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Abstract

We show that a group admits a planar, finitely generated Cayley graph
if and only if it admits a special kind of group presentation we introduce,
called a planar presentation. Planar presentations can be recognised al-
gorithmically. As a consequence, we obtain an effective enumeration of
the planar Cayley graphs, yielding in particular an affirmative answer
to a question of Droms et al. asking whether the planar groups can be
effectively enumerated.

1 Introduction

1.1 Overview

Groups which act discretely on the real plane R
2 by homeomorphisms, called

planar discontinuous groups, are a classical topic the study of which goes back
at least as far as Poincaré [23], and are now fully classified and considered to be
well understood. The finite ones were classified by Maschke [19], and important
contributions to the infinite case where made by Wilkie [29] and Macbeath [18].
See [17, Prop. III. 5. 4] or [30] for a survey. These groups are closely related to
surface groups, which have influenced most of combinatorial group theory [22].
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Planar discontinuous groups coincide with the groups admitting a planar
modified1 Cayley complex, and they are Fuchsian when they do not contain
orientation-reversing elements [22]. These Cayley complexes correspond exactly
to the Cayley graphs that can be embedded into R

2 without accumulation points
of vertices.

Planar Cayley graphs that can only be embedded in R
2 with accumulation

points of vertices, and their groups, are a bit harder to understand, and still
a topic of ongoing research [2, 7, 9, 10, 12, 13, 21]. An important fact is that
they are finitely presented and hence accessible [7, 10, 11]. Dunwoody [10,
Theorem 3.8] uses this to prove that such a group, or a subgroup of index two
of its, is a fundamental group of a graph of groups in which each vertex group
is either a planar discontinuous group or a free product of finitely many cyclic
groups and all edge groups are finite cyclic groups (possibly trivial).

In this paper we extend the aforementioned correspondence between planar
Cayley complexes and accumulation-free planar Cayley graphs by relaxing the
notion of planarity of a Cayley complex in such a way that it corresponds exactly
to its Cayley graph being planar. Our new notion of ‘almost planarity’ of a
Cayley complex can be recognised algorithmically (Theorem 7.1). In view of the
Adjan-Rabin theorem [1, 24], this is a rather rare case of a decidable, geometric
property of Cayley complexes.

The key to this is a concept of planar group presentation we introduce; this is
a type of group presentation that guarantees the planarity of the corresponding
Cayley graph, and conversely, we show that every planar, finitely generated
Cayley graph admits such a group presentation.

1.2 Results

The Cayley complex X corresponding to a group presentation P = 〈S | R〉 is
the 2-complex obtained from the Cayley graph G of P by glueing a 2-cell along
each closed walk of G induced by a relator R ∈ R. We say that X is almost
planar, if it admits a map ρ : X → R

2 such that the 2-simplices of X are nested
in the following sense. We say that two 2-simplices of X are nested, if the images
of their interiors are either disjoint, or one is contained in the other, or their
intersection is the image of a 2-cell bounded by two parallel edges corresponding
to an involution s ∈ S.2 We call the presentation P a planar presentation if its
Cayley complex is almost planar. Our first result is

Theorem 1.1. Every planar, finitely generated Cayley graph admits a planar
presentation.

The main idea behind this is that if two relators in a presentation induce cy-
cles whose interiors overlap but are not nested, then we could replace a subword
of one relator by a subword of the other to produce an equivalent presentation

1‘modified’ in the sense that redundant 2-cells are removed; see [17] for details.
2The third option can be dropped by considering the modified Cayley complex in the sense

of [17], i.e. by representing involutions in S by single, undirected edges.
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with less overlapping; our proof that a presentation with no such overlaps exists
is based on the machinery of Dunwoody cuts, cf. [5].

In fact, we prove something much stronger than Theorem 1.1. We intro-
duce a specific type of planar presentation, called a general planar presentation,
and show that every planar, finitely generated Cayley graph admits such a
presentation and, conversely, every general planar presentation has a planar
Cayley graph (Theorem 5.8). This converse is the hardest result of this paper.
Moreover, as general planar presentations can be recognised algorithmically, we
obtain

Corollary 1.2. The set of planar, finitely generated Cayley graphs can be ef-
fectively enumerated.

By an effective enumeration of an infinite set G we mean a computer program
that outputs elements of this set and nothing else, and every element of G is in
the output after some finite time (repetitions are allowed).

This implies a positive answer to a question of Droms et al. [7, 9], namely
whether the groups admitting a planar, finitely generated Cayley graph (called
planar groups) can be effectively enumerated. This question is motivated by the
fact that, as a consequence of the Adjan-Rabin theorem [1, 24], planar groups
cannot be recognised by an algorithm (taking a presentation as input), and by
the fact that planar discontinuous groups have been effectively enumerated [9].
M. Dunwoody (private communication) informs us that the fact that the planar
groups can be effectively enumerated should also follow from his result [10,
Theorem 3.8] mentioned above with a little bit of additional work (the main
issue here is whether the ‘or a subgroup of index two’ proviso can be dropped).

We remark that there is a huge variety of planar Cayley graphs: even the
3-regular ones form 37 infinite families [12, 13]. Moreover, as the same group
can have many planar Cayley graphs, Corollary 1.2 is stronger than saying that
planar groups can be effectively enumerated. The aforementioned classification
of the 3-regular planar Cayley graphs cost the first author about 100 pages of
work [12, 13]. This task would have been significantly simplified if our results
had been available at that time, using a computer aided search based on the
algorithm behind Corollary 1.2, which is straightforward to implement.

Our proof method is essentially graph-theoretic, and does not appeal to
the theory of planar discontinuous groups. We are optimistic that it can be
employed in a wider setup including groups like the Baumslag-Solitar group
that act on spaces that generalise the plane.

1.3 Planar presentations

The formal definition of a general planar presentation is given in Section 5.
Here, we are going to sketch the most interesting special case of this concept,
called a special planar presentation. Such presentations always exist for a 3-
connected planar Cayley graph, or more generally, for a Cayley graph that can
be embedded in the plane in such a way that its label-preserving automorphisms
carry facial paths to facial paths.
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We say that P = 〈S | R〉 is a special planar presentation, if it can be endowed
with a cyclic ordering σ —from now on called a spin— of the symmetrization
S′ = {s, s−1 | s ∈ S} of its generating set, with the following property. Suppose
W1 = sUt and W2 = s′Ut′, where s, s′, t, t′ ∈ S′, are two words, each contained
in some rotation of a relator in R (possibly the same relator), where U is any
(possibly trivial) word with letters in S′. Then σ allows us to say whether paths
induced by these words W1, W2 would cross each other or not if we could embed
the Cayley graph of P in the plane in such a way that for every vertex the cyclic
ordering of the labels of its incident edges we observe coincides with σ. To make
this more precise, we embed a tree consisting of a ‘middle’ path P with edges
labelled by the letters in U , and two leaves attached at each endvertex of P
labelled with s, s′, t, t′ as in Figure 1, where the spin we use at each endvertex
of P is the one induced by σ on the corresponding 3-element subset of S′.
There are essentially two situations that can arise, both shown in that figure.
Naturally, we say that W1, W2 cross each other in the right-hand situation, and
they do not in the left-hand one.

U

s

s

t

t´ ´

U

s

s t

t

´

´

Figure 1: The definition of crossing ; W1 = sUt crosses W2 = s′Ut′ in the right, but
not in the left.

We then say that P is a special planar presentation, if there is a spin σ on S′

such that no two words as above cross each other. Note that this is an abstract
property of sets of words, and it is defined without reference to the Cayley graph
of P ; in fact, it can be checked algorithmically. The main essence of this paper
is that this is enough to guarantee the planarity of the Cayley graph, and that
a converse statement holds.

This generalises an idea from [14], where it was shown that every planar
discontinuous group admits a special planar presentation where every relator
is facial, i.e. it crosses no other word (where we consider words that are not
necessarily among our relators).

Our actual definition of a special planar presentation, given in Section 3.1,
is in fact a bit more general than the above sketch. Consider for example the
Cayley graph of the presentation

〈

a, b | an, b2, aba−1b
〉

. Its Cayley graph is a
prism graph with an essentially unique embedding in R

2. Note that the spin of
half of its vertices is the reverse of the spin of other half. This is a general phe-
nomenon: every 3-connected Cayley graph has an essentially unique embedding,
and in that embedding all vertices have the same spin up to reflection. However,
for every generator s, either the two end-vertices of all edges labelled s have the
same spin, or they always have reverse spins. This yields a classification of
generators into spin-preserving and spin-reversing ones, and our definition of
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a special planar presentation takes this into account; still, everything can be
checked algorithmically.

The situation becomes much more complex however if one wants to consider
planar Cayley graphs that are not 3-connected. Such graphs do not always have
an embedding with all vertices having the same spin up to reflection; perhaps
the simplest such example is the one of Figure 2.

b

ac

Figure 2: A 2-connected planar Cayley graph from [9], obtained by amalgamating two
6-element groups along an involution, which does not admit a consistent embedding.

In order to capture such Cayley graphs we had to come up with the notion
we call a general planar presentation (defined in Section 5), which in particular
translates, into abstract, algorithmically checkable, properties of words as above,
situations as in Figure 2, where a certain generator s with s2 = 1 separates the
graph into two parts, and behaves in a spin-preserving way in one part and in
a spin-reversing way in the other part. That such general planar presentations
always give rise to planar Cayley graphs is the hardest result of this paper, many
of its complications arising from the fact that given a general planar presentation
with such a ‘separating’ generator s, it is impossible to predict whether s = 1,
which would imply that our Cayley graph does not quite have the structure
anticipated by the presentation. The situation is complicated further by the
fact that separating generators need not be involutions; an example is given in
Figure 3.

By considering special planar presentations we also obtain

Theorem 1.3. The finitely generated Cayley graphs that admit a consistent
embedding in R

2 can be effectively enumerated.

Here, we call an embedding ρ : G → R
2 consistent, if every vertex has the

same spin up to reflection, and every generator is either spin-preserving or spin-
reversing in the above sense. Equivalently, ρ is consistent, if the label-preserving
automorphisms of G carry every facial path with respect to ρ to a facial path.

This paper is structured as follows. After some general definitions, we intro-
duce special planar presentations in Section 3, and show that every 3-connected
planar Cayley graph admits such a presentation. Next, we show that the Cayley
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Figure 3: An (infinite) planar Cayley graph, corresponding to the presentation
˙

a, b, c, d, f, g | a2, c2, d2, f2, g2, (af)2, (ag)2, abab−1gbfb−1, cbdb−1
¸

, with a separating
edge b which is not an involution.

graph of every special planar presentation is planar in Section 4. Then we con-
sider the general case, which again we split into two directions: we show that the
Cayley graph of every general planar presentation is planar in Section 5, and
that every planar Cayley graph admits a general planar presentation in Sec-
tion 6. In Section 7 we put these facts together to obtain the results mentioned
above, and we finish with some open problems in Section 8.

2 Definitions

2.1 Cayley graphs and group presentations

We will follow the terminology of [6] for graph-theoretical terms and that of [4]
and [20] for group-theoretical ones. Let us recall the definitions most relevant
for this paper.

A group presentation 〈S | R〉 consists of a set S of distinct symbols, called
the generators and a set R of words with letters in S∪S−1, where S−1 is the set
of symbols {s−1 | s ∈ S}, called relators. Each such group presentation uniquely
determines a group, namely the quotient group FS/N of the (free) group FS of
words with letters in S ∪S−1 over the (normal) subgroup N = N(R) generated
by all conjugates of elements of R.

The Cayley graph Cay(P) = Cay 〈S | R〉 of a group presentation P =
〈S | R〉 is an edge-coloured directed graph G = (V, E) constructed as follows.
The vertex set of G is the group Γ = FS/N corresponding to P . The set of
colours we will use is S. For every g ∈ Γ, s ∈ S join g to gs by an edge coloured
s directed from g to gs. Note that Γ acts on G by multiplication on the left;
more precisely, for every g ∈ Γ the mapping from V (G) to V (G) defined by
x 7→ gx is an automorphism of G, that is, an automorphism of G that preserves
the colours and directions of the edges. In fact, Γ is precisely the group of such
automorphisms of G. Any presentation of Γ in which S is the set of generators
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will also be called a presentation of Cay(P).
Note that some elements of S may represent the identity element of Γ, and

distinct elements of S may represent the same element of Γ; therefore, Cay(P)
may contain loops and parallel edges of the same colour.

If s ∈ S is an involution, i.e. s2 = 1, then every vertex of G is incident with
a pair of parallel edges coloured s (one in each direction). If s2 is a relator
in R, we will follow the convention of replacing this pair of parallel edges by a
single, undirected edge. This convention is common in the literature [17], and
is convenient when studying planar Cayley graphs.

If G is a Cayley graph, then we use Γ(G) to denote its group.

If R is any (finite or infinite) word with letters in S ∪ S−1, and g is a vertex
of G = Cay 〈S | R〉, then starting from g and following the edges corresponding
to the letters in R in order we obtain a walk W in G. We then say that W
is induced by R at g, and we will sometimes denote W by gR; note that for a
given R there are several walks in G induced by R, one for each starting vertex
g ∈ V (G).

Let H1(G) denote the first simplicial homology group of G over Z. We will
use the following well-known fact which is easy to prove.

Lemma 2.1. Let G = Cay 〈S | R〉 be a Cayley graph. Then the (closed) walks
in G induced by relators in R generate H1(G).

2.2 Graph-theoretical concepts

Let G = (V, E) be a connected graph fixed throughout this section. Two paths
in G are independent, if they do not meet at any vertex except perhaps at
common endpoints. If P is a path or cycle we will use |P | to denote the number
of vertices in P and ||P || to denote the number of edges of P . Let xPy denote
the subpath of P between its vertices x and y.

A hinge of G is an edge e = xy such that the removal of the pair of vertices
x, y disconnects G. A hinge should not be confused with a bridge, which is an
edge whose removal separates G although its endvertices are not removed.

The set of neighbours of a vertex x is denoted by N(x).
G is called k-connected if G − X is connected for every set X ⊆ V with

|X | < k. Note that if G is k-connected then it is also (k − 1)-connected. The
connectivity κ(G) of G is the greatest integer k such that G is k-connected.

A 1-way infinite path is called a ray. Two rays are equivalent if no finite set
of vertices separates them. The corresponding equivalence classes of rays are the
ends of G. A graph is multi-ended if it has more than one end. Note that given
any two finitely generated presentations of the same group, the corresponding
Cayley graphs have the same number of ends. Thus this number, which is known
to be one of 0, 1, 2,∞, is an invariant of finitely generated groups.

A double ray is a directed 2-way infinite path.
The set of all finite sums of (finite) cycles forms a vector space over F2, the

cycle space of G.
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2.3 Embeddings in the plane

An embedding of a graph G will always mean a topological embedding of the
corresponding 1-complex in the euclidean plane R

2; in simpler words, an em-
bedding is a drawing in the plane with no two edges crossing.

A face of an embedding σ : G → R
2 is a component of R

2 \ σ(G). The
boundary of a face F is the set of vertices and edges of G that are mapped by σ
to the closure of F . The size of F is the number of edges in its boundary. Note
that if F has finite size then its boundary is a cycle of G.

A walk in G is called facial with respect to σ if it is contained in the boundary
of some face of σ.

An embedding of a Cayley graph is called consistent if, intuitively, it embeds
every vertex in a similar way in the sense that the group action carries faces to
faces. Let us make this more precise. Given an embedding σ of a Cayley graph
G with generating set S, we consider for every vertex x of G the embedding of
the edges incident with x, and define the spin of x to be the cyclic order of the
set L := {xy−1 | y ∈ N(x)} in which xy−1

1 is a successor of xy−1
2 whenever the

edge xy2 comes immediately after the edge xy1 as we move clockwise around x.
Note that the set L is the same for every vertex of G, and depends only on S
and on our convention on whether to draw one or two edges per vertex for
involutions. This allows us to compare spins of different vertices. Call an edge
of G spin-preserving if its two endvertices have the same spin in σ, and call it
spin-reversing if the spin of one of its endvertices is the reverse of the spin of its
other endvertex. Call a colour in S consistent if all edges bearing that colour are
spin-preserving or all edges bearing that colour are spin-reversing in σ. Finally,
call the embedding σ consistent if every colour is consistent in σ. Note that if σ
is consistent, then there are only two types of spin in σ, and they are the reverse
of each other.

The following classical result was proved by Whitney [28, Theorem 11] for
finite graphs and by Imrich [16] for infinite ones.

Theorem 2.2. Let G be a 3-connected graph embedded in the sphere. Then
every automorphism of G maps each facial path to a facial path.

This implies in particular that if σ is an embedding of the 3-connected Cayley
graph G, then the cyclic ordering of the colours of the edges around any vertex
of G is the same up to orientation. In other words, at most two spins are allowed
in σ. Moreover, if two vertices x, y of G that are adjacent by an edge, bearing
a colour b say, have distinct spins, then any two vertices x′, y′ adjacent by a
b-edge also have distinct spins. We just proved

Lemma 2.3. Let G be a 3-connected planar Cayley graph. Then every embed-
ding of G is consistent.

Cayley graphs of connectivity 2 do not always admit a consistent embed-
ding [9]. However, in the cubic case they do; see [13].

An embedding is Vertex-Accumulation-Point-free, or accumulation-free for
short, if the images of the vertices have no accumulation point in R

2.
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A crossing of a path X by a path or walk Y in a plane graph is a subwalk
Q = eQ̊f of Y where the end-edges e, f of Q are incident with X on opposite
sides of X (but not contained in X) and (the image of) Q is contained in X
(Figure 4). Note that if Q is a crossing of X by Y , then X contains a crossing
Q′ = gQ̊h of Y by X , which we will call the dual crossing of Q.

Q

Y

Y

X

X

e

f

Figure 4: A crossing of X by Y .

3 3-connected planar Cayley graphs admit spe-

cial planar presentations

3.1 Planar presentations — the special case

We now give the crucial definition of our paper, that of a (special) planar presen-
tation. The intuition behind it comes from the notion of a consistent embedding
given above: a planar presentation is a group presentation endowed with some
additional data (forming what we will call an embedded presentation) which,
once we have proven planarity of the corresponding Cayley graph G, will de-
scribe the local structure of a consistent embedding of G, that is, the spin and
the information of which generators preserve or reflect it.

Given a group presentation P = 〈S | R〉, we will distinguish between two
types of generators s: those for which we have s2 as a relator in R and the rest.
The reasons for this distinction will become clear later. Generators t for which
the relation t2 is provable but not explicitly part of the presentation might exist,
but do not cause us any concerns. Given a group presentation P = 〈S | R〉, we
thus let I = I(P) denote the set of elements s ∈ S such that R contains the
relator s2 or s−2.

Let S′ = S ∪ (S \ I)−1. For example, if P =
〈

a, b, c | a2, b2
〉

, then S′ =
{a, b, c, c−1}.

A spin on P = 〈S | R〉 is a cyclic ordering of S′ (to be thought of as the
cycling ordering of the edges that we expect to see around each vertex of our
Cayley graph once we have proved that it is planar)

An embedded presentation is a triple P , σ, τ where P = 〈S | R〉 is a group
presentation, σ is a spin on P , and τ is a function from S to {0, 1} (encoding
the information of whether each generator is spin-preserving or spin-reversing).

To every embedded presentation P , σ, τ we can associate a tree T with an
accumulation-free embedding in R

2. As a graph, we let T be Cay
〈

S | s2, s ∈ I
〉

.
Easily, we can embed T in R

2 in such a way that for every vertex v of T, one
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of the two cyclic orderings of the colours of the edges of v inherited by the
embedding coincides with σ and moreover, for every two adjacent vertices v, w
of T, the clockwise cyclic ordering of the colours of the edges of v coincides
with that of w if and only if τ(a) = 0 where a is the colour of the v–w edge.
(If τ(a) = 1, then the clockwise ordering of v coincides with the anti-clockwise
ordering of w.)

Given a word W , we let W∞ be the 2-way infinite word obtained by con-
catenating infinitely many copies of W . We say that two words W, Z ∈ R cross,
if there is a 2-way infinite path R of T induced by W∞ and a 2-way infinite
path L induced by Z∞ such that L meets both components of R

2 \ R.
For example, consider the presentation P =

〈

n, e, s, w | n2, e2, s2, w2
〉

, the
spin n, e, s, w, n (read ‘north, east, south, west’), and τ identically 0. Then any
word containing ns as a subword crosses any word containing ew. The word
nesw however crosses no other word, and indeed adding that word to the above
presentation yields a planar Cayley graph: the square grid.

Definition 3.1. A (special) planar presentation is an embedded presentation
(P , σ, τ) such that

(sP1) no two relators W, Z ∈ R cross, and

(sP2) for every relator R, the number of occurrences of letters s in R with
τ(s) = 1 (i.e. spin-reversing letters) is even; here, the symbol sn counts
as |n| occurrences of s.

Requirement (sP2) is necessary, as the spin of the starting vertex of a cycle
must coincide with that of the last vertex.

The following lemma will later allow us to assume without loss of generality
that no relator of P is a sub-word of a rotation of another relator.

Lemma 3.2. Let (P = 〈S,R〉 , σ, τ) be a special planar presentation. Then
there is a special planar presentation (P ′ = 〈S,R′〉 , σ, τ) such that P and P ′

yield the same Cayley graph, and no element of R′ is a proper subword of another
element of R′.

Proof. We will perform induction on the total length of the words in R.
Suppose that R contains a word W and a (rotation of a) proper superword

R = WR2 of W . To begin with, we may assume that the double rays oW∞ and
oR∞ induced by them do not coincide. For if this is the case, then W = Un

and R = Um for some common subword U , and it is easy to modify R to avoid
this situation by replacing R, W with an appropriate power of U .

We may further assume that the double rays oW∞ and oR∞ are ‘as close
as possible’ to each other in the following sense.

Let T be the plane tree corresponding to P , σ, τ as defined before Defini-
tion 3.1. Given three double rays P, S, T in T which are pairwise non-crossing,
we say that S lies between P, T if

⋂

{P, S, T } 6= ∅ and P and T lie in distinct
components of R

2 \ S.
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Note that if we fix P and T , then there can only be finitely many double
rays S induced by a word in R lying between P, T because R is finite.

We say that the double rays P, T in T are neighbours, if no double ray
induced by a word in R lies between them.

Now if R contains a word W and a proper superword R = WR2 of W ,
we may assume that the double rays oW∞ and oR∞ induced by them are
neighbours, because any periodic double ray lying between them contains the
path oW and is therefore induced by a superword or subword of W .

Our aim is to replace the word R by its subword R2 to obtain an equiva-
lent presentation that is closer to satisfying our assertion than P is. Therefor,
we need to show that R2 does not cross any of our relators. This will be a
consequence of

Any word with letters in S crossing R2 (with respect to the spin data
σ, τ) also crosses R or W .

(1)

Let a, z denote the first and last letter of R respectively. Let y denote the
last letter of W , and d the first letter of R2. Note that W starts with a too, and
R2 ends with z. We have a 6= y−1 because W is reduced, and a 6= z−1, d 6= y−1

because W is reduced.
Furthermore, we may assume that y 6= z: for otherwise we can rotate both

W and R by moving the letter y = z from the end to the beginning, extending
the intersection of the two words; here we used the fact that R∞ cannot coincide
with W∞ as we noted above.

Thus a, z−1, y−1 are all distinct; let us assume that they appear in σ in that
order. Our first task is to decide the relative position of d in σ with respect to
those letters. It is still possible that d coincides with z−1 or a.

Recall that σ is a cyclic ordering on our letters S ∪ S′. We use the notation
σ(l, m) to denote those letters coming after l and before m in σ. If we want to
include l or m we use the notation σ[l, m) or σ(l, m].

If d ∈ σ(a, z−1), then R would cross itself as its rotations contain both za
and yd as subwords, which is impossible by (sP1).

If d ∈ σ(y−1, a), then R would cross W as can be seen in Figure 5 by
observing the double ray whose two ends are marked o(R2W )+∞, o(R2W )−∞,
which double ray is induced by R; here we used the fact that the vertex w at
which the path oW ends has the same spin as o in the embedding of T we used
to define crossings, because W satisfies (sP2).

If d = a, then we can apply one of the two above arguments to the first
vertex at which the rays oR∞ and oW∞ split to prove that R crosses either
itself or W , which is again a contradiction.

These facts combined prove that d ∈ σ[z−1, y−1). We have now gathered
enough information about σ to allow us to prove (1).

Suppose that R2 crosses some word X , i.e. there are two crossing double
rays P, T where P is induced by R2 and T is induced by X .

Let Q = eQ̊f ⊆ T be a crossing of P by T as defined in Section 2.3 (Figure 4),
and let Q′ = gQ̊h ⊆ P be its dual crossing.
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Let us assume first that d 6= z−1; the case d = z−1 will be similar.
We can translate P and/or T by some automorphism of T so as to ensure

that the edge e is incident with the path oR2 induced by R2 at o (Figure 5), and
in fact e is not incident with the last vertex of that path (but may be incident
with o).

o w := oWw := oW oRaz

y
d

oR−∞ oR+∞

oW−∞ oW+∞

f

e
oR−∞

2

oR+∞
2

o(R2W )−∞

o(R2W )+∞

A1

A2
A3

A4

A5

A6

Figure 5: The four double rays oR∞, o(R2W )∞, oR∞
2 and oW∞ and the regions Ai

they define. Here, the notation oR+∞ means the ray starting at o induced by the
1-way infinite word obtained by repeating R; oR−∞ is defined similarly by repeating
the word R−1 instead.

Let us fix the embedding ρ of T in the plane complying with σ, τ as described
before Definition 3.1. We use the four double rays oR∞, o(R2W )∞, oR∞

2 and
oW∞ to divide the plane into regions Ai as shown in Figure 5. Then the edge
e must lie in one of these regions, and in each case we obtain a contradiction as
follows.

To begin with, note that exactly one of e, f lies in A1, and we may assume
without loss of generality that f does, so e does not lie in A1.

Case 1: If e lies in A2, then T crosses not only P but also the double ray
o(R2W )∞. But since R2W is a rotation of the word R = WR2, (1) is proved
in this case.

Case 2: If e lies in A3, (which can only happen if e is incident with o), then
T crosses oW∞ and again (1) holds.

Case 3: If e lies in A4, then T crosses oR∞, and again (1) is proved.
Case 4: If e = oa, then as T cannot enter the regions A3, A4 for the

aforementioned reasons, it has to contain the whole path oW and then continue
in the closure of the region A6. But then some rotation of the relator X inducing
T is either a subword or a superword of W , and moreover T lies between oW∞

and oR∞. This however contradicts our choice of R, W to be neighbours.
Case 5: If e = oy−1, then we apply a similar argument: as T cannot enter

the regions A2, A3, it has to contain the whole path oW−1 and then continue
in the closure of the region A5. Then T lies between oW∞ and o(R2W )∞. As
the latter can be induced by R, this again contradicts our choice of R, W as
neighbours.

These contradictions complete the proof of (1) in the case where d 6= z−1.
The case d = z−1 is very similar: the only difference is that the region A1 is a
bit smaller in Figure 5.
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We now claim that R2 crosses none of the words in R∪ {R2}.
Indeed, if R2 crosses a word in R, then applying (1) to that word we obtain

a contradiction to the fact that P was a special planar presentation.
If R2 crosses itself, then applying (1) again we deduce that R2 crosses R

or W , which are elements of R. But then we are in the previous situation, which
cannot occur (here we used the fact that crossing is a symmetric relation).

Keeping the spin data σ, τ , it is clear that R2 satisfies (sP2) as both W and
R satisfied that property.

Since P satisfied (sP1), and we have just proved that R2 crosses neither itself
nor any other relator in R, this means that the presentation obtained from P by
adding R2 as a relator is still a special planar presentation. Note that the relator
R = WR2 now becomes redundant, and we can remove it. Hence we obtain a
special planar presentation of the same Cayley graph in which the relators have
strictly smaller total length.

We can repeat this for as long as there are relators in our presentation that
are a subword of each other. Since the total length decreases in each step, the
process terminates after finitely many steps yielding the desired presentation.

3.2 The proof

We now prove that planar 3-connected Cayley graphs admit special planar pre-
sentations.

Theorem 3.3. Every planar, locally finite, 3-connected Cayley graph admits a
special planar presentation.

In order to prove Theorem 3.3, we need the following general result about
generating the cycle space of planar graphs. For a planar graph G with em-
bedding σ : G → R

2, we call two cycles C, D of G nested if at most one face of
R

2 \ σ(C) contains points of σ(D). Note that this definition is symmetric in C
and D. (It is possible to prove using the 3-connectedness of G that if C, D are
not nested, then the corresponding words cross each other in the sense of the
previous section.)

Theorem 3.4. [15, Theorem 1] Every planar, locally finite, 3-connected graph G
has an Aut(G)-invariant nested set of cycles that generates its cycle space.

Proof of Theorem 3.3. Let G be a planar, locally finite, 3-connected Cayley
graph, and let Γ := Γ(G) be its group. By Droms [7, Theorem 5.1], Γ admits
a finite presentation P = 〈S | R〉. We may replace the generators S by those
finitely many generators that we used to obtain the Cayley graph G, that is, we
may assume that S was used to obtain G. Let D be a nested Aut(G)-invariant
set of cycles in G that generates its cycles space, which exists by Theorem 3.4,
and let D′ ⊆ D be the subset of those cycles that contain the vertex o. Then
the set RD′ of words corresponding to the cycles in D′ yields a presentation
P ′ = 〈S | RD′〉 of Γ. Note that a priori the set D′, and hence also RD′ , might

13



be infinite. As Γ is finitely presented, it is well-known, see e. g. [3], that we
can use Tietze-transformations to obtain a finite subset R′ of RD′ such that
〈S | R′〉 is a finite presentation of Γ. We claim that (〈S | R′〉 , σ, τ) is a planar
presentation, where σ is the spin of 1 in some embedding ρ of G in R

2, and τ(s)
is 0 for those s ∈ S such that the spin of 1 coincides with the spin of the vertex
s of G in ρ (and τ(s) is 1 for every other s ∈ S).

Indeed, it is easy to check using the nestedness of the finitely many cycles
that correspond to the relators R′ and Lemma 2.3 that no two elements of R′

cross.

We call the Cayley complex X of a presentation 〈S | R〉 almost planar, if
there is a mapping σ : X → R

2 such that σ is injective on the 1-skeleton of X ,
and for every two 2-simplices of X , the images of their interiors under σ are
either disjoint or one of these images is contained in the other. (Here, we are
using our convention that elements s of S such that s2 is a relator in R give rise
to single, undirected edges in X .) Theorem 3.3 has the following consequence,
which was conjectured in [12].

Corollary 3.5. Every planar, locally finite, 3-connected planar Cayley graph G
is the 1-skeleton of an almost planar Cayley complex of the group Γ(G) of G.

Proof. Since G is planar, there is an embedding ρ′ : G → R
2 by definition. We

will extend ρ′ to the desired map ρ from the Cayley complex X of Γ(G) with
respect to the presentation 〈S | R′〉 from above. For this, given any 2-cell Y of
X with boundary cycle C, we embed Y in the finite component of R

2 \C. It is
a straightforward consequence of the nestedness of D that the resulting map ρ
has the desired property.

4 Planar presentations yield planar Cayley graphs:

the consistent case

In this section we prove that every special planar presentation —as defined in
Section 3.1— defines a planar Cayley graph with a consistent embedding. This
proof contains the fundamental arguments of this paper.

4.1 Fundamental domains

Let again P = 〈S | R〉 be a presentation, and G := Cay(P) its Cayley graph.
Let TS = Cay 〈S | ∅〉 be the corresponding free tree. Let N(R) denote the
normal closure of R in the group of 〈S | ∅〉, and note that N(R) acts by auto-
morphisms on TS . Then G is, almost by definition, the quotient TS/N(R) with
respect to that action.

In this section we consider all graphs as 1-complexes. The following lemma
is folklore; we include a proof for the convenience of the reader.
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Lemma 4.1. TS admits a connected fundamental domain for the action of
N(R).

Proof. Let D be a maximal subgraph of TS that is connected and meets each
N(R)-orbit in at most one point; such a D exists by Zorn’s lemma. We claim
that D meets every N(R)-orbit. For if not, then there exist two adjacent vertices
x, xs in TS (where s ∈ S) such that xs does not belong to any orbit represented
by D but x does. Let x′ = Rx, where R ∈ N(R), be the vertex of D that lies
in the same orbit as x. Then the vertex Rxs is connected to x′, and its orbit is
not represented by D. This contradicts the maximality of D, since D ∪ Rxs is
connected.

An open star is a subspace of a graph consisting of a single vertex and all
open half-edges incident with it. A star is the union of an open star with some
of the midpoints in its closure.

For the connected fundamental domain D provided by Lemma 4.1, we may
assume without loss of generality that

D is a union of stars, (2)

since the action of N(R) never identifies two points in the same star.

4.2 Proof of planarity: the consistent case

In this section we prove

Theorem 4.2. If (P , σ, τ) is a special planar presentation with countably many
generators and relators, then its Cayley graph Cay(P) is planar. Moreover, it
admits a consistent embedding, with spin σ and spin-behaviour of generators
given by τ .

For the rest of this section, let us fix P = 〈S | R〉 as above, and let G :=
Cay(P). Recall the definition of the embedded tree T from Section 3.1, and let
o = oT denote the identity of T seen as a Cayley graph.

Note that it suffices to prove the statement for a finite presentation P ; the
countably infinite case can then be deduced as follows. If G does not admit
a consistent embedding, then by a standard compactness argument there is a
finite subgraph H ⊂ G that does not admit a consistent embedding. It is an
easy exercise to show that for some finite S′ ⊂ S and R′ ⊂ R, the Cayley
graph Cay(〈S′,R′〉) also contains H as a subgraph. But 〈S′,R′〉 is a finite
presentation which is planar with respect to the restriction of σ, τ to S′,R′,
leading to a contradiction.

Let D be a connected fundamental domain of T with respect to the action of
N(R), provided by Lemma 4.1. Recall that we may assume that D is a union
of stars. Thus the closure D of D in T is the union of D with all midpoints of
edges that have exactly one half-edge in D. Moreover, G can be obtained from
D by identifying pairs of such midpoints: each midpoint m in D\D is identified
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with the unique midpoint m′ in D that is N(R)-equivalent to m, where we call
two points or subsets X, Y of T N(R)-equivalent when they lie in the same
orbit of the action of N(R) on T. Note that m′ might coincide with m, which
is the case exactly when it lies on an edge coloured by a generator in the set I
of explicit involutions.

We claim that

every two N(R)-equivalent vertices of T have the same spin. (3)

Indeed, this follows from condition (sP2) of the definition of a planar presenta-
tion, according to which every element of R joins vertices with same spins.

To show that G is planar, and it even admits a consistent embedding, it will
suffice to show that these pairs of identified points are nested in the embedding of
D inherited from the embedding of T. Here, we say that two pairs of midpoints
x, x′ and y, y′ in D \D are nested, if the x–x′ path in D does not cross the y–y′

path, where we define crossing similarly to Section 2.3.
Assuming that such pairs of points are nested, it is easy to prove that G is

planar: note that we can cut a closed domain D′ of R
2 homeomorphic to a closed

disc such that D′∩T = D. Let D′′ be a homeomorphic copy of D′, and glue D′ to
D′′ by identifying all pairs of corresponding points of their boundaries to obtain
a homeomorph S of the sphere. For every pair x, x′ of N(R)-equivalent points
of D, let X be the x–x′ path in D and let X ′′ be its copy in D′′. Nestedness
implies by definition that these arcs X ′′ can be continuously deformed into
pairwise disjoint arcs. Therefore, the union of T ∩ D with all these arcs is an
embedding of G on the sphere S (where every midpoint of an edge in D became
a closed arc). This embedding is consistent because the embedding of T we
started with is.

It thus only remains to prove this nestedness. Our intuition for this is that
when both the x–x′ path and the y–y′ path from above are induced by relators,
then these paths cannot cross since that would imply that the corresponding
relators cross, which is forbidden. In the next section we will extend this idea
to arbitrary pairs of such points, using the fact that the aforementioned paths
are cycles of G and cycles of G can be ‘proved’ using relators.

4.3 Nestedness in D

Let π denote the canonical covering map from T to G, and let oG := π(oT)
denote the identity element of G. Given a relator W , let Wo denote the closed
walk oGW in G induced by W at oG. Let TW := π−1(Wo), and note that
TW is a union of a set of double-rays of T, which set we denote by T[Wo], and
along each such double-ray we can read the 2-way infinite word W∞ obtained
by repeating W indefinitely; indeed, the only case that could prevent W∞ from
spanning a double-ray is when W = b for some b for which b2 is a relator, but
then W would be a subword of the relator b2; however, applying Lemma 3.2
we may assume that this is not the case. Equivalently, TW is the union of all
double rays N(R)-equivalent with the double-ray induced by W at oT.
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We start our proof of nestedness by noting that in a plane graph, every cycle
C separates the graph into two (possibly empty) sides I, O by the Jordan curve
theorem, with no edges of the graph joining I to O. Although we have not yet
embedded G in the plane, we will be able to show that cycles, or closed walks,
of G that are induced by relators enjoy a similar property by exploiting the
embedding of T and the non-crossing property of relators.

4.3.1 Bipartitioning the faces of T

The dual graph T
∗ of T is the graph whose vertex set is the set of faces of T, and

two faces of T are joined with an edge e∗ of T
∗ whenever their boundaries share

an edge e of T. Given two faces F, H of T, and an F–H path PFH in T
∗, we let

Cr(T[Wo], PFH) denote the number of crossings of T[Wo] by PFH ; to make this
more precise, for a double-ray T in T[Wo], we write cr(T, PFH) for the number
of edges e in T such that PFH contains e∗, and we let Cr(T[Wo], PFH) :=
∑

T∈T[Wo] cr(T, PFH). We claim that

for every two faces F, H of T, the parity of the number of crossings
Cr(T[Wo], PFH) is independent of the choice of the path PFH .

(4)

To see this, note that if C is a cycle in T
∗, then Cr(T[Wo], C) —defined similarly

to Cr(T[Wo], PFH)— is even because the embedding of T is accumulation-free
and so any ray entering the bounded side of C has to exit it again. This
immediately implies (4).

This fact allows us to introduce the following definition

Definition 4.3. Given two faces F, H of T, we write F ∼ H if some, and
hence every, F–H path PFH in T

∗ crosses TW an even number of times, i.e. if
Cr(T[Wo], PFH) is even.

Note that ∼ is an equivalence relation of the set of faces F of T. Moreover,
it uniquely determines an (unordered) bipartition {I, O} on F by choosing one
face F and letting I := {H ∈ F | H ∼ F} and O := F \ I. Note that TW

decomposes R
2 into regions each of which is in a single side of this bipartition,

and crossing TW corresponds to alternating between I and O. It will turn out,
after we prove that G is planar, that I, O are the lifts of the two sides of the
closed walk Wo of G. The following lemma shows that this is plausible and will
be needed later.

Lemma 4.4. The relation ∼ is invariant under the action of N(R) on T.

Proof. It suffices to prove that if F, H are faces in the same orbit of N(R), then
F ∼ H . We may assume that there are vertices x, y in the boundaries of F, H
respectively, such that y = xwRw−1 for some word w and some relator R ∈ R:
by the definition of the normal closure N(R), if we can prove F ∼ H in this
case, we can prove F ∼ H for every two F, H in the same orbit of N(R).

Since we are free to choose any F–H path in T
∗ by (4), let us choose PFH

to be one that starts with an edge e∗ where e is incident with both x and F ,
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finishes with an edge f∗ where f is incident with both y and H , and does not
cross the walk from x induced by wRw−1 (Figure 6). We need to check that
Cr(T[Wo], PFH) is even.

w w−1

PFH

R

F H

x y

x′ y′

Figure 6: The path PF H (dashed) in the proof of Lemma 4.4 and some elements of
T[Wo] it crosses.

For this, we only need to consider those double-rays T ∈ T[Wo] for which
cr(T, PFH) is odd. We will group those T into pairs, showing that their total
contribution is even as desired. For simplicity, we will tacitly assume that
xwRw−1 crosses any T just once; the general case can be handled with the
same arguments.

By elementary topological arguments, any such T is either crossed by our
walk xwRw−1, or it visits x or y and its two rays are separated by
F ∪ xwRw−1 ∪ H . We will call the former case a crossing of type A, and the
latter a crossing of type B, and we will separately show that crossings of each
type come in pairs.

Recall the definition of a crossing from Section 2.3. For type A, we will
distinguish the following sub-types of crossings Q = eQ̊f ⊆ wRw−1 of such a T
by wRw−1:

1. both e, f lie in R;

2. one of e, f lies in w and the other in w−1;

3. both e, f lie in w or they both lie in w−1; or

4. exactly one of e, f lies in R (and the other in either w or w−1).

Type 1 cannot occur, as it would imply that the relator R crosses with the
relator of T , and we are assuming P to be a planar presentation. The second
one is also impossible, as it would imply that R is contained in a double-ray in
T[Wo], which would in turn imply that one of T, R is a subword of the other,
and we are forbidding this too in a planar presentation.
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We will define a bijection between those crossings Q that have an end-edge
in w and those that have an end-edge in w−1, showing that the total number of
crossings is even as desired.

For crossings of type 3, it is easy to bijectively map each crossing Q with
e, f in w to a crossing Q′ with e, f in w−1: the automorphism of T mapping the
end-vertex x′ of w to the starting vertex y′ of w−1 translates Q to a crossing Q′

as desired, as it translates w to w−1 and the element of T[Wo] crossed by w to
another element of T[Wo].

For crossings of type 4 a similar argument applies, but we have to be more
careful. Again, given a crossing Q of an element T of T[Wo] by wRw−1 with
e, say, in w and f in R, we translate it to a walk Q′ by the automorphism of
T mapping x′ to y′. We claim that Q′ is a crossing of the translate T ′ of T
by wRw−1. This fact is easier to see in Figure 6 than to explain with words,
and it follows from the following three facts: a) the double-ray R∞ obtained
by reading the word R indefinitely starting from x′ does not cross T by the
definition of a planar presentation; b) T ′ does not contain all of R, since we are
assuming that no relator is a sub-word of another relator, and c) x′ and y′ have
the same spin since they are joined by a relator path R.

It remains to consider crossings of type B, i.e. where T visits x or y and
its two rays are separated by F ∪ xwRw−1 ∪ H . But for any such T , the
automorphism of T mapping x to y or the other way round maps T to another
element of T[Wo] that is crossed by xwRw−1 as often as T is, therefore such
crossings appear in pairs as well.

Thus we have paired up all crossings, showing that Cr(T[Wo], PFH) is even.

A further important property of our bipartition is that

for every edge e of T, the two faces F, H of e lie in distinct elements of
{I, O} if and only if e ∈ TW and e lies in an odd number of elements of

T[Wo].
(5)

Indeed, in this case the edge e∗ can be chosen as the F − H path PFH in the
definition of ∼, and Cr(T[Wo], PFH) is just the number of elements of T[Wo]
containing e.

Remark 4.5. We can define an equivalence relation on the vertices of T similar
to our ∼ for faces: write x ∼ y if the (unique) x–y path Pxy in T crosses T[Wo]
an even number of times. Results similar to Lemma 4.4 and (5) extend to this
relation, but it is more convenient to work with faces.

4.3.2 Bipartitioning the ‘faces’ of G

We would like to use the N(R)-invariance of the bipartition of F we defined
above (Lemma 4.4) to induce a bipartition on faces of G, but we cannot talk
about faces of G before proving that it is planar. However, there is a way around
this: for every face F of T, glue a copy of the domain F ⊂ R

2 to G by identifying
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each point x of ∂F with π(x), where π still denotes our covering map from T.
If F, F ′ are equivalent face boundaries, in other words, if π(∂F ) = π(∂F ′), then
we identify the corresponding 2-cells glued onto G. These identifications ensure
that every edge of G is in the boundary of either exactly one or exactly two
2-cells (but might appear in the boundary of a 2-cell several times); e is in the
boundary of only one 2-cell exactly when the two faces of any lift of e to T

are N(R)-equivalent. Indeed, the 2-cells we introduced are bounded by walks
corresponding to facial 2-way infinite words, and every edge is in exactly two
such words. Moreover, the lifts of e map those walks to exactly the boundaries
of pairs of incident faces of T, and such pairs are N(R)-equivalent for the various
decks of the covering.

Let G2 denote the set of these 2-cells, and let G = G ∪ G2 denote the
2-complex consisting of G and these 2-cells.

Lemma 4.4 now means that if Z is a closed walk of G induced by a relator,
then {I, O} induces a bipartition π[I], π[O] of G2. Let us from now on denote
this bipartition of G2 by BZ .

Our next aim is to extend our construction of that bipartition to an arbitrary
cycle of G, showing that every cycle has two ‘sides’.

To achieve this, given a cycle C of G, we choose a ‘proof’ P of C; that is,
a sequence of closed walks Wi, 1 ≤ i ≤ k, of G induced by rotations of relators
such that C =

∑

1≤i≤k Wi, where
∑

denotes addition in the simplicial homology
sense. Such a sequence (Wi) exists by Lemma 2.1. For every Wi, let IWi

, OWi

denote the two sides of the bipartition BWi
of G2 from above; it will not matter

which element of BWi
we denote by IWi

and which by OWi
, so we may make

an arbitrary choice here.
Define the bipartition BC := {IC , OC} of the 2-cells G2 of G by setting

IC := △iIWi
and OC := G2△IC , where △ denotes the symmetric difference.

Note that OC = △iOWi
when k is odd and OC = G2△ (△iOWi

) when k is even,
where k is the number of our Wi.

Once we have constructed a planar embedding of G in the plane, it will turn
out that BC corresponds to the bipartition of the faces of G into those lying
inside/outside C.3 To see why this might be true, consider the situation of
Figure 7 as an example; we imagine IC to be the set of 2-cells inside C and OC

the set of 2-cells outside it, or the other way round. Figure 7 is only a help to
our imagination since we have not yet proved G to be planar. Our definition of
BC builds on this idea, but has to deal with the fact that we do not yet have
an embedding of G in the plane.

The reader who finds this definition surprising might be comforted to know
that this is the subtlest idea of the proof of Theorem 4.2, and it took us a long
time to come up with. An important point, which explains it to some extent,
is that BC is independent of our above choices of which side to denote by OWi

and which by IWi
, since a bipartition is an undirected pair of sets (the example

of Figure 7 might be helpful again). What is more important is that, as we will

3It should be said however, that faces of G do not correspond one-to-one to 2-cells of G;
see Section 8.
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W1 W2

C

Figure 7: Intuition of the definition of BC .

see below, BC is independent of the choice of the proof P . From all we know at
the moment however, it is defined as a function of the proof P , so let us denote
it by BC(P ).

Our next aim is to show that, in a certain way, BC(P ) behaves like the
bipartition of the faces of a plane graph induced by a cycle C: to move between
the two sides, one has to cross an edge of C. This is achieved by Lemma 4.7
below, for the proof of which we need the following. A directed edge of G is
an ordered pair (x, y) such that xy ∈ E(G). Thus any edge xy = yx ∈ E
corresponds to two directed edges.

Lemma 4.6. Let e be a directed edge of G, let W ∈ R be a relator which is
not of the form b2 = 1 for b ∈ S, and let oGW be the closed walk of G rooted at
oG induced by W . Then the number of double-rays in T[Wo] containing e equals
the number of times that oGW traverses π(e).

Proof. If oGW does not traverse π(e) then T[Wo] avoids e and we are done. So
suppose that oGW does traverse π(e). Let oGW∞ denote the two-way infinite
walk on G obtained by repeating oGW indefinitely. Let T ∈ T[Wo] be the lift
of oGW∞ to T (via π−1) sending π(e) to e, and note that T is a double-ray
containing e. Let Q be the subpath of T that starts with e and finishes when a
rotation of the word W is completed. By the definition of T[Wo], there is a 1–1
correspondence between the elements of T[Wo] containing e and the directed
edges e′ in Q that are N(R)-equivalent to e: each such element of T[Wo] can
be obtained by translating T by the automorphism of T sending e′ to e.

Now note that oGW traverses π(e) whenever its lift T traverses one of
those e′. Combined with the above observations this proves our assertion.

Lemma 4.7. For every e ∈ E(G), the bipartition BC(P ) separates 2-cells of e
if and only if e ∈ C.

Proof. Let I, O be the two elements of BC(P ) as defined above. Then, letting
1F∈I denote the indicator function of F ∈ I, we have

1F∈I = NF := |{Wi | F ∈ IWi
}| (mod 2),

and similarly
1H∈I = NH := |{Wi | H ∈ IWi

}| (mod 2).
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But
NF + NH = |{Wi | Wi separates F from H}| (mod 2)

by the construction of I, O. We claim that |{Wi | Wi separates F from H}| is
odd if and only if e ∈ E(C). Indeed, BWi

separates F from H exactly when Wi

traverses e an odd number of times by (5) and Lemma 4.6, and e is in C exactly
when there is an odd number of Wi that traverse e an odd number of times.

Since that number is even if e 6∈ E(C) and odd otherwise, our last congruence
yields NF + NH = 1 (mod 2) if and only if e ∈ E(C). Therefore, the previous
congruences imply that 1F∈I = 1H∈I if e 6∈ E(C) and 1F∈I 6= 1H∈I if e ∈ E(C),
which is our claim.

Lemma 4.7 implies in particular that BC(P ) is characterised by C alone and
is therefore independent of P , since G was defined without reference to P . Thus
we can denote it by just BC from now on. In the following, we use again the
definition of a crossing from Section 2.3.

Lemma 4.8. Let C′ be a finite path of T such that C := π(C′) is a cycle
of G, and let Q = eQ̊f be a crossing of C′ in T. Then BC separates the 2-cells
incident with π(e) from the 2-cells incident with π(f). Moreover, if Q2 is a path
of T such that π(Q2) is a cycle of G, then Q2 crosses C′ an even number of
times.

Proof. Let F be a face incident with the first edge e of Q, and let H be a face
incident with the last edge f of Q. By the definition of a crossing, we can find
a finite sequence (F =)F1, . . . , Fk(= H) of faces of T such that each Fi shares
an edge ei with Fi+1 and exactly one of the ei lies in C′: we can visit all faces
incident with Q until we reach H . By Lemma 4.7 and Lemma 4.4, BC separates
π(F1) from π(Fk). This proves our first assertion.

For the second assertion, note that π(Q2) can be written as a concatenation
of subarcs C1D1C2D2 . . . Ck = C1 where each Ci lifts to a crossing of C′ by
Q2 and each Di avoids C and shares exactly one end-edge with each of Ci and
Ci+1. We proved above that the 2-cells incident with end-edges of each Ci are
separated by BC . The same arguments imply that the 2-cells incident with end-
edges of each Di are not separated by BC . Since π(Q2) is a cycle, this implies
that Q2 crosses C′ an even number of times.

We can now prove that all pairs of identified points of D are nested, com-
pleting the proof of Theorem 4.2 started at the beginning of Section 4. Suppose,
to the contrary, there are two pairs x, x′ and y, y′ that are not nested. Let X
be the x–x′ path in D, and let Y be the y–y′ path. Then X crosses Y exactly
once since D is a tree, contradicting the last statement of Lemma 4.8 because
π(X), π(Y ) are cycles of G by the definition of D. Thus all such pairs are nested,
and our proof is complete.
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5 Planar presentations yield planar Cayley graphs:

the general case

In this section we extend our definitions and proofs from Section 4 in order
to be able to capture planar Cayley graphs without a consistent embedding.
As mentioned above, such Cayley graphs are not 3-connected. We start by
extending the definition of a planar presentation in Section 5.1, and proceed to
prove that such presentations give rise to (not necessarily 3-connected) planar
Cayley graphs in Section 5.2.

5.1 Planar presentations — the general case

We now extend the definition of a planar presentation, to capture Cayley graphs
with 2-separators that do not admit consistent embeddings.

Let again P = 〈S | R〉 be a group presentation, and define S′ as above.
A spin structure C on P consists of a cover B1, . . . , Bk of S′ (i.e.

⋃

i Bi = S′)
with the following properties

(S1) for every generator b, the number of Bi’s containing b equals the number
of Bi’s containing b−1, and

(S2) the auxiliary graph X on C ∪ S′ with s ∼ Bi whenever s ∈ Bi, is a tree.

The hinges of this spin structure are the elements of S′ that have degree at
least 2 in X ; in other words, h ∈ S′ is a hinge if h ∈ Bi ∩ Bj for some i 6= j.
Hinges of a spin structure correspond to edges of our Cayley graph G whose
two endvertices separate G.

For example, a, b are the hinges of the presentation

〈

a, b, c, d, f, g | a2, c2, d2, f2, g2, (af)2, (ag)2, abab−1gbfb−1, cbdb−1
〉

given in Figure 3, and b is the only hinge in Figure 2. The tree X of condi-
tion (S2) corresponding to the presentation of Figure 3 is shown in Figure 8.
Figure 9 shows the corresponding tree X that would result if we amalgamated
the above group with two more groups each of which being isomorphic to the
subgroup generated by b, c, d along the subgroup spanned by b.

Condition (S2) has the following important consequences:

Bi ∩ Bj is either empty or a singleton for every i 6= j, (6)

because if h, g ∈ Bi ∩ Bj then h, g, Bi, Bj span a 4-cycle in X , which cannot
happen when X is a tree, and

every Bi contains at least one hinge unless k = 1, i.e. C is the
singleton {S′},

(7)

because if each neighbour of Bi in X has degree 1, then Bi and its neighbours
form a component of X .
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Figure 8: An example: the tree X of condition (S2) corresponding to Figure 3.
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Figure 9: The tree X of condition (S2) corresponding to a variant of Figure 3.
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A general embedded presentation is a quintuple P , C, σ, τ, µ as follows; P is
a group presentation and C a spin structure on P as above; σ is a function of
i ∈ {1, . . . , k} assigning a spin (i.e. a cyclic ordering) to each Bi ∈ C;
τ : S ×{1, . . . , k} → {0, 1} encodes the information of whether each generator is
spin-preserving or spin-reversing in each Bi it participates in (if s ∈ S \Bi, then
the value of τ(s, i) will be irrelevant in the sequel); and for every b ∈ S, and
every i for which b ∈ Bi, µ(b, i) is a Bj such that b−1 ∈ Bj , and µ(b, i) 6= µ(b, m)
for m 6= i. This µ encodes the information of which pairs of Bi incident with
the two endvertices of a given hinge belong to the same block of G. The use of
S rather than S′ in the definition of µ and τ is intended: the values we assign
to each b ∈ S give us enough information about how to treat b−1.

For the time being, the data σ, τ, µ are abstract objects describing the in-
tended structure and embedding of our Cayley graph given by P . But we will,
similarly to what we did in Section 4, indeed prove that if these data satisfy
certain conditions, then the Cayley graph is indeed planar and can be embedded
in the intended way.

As an example, the presentation
〈

S | b2, a3, c3, aba−1b, cbcb
〉

of the graph of
Figure 2 can be endowed with the following data. The spin structure C consists
of two sets B1 = {b, c, c−1}, B2 = {b, a, a−1}. We can then let σ(1) = (b, c, c−1),
σ(2) = (b, a−1, a) —but any other σ would do in this case as there are only
two cyclic orderings of a set of three elements, and they are the reflection of
each other— τ(b, 1) = 0, τ(b, 2) = 1 —this is the most interesting aspect of
this graph: any b edge is spin-preserving in one of its incident blocks and spin-
reversing in the other— and µ(b, 1) = B1, µ(b, 2) = B2 —because b stabilises
the two components into which it splits the graph.

Our general definition of a planar presentation will be very similar to that of
Section 3.1, and still based on the idea of non-crossing relators. One difference
is that we have to embed the tree T = Cay

〈

S | s2, s ∈ I
〉

in R
2 more carefully:

rather than demanding every vertex to have the same cyclic ordering of its
incident colours in the embedding, which would in general make it impossible
to adhere to the spin-behaviour encoded by τ , we embed T (accumulation-free)
in R

2 in such a way that the following two conditions are satisfied. Given a
vertex x ∈ V (T) and Bi ∈ C, we write Bi(x) for the edges of x with labels in Bi.

(B1) σ is respected, i.e. for every vertex x ∈ V (T), and every Bi ∈ C, the cyclic
ordering induced on Bi(x) by our embedding coincides with σ(i) up to
reflection. Moreover, the edges of Bi(x) are consecutive in our embedding.

(B2) τ is respected, i.e. for every edge e = vw of T, and every i such that the
label s of e is in Bi ∈ C, we have 1σ(i)(Bi(v)) = 1σ(j)(Bj(w)) if and only
if τ(s, i) = 0, where Bj = µ(s, i) and 1σ(i)(Bi(v)) is 1 if the clockwise
cyclic ordering of the colours of the edges of Bi(v) coincides with σ(i) and
0 otherwise.

We repeat the definition of crossing from Section 3.1 verbatim: given a word
W , we let W∞ be the 2-way infinite word obtained by concatenating infinitely
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many copies of W . We say that two words W, Z ∈ R cross, if there is a 2-way
infinite path R of T induced by W∞ and a 2-way infinite path L induced by Z∞

such that L meets both components of R
2 \ R.

The second and final difference of our generalised definition of a planar
presentation compared to that of Section 3.1 will be an additional condition
reflecting the idea that in a planar Cayley graph of connectivity 2, we can choose
the relators in such a way that each cycle they induce is contained in a block.
Recalling that our spin structure C is intended to capture the decomposition
into blocks, the following definition should not be too surprising.

We say that a relator R is blocked with respect to C, if it satisfies the following
two properties. Firstly, for every two (possibly equal) consecutive letters st
appearing in R∞ or (R−1)∞, there is some Bi ∈ C containing both s−1, t.
Secondly, for every three consecutive letters sbt, where b is a hinge, appearing
in R∞ or (R−1)∞, if Bi is the unique element of C containing s−1, b, then µ(b, i)
contains both b−1, t, unless s = b = t and b2 ∈ R; here, the existence of such a Bi

is guaranteed by the previous requirement, and its uniqueness is a consequence
of (6) in the definition of a spin structure.

Definition 5.1. A general planar presentation is a general embedded presen-
tation such that

(P1) every relator in R is blocked with respect to C;

(P2) no two relators W, Z ∈ R cross;

(P3) for every relator R, the number of occurrences of letters t in R with
τ(t, i) = 1 (i.e. spin-reversing letters), where i is the unique value for
which s−1, t ∈ Bi for the letter s preceding t in R, is even4; here, the
symbol sn counts as |n| occurrences of s;

(P4) no relator is a sub-word of a rotation of another relator.

(We could try to omit (P4) by generalising Lemma 3.2.)
Note that a planar presentation as defined in Section 3.1 is a special case of

a general one when C consists of a single set coinciding with S′.

5.2 Proof of planarity: the general case

For a hinge h ∈ S, we let C(h) := {Bi ∈ C | h ∈ Bi} and let N(h) be the
cardinality |C(h)|. Note that |C(h)| = degX(h), where the tree X is as in (S2)
of the definition of a spin structure.

Every hinge b = xy ∈ E(T) of T labelled h naturally splits T into N(h)
subtrees: each of these subtrees contains b, it contains all edges of x with labels
in a component of X − h containing some Bi ∈ C(h) and no other edges of x,
and it contains those edges of y with labels in the component of X − h−1 con-
taining µ(h, i) and no other edges of y; moreover, each such subtree is maximal

4The existence and uniqueness of this Bi is a consequence of (P1); see the definition of
‘blocked’.
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with these properties. Let Sepb = {T1, T2, . . . , TN(h)} denote the set of those
subtrees, and note that

⋂

Sepb = {b}.

Definition 5.2. A pre-block of T is a maximal subtree A ⊆ T not separated
by any Sepb; that is, for every hinge b of T, A is contained in some element of
Sepb.

Alternatively, we can define a pre-block as a maximal subtree of T such that
for every x, y ∈ V (A), if we let s1s2 . . . sk denote the word (with letters in S) read
along the x–y path, then s−1

j−1, sj lie in a common element of C for every j > 1,

and whenever sj is a hinge, and s−1
j−1, sj ∈ Bi ∈ C, then s−1

j , sj+1 ∈ µ(sj , i).

5.3 The embedding ρ of T

Recall that our proof of Theorem 4.2 starts with an embedding of the corre-
sponding tree T respecting the spin data. In our new setup of a general embed-
ded presentation our spin data give us some restrictions but do not uniquely
determine an embedding of T, and in fact we have to be careful with our choices
in order for the proof in subsection 5.4 to work.

Recall that our general embedded presentation consists of the data P , C, σ,
τ, µ. For B ∈ C and a vertex x ∈ V (T), recall that Bi(x) denotes the edges
going out of x whose labels are in B. We claim that there is an embedding
ρ : T → R

2 satisfying all of the following (the first two were also used in the
definition of crossing relators in Section 5.1).

(ρ1) σ is respected, i.e. for every vertex x ∈ V (T), and every Bi ∈ C, the
cyclic ordering induced on Bi(x) by ρ coincides with σ(i) up to reflection.
Moreover, the edges of Bi(x) are consecutive in the spin of x induced by σ.

(ρ2) τ is respected, i.e. for every edge e = vw of T, and every i such that the
label s of e is in Bi ∈ C, we have 1σ(i)(Bi(v)) = 1σ(j)(Bj(w)) if and only
if τ(s, i) = 0, where Bj = µ(s, i) and 1σ(i)(Bi(v)) is 1 if the clockwise
cyclic ordering of the colours of the edges of Bi(v) coincides with σ(i) and
0 otherwise.

(ρ3) µ is respected: let b ∈ E(T) be a hinge, and U, W two paths containing
b contained in distinct pre-blocks containing b. Then U, W do not cross
each other (at b).

(ρ4) If x, y belong to the same N(R)-orbit (where N(R) is the normal subgroup
generated by R as in Section 2.1), and b is a hinge at x with label in
h ∈ I, and h 6= 1, then the local spin at x with respect to b coincides up to
reflection with the local spin at y with respect to the corresponding hinge
labelled h.

Here, the local spin with respect to a generator h ∈ S′ at a vertex x is the cyclic
ordering on NX(h) induced by the embedding, where X denotes the tree from
Section 5.1.
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If G is a planar Cayley graph, then the results of Section 6.2 imply that if
we embed the universal cover T of G into R

2 in a way that locally imitates an
embedding of G, then all above properties are satisfied.

Properties (ρ1) to (ρ3) are not hard to satisfy: we can embed T by starting
with the star E(o) and then recursively attaching the star E(v) of a new vertex to
the subtree embedded so far, and it is always possible to embed E(v) without
violating any of (ρ1)–(ρ3). In fact we could have several ways to extend the
current embedding to E(v), arising by ‘permuting’ those Bi(v), 1 ≤ i ≤ k that
do not contain the edge of v embedded before, and by ‘reflecting’ any such Bi(v).
These choices are in direct analogy to the flexibility we have in the embedding
of any planar Cayley graph of connectivity 2: permuting the Bi(v) corresponds
to ‘activating’ a hinge b incident with v to exchange the order in which blocks
separated by b are embedded. Reflecting a Bi(v) corresponds to flipping such a
block around.

These choices mean that (ρ4) will be violated unless we make them carefully.
To achieve this, recall from (S2) of Section 5.1 that the auxiliary graph X on
C ∪ S′ with s ∼ Bi whenever s ∈ Bi, is a tree. Let Xℓ denote the tree obtained
from X by attaching to each vertex v in S′ ⊂ V (X) a new leaf, which leaf we
denote by ℓ(v).

Fix an embedding χ : Xℓ → R
2 of that tree with the following two properties.

Firstly, the spin of any vertex B ∈ C of Xℓ coincides with σ(B) up to reflection.
Recall that N(v) = NG(v) denotes the neighbourhood of v in a graph G.

For every hinge h ∈ S \ I, note that µ(h, ·) defines a bijection between NX(h)
and NX(h−1) by the definition of µ. We extend that bijection to NXℓ(h) and
NXℓ(h−1) by mapping ℓ(h) to ℓ(h−1). The second property we impose on χ is
that the spin it induces on NXℓ(h) coincides up to reflection with the µ-image
of that spin induced by χ on NXℓ(h−1), and this holds for every such h.

For an involution hinge h ∈ I, µ(h, ·) still defines a bijection between NX(h)
and NX(h−1) = NX(h), and we do not impose any requirement on χ as we did
for h ∈ S \ I. Instead, we let χ embed NXℓ(h) with an arbitrary spin φ = φ(h),
and define

Definition 5.3. The dual spin of φ is the cyclic ordering on NXℓ(h) obtained
by composing φ with µ(h, ·).

To satisfy (ρ4), we will construct ρ in such a way that the local spin with
respect to h at every vertex in a given N(R)-orbit either always coincides with
φ or it always coincides with the dual of φ. We remark that we cannot construct
ρ algorithmically since we cannot predict which vertices of T are in the same
N(R)-orbit; we can only prove the existence of such a ρ abstractly.

We think of this χ as providing instructions about how to construct ρ. As
an example, if the set I of involutions in S is empty, then every vertex of T will
have the same spin up to reflection in ρ, and that spin can be read from χ by
contracting all non-leaves of Xℓ into a single vertex; that vertex has the right
spin in the resulting star.

Let o = x1, x2, . . . be an enumeration of V (T) such that {x1, . . . , xk} spans
a connected subgraph for all k. We will construct ρ by embedding the xi one at
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a time as indicated above. To begin with, we embed one edge e0 incident with
x1 = o in the 0th step. From now on, each step i begins with some vertices being
embedded fully, i.e. with all incident edges, and some vertices having exactly
one of their edges embedded in the current embedding ρi−1 of some subtree
of T. Let j be the smallest index such that xj has exactly one of its edges ei

embedded in ρi−1. We may assume without loss of generality that j = i by
changing our enumeration.

We extend ρi−1 to ρi by embedding the remaining edges incident with xi.
This will be done by the performing the following recursive procedure on Xℓ to
obtain an embedded star Si with its edges labelled by S′, and then embedding
NT(xi) with the same spin as Si.

To begin with, let ℓ be the unique leaf of Xℓ such that ℓ = ℓ(s) for the
label s ∈ S of the edge ei considered as outgoing from xi. We distinguish the
following cases.

Case 1: If s 6∈ I, and s is a hinge, then we embed the star N(s) of s in
Xℓ into R

2 so that the spin of s in this embedding coincides with the spin of
s in χ up to reflection; there are exactly two possibilities for this —because of
reflection— and we choose the unique one guaranteeing (ρ3): unless we are in
step i = 1, in which case we just embed N(s) with the spin of s in χ without
reflection, the other endvertex x of ei has already been fully embedded, and the
local spin with respect to ei (which now label s−1 as seen from x) at x coincides
up to reflection with that induced on N(s−1) by χ by induction hypothesis.
We use the possibility to reflect or not in order to guarantee that the clockwise
ordering of the Bi in N(s) coincides with the counterclockwise ordering of the
µ(s, i) induced by the spin of x in the embedding ρi−1.

Case 2: If s 6∈ I, and s is not a hinge, then it has exactly two neighbours
in N(s) (ℓ(s) and the unique B ∈ C containing s), and so reflection does not
change the spin; we just embed N(s) in the unique possible way.

Case 3: If s ∈ I, and s is not a hinge, then again we just embed N(s) in
the unique possible way.

Case 4: Finally, if s ∈ I, and s is a hinge, then we follow a similar approach
to the s 6∈ I case, except that we now do not insist that the spin of s in the
embedding of N(s) we produce coincides with the spin of s in χ up to reflection;
we just make sure that (ρ3) is satisfied, by embedding N(s) so that the clockwise
ordering of the Bi in N(s) coincides with the counterclockwise ordering of the
µ(s, i) induced by the spin of x in the embedding ρi−1; again this is well-defined
unless we are in step i = 1, in which case we just embed N(s) with the spin of s
in χ.

Once N(s) is embedded as above, we set Xℓ
0 := N(s) and proceed by the

following recursive procedure, which produces embeddings of an increasing se-
quence Xℓ

1, . . . , X
ℓ
k(= Xℓ) of subtrees of Xℓ to embed the rest of Xℓ.

For j = 1, 2, . . ., pick a leaf vj of Xℓ
j−1 which is not a leaf of Xℓ; if no such

leaf exists then Xℓ
j−1 = Xℓ and we stop. Then we extend the current embedding

of Xℓ
j−1 by embedding N(vj) in such a way that the spin of vj coincides up to

reflection with that induced by χ, unless vj ∈ I ⊆ S and vj 6= 1, in which
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case we do the following. Let yi = xivj be the vertex of T joined to xi by the
edge labelled vj . If no vertex of T from the N(R)-orbit of xi or yi has been
embedded yet by ρi, then we embed N(vj) with local spin given by χ. If some
vertex of T from the N(R)-orbit of xi has already been embedded by ρi, we
embed N(vj) with same spin up to reflection as we used so far for all xj , j < i,
that are N(R)-equivalent to xi; (we make this choice in order to satisfy (ρ4)).
Otherwise, we embed N(vj) with the dual spin —recall Definition 5.3— up to
reflection of the spin we used so far for all xj , j < i that are N(R)-equivalent to
yi. Note that these choices ensure that N(vj) is embedded with the same spin
up to reflection —namely, either that induced by χ or its dual— for all vertices
in an N(R)-orbit, where we use the fact that, as vj 6= 1, xi and yi are never in
the same orbit.

In all cases, we still have the option of reflecting. If vj ∈ N(s), which
means that vj ∈ C and vj contains the label s of ei, then we have to worry
about satisfying (ρ2); but one of the two choices we have due to the option of
reflecting will satisfy (ρ2) for e = ei and Bi = vj and we make that choice. (If
vj 6∈ N(s) then we do not worry about µ and τ ; the other endvertices of the
edges incident with xi will make sure that this data is respected, just as we were
careful above when embedding N(s) for the label s of ei.)

Let Xℓ
j := Xℓ

j−1 ∪ N(vj).

The procedure finishes when all of Xℓ has been embedded. Then, we contract
all non-leafs of Xℓ to obtain the desired embedded star Si out of that embedding.
Finally, we embed NT(xi) with the same spin as Si to extend ρi−1 to ρi.

Let ρ =
⋃

ρi be the limit of the ρi. We claim that ρ satisfies conditions
(ρ1)–(ρ4). Indeed, if any of them is violated, then there is a first step in the
above procedures violating it. But we designed all steps so that none of those
conditions are violated: condition (ρ1) is never violated because we chose χ so
that the spin of every Bi ∈ C coincides with σ(i) up to reflection, which implies
that the corresponding edges of xi appear in that cyclic order up to reflection in
Si, and therefore in ρ, by the construction of the embedded star Si. Condition
(ρ2) is never violated because of the way we embedded N(vj) for vj ∈ N(s) in
the construction of Si. Condition (ρ3) is never violated because of the way we
embedded N(s) in the first step of the construction of Si. Finally, condition
(ρ4) is never violated because of the way we embedded N(vj) for vj ∈ I in the
construction of Si.

In fact, we obtain a slightly stronger property than (ρ4), and this will be
useful later:

Condition (ρ4) remains true if we define local spin using Xℓ instead
of X .

(8)

5.4 Planarity of blocks

A block of G is an image π([A]) under the covering map π, where A denotes
a pre-block of T and [A] := {x ∈ V (T) | x ≃N y for some y ∈ A} denotes its
N(R)-equivalence class.
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Note that every block of G is connected: given vertices x, z in a block K =
π([A]), we can find x′, z′ ∈ A (and not just in the N(R)-orbit of A) with
π(x′) = x, π(z′) = z, and so the x′–z′ path P in A yields the x–z path π(P )
in K.

Lemma 5.4. Every block of G is planar.

In fact, we will prove a stronger statement similar to Theorem 4.2, namely,
that every block admits an embedding into R

2 respecting σ and τ .
The proof of this follows the lines of our proof of the planarity of G in

the consistent case (Theorem 4.2), and we assume that the reader has already
understood that proof. Here we will point out the differences.

Let K be a block of G. Let D be a fundamental domain of K in T; that
is, D is a subset of T containing exactly one point from each N(R)-orbit O
such that π(O) ∈ K. The proof of Lemma 4.1 can be repeated to prove that
D can be chosen to be connected since K is. Moreover, we may still assume
without loss of generality that D is a union of stars as we did in (2). Thus the
closure D of D in T is still the union of D with all midpoints of edges that have
exactly one half-edge in D, and K can be obtained from D by identifying pairs
of N(R)-equivalent midpoints. As in the proof of Theorem 4.2, we will prove
that any two pairs of such N(R)-equivalent midpoints are nested in the sense
of Section 4.2.

In order to guarantee this nestedness, we will have to embed T appropri-
ately; in our general setup, T cannot be embedded consistently as in the case
of special planar presentations, and this is why we are now only trying to prove
the planarity of a block, and not of all of G at once.

Adhering to the notation of Section 4.2, for a relator W , we still use Wo to
denote the closed walk oGW in G induced by W at oG, and let TW := π−1(Wo),
which is a union of a set of double-rays of T, which set we denote by T[Wo].

Recall that in Section 4.2 we introduced a relation F ∼ H , meaning that any
F–H path PFH in T

∗ crosses TW an even number of times. We will introduce
a similar relation now, but we have to refine its definition due to the fact that
our embedding is only consistent when restricted to a pre-block.

Recall we have chosen an embedding ρ of T in Section 5.3. For a pre-block
C of T, we define a super-face of C to be a face of the embedding σ(C) of C
inherited by ρ. The super-faces of T are the super-faces of all of the pre-blocks
of T. Note that a super-face can contain several faces of T.

We will define our relation ∼K , or just ∼ if K is fixed, on the set of super-
faces of pre-clusters contained in π−1(K). Given two super-faces F, H lying
in pre-clusters contained in π−1(K), let T[Wo]K denote the subset of T[Wo]
contained in π−1(K). Now pick two faces F ′ ⊆ F, H ′ ⊆ H contained in the
super-faces F, H , and write F ∼ H if for each F ′–H ′ path PF ′H′ in T

∗, the
number of crossings Cr(T[Wo]K , PF ′H′) of T[Wo]K by PF ′H′ (as defined in Sec-
tion 4.3.1) is even. Note that Cr(T[Wo]K , PF ′H′) is independent of the choice
of PF ′H′ by the same arguments we used to prove (4). Therefore, it is also in-
dependent of the choice of F ′, H ′, because if F ′′ is another face contained in F ,
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then the F ′–F ′′ path of T
∗ contained inside F crosses no element of T[Wo]K , be-

cause a super-face of any pre-cluster C in π−1(K) meets no element of T[Wo]K
by the definitions.

5.4.1 The bipartitions {I, O}

An important part of our planarity proof in the consistent case was that ∼ was
invariant under the action of N(R) (Lemma 4.4). Below (Lemma 5.6) we prove
an analogous statement for the general case, namely that the restriction of ∼
to the super-faces of the pre-blocks in π−1(K) is N(R)-invariant.

The rest of our proof is almost identical to that of Theorem 4.2, except that
we are now working with the block K of G rather than the whole graph.

As in Section 4.3.1, the equivalence relation ∼, now restricted on the set
of super-faces F of π−1(K), uniquely determines a bipartition {I, O} on F
by choosing one super-face F ∈ F and letting I := {H ∈ F | H ∼ F} and
O := F \ I.

Next, we adapt the material of Section 4.3.1 to our new setup. For every
super-face F in π−1(K), glue a copy of the domain F ⊂ R

2 to K by identifying
each point of ∂F with π(∂F ). If F, F ′ are equivalent face boundaries, in other
words, if π(∂F ) = π(∂F ′), then we identify the corresponding 2-cells glued
onto K. Let K2 denote the set of these 2-cells, and let K = K ∪K2 denote the
2-complex consisting of K and these 2-cells. Notice the similarity between G2

and G as defined in Section 4.3.2 and K2 and K.
Lemma 5.6 now means that if Z is a closed walk of G (here we really mean G

and not just K) induced by a relator, then {I, O} induces a bipartition π[I], π[O]
of K2. Let us still denote this bipartition of K2 by BZ .

We extend that bipartition to an arbitrary cycle in K just like in Sec-
tion 4.3.1: given a cycle C of K, we choose a ‘proof’ P of C; that is, a sequence
of closed walks Wi, 1 ≤ i ≤ k of G induced by rotations of relators such that
C =

∑

1≤i≤k Wi. The existence of such a sequence (Wi) is not affected by the
fact that we are focusing on a subgraph K; the Wi are allowed to be arbitrary
relators. For every Wi, let IWi

, OWi
denote the two sides of the bipartition

BWi
of K2 from above, and define the bipartition BC := {IC , OC} of K2 by

IC := △iIWi
and OC := G2△IC .

Lemmas 4.6, 4.7 and 4.8 remain true and can be proved with the same
arguments, except that we replace G by K everywhere. As in the finish of the
proof of Theorem 4.2, the last lemma says that any two cycles of K cross each
other an even number of times, and therefore any two pairs of identified points
of D are nested.

This completes the proof of Lemma 5.4, except that we still have to prove
the two lemmas we used above:

Lemma 5.5. For b ∈ I with b = 1, and any relator W in R, the number of
elements of T[Wo] containing any edge e labelled by b is even.
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Proof. Let T be an element of T[Wo] containing e. The automorphism β of T

exchanging the two endvertices of e maps T to an element T ′ of T[Wo] because
b = 1 and so the two end-vertices of e are N(R)-equivalent. Note that T 6= T ′

even if T, T ′ contain the same vertices, because they have opposite directions
(remember that double-rays are directed by definition). Note that β(T ′) = T .
Therefore, β establishes a bijection without fixed points on the elements of T[Wo]
containing e, which means that the number of those elements is even.

Lemma 5.6. For every block K of G, the restriction of ∼K to the super-faces
of π−1(K) is invariant under the action of N(R) on T.

Proof. We will adapt the proof of Lemma 4.4. Since K is fixed, let us just write
∼ instead of ∼K .

We need to prove that if F, H are super-faces of π−1(K) in the same orbit
of N(R), then F ∼ H . Again, we may assume that there are vertices x, y in the
boundaries of F, H respectively, such that y = xwRw−1 for some word w and
some relator R ∈ R: by the definition of the normal closure N(R), if we can
prove F ∼ H in this case, we can prove F ∼ H for every two F, H in the same
orbit of N(R).

Let αFH be the automorphism of T mapping x to y.
Decompose the path Q := xwRw−1 into (inclusion-)maximal subpaths con-

tained in a pre-block. Then we can write

Q = P1 ∪ P2 ∪ . . . ∪ Pk(= P ′
k) ∪ P ′

k−1 ∪ . . . ∪ P ′
1,

where the Pi, P
′
i are those maximal subpaths, P ′

i is N(R)-equivalent to Pi for
every i < k, and Pk contains the subpath of Q induced by R (such a Pk exists
because every relator R is blocked). Note that the intersection of any two
subsequent Pi or P ′

i is either a hinge separating the corresponding pre-blocks,
or a single vertex incident with such a hinge.

Since we are free to choose any F–H walk PFH in T
∗ to decide whether

F ∼ H , we will choose a convenient one, which we construct now.
Recall that every Pi, i > 1 starts and ends at hinges, which we will call

hi−1, hi, separating its pre-block from the pre-blocks containing Pi−1, Pi+1 re-
spectively; here hi−1, hi may or may not be contained in Pi as end-edges.

Let Ci be the pre-block containing Pi and let C′
i be the pre-block contain-

ing P ′
i .

Let Πi, k > i > 1, be an (inclusion-)minimal path in T
∗ joining a super-

face incident with hi−1 to a super-face incident with hi —where we say that a
super-face F is incident with an edge if the boundary of F contains that edge—
such that all vertices of Πi are faces sharing a vertex with Pi, and Πi does not
intersect Pi (at a midpoint of any edge); see Figure 10. Define Π′

i similarly
using P ′

i instead of Pi. Note that there are exactly two such paths Πi to choose
from, one on either side of Pi; it doesn’t matter much which of the two we will
choose, but let us make ‘the same’ choice for both Πi and Π′

i; more precisely,
we ensure that

Πi crosses an edge e of Ci (incident with Pi) if and only if Π′
i crosses

the edge αFH(e) of C′
i.

(9)
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This is possible because ρ embeds Ci the same way as C′
i up to reflection,

and Πi is uniquely determined once we choose which of the two super-faces
of Ci incident with hi we want it to contain; by choosing Π′

i to contain the
corresponding super-face incident with h′

i, our claim is satisfied. Note that Πi

does not cross hi, because if it did we could shorten it.
For i = 1 we let Π1 be a minimal path in T

∗ joining F to a super-face incident
with h1, and otherwise be defined similarly to Πi, k > i > 1. Define Π′

1 similarly.
Finally, let Πk = Π′

k be a minimal path in T
∗ joining a super-face incident with

hk−1 to a super-face incident with αFH(hk−1) without crossing Pk.
Let ⊔i, k > i ≥ 1 be a path in T

∗ joining the last vertex of Πi to the
first vertex of Πi+1 such that all vertices of ⊔i are faces sharing a vertex with
Pi ∩Pi+1, and define ⊔′

i similarly for Π′
i, Π′

i+1; there are several choices for this
⊔i, so let us make it uniquely determined: if Pi ∩ Pi+1 is a single vertex, then
there are two candidates, and we always choose the one crossing hi. If Pi ∩Pi+1

is the hinge hi, then there are up to four choices, and we choose the one that
crosses hi and is contained in the two super-faces of Ci incident with hi and in
the two super-faces of Ci+1 incident with hi.

It follows from the choice of ⊔i that it behaves well with respect to elements
of C:

If ⊔i meets an edge in Bi(v) \ {hi} (where Bi ∈ C) where the vertex v
is incident with hi, then ⊔i meets every edge of Bi(v).

(10)

A similar but slightly stronger is true for Πi:

If Πi meets an edge lying inside some super-face of Ci, then Πi visits
all faces incident with Pi inside that super-face.

(11)

Indeed, Πi is by definition a minimal path joining certain super-faces of Ci;
therefore, it crosses any super-face either completely or at a single boundary
edge.

Finally, we obtain PFH by concatenating all the Πi,⊔i, Π
′
i and ⊔′

i:

PFH := Π1 ∪ ⊔1 ∪ Π2 . . . ∪ ⊔k−1 ∪ Πk(= Π′
k) ∪ ⊔′

k−1 . . . ∪ ⊔′
1 ∪ Π′

1.

We need to check that Cr(T[Wo]K , PFH) is even. We will do so by showing
that the contributions of the Πi to Cr(T[Wo]K , PFH) cancel with those of the
Π′

i, and the contributions of the ⊔i cancel with those of the ⊔′
i.

Let T be an element of T[Wo]K with odd cr(T, PFH) —which as in Sec-
tion 4.3.1 denotes the number of crossings of T by PFH ; only such T matter.
Let T ′ := αFH(T ).

Let us first consider the total number of crossings of such T by the subpaths
Πi, Π

′
i, i < k, of PFH .

If T is contained in Ci, then cr(T, Πi) = cr(T ′, Π′
i) by (9).

If T is not contained in Ci, then Πi crosses T an even number of times (0
or 2): this is easy to see when T ∩ Pi is a single vertex v by applying (11) to
that vertex. The situation is slightly subtler when T ∩ Pi is a hinge g —no
other option is possible as distinct pre-blocks intersect at an edge at most by
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Figure 10: The path PF H (dashed) in the proof of Lemma 5.6 with the paths Πi, Π′
i,

⊔i, ⊔
′
i.

construction. In this case, we remark that the pre-block D containing T lies in
some super-face of Ci by the construction of ρ, and again Πi must cross all faces
incident with g inside that super-face by (11), therefore crossing both edges of
T incident with g.

Finally, Πk = Π′
k has an even contribution to Cr(T[Wo]K , PFH) by the proof

of Lemma 4.4.
These facts combined show that

∑

T∈T[Wo]K
cr(T,

⋃

i Πi) is even.

Next, we consider the total number of crossings of such T by the subpaths
⊔i,⊔′

i. Suppose cr(T,⊔i) is odd. Then it must equal 1 as ⊔i is too short to
cross a double-ray three times, where we used property (ρ3) of our embedding
ρ that pre-blocks do not cross each other.

Let vi be the last vertex of Pi and v′i the last vertex of P ′
i . If the local

spin at vi with respect to hi coincides up to reflection with the local spin at
v′i with respect to h′

i, then cr(T,⊔i) = cr(T ′,⊔′
i) (here, local spin refers to Xℓ

rather than X ; recall (8)). Therefore, the total contribution of the pair T, T ′ to
Cr(T[Wo]K , PFH) is even and can be ignored.

If those local spins do not coincide up to reflection, then by the choice of ρ
(ρ4), the label of hi is an involution b ∈ I with b = 1. In this case however,
Lemma 5.5 applies, yielding that the set H of elements of T[Wo]K containing
hi is even. We claim that T ∈ H (i.e. hi ⊂ T ): this follows from cr(T,⊔i) = 1,
the fact that ⊔i only contains faces of T incident with hi by its construction,
and (10). Moreover, (10) also implies that cr(R,⊔i) = 1 for every other R ∈ H .
But as |H | is even, the total contributions

∑

R∈H cr(R,⊔i) of its elements are
even and can be ignored as well.
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Summing up, we proved that both

∑

T∈T[Wo]K

cr(T,
⋃

i

Πi) and
∑

T∈T[Wo]K

cr(T,
⋃

i

⊔i)

are even. Therefore Cr(T[Wo]K , PFH) is even as well, since it is the sum of
those two sums by definition.

5.5 From the planarity of blocks to the planarity of G

The main aim of this section is to prove

Lemma 5.7. Every hinge of G separates its incident blocks.

Proof. The statement is equivalent to the statement that every cycle of G crosses
each hinge b an even number of times, where the number of crosses of b by C is
the maximum number of edge disjoint subpaths Pi of C such that b separates
each Pi into two (possibly trivial, but non-empty) subpaths that lie in distinct
blocks.

To prove the latter, let C = c0c1 . . . ck with ck = c0 be a cycle, and let
L = t0t1 . . . tk be a lift of C to T via π−1. Fix a hinge b. We may assume without
loss of generality that c0 is not a vertex of b. Let P = w1R1w

−1
1 . . . wkRkw−1

k

be a proof of C in our presentation.
Since c0 6∈ b and since the end vertices of wiRiw

−1
i are N(R)-equivalent

to c0, any crossings of b by P occur inside the subpaths wiRiw
−1
i and not when

switching from wi−1 to wi. We have no crossings of b inside any Ri because our
relators are blocked. Moreover, any crossings of b inside a wi are paired up by
crossings of b inside w−1

i . Thus the number of crossings of b by P , and hence
by C, is even.

This, combined with the planarity of blocks we proved in the previous sec-
tion, easily implies the planarity of G:

Theorem 5.8. Let G be the Cayley graph of a general planar presentation.
Then G is planar.

Proof. Combining Lemma 5.4 with Lemma 5.7 easily yields that G is planar.
Indeed, we can embed G one block at a time: since incident blocks share a hinge
only by Lemma 5.7, if we have already embedded a block A meeting a block B
at a hinge b, then it is easy to embed B inside one of the two faces (we are free
to choose) of the current embedding whose boundary contains b.

6 Every planar Cayley graph admits a general

planar presentation

In this section we prove the converse of Theorem 5.8, namely that every planar
Cayley graph admits a general planar presentation.

36



We start by showing that every planar Cayley graph of connectivity 1 can
be extended into a 2-connected one using redundant generators; see Lemma 6.1
below. We then show that every 2-connected planar Cayley graph admits a
general planar presentation in Section 6.2. After this is achieved, we deduce
that planar Cayley graphs of connectivity 1 admit general planar presentations
too, by removing the redundant generators.

6.1 Planar Cayley graphs of connectivity 1

Lemma 6.1. Every planar, locally finite, Cayley graph of connectivity 1 can
be extended into a planar 2-connected, locally finite, Cayley graph by adding
redundant generators.

Proof. We proceed by induction on the number of blocks incident with the ver-
tex o, where a block means a maximal 2-connected subgraph in this subsection.
Pick two such blocks B, C, an edge from B corresponding to some generator
b, and an edge from C corresponding to some generator c. Introduce a new
redundant generator x and the relation x = b−1c. Clearly, the resulting Cayley
graph G′ obtained from the original Cayley graph G by adding the generator x
has less blocks incident with o than G.

We claim that G′ is still planar. If none of b2 or c2 is a relator, then this is
an easy exercise, based on the observation that G can be embedded in such a
way that for every vertex v, the edges labelled b and c emanating from v lie in
a common face boundary.

If however b2, say, is a relator, then it is a bit harder to avoid that the two
x edges emanating out of o and ob cross in our embedding. Still, the following
observation will help us embed G′ in this case (and it is also applicable to
the case where none of b2 or c2 is a relator). A good example to bear in mind
throughout the rest of the proof is where G is the Cayley graph Cay

〈

b, c | b2, c2
〉

of the free product of two copies of Z/2Z, and x = bc.

Let H0 be the graph consisting of a single vertex, and suppose that for
every i ∈ N, the graph Hi is obtained from Hi−1 by attaching a planar

graph Pi to Hi−1 by identifying some vertex pi ∈ V (Pi) with some
vertex hi ∈ V (Hi−1), and possibly joining a neighbour p′i of pi to a

neighbour h′
i of hi with an edge. Then

⋃

i≥0 Hi is planar.

(12)

To prove this, we first use induction to show that Hi is planar: given an
embedding of Hi−1, observe that p′i, pi lie in a common face Fi since they are
neighbours. Likewise, h′

i, hi lie in a common face of Pi, and we may assume
that that face is the outer face by embedding Pi appropriately. We now embed
Hi by drawing Pi inside Fi and, if there is a h′

i − p′i edge in Hi, joining h′
i to p′i

with an arc in Fi that avoids the rest of the graph.
The fact that

⋃

i≥0 Hi is planar now follows from a standard compactness
argument.
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To complete our proof, we will show that our G′ can be constructed as
described in (12).

Indeed, let H be the set of blocks (i.e. maximal 2-connected subgraphs) of G,
and let H1, H2, . . . be an enumeration of H such that for i > 1, Hi is incident
with some Hj for j < i. Then G′ has the claimed structure, with the x-edges
playing the role of the h′

i − p′i edges.

6.2 Cayley graphs of connectivity 2

In this section, we will complete the proof of our main theorem by showing that
every locally finite 2-connected planar Cayley graphs admits a general planar
presentation.

A cut in a graph G is a set of vertices C spanning a connected subgraph
of G, such that the boundary

∂C := {x ∈ V (G) \ C | x has a neighbour in C}

of C is finite and C ∪ ∂C 6= V (G). The order of C is the cardinality of ∂C.
We call two cuts C, D nested if, setting C∗ := V (G)\C and D∗ := V (G)\D,

one of the four relations holds:

C ⊆ D, C ⊆ D∗, C∗ ⊆ D, C∗ ⊆ D∗.

We call a set of cuts nested, if every two of its elements are nested.

Definition 6.2. Given a nested set C of cuts, a block is a maximal subgraph H
such that for every cut C, we have either V (H) ⊆ C ∪ ∂C or V (H) ⊆ C∗ but
not both.

To obtain a torso of a block H from H we add all edges xy such that
{x, y} ⊆ V (H) is a boundary of a cut in C.

Tutte [27] showed that every finite 2-connected graph G has an Aut(G)-
invariant nested set C of cuts of order 2 whose torsos are either 3-connected or
cycles. This theorem also holds for locally finite graphs, see Droms et al. [8].
Nevertheless, we will refer to it as Tutte’s theorem. To each such nested set of
cuts, there is an associated tree T that admits a bijection from V (T ) to the
blocks and boundaries of cuts in C such that, for any t1, t2 ∈ V (T ) and any t on
the unique t1–t2 path in T , the image of t separates the images of t1 and t2.

5

We call this tree T the decomposition tree of the set of cuts.
A 2-separator is the boundary of a cut of order 2. Lemma 6.3 allows us to

assume that all 2-separators of G are joined by an edge, i.e. they are hinges in
the sense of Section 5.1. Given two Cayley graphs G, H , we call G a Tietze-
supergraph of H if there are presentations 〈SG | RG〉 of Γ(G) and 〈SH | RH〉
of Γ(H) with G = Cay 〈SG | RG〉 and H = Cay 〈SH | RH〉 and with SG ⊇ SH

and RG ⊇ RH .

5Readers that are familiar with tree-decompositions of graphs might notice that this just
says that for every nested set of cuts, we find a tree-decomposition of the graph whose parts
are the blocks and boundaries of cuts.
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Lemma 6.3. Every planar 2-connected Cayley graph G has a planar Tietze-
supergraph H in which every pair of vertices that separates H is connected by
an edge. In addition, the new edges are labelled by a new redundant generator.
(Moreover, if G is locally finite, then so is H.)

Proof. To begin with, pick a Γ(G)-invariant nested set C of cuts of order 2.
This set exists due to Tutte’s theorem mentioned above. For every pair of non-
adjacent vertices x, y such that one component of G − {x, y} lies in C, we add
a new redundant generator a and relation a = x−1y. Let us show that the
nestedness of C implies that we do not lose planarity.

Note that every 2-separator lies on the boundary of some face. So if we join
x1 and y1 by a new edge and also want to join x2 and y2, then the only reason
why we cannot do this is because the edge x1y1 separates the face on whose
boundary the vertices x2 and y2 lie. So, originally, all four vertices x1, x2, y1, y2

are distinct and lie on a boundary C of some face F in this order (either clockwise
or anticlockwise). For i = 1, 2, let Pi be an xi–yi path whose inner vertices lie
in a component of G−{xi, yi} that avoids xj and yj for j 6= i. As the two paths
Pi lie outside of F , the path P2 connects a vertex in the inner face of P1 + y1x1

to one in its outer face, which is impossible due to the Jordan curve theorem.
This proves that we can indeed add the aforementioned redundant generators
and relations without losing planarity.

Since every vertex has only finitely many neighbours and every two of them
can be separated by only finitely many 2-separators (see e.g. [26, Proposition
4.2]), the resulting Cayley graph G′ is still locally finite.

Call a graph well-separated if it is 2-connected and every 2-separator is joined
by an edge.

Theorem 6.4. Every planar locally finite Cayley graph G with κ(G) = 2 admits
a general planar presentation.

Proof. By Lemma 6.3, we may assume that G is well-separated. Let C be a
Γ(G)-invariant nested set of cuts of order 2 as in Tutte’s Theorem. Let Bo be
the set of blocks (in the sense of Definition 6.2) that contain the vertex o. For
B ∈ Bo, let SB be the set of those generators s ∈ S ∪ S−1 such that the edge
with label s starting at o lies in B. Then S ∪ S−1 is covered by the set of SB.
We fix an embedding ρ of G in R

2, and endow every SB with the cyclic order
induced by ρ at o. Let B′

o ⊆ Bo be maximal such that no two distinct B, B′ ∈ Bo

are of the form B = g(B′) for any g ∈ Γ(G). We can apply Theorem 3.4 to each
B ∈ B′

o to obtain a set DB of cycles that generates the cycle space of B, and is
invariant under the stabiliser of B in Γ(G). Then it is easy to see that

D :=
⋃

B∈B′

o

g∈Γ(G)

g(DB)

generates the cycle space of G. Let RD be the set of words corresponding
to cycles in D. Easily, 〈S | RD〉 is a presentation of Γ(G). Once more, we
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use Tietze-transformations to obtain a finite subset R ⊆ RD with 〈S | RD〉 =
〈S | R〉, which is possible as Γ(G) is finitely presented (Droms [7, Theorem 5.1]).
To see that the set C := {B1, . . . , Bn} := {SB | B ∈ Bo} is a spin structure
of P := 〈S | R〉, it remains to show that the graph T := (C ∪ S′, E), where
xy ∈ E if and only if x ∈ y or y ∈ x, is a tree.

Let us suppose that T is not a tree. Obviously, T is connected. So it
contains some cycle S1s1 . . . SmsmS1 with Si ∈ C and si ∈ S′. For each i ≤ m,
let B(Si) ∈ Bo be such that Si = SB(Si). As each element of Bo is a block, there
is some path Pi in Si connecting the end vertices of si−1 and si distinct from o
(with s0 = sm). The concatenation of all these paths Pi is a cycle C in G that
crosses all hinges si precisely once as Si 6= Si+1 (with Sm+1 = S1). But this is
not possible as each cycle, and hence also C, must lie in a unique block of G.

For i ≤ n, let B(i) be that element of Bo with SB(i) = Bi. For every hinge
b ∈ S incident with o and every i ≤ n with b ∈ Bi, let µ(b, i) be that Bj with
b(B(i)) = B(j). So we have b−1 ∈ Bj . Let σ(i) be the spin of Bi at o. To define
whether every generator is spin-preserving or spin-reversing in each element of
the spin-structure (it participates in), we remember that the blocks —being
either 3-connected or cycles— have a unique embedding in the plane. So for
s ∈ S and i ≤ n, we define τ(s, i) to be 0 if s is spin-preserving in B(i) and 1
otherwise. (Note that τ is also defined if s /∈ Bi.) Clearly, (P , C, σ, µ, τ) is a
general embedded presentation.

As every element of D lies in a unique block, every R ∈ R is blocked with
respect to C by definition, and the number of spin-reversing generators in R is
even. As D is nested, it is easy to check that no two relators cross. The fact that
no cycle is a subgraph of any other cycle implies that no relator is a sub-word
of a rotation of another relator, and hence our general embedded presentation
is a general planar presentation.

With an argument similar to the proof of Corollary 3.5, we obtain:

Corollary 6.5. Every planar well-separated Cayley graph G with κ(G) = 2 is
the 1-skeleton of an almost planar Cayley complex of Γ(G).

6.3 Consistent embeddings lead to special planar presen-

tations

In the previous section, we have seen that 2-connected planar Cayley graphs ad-
mit general planar presentations. However, if the Cayley graph has a consistent
embedding, we obtain a bit more even for 1-connected graphs:

Theorem 6.6. Every planar Cayley graph with a consistent embedding admits
a special planar presentation.

Proof. Let G be such a graph. First note that, by repeating the arguments of
the proof of Lemma 6.3, we can join the two vertices of any 2-separator {x, y}
by a new edge whenever xy /∈ E(G) and G−{x, y} has two components C with
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∂C = {x, y}, while keeping the embedding consistent. So we may assume that
every maximal 2-connected subgraph of G is well-separated.

Let B a set of blocks of the maximal 2-connected subgraphs of G consisting
of one block from each Γ(G)-orbit. As before, Theorem 3.4 gives us for each
B ∈ B a nested set of cycles DB, invariant under the stabiliser in Γ(G) of B,
generating the cycle space of B. Let RB be the set of words corresponding to the
cycles of DB. As above, Tietze-transformations give us a finite R ⊆

⋃

B∈B RB

such that P = 〈S | R〉 is a finite presentation of Γ(G), where S is the generating
set of G.

If we let σ be the spin of one fixed vertex x and τ(s) = 0 if the edge from x
labelled s is spin-preserving and τ(s) = 1 otherwise, then (P , σ, τ) is a special
planar presentation of Γ(G). Indeed, nestedness of the cycles in DB implies that
the corresponding words are non-crossing, the fact that they are cycles implies
that no relator is a subword of any other relator, and the embedding implies
that every relator contains an even number of spin-reversing letters.

7 Conclusions

We now put the above results together to prove the statements of the introduc-
tion.

Let CC(P) denote the Cayley complex of a presentation P . Call a map
ρ : CC(P) → R

2 consistent if its restriction to Cay(P) is consistent. Call ρ
nested if it witnesses the fact that CC(P) is almost planar, i.e. if the images
under ρ of the interiors of any two 2-cells are either disjoint, or one is contained
in the other.

The following might be interesting as it exhibits a geometric property of
Cayley complexes which can be decided by an algorithm.

Theorem 7.1. There is an algorithm that given a presentation P = 〈S | R〉
decides whether CC(P) admits a nested, consistent map into R

2.

Proof. We claim that CC(P) admits a nested, consistent map into R
2 if and

only if there is a spin σ on S and a ‘spin-behaviour’ function τ from S to {0, 1}
such that the triple (P , σ, τ) is a special planar presentation.

To prove the backward direction, note that if P , σ, τ is a special planar
presentation, then Cay(P) admits a consistent embedding ρ into R

2 by Theo-
rem 4.2. Extend this embedding into a map ρ′ from CC(P) to R

2 by mapping
each 2-cell inside the closed curve to which ρ maps its boundary. Then ρ′ is
nested because no two words in R cross each other by the definition of a special
planar presentation.

For the forward direction, given such a map ρ : CC(P) → R
2, we can read

the spin data σ, τ from ρ since ρ is consistent. Then P , σ, τ is an embedded
presentation. To prove that it is a special planar presentation it remains to
show that no two words in R cross each other, which follows immediately from
the nestedness of ρ.
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By using general planar presentations instead of special ones, Theorem 7.1
can be generalised to yield a further decidable property of Cayley complexes, but
instead of maps into R

2 we have to consider maps into larger spaces obtained by
glueing copies of R

2 along (possibly closed) bounded simple curves —to which
we map the hinges of our Cayley graphs— in a tree like fashion. We leave the
details to the interested reader.

Our results do not yet answer the following

Problem 7.2. Is there an algorithm that given a presentation P = 〈S | R〉
decides whether CC′(P) is planar?

In this problem CC′(P) denotes the complex obtained from CC(P) by re-
moving redundant 2-cells, that is, if a set of 2-cells have the same boundary, we
remove all but one of them. Some authors still call CC′(P) the Cayley complex
of P . (In Theorem 7.1 it does not make a difference whether we consider CC(P)
or CC′(P).)

We remark that it is not true that CC(P) is planar if and only if P is a
facial presentation in the sense of [14]; the presentation P =

〈

a, b | a2, b3, ab−1
〉

if facial, but its Cayley complex consists of a single vertex, two loops, a 2-cell
winding twice around a loop, and a 2-cell winding three times around the other
loop.

Theorem 7.3. The Cayley graphs that admit a consistent embedding in the
plane are effectively enumerable.

Proof. We claim that any effective enumeration of the special planar presen-
tations is an effective enumeration of those Cayley graphs. Indeed, this is the
case as every Cayley graph with a consistent embedding admits a special planar
presentation by Theorem 6.6 and as the Cayley graph of every special planar
presentation is planar by Theorem 4.2.

In order to effectively enumerate the special planar presentation, it suffices
to produce an enumeration of the embedded presentations, and output those
embedded presentations that satisfy the three conditions in the definition of a
special planar presentation (Definition 3.1); it is easy to see that these conditions
can be checked algorithmically.

Theorem 7.4. The planar, finitely generated, Cayley graphs are effectively
enumerable.

Proof. Similarly to the proof of Theorem 7.3, we claim that any effective enumer-
ation of the general planar presentations gives rise to an effective enumeration
of the planar Cayley graphs. Indeed, according to Lemmas 6.1 and 6.3, every
locally finite planar Cayley graph has a locally finite planar Tietze-supergraph
obtained by adding redundant generators. This supergraph admits a general
planar presentation by Theorem 3.3 and Theorem 6.4 —recall that every spe-
cial planar presentation induces canonically a general planar presentation— and
the Cayley graph of every general planar presentation is planar by Theorem 5.8.
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Thus it suffices to start with an enumeration of the general embedded presenta-
tions, and output those that satisfy the four conditions of Definition 5.1, which
can be checked algorithmically.

For each such output G = 〈S | R〉, check for every s ∈ S whether s is
an obviously redundant generator, i.e. there is exactly one relator Ws ∈ R in
which s appears, and s appears exactly once in W . For every such s found,
output the presentation G′ := 〈S \ {s} | R \ {Ws}〉. Then, recursively apply
the same check to G′, removing any obviously redundant generators of that
presentations and so on. In this way we obtain the locally finite planar Cayley
graphs of connectivity 1 and those of connectivity 2 that are not well-separated
as mentioned earlier according to Lemmas 6.1 and 6.3.

8 Further remarks

In Section 6 we prove that every planar Cayley graph G admits a planar pre-
sentation such that every relator induces a cycle of G (rather than an arbitrary
closed walk with repetitions of vertices). It would be interesting if we could
strengthen the definition of a planar presentation in such a way that this is al-
ways the case in the resulting planar Cayley graph. Some strengthening will be
necessary as shown by the example P =

〈

a, b | a2, b3, ab−1
〉

from the previous
section. This is a planar presentation —even stronger, every relator is facial—
but it is easy to see that its group is the group of one element. Our optimism
that this may be possible stems from the fact that it was possible in the cubic
case [12].

If we could do this, then it would probably help to prove that the planar
Cayley graphs are effectively constructible:

Conjecture 8.1. There is an algorithm that given a general planar presenta-
tion P, and n ∈ N, outputs the ball of radius n in the Cayley graph of P.

This was proved in [12] in the cubic case.

A further interesting question, also asked in [12], is whether for every n ∈ N

there is an upper bound f(n), such that every n-regular planar Cayley graph
admits a planar presentation with at most f(n) relators. This would strengthen
Droms’ result [7, Theorem 5.1] that planar groups are finitely presented.

We conclude with a rather unrelated observation. It is known that the funda-
mental group of a finite graph of groups with residually finite vertex groups and
finite edge groups is residually finite [25, II.2.6.12]. Combining this with Dun-
woody’s result mentioned in the introduction, we obtain the following corollary,
to which this paper has no contribution

Corollary 8.2. Every planar group is residually finite.
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