Hamburg papers on
Infinite graphs (non-topological)
- The Lovász-Cherkassky theorem in infinite graphs (A. Joó), preprint 2023; ArXiv
- On the ubiquity of oriented double rays (F. Gut, T. Krill and F. Reich), preprint 2023; ArXiv
- Universal graphs with forbidden wheel minors (T. Krill), preprint 2023; ArXiv
- The number of topological types of trees (T. Krill and M. Pitz), preprint 2023; ArXiv
- Efficiently distinguishing all tangles in locally finite graphs (R. Jacobs and P. Knappe), preprint 2023; ArXiv
- The immersion-minimal infinitely edge-connected graph (P.
Knappe and J. Kurkofka), Journal of Combinatorial Theory B 164 (2024), 492-516; ArXiv
- Ubiquity of oriented rays (F. Gut, T. Krill and F. Reich), preprint 2022; ArXiv
- Canonical graph decompositions via coverings (R. Diestel, R.
Jacobs, P. Knappe and J. Kurkofka), preprint 2022; ArXiv
- Universal graphs for the topological minor relation (T. Krill), Journal of Graph Theory 104(4) (2023), 683-696; ArXiv
- End spaces and tree-decompositions (M. Koloschin, T. Krill, and M. Pitz), JCTB 161 (2023), 147-179; ArXiv
- Maker-Breaker games on K_{\omega_1} and K_{\omega,\omega_1}
(N. Bowler, F. Gut, A. Joó, and M. Pitz), preprint 2022; ArXiv
- The K^{\aleph_0} Game: Vertex Colouring (N. Bowler, M. Emde,
and F. Gut), preprint 2021; ArXiv
- A representation theorem for end spaces of infinite graphs (J. Kurkofka and Max Pitz), preprint 2021. (ArXiv).
- The Lovász-Cherkassky theorem for locally finite graphs with
ends (R. Jacobs, A. Joó, P. Knappe, J. Kurkofka, and R.
Melcher), preprint 2021; ArXiv
- The Lovász-Cherkasskiy theorem in countable graphs (Attila
Joó),to appear in JCTB; ArXiv
- Applications of order trees in infinite graphs (Max Pitz), Order (2022) Journal.
- Countably determined ends and graphs (Jan Kurkofka and Ruben
Melcher), JCTB 156 (2022), 31-56; ArXiv
- A strengthening of Halin's grid theorem (with J. Kurkofka and R. Melcher), Mathematika 68(4) (2022), 1009-1013. ArXiv .
- Ubiquity in graphs III: Ubiquity of locally finite graphs
with extensive tree-decompositions (N. Bowler, C. Elbracht, J.
Erde, P. Gollin, K. Heuer, M. Pitz, M. Teegen), preprint 2020; ArXiv
- An analogue of Edmonds' Branching Theorem for infinite
digraphs (J.P. Gollin & K. Heuer), Europ. J. Comb 92 (2021);
ArXiv
- Edge-connectivity and tree-structure in finite and infinite
graphs (C. Elbracht, J. Kurkofka and M. Teegen), preprint 2020;
ArXiv
- Halin's end degree conjecture (S. Geschke, J. Kurkofka, R.
Melcher, M. Pitz), to appear in Israel Journal of Mathematics; ArXiv
- Ends of digraphs III: normal arborescences (Carl Bürger,
Ruben Melcher), preprint 2020; ArXiv
- Ends of digraphs II: the topological point of view (Carl
Bürger, Ruben Melcher), preprint 2020; ArXiv
- Ends of digraphs I: basic theory (Carl Bürger, Ruben
Melcher), preprint 2020; ArXiv
- Canonical trees of tree-decompositions (J. Carmesin, M. Hamann
& B. Miraftab), JCTB 152 (2022), 1-26; ArXiv
- The Farey graph is uniquely determined by its connectivity
(J. Kurkofka), Journal of Combinatorial Theory, Series B, 151
(2021), 223-234; ArXiv
- End-faithful spanning trees in graphs without normal spanning
trees (C. Bürger & J. Kurkofka), Journal of Graph Theory (2022); ArXiv
- Quickly proving Diestel's normal spanning tree criterion (Max
Pitz), Electron. J. Comb. 28(3) (2021), P3.59. (ArXiv)
- Trees of tangles in infinite separation systems (C. Elbracht,
J. Kneip and M. Teegen), to appear in Mathematical Proceedings
of the Cambridge Philosophical Society; ArXiv
- Proof of Halin's normal spanning tree conjecture (Max Pitz),
Israel J. Math. 246 (2021), 353-370. (ArXiv)
- A new obstruction for normal spanning trees (Max Pitz),
Bull. London Math. Soc. 53
(2021) 1220-1227. (ArXiv)
- A note on minor antichains of uncountable graphs, J. Graph Theory (2022). (ArXiv)
- Every infinitely edge-connected graph contains the Farey
graph or T_{\aleph_0}*t as a minor (J. Kurkofka), Mathematische Annalen 382 (2022), 1881-1900; ArXiv
- Duality theorems for stars and combs I: Arbitrary stars and
combs (C. Bürger & J. Kurkofka), Journal of Graph Theory 99(4)
(2022), 525-554; ArXiv
- Duality theorems for stars and combs II: Dominating stars and
dominated combs (C. Bürger & J. Kurkofka), Journal of Graph Theory 99(4) (2022), 555-572; ArXiv
- Duality theorems for stars and combs III: Undominated combs
(C. Bürger & J. Kurkofka), Journal of Graph
Theory 100(1) (2022), 127-139; ArXiv
- Duality theorems for stars and combs IV: Undominating stars
(C. Bürger & J. Kurkofka), Journal of Graph
Theory 100(1) (2022), 140-162; ArXiv
- A unified existence theorem for normal spanning trees (Max
Pitz), J. Combin. Theory (Series B), 145 (2020), 466-469. (ArXiv)
- Enlarging vertex-flames in countable digraphs (J. Erde, J. P.
Gollin, A. Joó), to appear in JCTB, preprint 2020; ArXiv
- A tree-of-tangles theorem for infinite-order tangles in graphs
(A. Elm & J. Kurkofka), Abhandlungen aus dem Mathematischen Seminar der UHH 92 (2022), 139–178; ArXiv
- Approximating infinite graphs by normal trees (J. Kurkofka,
R. Melcher and M. Pitz), J. Combin. Theory (Series B), 148
(2021), 173-183; ArXiv
- Ubiquity and the Farey graph (J. Kurkofka), European J.
Combin., 95 (2021), 103326; ArXiv
- On the infinite Lucchesi-Younger conjecture I (J.P. Gollin
& K. Heuer), preprint 2019; ArXiv
- Reducing the dichromatic number via cycle reversions in
infinite digraphs (P. Ellis, A. Joó, D. T. Soukup), preprint
2019; ArXiv
- On the growth rate of dichromatic numbers of finite
subdigraphs (A. Joó), Discrete Mathematics, Volume 343, Issue 3,
2019; open
access
- A Cantor-Bernstein-type theorem for spanning trees in
infinite graphs (J. Erde, P. Gollin, A. Joó, P. Knappe, M.
Pitz), to appear in JCTB, preprint 2019; ArXiv
- Uncountable dichromatic number without short directed cycles
(A. Joó), Journal of Graph Theory, Volume 94, Issue 1, Pages
113-116, 2020; open
access
- The Complete Lattice of Erdő-Menger Separations (A. Joó),
preprint 2019; ArXiv
- Vertex-flames in countable rooted digraphs preserving an
Erdős-Menger separation for each vertex (A. Joó), preprint 2019;
ArXiv
- All graphs have tree-decompositions displaying their
topological ends (J. Carmesin), Combinatorica 39 (2019),
545–596; PDF
- Characterising k-connected sets in infinite graphs
(J.P. Gollin and K. Heuer)
, JCTB 157 (2022), 451-499; ArXiv
- Countable Menger's Theorem with Finitary Matroid Constraints
on the Ingoing Edges (A. Joó), Electronic J. Comb. 25 (2018),
#P3.12; PDF
- Gomory-Hu trees of infinite graphs with finite total weight
(A. Joó), Journal of Graph Theory 95 (1) (2018), 222-231; PDF
- Packing countably many branchings with prescribed root-sets
in infinite digraphs (A. Joó), Journal of Graph Theory 87 (1)
(2017), 96-107; PDF
- Highly Connected Infinite Digraphs Without Edge-Disjoint Back
and Forth Paths Between a Certain Vertex Pair (A. Joó), Journal
of Graph Theory 85 (1) (2017), 51-55; PDF
- Edmonds' branching theorem in digraphs without
forward-infinite paths (A. Joó), Journal of Graph Theory 83 (3)
(2016), 303-311; PDF
- On partitioning the edges of an infinite digraph into
directed cycles (A. Joó), preprint 2015; PDF
- Ubiquity in graphs II: Ubiquity of graphs with non-linear end
structure (N. Bowler, C. Elbracht, J. Erde, P. Gollin, K. Heuer,
M. Pitz, M. Teegen), preprint 2018; ArXiv
- Ubiquity in graphs I: Topological ubiquity of trees (N.
Bowler, C. Elbracht, J. Erde, P. Gollin, K. Heuer, M. Pitz, M.
Teegen), preprint 2018; ArXiv
- Partitioning edge-coloured infinite complete bipartite graphs
into monochromatic paths (C. Bürger, M. Pitz), Israel J. Math
238 (2020), 479-500. ArXiv
- Partitioning edge-coloured complete symmetric digraphs into
monochromatic complete subgraphs (C. Bürger, L. DeBiasio, H.
Guggiari, M. Pitz), Discrete Math. 341 (2018), 3134-3140; ArXiv
- Decomposing edge-coloured complete symmetric digraphs into
monochromatic paths (C. Bürger, M. Pitz), manuscript 2017; ArXiv
- Infinite end-devouring sets of rays with prescribed start
vertices (J.P. Gollin and K. Heuer), Discrete Math. 341 (2018),
2117–2120; ArXiv
- Non-reconstructible locally finite graphs (N. Bowler, J.
Erde, P. Heinig, F. Lehner, M. Pitz), JCTB 133 (2018), 122–152;
ArXiv
- Minimal obstructions for normal spanning trees (N. Bowler, S.
Geschke and M. Pitz), Fund. Math. 241 (2018), 245–263; ArXiv
- A counterexample to the reconstruction conjecture for locally
finite trees (N. Bowler, J. Erde, P. Heinig, F. Lehner, M.
Pitz), Bulletin of the London Mathematical Society 49 (4)
(2017), 630-648; ArXiv
- Clique trees of infinite locally finite chordal graphs.
(Christoph Hofer-Temmel & Florian Lehner), Electron. J.
Combin. 25 (2018), #P2.9; PDF
- The colouring number of infinite graphs (N. Bowler, J.
Carmesin, C. Reiher), Combinatorica 39 (2019), 1225–1235; PDF
- Ends and tangles (R. Diestel), Abhandlungen Math. Sem. Univ.
Hamburg 87 (2017), Special volume in memory of Rudolf Halin,
223-244; PDF
- Excluding a full grid minor (K. Heuer), Abhandlungen Math.
Sem. Univ. Hamburg 87 (2017), Special volume in memory of Rudolf
Halin, 265-274; PDF
- All graphs have tree-decompositions displaying their
- Edge-disjoint double rays in infinite graphs: a Halin type
result (N. Bowler, J. Carmesin, J. Pott), JCTB 111 (2015), 1-16;
ArXiv
- Contractible edges in 2-connected locally finite graphs (Tsz
Lung Chan), Electronic J. Comb. 22 (2015) #P2.47; PDF
- Forcing finite minors in sparse infinite graphs by
large-degree assumptions (R. Diestel), Electron. J. Combin. 22
(2015), #P1.43; PDF
- A simple existence criterion for normal spanning trees in
infinite graphs (R. Diestel), Electronic J. Comb. 23 (2016),
#P2.33; PDF
- Twins of rayless graphs (A. Bonato, H. Bruhn, R. Diestel and
P. Sprüssel), J. Combin. Theory (Series B) 101 (2011), 60-65; PDF
- Classes of locally finite ubiquitous graphs (Th. Andreae),
JCTB 103 (2013), 274-290; PDF
- Every rayless graph has an unfriendly partition (H. Bruhn, R.
Diestel, A. Georgakopoulos and P. Sprüssel), Combinatorica 30
(2010), 521-532; PDF
- Orientations and partitions of the Rado graph (R. Diestel, I.
Leader, A. Scott and St. Thomassé), Trans. Amer. Math. Soc 359
No.5 (2007), 2395-2405; PDF
- End spaces and spanning trees (R. Diestel), J. Combin. Theory
(Series B) 96 (2006), 846-854; PDF
- A Cantor-Bernstein theorem for paths in graphs (R. Diestel
and C. Thomassen), Amer. Math. Monthly 113 (2006), 161-166; PDF
- Menger's theorem for infinite graphs with ends (Henning
Bruhn, Reinhard Diestel and Maya Stein), J. Graph Theory 50
(2005), 199-211; PDF
- The Erdös-Menger conjecture for source/sink sets with
disjoint closures (R. Diestel), J. Comb. Theory (Series B) 93
(2005), 107-114; PDF
- A short proof of Halin's grid theorem (R. Diestel), Abh.
Math. Sem. Univ. Hamburg 74 (2004), 137-242; PDF
- Reconstructing the number of blocks of an infinite graph (Th.
Andreae), Discrete Math. 297 (2005), 144–151; PS.GZ
- On self-immersions of infinite graphs (Th. Andreae), J. Graph
Theory 58 (2008), 275–285; PS.GZ
- The countable Erdös-Menger conjecture with ends (R. Diestel),
J. Combin. Theory (Series B) 87 (2003), 145-161; PDF
- On the cofinality of infinite partially ordered sets:
factoring a poset into lean essential subsets (R. Diestel and O.
Pikhurko), Order 20 (2003), 53--66; PDF
- Relating subsets of a poset, and a partition theorem for WQOs
(R. Diestel), Order 18 (2001), 275--279; PDF
- An accessibility theorem for infinite graph minors (R.
Diestel), J. Graph Theory 35 (2000), 273-277; PDF
- Normal spanning trees, Aronszajn trees and excluded minors
(R. Diestel & I. Leader), J. London Math. Soc. 63 (2001),
16-32; PDF
- On immersions of uncountable graphs (Th. Andreae), JCTB 87
(2003), 130–137; PS.GZ
- A universal planar graph under the minor relation (R. Diestel
and D. Kühn), J. Graph Theory 32 (1999), 191-206; PDF
- Excluding a countable clique (R. Diestel and R. Thomas), J.
Combin. Theory (Series B) 76 (1999), 41-67; PDF
- The classification of finitely spreading graphs (R. Diestel),
Proc. London Math. Soc (3) 73 (1996), 534-554; PDF
- Normal tree orders for infinite graphs (R. Diestel and J.M.
Brochet), Trans. Amer. Math. Soc 345 (1995), 871-895. PDF
- Dominating functions and graphs (R. Diestel, S. Shelah and J.
Steprans), J. London Math. Soc 49 (1994) 16-24; PDF
- The depth-first search tree structure of TKomega-free
graphs (R. Diestel), J. Combin. Theory (Series B) 61 (1994),
260-262; PDF
- The growth of infinite graphs: boundedness and finite
spreading (R. Diestel & I. Leader), Combinatorics,
Probability and Computing 3 (1994), 51-55; PDF
- Menger's theorem for a countable source set (R. Diestel and
R. Aharoni), Combinatorics, Probability and Computing 3 (1994),
145-156; PDF
- Dominating functions and topological graph minors (R.
Diestel), Contemporary Mathematics 147 (1993), 461-476; PDF
- The structure of TKa-free graphs (R. Diestel), J. Combin.
Theory (Series B) 54 (1992), 222-238; PDF
- A proof of the Bounded Graph Conjecture (R. Diestel and I.
Leader), Invent. math. 108 (1992), 131-162; PDF
- On spanning trees and k-connectedness in infinite graphs (R.
Diestel), J. Combin. Theory (Series B) 56 (1992), 263-277; PDF
- A compactness theorem for complete separators (R. Diestel),
Abh. Math. Sem. Univ. Hamburg 60 (1990), 149-151; PDF
- Simplicial tree-decompositions of infinite graphs I (R.
Diestel), J. Combin. Theory (Series B) 48 (1990), 197-215; PDF
- Simplicial tree-decompositions of infinite graphs II - the
existence of prime decompositions (R. Diestel), J. Combin.
Theory (Series B) 50 (1990), 93-116; PDF
- Simplicial tree-decompositions of infinite graphs III - the
uniqueness of prime decompositions (R. Diestel), J. Combin.
Theory (Series B) 50 (1990), 117-128; PDF
- Simplicial minors and decompositions of graphs (R. Diestel),
Math. Proc. Camb. Phil. Soc. 103 (1988), 409-426; PDF
- Simplicial decompositions of graphs - some uniqueness results
(R. Diestel), J. Combin. Theory (Series B) 42 (1987), 133-145;
- On universal graphs with forbidden topological subgraphs (R.
Diestel), Europ. J. Combinatorics 6 (1985), 175-182;
- Some remarks on universal graphs (R. Diestel, R. Halin and W.
Vogler), Combinatorica 5 (1985), 283-293;
- On the problem of finding small subdivision and homomorphism
bases for classes of countable graphs (R. Diestel), Discrete
Mathematics 55 (1985), 21-33;
Some theses in this area:
- A minor-characterisation of normally spanned sets of vertices (Nicola Lorenz), MSc dissertation, Hamburg 2022; PDF
- Ubiquity, hamiltonicity and dijoins in graphs (K.M. Heuer), Habilitationsschrift, Hamburg 2022; PDF
- Fundamental substructures of infinite graphs (C. Bürger), PhD
dissertation, Hamburg 2020; PDF
- Ends and tangles, stars and combs, minors and the Farey graph
(J. Kurkofka), PhD dissertation, Hamburg 2020; PDF
- The Eulerian problem and further results in the theory of
infinite graphs (M. Pitz), Habilitationsschrift, Hamburg 2019; PDF
- Tree-structure in separation systems and infinitary
combinatorics (J. Erde), Habilitationsschrift, Hamburg 2019; PDF
- Connectivity and tree structure in infinite graphs (J.P.
Gollin), PhD dissertation, Hamburg 2019; PDF
- Connectivity in directed and undirected infinite graphs (K.
Heuer), PhD dissertation, Hamburg 2018; PDF
- Decomposing edge-coloured infinite graphs into monochromatic
paths and cycles (C. Bürger), MSc dissertation, Hamburg 2017; PDF
- Connected-homogeneous digraphs (M. Hamann),
Habilitationsschrift, Hamburg 2014; PDF