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Abstract

Finite graph homology may seem trivial, but for infinite graphs things
become interesting. We present a new ‘singular’ approach that builds
the cycle space of a graph not on its finite cycles but on its topological
circles, the homeomorphic images of S1 in the space formed by the
graph together with its ends.

Our approach permits the extension to infinite graphs of standard
results about finite graph homology – such as cycle-cocycle duality and
Whitney’s theorem, Tutte’s generating theorem, MacLane’s planarity
criterion, the Tutte/Nash-Williams tree packing theorem – whose infi-
nite versions would otherwise fail. A notion of end degrees motivated
by these results opens up new possibilities for an ‘extremal’ branch of
infinite graph theory.

Numerous open problems are suggested.

Introduction

This is an expository paper describing a new line of research started jointly
with Kühn [10, 11, 12], Bruhn [3], and Bruhn and Stein [4], as well as some
work of the latter two authors inspired by this approach [2, 5, 6] and a
few new observations. This paper has three aims: to describe informally the
main underlying ideas of the new approach; to compile a list of all the results
known to date; and to draw attention to the problems and conjectures that
remain open.

As our starting point we take the well-known facts and theorems describ-
ing the cycle space of a finite graph. When we try to extend these verbatim
to infinite graphs, a curious phenomenon occurs: while the easy ones among
them remain true (and easy), all the deeper ones become false.

As a case in point, consider Tutte’s theorem that the ‘peripheral’ (= non-
separating induced) cycles of a 3-connected finite graph generate all other
cycles. (When the graph is planar, these are precisely its face boundaries.)
As two easy counterexamples will show, this is no longer true for infinite
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graphs, even planar ones: to be able to generate all cycles, one needs a
larger generating set than just the (finite) peripheral cycles, and one also
needs to allow infinite summing as a more powerful generating mechanism.

As our counterexamples are planar, it will be obvious which additional
generators to admit: those sets of edges that bound a region of the plane,
even when they do not form a cycle. We shall call these additional generators
‘infinite cycles’, a term compellingly suggested by their position in the plane.
But which additional generators, or ‘infinite cycles’, should we admit in
general to make Tutte’s theorem true for infinite graphs, i.e., when the graph
is not planar and we can no longer refer to regions and their boundaries?

Starting out from our examples, we are led to consider first simple and
then increasingly complicated structures as suitable candidates for infinite
cycles. The problem is where to stop: while each step towards this increasing
complication is just as natural as the previous, the end result seems more
of a mess than, as had been the aim, the ‘right’ setting in which to describe
the homology aspects of an infinite graph.

At this point, the decisive step is to change the viewpoint from combina-
torial to topological. Viewing the graph as a 1-complex and compactifying
this by adding its ends as extra points at infinity, we obtain a topological
space in which we can define a ‘cycle’ simply as a homeomorphic image of
the circle S1. This definition is certainly natural, and it comprises both the
usual finite cycles in the graph and the substructures previously considered
as candidates for infinite cycles. Put another way: it was not the objects
that we found should qualify as infinite cycles that were so complicated, but
only their combinatorial description.

On the other hand, once we adopt such a topological definition of a cycle,
it is no longer clear what combinatorial structures other than the above
might now qualify as infinite cycles as well. And indeed, these can be more
complicated combinatorially than even our wildest earlier examples: we shall
see that a very simple locally finite graph can have a cycle passing through
uncountably many ends and containing a dense set of double rays, in the
sense that between any two there lies another!

All the same, our topological definition of a cycle introduces no unnec-
essary complication, even combinatorially: we shall prove that no smaller
set of infinite cycles allows simultaneous extensions to infinite graphs of the
basic facts and theorems about finite cycle spaces that we started out from.
And we do indeed get these extensions (and much more) – in a cycle space
that admits both infinite cycles and infinite sums.

This paper is organized as follows. We begin in Section 1 with a summary
of all the known facts and theorems about the cycle space of a finite graph
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that we wish to (but cannot easily) extend to infinite graphs. In Sections
2–3 we look at a sequence of examples showing the need for a more general
notion of a cycle space in infinite graphs, and what features this should
have in order to make the desired generalizations possible. In Section 4
we define this infinite cycle space rigorously. Section 5 surveys the results
obtained in the papers cited earlier, as well as some new ones; these include
extensions of all the finite facts and theorems from Section 1. Section 6,
finally, is devoted to open problems and conjectures. Several of these suggest
infinite ‘topological’ extensions of finite results that would otherwise fail
to generalize (or fail to do so in an interesting way). Moreover, we shall
see how a new notion of end-degrees introduced earlier might allow us to
consider extremal-type problems also for infinite graphs. We conclude with
a brief discussion of how our new cycle space of an infinite graph relates
to the standard singular homology of its Freudenthal compactification, as
a basis for possible generalizations of our approach to higher-dimensional
complexes.

1 The cycle space of a finite graph

Let G = (V, E) be a finite graph or multigraph. As the edge space E = E(G)
we take the vector space {0, 1}E over F2, which we view as the power set
of E with symmetric difference as addition. A set F ⊆ E is a circuit in G
if there is a cycle C ⊆ G with E(C) = F . The cycle space C = C(G) of G is
the subspace of E generated by the circuits in G. If T ⊆ G is a spanning tree
of G, then for every edge e ∈ E \ E(T ) there is a unique cycle Ce in T + e.
The edge sets De of these cycles are the fundamental circuits of T in G.
A set F ⊆ E is a cut (or cocycle) of G if there is a partition of V into two
non-empty sets A, B such that F consists of all the edges of G between A
and B. A multigraph G∗ = (V ∗, E∗) is called a dual of G if E∗ = E and the
circuits in G coincide with the minimal non-empty cuts in G∗.

The following facts summarize the best known properties of the cycle
space C and related aspects. Our aim will be to extend them all in a unified
way to infinite graphs.

(1.1) The following statements are equivalent for a set F ⊆ E:

(i) F ∈ C;
(ii) F is a disjoint union of circuits;
(iii) Every vertex of the graph (V, F ) has even degree.
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Proof. (i)→(iii): Induction along the inductive definition of C.
(iii)→(ii): Since the deletion of a circuit does not affect the validity of (iii),

the circuits for (ii) can be found greedily.
(ii)→(i) is trivial. �

(1.2) The fundamental circuits of any fixed spanning tree T in G generate C.

Proof. For any circuit D, the set D +
∑

e∈D De is a subset of E(T ) that
lies in C, and hence must be empty by (1.1.ii). Thus, D =

∑
e∈D De. �

(1.3) Let ∅ �= F ⊆ E.

(i) F ∈ C if and only if F meets every cut in an even number of edges.

(ii) F is a cut if and only if F meets every element of C in an even number
of edges.

Proof. (i) Clearly every circuit, and hence every element of C, meets every
cut in an even number of edges. Conversely, if F ⊆ E meets every cut in an
even number of edges, then in particular all the degrees of (V, F ) are even.
Hence F ∈ C by (1.1).

(ii) For the backward implication, let H be the multigraph obtained from
G by contracting every edge in E \ F . If F meets every circuit of G in an
even number of edges, then H contains no odd cycle, and hence is bipartite.
Its bipartition defines a bipartition of G crossed by precisely the edges in F ,
so F is a cut. �

Recall that an Euler tour of a graph is a closed walk in it that contains
every edge exactly once. Euler’s theorem below can be rephrased as an
extension of (1.1), and hence belongs in our context. But for simplicity we
state it in its usual form:

Theorem 1.4 (Euler 1736)
G admits an Euler tour if and only if G is connected and every vertex has
even degree.

The following pretty theorem seems to be less well known than it deserves;
see Lovász [19, Problem 5.17] for a short proof due to Pósa.
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Theorem 1.5 (Gallai, unpublished)
There exists a partition of V into two sets, possibly empty, each of which
induces a subgraph whose edge set lies in C.

One of the earliest applications of the cycle space is the following planarity
criterion due to MacLane. Call a set F ⊆ C simple if no edge of G lies in
more than two elements of F .

Theorem 1.6 (MacLane 1937)
G is planar if and only if C has a simple generating subset.

Call a circuit D = E(C) in G peripheral if C is an induced and non-
separating cycle in G. (The term is due to Tutte. It comes from the fact that,
if G is plane and 3-connected, these cycles are precisely its face boundaries.)

Theorem 1.7 (Tutte 1963)
If G is 3-connected, then its peripheral circuits span C.

Together with MacLane’s theorem, Theorem 1.7 implies what has become
known as Tutte’s planarity criterion:

Corollary 1.8 (Tutte 1963)
If G is 3-connected, then G is planar if and only if every edge lies in at most
two peripheral circuits.

Another classical result is Whitney’s duality theorem. It is often thought
of as a planarity criterion, but can equally be viewed as a topological char-
acterization of the graphs that admit a dual:

Theorem 1.9 (Whitney 1933)
G has a dual if and only if it is planar.

By colouring-flow duality (see [8]), the four colour theorem can be rephrased
as follows:

Theorem 1.10 (4CT)
If G is planar and bridgeless, then E is a union of two elements of C.

The last theorem in our list is also intimately linked to graph homology,
even if the relationship is less obviously visible. Call an edge of G a cross-
edge with respect to a given partition of V if it has its two vertices in different
partition sets.
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Theorem 1.11 (Tutte 1961; Nash-Williams 1961)
Given any k ∈ N, the graph G contains k edge-disjoint spanning trees if
and only if for every partition of V , into � sets say, it has at least k (� − 1)
cross-edges.

2 Finite cycles in infinite graphs

If desired, the cycle space of an infinite graph G = (V, E) can be defined
exactly as in Section 1. Then its elements are finite subsets of E, and the
three basic facts from Section 1 carry over verbatim (as long as we insert
‘finite’ before ‘set’ throughout), complete with proofs. Curiously, though,
none of Theorems 1.4–1.11 remains true.

As a case in point, let us look at Theorem 1.7. Here are two counterexam-
ples, due to Halin [15] and Bruhn [2] respectively. In the graph of Figure 1,

C

D

Figure 1: E(C) is not a finite sum of peripheral circuits

the edge set of the separating cycle C is not a finite sum (mod 2) of periph-
eral circuits. However, E(C) is an infinite sum of such circuits, eg. of all the
peripheral circuits D ‘to its left’. So it appears that, if we wish to extend
Tutte’s theorem to infinite graphs, we ought to allow at least certain infinite
sums as well as finite sums.

Allowing infinite sums alone does not help, however, with the counterex-
ample shown in Figure 2: the edge e there lies in no peripheral circuit at all,
so the circuits of the separating cycles containing e cannot be sums, finite
or infinite, of peripheral circuits.

Since the counterexample of Figure 2 is planar, we might try to mend it by
appealing to the original planar version of Tutte’s theorem rather than the
later more general version. The planar version says that the cycle space of
a plane 3-connected graph is generated by the ciruits of its face boundaries,
which in a finite graph happen to be its induced non-separating cycles. In
Figure 2, not all the face boundaries are cycles: for the two faces incident
with the edge e, the points of G on their boundary form 2-way infinite paths,
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e

Figure 2: The edge e lies on no peripheral circuit

or double rays. However, the face boundaries in this graph do generate (by
possibly infinite summing) all its circuits. So if we admit the edge sets of
those two double rays to the generating set of C (as ‘infinite circuits’), then
Tutte’s theorem holds for this graph.

For an arbitrary infinite graph G, we are thus left with the following two
questions:

• Which infinite sums should we allow in the definition of C?

• Which edge sets should we admit to the generating set of C as ‘infinite
circuits’?

Regarding the first of these questions, a necessary requirement on the
sums to be allowed is that they must be well defined, ie. that every edge of
G lies in at most finitely many of the circuits that are terms in the sum.
From now on, we shall allow infinite sums in E(G) that satisfy this condition,
and will use the term “generate” accordingly.

Our next topic is the second question above.

3 Infinite cycles

The two infinite face boundaries in Figure 2, which we found we had to ad-
mit as ‘infinite cycles’, are double rays: infinite connected 2-regular graphs.
Since cycles are precisely the finite connected 2-regular graphs, one might be
tempted to define a ‘cycle’ – be it finite or infinite – as just that: a connected
2-regular graph. However, common sense tells us that this can hardly be
right: shouldn’t cycles be round? Fortunately perhaps, there are also tech-
nical grounds on which this definition can be rejected: although it would
make (1.1) true for infinite graphs, (1.2) and (1.3) would fail beyond repair.
(Consider as G a single double ray.)
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The two double rays that bound a face in Figure 2, however, are indeed
‘round’ in a sense that can be made precise: for each of them, their two
ends join up in a common end1 of G. So let us admit as generators of the
cycle space of an infinite graph G those double rays in G whose two ends
are subsets of a common end of G.

But if a cycle is allowed to contain one end as a point at infinity, why
not two or more? More precisely, should we not define an infinite cycle as a
sequence

ω1D1ω2D2ω3 . . . ωkDkω1 ,

where ω1, . . . , ωk are distinct ends of G and the Di are disjoint double rays
whose two ends are subsets of ωi and ωi+1, respectively? Then the two dou-
ble rays in Figure 2 would be infinite loops in this sense, and Figure 3 shows a
graph whose three ends are joined by double rays to form an infinite 3-cycle.

Figure 3: An infinite cycle consisting of three ends and three double rays

If we want our cycle space C to be closed under well-defined infinite sums,
and if C is to contain all finite circuits, then the edge set of the ‘infinite 3-
cycle’ in Figure 3 will certainly have to be in C, because it is the sum of all
the (finite) peripheral cycles of that graph. However, as our next example
will show, even admitting such infinite cycles as above will not be enough.

The infinite cycles above can be viewed as the result of replacing the
vertices of a finite cycle by ends and its edges by double rays, so that vertex-
edge incidences are preserved as end-ray incidences (where a ray is incident
with an end of G if it belongs to it). But if this makes sense once, why
not do it again? For example, if we take one of the three double rays in

1An end of a graph is an equivalence class of rays (1-way infinite paths) in it, where two
rays are equivalent if no finite set of vertices separates them. Intuitively, an end is thought
of as a ‘point at infinity’ to which its rays ‘converge’, and we shall make this precise in Sec-
tion 4. The graphs in Figures 1 and 2 have two ends; the graph in Figure 3 (left) has three.
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Figure 3 and replace its vertices and edges with ends and double rays, we
get a transfinite cyclic order of ends and double rays as shown in Figure 4.

Figure 4: A transfinite cyclic pattern of double rays

The question is: can such a pattern really occur as an incidence pattern
of ends and double rays in a graph? Figure 5 suggests that it can. But what
exactly does the figure mean: in what sense can a ‘ray of double rays’ be
incident with, ie. in some sense converge to, an end of an ordinary ray?

Figure 5: A graph realizing the transfinite 3-cycle

It may not be hard to give a sensible ad-hoc definition for such an inci-
dence in this particular case. But in general, this is not an easy problem.
Indeed, if we allow in principle that the replacement of vertices and edges by
ends and double rays may be iterated, perhaps even transfinitely, we shall
get a corresponding hierarchy of double rays, double rays of double rays etc.,
with ‘ends’ at each level, and the task would be to define end-ray incidences
across the levels of this hierarchy. On the other hand, we cannot simply opt
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out of this iteration: just as in Figure 3, the union of the edge sets of the
double rays shown in Figure 4 will be an element of the cycle space of the
graph in Figure 5, because it is the sum of its peripheral circuits. And if
we want (1.1) to generalize to this graph, then this element of C must be a
disjoint union of circuits, which it will not be unless we admit it as a circuit
in its own right.

So the situation looks quite hopeless. And yet: there is a very simple
solution. This is an immediate consequence of changing our view of these
problems from combinatorial to topological, which is the topic of the next
section.

4 Circles: a topological solution

There have been two places in our discussion above where we already ap-
pealed to topological (or even geometric) intuition: we were looking for a
definition of when a meta-ray ‘converges’ to the end of an ordinary ray (or of
another meta-ray of some unknown or mixed level), and we said that clearly
not all double rays could be admitted as infinite cycles ‘because they may
fail to be round’.

If we take this intuition seriously, the following radically different ap-
proach comes to mind:

Put a topology on the graph and its ends, and define a ‘cycle’
(finite or infinite) simply as a circle in this space, a homeomor-
phic image of the unit circle in the Euclidean plane.

This topology should satisfy the following basic requirements:

(i) it should be Hausdorff and natural, also for finite graphs;
(ii) every ray should converge to its end;
(iii) every circle should be identifiable by the edges it contains.

Such a topology can indeed be found. In fact, there are several that fit the
bill [7, 10]; we describe the simplest of the most natural ones.

To define this topology (which is not at all new: its origins go back to
Jung [16] and Freudenthal [14]), consider a graph G = (V, E) with its set
Ω = Ω(G) of ends. Let G itself carry the topology of a 1-complex.2 To

2Every edge is homeomorphic to the real interval [0, 1], the basic open sets around an
inner point being just the open intervals on the edge. The basic open neighbourhoods of
a vertex x are the unions of any half-open intervals [x, z), one from every edge [x, y] at x.
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extend this topology to Ω, let us define for each end ω ∈ Ω a basis of open
neighbourhoods. As we want our topology to be Hausdorff, we have to be
able to exclude any other end ω′ �= ω. By definition, ω′ �= ω means that G
has a finite set S of vertices that separates a ray in ω from a ray in ω′. Given
any finite set S ⊆ V , let C = C(S, ω) denote the component of G − S that
contains some (and hence a subray of every) ray in ω, and let Ω = Ω(S, ω)
denote the set of all ends of G that contain a ray from C. As our basis of
open neighbourhoods of ω we now take all sets of the form

C(S, ω) ∪ Ω(S, ω) ∪ E′(S, ω) ,

where S ranges over the finite subsets of V and E′(S, ω) is any union of
non-empty partial edges (z, y], one from every S–C edge [x, y] with x ∈ S
and y ∈ C.

Let |G| denote the topological space of G∪Ω endowed with the topology
generated by these open sets together with those of the 1-complex G. It is
not difficult to see that |G| is compact if G is (connected and) locally finite.3

Note that |G| satisfies our basic requirements (i)–(iii). Indeed, (i) and
(ii) are built into its definition.4 For (iii), it is straightforward to show that
if C is a circle in |G| (a subset homeomorphic to S1), then every edge with
an inner point in C lies entirely in C. So every circle ‘has’ a well-defined
set D of edges, which we call its circuit. It is not difficult to show [10,
Lemma 4.3] that the point set

⋃
D is dense in C, so every circle is uniquely

identified by its circuit (as its closure). We can therefore study the circles
in terms of their circuits, as planned. (For future reference we remark that
the corresponding statements hold also for arcs in |G|, the homeomorphic
images of the real unit interval [0, 1].)

But which subsets of |G| are circles? Clearly, all finite cycles are circles,
and our earlier examples of ‘infinite cycles’ turn out to be circles too. But,
despite our sensibility requirements (i)–(iii), there can be much wilder circles
than these – whose existence will make C(G) larger, and extending the facts
from Section 1 harder, than expected. We wind up this section with an
example of such a ‘wild’ circle in quite a harmless looking graph.

Let T be the set of finite 0–1 sequences, including the empty sequence ∅.
Define a tree on T by joining every � ∈ T to its two one-digit extensions,
the sequences �0 and �1. For every � ∈ T , add another edge e� between

3For graphs with infinite degrees, |G| is not compact in the topology just defined.
However there are natural variants of this topology that can make |G| compact; see [7].

4As the precise meaning of (ii) let us take the assertion that every ray in G has a subray
in every open neighbourhood of its end.
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the vertices �01 and �10, and let D� denote the double ray consisting of e�

and the two rays starting at e� whose vertices have the form �1000 . . . and
�0111 . . . (Fig. 6). Finally, let D be the double ray whose vertices are ∅
and the all-zero and the all-one sequences. Then D, all the double rays D�,
and all the (continuum many) ends of this graph together form a circle C
in it [10]. Every neighbourhood of every end contains infinitely many of
the D�, so for every two ends at least one of the two arcs on C between
them contains infinitely many double rays.

01 10 1100

1

∅

e ∅

D DD ∅

�

D�

e�

Figure 6: A circle formed by the double rays D� (� ∈ T ) and D

5 The cycle space of an infinite graph

In this section we define the cycle space of an infinite graph formally, and
state all the known theorems about it. For simplicity we consider only locally
finite graphs.

Let G = (V, E) be a locally finite graph, fixed throughout this section. Let
|G| be the associated topological space consisting of G and its ends. A subset
of |G| is a circle if it is homeomorphic to S1, the unit circle in R

2. A subset
D of E is a circuit if there is a circle C in |G| such that D = {e ∈ E | e ⊆ C}.

Call a family (Di)i∈I of subsets of E thin if no edge lies in Di for infinitely
many i. Let the sum

∑
i∈I Di of this family be the set of all edges that lie in

Di for an odd number of indices i, and let the cycle space C = C(G) of G be
the set of all sums of (thin families of) circuits, with symmetric difference
as addition. (Note that C is closed under such addition: just combine the
two thin families into one.) Clearly, this definition of C coincides with that
from Section 1 when G is finite.

12



Note that an infinite union of thin families need not be thin, even if the
family of their sums is. Therefore C is not obviously closed under infinite
(thin) summing. But in fact it is [10, Cor. 5.2], and so we may say that a
set F ⊆ C generates C if every element of C is the sum of some thin family
of elements of F .

We now generalize all the basic facts and theorems from Section 1 to our
locally finite graph G, with its new definition of the cycle space C = C(G).

Our first basic fact, the implication (i)→(ii) in (1.1), generalizes verbatim:

Theorem 5.1 [11] Every element of C is a disjoint union of circuits.

The proof of Theorem 5.1 is not easy, although the approach is similar
to the finite case: we find a single circuit in a given set D ∈ C of edges,
delete it, and iterate. Finding this circuit, which is trivially done in the
finite case just by moving along consecutive edges in D until we hit a vertex
previously visited, is now the hardest part: moving along the edges in D
may simply take us into some end, and it is not clear how to re-emerge from
this end to complete the circuit. If D is the edge set of our ‘wild’ circle C
in Figure 6, for example, then D is the first (and only) circle that the proof
of Theorem 5.1 has to find – and it is obviously not easy to do that just by
‘moving along’ the edges of D.

Our second basic fact, the equivalence of (i)↔(iii) in (1.1), will be treated
below together with Euler’s theorem.

Let us now try to generalize (1.2). At first glance, it appears that the
double ladder depicted on the left in Figure 7 shows a counterexample: every
fundamental circuit of its spanning tree T1 contains the edge e, so every thin
family of fundamental circuits is finite, and hence the infinite circuit consist-
ing of all horizontal edges is not a sum of fundamental circuits. On the other
hand, the spanning tree T2 shown on the right works well: its fundamental
circuits do span the whole cycle space, including all infinite circuits.

e

T2T1

Figure 7: The fundamental circuits of T1 span no infinite circuit
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So what is wrong with T1? The answer is disarmingly simple: T1 itself
contains infinite circuits (of G, not of T1), and hence is no longer a ‘proper
tree’ now that we have extended the notion of a cycle!

The following adapted notion of a spanning tree corresponds naturally to
our topological definition of the cycle space, and it remedies the situation.
Given a subgraph T of G containing all its vertices, call its closure T in |G|
(the set V ∪

⋃
E(T ) ∪ Ω(G)) a topological spanning tree of |G| if T is path-

connected but contains no circle. As before, for every edge e not in T there
is a unique circle in T ∪ e, whose circuit De we call a fundamental circuit
of T .

The following result is a special case of [12, Thm. 6.1]:

Theorem 5.2 [12] The fundamental circuits of any fixed topological span-
ning tree of |G| generate C.

Our ladder example shows that an arbitrary spanning tree of G need not
define a topological spanning tree, but one can show that if G is connected
then it has a spanning tree T that does [12]. For such T , the fundamental
circuits of T in |G| are the same as those of T in G, so they are all finite.
Hence, Theorem 5.2 has the following consequence:

Cororollary The finite circuits of G generate C.

Conversely, when T is a topological spanning tree of |G| the graph T
need not be a spanning tree of G, because it need not be connected. For
example, if G is the half-grid (ie., V = N × Z and E = {xy | d(x, y) = 1}),
its horizontal rays Ry = (1, y)(2, y) . . . and the unique end of G together
form a topological spanning tree whose fundamental circuits are all infinite.
(Think of this ‘tree’ as a topological star with the end at its centre.)

Let us now turn to (1.3), and ask what happens when F is infinite. The
example of the ladder shows that an infinite cut may well meet an infinite
circuit in an odd number of edges, eg. in exactly one edge. However, if one
of the two sets is finite, one can show that their intersection must be even.
Moreover, this property characterizes the elements of C and the cuts in G:

Theorem 5.3 Let ∅ �= F ⊆ E.

(i) F ∈ C if and only if F meets every finite cut in an even number of
edges.

(ii) F is a cut if and only if F meets every finite element of C in an even
number of edges.
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The proof of (ii) is the same as that in (1.3); part (i) is proved in [10].5

To get a feel for the proof, let us show the simplest case of the forward
implication in (i), that a circle C – even a ‘wild’ one like that of Figure 6 –
cannot meet a finite cut D in exactly one edge. Let (X, Y ) be the partition
of V corresponding to D; thus, D is the set of all X–Y edges of G. Suppose
C meets D in exactly the edge e = xy, with x ∈ X and y ∈ Y say. Deleting
the inner points of e from C, we obtain an x–y arc A in the subspace Z of |G|
obtained by deleting the edges of D. Since D is finite, Z is the disjoint union
of the closures X and Y of the subgraphs of G spanned by X and by Y ,
respectively. Hence A, which is a subset of Z meeting both X and Y , is
topologically disconnected, which contradicts the definition of an arc (since
[0, 1] is connected).

Next, let us see how Theorems 1.4–1.11 extend to locally finite graphs.6

Theorem 1.4, along with (1.1.iii), has a particularly pretty extension. Clearly,
neither of these generalizes to infinite graphs verbatim, because the even-
degrees condition is too weak to guarantee the existence of anything like
an ‘infinite Euler tour’ or membership in C. (For example, if we identify
two double rays in one vertex, we obtain a graph with all degrees even that
contains nothing resembling an Euler tour, and neither does the edge set lie
in C.) But there is an obvious topological version of an Euler tour on which
a generalization of Theorem 1.4 might be based: call a continuous (but not
necessarily injective) map σ : S1 → |G| a topological Euler tour of |G| if
every inner point of an edge of G is the image of exactly one point of S1.
(Thus, every edge is traversed exactly once, and in a ‘straight’ manner.)
Using Theorem 5.1, one can indeed prove that if G is connected and its
entire edge set lies in its cycle space, then |G| contains such a topological
Euler tour [10] – an assertion that should be a corollary of any common
generalization of (1.1) and Theorem 1.4.

Hence our question becomes: can we strengthen the even-degrees condi-
tion in Theorem 1.4 so as to make it equivalent to both the assertion that
E ∈ C(G) and the existence of a topological Euler tour of |G|, while retaining
the spirit of a degree condition?

The two 4-regular graphs in Figure 8 suggest that the solution might lie
in an additional kind of degree condition on ends. Note that while in G1

four edge-disjoint rays can approach each end simultaneously, only three can
do so in G2. And if we, accordingly, assign ‘degrees’ of 4 and 3 to the ends

5See [11] for a generalization to graphs with infinite degrees.
6The extensions typically fail for graphs with infinite degrees; see the references for

counterexamples.
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in G1 and G2, respectively, we obtain a straightforward generalization of
Theorem 1.4 to these graphs: a topological Euler tour exists if and only if
all vertices and all ends have even degree.

G2G1

Figure 8: G1 has a topological Euler tour; G2 does not

Building on ideas of Laviolette [18], Bruhn and Stein [6] succeeded in
generalizing this idea into a comprehensive definition for the degrees of ends
that makes the simultaneous extensions of Theorem 1.4 and (1.1) possible.
Given an end ω, if there exists an integer k such that in ω we can find k but
not k + 1 edge-disjoint rays, let k be the degree of ω. If there is no such k,
then there are infinitely many edge-disjoint rays in ω (this is a non-trivial
result of Halin), but it is still possible to classify such ends into ‘odd’ and
‘even’ degrees. See [6] for precise definitions.

Theorem 5.4 (Bruhn & Stein [6]; [10])
If G is connected, the following assertions are equivalent:

(i) E ∈ C(G);
(ii) Every vertex and every end of G has even degree;
(iii) |G| admits a topological Euler tour.

Gallai’s theorem extends verbatim with our new cycle space C:

Theorem 5.5 [4] There exists a partition of V into two sets, possibly empty,
each inducing a subgraph whose edge set lies in C.

It is not obvious in Theorem 5.5 that infinite circuits, rather than merely
infinite elements of C obtained as infinite sums of finite circuits, are needed to
make the result true. But they are: in [4], we exhibit an example of a locally
finite graph that admits only one partition as required in Theorem 5.5, and
one of the two partition sets induces a double ray (whose closure is a circle).

Next, our extension of MacLane’s theorem. Here, the need for infinite
circuits is demonstrated by Figure 2. Solving a long-standing problem of
Wagner [33, p. 128], Bruhn and Stein [5] showed that no more is needed:
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Theorem 5.6 (Bruhn & Stein [5])
If G is countable (eg., connected), then G is planar if and only if C has a
simple generating subset.

For an extension of Tutte’s theorem, call a (finite or infinite) circuit in
G peripheral if its closure C in |G| is a circle that includes every edge of G
whose endvertices both lie in C and for which C ∩ V does not separate G.
(By [11, Lemma 3.4], these two conditions together are equivalent to saying
that the subspace |G| \ C is path-connected.)

Theorem 5.7 (Bruhn [2])
If G is 3-connected, then its peripheral circuits generate C.

Corollary 5.8 [5] If G is 3-connected, then G is planar if and only if every
edge lies in at most two peripheral circuits.

Let us turn now to cycle-cocycle duality. In an infinite graph, there is an
obvious disparity between cuts, which can be infinite, and cycles, which are
(usually) finite. This disparity has to be resolved before any extension of
duality is attempted.

Thomassen [28, 29] proposed to call a multigraph G∗ = (V ∗, E∗) a dual
of G if E∗ = E and every finite set F ⊆ E is a circuit in G if and only if it is
a minimial non-empty cut in G∗. In our context, where infinite sets of edges
can be circuits as well as cuts, it seems unnatural to restrict F to finite sets.
Thus, let us call G∗ a finitary dual of G if it satisfies Thomassen’s definition,
and a (full) dual of G if in addition it also satisfies the above requirement
for infinite sets F .

Note that a (finitary or full) dual G∗ of our locally finite graph G need
not be locally finite. If it is not, then G∗ need not have a dual, not even a
finitary one. Thus, the property of finite graphs that G is always a dual of
G∗ fails for finitary duals.

However, one can show that if G∗ is a full dual of G, locally finite or not,
then G is also a dual of G∗ – provided we take the circles (and hence the
circuits) of G∗ in the correct topology when G∗ is not locally finite. The
correct space is obtained from |G∗| by identifying vertices that dominate an
end (send an infinite fan to one of its rays), and hence are not topologically
separable from it, with that end. Thus, in this space any ray dominated
by a vertex converges to it. One can show that in a dual G∗ no end can
be dominated by more than one vertex, so the identification above does not
lead to the identification of distinct vertices: it changes the topology on G∗

and hence its circuits, but not the graph G∗ itself. (See [3] for details.)
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Thus, in the proper topological setting for graphs that are not locally
finite, duality extends in all its main aspects. These include Whitney’s
theorem, with the following extension of Thomassen’s results to full duals:

Theorem 5.9 [3]

(i) G has a dual if and only if it is planar. If G is 3-connected, then its
dual is unique.

(ii) If G∗ is a dual of G, then G is a dual of G∗.

(iii) If G is 3-connected, it has a locally finite dual if and only if it is planar
and all its peripheral circuits are finite.

By compactness, a graph is 4-colourable as soon as all its finite subgraphs
are. Combining this fact with Theorems 5.3 and 5.9, one can use colouring-
flow duality to extend Theorem 1.10:

Corollary 5.10 [3] If G is bridgeless and planar, then E is a union of two
elements of C.

For finite graphs, duality can also be expressed in terms of spanning trees.
Indeed, if G and G∗ are a pair of duals and T is a spanning tree of G, then
the edges of G∗ that correspond to the edges of G − E(T ) form a spanning
tree in G∗. Conversely, if there is a bijection ∗ between the edge sets of G
and G∗ such that the spanning trees of G and G∗ complement each other in
this way, then G and G∗ form a pair of duals.

For infinite graphs, this fails as long as arbitrary spanning trees are al-
lowed. Indeed, a spanning tree T of G might contain an infinite circuit D of
G in its edge set, in which case D∗ would be a cut in G∗, and G∗−D∗ could
not contain a spanning tree of G∗. However, with spanning trees whose
closures do not contain circles (ie. whose closures are topological spanning
trees in the sense defined earlier), this finite duality theorem does extend [3].

It remains to generalize the Tutte/Nash-Williams packing theorem. Ox-
ley [26] showed that Theorem 1.11 does not extend to infinite graphs with
finite k,7 even locally finite ones, although this had been conjectured by
Nash-Williams [24]. (See [1] for another counterexample.) What Tutte
thought about this is not recorded. In his paper [32], he does not claim to
have an infinite counterexample to the finite statement, but he does prove

7For k = ℵ0 and arbitrary countable G, the statement is easily seen to be true. The
cross-edge condition then implies infinite edge-connectedness, and the required trees can
be constructed simultaneously in ω steps by Menger’s theorem.
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a locally finite version of a weaker statement. When read by itself, this
weaker statement appears awkward and ad-hoc. The reason is that it sim-
ply expresses what a straightforward application of compactness to the finite
version of the theorem happens to produce: that the existence of k (� − 1)
cross-edges for every vertex partition into � (say) sets is equivalent to the
existence in G of k edge-disjoint semiconnected factors, spanning subgraphs
H ⊆ G such that every partition of V is crossed either by an edge of H or
by infinitely many edges of G. Note that this definition depends not only
on H but also on G.

In our context, however, Tutte’s notion of a ‘semiconnected factor’ im-
mediately makes sense: it is not hard to show that a spanning subgraph of
G is semiconnected if and only if its closure in |G| is topologically connected
(equivalently [12], path-connected) as a subspace of |G|! Moreover, since
the intersection of nested closed connected subsets of a compact Hausdorff
space is again connected, we can use Zorn’s Lemma to find in the closure of
any semiconnected factor of G a topological spanning tree of |G|. We thus
have our desired extension of Theorem 1.11:

Theorem 5.11 |G| has k edge-disjoint topological spanning trees if and
only if for every finite partition of V , into � sets say, G has at least k (�−1)
cross-edges.

For graphs with infinite degrees, K2,ℵ0 is a counterexample to the statement
of Theorem 5.11 with k = 2. [26]

A final remark. The idea of defining the cycle space of an infinite graph
via its topological circles was presented here as an unexpected topological
cure to some concrete combinatorial problems posed by concrete examples.
We have not explicitly addressed the question of whether it is the only
possible cure. Indeed, we have seen that circles can have very complicated
edge sets even in a locally finite graph, and it is legitimate to ask whether
fewer circuits than these, or a smaller cycle space, might still generalize the
facts and theorems of Section 1 appropriately to infinite graphs.

Surprisingly, this is not the case. To see this, recall that if we wish to
extend Tutte’s theorem to infinite graphs, then any ‘alternative cycle space’
C′ of G with a chance of achieving this should be closed under infinite (thin)
sums, at least of finite circuits. By our Corollary of Theorem 5.2, this cycle
space contains all of C. Furthermore, if we wish to generate it from a set of
circuits that satisfies (1.1.ii), then this set must contain all circuits (however
‘wild’), because no homeomorphic copy of S1 can be a non-trivial union of
other such copies. We thus have the following uniqueness theorem.
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Theorem 5.12 (Uniqueness theorem)

(i) If C′ ⊆ C contains all finite circuits of G as well as their sums, then
C′ = C.

(ii) If D is a set of circuits such that every element of C is a disjoint union
of elements of D, then D contains all circuits of G. �

6 Further problems

The approach to infinite graph homology presented in the preceding sections
appears to be new, so it may be fitting to wind up with a few open problems
that suggest themselves for further research.

The most obvious source of problems, of course, will be a search for more
theorems about cycles in finite graphs that should, but do not, generalize
to infinite graphs, or fail to do so in an interesting and non-trivial way. We
shall list several such problems below. More generally, we shall see how the
new notion of end-degrees might allow us to consider extremal-type problems
also for infinite graphs. We conclude with a brief discussion of how our cycle
space of G relates to the standard singular homology of |G|, as a basis for
possible generalizations of our approach to higher-dimensional complexes.

Perhaps the most prominent problem of the first kind above is to ex-
tend Tutte’s theorem that 4-connected finite planar graphs have Hamilton
cycles [31]. Nash-Williams [25] conjectured that an infinite 4-connected pla-
nar graph contains a spanning double ray unless it has more than two ends.8

This restriction is clearly necessary. But maybe it is just an indication that
spanning double rays are not the ‘right’ generalization of Hamilton cycles?

Bruhn (personal communication) suggested that we might instead ask for
a Hamilton circle in |G|, a circle that contains every vertex (and hence, since
it is closed, also every end).

Conjecture 6.1 Every locally finite 4-connected planar graph admits a
Hamilton circle.

Similarly, one can ask whether Fleischner’s theorem (see [8]) extends in
this way:

8 Nash-Williams’s original condition is that no finite set of vertices should separate the
graph into more than two infinite parts. If the graph is 3-connected and contains no sub-
division of K3,3, however, then no finite separator can leave infinitely many components.
This implies that any infinite part left by a finite separator contains a ray, so the two
versions are equivalent. A proof of Nash-Williams’s conjecture has been given by Yu [34].
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Conjecture 6.2 The square of every 2-connected locally finite graph admits
a Hamilton circle.

Note that, since a circle is compact, a graph in which the deletion of
finitely many vertices leaves infinitely many components cannot admit a
Hamilton circle. The statement of Conjecture 6.2, therefore, does not hold
for arbitrary countable graphs.

A problem of the opposite kind, where the naive non-topological extension
of a finite result is true but too easy, is the following. Nash-Williams’s
arboricity theorem [23] says that a finite graph has an edge-partition into
at most k forests if and only if every set of � ≥ 1 vertices induces at most
k (� − 1) edges. (The condition is obviously necessary.) Since an infinite
graph is acyclic as soon as its finite subgraphs are, this statement easily
extends to infinite graphs by compactness.

A topological extension, however, might be more interesting. Call the
closure H in |G| of a subgraph H of G a topological forest if it contains
no circle. (In particular, H must be a forest.) Perhaps surprisingly, the
finite arboricity theorem does not in general extend with topological forests.
However, the constructions of all the known counterexamples use ends of
large degree. Perhaps the following is true:9

Conjecture 6.3 Let G be locally finite, and let every end of G have degree
smaller than 2k. Then |G| is the union of at most k topological forests if
and only if no set of � vertices in G induces more than k(� − 1) edges.

A more fundamental consequence of taking the ends of a graph into ac-
count when describing its structure, and in particular of the new notion
of end degrees, might be the feasibility of an ‘extremal’ branch of infinite
graph theory. In finite extremal graph theory, one asks what kind of ‘dense’
substructures can be forced by assuming a certain minimum edge density,
or average or minimum degree. Without ends, even a large minimum degree
does not force any ‘dense’ substructures in an infinite graph; consider, say,
a k-regular tree for large k. Assuming large degrees for both vertices and
ends, however, might:

Problem 6.4 Is there a function f : N → N such that, for every k ∈ N and
every locally finite graph G, if all the vertices and ends of G have degree at
least f(k) then G has a k-connected subgraph?

9Conjecture 6.3 has recently been proved by Maya Stein.
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If H is a k-connected subgraph of G, then its closure H in |G| is topologi-
cally k-connected : for every set X of fewer than k vertices or ends (of G), the
space obtained from H by deleting X and any edges incident with vertices
in X is connected. (The converse of this is not generally true: if G is the
double ladder and H is obtained from G by deleting all the rungs, then H
is a circle in |G| and hence topologically 2-connected, but H is disconnected
as a graph.)

The following topological version of Problem 6.4 is perhaps more natural
in our setting, and may be easier to prove. As pointed out above, it would
follow from the graph version; I do not know whether it easily implies it.

Problem 6.5 Is there a function f : N → N such that, for every k ∈ N and
every locally finite graph G, if all the vertices and ends of G have degree
at least f(k) then G has a subgraph H whose closure in |G| is topologically
k-connected?

Note that high minimum degree, or even high connectivity, does not force
large complete minors in an infinite graph: one can easily construct one-
ended k-connected planar graphs whose end has infinite degree, for arbi-
trarily large k.

Our next four problems should have positive answers at least for locally
finite graphs G. The corresponding finite statements are known to be true10

(see [1] for references), but Aharoni and Thomassen [1] showed that their
naive extensions to infinite graphs (with ‘cycle’ replacing ‘circle’ and ‘path’
replacing ‘arc’) all fail.

When X ⊆ |G| is an arc or a circle, we write G − X and |G| − X for the
subgraph of G (respectively, the subspace of |G|) obtained by deleting the
vertices in X and their incident edges, as well as any ends in X (in the case
of |G| − X). Similarly, we write G − E(X) for the subgraph of G obtained
by deleting all the edges contained in X, and |G| − E(X) for the subspace
of |G| obtained by deleting all inner points of edges contained in X. Let us
call |G| topologically k-edge-connected if deleting the inner points of fewer
than k edges always leaves |G| topologically connected.

Problem 6.6 If G is (k + 3)-connected, does |G| contain a circle C such
that G − C is k-connected or |G| − C is topologically k-connected?

Problem 6.7 If G is (k + 2)-edge-connected, does |G| contain a circle C
such that G − E(C) is k-edge-connected or |G| − E(C) is topologically k-
edge-connected?

10Except that the finite version of Problem 6.8 is an open conjecture of Lovász.
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Problem 6.8 Is there a function f : N → N such that, for every k ∈ N and
x, y ∈ V (G)∪Ω(G), if G is f(k)-connected then |G| contains an arc A from
x to y such that G−A is k-connected or |G|−A is topologically k-connected?

Problem 6.9 If x, y ∈ V (G) ∪Ω(G) and G is (k + 2)-edge-connected, does
|G| contain an arc A from x to y such that G − A is k-edge-connected or
|G| − A is topologically k-edge-connected?

The problems we have listed so far are all designed to apply our new
notions, to make infinite extensions of standard theorems about finite graphs
possible or more interesting. However, there are also a number of natural
intrinsic questions raised by our new definitions that I have been unable to
answer. One embarrassingly simple problem, which bears on almost every
proof in the field, is this:

Problem 6.10 When G is locally finite, is every connected subset of |G|
also path-connected?

Clearly, the answer to this question should be positive.11 It is easy to confirm
for open subsets of |G|, and was proved in [12] for closed subsets. For graphs
with infinite degrees the statement is easily seen to be false.

Another intrinsic problem concerns our new notion of a topological span-
ning tree and their relationship to ‘end-faithful’ spanning trees [12]. The
existence problem for end-faithful spanning trees has a long history and was
eventually settled negatively [17, 27, 30]. However, all the known ‘minimal’
counterexamples are infinitely connected, and in particular have only one
end. For such graphs, however, it is easy to find a topological spanning tree:
start with a maximal set of disjoint rays, and join a spanning tree from each
of the remaining components to one of those rays by an edge.

As we remarked earlier, locally finite connected graphs have topological
spanning trees, and so do all countable connected graphs. But the general
existence problem is open:

Problem 6.11 Are there connected graphs G such that |G| has no topolog-
ical spanning tree?

We remark that the closure in |G| of a normal spanning tree of G is
always a topological spanning tree in |G|. The connected graphs that have
normal spanning trees were characterized in [13]; they include all countable
connected graphs.

11Problem 6.10 has recently been settled negatively: Agelos Georgakopoulos constructed
a locally finite graph G together with a connected set X ⊆ |G| that is not path-connected.
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Finally, readers with a topological background may have wondered about
possible generalizations of our approach to higher dimensions. Indeed, it is
not difficult to extend our definitions formally to arbitrary dimensions, based
on standard singular homology; note that our circles, finite or infinite, are
(images of) singular 1-cycles in |G|. The only essential difference is that
we allow infinite sums, either explicitly or, as in our formal definition of C,
‘built into’ individual elements of C (of which we then take finite sums, to
make C into a group).

However, there is a way to introduce infinite sums through the back
door: by using singular homology ‘with cancellation’. Define a singular
1-cycle with cancellation as the set of edges traversed by a simple closed
curve in |G| (which we assume to be a local homeomorphism around inner
points of edges, so that any edge is traversed a well-defined finite number of
times, and each time in a well-defined direction), where edges are counted
with multiplicities (especially if we work over Z rather than F2), and are
counted negatively when traversed in the opposite direction. It can be shown
that every thin sum of circuits in a locally finite graph (more generally: in
precisely those connected graphs whose normal spanning trees are locally
finite) can be expressed as a single ‘singular 1-cycle with cancellation’, and
conversely. (In a finite graph, cancellation happens automatically when Z1

is factored over B1, because every path consisting of a single edge traversed
once in each direction bounds a singular disc. However, we cannot factor
over infinitely many disc boundaries at once, unless we admit infinite sums
in B1. Hence for infinite graphs we need to allow either infinite sums or
cancellation explicitly.)

On the other hand, allowing infinite sums in one way or another is essen-
tial: recall that, without them, the finite theorems we set out to extend do
not generalize to infinite graphs, even when infinite cycles are allowed.

The question thus becomes the following. Are there homology aspects
of higher-dimensional non-compact manifolds that have well-known equiva-
lents for compact manifolds, but are neither trivial extensions of these nor
expressable in terms of the homology of their end-compactifications?12 If so,
might an approach as outlined here help as naturally as it does for graphs?

12 See Freudenthal [14], or [9], for the definition of ends in arbitrary topological spaces,
and conditions on those spaces that ensure adding the ends makes them compact.
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