Cofinitary nearly finitary matroids are l-nearly finitary for some $l \in \mathbb{N}$

Abstract. We characterise for cofinitary matroids M the sets F for which there are bases B of M and B_{fin} of M_{fin} such that $B \subseteq B_{\text{fin}}$ and $F \subseteq B_{\text{fin}} \setminus B$.

The main result yields an alternative proof of Halin’s theorem.

1. Introduction

Matroids which are l-nearly finitary were introduced in [1]. The finitarisation of a matroid M is the matroid M_{fin} on the same ground set $E(M)$ as M with circuit set $C(M_{\text{fin}}) = \{ C \in C(M) : C \text{ is finite} \}$. If for all bases B of M and all bases B_{fin} of M_{fin} such that $B \subseteq B_{\text{fin}}$ the set $B_{\text{fin}} \setminus B$ is finite, then M is called nearly finitary.

If there is also a natural number $l \in \mathbb{N}$ which is an upper bound on the size of $B_{\text{fin}} \setminus B$, then M is l-nearly finitary.

In [1] it was shown that every algebraic cycle matroid of an infinite graph and every topological cycle matroid of a 2-connected locally finite graph have the property that if they are nearly finitary then they are also l-nearly finitary for some natural number $l \in \mathbb{N}$. These proofs establish a connection between the existence of large families of pairwise disjoint rays in a graph and the property of the corresponding (topological or algebraic) cycle matroid to be (l-)nearly finitary. They then use the following theorem by Halin, which is an important theorem in infinite graph theory:

Theorem 1.1. [5, Halin] If an infinite graph G contains l (vertex-) disjoint rays for every $l \in \mathbb{N}$, then G contains infinitely many disjoint rays.

Having shown the two propositions the authors of [1] made the following conjecture:

Conjecture 1.2. [1] Every nearly finitary matroid is l-nearly finitary for some natural number $l \in \mathbb{N}$.

In this paper it will be shown that Conjecture 1.2 holds for cofinitary matroids. The result can be used to prove Halin’s theorem by the connection established in [1] between families of pairwise disjoint rays in a graph G and the algebraic cycle matroid. Via this connection, Conjecture 1.2 for cofinitary matroids can be seen as a matroidal analogue of Halin’s theorem.

2. Preliminaries

2.1. Infinite matroids. The definitions for infinite matroids (including minors and duality) used here are the ones from [4]. From that paper we will also need the following basic result about infinite matroids.

Lemma 2.1. [4] Let B_1 and B_2 be two bases of M. If $|B_1 \setminus B_2| < \infty$, then $|B_2 \setminus B_1| = |B_1 \setminus B_2|$.
Remark 2.2. A set $X \subseteq E(M)$ is spanning in M if and only if its complement is independent in M^* if and only if X meets every cocircuit.

Definition 2.3. Let $X \subseteq E(M)$ be a subset of the ground set of M. Let B_X be a base of $M|X$, B_Y a base of $M - X$ and B a base of M contained in $B_X \cup B_Y$. Whether $(B_X \cup B_Y) \setminus B$ is finite does not depend on the choice of B_X, B_Y and B. If $(B_X \cup B_Y) \setminus B$ is finite, then its size also does not depend on the choice of B_X, B_Y and B and is defined as the connectivity $\kappa_M(X)$ of X. If $(B_X \cup B_Y) \setminus B$ is infinite, then $\kappa_M(X)$ is defined as ∞. In particular $\kappa_M(X) = \kappa_M(E(M) \setminus X)$.

Lemma 2.4. The connectivity function is submodular, that is for all $X, Y \subseteq E(M)$ there holds

$$\kappa_M(X) + \kappa_M(Y) \geq \kappa_M(X \cup Y) + \kappa_M(X \cap Y).$$

Remark 2.5. Let M be a matroid, $X \subseteq E(M)$ and e an edge of M not in X. Then $\kappa_M(X) - 1 \leq \kappa_M(X + e) \leq \kappa_M(X) + 1$, or in words: adding or removing an edge changes the connectivity of a set by at most one, and $\kappa_M(X) \leq \kappa_M(X - e) + 1$.

2.2. Matroids in graphs. The notation for graphs is the one of [5].

Definition 2.6. Let G be a graph. The set of edge sets of finite cycles of G is the set of circuits of a matroid $M_{FC}(G)$, called the finite cycle matroid of G. The set of edge sets of finite cycles of G together with the set of edge sets of double rays of G is the set of circuits of another matroid $M_{AC}(G)$, the algebraic cycle matroid, if G does not contain a subdivision of the Bean graph.

Remark 2.7. Let G be a graph for which the algebraic cycle matroid exists. Then $M_{AC}(G)_{\text{fin}} = M_{FC}$. If G is locally finite then it does not contain a subdivision of the Bean graph, so $M_{AC}(G)$ exists. Furthermore in a locally finite graph G the matroid $M_{AC}(G)$ is cofinitary.

3. Cofinitary nearly finitary matroids

In this section we will show that a nearly finitary cofinitary matroid is l-nearly finitary for some natural number $l \in \mathbb{N}$. The proof was inspired by the following observation, which holds for all (and not just cofinitary) matroids:

Lemma 3.1. Let M be a matroid and let B and B_{fin} be bases of M and M_{fin} respectively such that $B \subseteq B_{\text{fin}}$. Let F be contained in $B_{\text{fin}} \setminus B$ and let $F' \subseteq E(M)$ be a finite set. Then $\kappa_M(F') \geq |F \cap F'|$.

Proof. F' is finite, so $F' \cap B_{\text{fin}}$ is independent in $M|F'$ and is thus contained in a base B_1 of $M|F'$. Since B is a base of M, every edge of F is spanned in M by B, so $F \cap F'$ is spanned in M, F' by $B \cap F' \subseteq B_1 \setminus F$. Hence $M.F'$ is spanned by $B_1 \setminus F$, so $\kappa_M(F') \geq |B_1 \setminus (B_1 \setminus F)| = |F \cap B_1| = |F \cap F'|$. \qed

Definition 3.2. Let M be a matroid. Define $F(M)$ to contain all sets F for which there are bases B of M and B_{fin} of M_{fin} such that $B \subseteq B_{\text{fin}}$ and $F \subseteq B_{\text{fin}} \setminus B$. Let $G(M)$ consist of those sets F for which $\kappa(F') \geq |F \cap F'|$ for all finite sets $F' \subseteq E(M)$.

So we just showed for every matroid M that $F(M) \subseteq G(M)$. Sets contained in $G(M)$ are a lot easier to handle than sets contained in $F(M)$, because we do not have to consider corresponding pairs of bases all the time. For example we can
show that if $\mathcal{G}(M)$ contains two finite sets of different size, then the smaller one can be extended, which allows us to easily show that if M is not l-nearly finitary for any $l \in \mathbb{N}$ then $\mathcal{G}(M)$ contains an infinite element:

Lemma 3.3. Let M be a matroid and $F_1, F_2 \in \mathcal{G}(M)$ finite sets such that F_1 is strictly smaller than F_2. Then there is $e \in F_2 \setminus F_1$ such that $F_1 + e \in \mathcal{G}(M)$.

Proof. Let $G \subseteq F_2 \setminus F_1$ be a minimal set such that $\kappa_M(F') \geq |F_1| + 1$ for all finite sets $F' \subseteq E(M)$ containing $F_1 \cup G$. Such a minimal set exists because $F_2 \setminus F_1$ is a possible candidate and finite. By Remark 2.5, $\kappa_M(F_1) \leq |F_1|$ and thus G contains at least one element. Suppose for a contradiction that it contains at least two elements $e_1 \neq e_2$. By the minimality of G there are finite sets $S_j \subseteq E(M)$ such that $F_1 \cup G - e_j \subseteq S_j$ and $\kappa_M(S_j) \leq |F_1|$. The set $S_1 \cap S_2$ contains F_1, so its connectivity is at least $|F_1|$, and $S_1 \cup S_2$ contains $F_1 \cup G$, hence its connectivity is at least $|F_1| + 1$. So by the submodularity of the connectivity function

$$2|F_1| \geq \kappa_M(S_1) + \kappa_M(S_2) \geq \kappa_M(S_1 \cup S_2) + \kappa_M(S_1 \cap S_2) \geq |F_1| + 1 + |F_1|$$

which is the desired contradiction. Thus G contains exactly one edge e and for all finite sets $F' \subseteq E(M)$ it is true by Remark 2.5 that

$$\kappa_M(F') \geq \kappa_M(F' \cup F_1 + e) - |(F_1 + e) \setminus F'| \geq |F_1| + 1 - |(F_1 + e) \setminus F'| = |(F_1 + e) \cap F'|$$

and hence $F_1 + e \in \mathcal{G}(M)$.

Lemma 3.4. Let M be a matroid which is not l-nearly finitary for any $l \in \mathbb{N}$. Then there is an infinite set $F \subseteq E(M)$ such that $\kappa(F') \geq |F' \cap F|$ for all finite sets $F' \subseteq E(M)$.

Proof. Let $F_0 = \emptyset$ and define recursively a nested family $(F_i)_{i \in \mathbb{N}}$ of finite sets contained in $\mathcal{G}(M)$ as follows: Suppose F_i is already defined. By Lemma 3.1, $\mathcal{G}(M)$ contains a finite set which is bigger than F_i and by Lemma 3.3 there is an edge $e \notin F_i$ such that $F_i + e$ is contained in $\mathcal{G}(M)$. Define $F_{i+1} = F_i + e$. Because e being in $\mathcal{G}(M)$ is a finitary condition, $\bigcup_{i \in \mathbb{N}} F_i$ is also contained in $\mathcal{G}(M)$ and it is infinite.

Remark 3.5. For every matroid M the set $\mathcal{G}(M)$ is the set of independent sets of a finitary matroid.

In order to prove Conjecture 1.2 for cofinitary matroids M it suffices to show that in that case $\mathcal{G}(M) \subseteq F(M)$. To prove this is the same as to find for every $F \in \mathcal{G}(M)$ a family of circuits $(C_f)_{f \in F}$ such that $f \in C_f$ if and only if $f = g$ and such that $\bigcup_{f \in F} C_f$ does not contain finite circuits. If M is countable, then it is possible to extend F to such a family by adding finite pieces to the (future) circuits in a way such that in no step a finite circuit emerges and the unions of all the pieces belonging to the same circuit are indeed circuits. If M has more than countably many edges, then it is necessary to complete the circuits by a compactness argument instead of adding countably many finite pieces. Lemmas 3.6 and 3.7 show that F can be extended suitably by finite pieces.

Lemma 3.6. Let M be a matroid and $P_1, P_2 \subseteq E(M)$ two disjoint sets of the same finite connectivity n such that $E(M) \setminus (P_1 \cup P_2)$ is finite. Assume further that all sets Z satisfying $P_1 \subseteq Z \subseteq E(M) \setminus P_2$ have connectivity at least n. Then there is a set X which is a base of $M/P_1 - P_2$ as well as of $M - P_1/P_2$.
Proof. The proof is by induction on the size of \(E(M) \backslash (P_1 \cup P_2) \), which is denoted by \(Y \). Let \(B_1 \) be a base of \(M|P_1 \) and \(B'_1 \) a base of \(M, P \) which is contained in \(B_1 \). This implies that \(|B_1 \backslash B'_1| = n \). If \(Y \) is the empty set, then \(X = \emptyset \) meets the requirements of this lemma. If \(Y \) contains a unique element \(e \), then by Lemma 2.1 \(B_1 \cup B'_2 \) is a base of \(M \) if and only if \(B'_1 \cup B_2 \) is a base of \(M \). In this case let \(X = \emptyset \). Otherwise \(B_1 \cup B'_2 + e \) and \(B'_1 \cup B_2 + e \) are bases of \(M \), so let \(X = \{e\} \).

So assume \(|Y| \geq 2 \) and pick an edge \(e \in Y \). If for all sets \(Z \) with \(P_1 \subseteq Z \subseteq P_1 \cup Y - e \) we have that \(\kappa_{M-e}(Z) \geq n \), then by the induction hypothesis there is a set \(X' \subseteq Y - e \) which is a base both of \((M-e) - P_1/P_2 \) and of \((M-e)/P_1 - P_2 \). By Lemma 2.1 either \(B_1 \cup X' \cup B'_2 \) and \(B'_1 \cup X' \cup B_2 \) are bases of \(M \) or \(B'_1 \cup (X' + e) \cup B_2 \) and \(B_1 \cup (X' + e) \cup B'_2 \) are bases of \(M \). In the first case let \(X = X' \) and in the second case define \(X = X' + e \).

So consider the case that there is a set \(Z_1 \) such that \(P_1 \subseteq Z_1 \subseteq P_1 \cup Y - e \) and \(\kappa_{M-e}(Z_1) < n \). By \(|Y| \geq 2 \) either \(Z_1 \backslash P_1 \) or \(Y \backslash (Z_1 + e) \) is non-empty. Assume without loss of generality that \(Z_1 \backslash P_1 \) is non-empty and define \(Z_2 = E(M) \backslash Z_1 \). Then by Remark 2.1 and \(\kappa_M(Z_1) \geq n \) we have that \(\kappa_M(Z_1) = n \). By the induction hypothesis there are sets \(X_1 \subseteq Z_1 \backslash P_1 \) such that \(X_1 \) is a base of \(M, Z_1 - P_1 \) and of \(M|Z_1/P_1 \). Then \(X = X_1 \cup Z_2 \) is a base of \(M - P_1 \cup P_2 \) as well as of \(M/P_1 - P_2 \). \(\square \)

Lemma 3.7. Let \(M \) be a matroid and \(P_1, P_2 \subseteq E(M) \) two disjoint subsets of finite connectivity \(\kappa_M(P_1) = n_1 \) such that \(E(M) \backslash (P_1 \cup P_2) \) is finite. Assume further that \(n_1 \leq n_2 \) and that \(\kappa_M(Z) \geq n_1 \) for all sets \(Z \) satisfying \(P_1 \subseteq Z \subseteq E(M) \backslash P_2 \). Then there are bases \(B_1, B_2 \) of \(M/P_1 - P_2 \) and \(M - P_1/P_2 \) respectively such that \(B_2 \subseteq B_1 \) and \(|B_1 \backslash B_2| = n_2 - n_1 \).

Proof. The proof is by induction on the size of \(E(M) \backslash (P_1 \cup P_2) \), which is denoted by \(Y \). If \(n_1 = n_2 \), then we are done by Lemma 3.6 so assume \(n_2 > n_1 \). If \(Y \) contains exactly one edge \(e \), then \(n_1 + 1 = n_2 \), so let \(B_1 = \{e\} \) and \(B_2 = \emptyset \). Then \(B_1 \) and \(B_2 \) meet the requirements of this lemma.

So let \(Y \) contain at least two elements. If there is a set \(Z \) of connectivity \(n_1 \) such that \(P_1 \subseteq Z \subseteq P_1 \cup Y \) then by Lemma 3.6 there is a set \(X \) which is a base of \(M/P_1 - Z_2 \) as well as of \(M - P_1/Z_2 \). By the induction hypothesis there are bases \(B'_1 \) of \(M/Z_1 - P_2 \) and \(B'_2 \) of \(M - Z_1/P_2 \) such that \(B'_2 \subseteq B'_1 \) and \(|B'_1 \backslash B'_2| = n_2 - n_1 \). Then \(B_1 = X \cup B'_1 \) is a base of \(M/P_1 - P_2 \) and \(B_2 = X \cup B'_2 \) is a base of \(M - P_1/P_2 \). Also \(B_2 \subseteq B_1 \) and \(|B_1 \backslash B_2| = |B'_1 \backslash B'_2| = n_2 - n_1 \).

So assume that there is no such set \(Z \). Let \(e \) be an edge of \(Y \), then \(\kappa_M(P_1 + e) = n_1 + 1 \) and \(\kappa_M(Z) \geq n + 1 \) for all sets \(Z \) such that \(P_1 + e \subseteq Z \subseteq P_1 + Y \). By the induction hypothesis \(e \) is a base of \((M/P_1)\{e\} \) and the empty set is a base of \((M - P_1)\{e\} \). Also by the induction hypothesis there are bases \(B'_1 \) of \(M/(P_1 + e)/P_2 \) and \(B'_2 \) of \(M - (P_1 + e)/P_2 \) such that \(B'_2 \subseteq B'_1 \) and \(|B'_1 \backslash B'_2| = n_2 - (n_1 + 1) \). So \(B_1 = B'_1 + e \) is a base of \(M/P_1 - P_2 \), \(B_2 = B'_2 \) is a base of \(M - P_1/P_2 \), \(B_2 \subseteq B_1 \) and \(|B_1 \backslash B_2| = |B'_1 \backslash B'_2| + 1 = n_2 - n_1 \). \(\square \)

With these lemmas it is possible to prove \(G(M) \subseteq F(M) \) for cofinitary matroids.

Lemma 3.8. Let \(M \) be a cofinitary matroid and \(F \subseteq E(M) \) a set such that \(\kappa_M(F') \geq |F' \cap F| \) for all finite sets \(F' \subset E(M) \). Then there are bases \(B \) of \(M \) and \(B_{\text{fin}} \) of \(M_{\text{fin}} \) such that \(B \subseteq B_{\text{fin}} \) and \(F \subseteq B_{\text{fin}} \backslash B \).

Proof. The proof is by a compactness argument. Let \(Y = \{0, 1, 2\}^{E(M)} \) be a topological space with the product topology where each component carries the discrete
topology. Consider the following three types of closed subsets of Y:

\begin{align*}
Y_C &= \bigcup_{e \in C} \{ y \in Y : y(e) = 0 \} \quad \text{for a finite circuit } C \text{ of } M \\
Y_D &= \bigcup_{e \in D} \{ y \in Y : y(e) = 2 \} \quad \text{for a cocircuit } D \text{ of } M \\
Y_f &= \{ y \in Y : y(f) = 1 \} \quad \text{for every } f \in F
\end{align*}

If there is an $x \in Y$ which is contained in all of these sets, then the set \{ $e \in E(M) : x(e) = 2$ \} is spanning in M (and hence contains a base B of M), the set \{ $e \in E(M) : x(e) \neq 0$ \} is independent in M_{fin} (and is thus contained in a base B_{fin} of M_{fin}) and $B_{\text{fin}} \setminus B$ contains F. In order to show that there is such an x, it is enough to show that for each finite set Y of closed subsets of the form Y_C, Y_D or Y_f their intersection is non-empty.

So let Y be a finite set of closed subsets of the form Y_C, Y_D or Y_f. Let $F' \subset F$ contain exactly those f with $Y_f \in Y$ and let R be the union of F', the circuits C such that $Y_C \in Y$ and the cocircuits D such that $Y_D \in Y$. Then by Lemma 3.7 there are bases B of M/F' - $(E(M) \setminus R)$ and B' of $M - F'/\{E(M) \setminus R\}$ such that B' is a subset of B and $|B \setminus B'| - \kappa_M(R) = \kappa_M(F')$. Define $B_2 = F' \cup B$ and $B'_2 = B \cup B'$. The set B_2 is a base of $M|R$, the set B'_2 is a base of $M.R$ and their difference contains F'. Thus every $x \in Y$ satisfying $x(e) = 0$ if $e \in R \setminus B_2$, $x(e) = 1$ if $e \in B_2 \setminus B'_2$ and $x(e) = 2$ if $e \in B'_2$ is contained in the intersection of the closed sets contained in Y. Thus $\bigcap Y$ is not empty. □

Corollary 3.9. Let M be a nearly finitary cofinitary matroid. Then there is a natural number $l \in \mathbb{N}$ such that M is l-nearly finitary.

Proof. By Lemma 3.8 and Lemma 3.4 □

4. THE CONNECTION TO HALIN’S THEOREM

The connection between Halin’s theorem and Conjecture 1.2 is that in a locally finite graph G the infinite circuits of the algebraic cycle matroid are the double rays of that graph. If G is connected, then there is a correspondence between large families of pairwise disjoint rays and pairs of bases of M_{AC} and $(M_{AC})_{\text{fin}} = M_{FC}$ witnessing that M is not l-nearly finitary for some large l. Lemma 4.1 is a more detailed version of the arguments already used in the corresponding proof in [1].

Lemma 4.1. Let G be a locally finite connected graph containing a ray and M its algebraic cycle matroid. Then G contains a family $(R_i)_{i \in I}$ of vertex disjoint rays if and only if there are bases B of M and B_{fin} of M_{fin} containing B such that $|B_{\text{fin}} \setminus B| \geq |I| - 1$.

Proof. Let $B \in \mathcal{B}(M)$ and $B_{\text{fin}} \in \mathcal{B}(M_{\text{fin}})$ be bases such that $B \subseteq B_{\text{fin}}$ and define $F = B_{\text{fin}} \setminus B$. Because G is connected, B_{fin} is the edge set of a spanning tree of G. Let V_B be the set of components of the graph $G - (E \setminus B)$. Define a multigraph G_B on vertex set V_B with edge set F such that the end vertices of $f \in F$ in G_B are the components containing the original end vertices of f. Every path in G_B can be extended by inserting finite paths to a path in G whose edges are contained in B_{fin}. So also every finite cycle of G_B can be extended to a cycle of G whose edges are all contained in B_{fin}. Hence G_B is a forest. Furthermore every two vertices of G can
be joined by a path using only edges of B_{fin}, thus G_B is a tree and in particular $|V_B| = |F| + 1$.

Let $v \in V_B$ be a vertex of G_B which is an end vertex of an edge e of F. Denote the end vertex of e in G which lies in v by v'. The set $B + e \subseteq B_{\text{fin}}$ contains an infinite circuit, which is the edge set of a double ray. By deleting e from the double ray we obtain two rays whose edges are all contained in B, one of these starting in v'. This ray is contained in v, so v contains a ray. Thus every element of V_B contains a ray (if V_B has only one element then this is true by assumption). For each $v \in V_B$ let R_v be a ray contained in v. Then $(R_v)_{v \in V_B}$ is a family of vertex-disjoint rays and $|B_{\text{fin}} \setminus B| = |F| = |V_B| - 1$.

To prove the other direction let $(R_i)_{i \in I}$ be a family of pairwise disjoint rays. Let E_R be the join of the edge sets of the rays and $B \in B(M)$ a base containing E_R. Let B_{fin} be a base of M_{fin} containing B and construct the tree G_B as above. Then every ray R_i is contained in a component of V_B but because none of these components contain a double ray every two rays $R_i \neq R_j$ have to be contained in different components of V_B. This yields an injective function from I to V_B and thus $|B_{\text{fin}} \setminus B| = |V_B| - 1 \geq |I| - 1$. □

So for a given locally finite connected graph the fact that Halin’s theorem holds is equivalent to the fact that [Conjecture 1.2] holds for its algebraic cycle matroid, which is cofinitary.

Lemma 4.2. Let G be a locally finite connected graph. If there are arbitrarily large finite families of pairwise vertex disjoint rays of G, then there is an infinite such family.

Proof. Let M be the algebraic cycle matroid of G. Since G is locally finite, M exists and is cofinitary. By [Lemma 4.1] M is not l-nearly finitary for any natural number l, so by [Corollary 3.9] there are bases B of M and B_{fin} of M_{fin} such that $B \subseteq B_{\text{fin}}$ and $B_{\text{fin}} \setminus B$ is infinite. Hence again by [Lemma 4.1] this implies that G contains an infinite family of pairwise disjoint rays. □

In the last proof we used that G is locally finite and connected. But because Halin’s theorem can be reduced to the case where G is locally finite and connected, this re-proves Halin’s theorem from [Corollary 3.9].

References

