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A well-known theorem of Halin implies that the graphs not containing a
TKa, where a is any regular uncountable cardinal, can be decomposed
into induced subgraphs of order < a which are arranged in a tree-like
fashion. We formalize this observation by introducing the new concept
of a generalized tree-decomposition, which is shown to extend in a nat-
ural way the familiar tree-decompositions of finite graphs. We then
prove that the TKa-free graphs can be characterized purely in terms
of these decompositions: a graph is TKa-free if and only if it admits a
generalized tree-decomposition into subgraphs of order < a such that
every branch of the corresponding decomposition tree has length < a.

1. Introduction

A number of important results in infinite graph theory are based on the fol-
lowing decomposition theorem of Halin [ 6 ]:

Theorem 1.1. Any graph not containing a subdivided complete graph of regu-

lar uncountable order a can be extended, by adding edges, to a graph which

admits a simplicial decomposition into factors of order < a.

A simplicial decomposition of a graph G is a family of induced subgraphs,
making up the whole of G, which are related to one another by a number
of simple conditions. These conditions ensure, among other things, that the
subgraphs constituting the decomposition are arranged in a tree-like fashion;
in particular, if G is finite then their vertex sets define a tree-decomposition
of G in the sense of Robertson and Seymour [ 9 ].

Conversely, the tree-decomposition induced by a finite simplicial decom-
position extracts that part of its information which concerns the intersection
pattern of its factors; for example, the deletion of edges (which does not alter
this pattern) leaves a tree-decomposition intact, while it may destroy some
of the other properties of the original simplicial decomposition. In all cases
where the tree-like intersection pattern of the factors in a finite decomposition
is all that matters, it is therefore convenient to work with the more general
tree-decompositions rather than with simplicial decompositions.

If G is infinite, on the other hand, one may no longer be able to associate
a (graph theoretical) tree with a simplicial decomposition of G. However, the
factors in a simplicial decomposition F always give rise to a (more general) or-
der theoretical tree TF (Halin [ 7 ]). Basically, such a generalized decomposition
tree is a rooted tree in which the branches are allowed to contain limit points
in the ‘outward’ direction. As in the finite case, it would be convenient to have
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a concept which captures this ‘tree’-shape of an infinite simplicial decomposi-
tion, without actually imposing such a decomposition along with its other, less
relevant, conditions.

In this paper we introduce the concept of generalized tree-decompositions
to serve this purpose. These decompositions generalize finite tree-decomposi-
tions in a natural way, and like those they remain unaffected by any deletion
of edges from the decomposed graph. Halin’s theorem, then, translates to the
following: for any regular uncountable ordinal a, each TKa-free graph (that
is, each graph not containing any subdivided complete graph of order a as a
subgraph) admits a generalized tree-decomposition into factors of order < a.

The main result of this paper is that this theorem can be strengthened
in a natural way that gives it a direct converse, and thus turns it into a
characterization of the TKa-free graphs purely in terms of their generalized
tree-decompositions:

Theorem 1.2. If G is a graph and a > ℵ0 is a regular cardinal, then the

following assertions are equivalent:

(i) G �⊇ TKa;

(ii) G has no complete minor of order a;

(iii) G admits a generalized tree-decomposition F such that every factor in F

and every chain in TF has order < a.

(The additional equivalence between (i) and (ii) is due to Jung [ 8 ].) Robertson,
Seymour and Thomas [ 11 ] have recently extended an appropriate weakening
of Theorem 1.2 to singular a and to the case of a = ℵ0, thereby completing
the classification of TKa-free graphs by their tree structures (for infinite a).
Their proof, which also reobtains a version of Theorem 1.2 independently, does
not explicitly build on Halin’s theorem but is otherwise similar to ours. For
an impressive overview of this and other results on infinite excluded minors or
subdivisions see Robertson, Seymour and Thomas [ 10 ].

The paper is organized as follows. Section 3, which follows a brief section
on notation, introduces the concepts of simplicial and generalized tree-decom-
positions. The latter are studied to some degree; mainly to prepare the ground
for the proof of Theorem 1.2, but also to exhibit some of the properties of
generalized tree-decompositions that make them such an interesting tool for
structural characterization.

Section 4 sketches a proof of Theorem 1.1, which is in fact a strengthened
version of Halin’s original result. (The original version looks exactly the same,
but is based on a slightly weaker concept of simplicial decomposition.) The
proof is included not only for the reader’s convenience, but also because it will
be built on in Section 6. There the foundations are laid for an application to a
problem on ends in infinite graphs, which has appeared in [ 3 ].

Section 5 contains the proof of Theorem 1.2.
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2. Basic concepts and notation

Let G be a graph. For subgraphs A,B ⊂ G we call a path P ⊂ G an A–
B path if its endvertices are in A and B, respectively, and its interior P̊ lies
in G � (A ∪B). We write G [A→ B ] for the subgraph of G induced by all
vertices of G that can be reached from A without passing through B. More
precisely, G [A→B ] is the subgraph of G induced by all vertices v ∈ G for
which G contains a path x1 . . . xn satisfying x1 ∈ A, xn = v, and xi /∈ B

for i �= n. When the underlying graph G is fixed, we shall usually abbreviate
G [A→ B ] ∩ B to B [A ]. Thus, if A and B are disjoint, then B [A ] is the
subgraph of B induced by all terminal vertices of A–B paths in G. If B = G,
on the other hand, the above definition of B [A ] coincides with the conventional
meaning of G [A ], denoting the subgraph of G induced by the vertices of A.

Two paths are independent if their interiors are disjoint. The Menger
number µG(x, y) of two vertices x, y ∈ G is the maximum of all cardinals a

for which there exists a set P(x, y) of pairwise independent x–y paths in G

with |P(x, y)| = a. (It is not difficult to see that this maximum exists.)
A subgraph H ⊂ G is convex in G if H contains every induced path in G

whose endvertices are in H. There are a number of interesting and useful
equivalents of convexity, all easily proved:

Proposition 2.1. For H ⊂ G, the following statements are equivalent:

(i) H is convex in G;

(ii) the endvertices of every H–H path in G are adjacent in H;

(iii) H is an induced subgraph of G and, for every vertex x ∈ G\H, the

subgraph H [x ] = G [x→H ]∩H is complete;

(iv) if A,B,X ⊂ V (H), then X separates A from B in H if and only if X

separates A from B in G. �

The following simple technical lemma provides a useful means for joining
two convex subgraphs into one.

Lemma 2.2. Let G1, G2 ⊂ G be graphs, and suppose that S = G1 ∩ G2

separates G1 from G2 in G.

(i) If G1 and G2 are convex in G, then so is G1 ∪G2.

(ii) If S is a simplex and Gi is convex in G [Gi →S ], i = 1, 2, then G1 ∪G2

is convex in G.

Proof. (i) is obvious from the definition of convexity.
(ii) As S is a simplex, G [Gi → S ] is convex in G. Since Gi is convex in

G [Gi →S ] by assumption, this implies that Gi is also convex in G. Apply (i).
�

3



3. Simplicial decompositions and tree-decompositions

Let G be a graph, σ > 0 an ordinal, and for each λ < σ let Bλ be an induced
subgraph of G. The family F = (Bλ)λ<σ is called a simplicial decomposition
of G if the following three conditions hold:

(S1) G =
⋃

λ<σ Bλ;

(S2) every G|µ ∩ Bµ =: Sµ is a (possibly empty) complete graph, where
G|µ :=

⋃
λ<µ Bλ (0 < µ < σ);

(S3) no Sµ contains Bµ or any other Bλ (0 � λ < µ < σ).

F is called a simplicial tree-decomposition if, in addition to (S1)–(S3),

(S4) each Sµ is contained in Bλ for some λ < µ (µ < σ).

If F satisfies (S1) and (S4) (but not necessarily (S2) or (S3)), F is called a tree-
decomposition of G. The factors in such a tree-decomposition may be regarded
as the vertices of a tree TF (the decomposition tree of F ), defined inductively
by joining each ‘vertex’ Bµ to a ‘predecessor’ Bλ as provided by (S4) (with λ

minimal).
For finite graphs this definition of a tree-decomposition is equivalent to

the one recently introduced by Robertson and Seymour [ 9 ] (although more
specific in that it fixes an enumeration of the tree’s vertices), and it is general
enough to include all finite simplicial decompositions as well: if σ is finite, then
(S4) follows automatically from (S2) (see [ 2 ]). In the infinite case, however, a
simplicial decomposition is not necessarily also a tree-decomposition: an infi-
nite complete subgraph, used as Sµ for a factor Bµ, may be contained in the
union of earlier factors without lying in any one of them.

In order to be able to describe the structure of a graph as imposed by a
general simplicial decomposition, we therefore introduce the following concept:
call the family F = (Bλ)λ<σ a generalized tree-decomposition of G if it satis-
fies (S1) and

(S5) x ∈ G|µ\Sµ, y ∈ Bµ\Sµ ⇒ �λ < σ : x, y ∈ Bλ (for every µ < σ).

As is easily seen, (S5) is a weakening of condition (S2) as well as one of (S4).
Thus every simplicial decomposition, as well as every tree-decomposition, is also
a generalized tree-decomposition. We remark that in all these decompositions
the graphs G|µ =

⋃
λ<µ Bλ are induced subgraphs of G.

If F = (Bλ)λ<σ is a generalized tree-decomposition of G, and if x ∈ V (G)
and H ⊂ G, we denote by λ(x) the minimal λ for which x ∈ Bλ, and set
Λ(H) := {λ(x) | x ∈ V (H) }. Thus, the vertices x with λ(x) = µ are precisely
those in Bµ\Sµ. F will be called coherent if, for each µ < σ, Bµ\Sµ is
connected and every vertex of Sµ has a neighbour in Bµ\Sµ.

As is customary in the field of simplicial decompositions, we shall usually
refer to a complete graph as a simplex , and call the graphs Sµ in (S2) the
simplices of attachment in F .
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H ⊂ G is called attached to H ′ ⊂ G\H if every vertex of H is adjacent
to a vertex in H ′. Thus, if F is coherent, then each Sµ is attached to Bµ\Sµ.
More generally we shall say that H is attached (in G) if H is attached to
some component of G\H; otherwise H is unattached (in G). One of the basic
properties of factors in simplicial decompositions is that they are unattached
subgraphs [ 1 ].

Let us call a partially ordered set T an order-theoretical forest if all its
subsets of the form { t′ | t′ � t }, t ∈ T , are chains; if, moreover, for every
t1, t2 ∈ T there exists a t ∈ T with t � t1, t2, then T will be called an order-
theoretical tree. Note that every rooted (graph-theoretical) tree T is such an
order-theoretical tree with respect to the following natural partial order on its
vertices: if r is the root of T and x, y ∈ V (T ), set x � y if x is on the unique
r–y path in T .

The order-theoretical forests of interest to us will be well-founded , which
means that all their non-empty subsets have minimal elements. Observe that

Proposition 3.1. A non-empty well-founded order-theoretical forest is an

order-theoretical tree if and only if it has a unique minimal element. �

With every generalized tree-decomposition F = (Bλ)λ<σ we can associate
an order-theoretical tree TF , its (generalized) decomposition tree. Indeed, let

TF := {Bλ | λ < σ }

and define a partial ordering � on TF recursively as follows. Let µ < σ be given,
and suppose that � has been defined for all pairs (Bλ, Bλ′) with λ, λ′ < µ. For
each λ < µ, set

Bλ < Bµ if Bλ � Bλ(s) for some s ∈ Sµ ;

otherwise let Bλ and Bµ be incomparable. Notice that this definition is such
that Bλ < Bλ′ implies λ < λ′, so � is antisymmetric; the transitivity of � is
clear by induction on µ.

Proposition 3.2. If F = (Bλ)λ<σ is a generalized tree-decomposition of a

graph G, then TF is a well-founded order-theoretical tree.

Proof. As Bλ < Bλ′ implies λ < λ′ and the set {λ | λ < σ } is well-ordered,
TF is clearly well-founded. As further B0 � Bλ for every λ < σ (induction
on λ), all we have to show is that TF is an order-theoretical forest: that Bλ

and Bλ′ are comparable whenever µ < σ and Bλ, Bλ′ < Bµ.
Let us apply induction on µ. By definition of �, there exist s, s′ ∈ Sµ such

that Bλ � Bλ(s) and Bλ′ � Bλ(s′); we shall assume that λ(s) � λ(s′). We
prove that Bλ � Bλ(s′); the assertion then follows by the induction hypothesis
applied to λ(s′). The validity of Bλ � Bλ(s′) is trivial if λ(s) = λ(s′), so let us
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assume that λ(s) < λ(s′). Then s ∈ G|λ(s′), and therefore s ∈ Sλ(s′) (by (S5),
s′ ∈ Bλ(s′)\Sλ(s′) and s, s′ ∈ Bµ). Hence Bλ � Bλ(s) < Bλ(s′) by definition
of �. �

One of the distinguishing features of an ordinary tree-decomposition F is
the fact that the intersection of any two factors B,B′′ ∈ F is contained in every
factor B′ that lies on the B–B′′ path in the decomposition tree. In the context
of generalized tree-decompositions this continues to hold if the ‘path’ between
B and B′′ is a chain, that is, if B and B′′ are comparable:1 if B,B′, B′′ ∈ TF

are such that B � B′ � B′′, then B′′ ∩B ⊂ B′.
Let us prove this fact in the following slightly stronger version:

Proposition 3.3. Let F = (Bλ)λ<σ be a generalized tree-decomposition of G,

and let Bλ, Bµ, Bν ∈ TF be such that λ � µ and Bµ � Bν . Then Bν ∩Bλ ⊂ Bµ.

Proof. Suppose the assertion fails, and let Bλ, Bµ, Bν form a counterex-
ample such that ν is minimal. Clearly λ < µ and Bµ < Bν . Since Bµ

is an induced subgraph of G, our assumption of Bν ∩ Bλ �⊂ Bµ means that
V (Bν)∩V (Bλ) �V (Bµ) �= ∅. By definition of TF , there exists a vertex s ∈ Sν

for which Bµ � Bλ(s). From λ(s) < ν and the minimality of ν we have
Bλ(s) ∩Bλ ⊂ Bµ. Therefore

Bν ∩Bλ �Bλ(s) = (Bν ∩Bλ) � (Bλ(s) ∩Bλ) ⊇ Bν ∩Bλ �Bµ �= ∅ .

As Bλ\Bλ(s) ⊂ G|λ(s)\Sλ(s) (by λ < µ � λ(s)) and s ∈ Bλ(s)\Sλ(s), Bν there-
fore meets G|λ(s)\Sλ(s) as well as Bλ(s)\Sλ(s), a contradiction to (S5). �

Corollary 3.4. If F = (Bλ)λ<σ is a generalized tree-decomposition of G, and

if Bλ, Bµ ∈ TF are such that Bλ < Bµ, then

Sµ ⊂
⋃

{B | Bλ � B < Bµ } .

Proof. By Propositions 3.2 and 3.3 it suffices to show that

Sµ ⊂
⋃

{B | B < Bµ } .

Since, for each s ∈ Sµ, we have Bλ(s) < Bµ by definition of TF , clearly
V (Sµ) ⊂

⋃
{V (B) | B < Bµ }. Now let ss′ be an edge of Sµ, with λ(s) � λ(s′)

say. Then s ∈ Bλ(s′) by (S5), and hence ss′ ∈ E(Bλ(s′)) because Bλ(s′) is an
induced subgraph of G. �

1 If B and B′′ are incomparable, a suitable translation of the finite condition might be
that whenever x ∈ B∩B′′ and T is a subtree of TF containing B and B′′ (a subtree is defined
below), then x ∈ B′ for some (and hence for every sufficiently great) B′ ∈ T . However, we
do not need this generalization in the present context.
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Whenever T and T ′ are order-theoretical trees and T ′ is an induced sub-
poset of T , let us call T ′ an (order-theoretical) subtree of T if the following
holds for any t, t′, t′′ ∈ T :

t, t′′ ∈ T ′, t < t′ < t′′ ⇒ t′ ∈ T ′.

Equipped with the concept of a generalized decomposition tree we can easily
express a fact which accounts for much of the usefulness of simplicial and related
decompositions:

Theorem 3.5. Let F = (Bλ)λ<σ be a decomposition of G satisfying (S1)
and (S2), and let T be an order-theoretical subtree of TF . Then

G(T ) :=
⋃

T

is a convex subgraph of G. In particular, every Bµ and every G|µ is convex

in G.

Proof. The convexity of every Bµ and G|µ is known; see e.g. [ 1, Prop. 1.1 ].2

For general T we apply induction on

τ := sup {λ | Bλ ∈ T } .

If τ = 0, then either T = ∅ or G(T ) = B0; in both cases we are done. Let now
τ > 0, and assume that the assertion holds for smaller values of τ . For each
µ � τ consider

Tµ := {Bλ ∈ T | λ � µ } .

As is easily checked, every Tµ is a subtree of T , and for µ < τ the graphs G(Tµ)
are convex in G by the induction hypothesis. Since these graphs are nested by
inclusion, their union

H :=
⋃
µ<τ

G(Tµ) =
⋃

{Bλ ∈ T | λ �= τ }

is again convex in G. Now if Bτ /∈ T , then H = G(T ) and we are done. But
otherwise G(T ) = H ∪Bτ , so the convexity of G(T ) will follow from that of
H and Bτ as soon as we have shown that H ∩Bτ separates H from Bτ in G

(Lemma 2.2.(i)).
Assuming that H �= ∅ (as otherwise G(T ) = Bτ ), pick Bρ from some Tµ,

µ < τ . Since T is an order-theoretical tree, there exists Bλ ∈ T with
Bλ � Bρ, Bτ . Then λ � ρ � µ < τ , so Bλ �= Bτ and hence Bλ < Bτ .

2 That proposition is expressed for simplicial decompositions, i.e. formally assumes (S3)
as well as (S1) and (S2). However, (S3) is not used in its proof.
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By the subtree condition the graphs B ∈ TF with Bλ < B < Bτ are all in T .
Therefore

H ⊇
⋃

{B ∈ TF | Bλ � B < Bτ } ⊇ Sτ

by Corollary 3.4, and hence Sτ = H ∩Bτ (as H ⊂ G|τ ). Since Sτ separates
G|τ ⊇ H from Bτ in G|τ+1 and hence in G (by Proposition 2.1.(iv) and the
already established convexity of G|τ+1 in G), this completes the proof. �

One of the most basic properties of a tree is that any two vertices can be
separated by removing a single edge or vertex of the path between them. If F
is a tree-decomposition of a graph G, this separation property of the tree TF

carries over to G: if B,B′, B′′ are factors in F such that B′ separates B from B′′

in TF , then V (B′) separates the vertices of B from those of B′′ in G.
This observation can be extended to generalized tree-decompositions in

various ways. One of them—by no means the most general but all we shall
need for the proof of Theorem 1.2—is the following.

Lemma 3.6. Let F = (Bλ)λ<σ be a generalized tree-decomposition of G, and

let x, y ∈ V (G) be such that x ∈ G|µ\Sµ and y ∈ Bµ\Sµ for some µ < σ. Then

Sµ separates x from y in G.

Proof. Let G′ be obtained from G by making all the Sλ’s complete, i.e., let
G′ := (V (G), E′) where

E′ := E(G)∪{ ss′ | ∃λ < σ : s, s′ ∈ V (Sλ) } .

For each λ < σ put B′
λ := G′ [Bλ ] and S′

λ := G′ [Sλ ]. As G′ =
⋃

λ<σ B′
λ

and every S′
λ is a simplex, the family F ′ := (B′

λ)λ<σ will satisfy (S1) and (S2),
provided that our definition for S′

λ is compatible with the one assumed in (S2),
i.e., provided that S′

λ = B′
λ ∩G′|λ for every λ < σ. In order to show this, notice

first that clearly

V (S′
λ) = V (Sλ) = V (Bλ ∩G|λ) = V (B′

λ ∩G′|λ) .

Now let ss′ ∈ E(S′
λ) be given. Then ss′ ∈ E(B′

λ) by definition of B′
λ.

To show that ss′ is also in E(G′|λ), assume that λ(s) � λ(s′) (< λ).
Then s′ ∈ Bλ(s′)\Sλ(s′), so, as s, s′ ∈ Bλ and F satisfies (S5), s cannot be
in G|λ(s′)\Sλ(s′). Hence s, as well as s′, is in Bλ(s′). Since B′

λ(s′) is induced
in G′, this means that ss′ ∈ E(B′

λ(s′)) ⊂ E(G′|λ). F ′ therefore satisfies (S1)
and (S2) as claimed.

To complete the proof, let now x and y be given as stated. V (Sµ) clearly
separates x and y in G′|µ+1. Since G′|µ+1 is convex in G′ by Theorem 3.5, this
implies by Proposition 2.1 that V (Sµ) still separates x and y in G′. Therefore
Sµ separates x and y in G. �
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We conclude this section on the basic properties of generalized tree-decom-
positions with the observation that the ‘branches’ in a decomposition tree can-
not be much longer than they are wide:

Proposition 3.7. Let a be a regular cardinal, with initial ordinal α, and let

F be such that |Bµ| < a for all µ < σ. Then the following holds:

(i) the order type of any chain in TF is at most α;

(ii)
⋃
{B ∈ TF | B � Bµ } (⊂ G) has order < a, for every µ < σ.

Proof. (i) Suppose the contrary, and let µ < σ be minimal such that

C := {B ∈ TF | B � Bµ }

has order a. Then |C � {Bµ }| = a, and

C � {Bµ } =
⋃

s∈Sµ

{B ∈ TF | B � Bλ(s) }

by definition of TF . Thus C � {Bµ } is a union of < a sets of order < a (by the
choice of µ), which contradicts the regularity of a.

(ii) is immediate from (i) and the regularity of a. �

4. Decompositions into small factors

In this section we sketch a proof Theorem 1.1. Those parts of the theorem
which go beyond Halin’s original results are proved in full (Lemma 4.2 and
Theorem 4.3), while the rest is outlined so as to convey the main ideas. For a
more thorough treatment of this material see [ 2, Ch. 5 ].

In order to understand the conception of the proof of Theorem 1.1, one has
to take into account that it was not originally intended to solve the problem
of describing the structure of TKa-free graphs. The problem it was intended
to solve—and which it did solve except for the case of a = ℵ0—was to decide
which graphs have a simplicial decomposition into factors smaller than a given
infinite cardinal a. The TKa-free graphs, as we shall see, were merely incidental
to interpreting the solution (Theorem 4.3).

Suppose we are trying to construct a simplicial decomposition F of some
graph G, so that every factor in F has order less than some given cardinal a.
The main difficulty we face in keeping the factors small is that they have to be
convex subgraphs of G; cf. Theorem 3.5.

Now suppose we have a subgraph D ⊂ G which is a candidate for being a
factor in our decomposition, but which is not convex. By Proposition 2.1.(ii),
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this means that D has non-adjacent vertices x, y which are the endvertices of
some D–D path in G. An obvious way of trying to make D convex therefore
is to incorporate, for every such pair x, y, some maximal set P(x, y) of inde-
pendent D–D paths x . . . y into D, and then to iterate this procedure as long
as necessary.

And indeed, it is not difficult to show that the supergraph H of D obtained
in this way must be convex. Moreover, H will have order < a provided that
we never add a or more paths at a time, and that a is large enough to allow
for a countable number of iterations. (To see that countably many extensions
are enough, notice that the endvertices x, y of any H–H path P ⊂ G will be
present after finitely many steps, so P should have been added in the next step
unless x and y were adjacent.) More precisely, H will have order < a provided
that µG(x, y) < a for any non-adjacent vertices x, y for which paths have to be
added, and that a is uncountable:

Lemma 4.1. [ 5 ] Let G be a graph, a > ℵ0 a regular cardinal, and suppose

that µG(x, y) < a for any two non-adjacent vertices x, y of G. Then, for every

D ⊂ G with |D| < a, there exists a convex subgraph H of G such that D ⊂ H

and |H| < a.

Lemma 4.1 will be our principal tool in constructing, factor by factor, a
simplicial decomposition into factors of order < a. Yet simplicial factors are
not only convex but also unattached (see § 3). The convex graphs H provided
by Lemma 4.1, however, may well be attached in G: consider, for example, the
case where G is a simplex of order a and D = H is a proper subsimplex of G.

In order to sharpen Lemma 4.1 in such a way that it guarantees the exist-
ence of small convex and unattached supergraphs, we have to ban large com-
plete subgraphs:

Lemma 4.2. Let G be a graph, a > ℵ0 a regular cardinal, and suppose that

µG(x, y) < a for any two non-adjacent vertices x, y of G. Suppose further

that G has no complete subgraph of order a. Then, for every D ⊂ G with

|D| < a, there exists a convex and unattached subgraph H of G such that

D ⊂ H and |H| < a.

Proof. By Lemma 4.1, G has a convex subgraph H ′ of order < a that con-
tains D. Suppose H ′ is attached in G. Then H ′ is a simplex, by Proposi-
tion 2.1.(iii). Let D′ ⊂ G be a maximal simplex containing H ′; note that
|D′| < a by assumption. If D′ = G, then H := D′ is as desired. Otherwise pick
v ∈ V (G)\V (D′), and let H be a convex subgraph of G such that D′∪{ v } ⊂ H

and |H| < a (again by Lemma 4.1). H is unattached in G, because otherwise
H would be a simplex contradicting the maximality of D′. �
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Using Lemma 4.2, let us now prove Halin’s basic existence theorem for
simplicial decompositions into small factors [ 6 ].3

Theorem 4.3. Let G be a graph and a a regular cardinal, such that

|G| � a > ℵ0. Suppose that G �⊇ Ka, and that µG(x, y) < a for any two

non-adjacent vertices x, y of G. Let σ be the initial ordinal of |G|. Then G

admits a coherent simplicial decomposition F = (Bλ)λ<σ with |Bλ| < a for all

λ < σ.

Proof. Let V (G) be well-ordered as (vρ)ρ<σ. We define the factors Bλ of
F recursively for λ < σ, so that the following two conditions are satisfied for
each λ:

(i) Bλ is unattached in G, and |Bλ| < a;
(ii)

⋃
λ′�λ Bλ′ is convex in G.

Let µ be given, 0 � µ < σ, and suppose that for every λ < µ we have defined
Bλ so as to satisfy (i) and (ii). We shall define Bµ in such a way that (i) and (ii)
hold for λ = µ.

We first show that G|µ :=
⋃

λ<µ Bλ is convex in G. If µ = 0, this is
trivial as G|µ = ∅. If µ is a successor ordinal, then G|µ is convex by assump-
tion (ii). Finally, if µ is a limit ordinal, then G|µ is the nested union of the
graphs

⋃
λ′�λ Bλ′ with λ < µ; since these graphs are convex by (ii), G|µ is also

convex.
Since

∣∣G|µ
∣∣ < a � |G| by (i) and the regularity of a, we have G\G|µ �= ∅.

Let ρ(µ) := min { ρ | vρ /∈ G|µ }, and put

Gµ := G [ vρ(µ) →G|µ ] ,

Cµ := Gµ �G|µ ,
Sµ := Gµ ∩G|µ .

Then Sµ = G|µ [ vρ(µ) ], so Sµ is a simplex (Proposition 2.1.(iii)) and hence of
order < a.

Applying Lemma 4.2 to the graph Gµ, we choose as Bµ a convex and
unattached subgraph of Gµ such that Sµ ∪{ vρ(µ) } ⊂ Bµ and |Bµ| < a. Then
(i) holds for λ = µ. Furthermore, Sµ = G|µ ∩Bµ, as required by (S2). By
Lemma 2.2.(ii), G|µ ∪Bµ is convex in G, establishing (ii) for λ = µ. Finally,
as Sµ is attached, it cannot contain any factor Bλ for λ < µ, since these are
unattached by assumption (i). Therefore our choice of Bµ satisfies (S3).

It remains to show that
⋃

λ<σ Bλ = G (condition (S1)), and that F is
coherent. To see (S1), notice that vλ ∈ G|λ+1 for every λ < σ, which follows
by our choice of Bλ and an easy induction on λ. Thus

V (G) ⊂
⋃

λ<σ

V (G|λ+1) =
⋃

λ<σ

V (Bλ) .

3 Halin’s original version of this theorem was for decompositions satisfying (S1) and (S2),
but not necessarily (S3).
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As every G|λ+1 is convex and hence induced in G, this implies (S1).
To see that F is coherent, suppose that, for some λ < σ, Sλ is not attached

to Bλ\Sλ or Bλ\Sλ is disconnected. In either case there exists a subsimplex
S ⊂ Sλ which separates vertices x, y ∈ Bλ\S in Bλ. As Sλ is attached to Cλ

and Bλ\Sλ ⊂ Cλ, S cannot separate x and y in Gλ. This contradicts the
convexity of Bλ in Gλ, by Proposition 2.1.(iv). �

The applicability of Theorem 4.3 is likely to be hampered by an obvious
shortcoming: its awkward condition on the Menger numbers µG(x, y). How-
ever, there is a strikingly simple and, with hindsight, ingenious way of dealing
with this problem, again due to Halin.

Define the a-closure [G ]a of G to be the graph with vertex set V (G) and
edge set E(G)∪ {xy | µG(x, y) � a }. The term ‘a-closure’ is justified by the
following observation:

Proposition 4.4. If G is a graph and a is a cardinal, then [G ]a is its own a-

closure.

(The proof of Proposition 4.4 is not difficult; see e.g. [ 2 ].)

By Proposition 4.4 it is clear that the a-closure [G ]a of a graph G is such
that µ [ G ]a(x, y) < a for any two non-adjacent vertices x and y. If |G| � a > ℵ0

and a is regular, we can therefore apply Theorem 4.3 to [G ]a rather than to G,
provided that [G ]a �⊇ Ka. The next question is therefore how the latter can
be ensured by imposing an additional constraint on G.

The following lemma of Halin [ 6 ] answers this question in a very satisfac-
tory way: it implies that if G contains no subdivided Ka then [G ]a �⊇ Ka.

Proposition 4.5. If G is a graph and a is an infinite cardinal, then

[G ]a ⊇ TKa ⇔ [G ]a ⊇ Ka ⇔ G ⊇ TKa .

Notice that the assertions of Theorem 4.3 and Propositions 4.4–5 togeth-
er amount to a proof of Theorem 1.1: if G �⊇ TKa, then [G ]a �⊇ Ka and
µ [ G ]a(x, y) < a for any non-adjacent x, y ∈ [G ]a, so [G ]a admits a simplicial
decomposition F into factors of order < a. Moreover, F induces a generalized
tree-decomposition of G into factors of order < a—recall that F satisfies (S5)
as a consequence of (S2), and notice that the validity of (S5) remains unaffected
by the deletion of edges.

Conversely, it is clear that in general not every graph with a generalized
tree-decomposition into factors of order < a will be TKa-free. For example, a
Ka has itself such a decomposition: well-order its vertices by the initial ordinal
of a, and consider the decomposition induced by the initial segments of this
well-ordering.

In the next section we shall prove that this simple example describes es-
sentially the only way in which a TKa can arise in a graph with a generalized
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tree-decomposition into ‘small’ factors, namely, corresponding to a ‘long’ chain
in TF : all graphs without a TKa will be shown to admit a generalized tree-
decomposition F in which every factor and every chain C ⊂ TF has order < a,
and, conversely, any graph G with such a decomposition will be seen to satis-
fy G �⊇ TKa (Theorem 1.2).

5. The structure of TKa-free graphs

We begin our proof of Theorem 1.2 with two lemmas.

Lemma 5.1. Let a > ℵ0 be a regular cardinal, α = {β | β < α } its initial

ordinal, and f : α → α any map satisfying

f(β) < β (1)

for all β > 0, and

β < γ ⇒ f(β) � f(γ) (2)

for all β, γ < α. Then sup { f(β) | β < α } < α.

Proof. Suppose the assertion fails. Then, for each γ < α, the set
{β < α | f(β) > γ } is non-empty; let

γ+ := min {β < α | f(β) > γ } .

By (1), clearly γ+ > γ for every γ < α. (For the case of γ = 0 notice that
f(0) � f(1) < 1 by (2), so f(0) = 0.) Set γ1 := 0, define γn+1 := γ+

n recursively
for all n ∈ N, and let

γ∗ := sup { γn | n ∈ N } .

As γn < α for every n, and as a is regular, we have γ∗ < α, so f is still defined
for γ∗. Since f(γ∗) < γ∗ by (1), there exists an n ∈ N such that f(γ∗) < γn.
Then

f(γ∗) < γn < f(γn+1)

by definition of γn+1, while at the same time

γn+1 < γ∗.

This contradicts assumption (2). �

Lemma 5.2. Let a > ℵ0 be a regular cardinal, and let F = (Bλ)λ<σ be a sim-

plicial decomposition of a graph G such that TF contains a chain of order a.

Then G ⊇ Ka.
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Proof. Let α be the initial ordinal of a. Choose a chain C ⊂ TF of order type α
such that C is a subtree of TF (i.e., such that B < B′ < B′′ and B,B′′ ∈ C
imply B′ ∈ C), and let

Λ := {λ < σ | Bλ ∈ C } .

Note that the natural well-ordering of Λ mirrors that of C, in that
λ � µ ⇔ Bλ � Bµ for any λ, µ ∈ Λ. In particular, Λ has order type α.

We shall find a Ka in
⋃
C, proceeding in two steps. First, we use Lemma 5.1

to show that in every tail of C there appear new vertices which stay in every
subsequent B ∈ C. In the second step we construct a Ka from these vertices,
using the fact that any two of them are adjacent because they are both in the
simplex of attachment of every later B ∈ C.

For the first step of the proof let us show that

(∗) ∀λ ∈ Λ : ∃ v ∈ V (G), λ � λ(v) ∈ Λ : v ∈
⋂

λ(v)�µ∈Λ

Bµ .

Let λ ∈ Λ be given, and put

Λ′ := {λ′ ∈ Λ | λ � λ′ } .

Note that |Λ′| = a, so Λ′, like Λ, has order type α. Let us define a map
f : Λ′ → Λ′ by setting

f(µ) := min (Λ(Bµ)∩Λ′)

for each µ ∈ Λ′. Notice that while f(λ) = λ, we have

λ � f(µ) < µ (1)

for all µ ∈ Λ′ with λ < µ : since Bλ < Bµ, there exists a vertex s ∈ Sµ such
that Bλ � Bλ(s) (and hence λ � λ(s)), so f(µ) � λ(s) < µ. (Note that λ(s) is
in Λ, and hence in Λ′, because Bλ, Bµ ∈ C and C is a subtree of TF .) Moreover,
if µ, ν ∈ Λ′ satisfy µ < ν, and if x ∈ Bν is such that λ(x) � µ, then x ∈ Bµ by
Proposition 3.3. Thus

µ < ν ⇒ f(µ) � f(ν) (2)

for all µ, ν ∈ Λ′. Since Λ′ has order type α, (1) and (2) imply by Lemma 5.1 that
{ f(µ) | µ ∈ Λ′ } is bounded in Λ′: there exists a µ∗ ∈ Λ′ such that f(µ) � µ∗

for all µ ∈ Λ′. Set
Λ′′ := {µ ∈ Λ | µ∗ < µ } .

Note again that |Λ′′| = a, so Λ′′ too has order type α.
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For each µ ∈ Λ′′, pick a vertex x from Bµ with λ(x) = f(µ). Since Bµ ∩
Bf(µ) ⊂ Bµ∗ by Proposition 3.3, x must be in Bµ∗ . Thus,

∀µ ∈ Λ′′ : ∃x ∈ Bµ ∩Bµ∗ : λ(x) = f(µ) . (3)

Let

S := Bµ∗ ∩
⋃

µ∈Λ′′

Bµ .

Notice that S is a simplex: if s ∈ Bµ∗ ∩Bµ and t ∈ Bµ∗ ∩Bν for µ, ν ∈ Λ′′,
µ � ν, then t ∈ Bµ by Proposition 3.3; thus s, t ∈ Bµ and hence s, t ∈ Sµ

(because λ(s), λ(t) � µ∗ < µ), so s and t are adjacent. Our proof would thus
be complete if |S| = a; we shall therefore assume that |S| < a.

Since any vertex x ∈ Bµ∗ which satisfies (3) for some µ ∈ Λ′′ is a vertex
of S, our assumption of |S| < a means that Bµ∗ contains a vertex x which
satisfies (3) for a different values of µ, and hence for arbitrarily large µ ∈ Λ′′.
Choose v for (∗) to be such a vertex x.

Now if µ ∈ Λ with λ(v) � µ is given, then there exists a ν ∈ Λ′′, µ � ν,
such that v satisfies (3) for ν. Then v ∈ Bν ∩Bλ(v) ⊂ Bµ by Proposition 3.3.
This completes the proof of (∗).

To complete the proof of the Lemma, let us now use (∗) to find a simplex
of order a in G. For each β < α, choose a vertex sβ ∈ G with λ(sβ) ∈ Λ, as
follows. Suppose sγ has been chosen for every γ < β. In order to choose sβ ,
take the supremum of {λ(sγ) | γ < β } in Λ, let λ be the successor in Λ of this
supremum, and let sβ be the corresponding vertex v provided by (∗). (The
said supremum exists, in Λ, because |Λ| = a is regular and β, as well as each
of the sets { ζ ∈ Λ | ζ < λ(sγ) }, has order < a.) It remains to show that
{ sβ | β < α } spans a simplex in G. Let δ, γ < α be given, and pick β < α with
δ, γ < β. Then λ(sδ), λ(sγ) < λ(sβ) by choice of sβ . Therefore sδ, sγ ∈ Bλ(sβ)

by (∗), and hence sδ, sγ ∈ Sλ(sβ), so sδ and sγ are adjacent in G. �

Equipped with Lemmas 5.1 and 5.2, we can now prove Theorem 1.2 with-
out difficulty. In order to make the result a little stronger, we restate its two
main implications separately:

Theorem 5.3. Let G be a graph and a > ℵ0 a regular cardinal.

(i) If G �⊇ TKa, then G admits a generalized tree-decomposition

F = (Bλ)λ<σ satisfying (S3), such that every Bλ and every chain in TF

has order < a. If |G| � a, then F can be chosen in such a way that σ is

the initial ordinal of |G|.
(ii) If G admits a generalized tree-decomposition F = (Bλ)λ<σ such that

every Bλ and every chain in TF has order < a, then G �⊇ TKa.
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Proof. (i) If |G| < a, the assertion is trivial; we shall therefore assume that
|G| � a. Let G′ := [G ]a be the a-closure of G. By our assumption of G �⊇ TKa

and Proposition 4.5, G′ contains no Ka. Since µG′(x, y) < a for any two non-
adjacent vertices x, y ∈ G′ by Proposition 4.4, Theorem 4.3 implies that G′ ad-
mits a simplicial decomposition F ′ = (B′

λ)λ<σ satisfying (S3), where |B′
λ| < a

for all λ < σ and σ is the initial ordinal of |G′| = |G|. By Lemma 5.2 any
chain in TF ′ has order < a. The family F = (B′

λ ∩G)λ<σ thus is a generalized
tree-decomposition of G with the desired properties.

(ii) Suppose G ⊇ T � TKa, and let

Λ := {λ(t) | t is a branch vertex of T }.

As |Bλ| < a for every λ < σ, clearly |Λ| = a by the regularity of a. We shall
prove that {Bλ | λ ∈ Λ } is a chain in TF .

Let distinct µ, ν ∈ Λ be given, with µ < ν say. In order to show that Bµ

and Bν are comparable in TF , we prove that µ = λ(s) for some s ∈ Sν . Choose
s to be any branch vertex of T with λ(s) = µ, and let t be a branch vertex
of T with λ(t) = ν. Then t ∈ Bν\Sν , and s ∈ G|ν . Now if s ∈ G|ν\Sν , then
Sν separates s from t in G by Lemma 3.6, contradicting the fact that Sν has
order < a. Therefore s ∈ Sν as claimed. �

6. A refined decomposition theorem

By placing the emphasis in Theorem 1.2 just on the size of the factors and
their relative position within G, we lost some possibly valuable information
on G′ = [G ]a (see the proof of Theorem 5.3) which might still be exploited
for G: the fact that the endvertices of any edge in E(G′)\E(G) are joined in
G by at least a independent paths. For example, we might be trying to prove
that G has a subgraph with a certain property P, and it is easier to find such
a subgraph H in G′. Now if P is invariant under subdivision, i.e. under the
replacement of edges with independent paths, we may be able to transform
H back into a subgraph of G still satisfying P, by replacing the foreign edges
with suitable paths in G. The fact that for each edge there are � a paths to
choose from helps to select them in such a way that they are pairwise disjoint
and avoid the rest of H. However, it may be necessary to keep the interiors of
different replacement paths well apart, for example in distinct components of
the subgraphs G\G|µ, or inside different factors.

In the remainder of this paper we shall follow this line. The theorem we
obtain will be used, in a subsequent paper, for the proof of a result concerning
the existence of end-faithful spanning trees in infinite graphs [ 3 ].
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Lemma 6.1. Let a and b be regular cardinals with a > b � ℵ0. Let G

be a graph not containing any complete subgraph of order b, and such that

µG(x, y) < a for any two non-adjacent vertices x, y of G. Let further E ⊂ E(G).
Then every graph D ⊂ G of order < a has a convex and unattached supergraph

H in G, |H| < a, which satisfies the following condition:

(∗) For every two vertices x, y of H, the number of components C of G\H
for which G [C→H ] contains an H–H path P with endvertices x, y and

E(P ) ⊂ E, is either 0 or at least a.

Proof. Let β be the initial ordinal of b. For every λ � β we shall define a
convex and unattached supergraph Hλ of D, such that |Hλ| < a for all λ � β,
and Hλ ⊂ Hµ whenever λ < µ � β. Hβ will be our desired graph H.

Let H0 be the convex and unattached supergraph of D provided by Lem-
ma 4.2. Suppose that Hλ has been defined as stated for every λ < µ, where
0 < µ � β. If µ is a limit ordinal, we set Hµ :=

⋃
λ<µ Hλ; then Hµ is

convex in G because every Hλ is convex, Hµ is unattached because Hµ ⊇ H0

and H0 is unattached, and |Hµ| < a, because |Hλ| < a for every λ < µ and
|µ| � |β| = b < a.

Suppose now that µ is a successor ordinal, say of λ. For distinct vertices
x, y of Hλ, let Cλ(x, y) denote the set of all components C of G\Hλ that are
relevant for condition (∗)—i.e., for which G [C → Hλ ] contains an Hλ–Hλ

path P with endvertices x, y and E(P ) ⊂ E. Let Eλ be the set of all pairs
{x, y } ⊂ V (Hλ) for which Cλ(x, y) is non-empty but of order < a. Notice that
since Hλ is convex, any graph of the form Hλ [C ], where C is a component of
G\Hλ, must be a simplex, and hence of order < b. Thus Eλ ⊂ E(Hλ), and
for every xy ∈ Eλ and each C ∈ Cλ(x, y) Lemma 4.1 provides us with a convex
subgraph Hλ(C) ⊂ G [C→Hλ ] of order < a, so that Hλ(C) contains Hλ [C ]
and at least one vertex of C.

Set
Hµ := Hλ ∪

⋃
xy∈Eλ

⋃
C∈Cλ(x,y)

Hλ(C) .

Hµ is convex in G, because Hλ and every Hλ(C) is convex, and Hλ [C ] =
Hλ ∩ Hλ(C) is a simplex which separates Hλ from Hλ(C) in G (see Lem-
ma 2.2.(ii)). Hµ is unattached in G, because Hµ ⊇ H0 and H0 is unattached.
Finally, |Hµ| < a, because |Eλ| � |Hλ|2 < a, |Cλ(x, y)| < a for xy ∈ Eλ, and
|Hλ(C)| < a for C ∈ Cλ(x, y).

Let us finally set H := Hβ .
It remains to prove that H satisfies (∗). Suppose (∗) fails, and let x, y ∈ H

be such that 1 � |Cβ(x, y)| < a. Pick C ∈ Cβ(x, y). We shall prove that
C ∈ Cγ(x, y) for some γ < β, deduce that |Cγ(x, y)| � a (as otherwise Hγ+1

ought to contain a vertex from C), and use this to derive a contradiction to
the fact that |Cβ(x, y)| < a and |H| < a.

Let S := H [C ]. Clearly x, y ∈ S. For vertices s ∈ S, write
λ(s) := min {λ | s ∈ Hλ }, and put Λ := {λ(s) | s ∈ S }. As β is the
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initial ordinal of b and hence a limit ordinal, we have λ(s) < β for every s ∈ S,
and therefore |λ| < b for every λ ∈ Λ. Moreover, |Λ| � |S| < b, because S is a
simplex. Therefore γ :=

⋃
Λ < β (by the regularity of b), and S ⊂ Hγ .

We now show that C ∈ Cγ(x, y). Clearly C ⊂ G\H ⊂ G\Hγ ; let C ′ be
the component of G\Hγ containing C. Then C ′ ∈ Cγ(x, y), so all we have to
show is that C ′\C = ∅. But if C ′\C �= ∅, then G contains a C–(C ′\C) edge,
because C ′ is connected. Therefore (C ′\C)∩H [C ] �= ∅, which contradicts the
fact that H [C ] = S ⊂ Hγ . Thus C ′\C = ∅, as required.

To show that |Cγ(x, y)| � a, recall that if |Cγ(x, y)| < a, then xy ∈ Eγ , and
consequently Hγ+1 ∩C �= ∅. But then also H ∩C �= ∅, a contradiction. Now
as |Cγ(x, y)| � a but |Cβ(x, y)| < a, we have |Cγ(x, y) � Cβ(x, y)| � a, while
H ∩Cγ �= ∅ for every Cγ ∈ Cγ(x, y) � Cβ(x, y). This contradicts the fact that
|H| < a. �

Theorem 6.2. Let a and b be regular cardinals with a > b � ℵ0, and let G

be a graph of order � a which does not contain any TKb. Let σ be the initial

ordinal of |G|. Then the a-closure [G ]a =: G′ of G admits a coherent simplicial

decomposition F = (Bλ)λ<σ into factors of order < a and with simplices of

attachment of order < b, which has the following property: for every µ < σ and

every edge xy ∈ Eµ :=
(
E(Bµ)\E(Sµ)

)
�E(G), there are at least a ordinals ν,

with Sν ⊂ Bµ, such that Bν contains an Sν–Sν path P with endvertices x, y

and E(P ) ⊂ E(G).

Proof. Our proof is along the lines of that of Theorem 4.3; the main difference
will be that we use Lemma 6.1 rather than Lemma 4.2 to choose the factors
for F , and that our choice of the graph D in the lemma has to ensure that each
factor Bν contains the correct Sν–Sν paths. For the application of Lemma 6.1,
note that G′ �⊇ Kb by Proposition 4.5, and that µG′(x, y) < a for non-adjacent
x, y ∈ G′ by Proposition 4.4.

Let V (G′) be well-ordered as (vρ)ρ<σ. In our construction of F , we shall
use the following abbreviations:

G′|λ :=
⋃

λ′<λ

Bλ′

Eλ :=
(
E(Bλ)\E(G′|λ)

)
�E(G) .

Let µ be given, 0 � µ < σ. Suppose that for every λ < µ we have already
defined an induced subgraph Bλ of G′ and, for every e = xy ∈ Eλ, a set P(e)
of G′|λ+1–G′|λ+1 paths P ⊂ G with endvertices x, y, such that

(i) Bλ is unattached in G′;

(ii) G′|λ+1 is convex in G′;

(iii) if C is a component of G′ �G′|λ+1 and e ∈ Eλ, then at most one P ∈ P(e)
meets C.
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We shall define Bµ and P(e) (for all e ∈ Eµ) such that (i)–(iii) hold for λ = µ.
As in the proof of Theorem 4.3, note that G′|µ is convex. Let

ρ(µ) := min { ρ | vρ /∈ G′|µ }, and put

G′
µ := G′ [ vρ(µ) →G′|µ ] ,

Cµ := G′
µ �G′|µ ,

Sµ := G′
µ ∩G′|µ .

Then Sµ = G′|µ [ vρ(µ) ], so Sµ is a simplex (Proposition 2.1.(iii)), and hence of
order < b.

Notice that if Λ(Sµ) has a maximum λ, then Cµ is already a component
of G′\G′|λ+1 (even if λ+ 1 < µ). Then the graph

Qµ :=
⋃

{P ∈ P(e) | e ∈ Eλ and P ∩Cµ �= ∅ }

has order < a, by (iii) and the fact that |Sµ| < a. Applying Lemma 6.1 to the
graph G′

µ, let Bµ be the graph H that extends D ⊂ G′
µ with respect to E :=

E(G′
µ)∩E(G), where

D :=

{
Sµ ∪{ vρ(µ) }∪Qµ, if λ = max Λ(Sµ);

Sµ ∪{ vρ(µ) }, if Λ(Sµ) has no maximum.

(It is clear that D has order < a.) Then |Bµ| < a, and Bµ is convex and unat-
tached in G′

µ. Since Bµ [ v ] = Sµ � Bµ for every v ∈ G′\G′
µ, Bµ is also unat-

tached in G′, establishing (i) for λ = µ. By Lemma 2.2.(ii), G′|µ+1 = G′|µ ∪Bµ

is convex in G′, giving (ii).
Before we define P(e) for e ∈ Eµ and show (iii) for λ = µ, let us note

the following consequence of the fact that Sµ separates Bµ from G′|µ in G′.
Let P = x . . . y be any Bµ–Bµ path in G′, and assume that y ∈ Bµ\Sµ. Then
y ∈ Cµ and P̊ ∩Sµ = ∅, so P̊ ⊂ Cµ. Thus P̊ ⊂ G′

µ\G′|µ+1 and

G′ [P →G′|µ+1 ] = G′ [P →Bµ ] = G′
µ [P →Bµ ]

G′ [P →G′|µ+1 ]∩G′|µ+1 = G′ [P →Bµ ]∩Bµ = G′
µ [P →Bµ ]∩Bµ , (1)

and hence

G′ [P →G′|µ+1 ]\G′|µ+1 = G′ [P →Bµ ]\Bµ = G′
µ [P →Bµ ]\Bµ (2)

(see Fig. 1). Another way of stating (2) is to say that whenever C ⊂ G′ contains
the interior of a Bµ–Bµ path one of whose endvertices is in Bµ\Sµ, then C is a
component of G′\G′|µ+1 if and only if C is a component of G′\Bµ, and if and
only if C is a component of G′

µ\Bµ.
For the definition of P(e), let now e = xy ∈ Eµ be given. As e /∈ E(G′|µ)

by definition of Eµ, we may assume that y ∈ Bµ\Sµ. Since e ∈ E(G′)\E(G)
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and G′ is the a-closure of G, there exists a set P of at least a independent x–y
paths P ⊂ G. Since |Bµ| < a, not all of these paths can have a vertex of Bµ in
their interior, so there exists at least one (in fact, at least a) component(s) C

of G′\Bµ such that P̊ ⊂ C. Then C = G′ [P →Bµ ]\Bµ =
(2)

G′
µ [P →Bµ ]\Bµ,

so C is also a component of G′
µ\Bµ. Since Bµ was chosen by Lemma 6.1,

this implies that there exists a set C of at least a components C ′ of G′
µ\Bµ

for which G′
µ [C ′ →Bµ ] contains a Bµ–Bµ path P ′ with endvertices x, y and

E(P ′) ⊂ E(G), and every such C ′ is also a component of G′\G′|µ+1 (again
by (2)). For each C ′ ∈ C pick one such path P ′, and let P(xy) be the set of all
these paths. Clearly |P(xy)| � a, and (iii) holds for λ = µ.

The proof that F = (Bλ)λ<σ is a coherent simplicial decomposition of G′ is
the same as for Theorem 4.3. It thus remains to show that for every µ < σ and
every edge xy ∈ Eµ there are at least a ordinals ν, with Sν ⊂ Bµ, such that Bν

contains an Sν–Sν path P with endvertices x, y and E(P ) ⊂ E(G). Let µ < σ

and e = xy ∈ Eµ be given, assuming again that y ∈ Bµ\Sµ. By definition of
P(e), every P̊ for P ∈ P(e) is contained in some component C(P ) of G′\G′|µ+1,
and these components are distinct for different paths P . Consider any fixed
P ∈ P(e), and put C(P ) =: C and min Λ(C) =: ν. Then C = Cν , so C is still
a component of G′\G′|ν . Furthermore,

Sν = G′
ν ∩G′|ν

= G′ [C→G′|ν ]∩G′|ν
= G′ [C→G′|µ+1 ]∩G′|µ+1

= G′ [P →G′|µ+1 ]∩G′|µ+1

=
(1)

G′ [P →Bµ ]∩Bµ

⊂ Bµ .

As y ∈ Sν and y ∈ Bµ\Sµ, this further implies that µ = λ(y) = max Λ(Sν), so
P ⊂ Qµ ⊂ Bν by the choice of Bν . Finally, since C(P )∩C(P ′) = ∅ for P �=
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P ′, the values of ν differ for distinct P ∈ P(e). As |P(e)| � a, this completes
the proof. �

We finish this paper with a corollary of Theorem 6.2, which plays a central
role in the proof of a result concerning the end-faithful spanning tree problem
for infinite graphs [ 3 ].

If F = (Bλ)λ<σ is a simplicial decomposition of a graph G in which every
Sµ is finite, let us denote by τ(µ) the largest element of Λ(Sµ), for each µ < σ.
Since any s ∈ Sµ with λ(s) = τ(µ) is in Bτ(µ)\Sτ(µ), Sµ must be contained
in Bτ(µ) by (S5). Hence, F satisfies (S4) and is therefore a simplicial tree-
decomposition.

Corollary 6.3. Let G be an uncountable graph not containing any subdivided

infinite simplex. Then the ℵ1-closure G′ of G admits a coherent simplicial tree-

decomposition F = (Bλ)λ<σ into countable factors and with finite simplices of

attachment, which has the following property: for every µ < σ and every edge

xy ∈
(
E(Bµ)\E(Sµ)

)
� E(G), there are uncountably many ordinals ν, with

τ(ν) = µ, such that Bν contains an Sν–Sν path P with endvertices x, y and

E(P ) ⊂ E(G).

Proof. Choose F by Theorem 6.2, putting a := ℵ1 and b := ℵ0. As every
Sµ is finite, F is a simplicial tree-decomposition. The assertion that τ(ν) = µ

follows from the fact that Sν ⊂ Bµ by Theorem 6.2, while Sν �⊂ Sµ, because
x, y ∈ Sν and xy /∈ E(Sµ) by assumption. �
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