COFINITARY NEARLY FINITARY MATROIDS ARE *l*-NEARLY FINITARY FOR SOME $l \in \mathbb{N}$

ABSTRACT. We characterise for cofinitary matroids M the sets F for which there are bases B of M and B_{fin} of M_{fin} such that $B \subseteq B_{\text{fin}}$ and $F \subseteq B_{\text{fin}} \setminus B$. The main result yields an alternative proof of Halin's theorem.

1. INTRODUCTION

Matroids which are *l*-nearly finitary were introduced in [1]. The *finitarisation* of a matroid M is the matroid M_{fin} on the same ground set E(M) as M with circuit set $\mathcal{C}(M_{\text{fin}}) = \{C \in \mathcal{C}(M): C \text{ is finite}\}$. If for all bases B of M and all bases B_{fin} of M_{fin} such that $B \subset B_{\text{fin}}$ the set $B_{\text{fin}} \setminus B$ is finite, then M is called *nearly finitary*. If there is also a natural number $l \in \mathbb{N}$ which is an upper bound on the size of $B_{\text{fin}} \setminus B$, then M is *l*-nearly finitary.

In [1] it was shown that every algebraic cycle matroid of an infinite graph and every topological cycle matroid of a 2-connected locally finite graph have the property that if they are nearly finitary then they are also *l*-nearly finitary for some natural number $l \in \mathbb{N}$. These proofs establish a connection between the existence of large families of pairwise disjoint rays in a graph and the property of the corresponding (topological or algebraic) cycle matroid to be (*l*-)nearly finitary. They then use the following theorem by Halin, which is an important theorem in infinite graph theory:

Theorem 1.1. [5, Halin] If an infinite graph G contains l (vertex-) disjoint rays for every $l \in \mathbb{N}$, then G contains infinitely many disjoint rays.

Having shown the two propositions the authors of [1] made the following conjecture:

Conjecture 1.2. [1] Every nearly finitary matroid is *l*-nearly finitary for some natural number $l \in \mathbb{N}$.

In this paper it will be shown that Conjecture 1.2 holds for cofinitary matroids. The result can be used to prove Halin's theorem by the connection established in [1] between families of pairwise disjoint rays in a graph G and the algebraic cycle matroid. Via this connection, Conjecture 1.2 for cofinitary matroids can be seen as a matroidal analogue of Halin's theorem.

2. Preliminaries

2.1. Infinite matroids. The definitions for infinite matroids (including minors and duality) used here are the ones from [4]. From that paper we will also need the following basic result about infinite matroids.

Lemma 2.1. [4] Let B_1 and B_2 be two bases of M. If $|B_1 \setminus B_2| < \infty$, then $|B_2 \setminus B_1| = |B_1 \setminus B_2|$.

Remark 2.2. A set $X \subseteq E(M)$ is spanning in M if and only if its complement is independent in M^* if and only if X meets every cocircuit.

Definition 2.3. [2] Let $X \subseteq E(M)$ be a subset of the ground set of M. Let B_X be a base of $M|X, B_Y$ a base of M - X and B a base of M contained in $B_X \cup B_Y$. Whether $(B_X \cup B_Y) \setminus B$ is finite does not depend on the choice of B_X, B_Y and B. If $(B_X \cup B_Y) \setminus B$ is finite, then its size also does not depend on the choice of B_X, B_Y and B and is defined as the *connectivity* $\kappa_M(X)$ of X. If $(B_X \cup B_Y) \setminus B$ is infinite, then $\kappa_M(X)$ is defined as ∞ . In particular $\kappa_M(X) = \kappa_M(E(M) \setminus X)$.

Lemma 2.4. [2] The connectivity function is submodular, that is for all $X, Y \subseteq E(M)$ there holds

$$\kappa_M(X) + \kappa_M(Y) \ge \kappa_M(X \cup Y) + \kappa_M(X \cap Y).$$

Remark 2.5. Let M be a matroid, $X \subseteq E(M)$ and e an edge of M not in X. Then $\kappa_M(X) - 1 \leq \kappa_M(X + e) \leq \kappa_M(X) + 1$, or in words: adding or removing an edge changes the connectivity of a set by at most one, and $\kappa_M(X) \leq \kappa_{M-e}(X) + 1$.

2.2. Matroids in graphs. The notation for graphs is the one of [5].

Definition 2.6. [3][6] Let G be a graph. The set of edge sets of finite cycles of G is the set of circuits of a matroid $M_{FC}(G)$, called the *finite cycle matroid* of G. The set of edge sets of finite cycles of G together with the set of edge sets of double rays of G is the set of circuits of another matroid $M_{AC}(G)$, the algebraic cycle matroid, if G does not contain a subdivision of the Bean graph.

Remark 2.7. [3] Let G be a graph for which the algebraic cycle matroid exists. Then $M_{AC}(G)_{fin} = M_{FC}$. If G is locally finite then it does not contain a subdivision of the Bean graph, so $M_{AC}(G)$ exists. Furthermore in a locally finite graph G the matroid $M_{AC}(G)$ is cofinitary.

3. Cofinitary nearly finitary matroids

In this section we will show that a nearly finitary cofinitary matroid is *l*-nearly finitary for some natural number $l \in \mathbb{N}$. The proof was inspired by the following observation, which holds for all (and not just cofinitary) matroids:

Lemma 3.1. Let M be a matroid and let B and B_{fin} be bases of M and M_{fin} respectively such that $B \subseteq B_{fin}$. Let F be contained in $B_{fin} \setminus B$ and let $F' \subseteq E(M)$ be a finite set. Then $\kappa_M(F') \ge |F \cap F'|$.

Proof. F' is finite, so $F' \cap B_{\text{fin}}$ is independent in M|F' and is thus contained in a base B_1 of M|F'. Since B is a base of M, every edge of F is spanned in M by B, so $F \cap F'$ is spanned in M.F' by $B \cap F' \subseteq B_1 \setminus F$. Hence M.F' is spanned by $B_1 \setminus F$, so $\kappa_M(F') \geq |B_1 \setminus (B_1 \setminus F)| = |F \cap B_1| = |F \cap F'|$.

Definition 3.2. Let M be a matroid. Define $\mathcal{F}(M)$ to contain all sets F for which there are bases B of M and B_{fin} of M_{fin} such that $B \subseteq B_{\text{fin}}$ and $F \subseteq B_{\text{fin}} \setminus B$. Let $\mathcal{G}(M)$ consist of those sets F for which $\kappa(F') \geq |F \cap F'|$ for all finite sets $F' \subseteq E(M)$.

So we just showed for every matroid M that $\mathcal{F}(M) \subseteq \mathcal{G}(M)$. Sets contained in $\mathcal{G}(M)$ are a lot easier to handle than sets contained in $\mathcal{F}(M)$, because we do not have to consider corresponding pairs of bases all the time. For example we can

show that if $\mathcal{G}(M)$ contains two finite sets of different size, then the smaller one can be extended, which allows us to easily show that if M is not *l*-nearly finitary for any $l \in \mathbb{N}$ then $\mathcal{G}(M)$ contains an infinite element:

Lemma 3.3. Let M be a matroid and $F_1, F_2 \in \mathcal{G}(M)$ finite sets such that F_1 is strictly smaller than F_2 . Then there is $e \in F_2 \setminus F_1$ such that $F_1 + e \in \mathcal{G}(M)$.

Proof. Let $G \subseteq F_2 \setminus F_1$ be a minimal set such that $\kappa_M(F') \ge |F_1| + 1$ for all finite sets $F' \subseteq E(M)$ containing $F_1 \cup G$. Such a minimal set exists because $F_2 \setminus F_1$ is a possible candidate and finite. By Remark 2.5, $\kappa_M(F_1) \le |F_1|$ and thus G contains at least one element. Suppose for a contradiction that it contains at least two elements $e_1 \ne e_2$. By the minimality of G there are finite sets $S_j \subseteq E(M)$ such that $F_1 \cup G - e_j \subseteq S_j$ and $\kappa_M(S_j) \le |F_1|$. The set $S_1 \cap S_2$ contains F_1 , so its connectivity is at least $|F_1|$, and $S_1 \cup S_2$ contains $F_1 \cup G$, hence its connectivity is at least $|F_1| + 1$. So by the submodularity of the connectivity function

$$2|F_1| \ge \kappa_M(S_1) + \kappa_M(S_2) \ge \kappa_M(S_1 \cup S_2) + \kappa_M(S_1 \cap S_2) \ge |F_1| + 1 + |F_1|$$

which is the desired contradiction. Thus G contains exactly one edge e and for all finite sets $F' \subseteq E(M)$ it is true by Remark 2.5 that

$$\kappa_M(F') \ge \kappa_M(F' \cup F_1 + e) - |(F_1 + e) \setminus F'| \ge |F_1| + 1 - |(F_1 + e) \setminus F'| = |(F_1 + e) \cap F'|$$

and hence $F_1 + e \in \mathcal{G}(M)$.

Lemma 3.4. Let M be a matroid which is not l-nearly finitary for any $l \in \mathbb{N}$. Then there is an infinite set $F \subseteq E(M)$ such that $\kappa(F') \ge |F' \cap F|$ for all finite sets $F' \subseteq E(M)$.

Proof. Let $F_0 = \emptyset$ and define recursively a nested family $(F_i)_{i \in \mathbb{N}}$ of finite sets contained in $\mathcal{G}(M)$ as follows: Suppose F_i is already defined. By Lemma 3.1 $\mathcal{G}(M)$ contains a finite set which is bigger than F_i and by Lemma 3.3 there is an edge $e \notin F_i$ such that $F_i + e$ is contained in $\mathcal{G}(M)$. Define $F_{i+1} = F_i + e$. Because being in $\mathcal{G}(M)$ is a finitary condition, $\bigcup_{i \in \mathbb{N}} F_i$ is also contained in $\mathcal{G}(M)$ and it is infinite.

Remark 3.5. For every matroid M the set $\mathcal{G}(M)$ is the set of independent sets of a finitary matroid.

In order to prove Conjecture 1.2 for cofinitary matroids M it suffices to show that in that case $\mathcal{G}(M) \subseteq \mathcal{F}(M)$. To prove this is the same as to find for every $F \in \mathcal{G}(M)$ a family of circuits $(C_f)_{f \in F}$ such that $f \in C_g$ if and only if f = g and such that $\bigcup_{f \in F} C_f$ does not contain finite circuits. If M is countable, then it is possible to extend F to such a family by adding finite pieces to the (future) circuits in a way such that in no step a finite circuit emerges and the unions of all the pieces belonging to the same circuit are indeed circuits. If M has more than countably many edges, then it is necessary to complete the circuits by a compactness argument instead of adding countably many finite pieces. Lemmas 3.6 and 3.7 show that Fcan be extended suitably by finite pieces.

Lemma 3.6. Let M be a matroid and $P_1, P_2 \subseteq E(M)$ two disjoint sets of the same finite connectivity n such that $E(M) \setminus (P_1 \cup P_2)$ is finite. Assume further that all sets Z satisfying $P_1 \subseteq Z \subseteq E(M) \setminus P_2$ have connectivity at least n. Then there is a set X which is a base of $M/P_1 - P_2$ as well as of $M - P_1/P_2$. *Proof.* The proof is by induction on the size of $E(M) \setminus (P_1 \cup P_2)$, which is denoted by Y. Let B_i be a base of $M|P_i$ and B'_i a base of $M.P_i$ which is contained in B_i . This implies that $|B_i \setminus B'_i| = n$. If Y is the empty set, then $X = \emptyset$ meets the requirements of this lemma. If Y contains a unique element e, then by Lemma 2.1 $B_1 \cup B'_2$ is a base of M if and only if $B'_1 \cup B_2$ is a base of M. In this case let $X = \emptyset$. Otherwise $B_1 \cup B'_2 + e$ and $B'_1 \cup B_2 + e$ are bases of M, so let $X = \{e\}$.

So assume $|Y| \ge 2$ and pick an edge $e \in Y$. If for all sets Z with $P_1 \subseteq Z \subseteq P_1 \cup Y - e$ we have that $\kappa_{M-e}(Z) \ge n$, then by the induction hypothesis there is a set $X' \subset Y - e$ which is a base both of $(M-e) - P_1/P_2$ and of $(M-e)/P_1 - P_2$. By Lemma 2.1 either $B_1 \cup X' \cup B'_2$ and $B'_1 \cup X' \cup B_2$ are bases of M or $B'_1 \cup (X'+e) \cup B_2$ and $B_1 \cup (X'+e) \cup B'_2$ are bases of M. In the first case let X = X' and in the second case define X = X' + e.

So consider the case that there is a set Z_1 such that $P_1 \subseteq Z_1 \subseteq P_1 \cup Y - e$ and $\kappa_{M-e}(Z_1) < n$. By $|Y| \ge 2$ either $Z_1 \setminus P_1$ or $Y \setminus (Z_1 + e)$ is non-empty. Assume without loss of generality that $Z_1 \setminus P_1$ is non-empty and define $Z_2 = E(M) \setminus Z_1$. Then by Remark 2.5 and $\kappa_M(Z_1) \ge n$ we have that $\kappa_M(Z_1) = n$. By the induction hypothesis there are sets $X_i \subseteq Z_i \setminus P_i$ such that X_i is a base of $M.Z_i - P_i$ and of $M|Z_i/P_i$. Then $X = X_1 \cup X_2$ is a base of $M - P_1/P_2$ as well as of $M/P_1 - P_2$. \Box

Lemma 3.7. Let M be a matroid and $P_1, P_2 \subseteq E(M)$ two disjoint subsets of finite connectivity $\kappa_M(P_i) = n_i$ such that $E(M) \setminus (P_1 \cup P_2)$ is finite. Assume further that $n_1 \leq n_2$ and that $\kappa_M(Z) \geq n_1$ for all sets Z satisfying $P_1 \subseteq Z \subseteq E(M) \setminus P_2$. Then there are bases B_1, B_2 of $M/P_1 - P_2$ and $M - P_1/P_2$ respectively such that $B_2 \subseteq B_1$ and $|B_1 \setminus B_2| = n_2 - n_1$.

Proof. The proof is by induction on the size of $E(M) \setminus (P_1 \cup P_2)$, which is denoted by Y. If $n_1 = n_2$, then we are done by Lemma 3.6, so assume $n_2 > n_1$. If Y contains exactly one edge e, then $n_1 + 1 = n_2$, so let $B_1 = \{e\}$ and $B_2 = \emptyset$. Then B_1 and B_2 meet the requirements of this lemma.

So let Y contain at least two elements. If there is a set Z of connectivity n_1 such that $P_1 \subseteq Z \subseteq P_1 \cup Y$ then by Lemma 3.6 there is a set X which is a base of $M/P_1 - Z_2$ as well as of $M - P_1/Z_2$. By the induction hypothesis there are bases B'_1 of $M/Z_1 - P_2$ and B'_2 of $M - Z_1/P_2$ such that $B'_2 \subset B'_1$ and $|B'_1 \setminus B'_2| = n_2 - n_1$. Then $B_1 = X \cup B'_1$ is a base of $M/P_1 - P_2$ and $B_2 = X \cup B'_2$ is a base of $M - P_1/P_2$. Also $B_2 \subseteq B_1$ and $|B_1 \setminus B_2| = |B'_1 \setminus B'_2| = n_2 - n_1$.

So assume that there is no such set Z. Let e be an edge of Y, then $\kappa_M(P_1+e) = n_1 + 1$ and $\kappa_M(Z) \ge n + 1$ for all sets Z such that $P_1 + e \subseteq Z \subseteq P_1 \cup Y$. By the induction hypothesis e is a base of $(M/P_1)|\{e\}$ and the empty set is a base of $(M-P_1).\{e\}$. Also by the induction hypothesis there are bases B'_1 of $M/(P_1+e)-P_2$ and B'_2 of $M - (P_1 + e)/P_2$ such that $B'_2 \subset B'_1$ and $|B'_1 \setminus B'_2| = n_2 - (n_1 + 1)$. So $B_1 = B'_1 + e$ is a base of $M/P_1 - P_2$, $B_2 = B'_2$ is a base of $M - P_1/P_2$, $B_2 \subseteq B_1$ and $|B_1 \setminus B_2| = |B'_1 \setminus B'_2| + 1 = n_2 - n_1$.

With these lemmas it is possible to prove $\mathcal{G}(M) \subseteq \mathcal{F}(M)$ for cofinitary matroids.

Lemma 3.8. Let M be a cofinitary matroid and $F \subseteq E(M)$ a set such that $\kappa_M(F') \geq |F' \cap F|$ for all finite sets $F' \subset E(M)$. Then there are bases B of M and B_{fin} of M_{fin} such that $B \subseteq B_{\text{fin}}$ and $F \subseteq B_{\text{fin}} \setminus B$.

Proof. The proof is by a compactness argument. Let $Y = \{0, 1, 2\}^{E(M)}$ be a topological space with the product topology where each component carries the discrete

topology. Consider the following three types of closed subsets of Y:

$$Y_C = \bigcup_{e \in C} \{ y \in Y : \ y(e) = 0 \}$$
for a finite circuit *C* of *M*
$$Y_D = \bigcup_{e \in D} \{ y \in Y : \ y(e) = 2 \}$$
for a cocircuit *D* of *M*
$$Y_f = \{ y \in Y : \ y(f) = 1 \}$$
for every *f* in *F*

If there is an $x \in Y$ which is contained in all of these sets, then the set $\{e \in E(M): x(e) = 2\}$ is spanning in M (and hence contains a base B of M), the set $\{e \in E(M): x(e) \neq 0\}$ is independent in M_{fin} (and is thus contained in a base B_{fin} of M_{fin}) and $B_{\text{fin}} \setminus B$ contains F. In order to show that there is such an x, it is enough to show that for each finite set \mathcal{Y} of closed subsets of the form Y_C , Y_D or Y_f their intersection is non-empty.

So let \mathcal{Y} be a finite set of closed subsets of the form Y_C, Y_D or Y_f . Let $F' \subset F$ contain exactly those f with $Y_f \in \mathcal{Y}$ and let R be the union of F', the circuits C such that $Y_C \in \mathcal{Y}$ and the cocircuits D such that $Y_D \in \mathcal{Y}$. Then by Lemma 3.7 there are bases B of $M/F' - (E(M) \setminus R)$ and B' of $M - F'/(E(M) \setminus R)$ such that B' is a subset of B and $|B \setminus B'| = \kappa_M(R) - \kappa_M(F')$. Define $B_2 = F' \cup B$ and $B'_2 = \emptyset \cup B'$. The set B_2 is a base of M|R, the set B'_2 is a base of M.R and their difference contains F'. Thus every $x \in Y$ satisfying x(e) = 0 if $e \in R \setminus B_2, x(e) = 1$ if $e \in B_2 \setminus B'_2$ and x(e) = 2 if $e \in B'_2$ is contained in the intersection of the closed sets contained in \mathcal{Y} . Thus $\bigcap \mathcal{Y}$ is not empty.

Corollary 3.9. Let M be a nearly finitary cofinitary matroid. Then there is a natural number $l \in \mathbb{N}$ such that M is *l*-nearly finitary.

Proof. By Lemma 3.8 and Lemma 3.4.

4. The connection to Halin's theorem

The connection between Halin's theorem and Conjecture 1.2 is that in a locally finite graph G the infinite circuits of the algebraic cycle matroid are the double rays of that graph. If G is connected, then there is a correspondence between large families of pairwise disjoint rays and pairs of bases of M_{AC} and $(M_{AC})_{\text{fin}} = M_{FC}$ witnessing that M is not *l*-nearly finitary for some large *l*. Lemma 4.1 is a more detailed version of the arguments already used in the corresponding proof in [1].

Lemma 4.1. Let G be a locally finite connected graph containing a ray and M its algebraic cycle matroid. Then G contains a family $(R_i)_{i \in I}$ of vertex disjoint rays if and only if there are bases B of M and B_{fin} of M_{fin} containing B such that $|B_{fin} \setminus B| \ge |I| - 1$.

Proof. Let $B \in \mathcal{B}(M)$ and $B_{\text{fin}} \in \mathcal{B}(M_{\text{fin}})$ be bases such that $B \subseteq B_{\text{fin}}$ and define $F = \mathcal{B}_{\text{fin}} \setminus B$. Because G is connected, B_{fin} is the edge set of a spanning tree of G. Let V_B be the set of components of the graph $G - (E \setminus B)$. Define a multigraph G_B on vertex set V_B with edge set F such that the end vertices of $f \in F$ in G_B are the components containing the original end vertices of f. Every path in G_B can be extended by inserting finite paths to a path in G whose edges are contained in B_{fin} . So also every finite cycle of G_B can be extended to a cycle of G whose edges are all contained in B_{fin} . Hence G_B is a forest. Furthermore every two vertices of G can

be joined by a path using only edges of B_{fin} , thus G_B is a tree and in particular $|V_B| = |F| + 1$.

Let $v \in V_B$ be a vertex of G_B which is an end vertex of an edge e of F. Denote the end vertex of e in G which lies in v by v'. The set $B + e \subseteq B_{\text{fin}}$ contains an infinite circuit, which is the edge set of a double ray. By deleting e from the double ray we obtain two rays whose edges are all contained in B, one of these starting in v'. This ray is contained in v, so v contains a ray. Thus every element of V_B contains a ray (if V_B has only one element then this is true by assumption). For each $v \in V_B$ let R_v be a ray contained in v. Then $(R_v)_{v \in V_B}$ is a family of vertex-disjoint rays and $|B_{\text{fin}} \setminus B| = |F| = |V_B| - 1$.

To prove the other direction let $(R_i)_{i \in I}$ be a family of pairwise disjoint rays. Let E_R be the join of the edge sets of the rays and $B \in \mathcal{B}(M)$ a base containing E_R . Let B_{fin} be a base of M_{fin} containing B and construct the tree G_B as above. Then every ray R_i is contained in a component of V_B but because none of these components contain a double ray every two rays $R_i \neq R_j$ have to be contained in different components of V_B . This yields an injective function from I to V_B and thus $|B_{\text{fin}} \setminus B| = |V_B| - 1 \geq |I| - 1$.

So for a given locally finite connected graph the fact that Halin's theorem holds is equivalent to the fact that Conjecture 1.2 holds for its algebraic cycle matroid, which is cofinitary.

Lemma 4.2. Let G be a locally finite connected graph. If there are arbitrarily large finite families of pairwise vertex disjoint rays of G, then there is an infinite such family.

Proof. Let M be the algebraic cycle matroid of G. Since G is locally finite, M exists and is cofinitary. By Lemma 4.1, M is not l-nearly finitary for any natural number l, so by Corollary 3.9 there are bases B of M and B_{fin} of M_{fin} such that $B \subseteq B_{\text{fin}}$ and $B_{\text{fin}} \setminus B$ is infinite. Hence again by Lemma 4.1 this implies that G contains an infinite family of pairwise disjoint rays.

In the last proof we used that G is locally finite and connected. But because Halin's theorem can be reduced to the case where G is locally finite and connected, this re-proves Halin's theorem from Corollary 3.9.

References

- E. Aigner-Horev, J. Carmesin and J.-O. Fröhlich, On the intersection of infinite matroids, arXiv:1111.0606v2 (2012), to appear in *Discrete Math*
- [2] H. Bruhn and P. Wollan, Finite connectivity in infinite matroids, Europ. J. Comb 33 (2012), 1900–1912
- [3] H. Bruhn and R. Diestel, Infinite matroids in graphs, Discrete Math 311 (2011), 1461–1471
- [4] H. Bruhn, R. Diestel, M. Kriesell, R. Pendavingh and P. Wollan, Axioms for infinite matroids, Adv. Math 239 (2013), 18–46
- [5] R. Diestel, graph theory, Springer-Verlag, 3. edition (2006)
- [6] D.A. Higgs, Matroids and duality Colloq. Math 20 (1969) 215-220