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1 Introduction

Let T be a rooted tree in a graph G. Then T is called normal in G if the

endvertices of every T -path in G are comparable in the tree-order of T . Fur-

thermore, we call a set of vertices U of G normally spanned if there exists

a normal tree T in G such that U ⊆ V (T ). For example, every countable

set of vertices of a graph is normally spanned. Moreover, a minor H of G is

supported by U ⊆ V (G) if, and only if for every branch set Xv of H exists a

vertex u ∈ U such that u ∈ Xv. For more definitions, see Section 2.

The following theorem was conjectured by Halin in [12, Conjecture 7.6] and

proven by Pitz in [17] in 2020:

Theorem 1.1 (Pitz). A connected graph has a normal spanning tree if, and

only if every minor of it has countable colouring number.

The main result of this thesis will be the following generalisation:

Theorem 1.2. A set of vertices U of a connected graph is normally spanned

in G if, and only if every minor of G supported by U has countable colouring

number (Definition 2.14).

For an extended version of Theorem 1.2 containing more equivalences, see

Theorem 3.2. In Section 3.3, we will explain more precisely how we will prove

this.

To both statements in Theorem 1.2 it is also equivalent that every minor of

G supported by U has a normal spanning tree. This follows with Theorem 1.1.

Additionally, in [17], Pitz has proven a forbidden minor characterisation

for normal spanning trees. With this characterisation it follows that there is a

forbidden minor characterisation of normally spanned sets of vertices, i.e. we

find a set of graphs X such that U is normally spanned if, and only if there

is no minor supported by U (Definition 2.12) lying in X . We will study this

later.

Moreover, Jung has already given a characterisation for normally spanned

sets of vertices, that is:

Theorem 1.3 (Jung). A set of vertices U of a connected graph is normally

spanned in G if, and only if U is a countable union of dispersed sets (Defini-

tion 2.6).
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In practice, however, it is easier to check whether a set of vertices is fat

TKℵ0-dispersed (Definition 2.23). There is a very efficient criterion of Halin

from [11] to have a normal spanning tree:

Theorem 1.4 (Halin). Every connected graph without a TKℵ0 has a normal

spanning tree.

This theorem was again strengthened by Diestel in [6] to the following:

Theorem 1.5 (Diestel). Every connected graph without a fat TKℵ0 (Defini-

tion 2.22) has a normal spanning tree.

The proof of this theorem was updated again in [17, §6]. Following Diestel’s
Normal Spanning Tree Criterion 1.5, Pitz proved the following generalisation

in [18]:

Theorem 1.6 (Pitz). A set of vertices U of a connected graph G is normally

spanned in G if U is fat TKℵ0-dispersed in G.

We give a new proof for this theorem by applying our forbidden minor

characterisation. On top of that, we give another characterisation to be a

normally spanned set of vertices, namely:

Theorem 1.7. A set of vertices U of a connected graph G is normally spanned

in G if, and only if U is a countable union of fat TKℵ0-dispersed sets.

This theorem is adapted from both Jung’s and Diestel’s criterion. For the

case U = V (G) Pitz has already shown the theorem in [18].

Now, we present two applications which show why the existence of normal

spanning trees is useful:

Normal spanning trees are useful for understanding the end-spaces of graphs.

For example, if T is a normal spanning tree of G, then every end of G contains

exactly one normal ray of T ; see [7, Lemma 8.2.3] for more details.

Let G be a graph and ω ∈ Ω(G). We say that a ray R ∈ ω devours the end

ω if for every ray R′ ∈ ω we have R ∩ R′ ̸= ∅. It is easy to see that every ray

in a normal spanning tree devours its corresponding end of G. End-devouring

rays are for example useful in [10] and [13].

Also, normal trees can serve as complementary structures for stars, combs,

dominating stars and dominated combs in an arbitrary graph. Here, a comb
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is the union of a ray R (the comb’s spine) with infinitely many disjoint finite

paths, possibly trivial, that have precisely their first vertex on R. The last

vertices of those paths are the teeth of this comb. Given a set of vertices U ,

a comb attached to U is a comb with all its teeth in U . Furthermore a star

attached to U is a subdivided infinite star with all leaves in U .

For example, we can characterise the graphs that do not contain an infinite

comb or an infinite star, respectively, attached to a given set of vertices:

Theorem 1.8 (Bürger and Kurkofka). Let G be a connected graph and let

U ⊆ V (G) be a set of vertices. Then G contains a comb attached to U if, and

only if there is no rayless normal tree T in G such that U ⊆ V (T ). Furthermore

G contains a star attached to U if, and only if there is no locally finite normal

tree T in G such that U ⊆ V (T ) and all whose rays are undominated in G.

For more details, see [2–5].
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2 Preliminaries

2.1 Basic Definitions

We follow the notation in [7]. Below, we list some definitions that we will

use particularly frequently. Some of them are also from [7]. Furthermore,

throughout the thesis we take many definitions verbatim from [17].

Definition 2.1. Let G be a graph and H ⊆ G be a subgraph of G. We write

N(H) for the set of vertices in G−H with a neighbour in H.

Definition 2.2 (U -Component). Let G be a graph. Let U ⊆ V (G) be a set

of vertices of G. Let H be a subgraph of G. Let D be a component of G−H.

We call D a U -component if, and only if there is a vertex u ∈ U such that

u ∈ V (D).

Definition 2.3 (Finite Adhesion). Let G be a graph. Let H be a subgraph

of a graph G. We say that H has finite adhesion in G if, and only if for all

components D of G−H holds that N(D) is finite.

2.2 Normality

Definition 2.4 (Normal Tree). Let G be a graph. Let T be a rooted tree in

G. Then T is called normal in G if, and only if the endvertices of every T -path

in G are comparable in the tree-order of T .

Definition 2.5 (Normally Spanned). Let G be a graph. Let U ⊆ V (G) be a

set of vertices of G. We call U normally spanned if, and only if there exists a

normal tree T in G such that U ⊆ V (T ).

Definition 2.6 (Dispersed Set). Let G be a graph. Let X ⊆ V (G) be a set

of vertices of G. Then, X is a dispersed set if, and only if for every ray R ⊆ G

there is a finite set of vertices S ⊆ V (G) that separates X and R.

Definition 2.7 (Cofinal Set). Let (A,≤) be a preordered set and let B ⊆ A

be a subset of A. Then, B is cofinal in A if, and only if for every a ∈ A there

exists b ∈ B such that a ≤ b.
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Theorem 2.8 (Jung). Let G be a connected graph. Let U ⊆ V (G) be a set of

vertices of G. Then, the following are equivalent:

(1) U is normally spanned in G,

(2) U is a countable union of dispersed sets in G,

(3) There is a normal tree of G with root r that cofinally contains U for any

vertex r ∈ V (G).

Definition 2.9 (Normal Spanning Tree). Let G be a graph. We call T a

normal spanning tree of G if T is a normal tree of G and V (G) ⊆ V (T ).

2.3 Minors

Definition 2.10 (Minor). Let G be a graph. We call a graph H a minor of G,

written H ≼ G, if, and only if to every vertex v ∈ H we can assign a connected

set Xv ⊆ V (G) such that for all w ̸= v ∈ H it is true that Xv ∩Xw = ∅ and

such that G contains a Xv–Xw edge if there is a v–w edge in H. We call the

Xv branch sets.

Definition 2.11 (Countable Branch Set). Let G be a graph. Let H ≼ G. We

say that H has countable branch sets if, and only if for every v ∈ H we have

that the branch set Xv in G is countable.

Definition 2.12 (Minor Supported by U). Let G be a graph. Let U ⊆ V (G)

be a set of vertices of G. Let H be a minor of G. We call H a minor of G

supported by U if, and only if for every branch set Xv of H exists a vertex

u ∈ U such that u ∈ Xv. We also say that U supports a minor H of G.

Remark 2.13. Let G be a graph. Let U ⊆ V (G) be a set of vertices of G.

Then a subgraph or a minor of a minor of G supported by U is a minor of G

supported by U itself.

2.4 Countable Colouring Number

Definition 2.14 (Countable Colouring Number). Let G be a graph. Then G

has countable colouring number if, and only if there is a well-order ≤ on V (G)

such that every vertex of G has only finitely many neighbours preceding it in

≤.
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The idea of this definition is that a graph with countable colouring number

is colourable with countably many colours:

Definition 2.15 (Chromatic Number). Let G be a graph. A vertex colouring

of a V (G) is a map φ : V (G) → C such that c(x) ̸= c(y) whenever x and y

are adjacent in G. The elements of the set C are called the available colours.

The chromatic number of G is the smallest cardinal χ(G) such that there is a

function φ : V (G) → C with |C| = χ(G).

Proposition 2.1. Let G be a graph with countable colouring number. Then

the chromatic number of G is at most countable.

Proof. Let G be a graph with countable colouring number. Enumerate the

vertices {vi ∈ V (G) : i ∈ I} of G so that the order of the numbering witnesses

the property of G having countable colouring number. Recursively we define

a function

φ : V (G) → N

such that for all adjacent x ̸= y ∈ V (G) it is satisfied that φ(x) ̸= φ(y).

Suppose that we have already defined φ(vj) for all j < i. Next, define the set

Ai that contains all adjacent vertices vj of vi for j < i. ThenAi is finite, sinceG

has countable colouring number and we have chosen the enumeration to witness

this. Let n be the unique minimal element of N \φ(Ai) and define φ(vi) := n.

Then for all adjacent vj < vi with j < i it is true that φ(vj) ̸= φ(vi). Hence

in the end, indeed φ is the desired function that proves that the chromatic

number of G is at most countable.

2.5 Forbidden Minors

Definition 2.16 ((λ, λ+)-Graph). A (λ, λ+)-graph for some infinite cardinal

λ is a bipartite graph (A,B) such that |A| = λ, |B| = λ+, and every vertex in

B has infinite degree.

Definition 2.17 (Cofinality). Let A be a partially ordered set. The cofinality

cf(A) is the least of the cardinalities of the cofinal subsets of A.

Definition 2.18 (Regular and Singular). Let κ be an ordinal. We say that κ

is regular, if cf(κ) = κ. Else, we say that κ is singular.
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Definition 2.19 (Stationary Set). Let ι, κ and λ be ordinals such that it is

ι = {κ : κ < ι} and λ is any limit ordinal. Let λ be any limit ordinal. A subset

A ⊆ λ is a club-set in λ if it is

(a) closed, i.e. for all limits µ < λ we have that sup(A ∩ µ) = µ implies

µ ∈ A and

(b) unbounded, i.e. sup(A) = λ.

A subset S ⊆ λ is stationary in λ if S meets every club-set of λ.

For more details, see [15, §III.6]

Definition 2.20 ((κ, S)-Graph). A (κ, S)-graph for some regular uncountable

cardinal κ and some stationary set S ⊆ κ of cofinality ω ordinals is a graph

with vertex set V (G) = κ such that N(s) ∩ {v ∈ κ : v < s} is countable with

supremum s for all s ∈ S.

Theorem 2.21 (Komjáth, Bowler, Carmesin and Reiher). Let G be a graph.

Then G has countable colouring number if, and only if G contains neither a

(λ, λ+)-graph nor a (κ, S)-graph as a subgraph.

For details see [16].

2.6 Fat TKℵ0s

Definition 2.22 (Fat TKℵ0). A TKℵ0 is any subdivision of the countable

clique Kℵ0 . A fat TKℵ0 is any subdivision of the multigraph obtained from a

Kℵ0 by replacing every edge with ℵ1 parallel edges.

Definition 2.23 (Fat TKℵ0-Dispersed). Let G be a graph. Let U ⊆ V (G) be

a set of vertices. We say that U is fat TKℵ0-dispersed in G if, and only if for

every fat TKℵ0 in G the branch vertices of it can be separated from U by a

finite set of vertices.
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3 Motivation

3.1 Pitz’s Theorem

Summarized from two different publications, Pitz has shown the following

theorem:

Theorem 3.1. Let G be a connected graph. Then, the following are equivalent:

(A) G has a normal spanning tree,

(B) every minor of G has a normal spanning tree,1

(C) every minor of G has countable colouring number,

(D) every minor of G with countable branch sets has countable colouring num-

ber,

(E) every minor of G is neither a (λ, λ+)-graph nor a (κ, S)-graph,

(F) every minor of G is neither a (λ, λ+)-graph nor a (κ, S)-graph with count-

able branch sets,

(G) V (G) is a countable union of fat TKℵ0-dispersed sets in G.

The equivalences of (A) and (C) to (F) are contained in [17]. The equiv-

alence between (A) and (G) is contained in [18]. The equivalence between

(A) and (B) was observed by Halin in [12]. In this thesis, we generalise this

theorem as follows:

1I.e. the property of having a normal spanning tree is closed under minors. This was not
proven by Pitz, but by Halin in [12].
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3.2 Theorem

Theorem 3.2. Let G be a connected graph. Let U ⊆ V (G) be a set of vertices

of G. Then, the following are equivalent:

(1) U is normally spanned in G,

(2) every minor of G supported by U has a normal spanning tree,

(3) every minor of G supported by U has countable colouring number,

(4) every minor of G supported by U with countable branch sets has countable

colouring number,

(5) every minor of G supported by U is neither a (λ, λ+)-graph nor a (κ, S)-

graph,

(6) every minor of G supported by U is neither a (λ, λ+)-graph nor a (κ, S)-

graph with countable branch sets,

(7) U is a countable union of fat TKℵ0-dispersed sets in G.

This theorem is the local version of Theorem 3.1. This means that for

U = V (G) the statements of both theorems are equivalent. In the following

we prove Theorem 3.2.

3.3 Organisation and Proof Sketch

The work is divided into three parts. In the first part we show the implications

from (1) to (2), from (2) to (3), from (3) to (5), from (5) to (6) and from (6)

to (4). These proofs are fairly straightforward. We show them in Section 4.

(2) (3)

(7) (1) (5)

(4) (6)

✓

Section 4

Section 13

Section 4

Section 5−12

Section 4

✓
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The second part of the thesis is the main part. Here we show the implication

from (4) to (1). This proves to be the most difficult part and needs a lot of

preparation. This goes from Section 5 to 12. Here, we give a rough plan of how

the proof works. Since there are many analogies to [17], we will also outline

the similarities and differences.

We will use the proof from [17] as a basis. There, the author proves the

global version of the statement, that is (D) to (A).

We prove (4) to (1) by induction on the cardinality of U while Pitz proves

(D) to (A) by induction on the cardinality of V (G). These are similar ap-

proaches because in Pitz’s proof, U = V (G) and thus |U | = |V (G)|. Then

we decompose a certain subgraph of G which contains all of U . Pitz therefore

decomposes the whole graph. We obtain a chain of smaller graphs Gi than U

(or G, respectively) for which the induction assumption holds. Recursively we

build an increasing chain of normal trees Ti in G such that Ti covers V (Gi)∩U .

The union of these normal trees is then the required normal tree containing

U . For Pitz this is then a normal spanning tree. For the construction of the

normal trees we need that every Gi has finite adhesion in G towards U . That

means that every neighbourhood of a U -component of G − Gi is finite. (See

also Section 8.) In fact, in Pitz’s case it is necessary to check this property

for all components. This property is essential for extending the normal tree

Ti to Ti+1. In the end, we combine the normal trees Ti to a normal tree in G

covering U . We obtain these Gi’s by using the Decomposition Lemma 10.4.

In this lemma, the countable colouring number of the minors supported by U

contributes.

Even though we prove a stronger statement than Pitz, a part our proof

becomes easier. This is because Pitz obtains from his induction hypothesis

spanning trees of each Gi which are only normal in Gi. Before he can combine

them to a normal spanning tree of G, he has to show that all these trees are

also normal in G, which is not trivial ( [17, Claim 4.2]). The advantage of

our proof is that we do not need this step, because our stronger induction

hypothesis gives us trees covering U ∩ V (Gi) which are normal in G and not

just in Gi.

To be precise, we do not apply the induction hypothesis to U ∩ V (Gi),

but to a superset of it called SG(U,Gi). In addition to U ∩ V (Gi), this set of

vertices contains the vertices adjacent to any U -component of G−Gi.

13
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.

G

Gi

Vertices of U in G

Neighbours of U -components in Gi

Vertices of SG(U,Gi) in Gi
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So SG(U,Gi) can be thought of as a canonical separator of U and Gi in

G, which lies in Gi. The special thing about SG(U,Gi) is that it carries the

information of the location of the set of vertices U in G and passes it in

a compressed way to the subgraph Gi. Now, Gi knows not only its “own”

vertices from U , but also knows in which direction the other vertices from

U are located. This is a new concept which Pitz does not use. For us it is

important, because we only have to extend the normal tree in the direction

of U as already mentioned before. Pitz, on the other hand, must extend the

normal tree in all directions, otherwise he cannot cover all of V (G). Since every

minor of G supported by U with countable branch sets has countable colouring

number and by the fact that every Gi has finite adhesion towards U , we follow

that every minor of G supported by SG(U,Gi) has countable colouring number.

By the induction assumption, we will then know that SG(U,Gi) is normally

spanned in G. We use this to extend the normal tree. The new normal tree

will then contain not only Gi ∩U , but it will contain all of SG(U,Gi) cofinally.

This is important because it is thus satisfied that the normal trees also have

finite adhesion into the components in G into which we want to build further.

To look at all this in detail, see Section 11 and 12.

As mentioned before, for the main result we need the Decomposition Lem-

ma, which decomposes a subgraph of G containing U into smaller graphs Gi

such that each Gi has finite adhesion in G towards U . Also, we want that for

every U -component D of G−Gi that there are infinitely many U -components

of G−Gi with the same neighbourhood as D. Pitz has already proven in his

paper a Decomposition Lemma in which each of these Gi has finite adhesion2

in G. However, he may also more strongly assume that each minor of G

has countable colouring number. Since we must restrict ourselves to minors

supported by U , we cannot simply adopt Pitz’s lemma. In Section 10.1 we see

that in general it is not possible to build the Gi’s with finite adhesion if only

the minors supported by U have countable colouring number. So our aim is

to modify the lemma so that it matches our case, i.e. that the Gi will have

finite adhesion but only towards U . For the proof of this, we follow the proof

of Pitz.

Moreover, Pitz uses and proves several auxiliary statements which he uses

for the proof. We also have to adapt all of these to our case. Most proofs are

2finite adhesion “in all directions”, see Definition 2.3
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analogous or at least use the same proof idea. So I would like to emphasise

here only what has changed.

In the proof of Lemma 9.4 we will build a barricade as minor supported by

U . Barricades can be thought of as (λ, λ+)-graphs that have a more general

shape. While it was sufficient in Pitz’s proof to build a barricade as an ordinary

minor of G, we have to work a bit more. We do the preliminary work for this

in Section 5.

Furthermore, we will also introduce normal semi-partition trees. These

can be thought of as a generalisation of normal trees of a graph, where the

normal trees can be embedded in the graph not as subgraphs, but as minors.

Such a generalisation already exists for normal spanning trees and is called

normal partition tree. Pitz investigates and uses these for his proof, but we

will investigate and use normal semi-partition trees. To be precise, we will

define, study and use normal semi-partition trees supported by U . All this

happens in the sections from 5 to 7 and 9.

In Section 10.2 we finally prove the Decomposition Lemma for T -graphs.

From this follows directly the needed Decomposition Lemma for graphs (in

Section 10.3) as in [17].

Note that in order to show the theorem throughout the proof, we must

ensure that all minors have countable branch sets.

The third part of this thesis is the application of the previous theorem,

i.e. the equivalences from (1) to (6). There, we show the equivalence from (1)

to (7). We will use a statement of Pitz from [18] for this, but will prove it

differently. This part is written down in Section 13.
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4 Minor Characterisation for Normally Span-

ned Sets of Vertices

4.1 Theorem

We first consider the first six equivalences of our main result:

Theorem 4.1. Let G be a connected graph. Let U ⊆ V (G) be a set of vertices

of G. Then, the following are equivalent:

(1) U is normally spanned in G,

(2) every minor of G supported by U has a normal spanning tree,

(3) every minor of G supported by U has countable colouring number,

(4) every minor of G supported by U with countable branch sets has countable

colouring number,

(5) every minor of G supported by U is neither a (λ, λ+)-graph nor a (κ, S)-

graph,

(6) every minor of G supported by U is neither a (λ, λ+)-graph nor a (κ, S)-

graph with countable branch sets.

Here, we prove the following implications: (1) ⇒ (2) ⇒ (3) ⇒ (5) ⇒ (6)

⇒ (4).
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(1) ⇒ (2): Let G be a connected graph. Let U ⊆ V be a set of vertices of

G. Further suppose that U is normally spanned. Let T be the normal

tree in G such that U ⊆ V (T ). By Jung [Theorem 2.8] U is a countable

union

U =
⋃
n∈N

Un

of dispersed sets. Let G′ be a minor of G supported by U . Let n ∈ N.
Define

U ′
n := {v ∈ V (G′) : Xv ∩ Un ̸= ∅}.

Claim: U ′
n is a dispersed set in G′.

Let R′ be a ray in G′. Let R∗ := {v ∈ V (G) : ∃w ∈ V (R′) : v ∈ Xw}.
Then R∗ is a connected induced subgraph in G. Let R ⊆ R∗ be a ray in

G such that R meets every branch set Xw for w ∈ R′. Let S ⊆ V (G)

be the finite set of vertices that separates Un and R in G. Define

S ′ = {v ∈ V (G′) : Xv ∩ S ̸= ∅}. Since S is finite, S ′ is a finite set of

vertices in G′. We show that S ′ separates U ′
n and R′ in G′. Assume

not. Then there is an U ′
n–R

′ path P ′ that does not meet S ′. Consider

P ∗ := {v ∈ V (G) : ∃w ∈ V (P ′) : v ∈ Xw} similarly as before. In P ∗

we find an Un–R path P that does not meet S by construction. A

contradiction.

Since G′ is a minor of G supported by U and U ⊆ V (T ),

V (G′) =
⋃
n∈N

U ′
n.

Hence there exists a normal spanning tree T ′ ofG′ by Jung [Theorem 2.8].

(2) ⇒ (3): This implication follows directly with [17]. Here, we show it in

detail:

Let G be a connected graph. Let U ⊆ V (G) be a set of vertices of G.

Let H be a minor of G supported by U . Suppose that H has a normal

spanning tree T . We define a well-order on V (H) witnessing that H has

countable colouring number. For this, let Li be the ith level of T and

consider a well-order ≤i of Li for all i ∈ N. Let v, v′ ∈ V (H) and let

i, i′ ∈ N such that v ∈ Li and v′ ∈ Li′ . We define v ≤ v′ if, and only
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if i < i′ or i = i′ and v ≤i v
′. This defines a well-order (V (H),≤) of

V (T ) = V (H).

Next, consider a vertex v ∈ V (H). We show that there are only finitely

many neighbours w ∈ N(v) with w ≤ v. First, find i ∈ N such that

v ∈ Li. Then, the smaller neighbours of v must be contained in
⋃

h≤i Lh

by definition of (V (H),≤). Further, observe that all smaller neighbours

of v must than lie in ⌈v⌉T . Since ⌈v⌉T is finite for normal spanning trees,

there are at most finitely many smaller neighbours of v.

(3) ⇒ (5): Let G be a connected graph. Let U ⊆ V (G) be a set of vertices of

G. Suppose that every minor of G supported by U has countable colour-

ing number. Let H be a minor of G supported by U . By Theorem 2.21

it follows that H does not contain a (λ, λ+)-graph or a (κ, S)-graph as a

subgraph. In particular, H is neither a (λ, λ+)-graph nor a (κ, S)-graph.

(5) ⇒ (6): Follows directly.

(6) ⇒ (4): Let G be a connected graph. Let U ⊆ V (G) be a set of vertices

of G. Suppose that every minor of G supported by U with countable

branch sets is neither a (λ, λ+)-graph nor a (κ, S)-graph. Let H be a

minor of G supported by U with countable branch sets. Let H ′ be a

subgraph of H. Then H ′ ≼ H ≼ G is a minor of G supported by U with

countable branch sets. By assumption, H ′ is neither a (λ, λ+)-graph

nor a (κ, S)-graph. With Theorem 2.21 it follows that H has countable

colouring number.

To close the ring closure, the only implication missing now is from (4) to

(1). As already announced, we need some preparation for this. We will now

start with this in the following section:
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5 Barricades

5.1 Definition

Definition 5.1 (Barricade). A barricade is a bipartite graph with biparti-

tion (A,B) such that |A| < |B| and every vertex of B has infinitely many

neighbours in A.

Example 5.2. A (λ, λ+)-graph is a barricade for some infinite cardinal λ.

5.2 Preparation

Lemma 5.3. A barricade H with bipartition (A,B) has a subgraph that is also

a barricade H ′ with bipartition (A′, B′) such that A′ ⊆ A, B′ ⊆ B and every

vertex a ∈ A′ has more than |A| many neighbours in B′.

A stronger theorem was already stated and observed in [16, Lemma 2.4].

We show it here, but the proof is nearly the same.

Proof. Let H be a barricade with bipartition (A,B). Define a subgraph H ′ of

H by deleting all a ∈ A and b ∈ N(a) if, and only if

|N(a)| ≤ |A|

for a ∈ A. Further, define

A′ := A ∩ V (H ′)

and

B′ := B ∩ V (H ′).

Then, (A′, B′) is a bipartition with A′ ⊆ A and B′ ⊆ B. Note that we delete

at most |A| many |N(a)| and every set of vertices N(a) in B that we delete

satisfies |N(a)| ≤ |A|, i.e. we delete at most |A| · |A| many vertices of B. Then,

with |A| < |B| it follows that |B′| = |B|.
We show that every b ∈ B′ ⊆ V (H ′) has infinitely many neighbours in

A′ ⊆ V (H ′). For this, let b ∈ B′. In H we know that b has infinitely many

neighbours in A. Since we do not delete b for H ′, we know that there is no

a ∈ A ⊆ V (H) such that b ∈ N(a). Thus we do not delete any a ∈ N(b).

Hence b also has infinitely many neighbours in H ′.
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Note that |A| must be infinite, since every b ∈ B′ has infinitely many

neighbours in A′. However, it is not necessary that |A′| = |A|. But indeed,

|A′| ≤ |A| < |B| = |B′|. By construction, we only keep a ∈ A which had more

than |A| many neighbours in B and we deleted at most |A| · |A| many of them.

Thus for every a ∈ A′ there are more than |A| many neighbours in B′.

5.3 Barricades Supported by U

Definition 5.4 (Barricade Supported by U). Let G be a graph. Let U ⊆ V (G)

be a set of vertices of G. A barricade of G supported by U is a minor of G

which is a barricade that is supported by U .

With the previous Lemma 5.3, we can now prove the following lemma,

which will be relevant and helpful later in Lemma 9.4:

Lemma 5.5. Let G be a graph. Let U ⊆ V (G) be a set of vertices of G. Let

G have a minor with countable branch sets that is a barricade with bipartition

(A,B) such that the B-side is supported by U , i.e. for every vertex b ∈ B

the corresponding branch set in G contains a vertex of U . Then there is a

barricade of G supported by U with countable branch sets.

Proof. Let G be a graph. Let U ⊆ V (G) be a set of vertices of G. Let G have a

minor H with countable branch sets that is a barricade with bipartition (A,B)

such that the B-side is supported by U . With Lemma 5.3 find a barricade H ′

with bipartition (A′, B′) such that H ′ is a subgraph of H with A′ ⊆ A, B′ ⊆ B

and every vertex a ∈ A′ has more than |A| many neighbours in B′. Then,

H ′ ≼ H ≼ G. Also, H ′ has countable branch sets in G. Note that the B′-side

is supported by U since B′ ⊆ B.

Shortly, the idea of the proof is to find a matching M of A′ in (A′, B′) and

then to contract the edges in M . After that, this defines a minor H ′′ of H ′

with countable branch sets that is a barricade such that every branch set of

H ′′ contains a vertex b ∈ B′. Since the B′-side of H ′ ≼ G is supported by U ,

for every b ∈ B′ there is a vertex u ∈ U that is contained in the branch set of

b in G. Because of that, H ′′ is a minor of G supported by U and hence the

desired barricade of G supported by U with countable branch sets.

For this, enumerate A′ = {ai : i ∈ |A′|}. For every i ∈ |A′| we build a

branch set Yi in H ′ that contains ai and a vertex b ∈ B′. Start with V0 and
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consider a0. Since every a ∈ A′ has neighbours in B′, the set N(a0) is not

empty. Choose a vertex b0 ∈ N(a0) ⊆ B′ in H ′. Define

V0 := {a0, b0}.

Now we consider ai and suppose that we have already defined Yj such that aj

and a vertex of B is in Yj for every j < i. Also we suppose that Vk ∩ Yj = ∅
for two distinct indices k ̸= j < i. For Vi consider ai. Define

Bi := {b ∈ B′ : there exists j < i such that b ∈ Yj}

and Ni := N(ai) \Bi. Since every a ∈ A′ has more than |A| many neighbours

in B′ we have that |A′| < |N(ai)|. Thus in step i is |Bi| < |A′| < |N(ai)|.
Therefore Ni ̸= ∅. Choose a vertex bi ∈ Ni and define

Vi := {ai, bi}.

In the end, contracting all Vi for every i < |A′| to a vertex defines the minor

H ′′ ≼ H ′ ≼ G with countable branch sets that is supported by U .

It remains to show that H ′′ is a barricade. First, define A′′ as the set

containing all contracted Vi’s for every i < |A′|. Define

B′′ = B′ \
⋃

i<|A′|

Bi.

By definition, A′′ ∩ B′′ = ∅. Thus we get a bipartition (A′′, B′′) of H ′′. By

construction, |A′′| = |A′| and |B′′| = |B′|− |A′|. Since |A′| < |B′| we have that

|A′′| = |A′| < |B′| − |A′| = |B′′|.

Since every b ∈ B′ ⊆ V (H ′) has infinitely many neighbours in A′ ⊆ V (H ′) and

by the fact that we do not change the neighbourhood of the b ∈ B′′ ⊆ V (H ′′)

by contracting the Vi’s, we still have that every b ∈ B′′ ⊆ V (H ′′) has infinitely

many neighbours in A′′ ⊆ V (H ′′).

Now that we have examined properties of barricades, we will not encounter

them again until Section 10. Next, we define and examine normal semi-

partition trees supported by U :
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6 Normal Semi-Partition Trees Supported by

U

6.1 T -Graphs

Before we get to know normal semi-partition trees, we briefly review definitions

and terminologies of T -graphs:

Definition 6.1 (Order Tree). A partially ordered set (T,≤) is called an order

tree if, and only if

(a) it has a unique minimal element (called the root) and

(b) all subsets of the form ⌈t⌉ = ⌈t⌉T := {t′ ∈ T : t′ ≤ t} are well-ordered.

Definition 6.2 (T -Graph). An order tree T is normal in a graph G if, and

only if

(a) V (G) = T and

(b) the two vertices v and w of any edge {v, w} of G are comparable in T .

We call G a T -graph if, and only if

(a) T is normal in G and

(b) the set of lower neighbours in G of any t ∈ T is cofinal in ⌈̊t⌉.

Example 6.3 (ω1-Graph). An ω1-graph is a T -graph for the well-order T =

(ω1,≤).

Example 6.4 (Aronszajn Tree-Graph). Let T be an order tree. Then T is an

Aronszajn tree if, and only if

(a) T has height ω1,

(b) all levels of T are countable and

(c) T has no uncountable branches.

An Aronszajn tree-graph is a T -graph for an Aronszajn tree T .
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Definition 6.5 (Terminology of T -Graphs). Let T be an order tree. A max-

imal chain in T is called a branch of T . The height of T is the supremum of

the order types of its branches. The height of a t ∈ T is the order type of

⌈̊t⌉ := ⌈t⌉ \ {t}. The set of all t ∈ T at height i is the ith level of T . We use

the intuitive interpretation of a tree-order as expressing height also informally.

For example, we say that t ∈ T is above t′ ∈ T if t > t′.

Let X ⊆ T be a set. The down-closure of X is defined as

⌈X⌉ = ⌈X⌉T :=
⋃

{⌈x⌉ : x ∈ X}.

We say that X is down-closed, or X is a rooted subtree, if X = ⌈X⌉. A

subset of T that is an order tree under the order induced by T is a subtree

of T if along with any two comparable points t and t′ it contains the interval

{x ∈ T : t ≤ x ≤ t′} in T between them.

If t < t′ but there is no point between t and t′, we call t′ a successor of t.

If t is not a successor of any point it is called a limit.

6.2 Normal Semi-Partition Trees Supported by U

We now define the normal semi-partition trees. Notice that the definition is

very similar to the definition of normal partition trees introduced in [1].

Definition 6.6 (Semi-Partition Trees). Let G be a connected graph. Let

U ⊆ V (G) be a set of vertices of G. Let {Vt : t ∈ T} be a set of pairwise

disjoint, non-empty sets of vertices Vt of V (G). We call this a semi-partition.

If this semi-partition is such that for every t ∈ T there is a u ∈ U with u ∈ Vt,

we say that the semi-partition is supported by U . If the index set T of a

semi-partition is an order tree (T,≤), we call (T,≤) a semi-partition tree for

G. If the semi-partition is supported by U , we say that the semi-partition

tree for G is supported by U . Whenever we speak of a semi-partition tree T

for G, we shall assume that it comes with a fixed semi-partition {Vt : t ∈ T}.
Similarly when we speak of a semi-partition tree T for G supported by U , we

shall assume that it comes with a fixed semi-partition {Vt : t ∈ T} supported

by U .
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Definition 6.7. Let G be a connected graph. For a set of points X ⊆ T of a

semi-partition tree, we write

G(X) := G
[⋃

{Vt : t ∈ X}
]

for the corresponding induced subgraph of G. For vertices v ∈ V (G(T )), we

write t(v) for the vertex t ∈ T such that v ∈ Vt.

Definition 6.8 (Ġ). Let G be a connected graph. Let T be a semi-partition

tree for G. We denote by Ġ = G/T the graph obtained from G by deleting

all v ∈ V (G) if, and only if there is no t ∈ T such that v ∈ Vt; and after that

by contracting the sets Vt for t ∈ T . We may then identify T with the set of

vertices of Ġ. Thus, t and t′ ∈ T become adjacent vertices of Ġ if, and only if

G contains a Vt–Vt′ edge.

Let U ⊆ V (G) be a set of vertices of G. Note that Ġ is a minor of G

supported by U if, and only if T is a semi-partition tree for G supported by

U .

Definition 6.9 (Normal Semi-Partition Trees). Let G be a connected graph.

Let T be a semi-partition tree for G. We call T a normal semi-partition tree

for G if the following properties hold:

(a) Ġ is a T -graph,

(b) for every G(T )-path P with endvertices u and v in G(T ), the points t(u)

and t(v) are comparable in the tree order of T ,

(c) For every t ∈ T , the set Vt is connected in G (so Ġ is a minor of G),

(d) for every t ∈ T , we have either |Vt| is finite or |Vt| = cf(height(t)).

Note that in this definition, we allow that |Vt| is finite in place of |Vt| = 1.

Remark 6.10. Rooted subtrees of normal semi-partition trees supported by

U are normal semi-partition trees supported by U , too.

Remark 6.11. For a (normal semi-partition) subtree T ′ ⊆ T of a normal

semi-partition tree, note that G(T ′) is connected: For every t ∈ T ′ we have

by definition of a normal semi-partition tree that Vt is connected. It is enough
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to show that Ġ′ is connected. We show that for every t ∈ Ġ′ there is a path

to the root r ∈ Ġ′ of T ′. Since Ġ′ is a T ′-graph, the set of lower neighbours

in Ġ′ of t are cofinal in ⌈̊t⌉. Thus we find a lower neighbour t0 of t in ⌈t⌉. If

t0 = r, we are done. Otherwise recursively find a sequence t0, t1, t2, · · · ∈ ⌈t⌉
such that ti+1 is a lower neighbour of ti for i ≥ 0. This works as before by

choosing ti+1 in the set of lower neighbours in Ġ′ of ti. It remains to show that

this sequence is finite and its last element is the root. Consider the sequence

as a subset A of ⌈t⌉. Since t0 ∈ A we know that A is a non-empty set. By the

fact that ⌈t⌉ is well-ordered, A has a minimal element. By construction of the

sequence, this is the last element of the sequence, which must be the root r.

Hence, the sequence is finite. Now, P := tt0 . . . r is the required path.

6.3 Existence of Normal Semi-Partition Trees Suppor-

ted by U

We already know by [1] that for every graph there is a normal partition tree.

Pitz references this in his paper in [17, Lemma 3.4] and uses this statement for

his proofs. We also need this statement for our normal semi-partition trees.

We show:

Lemma 6.12. Let G be a connected graph. Let U ⊆ V (G) be a set of vertices

of G. Then there is a normal semi-partition tree T of G supported by U with

U ⊆ G(T ).

Proof. Let G be a connected graph. Let U ⊆ V (G) be a set of vertices of

size κ. Fix an enumeration {ui : i < κ} of U . We recursively build a ⊆-

increasing sequence {Ti : i ≤ κ} of normal semi-partition trees of G supported

by U such that for all j < i every uj ∈ G(Ti). For i = 1, define an order tree

T1 := {t}. Further, define Vt := {u0}. This defines a normal semi-partition

tree T1 supported by U and u0 ∈ G(T1).

Now, suppose that we have already defined the normal semi-partition tree

Ti of G supported by U for i < κ and that for all j < i every uj ∈ G(Ti). To

define Ti+1, consider G−G(Ti). If there is no component D with ui ∈ V (D),

define Ti+1 := Ti. Otherwise let D be the component with ui ∈ V (D). Define

C := {t ∈ Ti : N(D) ∩ Vt ̸= ∅}.
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Since Ti is normal, C is a chain in the tree-order of Ti.

In the case that |C| is finite, choose the unique maximal element t′ ∈ C.

Let d′ ∈ D be a neighbour of a vertex v′ ∈ Vt′ in G. By the fact that D is

connected, we find a ui–d
′ path P in D. Let t be a point that is not in Ti

already. Define Vt := V (P ). Now, let Ti+1 be obtained through Ti by placing

t directly above t′ as a new successor.

For the other case, suppose that |C| := ζ is infinite. Let

C ′ := {tn ∈ C : n < cf(ζ)}

be a cofinal subchain in C. For every n < cf(ζ) find a neighbour dn ∈ D of a

vertex vn ∈ Vtn in G. Note that some neighbours can be the same vertex.

First, suppose that

∣∣{dn ∈ D : n < cf(ζ)}
∣∣ < cf(ζ).

Then there is an n′ < cf(ζ) such that

∣∣{t ∈ C ′ : dn′ ∈ N(Vt)}
∣∣ = cf(ζ).

This follows by the fact that cf(ζ) is a regular3 cardinal. Furthermore, observe

that {tn ∈ C ′ : N(dn′) ∩ Vtn} is a cofinal subchain of C ′ and hence of C. Addi-

tionally, since D is connected, we find a dn–ui path P in D. Define Vt := V (P ).

Now, let Ti+1 be obtained through Ti by placing t above ⌈C⌉ as a limit point.

Suppose now that

∣∣{dn ∈ D : n < cf(ζ)}
∣∣ = cf(ζ).

Since D is connected, find for every n < cf(ζ) a ui–dn path Pn in D. Define

P :=
⋃

n<cf(ζ)

Pn.

Since every Pn is finite, |V (P )| = cf(ζ). Since ui ∈ Pn for all n < cf(ζ), indeed

P is connected. Again, define Vt := V (P ). As before, let Ti+1 be obtained

through Ti by placing t above ⌈C⌉ as a limit point.

3This is the reason why we defined the subchain C ′ of C.
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By construction, Ti+1 is a semi-partition tree of G supported by U and for

all j < i + 1 every uj ∈ G(Ti+1). It remains to check that Ti+1 is a normal

semi-partition tree of G. For property (a), consider Ġi+1 of Ti+1. By induction

hypothesis, Ġi is a Ti-graph. We have to show that Ġi+1 is a Ti+1-graph.

Since Ti is an order tree, it has a unique minimal element and thus, Ti+1 has

the corresponding partial order and minimal element as well. Since we add a

point t above a chain of Ti, it follows that Ti+1 is again a partial order. Also all

subsets ⌈s⌉Ti
are well-ordered in Ti for s ∈ Ti, so they are well-ordered in Ti+1

as well. As before, ⌈̊t⌉Ti+1
is a well-order since we add t above a chain of Ti.

We show that the set of lower neighbours of t ∈ Ti+1 is cofinal in ⌈̊t⌉. In the

first case, indeed t′ is the lower neighbour of t by construction and since t is a

successor, t′ is cofinal in ⌈̊t⌉. In the other cases, we have the vertex dn′ ∈ Vt

or the vertices dn ∈ Vt for n < cf(ζ); which gives us the existence of the set

of lower neighbours of t ∈ Ti+1 that is cofinal in ⌈̊t⌉ by construction. To see

that the set of lower neighbours of any s ∈ Ti+1 in Ġi+1 is cofinal in ⌈̊s⌉, recall
that this is already true for Ti by induction hypothesis. It remains to show

that any two adjacent vertices u, u′ of V (Ġi+1) = Ti+1 are comparable in Ti+1.

Stronger, we show property (b) that any two adjacent vertices u, u′ of Ġi+1 for

which there is a G(Ti+1)-path in G are comparable in Ti+1. If u, u′ ∈ Ti, this

follows from the induction hypothesis. Now suppose that u = t. But t and

u′ are comparable by the fact that we placed t above every element of C in

Ti. For property (c), note that Vt is connected in G. For property (d) define

ζ ′ :=
∣∣⌈C⌉

∣∣. Observe that ζ ′ = cf(ζ). In the end, |Vt| is finite or

|Vt| = cf(ζ) = cf(cf((ζ)) = cf(ζ ′) = cf(height(t)).

Thus, by induction hypothesis, both properties are satisfied.

For all limits ℓ ≤ κ define

Tℓ :=
⋃
i<ℓ

Ti.

We have to show that for all limits ℓ ≤ κ every Tℓ is a normal semi-partition

tree of G supported by U such that for all j < ℓ every uj ∈ G(Tℓ). So let

ℓ ≤ κ be a limit. By construction, Tℓ is a semi-partition tree of G. To see that

Tℓ is supported by U , let i < ℓ. Then there is a t ∈ Ti+1 such that ui ∈ Vt.
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Hence this t must be in Tℓ as well. It remains to check that Tℓ is a normal

semi-partition tree of G. For property (a), we have to show that Ġℓ is a Tℓ-

graph. First, Tℓ is a partially ordered set, since for all i < ℓ we have that Ti is

a partially ordered set. Since Ti has a unique minimal element for all i < ℓ, Tℓ

has the same one as well. Also all subsets of the form ⌈t′⌉Ti
are well-ordered

in Ti for every i < ℓ, so they are well-ordered in Tℓ as well. To show that Tℓ

is normal, note that V (Ġi) = Ti for all i < ℓ. Hence V (Ġℓ) = Tℓ. To see that

the set of lower neighbours of any point s ∈ Tℓ is cofinal in ⌈̊s⌉Tℓ
, find an i < ℓ

such that s ∈ Ti. In Ti the set of lower neighbours of any s ∈ Ti is cofinal

in ⌈̊s⌉Ti
. Since the lower neighbours do not expand of s in Tℓ, we have that

s is cofinal in ⌈̊s⌉Tℓ
, too. It remains to show that any two adjacent vertices

u, u′ of V (Ġℓ) = Tℓ are comparable in Tℓ. Stronger, we show property (b) that

any two adjacent vertices u, u′ of Ġℓ for which there is a G(Tℓ)-path in G are

comparable in Tℓ. Since u and u′ ∈ Tℓ, there must exist an i < ℓ such that s

and s′ ∈ Ti. Here, both of them are comparable. Thus they are comparable

in Tℓ as well. For property (c), consider a Vt in G for t ∈ Tℓ. Find an i < ℓ

such that t ∈ Ti. Here, Vt is connected in G and so it is for Tℓ. For property

(d), consider a Vt in G for t ∈ Tℓ. Find an i < ℓ such that t ∈ Ti. Here, |Vt| is
finite or |Vt| = cf(height(t)) and so it is for Tℓ.

In the end, T := Tκ is the desired normal semi-partition tree.

We now know the definition of normal semi-partition trees supported by

U and that they exist for every graph such that they cover all of U . Next, we

want to find out more properties about normal semi-partition trees:
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7 Normal Semi-Partition Trees Supported by

U Have Countable Branches and Branch Sets

Our main result in this section is that in our case the normal semi-partition

trees supported by U have countable branches and branch sets. “In our case”

here means that we consider only graphs with a fixed set of vertices U , so that

each minor supported by U with countable branch sets has countable colouring

number.

7.1 Definitions

Definition 7.1 (TKµ). Let µ be a cardinal. Analogously to a TKℵ0 (Defini-

tion 2.22) is a TKµ any subdivision of the clique Kµ.

Definition 7.2 (IKµ). Let µ be a cardinal. A graph G is an IKµ if its vertex

set admits a partition {Xv : x ∈ V (Kµ)} into connected subsets Xv such that

for distinct vertices v, w ∈ Kµ there is a Xv–Xw edge in G. The sets Xv are

the branch sets of the IKµ.

Definition 7.3 (Compatible). Let G be a connected graph. Let U ⊆ V (G) be

a set of vertices. Further let µ be a cardinal. Let K be an IKµ of G supported

by U . We call a TKµ in G compatible with K if, and only if for every branch

vertex v of the TKµ there is a branch set X of K such that v ∈ X and for two

distinct branch vertices v ̸= v′ holds that they are contained in two different

branch sets of K.

Definition 7.4 (Direct Path). For a cardinal µ, let B be the set of the branch

vertices of a TKµ. We call the unique path between two vertices v ∈ B and

w ∈ B that does not meet any other vertex of B the direct path between v and

w.

Definition 7.5 (Spread). Let G be a connected graph. Let U ⊆ V (G) be a

set of vertices. Further let µ be a cardinal. Let K be an IKµ of G supported

by U . Consider a TKµ in G that is compatible with K. We call a TKµ in

G spread in K if, and only if for all branch vertices v ∈ B and w ∈ B, every
branch set of K which is traversed by the direct path between v and w does

not contain any vertex of B \ {v, w}.
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7.2 Preparation

Lemma 7.6. Let G be a connected graph. Let U ⊆ V (G) be a set of vertices.

Let K be an IKℵ1 of G supported by U . Then there is a TKℵ1 in G that is

compatible with K and spread in K.

A global version of this lemma similar to this statement has already been

proven by Jung in paper [14]. The statement of the theorem is that a graph

which contains an uncountable clique minor also contains a topological un-

countable clique minor. The following proof uses the same proof ideas as Jung

used.

Proof. Let G be a connected graph. Let U ⊆ V (G) be a set of vertices. Let

K be an IKℵ1 of G supported by U . Let K ′ be a subgraph-minimal IKℵ1 in

G such that every branch set of K ′ is contained in a branch set of K and such

that every branch set of K contains a branch set of K ′. Such a graph K ′ exists

by Jung [14]. We show that there is a TKℵ1 in G that is compatible with K ′

and spread in K ′. Then this TKℵ1 is also compatible with K and spread in

K.

Claim: Every branch set of K ′ contains a vertex of uncountable degree in K ′.

Let X be a branch set of K ′. Consider Y := X ∪ NK′(X). Then Y is

uncountable, sinceNK′(X) is uncountable. Let y ∈ Y . Consider the distance

classes Dn of vertices in Y with distance n to y. Since Y is uncountable there

exists an uncountable distance class. Consider the minimal n such that the

distance class Dn is uncountable. Notice that n is at least 1. By minimality,

Dn−1 is countable. It follows that there is an x ∈ Dn−1 that has uncountably

many neighbours in Dn and hence in G′. Since every vertex of NG′(X) has

degree 1 in Y by minimality of K ′, it follows that x ∈ X.

Let V be a set of vertices of K ′ with uncountable degree and such that two

distinct vertices in V are contained in two disjoint branch sets of K ′. In the

following we construct a TKℵ1 in K ′ with branch vertices {vi : i < ω1} ⊆ V .
Write Ki for the branch set of K ′ that contains vi for all i < ω1. The direct

path of the TKℵ1 between vi and vj for i < j < ω1 will be called Pi,j and this

path will not traverse any branch set of {Kk : k < ω1, k ̸= i, k ̸= j}. Indeed,

the TKℵ1 is compatible with K ′ and spread in K ′ then. To do so, we use

transfinite recursion over i < ω1.
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First, let i = 0. Let v0 ∈ V be an arbitrary vertex. Next, suppose that

i > 0 and that we have defined branch vertices vj and direct paths Pj,j′ for all

j < j′ < i with the properties from above. Note that
⋃

j<j′<i Pj,j′ is countable

because i < ω1. Thus we can choose a vertex vi in V such that the branch set

Ki which contains vi is disjoint to {Pj,j′ : j < j′ < i}.
Recursively define the path system {Pj,i : j < i}. In step ℓ < i, suppose

that we have already defined Pj,i for all j < ℓ. Let W be the countable set of

all branch sets of K ′ which contain vertices of the set⋃
{Pj,j′ : j < j′ < i ∨ (j < ℓ ∧ j′ = i)}.

Our aim is to find a direct path Pℓ,i between vℓ and vi such that Pℓ,i does not

traverse any branch set of W \ {Kℓ, Ki}.
For every neighbour z ∈ NK′(vi), find a path Pz in K ′ which starts with

vi and contains z such that all vertices except for the last vertex of Pz are

contained in Ki. Such a path Pz exists for every neighbour z by minimality of

K ′. Let Ki(z) be the branch set of K ′ in which contains the last vertex of Pz.

Note that the branch sets Ki(z) for z ∈ NK′(vi) are pairwise distinct, again by

minimality of K ′. Since NK′(vi) is uncountable by the choice of vi but W is

only countable, there is a neighbour z of vi, such that Ki(z) /∈ W . Similarly,

find a path Qz′ in K ′ which starts with vℓ such that all vertices except for the

last vertex of Qz′ are contained in Kℓ and the last vertex is contained in a

branch set Ki(z′) such that Ki(z′) /∈ W . Let w be the last vertex of Pz and let

w′ be the last vertex of Qz′ . Since Ki(z) and Ki(z′) are connected and adjacent

in K ′, there is a path P between w and w′ in Ki(z)∪Ki(z′). Now we obtain the

path Pℓ,i between vℓ and vi by connecting the three paths Pz, P and Qz′ .

Lemma 7.7. Let G be a connected graph and let U ⊆ V (G) be a set of vertices

such that G contains a Kℵ1 minor supported by U . Then G has a Kℵ1 minor

supported by U with countable branch sets.

Proof. Let G be a connected graph. Let U ⊆ V (G) be a set of vertices. Let

K be an IKℵ1 in G supported by U . By Lemma 7.6, there is a TKℵ1 in G

that is compatible with K and spread in K. Enumerate the branch vertices

{vi : i < ω1} of the TKℵ1 . Consider the branch set Ki of K such that vi ∈ Ki.

Let ui ∈ U ∩ Ki. Find a ui–vi path Qi in Ki. Additionally, find the direct

paths Pj,i between vj and vi in the TKℵ1 for all j < i < ℵ1. Our aim is to
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construct a Kℵ1 minor of G supported by U with countable branch sets. For

this, we recursively construct sets of vertices Vi of G such that

(i) Vi is countable for every i < ω1,

(ii) Vi is connected for every i < ω1,

(iii) vi ∈ Vi for every i < ω1,

(iv) there is a u ∈ U with u ∈ Vi,

(v) Vi ∩ Vj = ∅ for i ̸= j < ω1,

(vi) Vi and Vj are pairwise adjacent for i ̸= j < ω1,

(vii) Vi only contains vertices of the direct paths Pj,i for j < i and vertices of

the path Qi.

Then the minor of G with branch sets Vi is the desired Kℵ1 minor.

For i = 0, simply define V0 := Q0. Indeed, V0 satisfies the properties (i)

– (vii). For i > 0, suppose that we have already defined the branch sets Vj

with j < i such that the properties (i) – (vii) from above hold. Let P̃j,i be the

maximal subpath of Pj,i with the property that it contains vi and such that it

is disjoint to Vj. Then, define

Vi := Qi ∪
⋃
j<i

P̃j,i.

We show that Vi satisfies the properties (i) – (vii): For property (i) note

that Vi is countable, since we only consider countable unions of finite sets.

Furthermore it is easy to see that the properties (ii) – (iv) and (vii) are true.

For property (v) we show that Vi is disjoint to Vj for all j < i. Thus let

j < i. By (vii), Vj only contains vertices of the direct paths Pk,j for k < j

and of the path Qj. The paths P̃ℓ,i for ℓ < i are disjoint to all vertices of Vj

which are contained in paths Pk,j for k < j because they can only possibly

intersect in the path P̃j,i. However, P̃j,i is disjoint to Vj by definition. Next,

it is clear that Qi is disjoint to Qj because Qi is contained in Ki and Qj in

Kj. Furthermore, Qi is also disjoint to all vertices of Vj which are contained in

paths Pk,j for k < j because these paths do not intersect Ki by the definition
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of spread. By the same arguments, it follows that Qj is disjoint to the paths

P̃ℓ,i for ℓ < i. Hence Vi is indeed disjoint to Vj.

Finally, for property (vi) note that Vi is adjacent to Vj by definition of P̃j,i

and because vj ∈ Vj.

7.3 T has Countable Branches and Branch Sets

We now prove the main result of the section:

Lemma 7.8. Let G be a connected graph. Let U ⊆ V (G) be a set of vertices.

Let T be a normal semi-partition tree for G supported by U . Let every minor

of G supported by U with countable branch sets not contain an uncountable

clique minor supported by U . Then

(i) all branches of T are at most countable.

(ii) for all t ∈ T the branch sets Vt in G are at most countable.

Pitz has already shown an analogous result in [17, Lemma 3.5] for normal

partition trees. We use the same proof idea as he did.

Proof. Let G be a connected graph. Let U ⊆ V (G) be a set of vertices. Let T

be a normal semi-partition tree for G supported by U . Let every minor of G

supported by U with countable branch sets not contain an uncountable clique

minor supported by U .

(i): Suppose for a contradiction that there is an uncountable branch B in

T . Now, ω1 is isomorphic to an initial segment of B, because B cannot

be isomorphic to a proper initial segment of ω1, since B is uncountable.

Thus it exists an initial segment B′ of B such that B′ ∼= ω1. Now the

vertices Vt with t ∈ B′ form an ω1-graph as a subgraph of Ġ. But then,

by [8, Proposition 3.5] we find a Kℵ1 minor. Since Ġ is a minor of

G supported by U , the ω1-graph as a subgraph (and thus minor) and

the Kℵ1 minor are minors of G supported by U as well. But then by

Lemma 7.7 there is a Kℵ1 minor supported by U with countable branch

sets in G. A contradiction.
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(ii): By the definition of a normal semi-partition tree it is true that either

|Vt| is finite or |Vt| = cf(height(t)) for all t ∈ T . By the first part of this

Lemma, height(t) is countable for all t ∈ T . Since the cofinality of a

countable ordinal is countable, indeed |Vt| is countable, too.

Corollary 7.9. If the properties of Lemma 7.8 are true, Ġ has countable

branch sets.

We have now learned a lot about normal semi-partition trees and will return

to them later. In the next section, however, we will not encounter them for

the moment. Instead, we will now deal with finite adhesion towards U :
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8 Finite Adhesion and Finite Adhesion To-

wards U

Pitz uses the concept of finite adhesion in his paper. (See also [17]). We will

also make use of this, but mainly towards U . We have already mentioned the

term in Section 3.3. We will now define both terms again formally and give a

useful lemma.

8.1 Definitions

Definition 8.1 (Adhesion Set). Let G be a graph. Let H be a subgraph of

G. We call a set of vertices A ⊆ V (H) an adhesion set of H in G is there is a

component D of G−H such that A = N(D).

To repeat Definition 2.3:

Definition 8.2 (Finite Adhesion). Let G be a graph. Let H be a subgraph of

G. We say that H has finite adhesion in G if, and only if for all components

D of G−H holds that N(D) is finite.

In other words, H has finite adhesion in G if, and only if all adhesion sets

of H in G are finite.

Definition 8.3 (U -Adhesion Set). Let G be a graph. Let U ⊆ V (G) be a set

of vertices of G. Let H be a subgraph of G. We call a set of vertices A ⊆ V (H)

an U -adhesion set of H in G is there is a U -component D of G−H such that

A = N(D).

Definition 8.4 (Finite Adhesion towards U). Let G be a graph. Further, let

U ⊆ V (G) be a set of vertices of G. Let H be a subgraph of G. We say that

H has finite adhesion in G towards U if, and only if for all U -components D

of G−H holds that N(D) is finite.

In other words, H has finite adhesion in G towards U if, and only if all

U -adhesion sets of H in G are finite.
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8.2 Finite Adhesion Towards U is Closed under Un-

countable Unions

Lemma 8.5. Let G be a connected graph. Let U ⊆ V (G) be a set of ver-

tices. Let {Gi ⊆ G : i < ω1} be an increasing sequence of subgraphs with finite

adhesion in G towards U . Then

G′ :=
⋃
i<ω1

Gi

has finite adhesion in G towards U .

A similar statement was already remarked in [17, Remark 3.2].

Proof. We prove the statement by contraposition. Let G be a connected graph.

Let U ⊆ V (G) be a set of vertices. Let {Gi ⊆ G : i < ω1} be an increasing

sequence of subgraphs. Let G′ :=
⋃

i<ω1
Gi. Let D be a U -component of G−G′

with

|N(D) ∪ V (G′)| = ∞.

We show that there is an i0 < ω1 such that

|N(D) ∩ V (Gi0)| = ∞.

Recursively define a sequence in for n ∈ N: First, let i1 := 0. In the

case that |N(D) ∩ V (Gi1)| = ∞, we stop the recursion and define i0 := i1.

Otherwise, we have to continue. Next, suppose that we still have to continue

after step n. Our aim is to find in+1 < ω1 such that

|N(D) ∩ V (Gin)| < |N(D) ∩ V (Gin+1)|.

Hence, suppose for a contradiction that in+1 does not exist. Thus it follows

that |N(D) ∩ V (Gi)| is bounded by |N(D) ∩ V (Gin)|. Furthermore

N(D) ∩ V (Gin) ⊆ N(D) ∩ V (Gj)

for all j ≤ in. Together this implies

N(D) ∩ V (Gin) = N(D) ∩ V (Gj)
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for all j ≤ in. We conclude that

∞ = |N(D) ∩ V (G′)| =

∣∣∣∣∣N(D) ∩ V

(⋃
i<ω1

Gi

)∣∣∣∣∣
=

∣∣∣∣∣N(D) ∩
⋃
i<ω1

V (Gi)

∣∣∣∣∣ =
∣∣∣∣∣ ⋃
i<ω1

(N(D) ∩ V (Gi))

∣∣∣∣∣
= |N(D) ∩ V (Gin)| < ∞.

Assuming we never run into the trivial case, we now have a sequence (in)n∈N

with in < ω1 such that |N(D) ∩ V (Gin)| < ∞ is strictly increasing. Since

cf(ω1) = ω1
4 and by the fact that the sequence (in)n∈N has length ω0, we find

an ordinal i0 < ω1 which bounds the sequence from above. Thus, it remains

to show that |N(D) ∩ V (Gi0)| = ∞. We know that in < i0 implies Gin ⊆ Gi0

for all n ∈ N, so

|N(D) ∩ V (Gi0)| ≥

∣∣∣∣∣N(D) ∩ V

(⋃
n∈N

Gin

)∣∣∣∣∣
=

∣∣∣∣∣N(D) ∩
⋃
n∈N

V (Gin)

∣∣∣∣∣ =
∣∣∣∣∣⋃
n∈N

(N(D) ∩ V (Gin))

∣∣∣∣∣
= supn∈N|N(D) ∩ V (Gin)| = ∞.

The penultimate equation holds because the sequence of sets N(D) ∩ V (Gin)

is monotone increasing.

The aim of the next chapter is to show the Closure Lemma. Here the

new concepts of finite adhesion towards U and normal semi-partition trees

supported by U will enter.

4Note that for a singular cardinal as ω the statement would fail: For example consider
the double ladder with every vertex in U .
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9 Normal Semi-Partition Trees Supported by

U with Finite Adhesion Towards U

9.1 Preparation

Theorem 9.1. The following do not have countable colouring number:

(i) Barricades

(ii) Aronszajn tree-graphs

For more details, see [16, Lemma 2.4] and [8, Theorem 7.1], respectively.

Lemma 9.2. Let G be a connected graph. Let T be a normal semi-partition

tree for G. Let T ′ ⊆ T be down-closed. Let D be a component of G − G(T ′)

with D ∩G(T ) ̸= ∅. Then there exists a unique T -minimal element tD of

t(D) := {t(v) : v ∈ V (D) ∩ V (G(T ))}.

Proof. Let G be a connected graph. Let T be a normal semi-partition tree

for G. Let T ′ ⊆ T be down-closed. Let D be a component of G − G(T ′)

with D ∩ G(T ) ̸= ∅. Suppose for a contradiction that there are two minimal

elements tD, t
′
D of t(D). Then ⌊tD⌋ and ⌊t′D⌋ are disjoint. By connectedness

of D there is a G(⌊tD⌋)–G(⌊t′D⌋) path P in D. By following P , we obtain a

sequence of points t1, t2, . . . tn in T such that t1 ∈ ⌊tD⌋ and tn ∈ ⌊tD′⌋, we have
that ti and ti+1 are comparable for all i < n. This sequence must contain a

point of ⌈tD⌉ ∩ ⌈t′D⌉. However, by minimality of tD and t′D, it follows that P

avoids G(⌈tD⌉) ∩G(⌈t′D⌉). This is a contradiction.
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Lemma 9.3. Let G be a connected graph. Let T be a normal semi-partition

tree for G. Let T ′ ⊆ T be down-closed. Let D be a component of G − G(T ′)

with D ∩G(T ) ̸= ∅. Let tD be the unique minimal element of

{t(v) : v ∈ V (D) ∩ V (G(T ))}

given by Lemma 9.2. Then

T ′′ := T ′ ∪ {tD}

is down-closed.

Proof. Let G be a connected graph. Let T be a normal semi-partition tree

for G. Let T ′ ⊆ T be down-closed. Moreover, let D be a component of

G − G(T ′) with D ∩ G(T ) ̸= ∅. Let tD be the unique T -minimal element of

{t(v) : v ∈ V (D) ∩ V (G(T ))} given by Lemma 9.2. Let

T ′′ := T ′ ∪ {tD}.

We show that between T ′ and tD there is no other element of T . In other

words, we show that for all t ∈ T , if t < tD then t ∈ T ′. For a contradiction

we assume that between tD and T ′ there is a t ∈ T , i.e. it exists a t ∈ T such

that t < tD and t /∈ T ′. Since the lower neighbours of tD are cofinal in ˚⌈tD⌉
and t ∈ ˚⌈tD⌉ we find a lower neighbour s of tD with t ≤ s. Now, since T ′ is

down-closed, t ≤ s and t /∈ T ′, also s /∈ T ′. Next, our aim is to show that the

choice for tD was not minimal and that s would have been the correct choice.

For this we have to show that D has a vertex v ∈ Vs. We show stronger that

Vs ⊆ D. First notice that Vs is disjoint to G(T ′). By connectedness, indeed

Vs is contained in a component D′ ⊆ G − G(T ′). In contrast to t we know

that for s there exists an VtD–Vs edge in G. Observe by the same argument as

before that VtD ⊆ D since it is disjoint to G−G(T ′) as well. Hence, D = D′.

A contradiction to the minimal choice of tD.

Now we come to the Closure Lemma. It is called like this because we close

a set under desirable properties.
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9.2 Closure Lemma

Lemma 9.4. Let G be a connected graph. Let U ⊆ V (G) be a set of vertices of

uncountable size κ. Let every minor of G supported by U with countable branch

sets have countable colouring number. Let T be a normal semi-partition tree

for G supported by U with U ⊆ G(T ). Let X ⊆ T be an infinite set. Then X

is included in a rooted (normal semi-partition) subtree T ′ ⊆ T with |X| = |T ′|
such that G(T ′) has finite adhesion in G towards U .

This lemma is also an analogue of [17, Lemma 3.7]. In the proof we will

benefit for the first time from all the preliminary work. This is because we

construct barricades supported by U and Aronszajn trees supported by U to

obtain a contradiction to Theorem 9.1. After all, we have already understood

these constructions sufficiently well in the previous sections. Additionally, the

plan is to build T ′ in a normal semi-partition tree T , about which we also

studied in detail. The lemma itself will then be of great help to us in proving

the Decomposition Lemma 10.2. We follow the proof idea of Pitz:

Proof. Let G be a connected graph. Let U ⊆ V (G) be a set of vertices of

uncountable size κ. Let every minor of G supported by U with countable

branch sets have countable colouring number. Let T be a normal semi-partition

tree for G supported by U with U ⊆ G(T ). Let X ⊆ T be infinite.

We recursively build a ⊆-increasing sequence {Ti : i < ω1} of rooted (nor-

mal semi-partition) subtrees of T by letting T0 = ⌈X⌉T . For successor steps,

suppose that Ti is already defined. Let D be a U -component of G − G(Ti).

Since T is supported by U , we have D ∩ G(T ) ̸= ∅. Let tD be the unique

T -minimal element of {t(v) : v ∈ V (D) ∩ V (G(T ))} given by Lemma 9.2. We

define

Ti+1 := Ti ∪ {tD : D is a U -component of G−G(Ti) with |N(D)| = ∞},

which then is down-closed by Lemma 9.3. Further, let

Tℓ :=
⋃
i<ℓ

Ti
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for limit ordinals ℓ < ω1. In the end, we set

T ′ :=
⋃
i<ω1

Ti.

By construction, T ′ is a rooted (normal semi-partition) subtree of T including

X.

To see that G(Ti) has finite adhesion in G towards U , suppose for a contra-

diction that there is a U -component D of G−G(T ′) with |N(D)| = ∞. Since

cf(ω1) = ω1 > ω0, there is some i0 < ω1 such that |N(D)∩G(Ti0)| = ∞. Hence

for all i0 ≤ i < ω1, the unique U -component5 Di of G − G(Ti) containing D

also satisfies |N(Di) ∩G(Ti)| = ∞, because N(D) ∩G(Ti0) ⊆ N(Di) ∩G(Ti).

Then {tDi
: i0 ≤ i < ω1} forms an uncountable chain in T , which gives rise to

the existence of an uncountable branch in T . A contradiction to Lemma 7.8.

It remains to show that |T ′| = |X|. Observe that since T contains no

uncountable chains by Lemma 7.8, we have |T0| = |X|. We now prove by

transfinite induction on i < ω1 that |Ti| = |X|. The cases where i is a limit

are clear, because they are countable. Thus, suppose i = j + 1. By induction

hypothesis, |Tj| = |X|. We show that |Ti| = |Tj| = |X|. Suppose for a

contradiction that |Ti| > |Tj|. We construct a minor of G with countable

branch sets that is a barricade (A,B) such that the B-side is supported by U6.

Define

A := V (G(Tj)).

For B, consider all U -components D of G − G(Tj) with tD ∈ Ti − Tj. By

definition of tD it is true that |N(D)| = ∞. Let N ⊆ N(D) be a countable

subset of N(D). Find for every n ∈ N a neighbour dn ∈ N(n) ∩ D. Also,

let uD ∈ U ∩ D. Then, uD and all dn are at most countable many vertices

in D. Find a tree TD in D of countable size that contains these vertices.

Finally, define B by contracting the trees TD. Since every tree TD in G−G(Tj)

contains at least one vertex of U , the B-side is supported by U . Remember

5Indeed, there is a u ∈ U such that u ∈ D because of the choice of tD.
6i.e. for every vertex b ∈ B the corresponding branch set in G contains a vertex of U
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by Lemma 7.8 that |G(Tj)| = |Tj|. Then by assumption,

|A| = |G(Tj)| = |Tj| < |Ti − Tj|

=
∣∣{tD ∈ Ti : tD was added in step i}

∣∣
≤
∣∣{tD ∈ Ti − Tj}

∣∣ = |B|.

For the minor we only keep the edges between both sides. Thus, the minor is

bipartite. By only adding tD to Tj, that are in U -components D of G−G(Tj)

with |N(D)| = ∞, and by keeping the infinite degree with the construction of

the trees TD, every vertex b ∈ B has infinitely many neighbours. Thereby we

find a barricade (A,B) as a minor in G with countable branch sets such that

the B-side is supported by U . Using Lemma 5.5, we also find a barricade as a

minor of G with countable branch sets such that the minor is supported by U .

This minor has countable colouring number by assumption. A contradiction

to Theorem 9.1(i).

In the case that X is uncountable, observe that

|T ′| =

∣∣∣∣∣ ⋃
i<ω1

Ti

∣∣∣∣∣ ≤ ℵ1 · |X| = |X|.

Also |T ′| ≥ |X|, since X ⊆ T ′. Thus we have |T ′| = |X|. For the other case,

i.e. if X is countable, we also have

|T ′| =

∣∣∣∣∣ ⋃
i<ω1

Ti

∣∣∣∣∣ ≤ ℵ1 · |X|.

Suppose for a contradiction that |T ′| = ℵ1. Since T0 ⊆ T ′ is a rooted (nor-

mal semi-partition) subtree we have that Ġ[T0] is connected as shown in Re-

mark 6.11. Then, construct T ′′ with root r by contracting the rooted (normal

semi-partition) subtree T0 to a vertex r in T ′. This contraction results in a

minor G′′ of Ġ. Since X is countable by assumption and by Lemma 7.8, also

T0 is countable. Hence G′′ has countable branch sets in Ġ and because of

Lemma 7.8 also in G. Call T ′′ the order tree of G′′. Since T ′ is normal in

G, also T ′′ is normal in G′′. By the fact that for a s ∈ T ′ the set of lower

neighbours in G is cofinal in ⌈̊s⌉, we have that for any s ∈ T ′′ the set of lower

neighbours in G′′ is cofinal in ⌈̊s⌉. Thus G′′ is a T ′′-graph. Since Ġ is a minor
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supported by U , also G′′ is a minor supported by U . In the 0th level of T ′′

is only the root. Additionally, by construction and by Lemma 9.3, points in

Ti −
⋃

j<i Tj for i ≥ 1 belong to the ith level of T ′′. Since∣∣∣∣∣Ti −
⋃
j<i

Tj

∣∣∣∣∣ ≤ |Ti| = |X|

and X is countable (in this case), all levels of T ′′ are countable. In the end,

since T ′′ like T ′ and T contains no uncountable chains, if follows that T ′′

is an Aronszajn tree such that the branch sets of G′′ are countable. Since

G′′ ≼ Ġ ≼ G, there is an Aronszajn tree minor of G with countable branch

sets. This minor is supported by U , because it is a minor of Ġ, which is a minor

supported by U . Thus it has countable colouring number by assumption. A

contradiction to Theorem 9.1(ii).

Finally, after all the preliminary work, we turn to the section about the

Decomposition Lemma:
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10 Decomposition Lemma

10.1 Motivation

In [17], Pitz decomposes the graph into induced subgraphs, so that these have

finite adhesion in G. We also want to do this, but Pitz’s precondition is

stronger: He assumes that all minors of G with countable branch sets have

countable colouring number. In the following example we see that our precon-

dition, i.e. that only the minors of G supported by U with countable branch

sets have countable colouring number for a fixed set of vertices U of G, is too

weak. In fact, we stronger show that the precondition is also too weak if all

minors of G supported by U have countable colouring number:

Example 10.1. There is a graph G and a set of vertices U ⊆ V (G) with

the property that all minors of G supported by U have countable colouring

number and such that there is no normal semi-partition tree T supported by

U such that U ⊆ G(T ) and G(T ) has finite adhesion.

Proof. We consider the cases where U is countable or uncountable. Note that

there is no finite U with the properties from above.

U countable: Consider G := Kℵ1 and let U be an arbitrary countable set of

vertices of G. Then, a minor of G supported by U has at most countable

many vertices and hence has countable colouring number. Let T be a

normal semi-partition tree that is supported by U such that U ⊆ G(T ).

Then, T has at most countable many branch sets, since U is countable.

Additionally, every branch set is at most countable by definition of nor-

mal semi-partition trees. Hence, T cannot have finite adhesion.

U uncountable: Now, consider a vertex v and uncountably many disjoint

copies (Ki : i < ω1) of a Kℵ1 . From each Kℵ1
i , choose a vertex vi

and add a v–vi edge. Call the constructed graph G. Now, let U be an

uncountable set of vertices of G − v such that for all i < ω1 it is true

that Kℵ1
i contains countably many vertices of U .

Let H be a minor of G supported by U . We define a well-order on V (H)

that shows that H has countable colouring number. If H has a branch

set Xt such that v ∈ Xt, let t be the first element in the well-order. Next,
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let i < ω1. Define

Si := {s ∈ V (H) : Vs ⊆ V (Kℵ1
i )}.

Find a well-order on Si. As in the upper case, the well-order on Si

has the countable colouring number property. Now concatenate all the

well-orders the other according to the order of their indices, leaving t as

the first element of the well-order. Indeed, this is a well-order of V (H)

showing that H has countable colouring number.

Additionally, note that H does not contain an uncountable clique minor

supported by U . Let T be a normal semi-partition tree that is supported

by U such that U ⊆ G(T ). By Lemma 7.8, every branch set of T is

countable. Since U ⊆ G(T ), for every i < ω1 there is a branch set Vt

of T such that Vt ∩ V (Kℵ1
i ) ̸= ∅. In other words, T goes in every Kℵ1

i .

Hence T does not have finite adhesion as before.

Consequently, we will only make a weaker conclusion. In fact, we will

show that we can find a decomposition in graphs with finite adhesion towards

U . In other words, we can only say something about neighbourhoods of U -

components. We will see later, however, that we are only interested in these.

Additionally, we will also use another property, which is listed below. We

start analogously to [17] with the more general and expanded Decomposition

Lemma:
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10.2 Decomposition Lemma for T -Graphs

Lemma 10.2. Let G be a connected graph. Let U ⊆ V (G) be a set of vertices of

uncountable size κ. Let every minor of G supported by U with countable branch

sets have countable colouring number. Let T be a normal semi-partition tree

for G supported by U with U ⊆ G(T ). Then T can be written as a continuous

increasing union

T =
⋃

i<cf(κ)

Ti

of infinite, < κ-sized rooted (normal semi-partition) subtrees Ti such that

(i) all graphs G(Ti) have finite adhesion in G towards U ,

(ii) for every U-adhesion set S of G(Ti) in G there are infinitely many U-

components D of G−G(Ti) with N(D) = S.

We again use the same proof idea as Pitz in [17, Lemma 3.6], but adapted

to our situation. Furthermore, we extend the proof so that the property (ii)

holds. Lemma 9.4 is used here frequently:

Proof. Let G be a connected graph. Let U ⊆ V (G) be a set of vertices of

uncountable size κ. Let every minor of G supported by U with countable

branch sets have countable colouring number. Let T be a normal semi-partition

tree for G supported by U with U ⊆ G(T ).

By the second part of Lemma 7.8, we have |G(T )| = |Ġ|. Since U ⊆ G(T ),

it follows that

κ = |U | ≤ |G(T )| = |Ġ| = |T |.

Since Ġ is supported by U , there is for every t ∈ T a vertex u ∈ U such that

u is contained in the branch set Vt of G(T ). Thus there are at most κ many

branch sets in G(T ). Hence

κ = |U | ≥ |Ġ| = |T |.7

Summarised we have that κ = |T |. Fix an enumeration {ti : i < κ} of the

points of T .

We distinguish between the two cases whether κ is a regular or a singular

cardinal:
7By the second part of Lemma 7.8 we even get |U | ≥ |G(T )|.
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κ is a regular uncountable cardinal: For the first case, suppose that κ is a

regular uncountable cardinal. Consider Ġ. Since T is supported by U ,

it follows that Ġ is a minor of G supported by U . With Lemma 7.8 it

follows that Ġ has countable branch sets. Hence by assumption, Ġ has

countable colouring number. Find a well-order ≤̇ of V (Ġ) of order type

|Ġ|8 witnessing that Ġ has countable colouring number, i.e. such that

for every vertex v ∈ V (Ġ) there are at most finitely many neighbours

u ≤̇ v.

We recursively define a continuous increasing sequence {Ti : 0 ≤ i < κ}
such that

(a) Ti is an infinite rooted normal semi-partition subtree of T for all

0 ≤ i < κ9,

(b) ti ∈ Ti+1 for all 0 ≤ i < κ,

(c) the points of Ti form a proper initial segment of (V (Ġ), ≤̇) for all

0 ≤ i < κ,10

(d) for all 0 ≤ i < κ and for every finite subset S ⊆ V (G(Ti)) there are

either 0 or κ many U -components D of G−G(Ti) with N(D) = S,

(e) G(Ti) has finite adhesion in G towards U for all 0 ≤ i < κ.

Then Ti is as desired for all 0 ≤ i < κ.

First, define T−1 := ⌈{ti : i < ω}⌉T . Then T−1 ⊆ T is an infinite set of

size ω < κ. Also, define t−1 := ∅.

Now, suppose that Ti is defined and for all 0 ≤ j ≤ i suppose that Tj

satisfies the properties (a) – (e). If ti ∈ Ti, simply define Ti+1 := Ti.

Otherwise, let T 0
i := Ti ∪ ⌈ti⌉. For n ∈ N suppose that we have already

defined T 3n
i . Use Lemma 9.4 to define a rooted (normal semi-partition)

subtree T 3n+1
i ⊆ T that contains T 3n

i and with |T 3n
i | = |T 3n+1

i | such
that G(T 3n+1

i ) has finite adhesion in G towards U . Further, for n ∈ N
suppose that we have already defined T 3n+1

i . Let T 3n+2
i be the smallest

(normal semi-partition) subtree of T including the down-closure of T 3n+1
i

8see e.g. [9, Corollary 2.1]
9and thus supported by U

10Then |Ti| < κ for all 0 ≤ i < κ.
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in (V (Ġ), ≤̇).11 Now suppose that for n ∈ N we have already defined

T 3n+2
i . Let D be the set of all U -components D of G−G(T 3n+2

i ) for which

N(D) is finite and there exist only less than κ many U -components D′

of G−G(T 3n+2
i ) with N(D) = N(D′). For every D ∈ D, choose a vertex

uD ∈ D ∩ U and let tD be the point in T such that VtD contains uD.

Let T 3n+3
i be the smallest (normal semi-partition) subtree of T which

contains T 3n+2
i ∪ {tD : D ∈ D}.

In the end, define

Ti+1 :=
⋃
n∈N

T n
i .

By construction, Ti+1 is a rooted (normal semi-partition) subtree of T

with ti ∈ Ti+1 and hence the properties (a) and (b) are satisfied.

For property (c), we have to show that the points of Ti+1 form a proper

initial segment of (V (Ġ), ≤̇). First we show that the points of Ti+1 form

an initial segment of (V (Ġ), ≤̇). Now, let t ∈ Ti+1. Then there is an

0 ≤ k < κ such that t ∈ Tk. Choose k minimal with that property. Then

k =: j + 1 is a successor or zero such that we constructed T n
j for all

n ∈ N0. For Tj find an n ∈ N such that ti ∈ T 3n+2
j . By construction, all

preceding points of t with reference to ≤̇ are contained in T 3n+2
j . To see

that this initial segment is proper, we first show by induction on n that

|T n
i | < κ. Since |Ti| < κ it follows with Lemma 7.8 that |T 0

i | < κ. Now

suppose that |T 3n
i | < κ. Then |T 3n+1

i | < κ by Lemma 9.4. Next, observe

that the points of T 3n+1
i cannot be a cofinal chain in (V (Ġ), ≤̇), since

|T 3n+1
i | < κ = cf(κ). This follows because κ is regular by assumption.

Hence the down-closure of T 3n+1
i in (V (Ġ), ≤̇) has size < κ. Now take

the down-closure of these points in T . This defines the rooted (normal

semi-partition) subtree T 3n+2
i of T of size < κ.12 Next, we show that

also |T 3n+3
i | < κ. This follows because |T 3n+2

i | < κ and therefore there

are only < κ finite subsets of V (G(T 3n+2
i )). Thus the set D from the

construction of T 3n+3
i has size < κ and it follows that also |T 3n+3

i | < κ.

This proves that |T n
i | < κ for all n ∈ N.

Since κ is a regular uncountable cardinal, it has uncountable cofinality.

11For every t ∈ T 3n+1
i add all t′ ∈ T if t′ ≤̇ t.

12Since the down-closure of < κ many points is still < κ, because the branches are count-
able.
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Since Ti+1 is the countable union of all T n
i and all of them are of size

< κ, indeed |Ti+1| < κ. Thus the initial segment is proper.

Now we show property (d). Let S be a finite subset of V (G(Ti+1)) and

let DS be the set of all U -components D of G−G(Ti+1) with N(D) = S.

We have to show that |DS| = 0 or |DS| = κ. Since S is finite, there

exists n ∈ N such that S ⊆ V (G(T 3n+2
i )). Let D′

S be the set of all U -

components D of G−G(T 3n+2
i ) with N(D) = S. If |D′

S| = κ, then also

|DS| = κ since |V (G(Ti+1))| < κ by (c). Now suppose that |D′
S| < κ. Let

D′′
S be the set of all U -components D of G − G(T 3n+3

i ) with N(D) = S

and note that DS ⊆ D′′
S since S ⊆ V (G(T 3n+2

i )) ⊆ V (G(T 3n+3
i )). Then

we have that D′′
S = ∅: Indeed, if D is any component in D′′

S, then D is

also contained in D′
S because S ⊆ V (G(T 3n+2

i )). However, from D ∈ D′
S

it follows that D /∈ D′′
S by construction of T 3n+3

i , a contradiction. Hence

|D′′
S| = 0 and it follows that |DS| = 0.

It remains to show property (e), i.e. that G(Ti+1) has finite adhesion in

G towards U . Suppose for a contradiction that there is a U -component

D of G−G(Ti+1) with infinitely many neighbours in G(Ti+1). Consider

t(D) := {t(v) : v ∈ V (D) ∩G(T )}.

Fix u ∈ U such that u ∈ D. By the fact that U ⊆ G(T ), it follows that

t(u) ∈ t(D). Thus t(D) ̸= ∅. Let tD be the unique T -minimal element

of t(D) (given by Lemma 9.2).

Claim: tD is a limit of T .

First note that for all −1 ≤ i < κ it holds that Ti+1 ̸= ∅, since the trees
are nested and T−1 ̸= ∅. This means that tD ̸= 0. Next, let x <T tD.

Then it follows that x ∈ Ti+1 by Lemma 9.3. Hence there exists an

n ∈ N such that x ∈ T 3n+1
i . Since T 3n+1

i is down-closed, we have

that for v ∈ N(D) with t(v) ≤ x it follows that t(v) ∈ T 3n+1
i . Thus

v ∈ G
(
T 3n+1
i

)
. Since v ∈ N(D), we have that v ∈ G

(
T 3n+1
i

)
∩N(D).

Now,
∣∣G (T 3n+1

i

)
∩ N(D)

∣∣ must be finite, since G
(
T 3n+1
i

)
has finite

adhesion in G towards U . Since T 3n+1
i is down-closed, it holds that

⌈x⌉T 3n+1
i

⊆ T 3n+1
i .
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Thus

G
(
⌈x⌉T 3n+1

i

)
∩N(D) ⊆ G(T 3n+1

i ) ∩N(D)

and hence
∣∣G(⌈x⌉T 3n+1

i

)
∩ N(D)

∣∣ is finite, too. In other words, only

finitely many neighbours v ∈ N(D) satisfy t(v) ≤T x. Since we sup-

pose that |N(D)| is infinite, now it follows that at least one neighbour

v ∈ N(D) satisfies x <T t(v) <T tD. Hence tD is a limit.

By the definition of a T -graph, tD has infinitely many neighbours below

it in Ġ and hence in Ti+1. However, since Ti+1 forms an initial segment

in (V (Ġ), ≤̇) by (c) that does not contain tD by the choice of tD, it

follows that tD is preceded by infinitely many of its neighbours in ≤̇. A

contradiction to the choice of ≤̇. Thus G(Ti) has finite adhesion in G

towards U .

Now let 0 < ℓ < κ be a limit. Define

Tℓ :=
⋃
i<ℓ

Ti.

Then, Tℓ is an infinite rooted normal semi-partition subtree of T . Indeed,

the points of Tℓ form an initial segment of (V (Ġ), ≤̇). Further, G(Tℓ)

has finite adhesion in G towards U , which can be shown analogously as

before. Thus we have that the properties (a) and (e) hold. Moreover,

for property (b) there is nothing to show. Property (d) can be proven

similarly to the successor case. For property (c) it remains to show

that the points of Tℓ form a proper initial segment of (V (Ġ), ≤̇). By

assumption cf(κ) = κ is a regular uncountable cardinal. Thus we have

that ℓ < κ = cf(κ). Since Tℓ is the union of λ many subtrees Ti with size

< κ, indeed |Tℓ| < κ. Thus the initial segment is proper.
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κ is a singular uncountable cardinal: Now suppose that κ is a singular un-

countable cardinal. First, we enumerate V (T ) = {ti : i < κ} and let

{κi : i < cf(κ)} be a continuous increasing sequence of cardinals with

limit κ, where κ0 > cf(κ) is uncountable. We build a family

{Ti,j : i < cf(κ), j < ω1}

of infinite rooted (normal semi-partition) subtrees of T with G(Ti,j) of

finite adhesion in G towards U , such that |Ti,j| = κi for all i and j. For

this, we do a nested recursion on i and j. When we come to choose Ti,j,

we will already have chosen all Ti′,j′ with j′ < j, or with both j′ = j

and i′ < i. Whenever we have just selected such a subtree Ti,j, we fix

immediately an enumeration {tki,j : k < κi} of this tree. We impose the

following conditions for all i < cf(κ) and j < ω1 on this construction:

(a) Ai := {tk : k < κi} ⊆ Ti,0,

(b) Bi,j :=
⋃

{Ti′,j′ : i
′ ≤ i, j′ ≤ j, (i′, j′) ̸= (i, j)} ⊆ Ti,j,

(c) Ci,j+1 := {tki′,j : k < κi, i < i′ < cf(κ)} ⊆ Ti,j+1.

(d) Let D be the set of all U -components D of G − G(Ti,j) for which

N(D) is finite and there exist at most κi many U -components D′

of G−G(Ti,j) with with N(D) = N(D′). For every D ∈ D, choose

a vertex uD ∈ D ∩ U and let tD be the point in T such that VtD

contains uD. Then

Di,j+1 := {tD : D ∈ D} ⊆ Ti,j+1.

These three conditions specify a vertex subset Xi,j ⊆ T which has to

be included in Ti,j. Using Lemma 9.4, we let Ti,j be a (normal semi-

partition) subtree that contains Xi,j and that has the same size as Xi,j.

Then, G(Ti,j) has finite adhesion in G towards U for all i < cf(κ) and

j < ω1.

Claim: For all i < cf(κ) and j < ω1 we have |Ti,j| = κi.

We prove the claim by a nested transfinite induction on i and j. Sup-

pose that |Ti′,j′| = κi′ for all i
′, j′ with j′ < j, or with both j′ = j and
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i′ < i. We have to show that |Ti,j| = κi and by Lemma Lemma 9.4 it

suffices to show that |Xi,j| = κi.

If j = 0, then Xi,0 = Ai ∪ Bi,0. Indeed, |Ai| = |{tk : k < κi}| = κi.

We also have |Bi,j| = |
⋃
{Ti′,0 : i

′ < i}| ≤ κi because |Ti′ | = κi′ for all

i′ < i and the {κi : i < cf(κ)} sequence is increasing. Thus it holds

that |Xi,0| = κi.

Now, let 0 < j < ω1 and suppose that j = h+1 is a successor ordinal,

then Xi,j = Bi,j ∪ Ci,j ∪Di,j. Then

|Bi,j| =
∣∣∣⋃ {Ti′,j′ : i

′ ≤ i, j′ ≤ j, (i′, j′) ̸= (i, j)}
∣∣∣ ≤ κi

because the {κi : i < cf(κ)} sequence is increasing and

|Ci,j| =
∣∣{tki′,h : k < κi, i < i′ < cf(κ)}

∣∣ = κi · cf(κ) = κi.

It is clear that |Di,j| ≤ κi. Thus, |Xi,j| = κi.

Finally, let 0 < j < ω1 and suppose that j is a limit ordinal, then

Xi,j = Bi,j. Hence,

|Bi,j| =
∣∣∣⋃ {Ti′,j′ : i

′ ≤ i, j′ ≤ j, (i′, j′) ̸= (i, j)}
∣∣∣ ≤ κi

as before and therefore |Xi,j| = κi. This completes the proof of the

claim.

Now, we define

Ti :=
⋃
j<ω1

Ti,j

for all i < cf(κ). We show that for all i < cf(κ) the Ti are infinite, < κ-

sized (normal semi-partition) subtrees of T such that all graphs G(Ti)

have finite adhesion in G towards U .

Let i < cf(κ). Since T0,0 ⊆ Ti by property (b), indeed κ0 = |T0,0| ≤ |Ti|.
Since κ0 is infinite, |Ti| is infinite, too. By the fact that for all j < ω1

it holds that G(Ti,j) has finite adhesion in G towards U , it follows by

Lemma 8.5 that also G(Ti) has finite adhesion in G towards U . To see

that the sequence {Ti : i < cf(κ)} is continuous, we show in the following

that Tℓ =
⋃

i<ℓ Ti for all ℓ < cf(κ). Let ℓ < cf(κ) be a limit and j < ω1.
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Since the {κi : i < cf(κ)} sequence is continuous, κℓ =
⋃

i<ℓ κi. Thus

Tℓ,j = {tkℓ,j : k < κℓ} = {tkℓ,j : k <
⋃

i<ℓ κi}

=
⋃

i<ℓ {tkℓ,j : k < κi}.

With property (c), Tℓ,j is a subset of
⋃

i<ℓ Ti,j+1 ⊆
⋃

i<ℓ Ti. Hence is

Tj ⊆
⋃

i<ℓ Ti.

Furthermore, for the other inclusion, it is enough to show that the se-

quence {Ti : i < cf(κ)} is increasing. But this follows by property (b).

It is left to show that for all 0 ≤ i < cf(κ) and for every finite subset

S of V (G(Ti)) there are either 0 or infinitely many U -components D of

G− G(Ti) with N(D) = S. The proof works similarly as in the regular

case. Let S be a finite subset of V (G(Ti)) and let DS be the set of all

U -components D of G−G(Ti) with N(D) = S. We show that |DS| = 0

or |DS| > κi. Since S is finite and Ti =
⋃

j<ω1
Ti,j, there exists j∗ < ω1

such that S ⊆ V (G(Ti,j∗)). Let D′
S be the set of all U -components D of

G − G(Ti,j∗) with N(D) = S. If |D′
S| > κi, then also |DS| > κi since

|V (G(Ti))| = κi. Now suppose that |D′
S| ≤ κi. Let D′′

S be the set of

all U -components D of G − G(Ti,j∗+1) with N(D) = S and note that

DS ⊆ D′′
S since S ⊆ V (G(Ti,j∗)) ⊆ V (G(Ti,j∗+1)). Then we have that

D′′
S = ∅ by (d). It follows that |DS| = 0.

Remark 10.3. Note that in the setting of Lemma 10.2 also the Ti are normal

semi-partition subtrees supported by U for all i < cf(κ).

Analogous to [17], the more general and expanded Decomposition Lemma

10.2, which we have just proved, now directly leads to the Decomposition

Lemma 10.4, which we will use later in the main proof in Section 12:
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10.3 Decomposition Lemma

Lemma 10.4. Let G be a connected graph. Let U ⊆ V (G) be a set of vertices

of uncountable size κ. Let every minor of G supported by U with countable

branch sets have countable colouring number. Then U can be covered by a

continuous increasing union

U ⊆
⋃
i<σ

Gi

of infinite, < κ-sized connected induced subgraphs Gi such that

(I) all graphs Gi have finite adhesion in G towards U ,

(II) for every U-adhesion set S of Gi in G there are infinitely many U-

components D of G−Gi with N(D) = S.

The analogous Decomposition Lemma of Pitz can be found in [17, Lemma

3.3].

Proof. Let G be a connected graph. Let U ⊆ V (G) be a set of vertices of

uncountable size κ. Let every minor of G supported by U with countable

branch sets have countable colouring number. Let T be a normal semi-partition

tree for G supported by U with U ⊆ G(T ). Indeed, T exists because of

Lemma 6.12. By Lemma 10.2, T can be written as a continuous increasing

union

T =
⋃

i<cf(κ)

Ti

of infinite, < κ-sized rooted (normal semi-partition) subtrees Ti satisfying

Lemma 10.2 (i) and Lemma 10.2 (ii).

Define σ := cf(κ) and Gi := G(Ti). Then⋃
i<σ

Gi =
⋃

i<cf(κ)

G(Ti)

is a continuous increasing union that covers G(T ) and thus also covers U , since

U ⊆ G(T ). Since for all i < σ it is satisfied that Ti is infinite, also Gi is infinite

for all i < σ. By definition of G(Ti), for all i < σ we have that Gi is an induced

subgraph of G. By Lemma 7.8 and since every |Ti| < κ it follows that |Gi| < κ

for all i < σ. Finally, property (I) and (II) follow directly from Lemma 10.2

(i) and Lemma 10.2 (ii), respectively.
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Remark 10.5. Consider the same setup as in Lemma 10.4. Remember that

every Ti in Lemma 10.2 is supported by U . By the choice of Gi in the proof

of Lemma 10.4 it follows that every Ġi is supported by U , too.

We now come to the definition of SG(U,H) for a subgraph H and a set of

vertices U of a graph G:
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11 SG(U,H)

11.1 Definition

Definition 11.1. Let G be a connected graph. Let U ⊆ V (G) be a set of

vertices. Let H ⊆ G be a subgraph of G. Let

N :=
⋃
D∈D

N(D),

where D is the set of all U -components of G−H. We define the set of vertices

SG(U,H) := (H ∩ U) ∪N.

So far we have understood this set as a canonical separator of U and H in

G. In the following, we investigate further properties, which we will then use

for the main proof in Section 12.

11.2 Direction Lemma

Lemma 11.2. Let G be a connected graph. Let U be a subset of V (G). Let

H and H ′ be subgraphs of G with H ⊆ H ′. Let D be a connected subgraph of

G − SG(U,H) that meets SG(U,H
′). Then D is contained in a U-component

of G−H.

Proof. Let G be a connected graph. Let U be a subset of V (G). Further let

H and H ′ be subgraphs of G with H ⊆ H ′. Let D be a connected subgraph

of G− SG(U,H) that meets SG(U,H
′). If D contains a vertex of U , it clearly

holds that D is contained in a U -component of G−H.

If D does not contain a vertex of U , then D must contain a neighbour

v of a U -component C of G − H ′ by definition of SG(U,H
′). Then define

B := G[V (D) ∪ V (C)]. It is true that B is connected because D and C

are connected and there is an edge from v ∈ D to C. It is left to show

that B is disjoint to H, then it follows that D ⊆ B is contained in a U -

component of G − H. Suppose for a contradiction that B meets H. Note

that C contains a vertex u ∈ G − H ′ ⊆ G − H. Since B is connected and

contains u, it follows that B meets H in a neighbour of a U -component of
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G−H. Therefore, B meets SG(U,H). However, both D and C are disjoint to

SG(U,H), a contradiction.

11.3 Trees Cofinally Containing a Superset of SG(U,H)

Have Finite Adhesion Towards U

Lemma 11.3. Let G be a connected graph. Let U ⊆ V (G) be a set of vertices of

G. Let H ⊆ G be a subgraph of finite adhesion in G towards U . Let X ⊆ V (H)

be a superset of SG(U,H). Let T be a rooted tree in G that cofinally contains

X. Then any U-component D of G−H satisfies |D ∩ T | < ∞.

Pitz proves a similar auxiliary Lemma in [17, Lemma 4.3]. We are orienting

ourselves to his proof idea.

Proof. Let G be a connected graph. Let U ⊆ V (G) be a set of vertices of

G. Moreover, let H ⊆ G be a subgraph of finite adhesion in G towards U .

Let X ⊆ V (H) be a superset of SG(U,H). Let T be a rooted tree in G

that cofinally contains X. Let D be a U -component of G − H. Suppose for

a contradiction that |D ∩ T | = ∞. We recursively construct disjoint paths

Pn ⊆ ⌊dn⌋T with endvertices dn ∈ D ∩ T and hn ∈ X. Suppose that the paths

P1, . . . , Pn ⊆ T have already been constructed. Define

Q :=

⌈⋃
m≤n

V (Pm)

⌉
T

.

Since for all n we have that Pn is finite and we have finitely many paths, the

union of them is finite. Since the down-closure of finitely many vertices in a

graph theoretical tree is finite, the down-closure of the union of all Pn is finite

as well. Thus Q is finite. By assumption, D∩T is infinite and hence there is a

dn+1 ∈ (D∩T )\Q. Since X is cofinal in T , there is a vertex hn+1 ∈ X ⊆ V (H)

above dn+1. Let Pn+1 be the unique path in T from dn+1 to hn+1. Since Q is

down-closed, we have ⌊dn+1⌋ ∩ Q = ∅. Since Pn+1 ⊆ ⌊dn+1⌋, it follows that

Pn+1 is disjoint from P1, . . . , Pn.

However, the existence of infinitely many pairwise disjoint paths from D

to SG(U,H) in G give rise to the existence of infinitely many pairwise disjoint

paths from D to H in G. However, this contradicts that H has finite adhesion

in G towards U .
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Lemma 11.4. Let G be a connected graph. Let U be a subset of V (G). Let H

be a subgraph of G with finite adhesion in G towards U . Further let X ⊆ V (H)

be a superset of SG(U,H). Let T be a rooted tree in G that cofinally contains

X. Further let C be a component of G−T that is contained in a U-component

of G−H. Then |N(C)| is finite.

Again, Pitz proves a similar Lemma in [17, Claim 4.1]. We follow his proof

idea.

Proof. Let G be a connected graph. Let U be a subset of V (G). Let H be

a subgraph of G with finite adhesion in G towards U . Let X ⊆ V (H) be a

superset of SG(U,H). Let T be a rooted tree in G that cofinally contains X.

Further let C be a component of G − T that is contained in a U -component

D of G−H. Consider the neighbours of C in T . Observe that

N(C) = (N(C) ∩ V (H)) ∪ (N(C) \ V (H)).

First note that N(C) ∩ V (H) ⊆ N(D) ∩ V (H). Since H has finite adhesion

in G towards U , we have that |N(C) ∩ V (H)| ≤ |N(D) ∩ V (H)| is finite. In

addition, observe that N(C) \ V (H) ⊆ T ∩ D. Use Lemma 11.3 to see that

|T ∩D| is finite. Then, |N(C)\V (H)| ≤ |T ∩D| is finite as well. All together,

|N(C)| ≤ |N(C) ∩ V (H)|+ |N(C) \ V (H)|

is finite. Hence, T has finite adhesion in G towards U .

11.4 Minors Supported by SG(U,H) Have Countable Co-

louring Number

Lemma 11.5. Let G be a graph. Let H be a minor of G with finite branch

sets. If H has countable colouring number, then G has countable colouring

number.

Proof. Let G be a graph. Let H be a minor of G with finite branch sets

(Xv : v ∈ V (H)) and countable colouring number. Let ≤̇ be a well-order of

V (H) witnessing thatH has countable colouring number. For every v ∈ V (H),

fix a linear order ≤v of the finite set Xv. We define a well-order ≤ of V (G).

Let a, b ∈ V (G) and let v and w be the vertices of H such that a ∈ Xv and
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b ∈ Xw. We define a ≤ b if and only if either v ̸= w and v ≤̇w or if v = w and

a ≤v b.

We show that ≤ witnesses that G has countable colouring number. So let b

be any vertex of G and let w be the vertex of H such that b ∈ Xw. Suppose for

a contradiction that there are infinitely many vertices {ai : i < ω} of G with

ai ≤ b. For every ai, let vi be the vertex of H such that ai ∈ Xvi . Since the

branch sets of H are finite, the set {vi : i < ω} is infinite. But every vi with

vi ̸= w is adjacent to w in H because ai is adjacent to b in G. Further, for

every vi it holds that vi ≤̇w, since ai ≤ b. It follows that there are infinitely

many neighbours vi of w in H with vi ≤̇w, a contradiction to the choice of

≤̇.

Lemma 11.6. Let G be a connected graph. Let U ⊆ V (G) be a set of vertices.

Let every minor of G supported by U with countable branch sets have countable

colouring number. Let H ⊆ G be an induced subgraph of G such that H has

finite adhesion in G towards U and such that for all U-adhesion sets S of H

there are infinitely many U-components D with S = N(D). Then every minor

of G supported by SG(U,H) with countable branch sets has countable colouring

number.

Proof. Let G be a connected graph. Let U ⊆ V (G) be a set of vertices. Let

every minor of G supported by U with countable branch sets have countable

colouring number. Let H ⊆ G be an induced subgraph of G such that H has

finite adhesion in G towards U and such that for all U -adhesion sets S of H

there are infinitely many U -components D with S = N(D). Write H̃ for the

subgraph of G induced by the union of H with all components D of G − H

with D ∩ U = ∅. Note that the U -components of G − H are the same as

the components of G − H̃ and the U -adhesion sets of H are the same as the

adhesion sets of H̃. We write N for the set of all adhesion sets of H̃. Now

let GS be a minor of G supported by SG(U,H) with countable branch sets

(Xa : a ∈ V (GS)). We write A for the subset of V (GS) containing all vertices

a ∈ V (GS) such that Xa contains a neighbour of a component of G − H̃.

Choose a function φ : A → N such that Xa ∩ φ(a) ̸= ∅ for all a ∈ A. Our

aim is to find countable pairwise disjoint connected subsets (X ′
a : a ∈ V (GS)

of V (G) such that
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(i) GS is a minor of G with branch sets (X ′
a : a ∈ V (GS)),

(ii) for every N in the image of φ there is a vertex a ∈ φ−1(N) such that X ′
a

contains a vertex from U .

First, we show why finding branch sets (X ′
a : a ∈ V (GS)) as above completes

the proof. Consider the minor GU of GS where we contract the set φ−1
(N) for

all N ∈ N to a single vertex. Note that the set φ−1
(N) is finite because N is

finite as H̃ has finite adhesion. Then GU is a minor of G with countable branch

sets supported by U by (ii). By assumption, GU has countable colouring

number. Since GU is also a minor of GS with finite branch sets, Lemma 11.5

implies that GS has countable colouring number as desired.

Now it remains to show that there exist countable pairwise disjoint con-

nected subsets (X ′
a : a ∈ V (GS)) of V (G) satisfying (i) and (ii). For all

a ∈ V (GS), we define X ′
a as a superset of Xa ∩ V (H̃) in three steps.

In the first step, we define X̄a for all a ∈ V (GS) with the properties that

Xa ∩ V (H̃) = X̄a ∩ V (H̃) and that for every N ∈ N there are only finitely

many components D of G − H̃ with X̄a ∩ D ̸= ∅ and N(D) = N . For that,

let Da be a minimal set of components of G − H̃ with the property that

X̄a := Xa ∩ (H̃ ∪
⋃

Da) is connected. Note that Da exists because Xa is

connected in G. Now let N ∈ N . Since N is finite, there are only finitely

many pairs of vertices v, w in N for which there exists a v–w path with inner

vertices in Xa∩D for a component D of G−H̃ with N(D) = N . For every pair

of vertices, it is enough for Da to contain only one such component D. Thus,

by minimality of Da, there are only finitely many components D of G − H̃

with X̄a ∩D ̸= ∅ and N(D) = N , as required.

Furthermore, we claim that for every N ∈ N , there are only finitely many

componentsD of G−H̃ with
⋃

{X̄a : a ∈ V (GS)}∩D ̸= ∅ and N(D) = N : We

already know that for all a ∈ V (GS), there are only finitely many components

D of G − H̃ with X̄a ∩ D ̸= ∅ and N(D) = N . But since N is finite, there

are only finitely many a ∈ V (GS) for which X̄a meets N . Thus there are only

finitely many a ∈ V (GS) for which X̄a meets a component D with N(D) = N ,

and each X̄a meets only finitely components D with N(D) = N . This proves

the claim above.

In the second step, for every N in the image of φ we choose a vertex

a∗ ∈ φ−1(N) and a component D of G− H̃ with
⋃
{X̄a : a ∈ V (GS)} ∩D ̸= ∅

61



and N(D) = N . Let P be a X̄a∗–U path in G with inner vertices in D. Note

that P exists because it is true that X̄a∗ ∩ N = Xa∗ ∩ N = Xa∗ ∩ φ(a∗) ̸= ∅
and because D is connected. We define the set X̂a∗ by adding all vertices of P

to X̄a∗ . For all other a ∈ V (GS), define X̂a := X̄a. This ensures property (ii).

Also, for every N ∈ N, there are only finitely many components D of G − H̃

with
⋃

{X̂a : a ∈ V (GS)} ∩ D ̸= ∅ and N(D) = N . This is true because the

same is true for the sets X̄a and for every N ∈ N we added at most one path

P to a component D of G− H̃ with N(D) = N .

In the third step, we further expand X̂a for every a ∈ V (GS) to a set X ′
a

with the property that there is an X ′
a–X

′
b edge in G if there is an Xa–Xb edge in

G.13 We also make sure that the sets X ′
a are pairwise disjoint and connected.

Then property (i) holds. Enumerate all edges ab of GS such that there is

an Xa–Xb edge in G but no X̂a–X̂b edge by {aibi : i < µ} for a cardinal µ.

For every i < µ, there must exist a Xai–Xbi edge with at least one endvertex

inside some component D of G− H̃. Hence either Xai or Xbi contains a vertex

di ∈ D. Let us assume without loss of generality that di ∈ Xai . (Otherwise,

we rename ai and bi.) Further, Xai and Xbi meet Ni := N(D) ∈ N and thus

also X̂ai and X̂bi meet Ni. Note that every N ∈ N only occurs as Ni for

finitely many i < µ since N is finite. In each step i, we will expand X̂ai by

adding a finite connected set of vertices Yi such that there is a Yi–X̂ai edge

and a Yi–X̂bi edge in G and such that Yi is contained in a component D of

G− H̃ with N(D) = Ni. Suppose that we have already done this for all j < i

for an i < µ. Let Di be the set of components of G− H̃ with N(D) = Ni. By

assumption, Di is infinite. Note that there are only finitely many j < µ with

Nj = Ni and therefore only finitely many j < µ for which Yj is contained in a

component from Di. Further, there are only finitely many components D ∈ Di

with
⋃
{X̂a : a ∈ V (GS)} ∩Di ̸= ∅. Hence there exists a component Di ∈ Di

such that Di is disjoint to X̂a for all a ∈ V (GS) and disjoint to Yj for all j < i.

Next, since X̂ai and X̂bi meet Ni = N(Di), there is an X̂ai–X̂bi path P in G

with inner vertices in Di. Let Yi be the set of inner vertices of P .

In the end, for all a ∈ V (GS) define X ′
a as the union of X̂a with all sets Yi

for i < µ such that a = ai. By construction, it follows that indeed there is an

X ′
a–X

′
b edge in G if there is an Xa–Xb edge in G.

13It can also happen that there is a X ′
a–X

′
b but no Xa–Xb. Then GS is still a minor of G

with branch sets (X ′
a : a ∈ V (GS)) by Definition 2.10.

62



By construction and by the fact that X̄a is connected, also X ′
a is connected

for every a ∈ V (GS). Further, we have X ′
a ∩ X ′

b = ∅ for a ̸= b ∈ V (GS).

It remains to show that X ′
a is countable for all a ∈ V (GS). Note that X̂a is

countable since Xa is countable. Now suppose for a contradiction that X ′
a is

uncountable. Since also X̂a is countable, this means that we added uncountable

many sets Yi to X̂a. Thus there is an uncountable set I ⊆ µ with a = ai for

all i ∈ I. Since every N ∈ N only occurs finitely often as Ni for i < µ, it

follows that there is an uncountable subset J ⊆ I such that Nj ̸= Nj′ for all

j ̸= j′ ∈ J . For every j ∈ J , we know that there is a vertex dj ∈ Xa such

that dj is contained in a component D of G − H̃ with N(D) = Dj. Since J

is uncountable, we have that also Xa is uncountable, a contradiction. This

proves that X ′
a is countable.
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12 Minor Characterisation with Countable Co-

louring Number

12.1 Theorem

Theorem 12.1. Let G be a connected graph. Let U ⊆ V (G) be a set of vertices

of G. Then, the following are equivalent:

(1) U is normally spanned in G,

(4) every minor of G supported by U with countable branch sets has countable

colouring number.

Here, too, we roughly follow Pitz’s proof structure.

Proof. Let G be a connected graph. Let U ⊆ V (G) be a set of vertices of size

κ.

(1) ⇒ (4): ✓ (see Section 12)

(4) ⇒ (1): Suppose that every minor of G supported by U with countable

branch sets has countable colouring number. We prove the implication by

induction on κ. For the start of the induction suppose that κ is countable.

By Jung [Theorem 2.8], U is normally spanned in G. For the induction

step, suppose that κ is uncountable. Suppose that all X ⊆ V (G) of

size < κ are normally spanned in G, if every minor of G supported by

X with countable branch sets has countable colouring number. With

Lemma 10.4, find a continuous increasing chain {Gi : i < σ} of infinite,

< κ-sized connected induced subgraphs Gi that cover U and such that

all Gi have finite adhesion in G towards U . Further, we may assume

that for every U -adhesion set S of G − G(Ti), there are infinitely many

U -components D of G−G(Ti) with N(D) = S.

Define

Si :=
⋃
j≤i

SG(U,Gj).

We construct by recursion on i < σ a sequence of normal trees {Ti : i < σ}
in G extending each other all with the same root, such that each Ti con-
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tains Si cofinally. In the end, define

T :=
⋃
i<σ

Ti.

Then, T is the desired normal tree in G that covers U ⊆ Sσ.

It remains to describe the recursive construction. Let i < σ. First, let

i = 0 and consider SG(U,G0) = S0. By Lemma 11.6, every minor of

G supported by S0 with countable branch sets has countable colouring

number. Since |S0| ≤ |G0| < κ, we find a normal tree in G that contains

S0 by induction hypothesis. In particular, by Jung [Theorem 2.8], we

find a normal tree T0 in G that contains S0 cofinally.

Next, suppose that i = ℓ is a limit. Define

Tℓ :=
⋃
j<ℓ

Tj.

Then Tℓ is a normal tree in G with the same root as Tj and also extending

Tj for all j < ℓ. Also, Tℓ contains
⋃

j<ℓ Sj cofinally, since Sj ⊆ Sℓ for

all j < ℓ. We show that Sℓ =
⋃

j<ℓ Sj, which shows that Tj contains Sℓ

cofinally. It is clear that
⋃

j<ℓ Sj ⊆ Sℓ. For the other inclusion, we have to

show that SG(U,Gℓ) ⊆
⋃

j<ℓ Sj. Since the Gi sequence is continuous, it

follows that every vertex of V (Gℓ)∩U is contained in V (Gj)∩U ⊆ Sj for

some j < ℓ. Now let S be a U -adhesion set of Gℓ. Since the Gi sequence

is continuous and S is finite, we have that S ⊆ Gj for some j < ℓ. Then

S is also a U -adhesion set of Gj and therefore S ⊆ SG(U,Gj) ⊆ Sj. This

completes the proof that SG(U,Gℓ) ⊆
⋃

j<ℓ Sj.

Now suppose that i = j+1 is a successor. Assume that we have already

defined a normal tree Tj in G that cofinally contains Sj. Next, we con-

struct Ti. For an index set A, enumerate all components {Dα : α < A} of

G− Tj that meet Si. Note that those components must meet SG(U,Gi).

Let α ∈ A. Since Dα is a connected subgraph of G such that it avoids

SG(U,Gj) ⊆ Tj and meets SG(U,Gi), by Lemma 11.2 14 note that Dα

is contained in a U -component of G − Gj. Since Tj is normal in G, the

14for H = Gj and H ′ = Gi
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neighbourhood of Dα forms a chain in Tj. Because of Lemma 11.415 this

chain is finite. Thus there exists a maximal element tDα ∈ N(Dα) in the

tree-order of Tj. Choose a neighbour rDα of tDα in Dα.

Claim: SG(U,Gi) is a countable union of dispersed sets in G.

Consider a minor of G supported by SG(U,Gi) with countable branch

sets. By Lemma 11.6, this minor has countable colouring number.

Now, since |SG(U,Gi)| ≤ |Gi| < κ, we know that SG(U,Gi) is normally

spanned in G by induction hypothesis. Hence by Jung [Theorem 2.8],

SG(U,Gi) is a countable union of dispersed sets in G.

Hence, also SG(U,Gi) ∩ V (Dα) = Si ∩ V (Dα) is a countable union of

dispersed sets in Dα. By Jung [Theorem 2.8], there is a normal tree

TDα ⊆ Dα with root rDα cofinally containing Si ∩ V (Dα). Call eDα the

edge between tDα and rDα . Define

Ti := Tj ∪
⋃
α<A

TDα ∪
⋃
α<A

{eDα}.

By construction, Ti is a normal tree in G with the same root as Tj

containing Si cofinally and extending Tj.

We now prove the last remaining equivalence of Theorem 3.2, namely be-

tween (1) ⇔ (7):

15applied with X = Sj
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13 Minor Characterisation with Fat TKℵ0-Dis-

persed Sets

13.1 Theorems

Lemma 13.1. Let G be a connected graph. Let U ⊆ V (G) be a set of vertices

that is fat TKℵ0-dispersed (Definition 2.23) in G. Then U is normally spanned

in G.

The theorem has already been proven by Pitz in [18]. We prove the theorem

here again in a different way. Here we use the results of the previous sections

by applying Theorem 4.1. Notice that we improve the definition of being “fat

TKℵ0-dispersed” here. In the paper it should have been chosen the same as

ours.

Proof. Let G be a connected graph. Let U ⊆ V (G) be a set of vertices.

Suppose that U is fat TKℵ0-dispersed in G. Assume that U is not normally

spanned in G. By Theorem 4.1, there is a minor H of G supported by U that

is a (λ, λ+)-graph or a (κ, S)-graph with countable branch sets.

For the following, call a fat TKℵ0 in G compatible with H if, and only if

for every branch vertex v of the fat TKℵ0 there is a branch set X of H such

that v ∈ X and for two distinct branch vertices v ̸= v′ holds that they are

contained in two different branch sets of H.

H is a (λ, λ+)-graph: As in [17, Theorem 6.1], find a fat TKℵ0 in G that is

compatible with H. Enumerate all branch vertices of the fat TKℵ0 , say

{vn : n ∈ N}. Let n ∈ N and consider the branch vertex vn. Let X be

the branch set of H such that vn ∈ X. Since H is supported by U , find

a vertex u ∈ U with u ∈ X. Since the branch set is connected, find

a vn–u path Pn in X. Then, {Pn : n ∈ N} is a set of pairwise vertex-

disjoint paths between U and the branch vertices of the fat TKℵ0 . A

contradiction to the fact that U is fat TKℵ0-dispersed in G.

H is a (κ, S)-graph: Again, as in [17, Theorem 6.1], find a fat TKℵ0 in G

that is compatible with H. As before, we find infinitely many pairwise

vertex-disjoint paths between U and the branch vertices of the fat TKℵ0 .

A contradiction.
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Theorem 13.2. Let G be a connected graph. Let U ⊆ V (G) be a set of vertices

of G. Then, the following are equivalent:

(1) U is normally spanned in G,

(7) U is a countable union of fat TKℵ0-dispersed sets in G.

Proof. Let G be a connected graph. Let U ⊆ V (G) be a set of vertices of G.

(1) ⇒ (7): Let U be normally spanned in G. Then, U is a countable union

U =
⋃
n∈N

Un

of dispersed sets in G, by Jung [Theorem 2.8]. We show that for all

n ∈ N it is true that Un is fat TKℵ0-dispersed in G. Suppose for a

contradiction that there is an n ∈ N such that Un is not fat TKℵ0-

dispersed in G. This means that there is a fat TKℵ0 in G such that U

cannot be separated from the branch vertices of this fat TKℵ0 by a finite

set of vertices in G. Hence there exist infinitely many pairwise vertex-

disjoint path {Pi : i ∈ N} from U to the branch vertices of the fat TKℵ0

in G. Let R be a ray in the fat TKℵ0 such that every branch vertex of

the fat TKℵ0 is contained in R. However, for every i ∈ N we have that

an initial segment of Pi is an R–Un path, which means that there is no

finite set in G that can separate Un and R. A contradiction to the fact

that Un is dispersed in G.

(7) ⇒ (1): Let

U =
⋃
n∈N

Un

be a countable union such that for all n ∈ N we have that Un is a fat

TKℵ0-dispersed set in G. Let n ∈ N. By Lemma 13.1, Un is normally

spanned in G. By Jung [Theorem 2.8],

Un =
⋃
i∈N

U i
n

is a countable union of dispersed sets in G. Together,

U =
⋃
n∈N

⋃
i∈N

U i
n

68



is a countable union of dispersed sets inG. Hence, by Jung [Theorem 2.8],

U is normally spanned in G.
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