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Chapter 1

Infinite circuits

All our graphs are allowed to have loops and parallel edges, with the exception
of 2-connected graphs, which we require to be loopless, and of 3-connected
graphs, which, in addition, cannot have parallel egdes. Most of our graphs
will be locally finite, that is, graphs in which all the vertices have finite
degree. In general, our notation follows Diestel [31].

1.1 The main theme

Often, easy problems in finite graphs become challenging, and sometimes very
interesting indeed, in infinite graphs. This observation is the main theme of
this work. A good example is Menger’s theorem:

Theorem 1.1 (Menger). For any two vertex sets A and B in a finite graph
it holds that the maximal cardinality of a set of disjoint A–B paths equals the
minimal cardinality of an A–B separator.

While Menger’s theorem is not trivial to prove it is also not very hard and
can be done in about half a page or less. In contrast, the analogue of Menger’s
theorem in infinite graphs, the Erdős-Menger conjecture, is fiendishly hard.

Conjecture 1.2 (Erdős-Menger). For any two vertex sets A and B in a
graph there exists a set P of pairwise disjoint A–B paths and an A–B sepa-
rator that contains precisely one vertex from each path in P.

A proof of the Erdős-Menger conjecture was announced by Aharoni and
Berger [2]. Their proof, which runs for some 50 pages, is full of intricate
details and complex arguments. Surely, a good amount of this is due to
difficulties inherent in handling uncountable sets. We will be spared these
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additional complexities as we will mostly be concerned with countable graphs.
Nevertheless, even the countable case of Conjecture 1.2 is still considerably
more difficult than Menger’s theorem. We will encounter more examples of
this phenomenon throughout this thesis.

Menger’s theorem is instructive in another respect, too. When we extend
a result about finite graphs to infinite graphs it depends heavily on the precise
formulation whether we obtain a useful result or a triviality. Here is a simple
variant of Menger’s theorem in infinite graphs.

Theorem 1.3. For any two vertex sets A and B in a graph it holds that
the maximal cardinality of a set of disjoint A–B paths equals the minimal
cardinality of an A–B separator.

On first glance, the theorem might appear a more direct analogue of
Menger’s theorem. This, however, is not the case. In fact, the theorem,
which is easy to prove, misses a hidden but central point of Theorem 1.1.
Besides determining the cardinality of a minimal separator Menger’s theorem
yields, in addition, an insight in the structure of the separator. This insight
is captured in the Erdős-Menger conjecture but lost in Theorem 1.3. As a
result, the case of Theorem 1.3 when there is an infinite set P of disjoint A–B
paths becomes easy to prove. Choosing a maximal such P we can simply
choose

⋃
P∈P V (P ) as the separator of the desired size. In contrast, the hard

case of Conjecture 1.2 is precisely when A and B are infinitely connected.

The two observations, that easy problems become hard in infinite graphs
and the heavy dependence on the precise formulation, are a salient feature
of the cycle space in an infinite graph, the second theme of this thesis.

The cycle space is the set of all symmetric differences of circuits, ie the
edge sets of cycles. In a finite graph, the elements of the cycle space are
easily characterised in terms of degrees: an edge set Z is an element of the
cycle space if and only if every vertex is incident with an even number of
edges in Z. In infinite graphs this fact is either trivially false, the edge set of
a double ray may serve as a counterexample, or trivially true—provided we
require additionally that Z is a finite set.

Tutte’s planarity criterion, which we will discuss a bit more in Section 1.4,
provides a second example. It states that a finite 3-connected graph is planar
if and only if every edge lies in at most two induced non-separating cycles.
As we will see, the criterion becomes outright false in infinite graphs.

In both cases, in the characterisation of cycle space elements by degrees
and in Tutte’s planarity criterion, the naive formulation is to blame. Indeed,
in the setting of the topological cycle space, which allows infinite circuits,
both results become challenging, non-trivial and true. We will describe and
define the topological cycle space in the next two sections.
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1.2 Sources of infinite circuits

The topological cycle space has been developed by Diestel and Kühn, see [33,
34, 35]. Its main feature is that it allows infinite circuits. Apart from that it
seems natural to have infinite circuits in infinite graphs there are three good
reasons that motivate the definition of infinite circuits.

Firstly, in a 2-connected infinite plane graph infinite circuits arise from
the face boundaries. In Figure 1.1, the boundary of the outer face consists
of the union of three disjoint rays. The fact that face boundaries in a finite
2-connected graph are cycles suggests that we should view the edge set of the
infinite face boundary as a circuit, too. We should point out, though, that
even in the case of a 3-connected graph the infinite face boundaries depend
strongly on the very nature of the drawing.

...

...

...

Figure 1.1: An infinite face boundary

Secondly, the matroids associated with a graph lead to infinite circuits,
too. If, for a locally finite graph G, we declare the minimal finite cuts to be
the cocircuits we obtain a matroid M on the edges of G. If G is finite then
the circuits of M are precisely the circuits of G. On the other hand, if G is
infinite then M may have infinite circuits. For example, if G is the graph
in Figure 1.1 then M will have the edge set of the infinite face boundary as
a circuit. Clearly, these considerations suppose that it is possible to define
a well-behaved matroid on an infinite ground set in the first place. While
it might not be widely known, this is possible, and we shall encounter infi-
nite matroids in the last chapter, where we will also discuss the relationship
between matroids and the infinite circuits of a graph.
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Finally, and this is the most compelling reason for them, infinite circuits
make previously unsolvable problems solvable. A number of theorems about
circuits in finite graphs are false in infinite graphs but become true if infinite
circuits are considered. Below and throughout the rest of the thesis we will
discuss a number of examples. But first, let us give the formal definition of
infinite circuits, which is based on a topology on the graph together with its
ends.

1.3 The topological cycle space

Let us now describe the topology with which we endow an infinite graph. In
most cases the graph in question will be locally finite. Then the resulting
space, called the Freudenthal compactification, will be obtained by compact-
ifying the graph by its ends. Sometimes, most notably when we will treat
dual graphs, we will find it more useful to work within a slightly large class
of graphs. This class consists of the graphs in which

any two vertices can be separated by finitely many edges. (1.1)

The reason for considering the class of these graphs will become apparent in
Chapter 2.

Let G = (V, E) be a fixed graph in this section. A 1-way infinite path
is called a ray, a 2-way infinite path is a double ray. A subray of a ray or
a double ray is a tail. Two rays are called equivalent if there are infinitely
many disjoint paths between them. The equivalence classes of rays are the
ends of G, we denote the set of these by Ω(G).

We define a topological space |G| on G together with its ends. In order
to do so we view every edge as homeomorphic to the unit interval and pick
a fixed homeomorphism for each edge. Next, consider a vertex v. The basic
open neighbourhoods of v are then the sets consisting of v together with
all points of distance < 1

n
from v on incident edges for n ∈ N (where the

distance is measured by the fixed homeomorphism for that edge). It remains
to describe the basic open neighbourhoods of an end, ω say. Pick a finite
vertex set S, and denote the component of G − S that contains a ray of ω
(and thus a subray for every ray in ω) by C(S, ω). We say that ω belongs
to C(S, ω). A basic open neighbourhood of ω now consists of C(S, ω), all
ends that have a ray in C(S, ω) and the union of all interior points of edges
between S and C(S, ω).

The resulting space is denoted by |G|. For more on this space and subtle
variants of it, we refer the reader to Diestel [32]. If G is locally finite then
|G| is Hausdorff and compact. On the other hand, if G is not locally finite
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then |G| fails to be Hausdorff and in fact is generally not well suited for our
purpose. Therefore, we shall define a quotient space G̃ of |G|.

We say that a vertex v dominates an end ω if there are infinitely many
paths from v to a ray R in ω that meet pairwise only in v. The end ω
is then a dominated end. The quotient space G̃ is obtained from |G| by
identifying every dominated end with its dominating vertex. We remark
that if G satisfies (1.1) then no two vertices will be identified (and in fact we
will never use G̃ otherwise), and if G is in addition 2-connected then G̃ is a
compact space.

Having defined the underlying topologies, we can now state precisely what
circuits should be. For this, G is assumed to be locally finite or to at least
satisfy (1.1). While we formulate our definition in terms of G̃ the reader
should bear in mind that G̃ = |G| for locally finite G.

A circle is the homeomorphic image of the unit circle in G̃, and a circuit is
its edge set, i.e. the set of all edges contained in it. For a circle C the subgraph
C ∩G is called a cycle. We note that every edge of which a circle contains an
interior point lies completely in the circle, see Diestel and Kühn [35]. This
definition not only includes the traditional, finite circuits but also allows
infinite ones. As an example consider Figure 1.2. There the (edge set of the)
double ray D is a circuit, since both tails of D are in the same end to the
right. On the other hand, double ray D′ is not a circuit. Yet, the union of
D′ and D′′ is a circuit. Circles may become fairly complex. It is not hard to
construct a circle consisting of countably infinite many disjoint double rays
and uncountably many ends, see Diestel [30].

D

D’

D’’

...

...

...

...

Figure 1.2: Circuits in the double ladder

The image of a continuous mapping [0, 1] → G̃ is called a topological path.
The homeomorphic image of the unit interval [0, 1] in G̃ is an arc. Observe
that circuits as well as arcs must contain edges.

The topological cycle space consists of all sets of all finite or (well-defined)
infinite sums of circuits. That infinite sums are allowed is the second main
feature of the topological cycle space. We omit here the discussion of why this
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is not only natural but also necessary, see Diestel [30] and [15]. Nevertheless,
we will return to infinite sums in Chapter 6, where we will investigate them
in a more abstract setting.

Call a family F of edge sets thin if every edge appears in at most finitely
many members of F . The thin sum of a thin family F is then defined as the
set of edges that occur in precisely an odd number of the members of F and
is denoted by

∑
F∈F F . All sums of edge sets in this thesis are considered

to be thin sums. Now, the topological cycle space C(G) is the set of all thin
sums of families of circuits.

1.4 Infinite circuits solve problems

Many facts about circuits in finite graphs are false or trivial in infinite graphs
but become true once infinite circuits are considered. A prime example is
Tutte’s planarity criterion. Call a circuit peripheral it is chordless and if
deletion of all vertices incident with the edges in the circuit does not separate
the graph.

Theorem 1.4 (Tutte1). A 3-connected finite graph is planar if and only if
every edge lies in at most two peripheral circuits.

To see why the theorem fails in infinite graphs consider the graph G in
Figure 1.3. The graph is certainly non-planar as it is comprised of K3,3 (in
bold) to which three disjoint infinite 3-ladders are added. On the other hand,

x

u w

y

z

v

Figure 1.3: Tutte’s criterion fails without infinite circuits

1It is not entirely clear, whether ‘Tutte’s planarity criterion’ should rightly be at-
tributed to Tutte. It certainly follows readily from his generating theorem proved in [83]
and MacLane’s planarity criterion. The criterion was, indepedently, discovered by Kel-
mans [56].
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it is not hard to check that no edge lies in three finite peripheral circuits.
Thus, if only finite circuits are considered Tutte’s planarity criterion would
indicate that the graph is planar, which it is not. With infinite circuits,
however, the criterion becomes valid. The edge xw, for instance, can be
seen to be contained in two finite peripheral circuits and, in addition, in one
infinite peripheral circuit. The edge thereby serves as a certificate for non-
planarity. In [23] it is proved that not only the example in Figure 1.3 can
be repaired by allowing infinite circuits but that Tutte’s planarity criterion
is valid in all locally finite graphs.

Infinite circuits and the topological cycle space have been almost sur-
prisingly successful in generalising a large number of other theorems, too.
In most cases, the topological permits verbatim extensions of results about
circuits and the cycle space in a finite graph. Examples are:

• MacLane’s planarity criterion, see Chapter 5 as well as [23];

• Tutte’s generating theorem [15];

• Gallai’s partition theorem [19];

• geodesic circuits generate the cycle space
(Georgakopoulos and Sprüssel [47]);

• Whitney’s planarity criterion and dual graphs, see next chapter, as well
as [16];

• tree packing and arboricity (Stein [76]); and

• fundamental circuits generate the cycle space, see next section and
Diestel and Kühn [33].

Moreover, since the circuits of Diestel and Kühn may be infinite, it be-
comes possible to consider Hamilton circuits in locally finite graphs, see Geor-
gakopoulos [45], Cui, Wang and Yu [29] and [26]. Coming from a more alge-
braic viewpoint, Diestel and Sprüssel [36] develop a homology that captures
the topological cycle space. A more general approach has been pursued by
Vella and Richter [87], who define cycle spaces for different compactifications
of a graph. This work has been followed up in Casteels and Richter [27] and
in Richter and Rooney [70].

1.5 Topological spanning trees

Let us consider one more example in more depth, as it will play a role later.
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The starting point of the research into the topological cycle space was a
question of Richter. Richter asked how the fact that the fundamental circuits
of a spanning tree generate the cycle space could be extended in a meaningful
way to infinite graphs. The first observation to make here is that what is
called a circuit determines what a tree is. Indeed, a tree is a connected
subgraph that does not contain circuits. Now, an ordinary tree might very
well contain an infinite circuit, which means we have to amend our definition
of a tree. Moreover, as we work within the topological space G̃, for some
graph G, it appears natural to consider a subspace rather than a subgraph.
If we, finally, then interprete ‘connectivity’ in a topological way we have all
ingredients for the infinite analogon of a spanning tree.

To sum up, given a graph G satisfying (1.1) we say that a subspace T of
G̃ is a topological spanning tree, or TST for short, if it is closed, contains all
the vertices but no circle, and which contains every edge of which it contains
an interior point.

e ......

Figure 1.4: A topological spanning tree

The bold subspace in Figure 1.4 of G̃ (or rather |G| as the double ladder
is locally finite) constitutes a TST but the subgraph contained in it fails to
be a spanning tree as it is not (graph-theoreticially) connected. The addition
of the edge e makes (the subgraph of) this subspace into a spanning tree.
That tree, however, contains an infinite circuit, namely the edge set of the
double ray contained in it with both tails in the right end.

The following theorem answers the original question of Richter. Let e be
an edge outside a TST T . The fundamental circuit of e (with respect to T )
is then the unique circuit contained in E(T ) ∪ {e}.

Theorem 1.5 (Diestel and Kühn [35]). In a graph satisfying (1.1) the topo-
logical cycle space is generated by the fundamental circuits of any topological
spanning tree. Furthermore, the fundamental circuits of a TST form a thin
family.

Spanning trees are the bases of the cycle matroid of a connected graph,
and the finite circuits of the graph are the circuits of that matroid. In the
same way, a matroid can be associated with a graph in which TSTs are the
bases and all circuits (finite or infinite) of the graph are the circuits of the
matroid. See Chapter 8.
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Topological spanning trees occur naturally in the tree packing problem
for infinite graphs. In finite graphs the problem is solved by the following
theorem, independently discovered by Nash-Williams and by Tutte. In a par-
tition of the vertex set of a graph an edge is called cross-edge if its endvertices
lie in distinct partition classes.

Theorem 1.6 (Nash-Williams [63], Tutte [82]). Let G be a finite graph, and
let k ∈ N. Then G has k edge-disjoint spanning trees if and only if for every
partition of V (G) with ℓ partition classes there are ≥ k(ℓ − 1) cross-edges.

Tutte [82] extended the result to infinite locally finite graphs. The state-
ment he was able to prove, however, does not ascertain the existence of
spanning trees but of objects he called ‘semi-connected’. The result, at first,
appears slightly inelegant and unconvincing. Yet, phrased with TSTs, it
becomes a verbatim extension of Theorem 1.6.

Theorem 1.7 (Tutte [82], Stein [76]). Let G be a locally finite graph, and
let k ∈ N. Then G has k edge-disjoint topological spanning trees if and only
if for every partition of V (G) with ℓ partition classes there are ≥ k(ℓ − 1)
cross-edges.

The TSTs in the theorem are necessary—the result becomes false with
ordinary spanning trees, see Oxley [66]. Finding a necessary and sufficient
condition for the existence of k edge-disjoint spanning trees seems hard. We
will briefly encounter this problem again in Section 8.9.

1.6 Basic properties of C(G)

The plethora of results listed above indicate that the topological cycle space is
the right setting to overcome the deficits of ordinary finite circuits in infinite
graphs. Moreover, the most basic properties of its finite counterpart are
shared by the topological cycle space. These properties are the following,
which are almost too trivial to necessitate a proof in finite graphs. Let
G = (V, E) be a finite graph. Then

• every element of the cycle space is the (edge-)disjoint union of circuits;

• an edge set F ⊆ E lies in the cycle space if and only if every vertex in
(V, F ) has even degree;

• an edge set F ⊆ E lies in the cycle space if and only if F meets every
cut of G in an even number of edges; and
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• the cycle space is closed under taking sums.

The last property is so obvious that it is normally not even considered. In
infinite graphs, however, it needs proof. Diestel and Kühn [35] demonstrate
that the topological cycle space is closed under taking thin sums, and in
Chapter 6 we shall revisit this issue in a more general setting.

The first two items on the list become non-trivial theorems in infinite
graphs. Moreover, they turn out to be very valuable when working with
infinite circuits. Especially Theorem 1.9 is used over and over in many ar-
guments as it allows to dispense with the underlying topology. Whenever it
becomes necessary to identify some edge set as a circuit or an element of the
cycle space it is much easier to simply test whether it meets every finite cut
evenly than to construct a homeomorphism to the unit circle.

Theorem 1.8 (Diestel and Kühn [35]). Every element of the cycle space of
a graph satisfying (1.1) is the (edge-)disjoint union of circuits.

Theorem 1.9 (Diestel and Kühn [35]). Let Z be a set of edges in a graph
G satisfying (1.1). Then Z ∈ C(G̃) if and only if Z meets every finite cut of
G in an even number of edges.

Let us consider the remaining property on the list above. In locally finite
graphs every vertex is incident with an even number of edges in any element
of the topological cycle space. The converse, however, is no longer true.
That is, an edge set that induces an even graph does not necessarily lie in
the topological cycle space. Consider, for instance, the edge set of a double
ray contained in some graph. Depending on whether the two disjoint tails of
the double ray lie in the same end or in distinct ends the edge set lies in the
topological cycle space or not. Yet the degrees of the vertices in the double
ray are always two and, thus, cannot distinguish between the two cases.
What is needed is some measure on the ends, an end degree, that together
with the vertex degrees decides whether a given edge set is an element of the
topological cycle space. We will address this problem in Chapter 3.
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Chapter 2

Duality of ends

2.1 Duality in infinite graphs

In 1932 Whitney [92] introduced the concept of dual graphs: a graph G∗ is a
dual of a finite graph G if there exists a bijection ∗ : E(G) → E(G∗) so that
a set F ⊆ E(G) is a circuit of G precisely when F ∗ is a bond in G∗. (A bond
is a minimal non-empty cut.) Dual graphs allow to formulate a criterion for
planarity.

Theorem 2.1 (Whitney [92]). A finite graph G has a dual if and only if it
is planar.

Two further key properties of dual graphs are symmetry and uniqueness.
That is, a graph is the dual of its dual (symmetry), and a planar graph has
exactly one dual, provided the graph is 3-connected.

Duality for infinite graphs has first been explored by Thomassen [79].
Faced with the incongruity that an infinite graph may have infinite cuts as
well as finite ones but (in the traditional definition) only finite circuits he
chose to ignore infinite cuts. Consequently, G∗ is a dual of G, in the sense of
Thomassen, if for all finite sets F ⊆ E(G), F is a circuit precisely when F ∗

is a bond. This concept allowed him to prove an infinite version of Whitney’s
planarity criterion: a 2-connected graph G has a (Thomassen-)dual if and
only if it is planar and satisfies (1.1), i.e. that every two vertices of G can be
separated by finitely many edges.

Thomassen’s definition is not completely satisfactory, as the symmetry
in taking duals is lost, as well as the uniqueness of the duals of 3-connected
graphs. These deficits are ultimately due to the disregard of infinite cuts.
Consider the graph G, the half-grid in solid lines, in Figure 2.1. Geomet-
rically, the dotted graph G∗ should be its dual, and indeed it is a dual in
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... ...

v

D

Figure 2.1: A pair of dual graphs

Thomassen’s sense. We can obtain a second Thomassen-dual by splitting the
vertex v into two vertices u and w and making each of these adjacent with
infinitely neighbours of v so that every neighbour is adjacent to exactly one
of u and w. Such a Thomassen-dual H violates the uniqueness of the dual
for a 3-connected graph, in this case the half-grid. Furthermore, symmetry
is broken too, since G is no longer a dual of H . In fact, H might not even be
planar depending on how we split up the neighbours of v between u and w.

By considering infinite as well as finite circuits, however, we can restore
uniqueness. In our example, consider the edge set F of the double ray D
in G. In G∗, its dual set F ∗ (the set of edges incident with v) is a bond. But
F ∗ is not a bond in H , because it contains the edges incident with u (say)
as a proper subset. Thus, if F counts as a circuit, then G∗ will be a dual
of G but H will not, as should be our aim. Taking the circuits of G in |G|
achieves this.

Figure 2.1 underlines a second point. Namely, the class of locally finite
graphs is not closed under taking dual graphs. Fortunately, as Thomassen
showed for his weak definition of dual graphs, a necessary condition to have a
dual is (1.1). Moreover, we shall see below that for dual graphs (considering
infinite circuits) condition (1.1) holds too.

v
... ...

Figure 2.2: Rays starting in v have to be circuits
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In Chapter 1, we have introduced two topological spaces, |G| and G̃, for
a graph G satisfying (1.1). Which of those should we choose as basis for
our definition of duality? In Figure 2.2 the roles of the graphs in Figure 2.1
are reversed. We start with the graph G drawn in solid lines and want to
convince ourselves that the half-grid is its dual. Now, the bold edges F ∗ in
the half-grid form a bond, so the corresponding edges in G should yield a
circuit. Clearly, as F as the edge set of a ray starting in v it cannot be a
circuit with respect to |G|. In G̃, however, F is a circuit as v dominates the
end of the ray. In conclusion, the example indicates that we have to work
in G̃.

Let G be a graph satisfying (1.1). Let G∗ be another graph, with a
bijection ∗ : E(G) → E(G∗). Call G∗ a dual of G if the following holds for
every set F ⊆ E(G), finite or infinite: F is a circuit in G̃ if and only if F ∗ is
a bond in G∗.

Requiring correspondence between all bonds and all circuits (finite or
infinite) restores symmetry and uniqueness of duals:

Theorem 2.2.[16] Let G be a countable graph satisfying (1.1).

(i) G has a dual if and only if G is planar.

(ii) If G∗ is a dual of G, then G∗ satisfies (1.1), G is a dual of G∗, and this
is witnessed by the inverse bijection of ∗.

(iii) If G is 3-connected then it has at most one dual, up to isomorphism.

Another well-known feature of dual graphs is the duality of spanning
trees. Given a pair of finite connected dual graphs G and G∗, a set D is
the edge set of a spanning tree of G, if and only if E(G∗) \ D∗ is the edge
set of a spanning tree in G∗. Moreover, if a pair of graphs has this kind of
correspondence of spanning trees then they are dual to each other.

With ordinary spanning trees the duality of trees fails in infinite graphs.
Indeed, the edge set of a spanning tree is allowed to contain an infinite circuit
C. Then C∗ is a bond, and G∗−C∗ therefore disconnected and cannot contain
any spanning tree of G∗. In Chapter 1 we introduced topological spanning
trees, which are better suited for dealing with infinite circuits. Unfortunately,
a duality of TSTs is impossible too. The main issue here is that a TST (or
rather the subgraph consisting of the vertices and edges of the TST) does
not need to be connected in a graph-theoretical sense, it merely needs to be
topologically connected. Thus, a TST with edge set T might miss a (then
necesssarily infinite) bond C. The complement E(G∗) \ T ∗ of T in the dual
graph will then contain the circuit C∗, but a TST cannot contain a circuit.
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Instead of working with spanning trees or with TSTs we will formulate
our duality of trees with trees that marry the properties of both. We call
an (ordinary) spanning tree of a graph G acirclic if it does not contain any
(infinite) circuit of G̃. Observe that the closure of an acirclic spanning tree
is a TST of G̃.

Theorem 2.3.[16] Let G = (V, E) and G∗ = (V ∗, E∗) be connected graphs
satisfying (1.1), and let ∗ : E → E∗ be a bijection. Then the following two
assertions are equivalent:

(i) G and G∗ are duals of each other, and this is witnessed by the map ∗

and its inverse.

(ii) Given a set F ⊆ E, the graph (V, F ) is an acirclic spanning tree of G if
and only if (V ∗, E∗ \F ∗) is an acirclic spanning tree of G∗ (both in G̃).

We shall come back to the relation of spanning trees with duals in Chap-
ter 8. Moreover, it will play a brief role in the proofs in Section 2.4.

2.2 Duality of ends

The main aim of this chapter, which is based on [22], is the study of the
relation between the end space of a graph and the end space of its dual.
Our first result states that there exists a homeomorphism between these two
spaces that arises in a natural way from the bijection ∗ on the edges.

More precisely, we will demonstrate that, given a pair G, G∗ of (infinite)
duals, the endvertices of a set F ⊆ E(G) converge towards an end ω of G if
and only if the endvertices of F ∗ converge towards the dual end ω∗. This is
the content of Theorem 2.7, which we will discuss below.

Thick ends, those that contain an infinite set of disjoint rays, play an
important role in the study of the automorphism group of a graph, see for
instance Halin [51]. As our second result, we will prove that thickness is
preserved in the dual end:

Theorem 2.4.[22] Let G, G∗ be a pair of dual graphs, and let ω be an end
of G. Then ω is thick if and only if ω∗ is thick.

In order to prove Theorem 2.4, we make use of a notion of connectivity,
introduced by Tutte [85], that coincides with the matroid connectivity of the
cycle-matroid of the graph. As a by-product we obtain a generalisation to
infinite graphs of the following classical result:
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Theorem 2.5 (Tutte [85]). Let G and G∗ be a pair of finite dual graphs, and
let k ≥ 2. Then G is k-Tutte-connected if and only if G∗ is k-Tutte-connected.

We will define Tutte-connectivity in Section 2.4 (all other definitions can
be found in the next section), but let us remark here that a graph is 3-Tutte-
connected if and only if it is 3-connected. Therefore, Theorem 2.16, our
extension of Tutte’s theorem, has the following consequence:

Corollary 2.6 (Thomassen [79]). Let G and G∗ be a pair of dual graphs.
Then G is 3-connected if and only if G∗ is 3-connected.

Let us make our aims for this chapter more precise. We start with the
bijection we wish to define between the end spaces of dual graphs. Our
mapping will be an extension of the bijection ∗ : E(G) → E(G∗) on the
edges (and we will therefore, slightly abusing notation, denote it with ∗ as
well). More precisely, we aim at a bijection ∗ between Ω(G) and Ω(G∗), so
that for all F ⊆ E(G), the endvertices of F converge against an end ω of G
if and only if the endvertices of F ∗ converge against ω∗.

In the space G̃, which is instrumental in the definition of duality, the
accumulation points of vertex sets are the identification classes of ends. Re-
call that any two ends that cannot be separated by finitely many edges, are
identified, giving rise to larger equivalence classes of rays called edge-ends
by some authors (e.g. Hahn, Laviolette and Širáň [50]). So, should we not
search for a bijection of the edge-ends rather than of the ends?

...

Figure 2.3: No correspondence between edge-ends of duals

Figure 2.3 demonstrates that there is no hope for a bijection between
edge-ends (even without any structural requirements). The double ladder
has two edge-ends, while its dual graph has only one edge-end.

The reason that this attempt fails lies in the nature of duals. The ex-
istence of finite edge-cuts between (edge-)ends will not be preserved in the
dual. In fact, such a (minimal) cut corresponds to a circuit in the dual, which
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need not separate anything. By contrast, a vertex-separation whose deletion
results in two sufficiently large sides does, in some sense, carry over to the
dual graph; this is the essence of Theorem 2.16 and will be more explored in
Section 2.4.

Our bijection will thus be between the ends of G and G∗. This means that
we will work in |G|, since any two identified ends cannot be distinguished
topologically in G̃. Endowing Ω(G) resp. Ω(G∗) with the subspace topology
of |G| resp. |G∗|, we will show the existence of a bijection Ω(G) → Ω(G∗),
which is structure-preserving in the sense above. Moreover, we will see that
∗ is a homoeomorphism:

Theorem 2.7. [22] Let G and G∗ be 2-connected dual graphs. Then there
is a homeomorphism ∗ : Ω(G) → Ω(G∗), where the two spaces are endowed
with the subspace topology of |G| resp. |G∗|, so that

for all F ⊆ E(G) and ends ω it holds that ω ∈ F if and only if ω∗ ∈ F ∗.
(2.1)

We remark that the requirement that G and G∗ are 2-connected cannot
be dropped. This is illustrated by the example of the double ray. Every dual
of the double ray is a graph whose edge set is the union of countably many
loops, and thus contains no end at all.

We shall prove Theorem 2.7 in the next section.

Let us now turn to our second objective: showing that our bijection
∗ preserves thickness. This will be achieved in Theorem 2.4. Again, we
are confronted with the question why focus on preserving (vertex-)thickness
instead of “edge-thickness”, i.e. the existence of infinitely many edge-disjoint
rays in an end.

...

Figure 2.4: Edge-thick end with edge-thin dual end

This is answered by Figure 2.4, which shows a graph that has a single
edge-thick end while the unique end of its dual graph does not even possess
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two edge-disjoint rays. The reason is the same as above: although (or be-
cause) the notion of duals is based on edges and operations with edges, the
existence of (small) edge-separators is not preserved in the dual.

Since not all vertex-separators are preserved in the dual, connectivity is
not an invariant of (finite or infinite) duals, as we have already remarked in
the introduction. But, the related notion of Tutte-connectivity is. We defer
to Section 2.4 for the definition; suffice it to say here that there are two
reasons why a graph may have low Tutte-connectivity: Either it has a small
vertex-separator or it contains a small circuit. In Section 2.4, we prove that
Tutte-connectivity is an invariant of infinite duals, too (Theorem 2.16).

Theorem 2.16 is an important step on our way to proving Theorem 2.4.
Our proof of Theorem 2.16 differs from the usual proof of its finite ver-
sion, Theorem 2.5, which is done in two steps. First, one shows that Tutte-
connectivity coincides with the connectivity of the cycle-matroid of the graph.
Then one observes that matroid connectivity is invariant under duality.

If we want to use this approach for Theorem 2.16 as well, we first have
to answer two questions. Which notion of infinite matroids should we use?
And how do we define higher connectivity in a matroid?

The first question is easy to answer. Although it is sometimes claimed
that there is no proper concept of an infinite matroid that provides dual-
ity and the existence of bases at the same time, B-matroids, as defined by
Higgs [54], accomplish that (see also Oxley [67]). Moreover, one can prove
that duality in B-matroids is compatible with taking dual graphs. While
the second problem, the definition of higher connectivity, can also be over-
come in a satisfactory way, its solution together with the introduction of
B-matroids would take quite a bit of time and effort. Therefore, we will, in
Section 2.4, present a matroid-free proof of Theorem 2.4. We shall return
to B-matroids as well as to the relation between matroid-connectivity and
graph-connectivity in Chapter 8

2.3 ∗ induces a homeomorphism on the ends

Before we are able to prove Theorem 2.7, we need three lemmas. The proof
of the first lemma, which is not hard, can be found in [31, Lemma 8.2.2].

Lemma 2.8. Let G be a connected graph, and let U be an infinite subset of
V (G). Then G contains a ray R with infinitely many disjoint R–U paths or
a subdivided star with infinitely many leaves in U .

Lemma 2.9.[22] Let G be a 2-connected graph satisfying (1.1). If U is an
infinite set of vertices then U contains an end of G.
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Proof. Suppose otherwise. Then there is no ray R in G with infinitely many
disjoint R–U paths. So, an application of Lemma 2.8 yields a subdivided
star S that contains an infinite subset U ′ of U . We delete the centre of S
and apply Lemma 2.8 again, this time to U ′, which yields another subdivided
star S ′ with infinitely many leaves in U ′. But then, the centre of S and the
centre of S ′ are infinitely connected, contradicting (1.1).

As a convenience we will, for a set F of edges, write V [F ] to denote the
set of endvertices of the edges in F .

Lemma 2.10.[22] Let G be a 2-connected graph, and let X and Y be two
sets of edges such that X ∩ Y ∩ Ω(G) 6= ∅. Then there are infinitely many
(edge-)disjoint finite circuits each of which meets both X and Y .

Proof. Let Z be an ⊆-maximal set of finite disjoint circuits so that each C ∈
Z meets both X and Y , and suppose that |Z| is finite. Putting Z :=

⋃
Z,

we pick for every two x, y ∈ V [Z] for which it is possible an x–y path Px,y

that is edge-disjoint from Z. Denote by Z ′ the union of Z with the edge sets
of all these paths, and observe that still |Z ′| < ∞.

We claim that for every component K of G − V [Z ′] it holds that

for every v, w ∈ N(K) there is a v–w path in G[Z ′] − Z. (2.2)

Indeed, by construction, there are x, y ∈ V [Z] and (possibly trivial) v–x
resp. w–y paths Qv resp. Qw in G[Z ′] − Z. Then x and y are connected
through K ∪ Qv ∪ Qw ⊆ G − Z. Hence in Px,y ∪ Qv ∪ Qw ⊆ G[Z ′] − Z we
find a v–w path. This proves (2.2).

Now, because X ∩ Y contains an end, there exists a component K of
G − V [Z ′] which contains infinitely many vertices of both V [X] and V [Y ].
Choose edges eX , eY ∈ E(K) ∪ E(K, G − K) so that eX ∈ X, and eY ∈ Y .
Since G is 2-connected, there is a finite circuit C which contains both eX and
eY . The maximality of Z implies that C meets Z in at least one edge. In
particular, C contains the edge sets of (possibly identical) N(K)-paths PX

and PY so that eX ∈ E(PX), and eY ∈ E(PY ).
Being connected, K contains a V (PX)–V (PY ) path P . Thus, we find in

P ∪PX ∪PY an N(K)-path P ′ with eX , eY ∈ E(P ′). By (2.2), there exists a
path R in G[Z ′]−Z between the endvertices of P ′. Now, E(P ′) ∪E(R) is a
circuit that meets both X and Y but is edge-disjoint from Z, a contradiction
to the maximality of Z.

Proof of Theorem 2.7. We start by claiming that for each F ⊆ E(G) and
each end ω of G the following is true:

if F ∩ Ω(G) = {ω} then F ∗ contains exactly one end. (2.3)
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Suppose the claim is not true. By Lemma 2.9, this cannot be because F ∗

fails to contain an end; rather there must be (at least) two ends, α1 and α2,
in F ∗. Take a finite connected subgraph T of G∗ so that V (T ) separates α1

and α2 in G∗. For i = 1, 2, denote by Ki the component of G∗ − T to which
αi belongs, and set X∗

i := (E(Ki) ∪ E(Ki, T )) ∩ F ∗. Since each of the X∗
i is

infinite, it follows from Lemma 2.9 that Xi contains an end. As Xi ⊆ F , this
end must be ω. Hence, Lemma 2.10 yields disjoint finite circuits C1, C2, . . .
in G each of which meets X1 as well as X2.

We claim that each of the bonds C∗
i contains an edge of T . Indeed, let M1

and M2 be the two components of G∗ − C∗
i . Since C∗

i meets both X∗
1 and

X∗
2 , each Mj contains a vertex in K1 ∪ T and a vertex in K2 ∪ T . As, for

j = 1, 2, Mj is connected it follows that V (Mj) ∩ V (T ) 6= ∅. So, since T is
connected, there is an M1–M2 edge in E(T ), i.e. C∗

i ∩ E(T ) 6= ∅, for each
i ∈ N. This yields a contradiction since the C∗

i are disjoint but T is finite.
Therefore, Claim (2.3) is established.

Now, we define ∗ : Ω(G) → Ω(G∗). Given an end ω ∈ Ω(G), pick any
set F ⊆ E(G) with F ∩ Ω(G) = {ω} (choose, for instance, the edge set of
a ray in ω). Define ω∗ = ω∗(F ) to be the, by (2.3), unique end in F ∗. To
see that this mapping is well-defined, i.e. that it does not depend on the
choice of F , consider a second set D ⊆ E(G) as above, and observe that
ω∗(D) = ω∗(D ∪F ) = ω∗(F ). Since G is a dual of G∗ (Theorem 2.2 (ii)), we
may apply (2.3) to G∗ and see that ∗ is a bijection and satisfies (2.1).

Next, we prove that ∗ : Ω(G) → Ω(G∗) is continuous. For this, let an end
ω∗ ∈ Ω(G∗) and an open neighbourhood U∗ ⊆ Ω(G∗) of ω∗ be given. Then
there exists a finite vertex set S ⊆ V (G∗), and a component K of G∗ − S so
that W ∗ := K ∩ Ω(G∗) ⊆ U∗.

Setting F ∗ := E(G∗) \ (E(K)∪E(S, K)), we observe that W ∗ = Ω(G∗) \
F ∗. Hence, by (2.1), W = Ω(G) \ F . So, W is an open neighbourhood of ω
whose image is contained in U∗. Finally, by interchanging the roles of G and
G∗ we see that the inverse of ∗ is continuous as well.

2.4 Tutte-connectivity

In this and in the next section, we are concerned with how (Tutte-) connec-
tivity is preserved in the dual. The main idea underlying our proofs is the
duality of spanning trees, to which we already alluded to in Section 2.1. We
will use the tree duality implicitly in the key lemma, Lemma 2.14, below.
The next two lemmas help to relate the tree duality to vertex separations.

We shall need to work within both spaces |G| and G̃. In order to distin-
guish between closures of sets X ⊆ V (G)∪E(G) in the two spaces, we write
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X for the closure of X in |G|, and X̃ for the closure of X in G̃. This notation
will only be valid in this chapter.

Lemma 2.11.[22] Let G be a graph satisfying (1.1), let T be a subgraph that
does not contain any circuits, and let U ⊆ V (T ) such that 0 < |U | < ∞.
Then there exists a set F ⊆ E(T ) of size at most |U | − 1 so that every arc

in T̃ between two vertices in U meets F .

Proof. We use induction on |U |. The assertion is trivial for |U | = 1, so for
the induction step asume that |U | > 1. Choose v ∈ U , then by the induction
assumption there is a set D ⊆ E(T ) such that each vertex w of U \ {v} lies

in a different path-component Kw of T̃ −D. If there is no vertex w ∈ U \{v}
such that v ∈ Kw, we are done, so assume there is such a w.

Observe that there exists exactly one v–w arc A in T̃ −D. Indeed, if there
were two, then it is easy to see that the edge set of their union would contain
a circuit. Now, choose any edge e on A, and set F := D ∪ {e}. Clearly, F is
as desired, which completes the proof.

Lemma 2.12. [22] Let H be a connected graph, let F ⊆ E(H), and let
W ⊆ V (H). If every W -path in H meets F then |F | ≥ |W | − 1.

Proof. Since no two vertices of W can lie in the same component of H − F ,
we deduce that H − F has at least |W | components. As each deletion of a
single edge increases the number of components by at most one, H − F can
have at most |F | + 1 components.

Let us now introduce the notion of Tutte-connectivity, see Tutte [85].
For finite graphs, the Tutte-connectivity coincides with the connectivity of
the cycle-matroid of the graph. We remark that for k ∈ {2, 3}, a graph is
k-Tutte-connected if and only if it is k-connected. For greater k the two
notions of connectivity are not equivalent.

Definition 2.13. A k-Tutte-separation of a graph G is a partition (X, Y )
of E(G) so that |X|, |Y | ≥ k and so that at most k vertices of G are incident
with edges in both of X and Y .
We say that a graph G is k-Tutte-connected if G has no ℓ-Tutte-separation
for any ℓ < k.

Consider a k-Tutte-separation (X, Y ) in a (2-connected) graph G with a
dual G∗. To prove that Tutte-connectivity is invariant under taking duals,
we would ideally like to see that (X∗, Y ∗) is a k-Tutte-separation in G∗. This,
however, is not always true—if the two sides of the separation do not induce
connected subgraphs of G∗, then the number of vertices in V [X∗]∩V [Y ∗] can
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be much higher than k. Thus we will strengthen the requirements and lessen
our expectations. By demanding (V [Y ], Y )−V [X] to be connected, we shall
be able to guarantee that at least (V [Y ∗], Y ∗) is connected. Moreover, we
will be content with finding an ℓ-Tutte-separation of G∗ for some ℓ ≤ k that
is derived from (X∗, Y ∗).

The statement of the next lemma, which accomplishes just that, is a
bit more general than we need for Theorem 2.16, as we shall reuse it for
Theorem 2.4.

Lemma 2.14.[22] Let G and G∗ be a pair of 2-connected dual graphs, and
let (X, Y ) be a k-Tutte-separation such that CY := (V [Y ], Y )−V [X] is non-
empty and connected, and such that Y = E(CY ) ∪ E(CY , V [X]). Then

(i) there exists a component L of (V [X∗], X∗) so that (E(L), E(G∗)\E(L))
is an ℓ-Tutte-separation for some ℓ ≤ k; and

(ii) for each component K of (V [X∗], X∗) with |E(K)| ≥ k it holds that
(E(K), E(G∗) \ E(K)) is a k-Tutte-separation.

In order to prove the lemma we need a simple fact that follows easily from
the observation that every two edges lie in a common circuit if and only if
the graph is 2-connected, which is the case precisely when every two edges lie
in a common bond. Variants of this lemma can be found in Thomassen [78]
as well as in [16].

Lemma 2.15. Let G and G∗ be a pair of dual graphs. Then G is 2-connected
if and only if G∗ is 2-connected.

Proof of Lemma 2.14. First, we prove that

Ỹ ∗ is path-connected in G̃∗. (2.4)

Suppose that this is not the case. Then we can write Y as the disjoint union
of two sets Y1 and Y2 so that there is no V [Y ∗

1 ]–V [Y ∗
2 ] arc in G̃∗ that only

uses edges from Y ∗.
In particular, there is no circle in G̃∗ that only uses edges from Y ∗ and

meets both Y ∗
1 and Y ∗

2 . Equivalently, there is no bond in G that only uses
edges from Y , and meets both Y1 and Y2.

However, since CY is connected and since every edge in Y is incident with
a vertex in CY , there is a vertex x ∈ V (CY ) which is incident with both Y1

and Y2. Observe that the cut Bx of G, which consists of all edges incident
with x, is a subset of Y . As G is 2-connected, Bx is a bond, which yields the
desired contradiction and thus proves (2.4).
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Now, set U := V [X]∩V [Y ] and W := V [X∗]∩V [Y ∗]. Observe that each
vertex in W is incident with both X∗ and Y ∗. So, if |W | is infinite, then
Lemma 2.9 implies that X∗ ∩ Y ∗ contains an end, while X ∩ Y does not (as
X and Y are finitely separated by U). This contradicts Theorem 2.7. We
have thus shown that

|W | is finite. (2.5)

Let TX be the edge set of a maximal topological spanning forest of X̃,
i.e. the union of TSTs of the spaces C̃ corresponding to the components C
of (V [X], X). We point out that every circuit of G that lies entirely in X is
a circuit of (V [X], X). It follows that TX does not contain any circuits of G.

Next, we prove that

every W -path in (V [X∗], X∗) meets T ∗
X . (2.6)

Suppose there is a W -path whose edge set D∗ lies in X∗ \ T ∗
X . By (2.4),

there is a circuit C∗ of G∗ with C∗ ∩ X∗ = D∗. Thus, C is a bond in G,
and hence D is a finite cut of (V [X], X). Consequently, D contains a bond
B of (V [X], X), which then is completely contained in one component KB

of (V [X], X). As B ⊆ D ⊆ X \ TX , the intersection of B with TX is empty.
Thus, B is a finite cut of KB that is disjoint from TX but that separates two
vertices incident with TX . Since, on the other hand, T̃X restricted to K̃B is
path-connected, we obtain a contradiction. This proves (2.6).

Next, Lemma 2.11 yields a set F ⊆ TX of at most |U | − 1 edges so that

every U -arc in T̃X ⊆ X̃ meets F . This means that every circuit C of G with
C ∩ X ⊆ TX meets F . Thus, every bond B∗ of G∗ with B∗ ∩ X∗ ⊆ T ∗

X

meets F ∗. Hence, denoting by K the set of components of (V [X∗], X∗), we
obtain that

for every K ∈ K, the graph HK := K − (T ∗
X \ F ∗) is connected. (2.7)

Now, for every K ∈ K, observe that by (2.6), every W -path in HK meets
F ∗. So, by (2.7), we may apply Lemma 2.12 to HK . Doing so for each K ∈ K,
we obtain that |F ∗| ≥ |W | − |K|. On the other hand, |F ∗| = |F | ≤ |U | − 1
by the choice of F , implying that

|W | ≤ |U | + |K| − 1. (2.8)

Suppose that for every K ∈ K, it holds that |V (K)∩W | > |E(K)|. Then

|W | =
∑

K∈K

|V (K) ∩ W | ≥
∑

K∈K

(|E(K)| + 1) = |X∗| + |K|.
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As |X∗| = |X| ≥ |U |, we obtain that |W | ≥ |U | + |K|. This yields a con-
tradiction to (2.8), since by (2.5), |W | is finite. Therefore, there exists an
L ∈ K with

ℓ := |V (L) ∩ W | ≤ |E(L)|.

Observe that if we can show now that ℓ ≤ k, then it follows that the edge
partition (E(L), E(G∗) \ E(L)) is an ℓ-Tutte-separation of G∗, as desired
for (i). So, in order to prove (i), and (ii), it suffices to prove that for each
K ∈ K it holds that

|V (K) ∩ W | ≤ |U |.

Suppose otherwise. Then there exists an M ∈ K such that

|W | =
∑

K∈K

|V (K) ∩ W | ≥ (|U | + 1) +
∑

K∈K, K 6=M

|V (K) ∩ W |.

Because G is 2-connected, so is G∗ (Lemma 2.15). Thus |V (K) ∩ W | ≥ 1
for every K ∈ K, resulting again in |W | ≥ |U | + |K|, a contradiction, as
desired.

Theorem 2.16.[22] Let G and G∗ be a pair of dual graphs, and let k ≥ 2.
Then G is k-Tutte-connected if and only if G∗ is k-Tutte-connected.

Proof. We show that if G has a k-Tutte-separation (X, Y ), then G∗ has an
ℓ-Tutte-separation for some ℓ ≤ k. By Theorem 2.2 (ii), this is enough to
prove the theorem.

First, assume that V [Y ]\V [X] 6= ∅. Let K be a component of (V [Y ], Y )−
V [X], and set Z := E(K)∪E(K, G−K). As E(K, G−K) contains at least
one edge for each vertex in N(K), it follows that |Z| ≥ |N(K)|. Thus,
(Z, E(G) \ Z) is a k′-Tutte-separation of G for k′ := |N(K)| ≤ k. We can
now apply Lemma 2.14 (i) to obtain the desired ℓ-Tutte-separation of G∗.

So, we may assume that V [Y ] \ V [X] = ∅. Then, since |Y | ≥ k, there is
a circuit C in Y , say of length ℓ ≤ k. Hence, C∗ is a bond of size ℓ in G∗; let
K1 and K2 be the components of G∗ − C∗. Now,

|E(K1 ∪ K2)| = |X∗| + |Y ∗| − |C∗| ≥ 2k − ℓ.

Thus, we can partition C∗ into C∗
1 and C∗

2 so that each Z∗
i := E(Ki) ∪ C∗

i

has cardinality at least ℓ.
In order to show that (Z∗

1 , Z
∗
2 ) is an ℓ-Tutte-separation of G∗ it remains

to check that U := V [Z∗
1 ] ∩ V [Z∗

2 ] has cardinality at most ℓ. To this end,
consider a vertex v ∈ U , and let j be such that v ∈ V (Kj). Then v is incident
with an edge e∗v ∈ C∗

3−j , whose other endvertex lies in K3−j , because C∗ is a
cut. This defines an injection from U → C∗, which implies |U | ≤ |C∗| ≤ ℓ,
as desired.
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2.5 The dual preserves the degrees

In this section we will use Lemma 2.14 in order to prove a quantitative version
of Theorem 2.4, that relates the ‘degree’ of an end ω to the degree of its dual
end ω∗.

For an end ω, define m(ω) to be the supremum of the cardinalities of
sets of disjoint rays in ω; Halin [51] showed that this supremum is indeed
attained. In [24] and in Stein [77] the number of vertex- (or edge-)disjoint
rays in an end has been successfully used to serve as the degree of an end
in a locally finite graph (whether vertex- or edge-disjoint rays should be
considered depends on the application). This motivates the definition of the
degree d(ω) := m(ω) of an end ω of a locally finite graph. We will discuss
end degrees in more depth in Chapter 3.

Now, if G and G∗ are a dual pair of 2-connected locally finite graphs,
then it will turn out that m(ω) = m(ω∗) for every end ω of G. In non-locally
finite graphs we need to be a bit more careful: Figure 2.4 indicates that
dominating vertices should be taken into account.

For an end ω ∈ Ω(G) and a finite vertex set S, we say that U ⊆ V (G)
separates S from ω if U meets every ray in ω that starts in S. We define here
the degree d(ω) of an end ω ∈ Ω(G) to be the minimal number k such that
for each finite set S ⊆ V (G), we can separate S from ω in G by deleting at
most k vertices from G. If there is no such k, we set d(ω) := ∞. Lemma 2.17
will show that this definition is consistent with the one given above for locally
finite graphs.

So, denote by dom(ω) the number of vertices that dominate an end ω
(possibly infinite). Note that the graphs we are interested in, namely those
that satisfy (1.1), are such that dom(ω) ∈ {0, 1} for every end ω.

Lemma 2.17. [22] Let G be a graph and let ω ∈ Ω(G). Then d(ω) =
m(ω) + dom(ω).

Proof. It is easy to see that d(ω) is at least m(ω) + dom(ω). For the other
direction, we may assume that dom(ω) < ∞. Denote by D the set of vertices
that dominate ω. As D is a finite set, there is an obvious bijection between
the ends of G − D and G, which we will tacitly use.

We observe first that for any finite vertex set T , there exists a finite T–ω
separator T ′ in G − D that is contained in CG−D(T, ω). Indeed, otherwise,
by Menger’s theorem1, G[T ∪ C(T, ω)] − D contains infinitely many paths

1We use here, and below, that the cardinality version of Menger’s theorem holds in
infinite graphs. This can easily be deduced from Menger’s theorem for finite graphs, see
for instance [31, Section 8.4]
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between T and some ray in ω that are pairwise disjoint except possibly in T .
As T is finite, this implies that T \ D contains a vertex which dominates ω,
contradicting our choice of D.

Now, consider an arbitrary finite set S ⊆ V (G). Starting with S0 := S\D
we can choose inductively finite vertex sets Si so that Si ⊆ V (CG−D(Si−1, ω))
is an Si−1–ω separator in G − D, and has minimal cardinality with that
property. Since Si ⊆ V (CG−D(Si−1, ω)), all the Si are pairwise disjoint.

Applying Menger’s theorem repeatedly between Si−1 and Si we obtain a
set R of disjoint rays in ω of cardinality at least |S1|. As S1 ∪D separates S
from ω in G, we have shown that S can be separated from ω by at most
|S1| + |D| ≤ m(ω) + dom(ω) vertices, thus proving the lemma.

We remark that Lemma 2.17 can be obtained easily from results of Po-
lat [69]; we chose to provide the proof nevertheless since the statement of
Polat’s results together with the necessary adaptions would have taken about
as much time and space.

Theorem 2.18.[22] Let G and G∗ be a pair of 2-connected dual graphs, and
let ω be an end of G. Then dG(ω) = dG∗(ω

∗).

Proof. First assume that d(ω) ≤ k, where k ∈ N is a finite number. We wish
to show that ω∗ has vertex-degree ≤ k, too.

So, let a finite vertex set T ⊆ V (G∗) be given. Pick a finite edge set F ∗ of
cardinality at least k so that T ⊆ V [F ∗] and so that F ∗ induces a connected
graph. Now, since d(ω) ≤ k there is a set U ⊆ V (G) of cardinality at most k
that separates (the finite set) V [F ] from ω. If C is the component of G−U to
which ω belongs then set Y := E(C)∪E(C, U) and X := E(G)\Y . Because
k ≥ |U | = |V [X]∩V [Y ]|, and because |Y | = ∞ and |X| ≥ |F | ≥ k, it follows
that (X, Y ) is a k-Tutte-separation.

Since (V [F ∗], F ∗) ⊆ (V [X∗], X∗) is connected, there is a component K of
(V [X∗], X∗) that contains all of F ∗. As |F ∗| ≥ k, Lemma 2.14 (ii) implies
that (E(K), E(G∗) \ E(K)) is a k-Tutte-separation. Moreover, as ω /∈ X, it
follows that ω∗ /∈ K. Thus, NG∗(G

∗ − K) is a vertex set of cardinality ≤ k
that separates T ⊆ V [F ∗] from ω∗, as desired.

In conclusion, since G is also a dual of G∗ (Theorem 2.2 (ii)), it follows
that d(ω) = d(ω∗) if either of ω and ω∗ has finite degree. In the remaining
case, we trivially have d(ω) = ∞ = d(ω∗).

The theorem in conjunction with Lemma 2.17 immediately yields Theo-
rem 2.4.
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Chapter 3

The cycle space and end
degrees

3.1 Degrees of ends

As outlined in Chapter 1 the topological cycle space makes it possible to
extend facts about circuits in finite graphs to infinite graphs. However, one
of the most basic and simple results characterising the cycle space of a finite
graph did not so far have an analogue in locally finite graphs. For an edge
set Z let us call a vertex Z-even if it is incident with an even number of
edges in Z.

Proposition 3.1. Let G be a finite graph. Then an edge set Z ⊆ E(G) is
an element of the cycle space if and only if every vertex in G is Z-even.

Easy examples show that the proposition, as it is, cannot carry over to
infinite graphs. In Figure 3.1, all the vertices in the double rays D and D′,
for instance, have degree 2, yet E(D) is a circuit but E(D′) is not.

D

D’

...

...

...

...

Figure 3.1: The edge set of D but not of D′ is a circuit
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The key difference between D and D′ obviously lies in their behaviour
at the ends of the double ladder. In [34] it was proposed to find a suitable
definition for the degree of an end that captures this behaviour. Such a
definition has been offered in [24], where the degree of an end is defined to
be the maximal number of edge-disjoint rays in the end. Should this degree
be finite, we call an end even if the end-degree is an even number, otherwise
it is odd. For ends of infinite degree it is still possible to assign a parity, even
or odd; we defer the details to Section 3.2. The concept of an end-degree
allows to prove the following theorem, the main result of [24].

Theorem 3.2.[24] Let G be a locally finite graph. Then E(G) is an element
of the topological cycle space of G if and only if every vertex and every end
of G has even degree.

To see whether a subset Z of the egdes of a finite graph G = (V, E) is
an element of the cycle space, we evidently need to check the degree a given
vertex has in the subgraph (V, Z), whereas the degree in the whole graph is
irrelevant. In the same way, if we want to extend Proposition 3.1, we have
to measure the degree of an end with respect to Z. Such an end-degree,
that classifies ends as Z-even or as Z-odd, has been introduced in [24], which
allowed to formulate the following conjecture.

Conjecture 3.3. [24] Let G be a locally finite graph, and let Z ⊆ E(G).
Then Z is an element of the topological cycle space of G if and only if every
vertex and every end of G is Z-even.

The purpose of this chapter, which is based on [11], is to give a proof of
the conjecture, which will be achieved over the course of Sections 3.3 and 3.4.
In Section 3.2 we briefly discuss and define the notion of an end-degree.

3.2 End-degrees in subgraphs

In this section, let us first give the formal definition of the degree of an end
with respect to the whole graph. In a second step we then refine the defini-
tion, so that it applies to subgraphs as well. We follow here the exposition
of [24], where a more thorough discussion can be found.

In Chapter 3 we have already encountered a notion of an end-degree.
There we considered the degree of an end to be the maximal number of dis-
joint rays of the end. In this context, the definition turns out to be unsuitable
as the graph in Figure 3.2 demonstrates. Every vertex has even degree, and
both ends admit at most two disjoint rays. Since thus all vertices and ends
have even degree we would assume that the whole edge set is contained in
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its topological cycle space. This, however, is not the case as the graph has
an odd cut (see Theorem 1.9).

Figure 3.2: Counting disjoint rays does not work

There is an obvious alternative to defining the end-degree by counting
disjoint rays, namely by counting edge-disjoint rays. This leads to two dif-
ferent definitions of the end-degree, each of which has its merits. Indeed, in
Chapter 3 we worked successfully with an end-degree based on disjoint rays,
which is also used in Stein [77]. The graph in Figure 3.2 gives an indication
that, in order to characterise the elements of the topological cycle space, we
need to focus on edge-disjoint rays. While all vertices and ends have even
degree if the notion of an end-degree rests on disjoint rays, each of the two
ends has three edge-disjoint rays (but not four).

Let ω be an end of a locally finite graph G. In this chapter, the end-degree
of ω is the supremum (in fact, this is a maximum) over the cardinalities of
sets of edge-disjoint rays in ω, and we denote this (possibly infinite) number
by deg(ω).

For Theorem 3.2 the numerical value deg(ω) is not important. Rather, it
is essential whether ω can be said to be even or odd. Provided deg(ω) is finite
then it is obvious that ω should be even if and only if the number deg(ω)
is even. That raises the question what parity we should assign to an end
ω of infinite degree. The graphs in Figure 3.3 demonstrate that we cannot
call such an end always even or always odd. In both graphs all the vertices
have even degree and all the ends have infinite degree. Yet, as can be easily
checked with the help of Theorem 1.9, the edge set of the infinite grid lies in
the cycle space, while for the graph H on the right, we have E(H) /∈ C(H).
Consequently, for Theorem 3.2 to become a true statement, the single end in
the infinite grid has to be even, but the two ends in H should be odd.

The example indicates that we need to distinguish between ends that
have infinite degree but are even and ends of odd-infinite degree. This is
accomplished by the following definition. We call an end ω even if there
exists a finite vertex set S ⊆ V (G) so that for all finite vertex sets S ′ ⊇ S
it holds that the maximal number of edge-disjoint rays in ω starting in S ′ is
even. Otherwise, the end is called odd.

Let us make two remarks, both of which are discussed in more detail
in [24]. First, for an end ω of finite degree, the end is even according to
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Figure 3.3: Even and odd ends of infinite degree

this definition if and only if deg(ω) is an even number. Second, the choice
of quantifiers for S and S ′ might appear arbitrary. Indeed, defining an end
to be even with reversed quantifiers seems equally reasonable, i.e. an end ω
would be even if for all finite vertex sets S there exists a finite superset S ′

such that the maximal number of edge-disjoint rays in ω starting in S ′ is
even. While we suspect that such a definition of weakly even ends would still
lead to Theorem 3.2 and Conjecture 3.3 to be true, we unfortunately cannot
prove much in that respect.

Going back to Figure 3.3, we see that a choice of S = ∅ is sufficient for
the single end of the infinite grid to be even. For any of the two ends of
the graph on the right, however, it is not hard to check that as long as S ′

separates the two ends, the maximal number of edge-disjoint rays in the end
starting in S ′ is odd, and hence the end itself is odd, as desired.

As outlined in Section 3.1, the degree of an end with respect to the whole
graph is not of much use to us. To be able to decide whether a given edge
set Z lies in the cycle space or not, we require a notion of an end-degree that
takes Z into account. The key to adapting the notions introduced above, lies
in substituting every occurrence of the word ‘ray’ by ‘arc’.

ω1

ω2

ω3

ω4

...

Figure 3.4: In subgraphs we have to count arcs
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Figure 3.4 shows that we cannot keep counting rays. The set C of bold
edges forms a circuit, yet any two rays of the end to the right contained in
C share an edge. However, there are two edge-disjoint arcs in C.

Denote by Z the closure of the point set
⋃

z∈Z z in |G|. Moreover, for
S, T ⊆ V (G) ∪Ω(G), we say that A is an S–T arc if the first point of A lies
in S, the last in T and no interior point in S ∪ T . For x ∈ V (G) ∪ Ω(G) we
simply speak of x–T arcs instead of {x}–T arcs, and proceed analogously for
other combinations of singeltons and sets.

We say that an end ω is Z-even if there exists a finite vertex set S so
that for all finite vertex sets S ′ ⊇ S it holds that the maximal number of
edge-disjoint S ′–ω arcs contained in Z is even. If an end is not Z-even, it
is Z-odd. This definition is consistent with the definition of the end-degree
in the whole graph, i.e. an end is E(G)-even if it is even. Moreover, if the
maximal number N of edge-disjoint arcs contained in Z and ending in ω is
finite, then ω is Z-even if and only if N is even. For both these facts, see [24].

Consider the double rays D and D′ in Figure 3.1 again. There are two
(edge-disjoint) arcs contained in E(D) that end in the end to the right, so
that that end is E(D)-even. So, all vertices and all ends are E(D)-even,
and indeed E(D) is a circuit. In contrast, E(D′) is not a circuit and we can
easily check that any two arcs contained in E(D′) terminating in the same
end share an edge. Consequently, the ends are E(D′)-odd and therefore a
certificate for E(D′) /∈ C.

Let us now state the main result of this chapter.

Theorem 3.4.[11] Let G be a locally finite graph, and let Z ⊆ E(G). Then
Z ∈ C(G) if and only if every vertex and every end of G is Z-even.

The following lemma will be convenient when we check whether a given
end is even or odd. We say that an edge set F separates a vertex set S from
an end ω if every ray in ω with first vertex in S meets F .

Lemma 3.5.[11] Let ω be an end of a locally finite graph G, let Z ⊆ E(G)
and let S ⊆ V (G) be a finite vertex set. Then the maximal number of edge-
disjoint S–ω arcs contained in Z equals the minimum of |F ∩ Z| over all
finite cuts F of G that separate S from ω.

While the proof of the lemma is not overly difficult, it is not very instruc-
tive, and similar arguments have been given in [24]. We note that it can also
be obtained from a more general result by Thomassen and Vella [81], who
prove a Menger-type theorem for graph-like spaces.

With the help of Lemma 3.5 and Theorem 1.9 it becomes easy to prove
the forward direction of our main theorem.
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Lemma 3.6. [11] Let G be a locally finite graph, and let Z ⊆ E(G). If
Z ∈ C(G) then every vertex and every end of G is Z-even.

Proof. If Z ∈ C(G) then, by definition or by Theorem 1.9, every vertex of G
is Z-even. To see that any end ω is Z-even too, consider an arbitrary finite
vertex set S ′. By Lemma 3.5, the maximal number of edge-disjoint S ′–ω arcs
contained in Z equals the minimum |F ∩Z| for all finite cuts F that separate
S ′ from ω. Since Theorem 1.9 implies that for any finite cut F we have that
F ∩ Z is an even set, we deduce that the number of S ′–ω arcs is even, and
consequently that ω is Z-even.

The rest of the chapter will be spent on proving the backward direction.
For this, given an edge set Z in a locally finite graph G we assume that every
vertex is Z-even but that Z /∈ C(G). Hence, our aim is to find a Z-odd end,
which we shall achieve be showing that the conditions of the next lemma are
met.

Let Z ⊆ E(G), and let C be some subgraph of G. We write ∂ZC for
the edges in Z with exactly one endvertex in C and exactly one endvertex
outside C. We write ∂GC for ∂E(G)C. We call a subgraph R a region of G if
there is a finite cut F of G so that R is a component of G−F . In particular,
R is induced and connected. We call a region R Z-even if |∂ZR| is even,
otherwise R is Z-odd.

Lemma 3.7. [11] Let G be a locally finite graph, and let Z be a subset of
E(G). Assume there exists a sequence C1, C2, . . . of regions of G with the
following properties:

(i) |∂ZCn| is odd for all n;

(ii) ∂GCn ∪ E(Cn) ⊆ E(Cn−1) for all n; and

(iii) for every region R of G with Ck ⊇ R ⊇ Cℓ for some k ≤ ℓ it holds that
|∂ZR| ≥ |∂ZCk|.

Then, G contains a Z-odd end.

Proof. Denote by ω the end of a ray that meets every Cn (that such a ray
exists can be seen, for instance, by Lemma 8.2.2 in [31]), and let us show
that ω is Z-odd. First, observe that, by (ii), any arc that meets every Cn

for large n contains a subarc with ω as endpoint. Now, let a finite vertex set
S be given. By (ii), we may pick an N so that S is disjoint from CN . Put
S ′ := S ∪ N(G − CN) and note that (iii) together with Lemma 3.5 imply
that the maximal number of edge-disjoint S ′–ω arcs contained in Z equals
|∂ZCN |, which is odd by (i). Thus, ω is Z-odd.
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Let us give a rough outline of the proof of Theorem 3.4. Lemma 3.7
provides us with a recipe for proving the existence of a Z-odd end. But how
do we find Z-odd regions Cn as in the lemma? We first note that there is
a natural candidate for C1. By Theorem 1.9, there exists a finite cut of G
that meets Z in an odd number of edges. Now, among all finite cuts F so
that |F ∩ Z| is odd we choose one where |Z ∩ F | is minimal. Then, we take
C1 to be a component of G − F . This already ensures that for any Z-odd
region R ⊆ C1 it holds that |∂ZR| ≥ |∂ZC1|. Furthermore, since every vertex
is Z-even the Z-odd cut F = ∂GC1 propagates into C1, in the sense that
C1 properly contains Z-odd regions. Finding a suitable region C2 is more
difficult. In a similar way as for C1, it appears enticing to simply pick among
all Z-odd regions C with ∂GC ∪E(C) ⊆ E(C1) one so that |∂ZC| is minimal.
However, since we chose |∂ZC1| to be minimal among all Z-odd regions there
still could exists a Z-even region R sandwiched between C1 and C2 with
smaller cut-size in Z than C1, i.e. with |∂ZC1| > |∂ZR|.

In order to overcome this problem, we will eliminate all small Z-even
cuts before choosing C2. This will be achieve by contracting certain Z-even
regions and obtaining a minor all of whose infinite Z-even regions have large
cut-size. In that minor we then choose a region C∗

2 so that ∂ZC∗
2 has minimal

odd size. By uncontracting we obtain the region C2 in the original graph.
We repeat this procedure. Once again we eliminate all small Z-even cuts,
choose C∗

3 in the resulting minor and so on. This way we can obtain regions
C∗

1 , C
∗
2 , . . . of different minors of G. We will gain the regions Cn of G by

uncontracting the regions C∗
n.

The next section will hand us a tool to eliminate infinite Z-even regions
of small cut-size. The main work of constructing a sequence of regions C1 ⊇
C2 ⊇ . . . will be achieved in Section 3.4.

3.3 Elimination of regions with small cutsize

Before we can prove Lemma 3.10, the main tool to eliminate small Z-even
cuts, we state two lemmas. The first of which is a standard lemma, that
asserts that the function measuring the number of edges leaving a vertex set
is submodular.

Lemma 3.8. Let G be a graph, and let X, Y ⊆ V (G). Then

|∂X| + |∂Y | ≥ |∂(X ∩ Y )| + |∂(X ∪ Y )|

and
|∂X| + |∂Y | ≥ |∂(X − Y )| + |∂(Y − X)|.
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The next lemma is used in the inductive proof of Lemma 3.10. For an
edge set Z, we say that D is a (m, Z)-region if D is a region with |∂ZD| = m.

Lemma 3.9.[11] Let G be a locally finite graph, and let Z ⊆ E(G). Let C
be a region of G, and denote by m the minimal integer k for which there is
an infinite (k, Z)-region R in G with R ⊆ C. Assume m to be even. Let
R, S1, . . . , Sℓ be (m, Z)-regions, where S1, . . . , Sℓ are pairwise disjoint and
|R −

⋃ℓ
i=1 Si| = ∞ Then there exist a subgraph K and an (m, Z)-region S

satisfying

(i) the subgraph K is the union of components of R −
⋃ℓ

i=1 Si;

(ii) the region S is spanned by the union of K with some (possibly none) of
S1, . . . , Sℓ;

(iii) S − Si is connected for every i = 1, . . . , ℓ;

(iv) K is an infinite subgraph and |∂ZK| is even; and

(v) if m = 0 then each K is connected; and if m > 0 then each component
of K is incident with an edge in Z.

Proof. Define I to be the set of those Si among S1, . . . , Sℓ for which Si −
R is infinite; denote by J the other ones. Consider an Si ∈ I. Observe
that by definition of m and since each of R − Si and Si − R is an infinite
subgraph, Lemma 3.8 implies that |∂Z(R − Si)| = |∂Z(Si −R)| = m. Hence,
R − Si contains an infinite (m, Z)-region. In a similar way, we see that for
any Sj ∈ J , the induced subgraph on R ∪ Sj contains an infinite (m, Z)-
region. As the S1, . . . , Sℓ are pairwise disjoint it follows therefore that each
infinite component of G[(R −

⋃
I) ∪

⋃
J ] (and there is at least one) is is

an infinite (m, Z)-region. For one of these components, R′ say, the subgraph
K ′ := R′ −

⋃ℓ
i=1 Si will be infinite, so that K ′ satisfies (i), and (ii) holds for

R′. Among all infinite subgraphs K of G and (m, Z)-region S satisfying (i)
and (ii), we choose S to be ⊆-minimal.

Let us now show that K satisfies (iv). Indeed, let T ⊆ {S1, . . . , Sℓ} so
that S = G[K ∪

⋃
T ]. Since the Si are pairwise disjoint it follows that

∂ZK = ∂Z(S −
⋃

T ) = ∂ZS +
∑

T∈T

∂ZT.

(Recall that we consider the sum of edge sets to be their symmetric differ-
ence.) Since S as well as all the T ∈ T are (m, Z)-regions, we deduce that
|∂ZK| is even.
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Next, assume that m > 0 and suppose that K has a component L that
is not incident with any edge in Z. Since m > 0, L cannot be infinite, which
implies that K − L is still infinite. Moreover, as |∂Z(S − L)| = m, one of
the components of S −L is an infinite (m, Z)-region S ′, which then together
with K ′ := S ′ −

⋃ℓ
i=1 Si constitutes a contradiction to the minimal choice

of S. If, on the other hand, m = 0 then K cannot be disconnected as each
infinite component K ′ of K would with S ′ = K ′ contradict the choice of K
and S. Therefore, (v) is proved.

Finally, in order to prove (iii), suppose that there exists a k so that S−Sk

is not connected. Since K ⊆ S −
⋃ℓ

i=1 Si is infinite one of the components of

S−Sk, X say, has therefore the property that K ′ := X−
⋃ℓ

i=1 Si is infinite as
well. Observe that it follows from (ii) that Sk ⊆ S. Setting Y := S−(Sk∪X),
we see that

2m = |∂ZS| + |∂ZSk| = |∂Z(Sk ∪ X)| + |∂Z(Sk ∪ Y )|.

As both Sk ∪ X and Sk ∪ Y are infinite, S ′ := G[Sk ∪ X] ⊆ S is an infinite
(m, Z)-region. Again we have, with S ′ and K ′, obtained a contradiction to
the minimal choice of S.

In the rough sketch of the proof of Theorem 3.4, we claimed we would
construct minors in order to eliminate infinite Z-even regions of small cutsize.
This is slightly incorrect. Unfortunately, and this will lead to some technical
complications, we are not able to force the contracted branch sets to be
connected. Rather, it will sometimes be necessary to contract a disconnected
set to a single vertex. Thus, we will not be working with minors but with
what we call pseudo-minors.

Let V be a partition of the vertex set of a graph G. We define a graph
H with vertex set V and edge set E(H) ⊆ E(G), so that e is an edge of H
between two distinct vertices U and U ′ of H if and only if e is an edge of G
with one endvertex in U and the other in U ′. In particular, we allow H to
have parallel edges but no loops. We call such a graph H a pseudo-minor of
G, denoted by H 4 G, and define K(H, G) to be the set of non-singletons in
V.

Let D, K be subgraphs of G. We say that D splits K if neither V (K) ⊆
V (D) nor V (D) ∩ V (K) = ∅.

Lemma 3.10.[11] Let G be a locally finite graph, and let Z ⊆ E(G). Let
C be a region of G, and denote by m the minimal k for which there is an
infinite (k, Z)-region R in G with R ⊆ C. Assume m to be even. Then there
exists a locally finite pseudo-minor G′ of G and a set S of (m, Z)-regions of
G so that the following holds:
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(i) K is infinite for each K ∈ K(G′, G) and |∂ZK| is even;

(ii) every region D of G splits at most finitely many K ∈ K(G′, G);

(iii) if D is an infinite (k, Z)-region of G′ with E(D) ⊆ E(C) then it follows
that k > m;

(iv) for every K ∈ K(G′, G) there is an S ∈ S with K ⊆ S ⊆ C;

(v) for every S ∈ S there is an L ⊆ K(G′, G) with S = G[
⋃

L∈L L]; and

(vi) if m = 0 then each K ∈ K(G′, G) is connected; and if m > 0 then each
component of K, K ∈ K(G′, G), is incident with an edge in Z.

If the assertions of the lemma are satisfied for a graph G with pseudo-
minor G′, a region C and a set of regions S then the tuple (G′, G, C,S, m)
will be called a legal contraction system.

Proof. We may restrict ourselves to the component of G that contains the
region C, and therefore assume that G itself is connected. Let R1, R2, . . . be
an enumeration of all infinite (m, Z)-regions of G. (Since G is connected,
these are only countably many.)

We shall define inductively subgraphs K1, K2, K3, . . . and (m, Z)-regions
S1, S2, S3, . . . ⊆ C satisfying

• Ki is infinite for each i = 1, 2, 3, . . . and |∂ZKi| is even;

• For every i = 1, 2, 3, . . ., the region Si is spanned by the union of Ki

with some (possibly none) of S1, . . . , Si−1;

• The K1, K2, K3, . . . are pairwise disjoint;

• if m = 0 then each Ki is connected; and if m > 0 then each component
of each Ki is incident with an edge in Z.

We note that the second and third property imply that

for each j < i either Sj ⊆ Si or Sj ∩ Si = ∅. (3.1)

Taking S = {S1, S2, S3, . . .} and obtaining G′ from G by contracting the Ki,
we clearly have (i), (iv)–(vi). A further analysis of the process will yield (ii)
and (iii).

We start by setting K1 = S1 = R1. Now assume that K1, . . .Kℓ and
S1, . . . , Sℓ are constructed. We denote by nℓ the minimal n satisfying |Rn −⋃ℓ

i=1 Si| = ∞. (If no such Rn exists, the process terminates.) We then apply
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Lemma 3.9 to Rnℓ
and the ⊆-maximal regions among S1, . . . , Sℓ, which are,

by (3.1), pairwise disjoint. The resulting K and S found by the lemma will
be chosen as Kℓ+1 and Sℓ+1 respectively.

In order to see that (ii) is satisfied, let R be a region of G and let
X = (∂GR) ∩

⋃∞
i=1 E(Si). Let {Si1, Si2 , . . . , Sik} be a set of minimal size

with X ⊆
⋃k

j=1 E(Sij). We claim that R does not split any Ki with i >
max(i1, . . . , ik). To reach a contradiction, suppose that R splits Kn for some
n > max(i1, . . . , ik). Then, as Kn is disjoint from all the Sij , Kn must be
disconnected, and have at least one component inside R and at least one
component outside R. Since Kn ⊆ Sn and since Sn is connected, Sn must
contain some edge from X. Hence it meets some Sij , Si1 say. As n > i1, we
have, by construction, that Si1 ⊆ Sn.

Let Sp be the ⊆-maximal region among S1, . . . Sn−1 containing Si1 . Recall
that we chose Sn and Kn using Lemma 3.9, which states that Sn − Sp is
connected. As, furthermore, Kn is disjoint from Sp because it is chosen later,
it follows that Sn − Sp contains an edge of X, and thus meets and then
contains one of Si2 , . . . , Sik , say Si2 . We thus have Si2 ⊆ Sn − Sp ⊆ Sn − Si1 .

This, however, leads to X ⊆ E(Sn) ∪
⋃k

j=3 E(Sij), which contradicts the
minimality of k. This completes the proof of (ii).

Let us finally prove (iii). Note that if nℓ+1 = nℓ then, by Lemma 3.9 (i),
Rnℓ

−
⋃ℓ+1

i=1 Si will have less components than Rnℓ
−
⋃ℓ

i=1 Si. This implies
limℓ→∞ nℓ = ∞. Therefore, for every (m, Z)-region Rn it holds that |Rn −⋃ℓ

i=1 Si| < ∞ for some ℓ. Now, if D is an infinite (k, Z)-region of G′ with
E(D) ⊆ E(C) then by uncontracting and (ii) we find a (k′, Z)-region R of
G with R ⊆ C and k′ ≤ k so that E(R) ∩ E(G′) is infinite. By assumption,
we have that k′ ≥ m. If k′ = m then R = Rn for some n, and consequently
|Rn −

⋃ℓ
i=1 Si| < ∞ for some ℓ, contradicting that E(R) ∩ E(G′) is infinite.

This proves (iii).

3.4 Proof of main result

We restate and then prove the main result of this chapter.

Theorem 3.4.[11] Let G be a locally finite graph, and let Z ⊆ E(G). Then
Z ∈ C(G) if and only if every vertex and every end of G is Z-even.

Proof. In light of Lemma 3.6 we only need to prove the backward direction.
In order to do so, assume that every vertex of G is Z-even but that Z /∈ C(G).
Our task is to find a Z-odd end in G.

Since Z /∈ C(G) there exists a topologically connected component of Z
whose edge set is not an element of the cycle space (recall that Z is the
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closure of Z as a subspace of |G|). An end of G that is odd with respect to
some connected component of Z is Z-odd, as each end of G lies in at most
one connected component. Thus, we may, by deleting all other edges from
Z, assume that Z is topologically connected. In particular, this means that

there exists no finite cut of G that avoids Z but separates two
edges in Z.

(3.2)

Recall that in order to apply Lemma 3.7, we need to find a sequence of
nested Z-odd regions C1 ) C2 ) . . . of G so that for any region R of G with
Ck ⊇ R ⊇ Cℓ for some k ≤ ℓ it holds that |∂ZCk| ≤ |∂ZR|. We shall do this
by first defining a sequence of regions C∗

1 , C
∗
2 , . . . in certain pseudo-minors of

G. We will obtain Cn from the C∗
n by uncontracting.

Let us be more precise. Inductively, we will find Z-odd regions C∗
1 , C

∗
2 . . .

in certain pseudo-minors G0 < G2 < . . . of G. We set mn := |∂ZC∗
n| − 1 for

all n ≥ 1, and for convenience we put m0 = −2. We start the construction
with G−2 = G. Now, in each step, i.e. for each n ∈ N, we will first find a
region C∗

n of Gmn−1 and then construct pseudo-minors Gmn−1+2 < . . . < Gmn

of Gmn−1 . We require that for all n ≥ 1 it holds that

(i) |∂ZC∗
n| is odd; and

(ii) ∂Gmn−1 C∗
n ∪ E(C∗

n) ⊆ E(C∗
n−1) if n ≥ 2.

Let us pause for a while before we give a third requirement. Recall that
C∗

n is a region in the pseudo-minor Gmn−1 . It should be noted that there
might be values of m which are not equal to any mn, but we will still need
to refer to a region of Gm which is naturally obtained from the sequence
C∗

1 , C
∗
2 , C

∗
3 , . . .. For this end, we introduce the following notation:

Let ℓ > m ≥ −2 be two even numbers and let D be an induced subgraph
of Gm. Then πm,ℓ(D) denotes the induced subgraph of Gℓ on the vertex set
{Xv : v ∈ V (D) and v ∈ Xv ∈ V (Gℓ)} (recall that, as Gℓ is a pseudo-minor
of Gm, its vertex set is a partition of V (Gm)). We will also consider the
inverse of πm,ℓ, which we denote by πℓ,m. Given an induced subgraph D′

of Gℓ define πℓ,m(D′) to be the induced subgraph of Gm on the vertex set⋃
X∈V (D′) X. Also for every induced subgraph D of Gm write πm,m(D) = D.

Thus πm,ℓ(D) is defined for every m, ℓ ∈ {−2, 0, 2, 4, . . .} regardless of the
order between them, and for every induced subgraph D of Gm it assigns an
induced subgraph of Gℓ.

With this notation, put Cm
n := πmn−1,m(C∗

n) for every m = −2, 0, 2, 4, . . .
and n = 1, 2, 3, . . .. In particular, this means that C∗

n = Cmn−1
n .

We are now ready to state the third requirement. Alongside with the
construction of the pseudo-minors Gm and the regions C∗

n we will construct,
for every m, sets Sm of (m, Z)-regions of Gm−2 so that
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(iii) (Gm, Gm−2, Cm−2
n ,Sm, m) is a legal contraction system, where n is the

number satisfying mn−1 < m ≤ mn.

Thus, by Lemma 3.10 (i) each vertex in Gm remains Z-even. Since it is
central to the main idea of the proof we restate another implications of (iii):

if D ⊆ Cm
n is an infinite (k, Z)-region of Gm for 0 ≤ m ≤ mn

then k > m.
(3.3)

The statement follows from Lemma 3.10 (iii) either directly or by induction,
depending on whether mn−1 < m ≤ mn or not.

Furthermore, we note the following consequence of (iii) or, more specifi-
cally, of Lemma 3.10 (iv).

C∗
n does not split any K ∈ K(Gm, Gmn−1) for any even m ≥ mn−1. (3.4)

In particular, it follows that the cut ∂Gmn−1 C∗
n lies in Gm for each even m ≥

mn−1 and thus is still a cut there.
Let us make one last observation before we finally start with the con-

struction. We claim that

if D′ is an infinite region of Gm for some m then there exists
for each even ℓ ≤ m an infinite region D of Gℓ with ∂GℓD ⊆
∂GmD′ and πℓ,m(D) ⊆ D′.

(3.5)

Indeed, D̃ := πm,ℓ(D
′) is an induced subgraph of Gℓ with ∂GℓD̃ = ∂GmD′.

From (iii), resp. Lemma 3.10 (ii), it follows that D̃ has only finitely many
components. Hence, one of them is infinite, and this will be the desired
region D.

We are now ready to start the construction. We begin with G−2 = G
and let C1 = C∗

1 be a Z-odd region with the minimal possible value of
|∂ZC1|. We know that Z-odd regions exist by Theorem 1.9. Recall that we
write m1 = |∂ZC1| − 1 We then construct G0, . . . , Gm1 and S0, . . . ,Sm1

using
Lemma 3.10 in a way that will be described in more details later on.

For n > 1, assume C∗
1 , . . . , C

∗
n−1 and G−2, G0, . . . , Gmn−1 and the corre-

sponding Sm to be constructed. In order to find a suitable region C∗
n, we first

claim that there exist Z-odd regions C satisfying (ii).
For n > 1, denote by F the edges in Gmn−1 incident with the vertices in

N(Gmn−1 −C
mn−1

n−1 ). Since C∗
n−1 is a region, F is a finite set and thus |F ∩Z|

is even. Furthermore, ∂Gmn−1 C∗
n−1 ⊆ F implies that the cut F \ ∂Gmn−1 C∗

n−1

meets Z in an odd number of edges. One of the components of Gmn−1 − (F \
∂Gmn−1 C∗

n−1) contained in C
mn−1

n−1 will thus be Z-odd and hence as desired.
We now pick C∗

n among all Z-odd regions C of Gmn−1 satisfying (ii) so that
|∂ZC∗

n| is minimal.
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A consequence of the choice of C∗
n is that for all n ∈ N:

if D is a (k, Z)-region of Gmn−1 so that k is odd and D ⊆ C∗
n

then k ≥ mn + 1 = |∂ZC∗
n|.

(3.6)

In order to define Gm, for even m with mn−1 < m ≤ mn, assume Gℓ for
ℓ = −2, 0, 2, 4, . . . , m − 2 to be already constructed. By (3.3), it holds that
the smallest k∗ for which there is an infinite (k∗, Z)-region R of Gm−2 with
R ⊆ Cm−2

n is at least m− 1. Now, (3.6) in conjunction with (3.5) shows that
k∗ ≥ m. Hence, we may apply Lemma 3.10 to Gm−2, Z, Cm−2

n , m (in the roles
of G, Z, C, m respectively). With the resulting pseudo-minor Gm and set of
(m, Z)-regions Sm, the tuple (Gm, Gm−2, Cm−2

n ,Sm, m) is a legal contraction
system, i.e. (iii) is satisfied.

Assume the construction achieved for all n and corresponding m. Set
Cn := πmn−1,−2(C

∗
n) = C−2

n , i.e. Cn is the induced subgraph of G obtained
from C∗

n by uncontracting K(Gmn−1 , G). Observe that

|∂ZCn| is odd and ∂G(Cn) ∪ E(Cn) ⊆ E(Cn−1) for all n ∈ N. (3.7)

Recall that our aim is to find a sequence of regions Cn of G satisfying the re-
quirements of Lemma 3.7. As (3.7) means that already two of the conditions
hold we need only make sure that each Cn is indeed a region, i.e. a connected
subgraph, and that for all regions R with Ck ⊇ R ⊇ Cℓ for some k ≤ ℓ it
holds that |∂ZR| ≥ |∂ZCk|. We shall deal with the latter condition first.

Observe that (3.4) implies that

Cn does not split any K ∈ K(Gmn , G). (3.8)

Next, we prove that for every n and 0 ≤ m ≤ mn it holds that

for every (k, Z)-region R of G with R ⊆ Cn and k ≤ m it
follows that π−2,m(R) is a finite subgraph of Gm.

(3.9)

Assume the statement to be false for Gm, for some m. For even ℓ, −2 ≤
ℓ ≤ m, denote by Dℓ the set of (k, Z)-regions D of Gℓ with k ≤ m, D ⊆ Cℓ

n

and so that πℓ,m(D) is infinite. Clearly, by assumption we have that D−2 6= ∅.
On the other hand, it holds that Dm = ∅. Indeed, any element in Dm would
contradict (3.3).

Now, choose ℓ ≤ m to be the maximal even integer so that Dℓ−2 6= ∅, and
among the D ∈ Dℓ−2 pick one, D̃ say, so that D̃ splits a minimum number of
elements in K(Gℓ, Gℓ−2). (Note that, by Lemma 3.10 (ii), every region splits
only finitely many sets in K(Gℓ, Gℓ−2).)
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Now, since Dℓ = ∅, the region D̃ of Gℓ−2 must split some element K
of K(Gℓ, Gℓ−2). Let S ∈ Sℓ be an (ℓ, Z)-region with K ⊆ S of Gℓ−2 (see
Lemma 3.10 (iv)).

We distinguish two cases. Assume that S−D̃ is infinite. If |∂Z(D̃−S)| >
|∂ZD̃| then, by Lemma 3.8, S − D̃ contains an infinite (ℓ′, Z)-region of Gℓ−2

with ℓ′ < ℓ, in contradiction to either (3.3) or (3.6) (together with (3.5)).
Thus, D̃ − S is a (k′, Z)-region with k′ ≤ |∂ZD̃| ≤ m. Observe that because
πℓ−2,ℓ(S) is finite by Lemma 3.10 (iii), the subgraph πℓ−2,m(D̃ − S) of Gm is
still infinite. As, moreover, by Lemma 3.10 (v), D̃ − S splits fewer elements
in K(Gℓ, Gℓ−2), we obtain a contradiction to the choice of D̃.

So, let S − D̃ be finite. Suppose that |∂Z(S ∪ D̃)| > |∂ZD̃|. Then, by
Lemma 3.8, S ∩ D̃ contains an infinite (ℓ′, Z)-region of Gℓ−2 with ℓ′ < ℓ, in
contradiction to either (3.3) or (3.6). Thus, G[S ∪ D̃] is an infinite (k′, Z)-
region with k′ ≤ |∂ZD̃| ≤ m. Since G[S ∪ D̃] splits fewer K ∈ K(Gℓ, Gℓ−2)
than D̃, we obtain again a contradiction to the choice of D̃—provided we
can show that S ∪ D̃ ⊆ Cℓ−2

n . To do this, observe that, by Lemma 3.10 (v),
there is a set L ⊆ K(Gℓ, Gℓ−2) with S = G[

⋃
L∈L L]. Since S − D̃ is finite

but all the L ∈ L are infinite by Lemma 3.10 (i), it follows that D̃ meets
every L ∈ L. Together with the fact that Cn does not split any elements in
K(Gℓ, Gℓ−2), by (3.8), and D̃ ⊆ Cℓ−2

n it follows that S ⊆ Cℓ−2
n , and hence,

S ∪ D̃ ⊆ Cℓ−2
n . This finishes the proof of (3.9).

In order to prove that the subgraphs C1, C2, . . . of G satisfy Condition (iii)
of Lemma 3.7 consider a region R with Ck ⊇ R ⊇ Cℓ for some ℓ ≥ k. Observe
that Cmk

ℓ is still an infinite subgraph of Gmk since ∂ZCmk

ℓ is odd but every
vertex in Gmk is Z-even. Thus, π−2,mk

(R) ⊇ Cmk

ℓ is infinite, which with (3.9)
implies that |∂ZR| ≥ mk + 1 = |∂ZCk|, as desired.

For Lemma 3.7 to apply, it remains to show that:

Cn is a region of G for all n ∈ N. (3.10)

For this, it suffices to prove that Cn is connected. If mn = 0 then, by
Lemma 3.10 (vi), G0 is a minor (rather than only a pseudo-minor) of G. As
C∗

n is a region in Gmn−1 , which is either G0 or G−2 = G, we immediately see
that Cn is connected as well.

So, let mn > 0. Since Cn does not split any K ∈ K(Gmn , G) and since
∂GCn is odd, Cmn

n is infinite. Let C be a component of Cn so that π−2,mn
(C)

is infinite, and suppose that R := Cn − C is non-empty. If ∂ZR 6= ∅ then
|∂ZC| ≤ mn in contradiction to (3.9). If, on the other hand, ∂ZR = ∅
then ∂GR is a finite cut of G separating two edges in Z, which constitutes
a contradiction to that Z is topologically connected. Indeed, C contains an
edge of Z since ∂ZC = ∂ZCn is an odd set but every vertex is Z-even. To see
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that E(R) meets Z, recall that C∗
n is a region of Gmn−1 . Thus, there exists

an ℓ ≤ mn−1, so that π−2,ℓ−2(C) splits a K ∈ K(Gℓ, Gℓ−2). By (3.8), the
subgraph K of Gℓ−2 is contained in Cℓ−2

n and then K has one component
in π−2,ℓ−2(C) and one in π−2,ℓ−2(R). Lemma 3.10 (vi) implies that both
these components are incident with an edge in Z. As ∂ZR = ∅, we obtain
E(R) ∩ Z 6= ∅.

In conclusion, the regions Cn satisfy all conditions required in Lemma 3.7,
which therefore yields the desired Z-odd end in G.
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Chapter 4

Bicycles and left-right tours

4.1 Bicycles in finite graphs

The graphs in this chapter are assumed to be simple unless otherwise noted.
The set of edge sets in a graph G together with symmetric difference as
addition forms a Z2-vector space, the edge space E(G). Two important sub-
spaces of E(G) are the topological cycle space C(G) and the cut space C∗(G),
the set of all cuts. Although cuts and cycle space elements are, in a sense,
orthogonal to each other, it is possible for an edge set to be an element of
both, C(G) and C∗(G). Such an edge set is called a bicycle and the space
B(G) := C(G) ∩ C∗(G) is the bicycle space. See Figure 4.1 for an example.

(a) (b)

Figure 4.1: (a) a bicycle; (b) a left-right tour

In finite graphs, bicycles have been widely studied and a number of funda-
mental results involving bicycles are known. The aim of this chapter, which
is based on [21], is to extend three of these to locally finite graphs. The first
theorem we will extend is Read and Rosenstiehl’s tripartition theorem:

Theorem 4.1 (Read and Rosenstiehl [74]). Let e be an edge in a finite graph
G. Then exactly one of the following holds:

43



(i) there exists a B ∈ B(G) with e ∈ B; or

(ii) there exists a Y ∈ C(G) with e ∈ Y and Y + e ∈ C∗(G); or

(iii) there exists a Z ∈ C(G) with e /∈ Z and Z + e ∈ C∗(G).

With the naive definition of C(G), in which every element of the cycle
space is necessarily finite, Theorem 4.1 cannot be expected to carry over to
locally finite graphs. The double ladder, depicted in Figure 4.2, constitutes
an obvious counterexample: no finite bicycle contains the edge e, yet there
is neither a finite Y nor a finite Z as in (ii) or (iii) of the theorem.

e

Figure 4.2: There is no finite B, Y or Z as in Theorem 4.1 for e

Again, the almost self-evident solution is that infinite graphs demand
infinite circuits. We see that the set of bold edges in the double ladder form
an infinite circuit. (The two double rays together with the end to the left
and the one to the right are homeomorphic to the unit circle.) Since this
edge set is also a cut, we have found an infinite bicycle containing e, and
thus the counterexample ceases to be one. More generally, we will prove in
Sections 4.3 and 4.4 that the tripartition theorem becomes true for locally
finite graphs once infinite circuits are admitted.

In Sections 4.5 and 4.6 we will be concerned with plane graphs. In plane
graphs, there is an easy way to find bicycles. Starting with any edge uv, we
traverse uv from u to v, and then choose the leftmost edge at v, follow it
along, then turn right, again turn left at the next vertex, and we continue
alternating between left and right turns until we reach uv again. There we
stop, provided we are about to traverse uv again from u to v and provided
our turn at v would, again, be a left turn. The closed walk produced in this
way is called a left-right tour. Its residue, the set of edges traversed exactly
once, forms a bicycle; see Figure 4.1.

Shank [75] observed that left-right tours not only yield bicycles but that
they, moreover, determine already all bicycles in the graph:

Theorem 4.2 (Shank [75]). In a finite plane graph the residues of the left-
right tours generate the bicycle space.

This is the second of the theorems we shall extend to locally finite graphs.
See also Richter and Shank [71] and Lins, Richter and Shank [58].
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The third and final result we shall treat in this chapter is a planarity
criterion that involves left-right tours and bicycles in a sophisticated way
(Section 4.7). For finite graphs this is due to Archdeacon, Bonnington and
Little [6].

4.2 Definitions and preliminaries

In the cut space C∗(G), the set of all cuts, a result that is analogous to
Theorem 1.9 holds; see the next lemma. A proof of this easy result can, for
instance, be found in [16].

Lemma 4.3. Let F be a set of edges in a graph G. Then F is a cut if and
only if it meets every finite circuit in an even number of edges.

We call the space B(G) := C(G)∩C∗(G) the bicycle space of G; an element
of B(G) is a bicycle.1

In Sections 4.5 and 4.7 we will be concerned with infinite plane graphs.
The usual drawings seem rather insufficient for infinite graphs. Indeed, sev-
eral of the expected properties may fail. For instance, in a 2-connected graph
the face boundaries do not need to be cycles. Moreover, they might even con-
tain only half an edge (for instance, in the drawing there might be vertices
converging against an interior point of an edge) or no edges at all. All these
problems are overcome when, instead of G, the space |G| is embedded in the
sphere. Fortunately, this is not a restriction at all:

Theorem 4.4 (Richter and Thomassen [72]). Let G be a locally finite 2-
connected planar graph. Then |G| embeds in the sphere.

While the theorem is formulated for 2-connected graphs, it is not hard
to extend it to graphs that are merely connected. And indeed, we will make
use of the theorem in graphs that are not necessarily 2-connected.

Assuming |G| to be embedded in the sphere S, we call a connected com-
ponent of S \ |G| a face and its boundary a face boundary. It can be seen
that each face boundary consists of a subgraph of G together with a subset
of the ends of G.

1There is a certain inconsistency here. Following Diestel [31], we use “cycle” to denote
a subgraph stemming from a homeomorphic image of S1. In particular, a finite cycle is a
connected subgraph. On the other hand, a finite bicycle, which is an edge set, does not
need to span a connected graph.
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4.3 The tripartition theorem

In this section, we extend Read and Rosenstiehl’s tripartition theorem to
locally finite graphs. Since the proof is short and because it is worthwhile to
see where it breaks down for infinite graphs, we will start by repeating the
proof for finite graphs.

For this, let us recall two standard notions. There is a scalar product
∗ defined on E(G) for a multigraph G as follows: for X, Y ⊆ E(G), we let
X ∗ Y = 0 if |X ∩ Y | is even, and we set X ∗ Y = 1 otherwise. With
this product, for a set of edge sets X , we can define the orthogonal space
X⊥ := {Y ⊆ E(G) : Y ∗ X = 0 for all X ∈ X}. Clearly, this is standard
linear algebra and all the usual methods apply. We recall the well-known
fact that C(G)⊥ = C∗(G), for a finite (multi-)graph G.

Proof of Theorem 4.1. Assume that there is no bicycle containing e. Thus

{e} ∈ B(G)⊥ = (C(G) ∩ C∗(G))⊥ = C(G)⊥ + C∗(G)⊥ = C∗(G) + C(G).

We omit the easy proof that only one of (i)–(iii) can hold, since these argu-
ments will appear later anyway.

The first problem we encounter when we apply this proof to infinite graphs
concerns the definition of the scalar product: What should the value of X ∗Y
be if the edge sets X, Y have infinite intersection? Fortunately, we will be
able to circumvent this issue by only using the scalar product for X, Y ∈ E(G)
with |X ∩ Y | < ∞. A proper concept for orthogonal spaces appears to be
more difficult, as however defined they seem to lose a number of their usual
properties. For this reason, we will make do without them in infinite graphs.
We remark that, these problems notwithstanding, Casteels and Richter [27]
introduce orthogonal spaces in infinite graphs that still retain many of the
usual properties.

Before we state the tripartition theorem for locally finite graphs, let us
denote by Cfin(G) (resp. C∗

fin(G) or Bfin(G)) the set of all finite edge sets in
C(G) (resp. in C∗(G) or in B(G)).

Theorem 4.5.[21] Let e be an edge of a locally finite graph G. Then either

(i) there exists B ∈ B(G) with e ∈ B; or

(ii) {e} ∈ Cfin(G) + C∗
fin(G)

but not both.
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The reader will have noticed that the theorem only divides the edges into
two classes rather than three. We will address this at the end of the section.
The proof uses Kőnig’s Infinity Lemma, a standard tool in infinite graph
theory. For a proof we refer the reader to [31].

Lemma 4.6 (Kőnig’s Infinity Lemma). Let W1, W2, . . . be an infinite se-
quence of disjoint non-empty finite sets, and let H be a graph on their union.
For every n ≥ 2 assume that every vertex in Wn has a neighbour in Wn−1.
Then H contains a ray v1v2 . . . with vn ∈ Wn for all n.

Proof of Theorem 4.5. We may assume G to be connected and therefore
countable. For each n ∈ N denote by Sn the set of the first n + 1 ver-
tices in some fixed enumeration of the vertices of G that starts with the
endvertices of e. Define Gn to be the graph G[Sn] together with the edges

in E(Sn, V (G) \ Sn) and their incident vertices. Let G̃n be the minor of G
obtained by contracting the components of G − Sn (where we keep parallel

edges but delete loops). Note that e ∈ E(Gn) = E(G̃n). Put Wn := {B ∈

C∗(Gn) ∩ C(G̃n) : e ∈ B}.
We distinguish two cases. First, assume there exists an N such that

WN = ∅. As e ∈ E(GN) this means that {e} ∈ (C∗(GN) ∩ C(G̃N ))⊥ (where
we take the orthogonal space with respect to E(GN), which is a finite vector

space). Since C(GN) ⊆ Cfin(G) and C∗(G̃N) ⊆ C∗
fin(G) it follows that

{e} ∈ (C∗(GN ) ∩ C(G̃N ))⊥ = C∗(GN)⊥ + C(G̃N )⊥

= C(GN ) + C∗(G̃N) ⊆ Cfin(G) + C∗
fin(G)

and hence (ii) holds.
Second, assume Wn 6= ∅ for all n. It is not hard to check that for each

K ∈ C∗(Gn+1) it holds that K ∩ E(Gn) ∈ C∗(Gn), and that for each Z ∈

C(G̃n+1) the restriction Z ∩ E(G̃n) lies in C(G̃n). It follows that B ∈ Wn+1

implies B∩E(Gn) ∈ Wn. We define a graph on
⋃∞

n=1 Wn such that B ∈ Wn+1

is adjacent to B′ ∈ Wn if and only if B ∩ E(Gn) = B′. Thus, the conditions
for Lemma 4.6 are satisfied, and we obtain for each n ∈ N a Bn ∈ Wn so that
Bn+1 ∩ E(Gn) = Bn for all n. Clearly, B :=

⋃
n∈N

Bn contains e.
To see that B is a bicycle, consider a finite cut F of G. Choose N ∈ N

large enough so that F ⊆ E(G̃N )—then F is a cut in G̃N , too. We get

B ∗ F = B ∗ (F ∩ E(G̃N)) = (B ∩ E(G̃N)) ∗ F = BN ∗ F = 0,

where the last equality follows since BN ∈ C(G̃N ). As F was arbitrary,
Theorem 1.9 implies that B ∈ C(G). In a similar way, but using Lemma 4.3
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in GN instead of Theorem 1.9 in G̃N , we see that B ∈ C∗(G). Therefore,
B ∈ B(G) and (i) holds.

Finally, suppose that there is a B ∈ B(G) with e ∈ B and Z ∈ Cfin(G),
K ∈ C∗

fin(G) with {e} = Z + K. Then, as B is both a cut and an element of
the cycle space, we obtain

1 = {e} ∗ B = (Z + K) ∗ B = Z ∗ B + K ∗ B = 0,

which gives a contradiction.

Casteels and Richter [27] independently proved a complementary result:

Theorem 4.7 (Casteels and Richter [27]). Let e be an edge of a locally finite
graph G. Then either

(i) there exists B ∈ Bfin(G) with e ∈ B; or

(ii) {e} ∈ C(G) + C∗(G)

but not both.

It should be noted that Casteels and Richter in fact prove a more general
result of which Theorem 4.7 is but a consequence.

Theorems 4.5 and 4.7 look tantalisingly similar. The next lemma sheds
some light on their relation.

Lemma 4.8.[21] Let G be a locally finite graph. If for an edge e of G two
of the following conditions hold, then the third one is satisfied, too:

(i) there is a Y ∈ C(G) with e ∈ Y and Y + e ∈ C∗(G);

(ii) there is a Z ∈ C(G) with e /∈ Z and Z + e ∈ C∗(G);

(iii) there is a B ∈ B(G) with e ∈ B.

If all of (i)–(iii) hold for e, then each of Y, Z, B in (i)–(iii) is an infinite set.

The lemma is reminiscent of a theorem by Richter and Shank [71] about
(finite) surface duals. In fact, our proof uses similar arguments. We mention,
moreover, that all of (i)–(iii) can hold for an edge. In Figure 4.2 we have
already seen that e lies in an infinite bicycle, while in Figure 4.3 we witness
the other two cases.
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e

e

Figure 4.3: (i), (ii) in Lemma 4.8 hold for e

Proof of Lemma 4.8. First, assume (iii) and one of (i),(ii) to hold. Thus,
there exist a B ∈ B(G) with e ∈ B and an X ∈ C(G) so that X + e ∈ C∗(G).
Since X + B ∈ C(G), we have that if X is as in (i), then X + B satisfies (ii)
and if, on the other hand, X is as in (ii), then X + B satisfies (i).

Second, assume that (i) and (ii) hold, and let Y be as in (i) and Z as in
(ii). Then B := Y +Z ∈ C(G), since Y, Z ∈ C(G). From B = (Y +e)+(Z+e)
it follows that B is also a cut. Finally, since e ∈ Y but e /∈ Z, we have e ∈ B.

For the second part of the lemma, assume that (i)-(iii) hold for e, and let
e ∈ B ∈ B(G). By (the trivial part of) Theorem 4.7, it follows that B cannot
be finite. On the other hand, Y and Z as in (i) resp. (ii) need to be infinite
sets, too, since otherwise this would give a contradiction to Theorem 4.5.

Read and Rosenstiehl’s theorem partitions the edges of a finite graph into
three classes. So far, our theorem yields only two classes. So, let us refine
Theorem 4.5. For this, we say that an edge e in a locally finite graph G is
of cut-type if there is a finite cut K containing e so that K \ {e} ∈ C(G).
We say that e is of flow-type if there is a finite element Z of the cycle space
with e ∈ Z and Z \ {e} ∈ C∗(G). Then, the following immediate corollary of
Lemma 4.8 turns Theorem 4.5 into a true tripartition theorem:

Corollary 4.9.[21] No edge in a locally finite graph can be of cut-type and
of flow-type at the same time.

We should point out that to denote by C∗(G) the set of all cuts is possibly
a bit misleading as it might give the impression that it is the dual space of
C(G). That, however, is not the case. Rather, Theorem 1.9 shows that, at
least in some sense, C(G) and C∗

fin(G) are dual to each other. On the other
hand, the dual space of C∗(G) is Cinf(G), see for instance [16].

In this respect, our bicycle space B(G) is situated between these two
dualities. Examples as the graph in Figure 4.2 indicate that this is nev-
ertheless justified since in order to make the tripartition theorem work in
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infinite graphs, whether it is in the form of Theorem 4.5 or in the form of
Theorem 4.7, we need both spaces, C(G) and C∗(G).

4.4 Principal cuts

Let e be an edge of flow- or of cut-type in a locally finite graph G. Then,
by definition, there is a Z ∈ Cfin(G) so that Z + e ∈ C∗(G). We call Z a
principal flow of e and Z + e a principal cut of e. In this section, we shall
demonstrate, partially without proofs, that the properties of principal cuts
carry over from finite graphs to locally finite graphs.

As a first notable property, let us see that the principal cuts are unique
in a pedestrian graph, that is a graph G for which B(G) = {∅}. Indeed, let
K, K ′ ∈ C∗(G) so that K +e, K ′+e ∈ C(G). Then K +K ′ = (K +e)+(K ′+
e) ∈ B(G), which implies that K = K ′ as B(G) = {∅}. For the purpose of
this section, given a pedestrian graph let us denote the principal cut of an
edge e by Ke and the principal flow by Ze.

We need the following lemma, which (stated for finite graphs but with
exactly the same proof) appears in Read and Rosenstiehl [74]. (We note
that the lemma remains true in non-pedestrian graphs; Ze (resp. Zf) is then
simply any principal flow through e (resp. f), as there is no longer a unique
one. And similarly for Ke, Kf .)

Lemma 4.10. Let e and f be edges in a locally finite pedestrian graph G.
Then:

(i) e ∈ Zf if and only if f ∈ Ze; and

(ii) e ∈ Kf if and only if f ∈ Ke.

Proof. To prove (i) consider

{e} ∗ Zf = (Ze + Ke) ∗ Zf = Ze ∗ Zf + Ke ∗ Zf = Ze ∗ Zf

= Ze ∗ Zf + Ze ∗ Kf = Ze ∗ (Zf + Kf) = Ze ∗ {f}.

Note that all these scalar products are well-defined since the Ze and Ke are
finite sets. Assertion (ii) is proved analogously.

Proposition 4.11. [21] In a locally finite pedestrian graph G both of the
families (Ze)e∈E(G) and (Ke)e∈E(G) are thin.

Proof. Suppose there is an edge e lying in infinitely many Zf . Since G is a
pedestrian graph, e is of flow- or cut-type and Ze is therefore defined. Thus
Lemma 4.10 implies that f ∈ Ze for all these infinitely many f , contradicting
that Ze is finite. Thus (Ze)e∈E(G) is thin. The proof for the principal cuts is
the same.
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For an edge e to be of flow- or of cut-type we have required that there is
a finite Z ∈ C(G) with Z + e ∈ C∗(G). In the light of Theorem 4.7 one could
also quite reasonably relax this, and say that an edge is of flow- or cut-type
if there is any such Z, finite or infinite. A pedestrian graph, then, would be
one without any finite bicycles, since in precisely this case all edges are of
flow- or cut-type.

There are several problems with this definition. We have already seen
(Figures 4.2 and 4.3) that this would not give a proper tripartition. Further-
more, principal cuts in a pedestrian graph would not necessarily be unique
and their family may not be thin. For instance, the cuts in the lower graph
in Figure 4.3 would form a non-thin family of principal cuts.

The following corollary lists verbatim extensions of some basic properties
of principal flows and cuts. Their proofs for finite graphs (substantially) use
the finiteness only in one point, namely that it is allowed to take arbitrary
sums of principal cuts. While, clearly, this is never an issue in finite graphs,
such sums may be infinite in infinite graphs and then need to be thin in order
to be well-defined. But this is exactly what Proposition 4.11 asserts.

Corollary 4.12.[21] Let G be a locally finite pedestrian graph. Then

(i) (Ze)e∈E(G) generates the cycle space; and

(ii) (Ke)e∈E(G) generates the cut space; and

(iii) the union of all flow-type edges is an element of the cycle space; and

(iv) the union of all cut-type edges is a cut.

Proof. (i) and (ii) can be found in Read and Rosenstiehl [74] and (iii) and
(iv) in Godsil and Royle [49].

4.5 Left-right tours

What should a left-right tour in an infinite plane graph be? Quite trivially,
the name suggests two requirements for a left-right tour. Firstly, it should
be “left-right”, that is, locally it should consist of alternating left and right
turns. And secondly, it should be a “tour”, which means it should close up.

The first requirement is fairly simple to guarantee. Just as with left-
right tours in finite graphs, we start a walk at an arbitrary edge and then
alternately turn left and right. If we reach our starting edge again in this
way, we have found a finite left-right tour. Otherwise, we prolong our walk
in the other direction from our starting edge, again taking left and right
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turns. The resulting walk, which we call a left-right string, will be two-way
infinite; two examples can be seen in Figure 4.5. In general, the two ends
of a left-right string will not be identical, and the walk will therefore not be
closed. So to achieve that we do not get stuck in an end, it will be necessary
to glue together several left-right strings at ends. In this way we shall obtain
a topological tour in |G|.

Let us start with left-right strings. To define these properly we shall first
need to describe what it means to do a left turn followed by a right turn.
We follow the treatment of Keir and Richter [55]. Let G be a locally finite
graph, and let |G| be embedded in the sphere S. Recall that, by Theorem 4.4,
every locally finite planar graph has such an embedding. The interior of an
edge of G is homeomorphic to the open unit interval (0, 1). For each edge e,
we fix a homeomorphism. If η1 denotes the image of the restriction of this
homeomorphism to (0, 1

2
) and η2 is the image of the restriction to (1

2
, 1) then

η1, η2 are the halves of e. We use the notation η1 = η2 and η2 = η1 to switch
back and forth between the two halves of an edge. Furthermore, we fix for e
two open, disjoint and connected subsets, σ1 and σ2, of S \ |G| each of which
has e in its boundary. These are the sides of e, and as for the halves, we put
σ1 = σ2 and σ2 = σ1. A triple (e, η, σ), where e ∈ E(G), η is a half of e and
σ is a side of e, is called a corner of |G|. We say that c = (e, η, σ) is a corner
at e, and it is a corner at v ∈ V (G) if the boundary ∂η contains v. Clearly,
for each edge e there are four corners at e.

For each v ∈ V (G) choose an open disc D around v, so that each half of
an edge at v intersects ∂D in exactly one point. Then ∂D defines in a natural
way a rotation of the halves. We say that two corners (e, η, σ), (e′, η′, σ′) at
v are matched if η and η′ appear consecutively in the local rotation at v,
and if the connected component K of σ ∩ D with η ∩ D ⊆ ∂K and the
connected component K ′ of σ′ ∩ D with η′ ∩ D ⊆ ∂K ′ are contained in the
same connected component of D \ |G|. It can be seen that this definition is
independent of the actual choice of D. See Figure 4.4 for an illustration.

Corners can be used to describe left-right steps. Formally, this works
as follows. Let W = . . . (e−1, η−1, σ−1), (e0, η0, σ0), (e1, η1, σ1) . . . be a (finite,
one-way infinite or two-way infinite) sequence of corners satisfying the fol-
lowing properties:

(i) (ei, ηi, σi) and (ei+1, ηi+1, σi+1) are matched for all i; and

(ii) no corner appears twice in W .

We call such a sequence W a left-right walk, which is justified by the fact that
the edges . . . e−1e0e1 . . . do indeed form a walk. Moreover, we will sometimes
pretend that a left-right walk is in fact a walk, i.e. a sequence of vertices and
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Figure 4.4: We think of a corner c = (e, η, σ) at v ∈ V (G) as a point close to
v and η, and lying in σ. The corners c and c′ = (e′, η′, σ′) are matched; the
corners c and c′′ describe a left-right step.

edges, rather than a sequence of corners. The corners c and c′′ in Figure 4.4
describe a left-right step as in (i).

We say that S is a left-right string (LRS for short) if it
is a maximal left-right walk. It is not hard to check that
if S = . . . (e−1, η−1, σ−1), (e0, η0, σ0), (e1, η1, σ1) . . . then S ′ :=
. . . (e1, η1, σ1), (e0, η0, σ0), (e−1, η−1, σ−1) . . . is an LRS, too. Clearly, the
walks S and S ′ traverse the same edges, but in opposite directions. Al-
though we will sometimes view S as an oriented walk, we will, in general,
not distinguish between S and S ′ and consider them to be identical. This
slight abuse of notation ensures that every edge is covered exactly twice by
LRS; see the next lemma. Figure 4.5 gives an example of two different LRS
in the double ladder.

Figure 4.5: Two LRS in the double ladder

A set W of walks is a double cover of G if every edge e ∈ E(G) is traversed
exactly twice by walks in W (i.e. either once in two walks or twice in one
walk). We leave out the proof of the following elementary observation.

Lemma 4.13.[21] For a locally finite graph G, let |G| be embedded in the
sphere. Then:

(i) No two corners in an LRS are matched.

(ii) An LRS is either a closed walk or a two-way infinite walk.
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(iii) The set of all LRS of G is a double cover of G.

Observe that because of our somewhat tortuous definition of left-right
walks as sequences of corners, (iii) remains true in pathological cases, such
as when G is a double ray. Then, there are precisely two (distinct) LRS,
which together form a double cover. Both of them traverse the double ray
from one end to the other and are as walks indistinguishable. The corner
sequences, however, are distinct.

Let G be a locally finite graph (not necessarily planar). We define a tour
T in |G| to be a continuous map T : S1 → |G| that is locally injective at
every x ∈ S1 for which T (x) is an interior point of an edge. Note that,
therefore, every edge with an interior point in the image of T , denoted by
rge T , is completely contained in rge T . We denote the set of all edges that
lie in rge T by E(T ). The residue ▽T of a tour T is the set of those edges
that are traversed exactly once by T .

Now we can finally extend the definition of left-right tours to infinite
graphs. Assume that |G| is embedded in the sphere. Our aim is to give a
definition so that an LRT consists of a number of LRS that are glued together
at ends so as to constitute a tour in |G|. An example would be the two LRS
shown in Figure 4.5 together with the two ends of the double ladder.

Formally, we define a left-right tour L in |G| (LRT for short) to be a tuple
(S, τ) where S is a set of LRS of G and τ : S1 → |G| a tour of |G|, so that
each maximal subwalk of τ (in G, not in |G|) corresponds to one S ∈ S and
vice versa. Usually, however, we will think of L as being a tour in |G|, and
say that an LRS S lies in L if S ∈ S.

Having defined LRTs, our first task is to prove that the residue of an LRT
is indeed a bicycle. In finite graphs, this is due to Shank:

Lemma 4.14 (Shank [75]). If G is a finite plane graph, then the residue of
a left-right tour is a bicycle.

Lemma 4.14 is proved with the help of plane dual graphs. While abstract
dual graphs have been defined in [16], a suitable theory of plane dual graphs
that involves infinite cycles has yet to be formulated. This is probably not
overly difficult but checking the sometimes tedious geometrical details would
take too much space and effort here. Rather, with the help of the next lemma,
we will circumvent this obstacle by reducing the problem to finite graphs.

Lemma 4.15.[21] For a locally finite graph G, let |G| be embedded in the
sphere. Let H be a finite plane subgraph, and let L1, . . . , Lk be a set of LRTs
of G so that no LRS of G lies in more than one Li. Then there exist a finite
plane supergraph H ′ of H and a set L′

1, . . . , L
′
k of LRTs of H ′ so that for all
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i = 1, . . . , k, the LRT Li traverses precisely the edges e1, . . . , en of H and in
this order if and only if L′

i does.

Proof. From the given finite plane subgraph H of G we will construct a finite
plane supergraph H ′ of H (which will not necessarily be a subgraph of G)
with the required properties. We may assume H to be induced. Each Li

decomposes in H into a set of walks. Our task is to draw in the faces of H
finite graphs so that the subwalks in the set Li ∩ H connect up in the same
order as in G (for all i). Since this will be done in the same way in every
face, we may assume in what follows that all of G − H is contained in one
face.

Denote by F those edges in the cut E(H, G−H) that lie in some Li, and
find in the one face that contains G − H an open disc D so that each edge
in F meets ∂D in its interior. For each edge e in F , running along e from H
towards G − H we pick the first point, x say, in ∂D and cut off the edge at
x. We draw a vertex at x and let the set of these x be X. We denote by H0

the finite plane graph consisting of H together with the cut-off edges in F
(plus the vertices in X). While, technically, F is a subset of E(G), we will
view it as a subset of E(H0), too.

Consider an LRT L, and let S be the set of LRS that lie in L (here, of
the two orientations of an LRS S ∈ S, we pick the one that is induced by L).
We define the set of corners KL to be

⋃
S∈S S, and observe that L induces

a cyclic ordering on the LRS in S, and therefore also on KL. Furthermore,
we let M be those of the corners in

⋃k
i=1 KLi

that are corners at edges in F .
Clearly, for each corner in M, which is a corner in G, there is a corresponding
corner in H0. For the sake of simplicity, we will not distinguish between these
two and, depending on the context, view M as a set of corners either in G
or in H0. Corners in M come in two kinds: there are outgoing corners, i.e.
corners at vertices in V (H), and ingoing corners, those at vertices in X.

Next, we will construct a pairing of the corners in M. For each i, we
arbitrarily pick an outgoing corner c1 in M∩KLi

. Then, let c1, . . . , cl be the
corners in M∩KLi

in the cyclic order of KLi
. Since Li is a tour, l is even

and for each odd j the corner cj is outgoing while cj+1 is ingoing. We pair up
consecutive corners: {c1, c2}, . . .{cl−1, cl} ∈ P. For later use, we note that

if {c, c′} ∈ P then one of c, c′ is outgoing and one ingoing. (4.1)

Our task is to find finite left-right walks between each pair {c, c′} ∈ P. The
definition of P then ensures that for each i the order of the corners in KLi

within H is maintained.
Define for each c ∈ M a left-right walk K0(c) := (c), i.e. K0(c) is a walk

of length 1, which traverses an edge in F . To simplify the construction in
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the next steps we will, with the help of a suitable homeomorphism, identify
D with (0, 3)× (0, 1) ⊆ R2, where all the vertices in X are assumed to lie in
the open segment {0} × (0, 1); see Figure 4.6.

Next, we pick m := |M| distinct points x1
1, . . . , x

1
m in {1} × (0, 1), where

we choose the labelling so that x1
j has a smaller y-coordinate than x1

j+1 for
all j. We consider these points to be vertices and draw non-crossing edges in
(0, 1)×(0, 1) in order to join each x1

j to a vertex w in X so that w receives one
edge if its incident edge in F is only traversed once by L1, . . . , Lk; otherwise
(when the edge is used twice) we make w adjacent to two of the x1

j . Clearly,
in the resulting plane supergraph H1 of H0 each vertex in x1

1, . . . , x
1
m has

degree 1.

H1
H4

s2
x2

s2
2x +1 s2

3x +1

s2
x3

0 1 2 3

0

1

D
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2

3

H’

u w

1
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Figure 4.6: The construction of the Hi (not to scale)—corners with the same
number are supposed to be paired.

Consider c = (e, η, σ) ∈ M. Assume first that c is an ingoing corner. If
c is matched with (e′, η′, σ′) (in H1), we precede the edge e in K0(c) by e′ in
order to obtain the left-right walk K1(c), i.e. we put K1(c) := ((e′, η′, σ′), c).
(Observe, that in this case, the walk is directed towards H , and hence we have
to lengthen it in backward direction.) Second, assume that c is outgoing. If
(e, η, σ) is matched with c′′ := (e′′, η′′, σ′′) (in H1) we lengthen K0(c) along
the edge e′′ to K1(c), that is, we set K1(c) := (c, c′′). In this way, we define
left-right walks K1(c) for all c ∈ M, so that each vertex in x1

1, . . . , x
1
m is used

by a unique K1(c), and this K1(c) either starts or ends in that vertex.
We will construct supergraphs Hi of H1 with corresponding left-right

walks Ki(c) ⊇ K1(c), c ∈ M. More precisely, we will construct finitely
many nested plane supergraphs with H1 ⊂ H2 ⊂ . . . ⊂ Ht+1, where Hi \Hi−1
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is entirely drawn in (a, b] × (0, 1) for some 1 ≤ a < b < 3 (we will determine
the respective a and b in a moment). The intersection of Hi with {b}× (0, 1)
will consist of m vertices; in the order we encounter them on {b}×(0, 1) going
from (b, 0) to (b, 1) these will be denoted by xi

1, . . . , x
i
m. For each j = 1, . . . , m

there will then be a unique corner pi
j ∈ M so that the left-right walk Ki(pi

j)
either starts or ends in xi

j (and is otherwise disjoint from xi
1, . . . , x

i
m).

Let (p1, . . . , pm) be a permutation of M. For the rest of the proof let us
call a flip at s ∈ {1, . . . , m − 1} the operation that turns (p1, . . . , pm) into
(p1, . . . , ps−1, ps+1, ps, ps+2, . . . , pm). Clearly, for some t there is a sequence of
t flips at s1, . . . , st that turns (p1

1, . . . , p
1
m) into (q1, . . . , qm) so that for each

odd j in {1, . . . , m} it holds that {qj , qj+1} ∈ P.
Our aim now is to define Hi+1, for i ∈ {1, . . . , t}, in such a way that

(pi+1
1 , . . . , pi+1

m ) is obtained from (pi
1, . . . , p

i
m) by performing a flip at si. More-

over, with the exception of the points xi+1
1 , . . . , xi+1

m , we will draw Hi+1 \ Hi

in (1 + i−1
t

, 1 + i
t
)× (0, 1). Assume H1, . . . , Hi to be constructed. We put m

distinct vertices xi+1
1 , . . . , xi+1

m (in this order) on the segment {1+ i
t
}× (0, 1).

For each j ∈ {1, . . . , m} with j 6= si, si + 1, draw a straight line between
xi

j and xi+1
j . We extend Ki(pi

j) to a left-right walk Ki+1(pi
j) along the edge

xi
jx

i+1
j . Then we draw an edge uw in (1+ i−1

t
, 1+ i

t
)×(0, 1) so that no crossing

edges arise when we connect u to xi
si

and xi
si+1, and w to xi+1

si
and xi+1

si+1. If
necessary, we subdivide the edge xi

si
u in order to guarantee the existence of a

left-right walk from xi
si

through uw to xi+1
si+1 (that is disjoint from xi

si+1). We
extend Ki(pi

si
) by this walk to a left-right walk Ki+1(pi

si
), and proceed in an

analogous way for Ki(pi
si+1). This ensures that (pi+1

1 , . . . , pi+1
m ) is obtained

from (pi
1, . . . , p

i
m) by performing a flip at si.

Finally, assume all the Hi up to Ht+1 to be constructed. For each odd
j in {1, . . . , m}, we draw an edge in (2, 3) × (0, 1) that joins xt+1

j to xt+1
j+1.

Subdividing xt+1
j xt+1

j+1 if necessary, we can join Kt+1(pt+1
j ) by this (possi-

bly subdivided) edge to Kt+1(pt+1
j+1), so that the resulting walk is left-right

(here, (4.1) ensures that the corner sequences fit with respect to orientation).
By construction of the pairing P, we ensure that the resulting LRTs L′

i in the
plane graph H ′ (:= Ht+1 plus the possibly subdivided edges in (2, 3)× (0, 1))
behave on H in the same way as the Li do.

Lemma 4.16.[21] For a locally finite graph G, let |G| be embedded in the
sphere. Then the residue of an LRT in G is an element of the bicycle space.

Proof. Let F be a finite cut and L an LRT. As a tour, L passes an even
number of times through F . Therefore, | ▽ L ∩ F | is even and it follows, by
Theorem 1.9, that ▽L is an element of the cycle space.

To see that the residue ▽L is a cut, consider a finite cycle C. Lemma 4.15
(with H = C) yields a finite plane supergraph H ′ of C and an LRT L′ of H ′ so
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that ▽L∩E(C) = ▽L′∩E(C). As ▽L′ is a cut in H ′ (by Lemma 4.14) and
C ⊆ H ′ a cycle, we have that ▽L′ ∩ E(C) is an even set. Since this implies
that ▽L ∩ E(C) is even, too, it follows from Lemma 4.3 that ▽L ∈ C∗(G)
and hence ▽L ∈ B(G).

4.6 LRTs generate the bicycle space

In this section we will prove the analogue of Theorem 4.2 for locally finite
graphs.

Let G be a locally finite graph for which |G| is embedded in the plane,
and consider a bicycle B of G. Since the cuts of the form E(v) generate the
cut space, there is a vertex set X such that B =

∑
x∈X E(x). On the other

hand, B is also an element of the cycle space. As in finite graphs, C(G) is
generated by the residues of the face boundaries (this is shown in [23]). Thus,
there is a set F of face boundaries such that B =

∑
f∈F ▽f . For each bicycle

B assume such a pair X, F to be fixed. Following Richter and Shank [71],
we say that an LRS S is of type I if there is a corner c = (e, η, σ) in S for
which the following statements are either both true or both false:

(i) ∂η contains a vertex in X; and

(ii) σ lies in a face whose face boundary is in F .

It is not hard to check that if for one corner in S either both of (i) and (ii) are
true or are both false then this holds for every corner in S; see also Richter
and Shank [71]. If S is not of type I, then S is of type II.

Lemma 4.17. Let G be a locally finite plane graph, and let B be a bicycle.
Then an edge e of G lies in B if and only if it lies in exactly one LRS of
type I and in one LRS of type II with respect to B.

Proof. The proof is identical to the one given for finite graphs in Richter and
Shank [71].

An LRT L is called B-uniform if every two LRS contained in L are of
the same type. In finite graphs, Lemma 4.17 is already enough to prove
Theorem 4.2: we only need to sum up all LRS (which are identical to LRTs
in finite graphs) of type I (or type II, for that matter). By contrast, in locally
finite graphs, it is not even clear whether there is a single B-uniform LRT,
let alone a set of B-uniform LRTs with the properties as in the last lemma.
The next lemma asserts the existence of B-uniform LRTs.
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Lemma 4.18.[21] Let G be a locally finite graph, let |G| be embedded in the
sphere, and let B be a bicycle of G. Then there exists a set L of B-uniform
LRTs so that each LRS of G is contained in exactly one L ∈ L.

Proof. We may assume G to be connected. Then there is an enumeration
S1, S2, . . . of the set of LRS of G, since G is countable.

We construct from G another locally finite graph G′ (which, in all like-
lihood, will not be planar). The vertex set of G′ consists of vertices vp, one
for each vertex v of G and for each subwalk p of the form p = evf in each
Si (e, f ∈ E(G)). Such a vertex vp ∈ V (G′) is called a clone of v. The edge
set of G′ is comprised of two disjoint sets, E ′ and F ′. The set F ′ contains
one edge between each pair of clones vp and vq of the same vertex v ∈ V (G);
i.e. the clones of a vertex span a complete graph. Two clones up and vq

of distinct vertices u, v ∈ V (G) are connected by an edge in E ′ if p and
q are subwalks in the same LRS Si and appear consecutively in Si, i.e. if
Si = . . . e−1v−1e0v0e1v1e2 . . . then p = ej−1vj−1ej and q = ejvjej+1 (or the
other way round) for some j. See Figure 4.7 for an illustration.

vr
vq

vp

iS
iS’

G G’

v

Figure 4.7: Construction of G′ in the proof of Lemma 4.18; the edges in E ′

are dotted.

Let us define a mapping φ : V (G′) ∪ E(G′) → V (G) ∪ E(G). For each
v ∈ V (G) we map all clones of v and all edges (in F ′) between two clones of
v to v. An edge upvq in E ′, where up is a clone of u ∈ V (G) and vq is a clone
of v 6= u, is mapped to the edge uv of G. Clearly, this map is surjective.

We note, furthermore, that because of Lemma 4.13 (iii),

each e ∈ E(G) has exactly two preimages under φ, and these are in E ′.
(4.2)

For each Si = . . . e−1v−1e0v0e1v1e2 . . ., the map φ defines a walk in G′.
Indeed, since there is a vertex vpj

in G′ for each subwalk pj := ejvjej+1,
and since each vpj

is linked by an edge e′j+1 in E ′ to vpj+1
, the sequence

. . . e′−1vp−1
e′0vp0

e′1vp1
e′2 . . . is a walk in G′, which we denote by S ′

i. We claim
that for all i it holds that
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(i) if S ′
i = . . . e′−1v

′
−1e

′
0v

′
0e

′
1v

′
1e

′
2 . . . then

Si = . . . φ(e′−1)φ(v′
−1)φ(e′0)φ(v′

0)φ(e′1)φ(v′
1)φ(e′2) . . .; and

(ii) each S ′
i is either a cycle or a double ray; and

(iii) S ′
i and S ′

j are disjoint for all j 6= i.

Claim (i) is clear by construction, and for (ii) and (iii) simply note that a
clone vp of a vertex v ∈ V (G) is adjacent to exactly two vertices that are not
clones of v.

Denote by XI the set of all those S ′
i for which Si is of type I with respect

to B, and let XII be the set of the other S ′
i (those for which Si is of type II).

We will show that

both of XI :=
⋃

S′∈XI

E(S ′) and XII :=
⋃

S′∈XII

E(S ′) lie in C(G′). (4.3)

To show that XI ∈ C(G′), consider a finite cut K ′ of G′; by Theorem 1.9, it
suffices to prove that |XI ∩ K ′| is even.

Fix a vertex a′ of G′, and for each finite cut L = EG′(A, B) of G′ with
a′ ∈ A denote by c(L) the number of vertices w′ ∈ B so that there exists a
clone u′ ∈ A of the same vertex as w′. Since, by definition, each such w′ is
adjacent to a vertex in A, the number c(L) is finite.

Now, among all finite cuts L for which |L ∩ XI | has the same parity as
|K ′∩XI | choose one, K say, so that c(K) is minimal. Suppose that c(K) > 0,
and let K = EG′(A, B) with a′ ∈ A. Since c(K) > 0 there exist u′ ∈ A and
w′ ∈ B that are clones of the same vertex v ∈ V (G). As w′ = vp for some
subwalk p in some Si, we obtain from (iii) that w′ lies in exactly one S ′

i, which
implies that w′ is incident with exactly zero or two edges in XI , depending
on whether Si is of type II or of type I. Thus, the cut K̃ := K +E(w′) meets
XI in an even number of edges if and only if |K ∩XI | is even. On the other

hand, we have K̃ = EG′(A ∪ {w′}, B \ {w′}), which implies c(K̃) < c(K),
which contradicts the choice of K.

Therefore, it holds that c(K) = 0. Since all clones of a vertex are on the
same side of K, it follows that K ⊆ E ′, that φ(K) is a finite cut of G, and
that for each e ∈ φ(K) both of the preimages of e under φ lie in K. Thus,
if we can show that φ(K) is traversed an even number of times by LRS of
type I (with respect to B), then |XI ∩K| is even, and hence so is |XI ∩K ′|.

Lemmas 4.13 (iii) and 4.17 imply that φ(K) \ B is traversed an even
number of times by LRS of type I. Since B is an element of the cycle space,
the set B∩φ(K) is even, by Theorem 1.9. Thus, Lemma 4.17 implies that also
B ∩φ(K) is traversed an even number of times by LRS of type I. With (4.2)
we get that |XI ∩ K| is even. The proof for XII is the same.
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Next, we use Theorem 1.8 to decompose XI + XII into a set D of (edge-
)disjoint circuits. We observe that

for all i and D ∈ D it holds that if E(S ′
i)∩D 6= ∅ then E(S ′

i) ⊆
D. Moreover, for each D ∈ D, all the Si with E(S ′

i) ⊆ D are
of the same type.

(4.4)

Indeed, by (ii) and (iii) every vertex of G′ is incident with exactly two or
zero edges of XI (resp. XII). Since this also holds for circuits, the assertion
follows.

Next, we define a continuous mapping φ′ : |G′| → |G|. On the 1-complex
G′ we extend φ to a continuous mapping φ′ so that the following holds:

(a) φ′(e′) = e if and only if φ(e′) = e for all e′ ∈ E(G′) and e ∈ E(G) (where,
with regard to φ′ we view e′ and e as point sets, while for φ we see them
as edges of graphs); and

(b) at each interior point of an edge of G′, the map φ′ is locally injective.

To define φ′ on ends, consider a ray R′ in an end ω′ of G′. Then φ(R′) is a
one-way infinite walk, and thus contains a ray in an end, say ω. We map ω′

to ω.
It remains to check that φ′ is continuous at ends. So, consider an end

ω′ of G′ and let a basic open neighbourhood C := ĈG(U, φ′(ω′)) of φ′(ω′) in
|G| be given (recall that U is a finite vertex set). Denoting by U ′ the set
of all clones of vertices in U , we see that C ′ := ĈG′(U

′, ω′) is a basic open
neighbourhood of ω′ in |G′| and that φ′(C ′) ⊆ C. Therefore, φ′ is continuous.

Finally, since each D ∈ D is a circuit, by definition there exists a home-
omorphism σD : S1 → |G′| with image D. By (b), the continuous mapping
φ′ ◦ σD : S1 → |G| is locally injective at points x ∈ S1 that are mapped to
interior points of edges. Furthermore, (i) and (a) imply that each maximal
subwalk in φ′ ◦ σD is an LRS, and that these are precisely those Si for which
E(S ′

i) ⊆ D. Therefore, each φ′ ◦ σD describes an LRT in |G|. By (4.4), each
such LRT is B-uniform. We denote the set {φ′ ◦ σD : D ∈ D} of LRTs by L.

Since for every Si the set E(S ′
i) is contained in some D ∈ D, every Si

occurs in one of the LRTs in L, and on the other hand, since all the D ∈ D
are (edge-)disjoint, no Si appears in two elements of L.

We remark that the LRTs in L have an additional property, of which we
will, however, make no use: each L ∈ L is minimal in the sense that, if L′

is an LRT with ∅ 6= E(L′) ⊆ E(L) then E(L′) = E(L). In order to briefly
sketch the proof, let D ∈ D be the circuit in G′ so that φ′ ◦ σD describes the
LRT L. Let Y be the subset of LRS contained in L that also lie in L′. Then
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it is easy to check that Y :=
⋃

S∈Y E(S ′) is an element of the cycle space of
G′. Since Y is not empty and a subset of the circuit D, it follows that Y = D
which implies E(L) = E(L′), as claimed.

With Lemma 4.18 we can extend Theorem 4.2 to locally finite graphs
using arguments of Richter and Shank [71]. Given a bicycle B, Lemma 4.18
yields a set M of LRTs, so that every LRS of type I appears in exactly one
element of M. Lemma 4.17 assures that

∑
M∈M▽M = B. On the other

hand, Lemma 4.16 shows that all sums of residues of LRTs are elements of
the bicycle space. In conclusion, we have proved:

Theorem 4.19.[21] Let G be a locally finite graph, and let |G| be embedded
in the sphere. Then the residues of the left-right tours in |G| generate the
bicycle space of G.

In a finite graph, the set of LRTs is a double cover. In the double ladder,
by contrast, we can construct LRTs by glueing together any two of the four
LRS, which results in a set of six LRTs that cover all edges more than twice;
see Figure 4.5. Moreover, while Lemma 4.18 asserts that there are double
covers consisting of LRTs, in the case of the double ladder none of these are
sufficient to generate the bicycle space. Indeed, consider a double cover L of
LRTs for the double ladder. Pick an LRT of the double cover and observe
that it traverses some edge e twice (in Figure 4.5 this is the case for every
second rung). It is easy to check that every edge in the double ladder lies in
a bicycle, and hence, no bicycle containing e can be expressed as the sum of
residues of L ∈ L.

4.7 The ABL planarity criterion

MacLane’s well-known planarity criterion [59] characterises planar graphs in
terms of the cycle space. MacLane observed that, in (finite) plane graphs,
the set of facial walks is a double cover that generates the cycle space. Then
he proved that, conversely, any double cover of closed walks with this prop-
erty can be realised as a set of facial walks and is therefore a certificate for
planarity.

The planarity criterion of Archdeacon, Bonnington and Little [6] works in
a similar way with the difference that they list the essential properties of the
left-right tours. These properties are rather more elaborate and necessitate
a number of definitions, which we will give below. In this section it is our
aim to show that the ABL criterion remains true in locally finite graphs.

Consider a locally finite graph G, and let W be a double cover of tours
in |G|, i.e. every edge is traversed twice by W. For any l, let H be a cyclic
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sequence e = f1, W1, . . . , fl, Wl, fl+1 = e where the Wi are distinct members
of W and the fj are distinct edges of G, so that Wi contains both of fi and
fi+1. We call such a sequence H a ladder (with respect to W), and we say
that the fi are the rungs of H.

For each i, let W ′
i be one of the two orientations of Wi, and denote by

Pi the topological subpath in W ′
i between fi and fi+1, and by P ′

i the one
between fi+1 and fi; i.e. traversing fi, then following Pi, traversing fi+1 and
finally running along P ′

i describes the same tour in |G| as W ′
i . An edge that

is traversed both times in the same direction by the W ′
i (either by one W ′

i ,
in which it appears twice, or by two distinct tours), is said to be consistent ;
otherwise it is inconsistent. We call the family (Pi)i=1,...,l together with the
set of inconsistent rungs (with respect to the W ′

i ) a side of H. Furthermore,
if the side is denoted by S, then we write ▽S for

∑l
i=1 ▽Pi +

∑
j∈J fj where

J = {j : 1 ≤ j ≤ l and fj is inconsistent}.
Finally, a double cover D of tours of G is called a diagonal if both ▽D

and ▽S are cuts, for every D ∈ D and every side S of any ladder in D.
We can now state the ABL criterion:

Theorem 4.20 (Archdeacon, Bonnington and Little [6]). A finite graph is
planar if and only if it has a diagonal. In particular, the set of LRTs of a
finite plane graph is a diagonal.

A simple proof of the ABL criterion can be found in Keir and Richter [55].
Theorem 4.20 extends to locally finite graphs:

Theorem 4.21.[21] A locally finite graph is planar if and only if it has a
diagonal.

Proof. Let G be a locally finite graph. First, assume G to be planar. From
Theorem 4.4 we know that |G| has an embedding in the sphere, and thus
Lemma 4.18 yields (with, for instance, B = ∅) a set L of LRTs so that each
LRS of G lies in exactly one element of L. Hence, L is a double cover of G
(Lemma 4.13 (iii)). Furthermore, Lemma 4.16 implies that ▽L is a cut for
each L ∈ L.

For L to be a diagonal, it remains to show that for any side S of any
ladder H (with respect to L), ▽S is a cut as well. We show that ▽S meets
every finite cycle C in an even number of edges, thereby proving ▽S to be a
cut (Lemma 4.3).

If R is the set of rungs of H, then we define H to be the plane subgraph
of G consisting of C and all the edges in R together with their incident
vertices. We apply Lemma 4.15 to H and the LRTs in H, which yields a
finite plane supergraph H ′ and a set H′ of LRTs of H ′. It is straightforward
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to see that H′ is a ladder in H ′ with a side S ′ for which it holds that ▽S ′ ∩
E(H) = ▽S ∩ E(H). Since ▽S ′ is a cut, by Theorem 4.20, the intersection
▽S ′ ∩ E(C) = ▽S ∩ E(C) is even. This proves L to be a diagonal.

For the converse direction, let us now suppose that G has a diagonal D
but also contains a subdivision X of K3,3 or of K5. Denote by H the (finite)
induced subgraph of G on V (X), and set F := E(H, G − H), which is a
finite cut. One by one, we delete the edges of F from G. We claim that
after each edge deletion, the graph G still has a diagonal. For finite graphs,
this is proved in Archdeacon, Bonnington and Little [6]. As their arguments
remain still valid in locally finite graphs, we will not repeat them.

Once we have deleted all of F , the diagonal will split into two parts:
into the set D′ of those that are completely contained in H , and into those
tours that are disjoint from H . Clearly, D′ is then a diagonal of the finite
non-planar graph H , which is impossible by Theorem 4.20.

For pedestrian graphs, i.e. those graphs G for which B(G) = {∅}, Read
and Rosenstiehl [74] gave a slightly simpler planarity criterion. Let a tour W
traverse an edge e = uv twice. If e is consistent, and traversed from u to v,
say, then W decomposes into four topological subpaths uv, H1, uv and H2.
We call each of H1 and H2 a half of W (with respect to e). If e is inconsistent,
then W is equally comprised of four topological subpaths: namely of uv, H ′

1,
vu and of H ′

2. In this case we call the topological subpaths uvH ′
1 and vuH ′

2

halves of W .
We note two facts: first, if e is inconsistent in W then it is contained in

each half of W ; and second, if e, W, e is seen as a ladder then a half is simply
a side of this ladder (more precisely, they have the same residues).

We say that a tour D in |G| is an algebraic diagonal of G if D is a double
cover and if for every edge e, every half of D is a cut.

Theorem 4.22 (Read and Rosenstiehl [74]). A finite connected pedestrian
graph is planar if and only if it has an algebraic diagonal.

Theorem 4.23.[21] A locally finite connected pedestrian graph is planar if
and only if it has an algebraic diagonal.

Proof. Let G be a locally finite connected pedestrian graph. If G is planar,
then |G| can be embedded in the sphere (Theorem 4.4) and there is a family
L of LRTs of G that forms a double cover (by Lemma 4.18). We already
know (from the proof of Theorem 4.21) that L is a diagonal. If L has only a
single member D, then D is an algebraic diagonal of G: since every half H
of D is the side of a ladder, it follows that ▽H is a cut.

So, assume that L has two members, and denote one of them by L. Since
G is pedestrian, Lemma 4.16 implies ▽L = ∅. As G is connected there is
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therefore a vertex v which is met by L but also incident with edges not lying
in L. Consider an edge e incident with v that lies in L. Let η be the half of e
with v /∈ ∂η, and let σ be a side of e. Since L traverses e twice (as ▽L = ∅),
L (or, more precisely, the LRS lying in L) contains one corner of each of
{(e, η, σ), (e, η, σ)} and {(e, η, σ), (e, η, σ)}. Let (e1, η1, σ1) be the corner that
is matched with (e, η, σ), and let (e2, η2, σ2) be the one matched with (e, η, σ).
By definition, if L contains (e, η, σ) then it also contains (e1, η1, σ1). If, on
the other hand, (e, η, σ) lies in L, then (e1, η1, σ1) is a corner of L. In any
case, e1 is traversed by L. As, in a similar way, we see that e2 lies in L as well,
it follows that the predecessor and the successor of e in the local rotation at
v both lie in L, and thus that all of E(v) is covered by L, a contradiction to
our assumption.

If, conversely, G has an algebraic diagonal D, then the set {D} is a
diagonal. Theorem 4.21 shows that G is planar.
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Chapter 5

MacLane’s planarity criterion

5.1 MacLane’s planarity criterion for locally

finite graphs

MacLane’s well-known planarity criterion [59, 31] characterises the finite pla-
nar graphs in terms of their cycle space. For a graph G, call a family F of
sets F ⊆ E(G) sparse if every edge of G lies in at most two members of F .

MacLane’s planarity criterion can then be stated as follows:

MacLane’s Theorem. A finite graph is planar if and only if its cycle space
is generated by some sparse family of (edge sets of) cycles.

The question how MacLane’s criterion could be extended to encompass
infinite graphs was already raised by Wagner [91]. Thomassen [78] gave a
partial answer by characterising those infinite graphs that satisfy MacLane’s
original condition. For this, we say that a vertex accumulation point, ab-
breviated VAP, of a plane graph Γ is a point p of the plane such that every
neighbourhood of p contains an infinite number of vertices of Γ. Moreover, as
in Chapter 4 we denote by Cfin(G) the set of all finite sums of finite circuits.

Theorem 5.1 (Thomassen [78]). Let G be an infinite 2-connected graph.
Then G has a VAP-free embedding in the plane if and only if Cfin(G) has a
sparse generating set consisting of finite circuits.

An extension in another direction is due to Bonnington and Richter [13],
who proved a necessary and sufficient condition for a graph to have a drawing
with k VAPs.

Neither of these two results fully extends MacLane’s planarity criterion to
infinite graphs. This only becomes possible, at least for locally finite graphs,
within the framework of the topological cycle space:
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Theorem 5.2.[23] A countable locally finite graph is planar if and only if
its topological cycle space has a sparse generating set.

In this chapter, which is based on [17], we generalise MacLane’s theorem
to embeddability criteria for arbitrary closed surfaces. While we only treat
finite graphs, we conjecture that our criteria extend to locally finite graphs.

5.2 MacLane’s theorem for arbitrary surfaces

Our approach is motivated by simplicial homology, as follows. Let a finite
connected graph G be embedded in a closed surface S of minimum Euler
genus ε := 2 − χ(S). Then S can be viewed as the underlying space of a
2-dimensional CW-complex C with 1-skeleton G. Its first homology group
Z1(C; Z2)/B1(C; Z2) is Zε

2, the direct product of ε copies of Z2.
In graph theoretic language this means that the subspace B (= B1(C; Z2))

spanned in C(G) (= Z1(C; Z2)) by the set of face boundaries of G in S has
codimension ε in C(G). Now the set of face boundaries is a sparse set of
cycles. Thus, if G embeds in a surface of small Euler genus, at most ε,
then G has a sparse set of cycles spanning a large subspace in C(G), one of
codimension at most ε.

MacLane’s theorem says that, for ε = 0, the converse implication holds
too: if G has a sparse set of cycles whose span in C(G) has codimension at
most ε = 0, then G embeds in the (unique) surface of Euler genus at most
ε = 0, the sphere. Our initial aim, then, would be to prove this converse
implication for arbitrary ε.

This naive extension soon runs into difficulties, and indeed is not true.
In Section 5.4 we discuss the obstructions encountered as they arise, and
modify our naive conjecture accordingly. The result will be a collection of
theorems, presented in Section 5.5, which each characterise embeddability
in a given surface, or in a surface of given Euler genus, by a condition akin
to MacLane’s planarity criterion that is both necessary and sufficient. All
proofs are given in Section 5.6.

Some previous work in this direction can be found in the literature. Lef-
schetz [57] characterises the graphs that are embeddable in a given surface
so that every face is bounded by a cycle. His theorem for orientable surfaces
will follow from Theorem 5.7 (i). Lefschetz’s theorem for non-orientable sur-
faces, stated in [57] without a formal proof, is incorrect; our Theorem 5.7 (ii)
corrects and strengthens his result. Mohar [60] starts out from the neces-
sary condition discussed earlier for embeddability in a surface of Euler genus
at most ε, namely, that the graph must have a sparse set of cycles whose
span in its cycle space has codimension at most ε. Unlike our plan here,
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Mohar does not strengthen this condition to one that is also sufficient, but
establishes how much it implies as it is; the (best possible) result is that
it implies embeddability in a surface of Euler genus at most 2ε. Širáň and
Škoviera [89, 90] investigate when a given family of closed walks in a graph
G can appear as face boundaries in an embedding of G in some surface, not
necessarily of small genus (as will be our aim). Their work extends our dis-
cussions in Section 5.4 and provides an interesting backdrop for our proofs in
Section 5.6, some of which use techniques they developed. We shall also use
techniques of Edmonds [37], who studies embeddability in arbitrary surfaces
in terms of duality.

5.3 General definitions and background

All graphs we consider in this chapter are finite, unless otherwise noted. In
the statements of some of our results we do not allow loops, but only to avoid
unnecessary complication in our terminlogy: those theorems can be applied
to graphs with loops by subdividing (and thereby eliminating) these.

The set of edges of a graph G = (V, E) incident with a given vertex v is
denoted by E(v). When W is a walk in G, we denote the subgraph of G that
consists of the edges on W and their incident vertices by G[W ]; note that
this need not be an induced subgraph of G. The (unoriented) edge space
E(G) of G is the Z2 vector space of all functions E → Z2 under pointwise
addition. We usually write these as subsets of E, so vector addition becomes
symmetric difference of edge sets. As before, the (unoriented) cycle space
C(G) of G is the subspace of E(G) generated by circuits, the edge sets of
cycles.

A triple (e, u, v) consisting of an edge e = uv together with its ends
listed in a specific order is an oriented edge. The two oriented edges cor-
responding to e are its two orientations, denoted by →e and ←e. Thus,
{→e, ←e} = {(e, u, v), (e, v, u)}, but we cannot generally say which is which.

Given a set E of edges, we write
→

E for the set of their orientations, two for
every edge in E.

The oriented edge space
→

E (G) of G = (V, E) is the real vector space

of all functions φ :
→

E → R satisfying φ(←e) = −φ(→e) for all →e ∈
→

E. When
v0 . . . vk−1v0 is a cycle and ei := vivi+1 (with vk := v0), the function mapping
the oriented edges (ei, vi, vi+1) to 1, their inverses (ei, vi+1, vi) to −1, and
every other oriented edge to 0, is an oriented circuit. The oriented cycle

space
→

C (G) is the subspace of
→

E (G) generated by the oriented circuits.

If G is connected and has n vertices and m edges, its oriented and its
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unoriented cycle space both have dimension

dim C(G) = dim
→

C (G) = m − n + 1. (5.1)

A (closed) surface is a compact connected 2-manifold without boundary.
It is orientable if it admits a triangulation whose 2-simplices (triangles) can
be compatibly oriented. Equivalent conditions are that every triangulation
has this property, and that the surface does not contain a Möbius strip [7].

An n-dimensional CW-complex, or n-complex, is a finite set C of open
balls Bi

j ⊆ Ri with i ≤ n, called i-cells, that have disjoint closures and whose
union is made into a topological space |C| as follows. The union C0 of
all 0-cells (which are singletons, so C0 is just a set of points) carries the
discrete topology. Assume now that the union of all i-cells with i ≤ k < n,
the k-skeleton Ck of C, has been given a topology, and denote this space
by |Ck|. For every (k + 1)-cell Bk+1

j ∈ C choose a continuous attachment

map fj : ∂Bk+1
j → |Ck| from its boundary ∂Bk+1

j in Rk+1 to |Ck|. Then

give |Ck+1| the quotient topology of the (disjoint) union of |Ck| with all the
closures of the Bk+1

j obtained by identifying every x ∈ ∂Bk+1
j with fj(x).

Every graph G is a 1-complex, with vertices as 0-cells and edges as 1-
cells. A topological embedding of G in another space S is a 2-cell-embedding
if G is the 1-skeleton of a 2-complex C such that the embedding of G in
S extends to a homeomorphism ϕ : |C| → S. The images under ϕ of the
2-cells of C are the faces of G in S. If S is a surface, their attachment
maps define closed walks in G. These walks are unique up to cyclic shifts
and orientation, a difference we shall often ignore. We thus have one such
walk (with two orientations) assigned to each face, and call this family the
(unique) family of facial walks . If W is the facial walk of some face f , then
ϕ maps the subgraph G[W ] onto the frontier of f in S, and we call G[W ] the
boundary of the face f .

Given a surface S, consider any 2-cell-embedding of any graph in S. Let
n be its number of vertices, m its number of edges, and ℓ its number of faces
in S. Euler’s theorem tells us that n − m + ℓ is equal to a constant χ(S)
depending only on S (not on the graph), the Euler characteristic of S. The
Euler genus ε(S) of S is defined as the number 2 − χ(S). Euler’s theorem
then takes the following form, which we refer to as Euler’s formula:

ε(S) = m − n − ℓ + 2. (5.2)

Given a graph G, let ε = ε(G) be minimum such that G has a topological
embedding ϕ in a surface of Euler genus at most ε. This ε is the Euler
genus of G, and any such ϕ is a genus-embedding of G. Every connected
graph has a genus-embedding that is a 2-cell-embedding [61, p. 95]. If G has
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components G1, . . . , Gn, then ε(G) = ε(G1)+· · ·+ε(Gn), a fact referred to as
genus additivity [61]. (The same is true for blocks rather than components,
but we do not need this.)

We say that a family W of walks covers a subgraph H of G (often given
in terms of its edge set) if every edge of H lies on some walk of W. It
covers an edge e k times if k =

∑
W∈W kW (e), where kW (e) is the number of

occurrences of e on W (irrespective of the direction in which W traverses e).
W is a double cover of G if it covers every edge of G exactly twice. A walk
is non-trivial if it contains an edge.

Given a walk W in G, we write c(W ) : E(G) → Z2 for the function that
assigns to every edge e the number of times that W traverses e (in either
direction), taken mod 2. Informally, we think of c(W ) as its support, the
set of edges that appear an odd number of times in W . The dimension
of a family W of walks, dimW, is the dimension of the subspace spanned
in E(G) by the functions (or sets) c(W ) with W ∈ W. If the walks are closed,
their c(W ) lie in C(G); then the codimension of W in C(G) is the number
dim C(G) − dimW.

Taking the natural orientation of W into account, we write →c(W ) for the

function that assigns to every →e ∈
→

E the number of times that W traverses
e in the direction of →e minus the number of times that W traverses e in
the direction of ←e, and assigns 0 to any →e with e not on W . The oriented
dimension of a family W of walks,

→
dimW, is the dimension of the subspace

of
→

E (G) spanned by the functions →c(W ) with W ∈ W. If the walks are

closed, their →c(W ) lie in
→

C (G); then the codimension of W in
→

C (G) is the

number dim
→

C (G) −
→

dimW.

5.4 Reconstructing a surface

MacLane’s theorem offers a necessary and sufficient condition for embed-
dability in a fixed surface, the sphere. Our aim is to find a similar condition
characterising embeddability in an arbitrary but fixed surface S.

To illustrate what we mean by ‘similar’, let us think of MacLane’s theorem
as listing some properties of the facial cycles of a plane graph—sparseness
and generating the entire cycle space—which, together, imply the following:
that whenever we have any collection of cycles with these properties and
attach a 2-cell to each of them, the 2-complex obtained is homeomorphic to
the sphere. (This, indeed, is the outline of the standard topological proof of
MacLane’s theorem.)

For an arbitrary surface S, we are thus looking for a similar list of
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properties shared by the facial cycles of all graphs suitably embedded
in S (with a genus-embedding, say) such that, given any family of cycles
with these properties in a graph G, attaching a 2-cell along every cycle in
this family turns G into a copy of S. One of those properties should be
sparseness: if more than two 2-cells meet in an edge, the complex obtained
will not be a surface. Following the homological approach outlined in the
introduction, we might complement this by requiring that our cycles span a
large enough subspace of the cycle space of G:

Naive Conjecture. A graph G embeds in a surface S if and only if G has
a sparse set of cycles whose span in C(G) has codimension at most ε(S)
in C(G).

Notice that this conjecture can be true only if embeddability in a surface
S depends only on ε(S). For ε = 0 this is not an issue, since the sphere
is the only surface with ε = 0. For even ε > 0, however, there are two
surfaces of Euler genus ε—one orientable and one non-orientable—and the
corresponding classes of graphs embeddable in them do not coincide. (Indeed,
large projective-planar grids have unbounded orientable genus [8], while K7

can be embedded in the torus but not in the Klein bottle [44].) Our first
aim, therefore, will be to characterise embeddability not in a given surface S,
but in ‘some’ surface of given Euler genus—in other words, to characterise
the graphs of given Euler genus.

Another flaw in the Naive Conjecture is its reference to cycles: for surfaces
other than the sphere, even genus-embeddings of 2-connected graphs can have
facial walks that are not cycles. (For example, we can embed the graph G
of Figure 5.2 in the torus by running the edge e = uv along a handle added
to the sphere to join two triangular faces containing u and v, respectively.
Then e lies on the boundary of only one face, whose facial walk contains it
twice and therefore is not a cycle. Zha [96] constructed for every surface S
other than the sphere and the projective plane a 2-connected graph that has
a genus-embedding in S but no embedding whose facial walks are all cycles.)

With these two modifications, our conjecture might become the following:

Revised Conjecture. For every integer ε ≥ 0, a graph G embeds in a
surface of Euler genus at most ε if and only if it has a family of closed walks
that covers every edge at most twice and whose codimension in C(G) is at
most ε.

However, as noticed by various authors [57, 60, 90], this is still not true: our
list of properties of facial cycles—so far, sparseness and large dimension—
needs a further addition.
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To illustrate this, consider the plane graph A1 shown in Figure 5.1. Let G
be obtained from A1 by identifying the vertices u and v. This graph G is one
of the 35 forbidden minors that characterise embeddability in the projective
plane (Archdeacon [5]), so ε(G) ≥ 2.

Let W denote the family of facial walks of A1. The subspace it spans
in C(G) is the cycle space of A1. By (5.1), and since G has one vertex less
than A1 but the same number of edges, we deduce that

dimW = dim C(A1) = dim C(G) − 1.

By the Revised Conjecture for ε = 1, this implies that G can be embedded
in the projective plane—which it cannot.

To see what went wrong, let us form the 2-complex obtained by pasting
a 2-cell on every walk in W: the complex that ‘should’ be the projective
plane but is not. The solution to the paradox is that this complex is not a
surface at all: it is the pseudosurface obtained from a sphere by identifying
two points.

To rule out this type of counterexample we could require that, for every
vertex v, no proper subset of those of our given walks that pass through v can
combine to a flat neighbourhood of v when we attach 2-cells to these walks.
Since the facial walks in any 2-cell embedding of a graph have this property, it
would certainly be an acceptable addition to our list. (In MacLane’s theorem
no such requirement is needed, because it follows; we shall prove this after
stating Theorem 5.3 below.) If W is a double cover of G as in the example, or
at least a cover, this flatness condition is sufficient and, indeed, the additional
requirement we shall impose in Section 5.5 will then reduce to this. However
if W does not cover G we need to be yet more careful. Our next example
shows why.

u

v

Figure 5.1: Identify u and v to obtain a graph G with ε(G) ≥ 2
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Consider the plane graph A2 shown in solid lines in Figure 5.2. Let
G be obtained from A2 by adding the edge uv. This graph G is another of
Archdeacon’s 35 forbidden minors for the projective plane, so again ε(G) ≥ 2.

v

u

Figure 5.2: Add the edge uv to obtain a graph G with ε(G) ≥ 2

As before, the subspace W spanned in C(G) by the facial walks of A2 is
the cycle space of A2. By (5.1), and since G has one more edge than A2 but
the same number of vertices, we deduce that

dimW = dim C(A2) = dim C(G) − 1.

By the Revised Conjecture for ε = 1, this implies that G can be embedded
in the projective plane—which it cannot.

Again let us see what goes wrong in the 2-complex C formed by attaching
a 2-cell to each walk in W. While we obtain from the walks in W a flat
neighbourhood around each vertex, it is impossible to extend W so as to
include the edge uv without producing a non-flat neighbourhood at u and
at v: the only way to do this is to add a walk just along uv and back, and
pasting a disc onto this walk will add a second sphere, touching the sphere
of |C| in u and v.

To rule out counterexamples such as this, we could simply require that
our family W should cover all the edges of G. This would be an accept-
able addition to our list of requirements on W in that every collection of
facial walks of an embedded graph satisfies it. However it would be against
the spirit of MacLane’s theorem—that marrying a purely graph-theoretical
sparseness condition on W to a purely algebraic richness condition can yield
a characterisation of planarity. Requiring that W cover the edges of G would
spoil this dichotomy by adding a graph-theoretical richness condition.

Our solution to this dilemma will be to strengthen the requirement of
‘sparseness at vertices’ on W, discussed after our first example, as follows:
we shall require that no subfamily U of W (plus discs) shall form a flat
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neighbourhood of a vertex v unless it covers all the edges at v, regardless
of whether they lie on walks of W \ U or not. This condition will rule out
both the above examples, while the graph-theoretical richness requirement it
entails—that U must cover E(v)—will at least be kept local.

There is one more twist. Although, as we shall prove, our sparseness
condition is now strong enough to ensure that graphs with a sparse family of
closed walks of codimension at most ε embed in a surface of Euler genus at
most ε, it is not true that pasting a disc on each of those walks will yield such
as surface. For example, consider in a graph drawn on the sphere two vertices
that lie on a common face boundary W . Identifying these two vertices into a
new vertex v turns the sphere into a pseudosurface S on which the old facial
walks still bound discs, so attaching discs to the walks after identification
yields this pseudosurface. But those facial walks still form a sparse family:
any non-empty subfamily summing to zero at v must contain W , but then
it contains edges from both of the ‘two disjoint disc neighbourhoods’ of v on
S and hence contains all the facial walks through v and thus covers E(v).

Fortunately, there is a way to dissolve such singularities: rather than
pasting a disc on W along its original orientation (which will result in a
pseudosurface), we change the orientation of half of W , reversing it as shown
in Figure 5.3 on one of its two segments between its two visits to v. (Recall
that, after identification, W passes through v twice.) As the reader may
verify, this alteration dissolves the singularity of our pseudosurface, turning
it into a projective plane. In general, we shall prove that all singularities
that can arise from pasting discs on a sparse family of closed walks can be
dissolved in this way.

The ideas discussed so far will enable us to characterise, for any given ε,
the graphs embeddable in either the orientable or the non-orientable surface
of Euler genus ε (Theorem 5.3). To distinguish between the two, we shall have
to refine our sparseness condition at vertices once more, and make use of the
oriented cycle space. The key observation is that, given a 2-cell embedding
of a graph G in a surface S, the facial walks—suitably oriented—will sum

to zero in
→

C (G) when S is orientable, but will never sum to zero if S is
non-orientable. With this observation suitably implemented, we shall finally
be able to derive our desired MacLane-type characterisation of the graphs
embeddable in a given surface, Theorem 5.7.

5.5 Statement of results

Recall that a family F of subsets of E(G) is sparse if every edge of G lies in
at most two members of F . Similarly, we shall call a family of walks sparse at
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an edge e if it covers e at most twice. In view of our discussion in Section 5.4,
we now wish to supplement this by a sparseness requirement at vertices.

Given a family W of walks and a vertex v, let us call a non-empty sub-
family U of the walks in W through v a cluster at v if

∑
W∈U c(W )∩E(v) = ∅

but U fails to cover E(v). We say that W is sparse if it is sparse at all edges
and does not have a cluster at any vertex. For families of edge sets rather
than walks we retain our earlier notion of sparseness, meaning sparseness at
edges.

We can now state our first extension of MacLane’s theorem. It can be
read as a characterisation of the graphs of given Euler genus:

Theorem 5.3.[17] For every integer ε ≥ 0, a graph G can be embedded in
some surface of Euler genus at most ε if and only if there is a sparse family
of closed walks in G whose codimension in C(G) is at most ε.

For ε = 0, Theorem 5.3 implies MacLane’s theorem. This is not immedi-
ately obvious: one has to show that a sparse family B of edge sets of cycles
generating C(G) (as in MacLane’s theorem) must be sparse also as a family
of walks, i.e., that it does not have any clusters. We may assume that G is
2-connected. Suppose that B has a cluster at a vertex v. Thus, there is a
non-empty subfamily F of B whose edges at v sum to zero but which fails
to cover some other edge vw at v. Choose F minimal, and pick an edge uv
from a cycle in F . As G is 2-connected, G − v contains a u–w path P ; then
C = uPwvu is a cycle. We claim that no set B′ ⊆ B can sum to C, contra-
dicting the choice of B. Indeed, since B is sparse and F sums to zero at v,
every edge in D := E(v)∩

⋃
F lies on exactly two cycles in F but not on any

cycle in B \ F . The set of cycles in B′ with an edge in D, therefore, is pre-
cisely B′ ∩F . In particular, if uv ∈

∑
B′ then uv ∈ E ′ :=

∑
(B′ ∩F). Since

every cycle in B′∩F has two edges in D, we know that |E ′∩D| is even. Hence
if uv ∈

∑
B′, there must be another edge e 6= uv in E ′ ∩ D = (

∑
B′) ∩ D.

This edge cannot be vw /∈ D, so it does no lie on C. Thus,
∑

B′ differs
from C either in uv or in e, i.e.

∑
B′ 6= C as claimed.

The forward implication of Theorem 5.3 is well known, and its proof
will not be hard. In our proof of the backward implication we shall take
a detour via ‘locally sparse’ families of walks, which we define next. (We
shall also need this concept again to state and prove our second main result,
Theorem 5.7 below.) In order to keep our terminology simple we shall now
ban loops; this will be easy to undo when we later prove Theorem 5.3.

Let W = v1e1 . . . vnenv1 be a closed walk in a loopless graph G, where
the vi are vertices and the ei are edges. For a vertex v we call a subsequence
ej−1vjej of W with vj = v (where e0 := en) a pass of W through the vertex v.
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Extending our earlier notation for walks, we write c(ej−1vjej) := {ej−1, ej} if
ej−1 6= ej , and c(ej−1vjej) := ∅ if ej−1 = ej . In order keep track of how often
a given walk passes through a given vertex, we shall consider the family of all
passes of W through v, the family (ej−1vjej)j∈J where J = {j : vj = v, 1 ≤
j ≤ n}. Similarly, if W = (Wi)i∈I is a family of walks then the family of all
passes of W through v is the family A(W, v) := (pij)i∈I,j∈Ji

where, for each i,
(pij)j∈Ji

is the family of all passes of Wi through v. Let us call a non-empty
subfamily F ⊆ A(W, v) a local cluster at v if

∑
p∈F c(p) = ∅ but F fails to

cover E(v). We say that W is locally sparse if W is sparse at all edges and
has no local cluster at any vertex. Note that any locally sparse family of
closed walks in G is sparse, since for every vertex v and every closed walk W
we have c(W ) ∩ E(v) =

∑
p∈A((W ),v) c(p).

The following equivalence, whose implication (ii)→(i) will be a lemma in
our proof of the backward implication of Theorem 5.3, is weaker than that
implication in that it requires local sparseness rather than just sparseness
in (ii). But it is also stronger, in that it allows us to make our given walks
into face boundaries.

Lemma 5.4.[17] Let G = (V, E) be a loopless connected graph, W a family
of closed walks in G, and ε ≥ 0 an integer. Then the following two statements
are equivalent:

(i) There is a surface S of Euler genus at most ε in which G can be 2-cell-
embedded so that W is a subfamily of the family of facial walks.

(ii) There is a locally sparse family of closed walks in G that has codimen-
sion at most ε in C(G) and includes W.

In order to make Lemma 5.4 usable for the proof of Theorem 5.3, we
next have to address the task of turning a sparse family W of closed walks
into a locally sparse family W ′ without changing its codimension in C(G).
In fact, we shall be able to do much more: we shall obtain W ′ from W by
merely changing the order in which a walk traverses its edges. This is not
unremarkable: it means, for example, that by merely changing the order in
which the offending boundary walk W in the example discussed at the end of
Section 5.4 traverses its edges we can turn the resulting pseudosurface into
a surface.

To do this formally, consider any family W of closed walks in G. Call
a family W ′ = ( W ′ : W ∈ W ) of closed walks similar to W if, for every
e ∈ E(G) and every W ∈ W, the edge e occurs on W ′ as often as it does
on W . Thus if W ′ is similar to W then G[W ′] = G[W ] and c(W ′) = c(W )
for every W ∈ W, and in particular dimW ′ = dimW. Note that although
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a family similar to a locally sparse family need not itself be locally sparse
(which indeed is our reason for defining similarity), a family similar to a
sparse family will always be sparse.

Our next step, then, will be to prove the following lemma:

Lemma 5.5.[17] For every sparse family W of closed walks in a connected
loopless graph G there exists a locally sparse family W ′ similar to W.

Using Lemmas 5.4 and 5.5 it will be easy to prove the following equiva-
lence, a more explicit version of Theorem 5.3:

Theorem 5.6.[17] Let G be a connected graph, W a family of closed walks
in G, and ε ≥ 0 an integer. Then the following statements are equivalent:

(i) There is a surface of Euler genus at most ε in which G can be 2-cell-
embedded so that the family of facial walks has a subfamily similar to W.

(ii) There is a sparse family of closed walks in G that has codimension at
most ε in C(G) and includes W.

While Theorem 5.3 characterises the graphs of given Euler genus, our
initial aim was to characterise the graphs embeddable in a given surface S.
This will be achieved by the following theorem, which is our main result.

Theorem 5.7.[17] Let S be any surface, and let ε denote its Euler genus.
Let G be any loopless graph, and let k denote the number of its components.

(i) If S is orientable, then G can be embedded in S if and only if G has a
double cover by a locally sparse family W of closed walks whose oriented
dimension is at most |W| − k and which has codimension at most ε

in
→

C (G).

(ii) If G is connected and S is not orientable, then G can be embedded in
S if and only if there is a sparse family W of closed walks in G whose

codimension in
→

C (G) is at most ε − 1.

We conjecture that ‘locally sparse’ cannot be replaced by ‘sparse’ in (i).
And we remark that the connectivity requirement in (ii) cannot be dropped.
Indeed, consider a graph G consisting of k disjoint copies of a graph that can
be embedded in the projective plane but not in the sphere. By (ii), G can be

covered by a sparse family of closed walks that has codimension 0 in
→

C (G).
However, G cannot be embedded in any surface of Euler genus less than k.
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5.6 The proofs

Let W be a family of closed walks in a loopless graph G that is sparse at
edges. Recall that, for each vertex v ∈ G, we denoted by A(W, v) the family
of all passes of W through v. As a tool for our proofs, let us define for
every vertex v an auxiliary graph H = H(W, v) with vertex set A(W, v).
Its edge set will be a subset of E(G), with incidences defined as follows.
Whenever two distinct vertices p, q of H (i.e., passes that are distinct as
family members—they may be equal as triples) share an edge e ∈ G, we let
e be an edge of H joining p and q. If W contains a pass p = eve, we let e
be a loop at p. Clearly, H has maximum degree at most 2, since a pass evf
can be incident only with the edges e and f . (For example, if there are three
edges e, f, g at v in G, and W contains the passes evf, fvg, gve, then these
three passes and the three edges e, f, g form a triangle in H . As another
example, if W has two passes consisting of the triple evf , or one pass evf
and another pass fve, then these two passes are joined by the pair {e, f} of
double edges in H and have no other incident edge.) If W is a double cover
of G, then every H(W, v) is 2-regular.

Note that if W covers E(v), then W has a local cluster at v if and only
if H = H(W, v) contains a non-spanning cycle. Thus, W is locally sparse if
and only if (it is sparse at edges and) each of the graphs H(W, v) is either a
forest—possibly empty—or, if W covers E(v), a single cycle.

We begin with a lemma which says that sparse double covers by closed
walks1 are nearly independent: that dimW = |W| − 1. We shall need this
for the family of face boundaries in the proof of (i)→(ii) of Theorem 5.6, and
again for arbitrary sparse families in the proof of Theorem 5.7.

Lemma 5.8.[17] Let G = (V, E) be a connected graph, and let W be a sparse
family of non-trivial walks.

(i) For every non-empty subfamily U of W that is not a double cover of G,
the family ( c(U) : U ∈ U ) is linearly independent in C(G).

(ii) If W is a double cover then dimW = |W| − 1.

Proof. It suffices to prove (i), since this implies that dimW ≥ |W| − 1:
then (ii) follows, since W covers every edge twice and hence

∑
W∈W c(W ) = ∅.

For a proof of (i), let U be given as stated. Suppose the assertion fails;
then U has a non-empty subfamily U ′ ⊆ U such that

∑
U∈U ′ c(U) = ∅. Then

any edge covered by U ′ is covered by it twice, so as U is not a double cover

1Indeed by any edge sets without clusters: our proof of Lemma 5.8 will not use the fact
that W is a family of walks.
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there exists an edge not covered by U ′. On the other hand, since U ′ is non-
empty and its walks are non-trivial, U ′ covers some edge of G. Since G is
connected, it therefore has a vertex v that is incident both with an edge that
is covered by U ′ and an edge that is not. Denote by U ′(v) the non-empty
family of all walks in U ′ containing v. As

∑

U∈U ′(v)

c(U) ∩ E(v) ⊆
∑

U∈U ′

c(U) = ∅,

and as U ′(v) does not cover E(v), U ′(v) is a cluster at v, contradicting that
W is sparse.

Next, we show that locally sparse families extend to double covers. It
is possible to deduce this from results of Širáň and Škoviera [90], but for
simplicity we sketch a direct proof.

Lemma 5.9.[17] Let G be a loopless graph and W a locally sparse family of
closed walks in G. Then W can be extended to a locally sparse double cover
W ′ of G by closed walks.

Proof. Let W ′ ⊇ W be a maximal family of closed walks that is locally
sparse. We show that W ′ is a double cover.

Suppose not. Let F be the set of edges in G not covered twice. Our aim
is to find a closed walk W in (V, F ) such that W ′′ := W ′ ∪ {W} is again
locally sparse; this will contradict our maximal choice of W ′.

For every vertex v incident with an edge in F , consider the auxiliary
graph H(v) := H(W ′, v) defined at the start of this section. Let us show
that H(v) is a (possibly empty) forest. Suppose not, and let U be the vertex
set of a cycle in H(v). Then

∑
u∈U c(u) = 0. By assumption v is incident

with an edge f ∈ F , which thus lies in at most one pass of W ′ through v. As
this pass has degree at most 1 in H(v) it cannot be in U , which implies that
U , as a family of passes, does not cover E(v). Then, however, U is a local
cluster at v—a contradiction to our assumption that W ′ is locally sparse.

The components of H(v), therefore, are paths. The edges of these paths
are precisely the edges at v which W ′ covers twice, those in E(v)\F . For every
such path P put ∂P :=

∑
p∈V (P ) c(p); this is a set of two edges in F ∩ E(v),

and all these 2-sets are disjoint. Let C(v) be a cycle on F ∩E(v) as its vertex
set such that E(C(v)) ⊇ { ∂P : P is a component of H(v) }. Call the edges
in this last set red , and the other edges of C(v) green. (We allow C(v) to be
a loop or to consist of two parallel edges.) Call the number of green edges of
C(v) incident with a given vertex f of C(v) the green degree of f in C(v).

The green degree in C(v) of an edge f ∈ F∩E(v) equals 2−k,
where k ∈ {0, 1} is the number of times that W ′ covers f .

(5.3)
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To construct our additional walk W in (V, F ), we start by picking a
vertex v0 of G that is incident with an edge f0 ∈ F . Then H(v0) and C(v0)
are defined. Let us construct a maximal walk W = v0f0v1f1 . . . fn−1vn in
(V, F ) such that fi−1fi is a green edge of C(vi) and these green edges are
distinct for different i. To ensure that we do not use a green edge again, let
us delete the green edges as we construct W inductively, fi−1fi at the time we
add fi−1vifi to W . Note, for i = 1, . . . , n− 1 inductively, that assertion (5.3)
still holds for fi−1 and fi at vi with Wi := v0f0 . . . fivi+1 added to W ′ and
the green edges fj−1fj deleted for all j with 1 ≤ j ≤ i. This implies that
when W gets to vi via fi−1, there is still a green edge fi−1f in C(vi) at fi−1

at that time, so W can continue and leave vi via f =: fi—unless vi = v0

and f = f0, for which the extended assertion (5.3) does not hold (and was
not proved above). Hence when our construction of W terminates we have
vn = v0, and fn−1 is joined to f0 by a green edge of C(v0). Thus, W is indeed
a closed walk, and W ′′ := W ∪ {W} is again sparse at edges.

It remains to show that W ′′ has no local clusters at vertices. The passes of
W through a vertex v are all triples evf such that ef is a green edge of C(v).
Adding these passes as new vertices to H(v), with adjacencies as defined
before, turns H(v) into a graph H ′(v) that is either a single cycle containing
all of E(v) (if W ‘traverses’ every green edge of C(v)) or a disconnected graph
whose components are still paths: H ′(v) cannot contain cycles other than a
Hamilton cycle, because C(v) is a single cycle. Therefore, as any family F
of passes of W ′′ through v with

∑
p∈F c(p) = ∅ induces a cycle in H ′(v), this

can happen only when F covers E(v). Thus, W ′′ is again locally sparse,
contradicting the maximal choice of W ′.

We remark that Lemma 5.9 remains true if we replace ‘locally sparse’
with ‘sparse’, but we will not need this.

Proof of Lemma 5.4. (i)→(ii) Extend W to the family W ′ of all the facial
walks of G in S. Since S is locally homeomorphic to the plane, W ′ covers
every edge of G twice, and elementary topological arguments show that W ′

cannot have a local cluster at any vertex. Hence dimW ′ = |W ′| − 1 by
Lemma 5.8 (ii). Using (5.1) and Euler’s formula (5.2), we deduce that

dim C(G) − ε = |E(G)| − |V (G)| + 1 − ε ≤ |W ′| − 1 = dimW ′

as desired.
(ii)→(i) Replacing W with the extension of W whose existence is asserted

in (ii), we may assume that W itself is locally sparse and has codimension
at most ε in C(G). Extending W by Lemma 5.9 if necessary, we may further
assume that W is a double cover of G.
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Let C be the 2-dimensional CW-complex obtained as follow. We start
with G as its 1-skeleton. As the 2-cells we take disjoint open discs DW ⊆
R2, one for each walk W ∈ W, divide the boundary of DW into as many
segments as W is long, and map consecutive segments homeomorphically to
consecutive edges in W.

In order for S := |C| to be a surface, we have to check that every point
has an open neighbourhood that is homeomorphic to R2. For points in the
interior of 2-cells or edges, this is clear; recall that W is a double cover. Now
consider a vertex v of G. Define H(v) as earlier. Since W is a double cover,
H(v) is now 2-regular, and since W has no local cluster at v it contains no
cycle properly. Hence, H(v) is a cycle. For each pass p = evf ∈ V (H(v)) we
let D(p) be a closed disc whose interior lies inside a disc DW such that p is a
pass of W , choosing each D(p) so that its boundary contains v and intersects
W in one segment contained in e∪ f and meeting both e and f . These discs
D(p) can clearly be chosen with disjoint interiors for different p. Using the
elementary fact that the union of two closed discs intersecting in a common
segment of their boundaries is again a disc, one easily shows inductively that
the interior of the union of all the discs D(p) is an open disc, and hence
homeomorphic to R2. This completes the proof that S is a surface.

Since C is finite, S is compact. Since G is connected, so is S. Finally,
Euler’s formula (5.2) applied to C, together with (5.1), the trivial inequality
of Lemma 5.8 (ii), and our assumption that W has codimension at most ε
in C(G), yields

ε(S) = 2 − (|V (G)| − |E(G) + |W|)

= (|E(G)| − |V (G)] + 1) − (|W| − 1)

= dim C(G) − dimW

≤ ε .

Thus, (i) is proved.

We need an easy technical lemma relating
→

dimW to dimW.

Lemma 5.10. [17] Let G = (V, E) be a connected graph, and let W =
(W1, . . . , Wn) be a sparse family of non-trivial walks.

(i)
→

dimW ≥ dimW.2

(ii) If
→

dimW < |W| then there exist µi ∈ {1,−1} such that
∑n

i=1 µi
→c(Wi) =

0.

2This is true regardless of whether W is sparse. But the special case proved here is all
we need.

82



Proof. Assertation (i) will follow at once from the following claim:

If there exist λ1, . . . , λn ∈ R\{0} such that
∑n

i=1 λi
→c(Wi) = 0

in
→

E (G), then there are also µ1, . . . , µn ∈ {−1, 1} such that∑n
i=1 µi

→c(Wi) = 0.

(5.4)

Indeed, whenever two walks Wi, Wj share an edge e, we have |λi| = |λj |
because W is sparse at e. Let H be the graph on {1, . . . , n} in which ij is
an edge whenever Wi and Wj share an edge. Then the values of |λi| coincide
for all i in a common component C of H , and letting µj := λj/λi for some
fixed i and all j in C satisfies (5.4).

Let us now prove (ii). If
→

dimW < |W| there are λ1, . . . , λn ∈ R not all
zero such that

∑n
i=1 λi

→c(Wi) = 0. By (5.4), we may assume the λi to be in
{1, 0,−1}. Applying Lemma 5.8 (i) to the subfamily U of the Wi with λi 6= 0
we see that the λi are in fact all non-zero, as desired.

Next, let us prove Lemma 5.5, our tool for turning a sparse family of walks
into a locally sparse one without changing the edge sets of its walks. The
proof employs a trick from surface surgery to dissolve singularities, which we
learnt from Edmonds [37]. In fact, we prove a slightly stronger statement:

Lemma 5.11.[17] For every sparse family W of closed walks in a connected
loopless graph G there exists a locally sparse family W ′ similar to W. If W
is not locally sparse, then W ′ can be chosen so that

→
dimW ′ = |W ′|.

Proof. For families W ′ of closed walks, define γ(W ′) :=
∑

v∈V (G) γW ′(v)

where γW ′(v) denotes the number of components of H(W ′, v). Assuming
that W is not locally sparse, we will construct a family W ′ similar to W such
that γ(W ′) < γ(W); we will further ensure that

→
dimW ′ = |W ′|. Since γ(W)

is bounded below by 0, this will prove the lemma.
Let us construct W ′. As W is not locally sparse, there must exist a local

cluster at some vertex v. Seen in H := H(W, v) this local cluster forms a
cycle. Since W is sparse, one of the vertices of C must be a pass p = eve′ of a
walk W ∈ W which also contains a pass q = fvf ′ that is a vertex in another
component D 6= C of H . Choose these passes so that W has a subwalk
ve′ . . . fv not containing e or f ′. Let W ′ be the closed walk obtained from W
by reversing this subwalk (Figure 5.3), and let W ′ be obtained from W by
replacing W with W ′. Clearly, W ′ is again a closed walk, and W ′ is similar
to W.

Let us show that γ(W ′) < γ(W). For vertices u 6= v of G we have
H(W ′, u) = H(W, u), so γW ′(u) = γW(u). At v, however, we have γW ′(v) <
γW(v), so γ(W ′) < γ(W). Indeed, H ′ := H(W ′, v) arises from H by the
replacement of p = eve′ ∈ V (C) and q = fvf ′ ∈ V (D) with two new
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v
f f

e e′ e e′

f ′

W

vf ′

W ′

Figure 5.3: Turning W into W ′ by reversing the segment ve′ . . . fv

vertices, p′ := evf and q′ := e′vf ′, and redefining the incidences for the
edges e, f, e′, f ′ ∈ E(H) = E(H ′) accordingly. As one easily checks (see
Figure 5.4), this has the effect of merging the components C and D of H
into one new component, leaving the other components of H intact. Thus,
the components of H ′ are those of H other than C and D, plus one new
component arising from (C − p) ∪ (D − q) by adding the new vertex p′

incident with e and f and the new vertex q′ incident with e′ and f ′ (leaving
the other incidences of e, e′, f, f ′ in H ′ as they were in H).

fe

e′ f ′

p q

p′

C − p D− qC D

fe

e′ f ′

q ′

Figure 5.4: Merging the components C and D of H to form H ′

It remains to show that
→

dimW ′ = |W ′|. First note that, if C = e1 . . . em

where e = e1 and e′ = em then fe1 . . . emf ′ is a subpath of C ′, the new
component that arose from merging C and D.

Suppose now that
→

dimW ′ < |W ′|. Then for all U ∈ W ′ there are µU ∈
{1,−1} such that

∑
U∈W ′ µU

→c(U) = 0 (Lemma 5.10 (ii)), and we may assume
that µW ′ = 1. Reversing the orientation of each U ∈ W ′ with µU = −1 we
obtain

∑
U∈W ′

→c(U) = 0. Since the orientation of W ′ has not changed, p′ =
e1vf and q′ = emvf ′ are still subwalks of W ′. The orientations of the walks in
W ′ induce orientations on the passes at v; therefore

∑
U∈W ′

→c(U) = 0 implies
that

∑
r∈V (C′)

→c(r) = 0, the passes r being interpreted as subwalks. Hence

as p′ = e1vf ∈ V (C ′), each of the passes ei+1vei is traversed by some walk
in W ′ in this order: ei+1 towards v, and ei away from v (i = 1, . . . , m−1). In
particular, em is traversed towards v in the pass emvem−1 6= q′. However, this
is also the case in q′. As W ′ is sparse at edges, this implies

∑
r∈V (C′)

→c(r) 6= 0,
a contradiction.

Proof of Theorem 5.6. Denote by Ġ the loopless graph obtained from G
by subdividing every loop once. Note that there is an obvious isomorphism
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C(G)
.
= C(Ġ), and in particular, the two spaces have the same dimension.

To prove the implication (i)→(ii), consider an embedding of G as in (i).
The embedding of G immediately induces an embedding of Ġ, so that there
is a 1-1 correspondence between the facial walks U̇ of the embedding of Ġ
and the facial walks U of the embedding of G. Applying Lemma 5.4 to U̇ ,
which is a double cover, we see that U̇ is locally sparse and of codimension
≤ ε in C(Ġ). Then the same holds for U with respect to C(G). Replacing in
U the subfamily of U similar to W with W preserves both the sparseness of
U and its dimension, so (ii) follows.

For a proof of the implication (ii)→(i), let W ′ ⊇ W be the sparse family of
codimension ≤ ε in C(G) provided by (ii). Then the subdivided walks Ẇ ′ in
Ġ are still sparse and have codimension ≤ ε in C(Ġ). We use Lemma 5.11 to
turn Ẇ ′ into a locally sparse family Ẇ ′′ similar to W ′, which, by Lemma 5.4,
is a subfamily of the family U̇ of facial walks of an embedding of Ġ in a
surface of Euler genus at most ε. If each walk W in U̇ is a subdivision of a
walk in G then the embedding of Ġ induces one of G in which W is similar
to a subfamily of the facial walks, since U̇ contains Ẇ ′′ ∼ Ẇ ′. This can fail
only if W contains a pass eve through a subdividing vertex v. If it does, let
f be the other edge of Ġ at v. Then the subfamily F = {eve} of U̇ satisfies∑

p∈F c(p) = 0, but fails to cover f . Thus the local cluster F at v contradicts

that U̇ is locally sparse.

Theorem 5.6 immediately implies Theorem 5.3 for connected graphs. To
complete the proof of Theorem 5.3, it remains to reduce the disconnected to
the connected case.

Proof of Theorem 5.3. For the forward direction, let G and ε be such
that G embeds in a surface of Euler genus at most ε. Our aim is to find a
certain family of closed walks of codimension at most ε, so there is no loss
of generality in choosing ε minimum, i.e., in assuming that ε = ε(G). Let
G1, . . . , Gn be the components of G. For each i = 1, . . . , n choose a genus-
embedding Gi →֒ Si. These can be chosen to be 2-cell-embeddings, and by
genus additivity we have ε1 + · · ·+ εn = ε for εi := ε(Si) = ε(Gi). For each i
let Wi be the family of facial walks of Gi in Si. By Theorem 5.6, the Wi

are sparse and have codimension at most εi in C(Gi): as Wi already covers
every edge of Gi twice, it cannot be extended to a larger sparse family. Since
the Gi are vertex-disjoint, W := W1 ∪ · · · ∪ Wn is again sparse, and it has
codimension at most ε1 + · · ·+ εn = ε in C(G), since C(G) is the direct sum
of the spaces C(Gi).

For a proof of the backward direction, let W be a sparse family of closed
walks in G that has codimension at most ε in C(G). If G has components
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G1, . . . , Gk, say, write Wi for the subfamily of walks contained in Gi, and
εi for the codimension of Wi in C(Gi). Then ε(Gi) ≤ εi, by (ii)→(i) of
Theorem 5.6. Moreover,

∑k
i=1 εi ≤ ε, since C(G) is the direct sum of the

spaces C(Gi). Hence, by genus additivity,

ε(G) =

k∑

i=1

ε(Gi) ≤
k∑

i=1

εi ≤ ε .

Thus, G can be embedded in a surface of Euler genus at most ε.

We finally come to the proof of Theorem 5.7. We need another easy
lemma.

Lemma 5.12. [17] Let G be a loopless and connected graph. If W is the
family of facial walks of an embedding of G in a surface S, then S is orientable
if and only if

→
dimW < |W|.

Proof. If W is the family of facial walks of an embedding of G in S, insert a
new vertex in every face and join it to all the vertices on the boundary of that
face. This yields a triangulation of S. If S is orientable, we can orient the
2-simplices of this complex C (i.e., the newly created triangles) compatibly,
so that every edge receives opposite orientations from the orientations of the
two 2-simplices containing it. Then the 2-simplices triangulating a given face
induce orientations on the edges of its boundary walk W ∈ W that either all
coincide with their orientations induced by W or are all opposite to them.
Let λW := 1 or λW := −1 accordingly. Then

∑
W∈W λW

→c(W ) = 0, showing

that
→

dimW < |W|.

Conversely, if
→

dimW < |W| then, by Lemma 5.10 (ii), there are µW ∈
{1,−1}, W ∈ W, so that

∑
W∈W µW

→c(W ) = 0. Reversing the orientation
of every W with µW = −1 yields

∑
W∈W

→c(W ) = 0. These new orientations
of the boundary walks W therefore extend to compatible orientations of the
2-simplices of C, showing that S is orientable.

Proof of Theorem 5.7. (i) We assume that G is connected; the general
case then follows as in the proof of Theorem 5.3.3 Suppose first that G can
be embedded in S. Replacing S with a surface of smaller oriented genus
if necessary, we may assume that this is a 2-cell embedding. (Any such
replacement reduces ε, so this assumption entails no loss of generality.) By
Lemma 5.4, the family W of facial walks is locally sparse and has codimension

at most ε in C(G). Its codimension in
→

C (G) is no greater, since
→

dimW ≥

3Use the additivity of oriented genus rather than of Euler genus.
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dimW by Lemma 5.10 (i), and dim
→

C (G) = dim C(G) by (5.1). It remains

to show that
→

dimW ≤ |W| − 1, which follows from Lemma 5.12.
For the converse implication of (i), Lemmas 5.8 (ii) and 5.10 (i) and our

assumption about
→

dimW give

dimW ≤
→

dimW ≤ |W| − 1 = dimW,

with equality. By (5.1), then, also the codimension of W is the same in C(G)

as in
→

C (G), at most ε. By (ii)→(i) of Lemma 5.4, there exists a surface S ′ with
ε′ := ε(S ′) ≤ ε in which G has a 2-cell-embedding with W =: (W1, . . . , Wn) as
the family of facial walks. By Lemma 5.12, S ′ is orientable. Adding (ε−ε′)/2
handles turns S ′ into a copy of S with G embedded in it, as desired.

(ii) For the forward implication let W be the family of facial walks of the

given embedding. By Lemma 5.4, W is sparse. By Lemma 5.12,
→

dimW =

|W|. By (5.1) and (5.2), the codimension of W in
→

C (G) is ε − 1.
For the backward implication in (ii), let us assume first that the (unori-

ented) codimension of W in C(G) is also at most ε − 1. By Theorem 5.3,
we can embed G in a surface S ′ of Euler genus ε′ ≤ ε − 1. The addition of
ε − ε′ ≥ 1 crosscaps turns S ′ into a copy of S with G embedded in it.

We may therefore assume that W has codimension at least ε in C(G).
Let us show that W is a double cover of G. If not, then Lemmas 5.10 (i)
and 5.8 (i) imply

|W| ≥
→

dimW ≥ dimW = |W|

with equality, so
→

dimW = dimW. By (5.1), this contradicts our assump-

tion that the codimensions of W in C(G) and
→

C (G) differ. Moreover, by
assumption and Lemma 5.8 we have

dim C(G) − ε ≥ dimW ≥ |W| − 1 ≥
→

dimW − 1 ≥ dim
→

C (G) − ε.

By (5.1), we have equality throughout. In particular, W has codimension

exactly ε in C(G), and
→

dimW = |W|. By Lemma 5.11 there is a locally sparse

family W ′ similar to W such that
→

dimW ′ = |W ′|. Since W ′, like W, is a
double cover, W ′ is by Lemma 5.4 the family of facial walks of an embedding
of G in a surface S ′ of Euler genus ε′ ≤ ε. By Lemma 5.12, S ′ is not
orientable. Adding ε − ε′ crosscaps we turn S ′ into a copy of S with G
embedded in it.
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Chapter 6

Bases and closures under thin
sums

6.1 Abstract thin sums

One essential property of the topological cycle space is that, in it, it is neces-
sary to use well-defined infinite sums, the thin sums. In this chapter, which
is based on [20], we study two problems about the topological cycle space
in which thin sums play an important role. These problems were previously
solved by ad-hoc methods appealing to the structure of the underlying graph.
We show that the graph theoretic formulation is unnecessary: the problems
can be rephrased, and solved, in a purely algebraic setting. Our solutions
yield more general results of independent interest. Moreover, our algebraic
approach sheds some light on a technique that has appeared in several proofs
about the topological cycle space; indeed, in Section 6.4 we obtain a corollary
that can be used to simplify those proofs.

Let R be a ring and let M be an arbitrary set. If N ⊆ RM is an infinite
family for which in each coordinate almost all entries are zero, then there is an
obvious way to define its sum, namely by pointwise addition. More formally,
we call N thin if for all m ∈ M the number of members N of N with
N(m) 6= 0 is finite. For a thin family N we define the sum

∑
N∈N N =

∑
N

to be the element S of RM with S(m) =
∑

N∈N , N(m)6=0 N(m) for all m ∈ M .
We remark that thin families, also called summable families, occur in the
context of slender modules, see Göbel and Trlifaj [48, Chapter 1].

For a (not necessarily thin) family N ⊆ RM denote by 〈N 〉 the space
consisting of all sums of thin subfamilies of N . Our first problem, discussed
in Section 6.2, concerns the existence of bases : is there a subfamily B of N
with 〈N 〉 = 〈B〉 such that each element of 〈N 〉 has a unique representation
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in B? We will see that even if R is a field there are generating sets that
do not contain a basis (Theorem 6.2), although we can always find a basis
if the underlying set M is countable (Theorem 6.1). Bases were used as
a tool in [23] in order to characterise planar locally finite graphs. There,
bases in certain generating sets were needed, and their existence was proved
under very restrictive additional requirements. Theorem 6.1 yields these
bases immediately.

The second problem we consider is whether the space 〈N 〉 is closed under
taking thin sums, i.e. whether 〈N 〉 = 〈〈N 〉〉. While this is false in general,
we will show in Section 6.3 that it is true if N is thin—provided R is a
field or a finite ring (Theorem 6.7). We will see that, in a sense, this is best
possible. Closedness is relevant to the study of the topological cycle space:
it is important to know that the cycle space as well as the space of all cuts is
closed under taking thin sums. Both of these facts follow immediately from
Theorem 6.7.

The question whether a space N is closed under taking thin sums is
related to the question whether N is topologically closed as a subspace of
the product space RM . We investigate this connection in the last section of
this chapter.

A line of research very much in the direction of this chapter, albeit more
oriented towards graph theory, has been pursued by Casteels and Richter [27].

6.2 Bases

Before we start we need some definitions. Let M be a set, R a ring, and let
N be a family with its members in RM . Often we will multiply families with
coefficients before adding them: if a = (a(N))N∈N is a family of coefficients in
R, one for each N ∈ N , we use the shorthand aN for the family (a(N)N)N∈N .
For a K ∈ RM , we call a family a of coefficients a representation of K in N if
aN is thin and if K =

∑
aN—that is, K(m) =

∑
N∈N a(N)N(m) for every

m ∈ M . Denote by 〈N 〉 the set of elements of RM that have a representation
in N . Intuitively, N is a generating set, and 〈N 〉 is the space it generates.

For a family N ⊆ RM , we call a subfamily B of N a basis of 〈N 〉, if
〈B〉 = 〈N 〉 and 0 ∈ RM has a unique representation in B. Note that 0 has a
unique representation in some family N if and only if every element in 〈N 〉
has a unique representation in N .

It is well known that a generating set in a module does not need to
contain a basis (in the classical sense), and, clearly, this is also the case in
our setting: Take for example R = Z, M = {0}, and N = {a2, a3}, where
a2, a3 are defined by a2(0) = 2 and a3(0) = 3. Then N does not contain
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a basis of 〈N 〉. When R is a field, however, we can say more about the
existence of a basis:

Theorem 6.1.[20] Let M be a countable set, F be a field and let N be a
family with its members in F M . Then N contains a basis of 〈N 〉.

In linear algebra the analogous assertion is usually proved with Zorn’s
lemma as follows. Given a chain (Bλ)λ of linearly independent subsets of the
generating set, it is observed that

⋃
λ Bλ is still linearly independent since

any violation of linear independence is witnessed by finitely many elements,
and these would already lie in one of the Bλ. Thus, each chain has an upper
bound, which implies, by Zorn’s lemma, that there is a maximal linearly
independent set, a basis. This approach, however, fails in our context, as
dependence does not need to be witnessed by only finitely many elements,
thus we cannot get the contradiction that already one of the Bλ was not
independent.

As an illustration, put F = Z2, M := Z and Bi := {{j, j+1} : −i ≤ j < i}
for i = 1, 2, . . .. (Here, and later we shall freely identify elements of ZM

2 with
subsets of M .) Now, while no nonempty finite subset of B∞ :=

⋃∞
i=1 Bi is

dependent, the whole set is:
∑

B∈B∞
B = ∅.

The standard proof outlined above pursues a bottom-up approach. There
is also a, perhaps more pedestrian, top-down proof, where successively those
elements of N are weeded out that can be replaced by others. Slightly more
precisely, a (possibly transfinite) enumeration N1, N2, . . . of N is processed
step-by-step, and in each step it is checked whether Nλ can be expressed as
a sum in earlier Nµ (i.e. µ < λ) that are still left. If yes, Nλ is not needed
to generate 〈N 〉, and therefore deleted. If no, Nλ is kept. It is not hard to
check that this process yields a basis.

Our proof of Theorem 6.1 relies on an adaptation of this argument.
Clearly, we cannot expect it to work as it is, since it fails to take infinite
sums into account. However, if we restrict ourselves to those elements of
N that share a given m ∈ M then all sums are finite, and we can employ
the argument. So, we will partition N into sets N1,N2, . . . so that all the
elements in each of the Nj share an m ∈ M . Then we will use an (adapted)
top-down argument on each of the Ni.

Proof of Theorem 6.1. Let m1, m2, . . . be a (possibly finite) enumeration of
M , and for i = 1, 2, . . . define Ni to be the set of those elements N ∈
N \

⋃
j<i Nj for which N(mi) 6= 0. Clearly, {Ni : i ∈ N} is a partition

of N . For every i ∈ N, let Ni1, Ni2, . . . , Niλ, . . . be a (possibly transfinite)
enumeration of Ni.
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Now, for each i = 1, 2, . . . we perform a transfinite induction as follows.
Start by setting Bi0 = ∅, and then for every ordinal λ > 0 define the set
Biλ ⊆ Ni as follows (Biλ is the set of those elements among the first λ
N ∈ Ni that we will put in our basis): If L := Niλ has a representation aL

in N such that
aL(N) = 0 for N /∈

⋃

µ<λ

Biµ ∪
⋃

k>i

Nk, (6.1)

then let Biλ =
⋃

µ<λ Biµ. Otherwise, set Biλ =
⋃

µ<λ Biµ ∪ {Niλ}. Having
defined all Biλ, we put Bi :=

⋃
λ Biλ.

For later use we note that

if L ∈ Ni \ Bi, N ∈ Nj \ Bi and j ≤ i then aL(N) = 0. (6.2)

Indeed, if aL(N) 6= 0 then by (6.1) we obtain N ∈
⋃

µ<λ Biµ ∪
⋃

k>i Nk

for some λ, and as j ≤ i we have N ∈
⋃

µ<λ Biµ. But this means that
N ∈ Bi =

⋃
µ Biµ, a contradiction.

We claim that B :=
⋃

i Bi is a basis of 〈N 〉. To show that 0 ∈ RM has
a unique representation, suppose there are coefficients b : B → F , not all of
which are zero, such that bB is thin and

∑
bB = 0. Let i ∈ N be minimal so

that there is an ordinal µ with b(Niµ) 6= 0, and observe that since for all the
elements B in Bi we have B(mi) 6= 0, there is a maximal ordinal λ such that
b(Niλ) 6= 0 (because bB is thin). Then Niλ =

∑
N∈B\{Niλ}

b−1(Niλ)b(N)N is

(or, more precisely, can be extended to) a representation of Niλ that satis-
fies (6.1), a contradiction to that Niλ ∈ Bi.

Next, consider a K ∈ 〈N〉. We will show that K has a representation
in B. Starting with any representation b0 of K in N , we inductively define
for i = 1, 2, . . . representations bi : N → F as follows. (Intuitively, bi is a
representation of K using only elements of N that are left after step i of
the construction of B, that is, after we have finished deleting elements of
Ni.) Set Ei := {N ∈ Ni \ Bi : bi−1(N) 6= 0}. Since bi−1N is thin and since
N(mi) 6= 0 for all N ∈ Ei ⊆ Ni, it follows that Ei is a finite set. Put

bi(N) = 0 for N ∈ Ei, and

bi(N) = bi−1(N) +
∑

L∈Ei

bi−1(L)aL(N) for N /∈ Ei. (6.3)

(Note that aL is defined for every L ∈ Ei, since Ei ⊆ Ni \ Bi.)
We claim that this definition yields a representation of K that uses only

those elements of N1, . . . ,Ni that lie in B, in other words, we claim that for
every i ∈ N it is true that

bi(N) = 0 if N ∈
i⋃

j=1

Nj \ B (6.4)
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and
K =

∑
biN (in particular, biN is thin). (6.5)

To prove the two claims we proceed by induction. For (6.4), consider an
N ∈ Nj \ B where j ≤ i. If N ∈ Ei then bi(N) = 0 by definition, so consider
the case when N /∈ Ei. If j = i this implies that bi−1(N) = 0; if j < i then we
get bi−1(N) = 0 too, this time using induction. Since, by (6.2), aL(N) = 0
for every L ∈ Ei, (6.3) implies bi(N) = 0, as desired.

For (6.5), first note that biN is indeed thin as Ei is finite and both of aLN
and bi−1N thin (the latter by induction). Furthermore:

∑
biN −

∑
bi−1N =

=
∑

N∈N\Ei

(bi(N) − bi−1(N))N +
∑

N∈Ei

(bi(N) − bi−1(N))N

=
∑

N∈N\Ei

(
∑

L∈Ei

bi−1(L)aL(N)N) +
∑

N∈Ei

(0 − bi−1(N)N)

=
∑

L∈Ei

bi−1(L)
∑

N∈N\Ei

aL(N)N −
∑

N∈Ei

(bi−1(N)N).

As aL(N) = 0 if N, L ∈ Ei by (6.2), we obtain for the first sum in the last
line
∑

L∈Ei

bi−1(L)
∑

N∈N\Ei

aL(N)N =
∑

L∈Ei

bi−1(L)
∑

N∈N

aL(N)N =
∑

L∈Ei

bi−1(L)L.

Together with the previous equation this yields
∑

biN−
∑

bi−1N = 0, which
proves (6.5).

For every N ∈ N , define b∞(N) := bj(N) if N ∈ Nj, and note that

bi(N) = b∞(N) for N ∈ Nj and i ≥ j. (6.6)

Indeed, consider i > j and observe that, by (6.2), aL(N) = 0 for all L ∈ Ei ⊆
Ni \ Bi. So, from (6.3) it follows that bi(N) = bi−1(N).

We immediately get from (6.4) that

if N ∈ N \ B then b∞(N) = 0. (6.7)

Thus, the b∞(N) can be seen as coefficients on B, and our next claim states
that b∞ is what we are looking for, namely a representation of K in B:

K =
∑

B∈B

b∞(B)B (in particular, b∞N is thin). (6.8)
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Consider an mi ∈ M . By definition of the Nj , every N with N(mi) 6= 0 lies
in
⋃i

j=1 Nj. By (6.6), bi and b∞ are identical on
⋃i

j=1 Nj. Since biN is thin,
there are therefore only finitely many N ∈ N so that b∞(N)N(mi) 6= ∞.
Thus b∞N is thin. Furthermore, we obtain with (6.5) and (6.6):

∑

N∈N

b∞(N)N(mi) =
∑

N∈
Si

j=1 Nj

b∞(N)N(mi) =
∑

N∈N

bi(N)N(mi) = K(mi).

Claim (6.8) now follows from (6.7). This completes the proof.

Observe that contrary to conventional linear algebra, two bases do not
need to have the same cardinality—even over a field. Indeed, putting F = Z2

and M = {m0, m1, . . .} we see that B := {{mi} : i ≥ 0} is a countable basis
of F M . On the other hand, N := {{m0} ∪ N : N ⊆ M} clearly generates
F M too, and contains, by Theorem 6.1, a basis B′. Since all thin subsets of
N are finite, B′ needs to be uncountable to generate the uncountable set F M .
Thus B and B′ are two bases of F M that do not have the same cardinality.

We have formulated Theorem 6.1 only for countable sets M . The follow-
ing result shows that this is indeed best possible.

Theorem 6.2. [20] For an uncountable set M there exists a family N of
elements of ZM

2 , so that N does not contain a basis of 〈N 〉.

Proof of Theorem 6.2. Let A, B be two disjoint sets with cardinalities |A| =
ℵ0 and |B| = ℵ1. Define G to be the graph with vertex set M := A ∪B and
edge set N := A × B. As N ⊆ P(M), we may ask whether N contains a
basis of 〈N 〉. We claim that it does not.

Let us show that each countable subset N of M is an element of 〈N 〉.
Indeed, let n1, n2, . . . be a (possibly finite) enumeration of N , and choose for
i = 1, 2, . . . a ray Ri that starts at ni, and does not meet the first i−1 vertices
of each of R1, . . . , Ri−1 except, possibly, at ni. Then, the set

⋃
i∈N

E(Ri) of
edges of these rays is thin, and its sum equals N since

∑
e∈E(Ri)

e = {ni}.

Suppose that 〈N 〉 has a basis B ⊆ N , and let H be the graph with vertex
set M and edge set B. Since B must contain for each element in B at least
one edge incident with it, B is uncountable. Therefore, one of the vertices
in the countable set A, say v, is incident with infinitely many edges in B.
Delete from H the vertex v (and its incident edges) and denote by C the set
of components of the resulting graph that (in H) are adjacent to v.

Observe that for each C ∈ C there is exactly one edge in H between v
and some vertex, uC say, in C; indeed, if there were two edges between v
and vertices u, u′ in C, then the union of these edges with an u–u′ path in C
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would be a cycle in H , contradicting that ∅ has a unique representation in B
since the sum of the edges of a cycle equals ∅.

Next, suppose there are distinct C, D ∈ C each containing a ray; then, C
(respectively D) also contains a ray R (resp. S) starting at uC (resp. at uD).
Then R∪S together with the two edges between v and {uC, uD} yields a set
of edges which sums to ∅, again a contradiction.

Pick a countably infinite number of C ∈ C none of which contains a ray,
and denote the set of these by C′. As N := {uC : C ∈ C′} is countable it lies
in 〈N 〉, thus there is a BN ⊆ B such that

∑
e∈BN

e = N .
Suppose there is a C ∈ C′ such that an edge e ∈ BN incident with uC lies

in C. As C does not contain any cycle or any ray, we can run from e along
edges in E(C) ∩ BN to a vertex w 6= uC that is only incident with one edge
in BN . This implies that w ∈

∑
e∈BN

e = N , a contradiction since w /∈ N .
However, uC ∈ N must be incident with an edge from BN . Consequently, for
each C ∈ C′ the edge between v and uC lies in BN , contradicting that BN is
thin.

6.3 Closedness under taking thin sums

In this section we investigate the following question:

Question 6.3. Let M be a set, R be a ring and N ⊆ RM . When is 〈N 〉
closed under taking thin sums, i.e. when is 〈N 〉 = 〈〈N 〉〉?

In conventional algebra, the answer is easy: always. Once we allow infinite
sums, however, the answer is not that straightforward. Consider, for instance,
the case when M = N, R = Z2 and N := {{1, i} : i ∈ N}. Clearly, we have
{i} ∈ 〈N〉 for all i ∈ N and thus N =

∑
i∈N

{i} ∈ 〈〈N 〉〉. On the other hand,
N 6∈ 〈N 〉 as all thin sums of elements in N are necessarily finite. Thus, 〈N 〉 is
indeed a proper subset of 〈〈N 〉〉, and therefore not closed under taking thin
sums.

The example seems to indicate that N needs to be thin. Indeed, if we
require N to be thin then we will see that 〈N 〉 is closed under taking thin
sums—provided that R is a field or a finite ring (Theorem 6.7). At the end
of the section we will give an example showing that this is a fairly complete
answer to Question 6.3: If R is neither a field nor finite, then we cannot
guarantee that 〈N 〉 = 〈〈N 〉〉.

We remark that there is another way to overcome the counterexample
above. Vella [86] shows that a family N of elements in ZN

2 is closed under
taking thin sums if, instead of being thin, N has the property that every
sum of finitely many members of N is the disjoint union of members of N .
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It turns out that Question 6.3 is closely related to the topological closure
in the product space RM =

∏
m∈M Rm where each Rm is a copy of R endowed

with the discrete topology. In what follows we denote by N the topological
closure of a subset N of RM in the space

∏
m∈M Rm. Given a K ∈ RM , note

that K ∈ N if and only if for every finite subset M ′ of M there is a N ∈ N
with K(m) = N(m) for all m ∈ M ′. In the next two lemmas we will see that
for a thin family T of elements of RM , 〈T 〉 is topologically closed if R is a
finite ring or a field. Moreover, we will conclude in Lemma 6.6 that 〈〈T 〉〉 lies
in 〈T 〉, and combining these results yields an answer to Question 6.3. We
will pursue the relationship between topological closedness and closedness
under taking thin sums further in the next section.

The first proof uses a typical compactness argument.

Lemma 6.4. Let M be a set, R be a finite ring, and let T be a thin family
of elements of RM . Then 〈T 〉 = 〈T 〉.

Proof. Consider an element K ∈ 〈T 〉. By Tychonoff’s theorem, the product
space X :=

∏
T∈T R where R bears the discrete topology is compact. For

any finite subset M ′ ⊆ M , we consider the set AM ′ of families of coefficients
a, such that aT agrees with K on M ′; formally, define

AM ′ := {a ∈ X :
∑

T∈T

a(T )T (m) = K(m) for every m ∈ M ′}.

(Note that we view the elements of X as coefficients for the family T .) We
claim that these sets are closed in X, and that their collection has the finite
intersection property.

To show that each AM ′ is closed, let SM ′ be the subfamily of all those
T ∈ T for which there is a m ∈ M ′ with T (m) 6= 0. As T is thin, SM ′ is
finite. Since R is finite as well, there are only finitely many b : SM ′ → R
such that

∑
S∈SM′

b(S)S(m) = K(m) for all m ∈ M ′. For each such b,

Bb := {a ∈ X : a(S) = b(S) for every S ∈ SM ′} is closed in X, and since
AM ′ is the union of these finitely many sets Bb it is closed too.

Next, if we have finite sets M1, . . . , Ml ⊆ M then, clearly,
⋂l

i=1 AMi
=

AM ′′ for M ′′ :=
⋃l

i=1 Mi. As K ∈ 〈T 〉, there is an element L of 〈T 〉 that
agrees with K on M ′′. But any representation of L in T is an element of
AM ′′ , thus the AM ′ have the finite intersection property as claimed.

Now, the assertion of the theorem follows easily: X is compact, therefore,
the intersection of all AM ′ is non-empty. For an element a of that intersection,
we have

∑
T∈T a(T )T (m) = K(m) for all m ∈ M , i.e. it is a representation

of K in T .
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We need a completely different approach to prove a similar result in the
case when R is a (possibly infinite) field:

Lemma 6.5.[20] Let M be a set, F be a field, and let T be a thin family of
elements of F M . Then 〈T 〉 = 〈T 〉.

Proof. Consider a K ∈ 〈T 〉. We will reduce the problem of finding a repre-
sentation of K in T to the solution of an infinite system of equations. To
do this, we associate a variable xT with every member T of T , and for each
m ∈ M we define em to be the linear equation

∑

T∈T :T (m)6=0

xT T (m) = K(m)

in the variables xT . Note that as T is thin, each em contains only finitely
many variables. Let E = {em : m ∈ M}. By construction, if there is an
assignment a : T → F such that setting xT = a(T ) for every T ∈ T yields a
solution to every equation in E, then a is a representation of K in T . So in
what follows, our task is to find such a solution.

For every T ∈ T , define dT to be the linear equation xT = 1, put D =
{dT : T ∈ T }, and denote by E the set of all those sets E ′ with E ⊆ E ′ ⊆
E ∪D such that every finite subset E ′′ ⊆ E ′ has a solution. We claim that E
contains a ⊆-maximal element E∗. First, note that E 6= ∅ as E ∈ E ; indeed,
for a finite subset E ′′ ⊆ E, the set M ′ of all m ∈ M for which em ∈ E ′′ is
finite. As K ∈ 〈T 〉, there is an element L of 〈T 〉 that agrees with K on M ′,
and any representation a of L in T yields a solution of E ′′. Second, if (Ei)i∈I

is a chain in E then, clearly, the union
⋃

i∈I Ei lies in E , too. Thus, Zorn’s
lemma ensures the existence of E∗.

Next, we show that for every T ∈ T there is a finite ET ⊆ E∗ and an
element fT of the field F such that xT = fT in every solution of ET . Suppose
not, and observe that then, clearly, dT /∈ E∗. Consider a finite subset E ′ of
E∗, and note that, by assumption, there are two solutions in which xT takes
two distinct values, g1 and g2, say. Then, for every f ∈ F there is a solution
of E ′ where xT = fg1 + (1 − f)g2. Setting f = (1 − g2)(g1 − g2)

−1 yields a
solution of E ′ with xT = 1, which means that E ′ ∪ {dT} has a solution. As
E ′ was an arbitrary finite subset of E∗, it follows that every finite subset of
E∗ ∪{dT} has a solution, contradicting the maximality of E∗. Thus, ET and
fT exist, as we have claimed.

Finally, define coefficients a(T ) := fT for T ∈ T . To see that a is a
solution of E, consider an arbitrary m ∈ M . As T is thin, the subfamily Tm of
those members T of T with T (m) 6= 0 is finite. Thus, E ′ := {em}∪

⋃
T∈Tm

ET

has, as a finite subset of E∗, a solution b : T → F . Since for every T ∈ Tm,
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we have ET ⊆ E ′ it follows that b(T ) = fT = a(T ). As b solves em we see
that a solves em, too. Thus a is a solution of E, and hence a representation
of K in T .

We need one more simple lemma:

Lemma 6.6. [20] Let M be a set, R be a ring, and let N be a family of
elements of RM . Then 〈〈N 〉〉 ⊆ 〈N〉.

Proof. Let K ∈ 〈〈N〉〉, and consider an arbitrary finite subset M ′ of M .
Denote the canonical projection of RM to RM ′ by π, and observe that π(K) ∈
〈〈π(N )〉〉. Since rings are closed under addition, and since all thin families in
RM ′ are finite, it holds that 〈〈π(N )〉〉 = 〈π(N )〉. Choosing a representation
of π(K) in 〈π(N )〉, and replacing each element of π(N ) in it by one of its
preimages with respect to π yields an N ∈ 〈N〉 so that K(m) = N(m) for
all m ∈ M ′. This proves that K ∈ 〈N〉.

Lemma 6.6 combined with Lemmas 6.5 and 6.4 immediately implies the
following:

Theorem 6.7.[20] Let M be a set, R be a ring, and let T be a thin family
of elements of RM . Then 〈T 〉 = 〈〈T 〉〉 if R is a field or a finite ring.

As mentioned in Section 6.1, an immediate consequence of Theorem 6.7
is that the topological cycle space as well as the cut space of a locally finite
graph is closed under taking thin sums. Both these spaces are generated by
thin sets: the former by the fundamental circuits of a topological spanning
tree (see Theorem 1.5), and the latter by the cuts separating a single vertex
from the rest of the graph.

Let us now argue that Theorem 6.7 gives, in a sense, a comprehensive
answer to Question 6.3. In fact, we shall construct an example where R is
neither a field nor finite, and where there exists a thin family T ⊆ RM such
that 〈T 〉 is not closed under taking thin sums.

For this, set R := Z and M := N. Define N ∈ ZN by N(i) = 1 for every
i ∈ N. For j = 1, 2, . . ., define Nj ∈ ZN by Nj(j) = pj and Nj(i) = 0 for
every i 6= j, where pj is the jth prime number. Let T = {N, N1, N2, . . .},
and note that T is thin. We will show that the function K ∈ ZN defined by
K(i) = i is in 〈〈T 〉〉 but not in 〈T 〉.

Let us first prove that K /∈ 〈T 〉. Suppose for contradiction, there is a
representation a : T → Z of K in 〈T 〉. We distinguish two cases, depending
on whether n := a(N) is non-negative or not. If n ≥ 0, then n + 1 =
K(n+1) =

∑
L∈T a(L)L(n+1) = a(N)N(n+1)+a(Nn+1)Nn+1(n+1) = n+

a(Nn+1)pn+1, which implies that 1 = a(Nn+1)pn+1, a contradiction. If, on the
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other hand, n < 0 then we have for n′ = −n that n′ = K(n′) = n+a(Nn′)pn′,
i.e. 2n′ = a(Nn′)pn′. With pn′ > n′ we obtain pn′ = 2 and thus n = −1. This
again leads to a contradiction, as it implies that K(3) = 3 = −1 + a(N3) · 5.

Having shown K /∈ 〈T 〉, we now prove K ∈ 〈〈T 〉〉. For this, we construct
for every i ∈ N an Si ∈ 〈T 〉 so that Si(i) = 1 and Si(j) = 0 for every j < i.
Once we have done that we can represent K with these Si: put d(S1) = 1
and, inductively, set d(Si) = i −

∑i
j=1 d(Sj)Sj(i). Then K =

∑
i∈N

d(Si)Si.

Let us now find coefficients a0, . . . , ai ∈ Z so that Si := a0N +
∑i

j=1 ajNj

is as desired. It follows from the Chinese remainder theorem that the system
of congruences

x ≡ 0 (mod p1)
...

x ≡ 0 (mod pi−1)

x ≡ 1 (mod pi)

has a solution a0 ∈ Z. This allows us to choose aj ∈ Z so that a0 + ajpj = 0,
for every 1 ≤ j < i, and ai ∈ Z so that a0 + aipi = 1.

6.4 Thin sums and topological closure

In [86], Vella introduced for a family N of elements of RM the following
notation and spaces:

• the weak span W(N ) is the set of all finite sums of elements of N with
coefficients in R, i.e. W(N ) is the R-module generated by N ;

• the algebraic span A(N ) is the set of all thin sums of elements of N
with coefficients in R, i.e. what we have called (and will continue to
call) 〈N 〉; and

• the strong span S(N ) is the intersection of all sets M ⊇ N that are
closed under taking thin sums, i.e. the smallest set S containing N
with 〈S〉 = S.

Let us add to this list a fourth space, namely W(N ), the topological closure
of W(N ) in the product space RM . It is not hard to see that it contains the
strong span of N :

Lemma 6.8.[20] For any ring R, any set M and any family N of elements

of RM , W(N ) is closed under taking thin sums, i.e.
〈
W(N )

〉
= W(N ).
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Proof. Consider a thin family T of elements of W(N ). We need to show that
S :=

∑
T∈T T ∈ W(N ). For this, let M ′ be an arbitrary finite subset of M .

As T is thin, the subfamily T ′ of those members T of T for which T (m) 6= 0
for some m ∈ M ′ is finite. For each T ∈ T ′ there exists a finite subfamily NT

of N and coefficients rT
N ∈ R for N ∈ NT so that

∑
N∈NT

rT
NN(m) = T (m)

for all m ∈ M ′ since T lies in W(N ). Then, S ′ :=
∑

T∈T ′
∑

N∈NT
rT
NN is an

element of W(N ) and S ′(m) = S(m) for all m ∈ M ′. As M ′ was arbitrary,
this means that S ∈ W(N ).

We thus have the following inclusions:

W(N ) ⊆ 〈N〉 ⊆ S(N ) ⊆ W(N ).

Clearly, the first two inclusions can be proper. But can the third one also be
proper?

Question 6.9. Is S(N ) = W(N ) for every family N of elements of RM?

In the special case when N is thin and R a field or a finite ring we
obtain from the results of the previous section (Lemmas 6.4 and 6.5) that
〈N 〉 = 〈N 〉, which clearly implies S(N ) = W(N ). This answers a question
of Manfred Droste (personal communication).

For countable M , Question 6.9 has an affirmative answer, too. This can
easily be seen using a telescoping sum argument:

Proposition 6.10.[20] If R is any ring and M a countable set then W(N ) =
S(N ) for any family N of elements of RM .

Proof. We only need to prove that W(N ) ⊆ S(N ). Consider an arbitrary
K ∈ W(N ), and let m1, m2. . . . be an enumeration of M . As K lies in W(N )
there is for every i ∈ N an Ni ∈ W(N ) so that Ni(mj) = K(mj) for all j ≤ i.
Set N0 = 0 and define Li = Ni−Ni−1 ∈ W(N ) for every i. Then, Li(mj) = 0
for j < i and, consequently, the Li form a thin family. Furthermore:

(
∞∑

j=1

Lj

)
(mi) =

(
i∑

j=1

Lj

)
(mi) = Ni(mi) = K(mi).

As Lj ∈ W(N ) ⊆ S(N ) for every j and S(N ) is closed under taking thin
sums, we obtain that K =

∑∞
j=1 Lj lies in S(N ).

In the case of the topological cycle space C of a graph, the set M , the set of
edges of the graph, is usually countable and so Proposition 6.10 is applicable
(with N = C). Moreover, C is generated by a thin set (see Theorem 1.5),
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thus we obtain with Theorem 6.7 that C = C. A technique that appears
in a number of proofs, see e.g. [15, 16, 19, 45, 46, 47], makes implicit use
of this fact. In those proofs, an infinite cycle or element of C with certain
properties is sought. The standard way to construct the desired object is to
approximate it by a sequence of finite cycles or elements of C and to consider
the limit of this sequence. That this limit lies indeed in C is usually proved
explicitly, but follows directly from our corollary that C = C.

For uncountable M , Question 6.9 is not as easy to answer and indeed
Proposition 6.10 becomes false. In the rest of this chapter we will present
a family N of elements of Z[0,1]

2 for which the inclusion S(N ) ⊆ W(N ) is
proper.

Again, we will view elements of Z[0,1]
2 as subsets of [0, 1]. In particular,

the elements of N will consist of disjoint unions of intervals of [0, 1]. These
intervals will be chosen from an ever finer subdivision of [0, 1]. More precisely,
we will construct N in ω steps each of which corresponds to a certain level of
coarseness: we start in step 0 with the whole interval, so the first elements of
N will be [0, 1] and the empty set. In the next step, we cut [0, 1] in half, and
in the following step we subdivide each of these halves again into two halves,
and so on. Thus, in step n, we have the intervals [0, 1/2n], . . . , [(2n−1)/2n, 1]
at our disposal, and an element N constructed in this step will be the union
of some of these intervals. However, not every such union will be put in N .

Before we start with the formal definition, let us make one amendment.
When we add (perhaps many) intervals of the form [ i−1

2n , i
2n ] it is not so

easy to keep track of what happens with the points on the boundary of the
intervals. While this is not a serious problem, it complicates the matter. To
circumvent this, we will delete from our ground set all those points that can
ever arise as a boundary of some interval. These are precisely the points
J := { i

2n : 0 ≤ i ≤ 2n, i, n ∈ N}, and the subsets of N will therefore be
subsets of [0, 1] \ J .

We begin with the definition of the “intervals”: for n ∈ N and every
i ∈ {1, 2, . . . 2n} let I i

n = [ i−1
2n , i

2n ]\J , and define In := {I i
n : i ∈ {1, 2, . . . 2n}}.

In step 0, we set S0 := [0, 1] \ J and N0 := {∅, S0}. Then, in step n + 1,
assuming that we have already defined nested sets N0 ⊆ . . . ⊆ Nn in the
previous steps, we construct a new “seed” element by taking every second
interval in In+1:

Sn+1 :=
2n⋃

i=1

I2i
n+1

By adding this seed to the existing elements we define the new ones:

Nn+1 := Nn ∪ {N + Sn+1 : N ∈ Nn}.
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Once all these Nn are constructed, we put N :=
⋃∞

n=0 Nn. See Figure 6.1 for
the first few elements of N .

...

1

0

∅ S0 S1 S2 S3 S4

N3

Figure 6.1: A schematic drawing of the first few elements of N

We will accomplish our aim, to show that S(N ) 6= W(N ), in three steps.
In each of these we prove one of the following assertions:

(i) N is closed under taking finite sums, i.e. N = W(N );

(ii) W(N ) = S(N ); and

(iii) N 6= N .

Combining (i), (ii) and (iii) we immediately obtain S(N ) 6= W(N ).
In order to establish (i), we will show inductively that each Nn is already

closed under taking finite sums, i.e. that W(Nn) = Nn. For this, consider
N, L ∈ Nn. If N, L ∈ Nn−1 then we are done by induction. So we may
assume that N ∈ Nn \ Nn−1, i.e. that there is an N ′ ∈ Nn−1 with N =
Sn + N ′. Now if L ∈ Nn−1 then N ′ + L ∈ Nn−1 (by induction) and thus
N + L = Sn + (N ′ + L) ∈ Nn. If, on the other hand, L = Sn + L′ for some
L′ ∈ Nn−1, then N + L = Sn + N ′ + Sn + L′ = N ′ + L′ ∈ Nn−1, which
completes the proof of (i).

For the proof of (ii), we will need some intermediate assertions. The first
one states that

if N ∈ Nn and I ∈ In then either I ⊆ N or I ∩ N = ∅. (6.9)

To prove this, we perform induction on n. Note that I is contained in an
I ′ ∈ In−1. Thus, if N ∈ Nn−1 then the assertion holds by the induction
hypothesis. If, however, N ∈ Nn \ Nn−1, then N = Sn + N ′ for some
N ′ ∈ Nn−1. The assertion holds for N ′ (by induction) and for Sn+1 (by
construction), and therefore it is also true for N = Sn+1 + N ′.
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Next, we prove that

every N ∈ Nn+1 \ Nn meets every I ∈ In. (6.10)

Indeed, it is easy to see that this holds for n = 0. Now, suppose that
N = Sn+1 + N ′ where N ′ ∈ Nn. By construction, I ∩ Sn+1 is a non-empty
proper subset of I. Since, by (6.9), either I ⊆ N ′ or I ∩ N ′ = ∅, it follows
that Sn+1 + N ′ meets I.

Before we deduce (ii), we need one final assertion:

if L is an infinite subset of N and if I ∈ In for some n ∈ N
then there exists an r ∈ I lying in infinitely many L ∈ L.

(6.11)

To prove this, let N1, N2, . . . be distinct elements of L, and define nk ∈ N by
Nk ∈ Nnk

\ Nnk−1. We may assume that the Nk are ordered so that n1 ≤
n2 ≤ . . .. By going to a subsequence we may even assume that nk+1−nk ≥ 2
for all k, and that n1 ≥ n + 1 (note that |Nn| < ∞ for all n). Thus there is,
by (6.9) and (6.10), an I1 ∈ In1

with I1 ⊆ N1 ∩ I. Now I1 = Ij
n1

for some

j, and I1 is the union of two elements of In1+1: the “left half” Il := I2j−1
n1+1

and the “right half” Il := I2j
n1+1. Since n2 − n1 ≥ 2 it follows from (6.10)

that N2 meets both of Il and Ir, and therefore both of Il ∩ N2 and Ir ∩ N2

contain, by (6.9), an element of In2
as a subset. We choose an I2 ∈ In2

with
I2 ⊆ Il∩N2. Continuing in this manner, we find nested sets I ⊇ I1 ⊇ I2 ⊇ . . .
with Ik ⊆ Nk. Since R is complete and since the lengths of the intervals Ik

converge to zero, there is precisely one point r ∈ R lying in all Ik (where
Ik is the closure of Ik in the usual topology of R). By choosing Ik to lie in
the right half of Ik−1 for odd k and in the left half for even k, we ensure
that r /∈ J . Thus, r lies in Ik \ J = Ik ⊆ Nk for every k. Since I1 ⊆ I this
proves (6.11).

Now (ii) follows directly from (6.11), as the latter implies that no thin
sum can have infinitely many non-zero summands.

Let us deduce an easy corollary of (6.11) that we will use in order to
prove (iii):

if L is an infinite subset of N and if I ∈ In for some n ∈ N
then there exists an s ∈ I that is missed by infinitely many
L ∈ L.

(6.12)

Indeed, this follows immediately if we apply (6.11) to L′ := {([0, 1] \ J) \L :
L ∈ L}. (Note that L′ ⊆ N as L′ = {L + S0 : L ∈ L}.)

To prove (iii), take any infinite subset L0 of N , and choose an I1 ∈ I1.
By subsequent application of (6.11) and (6.12) we find r1, s1 ∈ I1 and an
infinite subset L1 of L so that r1 ∈ L but s1 /∈ L for all L ∈ L1. Pick any
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element of L1 and denote it by L1. Next, we choose some I2 ∈ I2 and find,
again, r2, s2 ∈ I2 and an infinite subset L2 of L1 so that r2 lies in all the
L ∈ L2 and s2 in none. Pick any L2 ∈ L2 and continue in this manner.

This process yields a sequence L1, L2, . . . of elements of N . By Ty-
chonoff’s theorem, the space Z[0,1]

2 is compact. Hence, the sequence L1, L2, . . .

has an accumulation point X ∈ Z[0,1]
2 , and clearly X ∈ N .

We claim that X /∈ N . To see this, first note that since this is the case for
almost all Lk, ri ∈ X but si /∈ X for any i. Now, suppose that X ∈ Nn for
some n. As In ∈ In, it follows from (6.9) that either In ⊆ X or In ∩ X = ∅.
However, the former contradicts sn /∈ X and the latter contradicts rn ∈ X.
This completes the proof of (iii).
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Chapter 7

Degree constrained orientations
in countable graphs

7.1 Degree constrained orientations

Orientations of finite graphs are well-studied. An early result is the theorem
of Robbins [73] on the existence of a strongly connected orientation. This
result has been widely generalised by Nash-Williams [62] in 1960, who de-
scribed orientations satisfying global or (symmetric) local edge-connectivity
requirements. Ford and Fulkerson [40] investigated when a partial orienta-
tion can be completed to a di-eulerian one. As a last example, let us cite
Frank [41] who characterised the graphs that can be oriented in such a way
that there are k directed paths between a specified vertex and every other
vertex.

In contrast, not much is known about orientations of infinite graphs. An
exception is an old result of Egyed [39] that extends Robbins’ theorem on
strongly connected orientations. We mention also Thomassen [80] who raised
some related conjectures.

In this chapter, which is based on [12], we will focus on degree constrained
orientations in infinite (but countable) graphs. These are orientations where
the in-degree function, i.e. the function counting the number of ingoing edges
at each vertex, satisfies given lower and upper bounds. Degree constrained
orientations have a close relationship to Hall’s marriage theorem, and are
also used by Berg and Jordán [10] in the context of graph rigidity. For finite
graphs, Frank and Gyárfás [43] gave a necessary and sufficient condition for
the existence of a degree constrained orientation. In infinite graphs, however,
their condition is no longer sufficient. By strengthening the Frank-Gyárfás
condition we will recover sufficiency while maintaining necessity.
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Let us briefly recall some standard notation. For subsets U, W of the
vertex set of a graph G = (V, E) denote by iG(U) the number of edges in
G having both endvertices in U and by dG(U, W ) the number of edges in G

with one endvertex in U \W and the other in W \U . For a directed graph ~G

and X ⊆ V ( ~G) let ρ ~G(X) (resp. δ ~G(X)) denote the number of edges entering
(resp. leaving) the set X. If x is a vertex, we write ρ ~G(x) instead of ρ ~G({x}),

and if no confusion can arise we will omit the subscripts G and ~G. For a
function m : V → R and X ⊆ V we will use the notation m(X) to mean∑

x∈X m(x). Unfortunately, this notation is slightly inconsistent, in so far as
ρ ~G(X) is, in general, not the same as

∑
x∈X ρ ~G(x).

Theorem 7.1 (Frank and Gyárfás [43]). Let G = (V, E) be a finite graph,
and let l, u : V (G) → Z be such that l(v) ≤ u(v) for all v ∈ V . Then

(i) there exists an orientation ~G of G such that l(v) ≤ ρ ~G(v) ≤ u(v) for
each vertex v if and only if

(ii) l(X) ≤ i(X) + d(X, V \ X) and u(X) ≥ i(X) for all X ⊆ V (G).

For a proof see also Frank [42].
The result carries over to locally finite graphs by an easy compactness ar-

gument, i.e. using Kőnig’s Lemma 4.6. For non-locally finite graphs, however,
the condition (ii) is too weak for the lower bound, as can be seen by consid-
ering an infinite star and setting l ≡ 1. There is no orientation satisfying the
lower bounds while (ii) clearly holds.

Before we look at this example in more depth, let us rephrase Theo-
rem 7.1. If we define the surplus to be s(X) = i(X) + d(X, V \ X) − l(X)
for a graph G = (V, E) and a set X ⊆ V , then the theorem states that there
is an orientation satisfying the lower bounds if and only if there is no set of
negative surplus. Our aim is to find a condition in this vein.

Compare the infinite star with a finite star with the same lower bound
of 1 everywhere. The whole finite star has negative surplus of −1, showing
that there is no orientation satisfying the lower bound. Instead of computing
this surplus directly let us do it in two steps. First, we observe that the set
L of all leaves has surplus s(L) = 0. Now, if we add the centre c to L we do
not gain any new edges since every edge is already incident with a leaf but
since l(c) > 0 the demand for ingoing edges increases. Hence, L ∪ {c} has
negative surplus.

Let us try to do the same for the infinite star. We immediately encounter
the problem that the set L of all leaves is incident with infinitely many edges
but has infinite demand for ingoing edges, i.e. l(L) = ∞. This results in
s(L) = ∞−∞, for which it is not clear which value this should be. So, let
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us compute the surplus of L in a similar stepwise fashion as above. Indeed,
enumerate the leaves of the infinite star and denote by Ln the set of the first
n leaves, which then has surplus 0. As L is the limit of the sets Ln it seems
justified to define the surplus of L as the limit of s(Ln), which therefore
yields 0. Now, adding the centre c to L we see as for the finite star that the
set L ∪ {c} has negative surplus. Consequently, the set L ∪ {c} is a witness
for the non-existence of an orientation respecting the lower bounds.

We will now turn the ad hoc reasoning in the preceding paragraph into a
formal condition. Fix a graph G = (V, E), and for an ordinal number θ call
a family Uθ := (Uµ)µ≤θ of subsets of V a queue in G if

• U0 = ∅;

• Uµ ⊆ Uλ for all µ ≤ λ ≤ θ;

• Uλ =
⋃

µ<λ Uµ for each limit ordinal λ ≤ θ.

We write Uλ for the initial segment up to λ of Uθ, i.e. Uλ = (Uµ)µ≤λ.
Let l : V → Z be a non-negative function, and let Uθ = (Uλ)λ≤θ be

a queue in G. Putting η(U0, l) = 0, we define by transfinite induction a
function η such that

η(Uλ+1, l) = η(Uλ, l) + i(Uλ+1 \ Uλ) + d(Uλ+1 \ Uλ, V \ Uλ+1) − l(Uλ+1 \ Uλ)

and such that η(Uλ, l) = lim infµ<λ η(Uµ, l) for limit ordinals λ. In the com-
putation of η we might need to calculate with ∞; we use the convention that
∞−∞ = ∞. Sometimes, if confusion can arise, we will write ηG to specify
the underlying graph. We remark that for a finite vertex set the η-function
provides merely an overly complicated way of computing its surplus. For
infinite sets, however, η can be seen as a refinement of the surplus.

A set U ⊆ V will be called l-deficient (or simply deficient if l is clear
from the context) if there exists a queue Uθ = (Uλ)λ≤θ with U = Uθ and
η(Uθ, l) < 0. Deficient sets will play the same role as sets of negative surplus
in the finite case.

We can now state the main result of this chapter, which we will prove in
the next section:

Theorem 7.2.[12] Let G = (V, E) be a countable graph, and let l, u : V →
Z∪{∞} be non-negative functions with l ≤ u. Then the following statements
are equivalent:

(i) there exists an orientation ~G of G such that l(v) ≤ ρ ~G(v) ≤ u(v) for
each vertex v; and
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(ii) there are no l-deficient sets and u(X) ≥ i(X) for all finite X ⊆ V (G).

We mention that the theorem is very much in spirit of [64], in which
Nash-Williams extends Hall’s marriage theorem to countable graphs. This
is perhaps not at all surprising since for finite graphs Theorem 7.1 can be
reduced to the marriage theorem and vice versa. For infinite graphs, there
are several versions of Hall’s theorem. From the one in [64] one can indeed
obtain our main result. However, as our proof is not a simple translation
of Nash-Williams’ arguments and as the reduction of Theorem 7.2 to Nash-
Williams’ theorem is not at all immediate (it takes about two pages), we see
merit in providing a direct proof.

Nash-Williams’ idea to refine a finite condition by using transfinite se-
quences is also used in Wojciechowski [93], who investigates when an infinite
family of matroids on the same ground set has a system of disjoint bases.
We will see this approach again in Section 8.9.

7.2 Proof of main result

In this section G will always denote a countable graph with vertex set V and
edge set E, and l, u : V → Z ∪ {∞} will always be non-negative functions
such that l ≤ u.

We shall prove Theorem 7.2 in the course of this section. Let us start with
the observation that the function η satisfies a submodularity-type inequality
(a set function b : 2V → R is called submodular if b(X)+ b(Y ) ≥ b(X ∩Y )+
b(X ∪ Y ) for any X, Y ⊆ V ). More precisely, it is easy to see that for the
surplus function it holds that

s(U) + s(W ) = s(U ∪ W ) + s(U ∩ W ) + d(U \ W, W \ U),

where U, W are vertex sets. (Clearly, this implies that s is submodular.) The
lemma below states that a similar relation is true for η.

For a set X ⊆ V , we will denote its complement V \ X by X if the base
set V is clear from the context. To ease notation further, we will say that
U = (Uλ)λ≤θ is a queue for a set U if U = Uθ. For a successor ordinal λ, we
write (slightly abusing notation) λ− 1 for the ordinal µ for which λ = µ+ 1.
We also introduce the notation U ′

λ := Uλ \ Uλ−1.

Lemma 7.3.[12] Let U = (Uλ)λ≤θ be a queue for U and W = (Wλ)λ≤κ be
a queue for W . Define queues X = (Xλ)λ≤κ with Xλ = U ∩ Wλ for every
λ ≤ κ and Y = (Yλ)λ≤θ+κ with Yλ = Uλ for λ ≤ θ and Yθ+λ = U ∪ Wλ for
λ ≤ κ. Then

η(U , l) + η(W, l) ≥ η(X , l) + η(Y , l) + d(W \ U, U \ W ).
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Proof. We shall show that

η(U , l) + η(Wλ, l) ≥ η(Xλ, l) + η(Yθ+λ, l) + d(Wλ \ U, U \ Wλ) (7.1)

for all λ ≤ κ, which will give the statement with λ = κ.
We have η(W0, l) = η(X0, l) = 0, η(Yθ, l) = η(U , l) and d(W0\U, U\W0) =

0 since W0 = ∅. Therefore, (7.1) holds with equality for λ = 0. We proceed
by transfinite induction. Let λ be the smallest ordinal for which (7.1) is not
yet shown.

λX’

W’λ
Y’θ+λ

Wλ

U

...

Figure 7.1: Relevant sets in Lemma 7.3

First, assume λ to be a successor ordinal. Observe that

dx := d(X ′
λ, Xλ) = d(X ′

λ, Wλ \ U) + d(X ′
λ, Wλ).

and

dy := d(Y ′
θ+λ, Yθ+λ) = d(W ′

λ \ U, U ∪ Wλ).

We use these two relations in what follows:

d(X ′
λ, Wλ \ U) + d(W ′

λ, Wλ)

= d(X ′
λ, Wλ \ U) + d(Y ′

θ+λ, Yθ+λ)

+d(Y ′
θ+λ, U \ Wλ) + d(X ′

λ, Wλ)

= dx + dy + d(Y ′
θ+λ, U \ Wλ)

Noting that

i(W ′
λ) = i(X ′

λ) + i(Y ′
θ+λ) + d(X ′

λ, Y
′
θ+λ),

and that

d(X ′
λ, Wλ \ U) = d(X ′

λ, Y
′
θ+λ) + d(X ′

λ, Wλ−1 \ U),
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we obtain

d(X ′
λ, Wλ−1 \ U) + d(W ′

λ, Wλ) + i(W ′
λ)

= dx + i(X ′
λ) + dy + i(Y ′

θ+λ) + d(Y ′
θ+λ, U \ Wλ)

(7.2)

Using this and the induction hypothesis for λ − 1 we get

η(U , l) + η(Wλ, l) = η(U , l) + η(Wλ−1, l) + d(W ′
λ, Wλ) + i(W ′

λ) − l(W ′
λ)

(7.1)

≥ η(Xλ−1, l) + η(Yθ+(λ−1), l) + d(Wλ−1 \ U, U \ Wλ−1)

+d(W ′
λ, Wλ) + i(W ′

λ) − l(W ′
λ)

= η(Xλ−1, l) + η(Yθ+(λ−1), l) + d(Wλ−1 \ U, U \ Wλ)

+d(Wλ−1 \ U, X ′
λ) + d(W ′

λ, Wλ) + i(W ′
λ) − l(W ′

λ)
(7.2)
= η(Xλ−1, l) + dx + i(X ′

λ) − l(X ′
λ)

+η(Yθ+(λ−1), l) + dy + i(Y ′
θ+λ) − l(Y ′

θ+λ)

+d(Wλ−1 \ U, U \ Wλ) + d(Y ′
θ+λ, U \ Wλ)

= η(Xλ, l) + η(Yθ+λ, l) + d(Wλ \ U, U \ Wλ).

This proves the induction step when λ is a successor ordinal.
Second, assume that λ is a limit ordinal. Then

η(U , l) + η(Wλ, l) = η(U , l) + lim inf
µ<λ

η(Wµ, l)

≥ lim inf
µ<λ

(η(Xµ, l) + η(Yθ+µ, l) + d(Wµ \ U, U \ Wµ))

≥ η(Xλ, l) + η(Yθ+λ, l) + lim inf
µ<λ

d(Wµ \ U, U \ Wµ).

Furthermore, for any µ < λ we get

d(Wµ \ U, U \ Wµ) = d(Wµ \ U, U \ Wλ) + d(Wµ \ U, U ∩ (Wλ \ Wµ))

≥ d(Wµ \ U, U \ Wλ).

It is easy to see that lim infµ<λ d(Wµ \ U, U \Wλ) = d(Wλ \ U, U \Wλ) since
Wλ =

⋃
µ<λ Wµ. Putting all this together we obtain (7.1).

We call a vertex set U l-tight if (it is not l-deficient and) there exists
a queue (Uλ)λ≤θ for U with η(Uθ, l) = 0. If it is clear in regard to which
function l a set is tight, we will suppress the l. Tight sets are the most
critical sets, and it can be seen that in an orientation respecting the lower
bound l there can be no edge leaving a tight set.

Lemma 7.3 immediately implies that the intersection and the union of
two tight sets is tight, too. We will need a little bit more, namely that this
also holds for the union of countably many tight sets:
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Lemma 7.4. [12] Assume that there are no deficient sets in G, and let
U1, U2, . . . be countably many tight sets. Then also their union is tight.

Proof. Let U i = (U i
λ)λ≤θi

be queues witnessing the tightness of Ui for each
i, i.e. η(U i, l) = 0 and U i

θi
= Ui. For any n ∈ N, set κn =

∑n
i=1 θi and

κ =
∑∞

i=1 θi. Then we can define the queue Y = (Yλ)λ≤κ with Yκn−1+λ =
Yκn−1

∪ Un
λ if λ ≤ θn (where κ0 = 0 and Y0 = ∅) and Yκ =

⋃∞
n=1 Yκn

. By
Lemma 7.3 and induction we get η(Yκn

, l) = 0 for all n ≥ 0:

η(Yκn
, l) ≤ η(Yκn−1

, l) + η(Un, l) = 0 + 0.

(Note, that there are no deficient sets.) From this it follows that η(Y , l) =
lim infλ<κ η(Yλ, l) ≤ 0. Again, as there are no deficient sets, this implies that
Yκ =

⋃∞
i=1 Ui is tight.

As for the lower bound we will define deficiency and tightness of sets with
respect to the upper bound, too. We call a finite vertex set X u-faulty, if
u(X) − i(X) < 0, and we call it u-taut if u(X) − i(X) = 0. Again, if u is
clear from the context, we will omit it.

In the last lemma we saw that the union of tight sets is tight. In contrast,
for taut sets we will need that their intersection is taut:

Lemma 7.5.[12] If there are no faulty sets in G then the following is true:

(i) if X and Y are two taut sets then X ∩ Y is taut and there is no edge
between X \ Y and Y \ X; and

(ii) the intersection of arbitrarily many taut sets is taut.

Proof. (i) On the one hand, we get

i(X) + i(Y ) = u(X) + u(Y ) = u(X ∪ Y ) + u(X ∩ Y ) ≥ i(X ∪ Y ) + i(X ∩ Y )

and on the other hand, i is supermodular, i.e. it holds that:

i(X) + i(Y ) ≤ i(X ∪ Y ) + i(X ∩ Y ).

Thus, we have equality everywhere. In particular, if there was an edge be-
tween X \ Y and Y \ X then i(X) + i(Y ) < i(X ∪ Y ) + i(X ∩ Y ), which is
not the case.

(ii) Let Xi, i ∈ I be taut sets. Since by definition each of the Xi is finite,
their intersection is also finite. Hence, there are already finitely many Xj,
j ∈ J ⊆ I with

⋂
i∈I Xi =

⋂
j∈J Xj. Therefore, we only need to check that

the intersection of two taut sets is taut, which is true by (i).
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In Theorem 7.2 (ii) the conditions regarding the lower and the upper
bound are independent of each other. The following lemma provides a link
between tight and taut sets.

Lemma 7.6.[12] Let there be neither deficient sets nor faulty sets in G, and
let U be a taut set and L be a tight set. Then U \L is taut and L\U is tight.

Proof. Let L = (Lλ)λ≤θ be a queue with η(L, l) = 0 and Lθ = L, and define
M = (Lλ \ U)λ≤θ. By transfinite induction, we show that for any ordinal
λ ≤ θ it holds that

η(Lλ, l) ≥ η(Mλ, l) + i(Lλ ∩ U) − l(Lλ ∩ U) + d(Lλ ∩ U, Lλ). (7.3)

This is trivially true for λ = 0. Let λ be such that the induction hypothesis
holds for all µ < λ. First, assume that λ is a successor ordinal. We use the
induction hypothesis for λ − 1 in what follows:

η(Lλ, l) = η(Lλ−1, l) + i(L′
λ) + d(L′

λ, Lλ) − l(L′
λ)

(7.3)

≥ η(Mλ−1, l) + i(Lλ−1 ∩ U) − l(Lλ−1 ∩ U)

+d(Lλ−1 ∩ U, Lλ−1) + i(L′
λ) + d(L′

λ, Lλ) − l(L′
λ)

= η(Mλ−1, l) + i(Lλ−1 ∩ U) + d(Lλ−1 ∩ U, Lλ−1 \ M ′
λ)

d(Lλ−1 ∩ U, M ′
λ) + i(L′

λ) + d(L′
λ, Lλ)

−l(Lλ ∩ U) − l(M ′
λ)

With

d(Lλ−1 ∩ U, M ′
λ) + i(L′

λ) + d(L′
λ, Lλ)

= d(Lλ−1 ∩ U, M ′
λ) + i(L′

λ ∩ U) + d(L′
λ ∩ U, M ′

λ)

+i(M ′
λ) + d(L′

λ ∩ U, Lλ) + d(M ′
λ, Lλ)

= i(M ′
λ) + d(M ′

λ, Mλ) + i(L′
λ ∩ U) + d(L′

λ ∩ U, Lλ)

(7.4)
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we get

η(Lλ, l)
(7.4)

≥ η(Mλ−1, l) + i(Lλ−1 ∩ U) + d(Lλ−1 ∩ U, Lλ−1 \ M ′
λ)

i(M ′
λ) + d(M ′

λ, Mλ) + i(L′
λ ∩ U) + d(L′

λ ∩ U, Lλ)

−l(Lλ ∩ U) − l(M ′
λ)

= η(Mλ, l) + i(Lλ−1 ∩ U) + d(Lλ−1 ∩ U, Lλ−1 \ M ′
λ)

+i(L′
λ ∩ U) + d(L′

λ ∩ U, Lλ) − l(Lλ ∩ U)

= η(Mλ, l) + i(Lλ−1 ∩ U) + d(Lλ−1 ∩ U, Lλ)

+d(Lλ−1 ∩ U, L′
λ ∩ U) + i(L′

λ ∩ U) + d(L′
λ ∩ U, Lλ) − l(Lλ ∩ U)

= η(Mλ, l) + i(Lλ ∩ U) + d(Lλ−1 ∩ U, Lλ)

+d(L′
λ ∩ U, Lλ) − l(Lλ ∩ U)

= η(Mλ, l) + i(Lλ ∩ U) − l(Lλ ∩ U) + d(Lλ ∩ U, Lλ)

So, let λ be a limit ordinal. Then observe that lim infµ≤λ d(Lµ ∩U, Lµ) =
d(Lλ ∩U, Lλ) as U is finite. Furthermore, l(Lµ ∩U) is bounded for the same
reason. Thus

η(Lλ, l) ≥ lim inf
µ≤λ

(
η(Mµ, l) + i(Lµ ∩ U) − l(Lµ ∩ U) + d(Lµ ∩ U, Lµ)

)

≥ η(Mλ, l) + i(Lλ ∩ U) − l(Lλ ∩ U) + d(Lλ ∩ U, Lλ).

Now, for λ = θ this yields

0 = η(L, l) + u(U) − i(U)

≥ η(M, l) + i(L ∩ U) − l(L ∩ U) + u(U) − i(U) + d(L ∩ U, L)

≥ η(M, l) + u(U \ L) − i(U \ L) + (u − l)(L ∩ U)

Since η(M, l) ≥ 0, u ≥ l and since u(U \L) ≥ i(U \L) it follows that U \L is
taut. This then also implies that η(M, l) = 0, and hence L \ U is tight.

Lemma 7.7.[12] Let there be no u-faulty sets. Assume that for an edge e
with endvertices v, w there is no u-taut set U with v ∈ U but w /∈ U . Then,
setting u′(x) = u(x) for all vertices x 6= v and u′(v) = u(v)− 1, there are no
u′-faulty sets in G − e.

Proof. If u(v) = ∞ then for every set X ⊆ V we get u(X) = ∞, and thus
there cannot be any u′-faulty set in G− e. So, let u(v) < ∞, and suppose U
is u′-faulty in G − e. Clearly, v ∈ U but w /∈ U since there are no u-faulty
sets in G. But then U is u-taut in G, a contradiction.

We can finally prove our main result:
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Proof of Theorem 7.2. (ii)⇒(i) Let v1, v2, . . . be a sequence of the vertices of
G such that every vertex v appears exactly l(v) times in it. Putting l0 = l
and u0 = u we recursively

(a) set ln(v) = ln−1(v) if v 6= vn and ln(vn) = ln−1(vn) − 1;

(b) set un(v) = un−1(v) if v 6= vn and un(vn) = un−1(vn) − 1; and

(c) find distinct edges e1, e2, . . . such that Gn := G − {e1, . . . , en} has no
ln-deficient and no un-faulty sets and such that en is incident with vn.

Assume that this has been achieved for i < n. It is not difficult to check
directly that picking any loop at vn for en we satisfy (a)–(c). However, if we
agree that vn is a neighbour of itself if there is a loop at vn then what follows
covers also loops.

For each neighbour w of vn in Gn−1 for which this is possible pick an
ln−1-tight set X with w ∈ X but vn /∈ X, and consider the union L of these
sets. By Lemma 7.4, L is still ln−1-tight. In a similar way, consider a minimal
un−1-taut set U that contains vn (where we set U = ∅ if there is no such set).
From Lemma 7.5 (ii) it follows that for a neighbour w of vn in Gn−1 for which
there is an un−1-taut set Y with vn ∈ Y but w /∈ Y it holds that w /∈ U . By
Lemma 7.6, U \L is un−1-taut, too. As U is minimal this implies U = U \L
and therefore that U and L are disjoint.

Next, if U 6= ∅ then there is a neighbour wn of vn in Gn−1 with wn ∈ U .
For if that was not the case, then, recalling that u(vn) > 0 by definition of
vn, we would have

i(U \ {vn}) = i(U) = u(U) > u(U \ {vn}),

which is a contradiction, as there are no un−1-faulty sets. Note that wn /∈ L
since U and L are disjoint. If, on the other hand, U = ∅ then there is a
neighbour wn /∈ L of vn in Gn−1. Indeed, suppose not. Let L := (Lλ)λ≤θ

be a queue with η(L, ln−1) = 0 and Lθ = L (recall, that L is ln−1-tight).
Put Lθ+1 = L ∪ {vn}, and observe that i(Lθ+1 \ Lθ) = 0 (since there is no
loop at vn) and dGn−1

(Lθ+1 \Lθ, V (Gn−1) \ Lθ+1) = 0. Thus, η(Lθ+1, ln−1) =
−ln−1(vn) < 0, (from the definition of our sequence v1, v2, . . . it follows that
ln−1(vn) > 0). Consequently, Lθ+1 is ln−1-deficient, contrary to our induction
hypothesis. In any case, let en be any edge between vn and wn and observe
that, by Lemma 7.7, there are no un-faulty sets in Gn. In addition, by
construction of L and because of wn /∈ L we get

there is no ln−1-tight set X in Gn−1 with wn ∈ X but vn /∈ X (7.5)
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Let us check that there are also no ln-deficient sets in Gn. So, suppose
there is a ln-deficient set M in Gn, and let Mθ = (Uλ)λ≤θ be a queue in
Gn with M = Mθ and ηGn

(Mθ, ln) < 0. Since Gn differs from Gn−1 only in
the edge en we get, if neither vn ∈ M nor wn ∈ M , that ηGn−1

(Mθ, ln−1) =
ηGn

(Mθ, ln), which is impossible since M is not ln−1-deficient in Gn−1. In a
similar way, if ln−1(vn) < ∞ we can exclude the case when vn ∈ M as we lose
an edge but also have less demand of ingoing edges. If, on the other hand,
ln−1(vn) = ∞ we can get rid of this case, too: Denote by λ the smallest
ordinal for which vn ∈ Mλ, which is a successor ordinal, by definition of a
queue. Then as ηGn−1

(Mλ, ln−1) ≥ 0 and as

ηGn−1
(Mλ, ln−1) = ηGn−1

(Mλ−1, ln−1) + i(M ′
λ) + d(M ′

λ, Mλ) −∞

it follows that ηGn−1
(Mλ, ln−1) = ∞, and hence ηGn−1

(Mθ, ln−1) = ∞. Be-
cause ηGn−1

and ηGn
can differ by at most one, we obtain ηGn

(Mθ, ln) = ∞,
a contradiction.

Therefore, we may assume that wn ∈ M but vn /∈ M (independent of the
value of ln−1(vn)). Now, let λ be the smallest ordinal for which wn ∈ Mλ,
which is a successor ordinal. Then,

dGn−1
(Mλ \ Mλ−1, Mλ) = dGn

(Mλ \ Mλ−1, Mλ) + 1,

and thus ηGn−1
(Mλ, ln−1) = ηGn

(Mλ, ln) + 1 (since vn /∈ Mλ implies that
ln−1(Mλ \Mλ−1) = ln(Mλ \Mλ−1)). Hence, ηGn−1

(Mθ, ln−1) = ηGn
(Mθ, ln)+

1. Now, since ηGn
(Mθ, ln) < 0 but ηGn−1

(Mθ, ln−1) ≥ 0 we obtain that
ηGn−1

(Mθ, ln−1) = 0. Therefore, M is an ln−1-tight set with vn /∈ M but
wn ∈ M , contradicting (7.5). Thus, there are no ln-deficient sets in Gn, as
required.

Having terminated the transfinite induction, we put G0 = G−{e1, e2, . . .}.
We think of each edge en as already directed towards vn. In this way, each
vertex v has an indegree of exactly l(v) (by definition of the vertex enumer-
ation). So, what remains is to direct the edges in G0 in such a way, that the
reduced upper bound u0 := u − l is respected.

First, let us show that there are no u0-faulty sets in G0. Indeed, consider
a finite vertex set U in G0. Then there is an N such that uN(U) = u0(U)
and iGN

(U) = iG0(U), and thus u0(U) ≥ iG0(U) since uN(U) ≥ iGN
(U). As

a u0-faulty set is by definition finite, there is therefore no such set.

Second, let f1, f2, . . . be an enumeration of the edges of G0. Denote the
endvertices of f1 by x and y, and observe that if there is a u0-taut set X with
x ∈ X but y /∈ X then there is no u0-taut set Y with x /∈ Y but y ∈ Y , by
Lemma 7.5 (i).
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Now, if there is such a set X, then direct f1 towards y, and define u1(v) =
u0(v) for v 6= y and u1(y) = u0(y)− 1. If not, direct f1 in the other way, and
define u1 accordingly. Lemma 7.7 ensures that G1 = G0−f1 has no u1-faulty
sets. Continuing in this way, we obtain the desired orientation. Indeed,
suppose a vertex v receives more ingoing edges than u(v). Then there is an
N such that uN(v) < 0, which implies that {v} is uN -faulty, a contradiction.

(i)⇒(ii) Let ~G be an orientation as in (i). Then trivially u(X) ≥∑
v∈X ρ ~G(v) ≥ i(X) holds for any finite set X ⊆ V . In order to prove

that there is no l-deficient set, pick any queue Uθ := (Uλ)λ≤θ. We will show
by transfinite induction that η(Uλ, l) ≥ δ ~G(Uλ) for every λ ≤ θ. (Recall that
δ ~G(U) denotes the number of edges leaving U .) This is true for λ = 0. Let λ
be the smallest ordinal for which this is not yet shown.

First, let λ be a successor ordinal, and assume that
∑

v∈U ′
λ
ρ ~G(v) < ∞.

Then

η(Uλ, l) = η(Uλ−1, l) + i(U ′
λ) + d(U ′

λ, Uλ) − l(U ′
λ)

≥ δ ~G(Uλ−1) + i(U ′
λ) + d(U ′

λ, Uλ) −
∑

v∈U ′
λ

ρ ~G(v)

= δ ~G(Uλ−1) + d(U ′
λ, Uλ) − ρ ~G(U ′

λ) = δ ~G(Uλ).

If, on the other hand,
∑

v∈U ′
λ
ρ ~G(v) = ∞ then either there are infinitely many

edges directed from Uλ−1 to U ′
λ, in which case η(Uλ−1, l) ≥ δ ~G(Uλ−1) = ∞,

or i(U ′
λ) = ∞, or there are infinitely many edges directed from Uλ towards

U ′
λ, which implies d(U ′

λ, Uλ) = ∞. In all of these cases we obtain

η(Uλ, l) = η(Uλ−1, l) + i(U ′
λ) + d(U ′

λ, Uλ) − l(U ′
λ) ≥ ∞−∞ = ∞.

Next, let λ be a limit ordinal. Denoting by A(X, Y ) the edges directed
from X ⊆ V to Y ⊆ V we obtain

η(Uλ, l) = lim inf
µ<λ

η(Uµ, l) ≥ lim inf
µ<λ

(δ ~G(Uµ))

≥ lim inf
µ<λ

|A(Uµ, Uλ)| = δ ~G(Uλ).

Finally, with λ = θ we get η(Uθ, l) ≥ δ ~G(Uθ) ≥ 0, as desired.

7.3 Open questions

Let us formulate two directions for future research. First, Theorem 7.2 treats
only countable graphs, and indeed our proof does not seem to be adaptable
to higher cardinalities. On the other hand, we do not have any example
showing that our condition fails in uncountable graphs.
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Problem 7.8. Can Theorem 7.2 be extended to uncountable graphs?

Second, in finite graphs, Theorem 7.1 allows to impose lower bounds on
the in-degree and the out-degree at the same time. Indeed, d(v)−u(v) gives
a lower bound on the out-degree of a vertex v. In contrast, for a vertex
v of infinite degree we can only demand all or nothing. Setting u(v) to a
finite value in Theorem 7.2 is the same as requiring infinitely many outgoing
edges at v, whereas putting u(v) = ∞ will not impose any restrictions on
the out-degree at all. To regain a finer control, we propose the following
conjecture:

Conjecture 7.9. [12] Let G be a countable graph, and let l, r : V (G) →
N∪{∞} be two non-negative functions with l(v)+r(v) ≤ d(v) for all vertices
v. Then

(i) there exists an orientation ~G of G such that ρ ~G(v) ≥ l(v) and δ ~G(v) ≥
r(v) for each vertex v if and only if

(ii) there are no l-deficient sets and no r-deficient sets.
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Chapter 8

Connectivity in infinite
matroids

8.1 Infinite matroids

The cycle matroid of a finite graph is the matroid in which those edge sets are
independent that do not contain any circuit of the graph. In Chapters 2–4
we have seen that the introduction of infinite circuits allows more natural
and smoother extensions of finite results. So, it appears conceivable that the
infinite circuits together with the finite ones yield a matroid associated to an
infinite graph. But how should then a matroid on an infinite set be defined?

The current entry on matroids in wikipedia [1] states “that there are many
reasonable and useful definitions [of infinite matroids], none of which captures
all the important aspects of finite matroid theory”. Fortunately, the entry
only demonstrates that while it is often a highly useful source of knowledge,
wikipedia still needs to be taken with a grain, and sometimes with a spoonful,
of salt. Indeed, there is such a notion of a matroid that features all the
important properties of a finite matroid, namely the B-matroids of Higgs [52,
53, 54]. Among the properties of B-matroids are that every independent
set in a B-matroid is contained in a basis; every dependent set contains a
circuit; the dual of a B-matroid is well defined; and there exist contraction
and deletion operations such that one is the dual operation of the other.
We discuss the basic properties of B-matroids in more detail in Sections 8.2
and 8.4. See also Oxley [67] for a general discussion of B-matroids. A more
recent result involving graphs and B-matroids is due to Christian, Richter
and Rooney [28].

The main part of this chapter focuses on connectivity in B-matroids. A
finite matroid is connected if and only if every two elements are contained
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in a common circuit. This definition can be extended verbatim to infinite
matroids. Higher connectivity is less straightforward. A finite matroid M
is k-connected unless there exists an ℓ-separation for some ℓ < k, i.e. a
partition (X, Y ) of the ground set so that r(X) + r(Y ) − r(M) ≤ ℓ − 1
and |X|, |Y | ≥ ℓ where r is the rank function of the matroid. In an infinite
matroid this definition is obviously useless as all of the involved ranks will
usually be infinite. In Section 8.6 we will give an equivalent definition of
k-connectivity that does generalise to infinite matroids. We will examine the
circuit definition of connectivity in Section 8.5 and treat k-connectivity in
more detail in Section 8.7.

As an application of our definition of higher connectivity we prove Tutte’s
linking theorem for an important class of B-matroids. Tutte’s linking theorem
is often said to be the analogue of Menger’s theorem in matroids and concerns
how well connected two subsets of the ground set are. In order to formulate
this more precisely, we define for disjoint sets X, Y ⊆ E(M) in a finite
matroid M the connectivity function by κM(X, Y ) = min{r(U)+r(E−U)−
r(E) : X ⊆ U ⊆ E − Y }. Tutte’s linking theorem is then as follows:

Theorem 8.1 (Tutte [84]). Let M be a finite matroid, and let X and Y
be two disjoint subsets of E(M). Then there exists a partition (C, D) of
E(M) − (X ∪ Y ) such that κM/C−D(X, Y ) = κM(X, Y ).

We conjecture that Theorem 8.1 holds also for arbitrary B-matroids.

Conjecture 8.2.[18] Let M be a B-matroid, and let X and Y be two disjoint
subsets of E(M). Then there exists a partition (C, D) of E(M) − (X ∪ Y )
such that κM/C−D(X, Y ) = κM(X, Y ).

In Section 8.8 we verify the conjecture for finitary matroids, i.e. B-
matroids where every circuit is of finite size.

After a short interlude in Section 8.9 on matchability of B-matroids we
will, in Sections 8.10 and 8.11, investigate the cycle matroid associated with
a graph. We will conclude this thesis by calculating the connectivity function
of the cycle matroid. This will allow us to revisit a result from Chapter 2,
namely the invariance of Tutte-connectivity under taking duals.

8.2 Definition of B-matroids

Higgs defined B-matroids by giving a set of axioms for the closure operator.
Oxley [65, 67] provided equivalent independence axioms that are far more
accessible.

Let E be some set, and let I be a set of subsets of E. We call M = (E, I)
a B-matroid if the following conditions are satisfied:
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(I1) {∅} ∈ I;

(I2) if I ′ ⊆ I and I ∈ I then I ′ ∈ I;

(IB1) if I ⊆ X ⊆ E then there exists a maximal subset B of X with B ∈ I
that contains I; and

(IB2) for all X ⊆ E, if B1 and B2 are maximal elements of I and x ∈ B1−B2

then there exists a y ∈ B2 − B1 so that (B1 − x) + y is maximal in I.

As usual, any set in I is called independent and any subset of E not in I is
dependent.

The main feature of B-matroids is that they have bases and circuits while
maintaining duality at the same time. The existence of bases, i.e. maximal
independent sets, is guaranteed by (IB1). The dual matroid M∗ = (E, I∗)
of a matroid M = (E, I) is defined by requiring that J ⊆ E lies in I∗ if and
only if there is a basis B of M with J ⊆ E − B. Higgs [54] proved that M∗

is a B-matroid if M is one. Finally, a minimal dependent set is a circuit, and
a circuit of the dual matroid a co-circuit. Every dependent set contains a
circuit, see Oxley [65].

B-matroids and finite matroids share more properties, among them the
most natural ones, such as that the minor of a B-matroid is a B-matroid.
Moreover, Oxley [67] demonstrated that B-matroids are the largest class
that satisfy a small number of properties that a matroid should have. For
these reason, we contend that B-matroids are the right generalisation of finite
matroids to infinite ground sets. To emphasise that we shall from now on
simply speak of matroids instead of B-matroids.

An important subset of matroids are the finitary matroids. A matroid is
finitary if every of its circuits is finite, and a matroid is called co-finitary if
its dual matroid is finitary.

Finitary matroids, who can alternatively be defined in terms of simple
independence axioms, predate (B-)matroids. A natural and rich source of
finitary matroids are graphs. Let G be a graph, and define IST(G) to be
the set of all edge sets I so that I is contained in a subgraph of G that is a
spanning tree on each component of G. Let MST(G) = (E(G), IST(G)).

Proposition 8.3 (Higgs1 [54]). MST(G) is a finitary matroid for every
graph G.

1The attribution to Higgs is perhaps a bit of a stretch. It was known before, and in
fact is quite simple to see, that MST(G) is finitary if the older definition via indepen-
dence axioms is used. Higgs’ contribution lies in recognising that finitary matroids are
B-matroids.
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Graphs give also rise to co-finitary matroids. With infinite (as well as
finite) circuits we can define a co-finitary matroid MTST in a similar way
as MST above. We declare every edge set that does not contain a (finite or
infinite) circuit to be independent. We discuss MTST and its relationship to
MST(G) in more depth in Section 8.10.

Let us consider an example. The double ladder, as shown in Figure 8.1,
has two ends, one on the right and one on the left. Adding these ends
produces new infinite circuits. For instance the edge set of the double ray
R1eR2 becomes a circuit, as well as S1eS2. Moreover, the edge set of the union
of the two disjoint double rays S1R1 and S2R2 is a circuit too. Consequently,
a spanning tree as S1R1 ∪ S2R2 + e, which is a basis in MST, is no longer a
basis in MTST. On the other hand, the disconnected set (S1R1 − f) ∪ S2R2

can be seen to be maximally independent.

ω 2 ω 1

R2

R1

S2

S1

f
e

Figure 8.1: A co-finitary matroid on the double ladder

By only adding some of the ends of a graph we can obtain a matroid that
is neither finitary nor co-finitary. If we delete the left end ω2 in Figure 8.1,
then the only infinite circuits that remain are edge sets of double rays with
two disjoint subrays going towards ω1, such as R1eR2. However, the double
ray S1eS2 then becomes independent. An example for an infinite co-circuit
is the set of edges with one endvertex on S2 and the other outside (indicated
by the dashed line). In this way we obtain a matroid that is neither finitary
nor co-finitary.

8.3 A matroid on the ω-regular tree

To illustrate the concept of infinite matroids a bit further, let us give another
example. We shall define a matroid MT∞ on the edge set of the ω-regular
tree T∞. As the double ladder with only one end in the previous section
MT∞ will neither be finitary nor co-finitary. In fact, we shall see that MT∞

has only infinite circuits and co-circuits.

Declare every subset of E(T∞) to be independent if it does not contain
(the edge set of) any double ray. Let us first verify that this constitutes a
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matroid. For this purpose we call an edge set F an edge-double ray if it is
the edge set of a double ray.

Clearly, the axioms (I0) and (I1) are trivially satisfied for MT∞. To
verify (IB1), consider an independent set I, i.e. a set of edges not containing
any edge-double ray, and an arbitrary set X ⊆ E(T∞) with I ⊆ X. Let
e1, e2, . . . be an enumeration of the countably many edges in X.

First, we pick an ⊆-maximal set R of pairwise disjoint rays so that
E(R) ⊆ X for every R ∈ R, and so that I∗ := I ∪

⋃
R∈R E(R) does not con-

tain any edge-double ray. This can indeed be accomplished. For instance, we
can greedily choose a ray Ri with E(Ri) ⊆ X through the edge with lowest
index so that Ri is disjoint from R1, . . . , Ri−1 and so that I ∪

⋃i
j=1 E(Rj)

does not contain any edge-double ray. (If there is no such Ri, we stop.) Now,
suppose there is a double ray D with E(D) ⊆ I∗. Then D has to meet two
rays of the Ri, let us say Rk and Rl. In D there is a finite path P between
some vertex in Rk and some vertex in Rl. Therefore the edge-double ray in
Rk ∪ P ∪ Rl is already contained in I ∪

⋃n
j=1 E(Rj) for any large enough n.

Next, we go through the edges in X − I∗ in order of their index and add
them to a set J if their inclusion does not produce an edge-double ray with
I∗ and the previously added edges. Now suppose there exists a double ray
D with E(D) ⊆ I∗ ∪ J . Observe that D cannot meet two disjoint rays R, S
whose edge set lies in I∗. Indeed, if D meets two such rays then there is a
finite path in D between R and S, and the edge set of this path is contained
in I∗ ∪ (J ∩ {e1, . . . , en}) for some large enough n, yielding an edge-double
ray together with E(R∪S), in contradiction to the definition of J . But then
D contains a tail T that is disjoint from any ray in I∗, and hence R ∪ {T}
contradicts the maximality of R. To conclude, I∗ ∪ J ⊆ X is maximally
independent in X, which shows that (IB1) holds.

In order to check (IB2) consider two bases B1 and B2 of MT∞, and
let x ∈ B1 − B2 be given. One of the two (graph-theoretical) components
of B1 − x that contain an endvertex of x has to be rayless. Denote this
component by K, and note that as there is an edge-double ray in B2 + x,
the basis B2 must contain an edge y in the cut E(K, T∞ − K). We claim
that (B1 − x) + y is maximally independent. As y has an endvertex in K
and as K is rayless, it is clear that (B1 − x) + y is independent. On the
other hand, let z be an edge outside (B1 − x) + y. If z = x then there is an
edge-double ray in B1 + y = (B1 − x) + y + z. So, assume z 6= x and denote
by D the edge-double ray in B1 + z through z. If D misses x, we are done,
so let x ∈ D. Next, denote by D′ the edge-double ray in B1 + y through y.
Edge-double rays in a tree satisfy the circuit exchange property (C2), which
applied to D and D′ yields an edge-double ray in (D ∪ D′) − x. This shows
that (B1 − x) + y is a basis, as desired.
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By definition it is clear that the circuits of MT∞ are precisely the edge-
double rays. Moreover, the co-circuits are all infinite as well. This can easily
be deduced from the fact that no circuit and co-circuit may meet in precisely
one element. (For a proof of this, see Lemma 8.7.) Indeed, for any finite set
of edges we can find an edge-double ray in T∞ containing exactly one of its
edges.

8.4 Basic properties of matroids

Throughout this chapter we shall need a number of standard properties that
are taken for granted in finite matroids. Fortunately, most properties that
have a rank-free formulation still hold true in infinite matroids.

Higgs [52] showed that every two bases have the same cardinality if the
generalised continuum hypothesis is assumed. We shall need a weaker state-
ment:

Lemma 8.4.[18] If B, B′ are bases of a matroid with |B1 − B2| < ∞ then
|B1 − B2| = |B2 − B1|.

Proof. Assume the claim is false and let B1 and B2 be a counterexample
chosen to minimise |B1−B2|. Thus, it follows that |B1−B2| < |B2−B1|. Let
x ∈ B2 −B1 and consider the independent set B2 −x. By (IB1), there exists
a base B′ such that B2 − x ⊆ B′ ⊆ B1 ∪ (B2 − x). Since B′ must contain
at least one element y ∈ B1 − B2, it follows that |B1 − B′| < |B1 − B2|.
By the choice of B1, B2, the statement of the lemma holds true for B1, B

′,
i.e. we have |B1 − B′| = |B′ − B1|. As a consequence, we deduce from
B′−B1 = (B2−B1)−x and B1−B′ ⊆ (B1−B2)−y that |B2−B1| ≤ |B1−B2|,
which contradicts our choice of B1 and B2.

Let M = (E, I) be a matroid, and let X ⊆ E. We define the restriction
of M to X, denoted by M |X, as follows: I ⊆ X is independent in M |X if
and only if it is independent in M . We write M − X for M |(E − X). A
set I ⊆ X is independent in the contraction of M to X, denoted by M.X,
if and only if there exists a I ′ ⊆ E − X so that I ∪ I ′ is a basis of M . We
abbreviate M.(E −X) by M/X. It is easy to check that M |X is a matroid.
For the fact that M.X is a matroid too, we refer the reader to Oxley [67].

Lemma 8.5 (Oxley [67]). For all X ⊆ E it holds that (M |X)∗ = M∗.X.

Lemma 8.6 (Oxley [67]). Let X ⊆ E, and let BX ⊆ X. Then the following
are equivalent

(i) BX is a basis of M.X;
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(ii) there exists a basis B of M − X so that BX ∪ B is a basis of M ; and

(iii) for all bases B of M − X it holds that BX ∪ B is a basis of M .

The circuits of a matroid satisfy the following three properties.

(C0) ∅ is not a circuit;

(C1) two distinct circuits are incomparable; and

(C2) if C1 and C2 are two distinct circuits that contain a common element
x then for all z ∈ C1 −C2 there exists a circuit C ⊆ (C1 ∪C2)−x such
that z ∈ C.

Indeed, these three properties characterise the circuits of a finite matroid. In
infinite matroids this is no longer the case, and we will find it useful to have
a stronger version of the circuit exchange axiom (C2).

(C2ω) Let Cω be a circuit and {Ci : i ∈ I} be a collection of circuits indexed
by some index set I. For every i ∈ I, let xi ∈ Ci∩Cω such that xi /∈ Cj

for all j 6= i. Then for every z ∈ Cω −
(⋃

i∈I Ci

)
, there exists a circuit

C contained in
(
Cω ∪

⋃
i∈I Ci

)
− {xi : i ∈ I} such that z ∈ C.

We will prove (C2ω) in Lemma 8.9. If B is a basis of a matroid M then
for any element x outside B there is exactly one circuit contained in B ∪ x,
the fundamental circuit of x, see Oxley [65]. A fundamental co-circuit is a
fundamental circuit of the dual matroid.

Lemma 8.7.[18] Let M be a matroid and X ⊆ E(M) with X 6= ∅. If for
every co-circuit D of M such that D ∩ X 6= ∅, it holds that |D ∩ X| ≥ 2,
then X is dependent. If C is a circuit of M , then it holds that |D ∩ C| ≥ 2
for every co-circuit D such that D ∩ C 6= ∅.

Proof. First, assume that |D ∩ X| ≥ 2 for every co-circuit D such that
D ∩ X 6= ∅, but contrary to the claim, that X is independent. Then there
exists a co-basis B contained in E(M) −X. If we fix an element x ∈ X and
consider the fundamental co-circuit contained in x ∪ B, we find a co-circuit
intersecting X in exactly one element, namely x, a contradiction. Thus we
conclude that X is dependent.

Now consider a circuit C and assume, to reach a contradiction, that there
exists a co-circuit D such that D ∩ C = {x} for some element x ∈ C. The
set D − x is co-independent, so there exists a basis B of M disjoint from
D − x. Let Y ⊆ B be a set such that (C − x) ∪ Y is a basis of M . Then
D∩((C − x) ∪ Y ) = ∅, a contradiction to the fact that D is co-dependent.
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Lemma 8.8. [18] Let M be a matroid, and let X be any subset of E(M).
Then for every circuit C of M/X, there exists a subset X ′ ⊆ X such that
X ′ ∪ C is a circuit of M .

Proof. Let BX be a base of M |X. The independent sets of M/X are all sets
I such that I ∪ BX is independent in M . Since C is a circuit of M/X, it
follows that C ∪ BX is dependent and so it contains a circuit C ′. By the
minimality of circuits, it follows that C ′ − X = C. The set X ′ := C ′ ∩ X is
as desired by the claim.

We now prove directly that the circuits of a matroid do in fact satisfy
(C2ω).

Lemma 8.9.[18] The circuits of a matroid M satisfy (C2ω).

Proof. Let Cω, the circuits {Ci : i ∈ I} and z and {xi : i ∈ I} be given
as in the statement of (C2ω). Let M ′ be the matroid M restricted to the
ground set Cω ∪

(⋃
i∈I Ci

)
. Assume the claim is false and that {z} is in no

circuit of M ′ − {xi : i ∈ I}. It follows that every basis of M ′ − {xi : i ∈ I}
contains z, implying that {z} is a co-circuit of M ′ − {xi : i ∈ I}. Thus,
{z} is a circuit of (M ′ − {xi : i ∈ I})∗, which means that {z} is a circuit of
(M ′)∗/{xi : i ∈ I}. By Lemma 8.8, there exists a subset I ′ ⊆ I such that
z ∪ {xi : i ∈ I ′} is a co-circuit of M ′. Furthermore, the set I ′ cannot be
empty as then Cω and {z} would be a pair of circuit and co-circuit of M ′

intersecting in precisely one element, in contradiction to Lemma 8.7. But if
we consider the circuit Ci for any i ∈ I ′, Ci intersects this co-circuit exactly
in the element xi, contradicting Lemma 8.7. Thus z is contained in a circuit
of M ′ − {xi : i ∈ I} as desired.

We conclude this section by demonstrating that the circuit axioms (C0),
(C1) and (C2ω) are not sufficient to describe the circuits of an infinite ma-
troid. For this, we construct a non-matroid in which (C0), (C1) and (C2ω)
hold.

Let A and B be two disjoint copies of Z, set E := A∪B, and define I to
be the set of all subsets I of E so that |I ∩ A| ≤ |B − I| and |I ∩ A| < ∞.

Observe that M := (E, I) is a not a matroid. Indeed, in M |A all finite
sets are independent but A is dependent in M |A as it is dependent in M .
Hence, M |A does not contain a maximal independent set and is therefore
not a matroid.

While M is not a matroid, the minimal sets not contained in I, i.e. the
circuits of M , satisfy (C0), (C1), and (C2ω). To see this, first note that a
set C ⊆ E is a circuit if and only if |C ∩A| = |B −C|+ 1 < ∞. Thus, (C0)
and (C1) do trivially hold.
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Let us next show that (C2) is satisfied. Let C1 and C2 be two circuits
that intersect in x, and let z ∈ C1−C2. Then (C2−x)+z is easily seen to be
a circuit. Next, consider circuits Cω and Ci, i ∈ I, as in (C2ω), i.e. for each
i ∈ I there is a xi ∈ Cω ∩ Ci but xi /∈ Cj for j 6= i. Then I is a finite index
set. Indeed, since Cω contains all the distinct xi it follows from |Cω∩A| < ∞
that at most finitely many of the xi lie in A. On the other hand, each Ci is
disjoint from all xj , j 6= i, but contains all of B except for a finite number of
elements. Thus, B contains only finitely many xj . This proves that |I| < ∞.
Then, however, (C2ω) reduces to finitely many repetitions of (C2).

In conclusion, we have shown that the circuit axioms (C0), (C1) and
(C2ω) do not suffice to characterise a matroid.

8.5 Connectivity

A finite matroid is connected if and only if every two elements are contained
in a common circuit. Clearly, this definition can be extended verbatim to
infinite matroids. It is, however, not clear anymore that this definition makes
much sense in infinite matroids. Notably, the fact that being in a common
circuit is an equivalence relation needs proof. To provide that proof is the
main aim of this section.

Let M = (E, I) be a fixed matroid in this section. Define a relation ∼
on E by: x ∼ y if and only if there is a circuit in M that contains x and y.
As for finite matroids, we say that M is connected if x ∼ y for all x, y ∈ E.

Lemma 8.10.[18] ∼ is an equivalence relation.

The proof will require two simple facts that we note here.

Lemma 8.11.[18] If C is a circuit and X ( C, then C − X is a circuit in
M/X.

Proof. If C − X is not a circuit then there exists a set C ′ ( C − X such
that C ′ is a circuit of M/X. Now, Lemma 8.8 yields a set X ′ ⊆ X such
that C ′ ∪ X ′ is a circuit of M , and this will be a proper subset of C, a
contradiction.

Lemma 8.12.[18] Let e ∈ E be contained in a circuit of M , and consider
X ⊆ E − e. Then e is contained in a circuit of M/X.

Proof. Let e be contained in a circuit C of M , and suppose that e does not
lie in any circuit of M/X. Then {e} is a a co-circuit of M/X, and thus also
a co-circuit of M . This, however, contradicts Lemma 8.7 since the circuit C
intersects the co-circuit {e} in exactly one element.
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Proof of Lemma 8.10. Symmetry and reflexivity are immediate. To see tran-
sitivity, let e, f , and g in E be given such that e, f lie in a common circuit
C1, and f, g are contained in a circuit C2. We will find a subset X of the
ground set such that M/X contains a circuit containing both e and g. By
Lemma 8.8, this will suffice to prove the claim.

First, we claim that without loss of generality we may assume that

E(M) = C1 ∪ C2 and C1 ∩ C2 = {f}. (8.1)

Indeed, as any circuit in any restriction of M is still a circuit of M , we may
delete any element outside C1∪C2. Moreover, we may contract (C1∩C2)−f .
Then C1−C2∪{f} is a circuit containing e and f , and similarly, C2−C1∪{f}
is a circuit containing both f and g by Lemma 8.11. Any circuit C with
e, g ∈ C in M/((C1 ∩ C2) − f) will extend to a circuit in M , by Lemma 8.8.
Hence, we may assume (8.1).

Next, we attempt to contract the set C2 − {f, g}. If C1 is a circuit of
M/(C2 − {f, g}), then we can find a circuit containing both e and g by
applying the circuit exchange axiom (C2) to the circuit C1 and the circuit
{f, g}. Thus we may assume that C1 is not a circuit, but by Lemma 8.12,
it contains a circuit C3 containing the element e. If the circuit C3 also
contains the element f , then again by the circuit exchange axiom, we can
find a circuit containing both e and g. Therefore, we instead assume that C3

does not contain the element f . Consequently, there exists a non-empty set
A ⊆ C2 − {f, g} such that C3 ∪ A is a circuit of M .

Contract the set C2 − ({f, g} ∪ A). We claim that the set C3 ∪ A is a
circuit of the contraction. If not, there exist sets D ⊆ C3 and B ⊆ A such
that D ∪B is a circuit of M/(C2 − ({f, g}∪A)). Furthermore, D ∪B ∪X is
a circuit of M for some set X ⊆ C2− ({f, g}∪A). This implies that D = C3,
since D contains a circuit of M/(C2−{f, g}). If A 6= B, we apply the circuit
exchange axiom to the two circuits C3 ∪ A and C3 ∪ B ∪ X to find a circuit
contained in their union that does not contain the element e. However, the
existence of such a circuit is a contradiction. Either it would be contained as
a strict subset of C2, or upon contracting C2−{f, g} we would have a circuit
contained as a strict subset of C3. This final contradiction shows that C3∪A
is a circuit of M/ (C2 − (A ∪ {f, g})).

We now consider two circuits in M/ (C2 − (A ∪ {f, g})). The first is C ′
1 :=

C3 ∪ A, which contains e. The second is C ′
2 := {f, g} ∪ A, the remainder of

C2 after contracting C2 − (A ∪ {f, g}) (note Lemma 8.11). We have shown
that in attempting to find a circuit containing e and g utilising two circuits
C1 containing e and C2 containing g, we can restrict our attention to the case
when C2−C1 consists of exactly two elements. The argument was symmetric,
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so in fact we may assume that C1 − C2 also consists of only two elements.
In (8.1) we observed that we may assume that C1 and C2 intersect in exactly
one element. Thus we have reduced to a matroid on five elements, in which
it is easy to find a circuit containing both e and g.

As an application of Lemma 8.10 we shall show that every matroid is the
direct sum of its connected components. With a little extra effort this will
allow us to re-prove a characterisation matroids that are both finitary and
co-finitary, that had been noted by Las Vergnas [88], and by Bean [9] before.

Let Mi = (Ei, Ii) be a collection of matroids indexed by a set I. We define
the direct sum of the Mi, written

⊕
i∈I Mi, to have ground set consisting of

E :=
⋃

i∈I Ei and independent sets I =
{⋃

i∈I Ji : Ji ∈ Ii

}
.

As noted by Oxley [67] for finitary matroids, it is easy to check that:

Lemma 8.13. The direct sum of matroids Mi for i ∈ I is in fact a matroid.

Lemma 8.14.[18] Every matroid is the direct sum of the restrictions to its
connected components.

Proof. Let M = (E, I) be a matroid. As ∼ is an equivalence relation, the
ground set E partitions into connected components Ei, for some index set
I. Setting Mi := M |Ei, we claim that

⊕
i∈I Mi and M have the same

independent sets.
Clearly, if I is independent in M , then I ∩ Ei is independent in Mi for

every i ∈ I, which implies that I is independent in
⊕

i∈I Mi. Conversely,
consider a set X ⊆ E that is dependent in M . Then, X contains a circuit
C, which, in turn, lies in Ej for some j ∈ I. Therefore, X ∩Ej is dependent,
implying that X is dependent in

⊕
i∈I Mi as well.

We now give the characterisation of matroids that are both finitary and
co-finitary.

Theorem 8.15. A matroid M is both finitary and co-finitary if and only
if there exists an index set I and finite matroids Mi for i ∈ I such that
M =

⊕
i∈I Mi.

Theorem 8.15 is a direct consequence of the following lemma, which has
previously been proved by Bean [9]. The theorem was first proved by Las
Vergnas [88]. Our proof is different from the proofs of Las Vergnas and of
Bean.

Lemma 8.16. An infinite, connected matroid contains either an infinite
circuit or an infinite co-circuit.
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Proof. Assume, to reach a contradiction, that M is a connected matroid with
|E(M)| = ∞ such that every circuit and every co-circuit of M is finite. Fix
an element e ∈ E(M) and let C1, C2, C3, . . . be an infinite sequence of distinct
circuits each containing e. Let M ′ = M | (

⋃∞
i=1 Ci) be the restriction of M to

the union of all the circuits Ci. Note that M ′ contains a countable number
of elements by our assumption that every circuit is finite. Let e1, e2, . . . be
an enumeration of E(M ′) such that e1 = e. We now recursively define an
infinite set Ci of circuits and a finite set Xi for i ≥ 1. Let C1 = {Ci : i ≥ 1}
and X1 = {e1}. Assuming Ci and Xi are defined for i = 1, 2, . . . , k, we
define Ck+1 as follows. If infinitely many circuits in Ck contain ek+1, we let
Ck+1 = {C ∈ Ck : ek+1 ∈ C}, and Xk+1 = Xk ∪ {ek+1}. Otherwise we set
Ck+1 = {C ∈ Ck : ek+1 /∈ C} and Xk+1 = Xk. Let X =

⋃∞
1 Xi. Note that Ck

is always an infinite set, and for all i, j, i < j, if ei ∈ Xi, then ei ∈ C for all
circuits C ∈ Cj .

We claim that the set X is dependent in M ′ . By Lemma 8.7, if X is
independent then there is a co-circuit D of M ′ that meets X in exactly one
element. As D is finite, we may pick an integer k such that D ⊆ {e1, . . . , ek}.
Choose any C ∈ Ck. Since C ∩ {e1, e2, e3, . . . , ek} = Xk, we see that C also
intersects D in exactly one element, a contradiction to Lemma 8.7. Thus, X
is dependent and therefore contains a circuit C ′. As M is finitary, C ′ contains
a finite number of elements, and so C ′ ⊆ Xℓ for some integer ℓ. However, Cℓ

contains an infinite number of circuits, each containing the set Xℓ. It follows
that some circuit strictly contains C ′, a contradiction.

Proof: Theorem 8.15. If we let C(M) be the set of circuits of a matroid
M , an immediate consequence of the definition of the direct sum is that
C
(⊕

i∈I Mi

)
=
⋃

i∈I C(Mi). Moreover, the dual version of Lemma 8.7 shows
that every co-circuit is completely contained in some Mi. It follows that if
M =

⊕
i∈I Mi where Mi is finite for all i ∈ I, then M is both finitary and

co-finitary.
To prove the other direction of the claim, let M be a matroid that is

both finitary and co-finitary. Let Mi for i ∈ I be the restriction of M to the
connected components. For every i ∈ I, the matroid Mi is connected, so by
our assumptions on M and by Lemma 8.16, Mi must be a finite matroid.
Lemma 8.14 implies that M =

⊕
i∈I Mi, and the theorem is proved.

8.6 Higher connectivity

Let us recapitulate the definition of k-connectivity in finite matroids and see
what we can keep of that in infinite matroids. So, in a finite matroid M on
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a ground set E the connectivity function κ is defined as

κM(X) := rM(X) + rM(E − X) − rM(E) for X ⊆ E. (8.2)

(We note that some authors define a connectivity function λ by λ(X) =
k(X) + 1. In dropping the +1 we follow Oxley [68].) We call a partition
(X, Y ) of E a k-separation if κM(X) ≤ k − 1 and |X|, |Y | ≥ k. The matroid
M is k-connected if there exists no ℓ-separation with ℓ < k.

Of these notions only the connectivity function is obviously useless in
an infinite matroid, as the involved ranks will usually be infinite. We shall
therefore only redefine κ and leave the other definitions unchanged. For
this we have two aims. First, the new κ should coincide with the ordinary
connectivity function if the matroid is finite. Second, κ should be consistent
with connectivity as defined in the previous section.

Our goal is to find a rank-free formulation of (8.2). Observe that (8.2)
can be interpreted as the number of elements we need to delete from the
union of a basis of M |X and a basis of M |Y in order to obtain a basis of the
whole matroid. To show that this number does not depend on the choice of
bases is the main purpose of the next lemma.

Let M = (E, I) be a matroid, and and let I, J be two independent sets.
We define

delM(I, J) := min{|F | : F ⊆ I ∪ J, (I ∪ J) − F ∈ I}.

Thus, delM(I, J) is either a non-negative integer or infinity. If there is no
chance of confusion, we will simply write del(I, J) rather than delM(I, J)

Lemma 8.17.[18] Let M = (E, I) be a matroid, let (X, Y ) be a partition of
E, and let BX be a basis of M |X and BY a basis of M |Y . Then

(i) del(BX , BY ) = |F | for any F ⊆ BX ∪ BY so that (BX ∪ BY ) − F is a
basis of M ;

(ii) del(BX , BY ) = |F | for any F ⊆ BX so that (BX − F ) ∪ BY is a basis
of M ;

(iii) del(BX , BY ) = del(B′
X , B′

Y ) for every basis B′
X of M |X and basis B′

Y

of M |Y .

Proof. Let us first prove that

if for F1, F2 ⊆ BX ∪BY it holds that Bi := (BX ∪BY )−Fi is
a basis of M (i = 1, 2), then |F1| = |F2|.

(8.3)
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We may assume that one of |F1| and |F2| is finite, say |F2|. Then as |B1 −
B2| = |F2 − F1| < ∞, it follows from Lemma 8.4 that |F1 − F2| = |F2 − F1|,
and hence |F1| = |F2|.

(i) If F ′ ⊆ BX ∪ BY has minimal cardinality so that (BX ∪ BY ) − F ′ is
independent, then (BX ∪ BY ) − F ′ is maximally independent in BX ∪ BY ,
and hence a basis of M . Moreover, if F is as in (i) then |F | = |F ′| by (8.3).

(ii) Follows directly from (8.3) and (i).
(iii) Let F ⊆ BX as in (ii), i.e. |F | = del(BX , BY ). Because of the equiv-

alence of (ii) and (iii) in Lemma 8.6, we obtain that (BX −F )∪B′
Y is a basis

of M as well, and it follows that del(BX , BY ) = |F | = del(BX , B′
Y ). By ex-

changing the roles of X and Y we get then that del(BX , B′
Y ) = del(B′

X , B′
Y ),

which finishes the proof.

We now give a rank-free definition of the connectivity function. Let X be
a subset of E(M) for some matroid M . We pick an arbitrary basis B of M |X,
and a basis B′ of M−X and define κM(X) := delM(B, B′). Lemma 8.17 (iii)
ensures that κ is well defined, i.e. that the value of κM(X) only depends on
X (and M) and not on the choice of the bases. The next two propositions
demonstrate that κ extends the connectivity function of a finite matroid and,
furthermore, is consistent with connectivity defined in terms of circuits.

Proposition 8.18. [18] If M is a finite matroid on gound set E, and if
X ⊆ E then

r(X) + r(E − X) − r(E) = κ(X).

Proof. Let B be a basis of M |X, B′ a basis of M−X, and choose F ⊆ B∪B′

so that (B ∪ B′) − F is a basis of M . Then

κ(X) = del(B, B′) = |F | = |B| + |B′| − |(B ∪ B′) − F |

= r(X) + r(E − X) − r(E).

Proposition 8.19. [18] A matroid is 2-connected if and only if it is con-
nected.

Proof. Let M = (E, I) be a matroid. First, assume that there is a 1-
separation (X, Y ) of M . We need to show that M cannot be connected.
Pick x ∈ X and y ∈ Y and suppose there is a circuit C containing both, x
and y. Then C ∩ X as well as C ∩ Y is independent, and so there are bases
BX ⊇ C ∩ X of M |X and BY ⊇ C ∩ Y of M |Y , by (IB1). As (X, Y ) is a
1-separation, BX ∪BY is a basis. On the other hand, we have C ⊆ BX ∪BY ,
a contradiction.
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Conversely, assume M to be 2-connected and pick a x ∈ E. Define X to
be the set of all x′ so that x′ lies in a common circuit with x. If X = E then
we are done, with Lemma 8.10. So suppose that Y := E − X is not empty,
and choose a basis BX of M |X and a basis BY of M |Y . Since there are no
1-separations of M , BX ∪ BY is dependent and thus contains a circuit C.
But then C must meet X as well as Y , yielding together with Lemma 8.10 a
contradiction to the definition of X.

To illustrate the definition of κ and since it is relevant for the open prob-
lem stated below let us compute the connectivity of the matroid MT∞ de-
scribed in Section 8.3. Since every two edges in the ω-regular tree T∞ are
contained in a common double ray, we see that MT∞ is 2-connected. On the
other hand, MT∞ contains a 2-separation: deleting an edge e splits the graph
T∞ into two components K1, K2. Put X := E(K1) ∪ {e} and Y := E(K2),
and pick a basis BX of MT∞|X and a basis BY of MT∞|Y . Clearly, neither
BX nor BY contains a double ray, while every double ray in BX ∪ BY has
to use e. Thus, (BX ∪ BY ) − e is a basis of MT∞, and (X, Y ) therefore a
2-separation.

It is easy to construct matroids of connectivity k for arbitrary positive
integers k. Moreover, there are matroids that have infinite connectivity,
namely the uniform matroid Ur,k where k ≃ r/2. However, it can be argued
that these matroids are simply too small for their high connectivity, and
therefore more a fluke of the definition than a true example of an infinitely
connected matroid. Such a matroid should certainly have an infinite ground
set.

Problem 8.20. Find an infinite infinitely connected matroid.

As for finite matroids the minimal size of a circuit or co-circuit is an upper
bound on the connectivity. So, an infinitely connected infinite matroid cannot
have finite circuits or co-circuits. The matroid mT∞ based on T∞ has that
property but, as we have seen, fails to be 3-connected.

8.7 Properties of the connectivity function

The main goal of this section is to list a number of lemmas that will be
necessary in extending Tutte’s linking theorem to finitary matroids. As a
by-product we will see that the choice of connectivity function does in fact
satisfy many of the standard properties of the connectivity function in a finite
matroid, specifically Proposition 8.21 and Lemmas 8.22 and 8.24.

Let us start by showing that connectivity is invariant under duality.
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Proposition 8.21.[18] Let M be a matroid, and let X ⊆ E(M). It holds
that κM(X) = κM∗(X).

Proof. Set Y := E(M)−X, let BX be a basis of M |X, and BY a basis of M |Y .
Pick FX ⊆ BX and FY ⊆ BY so that (BX − FX) ∪ BY and BX ∪ (BY − FY )
are bases of M .

Then B∗
X := (X−BX)∪FX and B∗

Y := (Y −BY )∪FY are bases of M∗|X
and M∗|Y , respectively. Indeed, BX −FX is a basis of M.X, by Lemma 8.6,
which implies that X − (BX − FX) = B∗

X is a basis of (M.X)∗ = M∗|X
(Lemma 8.5). For B∗

Y we reason in a similar way.
Moreover, since BX ∪ (BY − FY ) is a basis of M we see from

(B∗
X −FX)∪B∗

Y = (X −BX)∪ (Y −BY )∪FY = E(M)− (BX ∪ (BY −FY ))

that (B∗
X − FX) ∪ B∗

Y is a basis of M∗. Therefore

delM(BX , BY ) = |FX | = delM∗(B
∗
X , B∗

Y ),

and thus κM(X) = κM∗(X), as desired.

Lemma 8.22. [18] The connectivity function κ is submodular, i.e. for all
X, Y ⊆ E(M) for a matroid M it holds that

κ(X) + κ(Y ) ≥ κ(X ∪ Y ) + κ(X ∩ Y ).

Proof. Denote the ground set of M by E. Choose a basis B∩ of M |(X ∩ Y ),
and a basis B∩ of M−(X∪Y ). Pick F ⊆ B∩∪B∩ so that I := (B∩∪B∩)−F is
a basis of M |(X∩Y )∪(E−(X∪Y )). Next, we extend I into (X−Y )∪(Y −X):
let IX−Y ⊆ X − Y and IY −X ⊆ Y −X so that I ∪ IX−Y ∪ IY −X is a basis of
M .

We claim that I∪ := B∩ ∪ IX−Y ∪ IY −X (and by symmetry also I∪ :=
B∩ ∪ IX−Y ∪ IY −X), is independent. Suppose that I∪ contains a circuit Cω.
For each x ∈ F ∩Cω, denote by Cx the (fundamental) circuit in I ∪ {x}. As
Cω meets IX−Y ∪IY −X , we have Cω *

⋃
x∈F∩C Cx. Thus, (C2ω) is applicable

and yields a circuit C ⊆ (Cω ∪
⋃

x∈F∩C Cx) − F . As therefore C is a subset
of the independent set I ∪ IX−Y ∪ IY −X , we obtain a contradiction.

Since I∪ is independent and B∩ ⊆ I∪ a basis of M |(X ∩ Y ), we can pick
F X
∪ ⊆ X − (Y ∪ I∪) and F Y

∪ ⊆ Y − (X ∪ I∪) so that I∪ ∪ F X
∪ ∪ F Y

∪ is a
basis of M |(X ∪ Y ). In a symmetric way, we pick F X

∪ ⊆ X − (Y ∪ I∪) and
F Y
∪ ⊆ Y − (X ∪ I∪) so that I∪ ∪ F X

∪ ∪ F Y
∪ is a basis of M − (X ∩ Y ).

Let us compute a lower bound for κ(X). Both sets IX := B∩∪IX−Y ∪F X
∪

and IX := B∩ ∪ IY −X ∪ F Y
∪ are independent. As furthermore IX ⊆ X and

IX ⊆ E−X, we obtain that κ(X) ≥ del(IX , IX). Since each x ∈ F ∪F X
∪ ∪F Y

∪
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gives rise to a circuit in I ∪ IX−Y ∪ IY −X ∪ {x}, we get that del(IX , IX) ≥
|F | + |F X

∪ | + |F Y
∪ |. In a similar way we obtain a lower bound for κ(Y ).

Together these result in

κ(X) + κ(Y ) ≥ 2|F | + |F X
∪ | + |F Y

∪ | + |F X
∪ | + |F Y

∪ |.

To conclude the proof we compute upper bounds for κ(X∩Y ) and κ(X ∪
Y ). Since B∩ is a basis of M |(X ∩ Y ) and B∪ := I∪ ∪ F X

∪ ∪ F Y
∪ is one of

M − (X ∩ Y ), it holds that κ(X ∩ Y ) = del(B∩, B∪). Since I ∪ IX−Y ∪ IY −X

is independent, we get that del(B∩, B∪) ≤ |F | + |F X
∪ | + |F Y

∪ |. For κ(X ∪ Y )
the computation is similar, so that we obtain

κ(X ∩ Y ) + κ(X ∪ Y ) ≤ 2|F | + |F X
∪ | + |F Y

∪ | + |F X
∪ | + |F Y

∪ |,

as desired.

Lemma 8.23.[18] In a matroid M let (Xi)i∈I be a family of nested subsets
of E(M), i.e. Xi ⊆ Xj if i ≥ j, and set X :=

⋂
i∈I Xi. If κ(Xi) ≤ k for all

i ∈ I then κ(X) ≤ k.

Proof. Set Yi := E(M) − Xi for i ∈ I, Y :=
⋂

i∈I Yi = Y1 and Z := E(M) −
(X ∪ Y ). Pick bases BX of M |X and BY of M |Y . Choose IZ ⊆ Z so that
BY ∪ IZ is a basis of M |(Y ∪ Z). Moreover, there exists a finite set (of size
≤ k) F ⊆ BY so that BX ∪ (BY −F ) is a basis of M |(X ∪Y ), and a (possibly
infinite) set FZ ⊆ IZ so that BX ∪ (BY − F ) ∪ (IZ − FZ) is a basis of M .

Suppose that k + 1 ≤ κ(X) = |F | + |FZ|. Then choose j ∈ I large
enough so that |F | + |FZ ∩ Yj| ≥ k + 1. Extend the independent subset
BX ∪ (IZ ∩ Xj) − FZ of Xj to a basis B of M |Xj . The set BY ∪ (IZ ∩ Yj)
is independent too, and we may extend it to a basis B′ of M |Yj. As BX ∪
BY ∪ (IZ − (FZ ∩ Xj)) ⊆ B ∪ B′ we obtain with

κ(Xj) = del(B, B′) ≥ |F | + |FZ ∩ Yj| ≥ k + 1

a contradiction.

For disjoint sets X, Y ⊆ E(M) define

κM(X, Y ) := min{κM(U) : X ⊆ U ⊆ E(M) − Y }.

Again, we may drop the subscript M if no confusion is likely.

Lemma 8.24.[18] Let X, Y ⊆ E(M) be disjoint, and let N be a minor of a
matroid M so that X ∪ Y ⊆ E(N). Then κN(X, Y ) ≤ κM (X, Y ).
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Proof. Let U ⊆ E(M) be such that X ⊆ U ⊆ E(M) − Y and κM(U) =
κM (X, Y ). First suppose that N = M − D for D ⊆ E(M) − (X ∪ Y ). Pick
a basis B′

U of M |(U − D) and extend it to a basis BU of M |U . Define B′
W

and BW analogously for W := E(M) − U . Let F ⊆ BU ∪ BW be such that
(BU ∪BW )−F is a basis of M . Since B′

U and B′
W are bases of M |(U −D) =

N |(U − D) resp. of N |W − D, and since clearly (B′
U ∪ B′

W ) − (F − D) is
independent it follows that κN (X, Y ) ≤ κN(U − D) ≤ |F | = κM(X, Y ).

Next, assume that N = M/C for some C ⊆ E(M). Then, using
Lemma 8.5 and Proposition 8.21 we obtain

κN (X, Y ) = κ(M∗−C)∗(X, Y ) = κM∗−C(X, Y ) ≤ κM∗(X, Y ) = κM(X, Y ).

As N = M/C − D for some C, D the lemma follows.

Lemma 8.25.[18] In a matroid M let X, Y be two disjoint subsets of E(M),
and let X ′ ⊆ X and Y ′ ⊆ Y be such that κ(X ′, Y ′) = k−1. Then κ(X, Y ) ≥ k
if and only if there exist x ∈ X and y ∈ Y so that κ(X ′ + x, Y ′ + y) = k.

Proof. Necessity is trivial. To prove sufficiency, assume that there exist no
x, y as in the statement. For x ∈ X denote by Ux the sets U with X ′ + x ⊆
U ⊆ E(M) − Y ′ and κ(U) = k − 1. By our assumption, Ux 6= ∅. By Zorn’s
Lemma and Lemma 8.23 there exist an ⊆-minimal element Ux in Ux.

Suppose there is a y ∈ Y ∩ Ux. Again by the assumption, we can find
a set Z with X ′ + x ⊆ Z ⊆ E(M) − (Y ′ + y) and κ(Z) = k − 1. From
Lemma 8.22 it follows that κ(Ux ∩ Z) = k − 1, and thus an element of Ux.
As y /∈ Ux it is strictly smaller than Ux and therefore a contradiction to the
minimality of Ux. Hence, Ux is disjoint from Y .

Next, let W be the set of sets W with Y ⊆ W ⊆ E(M) − X ′ and
k(W ) = k − 1. As E(M) − Ux ∈ W for every x ∈ X, W is non-empty and
we can apply Zorn’s Lemma and Lemma 8.23 in order to find an ⊆-minimal
element W ′ in W. Suppose that there is a x ∈ X∩W ′. But then Lemma 8.22
shows that W ′∩ (E(M)−Ux) ∈ W, a contradiction to the minimality of W ′.

In conclusion, we have found that Y ⊆ W ⊆ E(M)−X and k(W ) = k−1,
which implies κ(X, Y ) ≤ k − 1. This contradiction proves the claim.

8.8 The linking theorem

We prove our main theorem in this chapter, Tutte’s linking theorem for
finitary (and co-finitary) matroids:

Theorem 8.26.[18] Let M be a finitary or co-finitary B-matroid, and let X
and Y be two disjoint subsets of E(M). Then there exists a partition (C, D)
of E(M) − (X ∪ Y ) such that κM/C−D(X, Y ) = κM(X, Y ).
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A fact that is related to Tutte’s linking theorem, but quite a bit simpler
to prove, is that for every element e of a finite 2-connected matroid M , one
of M/e or M −e is still 2-connected. This fact extends to infinite matroids in
a straightforward manner. Yet, in an infinite matroid it is seldom necessary
to only delete or contract a single element or even a finite set. Rather, to be
useful we would need that

for any set F ⊆ E(M) of a 2-connected matroid M = (E, I)
there always exists a partition (A, B) of F so that M/A − B
is still 2-connected.

(8.4)

Unfortunately, such a partition of F does not need to exist. Indeed, con-
sider the matroid MST obtained from the double ladder (see Figure 8.1), i.e.
the matroid on the edge set of the double in which an edge set is indepen-
dent if and only if it does not contain a finite (graph-)circuit. If F is the
set of rungs then we cannot contract any element in F without destroying
2-connectivity, but if we delete all rungs we are left with two disjoint double
rays.

In view of the failure of (8.4) in infinite matroids, even in finitary matroids
like the example, it appears somewhat striking that Tutte’s linking theorem
does extend to, at least, finitary matroids.

Before we can finally prove Theorem 8.26 we need one more definition and
one lemma that will be essential when κ(X, Y ) < ∞. Let M ′ be a minor of a
matroid M . We say a k-separation (X ′, Y ′) of M ′ extends to a k-separation
of M if there exists a k-separation (X, Y ) of M such that X ′ ⊆ X, Y ′ ⊆ Y .
The k-separation (X ′, Y ′) is exact if κ(X ′, Y ′) = k − 1.

Lemma 8.27.[18] Let M be a matroid and let X ∪ Y ⊆ E(M) be disjoint
subsets of E(M). Let (X, Y ) be an exact k-separation of M |(X∪Y ) that does
not extend to a k-separation of M . Then there exist circuits C1 and C2 of M
such that (X, Y ) does not extend to a k-separation of M |(X ∪ Y ∪ C1 ∪ C2)

Proof. We define

CompX := {D : D a component of M/X such that D ∩ Y = ∅}

to be the set of connected components of M/X that do not contain an element
of Y . Symmetrically, we define CompY to be the components of M/Y that
do not contain an element of X.

We claim that

if A ∈ CompX and B ∈ CompY such that A ∩ B 6= ∅, then A = B. (8.5)
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Assume the claim to be false and let A and B be a counterexample.
Without loss of generality, we may assume there exists an element x ∈ A∩B
and an element y ∈ B − A. By definition (and Lemma 8.8), there exists
a circuit CY of M such that CY − Y is a circuit of M/Y containing x and
y. Now consider the circuit CY in the matroid M/X. By Lemma 8.12, the
dependent set CY − X (in fact, CY is disjoint from X but we will not need
this) contains a circuit of M/X that contains x but not y as y and x lie in
distinct components of M/X. It follows that there exists a circuit CX in M
such that x ∈ CX −X ⊆ CY −y. By the circuit exchange axiom, there exists
a circuit C ⊆ CX ∪CY of M containing y but not x. Hence, there is a circuit
D ⊆ C − Y in M/Y with y ∈ D and x /∈ D. Since y ∈ B, D cannot meet
X, which implies D ⊆ C − (X ∪ Y ) ⊆ CY − Y . As x /∈ D, the circuit D in
M/Y is a strict subset of the circuit CY − Y , a contradiction. This proves
the claim.

Note that it is certainly possible that a set A lies in both CompX and
CompY . In a slight abuse of notation, we let E(CompX) =

⋃
A∈CompX

A, and
similarly define E(CompY ).

Next, let us prove that

If E(CompX) ∪E(CompY ) ∪ X ∪ Y = E(M), then the sepa-
ration (X, Y ) extends to a k-separation of M .

(8.6)

Indeed, consider the partition (L, R) for L := X ∪ E(CompX) and R :=
E(M) − L ⊇ Y . We claim that (L, R) is a k-separation of M . Pick bases
BX and BY of M |X resp. of M |Y , extend BX to a basis BL of M |L, and let
BR be a basis of M |R containing BY .

Consider a circuit C ⊆ BL ∪ BR in M , and suppose C to contain an
element x ∈ BL−X. The set C−X contains a circuit C ′ in M/X containing
x. Since (C ∩ BL) − X is independent in M/X, the circuit C ′ must contain
an element y ∈ BR. This implies that x and y are in the same component of
M/X, and consequently, y ∈ E(CompX). This contradicts the definition of
the partition, implying that no such circuit C and element x exist. A similar
argument implies that BL ∪ BR does not contain any circuit containing an
element of BR − Y by considering M/Y . We conclude that every circuit
contained in BL ∪ BR must lie in BX ∪ BY . As κ(X, Y ) = k − 1, there
exists a set of k−1 elements intersecting every circuit contained in BX ∪BY ,
and thus in BL ∪ BR, which implies that (L, R) forms a k-separation. This
completes the proof of (8.6).

Before finishing the proof of the lemma, we need one further claim.

Let C be a circuit of M such that C − (X ∪ Y ) is a circuit of
M/(X ∪ Y ). Then the only k-separations of M |(X ∪ Y ∪ C)
that extend (X, Y ) are (X∪(C−Y ), Y ) and (X, Y ∪(C−X)).

(8.7)
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Assume that (X ′, Y ′) is a k-separation that extends (X, Y ) in the matroid
M |(X ∪ Y ∪ C). Let C ′ := C − (X ∪ Y ). Assume that (X ′, Y ′) induces a
proper partition of C ′, i.e. that C ′∩X ′ 6= ∅ and C ′∩Y ′ 6= ∅. Picking bases BX

of M |X and BY of M |Y we observe that BX ∪ (C ′ −Y ′) and BY ∪ (C ′ −X ′)
form bases of M |X ′ and M |Y ′ respectively. Assume there exists a set F of
k − 1 elements intersecting every circuit contained in BX ∪ BY ∪ C. By our
assumption that (X, Y ) is an exact k-separation, we see that F ⊆ BX ∪BY .
However, C ′ is a circuit of M/(X ∪ Y ), or, equivalently, C ′ is a circuit of
M/((BX ∪ BY ) − F ). It follows that there exists a circuit contained in
C ′ ∪BX ∪ BY avoiding the set F , a contradiction. This completes the proof
of (8.7).

Since, by assumption, (X, Y ) does not extend to a k-separation of M it
follows from (8.6) that there is an e /∈ E(CompX) ∪E(CompY ). Then there
exists a circuit C1 of M containing e with C1∩Y 6= ∅ such that the following
hold:

• C1 − X is a circuit of M/X, and

• C1 − (X ∪ Y ) is a circuit of M/(X ∪ Y ).

To see that such a circuit C1 exists, recall first that e /∈ E(CompX) implies
that there is a circuit CX in M/X containing e so that CX ∩ Y 6= ∅. Then
CX − Y contains a circuit C ′ in M/(X ∪ Y ) with e ∈ C ′ (see Lemma 8.12).
For suitable AX ⊆ X and AY ⊆ Y it therefore holds, by Lemma 8.8, that
C ′ ∪ AX ∪ AY is a circuit of M . If AY = ∅ then C ′ would be a dependent
set of M/X strictly contained in the circuit CX . Thus, AY 6= ∅ and C1 :=
AX ∪AY ∪C ′ has the desired properties. Symmetrically, there exists a circuit
C2 containing e and intersecting X in at least one element such that C2 − Y
is a circuit of M/Y and C2 − (X ∪ Y ) is a circuit of M/(X ∪ Y ).

Let us now see that the circuits C1 and C2 are as required in the statement
of the lemma. To reach a contradiction, suppose that (X, Y ) extends to a
k-separation (X ′, Y ′) of M |(X ∪Y ∪C1∪C2). By symmetry, we may assume
that e ∈ X ′. By (8.7), we see that C1−(X ∪Y ) ⊆ X ′ and C2−(X∪Y ) ⊆ X ′

as well. Pick a basis BX of M |X, and a basis BY of M |Y . We extend the
set BX ∪ (C1 − Y ), which is independent because C1 − Y is independent in
M/X, to a basis BX′ of M |X ′. The set BY forms a basis of M |Y ′ as Y ′ = Y .
Choose F ⊆ BX′ ∪ BY so that (BX′ ∪BY ) − F is independent. As (X, Y ) is
an exact k-separation and (X ′, Y ) thus too, it follows that |F | = k − 1. As
κM |X∪Y (X, Y ) = k−1, we see F ⊆ BX∪BY . However, the set C1−(X∪Y ) is
dependent in M/(X∪Y ) and thus in M/((BX∪BY )−F ). Hence, there is a set
S ⊆ (BX ∪BY )−F so that C1 − (X ∪ Y )∪ S ⊆ BX′ ∪BY −F is dependent
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in M , contradicting our choice of F . This contradiction implies that the
separation (X, Y ) does not extend to a k-separation of M |(X ∪Y ∪C1 ∪C2),
which concludes the proof of the lemma.

We now proceed with the proof of the linking theorem for finitary ma-
troids.

Proof of Theorem 8.26. Since for any set F ⊆ E(M) it holds, by Proposi-
tion 8.21, that κM(F ) = κM∗(F ), we may assume M to be finitary. We will
consider the case when κM (X, Y ) = ∞ and κM(X, Y ) < ∞ separately.

Assume that κM(X, Y ) = ∞. We inductively define a series of disjoint
circuits C1, C2, . . . in different minors of M as follows. Starting with C1 to
be chosen as a circuit in M intersecting both X and Y , assume C1, . . . , Ct

to be defined for t ≥ 1. Note that as Z :=
⋃t

i=1 Ci is finite, we still have
κM/Z(X − Z, Y − Z) = ∞. Thus, there exists a circuit Ct+1 in M/Z that
meets both both X − Z and Y − Z. Having finished this construction, we
let CX = (

⋃∞
i=1 Ci)∩X, CY = (

⋃∞
i=1 Ci)∩ Y , and C = (

⋃∞
i=1 Ci)−CX −CY .

Set D = E(M) − (X ∪ Y ∪ C).
In order to show κM/C−D(X, Y ) = ∞ observe first that CX (and symmet-

rically, CY ) is an independent set in M/C. If not then there exists a circuit
A ⊆ CX ∪C. Given that M is finitary and A thus finite, there exists a mini-
mal index t such that A ⊆

⋃t
i=1 Ci. It follows that A−(

⋃t−1
i=1 Ci) is dependent

in M/(
⋃t−1

i=1 Ci). Since A is disjoint from Y but Ct ∩ Y 6= ∅, the dependent
set A − (

⋃t−1
i=1 Ci) is also a strict subset of the circuit Ct, a contradiction.

Let BX be a basis of X containing CX , and let BY be a basis of Y
containing CY in M/C − D. Assume there exists a finite set F such that
(BX ∪ BY ) − F is a basis of M/C − D. Then for all f ∈ F , there exists
a (fundamental) circuit Af ⊆ BX ∪ BY of M/C − D with Af ∩ F = {f}.
Since the circuits Af are finite and the Ci pairwise disjoint, we may choose
t large enough so that Ct ∩ Af = ∅ for all f ∈ F . Lemma 8.12 ensures the
existence of a circuit K ⊆ CX ∪ CY in M/C − D with K −

⋃
f∈F Af 6= ∅.

By the finite circuit exchange axiom (C2), there exists a circuit contained
in (K ∪

⋃
f∈F Af ) − F ⊆ (BX ∪ BY ) − F , a contradiction. It follows that

κM/C−D(X, Y ) = ∞, as claimed.

We now consider the case when κM(X, Y ) = k < ∞. By repeatedly
applying Lemma 8.25, there exists a set X ′ ⊆ X and Y ′ ⊆ Y such that
κM (X ′, Y ′) = k and |X ′| = |Y ′| = k. (Observe that κ(X ′, Y ′) = k implies
|X ′|, |Y ′| ≥ k.) We shall find a partition (C ′, D′) of E(M) − (X ′ ∪ Y ′)
such that κM/C′−D′(X

′, Y ′) = k. Then, Lemma 8.24 implies that setting
C = C ′ − (X ∪ Y ) and D = D′ − (X ∪ Y ) results in κM/C−D(X, Y ) = k as
desired.
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In order to find such C ′ and D′ we will inductively define for t ≤ k finite
sets Zt ⊆ E(M) with Zt−1 ⊆ Zt such that in the restriction M |Zt it holds
that κM |Zt

(X ′, Y ′) ≥ t. For t = 1, pick a circuit A intersecting both X ′ and
Y ′, and let Z1 = X ′ ∪ Y ′ ∪ A. As M is finitary Z1 is finite, and its choice
ensures κM |Z1

(X ′, Y ′) ≥ 1.

Assume that for t < k we have defined Zt−1, and and observe that as Zt−1

is finite, there are only finitely many t-separations in M |Zt−1 separating X ′

and Y ′, all of which are exact. By applying Lemma 8.27 to each of those, we
conclude that there exists a finite set of circuits A1, A2, . . . , Al such that for
Zt := Zt−1 ∪ A1 ∪ · · · ∪ Al we get κM |Zt

(X ′, Y ′) ≥ t.

To conclude, note that the matroid M |Zk is finite and that
κM |Zk

(X ′, Y ′) = k. By Theorem 8.1, there exists a partition (C ′, D̃) of
Zk − (X ′ ∪ Y ′) such that κ(M |Zk)/C′−D̃(X ′, Y ′) = k. Consequently, we obtain

κM/C′−D′(X
′, Y ′) = k for D′ := D̃∪ (E(M)−Zk), which completes the proof

of the theorem.

8.9 µ-admissibility is not sufficient for match-

ability

Let A and B be two matroids on the same ground set E. A matching of
(A,B) is a subset S ⊆ E that is spanning in A and independent in B. This
definition, due to Aharoni and Ziv [4], draws its motivation from matchings
in bipartite graphs. Indeed, let G be a bipartite graph with partition classes
(A, B) and edge set E, and consider A to be the partition matroid on A, i.e.
the matroid in which a set I ⊆ E is independent if and only if no two edges
in I have a common endvertex in A, and let B be the partition matroid on
B. Then it can be easily checked that a matching of the matroid pair (A,B)
is, or rather contains, a matching of A into B.

Hall’s marriage theorem characterises when the partition class A can be
matched into B if the bipartite graph is finite. Nash-Williams [64] among
others extended Hall’s theorem to countable graphs. Inspired by Nash-
Williams’ approach, Wojciechowski developed a Hall-like condition first for
infinite graphs [94], and then for matchings of matroids [95]. This condition,
called µ-admissibility, turns out to be necessary in general, and in the case
of bipartite graphs it is also sufficient. The purpose of this section, which is
based on [25], is to demonstrate that µ-admissibility fails to be sufficient for
matchings of matroids.

Let A and B be two matroids on the same ground set E. We call an
injective function f a string (in E) if its domain is an ordinal and rge f ⊆ E.
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For an ordinal θ we write fθ for the restriction of f to ordinals γ < θ. We call
e = f(θ) f -positive if e is not spanned by rge fθ in B, and e is f -negative if e
is not spanned by E − rge fθ+1 in A. For each string we define by transfinite
induction a number in Z ∪ {−∞,∞} as follows. Set µ(f0) = 0, let

µ(fθ+1) =





µ(fθ) + 1 if f(θ) is f -positive but not f -negative,

µ(fθ) − 1 if f(θ) is f -negative but not f -positive, and

µ(fθ) otherwise,

and µ(fλ) = lim infθ<λ µ(fθ) if λ is a limit ordinal. The pair of matroids
(A,B) is said to be µ-admissible if µ(f) ≥ 0 for all strings f in E.

We remark that for finite matroids A and B µ-admissibility reduces to
the following condition

rB(W ) ≥ rA(E) − rA(E − W ) for all W ⊆ E. (8.8)

It follows from Edmonds’ [38] matroid intersection theorem that this condi-
tion is necessary and sufficient for (A,B) to have a matching (provided A
and B are finite).

Let us say that a matroid M is SCF if it is the countable sum of a family
of matroids of finite rank.

Theorem 8.28 (Wojciechowski [95]). Let A and B be matroids on the same
ground set. If (A,B) has a matching then (A,B) is µ-admissible. Conversely,
if A is SCF and B finitary, and if (A,B) is µ-admissible then (A,B) has a
matching.

We shall prove that µ-admissibility is not sufficient for the existence of a
matching in two steps. In the first step we introduce a necessary condition for
the existence of k disjoint bases in a matroid and show that this condition,
called πk-admissibility, fails to be sufficient. In the second step we relate πk-
admissibility of a matroid M to µ-admissibility in a specific pair of matroids.

The following theorem is the matroidal variant of the well-known Nash-
Williams/Tutte tree packing theorem (Theorem 1.6). The classical theorem
states that a graph has k edge-disjoint spanning trees if and only if for every
partition P of the vertex set the number of crossing edges is at least k(|P|−1).

Theorem 8.29. A finite matroid M on ground set E has k disjoint bases if
and only if

|W | ≥ k · rM.W (W ) for all W ⊆ E.

In a similar way as µ-admissibility tries to generalise (8.8) we define a
measure with the aim to extend the condition in the theorem. Let M be a
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matroid on a ground set E, let k be a positive integer, and let g be a string
in E. Starting with πk(g0) = 0 we set by transfinite induction

πk(gθ+1) = πk(gθ) + 1 − k · rM.rge gθ+1
(g(θ))

and πk(gλ) = lim infθ<λ πk(gθ) if λ is a limit ordinal. The matroid M is then
πk-admissible if πk(g) ≥ 0 for all strings g in E.

Now, πk-admissibility seems a very plausible necessary and sufficient con-
dition for the existence of k disjoint bases in a (countable, say) matroid.
While one can check that πk-admissibility is indeed necessary, there are un-
fortunately matroids without k disjoint bases that are πk-admissible.

More precisely, we shall show:

Lemma 8.30. [25] If G is a 2k-edge-connected graph then MST(G) is πk-
admissible.

As Aharoni and Thomassen [3] constructed a 2k-edge-connected graph
without even two edge-disjoint spanning trees we obtain the following corol-
lary.

Corollary 8.31. [25] There is a (finitary) πk-admissible matroid in which
every k bases meet.

For subsets U, W of the vertex set of a graph G, we denote by d(U, W )
the number (which may be infinite) of edges with one endvertex in U and
the other in W . We write d(U) := d(U, V (G) − U).

Proof of Lemma 8.30. Let g be a string in E(G) with domain κ. Define P(g)
to be the partition of V (G) given by the components of G − rge g. Define
ε(g) to be the number of edges that have both their endvertices in the same
element of P (g) (i.e. ε(g) counts the edges that do not go across the partition
classes). We will prove by transfinite induction that for each θ < κ it holds
that

πk(gθ) ≥ ε(gθ) +
∑

U∈P(gθ)

(
1

2
d(U) − k

)
. (8.9)

Since G is 2k-edge-connected the right side of the equation will always be
non-negative, which then proves the lemma.

In order to see that (8.9) holds true, let us first consider a successor
ordinal, θ + 1 say, and let us assume that (8.9) is true for θ. We distinguish
two cases.

First, assume that P(gθ+1) = P(gθ). Then, the edge g(θ) must have both
its endvertices in the same partition class, which implies ε(gθ+1) = ε(gθ) + 1.
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Moreover, g(θ) is a loop in MST(G).rge gθ+1, and thus we obtain πk(gθ+1) =
πk(gθ) + 1. As the sum over the partition in (8.9) did not change, we get
that (8.9) holds for θ + 1 as well.

Second, consider the case when P(gθ+1) 6= P(gθ). Let W ∈ P(gθ) be such
that P(gθ)−{W} = P(gθ+1)−{W1, W2}, i.e. deleting g(θ) splits W into W1

and W2. If πk(gθ) = ∞ then clearly πk(gθ+1) = ∞, and (8.9) holds for θ + 1,
too. So, let πk(gθ) < ∞. Now, as g(θ) has one endvertex in W1 and the other
in W2, it follows that πk(gθ+1) = πk(gθ) + 1− k. On the other hand, we have
ε(gθ) = ε(gθ+1) + d(W1, W2) − 1 and d(W1) + d(W2) = d(W ) + 2d(W1, W2).
As πk(gθ) < ∞ implies d(W1, W2) < ∞ by (8.9), we get

πk(gθ+1) = πk(gθ) + 1 − k

≥ ε(gθ) +
∑

U∈P(gθ)

(
1

2
d(U) − k

)
+ 1 − k

= ε(gθ+1) + d(W1, W2) +
∑

U∈P(gθ)

(
1

2
d(U) − k

)
− k

= ε(gθ+1) + d(W1, W2) +
∑

U∈P(gθ)−{W}

(
1

2
d(U) − k

)

+

(
1

2
d(W1) +

1

2
d(W2) − d(W1, W2) − k

)
− k

= ε(gθ+1) +
∑

U∈P(gθ+1)

(
1

2
d(U) − k

)
.

This proves that (8.9) holds for successor ordinals.
Now, let λ be a limit ordinal. Set ρ(gθ) := ε(gθ) +

∑
U∈P(gθ)

(
1
2
d(U) − k

)
.

In order show that πk(gλ) ≥ ρ(gλ) it suffices to prove that lim infθ<λ ρ(gθ) ≥
ρ(gλ). For this purpose pick any K ∈ Z so that ρ(gλ) ≥ K. Then there
exists a finite set F1 ⊆ rge gλ of edges with both their endvertices in the
same element of P(gλ), i.e. these are non-crossing edges, and a finite set
F2 ⊆ rge gλ of (crossing) edges with their endvertices in different partition
classes so that |F1|+

∑
U∈P ′

(
1
2
|E(U, E − U) ∩ F2| − k

)
≥ K, where P ′ is the

set of those U ∈ P(gλ) for which E(U, E − U) ∩ F2 6= ∅. Then it is easy
to check that for any ordinal α < λ with F1 ∪ F2 ⊆ rge α it holds that
ρ(gα) ≥ K, which proves that lim infθ<λ ρ(gθ) ≥ K.

Next, starting with a matroid M on a ground set E and k ∈ N we
construct a pair of matroids (A,B) so that a matching in (A,B) yields k
disjoint bases in M . For this, set S := E × {1, . . . , k}, and define Mi, i =
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1, . . . , k, to be a copy of M on E×{i}. Denote by A(M, k) the disjoint union
of M1, . . . , Mk and by B(M, k) the partition matroid on S with partition
classes {(e, i) : 1 ≤ i ≤ k}. We remark that A(M, k) is finitary (resp. co-
finitary) if M is finitary (resp. co-finitary), and that B(M, k) is always SCF
(assuming that E is countable).

Lemma 8.32.[25] Let M be a matroid, and let k ∈ N. If M is πk-admissible
then (A(M, k),B(M, k)) is µ-admissible.

Since a matching in (A(M, k),B(M, k)) yields k disjoint spanning sets in
M , the lemma applied to Corollary 8.31 implies the following result:

Proposition 8.33.[25] There is a finitary matroid A, and a SCF matroid
B so that (A,B) is µ-admissible but not matchable.

Proof of Lemma 8.32. Let f be a string in S = E ×{1, . . . , k}. There is, for
every i ∈ {1, . . . , k}, a function γi mapping ordinals to ordinals, which counts
the number of f(θ) in E × {i}, and a string ḡi in E so that f(θ) = ḡi(γi(θ))
if f(θ) ∈ E × {i}. Abusing notation we treat gi := ḡi ◦ γi as string in E
and pretend that expressions like πk(g

i
θ) are defined, when in fact we mean

πk(ḡ
i
γi(θ)). For any ordinal θ denote by p(fθ) the number (which may be

infinite) of (e, i) /∈ rge fθ for which at least one of (e, 1), . . . , (e, k) lies in
rge fθ.

We claim that for all ordinals θ in the domain of f it holds that

µ(fθ) ≥
1

k

(
p(fθ) +

k∑

i=1

πk(g
i
θ)

)
. (8.10)

If (8.10) is true then the lemma is proved, as M is πk-admissible and as p(fθ)
is never negative.

We prove (8.10) by transfinite induction. Consider first a successor or-
dinal θ + 1 and assume (8.10) to hold for θ. Let (e, i) = f(θ) for e ∈ E
and i ∈ {1, . . . , l}. Observe first that (e, i) is f -positive if and only if
{(e, 1), . . . , (e, k)} ∩ rge fθ+1 = {(e, i)}, i.e. if θ is the first ordinal for which
f chooses a copy of e. (Recall that f(θ) is f -positive precisely when it is not
spanned by rge fθ in B.) So, it follows that

if (e, i) is f -positive then p(fθ+1) = p(fθ) + k − 1;
if (e, i) is not f -positive then p(fθ+1) = p(fθ) − 1.

(8.11)

Next, (e, i) is defined to be f -negative when (e, i) is not spanned by
S − rge fθ+1 in A. Since A is the union of the disjoint copies M1, . . . , Mk

of M it follows that (e, i) is f -negative if and only e is not spanned by
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E − rge gi
θ+1 in M , i.e. if e is not a loop in M.rge gi

θ+1. Thus, (e, i) is
f -negative if and only if rM.rge gi

θ+1
(e) = 1, which leads to

if (e, i) is f -negative then πk(g
i
θ+1) = πk(g

i
θ) + 1 − k;

if (e, i) is not f -negative then πk(g
i
θ+1) = πk(g

i
θ) + 1.

(8.12)

Moreover, whether (e, i) is f -negative or not we have πk(g
j
θ+1) = πk(g

j
θ) for

j 6= i as rge gj
θ+1 = rge gj

θ.
Assume that (e, i) is f -positive but not f -negative. Then µ(fθ+1) =

µ(fθ) + 1, and (8.11) and (8.12) together with (8.10) for θ yield

1

k

(
p(fθ+1) +

k∑

j=1

πk(g
j
θ+1)

)
=

1

k

(
p(fθ) + k − 1 +

k∑

j=1

πk(g
j
θ) + 1

)

=
1

k

(
p(fθ) +

k∑

j=1

πk(g
j
θ)

)
+ 1

≤ µ(fθ) + 1 = µ(fθ+1).

The other cases follow in a similar way.
So, let λ be a limit ordinal and assume (8.10) to hold for all θ < λ. As

lim infθ<λ p(fθ) ≥ p(fλ), inequality (8.10) follows easily.

8.10 Graph and matroid duality

As briefly touched upon in Section 8.2 it is possible to associate a finitary ma-
troid, the matroid MST(G), as well as a co-finitary matroid, called MTST(G),
with a graph G. While MST(G) is based on the spanning trees of G (pro-
vided G is connected), the bases of MTST(G) are the (edge sets of) topological
spanning trees. More precisely, if G satisfies (1.1) define ITST(G) to be the
set of all edge sets I so that I is contained in a subspace of G̃ that is a TST
on each component of G. Let MTST(G) = (E, ITST(G)). We note that the
circuits of the matroid MTST(G) are precisely the edge sets of circles in G̃.

Let us define two more matroids for G. Define MCUT(G) to be the matroid
on E(G) in which a subset of E(G) is independent if and only if it does
not contain any (edge-)cut. A related matroid is MFCUT(G): the matroid
on E(G) in which an edge set is precisely then independent if it does not
contain any finite cut. It is easy to see that MCUT(G) and MST(G) are dual
matroids. A similar relationship exists between MTST(G) and the finitary
matroid MFCUT(G).

Proposition 8.34.[18] Let G be a graph.
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(i) It holds that (MST(G))∗ = MCUT(G).

(ii) If G satisfies (1.1) then (MTST(G))∗ = MFCUT(G).

Proof. We may assume that G = (V, E) is connected.

(ii) Let I be an independent set in (MTST(G))∗, which means there exists
a TST with edge set T so that I and T are disjoint. As a TST is connected
in the space G̃ it needs to meet every finite cut (this can be seen as in
Lemma 8.5.5 in [31]). Hence, I cannot contain any finite cut and is thus
independent in MFCUT(G). Conversely, consider an independent set J of
MFCUT(G). Then the topological space G̃ − J (here, we only delete the
interior points of the edges in J) is still topologically connected, since J does
not contain any finite cut; see Lemma 8.5.12 in [31]. On the other hand,
Lemma 8.5.13 in [31] asserts that in a connected subspace such as G̃−J that
contains every vertex we can always find a TST. Clearly, none of the edges
of this TST lie in J , showing that J is independent in (MST(G))∗.

The proof of (i) is similar.

Let G be a graph satisfying (1.1). Recall from Chapter 2 that a graph G∗

is called the dual of G if there is a bijection ∗ : E(G) → E(G∗) so that every
set F ⊆ E(G) is a bond of G, i.e. a non-empty minimal cut, if and only F ∗

is the edge set of a circle (in G̃∗).

As stated in Chapter 2, the duals defined in this way have similar prop-
erties to their well-known finite counterparts. In particular, a graph has a
dual if and only if the graph is planar; a graph is the dual of its dual; and
the dual of a 3-connected graph is unique (or non-existent).

The motivation of this definition of graph duality is of purely graph-
theoretical nature. It appears to be the only natural way to force all the
three facts mentioned above to become true in infinite graphs. Somewhat
surprisingly, graph duality is compatible with matroid duality:

Corollary 8.35.[18] Let G and G∗ be a pair of dual graphs (each satisfy-
ing (1.1)) defined on the same edge set E. Then

MST(G) = (MCUT(G))∗ = MFCUT(G∗) = (MTST(G∗))∗.

Proof. The first and the last equality are due to Proposition 8.34. The re-
maining equality follows from MCUT(G) = MTST(G∗), which is a direct con-
sequence of the definition of a dual graph.
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8.11 Matroid and graph connectivity

In this final section of this chapter, and indeed of this thesis, we will deter-
mine the connectivity function of the two matroids, MST(G) and MTST(G),
associated with a graph G. In particular, we shall find in Theorem 8.36 that
the connectivity function κ of MST(G) behaves exactly as in finite graphs,
a result which yields further evidence that κ was defined in the right way.
Moreover, we will see in Theorem 8.41 that MST(G) and MTST(G) cannot
be distinguished by the connectivity function. Finally, returning to the be-
ginning of this thesis we will relate k-connectivity in the matroid MST(G)
to Tutte-connectivity. This will allow us to give a matroidal proof of Theo-
rem 2.16, ie of the invariance of Tutte-connectivity under taking duals. This
section is based on [14].

In a graph G, denote for X ⊆ E(G) by V [X] the set of vertices that are
incident with an edge in X. Let c(X) be the number of components of the
subgraph (V [X], X) of G.

Our first aim is the following theorem:

Theorem 8.36.[14] Let G be a 2-connected graph satisfying (1.1), and let
X ⊆ E(G), and Y := E(G) − X. Then the following statements hold:

(i) κMST(G)(X) = ∞ if and only |V [X] ∩ V [Y ]| = ∞; and

(ii) if κMST(G)(X) < ∞ then

κMST(G)(X) = |V [X] ∩ V [Y ]| − c(X) − c(Y ) + 1.

Statement (ii) is exactly as for finite graphs when the traditional con-
nectivity function is used, see Tutte [85]. We shall need two lemmas for the
proof of Theorem 8.36.

Lemma 8.37.[14] Let G be a graph satisfying (1.1), and let D be an infinite
set of edge-disjoint finite cycles. Then there exists an infinite subset D′ of D
and a vertex v of G so that any two distinct cycles in D′ are disjoint outside
v.

Proof. Let C1, C2, . . . be an enumeration of (countably many of) the cycles
in D. Inductively we will delete certain cycles from D while ensuring in each
step that we keep infinitely many cycles. In step i, assuming Ci has not been
deleted, we go through the finitely many vertices of Ci, one by one. Then
for a vertex w of Ci, unless w lies in all but finitely many of the remaining
Cj , we delete from D all those Cj that contain w. If w lies in all but finitely
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many of the remaining Cj we skip to the next vertex of Ci without deleting
any cycles. Denote the resulting infinite subset of D′ by D.

Now, if the cycles in D′ are pairwise disjoint, choose any vertex of G for v
and observe that this choice of D′ and v is as desired. So, assume that there
is a vertex shared by two cycles in D′. Pick the smallest index i for which
there is a j 6= i so that Ci and Cj have a vertex, v say, in common, and so
that Ci, Cj ∈ D′. Note that v, as well as any other vertex that lies in two
cycles of D′, is contained in infinitely many cycles in D′; otherwise we would
have deleted all but one of those cycles incident with v.

Suppose there exists a second vertex w contained in two cycles of D′.
If k is the lowest index with w ∈ V (Ck) and Ck ∈ D′ then why have we
not deleted all those cycles Cl containing w with l > k from D′ in step k?
Precisely because all but finitely many of the cycles in D′ contain w. In
particular, infinitely many of those cycles in D′ that contain v must also
contain w. By picking a v–w path in each of those cycles we obtain infinitely
many edge-disjoint v–w paths in contradiction of (1.1).

Lemma 8.38. [14] Let G be a 2-connected graph satisfying (1.1), and let
X ⊆ E(G), and Y := E(G) − X. If |V [X] ∩ V [Y ]| = ∞ then κMST(G)(X) =
κMTST(G)(X) = ∞.

Proof. For each vertex in V [X] ∩ V [Y ] pick one incident edge in X and one
in Y ; denote the set of these edges by X ′ ⊆ X and Y ′ ⊆ Y , respectively.
Lemma 2.9 yields an end ω ∈ X ′ (where the closure is taken in |G|). It is
easy to check that then also ω ∈ Y ′ (again with respect to |G|).

By Lemma 2.10, there exists an infinite set D of edge-disjoint finite cycles
each of which meets both X ′ and Y ′. Applying Lemma 8.37 yields a vertex v
and an infinite subset D′ of D so that any two cycles either meet only in v or
not at all. As every cycle in D′ contains an edge in X as well as in Y it follows
that neither IX := X ∩

⋃
C∈D′ E(C) nor IY := Y ∩

⋃
C∈D′ E(C) contains a

(finite or infinite) circuit. To see that neither set contains an infinite circuit
observe that as all the C ∈ D′ are finite neither (V [IX ], IX) nor (V [IY ], IY )
contain a ray.

Thus IX and IY are independent in both matroids MST(G) and MTST(G).
Let TX be a basis of M |X containing IX , and let TY ⊇ IY be a basis of M |Y ,
where M is either MST(G) or MTST(G). Choose F ⊆ TX ∪ TY so that
(TX ∪ TY ) − F is a basis of M . Since IX ∪ IY contains the (edge-)disjoint
circuits E(C), C ∈ D′, F must contain at least one edge from each of those
infinitely many circuits. Hence κM(X) = |F | = ∞.

Proof of Theorem 8.36. (i) By Lemma 8.38 we only need to consider the
case when |V [X] ∩ V [Y ]| < ∞. Pick a basis TX of MST(G)|X, and let TY
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be a basis of MST(G)|Y . For every of the finitely many pairs of vertices
u, v ∈ V [X] ∩ V [Y ] there is by (1.1) a finite set of edges separating u from
v in (V [X], X). Denote by F the union of all those edges, and observe that
F is a finite edge set. By the choice of F the set (TX ∪ TY ) − F cannot
contain any finite circuit, and is thus independent in MST(G). As |F | < ∞
is therefore an upper bound for κMST(G)(X) the result follows.

(ii) Pick a spanning tree on every component of (V [X], X) and denote
the union of their edge sets by TX . We define TY for (V [Y ], Y ) in a similar
way.

We claim that

if c(X) = c(Y ) = 1 then κMST(G)(X, Y ) = |V [X] ∩ V [Y ]| − 1. (8.13)

Let us prove the claim. Each vertex of U := V [X] ∩ V [Y ] must lie in a
distinct component of (V [TX ], TX)−F since otherwise there exists a U -path
in (V [TX ], TX) that misses F . This path can be extended with edges in TY

to a cycle that still misses F , a contradiction. As (V [TX ], TX) is connected
and as each deletion of a single edge increases the number of components
by at exactly one, we obtain |F | ≥ |U | − 1. Suppose, on the other hand,
that |F | > |U | − 1. Then there exists a component of (V [TX ], TX) − F that
contains no vertex of U . Pick an edge e ∈ F with one of its endvertices in
this component. Setting T := (TX −F )∪TY , we observe that {e} is a cut of
(V [T ], T + e). However, as T is (the edge set of) a spanning tree of G, there
has to be a circuit in T + e containing e, a contradiction. This proves the
claim.

We now proceed by induction on c(X) + c(Y ), which is indeed a finite
number as |V [X] ∩ V [Y ]| is an upper bound for both c(X) and c(Y ). Since
the induction start is established by (8.13), we may assume that (V [X], X)
has two components K and K ′. Insert a new edge f between K and K ′, and
set G′ := G + f and X ′ := X ∪ {f}. Clearly, (X ′, Y ) is a partition of E(G′).
Since c(X ′) = c(X) − 1, the induction yields

κMST(G′)(X
′, Y ) = |V [X] ∩ V [Y ]| − (c(X) − 1) − c(Y ) + 1.

We shall now show that κMST(G′)(X
′, Y ) = κMST(G)(X, Y ) + 1. Ob-

serve that then TX + f is (the edge set of) a maximal spanning forest of
(V [X ′], X ′) ⊆ G′. Moreover, (TX − F ) ∪ TY = ((TX + f) − (F ∪ {f})) ∪ TY

is a spanning tree of G′, too. Thus

κMST(G′)(X, Y ′) = |F ∪ {f}| = |F | + 1 = κMST(G)(X, Y ) + 1,

which finishes the proof.
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Next, let us show that the connectivity functions of MST(G) and MTST(G)
coincide. For this, we should be able to modify the proof of Theorem 8.36 in
order to make it work for MTST(G), too. Rather then repeating the argument
we will pursue a different approach, for which we will need a small lemma
and a result from [16].

Lemma 8.39.[14] Let G be a graph satisfying (1.1), and let H be an induced
subgraph of G so that N(G − H) is a finite set. Then if Z ⊆ E(H) lies in
C(G̃) then also Z ∈ C(H̃).

Proof. Consider Z ⊆ E(H) so that Z /∈ C(H̃). By Theorem 1.9 there is
a finite cut F of H so that Z ∩ F is an odd set. The cut F partitions
N(G − H) into two sets A and B (one of them possibly empty). Since
every two vertices in G can separated by finitely many edges there is a finite
subset of E(G)−E(H) that separates A from B in G[(G−H)∪N(G−H)].
Choosing a minimal such set F ′ ensures that F ∪ F ′ is a cut of G. Then
|Z∩(F∪F ′)| = |Z∩F | is odd, implying with Theorem 1.9 that Z /∈ C(G̃).

Theorem 8.40.[16] Every connected graph G satisfying (1.1) has a spanning
tree that does not contain any (infinite) circuit (with respect to C(G̃)).

Theorem 8.41. [14] Let G be a 2-connected graph satisfying (1.1). Then
κMST(G)(X) = κMTST(G)(X) for all X ⊆ E(G).

Proof. Consider a set X ⊆ E(G) and put Y := E(G) − X. If V [X] ∩ V [Y ]
is an infinite set then κMST(G)(X) = κMTST(G)(X) by Lemma 8.38.

So, assume V [X] ∩ V [Y ] to be finite. By Theorem 8.40 there is for each
component K of (V [X], X) a spanning tree not containing any circuit of
C(K̃). Lemma 8.39 ensures that this spanning tree is also acirclic (ie, without
any circuits with respect to C(G̃)). Consequently, the union TX of the edge
sets of those spanning trees is a basis of MST(G)|X as well as of MTST(G)|X.
We define TY analogously for (V [Y ], Y ).

Next, pick F ⊆ TX ∪ TY so that (TX ∪ TY ) − F is a basis of MTST(G).
Clearly, the set (TX ∪ TY )−F is independent in MST(G), too. If it is even a
basis in MST(G) then we have κMST(G)(X) = |F | = κMTST(G)(X) as desired.
So, suppose T := (TX∪TY )−F fails to be a basis, which implies that (V [T ], T )
is not (graph-theoretically) connected. Since T is the edge set of a TST in
G̃ there must therefore be an arc with infinitely edges between two vertices,
so that the arc is completely contained in T . Since |V [X]∩V [Y ]| < ∞ there
is then also an arc of infinite length between two vertices in TX or TY , let
us say in TX . However, as any two vertices in (V [TX ], TX) are connected
by a (finite) path as well this yields a circuit contained in TX , contradicting
the definition of TX . Thus, (V [T ], T ) is connected and hence T a basis of
MST(G).
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Let us recall the definition of Tutte-connectivity. A k-Tutte-separation of
a graph G is a partition (X, Y ) of E(G) so that |X|, |Y | ≥ k and so that
|V [X] ∩ V [Y ]| ≤ k. We say that a graph G is k-Tutte-connected if G has no
ℓ-Tutte-separation for any ℓ < k.

Theorem 8.42. [14] Let G be a graph satisfying (1.1). Then for integers
k ≥ 2 the following statements are equivalent:

(i) G is k-Tutte-connected;

(ii) MST(G) is k-connected; and

(iii) MTST(G) is k-connected.

Proof. Observe that we may assume G to be 2-connected and that G is an
infinite graph. (For finite graphs, see Tutte [85]—note that MST(G) and
MTST(G) coincide in this case.) In light of Theorem 8.41 we only need to
prove that G has a k-Tutte-separation with k ≤ m if and only if MST(G) has
an ℓ-separation with ℓ ≤ m.

First, let (X, Y ) be a k-Tutte-separation (X, Y ) of G, which implies
|V [X] ∩ V [Y ]| ≤ k. Since c(X), c(Y ) ≥ 1 this yields with Theorem 8.36
that κMST(G) ≤ k − 1. Consequently, (X, Y ) is a k-separation of MST(G).

Conversely, let there be an ℓ-separation in MST(G), and choose an ℓ-
separation (X, Y ) of MST(G) so that c(X) + c(Y ) is minimal among all ℓ-
separations of MST(G). Since G is infinite, we may assume that Y is an
infinite set.

First, we claim that

(V [Y ], Y ) is connected. (8.14)

If (V [Y ], Y ) is not connected then there is a component K of (V [Y ], Y )
so that Y ′ := Y − E(K) is an infinite set. With X ′ := X ∪ E(K) we
see that both X ′ and Y ′ have at least ℓ elements. Moreover, it holds that
|V [X]∩V [Y ]| = |V [X ′]∩V [Y ′]|+|V [X]∩V [K]| and c(Y ) = c(Y ′)+1. The set
of components of (V [X ′], X ′) is comprised of components of (V [X], X) and
of the union of those components of (V [X], X) that have a vertex with K in
common together with K. Since there are at most |V [X]∩V [K]| components
of the latter kind, we obtain c(X) ≤ c(X ′) + |V [X] ∩ V [K]| − 1. It follows
with Theorem 8.36 that

κMST(G)(X
′, Y ′) = |V [X ′] ∩ V [Y ′]| − c(X ′) − c(Y ′) + 1

≤ |V [X] ∩ V [Y ]| − |V [X] ∩ V [K]| − c(X)

+ |V [X] ∩ V [K]| − 1 − c(Y ) + 1 + 1

= |V [X] ∩ V [Y ]| − c(X) − c(Y ) + 1 ≤ ℓ − 1.
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Thus, (X ′, Y ′) is an ℓ-separation with c(X ′) + c(Y ′) ≤ c(X) + c(Y ) + 1,
contradicting the choice of (X, Y ).

Second, we show that

for every component K of (V [X], X) holds that |V [K] ∩ V [Y ]| ≤ ℓ. (8.15)

Suppose there exists a component M of (V [X], X) with |V [M)] ∩ V [Y ]| ≥
ℓ + 1. Denoting by K the components of (V [X], X) we get

ℓ − 1 ≥ |V [X] ∩ V [Y ]| − c(X) − c(Y ) + 1

≥
∑

K∈K−{M}

|V [K] ∩ V [Y ]| + (ℓ + 1) − c(X) − c(Y ) + 1.

That G is connected implies |V [K] ∩ V [Y ]| ≥ 1 for every K ∈ K. Hence

ℓ − 1 ≥ (c(X) − 1) + (ℓ + 1) − c(X) − c(Y ) + 1 = ℓ + 1 − c(Y ).

This yields c(Y ) ≥ 2, which is impossible by (8.14). Therefore, (8.15) is
proved.

Next, we see that

there is a component M of (V [X], X) with |E(M)| ≥ |V [M ] ∩ V [Y ]|.
(8.16)

If (8.16) is false then we have |V [K] ∩ V [Y ]| ≥ |E(K)| + 1 for all K ∈ K.
This, however, implies with c(Y ) = 1 that

ℓ − 1 ≥ |V [X] ∩ V [Y ]| − c(X) − c(Y ) + 1

=
∑

K∈K

|V [K] ∩ V [Y ]| − c(X)

≥
∑

K∈K

(|E(K)| + 1) − c(X) = |X|.

As (X, Y ) is an ℓ-separation, X is required to have at least ℓ elements, which
shows that (8.16) holds.

Finally, with the component M from (8.16) we set X̄ := E(M) and
Ȳ := E(G) − E(M). Then k := |V [X̄] ∩ V [Ȳ ]| = |V [M ] ∩ V [Y ]| ≤ ℓ,
by (8.15). As |X̄| ≥ k and |Ȳ | = ∞ it follows that (X̄, Ȳ ) is a k-Tutte-
separation with k ≤ ℓ, as desired.

We remark that the arguments in the proof are not new. Indeed, (8.14) is
inspired by Tutte [85] and steps (8.15), (8.16) are quite similar to the proof
of Lemma 2.14.
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The relation between the connectivity of MST and Tutte-connectivity now
yields a matroidal proof for the invariance of Tutte-connectivity under taking
duals that we have already discussed in Chapter 2. In fact, if G and G∗

is a pair of dual graphs then, by Theorem 8.42, G is k-Tutte-connected
if and only if MST(G) is k-connected. Since MST(G) = (MTST(G∗))∗ by
Corollary 8.35 and since matroid connectivity is invariant under taking duals
(Proposition 8.21) this is precisely the case when MTST(G∗) is k-connected.
Finally, Theorem 8.42 again shows that MTST(G∗) is k-connected if and only
if G∗ is k-Tutte-connected. Therefore we have reproved:

Theorem 2.16.[22] Let G and G∗ be a pair of dual graphs, and let k ≥ 2.
Then G is k-Tutte-connected if and only if G∗ is k-Tutte-connected.
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