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We prove a conjecture of Širáň describing the graphs in which every
spanning tree is end-faithful. This result leads to the consideration of
infinite k-connected rayless graphs. We characterize these graphs in
terms of tree-decompositions into finite k-connected factors.

Introduction

Let G be an infinite graph. The following assertions are equivalent for rays

(1-way infinite paths) P,Q ⊂ G:

(i) there exists a ray R ⊂ G which meets each of P and Q infinitely often;

(ii) for every finite X ⊂ G, the infinite components of P\X and Q\X lie in

the same component of G\X ;

(iii) G contains infinitely many disjoint (possibly trivial) P–Q paths.

If two rays P,Q ⊂ G satisfy (i)–(iii), we call them end-equivalent in G. An

end of G is an equivalence class under this relation, and E(G) denotes the set

of ends of G. For example, the 2-way infinite ladder has two ends, the infinite

grid Z×Z and every infinite complete graph have one end, and the dyadic tree

has 2ℵ0 ends.

This paper is concerned with the relationship between the ends of a con-

nected graph G and the ends of its spanning trees. If T is a spanning tree of

G and P,Q are end-equivalent rays in T , then clearly P and Q are also end-

equivalent in G. We therefore have a natural map η : E(T )→E(G) mapping

each end of T to the end of G containing it. In general, η need be neither 1–1

nor onto. For example, the 2-way infinite ladder has a spanning tree with 4 ends

(the tree consisting of its two sides together with one rung), and every infinite

complete graph is spanned by a star, which has no ends at all. A spanning tree

T of G for which η is 1–1 and onto is called end-faithful .

The concept of ends in graphs, and of end-faithful spanning trees, was

introduced by Halin [ 4 ] in 1964. Halin asked whether every infinite connected

graph has an end-faithful spanning tree, and proved that this is so for all count-

able graphs. End-faithful spanning trees have since been constructed for some

classes of uncountable graphs as well (see [ 2 ] and, especially, Polat [ 8 ]), but

very recent results due to Seymour and Thomas [ 10 ] and to Thomassen [ 12 ]

show that some uncountable graphs have no such tree. See [ 3 ] for an up-to-

date survey of results and open problems in this field.
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The purpose of this paper is to solve the problem converse to Halin’s,

which was posed recently by Širáň [ 11 ]: is there a simple characterization of

the graphs in which every spanning tree is end-faithful? Širáň conjectured the

following, which will be the first main result of this paper:

Theorem A. The spanning trees of a connected graph G are all end-faithful

if and only if every block of G is rayless.

The first part of this paper is devoted to a proof of this theorem, embedded

in a slightly more general result (Theorem 2.1).

The fact that Širáň’s conjecture is true immediately raises a further ques-

tion: what do the 2-connected rayless graphs look like? (Interestingly, the

graphs in which every block is rayless appear in a similar but unrelated role in

a recent paper of Halin [ 6 ], which motivates this question further.) Moreover,

if we replace 2 with a more general natural k, we obtain a problem of quite

independent interest: is there a simple structural description of the k-connected

rayless graphs?

Note that this problem too is intrinsically infinite: the raylessness con-

dition does not bite in the finite case, and the finite k-connected graphs are

clearly too varied to permit a general structural description of any detail.

In the second part of the paper, then, we shall prove what is best possible

in such a case: that the uncontrollable element in the variation among the k-

connected rayless graphs is confined to the finite case. More precisely, we show

that an infinite graph is rayless and k-connected if and only if the ‘infinite

aspect’ of its structure is that of an arbitrary rayless tree, while the ‘finite

details’ of this tree are arbitrary finite k-connected graphs:

Theorem B. An infinite graph is rayless and k-connected if and only if it has

a k-connected rayless tree-decomposition into finite k-connected factors.

(See Section 3 for precise definitions.)

Corollary. Every finite subgraph of a rayless k-connected graph can be ex-

tended to a k-connected finite subgraph.

In particular, we see that every rayless k-connected graph must have a finite

k-connected subgraph.
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1. Terminology and basic lemmas

We now run through some of the terminology and basic facts needed later.

A subgraph H of G is attached to a connected subgraph H ′ of G\H if every

vertex of H is adjacent to a vertex in H ′. If H is attached to some component

of G\H , then H is attached in G; otherwise H is unattached . (Note that if

G 6= ∅, then the empty graph ∅ ⊂ G is attached in G.)

If P = x1 . . . xn is a path and 1 6 i 6 j 6 n, we write P̊ := x2 . . . xn−1,

Pxi := x1 . . . xi, P x̊i := x1 . . . xi−1, xiPxj := xi . . . xj , xjP := xj . . . xn and

x̊jP := xj+1 . . . xn for subpaths of P . Analogous notation will be used for rays.

ForX,Y ⊂G, we call a path P ⊂G anX–Y path if its endvertices are inX

and Y , respectively, and its interior P̊ lies in Gr (X∪Y ). We write G [X→Y ]

for the subgraph of G induced by all vertices of G that can be reached from X

without passing through Y . More precisely, G [X → Y ] is the subgraph of G

induced by all vertices v ∈ G for which G contains a path x1 . . . xn satisfying

x1 ∈ X , xn = v, and xi /∈ Y for i 6= n. When the underlying graph G is fixed,

we shall usually abbreviate G [X → Y ] ∩ Y to Y [X ]. Thus, if X and Y are

disjoint, then Y [X ] is the subgraph of Y induced by all terminal vertices of

X–Y paths in G. On the other hand, if Y = G, then our definition of Y [X ]

coincides with the conventional meaning of G [X ], denoting the subgraph of G

induced by the vertices of X . A frequent example for the use of this notation

is the following. If H is an induced subgraph of G and C is a component of

G\H , then H [C ] is spanned by all those vertices of H that have a neighbour

in C. Then H = H [C ] if and only if H is attached to C in G.

For X ⊂ G and v ∈ G, any union F of paths Pi (i ∈ I) which begin in v,

end in some vertex of X , and are disjoint except for v, will be called a v–X

fan, with branches v̊Pi. Note that neither v nor the branches of F are required

to lie outside X . If R ⊂ G is a ray and G contains an infinite v–R fan, then

v is called a neighbour of R in G. Note that if v is a neighbour of R, then

G also contains an infinite v–R fan which covers V (R): simply take any v–R

fan, prune each branch after its first vertex on R, and extend the shortened

branches along R to cover all its vertices. (If v ∈ R, one may have to add an

extra branch.)

Similarly for X,Y ⊂ G, any union of disjoint paths, each beginning in X

and ending in Y , will be called an X–Y linkage. Thus two rays in G are end-

equivalent if and only if G contains an infinite linkage between them.

Two or more paths are independent if their interiors are disjoint. The

Menger number µG(x, y) of two vertices x, y ∈ G is the maximum of all cardi-

nals κ for which there exists a κ-set of independent x–y paths in G. (It is not

difficult to prove that this maximum always exists.) By Menger’s theorem, the

number of vertices needed to separate nonadjacent vertices x, y in G is exact-

ly µG(x, y), and G is called κ-connected if µG(x, y) > κ for all x, y ∈ G. We shall

use the infinite version of Menger’s theorem (for finite κ) freely throughout the

paper; see e.g. Halin [ 5 ] for a simple proof.
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Another standard result we shall be using repeatedly is König’s Infinity

Lemma [ 7 ]:

Infinity Lemma. Let K be a graph whose vertex set is the disjoint union of

finite non-empty sets An, n ∈ N, such that for n > 0 every vertex in An has a

neighbour in An−1. Then K contains a ray x0x1 . . . with xn ∈ An for all n ∈ N.

Corollary 1.1. Every infinite connected locally finite graph has a ray. �

Lemma 1.2. Let U and C be disjoint subgraphs of a graph G, such that C is

connected, U is attached to C, and U is infinite. Then G contains either an

infinite v–U fan for some v ∈ C, or an infinite R–U linkage for some ray R ⊂ C.

Proof. We first construct a ‘minimal’ connected subgraph T of G [C → U ]

containing infinitely many vertices of U . Pick an ω-sequence u0, u1, . . . ∈ V (U).

Let u′
0 be a neighbour of u0 in C, and set T0 := u0u

′
0. Having constructed

T0, . . . , Tn for some n ∈ N, let P be a U – (Tn∩C) path beginning in un+1, and

set Tn+1 := Tn ∪P . Finally, set T :=
⋃

n∈N
Tn.

By construction, T is a tree with leaves u0, u1, . . . , and every vertex of T

lies on a U–U path in T . Thus, if T has a vertex v of infinite degree, then v ∈

C, and T contains an infinite v–U fan.

Suppose now that T is locally finite, and let R ⊂ T be a ray (by Co-

rollary 1.1). Choose an ω-sequence P0, P1, . . . of disjoint R–U paths in T , as

follows. Let P0 be any R–U path in T . Assume that P0, . . . , Pn have been

chosen for some n ∈ N. Choose x ∈ R such that Qn := Rx∪ P0 ∪ . . .∪ Pn is

connected, and let Cn denote the component of T − x containing x̊R. Since

Qn is a subtree of T disjoint from Cn, and since every vertex of Cn lies on

a U–U path in T , we may choose Pn+1 as an R–U path in Cn. The paths

P0, P1, . . . form an infinite R–U linkage, as desired. �

2. The graphs in which every spanning tree is end-faithful

As our first main result, let us now prove Širáň’s conjecture (Theorem A),

embedded in a slightly more comprehensive characterization of the graphs in

which every spanning tree is end-faithful.

Theorem 2.1. For every connected graph G, the following assertions are equi-

valent:

(a) every spanning tree of G is end-faithful;

(b) every block of G is such that all its spanning trees are end-faithful;

(c) every block of G is rayless;

(d) G has no two disjoint equivalent rays, and no ray of G has a neighbour.
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Proof. (a)→(d). Suppose that every spanning tree of G is end-faithful. Then

G has clearly no two disjoint equivalent rays; for the union of these rays could

be extended to a spanning tree of G, which would not be end-faithful. Now

suppose that R is a ray in G with a neighbour v. Choose a v–R fan F ⊂ G

that covers V (R), and extend F to a spanning tree T of G. We prove that T

has no ray equivalent to R, and is therefore not end-faithful. Let Q be any

ray in G equivalent to R. Then Q meets R infinitely often (because G has no

two disjoint equivalent rays), and hence Q meets more than two branches of F .

Thus Q∪F contains a cycle. As T = T ∪F is acyclic, this implies that Q 6⊂ T .

(d)→(c). Let B be a block of G. We assume that B contains a ray R, and

show that unless R has a neighbour, B contains two disjoint rays equivalent

to R. We shall consider the vertices of R as ordered in the natural way, with

x < y if x is nearer to the initial vertex of R than y.

Let C be the set of components of B\R. If R [C ] is infinite for some C ∈ C,

the assertion follows by Lemma 1.2: unless C contains a neighbour of R, there

exists a ray in C (and hence disjoint from R) which is equivalent to R. We shall

therefore assume that R [C ] is finite for every C ∈ C. Regarding C1, C2 ∈ C as

equivalent if R [C1 ] = R [C2 ], let C′ ⊂ C be a set of representatives, and put

B′ := B [R∪
⋃

C′ ]. Note that B′ is still 2-connected. We may assume that

each vertex x ∈ R is adjacent to only finitely many vertices of R,

and x is contained in R [C ] for only finitely many C ∈ C′.
(1)

For if x is adjacent to infinitely many vertices of R, then x is a neighbour of R.

Similarly if C′′ ⊂ C′ is infinite, then infinitely many vertices of R are in R [C ]

for some C ∈ C′′, by the choice of C′. Thus if x ∈ R [C ] for every C ∈ C′′, then

B′ contains an infinite x–R fan, so again x is a neighbour of R.

(1) implies that, from any given vertex of R, we can only reach finitely

many other vertices of R by an R–R path in B′. More generally,

Vx := { v ∈ R | B′ contains an R–R path u . . . v with u < x }

is finite for every x ∈ R̊ .
(2)

Note that since x is not a cutvertex of B′, Vx contains a vertex y > x. In

particular, max Vx > x.

Choose a sequence P1, P2, . . . of paths as follows. Let y0 be the second

vertex on R. Having defined yn for some n ∈ N, put yn+1 := max Vyn
, let Pn+1

be an Rẙn–R path ending in yn+1, and let xn+1 be the initial vertex of Pn+1.

Note that

xn+1 < yn < yn+1 for all n ∈ N. (3)

Moreover, we have

yn 6 xn+2 for all n (4)
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FIGURE 1. Finding two disjoint rays equivalent to R

(Fig. 1). For if xn+2 < yn, then Pn+2 is an Rẙn–R path, so its endvertex

yn+2 is in Vyn
. Since yn+2 > yn+1 by (3), this contradicts the choice of yn+1

as max Vyn
.

Combining (3) and (4), one easily deduces that none of the R-segments

ynRxn+2 contains any other vertices xi or yi. In particular, two such segments

are disjoint for distinct n. Furthermore, if n 6= m and P̊n, P̊m 6= ∅, then P̊n

and P̊m lie in different components C ∈ C′, by the choice of their endvertices

yn and ym, and the fact that these are distinct. Hence, the rays

x1P1y1Rx3P3y3Rx5P5y5 . . . and x2P2y2Rx4P4y4Rx6P6y6 . . .

are disjoint. Since both meet R infinitely often, they are also equivalent.

(c)→(b) is trivial, because a rayless graph has no ends.

(b)→(a). Suppose that G has a spanning tree T which is not end-faithful.

Assume first that two ends of T are contained in a common end of G. Then T

has two disjoint rays R and Q, such that G contains an infinite R–Q linkage L.

By discarding initial segments of R and Q if necessary, we may assume that

H := R∪Q∪L is 2-connected. Thus H ⊂ B for a block B of G, and B ∩T is

a spanning tree of B which is not end-faithful.

Assume now that G contains a ray R which has no equivalent ray in T .

For each edge e of R, let B(e) be the block of G containing e. Note that if

B(e1) = B(e2), then B(e1) = B(e) = B(e2) for every edge e between e1 and

e2 on R. We show that B := {B(e) | e ∈ E(R) } is finite; then R has a tail

xR inside a single block B, and B ∩ T is a spanning tree of B which is not

end-faithful.

Suppose B is infinite, and assume that E(R) runs through the blocks

B0, B1, . . . (in the order of R). For each n ∈ N, let xn be the first vertex

on R that is in Bn. Then B(e) = Bn for every edge e between xn and xn+1,

so xn, xn+1 ∈ Bn. Since T ∩Bn is connected, it contains an xn–xn+1 path Pn.

These paths are independent for distinct n, so x1P1x2P2x3P3 . . . is a ray in T

which meets R infinitely often. This contradicts our assumption that T has no

ray equivalent to R. �

In proving Širáň’s conjecture, we have described the graphs in which every

spanning tree is end-faithful in terms of rayless 2-connected graphs. In the

remainder of this paper, we take this description a step further and charac-

terize the rayless 2-connected graphs in terms of finite ones. The two results
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can then be combined into a structural characterization of the graphs in which

every spanning tree is end-faithful in terms of finite 2-connected graphs. (The

explicit formulation of this result should be clear and will be left to the reader.)

3. Tree-decompositions and convex subgraphs

The aim of this section is to provide the necessary background for the proof of

our second main result, a characterization of the infinite rayless k-connected

graphs by their tree-decompositions (Theorem 4.3). The factors in these tree-

decompositions will be finite k-connected graphs, and the decomposition trees

involved will be rayless and such that ‘adjacent’ factors overlap in at least k

vertices. Although this result is easily stated (at least in an intuitive way), its

proof uses a few concepts and techniques from simplicial decomposition theo-

ry as developed in [ 1 ]. In order to make this paper self-contained, everything

needed is listed below; the reader who is familiar with simplicial decompositions

may skip this material and go straight to Section 4.

In the following, a complete graph will often be called a simplex . Let G be

a graph, σ > 0 an ordinal, and for each λ < σ let Bλ be an induced subgraph

of G. The family F = (Bλ)λ<σ is called a simplicial tree-decomposition of G if

the following four conditions hold:

(S1) G =
⋃

λ<σ Bλ;

(S2) every G|µ ∩Bµ =: Sµ is a simplex, where G|µ :=
⋃

λ<µ Bλ (0 < µ < σ);

(S3) no Sµ contains Bµ or any other Bλ (0 6 λ < µ < σ);

(S4) each Sµ is contained in Bλ for some λ < µ (µ < σ).

Based on (S1), we shall write λ(x) := min {λ | x ∈ Bλ } for vertices x ∈ G,

and Λ(X) := {λ(x) | x ∈ X } for X ⊂ G. Note that the vertices x ∈ G with

λ(x) = µ are precisely the vertices of Bµ\Sµ.

If F satisfies (S1) and (S4) (but not necessarily (S2) or (S3)), F is called

a tree-decomposition of G. The factors in such a tree-decomposition may be

regarded as the vertices of a tree TF (the decomposition tree of F ), defined

inductively by joining each ‘vertex’ Bµ to a fixed predecessor Bλ as provided

by (S4). To avoid ambiguity, this λ is chosen minimal; then Sµ is contained in

Bλ but not in Sλ, so Sµ has a vertex s with λ(s) = λ. It is often convenient to

think of the tree TF as rooted at the vertex B0, and of V (TF ) = {Bλ | λ < σ }

as endowed with the corresponding tree-order <TF
. (Thus, B <TF

B′ if B lies

on the unique B0–B
′ path in TF .) Note that this partial order is compatible

with the well-ordering of F : if Bλ <TF
Bµ, then λ < µ.

We remark that the above definition of a tree-decomposition is equivalent,

for finite graphs, to that introduced by Robertson and Seymour for the study

of graph minors; see [ 1; Ch. 1, Exercise 23 ].

We shall need the following simple property of tree-decompositions (see [ 1;

Ch. 1.2 ] for a proof):
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Proposition 3.1. If B,B′, B′′ are factors in a tree-decomposition F of G and

B lies on the B′–B′′ path in TF , then B separates B′\B from B′′\B in G.

A tree-decomposition or simplicial tree-decomposition F = (Bλ)λ<σ is

coherent if Sµ is attached to Bµ\Sµ and Bµ\Sµ is connected for every µ < σ.

F will be called k-connected if |Sµ| > k for every µ > 0, and rayless if TF is

rayless. For each B ∈ F , the subgraph

B− :=
⋃

{B′
∈ F | B′ 6TF

B }

of G will be called the shadow of B in TF . Since Bλ(s) <TF
Bµ for all s ∈ Sµ

(induction on µ), we have B− =
⋃

{Bλ(x) | x ∈ B− } for every B ∈ F .

A subgraph H ⊂ G is convex in G if H contains every induced path in G

whose endvertices are in H . Examples of convex subgraphs include factors and

shadows in simplicial tree-decompositions [ 1; Ch. 5.4 ]:

Proposition 3.2. If F = (Bλ)λ<σ is a simplicial tree-decomposition of G and

T is a subtree of TF , then
⋃

T is a convex subgraph of G.

There are a number of interesting and useful equivalents of convexity, all

easily proved:

Proposition 3.3. For H ⊂ G, the following statements are equivalent:

(i) H is convex in G;

(ii) the endvertices of every H–H path in G are adjacent in H ;

(iii) H is an induced subgraph of G and, for every vertex x ∈ G\H , the

subgraph H [x ] = G [x→H ]∩H is a simplex;

(iv) if A,B,X ⊂ V (H), then X separates A from B in H if and only if X

separates A from B in G. �

The following simple technical lemma provides a useful means for joining

two convex subgraphs into one.

Lemma 3.4. Let G1, G2 ⊂ G be graphs, and suppose that S = G1 ∩ G2

separates G1 from G2 in G.

(i) If G1 and G2 are convex in G, then so is G1 ∪G2.

(ii) If S is a simplex and Gi is convex in G [Gi→S ], i = 1, 2, then G1 ∪G2

is convex in G.

Proof. (i) is obvious from the definition of convexity.

(ii) As S is a simplex, G [Gi→S ] is convex in G by Proposition 3.3. Since

Gi is convex in G [Gi →S ] by assumption, this implies that Gi is also convex

in G. Apply (i). �
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4. The structure of the rayless k-connected graphs

Given a graph G and a cardinal κ, let [G ]κ denote the graph with vertex set

V (G) and edge set E(G) ∪ {xy | µG(x, y) > κ }. The graph [G ]κ is usually

called the κ-closure of G, which is justified by the following observation:

Proposition 4.1. [G ]κ is its own κ-closure.

(The proof of Proposition 4.1 is not difficult; see [ 1; Ch. 5.3 ].)

Note that Proposition 4.1 implies that µ [G ]κ(x, y) < κ for any two non-

adjacent vertices x, y ∈ [G ]κ. Moreover,

Lemma 4.2. If κ is infinite and G is rayless, then [G ]κ is rayless.

Proof. Suppose [G ]κ contains a ray R. We shall choose vertices xn ∈ R and

define paths Pn ⊂ G, for all n ∈ N, such that Pn is an xn−1–xn path for each

n > 1, and
⋃

n∈N
Pn is a ray in G.

Let x0 be the initial vertex of R and P0 := { x0 }. Let n > 1 be given,

and assume that xi and Pi have been defined for all i < n. Let v be the

successor of xn−1 on R. If xn−1v ∈ E(G), let Pn := xn−1v and set xn := v. If

xn−1v /∈ E(G), then G contains infinitely many independent xn−1–v paths. Let

P be one of these paths, chosen such that P̊ ∩Pi = ∅ for all i < n. Let xn be

the latest (farthest from x0) vertex on R that is in V (P ), and set Pn := Pxn.

It is easily checked that
⋃

n∈N
Pn is a ray in G. �

We are now ready to prove our second main result.

Theorem 4.3. For any graph G and k ∈ N, the following two assertions are

equivalent:

(i) G is rayless and k-connected;

(ii) G has a rayless and k-connected tree-decomposition into finite k-

connected factors.

Proof. (i)→(ii). Assume that G is rayless and k-connected, and let

G′ := [G ]ℵ0
. Clearly G′ is again k-connected, and by Lemma 4.2, G′ is also

rayless. We shall first construct a rayless, k-connected and coherent simplicial

tree-decomposition F ′ = (Bλ)λ<σ of G′, which will then be modified to give

the desired tree-decomposition F of G.

Let us choose the factors Bλ for F ′ in such a way that, for every λ < σ,

(a) Bλ is unattached in G′;

(b) if xy ∈ E(Bλ)\E(G) and λ(y) = λ, then Bλ ∩ G contains at least k

independent x–y paths;

(c)
⋃

λ′6λ Bλ′ is convex in G′.

9



Let µ > 0 be given, and suppose that for every λ < µ we have defined Bλ so as

to satisfy (a)–(c). We shall seek to define Bµ in such a way that (a)–(c) hold

for λ = µ.

We first show that G′|µ :=
⋃

λ<µ Bλ is convex in G′. If µ = 0, this is trivial

as G′|µ = ∅. If µ is a successor ordinal, then G′|µ is convex by assumption (c).

Finally, if µ is a non-zero limit, then G′|µ is the nested union of the graphs
⋃

λ′6λ Bλ′ with λ < µ; since these graphs are convex by (c), G′|µ is also convex.

If V (G′)\V (G′|µ) = ∅, we put σ := µ and terminate the construction of F ′.

Note that in this case G′|µ = G′ (because, being convex, G′|µ is induced in G′),

so F ′ satisfies (S1).

Assume now that V (G′)\V (G′|µ) 6= ∅. Let Cµ be a component of G′\G′|µ,

and set
Hµ := G′ [Cµ →G′|µ ]

Sµ := Hµ ∩G′|µ .

Then Sµ = G′|µ [ v ] for each vertex v ∈ Cµ, so Sµ is a simplex by Proposi-

tion 3.3.(iii). Since G′ is rayless and k-connected, Sµ is finite but has at least

k vertices. (To be precise, the latter is true if and only if µ 6= 0; note that in

this case G′|µ\Sµ 6= ∅, since B0 ⊂ G′|µ is not attached to Cµ by (a).)

We construct Bµ in ω steps (almost all of which will later turn out to

be redundant), as the union of a nested sequence B0
µ ⊂ B1

µ ⊂ . . . of finite

supergraphs of Sµ in Hµ. With B0
µ := Sµ, let us assume that B0

µ, . . . , B
n−1
µ

have been defined for some n > 1. If Bn−1
µ is an attached simplex in Hµ (which

is the case, for example, for n = 1), we pick a vertex v ∈ Cµ\Bn−1
µ such that

Bn−1
µ = Bn−1

µ [ v ], and set Bn
µ := Bn−1

µ ∪ { v }. Let us further define a set

P ′
n := ∅ for such n; this set will be needed as a ‘dummy’ in a recursion formula

below. For the remainder of the construction of Bn
µ , we shall now assume that

Bn−1
µ is not an attached simplex in Hµ (and in particular, that n > 1).

We first make Bn−1
µ induced in G′ by adding any missing edges, putting

B̃n−1
µ := G′ [Bn−1

µ ] .

Let us write En
µ for the set of edges we added; thus

En
µ = E(B̃n−1

µ )rE(Bn−1
µ ) .

Next, we let P ′
n be any inclusion-maximal set of independent B̃n−1

µ – B̃n−1
µ

paths in Hµ whose endvertices x, y are non-adjacent in B̃n−1
µ . Note that for

each pair xy of endvertices in B̃n−1
µ there are only finitely many such paths, by

the definition of G′ and the remark following Proposition 4.1; since Bn−1
µ and

hence the number of these pairs is finite, P ′
n is also finite. Third, we let P ′′

n be

another finite set of B̃n−1
µ – B̃n−1

µ paths, this time in G itself, choosing k such

paths x . . . y for each edge

xy ∈

(

En
µ ∪

⋃

P ∈P′

n−1

E(P )
)

rE(G)
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in such way that all these paths are internally disjoint from each other and

from every path in P ′
n. (We assume here that P ′

n−1 has already been defined

as a set of paths in Bn−1
µ .) Since G contains infinitely many independent x–y

paths for every such pair xy (by definition of G′), such a set P ′′
n does certainly

exist. Moreover, every path of P ′′
n lies in Hµ, because it can have at most one

endvertex and no interior vertex in Sµ (recall that Sµ = B0
µ ⊂ Bn−1

µ ). Finally,

we put Pn := P ′
n ∪P ′′

n , and set

Bn
µ := B̃n−1

µ ∪
⋃

Pn

and

Bµ :=
⋃

n∈N

Bn
µ .

Let us prove that although we formally took infinitely many steps to con-

struct it, Bµ is in fact finite. More precisely, let us prove that Bn+1
µ = Bn

µ

for all sufficiently large n. Suppose the contrary holds. Since G′ is rayless and

hence contains no infinite simplex, there exists an n0 ∈ N such that Bn
µ is not

an attached simplex in Hµ for any n > n0. Thus Pn 6= ∅ for arbitrarily large n.

In fact, Pn 6= ∅ for every n > n0. For if Pn = P ′
n ∪P ′′

n = ∅, then P ′
n+1 = ∅

by the maximality of P ′
n. Moreover, Bn

µ = B̃n−1
µ , so Bn

µ is induced in G′. But

then En+1
µ = ∅, and hence P ′′

n+1 = ∅. Thus again Pn+1 = ∅. By induction,

this gives Pn = ∅ eventually for all n, a contradiction.

Notice that if n > n0 and P is a path in Pn+1, then at least one of the

two endvertices of P lies in the interior of a path Q ∈ Pn: if P ∈ P ′
n+1, this

is a consequence of the maximality of P ′
n, while for P ∈ P ′′

n+1 it follows from

the definition of En+1
µ . (Recall that B̃n−1

µ ⊂ Bn
µ is induced in G′, so any

edge of B̃n
µ that is not already an edge of Bn

µ must have one of its endvertices

in Bn
µ\B̃

n−1
µ =

⋃

{ Q̊ | Q ∈ Pn }.) Choosing a fixed such Q = Q(P ) ∈ Pn for

each P ∈ Pn+1 and every n > n0, let K be the graph with vertex set

V (K) :=
⋃

n>n0

Pn

and edge set

E(K) := {PQ(P ) | P ∈ Pn+1 for some n > n0 } .

Since each of the sets Pn is finite, König’s Infinity Lemma implies that K

contains a ray Q1Q2 . . . with Qi ∈ Pn0+i for every i. By construction of K,

the subgraph
⋃

i∈N
Qi of G′ contains a ray, contradicting the fact that G′ is

rayless. This completes the proof that Bµ is finite.

Let us now check that our definition of Bµ complies with the conditions

(a)–(c) for λ = µ. For a proof of (c) note that, by construction, the endvertices

x, y of any Bµ–Bµ path P ⊂ Hµ are adjacent in Bµ: since x and y are contained

in Bn
µ for some n, the existence of P would otherwise contradict the maximal-

ity of P ′
n+1. By Proposition 3.3.(ii), therefore, Bµ is a convex subgraph of Hµ.
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By Lemma 3.4.(ii) and our observation that G′|µ is convex in G′ (and hence

in G′ [G′|µ→Sµ ]), this implies that
⋃

λ′6µ B
′
λ′ = G′|µ ∪Bµ is convex in G′, as

required for (c).

In order to show (a) for λ = µ, let n ∈ N be such that Bµ = Bn
µ = Bn+1

µ .

Suppose that Bµ is attached in G′, i.e. that Bµ = Bµ [ v ] for some vertex

v ∈ G′\Bµ. As Bµ ∩Cµ 6= ∅ by the construction of Bµ, clearly v ∈ Cµ. Since

Bµ is convex in Hµ, Proposition 3.3.(iii) implies that Bµ is a simplex. But then

Bµ = Bn
µ is an attached simplex in Hµ, so our construction of Bµ prescribes

that Bn+1
µ = Bn

µ ∪{w } for some vertex w ∈ Cµ\Bn
µ , contrary to our assumption

that Bn
µ = Bn+1

µ .

For a proof of (b), finally, notice that if xy ∈ E(Bµ)\E(G) and λ(y) = µ,

then there exists an n ∈ N such that xy ∈ En
µ or xy ∈ E(P ) for some P ∈ P ′

n.

The k independent x–y paths required for (b) are therefore contained in P ′′
n or

in P ′′
n+1.

To complete our construction of the family F ′ = (Bλ)λ<σ , it remains to

observe that Bµ\G′|µ 6= ∅ for each µ; the construction therefore terminates

after no more than |G′| steps.

Having noted earlier that F ′ satisfies (S1), we observe further that the sim-

plex Sµ coincides with Bµ∩G′|µ for each µ < σ, so F ′ satisfies (S2). Moreover,

as Sµ is attached, it cannot contain any Bλ by (a), so F ′ also satisfies (S3).

Finally, it is easily checked that Sµ ⊂ Bλ for λ := max Λ(Sµ) (observe that

Sµ has a vertex in Bλ\Sλ and, being a simplex, is not separated by Sλ), so F ′

satisfies (S4). Therefore F ′ is a simplicial tree-decomposition of G′.

As |Sµ| > k for every µ > 0, F ′ is k-connected. To see that F ′ is coher-

ent, suppose that, for some µ < σ, Sµ is not attached to Bµ\Sµ or Bµ\Sµ is

disconnected. In either case there exists a subsimplex S ⊂ Sµ which separates

vertices x, y ∈ Bµ\S in Bµ. As Sµ is attached to Cµ and Bµ\Sµ ⊂ Cµ, S cannot

separate x and y in Hµ. By Proposition 3.3.(iv), this contradicts the convexity

of Bµ in Hµ noted above in the proof of (c).

To see that F ′ is rayless, suppose that Bλ0
Bλ1

. . . is a ray in TF ′ , without

loss of generality chosen such that Bλ0
= B0. Then Sλn+1

⊂ Bλn
for each n,

and Sλn+1
has a vertex in Bλn

\Sλn
; let such a vertex vn be chosen for each n.

Now since F ′ is coherent, each Bλn
with n > 1 contains a vn−1–vn path Pn

whose only vertex in Sλn
is vn−1. The union of all these paths Pn is a ray

in G′, a contradiction.

We now come to the final step of the proof, the construction of a tree-

decomposition of G. For each λ < σ, let B−

λ be the shadow of Bλ in TF ′ ;

thus

B−

λ =
⋃

{B ∈ F ′ | B 6T
F ′

Bλ } .

Recall that, by Proposition 3.2, each of these B−

λ is a convex subgraph of G′.

Let us define

Gλ := B−

λ ∩G

12



for each λ < σ, and set

F := (Gλ)λ<σ .

We shall prove that F is a tree-decomposition of G with the desired properties.

Since F ′ satisfies (S1) with respect to G′, clearly F satisfies (S1) with

respect to G. In order to check (S4), note that if µ < σ is given, and τ(µ) < µ

is such that Bτ(µ)Bµ ∈ E(TF ′) (i.e., Bτ(µ) is the immediate predecessor of Bµ

in TF ′), then Gµ ∩G|µ = Gτ(µ). Thus, F is a tree-decomposition of G. (Note

that F does not, in this form, satisfy (S3); however, this could easily be achieved

by restricting F to those Gλ for which Bλ is a leaf in TF ′ .)

To see that the factors in F are finite, recall that each B−

λ is a finite union

of finite graphs, and hence itself finite. Since B−

λ ⊇ B0 ⊇ S1 for every λ,

and |S1| > k, any two factors Gλ ∈ F have at least k vertices in common;

hence F is k-connected. As for the raylessness of F , recall that Sµ, and hence

V (Gµ ∩ G|µ) ⊇ V (Sµ), contains a vertex s with λ(s) = τ(µ) (taken in F ′).

Thus, while Gµ ∩G|µ is contained in Gτ(µ) (as pointed out above), Gµ ∩G|µ is

not contained in Gλ for any λ < τ(µ), so Gµ is joined to Gτ(µ) when TF

is constructed. In other words, TF is isomorphic to TF ′ under the natural

isomorphism mapping Gλ to Bλ. Since TF ′ is rayless, this means that TF too

is rayless.

It remains to show that every Gλ is k-connected. Suppose not, and let

U ⊂ V (Gλ) be a set of fewer than k vertices separating Gλ. Let C and C′

be distinct components of Gλ − U . Since G′ is k-connected, there exists a

C–C′ path P in G′ avoiding U ; as B−

λ is convex in G′, we may assume that

P ⊂ B−

λ . Assuming further that C and C′ were suitably chosen, P thus consists

of a single edge xy, say with λ(x) 6 λ(y). Then xy ∈ E(Bλ(y))rE(G). By

(b) in the construction of F ′, there are at least k independent x–y paths in

Bλ(y)∩G ⊂ Gλ. One of these paths must avoid U , contrary to our assumption

that x and y are in distinct components of Gλ −U . This completes the proof

that Gλ is k-connected, for every λ < σ.

(ii)→(i). If G has a rayless and k-connected tree-decomposition

F = (Bλ)λ<σ into finite k-connected factors, then G is clearly k-connected

(induction on µ 6 σ for G|µ).

Suppose G contains a ray R. As each factor in F is finite, Λ(R) must be

infinite. Let

U := {Bλ | λ ∈ Λ(R) } ,

pick a vertex v(Bλ) ∈ R∩ (Bλ\Sλ) from each Bλ ∈ U , and set

V := { v(B) | B ∈ U } .

Note that v(B) 6= v(B′) for distinct B,B′
∈ U , because λ(v(B)) 6= λ(v(B′)).

Let T be the infinite subtree of TF arising from the union of all the U–U

paths in TF . As T is rayless, it has a vertex B of infinite degree (Corollary 1.1).
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By the construction of T , every edge incident with B in T lies on a B–U path

in T . Hence, there is an infinite subset U ′ of U such that B lies on the path

in TF between any two elements of U ′. As B is finite, U ′ can be chosen such

that v(B′) /∈ B for any B′
∈ U ′. By Proposition 3.1, therefore, B separates any

two vertices of

V ′ := { v(B′) | B′
∈ U ′ }

in G. Since V ′ is an infinite subset of V (R), this contradicts the fact that B is

finite.

Hence G is rayless, as claimed. �
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