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Introduction

The purpose of this chapter is to summarize the results obtained in this thesis.
A more detailed discussion of these results is deferred to the relevant chapters.
In Chapter 1 we develop the notion of an infinite cycle and prove several infinite
analogues of well-known facts about the cycle space of a finite graph. Chap-
ters 2 and 3 both deal with substructures of graphs of large average degree.
In Chapter 4 we prove several results about partitions of graphs, one of which
will enable us to strengthen the main result of Chapter 2 for graphs of high
connectivity. Rich substructures are also the theme of Chapter 5. However,
instead of considering graphs of high average degree or connectivity, we are
there concerned with graphs which contain a large externally highly connected
subgraph. Finally, in Chapter 6 we give a short proof of the result of Nash-
Williams that the infinite trees are well-quasi-ordered by the topological minor
relation, i.e. that for every infinite sequence T7,75,... of infinite trees there
exist indices 4 < j such that T; is a topological minor of T;. The terminology
we use in this thesis is that of [6].

Infinite cycles

It is well-known that for every spanning tree T of a finite graph G the funda-
mental cycles (those consisting of a chord zy of T' together with the path in T’
joining z to y) generate the entire cycle space of G—every element of the cycle
space can be expressed as a sum mod 2 of fundamental cycles. Richter [39]
asked in which way this fact might generalize to locally finite infinite graphs.
If we define the cycle space of a locally finite graph G in the same way as
for a finite graph, i.e. as the set of all finite sums mod 2 of finite cycles, then of
course, for any spanning tree of GG, the fundamental cycles generate the entire
cycle space. But an infinite graph may have infinitely many finite cycles. So it is
natural to allow also well-defined infinite sums of finite cycles—those for which
every edge lies in only finitely many summands and for which it is therefore
decidable whether any given edge belongs to the sum or not. This already
shows that Richter’s question leads to something new: now the elements of the
cycle space can be infinite, but the fundamental cycles are still finite.
Furthermore, one might try to generalize the notion of a cycle to obtain
infinite cycles as well. Then the cycle space would consist of well-defined sums
mod 2 of finite or infinite cycles. But what should these infinite cycles be? If we
look at a 2-way infinite ladder, then it is natural to say that its two sides form
a cycle together with the two points at infinity (Fig. 1). Similarly, the three



sides of a 3-way infinite ladder form a cycle together with the three points at
infinity. In Chapter 1 we generalize these examples by defining an infinite cycle

S N I TW/\

Figure 1: Infinite cycles in 2- and 3-way infinite ladders

to be a homeomorphic image of the unit circle in the graph compactified by its
ends. We show that for a locally finite connected graph G, the spanning trees
of G for which the fundamental cycles generate every element of the cycle space
of G are precisely the end-respecting (equivalently: end-faithful) spanning trees
of G:

Theorem Let G be a locally finite connected graph and let T be any spanning
tree of G. Then the following are equivalent:

(i) Ewvery cycle of G is a sum of fundamental cycles.
(ii) Ewvery element of the cycle space of G is a sum of fundamental cycles.

(iii) T is end-respecting.

It turns out that this theorem does not hold if we no longer restrict ourselves
to locally finite graphs. However, even for general infinite graphs we will still
be able to characterize the spanning trees for which the fundamental cycles
generate every cycle, and those for which the same holds for all elements of the
cycle space. Surprisingly, there are graphs for which these two sets of spanning
trees differ. We also prove an infinite analogue of the fact that every element
of the cycle space of a finite graph is an edge-disjoint union of finite cycles:

Theorem FEvery element of the cycle space of an infinite graph is an edge-
disjoint union of (finite and infinite) cycles.

The results of Chapter 1 are joint work with R. Diestel [10, 11].

Induced subdivisions in K| ;-free graphs of large average degree

A classical theorem of Mader states that for any given graph H every graph
of sufficiently large average degree contains a subdivision of H. (The average
degree of a graph G is equal to the average number of edges incident with a
vertex of G. A subdivision of a graph G is a graph obtained from G by replacing
the edges of G by internally disjoint paths.) Clearly, if we ask for an induced
subdivision of H, then a statement analogous to Mader’s theorem does not
hold: for example, the complete bipartite graph K has average degree s but
it does not contain an induced subdivision of a cycle of length six. (A subgraph



G’ of G is induced if every edge of G joining two vertices of G’ is also contained
in G'.) The purpose of Chapter 2 is to show that if we restrict our attention to
K s-free graphs then an analogue of Mader’s theorem is indeed true:

Theorem For every graph H and every s € N there exists d = d(H,s) such
that every graph of average degree at least d contains either K, ; as a subgraph
or an induced subdivision of H.

Kierstead and Penrice [21] showed that a stronger statement is true when H is
a tree: any given tree can be found as an induced subgraph in every K, ;-free
graph of sufficiently large average degree. Clearly, the stronger statement does
not hold if H contains a cycle. In Chapter 2 we also include an alternative
proof of the result of Kierstead and Penrice as well as an elementary proof of
the special case of the above theorem when H is a cycle. The results of this
chapter are joint work with D. Osthus [26, 27].

Subgraphs of large average degree containing no cycle of length
less than six

By a classical theorem of Erdds there exist graphs which have both arbitrarily
large average degree and arbitrarily high girth. (The girth of a graph is the
length of its shortest cycle.) Such graphs G are locally ‘sparse’—a ball of small
radius around a vertex of G always induces just a tree in G—but globally
they are ‘dense’. A conjecture of Thomassen [52] states that such graphs not
only exist but occur in all graphs of large average degree: for all integers k, g
there exists f = f(k, g) such that every graph of average degree at least f has a
subgraph of average degree at least k and girth at least g. The aim of Chapter 3
is to prove this conjecture for the case of g < 6:

Theorem For every k there exists d = d(k) such that every graph of average
degree at least d contains a subgraph of average degree at least k and girth at
least siz.

This result is joint work with D. Osthus [25].

Partitions of graphs with high minimum degree or connectivity

Hajnal [19] and Thomassen [50] independently proved that the vertex set of
every highly connected graph G can be partitioned into sets S and T such that
the graphs G[S] and G[T] induced by these sets still have high connectivity. In
Chapter 4 we strengthen this result by showing that we can additionally require
that every vertex in S has many neighbours in 7T

Theorem For every £ there exists k = k(£) such that the vertez set of every k-
connected graph G can be partitioned into non-empty sets S and T such that both
G[S] and G[T] are £-connected and every vertex in S has at least £ neighbours
mn T.

This is best possible in the sense that we cannot additionally require the entire
bipartite subgraph of G between S and T' to have large minimum degree. If we
apply Mader’s theorem on subdivisions to G[S] we obtain



Corollary For every £ and every graph H there exists k = k(£,H) such that
every k-connected graph G contains a subdivision TH of H such that G—V (TH)
1s £-connected.

Similarly, applying our result on induced subdivisions from Chapter 2, we derive
an induced version of the above corollary for K, ;-free graphs. We also prove
several related results about partitions of graphs. The results of this chapter
are joint work with D. Osthus [28].

Forcing complete minors by high external connectivity

In Chapter 2 we looked for induced subdivisions in graphs of large average
degree. In Chapter 5 we will be concerned with sufficient conditions for the
existence of complete minors. A graph H is a minor of a graph G if H can
be obtained from a subgraph of G by contracting edges. So in particular, if G
is a subdivision of H then H is a minor of G. Given a graph G, we say that
X C V(G) is externally k-connected in G if |X| > k and, for all Y, Z C X
with |Y'| = |Z]| < k, there are |Y| disjoint Y—Z paths in G which have no inner
vertices or edges in G[X]. A subgraph H of G is ezternally k-connected in G if
V(H) is externally k-connected in G.

It it easy to see that if G is a graph which has an externally highly connected
set X such that G[X] contains a large grid minor, then G has a large complete
minor. Thus large externally highly connected grids force large complete mi-
nors. Grohe [18] asked whether there are graphs H which are substantially
thinner than grids, but which still force large complete minors in the same way.
In Chapter 5 we investigate what minimum amount of structure is required for
such graphs H. We observe that they must contain large binary trees with
some small additions, and prove that some canonical instances of this structure
are also sufficient to force large complete minors. Chapter 5 is based on [23].

On well-quasi-ordering infinite trees

The notion of externally highly connected sets, which was the subject of Chap-
ter 5, was introduced by Diestel et al. [9] in order to give a short proof of the
fundamental result of Robertson and Seymour [40] that every graph of large
tree-width contains a large grid minor. This result is one of the cornerstones
in Robertson’s and Seymour’s proof of the Graph Minor Theorem: the finite
graphs are well-quasi-ordered by the minor relation, i.e. for every infinite se-
quence G1,Go,... of finite graphs there exist indices 1 < j such that G; is a
minor of Gj. An example of Thomas [46] shows that the Graph Minor Theorem
fails for uncountable graphs. It remains an open problem whether it holds for
countable graphs.

If we restrict our attention to the set of all finite trees, then the Graph
Minor Theorem becomes much easier and was first proved by Kruskal [22]. He
showed that for trees even a stronger statement is true: the finite trees are well-
quasi-ordered by the topological minor relation. This had been conjectured by
Vézsonyi in the late 1930’s. (A graph H is a topological minor of a graph G if G
contains a subdivision of H.) Nash-Williams [33] generalized Kruskal’s theorem



to infinite trees. The proof of this result (for which Nash-Williams introduced
the stronger notion of a better-quasi-ordering) is much harder than that of the
finite case. In Chapter 6 we combine ideas of several authors into a simpler and
considerably shorter proof [24] of Nash-Williams’s result.
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Chapter 1

Infinite cycles

1.1 Introduction

One of the basic and well-known facts about finite graphs is that their funda-
mental cycles Ce (those consisting of a chord e = zy on some fixed spanning
tree T' together with the path xTy joining the endvertices of e in T') generate
their entire cycle space: every cycle of the graph can be written as a sum mod 2
of fundamental cycles. Richter [39] asked if and how this fact might generalize
to locally finite infinite graphs. Our first and main aim is to show that this
question, if viewed in the right way, admits a surprisingly elegant positive an-
swer. As a spin-off, we obtain infinite generalizations of most of the other basic
facts concerning the cycle space of a finite graph too. We shall also consider
graphs that may have infinite degrees, in which case the situation turns out to
be more complicated.

Of course, the finite fundamental cycle theorem transfers verbatim to infinite
graphs as long as we consider only the usual finite cycles, and stick to the usual
definition of the cycle space as the subspace of the edge space generated by these
cycles. However, there is also a very natural notion of an infinite cycle, and the
above question becomes interesting when these are admitted too—especially,
since fundamental cycles continue to be finite.

Before we make all this precise, let us look at an informal example. Let
L be the 2-way infinite ladder (viewed as a l-complex) and compactify it by
adding two points w,w’ at infinity, one for each end of the ladder (Fig. 1.1).

T
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Figure 1.1: Two infinite circles in the double ladder plus ends



Let a circle in the resulting topological space L be any homeomorphic image
of the unit circle in the Euclidean plane. Then every cycle of L is a circle in L,
but there are more circles than these. For example, the two sides of the ladder
(each a 2-way infinite path) form a circle C; together with the points w and ',
and for every rung vw the two horizontal 1-way infinite paths from v or w
towards w form a circle Cy together with w and the edge vw. Both these circles
contain infinitely many edges, and they are determined by these edges as the
closure of their union.

Now consider a spanning tree T' of L. If T' consists of the bottom side of L
and all the rungs, then every edge e of the top side of L induces a fundamental
cycle Ce. The sum (mod 2) of all these fundamental cycles is precisely the edge
set of C, the set of horizontal edges of L. Similarly, the edge set of Cs is the
sum all the fundamental cycles C, with e left of v (Fig. 1.2).

e v

° Ce °

w T/

Figure 1.2: Two spanning trees of the double ladder

However, for the spanning tree T consisting of the two sides of L and the
one rung vw, neither C1 nor Cs can be expressed as a sum of fundamental
cycles. Indeed, as every fundamental cycle contains the edge vw, any sum of
infinitely many fundamental cycles will be ill-defined: it is simply not clear
whether the edge vw should belong to this sum or not.

So even this simple example shows that our task is interesting: while it is
possible and natural to extend the usual cycle space of a finite graph to infinite
graphs in a way that allows for both infinite (topological) cycles and infinite
sums generating such cycles, the answer to the question of whether all infinite
cycles and their sums can be generated from fundamental cycles is by no means
clear and will, among other things, depend on the spanning tree considered.

Here is an overview of the layout of this chapter and its main results. In
Section 1.2 we identify some minimum requirements which any topology on
an infinite graph with its ends—in the ladder example, these are the points
w and w’— should satisfy in order to reflect our intuitive geometric picture of
ends as distinct points at infinity. We then define the cycle space of an infinite
graph more formally.

In Section 1.3 we introduce end-respecting spanning trees. It turns out that,
in a locally finite graph, these are precisely the spanning trees for which infinite
sums of fundamental cycles are always well-defined.
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In Section 1.4 we consider the question of how best to choose the topology
on an infinite graph with ends to obtain the most natural notion of a circle and
the strongest possible version of our theorem. For locally finite graphs we prove
that this topology is essentially unique.

In Section 1.5 we prove our main result for locally finite graphs and the
topology chosen in Section 1.4: for precisely the spanning trees identified in
Section 1.3, every infinite cycle of a locally finite graph is the (infinite) sum of
fundamental cycles, and so are the other elements of its cycle space.

In Section 1.6 we ask to what extent this result depends on the concrete
topology assumed. We find an abstract condition on the topology of a locally
finite graph such that our theorem holds, for any end-respecting spanning tree,
if and only if this condition is met.

In Section 1.7, we show that, for any such topology and any end-respecting
spanning tree, a subgraph of a locally finite graph lies in its cycle space if and
only if it meets every finite cut in an even number of edges. As a corollary, we
obtain an extension of Nash-Williams’s theorem that a graph is an edge-disjoint
union of (finite) cycles if and only if all its cuts are even or infinite.

In the remainder of this chapter we then restrict ourselves to the topology
chosen in Section 1.4 and consider graphs that may have infinite degrees. We
shall characterize the spanning trees whose fundamental cycles generate every
cycle (Section 1.8) or the entire cycle space (Section 1.9).

In Section 1.10 we prove an infinite analogue of the fact that every element
of the cycle space of a finite graph is the edge-disjoint union of cycles.

We conclude the chapter by mentioning an open problem (Section 1.11).

1.2 Basic facts and concepts

In this chapter, we shall freely view a graph either as a combinatorial object
or as the topological space of a 1-complex. (So every edge is homeomorphic
to the real interval [0,1], the basic open sets around an inner point being just
the open intervals on the edge. The basic open neighbourhoods of a vertex x
are the unions of half-open intervals [z, z), one from every edge [z, y] at z; note
that we do not require local finiteness here.)

We shall frequently use the following well-known fact [3, Thm. 3.7]:

Lemma 1.1 FEvery continuous injective map from a compact space X to a
Hausdorff space Y is a topological embedding, i.e. a homeomorphism between
X and its image in Y under the subspace topology.

A homeomorphic image (in the subspace topology) of the unit interval in a
topological space X will be called an arc in X; a homeomorphic image of the
unit circle in X is a circle in X.

When A is an arc in X, we denote the set of all inner points of A by A.
Similarly, when F is a set of edges, we write E for the set of all inner points
of edges in E. The following lemma can be proved by elementary topological
arguments.
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Lemma 1.2 FEwvery arc in G between two vertices is a graph-theoretical path. If
X is an open subset of G, then the set of points in X that can be reached by an
arc in X from a fized point x € X is open. The topological components of X
coincide with its arc-connected components.

Given a spanning tree T in a graph G, every edge e € E(G)\ E(T) is a chord
of T', and the unique cycle C, in T' + ¢ is a fundamental cycle with respect to T'.
A rooted spanning tree T' of G is normal if the endvertices of every edge of G
are comparable in the tree order induced by 7. Countable connected graphs
have normal spanning trees, but not all uncountable ones do; see [14] for details.
We will use the following simple lemma, a proof can be found in [13].

Lemma 1.3 Let z1,29 € V(G), and let T be a normal spanning tree of G.
For i = 1,2 let P; denote the path in T joining x; to the root of T. Then
V(P)) NV (P,) separates x1 from xs in G.

We refer to 1-way infinite paths as rays, to 2-way infinite paths as double
rays, and to the subrays of rays or double rays as their tails. If we consider
two rays in a graph G as equivalent if no finite set of vertices separates them
in G, then the equivalence classes of rays are known as the ends of G. (The
ladder, for example, has two ends, the grid has one, and the binary tree has
continuum many; see [7] for more background.) We shall write G for the union
of G (viewed as a space, i.e. a set of points) and the set of its ends.

We shall consider various topologies on G in this chapter. But they will
all satisfy the following two minimum requirements, without which we feel the
resulting notion of a circle would seem unnatural and contrived.

The topology on G is Hausdorff, and the subspace topology which it (1)
induces on G is the topology of G when viewed as a 1-complex.

Moreover, every ray should converge to the end it belongs to:

If R C (G is a ray and w is the end of G containing R, then every )
neighbourhood of w contains a tail of R.

Together, conditions (1) and (2) imply that a subset of G is open in G if
and only if it is open in G; we shall use this fact freely throughout the chapter.
The following lemma, which summarizes some properties of arcs and circles
in topologies satisfying (1) and (2), can be proved by elementary (though not
completely trivial) topological arguments.

Lemma 1.4 Let G be endowed with a topology satisfying (1) and (2). Then
every arc A in G whose endpoints are vertices or ends, and every circle C in
G, includes every edge of G of which it contains an inner point. If v is a vertex
in A (respectively on C), then A (respectively C) contains precisely two edges

of G at v.

Thus in particular, every circle in G ‘has’ a unique set of edges, and we may
define a cycle to be the subgraph of G consisting of all edges contained in a
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given circle in G (and the vertices incident with these edges). Note that these
include the usual finite cycles in G, and in particular its fundamental cycles
(with respect to any given spanning tree).

Another condition on the topology on G that seems natural in a context
where the circles of a graph are to be represented by subgraphs consisting of
their edges is that every circle is uniquely determined by its edges, as the closure
of their union. Equivalently:

For every circle C C G, the set C N G is dense in C. (3)

Although we shall not formally require (3), the topologies we shall consider for
G will turn out to satisfy this condition, too. However, (3) does not follow from
(1) and (2): in Section 1.4 we shall construct a graph with a topology satisfying
(1) and (2) that contains a circle consisting entirely of ends.

A family (G;)ies of subgraphs of a graph G will be called edge-thin if no
edge of G lies in G; for infinitely many 4, and the sum ), ; G; of this family
is the subgraph of G consisting of all edges that lie in G; for an odd number of
indices ¢ (and the vertices incident with these edges).

Based on the concept of a cycle and our definition of ‘sum’, we may now
define the cycle space C(G) of a locally finite graph G as the set of sums of edge-
thin families of cycles. If G is finite, then this definition is compatible with the
standard one (except that we now consider subgraphs of G rather than edge
sets).

However, in order to define the cycle space for graphs which may have
infinite degrees, we shall also have to take account of multiplicities of vertices if
we want at least some spanning trees to exist whose fundamental cycles generate
the cycle space. Indeed, let G be the graph obtained from two distinct vertices
v and w by adding new vertices z1,%2... and joining them to both v and w.
Then the path P := vziw is a well-defined sum of finite cycles according to
the above definition (and hence an element of the cycle space), but there is
no spanning tree T' of G whose fundamental cycles sum to P: any such sum
would consist of infinitely many fundamental cycles each containing v and w,
and so the two edges of the path vTw would lie in infinitely many summands
(contradiction). Hence there is no spanning tree of G for which the fundamental
cycles generate its cycle space.

To overcome this problem we sharpen the requirements on the sums making
up the cycle space, as follows. Call a family (G;);cs of subgraphs of a graph G
thin if no vertex of G lies in G; for infinitely many ¢. So in particular, every
thin family is edge-thin. Let the sum ), ; G; of a thin family be the subgraph
of G consisting of all edges that lie in G; for an odd number of indices 7 (and
the vertices incident with these edges), and let the cycle space C(G) of G be the
set of all sums of thin families of cycles. If G is locally finite, then the edge-thin
families of cycles are precisely the thin families (since by Lemma 1.4 every cycle
containing a vertex v must also contain some edge incident with v), and so our
definition reduces to that given earlier.

Clearly C(G) is closed under finite sums, and as a consequence of our main
results (and hence assuming a concrete topology for G) we shall see later that

13



C(Q) is closed also under taking infinite sums. This does not appear to be
obvious from the definition, and we have not pursued the question of whether
the definition implies it (independently of the topology assumed).

1.3 Choosing the spanning tree for a locally finite
graph

Our ladder example seemed to suggest that choosing the right spanning tree
might be an essential and difficult part of our problem. For locally finite graphs
however, this is not the case: as we shall see, there is a canonical kind of
spanning tree that will always do the job, and none other will. Before we define
these spanning trees, let us recall a standard lemma about infinite graphs; the
proof is not difficult and is included in [8, Lemma 1.2].

Lemma 1.5 LetU be an infinite set of vertices in a connected graph G. Then G
contains either a ray R with infinitely many disjoint U—-R paths or a subdivided
star with infinitely many leaves in U.

If H is a subgraph of G, then clearly every end w of H is a subset of a unique
end w’ of G. The map 7y : H — G which sends every end w of H to this end
w' of G and which is the identity on H is called the canonical projection of H
to G.

A spanning tree T of G is end-faithful if the canonical projection mrg is
bijective, i.e. if every end of G contains rays from exactly one end of T'. A span-
ning tree T of G is end-respecting if the canonical projection mrg is injective.
Using Lemma 1.5 it is easy to show that for locally finite G every end-respecting
spanning tree is even end-faithful, but this is not true in general. Note that ev-
ery connected countable graph has an end-faithful spanning tree; for example,
the normal spanning trees defined in Section 1.2 are end-faithful. See [7] for
further details.

The following observation shows that we shall want to restrict our attention
to end-respecting spanning trees: any other spanning tree 7" would always con-
tain a non-empty cycle, which is not only counter-intuitive but would also put
an end to our hopes of showing that all cycles are sums of fundamental cycles.
(Clearly, in any such sum each fundamental cycle present could be taken to
occur exactly once, but then the sum would contain its chord and hence not lie
inT.)

Lemma 1.6 LetT be a spanning tree of a graph G, and assume that T contains
no non-empty cycle of G. Then T is end-respecting.

Proof. Suppose T contains two rays R, Re from a common end w of G which
are inequivalent in 7". Then these rays can be chosen so as to meet precisely in
their common first vertex. It is now straightforward to show that, by (1) and
(2), R1 URy U {w} is a circle in G, and so Ry U Ry C T is a cycle. O

14



If G is locally finite, then the converse of Lemma 1.6 will follow, for a
concrete topology on G we shall consider, from Theorem 1.13 which says that
whenever T' is end-respecting in G all the cycles in G are sums of fundamental
cycles (and hence, in particular, not contained in 7°). Conditions (1) and (2)
do not imply the converse of Lemma 1.6 for arbitrary topologies, though: in
Section 1.4 we shall construct a topology for the binary tree which satisfies (1)
and (2), but under which a double ray in the tree occurs as a cycle. A more
complicated example at the end of Section 1.6 will show that the converse of
Lemma 1.6 does not even follow from (1), (2) and (3).

For locally finite graphs, end-respecting spanning trees have the pleasant
property that every sum of fundamental cycles is well-defined:

Lemma 1.7 LetT be an end-respecting spanning tree of a locally finite graph G.
Then the fundamental cycles of G with respect to T form a thin family.

Proof. Suppose that the lemma is false. As every egde-thin family of (finite)
cycles of a locally finite graph G is thin, it follows that there are infinitely many
fundamental cycles C1,Cs,... all containing the same edge e = zy. Then zy
is an edge of T'; let T, and T}, be the components of T' — e containing x and ¥,
respectively. For ¢ = 1,2,... let e; = x;y; be the edge of C; not on T'; since
e € C;, we may assume that z; € T, and y; € T),.

Applying Lemma 1.5 to Ty, with U = {z1,z2,... }, we obtain a ray R, C T
and an infinite index set I C N such that the paths P; C T, from z; to R, are
disjoint for different ¢ € I. Applying Lemma 1.5 to T, with U = {y; | i € I},
we likewise obtain a ray R, C T, and an infinite index set I’ C I such that
the paths Q; C T, from y; to R, are disjoint for different s € I'. As the rays
R; and Ry are disjoint, they belong to different ends of T'. But each of the
paths Pe;Q; with 7 € I' links R, to R, in G, and these are infinitely many
disjoint paths. Therefore R, and R, belong to a common end of G, so T' is not
end-respecting. O

We remark that the converse of Lemma 1.7 holds too: if T' is not end-
respecting, we can always find a family of fundamental cycles that is not (edge-)
thin.

1.4 Choosing the topology on G

Since the meaning of our intended result (that the fundamental cycles of a
graph generate its cycle space) depends on the notion of a circle and hence
on the topology considered for G, we have to fix some such topology at some
point. But which topology should we choose? In Section 1.2 we laid down
two minimum requirements for any topology on G that we might consider as
natural, conditions (1) and (2). However, these two conditions do not determine
the topology on G.

For example, the following topology satisfies (1) and (2) and would not seem
unnatural. Given an end w and a finite set S of vertices of GG, there is exactly
one component C' = Cg(S,w) of G — S which contains a tail of every ray in
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w. We say that w belongs to C. Writing Eg(S,w) for the set of all the C-S
edges in G, let us consider the topology on G that is generated by the open sets
of G (as a 1-complex) and all sets of the form {w}UCg(S,w) UEO’G(S, w), where
EOJ&(S, w) is any union of half-edges (z,y] C e, one for every e € Eg(S,w), with
z € é and y € C. Then the circles in this topology resemble those of our ladder
example:

Proposit_ion 1.8 Let G be any infinite graph. Under the above topology, every
circle in G is either a finite cycle or the union of finitely many double rays with
their ends.

Proposition 1.8 is not difficult to prove, and it easily implies that every cycle
is the sum of finite cycles. If G is locally finite then this implies by Lemma 1.7
that, given any end-respecting spanning tree, the fundamental cycles do indeed
generate the cycle space.

Although the topology for G on which Proposition 1.8 is based may be a
natural one to consider, it does not yield the strongest possible theorem. For
note that if Top; and TOP, are topologies on G such that Top, is Hausdorff and
coarser than TOPy, then every TOP;-circle is also a TOPa-circle (cf. Lemma 1.1).
Thus reducing the collection of open sets increases the set of circles, and so we
can strengthen our theorem by proving it for a coarser topology. Our next aim,
therefore, is to introduce a topology on G that is coarser than that considered
above. For locally finite G, this topology will turn out to be coarsest possible
with (1), and therefore yield the best possible result.

Given an end w and a finite set S of vertices of G, let C(S,w) denote the
union of C' := Cg(S,w) with the set of all ends belonging to C. There is an
obvious correspondence between these ends of G and those of C, and we shall
not normally distinguish between them. (Thus, C' will be treated as a subset
of G when this simplifies the notation.) Let TOP denote the topology on G
generated by the open sets of the 1-complex G and all sets of the form

Ca(S,w) == Cg(S,w) U EL(S,w),

where again E’é;(S, w) is any union of half-edges (z,y] C e, one for every e €
Eg(S,w), with z € é and y € C. So for each end w, the sets ég(S,w) with S
varying over the finite subsets of V(G) are the basic open neighbourhoods of w.
The topology which Top induces on the end space G \ G of G is the standard
topology there as studied in the literature.

The following observation is not difficult to prove; see e.g. [7].

Lemma 1.9 If G is connected and locally finite, then G is compact in TOP.

By Lemma 1.1, the topology of a compact Hausdorff space cannot be made
coarser without loss of the Hausdorff property. So for G locally finite, there
is no Hausdorff topology on G which is strictly coarser than ToP, and in this
sense proving the theorem for TOP (as we shall do in the next section) will be
best possible.

16



Lemma 1.10 For every infinite graph G, the topology TOP satisfies (1), (2)
and (3).

Proof. Conditions (1) and (2) hold trivially. Suppose there is a circle C in G
such that C' NG is not dense in C. Then some point on C' has a neighbourhood
N in C that consists entirely of ends. We may assume that N 2 C, and that
N = ONC for some basic open set O in G. Then O = D for some component
D of G — S with S C V(G) finite, and N = (D \ G) N C is the intersection of
two closed sets in G. So N is closed in G and hence in C. Since N = 0N C is
also open in C, the homeomorphism between C' and the unit circle takes N to
an open and closed proper subset there, contradicting its connectedness. [l

Note that if G is endowed with ToP, then Lemmas 1.4 and 1.10 together
imply that every infinite cycle C is a disjoint union of double rays, and its
defining circle is the closure of C in G.

Let us return to the case when G is locally finite. Since TOP is best pos-
sible for our purposes among all topologies comparable with it, the question
arises whether there are topologies which satisfy our minimum requirements
(1) and (2) but are incomparable with ToP. In the remainder of this sec-
tion, we first construct such an example. However we then show that a slight
strengthening of (2) will rule out such (pathological) examples and imply that
every topology on G satisfying this condition and (1) is indeed comparable
with ToP, making our theorem best possible also in a more global sense.

So we are looking for a locally finite graph G with a topology that satisfies
(1) and (2) but is incomparable with TOP. Since every Hausdorff topology
comparable with TOP refines TOP and hence inherits (3) from it (Lemma 1.1),
it suffices to construct a topology for G that violates (3). As a spin-off, we thus
obtain that conditions (1) and (2) do not imply (3):

Proposition 1.11 There exists a locally finite graph G with a topology that
satisfies (1) and (2) but not (3), and hence is incomparable with TOP.

Proof. Our graph G will be the infinite binary tree T. We label its vertices
with finite 01 sequences in the obvious way: the root (which is considered
as the lowest point in T') is labelled with the empty sequence, and if a vertex
has label £ then its two successors are labelled £0 and £1. Then the rays from
the root (and hence the ends of T') correspond bijectively to the infinite 0-1
sequences and may be thought of as elements of the real interval [0, 1] in their
binary expansion. Let J be the set of all rationals in (0,1) with a finite binary
expansion, and let J' := [0,1] \ J. Then each r € J' comes from exactly one
ray R,, while every ¢ € J comes from two: a ray R, labelled eventually 0,
and a ray R; labelled eventually 1. (For example, the rays 1011000... and
10101111... both correspond to 11/16.) Let wy, wy and wj denote the ends
containing R, R, and Ry, respectively. Let M’ be the set of the ends wy, and
let M be the set of all the other ends.

We now define the topology on T' so as to turn the bijection between [0, 1]
and M into a topological embedding. Every point in 7" will have the same basic
open neighbourhoods as it does in T' viewed as a 1-complex. The basic open
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neighbourhoods of an end w, € M are constructed as follows. Choose an open
neighbourhood I of p in [0,1]. For each s € I choose a point z on R, and let
N, be the set consisting of w, and all the points of T' (not of T') above z. Now
take the union of the N over all s € I to be a basic open neighbourhood of
wp. The basic open neighbourhoods of the ends w,’l € M’ will be as small as
possible given (1) and (2), consisting just of the ‘open final segments’ of R;:
pick a point z € R, choose for every vertex ¢; on R, above z a point z; in the
interior of the edge at ¢; that does not lie on R;, and take the union of the set
of points on Rfl above z with all the partial edges [t;, z;) to be a basic open
neighbourhood of wj.

It is straightforward to check that the topology generated in this way sat-
isfies (1) and (2). But it violates (3), since the union of M and the rays
Ry =000... and R; = 111... forms a circle. O

With only a slight modification, the above example will even contain a circle
consisting entirely of ends. Indeed, if we identify 0 and 1 in [0, 1] to form a circle
(and put w; in M’ rather than M), then in the analogously defined topology
the set M of ends becomes a circle in T.

In Section 1.6 we shall construct a graph G with a topology that satisfies
(3) as well as (1) and (2) but is still incomparable with ToP.

The topology on the binary tree constructed in the proof of Proposition 1.11
will hardly be considered as natural. But how unnatural did it have to be? Our
next Proposition answers this question in an unexpectedly clear-cut way: any
topology that witnesses Proposition 1.11 has to violate an only slight and still
pretty natural sharpening of condition (2). Or put another way, every topology
that satisfies (1) and this new condition is comparable with TOP.

In order to state the new condition we need a definition. A comb C' with
back R is obtained from a ray R and a sequence z1,Zo,... of distinct vertices
by adding for each i = 1,2,... a (possibly trivial) z;— R path P; so that all the
F; are disjoint and R meets P;1 after P;. The vertices x; will be called the
teeth of C'. When we speak of a comb in G, however, we wish to admit inner
points of edges as teeth. We therefore call C' a comb in G if C' is a comb in
some subdivision of G (in which every edge may be assumed to be subdivided
at most once).

Clearly, condition (2) is a special case of the more general requirement that
the teeth of every comb converge to the end of its back:

Every neighbourhood of an end w contains all but finitely many of (4)
the teeth of every comb in G whose back lies in w.

Note that for locally finite graphs (4) holds in Top and (1) and (4) together
imply (3). Indeed, we have the following stronger assertion:

Proposition 1.12 Let G be a locally finite connected graph, and let TOP' be
any topology on G that satisfies (1) and (4). Then TOP' is a refinement of TOP.

Proof. For a proof that the open sets of TOP are open in TOP/, it suffices
to show that for every end w of G and every finite S C V(G) there exists

18



a Top/-neighbourhood of w contained in C, where C := Cg(S,w). Suppose
not, let s1,89,... be an enumeration of the vertices outside S and C, and put
S; :=SU{s1,...,si}. Now consider any i. By (1), the vertices of S; together
with all their incident edges in G form a compact set S; = G[S;UN(S;)] in Top'.
So every Top'-neighbourhood of w contains a neighbourhood that avoids S;,
and hence meets one of the components of G — S; other than C. (Recall that
no such neighbourhood is contained in C, and apply (2).) As G — S; has only
finitely many components, this implies that there is a component D; # C of
G — S; met by every TOP'-neighbourhood of w.

Choosing these components D1, Ds,... in turn, we can ensure that D; D
Dy D .... Now pick a sequence of distinct points z; € D; so that no two of
them lie inside the same edge. By Lemma 1.5 (applied to the subdivision of G
obtained by making every z; a vertex) there is a comb C in G with teeth among
the z; and back R, say. Since each D; contains all but finitely many of the z;
and is separated from the rest of G by the finite set S;, this ray R has a tail in
every D;. But any two rays with this property are equivalent (because the S;
eventually contain any finite separator of D7), so the end w' of R is independent
of the choice of x1,x2,... but depends only on the sequence D1 D Dy D ....

Since ToP’ is Hausdorff, there are disjoint TOP’-neighbourhoods N of w and
N’ of w'. As N meets every D; but no vertex or edge lies in more than finitely
many D;, we may choose all our points z; inside N and hence outside N'. Hence
our comb C contradicts (4). O

1.5 The generating theorem for locally finite graphs

Let us now prove our main theorem for locally finite graphs G: under ToP, the
fundamental cycles with respect to any end-respecting spanning tree generate
the entire cycle space of G. Although this result is a special case of Theorem 1.27
below, we prove it separately, as the proof is much simpler than that of the
general case.

Theorem 1.13 Let G be a locally finite connected graph, let G be endowed with
Tor, and let T be any spanning tree of G. Then the following are equivalent:

(i) Every cycle of G is a sum of fundamental cycles.
(ii) Ewvery element of the cycle space C(G) of G is a sum of fundamental cycles.
(iii) T is end-respecting.

Proof. Clearly, (ii) implies (i). Lemma 1.6 and the remark preceding it show
that (i) implies (iii). To show that (iii) implies (ii) it suffices to prove the
following;:

If T is end-respecting, then every cycle C of G is equal to the sum (%)
of all the fundamental cycles C, with e € E(C) \ E(T).
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Indeed, every element Z of C(G) is by definition the sum of a thin family F of
cycles. By (x), each C € F is the sum of fundamental cycles C, with e € E(C).
Since F is thin, none of these edges e lies on more than finitely many cycles
in F, so all these fundamental cycles together form a family in which none of
them occurs infinitely often. By Lemma 1.7 this is again a thin family, so it
has a well-defined sum. Clearly, this sum equals Z.

To prove () let C be given, and let C' be its defining circle in G. (Since ToP
satisfies (3), C" is the closure of C, so in particular C' is uniquely determined.)
Let C" be the unit circle, and pick a homeomorphism o : C” — C'. We have
to show that an edge f of G lies in C if and only if it lies in an odd number of
the cycles Ce in (). This is clear when f is a chord of T', as in that case f lies
on C, only if f =e.

So consider an edge f € T. Let G; and G2 denote the subgraphs of G
induced by the two components of T'— f, and let E be the set of G1-G2 edges
in G (including f). Note that the edges e # f in E; are precisely the chords e
of T with f € E(C,). Since the family of these C, is thin by Lemma 1.7, the
set Ey is finite. Hence for 1 = 1,2, G; is a component of G — S for the finite set
S = N(G;) of its neighbours outside, every set of the form G; is open in ToP,
and G; = G; \ Ey is open in G \ Ef.

As o is a homeomorphism, C" \ 0_1(]_37f N C") consists of finitely many
intervals, I, ..., I say. Each o(I;) is a connected subset of C' \ E ¢ and hence
cannot meet both of the disjoint open subsets G and G of G \ E’f. Our circle
C' therefore contains an even number of edges from Ey. Hence, C contains f if
and only if it contains an odd number of other edges from Ey, which it does if
and only if f lies on an odd number of the cycles C. with e € E(C) and hence
in the sum of (x). O

By the argument that showed (%) to be sufficient for a proof of Theorem 1.13,
the theorem and Lemma 1.7 imply the following:

Corollary 1.14 If G is locally finite, then its cycle space in TOP is closed
under taking sums.

We conclude this section with an example illustrating how unlike our initial
ladder examples the cycles covered by Theorem 1.13 can become. Adding just
a few edges to the binary tree, we obtain a graph in which all the fundamental
cycles sum up to a single circle containing continuum many ends and a ‘dense’
set of double rays (so that between any two double rays there lies another).

Consider again the infinite binary tree T', and let J, J', Ry, Ry, wq and wy be
defined as in the proof of Proposition 1.11. Let Dy be the double ray formed by
the rays Ry = 000... and Ry = 111.... For every ¢ € J add an edge e, = t4t;,
between disjoint tails of R, and Rfl, so that if £ is the label of the last common
vertex of Ry and R, the vertex , is labelled £011 and t is labelled £100. Then
the double rays Dy = (t,R, U t,R;) + e, are disjoint from Dy and from each
other, and T is an end-respecting spanning tree of the resulting graph G.

Let us show that the union C of all the D, (for ¢ € J U {0}) and the set
of ends of G is a circle in ToP. Denote the unit circle by C’, and let Iy be a
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closed interval on C'. Let o : Iy — DoU{wg, w1} be a homeomorphism, and put
7o := 0 Ywg) and z1 := 0 (wy). Our aim is to extend o to a homeomorphism
between C' and C.

Let I :=C"\ Ioo, and think of zy as the left and z; as the right endpoint
of I. Assign to the points ¢ € J disjoint closed subintervals I, = [z4,z7] of I,
so that Iy, lies left of I, whenever ¢; < go, and I is the closure of U := | e Lo
(For example, this could be done inductively in w steps.) Then the points of
I \ U correspond bijectively to the points in J' N (0,1) of the completion [0, 1]
of J; let z, be the point of I \ U corresponding to r € J' N (0,1). Finally, let
o : C' = C map each I; continuously onto Dy U {wg,wy} so that o(z4) = w,
and o(xz;,) = wy, and put o(z,) = w, for all 7 € J'N(0,1). Theno: C' = C'is
a homeomorphism, so C is indeed a circle.

Theorem 1.13 now says that all the fundamental cycles in G together sum
to an infinite cycle: the cycle defined by our circle C. Once observed, this can
also easily be checked directly.

1.6 A topological condition equivalent to the gener-
ating theorem for locally finite graphs

Let G be a locally finite connected graph. In this section we shall identify a
condition just in terms of the topology on G that is equivalent to the validity
of Theorem 1.13 (ii). This has some interesting consequences.

First, since the elements of the cycle space of G are the same—the sums
of fundamental cycles of any end-respecting spanning tree—whenever this con-
dition holds, we find that the cycle space is independent of the topology used
as long as it satisfies this condition. In particular, refinements of Top (which
will all satisfy the condition) may have fewer cycles than ToOP (recall Prop. 1.8)
but will have the same cycle space. Second, since the new condition will not
follow from (1), (2) and (3), we also obtain a negative answer to the question of
whether these three (rather natural) conditions alone can guarantee the validity
of Theorem 1.13.

We will need the following lemma from elementary topology [20, p. 208].
A continuous image of [0, 1] in a topological space X is a (topological) path
in X; the images of 0 and 1 are its endpoints. By Lemma 1.1, a path in a
Hausdorff space is an arc if and only if the corresponding map [0,1] — X is
injective.

Lemma 1.15 Fvery path with distinct endpoints x,y in a Hausdorff space X
contains an arc in X between x and y.

As always, we consider only topologies on G that satisfy our two minimum
requirements (1) and (2). Then if F is any finite set of edges and C is a
component of G — E, the subspace C of G is path-connected. Our new condition
says that these C are in fact the whole path components of G \ E:

Whenever E is a finite set of edges of G, every path component of
the topological space G \ E is of the form C, for some component C  (5)
of the graph G — E.
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Note that (5) implies (3). Indeed if (3) fails, then G contains an arc [w,w']
consisting entirely of ends. Let S be a finite set of vertices separating a ray in
w from a ray in ', and let E be the set of edges incident with S. Then w and
w' do not both lie in C for any component C of G — E, although they do lie in
the same path component of G \ E.

Although ToP clearly satisfies (5), it is not difficult to construct locally finite
graphs with topologies that satisfy (1), (2), (3) and (5) but are incomparable
with Top. (By Proposition 1.12, these topologies must violate (4).) The fol-
lowing result may thus be viewed as a topologically best-possible strengthening
of Theorem 1.13:

Theorem 1.16 Let G be a locally finite connected graph, let G carry any topol-
ogy satisfying (1) and (2), and let T be an end-respecting spanning tree in G.
Then the following two assertions are equivalent:

(i) G satisfies (5);
(ii) every element of the cycle space of G is the sum of fundamental cycles.

Proof. The proof of Theorem 1.13 shows that (i) implies (ii). Indeed, as G
satisfies (5), both G and Go as considered there are path components of G\ E ¥
and thus again each o(I;) lies in either G or Go. So let us prove the converse
implication.

If (5) fails, then for some finite set £ C E(G) there are components Dy # Do
of G — E such that D, and D, are contained in the same path component of
G\ E. By making E smaller, we may assume that D; and D, are the only
components of G — E. Let f1,..., fr be the D;—D, edges contained in T

For each i = 1,...,k, let E; be the set of the edges of G between different
components of T' — f;. Since the edges e # f; in E; are precisely the chords e
of T with f; € C,, Lemma 1.7 implies that each E; is finite.

By definition, D; and Ds are joined in G \ E by a topological path ; since
they are path-connected, we may assume that the endpoints of 7 are vertices,
and by Lemma 1.15 we may assume that 7 is an arc.

Since by Lemma 1.4 an arc between two vertices includes every edge of
which it contains an inner point, and since the Ej are finite, =\ (Ey U--- U E})
consists of finitely many closed segments whose endpoints are vertices. One of
these, 7' say, is again an arc from a vertex vy € D; to a vertex vo € Do. (For
since 7 contains no D;—Dy edge, the endpoints of every missing edge lie in the
same D;.)

Pick an edge f; € {f1,-.., fx} from the path v;T'vs, let P be the segment
of v1Tv9 that includes f; and meets 7’ only in its endpoints, and let 7" be the
segment of 7’ between these points. Then P U 7" is a circle in G that contains
fi but no other edge from FE;. Its cycle is therefore not a sum of fundamental
cycles, so (ii) fails as required. O

Corollary 1.17 The cycle space of a locally finite graph G is independent of
the topology chosen for G, as long as the topology satisfies (1), (2) and (5). In
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particular, C(G) is the same for all refinements of TOP (with (1) and (2)), and
thus uniquely determined for all topologies that satisfy (1) and (4).

Proof. For the second statement, let us first verify (5) for an arbitrary refine-
ment TOP’ of TOP that satisfies (1) and (2). Since rays converge to their ends
by (2), every C as in (5) is path-connected. So any path component D of G \ E
is a disjoint union of such C. But every C is open in G \ Ijl’, in Top and hence
also in Top'. Hence D, being connected, consists of a single C.

For the last statement, recall that every topology satisfying (1) and (4) is a
refinement of Top (Prop. 1.12). O

In the remainder of the section we construct an example which shows
that (5) does not follow from (1), (2) and (3). Hence, by Theorem 1.16, these
three conditions alone cannot guarantee the validity of Theorem 1.13.

Consider again the infinite binary tree T', and let J, J', Ry, Ry, wq and w}
be as in the proof of Proposition 1.11. Add a new double ray D with ends
T # 7' which meets T exactly in its root ¢t. Moreover for each ¢ € J add a new
double ray D, with ends 7, # Té, together with an edge e, = ’Uq’U; joining a
vertex vg on Dy to a vertex v; on D; choose these edges e, independent. Denote
the graph thus obtained by G.

Let us now define the topology on G. G itself will carry the topology of
a l-complex. The basic open neighbourhoods of an end v of the form 7,7, wq
or w{l with ¢ € J will consist of an ‘open final segment’ of the ray R € v
starting at ¢: pick a point z on R, as well as an inner point z, of every edge
e ¢ R incident with a vertex v € ZR; then take the union of ZR with all the
partial edges [v, z.) C e to be a basic open neighbourhood of v. The basic open
neighbourhoods of an end w, for r € J' are constructed as follows. Choose
an open neighbourhood I of r in [0,1]. For each s € I NJ' choose a point z
on R, and let N be the set consisting of ws and all the points of T" above z.
For each ¢ € I N J pick an inner point 2z, of e;. Take the union of the NN,
over all s € I N.J' together with the union of {7y, 7,} U Dy U [vy, 24) over all
q € INJ to be a basic open neighbourhood N (I) of w,. To construct a basic
open neighbourhood of an end 7, (respectively Té) for ¢ € J, choose an open
neighbourhood I of g in (0, ] (respectively [g,1)) and take the union of N(I)
(defined as before) together with 7, (respectively 7,) and an open final segment,
of the subray of D, — v, contained in 7, (respectively 7,) to be a basic open set.

Clearly, the topology generated in this way satisfies (1) and (2). As in the
proof of Lemma 1.10 one can show (3). (Indeed, the open set N considered
there can again be chosen so that it is also closed.) Furthermore, using similar
arguments as in the example in Section 1.5 one can show that all the ends w,
(r € J') and all the sets {7,} U Dy U {7,} with ¢ € J together form an arc
whose endpoints belong to different components of G — t. Hence, this topology
does not satisfy (5).

Finally, since G is a tree and & forms a circle together with the rays Ry and
R;, our example shows also that the converse of Lemma 1.6 can fail even for
topologies satisfying (1), (2) and (3).
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1.7 Cuts and cycle decompositions

Let G be a locally finite connected graph, and let G carry any topology (such
as Topr) for which G satisfies the generating theorem, ie. which satisfies (1), (2)
and (5).

Our next theorem characterizes the elements of C(G) in terms of the (edge)
cuts in G. Recall that a cut in G is the set of all the edges of G between the two
classes of some bipartition of V(G). When G is finite, the elements of its cycle
space are precisely those sets of edges that are ‘orthogonal’ to every cut in G,
ie. contain an even number of edges from every cut [6]. For arbitrary locally
finite GG, this generalizes as follows:

Theorem 1.18 Let G be a locally finite connected graph, let G be endowed with
any topology satisfying (1), (2) and (5), and let H C G be any subgraph without
isolated vertices. Then the following statements are equivalent:

(i) HeC(G);
(ii) |E(H) N F)| is even for every finite cut F of G.

Proof. The fact that every cycle in G meets every finite cut in an even number
of edges is proved as in the proof of Theorem 1.13, using (5) instead of the
definition of ToP if desired. Since sums (mod 2) of even sets are even, this
implies (i)=-(ii).

For the converse implication, assume (ii) and let 7" be an end-respecting
spanning tree of G. We show that H is equal to the sum Z € C(G) of all the
fundamental cycles C, with e € E(H) \ E(T). For every chord e of T in G,
clearly e € H if and only if e € Z. So consider an edge f € T. Let E; be
the set of edges e # f of G between the two components of 7' — f. Since T
is end-respecting and f € C, for precisely those chords e of T' that lie in E,
Lemma 1.7 implies that Ey is finite, and f € Z if and only if |Ef N E(H)| is
odd. By (ii), the latter holds if and only if f € H, as desired. O

A classical theorem of Nash-Williams [32] says that a connected graph (of
any cardinality) is an edge-disjoint union of finite cycles if and only if each
of its cuts is either infinite or even. By Theorem 1.18, the locally finite such
graphs are characterized by a further property, namely the fact that they by
themselves are contained in their cycle space:

Corollary 1.19 Let G be a locally finite connected graph and let G be endowed
with any topology satisfying (1), (2) and (5). Then the following statements are
equivalent:

(i) every cut in G is either infinite or even;

(i)

(iii) G is an edge-disjoint union of cycles;
)

(iv) G € C(G).

G is an edge-disjoint union of finite cycles;
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Proof. (i)=(ii) is Nash-Williams’s theorem. (In fact, as Nash-Williams ob-
served [32], this result is easy for countable graphs.) The implications (ii)=>(iii)

and (iii)=(iv) are trivial. The implication (iv)=>(i) follows from Theorem 1.18.
O

In Section 1.10 we shall extend the equivalence between (iii) and (iv) in
Corollary 1.19 to arbitrary elements of the cycle space of G. This more gen-
eral equivalence, which holds in arbitrary infinite graphs, is much harder than
Corollary 1.19 and cannot easily be reduced to it: although the elements of the
cycle space of an arbitrary infinite graph G still form locally finite subgraphs
of G, they are not normally elements of the cycle space of that subgraph (just
as a single infinite cycle C' in G is, by itself, merely a disjoint union of double
rays containing no cycle at all).

1.8 The generating theorem for cycles

Throughout the remainder of this chapter G, H etc. will always be endowed
with ToP. In this section we characterize the spanning trees of an arbitrary
graph G whose fundamental cycles generate every cycle of G.

In Section 1.5 we showed that if G is locally finite, then these are precisely its
end-respecting (equivalently: end-faithful) spanning trees. In general, however,
this need not be true. Consider the graph G obtained from two rays R =
ox1Z2 ... and @ = zoy1ys2 ... that meet only in their first point o by adding
the edges z;y; for all ¢+ > 1, and adding a new vertex z joined to all the z;
(Fig. 1.3). Then R and @ belong to the same end w of G. Thus RUQ U {w}
is a circle in G, and so RUQ is a cycle in G. But if T is the spanning tree of
G consisting of @) together with all edges at z, then T is end-respecting (even
end-faithful), but R U @ is not a sum of fundamental cycles: since all these
contain z, any sum of them would have to be finite.

w
[ ]

)1

V4 o

Figure 1.3: The infinite cycle RU @ is not a sum of fundamental cycles
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The above example motivates the consideration of the following subclass of
the end-respective spanning trees.

Definition Given a graph G, let 7(G) denote the class of all end-respecting
spanning trees T' of G which do not contain a subdivided infinite star S whose
leaves lie on aray R C G such that G contains another ray R’ which is equivalent
to but disjoint from R.

Note that there are graphs G for which 7(G) is empty; Ky, and Ky, x, are
obvious examples. On the other hand, using Lemma 1.3 one can easily show
that 7(G) contains every normal spanning tree of G. We do not know whether
there are graphs G for which 7(G) is non-empty but which have no normal
spanning tree.

Theorem 1.20 Let G be an infinite connected graph and let G be endowed
with ToP. Let T be a spanning tree of G. Then every cycle of G is the sum of
fundamental cycles if and only if T € T(G).

For the proof of this theorem we first need some lemmas.

Lemma 1.21 Given any spanning tree T of G, every finite cycle C of G is the
sum of fundamental cycles. More precisely, C is equal to the sum Z of all the
fundamental cycles C. with e € E(C) \ E(T).

Proof. Clearly C + Z is a finite subgraph of T' with all degrees even. Hence
C+Z=0ie. C=2Z. O

Lemma 1.22 Let T be a spanning tree of G, let Z be a sum of fundamental
cycles, and let D be a set of finite cycles in Z UT. If no two elements of D
share an edge outside T, then D 1is thin.

Proof. Suppose that x is a vertex that lies on infinitely many cycles D € D.
By Lemma 1.21, each of these D is a sum of fundamental cycles C, with e €
E(D)\ E(T), so z lies on some C, with e € E(D)\ E(T). By assumption these
edges e differ for different D, so x lies on infinitely many C.. As each e lies in
Z, all these C, are among the fundamental cycles whose sum is Z (indeed, Z
must be the sum of the fundamental cycles C, with e € E(Z) \ E(T')), which
contradicts the definition of sum. O

Lemma 1.23 Let A be an arc in G, and let x # y be vertices on A. Let X
be a closed subset of G which avoids the subarc of A between x and y. Then G
contains an x—y path P with PN X = (.

Proof. Let A’ be the subarc of A between z and y. Choose a cover N of A’
by basic open sets of G each avoiding X. As A’ is compact, N contains a finite

subcover of A’, {Ny,..., Ny} say, where we may assume that N, N A’ # ( for
all £.
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Let us show that H := (N7 U--- U Ng) NG is a connected subspace of G.
If not, then H is the union of two disjoint non-empty open subsets H; and Hs
of H. Since each Ny is a basic open set, N; N G is connected and hence lies in
either Hy or Hy. Let U; be the union of all N, with Ny, NG C Hy, and define
U, similarly. Since two N, cannot share an end if their intersections with G
are disjoint, U; and U, are disjoint. Thus A’ is the union of the two disjoint
non-empty open sets A’ NU; and A’ N Uy, contradicting its connectedness.

So H is connected. Lemma 1.2 together with the fact that H contains both
z and y imply that H also contains a (graph-theoretical) path P between these
two vertices. Clearly, P is as required. O

An orientation of an arc A is a linear ordering of its points which is induced
by a homeomorphism o : [0,1] — A (i.e.ifa,b € Athena < bifo~(a) < o 1(b)
in [0,1]). Given an oriented arc A and a € A, we will refer to the points b € A
with b < a as the points left of a, and analogously we will speak of points to
the right of a. We write aA for the (oriented) subarc of A consisting of all
the points a’ > a, and define Aa and aAb analogously. A sequence (e;)$2; of
distinct edges or vertices on A is monotone if there is an orientation of A such
that each e; lies between e;—1 and e;41, i.e. on the right of e;_1 and on the left of
ei+1- A sequence (e;)$2; of distinct edges or vertices on a circle C' is monotone
if there is a subarc A of C containing each e; and (e;):2; is monotone on A. An
orientation of C is a choice of one of the two orientations of every arc A C C
such that all these orientations are compatible on their intersections. Given an
oriented circle C and a,b € C with a # b we define aCb to be the (oriented)
subarc of C' between a and b.

Lemma 1.24 Let A be an arc in G. Let ()%, and (fi)2; be monotone
sequences of distinct edges on A converging from different sides to an end w of
G lying on A. Then w contains two disjoint rays R and R' such that R contains
every e; while R' contains every f;.

Proof. First fix an orientation of A. We may assume that (e;)52; converges
to w from the left, and (f;)$2; converges to w from the right. Let e; =: z;z
and f; =: yly? where z] lies on the left of z7 and y; lies on the right of
y?. Let A; = x%ffw%_l_l and A := Azl U :vzgﬂff, and let B; := yzﬂ_lfi‘y% and
B] := y}fTU Ey?+1.

We will construct the rays R and R’ inductively, extending in each step the
initial segments of R and R’ already defined. Thus suppose that for some i > 0
we have constructed finite disjoint paths R; and R which are empty if i = 0,
and for i > 0 are such that R; joins z% to z},, contains each e; with 1 < j <
and avoids A}, while R} joins y} to y;,, contains each f; with 1 < j <4 and
avoids B;.

Let us now extend R; and R]. By Lemma, 1.23 there is an 2, -z, path P
in G which avoids the closed set R;UR;UA] . Put R;1 := Rie;1P. Applying
Lemma, 1.23 again, we find a y5"'—y!"? path P’ which avoids R;41 UR, U BL, ;.
Put R}, := R}fi;1P'. Continuing inductively, we obtain rays R := |J;2; R;

and R':=J°, R]. But then e;R and fi R’ are as required. O
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Lemma 1.25 Let T be a spanning tree of G, and let Ty, Ty be subtrees of T
with finite intersection. Suppose that G has an end w which, for each i = 1,2,
contains disjoint rays R; and R, such that R; has infinitely many vertices in T;.

Then T ¢ T(G).

Proof. For i = 1,2, apply Lemma 1.5 to T; with U := V(R; N T;). If the
lemma returns a star in one of the T; then T' ¢ T(G) by definition of 7 (G).
But if it returns a ray in each 7; then both these rays lie in w, and so T is not
end-respecting. Thus again T' ¢ T (G). O

Proof of Theorem 1.20. To prove the forward implication, suppose that
T ¢ T(G). By Lemma 1.6 and the remark preceding it we may assume that
T is end-respecting. Thus there are disjoint equivalent rays R and R’ in G
such that 7" contains a subdivision S of an infinite star whose leaves lie on R.
Clearly, we may assume that R meets S only in its leaves. Let w be the end of
G containing R and R'. Let P = z...z' be an R-R' path in G. Let C' be the
circle in G consisting of w together with P, zR and z'R’. Let C be the cycle
of C'. Thus C = PUzRUz'R'. Let D be the (infinite) set of all finite cycles
which consist of a finite subpath of xR between two consecutive leaves of S on
R together with the path in S joining these leaves. Then D is not thin, since
the centre of S lies in all cycles in D. Lemma 1.22 now implies that C' cannot
be a sum of fundamental cycles, as required.

To prove the converse implication, we now assume that T € T(G). Let C
be a cycle of G; we shall prove that C is the sum of all the fundamental cycles
Ce of T with e € C. Let C denote the set of these C.. Let C' be the defining
circle of C, let C" be the unit circle, and let o : C" — C’ be a homeomorphism.

We first show that C is a thin family. Suppose not, and let x be a vertex
that lies on C, for infinitely many chords e of T on C. Since C' is compact,
these edges e have an accumulation point w on C’ (which must be an end),
and we may choose a monotone sequence e, es,... from among these edges
that converges to w. Since z € C,,, the endvertices of e; never lie in the same
component of 7' — z. Partitioning the components of 1" — z suitably into two
sets, we may write T as the union of two subtrees 77 and T5 that meet precisely
in z and are joined by infinitely many e;. Applying Lemma 1.24 to a suitable
subarc of C’ containing all the e; as well as a monotone sequence of edges on
C' converging to w from the other side, we obtain disjoint rays R and R’ both
belonging to w and such that R contains every e;. Then R meets both 77 and
T5 infinitely often, and we may apply Lemma 1.25 with Ry := R =: Ry and

! := R' =: R}, to conclude that 7' ¢ T(G), contrary to our assumption.

It remains to prove that the cycles in C sum to C. We thus have to show
that an edge f of G lies on an odd number of the cycles in C if and only if
f € C. This is clear when f is a chord of T' (and C} is a fundamental cycle), so
we assume that f € T. Let G; and G4 be the subgraphs of G induced by the
components of T'— f, and let E; be the set of all G1-G3 edges of G (including
f). Note that the edges e # f in E are precisely the chords e of T' with f € C..
As C is thin, C contains only finitely many edges from E;.

Let us show that the number of edges of C in E; is even. Since o is a
homeomorphism, C" \ U_I(E'f N C) consists of finitely many closed intervals,
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I, ..., I say. Since each o(I;) C C' is path-connected, it suffices to show that
G and G2 belong to different path-components X; and X5 of G\ Ef. then
each o(I;) lies inside either X; or Xy, and thus E(C) N E; is even. Suppose
then that G; and G are contained in the same path-component of G\ E t- By
Lemma, 1.15, there is an arc A in @\ E‘f from a vertex of G; to one in Gs.
Let w be the supremum of the points on A that lie in G1; this can only be an
end. Choose monotone edge sequences (e;)°; and (f;)°; on A with all ; in Gy
and all f; in Go, and so that (e;)$2; and (f;)2; converge to w from different
sides. Apply Lemma 1.24 to obtain disjoint rays R and R’ in w such that R
contains every e; while R’ contains every f;. Now Lemma 1.25 applied with
R, := R =: R}, and Ry := R' =: R} implies that T ¢ T (G), a contradiction.

So we have proved that C' contains an even number of edges from E;. As
[ € Ej, this means that f € C if and only if C' contains an odd number of the
edges e # f from Ey, which it does if and only if f lies on an odd number of
fundamental cycles C, € C. O

1.9 Generating arbitrary elements of the cycle space

In this section we characterize the spanning trees whose fundamental cycles
generate not only each individual cycle but the entire cycle space of an arbitrary
graph. It turns out that these include all normal spanning trees. We shall need
this fact in the proof of our characterization theorem below, so let us prove it
first:

Lemma 1.26 Let G be a graph with a normal spanning tree T and let G be
endowed with TOP. Then every element Z of the cycle space of G is the sum
of fundamental cycles.

Proof. Write Z as the sum ), ;
normal spanning tree 7', Theorem 1.20 implies that each Z; is a sum )

Z; of cycles of G. Since T (G) contains the
CJ
’ je€J;
of fundamental cycles. We may assume that the C} are distinct for different
j € Ji. To prove the lemma, it suffices to show that the family C := (C/ )1617]€Jl
is thin, since then clearly Z is the sum of all the cycles in C. So suppose that
C is not thin. Then there is a vertex v which lies in the fundamental cycles
CY for an infinite set J of pairs (4,7). Since T' is normal, every vertex set of a
fundamental cycle C, is a chain in 7', its minimum and maximum being joined
by e. Thus choosing v minimal in T" and possibly discarding finitely many pairs
from J, we may assume that v is the lowest vertex (in T') of each C? with
(i,) € J and thus incident with its chord e]. As C’ is the only cycle in the
family (C/ ) jeJ; that contains el and this famlly sums to Z;, we have v € €] € Z;
for all (z,5) € J. But each Z; has only finitely many summands CJ containing v,

so v € Z; for infinitely many 7. Thus (Z;)ier is not thin, contradlctlng the fact
that Z =3, ; Z;. O
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We remark that Lemma 1.26 does not extend to arbitrary spanning trees
in T(G). For example, consider the graph G obtained from infinitely many
disjoint finite cycles C,Co,... by adding a new vertex s and joining it to two
vertices of each C;. Let T be a spanning tree of G containing all the edges of
G incident with s. Then T' € T(G). But as each fundamental cycle contains s,
the element Z = 3 7°, C; of the cycle space of G is not a sum of fundamental
cycles.

Let us then determine the subclass 7'(G) C T(G) of those spanning trees
of G whose fundamental cycles generate all of C(G). Recall that a comb C with
back R is obtained from a ray R and a sequence z1,Zo,... of distinct vertices
(to be called the teeth of C') by adding for each i = 1,2,... a (possibly trivial)
z;—R path P; so that all the P; are disjoint.

Definition Let 7'(G) be the class of all spanning trees T' € 7 (G) such that G
does not contain infinitely many disjoint finite cycles C1,Co, ... for which one
of the following conditions holds (Fig. 1.4):

e T contains two subdivided infinite stars S; and So such that S; and Sy
meet at most in the centre of S; which is then also the centre of Sy, and
such that each C; contains a leaf of both S; and Sy (1 =1,2,...).

e T contains a subdivided infinite star S and a comb C such that S and
C are disjoint and each C; contains both a leaf of S and a tooth of C
(i=1,2,...).

Figure 1.4: The additional forbidden configurations for 7'(G)

As before, one can easily show using Lemma 1.3 that 77(G) contains every
normal spanning tree of G.

Theorem 1.27 Let G be an infinite connected graph and let G be endowed with
Tor. Let T be a spanning tree of G. Then every element of the cycle space of
G is a sum of fundamental cycles if and only if T € T'(G).

For the proof of this theorem we need three lemmas.

Lemma 1.28 For every cycle C in a graph G there exists a countable subgraph
H of G such that C is a cycle in H.

Proof. We may assume that C is not a finite cycle. Let C’ be the defining circle
of C, and fix an orientation of C’. Note that C’ contains only countably many

30



edges (as the inverse images on the unit circle of the interiors of the edges on C’
are disjoint open intervals each containing a rational), and thus, by Lemmas 1.4
and 1.10, C’ contains only countably many vertices. Let (z1,¥1), (z2,%2),--- be
an enumeration of the ordered pairs of vertices on C’. Applying Lemma 1.23
to the arcs x,—é' y; we may inductively define paths Py, P, ... of G so that each
P,; joins z; to y;, meets C’ only in z,'C_'" y; and avoids all the previously chosen
paths P; with z;C'y; N P; =0 (j < i). Thus in particular, P; avoids all P; with
j <iand z;C'y; ﬂmjé'yj = (). Let H be the subgraph of G consisting of C' and
all the paths P; (i = 1,2,...). Then H is countable. We will show that C is a
cycle in H. Thus we have to find a circle C* in H such that C*N H = C.

Let us first show that every end w of G on C’ contains a ray R, C H. We will
construct R, inductively. Fix a monotone sequence ej,eq,... of independent
edges on C’ converging to w from the left. Let e; =: v;w; be such that w; €
v;C'w. Let Q1 be the path of the form P, which was chosen for the pair (w1, vs).
Then there exists j; > 2 such that the pair (wg,v;,) succeeds (w1, v2) in the
enumeration of all pairs of vertices on C’. Let Q2 be the path of the form P;
chosen for (wg,vj,). From the choice of j; and the fact that wlé'vgﬂwgélvﬁ =0
it follows that Q1 and Q2 are disjoint. Now let jo > j; be such that (w;,,v;,)
succeeds (ws,vj,), and define Q3 to be the path of the form P; chosen for
(wjy,v5,). Again, Q3 is disjoint from both @ and Q2. Continue inductively to
obtain disjoint paths ()1, @2, .... Then the ray R, := e1Q1e2Q2¢j, @3ej, . .. lies
in H. As e, es,... converges to w, this ray R, also belongs to w, as required.
Let w' be the end of H containing R,. Let us now prove the following claim,
which in particular implies that w’ does not depend on the choice of R,,.

If both (g;);2, and (h;);2, are monotone sequences of independent

edges on C' converging to an end w € C', then H contains infinitely (%)
many disjoint paths joining endvertices of the g; to endvertices of

the hz

First note that (x) follows similarly as in the construction of R, if (g;)52;
and (h;)$°, converge to w from the same side. So we may assume that (g;)>°,
converges to w from the left while (h;)2; converges to w from the right. Let
gi =: a;b; and h; =: alb] be such that b; € a;C'w and NS wé'a;. Let P| be the
path of the form P; chosen for (a1,a}). Since P! is a closed subset of G and does
not contain w, we can find i; > 1 such that P/ avoids ailé'agl and (a;,,a;)
succeeds (a1,a)) in the enumeration of all pairs of vertices on C'. Let Pj be
the path of the form P; chosen for (a,l, a; ). Then P| and P; are disjoint. Now
let iy > i1 be such that P} avoids a;,C" a;, and (ai,,a;j,) succeeds (a;,a;, ), and
define Pj to be the path of the form P, chosen for (as,,a},). Then Py is disjoint
from both P| and Pj. Continue inductively. Then P], P, ... are disjoint paths
as desired in (%).

Let ¢ : C' — H be the map which sends every end w on C"' to w' and which
is the identity on C. Since by definition, every end w on C' contains the ray
R, from «', we have w D w'; and thus ¢ is injective. We will show that ¢ is a
topological embedding, and thus that ¢(C”) is a circle in H and C is a cycle in
H. By Lemma 1.1 it suffices to prove that ¢ is continuous. This trivially holds
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in points of C'N H. So let us consider a basic open neighbourhood N of an end
w' € p(C") of H. Then N is of the form D for some component D of H — S
with § C V(H) finite. We shall find vertices v and w on C’ such that w € vC'w
and o(vC'w) C D. This will follow if there are vertices v and w on C' such
that w € vC'w and (vC'w N C) C D. Indeed, every end 7 € p(vC'w) contains
a ray of H meeting C' in a sequence of edges converging to ¢~ '(7). Hence all
but finitely many of these edges lie in (vC'w N C) C D, and thus 7 € D.

So suppose that there are no such vertices v and w. Then there is a monotone
sequence fi, fo,... of independent edges on C’ converging to w such that f; ¢ D
for all . Exactly as in the construction of R, we can find a ray R C H in
w containing infinitely many of the f;; say fi, fi,,.... Let (ej, )52, be the
edge-sequence from the construction of R,. From (k) it follows that there are
infinitely many disjoint paths joining endvertices of the e;, to endvertices of the
fi,- Thus R and R, are equivalent in H, contradicting the fact that ' € D.

O

Lemma 1.29 Let Hy C Hy be subgraphs of G, and let C be a cycle in Hy. If
C is a cycle in G, then it is also a cycle in Hs.

Proof. Let C' be the defining circle of C in H;. We show that the restriction
to C' of the canonical embedding 7y, g, is injective; then by Lemma 1.1 it is a
topological embedding (since 7, 7, is continuous), and so C' = 7y, g, (C') N Hy
will be a cycle in Ho.

Note first that 7, maps C’ onto the defining circle C” of C' in G: since
mr,¢(C') is compact (and hence closed) and contains C as a dense subset, it is
the closure of C in G, which we know to be C”.

Now if g, , is not injective on C’ then neither is 7y, ¢ = TH,G © TH, H,, SO
there are two ends wy,ws € C' with 7y, g(w1) = 7, g(w2). Pick z,y € C so that
w1,ws lie in distinct path-components of C'\ {z,y}. Then 7p,¢(C'\ {z,y}) =
C" \ {z,y} is path-connected, contradicting the fact that removing any two
distinct points from a circle makes it path-disconnected. O

Lemma 1.30 Let T be a spanning tree of G, and let Cy,Cy, ... C G be disjoint
finite cycles. From each C; pick an edge e; not on T. If G has a vertex x that
lies on each of the fundamental cycles Ce,, then T ¢ T'(G).

Proof. As z € C,,, each e; has its endvertices in two different components of
T — z. Partitioning these components suitably into two sets, we may write T’
as the union of two subtrees T7 and T5 that meet precisely in z and are joined
by infinitely many e;. Applying Lemma 1.5 to T7 with U the set of endvertices
of these e; in T7, we obtain an infinite set / C N and either a ray in 77 joined
to all the e; with ¢ € I by disjoint paths in T, or else a subdivided star in
T1 whose leaves are precisely the endvertices of the e; with ¢ € I in T7. Now
apply Lemma 1.5 to T» with U the set of endvertices of these e; (i € I) in T3 to
obtain an infinite set I’ C I and either a ray or a subdivided star in T5. If both
applications of the lemma return a ray then these rays are equivalent, and so T’
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is not end-respecting. If both return a star, then these stars can be chosen so
as to meet at most in their common centre (which then must be z). As e; € Cj,
each C; with ¢ € I' contains leaves of both stars. So these stars satisfy the first
condition in the definition of 77(G). Similarly, if the lemma returns a ray and
a star, then they satisfy the second condition in the definition of 7’(G). Thus
in each case we have shown that T ¢ T'(G), as desired. O

Proof of Theorem 1.27. To prove the forward implication, suppose that
T ¢ T'(G). By Theorem 1.20 we may assume that T' € 7(G). Thus there are
disjoint finite cycles C1,Cs, ... in G satisfying one of the two conditions in the
definition of 7'(G). We consider only the case that 7" contains two subdivided
infinite stars S; and S (which are either disjoint or meet only in their common
centre) such that each C; meets both S; and So; the other case is similar. We
may assume that C; U Cy U ... avoids the path P C T joining the centre of
S1 to that of Sy. On each C; choose an S1—S5 path P; = z;...vy;. Since C; is
disjoint from P, the z;—y; path in T forms a finite cycle together with F;. Let
D denote the set of all these cycles, one for each ¢. Then D is not thin, as every
cycle in D contains the centre of S;. Thus Lemma, 1.22 implies that the element
Z =2, C; of the cycle space of G cannot be the sum of fundamental cycles,
as desired.

To prove the converse implication, suppose that T € 7'(G), and let Z be an
element of the cycle space of G. Write Z as the sum ), Z; of cycles Z;. By
Theorem 1.20, each Z; is the sum of a thin family C; = (C7)jes, of (distinct)
fundamental cycles. It suffices to show that C := (CZ] )ici,jes; is a thin family:
then clearly Z is the sum of all the cycles in C.

Suppose that C is not thin. Then some vertex x lies on infinitely many
cycles in C. Since every family C; is thin, there exists an infinite set I’ C I such
that for every 7 € I' the vertex z lies on some cycle in C;. Denoting the defining
chord of this (fundamental) cycle by e;, we thus have z € C,, € C; for every
iel.

As the fundamental cycles in C; are distinct, their defining chords do not
cancel in the sum E(Jeci C = Z;, so e; € Z; for every i. On the other hand
as the family (Z;);cr is thin, we have e; € Zj for only finitely many k. In
particular, e; # e for all but finitely many k. Conversely, Z; contains only
finitely many e; (since Cy is thin and every Ce,; contains z), so Zy 3 e; for only
finitely many i. Replacing I’ with an appropriate infinite subset if necessary,
we may therefore assume that e; € Z; if and only if 1 = k (for all 4,k € I'), and
further that I’ is countable.

For Z' := ", p Z; the above implies that e; € Z’ for all i € I'. Moreover,
Lemmas 1.28 and 1.29 imply that Z’ lies in the cycle space of a countable
subgraph H of G. Since every countable connected graph has a normal spanning
tree, Lemma 1.26 thus implies that Z’ is a sum of a thin family C’ of finite cycles:
of fundamental cycles of normal spanning trees of the components of H. As
every e; lies in Z' and hence in some cycle of C’, and since each of these cycles
meets only finitely many others, C' has an infinite subfamily of disjoint cycles
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each containing an edge e; with ¢ € I'. Lemma 1.30 now implies that T' ¢ T'(G),
contradicting our assumption. O

1.10 The structure of the elements of the cycle space

Our main purpose in this section is to prove the infinite analogue of the fact
that every element of the cycle space of a finite graph is an edge-disjoint union
of finite cycles.

First, however, let us extend Theorem 1.18 to arbitrary infinite graphs that
have a normal spanning tree. Let us say that a set X of vertices covers a set
of edges if each of these edges has a vertex in X.

Theorem 1.31 Let G be any graph that has a normal spanning tree, and let
H C G be any subgraph without isolated vertices. Then the following statements
are equivalent:

(i) H € C(G);

(ii) for every cut F' of G that is covered by finitely many vertices, |E(H) N F|
is (finite and) even.

Proof. The proof is essentially the same as that of Theorem 1.18. For the
implication (i)=-(ii) we now first have to prove that |E(C)NF| is finite for every
cycle C, but this is clear since F' is covered by finitely many vertices and C is
2-regular by Lemmas 1.4 and 1.10. Similarly as in the proof of Theorem 1.18
it can then be shown that |E(C) N F| is even. Since every Z € C(G) is the sum
of a thin family of cycles, and so only finitely many of these cycles meet F', it
follows that |E(Z) N F| is even.

For the converse implication we now use a normal spanning tree 7', which
has the property that the cut of G corresponding to any edge f € T is covered
by the finitely many vertices that lie below the vertices of f in T'. O

Theorem 1.32 Let G be an infinite graph and let G be endowed with TOP.
Then every element of the cycle space of G is an edge-disjoint union of cycles
mn G.

The basic idea for the proof of Theorem 1.32 is the same as in the finite
case: given Z € C(G), we shall find a single cycle C C Z in G and then iterate
with Z — C, continuing until the cycles deducted from Z have exhausted it. As
in the finite case, none of the cycles from the constituent sum of Z need be a
subgraph of Z, so finding C' is non-trivial. But while for finite Z we can find
C greedily inside Z (using the fact that all degrees in Z are at least 2), this
need not be possible when Z is infinite: a maximal path in Z may well be a
double ray rather than define a cycle, and it is then not clear how to extend
this double ray beyond its ends to a circle giving rise to the desired cycle C.
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Our main lemma for the proof of Theorem 1.32 thus deals with finding C,
and it does so in a countable subgraph H of G. Finding the right H in which to
do this will cause a few (managable) complications later on, but the key advan-
tage is that H, being countable, will have a normal spanning tree 7. We may
then write any Z € C(H) as a sum of finite cycles (namely, of fundamantal cy-
cles with respect to T'; cf. Lemma 1.26), which will make standard compactness
arguments available for the construction of C.

Lemma 1.33 Let H be a countable subgraph of G, let Z € C(H), and let
e =vw € E(Z). Then H contains a topological path P from v to w such that
PNHCZ—e.

Proof. As H is countable, it has a normal spanning tree. Thus Lemma 1.26
implies that Z can be written as Z = ) 2, C;, where the C; are finite cycles in
H forming a thin family. Let H' := (J;°; C;. Replacing Z with the sum Z' of
those C; that lie in the component of H' containing e, we may assume that H'
is connected. (Indeed, Z' € C(H) and e € Z' C Z; hence a proof of the lemma
for Z' implies it for Z.) Since the family (C;)$2, is thin, H' is locally finite.
Put Z; .= Z;Zl Cj;. As e € Z, there exists an 19 > 0 such that e € Z; for all
1 > 19. Furthermore, each Z; is finite and hence an edge-disjoint union of finite
cycles in H'. Fix such a set of finite cycles for every i > iy, and let D; denote
the cycle containing e. Let P; be the finite path D; — e, and orient it from v to
w.

Let e, eg,... be an enumeration of the edges in E(H') \ {e}. Let us define
a sequence Xo C X; C ... of finite subsets of E(H') \ {e} and a sequence I D
I; D ... of infinite subsets of N so that the following holds for all ¢ = 0,1...:

X; ={e1,...,e;} N E(P;) for all j € I;, and all these P; induce the
same linear ordering on X; and the same orientation on the edges (*)
in X;.

To do this, we begin with Xo =0 and Iy = {i € N |4 > iy}. For every i > 0
in turn, we then check whether ;1 € P; for infinitely many j € I;. If so, we
put X;41 := X;U{e;11} and choose I; 11 C I; so as to satisfy (x) for i+ 1; if not,
we let X;1 := X; and put ;11 :={j € I; | e;41 ¢ P;} (in which case I; \ ;11
is finite, and (*) again holds for ¢ 4+ 1). Finally, let X := [J;2, X;, and write X
for the subgraph of H consisting of the edges in X and their incident vertices.

The set X is linearly ordered as follows. Given e, f € X, consider the least
index ¢ such that e, f € X;. If e precedes f (say) on one P; with j € I; then it
does so on every such P;, and hence in particular on every P; with j € I}, and
k > i (since I C I;). Similarly, every edge e € X has a unique orientation, its
common orientation on every P; with j € I; and 7 large enough that e € X;.

Let us show that X C Z —e. Given an edge f € X, we have f € P,CZj—e
for infinitely many j—indeed, by (x) this holds for all j € I; with 7 large enough
that f € X;. But then f € Z; for all large enough j (because f lies on only
finitely many C;), and hence also f € Z.

Using the local finiteness of H', it is in fact easy to show that X +eisa
2-regular subgraph of Z, in which two edges of X are adjacent if and only if
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they are adjacent elements in the linear ordering on X. Indeed, given a vertex
u € X choose k large enough that every edge of H' incident with u precedes ey
in the enumeration of all the edges e;, and pick j € I. Then the edges at u in
X are precisely the edges at w in X, which by (*) are precisely the edges at u
in P;. If u € {v,w} there is one such edge; otherwise there are two.

If X is finite, then X isavw path in Z — e, and thus X is a topological
path P as sought in the lemma. So let us assume that X is infinite. Then X is
a disjoint union of two rays R, and R, starting at v and w, respectively, and
possibly some further double rays. We will show that the closure of X in H is
a topological path P as desired.

Assign to R, a half-open subinterval Jg, of [0,1] containing 0, to R, a
half-open subinterval Jg, containing 1, and to each double ray D C X an open
subinterval Jp, in such a way that all these intervals are disjoint, their order on
[0,1] (oriented from 0 to 1) reflects the order of their corresponding rays and
double rays induced by the linear ordering on X, and so that [0, 1] is the closure
of the union U of these subintervals. (Since X contains only countably many
double rays, this can be done in at most w steps.) Let o : [0,1] — H map each
interval Jg continuously and bijectively onto its ray or double ray () so that
the order of the edges of () in X reflects that induced by ¢. Thus in particular
0(0) = v and o(1) = w. In what follows we will show that we can extend o to a
continuous map from [0, 1] to H by mapping the points in [0,1] \ U to suitable
ends of H. The image of [0, 1] will then be a path P as desired.

So let £ be a point in [0,1] \ U. Choose a sequence (u;);2; of vertices of
X so that the sequence (o~ '(u;))$, is monotone in [0,1] and converges to z.
Since H' is connected and locally finite, we may apply Lemma 1.5 to find a ray
Qz C H' such that H' contains infinitely many disjoint Q,—{u; |7 € N} paths.
Let w, be the end of H containing @,, and extend o by setting o(z) := wy.
(We remark that although formally w, depends on the choice of (u;)$2,, this is
not in fact the case. However, we shall not need this below.)

We have to prove that o : [0,1] — H is continuous. Clearly, o is continuous
in points of U. So let z € [0,1] \ U, and let N be a basic open neighbourhood
of wy in H. Then N is of the form D for some component D of H — S with
S C V(H) finite. We have to show that there is an open neighbourhood O of
z in [0, 1] such that ¢(O) C D.

We will first show that there are points a # b in [0,1] such that z € (a,b)
and either o (a,2)NX C D or o(a,z) N X ND = 0, and such that the analogous
assertion holds for (z,b). Let k := |S|, and suppose there is no such point a
(say). Then we can find a monotone sequence fi,..., fxro of k + 2 distinct
edges in X lying alternately inside and outside of D (and having no incident
vertex in S). As the sequence fi,..., fr12 is monotone in the ordering on X
(and this ordering is well defined), every path P; with j € I; and i large enough
that f1,..., fr4+2 € X; contains all these edges in this order. But then P; meets
S in at least k + 1 vertices, a contradiction. Hence there are points a and b as
required.

Let us now show that either o(a,b) N X C D or o(a,b) N X N D = . This
will follow from the choice of a and b if there are sequences (v;)$2; and (v})$2,
of distinct vertices of X such that (o' (v;))?2, is monotone and converges to
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z from the left while (671(v}))$°; is monotone and converges to z from the
right, and such that H contains infinitely many disjoint paths P, = v;...v].
We will construct such paths inductively (Fig. 1.5). Let (f;)$2, and (f/)$2, be
monotone sequences of distinct edges of X such that (o1(f;))%°; converges to
z from the left while (6 1(f}))°, converges to = from the right, and such that
fit1 succeeds both f; and f; ; in the enumeration ey, e,... of E(H') \ {e},
and f;,, succeeds f; in this enumeration (for all i > 1). Let k be such that
fi = e, and pick r € Iy. Then fi,f] € P.: if i < k is such that e¢; = fi,
then r € Iy C I; and hence f] = e; € X; C E(P,) by (x). Moreover, since f;
lies to the left of f] in X, it precedes f{ on P,. Let v; be the last vertex of
f1 on P, and let v| be the first vertex of f| on P.. Put P| := v1P.v]. Now
let s > 1 be such that fs succeeds every edge of P| in the sequence eq,eq,...,
and such that no edge of E(P]) N X lies between f; and f! in X. Let k' be
such that f; = ey, and pick 7' € Iyy. Then fs, fi € Py, and fs precedes f!
on P,. Let vy be the last vertex of fs on P/, and let vf, be the first vertex of
flon P.. Put P} := vePuv). Since ey succeeds every edge from E(P]) \ X
in the enumeration of the e;, condition (*) implies that P, (and hence Pj) has
no edge in E(P]) \ X. And Pj has no edge in E(P]) N X, because none of
those edges lies between f; and f! in X: since ey equals or succeeds fs, f! and
every edge from F(P{) N X in the enumeration of the e;, the position of any
such edge on P, relative to f; and f! would be the same as in X, i.e. it would
precede f, or succeed fi on P and hence not lie on Pj. Thus P| and Pj are
edge-disjoint. Continuing inductively, we obtain infinitely many edge-disjoint
paths P/ = v;...v}, one for every i € N. As all these paths lie in the locally
finite graph H', infinitely many of them are disjoint, as desired. Thus we have
shown that either o(a,b) N X C D or o(a,b) N X N D = 0.

o(x)

Figure 1.5: Constructing the paths P/

By definition, wy contains the ray @z, and )y was defined in such a way
that there is a sequence (u;)2; of distinct vertices in X such that H' contains
infinitely many disjoint Q,—{u; | i € N} paths, and where (o (u;))$°; converges
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to . Then all but finitely many of the points ¢~!(u;) lie in (a,b). Since
o(z) = wy € D, it follows that o(a,b) N X C D. Now let y € (a,b) be such that
o(y) is an end of H. Thus o(y) = wy, and wy contains the ray Q,. As before,
the definition of Q, and the fact that o(a,b) N X C D imply that o(y) € D.

Thus o(a,b) C D, and we have shown that ¢ is continuous. O

Proof of Theorem 1.32. Let Z € C(G) be given, and let Z = ), _; Z; where
each Z; is a cycle in G. We first show that I may be partitioned into countable
sets I, so that for all @ # B the graphs Eie]a Z; and Zielg Z; are edge-disjoint.
To do this, consider the auxiliary graph G’ with vertex set I in which i # j
are joined if Z; and Z; share an edge. As each Z; has only countably many
edges and each edge lies in only finitely many Z;, each i has only countably
many neighbours in G’. Thus every component of G’ is countable, and so
the vertex sets I, of the components of G’ form a partition of I with the
desired properties. Hence, to prove the theorem, we may assume that I itself is
countable. Lemmas 1.28 and 1.29 now imply that there is a countable subgraph
H of G such that every Z; is a cycle in H, and thus Z is an element of the cycle
space of H.

Let us rename H as H° and Z as Z°, so that from now on we may use ‘H’
and ‘Z’ as variables in Lemma 1.33. Our aim is to write Z° as an edge-disjoint
union of cycles C',C?,... in G. We shall find these C™ inductively inside
VAL Yoicr Zi+ C'+...4+C" ! by applying Lemma 1.33 to Z = Z" ! in a
suitable subgraph H" ! of G. (Thus C™ C Z™ !, and hence Z° D Z! D Z2 D
... with Z" = zZ"1 - Cn)

Starting our inductive definition of the C™ at n = 1, let us assume that
Cl,...,C" ! (and hence Z°,..., Z""!) have been defined as above, and that
H™ ' is some countable subgraph of G in which C',...,C™! and all the Z;
are cycles. To define C”, let P be as provided by Lemma 1.33 for H = H"!
and Z = Z" !, where e = vw is taken to be the first edge in Z" ! from some
fixed enumeration of all the edges of Z°. (As e will lie in C", this choice of e
ensures that all the C™ together exhaust Z°.) The image myg(P) of P in G
under the canonical projection 7gg : H — G is a path in G from v to w. Apply
Lemma 1.15 to find an arc A C mgg(P) in G with endpoints v and w. Then
AUe is a circle in G whose cycle (in G) is a subgraph of Z"~! containing e,
because PNG = PN H C Z"~! — e; we take C™ to be this cycle.

By Lemma 1.28 there is a countable subgraph H' of G such that C" is a
cycle in H'. By Lemma 1.29 and our assumptions on H"~ !, all of C!,...,C"
and all the Z; then are cycles in H" := H" ' U H', as well as in G.

This completes the inductive definition of the cycles C". Since each C" is
a subgraph of Z"~! and Z" = Z"~! — C™, no edge of C™ is left in Z", and so
the C™ are indeed edge-disjoint. By the choice of the edges e = vw, every edge
of Z = Z° lies in some C™, and the theorem follows. O

As mentioned before, the cycle space of a graph is not obviously closed un-
der taking infinite sums. Indeed, let (Z;);cr be a thin family of elements of C(G)
(so that Z := 37,/ Z; is well defined), and for each 7 let Z; =3, ;. C? where
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all the Cg are cycles. Then the canonical way to establish Z as an element of
C(G) would be to write it as the ‘sum’ Z = Y7,/ . ;.
be ill-defined, since the family of all the cycles Cg need not be thin even though

CZJ But this ‘sum’ may

(Z;)ier is a thin family. For example, if a vertex v lies on exactly two cycles C’ij
for each 4, and if both these cycles contain the same two edges at v, then v is
not a vertex of Z; (since we suppress isolated vertices in our definition of sum)
and hence does not contradict the thinness of the family (Z;);cr; but it does
prevent the family of all the Ci] from being thin.

This phenomenon does not occur, however, when the cycles Cg in each of the
sums Z; = ) ey CJ are edge-disjoint: then V(Z;) = Ujes, V(C?), and hence
if both (Z;)ic; and all the (Og)jeJi are thin families then so is (Cg)iej’jeji.
Theorem 1.32 therefore implies that C(G) is indeed closed under infinite as well
as finite sums:

Corollary 1.34 In ToP the cycle space of an infinite graph is closed under
taking sums.

1.11 An open problem

The subgraphs C' of a finite graph G that are cycles or other elements of the
cycle space of G are easily characterized without any reference to a notion of
cyclicity (such as cyclic sequences of vertices etc.). For example, C is a cycle
if and only if it is 2-regular and connected, and C is an element of C(G) if and
only if all its vertices have even degree. Similarly, C € C(G) if and only if C is
orthogonal to every cut of GG, ie. meets every cut in an even number of edges.

Since our definition of an infinite cycle appeals to an external notion of
cyclicity in an even stronger sense by making reference to the topology of the
unit circle, it seems all the more desirable to have similar characterizations for
infinite cycles:

Problem Characterize the cycles and the elements of the cycle space in an
infinite graph in purely combinatorial terms.

Theorem 1.31 offers such a characterization in terms of cuts. Alternatively,
one might try to extend the finite “even degree” characterization of the cycle
space to infinite graphs. Clearly, any such characterization will have to refer
to ends, but the idea is that such reference should not explicitly appeal to the
topology on G. For example, one might try to define the ‘degree’ of an end
of G in such a way that a subgraph C of G lies in C(G) if and only if all its
vertices have even degree and all its ends have even or infinite degree. One of
the problems with such an approach will be in which subgraph to measure the
‘degrees’ of these ends: probably not in G itself (since an end w of G that lies
on C can contain further rays that have little to do with C'), and certainly not
in C' (where w will typically split up into many unrelated ends).
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Chapter 2

Induced subdivisions in
Ks s-free graphs of large
average degree

2.1 Introduction

A classical theorem of Mader states that for every graph H there exists d = d(H)
such that every graph G of average degree at least d contains a subdivision of
H. Obviously, the result becomes false if we ask for an induced subdivision of
H. Here we prove that this stronger assertion holds if G is ‘locally sparse’ in
the sense that it fails to contain some complete bipartite graph Kj g:

Theorem 2.1 For every graph H and every s € N there exists d = d(H,s)
such that every graph G of average degree at least d contains either a K5 as a
subgraph or an induced subdivision of H.

Of course, one cannot replace ‘subdivision’ by ‘subgraph’, as for example there
exist graphs which have both arbitrarily large average degree and arbitrarily
large girth. On the other hand, Kierstead and Penrice [21] proved that if H is a
tree then one can indeed find it as an induced subgraph in any K ,-free graph
of sufficiently large average degree:

Theorem 2.2 For every tree T and every s € N there exists d = d(T, s) such
that every graph of average degree at least d contains either K, ; as a subgraph
or an induced copy of T'.

They used this result to prove a special case of the conjecture of Gyarfas and
Sumner that given a tree 1" and s € N, every K,-free graph of sufficiently
large chromatic number contains an induced copy of T'. Scott [43] proved that
this conjecture becomes true if we only require an induced subdivision of T'.
Motivated by this result, he proposed a conjecture which is analogous to The-
orem 2.1-—replacing ‘average degree’ by ‘chromatic number’ and K ; by K.
We now briefly outline the organization of this chapter and the strategy
of our proof of Theorem 2.1. Consider a K, ,-free graph G of large average
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degree. In Section 2.2 we prepare the ground for the proof by collecting some
tools which we will need later on. In particular, it turns out that in order to
find an induced subdivision of H in G, it suffices to find an induced subdivision
of any graph H' with large enough average degree so that every edge of H'
is subdivided exactly once. We will call this a 1-subdivision of H'. So both
the set B of branch vertices and the set S of subdividing vertices have to be
independent in G.

The first step towards finding such a 1-subdivision of H' is to find a large
independent set I in G (Section 2.3). Ideally, we would like to find another
independent set B’ such that the bipartite subgraph between I and B’ has
large average degree. In this case, one can find B in the smaller of B’ and I
and S in the larger of the two. Unfortunately, we cannot guarantee that such
a set B’ always exists. However, in Section 2.4 we will show that one can come
fairly close: we will find sets I' C I and B’ such that the bipartite subgraph
between I' and B’ has large average degree and G[B'] has small chromatic
number. In Section 2.5, which constitutes the core of our proof, we then show
how to find our induced 1-subdivision of H' within G[I' U B']. In Section 2.6
we put everything together to complete the proof of Theorem 2.1.

The special case of Theorem 2.1 when H is a cycle admits a much simpler
elementary proof, which we include in Section 2.7. The main tool used in this
proof is the case of Theorem 2.2 where T is a path. In Section 2.8 we offer an
alternative proof of the entire Theorem 2.2.

2.2 Notation and tools

All graphs considered in this chapter are finite, and all logarithms are base two.
We write d(G) = 2|E(G)|/|V(G)| for the average degree of a graph G, 6(G)
for its minimum degree and x(G) for its chromatic number. Given a vertex
z of G, we denote by d(z) or dg(z) the degree of z and by N(z) or Ng(z)
the set of neighbours of z. Given graphs G and H we say that G is H-free if
G does not contain H as a subgraph. A subdivision of a graph H is a graph
G obtained from H by replacing the edges of H with internally disjoint paths
between their endvertices. We view V(H) as a subset of V(G) and call these
vertices the branch vertices of G. A 1-subdivision of a graph H is the graph
obtained from H by replacing the edges of H with internally disjoint paths of
length two.

For disjoint sets A,B C V(G) we write e(A, B) for the number of A-B
edges in G and (A, B)g for the bipartite subgraph of G whose vertex classes
are A, B and whose edges are the A-B edges in G. If we say that a bipartite
graph (A’, B') is a subgraph of (A4, B) then we tacitly assume that A’ C A and
B' C B. We shall frequently consider the following class of graphs.

Definition. Given non-negative numbers d, 7 and k < d/4, we say that a
bipartite graph (A, B) is a (d, i, k)-graph if |A| > d'*|B| and d/4—k < d(a) < 4d
for all vertices a € A. (So the order of A and B matters here.)

We now list some results which we need later on in the proof of Theorem 2.1. We
shall frequently use the following simple observations. Proofs are for example
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included in [6, Prop. 1.2.2 resp. Cor. 5.2.3 ].

Proposition 2.3 FEvery graph G contains an induced subgraph of average de-
gree at least d(G) and minimum degree at least d(G)/2.

Proposition 2.4 FEvery graph G contains an induced subgraph of minimum
degree at least x(G) — 1.

Clearly, it suffices to prove Theorem 2.1 for graphs G which do not have sub-
graphs of average degree > d(G). So the propositions enable us to assume that
d(G) > d(G)/2 and x(G) < d(G) + 1.

The following theorem of Mader (for a proof see e.g. [6, Thm. 3.6.1]) implies
that it suffices to show that G contains an induced 1-subdivision of any graph
H' of large enough average degree. Indeed, from the theorem it follows that
H' contains a subdivision of H; and it is easily checked that the corresponding
subdivision of H in G is induced.

Theorem 2.5 For every r € N there exists d = d(r) such that every graph of
average degree at least d contains a subdivision of K.

Bollobéds and Thomason as well as Komlés and Szemerédi independently showed
that the order of magnitude of d(r) is 72 (see e.g. [6, Thm. 8.1.1]). We shall also
use the following well known upper bound for the average degree of K, ;-free
graphs (see e.g. [5, p. 74]).

Theorem 2.6 If G is a K, -free graph then d(G) < cs|G|1_1/s where cg 18
some constant depending on s.

The next lemma is a special case of Chernoff’s inequality (see for example [2,
Thm. A.1.12 and A.1.13)).

Lemma 2.7 Let X1,...,X, be independent 0-1 random variables with P(X; =
1) =p for all i < n, and let X := 3" | X;. Then P(X > 2EX) < (4/e) BX
and P(X < EX/2) < e BX/8,

One case which arises in our proof of Theorem 2.1 is that we first find an
induced bipartite subgraph (A, B) of large average degree in G and then find an
induced subdivision of H in (A4, B). To carry out this second step, it will turn
out to be useful if the vertices in A have almost the same degree and |B| is much
smaller than |A|. The following lemma shows that by replacing (A, B) with an
induced subgraph we can always satisfy these two additional conditions. The
lemma is a slight extension of [37, Lemma 2.4]. Although the proof is almost
the same, we include it here for completeness.

Lemma 2.8 Letr > 25, s > 1 and d > 872511, Then every bipartite graph of
average degree d contains an induced copy of an (r,s,0)-graph.

Proof. Clearly, we may assume that our given bipartite graph has no subgraph
of average degree > d. So by Proposition 2.3 this graph contains an induced
subgraph G = (4, B) such that 6(G) > d/2, d(G) = d and |A| > |B|. Thus at
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most half of the vertices of A have degree at least 2d in G. So, writing A’ for
the set of all vertices in A of degree at most 2d, we have |A'| > |A|/2 > |B|/2.

Let us now consider a random subset B, of B which is obtained by including
each vertex of B independently with probability p := r/d. For every a € A’ let
Xo = |Ng(a) N By|. Then r/2 < EX, < 2r. Given By, let us call a € A’ useful
if r/4 < X, < 4r. Lemma 2.7 implies that

P(a is not useful) < P(X, > 2EX,)+P(X, < EX,/2) < (4/e)7r/2—+—e7r/16 < i

Hence the expected number of vertices in A’ which are not useful is at most
|A'|/4. So Markov’s inequality (which states that P(X > ¢EX) < 1/c for every
¢ > 1) implies that

1
P(at least half of the vertices in A" are not useful) < 5
Moreover, using Lemma 2.7 again,
1
P(|B,| > 29]B|) = B(B,| > 2BB,|) < (4/e) ¥l < |

So the probability that both |B,| < 2p|B| and that at least half of the vertices
in A’ are useful is at least 1/2 —1/4 > 0. Hence there exists a choice B* for
B, which has these two properties. Let A* be the set of useful vertices in A’.
Then r/4 < d( 4 p+),(a) < 4r for every vertex a € A* and

A" Bl 1B _ dIBY|

A" > - > >
2 4 8p 8r

> 7‘12S|B*|.

Thus (A*, B*)¢ is an induced (r, s,0)-subgraph of G. O

2.3 Independent sets

Clearly, every graph G of maximum degree A has an independent set of size
at least |G|/x(G) > |G|/(A +1). Lemma 2.9 shows that we obtain a small
but significant improvement if G is K, s-free. The proof is based on Alon’s
elegant proof of the result that any triangle-free graph H of maximum degree
A contains an independent set of size c|H|log A/A (see e.g. [2], the result itself
is due to Ajtai, Komlds and Szemerédi [1]).

Alternatively, we could have applied another result in [1]: for all & there
exists a constant ¢y so that every graph with maximum degree at most A
which contains at most |G|A2?~¢ triangles has an independent set of size at least
co|G|log A/A. But Theorem 2.6 implies that in a K s-free graph G the neigh-
bourhood of any vertex z can span at most c,d(z)?>~'/* < ¢,A%~'/5 edges and
thus G contains at most c,|G|A% /% triangles. Although proof of Lemma 2.9
given below yields a weaker bound, it is simpler and has the advantage of being
self-contained.
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Lemma 2.9 Let A > 2. For every s € N there exists ¢ = c/(s) such that every
K, s-free graph G of mazimum degree at most A has an independent set of size

at least
(log &)1/

Aloglog A
Proof. Let n:=|G|. Let I be an independent set chosen uniformly at random
from all independent sets of G. For every vertex z € G define

_JA ifz eI
*71IN(z) N 1| otherwise.

f={Ia

Then

> Zo=> Zo+ > Z: <Al +e(I,V(G)\I) < 2A]1L.

zelG el x¢I
So it suffices to show that E(} ., Z;) > 2Af. Given any vertex z € G, let
I, ;=TI\ (N(x)U{z}). Rather than directly showing that E(}_ . Z;) is large,
we will show that E(Z,|I;) is large for every vertex = and every I,.

Let N be the set of all neighbours of x which are not adjacent to a vertex in

I,. We will now show that if V; is large then the average size of an independent
subset of N, is large as well. So suppose first that |N;| > 2. Since G[N,] is
K, ,-free, it follows from Theorem 2.6 that every subgraph H of G[N,] has
average degree at most cs|H|'"1/® < ¢;|Ng|'"'/5. Thus by Proposition 2.4
we have that x(G[Ng]) < ¢s|Ng|" /5 41 < 2¢4|Ny|' /. So G[N,] has an
independent set of size at least |N,|'/*/(2¢c;) =: a. Hence G[Nj] contains at
least 2%/2 independent sets of size at least a/2. Put 8 := a/(4log |N,|). Then
the number of independent subsets of N, of size at most S is at most

|N$|> (|N$|> 28 _ 281og |N. 2
et < |N,|?8 = 228108 |Na| — 90/2,
¢ i8)) <

If [N,| > (4c,)® then 2%/2 > 22/2 and «/2 > 2f; and so in this case the average
size £, of an independent subset of IV, is at least .

Now note that, writing k, for the number of independent sets in N, for
every |Nz| > 0 we have

A+ kgl Al
E(Zg|lz) 2 —F— 25+ 5-
(Z: 1) 1+ kg 2k$+2

Thus, if |N;| > (log A)/2 and if ¢’ is sufficiently small, then

1/s / 1/s
Rz 1) > 2505 Mol *, 20(osd) 7
2 7 2 7 16¢slog | Ny| log log A
while if 0 < |N,| < (log A)/2 then
/ 1/s
BZ|L) > —2 > B8 VA, 2P
2. 9INz| = 9. 9(logA)/2 2 loglog A
Hence we have E(Z;) > 2Af/n and so E(} .o Zz) = D cq B(Zz) > 2Af,
which completes the proof. O
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Corollary 2.10 For every s € N there ezists dy = do(s) such that every K ;-
free graph G of average degree d > dy contains an independent set of size at
least |G|(log d)'/+D /d.

Proof. Let G’ be the subgraph of G induced by the vertices of degree at most
2d. Clearly, |G| > |G|/2. If d is sufficiently large, then by Lemma 2.9, G’ (and
thus @) has an independent set of size at least |G|(log d)'/*+1) /d. O

2.4 Finding a ‘nearly’ induced bipartite subgraph of
large average degree

As remarked in the introduction, we would like to find an induced bipartite
subgraph of large average degree in our original graph G. The aim of this
section is to prove that if G does not contain such a subgraph, we can still
come close to it: By Corollary 2.10 we may assume that G contains a large
independent set I. We will use this to find a subgraph (A, B) of large average
degree so that A C I (so A is independent) and B has small chromatic number
and is much smaller than A. The following lemma shows how to construct one
colour class of B.

Lemma 2.11 Let I be an independent set in a graph G such that d(x) > d/2
for every z € I and |I| = 2¢|G|/d for some ¢ > 2. Suppose that x(G) < 3d.
Then G has one of the following properties.

(i) G contains an induced bipartite subgraph whose average degree is at least
(logc)/24.

(ii) There are a set I' C I and an independent set J in G — I such that in
G every vertex of I' has ezactly one neighbour in J, |J| < |I|logc/c and
|1I'] > |1|/4(log c)?.

Proof. Put n:= |G|, I := V(G) \ I and let Y be the set of all vertices in T
which have at least ¢/2 neighbours in I. Then e(I,1\Y) < c[I\Y]|/2 < en/2.
On the other hand the degree of every vertex in I is at least d/2, and so we
have that e(I,I) > cn. Thus e(I,Y) > cn/2. As x(G) < 3d, there exists an
independent set A CY such that

e(l,Y) _en ||
I .A)> > — = . 2.1
‘LAz = 2 h T o (2.1)
Note also that c
3" |A] < e(I,A). (2.2)

We may assume that the average degree of (I, A)¢ is at most (log ¢)/2 (otherwise
(I, A)g would be as desired in (i)). Since every vertex in A has at least ¢/2 >
(log c)/2 neighbours in I, this implies that |I| > |A|. Therefore

c log c
oAl < eI, A) = 5 d(( )] +]4]) < <5 1),

N =
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and hence

4] < HlloBe, (2.)
Using a probabilistic argument, we will show that there exist sets J C A and
I' C T as desired in (ii). To make this work, we first need to replace I with the
set I1 C I of all vertices which have at least one and at most log ¢ neighbours in
A. So let us first estimate the size of I1. Denote by I the set of all vertices in
I which have no neighbours in A and put I3 := I'\ (I; UI;). We will show that
we may assume that both e(I;, A) > e(I, A)/2 and |I;| > |I|/logc. Suppose to
the contrary that e(I;, A) < e(I,A)/2. Then e(I3,A) > e(I,A)/2 and so (2.2)
implies that e(I3, A) > c|A|/4. Thus on average, a vertex in A has at least
c/4 neighbours in I3. As every vertex in I3 has at least logc neighbours in
A, it follows that (I3, A)g is as desired in (i). Hence we may assume that
e(I,A) > e(I,A)/2. Next suppose that |I;| < |I|/logc. Then

(2.1)
e(I1, 4) > e(I,A)/2 > |1]/24 > |I|(log c) /24

and (22
2.2
e(I1,A) > e(I,A)/2 > c|A|/4.

Thus (11, A)g is as desired in (i). Therefore we may also assume that |I;| >
1]/ log c.

Let us now consider a random subset A, of A which is obtained by including
each a € A independently with probability p := 1/(2log c). Call a vertex z € I;
useful if it has exactly one neighbour in A,. Using the definition of I; it follows
that for every x € I;

P(z is useful) = |[N(z) NA] - p- (1 — p)N@MAI=1 > 1. 5. (1 — p)llose]
> p(1 —plloge]) > p/2.

(The second inequality can be easily proved by induction.) Hence the expected
number of useful vertices in I; is at least p|I1|/2. So there exists a choice J for
A, such that at least p|I1|/2 vertices in I; are useful. Let I’ be the set of these
useful vertices. Then

s Bl 0l i
2 4logc ~ 4(logc)?
and 23)
2.3) 711
<< ose,
c
So I' and J are as desired in (ii). O

By repeated applications of Lemma 2.11 we obtain the following result.

Lemma 2.12 Let ¢ > 252, d > 2¢ and let G be a graph of minimum degree at
least d/2. Suppose that x(G) < d+ 1 and that G has an independent set I of
size 2¢|G|/d. Put r := |loglogc|. Then G has one of the following properties.
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(i) G contains an induced bipartite subgraph whose average degree is at least
(logc)/48.

(ii) There are a set I* C I and disjoint independent subsets Jyi,...,J, of
G — I* such that every vertex of I* has ezactly one neighbour in each J,
|T*| > |I|/4"(log ¢)*" and |Ji| < 4|I|logc/c for every k <r.

Proof. The proof follows from r applications of Lemma 2.11. Indeed, let
Iy := I and suppose inductively that for some 0 < ¢ < r we already have
obtained a set Iy C I and disjoint independent sets Ji, ..., Jy in G —I; such that
every vertex of I, has exactly one neighbour in each Ji, |I,| = [|I]/4¢(log c)?]
and |Ji| < 4|I|logc/cforevery 1 <k < {. Putn:=|G|, G := G—(J1U---UJy),
n':=|G'| and d' := d/2. Thus dg(z) > d/2 — £ > d/4 = d']2 for every = € I,.
Moreover, since |Jix| < 4nlogc/c, we have that n' > n/2. Let ¢ be defined by
|I;| = 2¢'n'/d'. Using |I;| < |I| it follows that ¢’ < ¢. On the other hand
|| 2dn' _ 4dn

4¢(log c)* < el =

and so
d > ¢ = °
= 2-4f(logc)?  2(2logc)?t

In particular, ¢ > 2. Since also x(G¢) < d+1 < 3d’, we may apply Lemma 2.11
to the graph G’ and the independent set I;. As

log ¢ S logc — 1 — log((21og ¢)*) S logec — 1 —2rlog(2logc) S logc
24 24 - 24 48

we may assume that we have Iy, C I, and Jyy; satisfying condition (ii) of
Lemma 2.11. Hence

1= 4log )2 = 4(logc)? = 4t+1(log c)2(E+1)’

and

| Jota| <

e log ' _ 2 - 4% - |Iy|(log c) +! < 4I|logc
d - c - c

Note that we may assume that I, | = [|I|/4¢! (log ¢)2¢t1)] by making I,
smaller if necessary. This completes the induction step. O

Corollary 2.13 For every s € N there ezists c(s) such that the following holds.
Let ¢ > ¢(s), d > 2c and let G be a graph of minimum degree at least d/2.
Suppose that G has an independent set I of size 2¢|G|/d and that x(G) < d+1.
Put r := [loglogc|. Then G has one of the following properties.

(i) G contains an induced bipartite subgraph whose average degree is at least
(logc)/48.

(ii) There are disjoint vertex sets A, B C V(G) such that A is independent,
X(G[B]) <r and (A, B)g is an (r,s,0)-graph.
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Proof. Applying Lemma 2.12 we may assume that G contains independent
sets I* and Jp,. .. J, satisfying condition (ii) of Lemma 2.12. Let A := I'* and
B := J;U---UJ,. Clearly, every vertex of A has degree r in the bipartite graph
(A, B)¢ and x(G[B]) < r. Thus it remains to show that |A| > r!?*|B|. But

ﬂ c > pl2s
|B| — 4rtlr(loge)?rtl = 7

if ¢ is sufficiently large. O

2.5 Finding an induced 1-subdivision of a graph of
large average degree

In the previous section we showed that we may assume that our original graph G
contains a bipartite subgraph (A, B) of large average degree such that A is inde-
pendent in G and G[B] has small chromatic number (or is possibly independent
as well). In this section we will show that this (A, B) contains a 1-subdivision
of some graph of large average degree such that this 1-subdivision is induced in
G. (Our theorem will then follow immediately from Theorem 2.5.)

To accomplish this, we first find a 1-subdivision of some graph H' of large
average degree in (A,B) (Corollary 2.15). The branch vertices of this 1-
subdivision are vertices in B, its subdivided edges are paths of length two
in (A, B) and so the midpoints of the subdivided edges are vertices in A. In
Lemma 2.16 we then show how to find a subgraph H” of H' for which every
midpoint of a subdivided edge is joined in G only to the two endpoints of this
edge and to no other branch vertex. As A is independent, it follows that every
edge of G which prevents the 1-subdivision of H” from being induced must join
two branch vertices, i.e. two vertices in B. So if B is also independent then this
1-subdivision is induced in G, as desired. The case when B is not independent
is more difficult and dealt with in Lemma, 2.18.

Let us now introduce some notation. A path P of length two in a bipartite
graph (A, B) is called a hat of G if it begins and ends in B. A set H of hats of
(A, B) is uncrowded if any two hats in #H join distinct pairs of vertices and have
distinct midpoints. (So the sets of subdivided edges of the 1-subdivisions of
the graphs H' and H" described above are both uncrowded; and conversely, an
uncrowded set of hats can serve as the set of subdivided edges of a 1-subdivision
whose set of branch vertices is B.)

Lemma 2.14 Let r,i > 1 and 0 < k < r/8. Let G = (A, B) be an (r,i,k)-
graph. Then either G has an uncrowded set of at least r'1|B|/2® hats or there
are a verter b' € B and an induced copy (A', B') of an (r,i — 1,k + 1)-graph in
G -V such that ) # A’ C Ng(b').

Proof. Let us first suppose that every vertex b € B satisfies

IN2(B)] = d(b) /rt* Y,
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where N2(b) is the set of all vertices with distance two from b. In other words,
for each b € B there is a set Hj of at least d(b)/r'2¢~ 1 hats in G which have
b as one endvertex, but whose other endvertices are distinct. Note that every
pair of vertices in B belongs to at most two hats in | J,. g Hs. Hence there are
at least |E(G)|/2r'2(~1) hats with distinct pairs of endpoints. Since the degree
of every vertex a € A is at most 47, at most (4r)? of these hats have a as their
midpoint. Thus G has a uncrowded set of at least

B@G)  _ (r/A— KAl _ (r/4—R)r'%B| _ r|B
2.167r12(—1)+2 = 95,12(i—-1)+2 —  95,12(i-1)+2 — 98

hats, as required.
So we may assume that there is a vertex b’ € B with

()| < d(p') /120D,

Let A’ := N(¢') and B’ := N%(¥'). Then (A’, B')g has the required properties.
O

The proof of the preceding lemma shows that in the case where we failed
to find a large set of uncrowded hats (i.e. a 1-subdivision of some graph of
large average degree), there must be a vertex b’ so that the set of vertices with
distance two from b is much smaller that the neighbourhood of &'. However, if
this happens we can reapply the lemma to the bipartite graph induced by these
sets. In case of renewed failure, we can iterate the process—but if we encounter
i successive failures, then this means that G contains contains a K; ;:

Corollary 2.15 Let s € N and let v > 8s. Let G = (A,B) be a K ,-free
(r,s,0)-graph. Then there exists 0 < i < s such that G contains an induced

copy (A", B') of an (r,s — i,4) graph which has an uncrowded set of at least
ri1|B'| /28 hats.

Proof. Applying Lemma 2.14 repeatedly, assume that there are sequences
(A,B) = (Ag,By) 2 (A1,B1) D --- D (As, Bs) of induced subgraphs of G and
b1, ba,...,bs of distinct vertices in B such that, for each 0 < i < s, (4;, B;) is
an (r,s — i,4)-graph and § # A; C Ng(b;). Note that every vertex in A has
degree at least /4 — s > r/8 and so

s < g <IBil=r B < |4,

Thus together with any s vertices from A, the vertices b1, ...,bs induce a K
in GG, a contradiction. O

We say that an uncrowded set H of hats of a bipartite graph (A, B) is
induced if [JH an induced subgraph of (A, B), i.e. if every midpoint of a hat
in H has degree two in (A, B).

Lemma 2.16 Letr > 1 and let G = (A, B) be a bipartite graph with d(a) < 4r
for every vertex a € A. Suppose that G has an uncrowded set H of at least
r11 B|/2® hats. Then there is an induced subgraph G' = (A', B') of G which has
an induced uncrowded set H' of at least r°|B'|/2'5 hats.
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Proof. We may assume that A consists only of midpoints of hats in . Since
‘H is uncrowded, every vertex a € A is the midpoint of exactly one hat in H,
and we say that a owns the endvertices of these hat. So every vertex in A owns
exactly two vertices in B and

11| |

28

r

Al = [H] =

Let us consider a random subset B), of B which is obtained by including each
vertex of B independently with probability p := 1/(8r). Given B, let us call
a vertex a € A useful if N(a) N By consists precisely of the two vertices owned
by a. Thus

P(a is useful) = p*(1 — p)4¥ 2 > p2(1 — p)IU) > p2(1 — |4r]p) > p?/2,

and so the expected number of useful vertices is at least p?|A|/2. Hence there
exists a choice B’ for B, such that at least p?|A|/2 vertices in A are useful. Let
A" denote the set of these vertices, and let ' be the set consisting of all hats
in H whose midpoints lie in A’. Then

Al _ B[ _ B
> >

!
|H|:|A|227r2— 915 = " 915

and so (A’, B')¢ and H' have the required properties. O

Corollary 2.17 Let s € N and r > 8s. Let G = (A, B) be an (r,s,0) graph.
Then either G contains a K s or an induced 1-subdivision of some graph H
with d(H) > r%/21.

Proof. We may apply Corollary 2.15 and Lemma 2.16 to obtain an induced
bipartite graph G’ = (A’, B') C G and a set H' of hats as in Lemma 2.16. Let
H be the graph whose vertex set is B’ and in which b,b' € B’ are joined by an
edge if there is a hat in ' whose endvertices are b and b'. So every edge of H
corresponds to a hat in H'. As H' is induced, the 1-subdivision of H is induced
in G’ (and thus in G). Moreover |E(H)| = |H'| > r°|B'| /2!, as desired. O

Lemma 2.18 Letr > 2?°. Let A, B be a vertex partition of a graph G such that
A is independent, x(G[B]) < r and d(G') < r3 for every G' C G[B]. Suppose
that (A, B)g has an induced uncrowded set H of at least v°|B|/2'® hats. Then
G contains an induced 1-subdivision of some graph H with d(H) > r.

Proof. Let Hy be the graph whose vertex set is B and in which b,b' € B are
joined by an edge if they are the endpoints of a hat in H. Hence G contains a
1-subdivision of Hy. Note that |E(Hp)| = |#H| and so d(Hy) > r¥/2!*. Let Hy
be a subgraph of Hy with

79

22T57

and put By := V(H;) (where B; is thought of as a subset of B). Let G* be
the 1-subdivision of H; contained in G. Note that every edge which prevents

5(H) (2.4)
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G* from being induced must join two branch vertices of G*, i.e. vertices in Bj.
Using a probabilistic argument, we will show that H; contains a subgraph Hs
of average degree at least r whose 1-subdivision in G is induced.

Let F := G[Bi] and let B denote the set of all vertices b € By with
dr(b) < 2r3. Then

2r°|B1 \ B| < 2|E(F)| = d(F)|F| < r*| By

and thus By
1
|Bl| > - (2.5)

Consider a random subset B, of B; which is obtained by including each vertex
of By independently with probability p = 1/(4r®). Given B,, call a vertex
b € B} useful if

(a‘) be Bpa
(b) Nr(b) N By =0,
() |(Nm, (b) \ Nr(b)) N Byl > pr/2'7.

Thus every useful vertex is isolated in G[Bp] and in the graph H; it has many
neighbours which are contained in Bj,. The aim now is to show that with non-
zero probability the set Iy of useful vertices is large. As the chromatic number
of G[By) is small compared to |Ng, (b) N B,| for any useful vertex b, there will
be an independent set in By, \ Iy which together with Iy induces a subgraph Hj
of Hy with large average degree. Observe that the 1-subdivision of Hs in G will
be induced.

To prove that with non-zero probability B{ contains many useful vertices,
first note that for every b € B} the random variable X := |(Ng, (b)\Nr(b))NByp|
is binomially distributed with

(2-4) pr?
EX = p|Ng, (b) \ Nr(b)| = p|6(H1) — dr(b)| > 16 2 &
So Lemma 2.7 implies that
9
pr EX —Ex/s 1
PX < =—7)< < —) < < —.

Moreover, note that the events (a), (b) and (c) are mutually independent. Thus
for every vertex b € B} we have that
>p-(1-p).

P(b is useful) > p - (1 — p)4r®) . > i—)

N =

Hence by (2.5) the expected number of useful vertices is at least p|Bj|/4 >
p|B1|/8. So there exists a choice By for B, such that at least p|B;|/8 vertices
in B} are useful. Let Iy denote the set of these vertices. Every useful vertex is
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Figure 2.1: Finding an independent set of vertices in F' which induces many
hats

contained in By and has at least pr®/2!7 neighbours in H; which are contained
in By. Thus there are at least

1 prd p|B| B 3| By |

9 917 T8 9%

edges of H; which emanate from vertices contained in Iy. Since x(G[B]) < r,
we may partition G[Bs \ Iy] into r independent sets, I1,..., I, say. Then there
exists 0 < ¢ < r such that at least a 1/(r + 1)th of the edges of H; emanating
from Iy ends in I;. But then the subgraph Hs of H; induced by Iy U I; has at
least
1 7"3|Bl‘ T‘B1|
: >
r+1 2% = 2

edges and so it has average degree at least r. Moreover, since in F' both Iy
and I; are independent and no vertex in By D I; is joined to a vertex in Iy, it
follows that Iy U I; is independent in G. As mentioned above, this implies that
the 1-subdivision of Hy is induced in G. O

By successively applying Corollary 2.15 and Lemmas 2.16 and 2.18 we obtain
the following result.

Corollary 2.19 Let s € N and r > max{8s,2?°}. Let G be a K, s-free graph
and let A,B C V(G) be disjoint sets of vertices such that A is independent,
x(G[B)) < r, d(G") < 73 for every G' C G[B] and so that (A, B)g is an
(r,s,0) graph. Then G contains an induced 1-subdivision of some graph H with
d(H) >r. O

2.6 Proof of Theorem 2.1

We can now put everything together.

Proof of Theorem 2.1. Suppose that G is a K ,-free graph with d(G) = d >
dy where d is sufficiently large compared to s and |H|. Put n := |G|. Clearly, we
may assume that G has no subgraph of average degree > d. So Propositions 2.3
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and 2.4 enable us to assume that §(G) > d/2 and x(G) < d+ 1. Note also that
it suffices to show that G contains an induced 1-subdivision of some graph H'
with large enough average degree. Indeed, Theorem 2.5 implies that H’' contains
a subdivision of H and it is easy to show that the corresponding subdivision of
H in G is induced. So Lemma 2.8 and Corollary 2.17 imply that Theorem 2.1
holds if G contains an induced bipartite subgraph of large average degree—we
will make use of this fact twice in what follows.

Turning to the proof itself, we first apply Corollary 2.10 to G, which gives
us an independent set T of size 2cn/d where ¢ > (logd)'/(*t1) /2. We then apply
Corollary 2.13 to obtain (without loss of generality) disjoint sets A, B C V(G) as
in condition (ii) of the corollary. In other words, A is independent, x(G[B]) < r
and (4, B)g is an (r,s,0)-graph, where r = [loglogc|. Now if G[B] has an
(induced) subgraph G’ whose average degree is at least 73 then, as x(G') < r,
there must be two disjoint independent sets By, By of G’ such that

[E(G)]
()
Hence (Bj, Bs)¢ is an induced bipartite subgraph of average degree at least 2r.
So we may assume that d(G") < r3 for every G’ C G[B]. But then Corollary 2.19

implies that G contains an induced 1-subdivision of some graph H’ of large
average degree, as desired. O

(GG

e((B1,B2)ar) > -

> > r|G| > r(|B1| + |Ba)):

A result of Thomassen [53] states that for every k,/ € N there exists
f = f(k,£) such that every graph of minimum degree at least f contains a
subdivision of some graph H with minimum degree at least k£ in which every
edge is subdivided exactly £ times. Note that, using this result, our proof of
Theorem 2.1 gives the following analogue for odd integers £: For every k,s € N
and every odd integer ¢ there exists g = g(k,?,s) such that every K, ,-free
graph of minimum degree at least g contains an induced subdivision of some
graph H with minimum degree at least k£ in which every edge is subdivided
exactly £ times.

2.7 Induced cycles

In this section we give a short proof of the special case of Theorem 2.1 when H
is a cycle:

Theorem 2.20 For every{,s € N there exists d = d(£, s) such that every graph
of average degree at least d contains either K¢ as a subgraph or an induced
cycle of length at least £.

To prove this result we shall need the case of Theorem 2.2 when T is a path. This
special case immediately follows from a theorem of Galvin, Rival and Sands [17,
Thm. 4] that every sufficiently large K s-free graph which has a Hamiltonian
path contains a long induced path. The proof of the latter result—an elegant
application of Ramsey’s theorem—is much simpler than that of the general
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case of Theorem 2.2. The result itself is also used as a tool in [21] to prove
Theorem 2.2.

Proof of Theorem 2.20. We will prove the theorem for d(¢,s) = 4 -
[max{d(Py, s), 4551425 4(2cs£?)%}] where cs is the constant in Theorem 2.6
and d(Py, s) is as defined in Theorem 2.2. By a theorem of Mader (see e.g. [6,
Thm. 1.4.2]), every graph G has a |d(G)/4]-connected subgraph. So we may
assume that we are given an k-connected graph G where k > d(¢, s)/4. Thus in
particular d(G) > k, and hence by Theorem 2.2 we may assume that G contains
an induced path P = z...y of length s/2. Menger’s theorem now implies that
G contains at least k internally disjoint paths joining z to y. Let Q be the set
consisting of all the paths not meeting 15, where P denotes the interior of P.
So |Q| > k — s£? > k/2. By short-cutting the paths in Q if necessary, we may
assume that they are induced. Let Q' be the set consisting of all paths in Q of
length at most £.

Case 1. |Q'| > k/4.

Suppose first that there exists a @ € Q' such that G has less than s/ edges
joining Q to P. In this case, P has a segment S of length at least £ such that
no edge in G joins S to Q Let S be a maximal such segment. It is easy to show
that then G contains an induced cycle consisting of S together with two suitable
edges e1, e joining the endpoints of S to Q and the segment of () between e;
and ey. Since this cycle has length at least ¢, we may assume that for every
Q € Q' there are at least s/ edges joining Q to P. Thus in the interior of every
@ € Q' there must be a vertex z¢ which has at least s neighbours on P. Since

o

the number of s-element subsets of V(P) is at most

2 !
(SZ) S (Sﬁz)s g 4£ S @’

S S S

there are s paths in @', Q1,...,Q; say, and a set X of s vertices in P such that
each zg, is joined to all of X. Thus G contains a K ,.

Case 2. |Q\ Q| > k/4.

Let Q" := Q\ Q. For every Q € Q" let ' denote the segment of () (directed
from z to y) consisting of the first £ vertices. If there are distinct paths Q1, Q2 €
Q" such that no edge of G joins @ to Q) then one can easily show that G has
an induced cycle containing @} or @} (or both). Since the length of this cycle
is at least £, we may assume that for every distinct Qq,Q2 € Q" there is an
edge joining @ to Q5. Consider G’ := G[Ugegr V(Q')]- Then
G'] =4 Q"|

and | Q"‘ |QII|2

E(G")] > > — .

sz (19212

Together with |Q"| > k/4 > (2cs£?)* (where ¢, is the constant of Theorem 2.6)
this implies that

d(GI) 2 |Qll|/2e 2 C5£|Q”|1_1/S > C5|G,|1_1/s-

From Theorem 2.6 it now follows that G’ contains a K ;. O
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2.8 Induced trees

For our alternative proof of Theorem 2.2 we first need some notation. If T is
a rooted tree and ¢+ € N then the ¢th level of T is the set of all vertices of T’
whose distance to the root of T is exactly 7. Given vertices v,w € T we say
that w lies above v and v lies below w if v lies on the path in T" which joins w
to the root of T'. A vertex w lying above v is said to be a successor of v if it is
adjacent to v in T. We denote by br(v) the subtree of T' which is induced by
all vertices above v and whose root is v. Two vertices of T' are incomparable if
none of them lies above the other. We denote by T(f the rooted tree in which
every vertex which is not a leaf has exactly a successors and in which every
leaf has distance b from the root. Given a graph G and a rooted subtree T'
of G, we say that T is pseudo-induced in G if the endvertices of every edge in
E(G[V(T)]) \ E(T) are incomparable in 7.

Proof of Theorem 2.2. Clearly, it suffices to prove the theorem for all trees
of the form T?. So let G be a K s,s-free graph of average degree d where d
is sufficiently large compared to a,b and s. It is easy to see that G contains
every tree T with |T'| < d/2 as a (not necessarily induced) subgraph. Thus the
following assertion implies that G also contains large pseudo-induced trees:

For alli,j € N there exist h = h(i, j) and ' = 7'(i, j) so that for any
Th C G, GIV(T!)] contains a pseudo-induced T} whose leaves are
leaves of the T;} and in which a vertex w lies above v if and only if
w lies above v in the T (for all v,w € V(TZJ))

(%)

The proof of (x) proceeds by induction on j. The case j = 1 is trivial since
every star is pseudo-induced. So suppose that j > 1 and that (*) holds for
j — 1. Let h* := h(i,j5 — 1) and r* := 7'(i,57 — 1); let 7' and h be sufficiently
large compared to 7*, h* and s, and set 7’ to be much larger than h. Suppose
that T is a copy of Tf? in G.

It is easily seen that T' contains a copy T" of Tﬁ, /2] such that in G either all
or none of the leaves of T” are adjacent to the root z of T'. Indeed, colour a leaf
of T blue if it is adjacent to z and green otherwise. Now keep moving towards
the root of T, colouring a vertex blue if at least half of its successors are blue
and green otherwise, until all the vertices of T" are coloured. T must contain
a monochromatic copy 1" of Tﬁ, /2] which then has the desired property. By

repeating this argument, it follows that 7' contains a copy U of T such that
every vertex u € U is adjacent in G to either all or none of the leaves above u
in U and where r > 7' /2".

Let us now assign to each leaf v of U a list of all those integers £ for which
v is joined in G to the unique vertex below v that lies in the /th level of U.
These lists never contain more than s — 1 entries. Indeed, suppose that the list
of v has (at least) s entries, #1 > --- > £ say. Then for k = 1,..., s the unique
vertex vg lying below v in the £ixth level is joined to v and so, by the choice
of U, v, must be joined to all leaves of U lying above it. In particular, v is a
successor of v; and each vy, is joined to all the r > s successors of v1. Thus G
contains a K s, contradicting our assumption.
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So the above assignment of lists to the leaves of U can be viewed as a
colouring of these leaves with at most h* colours. Since U has exactly r” leaves,
there must be a set R of at least " /h® leaves which all have the same colour,
L say. As L has less than s entries, there must be an entry p > h/s of L such
that ¢ ¢ L for all ¢ with p — h/s < g < p; and so if h is sufficiently large, this is
true for all ¢ with p — h* < g < p. Colour a vertex u in the pth level of U red
if u is adjacent in G to at least r* leaves in R lying above u. Moving towards
the root of U, colour a vertex red if at least r* of its successors are red and let
Ry be the set of red vertices on the £th level (¢ < p). Since every vertex in the
pth level lies below 7" P leaves of U, and since there are 7P vertices in the pth

level of U, it follows that
. rh
|Rp|r"" P + rPr* > |R| > — =

This in turn implies that |Rp| >
ilarly, for ¢ < p we have

2h5, provided that r is sufficiently large. Sim-

|Rqlr + 77" > |Rga]-

If r is sufficiently large, it follows inductively that |[R,| > r9/(2P"9T1h®) for
all ¢ < p. In particular, we have |R,_p-| > 1. Now pick any u € R, ;- and
apply the induction hypothesis to a red copy of T% in br(u) C U to find a
pseudo-induced Tj ~!asin (*). Since every leaf v of this Tj ~!is a red vertex
on the pth level of U, it follows that v is joined in G to r* > 1 red leaves above
v. Let U’ denote the extension of the T] ! to the copy of TJ thus obtained.
Recall that for each £=p—h*,...,p—1 no leaf w € R of U is joined in G to a
vertex lying below w in the £th level of U. Thus U’ must be as required in (%),
which completes the induction step.

We have shown that if d = d(G) is sufficiently large, then G contains a
pseudo-induced copy of T(f,. Thus the theorem will follow if we can show that for
every a,b € N there exists an a’ such that any pseudo-induced copy of T(f, inG
contains a copy of T? that is induced in G. But as already observed by Kierstead
and Penrice [21], this can easily be verified by applying Ramsey’s theorem
and induction on b. Indeed, the case b = 1 follows immediately by applying
Ramsey’s theorem to the subgraph of G spanned by the leaves of a sufficiently
large star. Now suppose that b > 1 and that the induction hypothesis holds
for b — 1. Let o’ € N be sufficiently large and let v1,...,v, be an enumeration
of the successors of the root of T (f, C G. The induction hypothesis implies
that br(v;) contains a copy U; of TP~! that is induced in G (i = 1,...,a).
Label the vertices in each U;, and for ¢ < j let B;; denote the labelled ordered
bipartite graph whose first vertex class is V' (U;), whose second vertex class is
V(U;) and whose edges are the U;-U; edges in G. Let us now consider the
complete graph K, in which the edge ij is coloured with the graph B;;. So
the number of colours only depends on a and b but not on a’. Thus if a
is sufficiently large, then by Ramsey’s theorem there exists a monochromatic
K, where t := max{a,2s}. We may assume that the vertices of this K; are
1,...,t. Note that G cannot contain a U;~U; edge for any 1 <14 < j < t. For if
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there exists an edge joining the /th vertex of U; to the kth vertex of Uj, then G

contains a K, ; whose vertex classes are formed by the £th vertices of Uy, ..., Us
and the kth vertices of Usy1,...,Uszs. Thus the copy of Té’ formed by the root
of the Té’, and Uq,...,U, must be induced in G. O
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Chapter 3

Subgraphs of large average
degree containing no cycle of
length less than six

3.1 Introduction

Thomassen [52] conjectured that for all integers k,g there exists an integer
f(k,g) such that every graph G of average degree at least f(k,g) contains a
subgraph of average degree at least k and girth at least g (where the girth of
G is the length of the shortest cycle in G). Erdds and Hajnal [16] made a
conjecture analogous to that of Thomassen with both occurrences of average
degree replaced by chromatic number. The case ¢ = 4 of the conjecture of
Erdés and Hajnal was proved by Rodl [42], while the general case is still open.

The existence of graphs of both arbitrarily high average degree and high
girth follows for example from the result of Erdés that there exist graphs of high
girth and high chromatic number. The case g = 4 of Thomassen’s conjecture
(which corresponds to forbidding triangles) is trivial since every graph can be
made bipartite by deleting at most half of its edges. Thus f(k,4) < 2k. The
purpose of this chapter is to prove the case g = 6 of the conjecture.

Theorem 3.1 For every k there exists d = d(k) such that every graph of av-
erage degree at least d contains a subgraph of average degree at least k whose
girth is at least siz.

A straightforward probabilistic argument shows that Thomassen’s conjec-
ture is true for graphs G which are almost regular in the sense that their max-
imum degree is not much larger than their average degree (see Lemma 3.3 for
the Cy-case). Indeed, such graphs G do not contain too many short cycles.
Thus if we consider the graph G), obtained by selecting each edge of G with
probability p (for a suitable p), it is easy to show that with nonzero probability
G, contains far fewer short cycles than edges. Deleting one edge on every short
cycle then yields a subgraph of G with the desired properties.

Thus the conjecture would hold in general if every graph of sufficiently
large average degree would contain an almost regular subgraph of large average
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degree. However, this is not the case: Pyber, R6dl and Szemerédi [37] showed
that there are graphs with cnloglogn edges which do not contain a k-regular
subgraph (for all £ > 3). These graphs cannot even contain an almost regular
subgraph of large average degree, since e.g. another result in [37] states that
every graph with at least cxnlog(A(G)) edges contains a k-regular subgraph.
On the other hand, the latter result implies that every graph G with at least
cknlogn edges contains a k-regular subgraph (which was already proved by
Pyber [36]), and thus, if k is sufficiently large, G contains also a subgraph of
both high average degree and high girth.

3.2 Proof of Theorem 3.1

All graphs considered in this chapter are finite. We write e(G) for the number
of edges of a graph G and d(G) := 2e(G)/|G]| for the average degree of G. We
say that a graph is Cy-free if it does not contain a Cy as a subgraph. We prove
the following quantitative version of Theorem 3.1. (It implies Theorem 3.1 since
every graph can be made bipartite by deleting at most half of its edges.) We
remark that we have made no attempt to optimize the bounds given in the
theorem.

Theorem 3.2 Let k > 2'6 be an integer. Then every graph of average degree

3
at least 64k3+2 11" contains a Cy-free subgraph of average degree at least k.

We now give a sketch of the proof of Theorem 3.2. As a preliminary step we
find a bipartite subgraph (A4, B) of the given graph G which has large average
degree and where the vertices in A all have the same degree. We then inductively
construct a Cy-free subgraph of (A4, B) in the following way. Let ai,as,... be
an enumeration of the vertices in A. At stage 1 we will have found a Cjy-free
subgraph G; of (A, B) whose vertex classes are contained in {ai,...,a;} and
B, and such that the vertices in V(G;) N A all have the same degree in Gj.
We then ask whether the subgraph of (A4, B) consisting of G; together with all
the edges of G incident with a;;; (and their endvertices) contains many Cjy’s.
If this is the case, the vertex a;41 is ‘useless’ for our purposes. We then let
Gi+1 := G; and consider the next vertex a;1o. But if a;41 is not ‘useless’, we
add a;41 together with suitable edges to G; to obtain a new Cy-free graph G, 1.
We then show that either the Cy-free graph G* consisting of the union of all
the G; has large average degree or else that there is a vertex x € B and a
subgraph (A4’, B') of (A, B) — = which has similar properties as (A, B) and such
that A’ C N(z) (Lemma 3.5). In the latter case, we apply the above procedure
to this new graph (A’, B'). If this again does not yield a Cy-free subgraph with
large average degree, there will be a vertex z' € B’ and a subgraph (A", B")
of (A',B') — z' as before. So both z and z’ are joined in G to all vertices
in A”. Continuing this process, we will either find a Cy-free subgraph with
large average degree or else a large K, ;. But K, ; is regular and so, as was
already mentioned in Section 3.1, it contains a Cjy-free subgraph as required
(Lemma 3.3).

60



The following lemma implies that Theorem 3.2 holds for the class of all
graphs whose maximum degree is not much larger than their average degree. It
can easily be generalized to longer cycles.

Lemma 3.3 If G is a graph of average degree d and mazimum degree ad, then
G contains a Cy-free subgraph of average degree at least d'/?/(4c).

Proof. Let n := |G| and put k := d'/3/(4a). Let G, denote the (random)
spanning subgraph of G obtained by including each edge of G' in G, with prob-
ability p := 2k/d. Let X4 denote the number of labelled C4’s in G, and let X,
denote the number of edges in Gp. Then E[X.] = pdn/2. Since the number of
C4’s contained in G is at most %"(ozd)2 (indeed, every Cj is determined by first
choosing an edge xy € G and then choosing a neighbour of z and a neighbour
of y so that these neighbours are joined by an edge in G), it follows that

21.3
E[X,] < dg(ad)Qp‘l < 8a“k dn

-p-— < E[X,.]/2.

d p 5 = [ e]/

Let X := X, — X4. Then by the above, E[X] > E[X,]|/2 = pdn/4 = kn/2. Thus
P[X > kn/2] > 0, and so G contains a subgraph H with the property that if
we delete an edge from each Cy in H, the remaining graph H' still has at least
kn/2 edges. Thus H' is as desired. O

Proposition 3.4 Let D > 0,0 < c¢y < 1 and ¢; > 1. Let G = (A,B) be a
bipartite graph with at least D|A| edges and such that d(a) < c1D for every
vertex a € A. Then there are at least (1 — cg)/(c1 — ¢o)|A| vertices a € A with
d((],) > C()D.

Proof. Let ¢t denote the number of vertices a € A with d(a) > c¢pD. Then
c1Dt+cyD(|A| —t) > e(G) > D|A|, which implies that t(c;D —coD) > |A|(D —
C()D). O

Given ¢,d > 0, we say that a bipartite graph (A, B) is a (d, ¢)-graph if A is
non-empty, |B| < c|A| and d(a) = [d] for every vertex a € A. Given a graph
G and disjoint sets A, B C V(G), we write (A, B)g for the induced bipartite
subgraph of G with vertex classes A and B.

Lemma 3.5 Let c,d € N be such that d is divisible by c, ¢ > 26 and d > 4c3.
Let G = (A, B) be a (d/c,c)-graph. Then G contains either a Cy-free subgraph
of average degree at least c or there exists a verter x € B and a (d/c'!,c!')-graph
(A, B") C G such that A’ C N(z) and B' C B\ {z}.

Proof. Given a bipartite graph (X,Y) and a set Y’ C Y, we say that a path
P of length two whose endvertices both lie in Y’ is a hat of Y’, and that the
endvertices of P span this hat.

Let a1,a9,... be an enumeration of the vertices in A. Let us define a
sequence Ay C Ay C ... of subsets of A and a sequence Gy C G; C ... of
subgraphs of G such that the following holds for all : = 0,1,...:
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G; is Cy-free and has vertex classes A; C {a1,...,a;} and B, and
dg,(a) = 2¢2 for every a € A;.

To do this, we begin with Ay := () and the graph G consisting of all vertices
in B (and no edges). For every ¢ > 1 in turn, we call the vertex a; useless if
Ng(a;) spans at least d?/(8c*) hats contained in G; 1. If a; is useless, we put
A; := A;_1 and G; := G;_1. If a; is not useless, let us consider the auxiliary
graph H on Ng(a;) in which two vertices z,y € Ng(a;) are joined if they span
a hat contained in GG;_1. Since a; is not useless, we have that

(o) s (452 )
> (1 _ i) Gl

2c2 2

where the last inequality holds since d > 4c®. Turdn’s theorem (see e.g. [6,
Thm. 7.1.1.]) applied to H now shows that H contains an independent set of
size at least 2¢2. Hence there are 2¢? edges of G incident with a; such that the
graph consisting of G;_1 together with a; and these edges does not contain a
Cs. We then let G; be this graph and put A; := A;_1 U {a;}-

Let A* := |J; A; and G* := |J;Gi. Thus the accepted graph G* is Cjy-
free. Let A' := A\ A*, and let G' := (A!, B)g. We show that either G* has
average degree at least ¢ (which correponds to Case 1 below) or else that there
are z € B and (A4',B’) as in the statement of the lemma (Case 2). We will
distinguish these two cases according to the properties of the neighbourhoods
and the second neighbourhoods of the vertices in B. For this, we need some
definitions.

For every a € A' consider the auxiliary graph H, on Ngi(a) = Ng(a) in
which two vertices are joined by an edge if they span a hat contained in the
accepted graph G*. Since a is useless, this graph has at least d?/(8¢*) edges (and
d/c vertices), and so it has average degree at least d/(4c®). By Proposition 2.3,
H, contains a subgraph H! with minimum degree at least d/(8¢c?), and so
with at least 1+ d/(8¢?) vertices. Let B? := J,. 41 V(H}), and let G* be the
subgraph of G whose vertex set is A U B? and in which every a € A' is joined
to all of V(H]). Thus the following holds.

For every a € A' we have that dg»(a) > 1+d/(8¢?), and every vertex
in Ng2(a) spans a hat contained in G* with at least d/(8c®) other (%)
vertices in Ng2(a).

Given any vertex z € B?, let G2 denote the subgraph of G? induced by the
vertices in A2 := Ng2(7) and B2 := Ng2(Ng2(z)) \ {z}. Let

_d
U= g

and say that a vertex b € By is z-rich if dga (b) > .

62



Case 1. For every vertex x € B? we have that

Y. da®) <5 (3.1)

beB2, b is z-Tich

We will show that in this case, every vertex € B? is incident with at least
8c?d2(z) edges of the accepted graph G* and thus that e(G*) > 8c%e(G?).
Before doing this, let us first show that the latter implies that the average
degree of G* is at least c. Indeed, since e(G') = d|A'|/c, we have

e(G) > 8?| |—8?€( ).
Thus e(G*) > e(G'). Also dg-(a) = 2¢? for every a € A* while dgi(a) = d/c >
2¢? for every a € A', and so

. 1o 2-2c%A| 42| A|
WGV 2 AT 18] = Tt oldl = 2
Recalling that e(G*) > e(G'), this now shows that d(G*) > d((G* UG*') —
E(GY)) > d(G*UGY)/2 > c.

Thus it suffices to show that dg:(z) > 8c?dg2(z) for every vertex z € B2
So let x € B2, and put t := d2 (z) = |A2]. Let B3 be the subset of B2 obtained
by deleting all z-rich vertices, and let G2 := (A%,Bg)(;%. Let y1,...,y¢ be an
enumeration of the vertices in A2. For all i = 1,...,¢, let N; denote the set of

all vertices in N2 (yi) = Ng2(yi)\ {z} spanning a hat with z which is contained

in G*. Hence by (x)
d

|N;| > 53 (3.2)
We now use the existence of these hats to show that z is incident with at least
8c%t edges of G* (namely edges contained in these hats). Let N/ := N; N B2
and n; := |N; \ N]|. Thus n; < dg2 (yi) — dgs (vi), and so

r r 16¢2 16¢3
=1
Hence . .
(32) gt dt dt
1 | . e

Z [N = Z (1Nl =m) > 55~ 16 ~ T6a"

i=1 i=1
But every vertex of G2 lies in at most u of the sets Ni,..., N}, since dgs(b) <u

for every b € B3. Thus

t
1
> =3 |Nj| > 16¢t.
u
i=1

t
Uw
=1

That means that = spans hats contained in G* with at least 16¢*t other vertices
in B3. But as every vertex in A* has degree 2¢? in G*, this implies that =

63



has at least 16c*t/(2¢?) > 8c?t neighbours in G*. So we have shown that
dg(z) > 8c?dg2(z) for every x € B?, as desired.

Case 2. There ezists a vertez z € B? not satisfying (3.1).

Let Bi be the set of all z-rich vertices in B2, let G2 := (A%,B;L)G?c and put
t := dg2(x) = |A2|. Then the choice of z implies that ¢ > 0 and

e(G2) ®» 1 dt dt

Gy) > 2> — — = .

(62 2 962 2 62 83 ~ 70

Hence the average degree in G of the vertices in A2 is at least D' := d/(27¢%).

Proposition 3.4, applied with D = D', ¢y = 1/2 and c1 = d/(cD'") = 27¢*, now
implies that there are at least

1—¢ 4 t t

C1 —C 2(01 — l) 261 2864

vertices a € A2 with dga(a) > D'/2 > dfc!'. Let A be the set of these
vertices. Thus |A4| > 75/(28 c*). But then the subgraph of (A%, B4)G4 obtalned
by deleting edges so that every vertex in A2 has degree [d/c!!] is a (d/ ctt, ctt)-
graph. Indeed, the only thing that remains to be checked is that |Bj| < c11 |Ai|.
But since

|B4| <e@h <™ — <24,

this follows by recalling that c> 216, O

We can now put everything together.

Proof of Theorem 3.2. We may assume (by deleting edges if necessary) that

the given graph G has average degree d := ()34193“'1164’63 . Now we pick a bipartite
subgraph G’ of G which has average degree at least d/2. By Proposition 2.3,
there is a subgraph G” of G’ which has minimum degree at least d/4. By
definition, G” has a vertex bipartition into A and B so that |A| > |B|. Let Go
be the subgraph of G” obtained by deleting sufficiently many edges to ensure
that all vertices in A have degree exactly d/2'5. We then apply Lemma 3.5 to
this Gy. If this fails to produce a Cy-free subgraph of average degree at least
k, we obtain a vertex z; € By and a (d/k'!,k'!)-graph G1 = (41, B;) with
Ay C Ng,y(z1) and By C By \ {z1} to which we can apply Lemma 3.5 again.
Continuing in this way, after s := 64k> applications of Lemma 3.5, we either
found a Cy-free subgraph of average degree at least k, or sequences z1,...,Zs
and Gy = (A1, B1),...,Gs = (A, Bs), where Gy is a (d/k'°, k''")-graph. But
then each z; is joined in G to every vertex in A;. Since Ay is non-empty, we
have |B,| > d/k'" and so in fact

|Ag| > |By|/EM > d/E* M =

Thus G contains the complete bipartite graph K, ;. The result now follows by
applying Lemma 3.3 to this K ;. 0
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Chapter 4

Partitions of graphs with high
minimum degree or
connectivity

4.1 Introduction

It is well-known that the vertex set of every graph G of minimum degree at least
2¢ — 1 can be partitioned into sets S and T such that the bipartite subgraph
(S,T)g of G between S and T has minimum degree at least /. Moreover,
Hajnal [19] and Thomassen [50] proved that for every £ there exists k = k(¥)
such that the vertex set of every graph of minimum degree at least k can be
partitioned into sets S and T such that the graphs G[S] and G[T] induced by
these sets both have minimum degree at least £. They also proved an analogue
where minimum degree is replaced by connectivity.

On the other hand, it is easily seen that we cannot simultaneously require
that G[S], G[T] and (S, T)g have large minimum degree or connectivity if G has
large minimum degree or connectivity (see Proposition 4.6). In Section 4.2 we
show that we can nevertheless strengthen the results of Hajnal and Thomassen
by requiring that each vertex in S has many neighbours in 7"

Theorem 4.1 For every £ € N there ezxists k = k(£) € N such that the vertex
set of every graph G of minimum degree at least k can be partitioned into non-
empty sets S and T such that both G[S] and G[T] have minimum degree at least
£ and every vertex in S has at least £ neighbours in T.

Theorem 4.2 For every £ € N there exists k = k(£) € N such that the vertex
set of every k-connected graph G can be partitioned into non-empty sets S and
T such that both G[S] and G[T)] are £-connected and every vertez in S has at
least £ neighbours in T.

Theorem 4.2 can be applied to show the existence of non-separating struc-
tures in highly connected graphs. A well-known result in this area is the theorem
of Thomassen [49] which states that every (£ + 3)-connected graph G contains
an induced cycle C such that G — V(C) is £-connected. Applying the result of
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Mader that every graph of sufficiently large average degree contains a subdivi-
sion of a given graph H to the graph G[S] obtained by Theorem 4.2, it imme-
diately follows that every highly connected graph G contains a non-separating
subdivision of H:

Corollary 4.3 For every £ € N and every graph H there exists k = k({, H) € N
such that every k-connected graph G contains a subdivision TH of H such that
G — V(TH) is {-connected.

Using Theorem 2.1 of Chapter 2 we obtain the following analogue for in-
duced subdivisions:

Corollary 4.4 For all4,s € N and every graph H there exists k = k(£,s,H) €
N such that every k-connected K s-free graph G' contains an induced subdivision
TH of H such that G — V(TH) is £-connected.

Strengthening the theorem of Mader, Larman and Mani [29] showed that
every sufficiently highly connected graph G contains a subdivision of a given
graph H with prescribed branch vertices. Thus the following conjecture of
Thomassen, which greatly strengthens Theorem 4.2, would even imply the ex-
istence of a non-separating such subdivision.

Conjecture (Thomassen [51]) For every £ € N there exists k = k(£) € N such
that if G is a k-connected graph and X C V(G) consists of at most £ vertices
then the vertex set of G can be partitioned into non-empty sets S and T such
that X C S, each vertex in S has at least £ neighbours in T' and both G[S] and
G[T)] are £-connected.

If true, this would also imply a conjecture of Lovész (see [51]) that there ex-
ists a function f(£) such that, for any two vertices z and y in an f(£)-connected
graph G, there exists an induced z—y path P such that G —V (P) is £-connected.
In Section 4.3 we observe that f(1) = 3.

Finally, for graphs of high minimum degree we can strengthen the result
of Hajnal and Thomassen in a different direction. It turns out that instead of
asking for high minimum degree on one side of the bipartite graph (S,T)¢ as
in Theorem 4.1, one can require (S,T")g to have high average degree:

Theorem 4.5 The verter set of every graph G of minimum degree at least
2320 can be partitioned into non-empty sets S and T such that both G[S] and
G[T] have minimum degree at least £, (S,T)q has average degree at least £ and
S|, IT| > |G|/2".

It is not hard to obtain similar results about partitions of graphs of high
average degree or chromatic number. In Section 4.5 we will present a simple
probabilistic argument which shows that for every £ > 192 the vertex set of
every graph G of average degree at least 40¢ can be partitioned into S and T’
such that each of G[S], G[T] and (S, T) has average degree at least £. We also
observe that the vertex set of every graph G with large chromatic number and
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large minimum degree can be partitioned into S and 7' such that both G[S] and
GI[T] still have large chromatic number and (S,7)s has large minimum degree.

Let us now recall some notation. Given a graph G, we write e(G) for the
number of its edges, d(G) := 2¢(G)/|G| for its average degree, §(G) for its
minimum degree and x(G) for its chromatic number. If S and 7' are disjoint
sets of vertices of G, then we denote by G[S] the subgraph of G induced by S
and write (S,T)¢g for the bipartite subgraph of G whose vertex classes are S
and T and whose edges are all the S—T" edges in G. We denote by eg(S,T) or, if
this is unambiguous, by e(S,T) the number of these edges and call (S,T)¢g the
bipartite subgraph of G between S and T. We write N (z) for the neighbourhood
of a vertex x € G. All graphs considered in this chapter are finite.

4.2 Proof of Theorems 4.1 and 4.2

Before proving Theorems 4.1 and 4.2, let us first observe that these results are
best possible in the sense that one cannot additionally require that each vertex
in T has many neighbours in S, i.e. that (S,T)s has large minimum degree.

Proposition 4.6 For every k € N there is a k-connected graph G whose vertex
set cannot be partitioned into non-empty sets S and T such that each vertex of
G has a neighbour in both S and T.

Proof. Let G} be the bipartite graph whose vertex classes are X := {1,...,n}
and the set X*) consisting of all k-element subsets of X, and in which z € X
is joined to Y € X®*) if z € Y. Tt is easy to see that GY is k-connected if n
is sufficiently large compared to k. Consider any partition of V(G}) into non-
empty sets S and T. As we may assume that n > 2k — 1, one of S, T contains
at least k vertices from X. Suppose that this is true for S and let Y € X®*) be
a vertex of G corresponding to a set of £ vertices in X N'S. Then Y has no
neighbour in 7', which proves the proposition. O

In the proof of Theorems 4.1 and 4.2 we will apply the following quantita-
tive versions (see [19, Remark 3 and Thm. 4.3]) of the results of Hajnal and
Thomassen mentioned in Section 4.1.

Theorem 4.7 The vertex set of every graph G of minimum degree at least 3¢
can be partitioned into non-empty sets S and T such that both G[S] and G[T]
have minimum degree at least £.

Theorem 4.8 The vertex set of every 8¢-connected graph G can be partitioned
into non-empty sets S and T such that both G[S] and G[T| are £-connected.

In the proof of Theorem 4.1 we will also use a lemma which is an easy
consequence of Theorem 4.7.

Lemma 4.9 The vertex set of every graph G of minimum degree at least 3¢
can be partitioned into non-empty sets S and T such that both G[S] and G[T]
have minimum degree at least £ and every subgraph of G[S] has average degree
less than 64.
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Proof. Theorem 4.7 implies that V(G) can be partitioned into non-empty sets
S and T such that both 6(G[S]) > £ and §(G[T]) > £. Choose S and T satisfying
these properties such that S is minimal. Then S,T are as desired. Indeed, if
G[S] had a subgraph of average degree at least 6£, then by Proposition 2.3
it would also contain a subgraph H of minimum degree at least 3. Apply
Theorem 4.7 to obtain a partition S’, 7" of V(H). Let X be a maximal subset
of S\ T" such that S’ C X and 6(G[X]) > £. Then each vertex in S\ (7" U X)
has at least 3¢ — £ = 2 neighbours in G outside X. Hence X, V(G) \ X is a
partition contradicting the minimality of S. O

The following lemma shows that if S, T is a partition as provided by Lem-
ma 4.9, then we can alter it by successively moving vertices from S to 7" to obtain
a partition S’, T" satisfying Theorem 4.1 except that G[S’] is only required to
have large average degree. Theorem 4.1 will then immediately follow since G[S'],
having large average degree, contains a subgraph of large minimum degree. The
‘moreover’ part of Lemma 4.10 will only be used in the proof of Theorem 4.2.

Lemma 4.10 Let ¢, k,¢,7 € N be such that £ > r and k > 25clr. Let G be a
graph of minimum degree at least k and let S, T be a partition of V(G) such
that d(G[S]) > £, 6(G[T]) > £ and every subgraph of G[S]| has average degree
less than cf. Then there exists S' C S such that, writing T' := V(G)\ S', every
vertez in S’ has at least r neighbours in T', d(G[S"]) > £/8 and 6(G[T"]) > r.
Moreover, T' can be obtained from T by successively adding vertices having at
least r neighbours in the superset of T' already constructed.

Proof. Let A C S be the set of all vertices in S having at least 4c/ neighbours
in S, and let C := S\ A. Thus 4cf|A| < 2¢(G]S]), and so, as every subgraph of
G|S] has average degree less than ¢/,

4| _ e(GIS)

(G1A]) < 55 < 99

. (4.1)

Define B to be the set of all those vertices in S which have less than r neighbours
inT. (So if B =10, then S’ := S and T" := T would be a partition as required
in the lemma.) Since 6(G) > k > 4cf + r, we have B C A. Also

@ < (k - )|B| < 2¢(GS))- (42)

Let B’ be the set of all those vertices in B which have at least r neighbours
in C. For every vertex x € B’ choose a set N, of r neighbours in C. Let
es(Uzep Nz) denote the number of all edges in G[S] which are incident to some
vertex in |J,cp Nz. (So here we also count those edges with both endvertices
in J,cp Nz-) Then

es(|J No) < |B|detr 2 16“’"':(6’[5]) < 6(6'4[5])_

reB'

(4.3)

Thus if we add |J,c g N, to T’ then we can ensure that every vertex in B’ has at
least r neighbours in the resulting superset of T while maintaining high average
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degree in the resulting subgraph of G[S]. We now have to deal with the vertices
in B\ B'. As some of these vertices may have (nearly) all their neighbours in
B\ B', but we nevertheless want to ensure that every vertex in S’ has many
neighbours in 7", we will move all of B\ B’ into T". For each vertex of B\ B’
which has most of its neighbours outside B \ B’ (and thus in A\ (B \ B’)), we
will also move some of these neighbours into 7" in order to ensure that G[T"]
has large minimum degree. The main difficulty is that the removal of these
neighbours should not decrease the average degree of the resulting subgraph of
G|S] too much.

Solet Ay := B\ B, A2 := A\ A; and let A] C A; be the set of all those
vertices which have at least k/2 neighbours in As. Put C' := C\ U,cp No
(Fig. 4.1). We will show that we can add A; U, cp Ny to T together with a
set A}, C Ay such that

(i) each vertex in A has at least r neighbours in A,
(i) (A}, C") < e(As, ") /2.

As we shall see, the partition thus obtained is as required in the lemma.
However, let us first show that there exists a set Al satisfying (i) and (ii).

IN(a) N As| > k/2

INB)NC| > r
4 a4, LA
BI
\ As A
IN(a) N S| > det \ B | =— IN®)NT|<r

Figure 4.1: The set-up of the proof of Lemma 4.10.

Let a1,a9,... be any enumeration of the vertices in As such that their degrees
in (A3, C")¢ form a non-increasing sequence. For every z € A] let R, be the set
consisting of the r rightmost neighbours of z in aj,as,.... Note that, writing
[a;] for the set {a1,...,a;},

Ifa € Ry then x has at least k/2 — r neighbours in [a]. (*)

Let Aj := Uzea, Ro- Then clearly A satisfies condition (i). To show that A
also satisfies (ii), we first prove the following

Claim. For all a € Ay at most half of the vertices in [a] are contained in Af.

Suppose not and let a be a vertex in Ay such that more than half of the vertices
in [a] are contained in A}. Consider the bipartite subgraph H of G[S] between
[a] and the set A} consisting of all those vertices z € A for which [a] N R, # 0.
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Since [a] N Af contains at most 7 vertices lying in a common set Ry, it follows
that |Af| > |[a]|/(2r). Moreover, (*) implies that each vertex in A} has degree
at least k/2 —r > k/4 in H. So if |A}| > |[a]|, then

k|AY| _ k|H| _ c|H|
> > > ;

H
e(f) 2 == 22— 2 ——

while if |A}| < |[a]|, we have
BT Hlall | KIE]  ctlH]
4 — 8 T 16r — 2
Thus in each case H is a subgraph of G[S] of average degree at least ¢/, con-
tradicting our assumption. This proves the claim.

e(H) >

By the claim there exists an injection which sends every vertex a € A} to a
vertex in Ay \ A preceding a in the sequence aj,as,.... The choice of the
enumeration aj,asg, ... now implies (ii).

Put 7' := TU Ay UAY U Uy Ny and S := V(G) \ T'. Let us first show
that G[S’] has large average degree. Clearly,

e(GIS]) > e(As\ AL, ) D e(4s,C") 2.

Thus if e(A, C") > e(G[S])/4 then e(G[S']) > e(G[S])/8, as required. To verify
the other case, note that

eGIS) > eGIS) —e(GA]) —es(|J No) = e(41,0") = e(43,C")

z€B’
(4.1),(4.3) e e
T eqas) - G - G g — ey, 0
(42,6 ¢(G[S]) _ e(4s,C")

- 4 2
Thus e(G[S']) > e(G[S])/8 also holds in the case when e(4s, C') < e(G[S]) /4.
This proves that d(G[S']) > £/8. Furthermore, every vertex in S’ C S\ 4; =
S\ (B\ B’') has at least r neighbours in (T'UJ,cp N;) C T".

Let us now verify that 7" can be obtained from T by successively adding
vertices having at least r neighbours in the superset of T already constructed.
Clearly, as BN U,ecp Np = 0, Ty := T U, cp Ny can be constructed in this
way. As A, C (A\ B) U B’, every vertex in A} has at least r neighbours in
Ti, and thus also T; U A} can be constructed. Since by (i) every vertex in A}
has at least r neighbours in A}, we can now construct T} U A, U A). Finally,
to construct T', we now successively move vertices from A; \ A} to the other
side of the partition as long as they have at least r neighbours there. Suppose
that we are not able to exhaust all of A; \ A} in this way, but are left with
some non-empty set X. As every vertex in X C A; \ A} C B\ B’ has less than
r neighbours in C, less than k/2 neighbours in As, less than r neighbours in
T'\ X and as X UC U A, U (T"\ X) = V(Q), it follows that the graph G[X]
has minimum degree at least k — k/2 — 2r > ¢/, contradicting our assumption
on G[S]. Thus T' can be constructed in the required way. In particular as
d(G[T]) > £ > r this implies that §(G[T"]) > r, so S’ and T" are as desired.

O
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Proof of Theorem 4.1. We will prove the theorem for k > 210. 642 =
211 .32, Apply Lemma 4.9 to obtain a partition S”, 7" with §(G[S"]) > 164,
§(G[T"]) > 16¢ and such that every subgraph of G[S”] has average degree
less than 6 - 16¢. Then apply Lemma, 4.10 to find a partition S’,T" such that
d(G[S']) > 2¢, 6(G[T"]) > £ and each vertex in S’ has at least £ neighbours in 7".
By Proposition 2.3, the graph G[S’] contains a subgraph H of minimum degree
at least £. Then S:=V(H), T :=V(G) \ S is a partition as required. O

To prove Theorem 4.2, we need the following theorem of Mader (see e.g. [6,
Thm. 1.4.2]) and an analogue to Lemma 4.9.

Theorem 4.11 Every graph G has a |d(G)/4]|-connected subgraph.

Lemma 4.12 The vertez set of every 9¢-connected graph G can be partitioned
into non-empty sets S and T such that G[T] is £-connected, the average degree
of G[S] is at least £ and every subgraph of G[S] has average degree at most 32¢.

Proof. Theorem 4.8 implies that V(G) can be partitioned into non-empty sets
S and T such that d(G[S]) > ¢, G[T] is f-connected and |T"| > 2¢. Choose S and
T satisfying these properties such that S is minimal. We will show that S and
T are as desired. First note that G[S] cannot be 8/-connected. For otherwise,
by Theorem 4.8, S can be partitioned into two non-empty sets S; and S such
that each G[S;] is ¢-connected. As G was 2¢-connected and |S|, |T'| > 2¢, there
are at least 2/ independent S—T" edges in G. So some S;, Sy say, must contain
endvertices of at least £ of these edges. But then G[T U Ss] is £-connected, and
so 81, T'U S, is a partition contradicting the minimality of S.

Let us now show that G[S] does not even contain an 8/-connected subgraph
(and hence, by Theorem 4.11, no subgraph of average degree at least 32¢). Sup-
pose that H is an 8¢-connected subgraph of G[S]. As G[S] is not 8/-connected,
it has a cut-set X with | X| < 8¢. Let C be the unique component of G[S] — X
such that V(H) CV(C)UX. Let ' :=V(C)UX and T := V(G) \ S’. Then
G[T'"] is l-connected. Indeed, if it has a cut-set Y with |Y| < £, then, as G[T]
is £-connected, there is a component D of G[T'] — Y such that T C V(D)UY.
Since there is no path from F := T\ (V(D)UY') to C within G[S] which avoids
X and no path in G from F to T which avoids S'UY = V(C)U X UY, it
follows that X UY separates C' from F' in G, contradicting the fact that G is
9¢-connected (Fig. 4.2). We may now successively move vertices from S’ to T”

S'[ /ﬁ‘

X

Y

S T

Figure 4.2: X UY separates C from F in G.

if they have less than 8/ neighbours in the subset of S’ already constructed.
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(Thus each of these vertices has at least £ neighbours in the superset of 7" and
therefore adding it preserves the £-connectedness.) This process must terminate
as H is a subgraph of G[S'] with minimum degree at least 8¢. The partition
obtained in this way contradicts the minimality of S. O

Proof of Theorem 4.2. We will prove the theorem for k& > 2'6¢2. First
apply Lemma 4.12 to obtain a partition S”, T" such that d(G[S"]) > 2%¢, G[T"]
is 2°¢-connected and such that every subgraph of G[S”] has average degree less
than 32 - 2°/. Now apply Lemma 4.10 to find a partition S’ and 7" such that
each vertex in S’ has at least £ neighbours in 7", d(G[S']) > 44, §(G[T"]) > ¢
and T" can be obtained from T" by successively adding vertices having at least £
neighbours in the superset of 7" already constructed. Thus G[T"] is £-connected,
since G[T"] is. By Theorem 4.11, G[S’] contains an ¢-connected subgraph H. As
each vertex in S\ V(H) has £ neighbours in 7", G[T'U(S'\V (H))] = G-V (H)
is f-connected. Thus S :=V(H), T := V(G)\ S is a partition as required. O

4.3 Non-separating substructures

If H is a structure whose existence is guaranteed by high connectivity, then
Theorem 4.2 implies that in every highly connected graph G there exists a copy
of H such that G — V(H) is still highly connected. Indeed, if S, T is a partition
as in Theorem 4.2, then any copy of H in G[S] will do. Corollary 4.3, which
follows by combining Theorem 4.2 with Mader’s theorem on subdivisions (The-
orem 2.5), was one such example. Similarly, Corollary 4.4 follows by combining
Theorem 4.2 with Theorem 2.1. Analogous results for graphs of large minimum
degree can be deduced from Theorem 4.1.

The conjecture of Lovdsz mentioned in Section 4.1 also concerns non-separa-
ting structures—in this case an induced path between two prescribed vertices.
The following simple argument shows that at least a special case of this conjec-
ture holds.

Proposition 4.13 For any two vertices x,y of a 3-connected graph G there
exists an induced x—y path P in G such that G — V(P) is connected.

Note that we cannot replace ‘3-connected’ by ‘2-connected’. Indeed, if z,y
denote the vertices of degree three in G' = Kj 3, then the removal of any z—y
path from G makes the graph disconnected. In the proof of the proposition we
will use the following well-known result of Tutte (see e.g. [6, Thm. 3.2.2]).

Theorem 4.14 For every 3-connected graph G there is a sequence Gy, ..., G
of 3-connected graphs such that, for alli=1,...,k, G;—1 can be obtained from
G; by contracting one edge of G;, Go = K4 and G = G.

Given an z—y path P, we write P for its subpath P — {z,y}.

Proof of Proposition 4.13. By induction on the length of the sequence in
Theorem 4.14. Clearly, the proposition holds if zy is an edge of G and therefore
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in particular if G = K4. So suppose that zy ¢ E(G) and that e = ab is an
edge of G such that the graph G’ obtained by contracting e is 3-connected and
satisfies the proposition. Given a vertex z € G let v, denote its image in G,
and let v, := v, = vp. The 3-connectedness of G’ implies that we may assume
that a (say) either has more than three neighbours in G or is joined to a vertex
of G outside N(b) U {b}. Let P’ be an induced v;—v, path in G’ such that
G' — V(P') is connected. Let P be the unique induced z—y path in G whose
image in G’ is P’ and which avoids a if possible (so if v, € P’ and both a and
b are joined to the two neighbours of v, on P’ then P is obtained from P’ by
replacing v, with b and not with a). Suppose that G — V(P) is not connected.
As G' — V(P') is connected, V(P) clearly cannot be a cut-set of G if e € P or
e € G—V(P). Thus v, € P' but e ¢ P. Similarly it is easy to see that the
endvertex z of e which does not lie on P must form a component of G — V(P).
Hence z has all its neighbours on P. Let 2z’ denote the other endvertex of e.
Thus P was obtained from P’ by replacing v, with 2’. Since P’ is induced, v,
has at most two neighbours on P’. As the image in G’ of every neighbour of
z in V(P) \ {7’} must be a neighbour of v on P’ and as dg(z) > 3, it follows
that 2’ € P and N(z) consists of 2’ and the two neighbours of 2’ on P. Thus
our assumption on g implies that z = b, contradicting the choice of P. O

4.4 Proof of Theorem 4.5

Similarly to Section 4.2, before proving the theorem, let us first show that it
is best possible in the sense that we cannot always partition the vertex set
of a graph of large minimum degree into non-empty sets S and T satisfying
Theorems 4.1 and 4.5 simultaneously, i.e. we cannot always find S, T such that
both G[S] and G[T] have large minimum degree, (S,T)q has large average
degree and every vertex in S has many neighbours in 7.

Proposition 4.15 For every k € N there is a k-connected graph G whose ver-
tex set cannot be partitioned into non-empty sets S and T such that 6(G[S]) > 1,
(G[T)) > 1, d((S,T)g)) > 1 and each vertex in S has at least one neighbour
mT.

Note that Proposition 4.6 is a special case of Proposition 4.15, but has the
advantage that its proof is less technical. Moreover, we will refer to the proof
of Proposition 4.6 again in Section 4.5 to deduce a result about partitions of
graphs of large chromatic number and large minimum degree.

Proof of Proposition 4.15. Let G7, X and X*) be as defined in the proof
of Proposition 4.6 and suppose that S, T is a partition of V(G}) contradicting
Proposition 4.15. Then 0 < | X N S| < k. (Indeed, if | X NS| >k and Y is a set
consisting of any k vertices in X N.S, then all neighbours of the vertex Y € X (k)
are contained in S, contradicting our assumptions on S and T'.) Moreover, as
any vertex Y in X%*) NS must contain at least one of the at most k£ — 1 points
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in X NS (when Y is viewed as a k-element subset of X), we have

k- n
X(k) < E B < 2k k—l_

If n is sufficiently large, this implies

1

4 .1 (n |G|
< ky, k—1 _ 1 < 1“1
<Ek(14+2%n <2 <k>_ 5

e(s,T)g|XnS|-<kf )+|X(k)nS|-k

Thus d((S,T)ar) < 1, a contradiction. O

By Proposition 2.3, every graph G of large average degree contains a sub-
graph H of large minimum degree. The following lemma implies that if G has
many vertices of large degree, then H can be chosen to contain a constant
fraction of the vertices in G.

Lemma 4.16 Let £ € N and 0 < a < 1. Let G be a graph and let X C V(G)
be a set of at least a|G| vertices having degree at least £ in G. Then G has a
subgraph of minimum degree at least al/4 which contains at least | X|/4 of the
vertices in X.

Proof. By Proposition 2.3, G contains a subgraph of minimum degree at least
al/2. Let H C G be maximal with minimum degree at least @//4 and suppose
that it contains less than | X|/4 of the vertices in X. By the choice of H, every
vertex of G—V (H) has less than a//4 neighbours in H. Thus G—V (H) still has
at least 3|X|/4 > 3a|G|/4 vertices having degree at least £ — al/4 = (1 —a/4)¢
in G — V(H). Thus

Ba|G|/4) -1 —a/4)t _ 3a 3L _ of

d(G_V(H))Z |G| ZZZ

By Proposition 2.3, G — V(H) contains a subgraph H' of minimum degree at
least af/4. But H U H' contradicts the maximality of H. O

As in Chapter 2 we will need a special case of Chernoff’s inequality, this
time in a slightly different version (see [2, Thm. A.11 and A.13)).

Lemma 4.17 Let X1,..., X,, be independent 0-1 random variables with P(X; =
1) =p foralli < n, and let X := > | X;. Then P(|X — EX| > EX/2) <
2e"EX/16 gnd P(|X — EX| > EX/4) < 2 BX/64,

Proof of Theorem 4.5. Let k := 232/ and let (A4, B)g be a spanning bipartite
subgraph of G of minimum degree at least k/2. Suppose that |A| > |B|. Delete
edges if necessary to obtain a bipartite graph H in which each vertex in A has
precisely k/2 neighbours in B. (Then B may contain some vertices of degree
less than k/2.) Consider a random partition of B into sets By, Ba where each
vertex of B is included in B; with probability 1/2 independently of all other
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vertices in B. Call a vertex a € A good if it has at least k/8 neighbours in
each B;, and bad otherwise. Given a € A, write N, for the number of those
neighbours of a in A that lie in B;. Lemma 4.17 together with the fact that
E(N,) = k/4 implies that

P(a is bad) < P(|N, — E(N,)| > E(N,)/2) < 2" ™Na)/16 < 1 /4,

Hence the expected number of bad vertices in A is at most |A|/4. Thus there
exists a partition By, By of B such that the set A’ of good vertices in A satisfies

34|
4
Let H := H— (A\ A’). Now consider a random partition of A’ into A}

and Af where again each vertex of A’ is included in A} with probability 1/2
independently of all other vertices in A’. Then, by Lemma, 4.17,

4| > (4.4)

P ([|A1] - |A'l/2] > |A"|/8) = P (||AL] - E(|AL])| > E(A1])/4)
< 2 ®IA4LD/64 < 173, (4.5)

Let us say that a vertex b € B is good if dg:(b) > 3k/2!7 and if each A} contains
at least one quarter of the neighbours of b in H', otherwise call b bad. Given a
vertex b € B, let N} denote the number of those neighbours of b in H' that lie
in A}. Using Lemma 4.17 again, if dg'(b) > 3k/2'7 we have

P(b is bad) < P(|Nj — E(Nj)| > EB(N;)/2) < 2e7HMN)/16 < 17214,

Call an edge of H' good if it is incident to a good vertex of B, and bad otherwise.
Let Y denote the number of bad edges of H'. Let E’ be the set of all those
edges in H' whose endvertex in B has degree less than 3k/2'7 in H'. As

3K[B| _ 3k[A| () k|A'| _ e(H)

!
|E|S 217 — 917 = 915 = 9l4

it follows that

EY) = Z P(the endvertex of e in B is bad )

ecE(H')

|E'| + Z P(the endvertex of e in B is bad)
cCE(H')\E'

< |B'| + e(H') /2" < e(H') /23,

IA

Now Markov’s inequality implies that
P(Y > e(H')/2'%) <P(Y >2EY) < 1/2.

Together with (4.5) this implies that there exists a partition A}, A of A’ such
that at most e(H')/2'? of the edges of H' are bad and such that | |4} |—|A'|/2| <
|A’|/8. Thus

3|A"|

|43l > =3

(4.6)
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for i = 1,2. We will now show that there exist sets Af C A and B} C B;
such that each (A}, Bf) g has large minimum degree and (A3, Bf) g contains a
constant fraction of the edges of H'. Once we have obtained these sets, we will
suitably extend A7 U B} to S and A5 U B; to T'. To find A} and B, consider
the graph H; := (A}, B1)pr. As every vertex in A has at least k/8 neighbours
in B; and
!
S AT AL (6 1
8 4 8 8

we may apply Lemma 4.16 with X := A} and « := 1/8 to obtain sets A7 C A}
and B} C By such that the minimum degree of (A}, B}) g is at least k/2% and

(4.7)

4140

4> 515 L

(4.8)

Thus

k| Az (4;3) k| A} (4;3) 3k|A'|

28 = 910 = 213 °
But as at most e(H')/2'2 = k|A'|/2'3 edges in H' D (A%, Bf)g are bad, it
follows that at least k|A’|/2!2 of the edges from (A}, B}) g+ are good in H'. In
other words,

e (A; Bi‘) >

S du(b) > k|A'[/2",

beB7, b is good

and therefore there are also at least k|A’|/2!* edges in H' joining (the good
vertices in) B} to Al,.

Now consider the graph (A), Bf) g and let A be the set of all vertices in
Al which have at least k/2'5 neighbours in B}. Then

k|A'|

k|A3| | Kk|A'|
+ 9214 ’

9 915 > en( IZaBik) 2

and therefore
4] 49 14] _ |G|

‘A|—214 = 915 = 916"

(4.9)

Now consider the graph (A$, B2)g. As in this graph the degree of every vertex
in A$ is at least k/8, we may apply Lemma 4.16 with X := A and « := 1/216
to obtain sets A5 C AS and Bj C By such that (A%, B5) g7 has minimum degree
at least k/2%! and

A° 4.9) |G

451 40 161

43| >

Since every vertex in A3 D A} has at least k/2'° neighbours in B}, it follows

that i
BlA3] _ KIG
915 = 933

enr (A5, BY) >

4.8
Let §' = A*U B! and T' = A3 U BS. Then |&'] 5 [G/25, |T'] > [G|/2",
§(G[S"]) > k/28 > £, §(G[T"]) > k/2?' > £ and (S',T")g has at least k|G|/233
edges. Choose S O S’ and T' DO T such that S and T are disjoint, both G[S]
and G[T] have minimum degree at least k/22! and so that S UT is maximal.
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Then SUT = V(G). Indeed, otherwise every vertex in G — (S UT') has at
least k — 2k/2?! neighbours outside SU T, i.e. (G — (SUT)) > k/2. But
then S,V(G) \ S is a partition contradicting the choice of S,7T. Note that
eq(S,T) > eq(S',T") > e (A3, B}) and so d((S,T)g) > k/23? = £, as desired.

g

4.5 Partitions with constraints on the average de-
gree or the chromatic number

For completeness we also present a partition result for graphs of large average
degree: the vertex set of every such graph can be partitioned into S and T" such
that each of G[S], G[T]| and (S, T)¢ still has large average degree. The straight-
forward probabilistic argument used to prove this proposition was already one
ingredient in the proof of Theorem 4.5.

Proposition 4.18 For any d > 96, the verter set of every graph G with at
least 40d|G| edges can be partitioned into two non-empty sets S and T such
that G[S] and G[T)] as well as (S,T)c have at least d|G| edges.

Proof. Let n := |G| and let A, B be a partition of V(G) so that e(4,B) >
e(G)/2. Let A’ C A be the set of vertices in A which have at least d neighbours
in B. Now consider a random partition of B into sets By, By where a vertex
b € B is included in B; with probability 1/2 independently of all the other
vertices in B. We call a vertex a € A’ good if each B; contains at least one
quarter of its neighbours in B, and bad otherwise. Given a vertex a € A’, let
N, be the number of neighbours of ¢ in By. Lemma 4.17 now implies that

P(a is bad) = P(|N, — E(N,)| > E(N,)/2) < 2¢ ENa/16 < 1/4.

We call an edge between A and B good if it is incident to a good vertex in A’,
and bad otherwise. Let Y be the number of bad edges. As the number of edges
between A\ A’ and B is at most dn < e(A, B)/4, it follows that

E(Y) <e(A\ 4", B) + Z P(the endvertex of e in A’ is bad)
e€E((A",B)g)
<e(A,B)/4+ (A, B)/A < e(A, B)/2.

Thus there exists a partition By, By of B such that the number of bad edges is
at most e(A, B)/2. Let A” be the set of good vertices in A’ with respect to this
partition. Thus

e(A",B) > e(A, B)/2. (4.10)

Let ay,as,... be an enumeration of the vertices in A” such that their degrees
in (A", B)g form a non-increasing sequence. Put A; := {a1,as,...} and Ay :=
{a2,a4,...}. Then

" (4.10)
e(A1, B) > e(A",B)/2 > 5dn,
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and therefore
e(Az,B) > e(A1\ {a1},B) > e(A1,B) —n > 4dn.

Since all the vertices in A; are good, this implies that for each pair 7, j we have
e(A;, Bj) > dn. Thus setting S := A; UB; and T = (A \ A1) U By completes
the proof. 0

We remark that the same proof, carried out with more care regarding the
constants, also shows that for every € > 0 the vertex set of every bipartite graph
with m edges and sufficiently large average degree can be partitioned into S
and T such that both G[S] and G[T] contain at least (1/4 — ¢)m edges and
(S,T)¢ contains at least (1/2 — e)m edges (as one would expect for a random
partition).

To conclude this section, let us prove a simple result about partitions of
graphs of large chromatic number and large minimum degree: the vertex set
of every such graph can be partitioned into sets S and T such that both G[S]
and G[T] have large chromatic number and (S, T)g has large minimum degree.
Note that we cannot additionally require G[S] and G[T'] to have large minimum
degree. In fact, there need not even exist a partition S,7" such that each of
G[S], G[T] and (S,T)g has minimum degree at least one. (Let H}' be the
graph obtained from the graph G} defined in the proof of Proposition 4.6 by
making G}[X] complete. Then x(H}) > n and §(H}}) = k, but the proof of
Proposition 4.6 shows that there is no partition S,7T having the properties in
question.)

Proposition 4.19 The verter set of every graph G can be partitioned into non-
empty sets S and T such that x(G[S]) = [x(G)/2], x(G[T]) = |x(G)/2] and
every vertezr x € G has at least d*(z) := min{|x(G)/2],d(z)/2} neighbours in
the partition set not containing x.

Proof. Let S, T be a partition with x(G[S]) = [x(G)/2] and x(G[T]) =
|x(G)/2] and such that e(S,T") is maximal under these conditions. (By par-
titioning V(G) into the vertices in the first [x(G)/2] colour classes and the
remaining | x(G)/2] colour classes, it is clear that such a partition exists.) Let
z be a vertex in S and suppose that = has less than d*(z) < x(G[T]) neigh-
bours in 7. Then the chromatic number of G[T' U {z}] is still x(G[T]). As
x(G) < x(G[S\{«}])+x(G[TU{z}]), this implies that x(G[S\{z}]) = x(G[S])-
But as d*(z) < d(x)/2, we have e(S\ {z},TU{z}) > e(S,T), contradicting the
choice of §,T. Similarly it can be shown that each vertex x € T has at least
d*(z) neighbours in S. Thus S, T is a partition as required. O

It is not hard to show that the vertex set of every graph G of large chromatic
number and large average degree can be partitioned into S,T such that both
G|S] and G[T] have large chromatic number and each of G[S], G[T]| and (S,T)¢
has large average degree. The idea is to use an averaging argument to find a
set X C V(G) (consisting of some of the colour classes of G) such that G[X]
still has large chromatic number but only a small fraction of the edges of G is
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incident to vertices in X. Then one can apply Proposition 4.18 to G — X to
obtain a partition S’, 7. Adding one half of the colour classes of G[X] to each
of §' and T" gives a partition of V(G) as desired.
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Chapter 5

Forcing complete minors by
high external connectivity

5.1 Introduction

A fundamental result of Robertson and Seymour [40] states that a graph has
large tree-width if and only if it contains a large grid minor. In their short
proof of this theorem, Diestel et al. [9] introduced the concept of externally
connected sets. A set X C V(G) is externally k-connected in G if | X| > k and,
for all subsets Y, Z C X with |Y| = |Z| < k, there are |Y| disjoint Y-Z paths
in G without inner vertices or edges in G[X]. We say that a subgraph H of
G is externally k-connected in G if V(H) is externally k-connected in G. For
example the bottom row of a k X k grid G is externally k-connected in G. A
result from [9] is that a graph G has large tree-width if and only if it contains a
large externally highly connected set X. Thus such a set X forces a large grid
minor in G, even if G[X] consists of isolated vertices.

One of the central tools in the proof of the Graph Minor Theorem of Robert-
son and Seymour is the observation that every large externally highly connected
grid forces a large complete minor (and thus so do the graphs with sufficiently
large tree-width). Indeed, if we take a large grid H and add (g) independent
edges in such a way that any endvertex of such an edge has horizontal distance
at least r from every other such endvertex as well as distance at least r from
the boundary of the grid, then in the resulting graph we can contract suitable
(zig-zag) paths in H to vertices of a K, whose edges are the edges added to
H. Now if H is externally highly connected in some other graph G, these ad-
ditional edges can be found (subdivided) as paths through G. In this chapter,
we address the question raised by Grohe [18] whether thinner structures than
grids can still force large complete minors in the same way.

Given a graph property P, let us say that a class H of graphs forces large
minors from P if for every r € N there is a & € N such that whenever a graph
H € H is externally k-connected in another graph G, then G has a minor of
order at least r in P. In this terminology, our observation above says that grids
force large complete minors, while the result from [9] cited earlier says that the
class of all edgeless finite graphs forces large grid minors. And Grohe’s question
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is whether a class # of graphs ‘substantially thinner’ than grids can still force
large complete minors. For instance:

Problem A Is there a class H of bounded tree-width that forces large complete
minors?

We shall see that the answer to this question is yes. So the next problem
will be to find, if possible, the ‘thinnest’ such class H. To make this precise, let
us write H < H' for classes H and H' of finite graphs if for every H € H there
exists an H' € H’' such that H is a minor of H'. If both H < H' and H' <X H
then H and H' are equivalent. (For example, the class of grids is the unique
least element, up to equivalence, among the classes of unbounded tree-width.)
The Graph Minor Theorem implies that there are no infinite strictly descending
chains of graph properties H with respect to < (see e.g. [12, Lemma 1.5]). Thus
even if there is no least class forcing large complete minors, we can still try to
find the minimal ones:

Problem B Determine the <-minimal classes of graphs that force large com-
plete minors.

In this chapter, we shall settle Problem A in the affirmative by constructing
four inequivalent classes H', H* H?? and H3? of graphs such that each of
them has bounded tree-width but forces large complete minors (Theorem 5.1).
All these classes are <-minimal with respect to the property of forcing large
complete minors (Theorem 5.2). Indeed, I conjecture that, up to equivalence,
H', HE, H?? and H>? are the only such <-minimal classes, which would also
settle Problem B. But this conjecture remains open.

5.2 Preliminary observations and statement of re-
sults

First recall that, as was observed in Section 5.1, every class #H of finite graphs
that has unbounded tree-width forces large complete minors. So we can restrict
our attention to classes H whose tree-width is bounded. If even the path-width
of the graphs in H is bounded, say pw(H) < £ for all H € H, it turns out that
we can join the vertices of any H € H bijectively to the bottom row of a grid
to obtain a graph that has no K, minor for any » > 3¢ + 4 but in which H is
externally |H|-connected. (See [15, Lemma 2.3] for a proof.)

Similarly, the vertices of every outerplanar graph H can be joined bijectively
to the bottom row of a grid to obtain a planar graph in which H is externally
|H|-connected. Thus outerplanar graphs do not even force a K5 minor. (A
graph is outerplanar if it can be drawn in the plane so that all its vertices lie
on the boundary of the outer face.) Hence if all graphs in H can be made
outerplanar by deleting ¢ vertices in each of them, then the graphs in H do not
force a K45 minor.

Now the graphs of unbounded path-width are precisely those that contain
arbitrarily large binary trees as minors (see e.g. [6, p. 260]), while the outer-
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planar graphs are precisely those that contain neither K4 nor Ks 3 as a minor
(see e.g. [48]). So if the graphs in H are to force arbitrarily large complete mi-
nors, they must contain unboundedly large binary trees and at the same time
unboundedly many copies of K, or K3 as minors.

Our main result in this chapter says that a natural combination of these
conditions is also sufficient. Let T4 denote the binary tree of height n. Let H)
be the disjoint union of n graphs each of which is obtained from 73" by adding
a new vertex and joining it to the leaves of T3'. Let H: be the graph obtained
from T3 by identifying each of its leaves with a vertex of a K4 (where the Ky4’s
glued to different leaves of T3’ are disjoint from each other and from the rest of
T3). Let H;" be the graph obtained from T3 by identifying each of its leaves
with a vertex of a K3 3 having degree two, and let H? be the graph obtained
from T3 by identifying each of its leaves with a vertex of a K3 3 having degree
three (where the Ky 3’s glued to different leaves of T3 are disjoint from each
other and from the rest of T3'). Let H' be the class consisting of all H),, and
define H*, H?? and H>? similarly. It is easy to show that these classes are
incomparable with respect to <. The following theorem states that each of
them forces large complete minors.

Theorem 5.1 Given an integer r, there are integers k = k(r) and n = n(r)
with the following property. Whenever a graph G contains an externally k-
connected set X such that G[X] has a minor isomorphic to any of HJ, Hﬁ,
Hg’?’ or H,?{’Q, there is a K, minor in G.

Moreover, each of the four classes H', H*, %22 and H>? is -minimal with the
property of forcing large complete minors:

Theorem 5.2 IfH is a class of finite graphs which forces large complete minors
and if H < H*, where H* is one of the classes H', H*, H> and H>?2, then H
1s equivalent to H*.

Our proof of Theorem 5.1 uses methods as developed in [9]. An alternative
approach would have been to show that any graph containing H/,, H2, HZ? or
H3? for sufficienly large n as an externally highly connected subgraph cannot
be nearly embedded in a given surface (see e.g. [15] for definitions). Theo-
rem 5.1 would then follow from the theorem of Robertson and Seymour [41],
that characterizes the structure of graphs without a K, minor (r fixed).

This chapter is organized as follows. In Section 5.3 we show that the graphs
in H' force arbitrarily large complete minors, while in Section 5.4 we prove the
same for the graphs in H*, H%3 and #32. Theorem 5.2 is proved in the final
section of this chapter.

5.3 Trees attached to stars

All graphs considered in this chapter are finite, and all trees will have a root.
The binary tree of height n > 1 is the tree in which the root has degree two, all
leaves have distance n from the root, and all other vertices have degree three.
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Let HY be the graph obtained from the binary tree T of height n by adding
a new vertex z and joining it to all leaves of T'. Thus H], is the disjoint union
of n copies of Hg We call T' the binary tree in Hg The leaves of T' will be
called leaves of Hg, and z will be its new verter.

Theorem 5.3 Given an integer r, there exist integers d, f, n with the following
property. Whenever a graph G contains an externally d-connected set X such
that G[X] has the graph consisting of f disjoint copies of Hg as a minor, there
is a K, minor in G.

For the proof of the theorem we will need the following definitions and lemmas.
Given two vertices x and y of a tree T', we say that z is above y if y lies on
the path from z to the root of T. A vertex z is called successor of y, if z is
a neighbour of y and lies above y. Two vertices of 1" are incomparable if none
of them lies above the other. The branch above x is the subtree of T" induced
by the set of all vertices above z (including z itself). If e is an edge of T,
then the branch above e is the branch above the heighest endvertex of e. A
branch strictly above x is a branch above a successor of z. If S is a subtree of
a tree T, we take the unique lowest vertex of S in T' as the root of S. In what
follows, we assume that for any given tree T" we have chosen a linear ordering
o7 of its vertices in such a way that for every incomparable pair x,y of vertices
in T the vertices of the branch above z either all precede or all succeed those
of the branch above y; and if x is above y, then x succeeds y. Thus such an
ordering may be obtained by considering a drawing of T'. For a subtree of T' or
a subdivision of T" we choose the ordering induced by or.

IfP = ...z, is a (directed) path and 1 < ¢ < n, we write Px; :== z1 ... z;,
;P :=x;...xn, PT; := x1...25—1 and ;P := z;y1 ...z, for the appropriate
subpaths of P.

Lemma 5.4 Let T be the binary tree of height n > 2 and A a set of leaves of
T. Let h < n be a positive integer. If |A| > n?, then T contains a subdivision
S of a binary tree of height h such that all leaves of S are contained in A and
the root of S (when S is viewed as the subdivision of a binary tree) can be taken
as the lowest vertex of S in T.

Proof. Induction on h. If h = 1 the assertion holds. Assume that A > 1 and
the statement is true for smaller values of h. Since 2 + (n — 1)|A|/n < |A],
there is a vertex z in T such that each of the branches strictly above z contains
> ||A|/n] > n"~! leaves in A. The result follows by taking = as the root of
S and applying the induction hypothesis to each of the two branches strictly
above z. O

An r xt pseudogrid is a graph consisting of r disjoint directed paths W1,..., W,
and t disjoint directed paths V1,...,V; such that each W; consists of ¢ consec-
utive (vertex disjoint) segments, every V; meets every W; exactly in its jth
segment, and V; meets W; before it meets W;yq (for all 1 < i < r). The W;
are the horizontal and the V; the vertical paths of the pseudogrid. A tree T is
s-attached to a pseudogrid G if there is a set A of s leaves of T' such that in
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each of them there begins a vertical path of G, and G meets T only in A. A
is the set of attached leaves of T. T is tidily s-attached to a pseudogrid G if
T is s-attached to G and the order of the leaves in A (in the restriction of the
ordering o7 on A) corresponds to the order of the vertical paths in G starting
in these leaves. Let T1,...,T} be disjoint trees. We say that T1,...,T} are
[tidily] s-attached to a pseudogrid G if each T; is [tidily] s-attached to G and
the vertical paths of G starting in T; either all precede or all succeed those
starting in T;11 (for all 1 <7 < k).

A family P = {Py,..., Py} of directed paths in a tree T is nested if the P,
are disjoint, each of them joins two leaves of T, and for all 1 < 4,5 < k, the first
vertex of P; precedes the last vertex of P; in the ordering or.

Lemma 5.5 Let G be a graph that contains (;) disjoint subgraphs G1, ... ,G('r)

2
such that each G; contains a subdivision T; of the binary tree of height 2r — 1
and G; — T; has a component C; that is joined (by edges) to every leaf of T;.
Let C be the union of the C;. If T]_,...,T(r) are tidily 2°"~'-attached to an
2

T X (2)22“1 pseudogrid in G — C, then G contains a K, minor.

Proof. Note that every 7; has a set of r nested paths. We may join the nested
paths of all T; using suitable paths in the pseudogrid to obtain a set P of r
disjoint paths such that each of them meets every T; (Fig. 5.1).

N

oy

Figure 5.1: Finding a set P of disjoint paths

The paths in P are the branch sets of a (subdivided) K, minor, as any two
of them may be joined by a path through one of the C;. O

Various proofs of the following result of Erdés and Szekeres can be found in [45].

Lemma 5.6 FEvery sequence of n distinct integers contains a monotone subse-
quence of length at least v/n.

Lemma 5.7 Let r,n,s be positive integers such that n > 2 and /s > n*"~1,
and let k := (;) Let G be a graph that contains k disjoint copies Hy, ..., Hy
of Hﬁ For all 1 < ¢ < k let T; be the binary tree in H; and x; its new
vertex. Suppose that T,..., Ty are s-attached to an r x sk pseudogrid G' in
G — {z1,...,zk}. Then G contains a K, minor.
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Proof. Lemma 5.6 applied to the sets of attached leaves of every T; shows
that T1, ..., Ty are tidily [1/s |-attached to an r x [1/s |k subpseudogrid of G'.
Now Lemma 5.7 follows immediately by first applying Lemma 5.4 and then
Lemma, 5.5. [l

The next lemma is proved in [9, Lemma 6].

Lemma 5.8 Let G = (A, B) be a bipartite graph, |A| = a, |B| = b, and let
¢ < a and d < b be positive integers. Suppose that G has at most (a—c)(b—d)/d
edges. Then there exist C C A and D C B such that |C| = ¢ and |D| = d and
C UD is independent in G.

For a set I of vertices in a graph G let N(I) denote its neighbourhood. We will
also make use of the following easy consequence of Hall’s theorem.

Lemma 5.9 Suppose that G = (A, B) is a bipartite graph such that s|A| = |B]|
for some positive integer s and |N(I)| > s|I| for all subsets I C A. Then G
contains |A| disjoint stars, each of them having s edges and their centre in A.

Proof. Form a new bipartite graph G' = (4', B) by replacing each vertex
a € A by s new vertices and joining each of them to all the neighbours of a.
Then G’ satisfies Hall’s condition, and a matching in G’ yields the required
disjoint stars. O

Proof of Theorem 5.3. It suffices to show the following assertion.

Let c:= 2’"57"”'4, s:=cl™/21=2 and n .= r2¢™". Let H be the disjoint
union of r copies of H, Flogz n-+log, 5] and sr copies of H FIng nl" Let G
be a graph containing H as an externally nrs-connected subgraph.

Then G contains a K, minor.

We may assume that r > 4. Let A be the set consisting of the r copies of
H Mgy n-+log, 5] in H, and let B be the set consisting of the sr copies of H FIng n
in H. Choose ns leaves of every graph in A, and let Z denote the set consisting
of all these leaves. Similarly, choose n leaves of every graph in B, and let Z’
denote the set consisting of all these leaves. As H is externally nrs-connected
in G, there is a set Q of |Z| = nrs disjoint Z-Z' paths having no inner vertices
in H. Lemma 5.9 implies that we may label the graphs in A by Hy,..., H, and
the graphs in B by H;, where 1 <7 <7 and 1 < k < s, such that for all ¢, k the
number of H;-H;; paths in Q is > n/r2s . Indeed, consider the bipartite graph
(A, B) in which S € A is joined to T € B if there are > n/r?s S-T paths in Q.
We have to check that the assumption of Lemma 5.9 holds. Suppose not, and
choose I C A such that |[N(I)| < s|I|. Then there are > |I|ns — |[N(I)|n > n
paths in Q which join a graph in I to a graph in B\N(I). Then > n/rs of
these paths all have one endvertex in the same graph of B\N(I), T say, and
> n/r?s of those paths all have the other endvertex in the same graph of I, S
say. But then 7T is a neighbour of S in (A, B), a contradiction.

For all i = 1,...,r let Q; be a set of n/r? paths from Q such that for all
k=1,...,s exactly n/r2s of them join H; to H;,. Choose n/r2scl”/2) leaves
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of H;;, that are disjoint from the endvertices of paths from Q;, and let Y; be the
union (over k = 1,...,s) of all these leaves. Since H is externally nrs-connected
in G, for all pairs 45 with 1 <7 < j < r there is a set P;; of disjoint Y;-Y}; paths
in G having no inner vertices in H. To show (x), we will try to find single paths
P;; € P;; that are both disjoint for different pairs ij and disjoint from the paths
in any @Q;, and thus link up the graphs consisting of H; together with H;; for
all k = 1,...,s and the paths in Q; to form a K, minor in G. If that is not
possible, there will be either two sets P,, and P;; such that many paths of Pp,
meet many paths of P;;, and we shall then use this ‘intersection property’ to
find a K, minor within the graph consisting of the Hp, (1 < k < s) together
with the paths in Ppq U P;j;, or there will be a Ppy and a Q; such that many
paths of Pp, meet many paths of Q;, and in this case we will find a K, minor
within the graph consisting of the Hy, (1 < k < s) together with the paths in
Ppq U Q.

Leto: {ij | 1<i<j<r}—{0,1,...,(;) — 1} be any bijection. Starting
with £ = 0, for successive £ and pq := 071 (£), we will try to find a path P € P,,
that is disjoint from the previous selected paths and replace both the later sets
P;; and all sets Q; by smaller sets of paths disjoint from P. More precisely, let
F < (;) be maximal such that forall 0 <2< £, 1<i<r,i<j<r(ffi<r)
there exist sets ’Pfj and QY satisfying the following conditions.

(1) 73@ is a non-empty set of disjoint Y;-Y; paths having no inner vertices in
H .

(ii) QFf is a subset of Q; of size |Q¢| = n/r?c*, and each Hy; (1 < k < s)
contains endvertices of < n/r2sc’ paths from Qf.

As soon as 73Z and Qe are defined, let H; £ be the graph consisting of all paths
in Pfj, and Fe the graph consisting of all paths contained in some QZ Further-
more, let Yz'g be the set of all endvertices of paths from P in Y; and YZ the set

of those in Yj.

(iii) If o(ij) < £, then ’Pe has exactly one element Pf;, and Pe is disjoint from

any path belonging to a set Pab with ab # ij and any path belonging to
a set Q% (for all a).

(iv) If o(ij) = £, then |Pfj| = n/r2cdrtlr /2 and each Hy, (1 < k < s)
contains endvertices of < n/r?s ctri+lr?/2) - paths from Pe Moreover,
for every edge e € E(H; )\E'(Fe) there are no |P; | disjoint YZ‘;-—Y]-‘; paths
in the graph (Hf; U Fe) —e.

(v) If o(ij) > ¥, then \Pfj| = TL/TZC (+1r* and each Hy, (1 < k < s) contains
endvertices of < n/r2sctD° ¢ paths from Py

(vi) If £ = o(pq) < o(ij), then for every edge e € E(Hfj)\E(Hﬁq) there are no
\Pfj| disjoint Yiﬁ.—Yﬁ paths in the graph (Hfj UH]) —e.

If £* = (}), then by (i)-(iii) we have a (subdivided) K, minor (the branch sets
are the graphs consisting of H; together with H;; for all K = 1,...,s and all
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Figure 5.2: The set-up of the proof of Theorem 5.3

paths in Qz(z)_l). Thus we may assume that £* < (3). To see that £* > 0,
first note that condition (ii) holds with QY := Q;. Let pq := ¢7'(0). Then
setting qu := Ppq would satisfy condition (i) and the first half of (iv), but
may not satisfy its second half. If so, let Hp, be the graph consisting of all
paths in Py, and choose I C E(Hp,)\E(F") maximal such that there are |Ppq|
disjoint Y,-Y, paths in the graph (Hp, U F®) — I; then let PJ, be such a set of
paths. It is easily checked that this choice of PJ, satisfies (i) and (iv). For all
ij with o(ij) > 0, choose a subset of P;; containing n/r2c” paths such that
from every H;j there start exactly n/7"25c’"2 of them. Then the obtained set of
paths satisfies condition (v) and may be modified similarly as before to obtain
a good choice for 73%.

Let £ := £* — 1. Hence conditions (i)—(vi) are satisfied for £, but cannot
be satisfied for £+ 1. Let pq := o0~'(£). We first show that there is no path
P in ’Pﬁq that avoids > |Pfj|/c of the paths in ’Pfj for all ij with o(ij) > £ as
well as |Qf|/c of the paths in Qf for all 5. Suppose there is such a path P.
We will show that then we can satisfy conditions (i)—(vi) for £ + 1. Indeed,
condition (i) implies that for all i we may discard paths from Qf avoiding P
to find a set Qf""l of |Qﬂ/ ¢? paths in Qf such that each of them avoids P and
each Hj, contains endvertices of < n/r?sctt! paths from Q¢*!. Thus Q!
satisfies condition (ii). Similarly, for every ij with o(ij) > £ we can find a set
Pj; of |’Pfj|/c2 = n/r2 D42 pathg from Pfj such that each H;; contains
endvertices of < n /7‘2550(“'1)7"2_“'1 of these paths and P avoids all of them. If
o(ij) = £+ 1, we choose a set P} of |73£j|/cL’2/2J_2 = n/r2H D1 /2) paths
L+1)r2+[r2 /2] —(£41)

in PZ{j such that each H;; contains endvertices of < n/r2sc(

of them. P;; can be modified as before to yield a good choice for ’PZ-]-H. In a
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similar way, one can now define P; j+1 for all ij with o(ij) > £+ 1, contradicting
the maximality of £*.

Thus for every path P in Pﬁq there is either a pair i with o(ij) > £ such
that P avoids < |’Pfj\ /c paths in ’Pfj or there is an i such that P avoids < |Q¢|/c
paths in QF. Hence there is a set P of > |P£q\ /r? paths from Pﬁq together with
either a pair 77 such that each path in P avoids < |Pfj| /c paths in PY or an i

ij
such that each path in P avoids < |Q¥|/c paths in Qf.

Case 1. Each path in P avoids less than |Qf|/c paths in QF.

We first use Lemma 5.8 to find a set V of > [|Qf|/2] = |Q¢|/2 paths from Q¢
and a set W of r paths from P such that every path in V meets every path
in W. Indeed, to show the existence of such sets we have to check that the
bipartite graph (Qf,P), in which @ € Qf is joined to P € P if P avoids Q,
has not too many edges. But this follows, since the number of edges of this
bipartite graph is at most

QilIPI/e < |QfIIPI/4r < (1Qf] —1Q5l/2)(IP| —r)/r.

We now find a set V' of > |V|/r" paths from V and a labelling of the paths from
W by Wi,..., W, such that on its way from | J;_, Hjj to H; every path from V'
meets W, before it meets W,11 (for all 1 < a < r). Recall that, by condition
(ii), each Hy; (k = 1,...,s) contains endvertices of < n/r?sct paths from Qf,
and, note that 7 > 4 implies that (}) < [r?/2] — 2. Together with

n n 9 M

/2 > |Q¢/ar" = > >
|V |/ Z |Qz|/ T 47.r—|—262£ - c£—|—(;) =T ’f‘2$CZ

and
n

ctri+l

n
c——
r2clr24|r2/2]

Vi/2 >

> (s —1?)

= (s = 1%)c|Pyql,
this implies that there are r? of the H;;,, without loss of generality Hy1, ..., H;2,
such that each of them contains endvertices of > ¢|P%, | paths from V'. For all
k =1,...,72, let Vi be the set of all paths from V' begining at H;;. We shall
now prove that the paths from W together with many paths from each of V
form a pseudogrid (the paths from W will be its horizontal paths and those
from the Vy its vertical paths). The result will then follow from Lemma, 5.7.

Direct W1 from Y;fq to Yq‘;,. Let e! be the first edge of W; such that the
initial component W! of W; — e! meets > c|73f;q| /r? paths from V for some k,
and so that e! does not lie on one of these paths. Without loss of generality we
may assume that £ = 1. Note that e! ¢ E(F?), since V; C Qf and the paths
in |JI_, Q¢ are disjoint. Let e? be the first edge of Wy — W' — el =: W' such
that the initial component W?2 of W’ — e? meets > c|’P£q|/ r? paths from Vy, for
some k > 2, and so that e does not lie on one of these paths. Continuing in
this fashion, define e, ..., e”~1 and wt ..., WTLI, and let W™ be the final
component of Wp — e’ 1. Without loss of generality we may assume that each
Wk meets > c|73£q\/r2 paths from V.

Let m := |\/c/r?|. For every k = 1,...,72 let e¥ be the first edge of W*
such that the initial component WF of W¥ — e¥ meets > |/c] |P£q| paths from
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Vi, and so that e’f does not lie on one of these paths. Let 612“ be the first edge
of Wk — WF — ef =: RF such that the initial component W¥ of RF — e§ meets
> [Vc] |P£q| paths from Vj, and so that e§ does not lie on one of these paths.
Continuing in this fashion, define e¥,... ek | and Wf,... , WE_, and let WE
denote the final component of W* — ek . Thus each W} meets > I_\/EJ|P£q|
paths from Vj, and ef ¢ E(F?). For k < r?, let ek, := e*. Menger’s theorem
and condition (iv) now imply that for each e¥ there is a set S¥ of < [P | vertices
separating Y;fq from Yq‘;, in the graph (H;fq UF*) —ek. Let S be the union of all
these Sk. Then

S| < (r*m = 1)(IPggl — 1) < (Ve (IPgl — 1).

Hence each W* meets at least one path V¥ € Vj, that avoids S. Clearly, S¥ must
consist of exactly one vertex v*(P) on each path P € Pﬁq\{Wl}. For all P and
1<k<r?letef™ := ek and vi T (P) := vk (P). Let v}(P) be the endvertex
of P in Y;fq and v}",f (P) that in Y:f,,. Note that V¥ meets P neither in the initial
component of P —v_,(P) nor in the final component of P — v¥(P) (here both
the initial component of P — v} (P) and the final component of P — v"? (P) are
defined to be the empty set)—otherwise there would be a Y;fq-qu;, path in the
graph (H: UF*) —ek_, or (Hf, UF") — ek avoiding S. This implies that v%(P)
precedes v¥ | (P) when P is directed from Y/ to Y. Thus for all 1 < a < m,
1 <b<randl<Ek<r?the path Va’c meets Wj, exactly in the segment of W)
strictly between v¥_, (W) and v¥ (W), and V¥ meets W exactly in the segment
WE. That means that the binary trees in the H;;, (1 < k < r2) are m-attached
to an r x mr? pseudogrid whose vertical paths are the V* and whose horizontal
paths are those obtained from W1y,..., W, by deleting their endvertices. Thus
the horizontal paths are disjoint from all H;;, and the vertical paths meet the
Hj;i, only in their first vertices. Since

'|2r—1 (2r9,r,r5+4r4+2)'|2r—1

= [log,
= [ + (5 4 4r* 4 2) logy r]* !
< (2r9)2r—1

< 27‘5/4

< Vm,

we can apply Lemma 5.7 with n replaced by [logsn| to find the desired K,
minor in G.

[logy n

Case 2. All paths in P avoid less than |Pfj|/c paths in Pfj.

As in Case 1, we first apply Lemma 5.8 to find a set V of > |P|/2 paths from P
and a set W of r paths from Pfj such that every path in V meets every path in W.
Again, we then find a set V' of > |V|/r" paths from V and a labelling of the paths
from W by Wy,..., W, such that on its way from Y;fzq to qu;, every path from
V' meets W, before it meets W, (for all 1 < a < r). Recall that by condition
(ii) each Hpy (k =1,...,s) contains endvertices of < n/r2sctr’T1r*/21-4 paths
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from Pf,, and [r?/2] — 2 > (7) since r > 4. Together with

pg>
! ¢ T2 _ n n
Vi/2 = |qu|/4r T Yprtactri+1r2/2] Z ctr2+1r2/2)+1
9 n
2T r2gctri+r?/2] L
and n
V1/22 (s — TZ)CW = (s = )Pyl

this implies that there are r? of the Hyy, without loss of generality Hyy,. .., Hpyp2,
such that each of them contains endvertices of > ¢[P};| paths from V'. For all
k=1,...,72, let V; be the set of all paths begining at Hpy.. Similarly as in Case
1, the paths in W together with |y/c/r?]| paths from each V, form a pseudogrid,
and we can apply Lemma 5.7 to find a K, minor in G. O

5.4 A tree attached to many non-outerplanar graphs

Let #H, be the class of all graphs H which can be obtained from the binary
tree T' of height n by identifying each leaf v of T with a vertex of a connected
non-outerplanar graph K (v) (where the K (v) are disjoint from each other and
from the rest of T'). T is called the binary tree in H, the leaves of T" are called
leaves of H, and K (v) is said to be the non-outerplanar graph glued to v.

Theorem 5.10 Given an integer r, there exist integers d and n with the fol-
lowing property. Whenever a graph G contains an externally d-connected set X
such that G[X| has some graph in H, as a minor, there is a K, minor in G.

Lemma 5.4 together with the fact that every non-outerplanar graph contains a
subdivision of Kj or K3 3 implies that for n > 2 every graph in H,, contains H,‘Cl,
H,?’?’ or HE’Z as a minor where k := |(n — 2)/logs n]. Thus in the statement of
Theorem 5.10 one could have alternatively required that G[X] contains either
Hﬁ, H,ZL’?’ or H;O{’z as a minor.

Actually, the property that will be used in the proof of Theorem 5.10 is
not that every graph K (v) is non-outerplanar, but that each K (v) has three
distinct vertices z, ¥y, z # v such that any two vertices of z,y, z can be joined by
a path P while the third can be joined to v by a path not meeting P. Indeed,
since every non-outerplanar graph contains a subdivision of K4 or Kj 3, such
vertices z,vy, z can be found.

Conversely, note that every graph K containing distinct vertices v, z,y, z
satisfying the above property cannot be outerplanar. Indeed, suppose that K
is outerplanar. Then adding a new vertex a to K and joining it to v, z, 9, z yields
a planar graph K’'. Consider a drawing of K', and let aaq,aas,aas3, aas be the
edges of K’ incident to a in clockwise order (thus {a1,a2,as,a4} = {v,z,y, 2}).
Then K' — a contains an a1-a3 path Q1 and an as-a4 path Q2 such that Q1 and
Q9 are disjoint, contradicting the planarity of K'.

For every leaf v of H € H,, choose a set B(v) consisting of three such vertices
z,y,z of K(v). For the proof of Theorem 5.10 we shall need the following
lemmas.
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Lemma 5.11 Let n,r,s be positive integers such that s'/* > np? —1+Mlog: ()1
and n > 2. Let G be a graph that contains a binary tree T of height n together
with a path P such that T and P are disjoint and there is a set A of s leaves of
T which are joined (by edges) injectively to the vertices of P. Suppose that T
is s-attached in G — P to an r x s pseudogrid G' so that A is precisely the set
of attached leaves of T. Then G contains a K, minor.

Proof. First apply Lemma 5.6 to obtain a set A’ of > /s leaves in A such
that their order in 7" corresponds to the order of their neighbours on P. Apply
Lemma 5.6 once more to obtain a set A” of > s!/4 leaves in A’ such that their
order in T corresponds to the order of the vertical paths in G’ which begin
in A”. Lemma 5.4 now gives us a subdivision S of the binary tree of height
2r — 1+ [log, (5)] in T such that all leaves of S are contained in A”. S contains
(;) disjoint subdivisions S1,...,S () of the binary tree of height 2r — 1 such that
each of them is a branch of S. Note that Sy, ..., S(g) are tidily 227~ !-attached
in G— P to an r x 2271 (}) subpseudogrid of G', and that there are () disjoint
segments of P, each containing all the neighbours of leaves of some S; on P.
Lemma 5.11 now follows from Lemma 5.5. 0

Lemma 5.12 Let M and H = {H, Hs, H3} be sets of disjoint directed paths
such that [M| = 3 and every path from M meets every path from H. Then there
are vertices x1,x2,x3 on Hy, Ho, H3 respectively, and a labelling of the paths in
M as My, My, M3, such that, for oall 1 = 1,2,3, the vertex x; lies on M; and
M;z; does not meet any Hjz; (j=1,2,3).

Proof. For every i = 1,2,3, let y! be the first vertex of H; that lies on a
path from M. Given k£ > 1, assume inductively that for every ¢ = 1,2,3 we
have constructed a sequence yil, . ,yf of vertices on H; satisfying the following
conditions.

(i) If £ > 1, then y¥ € yflei, and yF # yffl for at least one i € {1,2,3}.
(ii) The vertex y¥ lies on some path MF € M.

(iii) For every M € M, the initial component of M — {y¥ y& 4%} meets none
of the paths ij;? (1 =1,2,3).

If the paths MF, M¥, M?’f are all distinct, then z; := yf and M; := MZ-’c satisfy
the assertion of the lemma. We show that if MF, M¥, M¥ are not distinct then
there are vertices yf“ extending our three sequences v, ..., y¥; by (i), this can
happen only finitely often.

If MF, M¥, M:f are not distinct, then there exists a path M € M containing
more than one of the vertices y’f, yé“, ylg (let yf be the last of these on M), as well
as a path M' € M avoiding {y¥,y5,y%}. By (iii), M’ avoids H;y¥ and hence
meetlzcs H; in nyz So nyz has a first vertex in |J M; we choose this vertex

+1

as y; '~ and put yf“ = yf for j # i. Then conditions (i) and (ii) hold for
k + 1. Condition (iii) for k¥ + 1 holds for our M because M{¥ contains another
k

y; = yf“. Condition (iii) for the other two paths in M is again clear: as they
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do not contain y¥, their initial components in (iii) did not get longer when y*
was replaced by yf“, so they satisfy (iii) for £+ 1 because they did for k. O
Lemma 5.13 Let n,r, s be positive integers such that \/s > p2r=1+Mg: (5)1 g
n > 2, and let G be a graph containing a graph H € H,,. Let A = {v1,...,vs}
be a set of leaves of H, and let B := |J,c 4, B(v). Suppose that there is a set V
of 3s disjoint directed paths in G starting in B and having no other vertices in
H, and a set W = {W), ..., W,} of disjoint directed paths in G — H such that
every path in V meets each W;, and it does so before it meets Wi1. Suppose
furthermore that each path W; € W consists of s consecutive (vertezx disjoint)
segments such that, for all j =1,...,s, every path from V that starts in B(v;)
meets W; exactly in its jth segment. Then G contains a K, minor.

Proof. First apply Lemma 5.6 to obtain a set A’ of > /s leaves in A such that
their order in the binary tree T' of H corresponds to the order of the paths from
V that begin in {J,. » B(v), ie. if v,w € A" and v is the successor of w in the
ordering o7 restricted to A’, then no path from V that starts in B(u) for some
v,w # u € A’ lies between paths from V starting in B(v) and B(w). Moreover,
reversing the orientation of the paths from W if necessary, we may assume that
for each W; the segment of W; belonging to the paths from V starting in B(w)
precedes that belonging to the paths from V starting in B(v). By Lemma 5.4,
there is a subdivision S of the binary tree of height 2r — 1+ [log, (})] in T such
that all leaves of S are contained in A’.

Let S4,..., S(r) be disjoint subdivisions of the binary tree of height 2r — 1

in S such that ea(th of them is a branch of S. Each S; has a set P; of r nested
paths. Let G’ be the graph consisting of the paths from W together with all
paths from V starting in non-outerplanar graphs glued to leaves of the Sy.

We now construct the branch sets for our K, minor. Each of these branch
sets will contain a path @Q; running alternately through an Sy and G’ in a similar
way as in the proof of Lemma 5.5. In particular, each ); will contain exactly
one path from each Py. For the edges of the K, we need disjoint paths, one
between any two of the ;. Each of these paths we will find in one of the
trees S1,..., S(;). Indeed, in each Sy we can join two neighbouring @Q; (i.e. two

Q; containing paths from P, lying next to each other), and we will show that
we can also use a non-outerplanar graph glued to a leaf of Sy to ‘switch’ two
neighbouring @; (Fig. 5.3). Together this will imply that for every edge of the
K, we can find a path connecting the corresponding Q;.

To make this more precise, suppose that we have partially constructed such
paths Q1,...,Q,, which have their current endvertices on different paths from
W\{Ws}, and that next we want to let them run through Sy, and that further-
more we want to switch @; and ();, where Q; currently runs along Wy and @;
along W1 for some k£ > 0. Let Ay be the set of all those leaves of Sy in which
there begins a path from Py. Let v be the (k + 1)th leaf in A, (in the ordering
ot restricted to Ay), and let w be the predecessor of v in Ay. We will use the
non-outerplanar graph K (v) to switch @; and Q;.

Let Vg, Vy, V, denote the paths from V starting in B(v) =: {z,y, 2}. Apply
Lemma 5.12 to H := {Wy, Wi, W11} and the set M consisting of the subpaths
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Figure 5.3: Switching @Q; and @,

of V;,Vy, V, between their endvertices in B(v) and their first vertices on W44
to obtain vertices xg, xg, zr+1 and a labelling My, My, My of the paths from
M. Then for all i = 0, k, k+ 1, traversing M; from B(v) to z;, and then moving
backwards along W; gives disjoint paths. Thus we may extend (); by traversing
Wy, as far as x, and then moving along My to B(v) and further through K (v)
to v, and then along the path P, from P, that begins in v and up to Wi along
a path from V starting in the non-outerplanar graph glued to the endvertex of
P,. Extend Q; by traversing Wy, as far as xpy1, then moving along My
to B(v) and through K (v) to the endvertex of My, then along My to zg, then
backwards along Wy and down through K (w), and along the path P, from P,
starting in w, and then up to Wy along a path from V starting in the non-
outerplanar graph glued to the endvertex of P,,. From the definition of B(v), it
follows that we may choose the subpaths of ; and @); running through K(v)
so that @; and @; remain disjoint.

Moreover, note that (;) switchings suffice to ensure that for any two Q;
there is a tree Sy in which they lie next to each other (and thus can be joined
by a path). Indeed, first switch the lowest @; with all higher ones, then the one
which is now the lowest with all but the highest. Continuing in this fashion, we
need (r—1)+(r —2)+---4+1 = (}) switchings. Thus the Q; can be constructed
to form the branch sets of a (subdivided) K, minor in G. O

Lemma 5.14 Let T be a tree with A(T) < 3. Suppose that Bi,...,By are
disjoint sets of leaves of T such that for all 1 < ¢ < k the leaves of T in B;
either all precede or all succeed those in B;y1 in the ordering op. Then there
are [k/3] disjoint subtrees of T such that each of them contains all vertices of
some B;.
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Proof. Induction on k. We may assume that k& > 4. Let e be an edge of T
such that the branch T" above e contains all vertices of some B;, and such that
T" is as small as possible. As A(T) < 3, the endvertex = of e in T" has degree
at most two in T”. It is easy to see that the minimality of 77 now implies that
T' meets at most three of the B;. T" will be one of the desired subtrees of T,
and applying the induction hypothesis on T'— T" — e and the B;’s not meeting
T' gives the remaining [(k — 3)/3] = [k/3] — 1 subtrees. O

Lemma 5.15 Let n,r,s be positive integers such that s'/* > p2r—1+10g> 3(3)]

and n > 2. Let G be a graph containing two disjoint copies T1 and Ty of the
binary tree of height n, and let A be a set of s leaves of T1. Suppose that
there is a set P of s disjoint paths joining the vertices in A to leaves of Ty and
meeting Ty U Ty only in their endvertices. Let Go be the graph obtained from
G by deleting Ts and all inner vertices of paths from P. Furthermore, suppose
that Ty is s-attached in Go to an r X s pseudogrid G' such that A is precisely
the set of attached leaves of T1. Then G contains a K, minor.

Proof. By Lemma 5.6, there exists a set A’ of > s!/* leaves in A such that their
order in o7, corresponds (or is opposite) to both the order of the leaves of T,
joined to A’ by paths from P and the order of the vertical paths in G’ that begin
in A’. Let k := 3(}). Lemma 5.4 implies that T} contains a subdivision S of the
binary tree of height 2r — 1 + [log, k] such that all leaves of S are contained in
A'. Let Sq,..., S be disjoint subdivisions of the binary tree of height 2r — 1 in
S such that each S; is a branch of S. Then S,..., S are tidily 22~ !-attached
to an r x k22"~ subpseudogrid of G'. For all i = 1,...k, let B; be the set of
all leaves of To which are endvertices of those paths from P that start in a leaf
of S;. From the choice of A’, it follows that for all 1 < i < k, the leaves in B;
either all precede or all succeed those in B;;;. Lemma 5.14 now implies that
there are [k/3] = (5) disjoint subtrees of T such that each of them contains
all vertices of some B;. Lemma 5.15 thus follows from Lemma 5.5. O

Lemma 5.16 Let W be a directed path. Let £1,...,0s and r1,...,75 be vertices
on W such that £; € Wry for all e = 1,...,s. Let S1,...,Ss be non empty
disjoint segments of W such that S; precedes Siy1 for all 1 < i < s. Let
t:=[(s/4)Y3]. Then there ezists I C {1,..., s} with |I| > t such that one of
the following conditions holds.

(a) Either Smaxr C Wty for all i € I or Spiny C A foralliel.
(b) For all i € I, there is a segment A; of W such that each A; contains ¢;,
ri and S;, and A;NA; =0 for alli,j € I with i # j.

Proof. We may assume that ¢ > 2. Moreover, let us first assume that for a
set I; of > s/2 elements i € {1,...,s} either r; € S; or S; C Wry. If for > ¢
elements j € I; the segment S; precedes the first r; with ¢ € I; on W, then
the subset of I consisting of all these j satisfies condition (a). Thus, denoting
the first of the r; with ¢ € Iy on W by r;,, we may assume that S; C 7; W for
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a set I} of > |I;| —t elements j € I;. Note that i; ¢ I{. As before, we are
done if > ¢ segments S; with j € I precede the first r; with s € I] on W, ry,
say. Thus we may assume that S; C 7, W for a set I} of > |I{| — t elements
j € I]. Continuing in this fashion, we may assume that there is a set I C I
with |Ip| > |I1|/t such that S; C 7 W for all i < j in I,. (Indeed, let I, be the
set consisting of i1,i9,....)

Let S} be the smallest segment of W containing S; and r;. Then for all i € I,
the segments S] are pairwise disjoint. If for a set I3 of > [I5|/2 > ¢ elements
1 € I either ¢; € S; or S; C WEZ, then I3 satisfies condition (b) (since ¢; € Wr;
we may take A; to be Sj). Thus we may assume that there is a set I3 of > [I|/2
elements of Iy such that S; C ﬁ W for all ¢ € I3. Considering the vertices £; and
the segments S, for all i € I3 and arguing similarly as before, we may assume
that there is a set I of > |I3|/t > ¢ elements of I3 such that S; C WE for all
i < j in I. Thus I satisfies condition (b). The case that S; C W for > s/2
elements 7 € {1,...,s} is similar. O

Proof of Theorem 5.10. It suffices to show the following assertion.

Let ¢ := r1673" " and n = 62(;). Suppose G contains a graph H
consisting of v disjoint graphs H1, ..., H; € Hog,n] as an externally (%)
3n-connected subgraph. Then G contains a K, minor.

We may assume that » > 4. The first part of the proof of (xx) is similar to (but
much easier than) that of (%), and we will only sketch it. For every i = 1,...,r,
choose n leaves of H; and let Y; denote the union of the sets B(v) over all chosen
leaves v. Since H is externally 3n-connected in G, for all pairs 1 <i < j <r
there is a set P;; of |Y;| = 3n disjoint Y;-Y; paths in G which have no inner
vertices in H.

As in the proof of (x), we will try to find single paths P;; € P;; that are
disjoint for different pairs 75, and thus link up the graphs H; to form a K,
minor in G. If that is not possible, there will be two sets P,q and P;;, such that
many paths of Py, together with many paths of P;; form a pseudogrid, which
we shall then use to find a K, minor within the graph consisting of H,, H,
and the paths in Ppg UP;;. Let o: {ij |1 <i<j<r}—{0,1,...,(35) —1}
be any bijection. Let £* < ( ) be maximal such that for all 0 < £ < £* and
1 <4 < j < r there exist sets Pe satisfying the following conditions.

(1) 73@ is a non-empty set of disjoint Y;-Y; paths having no inner vertices in
H .
As soon as Pf] is defined, let H‘Z be the graph consisting of all paths in Pé
Furthermore, let YZ be the set of all endvertices of paths from 73 in Y; and YZ
the set of those in Y
(ii) If o(ij) < ¢, then Pz has exactly one element Pf;, and Pe is disjoint from
any path belonging to a set ’Pﬁb with ab # ij.
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(iii) If o(ij) > £ and v is a leaf of H;, then either each of the three vertices in
B(v) belongs to Yzﬁ or non of them does. In the first case we will say that
the three paths of 7312 that start from the vertices in B(v) form a bundle.

Thus (iii) says that 7312 consists only of bundles.
(iv) If o(ij) = £, then |P; | = 3n/c*.
(v) If o(ij) > ¢, then |Pf;| = 3n/c*L.

(vi) If £ = o(pq) < o(ij), then for every edge e € E'(Hfj)\E(Hﬁq) there are no
|Pf| disjoint Y;5-Y; paths in the graph (HJ; U HS ) —e.

If £* = (), then by (i) and (ii) we have a (subdivided) K, minor with branch
sets H;. Thus suppose that £* < (;), and note that as in the previous section
2* > 0. Let £:=¢* — 1 and pq := o (£). Similarly as in the proof of (x), for
every path P € PZ there exists a pair ij with o(ij) > £ such that P avoids
<|P; | /3¢ bundles from ’Pe (where P avoids a bundle if it avoids every path in
it). Thus there is a set P of >|P q| /32(3) paths from Pe for which this pair ij
can be chosen to be the same, and such that any two paths from P belong to
different bundles of Pﬁq and end in different non-outerplanar graphs glued to
leaves of H,. Again, we now use Lemma 5.8 to find a set V' of > |P|/2 paths
from P and a set W' of ¢ := (2r)* + 2r bundles from ’Pe such that no path in
V' avoids a bundle in W'. Then there is a set V" of > |V' |/3t paths from V' and
a set W' of ¢t paths, one from each bundle in W', such that every path in V"
meets every path in W”. We now find a set V" of > [V"|/t" > |Pf|c/3! 2
paths from V" and a labelling of the paths in W" by W/',... ., W/ such that on
its way from H), to H, every path in V" meets W, before 1t meets W' (for all
1<ac<t). Similarly as in the proof of (x), condition (vi) now yields a set V*
of > [/¢/3+2)/2¢4/2] paths from V" which form a pseudogrid together with
the paths in W”. To make the horizontal paths of the pseudogrid disjoint from
H,U Hy, we direct each path in W from H; to Hj, and let W be the set of all
(directed) paths obtained from paths in W” by deleting their endvertices. Let

=[] >

2t 3(1+2)/2 . 4t/2

Discarding also the leftmost and the rightmost path from V* in the pseu-
dogrid (as well as any |V*| — s — 2 other paths), we have thus found sets
V={W,...,V;} CV*C ’Pﬁq and W = {W,..., W;} C P f satisfying the
following conditions.

Z

e No two paths from V belong to the same bundle of Pﬁq. Furthermore, no
two paths of V end in the same non-outerplanar graph glued to a leaf of
H,.

e Every path in W is disjoint from H, U H,.

e The paths in V and W together form an s x t pseudogrid; where the
paths in V are its vertical and those in W its horizontal paths, every path
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from V on its way from H, to H, meets W, before it meets W, (for all
1 <a<t),and for every i = 1,...,t the segment of W; belonging to V,
precedes that belonging to V4 (for all 1 <a < s).

For alla =1,..., s, denote the two paths from Pﬁq that are in the same bundle
as V, by VJ and V', where we may assume that V' meets as least as many
paths from W as V.

Case 1. There are at least s/2 of the V| such that each of them avoids at least
r paths in W.

Then there is a set I C {1,...,s} with |I| > s/2¢" such that each V, witha € T
avoids the same r paths in W, Wy, ,..., W}, say (where by < --- < b,). For all
a € I, let V; be the subpath of V, between its endvertex in H), and its first
vertex on Wy, . Note that [log, 3(5)] < r + 1 since r > 4, and thus

Mogy n]2r 082301 < [r2log, ¢]* < [16r°32+2log,r]¥ < ™. (5.1)

Together with ¢+ r < r7 this implies

1/4 1/4 _
I > ( Ve ) > <\/5> S @ Mog, n]?r~1+M0823()1

22t+r 7.147'7

Thus we may apply Lemma 5.15 (with n replaced by [log, n]) to the minor of
G obtained by contracting every K(v) to find a K, minor in G. (The binary
tree in H), plays the role of 771 in Lemma 5.15, the binary tree in H, that of 15,
the set {V] | a € I} that of P, and the pseudogrid formed by the V,* (for all
a € 1) and Wy,,...,W,, that of G'.)

Case 2. There are at least s/2 of the V, such that each of them meets at least
t — r paths in W.

Note that if V] meets > ¢ —r paths in W, then so does V. Thus there is a set
I C{1,...,s} with [I| > s/2t>" such that all V! and V" with a € I meet the
same t — 2r = (2r)* paths of W. Noting that there are < ¢! permutations of a
(t — 2r)-element set and using Lemma, 5.6 twice, we can find a set I' C I with
|I'| > s/2t%*2" and paths Wy,, ..., W,,, with by < --- < by, such that

e either, on its way from H), to Hy, every V, with a € I' meets W, before
it meets Wy, ., or every V! with a € I' meets Wy, before it meets Wy,
(for all 1 <k < 2r), and

e the analogous condition holds for all V! with a € I'.

Case 2.1. Every V; with a € I' meets Wy, before it meets Wy, (for all 1 <
k< 2r).

For all a € I', let V;* be the subpath of V, between its endvertex in H, and its
first vertex on Wj, . Using that ¢ +r < r7 since r > 4, we have

1/4 1/4 5.1

= opdt+2r ,,1287'7
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Thus we may apply Lemma 5.11 to (a minor of) G to find a K, minor in G.
(The binary tree in H,, plays the role of 7' in Lemma 5.11, W;, that of P, and
the pseudogrid formed by all the V* with a € I' and Wy, , ..., W, that of G'.)

Case 2.2. Every V, with a € I' meets Wy, ., before it meets Wy, (for all
1<k<2r).

The proof of this case is the same as that of Case 2.1.

Case 2.3. Neither Case 2.1 nor Case 2.2 hold.

For all a € I', let £, (respectively £7) be the first vertex of W}, that lies on the
subpath of V] (respectively V') between its endvertex in Hj, and its first vertex
on Wy, ,. Similarly define 7, and ;] to be the respective last vertices. Let S
be the segment of W}, belonging to V, in the pseudogrid formed by the paths
inVand W (i.e. S, is the segment between the first and the last vertex of Wy,
on V,). Let J C I' be obtained by applying Lemma 5.16 to £, r/ and S, (for
all a € T'). Thus |J| > |(|'|/4)'/3 | > (]I'|/32)"/3.

Suppose first that J satisfies condition (a) of Lemma 5.16, say Syaxs C W,
for all @ € J. Then the binary tree T in H, is |J|-attached to an r x |J]|
pseudogrid whose vertical paths are the V,, with a € J together with (for each
of these V,) a path in the non-outerplanar graph glued to a leaf of H, which
joins this leaf to the endvertex of V, in Hp, and whose horizontal paths are
Wy, 15+, Wh,,. Note that

N (1 e Y
32 =\ 32 \ 2¢4tt2r

Cl/(8.327+2) . (51) ) ]
2 SQUA (T 1EETY) Z P> [logyn]? i+ Tos: ()1,

(5.2)
Hence in particular

| 1/3-1/4 (5.9)

> (3_2) > Tlogyn]”r~H+1le ()1,

and we may apply Lemma 5.11 to a minor of G to find a K, minor in G. (The
role of P in Lemma 5.11 is played by the subpath of W}, that starts in the first
rt on Wj, with a € J.)

Hence we may assume that J satisfies condition (b) of Lemma 5.16. For all
a € J, let A, be as in condition (b). Now let J' C J be obtained by applying
Lemma 5.16 to £/, " and A, (for all @ € J). Thus |[J/| > [(|J|/4)Y/3] >
[I'|1/3” /32. As before, since |J'|//4 > [log,n]? '+ Mos2 G by (5.2), we may
assume that J' satisfies condition (b). Applying the same argument to every

W, with k <r + 1, we may assume that there exists J” C J' such that
1 327‘+2 1 327‘+2
T s L Y
- 32(30+31+_,_+327‘+1)/327‘+2 - 32 bl
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and that to every a € J” there belongs a segment B,y on every Wy, (k <r+1)
that contains not only every vertex of V, on W}, but also all vertices of W,
that lie on the subpaths of V, and V' between their endvertices in H), and their
first vertices on Wy, |, and such that the B,y are disjoint for different a € J ”.

(Indeed, as |J"|}/4 > [log, n]? '+ /os2 ()1 by (5.2), we may assume that each

application of Lemma 5.16 yields a subset of J' satisfying condition (b).)
Since [J"[1/2 > [log, n]?~ '+ /82 ()1 by (5.2), we may apply Lemma 5.13

to find the desired K, minor in G. O

5.5 Proof of Theorem 5.2

In the proof of Theorem 5.2 we use the notion of a k-embedding of a given
graph in the plane with one vortex. (It is a special case of the definition of a
near-embedding of a graph in a surface introduced by Robertson and Seymour.)
Let S be the surface obtained from the sphere by removing the interior of a
closed disc. So the boundary of S consists of one component D, which is
homeomorphic to the unit circle. We say that a graph G is k-embeddable in the
plane with one vorter if G has a set X of at most k vertices such that G — X
can be written as G° U G! and the following conditions hold:

e there is an embedding of G? in § with V(G°) N D = V(G°) NV (G!) =:
{'Ula s ave}a

¢ G' has a path-decomposition (p; ... pg, (Xp;)f,) of width at most k and
such that v; € X, for all 4 = 1,...,4, and the points v1,..., v, occur on
D in this order (for one of the two orientations of D).

The idea for the proof of Theorem 5.2 is to show that if % and H* are
inequivalent, then there exists k € N such that the vertices of each graph H € H
can be joined bijectively to the bottom row of a grid to obtain a graph Gg in
which H is externally |H|-connected but which is k-embeddable in the plane
with one vortex. Lemma 2.3 from [15] then implies that no graph Gy (H € H)
contains a large complete minor. Hence H does not force large complete minors,
contradicting our assumption.

Let us first prove a simple lemma, which implies that if T',7" are trees and
T is a minor of 7", then T' does not lie ‘upside down’ in T".

Lemma 5.17 Suppose that T,T' are trees and T is a minor of T'. Let X C
V(T') be the branch set corresponding to a leaf x of T. Then T' contains a path
which joins X to a leaf of T' but does not meet another branch set.

Proof. Suppose that |T| > 2, let = be a leaf of T and let y be the neighbour
of z in T. Let e be the unique edge of T' corresponding to zy (i.e. e is the
edge joining the branch set X of z to that of y). Write C for the component of
T — e which contains X. Then the (connected) subgraph of 7" which contracts
to T — z is disjoint from C. Thus joining z to any leaf of T' contained in C
yields a path as desired. O
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Proof of Theorem 5.2. We consider only the case where H* = H', the other
three cases are similar. Let Hg denote the graph obtained from the binary tree
T of height n by adding a new vertex = and joining it to all leaves of T". Thus
H] is the disjoint union of n copies of H}. The vertices in H] of the form z
are called the new vertices of H},.

Since H < H', we find for every H € H an n € N such that H is a minor
of H],. Let X be the set of all vertices of H whose branch sets contain a new
vertex of H). Thus H — Xy is a forest, every component of which is joined
to at most one vertex in Xy by edges of H. For every x € Xy, let F, be the
forest consisting of all paths in H — X between neighbours (in H) of z. So we
have that

(i) the F, are disjoint for different z € Xy,
(ii) for each z € X the neighbours of z in H all lie in Fy,

(iii) for each z € Xy every component C of F, is a subtree of some component
of H — Xy, and this component meets F, precisely in C' and does not
meet any Fy with 2’ # z.

Case 1. For every k € N there is an H € H such that at least k of the forests
F, (x € Xy ) have path-width at least k.

We will show that H' < H. Our assumption implies that for every n € N there
exists a graph H € H and distinct x1,...,7, € Xg such that pw(F,,) > 2"+!
for every 1 = 1,...,n. Thus each Fy, contains the binary tree of height n as a
minor (see e.g. [6, Thm. 12.4.5]). Lemma 5.17 now says that every branch set
corresponding to a leaf of this binary tree can be reached from a leaf of Fy, by
a path in F; not meeting another branch set. Clearly, these paths are disjoint
for different leaves of the binary tree. As in H every leaf of Fy, is a neighbour
of z;, it follows that H}, is a minor of the graph obtained from F, by including
z; and joining it to all its neighbours in H. Thus (i) implies that H,, is a minor
of H, and so H' < H, as desired.

Case 2. There exists a k € N such that for every H € H all but at most k of
the forests F, (x € Xy ) have path-width less than k.

For every H € H, let X/, denote the set of all vertices z € Xy for which
pw(Fy) < k, and let X}, := Xy \ X Put

Gy =H[Xyu |J V().

zeXy

Let us first show that the vertices of H can be joined bijectively to the bottom
row of the |H| x |H| grid in such a way that the graph Gy thus obtained can
be k-embedded in the plane with one vortex, namely as Gy — X5 = G% UG,
where X’ is the deleted set and GY is the subgraph of Gy — X, obtained
by deleting all edges of G%. Indeed, since H — Xy is a forest, the graph H'
obtained from H — X/, by deleting all vertices of G}, is also a forest. Since H' is
obtained from H — Xy by deleting (J . xt, s it follows from (ii) and (iii) that
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each component of H' is joined to G} by at most one edge of H. Moreover,
(i)—(iii) imply that G1; is obtained from the disjoint union of all F,, with z € X%,
by including every vertex z € X/, and joining it to all its neighbours in Fj.
Hence pw(GY) < k. Put £ := |G};|. Then there exists a path-decomposition
(p1 - pe, (X)) of GY of width at most k and such that to each X, one can
assign a vertex v; € X, with v; # v; for ¢ # j. So H — X}, can be thought of as
a ‘wide path’ (consisting of G};) with trees added, each of them joined to the
‘wide path’ by at most one edge. Now join the vertices of H — X7, injectively to
the bottom row R of the |H| x |H| grid so that the ordering of the neighbours
of V(GY) = {v1,...,v¢} in R corresponds to v1, ..., vy, and so that the vertices
of every component C of H' are joined without crossings to vertices of R, and
if C is joined to v; by an edge in H then these vertices of R lie between the
neighbours of v;_1 and v;;1 in R (Fig. 5.4). Joining the vertices in X}, to the

U1 Ve

Figure 5.4: Joining the vertices of H — X7, to the bottom row of a grid.

remaining vertices of R then yields a graph Gy as desired.

The first part of the proof of Lemma 2.3 from [15] now implies that none
of the graphs Gy (H € H) contains a Ky g minor. But since the bottom row
of an s X s grid G is externally s-connected in G, it follows that every H € H
is externally |H|-connected in G g, contradicting our assumption that H forces
large complete minors. 0
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Chapter 6

On well-quasi-ordering infinite
trees

6.1 Introduction and terminology

A fundamental result of Nash-Williams [33] states that the infinite trees are
well-quasi-ordered by the topological minor relation. To prove this, he intro-
duced the stronger concept of better-quasi-ordered sets, and showed that the
infinite trees are even better-quasi-ordered. In this chapter we give an es-
sentially self-contained proof of this theorem. In general, the proof follows the
lines of the original one. Nash-Williams’s definition of a better-quasi-ordering is
purely combinatorial; however, we use an equivalent topological concept, which
is due to Simpson [44]. We remark that Laver [30] generalized Nash-Williams’s
result to a certain class of order theoretic trees. Thomas [47] extended Nash-
Williams’s result by proving that every class of infinite graphs with linked tree
decompositions of bounded width is well-quasi-ordered by the minor relation.

We write [n] for the set {1,...,n}. We denote by C the class of all cardinals,
and by O that of all ordinals. We denote the domain of a function f by Df.

For an infinite set X C N we define X(“) to be the set of all infinite subsets of
X. We often identify an element s € X“) with the strictly ascending sequence
whose elements are those of s; and conversely. Thus, if we write s = (s1, s2,...)
for an element of X“), we mean that s; < sy < .... The Ellentuck topology on
X () is defined by taking as basic open neighbourhoods of an element s € X ()
all sets of the form {t € s®) | u C t}, where u is a finite initial segment
of s. Thus the Ellentuck topology is a refinement of the Tychonov (product)
topology. Given a function f : X @) — D, where D is some topological space,
we say that f is FEllentuck-continuous, if f is continuous when we impose the
Ellentuck topology on X ). In particular, if D is discrete, then f is Ellentuck-
continuous if and only if for every s € X there exists a finite initial segment
u of s such that f(s) = f(¢) for all infinite subsequences ¢ of s beginning with w.

We will repeatedly make use of the following theorem of Ellentuck, which
says that Ellentuck-open sets are Ramsey (for a proof see e.g. [4, §20]). Apart
from this, our presentation is self-contained.
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Theorem 6.1 Let X € NW . For every Ellentuck-open set A C X there
exists B € XW) sych that either B&) C A or BW N A =0.

A reflexive and transitive relation is called a quasi-ordering. A quasi-ordered
set Q, < is well-quasi-ordered (wqo), if for every infinite sequence ¢i, g2, ... in Q
there are indices 7 < j such that ¢; < g;. In what follows () will always denote a
quasi-ordered set, and we also view @) as a discrete topological space. @ is better-
quasi-ordered (bgo) if for every X € N« and for every Ellentuck-continuous
function f : X — @ there exists an s € X such that f(s) < f(s\{mins}).
We remark that a result of Mathias [31] implies that one obtains an equiv-
alent definition by replacing Ellentuck-continuity by Tychonov-continuity, or
by requiring Borel measurability. A Q-array is an Ellentuck-continuous func-
tion f : X@ — @, for some X € N@ . If there is no s € X® such that
f(s) < f(s\{mins}), then f is a bad Q-array. Thus @ is bqo if and only if
there is no bad @Q-array.

All trees considered in this chapter will have a root. For two trees T' and U
with roots ¢ and u, respectively, we call an injective mapping ¢ : V(T') — V(U)
an embedding of T into U, if ¢ can be extended to an isomorphism between
a subdivision of T" and the smallest subtree U’ of U containing all vertices
in (V(T)), and furthermore, the path between ¢(¢) and » in U contains no
vertex of U’ other than (t). We say that T is a rooted topological minor of U,
abbreviated by T' < U, if there is an embedding of 7" into U. This defines a
quasi-ordering on the class of all trees.

Given two vertices x and y of a tree T, we say that z is above y if y lies
on the path from z to the root of 7. If z and y are adjacent and z is above
1y, we call y the predecessor of x and z the successor of y. The branch above
z, abbreviated by br(z), is the subtree of T' spanned by all vertices above z
(including z itself). For the root of br(z) we choose z.

6.2 Better-quasi-ordering infinite trees

Lemma 6.2 FEvery bgo set Q) is wqo.

Proof. Let g1,¢o,... be any infinite sequence in ). Define a function f :
N@) — Q by f(s) := gmins- Then f is Ellentuck-continuous, and thus a Q-array.
Hence, since @ is bqo, there exists an s € N“) such that f(s) < f(s\{mins}).
But this means that ¢, < g¢s,, where s = (s1, 82,...). Thus @Q is wqo. O

If @ is a quasi-ordered set, then we may quasi-order the elements of the
power set of () by saying that A < B if for all a € A there exists b € B such
that ¢ < b in (). We denote the power set of () with this quasi-ordering by
S(Q). The following lemma implies that if @ is bqo then so is §(Q).

Lemma 6.3 If f is a bad S(Q)-array, then there exists a bad Q-array g such
that Dg = Df and g(s) € f(s) for all s € Dg.

Proof. Let s € Df. Since f(s) £ f(s\{mins}) there exists an zs € f(s) such
that z; £ y for all y € f(s\{mins}). We can choose zs such that it depends
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only on the pair f(s), f(s\{mins}) and not on s itself, i.e. if f(s) = f(¢) and
f(s\{mins}) = f(t\{mint}), then z; = z;. We now define a function g :
Df — @ by setting g(s) := z5. Then the Ellentuck-continuity of f and the fact
that s depends only on the pair f(s), f(s\{mins}) imply that g is Ellentuck-
continuous, and thus a Q-array. It is also bad, since g(s) < g(s\{min s}) would
contradict the choice of x;. [l

Given two quasi-ordered sets Q and @', we define a quasi-ordering on @ x Q'
by saying that (g1,¢1) < (¢2,¢3) if ¢1 < g2 and ¢} < 5.

Lemma 6.4 If f = (f1, f2) is a bad C X Q-array, then there exists a bad Q-array
g such that Dg C Df and g(s) = fa(s) for all s € Dg.

Proof. Let A := {s € Df | fi(s) < fi(s\{mins})}. Then the Ellentuck-
continuity of f implies that A is Ellentuck-open. Hence by Theorem 6.1,
there exists a B € Df such that either B®) C A or B®W N A = . But
the latter cannot hold, since then for s = (s1,s9,...) € B“) we would have

fi(si,82,-..) > fi(se,s3,...) > fi(s3,84,...) > ..., contradicting the fact
that C is well-ordered. Thus B(“) C A, and so g : B® — Q defined by
9(8) := fa(s) must be a bad Q-array, as required. O

Let Seq(Q) be the set of all transfinite sequences with elements in Q. For
a transfinite sequence F' : @ — @ we define length(F') to be a. If 8 < a, we
write F'|g for the restriction of F' to 8. Given F,G € Seq(Q), we call a mapping
¢ : length(F) — length(G) an embedding of F into G if ¢ is strictly increasing
and F(a) < G(p(a)) for all @ < length(F). We impose a quasi-ordering on
Seq(Q) by saying that F' < G if there exists an embedding from F into G.

The following lemma, implies that if a set @ is bqo then so is Seq(Q), which
is also a result due to Nash-Williams [34]. In the proof we present here, we
closely follow Promel and Voigt [35].

Lemma 6.5 If f is a bad Seq(Q)-array, then there exists a bad Q-array g such
that Dg C Df and g(s) € f(s) for all s € Dg.

Proof. For sequences F,G € Seq(QR) we write FF <* G if F is an initial
segment of G, and F <* G if F is a proper initial segment of G. If h and h' are
Seq(Q)-arrays, we write h <* h' if Dh C DA’ and h(s) <* h'(s) for all s € Dh.
Furthermore, we write h <* b’ if h <* I/ and there exists an s € Dh such that
h(s) <* h'(s). We will first prove the following claim.

There exists a minimal bad Seq(Q)-array h such that h <* f. (%)

We may assume that f itself is not minimal. Put fy := f and X(gw) :=Df,. For
a Seq(Q)-array g and s € Dg we define

kgs := min{k | k € s such that g(s) = g(t) for all t € s() with sn[k] = tN[k]}.
Thus kg s is the smallest integer k£ € s such that g is constant on the set of all

t € s(“) that begin with the initial segment s N [k] of s. (Note that k, s exists,
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since g is Ellentuck-continuous.) We now choose a bad Seq(Q)-array f] <* fo
such that
min{kp , | s € Df] with fi(s) <* fo(s)} =: ki

is minimal. Choose an element s1 € D f] such that f{(s1) <* fo(s1) and kpr ,, =
k1. Define a function f1 : (s1 U (Xo N [k1]))“@) — Seq(Q) by

fi(s) := {fi(s) if s € s,

fo(s) otherwise.

It is easily checked that fi is a bad Seq(Q)-array and f; <* fo. If f1 is not
minimal, we continue in this fashion to construct f3, fo, so and ky. Thus we may
assume that we have constructed infinite sequences f1, f4,... and f1, f2,... and
81,82,... and k1, ks,.... Then k; 1 > k; for alli > 1, since f{+1 was a candidate
for the choice of f;. Moreover, the sequence (k;) is unbounded. Indeed, suppose
that there is an 7 such that k; = k; for all j > 4. Then there exists an infinite
sequence i < ji < jo < ... such that s; N[k;] = s, N[k;] for all £ > 1. This
yields sj,,, C s;, for all £ > 1. Hence the definition of k 11053, implies that

fjl(sjl) = f]l'g(sjl) = f;[(sjl+1) = fje(5j1z+1)-

By the choice of s;,, , it follows that

sz+1(8jl+1) = fj,'z+1(sjl+1) <* fjé(sjé+1) = sz(sjz)'

Thus length(f;, (s;,)), length(fj,(sj,)),- - is an infinite strictly descending chain
of ordinals, a contradiction.

Let X := ();; Xi, where Xi(w) := Df;. Since X contains every k;, the
unboundedness of the sequence (k;) implies that X is infinite. Also, note that
for all s € X there exists an integer i = i(s) such that fi(s) = f;(s) for
all 7 > i. (Otherwise there would be an infinite strictly descending chain of
ordinals, since fj11(s) <* f;j(s).) Define a function b’ : X©) — Seq(Q) by
putting A'(s) := fi(s)(s)-

We will now find an Ellentuck-continuous restriction of A’ that will do for
hin (x). Let A be the set of all s € X such that &' is Ellentuck-continuous
in 5. Thus A is Ellentuck-open. By Theorem 6.1 there exists a B € X(“) such
that either B®) C A or B“ N A = (. Suppose first that the latter holds, and
let ¢, € B, Since fi(t;) 1s Ellentuck-continuous, there is a basic Ellentuck-
neighbourhood N of #; on which f;;,) is constant. Since A’ is not Ellentuck-
continuous in ¢1, there exists an to € Ny such that h'(t2) # h'(t1), and thus from
the definition of h' it follows that A'(ta) <* fi1,)(t2) = fig,)(t1) = A’ (t1)- But to
is a subsequence of ¢; (since it lies in a basic Ellentuck-neighbourhood of ¢1), and
so ta € B Continuing in this fashion we obtain an infinite sequence t1, ta, ...
such that A'(t1) >* h'(t2) >* ..., i.e. length(h'(¢1)), length(h/(t2)),... is an
infinite strictly descending chain of ordinals, a contradiction. Thus B®) C A,
and hence the restriction h of ' on B®) is Ellentuck-continuous.

The definition of A’ implies that h is a bad Seq(Q)-array and h <* f (in
fact, h <* f; for all i > 0). Suppose that h is not minimal, and let ¢ be a bad
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Seq(Q)-array such that ¢ <* h. Let
k :=min{k, s | s € Dy and ¢(s) <* h(s)}.

Since the sequence (k;) is unbounded, there is an ¢ with k; > k, contradicting
the fact that ¢ was a candidate for the choice of f]. This shows that & is also
minimal, and thus A is as required in (x).

We now use (%) to complete the proof of the lemma. For all s € Dh define
P (s) == sup{a € O | h(s)|o < h(s\{mins})}.

Then 9(s) < length(h(s)), since h is a bad Seq(Q)-array; and the Ellentuck-
continuity of h implies that of 1. Moreover, it is straightforward to show that

h(s)ly(s) < h(s\{mins}),

but
h(8)|p(s)+1 £ h(s\{mins}).
Let
C := {s € Dh | h(s)|y(s) < h(s\{min s})|y(s\{mins})}-

Since both h and % are Ellentuck-continuous, C is Ellentuck-open. Thus by
Theorem 6.1 there exists an D € Dh such that either D) C C or D@ NC = 0.
If the latter holds, then x : D) — Seq(Q) defined by x(s) := h(s)|y(s) would
be a bad Seq(Q)-array with x <* h, contradicting the choice of h.

Thus D) C C. We now define g : D) — Q by putting g(s) := h(s)(1(s)),
the value of h(s) at 9(s). Then g is Ellentuck-continuous, since h and v are.
Moreover, Dg C Df and g(s) € f(s) for all s € Dg. If there were an s € Dg
with g(s) < g(s\{min s}), then we could define an embedding of h(s)|y(s)+1 into
h(s\{min s}) by first embedding h(s)|y(s) into A(s\{min s})|y(s\{mins}) (this is
possible since s € D) C (), and secondly, by sending h(s)(¢(s)) = g(s) to
h(s\{min s})(#(s\{mins})) = g(s\{min s}). This contradicts the definition of
1. Thus g is a bad Seq(Q)-array as required. O

If @ is a quasi-ordered set, we may quasi-order the elements of the power
set of () by saying that A < B if there is an injective function f : A — B such
that a < f(a) in Q for all a € A. Let S*(Q) denote the power set of Q with
this quasi-ordering. Lemma 6.5 implies the following assertion.

Corollary 6.6 If f is a bad Sﬁ(Q)—army, then there exists a bad Q-array g
such that Dg C Df and g(s) € f(s) for all s € Dg.

An example of Rado [38] shows that there are wqo sets @ such that S(Q) (and
thus also S*(Q) and Seq(Q)) are not wqo. This lack of closure properties under
certain infinite operations is the reason why the stronger concept of bqo was
introduced.

Denote the class of all trees by R, and recall that the elements of R are
quasi-ordered by the rooted topological minor relation. Let Ry be the sub-
class containing all trees T' with the property that there is no infinite sequence
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Z1,T2,... of vertices in T such that z;y; is above z; and br(z;) £br(z;41) for
all > 1. Given a tree T, let S(T') be the set of all its vertices = for which
T £ br(z). If z € S(T'), we call br(x) a strict branch of T. For a vertex x € T
we denote the set of its successors by succ(z), and let

I(z) = ({succ(z)\S(T)}, {br(y) |y € succ(z) NS(T)}).
We view I'(z) as an element of the quasi-ordered set C x S*(R).

Lemma 6.7 Suppose that T and U are trees such that for every vertex x € T
there exists a vertex y € U with I'(z) < T'(y). Then T x U.

Proof. For n =0,1,..., let W, denote the set of all vertices of T" which have
distance at most n from the root of . We shall inductively define an embedding
¢ of T into U such that, at stage n, we have defined ¢ on a set V,, C V(T)
satisfying the following conditions:

(i) W, C V,,, and if € V,, then the predecessor of z in T lies in V,,. If
x € Vp\W,, then V(br(z)) C V,.

(ii) Suppose that © € W,,11\V,,, and let z be the predecessor of z. Then
z ¢ S(T) and there exists a vertex vy € succ(p(z))\S(U) such that no
vertex of br(v?) lies in ¢(V,,). Furthermore, the vertices v? are distinct
for distinct x € Wy 41\ V.

Let zg be the root of T. Then by the assumptions of the lemma, there is a
vertex yo € U such that T'(zg) < I'(yp). Thus for all z € succ(zg), there is a
vertex v) € succ(yg) such that, firstly, the vertices vQ are distinct for distinct
z, secondly, if x ¢ S(T), then v ¢ S(U), and thirdly, if z € S(T), then
br(z) < br(v?). Put ¢(zg) := o, and extend ¢ by embedding br(z) into br(v?)
for all z € succ(zg) NS(T). Setting

Vo := {zo} U | J{V(br(z)) | = € suce(mo) N S(T)}

starts the induction. Suppose that n > 0 and conditions (i) and (ii) hold for
n—1. If W, C V,_1, then V;,_1 = V(T) by (i), and we are done. Thus let
us assume that W, ¢ V,,_1, and let = be any vertex in W,\V,_1. By the
assumption of the lemma there is a vertex y € U such that I'(z) < I'(y). Let
v™?~! be as in condition (ii). Then U < br(v?~1), since v?~! ¢ S(U). Let y' be
the image of y in br(v? ') under this embedding. The fact that T'(z) < I'(y) now
implies that for all a € succ(z) there exists a vertex v? € succ(y’) satisfying the
following three conditions. Firstly, the v} are distinct for distinct a. Secondly,
if a ¢ S(T) then v ¢ S(U), and thirdly, if a € S(T'), then br(a) < br(v}).
Put ¢(z) := y' and extend ¢ further by embedding br(a) into br(v?) for all
a € succ(z) NS(T). Proceed similarly for every x € W, \V,,—1. Then, setting

Vi = Vpt UW, U U{V(br(a)) |a € succ(z) N S(T) for some z € Wp\V,_1}

completes the induction step. O
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Lemma 6.8 If f is a bad Ro-array, then there exists a bad Ro-array g such
that Dg C Df and g(s) is a strict branch of f(s) for all s € Dg.

Proof. For a tree T € Ry we define 3(7T') := {I'(z) | z € T'} and think of it as
an element of the quasi-ordered set S(C x S*(Rg)). Lemma 6.7 implies that for
all T,U € Ry,

S(T) < S(U) = T <U.

Hence ¥ o f is a bad S(C x S¥(Rgy))-array. By Lemma 6.3, there is a bad
C x S*(Ry)-array ¢ such that Dp = DX o f = Df and ¢(s) € S o f(s) for
all s € Dyp. Now Lemma 6.4 implies that there is a bad S#(Rg)-array v such
that Dy C Dy and 9(s) = pa(s) for all s € Dey. Finally, by Corollary 6.6,
there is a bad Ry-array g such that Dg C Dt and g(s) € 9(s) for all s € Dg.
Clearly, Dg C Df. Furthermore, for all s € Dg, g(s) is an element of the
second component of an element of ¥ o f(s), and thus a strict branch of f(s),
as required. O

If h and h' are Ry-arrays, we write h <’ b’ if Dh C DA/, and if h(s) is a
branch of A'(s) for all s € Dh. Furthermore, we write h <’ b’ if h <" h' and
there exists an s € Dh such that h(s) is a strict branch of A'(s).

Lemma 6.9 If f is a bad Ro-array, then there exists a minimal bad Ro-array
h such that h <' f.

We omit the proof, since it is an easy modification of the proof of assertion
() in the proof of Lemma 6.5. Indeed, the only difference is the following.
In Lemma 6.5 we repeatedly made use of the fact that we could not have an
infinite sequence F, Fy, ... in Seq(Q) such that F;,; is a proper initial segment
of F; for all 4 > 1, since length(F}), length(F»),... would then have been an
infinite strictly descending chain of ordinals. In the proof of Lemma 6.9 an
infinite sequence F1, Fy, ... in Ry such that Fj,; is a strict branch of F; for all
1 > 1 would contradict the definition of Ry.
Lemmas 6.8 and 6.9 immediately imply the following result.

Corollary 6.10 Ry is bgo.
Given a tree T', let F(T') := {z € T | br(z) € Ro} and I(T') := V(T)\F(T). For
a vertex = € T define
A(z) = (|succ(z) NI(T)|, {br(z)|z € succ(z) NF(T)}).
We view A(z) as an element of C x S¥(Ry).
Lemma 6.11 Suppose that T is a tree and xg,yo € I(T) are such that

Vi € br(zo) N I(T) Yy € br(yo) N I(T) Jz € br(y) : A(z) < A(z).
Then br{xzo) < br(yo).

Proof. The proof is very similar to that of Lemma 6.7. For n = 0,1,..., let
W,, denote the set of all vertices of br(zy) which have distance at most n from
xo. We shall inductively define an embedding ¢ of br(zg) into br(yg) such that,
at stage n, we have defined ¢ on a set V,, C V(br(z)) satisfying the following
conditions:
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(i) W, CV,, and if x € V,, then the predecessor of z in br(xzg) lies in V. If
z € V\W,, then V(br(z)) C V.

(ii) Suppose that z € W, 11\V,, and let y be the predecessor of z. Then
z € I(T), and there exists a vertex v? € succ(p(y)) NI(U) such that no
vertex of br(v?) lies in ¢(V},). Furthermore, the vertices v} are distinct
for distinct x € W41\ Va.

By the assumptions of the lemma, there is a vertex zg € br(yg) such that
A(zg) < A(zp). Thus for all z € succ(zp) there is a vertex v0 € succ(zg) such
that, firstly, the vertices v0 are distinct for distinct z, secondly, if z € I(T) then

vY € I(T), and thirdly, if z € F(T), then br(z) < br(v?). Put ¢(x¢) := 29, and
extend ¢ by embedding br(z) into br(v?) for all z € succ(zg) NF(T). Setting

Vo := {zo} U | J{V(br(z)) | = € succ(mo) NF(T)}

starts the induction. Suppose that n > 0 and conditions (i) and (ii) hold for
n—1. IfW, CV,_1, then V,,_; = V(br(zg)) by (i), and we are done. Thus we
may assume that W, € V,,_1. Let = be any vertex in W,\V,,_1, and let vg_l
be as in condition (ii). Then by the assumption of the lemma there is a vertex
z € br(v?~!) such that A(z) < A(z). Thus for all a € succ(z) there exists a
vertex v € succ(z) such that, firstly, the v? are distinct for distinct a, secondly,
if @ € I(T) then v € I(T), and thirdly, if a € F(T), then br(a) < br(v}).
Put ¢(z) := 2, and extend ¢ further by embedding br(a) into br(v}) for all
a € succ(z) NF(T). Proceed similarly for every z € W,,\V,,—1. Then, setting

Vo = Vor UW, U [ J{V(br(a)) | a € suce(z) NF(T) for some & € W, \Vy_1}

completes the induction step. O

Theorem 6.12 The infinite trees are bqo by the rooted topological minor rela-
tion.

Proof. By Corollary 6.10 it suffices to show that every tree lies in Ry. Suppose
not, and let T" be a tree that does not lie in Ry. Let zy be the root of T'. Since
T ¢ Ry, there is a vertex y; € br(zg) NI(T) such that br(zy) % br(y1). Then
Lemma 6.11 implies that there exist vertices z; € br(zg) N I(T) and z; €
br(y;) NI(T) such that A(z1) £ A(z) for all z € br(z1). Since z; € I(T), there
is a vertex yo € br(z1) NI(T) such that br(z1) £ br(yz). Again, Lemma 6.11
implies that there exist vertices zp € br(z;) NI(T) and zo € br(yz) N I(T)
such that A(z9) £ A(z) for all z € br(zy). Continuing in this fashion, we
obtain an infinite sequence 21, z2,... such that A(z;) £ A(z;) in C x S*(Ry)
for all 1 < i < j. But since Ry is bqo by Corollary 6.10, C x S¥(Rg) is bqo by
Lemma 6.4 and Corollary 6.6, and thus it is wqo by Lemma, 6.2, a contradiction.

0
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Zusammenfassung

Kapitel 1 Unendliche Kreise

Das Ziel dieses Kapitels ist die Erweiterung von verschiedenen Satzen iiber den
Zyklenraum von endlichen Graphen auf unendliche Graphen. Hierzu wird auch
der Begriff des Kreises verallgemeinert: als Kreise eines unendlichen Graphen
G betrachten wir alle homéomorphen Bilder des Einheitskreises in einem topo-
logischen Raum, der aus G und den Enden von G besteht.

Kapitel 2 Induzierte Unterteilungen in K, ;-freien Graphen mit ho-
hem Durchschnittsgrad

Ein klassischer Satz von Mader sagt, daf3 jeder Graph G eine Unterteilung eines
gegebenen Graphen H enthilt, wenn G nur geniigend hohen Durchschnittsgrad
hat. Das Hauptergebnis des zweiten Kapitels ist eine analoge Aussage fir in-
duzierte Unterteilungen: Fir jeden Graphen H wund jedes s € N gibt es ein
d €N, so daf jeder Graph mit Durchschnittsgrad mindestens d entweder einen
K s als Teilgraphen enthalt oder eine induzierte Unterteilung von H.

Kapitel 3 Teilgraphen mit hohem Durchschnittsgrad ohne Kreise der
Liange < 6

In Kapitel 3 wird der Fall ¢ < 6 der folgenden Vermutung von Thomassen
bewiesen: Fir alle k,g € N gibt es ein d € N, so daff jeder Graph mit Durch-
schnittsgrad mindestens d einen Teilgraphen mit Durchschnittsgrad mindestens
k enthalt, der keinen Kreis der Lange < g hat.

Kapitel 4 Partitionen von Graphen mit hohem Minimalgrad oder
Zusammenhang

Eines der Ergebnisse aus Kapitel 4 ist die folgende Verallgemeinerung eines
Satzes von Hajnal und Thomassen: Fir jedes £ € N gibt es ein k € N, so dafl
die Eckenmenge jedes k-zusammenhangenden Graphen G in zwei nicht-leere
Mengen S und T zerlegt werden kann, so daf die von S und T induzierten
Teilgraphen von G beide £-zusammenhdngend sind und jede Ecke aus S min-
destens £ Nachbarn in T hat. Zusammen mit dem oben erwahnten Satz von
Mader folgt daraus, dafl jeder geniigend hoch zusammenhiangende Graph G eine
Unterteilung T H eines gegebenen Graphen H enthélt, so dafi G — V(T'H) noch
immer hoch zusammenhangend ist.

Kapitel 5 Erzwingung von vollstdndigen Minoren durch hohen ex-
ternen Zusammenhang

Kapitel 5 beschiftigt sich mit der Frage, welche Strukturen ein Graph H en-
thalten muf, wenn jeder Graph G, der H als extern hoch zusammenhangenden
Teilgraphen enthilt, einen groflen vollstindigen Minor hat. Es werden vier
minimale Strukturen mit dieser Eigenschaft identifiziert.



Kapitel 6 Wohlquasiordnung unendlicher Badume

Das letzte Kapitel enthilt einen kurzen Beweis des folgenden Satzes von Nash-
Williams: Die unendlichen Baume sind wohlquasigeordnet, d.h. zu jeder un-
endlichen Folge T1,Ts, ... von unendlichen Baumen gibt es Indizes i < j, so
dafs T eine Unterteilung von T; enthalt.
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