
COFINITARY NEARLY FINITARY MATROIDS ARE l-NEARLY

FINITARY FOR SOME l ∈ N

Abstract. We characterise for cofinitary matroids M the sets F for which

there are bases B of M and Bfin of Mfin such that B ⊆ Bfin and F ⊆ Bfin\B.
The main result yields an alternative proof of Halin’s theorem.

1. Introduction

Matroids which are l-nearly finitary were introduced in [1]. The finitarisation of
a matroid M is the matroid Mfin on the same ground set E(M) as M with circuit
set C(Mfin) = {C ∈ C(M) : C is finite}. If for all bases B of M and all bases Bfin

of Mfin such that B ⊂ Bfin the set Bfin\B is finite, then M is called nearly finitary.
If there is also a natural number l ∈ N which is an upper bound on the size of
Bfin\B, then M is l-nearly finitary.

In [1] it was shown that every algebraic cycle matroid of an infinite graph and
every topological cycle matroid of a 2-connected locally finite graph have the pro-
perty that if they are nearly finitary then they are also l-nearly finitary for some
natural number l ∈ N. These proofs establish a connection between the existence
of large families of pairwise disjoint rays in a graph and the property of the cor-
responding (topological or algebraic) cycle matroid to be (l-)nearly finitary. They
then use the following theorem by Halin, which is an important theorem in infinite
graph theory:

Theorem 1.1. [5, Halin] If an infinite graph G contains l (vertex-) disjoint rays
for every l ∈ N, then G contains infinitely many disjoint rays.

Having shown the two propositions the authors of [1] made the following conjec-
ture:

Conjecture 1.2. [1] Every nearly finitary matroid is l-nearly finitary for some
natural number l ∈ N.

In this paper it will be shown that Conjecture 1.2 holds for cofinitary matroids.
The result can be used to prove Halin’s theorem by the connection established in
[1] between families of pairwise disjoint rays in a graph G and the algebraic cycle
matroid. Via this connection, Conjecture 1.2 for cofinitary matroids can be seen as
a matroidal analogue of Halin’s theorem.

2. Preliminaries

2.1. Infinite matroids. The definitions for infinite matroids (including minors
and duality) used here are the ones from [4]. From that paper we will also need the
following basic result about infinite matroids.

Lemma 2.1. [4] Let B1 and B2 be two bases of M . If |B1\B2| < ∞, then
|B2\B1| = |B1\B2|.
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2 COFINITARY NEARLY FINITARY MATROIDS

Remark 2.2. A set X ⊆ E(M) is spanning in M if and only if its complement is
independent in M∗ if and only if X meets every cocircuit.

Definition 2.3. [2] Let X ⊆ E(M) be a subset of the ground set of M . Let BX

be a base of M |X, BY a base of M −X and B a base of M contained in BX ∪BY .
Whether (BX ∪BY )\B is finite does not depend on the choice of BX , BY and B. If
(BX ∪BY )\B is finite, then its size also does not depend on the choice of BX , BY

and B and is defined as the connectivity κM (X) of X. If (BX ∪BY )\B is infinite,
then κM (X) is defined as ∞. In particular κM (X) = κM (E(M)\X).

Lemma 2.4. [2] The connectivity function is submodular, that is for all X,Y ⊆
E(M) there holds

κM (X) + κM (Y ) ≥ κM (X ∪ Y ) + κM (X ∩ Y ).

Remark 2.5. Let M be a matroid, X ⊆ E(M) and e an edge of M not in X.
Then κM (X)− 1 ≤ κM (X + e) ≤ κM (X) + 1, or in words: adding or removing an
edge changes the connectivity of a set by at most one, and κM (X) ≤ κM−e(X) + 1.

2.2. Matroids in graphs. The notation for graphs is the one of [5].

Definition 2.6. [3][6] Let G be a graph. The set of edge sets of finite cycles of G is
the set of circuits of a matroid MFC(G), called the finite cycle matroid of G. The
set of edge sets of finite cycles of G together with the set of edge sets of double rays
of G is the set of circuits of another matroid MAC(G), the algebraic cycle matroid,
if G does not contain a subdivision of the Bean graph.

Remark 2.7. [3] Let G be a graph for which the algebraic cycle matroid exists.
Then MAC(G)fin = MFC . If G is locally finite then it does not contain a subdivision
of the Bean graph, so MAC(G) exists. Furthermore in a locally finite graph G the
matroid MAC(G) is cofinitary.

3. Cofinitary nearly finitary matroids

In this section we will show that a nearly finitary cofinitary matroid is l-nearly
finitary for some natural number l ∈ N. The proof was inspired by the following
observation, which holds for all (and not just cofinitary) matroids:

Lemma 3.1. Let M be a matroid and let B and Bfin be bases of M and Mfin

respectively such that B ⊆ Bfin. Let F be contained in Bfin\B and let F ′ ⊆ E(M)
be a finite set. Then κM (F ′) ≥ |F ∩ F ′|.

Proof. F ′ is finite, so F ′ ∩ Bfin is independent in M |F ′ and is thus contained in a
base B1 of M |F ′. Since B is a base of M , every edge of F is spanned in M by B,
so F ∩F ′ is spanned in M.F ′ by B∩F ′ ⊆ B1\F . Hence M.F ′ is spanned by B1\F ,
so κM (F ′) ≥ |B1\(B1\F )| = |F ∩B1| = |F ∩ F ′|. �

Definition 3.2. Let M be a matroid. Define F(M) to contain all sets F for which
there are bases B of M and Bfin of Mfin such that B ⊆ Bfin and F ⊆ Bfin\B.
Let G(M) consist of those sets F for which κ(F ′) ≥ |F ∩ F ′| for all finite sets
F ′ ⊆ E(M).

So we just showed for every matroid M that F(M) ⊆ G(M). Sets contained in
G(M) are a lot easier to handle than sets contained in F(M), because we do not
have to consider corresponding pairs of bases all the time. For example we can
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show that if G(M) contains two finite sets of different size, then the smaller one
can be extended, which allows us to easily show that if M is not l-nearly finitary
for any l ∈ N then G(M) contains an infinite element:

Lemma 3.3. Let M be a matroid and F1, F2 ∈ G(M) finite sets such that F1 is
strictly smaller than F2. Then there is e ∈ F2\F1 such that F1 + e ∈ G(M).

Proof. Let G ⊆ F2\F1 be a minimal set such that κM (F ′) ≥ |F1| + 1 for all finite
sets F ′ ⊆ E(M) containing F1 ∪ G. Such a minimal set exists because F2\F1 is a
possible candidate and finite. By Remark 2.5, κM (F1) ≤ |F1| and thus G contains
at least one element. Suppose for a contradiction that it contains at least two
elements e1 6= e2. By the minimality of G there are finite sets Sj ⊆ E(M) such
that F1 ∪ G − ej ⊆ Sj and κM (Sj) ≤ |F1|. The set S1 ∩ S2 contains F1, so its
connectivity is at least |F1|, and S1 ∪ S2 contains F1 ∪G, hence its connectivity is
at least |F1|+ 1. So by the submodularity of the connectivity function

2|F1| ≥ κM (S1) + κM (S2) ≥ κM (S1 ∪ S2) + κM (S1 ∩ S2) ≥ |F1|+ 1 + |F1|

which is the desired contradiction. Thus G contains exactly one edge e and for all
finite sets F ′ ⊆ E(M) it is true by Remark 2.5 that

κM (F ′) ≥ κM (F ′∪F1 +e)−|(F1 +e)\F ′| ≥ |F1|+1−|(F1 +e)\F ′| = |(F1 +e)∩F ′|

and hence F1 + e ∈ G(M). �

Lemma 3.4. Let M be a matroid which is not l-nearly finitary for any l ∈ N.
Then there is an infinite set F ⊆ E(M) such that κ(F ′) ≥ |F ′ ∩ F | for all finite
sets F ′ ⊆ E(M).

Proof. Let F0 = ∅ and define recursively a nested family (Fi)i∈N of finite sets
contained in G(M) as follows: Suppose Fi is already defined. By Lemma 3.1 G(M)
contains a finite set which is bigger than Fi and by Lemma 3.3 there is an edge
e /∈ Fi such that Fi + e is contained in G(M). Define Fi+1 = Fi + e. Because
being in G(M) is a finitary condition,

⋃
i∈N Fi is also contained in G(M) and it is

infinite. �

Remark 3.5. For every matroid M the set G(M) is the set of independent sets of
a finitary matroid.

In order to prove Conjecture 1.2 for cofinitary matroids M it suffices to show
that in that case G(M) ⊆ F(M). To prove this is the same as to find for every
F ∈ G(M) a family of circuits (Cf )f∈F such that f ∈ Cg if and only if f = g and
such that

⋃
f∈F Cf does not contain finite circuits. If M is countable, then it is

possible to extend F to such a family by adding finite pieces to the (future) circuits
in a way such that in no step a finite circuit emerges and the unions of all the pieces
belonging to the same circuit are indeed circuits. If M has more than countably
many edges, then it is necessary to complete the circuits by a compactness argument
instead of adding countably many finite pieces. Lemmas 3.6 and 3.7 show that F
can be extended suitably by finite pieces.

Lemma 3.6. Let M be a matroid and P1, P2 ⊆ E(M) two disjoint sets of the same
finite connectivity n such that E(M)\(P1 ∪ P2) is finite. Assume further that all
sets Z satisfying P1 ⊆ Z ⊆ E(M)\P2 have connectivity at least n. Then there is a
set X which is a base of M/P1 − P2 as well as of M − P1/P2.
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Proof. The proof is by induction on the size of E(M)\(P1 ∪ P2), which is denoted
by Y . Let Bi be a base of M |Pi and B′i a base of M.Pi which is contained in
Bi. This implies that |Bi\B′i| = n. If Y is the empty set, then X = ∅ meets the
requirements of this lemma. If Y contains a unique element e, then by Lemma 2.1
B1∪B′2 is a base of M if and only if B′1∪B2 is a base of M . In this case let X = ∅.
Otherwise B1 ∪B′2 + e and B′1 ∪B2 + e are bases of M , so let X = {e}.

So assume |Y | ≥ 2 and pick an edge e ∈ Y . If for all sets Z with P1 ⊆ Z ⊆
P1 ∪ Y − e we have that κM−e(Z) ≥ n, then by the induction hypothesis there is a
set X ′ ⊂ Y −e which is a base both of (M−e)−P1/P2 and of (M−e)/P1−P2. By
Lemma 2.1 either B1∪X ′∪B′2 and B′1∪X ′∪B2 are bases of M or B′1∪(X ′+e)∪B2

and B1 ∪ (X ′ + e) ∪ B′2 are bases of M . In the first case let X = X ′ and in the
second case define X = X ′ + e.

So consider the case that there is a set Z1 such that P1 ⊆ Z1 ⊆ P1 ∪ Y − e and
κM−e(Z1) < n. By |Y | ≥ 2 either Z1\P1 or Y \(Z1 + e) is non-empty. Assume
without loss of generality that Z1\P1 is non-empty and define Z2 = E(M)\Z1.
Then by Remark 2.5 and κM (Z1) ≥ n we have that κM (Z1) = n. By the induction
hypothesis there are sets Xi ⊆ Zi\Pi such that Xi is a base of M.Zi − Pi and of
M |Zi/Pi. Then X = X1 ∪X2 is a base of M −P1/P2 as well as of M/P1−P2. �

Lemma 3.7. Let M be a matroid and P1, P2 ⊆ E(M) two disjoint subsets of finite
connectivity κM (Pi) = ni such that E(M)\(P1 ∪ P2) is finite. Assume further that
n1 ≤ n2 and that κM (Z) ≥ n1 for all sets Z satisfying P1 ⊆ Z ⊆ E(M)\P2. Then
there are bases B1, B2 of M/P1−P2 and M−P1/P2 respectively such that B2 ⊆ B1

and |B1\B2| = n2 − n1.

Proof. The proof is by induction on the size of E(M)\(P1 ∪ P2), which is denoted
by Y . If n1 = n2, then we are done by Lemma 3.6, so assume n2 > n1. If Y
contains exactly one edge e, then n1 + 1 = n2, so let B1 = {e} and B2 = ∅. Then
B1 and B2 meet the requirements of this lemma.

So let Y contain at least two elements. If there is a set Z of connectivity n1

such that P1 ( Z ( P1 ∪ Y then by Lemma 3.6 there is a set X which is a base of
M/P1 − Z2 as well as of M − P1/Z2. By the induction hypothesis there are bases
B′1 of M/Z1−P2 and B′2 of M −Z1/P2 such that B′2 ⊂ B′1 and |B′1\B′2| = n2−n1.
Then B1 = X∪B′1 is a base of M/P1−P2 and B2 = X∪B′2 is a base of M−P1/P2.
Also B2 ⊆ B1 and |B1\B2| = |B′1\B′2| = n2 − n1.

So assume that there is no such set Z. Let e be an edge of Y , then κM (P1 +e) =
n1 + 1 and κM (Z) ≥ n + 1 for all sets Z such that P1 + e ⊆ Z ⊆ P1 ∪ Y . By
the induction hypothesis e is a base of (M/P1)|{e} and the empty set is a base of
(M−P1).{e}. Also by the induction hypothesis there are bases B′1 ofM/(P1+e)−P2

and B′2 of M − (P1 + e)/P2 such that B′2 ⊂ B′1 and |B′1\B′2| = n2 − (n1 + 1). So
B1 = B′1 + e is a base of M/P1 − P2, B2 = B′2 is a base of M − P1/P2, B2 ⊆ B1

and |B1\B2| = |B′1\B′2|+ 1 = n2 − n1. �

With these lemmas it is possible to prove G(M) ⊆ F(M) for cofinitary matroids.

Lemma 3.8. Let M be a cofinitary matroid and F ⊆ E(M) a set such that
κM (F ′) ≥ |F ′ ∩ F | for all finite sets F ′ ⊂ E(M). Then there are bases B of
M and Bfin of Mfin such that B ⊆ Bfin and F ⊆ Bfin\B.

Proof. The proof is by a compactness argument. Let Y = {0, 1, 2}E(M) be a topo-
logical space with the product topology where each component carries the discrete
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topology. Consider the following three types of closed subsets of Y :

YC =
⋃
e∈C
{y ∈ Y : y(e) = 0} for a finite circuit C of M

YD =
⋃
e∈D
{y ∈ Y : y(e) = 2} for a cocircuit D of M

Yf = {y ∈ Y : y(f) = 1} for every f in F

If there is an x ∈ Y which is contained in all of these sets, then the set {e ∈
E(M) : x(e) = 2} is spanning in M (and hence contains a base B of M), the set
{e ∈ E(M) : x(e) 6= 0} is independent in Mfin (and is thus contained in a base
Bfin of Mfin) and Bfin\B contains F . In order to show that there is such an x, it is
enough to show that for each finite set Y of closed subsets of the form YC , YD or
Yf their intersection is non-empty.

So let Y be a finite set of closed subsets of the form YC , YD or Yf . Let F ′ ⊂ F
contain exactly those f with Yf ∈ Y and let R be the union of F ′, the circuits C
such that YC ∈ Y and the cocircuits D such that YD ∈ Y. Then by Lemma 3.7
there are bases B of M/F ′ − (E(M)\R) and B′ of M − F ′/(E(M)\R) such that
B′ is a subset of B and |B\B′| = κM (R) − κM (F ′). Define B2 = F ′ ∪ B and
B′2 = ∅ ∪ B′. The set B2 is a base of M |R, the set B′2 is a base of M.R and their
difference contains F ′. Thus every x ∈ Y satisfying x(e) = 0 if e ∈ R\B2, x(e) = 1
if e ∈ B2\B′2 and x(e) = 2 if e ∈ B′2 is contained in the intersection of the closed
sets contained in Y. Thus

⋂
Y is not empty. �

Corollary 3.9. Let M be a nearly finitary cofinitary matroid. Then there is a
natural number l ∈ N such that M is l-nearly finitary.

Proof. By Lemma 3.8 and Lemma 3.4. �

4. The connection to Halin’s theorem

The connection between Halin’s theorem and Conjecture 1.2 is that in a locally
finite graph G the infinite circuits of the algebraic cycle matroid are the double
rays of that graph. If G is connected, then there is a correspondence between large
families of pairwise disjoint rays and pairs of bases of MAC and (MAC)fin = MFC

witnessing that M is not l-nearly finitary for some large l. Lemma 4.1 is a more
detailed version of the arguments already used in the corresponding proof in [1].

Lemma 4.1. Let G be a locally finite connected graph containing a ray and M
its algebraic cycle matroid. Then G contains a family (Ri)i∈I of vertex disjoint
rays if and only if there are bases B of M and Bfin of Mfin containing B such that
|Bfin\B| ≥ |I| − 1.

Proof. Let B ∈ B(M) and Bfin ∈ B(Mfin) be bases such that B ⊆ Bfin and define
F = Bfin\B. Because G is connected, Bfin is the edge set of a spanning tree of G.
Let VB be the set of components of the graph G− (E\B). Define a multigraph GB

on vertex set VB with edge set F such that the end vertices of f ∈ F in GB are
the components containing the original end vertices of f . Every path in GB can be
extended by inserting finite paths to a path in G whose edges are contained in Bfin.
So also every finite cycle of GB can be extended to a cycle of G whose edges are all
contained in Bfin. Hence GB is a forest. Furthermore every two vertices of G can
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be joined by a path using only edges of Bfin, thus GB is a tree and in particular
|VB | = |F |+ 1.

Let v ∈ VB be a vertex of GB which is an end vertex of an edge e of F . Denote
the end vertex of e in G which lies in v by v′. The set B + e ⊆ Bfin contains
an infinite circuit, which is the edge set of a double ray. By deleting e from the
double ray we obtain two rays whose edges are all contained in B, one of these
starting in v′. This ray is contained in v, so v contains a ray. Thus every element
of VB contains a ray (if VB has only one element then this is true by assumption).
For each v ∈ VB let Rv be a ray contained in v. Then (Rv)v∈VB

is a family of
vertex-disjoint rays and |Bfin\B| = |F | = |VB | − 1.

To prove the other direction let (Ri)i∈I be a family of pairwise disjoint rays.
Let ER be the join of the edge sets of the rays and B ∈ B(M) a base containing
ER. Let Bfin be a base of Mfin containing B and construct the tree GB as above.
Then every ray Ri is contained in a component of VB but because none of these
components contain a double ray every two rays Ri 6= Rj have to be contained in
different components of VB . This yields an injective function from I to VB and thus
|Bfin\B| = |VB | − 1 ≥ |I| − 1. �

So for a given locally finite connected graph the fact that Halin’s theorem holds
is equivalent to the fact that Conjecture 1.2 holds for its algebraic cycle matroid,
which is cofinitary.

Lemma 4.2. Let G be a locally finite connected graph. If there are arbitrarily large
finite families of pairwise vertex disjoint rays of G, then there is an infinite such
family.

Proof. Let M be the algebraic cycle matroid of G. Since G is locally finite, M
exists and is cofinitary. By Lemma 4.1, M is not l-nearly finitary for any natural
number l, so by Corollary 3.9 there are bases B of M and Bfin of Mfin such that
B ⊆ Bfin and Bfin\B is infinite. Hence again by Lemma 4.1 this implies that G
contains an infinite family of pairwise disjoint rays. �

In the last proof we used that G is locally finite and connected. But because
Halin’s theorem can be reduced to the case where G is locally finite and connected,
this re-proves Halin’s theorem from Corollary 3.9.
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