in G and
an A–B separator X ‘on’ P, in the sense that X consists of a choice of
one vertex from each path in P. We prove, for countable graphs G, the
extension of this conjecture in which A, B and X are allowed to contain
ends as well as vertices, and where the closure of A avoids B and vice
versa. (Without the closure condition the extended conjecture is false.)

1. Introduction

Most graph theorists with an interest in infinite graphs will, I expect, follow
C.St.J.A. Nash-Williams in thinking of the following conjecture of Erdős as the
main open problem in infinite graph theory:

Erdős-Menger Conjecture. For every graph G = (V, E) and any two sets

A, B ⊆ V there is a set P of disjoint A–B paths in G and an A–B separator

X consisting of a choice of one vertex from each of the paths in P.

The conjecture appears in print first in Nash-Williams’s 1967 survey [ 14 ] on
infinite graphs, although it seems to be considerably older. It was proved
by Aharoni [ 2 ] for countable graphs, by Aharoni, Nash-Willliams and She-
lah [ 1, 5 ] for bipartite graphs with bipartition (A, B), and in [ 4 ] for arbitrary
graphs with A countable. The current state of the art, including further partial
results, is described in Aharoni [ 3 ].

In this paper we consider the natural extension of the conjecture to ends,
and prove the extension for countable G. (Note that G may have uncountably
many ends.) Thus, A and B will be allowed to contain ends as well as vertices,
the A–B paths in P may be rays or double rays joining the appropriate vertices
or ends in A and B, and the separator X may likewise contains ends from A∪B.

As the precise statement of our theorem relies on the terms to be intro-
duced in Section 2, we defer it to Section 3. We shall also derive some natural
corollaries in Section 3, and discuss related results and open problems. The
proof of our main result is given in Sections 4 and 5.
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2. Terminology

The basic terminology we use is that of [ 7 ] – except that most of our graphs
will be infinite, and |G| will denote a certain topological space associated with
a graph G, not its order. Our graphs are simple and undirected, although the
result we prove can easily be adapted to directed graphs. Let G = (V, E) be a
countable graph, fixed throughout the paper.

We think of paths in G as subgraphs together with the natural linear
ordering of their vertices. Thus, an infinite path x0x1x2 . . . that has a first but
no last vertex differs from the path . . . x2x1x0 that has a last but no first vertex,
although both these paths are identical as graphs. Paths of the former type
are called rays; paths of the latter type are inverse rays. Paths with neither a
first nor a last vertex are double rays, and the subrays of rays or inverse rays
or double rays are their tails. In addition to the above, we also call singleton
sets {ω }, where ω is an end of G (defined below), a path in G.

Two rays in G are equivalent if no finite set of vertices separates them
in G. The corresponding equivalence classes of rays are the ends of G; the set
of these ends is denoted by Ω = Ω(G), and G together with its ends is referred
to as G = (V, E, Ω). (The grid, for example, has one end, the double ladder has
two, and the binary tree has continuum many; see [ 10 ] for more background.)
We shall endow our graph G, complete with vertices, edges and ends, with a
(now standard) topology first introduced by Jung [ 13 ], to be defined below.
This topological space will be denoted by |G|, and the closure in |G| of a subset
X will be written as X.

To define |G|, we start with G viewed as a 1-complex. Then every edge is
homeomorphic to the real interval [ 0, 1 ], the basic open sets around an inner
point being just the open intervals on the edge. The basic open neighbourhoods
of a vertex x are the unions of half-open intervals [x, z), one from every edge
[x, y ] at x; note that we do not require local finiteness here.

For ω ∈ Ω and any finite set S ⊆ V , the graph G − S has exactly one
component C = C(S, ω) that contains a tail of every ray in ω. We say that ω

belongs to C. Write Ω(S, ω) for the set of all ends of G belonging to C, and
E(S, ω) for the set of all edges of G between S and C. Now let |G| be the point
set V ∪Ω∪

⋃
E endowed with the topology generated by the open sets of the

1-complex G and all sets of the form

Ĉ(S, ω) := C(S, ω)∪Ω(S, ω)∪E′(S, ω) ,

where E′(S, ω) is any union of half-edges (x, y ] ⊂ e, one for every e ∈ E(S, ω),
with x ∈ e̊ and y ∈ C. (So for each end ω, the sets Ĉ(S, ω) with S varying
over the finite subsets of V are the basic open neighbourhoods of ω.) This is
the standard topology on graphs with ends, denoted in [ 8 ] as TOP. With this
topology, |G| is a Hausdorff space in which every ray converges to the end that
contains it. |G| is easily seen to be compact if and only if every vertex has
finite degree.
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A subgraph H = (U, F ) of G will be viewed topologically as just the point
set U ∪

⋃
F , without any ends. Then the closure H of this set in |G| may

contain some ends of G, but these should not be confused with ends of H.
(In fact, the only ends we shall ever consider seriously in this paper will be
ends of G. From a graph-theoretic viewpoint this may seem unorthodox when
considering subgraphs, but it is natural topologically and simplifies matters
greatly.)

A subspace of |G| is any subset of the point set |G| with the subspace
topology. The only subspaces we shall consider, however, will be subgraphs
of G, possibly together with some ends. That is to say, if a subspace we
consider contains an inner point of an edge e, it will contain the entire edge e

together with its endvertices.
When we speak about paths informally, we shall by default mean their

closures in G. Thus, every path P has two endpoints (a first and a last point,
which are formally the two boundary points of P and may be either vertices
or ends), and these are taken into account when we speak about disjointness,
containment etc. Thus, disjoint paths must have distinct endpoints, a path in
a subspace T of |G| must have its endpoints in T , and so on. For A, B ⊆ V ∪Ω,
a path is an A–B path if its first but no other point lies in A and its last but
no other point lies in B. Note that a path starting in an end α ∈ A and ending
in B need not have a last point in A, in which case it will not contain an A–B

path (and similarly for paths ending in an end β ∈ B).
A set X ⊆ V ∪ Ω is an A–B separator in a subspace T ⊆ |G| if every

path P in T with its first point in A and last point in B (which need not be
or contain an A–B path) has a point in X, ie. P ∩X �= ∅. We say that X lies
on a set P of disjoint A–B paths if X consists of a choice of exactly one point
from every path in P.

The following lemma will be used repeatedly in our proofs:

Lemma 2.1. If R ⊆ G is a ray and X ⊆ |G| a set such that G contains

infinitely many disjoint paths starting on R and ending in X, then the end ω

of R lies in X, the closure of X in |G|.

Proof. If ω /∈ X, then ω has a neighbourhood Ĉ(S, ω) in |G| that avoids X. As
R ∈ ω, R has a tail in C. Then all the infinitely many disjoint paths that start
on this tail and end in X have to pass through the finite set S, a contradiction.

�
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3. Statement of results, and open problems

Recall that G = (V, E, Ω) is an arbitrary fixed countable graph. Given two
sets A, B ⊆ V ∪ Ω, we say that G satisfies the Erdős-Menger conjecture for
A and B if |G| contains a set P of disjoint A–B paths and an A–B separator
on P.

Theorem 3.1. (Aharoni 1987)
G satisfies the Erdős-Menger conjecture for all sets A, B ⊆ V .

When proving Theorem 3.1 one may clearly assume that Z := A∩B = ∅:
having solved the problem for G − Z, just add every z ∈ Z to X and, as a
singleton path { z }, to P, to obtain a solution for G. Interestingly, when A, B

and X are allowed to contain ends, the assumption of A∩B = ∅ is no longer
just convenient for the proof, but the stronger assumption of A∩B = ∅ = A∩B

is needed to make the conjecture true: a counterexample for A∩B �= ∅ (Fig. 1)
will be given at the end of this section. A more trivial counterexample, where
G does not even contain an A–B path, would be a single ray R with A = V (R)
and B containing just the end of R (but this could be ‘repaired’ by relaxing
the definition of an A–B path or of an A–B separator).

The following theorem, which is our main result, is therefore best possible
in this sense:

Theorem 3.2. G satisfies the Erdős-Menger conjecture for all sets A, B ⊆
V ∪Ω satisfying A∩B = ∅ = A∩B.

Note that A and B may contain uncountably many ends. We shall prove
Theorem 3.2 in Sections 4 and 5, by first proving it for finite A directly and
then using that to reduce the general case to Theorem 3.1.

The following consequence of Theorem 3.2 is a result of Stein [ 16 ]. Her
proof, which is not easy, adapts Aharoni’s countable proof directly to ends,
using the countability of the set A∪B implied by its discreteness:

Corollary 3.3. G satisfies the Erdős-Menger conjecture for all sets A, B ⊆
V ∪Ω such that A∪B is a discrete subset of |G|.

Proof. Making every point of A∩B into a trivial A–B path and putting it in
the separator, we may assume that A∩B = ∅. Then the discreteness of A∪B

implies A∩B = ∅ = A∩B, and the result follows from Theorem 3.2. �

In our next corollary, A and B can again be uncountable:

Corollary 3.4. G satisfies the Erdős-Menger conjecture for all sets A, B ⊆
V ∪Ω that are closed subsets of |G|.
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Proof. Make every point of A ∩ B into a trivial A–B path, put it in the
separator, and apply Theorem 3.2 to A′ := A � B and B′ := B � A. This can
be done, since A′ ⊆ A and B′ ⊆ B by our assumption that A and B are closed,
and hence A′ ∩B′ ⊆ A′ ∩B = ∅ = A∩B′ ⊇ A′ ∩B′. �

Let us finally sketch a counterexample to the Erdős-Menger conjecture for
A∩B �= ∅. Define a graph G as follows. Let R = v1v

′
1v2v

′
2v3 . . . be a ray. For

all i ∈ N, add new vertices ai, a
′
i, bi and edges aivi, a

′
iv

′
i, vibi, v

′
ibi (Fig. 1). Put

A := { ai | i ∈ N }∪ { a′
i | i ∈ N } and B := { bi | i ∈ N }∪ {β }, where β is the

unique end of G.

A

R

B

β
vi v′

i

ai a′
i

bi

FIGURE 1. A counterexample for A∩B �= ∅

Proposition 3.5. The Erdős-Menger conjecture fails for these G, A, B.

Proof. Suppose there is a set P of disjoint A–B paths in G as well as an A–B

separator X on P. Let us show first that bi ∈ X for all i ∈ N.
If bi /∈ X, then X meets both of the sets { ai, vi } and { a′

i, v
′
i }, say in

x ∈ P ∈ P and x′ ∈ P ′ ∈ P, respectively. Not both P and P ′ can end in bi; we
assume that bi /∈ P ′. As clearly vi ∈ P , the vertices of P ′ following x′ (which
include vi+1 and either v′i+1 or bi+1) avoid X but separate ai+1 from B and A

from bi+1. Hence neither ai+1 nor bi+1 can lie on any path in P other than P ′,
and the A–B path ai+1vi+1bi+1 avoids X (a contradiction).

The fact that bi ∈ X for all i implies that X has no vertex outside B:
any such vertex x would lie on a path P ∈ P ending in β, and then the final
segment of P after x would be a tail of R meeting all the paths in P that end
in some bi with i large enough (a contradiction). Hence a1R is a path that
starts in a1 ∈ A and ends in β ∈ B but avoids X. �

Proposition 3.5 shows that the condition A∩B = ∅ = A∩B in Theorem 3.2
cannot simply be dropped. The example of Figure 1 once led me to believe that
the Erdős-Menger conjecture with ends might hold unconditionally for trees if
A∪B ⊆ Ω, but the following example due to Stein (personal communication)
refutes this. Let G be obtained from the binary tree T by grafting a new
ray on to every vertex, let A contain the ends of these (countably many) new
rays, and let B contain the (uncountably many) original ends of T . Then the
Erdős-Menger conjecture fails for these G, A, B (and A∩B �= ∅, in fact A ⊇ B).
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Although the original Erdős-Menger conjecture remains unproved for arbi-
trary uncountable graphs, one may ask whether in those cases where it is known
to hold (see the Introduction) it generalizes to ends just as in the countable
case. When A is countable (but allowed to contain ends as well as vertices)
this can indeed be done. More generally, Theorem 3.2 is extended in [ 6 ] to
arbitrary graphs in which A and B are separated by some countable set of
vertices and ends.

Like the finite Menger theorem, the vertex version of the Erdős-Menger
conjecture can be expressed also in terms of linking two non-adjacent vertices
a and b rather than two vertex sets A and B. The conjecture then asks for
a set of independent (rather than disjoint) a–b paths and an a–b separator on
these paths that does not include a or b. This vertex version follows from our
set version (take A := N(a) and B := N(b)) and implies it (add a new vertex a

adjacent to all of A and a new vertex b adjacent to all of B). Asking for a set of
double rays joining two given ends α and β together with an α–β separator on
these rays, however, yields a different problem that does not reduce as above
to the set version treated in this paper, because ends do not have neighbours.
The cardinality version of this other Menger-type problem for ends is treated
by Halin [ 12 ] and by Polat [ 15 ] (who also considers sets A, B but allows his
A–B paths to have common ends in A or B).

Finally, one might consider the Erdős-Menger problem topologically in the
sense of [ 8, 9 ], asking for topological paths (ie. continuous images of the unit
interval, without loss of generality 1–1) in |G| between two sets A, B ⊆ V ∪Ω
and a set X of vertices or ends ‘on’ these paths such that every topological
A–B path in |G| meets X. The following observations on this are due to Kühn
(personal communication).

The graph G of Figure 2 satisfies A∩B = ∅ = A∩B but is a counterex-
ample to the ‘topological’ Erdős-Menger conjecture as stated above. Indeed,
suppose there is a set P of topological A–B paths in |G| and a topological A–B

separator X on P. Clearly, every path in P is a finite path of length 2. Then
all the points in X must be vertices in the middle (those of degree 4), and so
the top ray and the bottom ray together with the unique end of G (to which
both these rays converge) form a topological path from A to B that avoids X.

A

B

X

FIGURE 2. A counterexample to the topological ver-
sion of the conjecture for A∩B �= ∅
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The obvious way to avoid this counterexample would be to strengthen
the disjointness requirement on A and B to A∩B = ∅, a condition obviously
violated in the graph of Figure 2. However, this condition implies also that the
separator X in any Erdős-Menger system (P, X) as provided by Theorem 3.2
separates A and B even topologically. Indeed, since the points of X lie on
disjoint A–B paths, any end in X � X would lie in A∩B = ∅. So X � X = ∅,
ie. X is closed in |G|. But this implies that any topological A–B path Q

in |G| � X can be modified into a proper A–B path in |G| � X, ie. one that
contains no ends of G other than possibly its endpoints in A and B. (The proof
of this is an easy adaptation of the proof of [ 9, Lemma 3.4 ].) We thus have
the following strengthening of Theorem 3.2 for sets A, B with disjoint closures
(even when G is uncountable):

Theorem 3.6. If A ∩ B = ∅, then any solution in |G| to the Erdős-Menger

conjecture for A, B ⊆ V ∪Ω also solves the topological Erdős-Menger conjecture

in |G| for A and B. �

If the imposition of the condition of A∩B = ∅ = A∩B in Theorem 3.2
seemed unnecessarily strong at least for some natural classes of graphs, then
imposing A∩B = ∅ in Theorem 3.6 will seem worse: there are many examples
of G, A, B that do not satisfy A∩B = ∅ but where the topological conjecture
can be proved nonetheless. So as before, the questions of how this condition
can be weakened, for which classes of graphs it can be avoided altoghether, and
how the topological Erdős-Menger conjecture relates to the standard version
when A∩B �= ∅ remain open.

4. Alternating paths between ends

In this section we adapt standard alternating path techniques, such as used
by Gallai [ 11 ] in his constructive proof of the finite Menger theorem, to our
infinite setting. The exposition will concentrate on the infinite aspects that are
new, and skip some of the finite details; these can be found in the rendering of
Gallai’s proof in [ 7 ].

Let H be a subgraph of G, let S, T ⊆ V (H)∪Ω be disjoint, and let P be
a set of disjoint S–T paths in H. We write |P| for the union of all the paths
in P including their endpoints; thus,

|P| :=
⋃

{P | P ∈ P } .

An alternating walk with respect to P is a finite sequence W = (W1, . . . , Wn),
with n odd, of paths in H satisfying the following conditions:

(A1) the first but no other point of W1 lies in S � |P|, the last point of Wn

lies in |P| or in T � |P|, and no point of Wn other than the last lies in T ;
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(A2) except for the endpoints mentioned in (i), all Wi with i odd have both
endpoints in |P| and are otherwise contained in H � |P|;

(A3) every Wi with i even is a non-trivial segment of some P with P ∈ P in
reverse order;

(A4) distinct Wi are disjoint except possibly in their endpoints, and for all
i = 1, . . . , n− 1 the last point of Wi is the first point of Wi+1.

Note that there are only finitely many Wi, but that the Wi themselves may be
infinite: they can be rays, inverse rays, or even double rays with ends in S ∪T .

The concatenation W of the paths W1, . . . , Wn above is a topological path
in H, ie. a continuous (though not necessarily 1–1) image in H of the unit
interval [ 0, 1 ]. We do not always distinguish W from W notationally, and may
thus speak of the ‘first point’ of W in a given (closed) set D ⊆ H etc.

Another set Q of disjoint S–T paths in H will be said to exceed P if
|P| ∩S � |Q| ∩S and |P| ∩T � |Q| ∩T .

Lemma 4.1. If H contains an alternating walk with respect to P that ends

in T � |P|, then H contains a set of disjoint S–T paths exceeding P.

Proof. Let W = (W1, . . . , Wn) be an alternating walk as stated. Let H ′ be
the subgraph of H whose edge set is the symmetric difference between the edge
sets of

⋃
W and

⋃
P, and whose vertices are those incident with these edges.

Local inspection of how taking this symmentric difference affects the degree
of a given vertex on P or W shows that every vertex of H ′ outside S ∪ T has
degree 2, while those in S ∪ T have degree 1. So the components of H ′ are
either paths, or finite cycles avoiding S ∪ T . Moreover since n is finite, every
ray or inverse ray contained in some P ∈ P or in some Wi has a tail that either
lies in H ′ or avoids H ′. Together with (A4), the above implies that every vertex
or end in S that is a first point of some P ∈ P or of W1, as well as every vertex
or end in T that is a last point of some P ∈ P or of Wn, is also an endpoint of
a path that is a component of H ′.

Finally, any path Q that is a component of H ′ traverses all its edges in
their original direction as induced by some P ∈ P or some Wi with i odd.
Therefore Q has its first but no other point in S and its last but no other point
in T , and hence is an S–T path.

The set of components of H ′ therefore includes a set Q of disjoint S–T

paths in H whose first points include S ∩ |P| as well as the first point of W1,
and whose last points include T ∩ |P| as well as the last point of Wn. Thus,
Q exceeds P. �

Lemma 4.2. If S ∩T = ∅ = S ∩T , then in H there is either an S–T separator

on P or a set of disjoint S–T paths exceeding P.
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Proof. Unless otherwise stated, all alternating walks in this proof will be with
respect to P. Let us define a potential S–T separator X on P by selecting
one point xP from every path P ∈ P, as follows. If P has a last vertex that
lies on some alternating walk, let xP be that vertex. If P has a vertex on an
alternating walk but no last such vertex, we let xP be the last point of P (which
will be an end in T ). If P has no vertex on an alternating walk, let xP be the
first point of P . We show that if

X := {xP | P ∈ P }

is not an S–T separator in H, then H contains an alternating walk with respect
to P that ends in T � |P|. The assertion then follows from Lemma 4.1.

Suppose there is a path Q in H that starts in S, ends in T , and satisfies
Q∩X = ∅. Since S ∩T = ∅ = S ∩T , clearly Q has a last point in S and after
this a first point in T , so we may assume that Q is an S–T path. If Q∩|P| = ∅,
then W = (Q) is the desired alternating walk (and P ∪{Q } is a set of disjoint
S–T paths exceeding P). So we assume that Q∩ |P| �= ∅. Let us show that Q

has a first point in |P|. If not, then the first point of Q is an end σ ∈ S � |P|,
and Q contains an (inverse) ray R ∈ σ that has infinitely many vertices in |P|.
But only finitely many of these vertices lie on any one P ∈ P, since otherwise
P would have a tail equivalent to R ∈ σ /∈ |P|, a contradiction. So R meets
infinitely many distinct paths P ∈ P, but each of them in only finitely many
vertices. Since each of these P has an endpoint in T , we thus have infinitely
many disjoint R–T paths in H and hence R ∈ σ ∈ T by Lemma 2.1. As σ ∈ S,
this contradicts our assumption that S ∩T = ∅. So Q does indeed have a first
point in |P|; let us call this point p.

Unless p is the first point of Q, the initial segment Qp of Q ending in p is
an alternating walk. Moreover, if p is an end in T , then p = xP for the path
P ∈ P containing p, because QpP is an alternating walk containing arbitrarily
late vertices of P . Hence in either case Q also meets the set |P ′|, where

P ′ := {PxP | P ∈ P }

is the set of initial segments of the paths P ∈ P ending in xP . Let us show that
Q has a last point in |P ′|. If not, then Q has a (forward) tail R with infinitely
many vertices in |P ′|; let τ ∈ T be the end containing R. Suppose first that R

shares infinitely many vertices from |P ′| with some fixed path P ∈ P. Then P

has a tail with infinitely many vertices in V (R)∩ |P ′|, which must be a forward
tail of P because R ∈ τ ∈ T . So P has arbitrarily late vertices in V (R)∩ |P ′|,
implying xP = τ . But then Q has its last point τ in X, contrary to our assump-
tion that Q∩X = ∅. Hence of the infinite set V (R)∩ |P ′| only finitely many
points lie on any one P ∈ P, so R meets infinitely many different P ∈ P. But
now H contains infinitely many disjoint paths from S to R, implying R ∈ τ ∈ S

by Lemma 2.1. As τ ∈ T , this contradicts our assumption that S ∩T = ∅. So
Q does indeed have a last point in |P ′|; let us call this point q.
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Let P be the path in P containing q, and let x := xP . As Q avoids X

we have q �= x, so q precedes x on P (as q ∈ |P ′|) and is not the last point
of Q. In particular, x = xP is not the first point of P , and so there is an
alternating walk W ending on q̊P (ie. on P after q, for example at x). Let y

be the first point on q̊Px of the topological path W corresponding to W; then
W ′ := WyPq defines an alternating walk from S � |P| to q. If W ′ meets qQ

only in q, let W ′′ := W ′ ∪ qQ; if W ′ meets q̊Q, say first in z, let W ′′ := W ′zQ.
In either case W ′′ defines an alternating walk with respect to P ′.

But no alternating walk with respect to P ′ can meet |P| outside |P ′|: if it
did, it would do so in some first point r, and then its initial segment ending in r

would be an alternating walk with respect to P, putting r in |P ′| by definition
of |P ′|. Therefore W ′′ is an alternating walk also with respect to P, and the
last point of W ′′ (which is also the last point of q̊Q �= ∅) cannot lie in |P|.
Hence W ′′ ends in T � |P|, as required. �

Corollary 4.3. If S is a finite set of vertices, then H contains a set P of

disjoint S–T paths and an S–T separator on P.

Proof. Making every point in S ∩T into a trivial S–T path and putting it in
the separator, we may assume that S ∩T = ∅. Since S is finite and consists of
vertices only, this implies S ∩ T = ∅ = S ∩ T . Now let P be a set of disjoint
S–T paths in H, as many as possible. This set cannot be exceeded, so the
assertion follows from Lemma 4.2. �

5. The end-to-vertex reduction

In this section we shall use Corollary 4.3 to reduce the end version of the Erdős-
Menger conjecture to its vertex version. Since the vertex version is currently
known only for countable graphs, our proof will make free use of the countability
of G. This will simplify matters considerably but could, I believe, be avoided.

We begin with a lemma from Stein [ 16 ]. Let T be a finite set of vertices
in a graph H. A T -path, for the purpose of this paper, is any path whose
endvertices lie in T , whose inner vertices lie outside T , and which has at least
one inner vertex. Paths P1, . . . , Pk are said to be disjoint outside some given
Q ⊆ H if Pi ∩Pj ⊆ Q whenever i �= j.

Lemma 5.1. Let H be a graph, let T ⊆ V (H) be finite, and let k ∈ N. Then

H has a finite subgraph H ′ containing T such that for every T -path Q = s . . . t

in H that meets H −H ′ there are k distinct T -paths from s to t in H ′ that are

disjoint outside Q (Fig. 3).

Proof. We apply induction on k. For k = 0 the lemma holds with H ′ := H [T ].
For the induction step, let H ′ = H ′

k satisfy the lemma for k. For every two
vertices u, v ∈ H ′

k such that H contains a V (H ′
k)-path from u to v, add such a

path to H ′
k and call the resulting graph H ′

k+1.
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Q

T

s

t H −H ′

H ′

P1
P2

Pk

FIGURE 3. T -paths P1, . . . , Pk that are disjoint outside Q

To show that H ′ = H ′
k+1 satisfies the lemma for k + 1, let Q = s . . . t be

given as stated. Since Q meets H −H ′
k+1 ⊆ H −H ′

k, the induction hypothesis
provides us with k distinct T -paths P1, . . . , Pk from s to t in H ′

k that are disjoint
outside Q. Moreover, by the definition of H ′

k+1, for every V (H ′
k)-path u . . . v

contained in Q there exists a V (H ′
k)-path from u to v in H ′

k+1. The union of
these latter paths with Q∩H ′

k is a connected subgraph of H ′
k+1 containing s

and t, which meets H ′
k (and hence P1, . . . , Pk) only on Q; let Pk+1 be an s–t

path in this connected graph. Then every edge of Pk+1 with both endvertices
in H ′

k is an edge of Q. Since Q∩H ′
k does not contain an s–t path, this means

that Pk+1 has a vertex outside H ′
k and therefore differs from P1, . . . , Pk. �

Our next lemma is the essential step in our reduction of the end version of
the Erdős-Menger conjecture to its vertex version: it replaces the set A ⊆ V ∪Ω
with a set A′ consisting only of vertices, and can then be repeated to do the
same for B.

Lemma 5.2. Let A, B ⊆ V ∪Ω be such that A∩B = ∅ = A∩B. Then G has

a minor G′ = (V ′, E′,Ω′) with subsets A′ ⊆ V ′ and B′ ⊆ V ′∪Ω′ such that the

following two assertions hold:

(i) A′ ∩B′ = ∅ = A′ ∩B′;

(ii) G satisfies the Erdős-Menger conjecture for A and B if G′ satisfies it for

A′ and B′.

Proof. Choose an enumeration V = { v1, v2, . . . } of the vertices of G, and for
every i ∈ N put Si := { v1, . . . , vi }. For i = 0, 1, . . . in turn, define Ci as the set
of all the components C of G−Si that satisfy the following requirements:

(C1) C ∩B = ∅;
(C2) C ∩A∩Ω �= ∅;
(C3) C ∩D = ∅ for every D ∈ Cj with j < i.
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Finally, put C :=
⋃

i∈N
Ci.

By (C3), the subgraphs C ∈ C are pairwise disjoint. In fact, they have
disjoint closures C: since every N(C) ⊆ Si is finite, no end of G can have rays
in two distinct C ∈ C. When we delete and contract parts of G to form G′, we
shall do this independently in the various C ∈ C.

Although formally Si will often have vertices s in components D ∈ Cj with
j < i, no such s can have a neighbour in any C ∈ Ci, because the neighbours
of s ∈ D lie either in D (which is disjoint from C) or in Sj ⊆ Si. Since our
purpose in considering a component C ∈ Ci will lie in finding Si–A paths in the
graph G [C ∪Si ], such vertices s will thus be useless. To simplify matters, we
shall therefore use

SC := N(C) ⊆ Si

instead of Si to separate off C, and consider the graphs

GC := G [C ∪SC ]

instead of G [C ∪Si ]. Then

GC ∩D = ∅ for all distinct C, D ∈ C. (1)

Indeed, we already observed that C ∩D = ∅. Moreover, we just showed that
SC cannot meet any D ∈ Cj with j < i. And SC cannot meet any D ∈ Cj with
j � i, because SC ⊆ Si ⊆ Sj . This completes the proof of (1).

Although every C ∈ C avoids B, let us remember that the sets SC may
meet B. For each C ∈ C, put

AC := A∩GC .

Let us show the following:

Every end α ∈ A∩Ω lies in AC for some C ∈ C. (2)

As A ∩ B = ∅ by assumption, α has a neighbourhood Ĉ(S, α) in |G| that
avoids B. If i is large enough that S ⊆ Si, the component C ′ of G − Si to
which α belongs is contained in C and hence satisfies (C1) and (C2). There-
fore C ′ ∈ Ci unless C ′ fails to satisfy (C3), in which case C ′ meets some D ∈ Cj

with j < i. But then C ′ ⊆ D because Sj ⊆ Si, giving α ∈ AD. This completes
the proof of (2).

We now describe, independently for distinct C ∈ C, which parts of C are
to be deleted or contracted to form G′. So fix C ∈ C. We first use Corollary
4.3 to find in GC a set PC of disjoint SC–AC paths together with an SC–AC

separator XC on PC (Fig. 4). Let us write XC as XC = UC ∪ OC , where

12



UC := XC ∩ V and OC := XC ∩Ω. Since |XC | � |PC | � |SC |, both UC and
OC are finite. Moreover,

UC separates SC from AC � OC in G. (3)

Indeed, every SC–AC path in G lies in GC and hence meets XC , and since it
cannot meet OC unless it ends there, it meets XC in UC if it ends in AC �OC .

C
G

Dα1

Dα2

H ′
α1

H ′
α2

H ′
α2

α2

α4

α1

SC

AC

AC

Si

GC

HC

∩Ω

∩Ω

delete

contract

3a

5a
6a

D

TC � (U
C ∪SC )

XC ∩Ω = OC

XC ∩Ω = OC

UC = XC ∩V

FIGURE 4. SC–AC paths in GC , and the separator XC = UC ∪OC

Let D1(C) denote the set of all the components D of G − UC such that
D ∩ (AC � OC) �= ∅. By (3), these components satisfy D ⊆ C, and their
neighbourhood N(D) ⊆ UC in G is finite. Moreover,

D∩OC = ∅ for all D ∈ D1(C). (4)

For if α ∈ D ∩OC , say, and P is the SC–AC path in PC that ends in α, then
P avoids UC and hence lies in D. But then there is also a path in D from the
first point of P (which lies in SC) to AC � OC (which D meets by definition),
contradicting (3).

Let
HC := GC −

⋃
D1(C),

and put D1 :=
⋃

C∈C D1(C). Note that, as every x ∈ UC lies on a path in PC ,

GC contains a set of disjoint HC–AC paths whose set of first

points is UC .
(5)
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By (3) and the definition of HC , we have HC ∩ A ⊆ UC ∪ OC = XC .
Since OC is finite, we can extend UC ∪ SC to a finite set TC ⊆ V (HC) that
separates the ends in OC pairwise in G. For each α ∈ OC let Cα ⊆ HC ∩C

be the component of G−TC to which α belongs, and put Hα := G [Cα ∪TC ].
Let H ′

α be the finite subgraph of Hα containing TC which Lemma 5.1 provides
for k := |TC |+ 2, and let Dα ⊆ Cα be the component of G−H ′

α to which α

belongs. Write D2(C) := {Dα | α ∈ OC } and D2 :=
⋃

C∈C D2(C). Finally put
D := D1 ∪D2, noting that D∩Dα = ∅ for all D ∈ D1 and Dα ∈ D2, by (4).

In order to define G′, put

U :=
⋃

C∈C
UC and VAB := U ∩B .

Let G̃ be obtained from G by deleting
⋃
D1 and contracting every Dα ∈ D2 to

a single vertex aα. Let

A∗ := { aα | Dα ∈ D2 } ,

and put

Ã :=
(
A �

⋃
C∈C

AC

)
∪U ∪A∗ ⊆

(1,2)
V (G̃).

Finally, let
G′ := G̃−VAB and A′ := Ã � VAB .

Then for Z := VAB ∪
⋃

D∈D V (D) we have

G−Z = G∩G′ = G′ −A∗.

An important property of G′ is that the ends of G in B correspond closely
to ends of G′. To establish this correspondence formally, we begin with the
following observation:

Every ray R in an end β ∈ B has a tail in G−Z. (6)

Indeed, as for every D ∈ D the set N(D) of its neighbours in G is finite, each D

can meet R in at most finitely many vertices; recall that D ⊆ C for some C ∈ C,
and hence β /∈ D by (C1). It remains to show that R cannot meet infinitely
many D ∈ D and has only finitely many vertices in VAB . Recall that distinct
D ∈ D are disjoint, and that D ∩A �= ∅ by definition of D. Hence if R meets
infinitely many D ∈ D, we can find infinitely many disjoint R–A paths in G.
Similarly if R has infinitely many vertices in VAB ⊆ U , we can find infinitely
many disjoint R–A paths in G by (5) and (1). But then β ∈ A by Lemma 2.1,
contrary to our assumption that A∩B = ∅. This completes the proof of (6).
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Let R1, R2 be two rays in G∩G′, and assume that the end of R1

in G lies in B. Then R1 and R2 are equivalent in G if and only

if they are equivalent in G′.

(7)

To prove (7), suppose first that R1 and R2 are equivalent in G, ie. belong to
the same end β ∈ B. Then G contains infinitely many disjoint R1–R2 paths
P1, P2, . . . . Since β /∈ A, only finitely many D ∈ D can have a vertex in

⋃
i Pi (as

in the proof of (6)), and each of these D meets only finitely many Pi, because
N(D) is finite and R1, R2 ⊆ G−D. Similarly, β /∈ A implies that only finitely
many Pi meet VAB ⊆ U . Hence all but finitely many of the Pi lie in G∩G′,
showing that R1 and R2 are equivalent also in G′.

Conversely, if R1 and R2 are joined in G′ by infinitely many disjoint paths,
we can replace any vertices aα ∈ V ′ � V = A∗ on these paths by finite paths
in Dα to obtain infinitely many disjoint R1–R2 paths in G. (Alternatively, one
can observe as in (6) that only finitely many of those R1–R2 paths in G′ can
have vertices in A∗.) This completes the proof of (7).

We can now define our correspondence between the ends in B and certain
ends of G′, and then define B′. For every end β ∈ B there is by (6) an end
β′ ∈ Ω′ = Ω(G′) such that β ∩ β′ �= ∅. By (7), this end β′ is unique and the
map β �→ β′ is injective. Let

B′ := {β′ | β ∈ B ∩Ω }∪ (B ∩V ) � VAB ⊆
(C1)

Ω′ ∪V ′ � A′.

Let us prove assertion (i) of the lemma (with closures taken in |G′|). We
trivially have A′ ∩B′ = ∅, because A′ ⊆ V ′ and A′ ∩B′ = ∅. To show that
A′ ∩ B′ = ∅, consider an end β′ ∈ B′. The corresponding end β ∈ B has a
neighbourhood Ĉ(S, β) in |G| that avoids A. By (5), this C has only finitely
many vertices in U and meets only finitely many D ∈ D (as in the proof of (6)).
Adding to S � Z the finite set

V ′ ∩V (C)∩
(
U ∪

⋃
{N(D) | D ∈ D; D∩C �= ∅ }

)

then yields a finite set S′ ⊆ V ′ such that the neighbourhood Ĉ ′(S′, β′) of β′ in
|G′| does not meet A′, as desired.

We now prove assertion (ii) of the lemma. Suppose that G′ contains a set
P ′ of disjoint A′–B′ paths and an A′–B′ separator X ′ on P ′. Put

P̃ := P ′ ∪{ (x) | x ∈ VAB } ,

where (x) denotes the trivial Ã–B path with vertex x.
In order to turn P̃ into a set P = {P | P̃ ∈ P̃ } of disjoint A–B paths

in G, consider any P̃ ∈ P̃. If the first point a ∈ Ã of P̃ lies in A we leave P̃

unchanged, ie. set P := P̃ . If a ∈ U �A, pick C ∈ C with a ∈ UC , and let P be
the union of P̃ with an AC–HC path in GC that ends in a; this can be done
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disjointly for different P̃ ∈ P̃ if we use the paths from (5) and remember that
distinct C ∈ C have disjoint closures. Moreover, the AC–HC path concatenated
with P̃ in this way has all its vertices other than a outside G′ and VAB , so it
contains no other vertices of P̃. Finally if a = aα ∈ A∗, we let P be obtained
from P̃ by replacing a with a path in Dα that starts at the end α and ends at
the vertex of Dα incident with the first edge of P̃ (the edge incident with a).
In all these cases we have P ⊆ G, because P̃ has no vertex in A∗ other than
possibly a. And no vertex of P other than possibly its last vertex lies in B,
because any new initial segment of P lies in a subgraph D ∈ D of G, which
avoids B because the C ∈ C containing it satisfies (C1).

It remains to check that the paths P just defined have distinct last points
in B even when the last points of the corresponding paths P̃ are ends. However
if P̃ ends in β′ ∈ B′ ∩Ω′ then its tail P̃ − a ⊆ P ⊆ G is equivalent in G′ to
some ray in β′ ∩ β, by definition of β′. By (7) this implies P̃ − a ∈ β, so the
last point of P is β ∈ B. And since the map β �→ β′ is well defined, these
last points differ for distinct P , since the corresponding paths P̃ have different
endpoints β′ by assumption.

We still need an A–B separator X on P. Let X be obtained from X ′∪VAB

by replacing every end β′ ∈ X ′ with the corresponding end β ∈ B, and replacing
every aα ∈ X ′ ∩A∗ with the end α ∈ A. Since P ∈ P starts in α if P̃ starts
in aα (and P ends in β if P̃ ends in β′), this set X consists of a choice of one
point from every path in P.

To show that X separates A from B in G, suppose there exists a path
Q ⊆ G − X that starts in A and ends in B. Note that Q avoids VAB , since
VAB ⊆ X. Our aim is to turn Q into an A′–B′ path Q′ ⊆ G′ − X ′, with a
contradiction. If Q meets

⋃
D1 it has a last vertex there by (6), and its next

vertex a lies in U � VAB ⊆ A′; we then define Q′ (for the time being) as the
final segment aQ of Q starting at a. If Q has no vertex in

⋃
D1, then either

the first point of Q is a vertex a ∈ A ∩ A′ (in which case we put Q′ := Q),
or Q starts in an end α ∈ OC for some C ∈ C; we then make a := aα the
starting vertex of Q′ and continue Q′ along Q, beginning with the last Dα–G′

edge on Q. Then our assumption of α /∈ X (by the choice of Q) implies that
a /∈ X ′, by the definition of X. Thus in all three cases, Q′ is now a path that
avoids X ′, and which starts at a vertex a ∈ A′ and from there continues with
a tail of Q that avoids

⋃
D1.

However, Q′ may still not be a path in G′, since it can meet some com-
ponents Dα ∈ D2 with aα �= a. Indeed, Q might use such segments in Dα to
bypass X. And we may not be able to turn Q′ into our desired A′–B′ path in
G′ −X ′ simply by replacing those Q-segments in Dα with the vertex aα ∈ V ′,
because it may happen that aα ∈ X ′. Using Lemma 5.1, however, we shall be
able to replace any segments of Q′ that meet some Dα ∈ D2 with paths through
the corresponding graph H ′

α ⊆ G∩G′ that avoid X ′. Since Q (and hence Q′)
has by (6) a tail that avoids all D ∈ D2, these modifications will only affect a
finite initial segment of Q′. So all these modifications will turn Q′ into a (walk
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that can be pruned to a) path that starts at a ∈ A′, and then runs through
G ∩ G′ until it ends at the last vertex b of Q or in the forward end β of Q

(Fig. 5). If we view Q′ as a path in G′, its last point is either b or β′ in B′,
yielding the desired contradiction.

t
a

s

T

α
Dα

H ′
α

Q′− a ⊆ Q
β

FIGURE 5. Modifying Q′ − a into a path in G∩G′

So consider a segment sQt of Q′ that meets some Dα ∈ D2 with aα �= a.
By definition of Dα, we may choose s and t so that sQt is a TC-path in Hα,
where C is the unique element of C containing Dα. By definition of the graph
H ′

α ⊆ Hα (which is a subgraph of G̃ by (1), ie. no parts of H ′
α were deleted

or contracted during the treatment of any other C ∈ C), there are |TC | + 2
paths from s to t in H ′

α that are disjoint outside sQt. But H ′
α contains at most

|TC | + 1 vertices from X ′ ∪ VAB : since these lie on disjoint paths P̃ starting
in Ã, and the only point in Ã not separated in G̃ from H ′

α by TC is aα (by
definition of TC), all but at most one of these paths P̃ meet TC on their way
from Ã to H ′

α. So one of our |TC |+2 distinct s–t paths in H ′
α that are disjoint

outside sQt avoids X ′ ∪VAB , and we can use this path to replace sQt on Q′.
�

Proof of Theorem 3.2. Apply Lemma 5.2 twice, to replace first A and then
B (or B′) by a set of vertices. Then apply Aharoni’s Theorem 3.1. �

Acknowledgement

Thanks are due to Henning Bruhn for pointing out a subtle technical error in
an earlier draft of the proof of Lemma 5.2.

17



References

1. R. Aharoni, König’s duality theorem for infinite bipartite graphs, J. Lon-

don Math. Soc. 29 (1984), 1–12.

2. R. Aharoni, Menger’s theorem for countable graphs, J. Combin. Theo-

ry B 31 (1987), 303–313.

3. R. Aharoni, A few remarks on a conjecture of Erdős on the infinite ver-
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