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A well-founded tree T defined on the vertex set of a graph G is called
normal if the endvertices of any edge of G are comparable in T . We
study how normal trees can be used to describe the structure of infinite
graphs. In particular, we extend Jung’s classical existence theorem for
trees of height ω to trees of arbitrary height. Applications include a
structure theorem for graphs without large complete topological minors.
A number of open problems are suggested.

1. Introduction: normal spanning trees

The aim of this paper is to see how a classical and powerful structural device

for the study of countable graphs, the notion of a normal spanning tree, can

be made available more generally. The existence of such spanning trees, while

trivial in the finite case (where they are better known as depth-first search

trees), is in general limited to countable graphs. By generalizing the graph

theoretical trees involved to order theoretical trees, a concept better suited

to express uncountably long ‘ends’, we shall be able to extend the classical

existence theorems for normal trees to arbitrary cardinalities, while retaining

much of their original strength.

Throughout the paper, G will denote an arbitrary connected graph. Con-

sider a tree T ⊆ G, with a root r, say. If T spans G, the choice of r imposes a

partial order on the vertex set V (G) of G: write x 6 y if x lies on the unique

r–y path in T . T is called a normal spanning tree of G if the two endvertices

of any edge of G are comparable in this order.

Normal spanning trees have proved to be a most powerful tool for the

study of countable graphs; see [ 8 ]–[ 10 ] for recent examples. Naturally, it is

difficult to pin this strength down to a few particular properties. All the same,

there are some basic facts on which most specific applications rely.

The most fundamental of these is the fact that any two vertices are sepa-

rated in G by the down-closure of their infimum in the normal spanning tree.

More precisely, if T is a normal spanning tree of G, and if ⌈x⌉ and ⌈y⌉ denote

the paths in T from the root to x and to y, respectively, then

(1.1) ⌈x⌉ ∩ ⌈y⌉ separates x from y in G.

(The interesting—and non-trivial—case of this is when x and y are incompa-

rable in T , i.e. when neither lies on the T -path from the root to the other.)
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One of the most typical ‘infinite’ consequences of (1.1) is the fact that for

every ray (1-way infinite path) R ⊆ G there exists a ray B ⊆ T such that R∩

B is infinite. This is usually expressed as follows:

(1.2) Every ray of G follows a branch of T .

Together with (1.1), (1.2) implies that normal spanning trees are topologically

end-faithful; see [ 7 ] for details.

If (1.1) is combined with the connecting properties of T , we obtain another

useful and intuitive property: the removal of down-closures in T leaves precisely

the same components in G as in T .

(1.3) For every vertex x ∈ G, the vertex sets of the components of G\⌈x⌉

coincide with those of the components of T \⌈x⌉.

In the next sections, when we come to generalize normal spanning trees,

we shall seek to preserve the above three properties (or suitable analogues)

whenever possible.

It is clear that not every connected graph can have a normal spanning

tree: an uncountable complete graph, for example, has none. Jung [ 13 ] has

characterized the graphs that admit a normal spanning tree, as follows. Call a

set U ⊆ V (G) dispersed if any ray can be separated from it by a finite set of

vertices.

Theorem 1.4. (Jung)

G has a normal spanning tree if and only if V (G) is the union of countably

many dispersed sets.

Corollary 1.5. Every countable connected graph has a normal spanning tree.

Corollary 1.6. IfG has a normal spanning tree andH is a connected subgraph

of G, then H has a normal spanning tree.

Despite obvious strengths such as the above corollaries, Jung’s character-

ization does not always allow one in practice to decide whether or not some

particular graph has a normal spanning tree. For example, there is a result

of Halin [ 11 ] that every connected graph not containing a subdivided infinite

complete graph has a normal spanning tree; the proof of this theorem, based

on simplicial decompositions of graphs, is fairly involved and uses only the two

corollaries above, not Theorem 1.4 itself.
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The paper is organized as follows. In Sections 2 and 3, we discuss various

generalizations of normal spanning trees to well-founded order trees. There

will be one most natural such generalization, which we shall call a well linked

normal tree. Unfortunately, we shall see that an arbitrary graph need not have

a well linked normal tree. In Section 3, therefore, we introduce the weaker

concept of a linked tree. In Section 4, on the other hand, we prove that well

linked trees do always ‘nearly’ exist: in any graph we need contract only small

connected subgraphs to obtain a graph which has a well linked normal tree.

This theorem, though somewhat technical at first glance, will be at the core

of all our subsequent results. In Sections 5 and 6, we generalize Jung’s theo-

rem to trees of arbitrary height. In Section 7, we prove the general existence

of linked trees. Section 8 is devoted to the study of cohesive graphs: these

are graphs with strong connective properties featuring in our generalization of

Jung’s theorem, so this section serves to explore the statement of that theorem

in more detail. Section 9 includes, as an application of our results, a structural

characterization of the graphs without a complete topological minor of given

regular size. We conclude in Section 10 with a list of open problems.

2. Normal trees

A partially ordered set (T,6) is called a tree if all its subsets of the form

⌈t⌉ = ⌈t⌉T := { t′ | t′ 6 t } are chains and ⌈t⌉ ∩ ⌈t′⌉ 6= ∅ for any t, t′ ∈ T . T is

well-founded if all these chains are well-orderings. Thus, a well-founded tree

has a unique minimal element, called its root . Every graph theoretical tree

with a root r is a well-founded tree in this sense if we write x 6 y whenever x

lies on the unique r–y path in this tree. All the trees considered in this paper,

except for some concluding remarks in the last section, will be well-founded.

Let T be a tree. A maximal chain in T is called a branch of T ; note that

every branch inherits a well-ordering from T . A final segment of a branch is a

tail of this branch. The length of a branch is its order type, and the (ordinal)

height of T , denoted by ht(T ), is the supremum of the lengths of its branches.

The height htT (t) of a vertex t ∈ T is the order type of ⌈̊t⌉ := ⌈t⌉\{ t }. For

α < ht(T ) the set Tα of all points of height α is called the αth level of T , and

we write T<α :=
⋃
{T β | β < α }. For t ∈ T , we use ⌊t⌋ = ⌊t⌋T to denote the

subtree { t′ | t′ > t }.

The intuitive interpretation of a tree order as expressing height will also

be used informally. For example, we may say that t is above t′ if t′ < t, call

⌈X⌉ = ⌈X⌉T :=
⋃
{ ⌈x⌉ : x ∈ X } the down-closure of X ⊆ T , or say that X

is down-closed if X = ⌈X⌉. If t < t′, we write [ t, t′ ] for ⌊t⌋∩ ⌈t′⌉, and call this

set an interval in T . If there is no point between t and t′, we call t′ a successor

of t.

When κ is an infinite cardinal, we call T a κ-tree if T has height κ and
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|T<α| < κ for every ordinal α < κ. Note that, if κ is regular, this latter

condition is equivalent to saying that every level of T has size < κ. A κ-tree T

is narrow if it has a (unique) branch B of length κ such that for every t ∈ B

all but < κ points of T lie above t. This branch B will be called the central

branch of T . (Of course, the existence of such a central branch implies by itself

that T must be a κ-tree.)

Let T be a tree defined on the vertex set of G. We shall call T normal

for G if adjacent vertices of G are comparable in T . Note that this definition

is compatible with and extends Jung’s notion of normality for spanning trees.

For the remainder of this section, T will be an arbitrary normal tree for G.

It is not hard to show that the fundamental separation property for Jung’s

trees, (1.1), carries over:*

(2.1) If x, y ∈ T are incomparable, then the set ⌈x̊⌉ ∩ ⌈ẙ⌉ separates x from y

in G.

Indeed, let P be an x–y path in G, and let Q = v1, . . . , vn be a minimal

length subsequence of the vertices of P such that x = v1, y = vn, and any

two consecutive vertices in Q are comparable in T . (Note that P itself has this

property by normality, but Q is not required to induce a path in G.) Clearly,

n > 3. By the minimality of Q, v1 and v3 are incomparable in T . Since T is

a tree, this implies that v2 < v1, v3. Now if n > 4, then similarly v3 < v2, v4,

with a contradiction. Hence n = 3, and v2 ∈ ⌈x̊⌉ ∩ ⌈ẙ⌉.

As a typical application of (2.1), note that if X ⊆ T is connected in G

(i.e., induces a connected subgraph), then X has a unique minimal element.

Thus, X is a normal tree for the subgraph it induces in G.

Let us call a well-ordered sequence R of distinct vertices of G a long ray in

G if each vertex in the sequence is adjacent to a cofinal subset of the vertices

preceding it. As is easily seen, this is equivalent to saying that all the intervals

of R are connected in G. Note that, in particular, each successor vertex must

be adjacent to its predecessor in R, so a ‘long ray’ of type ω is just an ordinary

ray.

Generalizing the corresponding notion from the introduction, let us say

that a long ray R follows a branch B of T if R∩B is cofinal in R. Then also

our second property of normal spanning trees, (1.2), carries over to general

normal trees:

(2.2) Every long ray in G follows a branch of T .

* Note that the proof of (2.1) does not use the well-foundedness of T .
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To prove (2.2), let R be a long ray in G. Choose a cofinal subsequence S of R,

selecting inductively at each step a T -minimal vertex among all those vertices

not equal to or preceding (on R) any previously selected vertex. Now if x, y ∈ S

and x precedes y on R, then G contains a y–x path P whose vertices are all in

the interval [x, y ] of R. By the minimal choice of x for S, none of the vertices

of P is below x in T , so by (2.1), x and y must be comparable in T . Thus

all the vertices of S are pairwise comparable, and hence belong to a common

branch of T .

3. Linked trees

By definition, every graph has a trivial normal tree: just well-order its vertices.

Of course, this does not capture the full strength of a normal spanning tree

in Jung’s sense: in addition to being normal, such a tree is also a connected

subgraph, its branches are paths in the graph it spans. To adapt this to general

well-founded trees, let us call a normal tree for G well linked if all its branches

are long rays in G.

Unfortunately, an arbitrary connected graph need not have a well linked

normal tree:

Proposition 3.1. The graph K, obtained from a complete graph on ℵ1 ver-

tices by subdividing every edge once, has no well linked normal tree.

Proof. Let X ⊆ V (K) be the set of vertices of infinite degree, and S ⊆ V (K)

the set of vertices of degree 2. Suppose that T is a well linked normal tree

for K.* We shall prove that every branch of T is countable. As X is uncount-

able, there will then be incomparable vertices x, y ∈ X . Then the set ⌈x̊⌉∩⌈ẙ⌉,

which is contained in a branch and is therefore countable, separates x from y

in K (2.1). But clearly, no two vertices from X can be separated in K by a

countable set, contradiction.

So let B be a branch of T . In order to prove that B is countable, we

show that the subgraph H induced by its interior (those vertices of B that are

neither minimal nor maximal) has maximal degree 2. As the interior of B is

an interval, H is connected, and will thus be countable.

Suppose then that H has a vertex x of degree > 3. Then two of its neigh-

bours, s and s′ say, are either both above or both below x on B. We assume

that x < s < s′; the other cases are analogous. Clearly x ∈ X , and hence

s, s′ ∈ S. Since s′ is an interior vertex of B and intervals of B are connected

in G, s′ has an upper neighbour in B. Thus x is the only lower neighbour of s′

in B, and the interval [ s, s′ ] ⊆ B is disconnected in G (contradiction). �

* In fact, all we shall use about T is that its intervals are connected in K; as before, we
shall not make use of the well-foundedness of T .
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As our aim in this paper is to develop suitable analogues to normal span-

ning trees that are always available, we now introduce a weakening of the con-

cept of well linked. At first sight, this may look a little less natural, but it does

preserve some essential properties of normal spanning trees, including (1.3).

Let us call a normal tree T for G linked if the following three assertions

hold for every vertex x ∈ G; all these assertions are easily seen to be true if T

is well linked.

(L1) ⌈x⌉T is connected in G;

(L2) ⌊x⌋T is connected in G;

(L3) if y is a successor of x in T then xy is an edge of G.

Note that if T is linked and ht(T ) 6 ω, then, by (L3), T defines a nor-

mal spanning tree of G in Jung’s sense. We shall see in Section 7 that every

connected graph has a linked normal tree.

It is instructive to see how much linked trees retain of the defining property

of ‘well linked’, i.e. the property that every chain of the form ⌈x̊⌉ has a cofinal

subset of neighbours of x:

(3.2) If T satisfies (L2) for all x, then every chain of the form ⌈x̊⌉ in T has a

cofinal set of vertices each adjacent to a vertex in ⌊x⌋.

Indeed, suppose that y ∈ ⌈x̊⌉ is above every vertex of ⌈x̊⌉ with a neighbour

in ⌊x⌋. Then ⌊y⌋ is disconnected in G, since the only vertices of ⌊y⌋\⌊x⌋ that

could possibly (by normality) have a neighbour in ⌊x⌋ are those below x.

Together with (2.1), (L2) implies that property (1.3) from the introduction

generalizes to linked normal trees:

(3.3) If T is linked then, for any X ⊆ T , the vertex sets of the components

of G\⌈X⌉ are precisely the sets of the form ⌊t⌋, where t ranges over the

minimal elements of T \⌈X⌉.

Problem. Which graphs have a well linked normal tree?
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4. Partition trees and expansion trees

In this section we prove that every connected graph ‘almost’ has a well linked

normal tree: it always suffices to contract small connected subgraphs to ensure

that the quotient graph has a well linked normal tree. Although this result will

look a little technical when stated precisely, we expect that it will be at least

as useful for applications as the best possible approximations to well linked

trees (such as linked trees) that apply to the relevant graphs themselves. The

result will also form the basis for the proof of our characterization theorem

for graphs with normal trees of bounded height, the generalization of Jung’s

theorem (Section 6).

Let
⋃

t∈Ṫ Vt be a partition of V (G) into non-empty sets Vt. If the index

set Ṫ of this partition is a tree, we call it a partition tree for G. For vertices

v ∈ G, we write t(v) for the point t ∈ Ṫ such that v ∈ Vt. Whenever we speak

of a partition tree Ṫ for G, we shall assume that it comes with a fixed partition

of V (G); the sets Vt and the map v 7→ t(v) will then be well defined.

If Ṫ is a partition tree for G, we denote by Ġ the graph obtained from G

by contracting the sets Vt, t ∈ Ṫ . We may then identify Ṫ with the vertex set

of Ġ; thus, two points t, t′ ∈ Ṫ become adjacent vertices of Ġ if and only if G

contains a Vt–Vt′ edge. We shall call Ṫ a normal partition tree for G if the

following two conditions are satisfied:

(P1) for every t ∈ Ṫ , the set Vt is connected in G, and either |Vt| = cf (ht(t))

or |Vt| = 1;

(P2) Ṫ is a well linked normal tree for Ġ.

The intuition behind the first of these requirements is simply that the

partition sets Vt should be (connected and) ‘small’. Any reader who finds the

cofinality condition uncomfortably technical will lose little by replacing it with

the requirement that |Vt| 6 ht(t): the important thing is that there are no

more vertices in Vt than there are points in Ṫ below t.

A partition tree Ṫ for G gives rise to trees on V (G) in a natural way: just

replace each point t ∈ Ṫ with a minimal length well-ordering of Vt, relating

vertices from distinct sets Vt 6= Vt′ as t and t′ were related in Ṫ . Such trees

will be called expansions of Ṫ . Note that any expansion of a normal partition

tree for G is itself normal for G (but not necessarily linked); we shall call such

trees normal expansion trees for G.

Even though a normal expansion tree need not itself be well linked, it

resembles closely the (well linked) normal partition tree from which it has

arisen. If T is a fixed expansion of Ṫ , then every down-closed chain Ḃ in Ṫ

(in particular, every branch) expands canonically to a down-closed chain B

in T . Conversely, if B is a down-closed chain in T whose length is an infinite

cardinal, then B is the canonical expansion of some down-closed chain in Ṫ :

any partition set Vt is either contained in B or disjoint from it.

More generally, it is straightforward to prove the following.
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(4.1) Let κ be an infinite cardinal, T an expansion of a normal partition tree Ṫ

for G, Ḃ a down-closed chain in Ṫ , and B the canonical expansion of Ḃ.

(i) B has length κ if and only if Ḃ has length κ.

(ii) T has height κ if and only if Ṫ has height κ.

(iii) T is a κ-tree if and only if Ṫ is a κ-tree.

(iv) T is a narrow κ-tree if and only if Ṫ is a narrow κ-tree, and then the

central branch of Ṫ expands to the central branch of T .

Thus, since the vertex sets contracted for a normal partition tree are small,

the shape of such a tree does not differ much from the shape of its expansions.

Together with the fact that connected subgraphs of Ġ expand to connected

subgraphs of G, this will help us in subsequent sections to recover for normal

expansion trees forG some of the most essential properties of well linked normal

trees.

However, while G itself need not in general have a well linked normal tree,

it always has a normal partition tree (and hence a normal expansion tree):

Theorem 4.2. Every connected graph has a normal partition tree.

Proof. For later use, we prove a slightly stronger (if more technical) assertion.

Call a partition tree Ṫ for G adapted to a given well-ordering of V (G) if there

exists a map φ: Ṫ → Ṫ , with image φ(Ṫ ) =: T̈ , say, satisfying the following three

conditions (a)–(c):

(a) For each t ∈ Ṫ , φ(t) >Ṫ t, with equality if t ∈ T̈ .

(b) For each t ∈ T̈ , φ−1(t) is a finite interval in Ṫ (containing t itself as its

maximal element).

For each t ∈ T̈ , put

Wt :=
⋃

φ(t′)=t

Vt′ .

These sets Wt form another partition of V (G), and each of them is an interval

in any expansion T of Ṫ . Let wt,T denote the T -minimal vertex in Wt, and let

wt,V (G) denote the first element of Wt in the well-ordering of V (G). Note that

the T -order on the vertices wt,T induces a tree order on the sets Wt, and the

well-ordering on the vertices wt,V (G) inherited from the well-ordering of V (G)

induces a well ordering on the sets Wt.

(c) The well-ordering on the sets Wt (t ∈ T̈ ) extends their tree order.

We prove the following:

(4.3) For every well-ordering of V (G), there exists a normal partition tree for G

adapted to this well-ordering.

8



We shall construct a partition tree Ṫ for G inductively, as the nested union

of trees Ṫα, where α runs over some initial segment of the ordinals. For each α,

we put

Ṫ ′
α :=

⋃

β<α

Ṫβ ,

and associate with each t ∈ Ṫα a set Vt ⊆ V (G). These sets will be disjoint for

different t, so the well-orderings on each of these sets given by our well-ordering

of V (G) will define expansions Tα of Ṫα and T ′
α of Ṫ ′

α. For v ∈ Tα, we write

t(v) for the point t ∈ Ṫα with v ∈ Vt, as usual.

For each α, Ṫα\Ṫ ′
α will consist of a single new point tα; we shall abbreviate

Vtα to Vα. For any component C of G−T ′
α, we set

C− := { t(v) | v ∈ T ′
α and v has a neighbour in C } .

(This set C− will depend only on C, not on α: if β 6= α and C is also a

component of G− T ′
β, then C will have exactly the same neighbours in T ′

β as

in T ′
α.)

For every α, the following two conditions will be satisfied:

(i) if β < α, then Ṫβ is a down-closed subtree of Ṫα;

(ii) for every component C of G− Tα (= G− T ′
α+1), the set C− is a chain

in Ṫα.

For α = 0, we set V0 := { x0 }, where x0 is the minimal vertex in the

well-ordering of V (G). The tree Ṫ0 = { t0 } is thus defined, and conditions (i)

and (ii) hold trivially for α = 0. Now assume that for every β less than some

ordinal α > 0 we have constructed a tree Ṫβ so that β satisfies conditions (i)

and (ii). Then Ṫ ′
α is again a (well-founded) tree.

If T ′
α contains all the vertices of G, we terminate the construction and set

Ṫ := Ṫ ′
α. Otherwise, we let xα be the least vertex in the well-ordering of V (G)

that is not in T ′
α, and let Cα be the component of G−T ′

α containing xα. Then

C−
α is a chain in Ṫ ′

α. Indeed, if α is a successor, α = β +1 say, then Ṫ ′
α = Ṫβ

and the above assertion is just (ii) for β. If α is a limit, the assertion follows

easily from condition (ii) for all β < α.

If C−
α has a maximal element t, consider the vertices v ∈ Cα with a neigh-

bour in Vt. Choose one such v =: vα at minimal distance from xα in Cα,

and put Vα := { vα }. Let Ṫα be obtained from Ṫ ′
α by placing the new point

tα directly above t, as its successor (and incomparable with any other point

above t).

Assume now that C−
α has no maximal element. Set κ := cf (C−

α ), and let

S be a cofinal subchain of C−
α of length κ. For each s ∈ S, pick a neighbour

of a vertex vs ∈ Vs in Cα, and let U be the set of all these neighbours. If

|U | < κ, then U contains a vertex u adjacent to κ distinct vertices vs (because

κ is regular). Then { s ∈ S | u is adjacent to vs } is cofinal in S (and hence

in C−
α ), and we put Vα := {u }. On the other hand if |U | = κ, we let Vα be the
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vertex set of a connected subgraph of Cα that contains U and has size κ. In

either case, we let Ṫα be obtained from Ṫ ′
α by placing the new point tα directly

above C′
α, i.e. so that every t ∈ ⌈C′

α⌉ is below tα and tα is incomparable with

any other point in Ṫα. It is easily checked that α satisfies conditions (i) and (ii).

It is clear from the way the sets Vα are defined that Ṫ is a normal partition

tree for G. Furthermore, let us note the following from the construction of Ṫ .

Consider any α such that xα ∈ Vα; put x := xα. There may be some β < α

with xβ = x. Let β0 be the minimal such β. Then xβ = x for all β with

β0 6 β 6 α, i.e. x remains the ‘target vertex’ until it is eventually included

in Vα. But the distance in Cβ between x and vβ decreases at each (successor)

step β, so there can be only finitely many such β. Moreover, if β′ = β+1, then

vβ′ is adjacent to vβ , so tβ′ is a successor of tβ in Ṫ . Thus, the points tβ ∈ Ṫ

with xβ = x form a finite interval in Ṫ , with tα at the top.

In order to prove that Ṫ is adapted to the well-ordering of V (G), de-

fine φ: Ṫ → Ṫ by mapping each t = tβ to the point tα with xβ ∈ Vα. This

satisfies (a) and (b). To verify (c), let t1, t2 ∈ T̈ be given, and assume that

w1,T <T w2,T , where w1,T = wt1,T and w2,T = wt2,T . We have to show that

w1,V (G) := wt1,V (G) precedes w2,V (G) := wt2,V (G) in the well-ordering of V (G).

For i ∈ { 1, 2 }, let βi be such that wi,T ∈ Vβi
; then wi,V (G) = xβi

. Since

the ‘earlier’ of the two trees Tβi
is a down-closed subtree of the other (by

condition (i)), and since w1,T <T w2,T by assumption, we have β1 < β2. Thus

xβ2
∈ G−T ′

β1
, and so xβ2

was a candidate for the place of xβ1
. The fact that

w1,V (G) = xβ1
was chosen instead shows that it precedes w2,V (G) = xβ2

in the

well-ordering of V (G). �

Under the aspect of ‘linkedness’, one of the strongest tangible assets of a

normal expansion tree T is that the tails of its branches are almost connected

in G. Indeed, let B be a branch of T , expanded from a branch Ḃ of Ṫ , say, let

v ∈ B, and let t be the successor of t(v) on Ḃ. Then the tail of Ḃ starting at t

expands to a tail of B starting ‘just above’ v, and this tail is connected in G.

Naturally, it would be interesting to know whether or not every connected

graph has a normal tree for which every tail of a branch induces a connected

subgraph. (Remember, this is true for well linked normal trees, where all

intervals are connected.)
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5. Cohesive subgraphs and dispersed sets

This section lays the foundations for our generalization of Jung’s characteriza-

tion theorem (Theorem 1.4) to normal trees of arbitrarily bounded height.

The reason why it makes sense to impose a bound on the height of the

normal trees we look for is that short trees tend to be more valuable than tall

ones: recall the trivial observation that any graph has a normal tree of large

height, given by a well-ordering of its vertices. In other words, we now seek to

ensure by a global restriction on the trees’ height what the definition of ‘well

linked’ aimed to ensure locally: that vertices are not placed above each other

if they can be put at the same level.

Consider Jung’s theorem. In our terms, it says that G has a linked normal

tree of height 6 ω if and only if its vertex set is the union of countably many

dispersed sets. In order to adapt this theorem to trees whose height is bounded

by an arbitrary cardinal κ, we first have to generalize the notion of a dispersed

set.

One way of doing this would be to call a set κ-dispersed if it can be sepa-

rated by fewer than κ vertices from a tail of any long ray. However, dispersion

is not so much about the cofinality of rays as their connectedness, i.e. about

separation not so much from a ‘tail’ of a ray as from a connected subset of it

that contains almost all of its vertices. (When a ray may be longer than ω,

this can make a difference, since its cofinality may still be small.) We therefore

replace the rays from the countable notion of dispersed, not by long rays, but

by ‘cohesive subgraphs’ defined as follows.

Definition. Let κ be an infinite cardinal. A graph H is called κ-cohesive if

|H | > κ and, for every X ⊆ V (H) with |X | < κ, the graph H −X has a

component containing all but < κ of the vertices of H . If H is |H |-cohesive, it

is called cohesive.

Note that long rays of regular cardinal length induce cohesive subgraphs.

It is easy to see that if λ is a limit cardinal and G is κ-cohesive for every

κ < λ, then G is λ-cohesive. Thus, provided that G is ℵ0-cohesive, there exists

a largest infinite cardinal λ such that G is κ-cohesive for all κ 6 λ; we may call

this cardinal the cohesion of G. For example, any subdivision of a complete

graph on λ vertices has cohesion λ.

Clearly, any ray is (ℵ0-) cohesive. Conversely, every ℵ0-cohesive graph

contains a ray: this is not difficult to prove, and it will also follow instantly

from Proposition 5.2 below (together with Theorem 4.2). Thus, although ℵ0-

cohesive subgraphs are formally more general things than rays, their presence

in a given graph is equivalent to the presence of rays.

As we shall see below, if T is a normal tree for G, then any κ-cohesive

subgraph of G will have almost all its vertices close to some particular branch

of T . If this branch has length κ, it will be unique and thus correspond to
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that particular κ-cohesive subgraph. (If it is longer, its first κ points will be

unique.) Now if κ is regular and T is well linked, the converse of this is true as

well: since the branches of T (and their initial segments) are now long rays, the

first κ points of any branch induce a κ-cohesive subgraph in G. Thus, in a well

linked tree there are no ‘unnecessarily long’ branches, confirming the intuition

that such trees are ‘as short as possible’.

Now consider a branch Ḃ in a normal partition tree Ṫ for G. For any

regular cardinal κ, the first κ points of Ḃ induce a κ-cohesive subgraph in Ġ.

Since the partition sets Vt ⊆ V (G) for Ṫ are small and induce connected sub-

graphs, these cohesion properties of Ḃ are preserved in any expansion of Ḃ.

Thus, in the sense of the last paragraph, normal expansion trees for G are just

as economical as well linked normal trees—their advantage being that they

always exist. Here, essentially, lies the justification for our technical definition

of a normal partition tree.

To make all this more precise, let T be an expansion of a normal partition

tree Ṫ for G, and let Ḃ ⊆ Ṫ be a down-closed chain (i.e. the initial segment of

a branch).

(5.1) If Ḃ has regular cardinal length, then the canonical expansion B ⊆ T of

Ḃ induces a cohesive subgraph in G.

Indeed, let X ⊆ B be a set of size < κ := |Ḃ|. (Recall that |B| = |Ḃ| by (4.1).)

As κ is regular, there exists an α < κ such that ht Ṫ (t(x)) < α for every x ∈ X .

The final segment Ḃ′ of Ḃ starting at level α contains all but |α| < κ points

of Ḃ and is connected in Ġ. Hence, the final segment B′ := { v ∈ B | t(v) ∈ Ḃ′ }

of B contains all but at most |α|2 = |α| < κ of the points of B and is connected

in G. As B′ ∩X = ∅, this shows that B induces a cohesive subgraph in G.

For the remainder of this section, let κ be any infinite cardinal. T will be

a normal tree for G, fixed until (5.6) inclusive.

The following proposition describes the shape of cohesive graphs: they

have narrow normal trees. More generally, if G is κ-cohesive but possibly

larger than κ, then the first κ levels of T form a narrow κ-tree:

Proposition 5.2. If G is κ-cohesive, then T<κ is a narrow κ-tree.

Proof. We inductively choose a down-closed increasing sequence {xα |

α < κ } ⊆ T<κ with the property that, for each α < κ, all but < κ points

of T lie above xα. It is then clear that T<κ is a narrow κ-tree, with the set

{xα | α < κ } as its central branch.

Let α < κ be given, and assume that vertices xβ have been chosen correctly

for all β < α. Then S := {xβ | β < α } is a down-closed set in T<κ.

Since |S| < κ and G is κ-cohesive, G− S has a component C containing

all but < κ of the vertices of G. Let x be the unique minimal element of that

component (cf. (2.1)). For each β < α, all but < κ vertices of C lie above xβ (by
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our inductive assumption); let cβ 6= x be such a vertex. Then x and xβ are both

below cβ , and are hence comparable. Since ⌈xβ⌉ ⊆ S (as S is down-closed), we

cannot have x < xβ . Thus xβ < x for every β < α.

To complete the induction step, let xα be the minimal vertex of (⌈x⌉\S).

Then xβ < xα for every β < α (since S is down-closed), { xβ | β 6 α } is

down-closed in T and hence contained in T<κ, and all but < κ of the vertices

of T lie above xα. �

Let us note the following from the proof of Proposition 5.2:

(5.3) If G is κ-cohesive and x is a point on the central branch of T<κ, then all

but < κ of the vertices of G lie above x in T .

Proposition 5.2 shows that κ-cohesive subgraphs of G, like long rays, ‘fol-

low’ branches of T . In particular:

(5.4) If H ⊆ G is κ-cohesive, then T has a branch B with |B ∩V (H)| > κ.

Indeed, as the tree T ∩ V (H) is normal for H , it contains a narrow κ-tree. It

therefore has a branch of length > κ, which lies in a branch of T .

Note that the branch B in (5.4) will be unique if it has length κ.

Based on the notion of a cohesive subgraph, we may now generalize Jung’s

definition of a dispersed set.

Definition. A set U ⊆ V (G) is called κ-dispersed in G if |U ∩V (H)| < κ for

every κ-cohesive subgraph H ⊆ G.

Note that any subset of a κ-dispersed set is again κ-dispersed. Conversely,

a set is κ-dispersed as soon as all its subsets of size κ are κ-dispersed. Similarly,

any union of fewer than cf (κ) κ-dispersed sets is again κ-dispersed.

The property of being κ-dispersed has the following seemingly stronger

equivalent:

(5.5) If U is κ-dispersed in G, then U can be separated from any κ-cohesive

subgraph H ⊆ G by < κ vertices.

Indeed if U cannot be separated from H by < κ vertices, then G contains κ

disjoint U–H paths (by Menger’s theorem). The union of these paths with H is

a κ-cohesive subgraph containing κ vertices from U , so U cannot be κ-dispersed.

Using (5.5) and the fact that every ℵ0-cohesive graph contains a ray, it is

not difficult to show that our notion of ‘ℵ0-dispersed’ is equivalent to the clas-

sical notion of ‘dispersed’ as defined in the introduction. Indeed, if U ⊆ V (G)

can be finitely separated from any ray in G, it cannot share infinitely many

vertices with an ℵ0-cohesive subgraphH ⊆G: let R ⊆H be a ray, let S ⊆ V (G)
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be a finite set separating U from R, and note that (by ℵ0-cohesiveness) all but

finitely many vertices of H are in the component of G−S that contains a tail

of R (but no vertices of U). The other direction is immediate from (5.5) and

the fact that rays are cohesive.

Proposition 5.2 implies that the lower levels (and, more strongly, all short

down-closed subtrees) of T are examples of κ-dispersed sets:

(5.6) Every down-closed subtree U ⊆ T that has no branch of length κ is

κ-dispersed.

Indeed, let H be an arbitrary κ-cohesive subgraph of G. Then T ∩ V (H) is

a normal tree for H . By Proposition 5.2, the first κ levels of this tree form

a narrow κ-tree; let B be its central branch. Since B has length κ but every

branch of U is shorter, B contains a point x such that U ∩ ⌊x⌋ = ∅. By (5.3),

⌊x⌋ contains all but < κ of the vertices of H , so U meets H in fewer than κ

vertices.

It is easy to see that levels of T at height > κ need not be κ-dispersed.

Our next proposition, which we are able to prove only for regular κ, shows

that the above examples of κ-dispersed sets are in fact canonical: any κ-

dispersed subset of V (G) is contained in the first κ levels of some normal

tree for G.

Proposition 5.7. If κ is regular and U ⊆ V (G) is κ-dispersed, then G has a

normal tree T such that ⌈U⌉T has no chain of length κ. In particular, U ⊆ T<κ.

Proof. For later use, we prove the following more technical statement, which

together with (4.3) implies the assertion.

(5.8) Whenever κ is a regular cardinal, U ⊆ V (G) is κ-dispersed, V (G) is well-

ordered with U as an initial segment, Ṫ is a normal partition tree for G

adapted to this well-ordering, and T is any expansion of Ṫ , then ⌈U⌉T
has no chain of length κ.

Suppose, for a contradiction, that ⌈U⌉ ∩T<κ has a branch B of length κ. Let

Ḃ := { t(v) | v ∈ B }; then Ḃ is a down-closed chain in Ṫ of length κ, i.e. a

branch of Ṫ<κ, and B is its canonical expansion.

Let φ: Ṫ → Ṫ be a map witnessing that Ṫ is adapted. Let T̈ and

Wt, wt,T , wt,V (G) (for t ∈ T̈ ) be defined as in the definition of ‘adapted’.

Note that |φ(Ḃ)| = |Ḃ| = κ, since inverse images under φ are finite. Let

Ȧ := ⌈φ(Ḃ)⌉Ṫ ; then Ȧ ⊇ Ḃ. Let A ⊇ B be the canonical expansion of Ȧ, i.e.

let A := { v ∈ T | t(v) ∈ Ȧ }. Using the regularity of κ it is easy to show (as

in the proof of (5.1)) that A induces a κ-cohesive subgraph in G. To obtain a

contradiction, it thus suffices to prove that |U ∩A| > κ.
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We prove this by showing that wt,V (G) ∈ U for every t ∈ Ȧ∩ T̈ (= φ(Ḃ));

recall that there are κ such t. Let t ∈ Ȧ∩ T̈ be given. Then wt,T ∈ B ⊆ ⌈U⌉,

so there exists a u ∈ U above wt,T in T . Let t′ := φ(t(u)). Then wt,T 6T wt′,T

(with equality iff t = t′), since Wt′ is a T -interval containing u. As Ṫ is adapt-

ed, this implies that wt,V (G) precedes wt′,V (G) in the well-ordering of V (G) (or

wt,V (G) = wt′,V (G)). Since wt′,V (G) in turn precedes or is equal to u (by u ∈ Wt′

and the definition of wt′,V (G)) and U is an initial segment of V (G), we deduce

that wt,V (G) ∈ U , as desired. �

Corollary 5.9. If κ is regular, then any κ-dispersed set U ⊆ V (G) is also λ-

dispersed for all λ > κ.

Proof. By Proposition 5.7, we have U ⊆ T<κ for some normal tree T for G.

By (5.6), T<κ is λ-dispersed for every cardinal λ > κ. �

Corollary 5.10. If κ is regular and G is λ-cohesive for some cardinal λ > κ,

then G has a κ-cohesive subgraph.

Proof. As G is λ-cohesive, V (G) is not λ-dispersed in G. Then, by Corol-

lary 5.9, V (G) is not κ-dispersed. Therefore G has a κ-cohesive subgraph.

�

We shall see in Section 8 that these two corollaries are in fact true for all

infinite κ, regular or singular.

6. Normal trees of bounded height: a characterization theorem

We are now ready to generalize Jung’s characterization theorem to trees of

arbitrary height. Most of the work needed for the regular case has been done

already, so let us state this case first.

Theorem 6.1. Let κ be a regular cardinal. G has a normal tree of height at

most κ if and only if V (G) is the union of at most κ κ-dispersed sets.

Proof. The forward implication is immediate from (5.6), which implies that

the first κ levels of any normal tree forG are each κ-dispersed. For the converse,

we once more prove a slightly stronger statement for later use (compare with

Proposition 5.7):

(6.2) For κ regular, let {Uα | α < κ } be a family of κ-dispersed subsets

of V (G), and let U denote their union. Then G has a normal expansion

tree T such that U ⊆ T<κ.
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It is clear that (6.2) implies the original statement of the theorem: if U = V (G),

then T = T<κ.

For a proof of (6.2), we may clearly assume that the sets Uα are disjoint

(though some of them may be empty). For each α < κ, set U ′
α :=

⋃
β<α Uβ.

Since κ is regular, each of the sets U ′
α is again κ-dispersed.

Our well-ordering of the sets Uα defines a partial order on U . Extend this

to a well-ordering of U , and let this well-ordering of U be an initial segment of

a well-ordering of V (G). Let Ṫ be a normal partition tree for G adapted to this

well-ordering, and let T be any expansion of Ṫ . By (5.8) we have U ′
α ⊆ T<κ

for every α < κ, so U ⊆ T<κ as desired. �

We do not know whether Theorem 6.1, as stated above, extends to sin-

gular κ. However, we have the following result for arbitrary κ, which includes

Theorem 6.1 as a special case.

Let us call a subset of V (G) κ−-dispersed in G if it is λ-dispersed in G for

some regular λ 6 κ. By Corollary 5.9, any κ−-dispersed set is also κ-dispersed.

For regular κ, therefore, the two notions coincide.

Theorem 6.3. Let κ be any infinite cardinal. The following statements are

equivalent:

(i) G has a normal tree of height 6 κ;

(ii) V (G) is the union of at most cf (κ) κ−-dispersed sets;

(iii) V (G) is the union of at most κ κ−-dispersed sets.

Proof. (i)→(iii) Let T be any normal tree for G of height 6 κ. By (5.6), each

of the subtrees T<α (α < κ) is |α|+-dispersed, and thereby κ−-dispersed.

(iii)→(ii) This is trivial when κ is regular, so let us assume that κ is sin-

gular. Choose an increasing sequence (κα)α<cf (κ) of regular cardinals κα < κ

cofinal in κ; thus, sup κα = κ. By assumption and Corollary 5.9, V (G) is the

union of at most κ sets each κα-dispersed for some α < cf (κ). We may thus

write this family of sets as (Uβ
α )

β<κ

α<cf (κ), where each Uβ
α is κα-dispersed. (There

may be some ‘dummy’ sets Uβ
α = ∅.) For each α < cf (κ), let

Uα :=
⋃

α′6α
β<κα

U
β
α′ .

By Corollary 5.9, and since the sequence (κα)α<cf (κ) is increasing, each of the

sets Uβ
α′ is κα+1-dispersed. Hence Uα, the union of at most |α| · κα = κα such

sets, is again κα+1-dispersed, and

V (G) =
⋃

α<cf(κ)

Uα .

(ii)→(i) As in the proof of Theorem 6.1 let {Uα | α < cf (κ) } be a family

of disjoint (but possibly empty) sets whose union is V (G), such that each set
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Uα is κα-dispersed for some regular cardinal κα < κ. For each α < cf (κ), there

clearly exists a regular cardinal λα < κ such that λα > supβ<α κβ and λα > |α|.

Then, for all β < α < cf (κ), the set Uβ is λα-dispersed (Corollary 5.9), and so

U ′
α :=

⋃
β<αUβ is λα-dispersed.

We now proceed as in the proof of Theorem 6.1. The well-ordering of the

partition sets Uα defines a partial ordering on V (G), which we extend to a

well-ordering of V (G). Let T be an expansion of a normal partition tree for

G adapted to this well-ordering. Since the λα are regular, (5.8) implies that

U ′
α ⊆ T<λα ⊆ T<κ for each α, so T = T<κ. �

It may be worth noting that, in the proof of the implication (ii)→(i) for

Theorem 6.3 as in the proof of Theorem 6.1, we were free to choose the minimal

vertex in the well-ordering of V (G), which became the root of the normal tree

constructed.

Note also that we constructed not just any normal tree for G but a normal

expansion tree. We thus have the following corollary which, given the strength

of normal expansion trees, may come as a pleasant surprise:

Corollary 6.4. Let κ be any infinite cardinal. If G has a normal tree of

height 6 κ then G has a normal expansion tree of height 6 κ. �

(Compare with Theorem 9.1 below.) In particular:

Corollary 6.5. G has a normal expansion tree of height 6 |G|.

As remarked before, any connected subgraph of a graph with a normal tree

of height 6 κ also has such a normal tree: just take the induced partial order

(cf. (2.1)). The corresponding statement for normal expansion trees seems far

from obvious. However, it follows immediately from Corollary 6.4, giving us

the direct analogue to Corollary 1.6:

Corollary 6.6. Let κ be any infinite cardinal. If G has a normal expansion

tree of height 6 κ then so does every connected subgraph of G. �

Finally, one might conjecture that the graphs admitting normal trees of

height 6 κ could also be characterized in terms of the size of their κ-cohesive

subgraphs. Indeed, by Proposition 5.2, if G has a normal tree of height 6 κ,

then any κ-cohesive subgraph of G can only have size κ; is the converse also

true?

Not quite. For example, suppose that V (G) is the binary tree of

height ω + 1 (i.e. the tree in which every branch has length ω + 1 and every

non-maximal point has exactly two successors), and that two points t < t′ in

this tree are joined by an edge if and only if t′ is maximal (i.e. has height ω).

It is not difficult to show from (5.3) that every ℵ0-cohesive subgraph of G

must be countable. On the other hand, G has no normal tree of height 6 ω:
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since any such tree would have a point with uncountably many successors, the

(finite) down-closure of this point would separate G into uncountably many

components (which is impossible).

As a consequence of Theorem 9.1, however, we shall obtain the following

(recall that any subdivision TKκ+ of a complete graph on κ+ vertices is κ-

cohesive):

(6.7) If all κ-cohesive subgraphs of G have size κ, then G has a normal expan-

sion tree in which every branch has length < κ+.

We do not know whether the bound of κ+ in (6.7) is best possible (as an or-

dinal bound). In other words, if all κ-cohesive subgraphs of G have size κ, does

G necessarily have a normal tree (or normal expansion tree) of height < κ+?

7. The existence of linked trees

The main result of this section is the following.

Theorem 7.1. Let κ be an infinite cardinal.

(i) If G has a normal tree of height 6 κ, then G has a linked normal tree of

height 6 κ.

(ii) If G has a normal tree of height < κ, then G has a linked normal tree of

height < κ.

(Compare with Theorem 9.1 below.)

Proof. Let T be any normal tree for G. We first consider the case of κ = ω

for the second assertion, and assume that ht(T ) = n < ω. As is easily shown

by induction on n, any path in a graph with a normal tree of height 6 n has

length at most f(n), where f(n) depends on n but not on the graph. Now use

Jung’s theorem to obtain a linked normal tree T̃ for G of height 6 ω. Since G

has no path of length > f(n), T̃ has finite height, as required.

We now turn to the general case. We shall prove assertions (i) and (ii)

simultaneously, showing that G has a linked normal tree T̃ such that

ht T̃ (v) < htT (v)+ω

for every vertex v ∈ G. Let us start by well-ordering the vertices of G, proceed-

ing level by level up the tree T . More precisely, let us fix any well-ordering on

V (G) in which x comes before y whenever htT (x) < htT (y).

Call a tree T ′ defined on a subset of V (G) promising if T ′ is normal for the

subgraph G [T ′ ] it induces in G, if it has properties (L1) and (L3) with respect

to G [T ′ ], and if, for every component C of G− T ′, the vertices of T ′ with a
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neighbour in C form a chain. (We do not, however, require property (L2) for

the time being.) We shall construct our tree T̃ inductively, as the nested union

of promising trees T̃α, where α runs over some initial segment of the ordinals.

Let T̃0 = {x0 }, where x0 is the root of T . Now assume that, for some

ordinal α and all β < α, we have constructed promising trees T̃β so that T̃γ is

a down-closed subtree of T̃β whenever γ < β < α. Then

T̃ ′
α :=

⋃

β<α

T̃β

is again a promising tree.

If T̃ ′
α contains all the vertices of G, we terminate the construction and set

T̃ := T̃ ′
α. Otherwise let xα be the least vertex in the well-ordering of V (G)

that is not in T̃ ′
α, let Cα be the component of G− T̃ ′

α containing xα, and let

Nα be the set of vertices in T̃ ′
α with a neighbour in Cα. Since T̃ ′

α is promising,

Nα is a chain in T̃ ′
α; let Sα be a minimal length cofinal subset of Nα.

Let vα be a neighbour of Sα in Cα at minimal distance from xα. (In par-

ticular, set vα := xα if xα is adjacent to a vertex in Sα.) Let T̃α be obtained

from T̃ ′
α by placing vα directly above Nα. (Thus, vα is above every point in

the down-closure of Nα, and incomparable with any other point of T̃ ′
α.) It is

easily checked that T̃α is again a promising tree. (For property (L3), notice

that if vα is the successor of some vertex x in T̃α, then x = max Sα and hence

Sα = {x }, so vα is adjacent to x.)

The tree T̃ thus constructed is itself promising, i.e. it is normal for G and

has properties (L1) and (L3). In order to show that T̃ is linked, it remains to

verify property (L2). Let x ∈ T̃ be given, and let α be such that x = vα. We

prove that ⌊x⌋T̃ = V (Cα).

To show that V (Cα) ⊆ ⌊x⌋T̃ , let y ∈ V (Cα). Then y is not below x in T̃ ,

because ⌈x̊⌉T̃ ⊆ T̃ ′
α. Moreover, y is connected to x by a path in Cα. By (2.1)

and the normality of T̃ , this means that y is not incomparable with x either

(in T̃ ), so y ∈ ⌊x⌋T̃ as claimed.

For the reverse inclusion, suppose that ⌊x⌋T̃ contains a vertex y that is

not in Cα; let y be chosen minimal in ⌊x⌋T̃ with this property. Clearly, y 6= x.

Moreover, y is not adjacent to x: since x ∈ V (Cα), any vertices of T̃\V (Cα)

adjacent to x must be in Nα, i.e. below x. Since T̃ satisfies (L3), we deduce

that y is not a successor of x in T̃ .

Now let β > α be such that y = vβ . Let s be a vertex of Sβ above x;

such a vertex exists, because Sβ is cofinal in ⌈ẙ⌉T̃ but ⌈x⌉T̃ is not. Since s has

a neighbour in Cβ and V (Cβ) ∩ T̃ ′
α = ∅, there exists an s–y path in G that

avoids T̃ ′
α. But s ∈ V (Cα) by the minimality of y, so this means that also

y ∈ V (Cα), as claimed.

It remains to show that ht T̃ (v) < htT (v) +ω for every vertex v ∈ G. For

each v, find α such that v = vα, and set x(v) := xα. (Thus, x(v) was the
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‘target vertex’ when v was added to T̃ .) By the choice of the vertices vα in

the construction of T̃ , each vertex x of the form xα is such that the vertices v

with x(v) = x form a finite interval in T̃ , with x itself at the top. By (L3), this

means that these vertices induce a path P (x) in G.

Now consider a fixed vertex v ∈ G. Let again α be such that v = vα, and

put x := xα = x(v). As neither v nor x is in T̃ ′
α, the definition of xα implies

that x precedes v in the well-ordering of V (G) on which the construction of T̃

was based. Hence, either x 6T v or the two vertices are incomparable in T . In

the latter case, however, the path P (x) contains a vertex w <T x (2.1), giving

x = x(w) >T w with a contradiction. Therefore x 6T v.

We have now shown that

v 6T̃ x(v) and x(v) 6T v

for every v ∈ V (G). In order to show that ht T̃ (v) < htT (v) +ω for every v, it

therefore suffices to show this for vertices of the form xα: then

ht T̃ (v) 6 ht T̃ (x(v)) < htT (x(v))+ω 6 htT (v)+ω

for every vertex v of G, as desired.

We apply induction along our well-ordering of V (G). Let x ∈ V (G) of the

form xα be given, and choose α minimal such that x = xα for this x. If α = 0,

then x is the root of both T and T̃ , so its height is 0 in both trees. Let us

therefore assume that α > 0.

Since ht T̃ (x) is, roughly, the supremum of the T̃ -heights of the vertices

in Sα, let us try to estimate these. Since x(v) 6T v for every v <T x, our

well-ordering of V (G) implies that ⌈x̊⌉T ⊆ T̃ ′
α. Therefore every vertex of Cα is

connected to x by a path that avoids ⌈x̊⌉T (namely, a path in Cα). By (2.1)

for T , this means that V (Cα) ⊆ ⌊x⌋T .

Since every vertex in Sα is adjacent to a vertex in Cα, the above inclusion

means that Sα ⊆ ⌊x⌋T ∪⌈x⌉T . As the set ⌊x⌋T ∪⌈x⌉T is down-closed in T and

x(s) 6T s for every s, we deduce that

x(s) ∈ ⌊x⌋T ∪⌈x⌉T

for every s ∈ Sα. Moreover, the vertex x(s) precedes x in the well-ordering

of V (G) (because s ∈ T̃ ′
α, and α is minimal with x = xα), so it cannot be

in ⌊x⌋T . Thus, x(s) ∈ ⌈x⌉T , i.e.

x(s) <T x for all s ∈ Sα.

We may therefore apply the induction hypothesis to these vertices x(s), and

choose a number ǫs < ω for each s such that

ht T̃ (x(s)) < htT (x(s))+ ǫs.
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Let ℓx be the length of the path P (x). The height of x in T̃ can then be

bounded as follows:

ht T̃ (x) = sup { ht T̃ (s)+ 1 | s ∈ Sα }+ ℓx

6 sup { ht T̃ (x(s))+ 1 | s ∈ Sα }+ ℓx

6 sup { htT (x(s))+ ǫs | s ∈ Sα }+ ℓx

< htT (x)+ω.

(The last inequality again uses the fact that x(s) <T x for all s ∈ Sα.) �

As a first immediate consequence of Theorem 7.1, let us note the following

analogue to Corollary 1.5:

Corollary 7.2. G has a linked normal tree of ordinal height 6 |G|.

Proof. Pick a well-ordering of V (G) of order type |G|. This is a normal tree

of height 6 |G|; apply Theorem 7.1. �

As subgraphs of a graph with a normal tree of height κ again have normal

trees of at most this height, Theorem 7.1 allows us to say the same about linked

normal trees (which, once more, does not seem obvious from first principles):

Corollary 7.3. Let κ be an infinite cardinal. If G has a linked normal tree of

height 6 κ, then so does every connected subgraph of G. �

We have now seen that if G has a normal tree of height 6 κ, then this tree

may be assumed to be either linked (Theorem 7.1) or a normal expansion tree

(Corollary 6.4). Unfortunately, we cannot have both strengthenings at once;

indeed, G need not have a linked normal expansion tree of any height. Our

graphK from Proposition 3.1, a TKℵ1
in which every edge has been subdivided

once, is a counterexample:

Proposition 7.4. K does not have a normal expansion tree satisfying (L3).

Proof. As before, let X ⊆ V (K) denote the set of vertices of infinite degree,

and S the set of vertices of degree 2. Suppose T is a normal expansion tree

for K satisfying (L3). By Proposition 5.2, T<ω1 is a narrow ℵ1-tree; let B

denote its central branch. For each t ∈ B, let t+ denote the successor of t on B.

Note that, by (L3), t and t+ are adjacent. By (5.1), K [B ] is ℵ1-cohesive. We

shall derive a contradiction by finding a vertex z ∈ B that separates K [B ]

into uncountably many components.

Let z be any vertex of uncountable degree in K [B ]; we may assume that

such a vertex exists, since otherwise K [B ] would have uncountably many

(countable) components, completing the proof. Then z is in X , and the set S′

of its upper neighbours on B is contained in S. We show that z separates the
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vertices of S′ pairwise in K [B ]; since S′ is uncountable—as z has countable

height, it has only countably many neighbours below—this will complete the

proof.

Let s, s′ ∈ S′, and suppose K [B ] contains an s–s′ path

sx1s1x2 . . . xn−1sn−1xns
′

avoiding z. Since s is adjacent to s+ and its only neighbours are z and x1, we

see that s+ = x1 (as z < s). Similarly, s+1 = x2 (it cannot be x1, since x1 = s+

and s 6= s1), and by induction s+i = xi+1 for all i. Repeating the argument

for s′, we find that its successor on B cannot be xn (since s+n−1 = xn), and

hence must be its only other neighbour, z. But this contradicts the fact that

z < s′ by definition of S′. �

8. The structure of cohesive graphs

The concept of cohesion, although we introduced it with normal trees in mind,

appears to be of interest quite independently: as a notion of connectedness

tailored specifically to infinite graphs. In this section, we shall try to see what

cohesive graphs look like.

Recall that every ℵ0-cohesive graph contains a particular type of ℵ0-

cohesive graph, namely, a ray. In this sense, rays are the ‘canonical’ ℵ0-cohesive

subgraphs. For uncountable κ, there is a similar result: we shall see that every

κ-cohesive graph has a Kκ-minor—it has a subgraph HKκ from which a Kκ

can be obtained by contracting connected sets of vertices. Conversely, such

graphs HKκ are essentially κ-cohesive, so these are the canonical κ-cohesive

subgraphs for κ > ℵ0.

Our second result in this section characterizes the cohesive graphs of regu-

lar size κ by their tree structure: their shape is that of a narrow κ-tree, with

good linking properties along its branches.

Let X be a graph. A graph will be called a TX (where ‘T’ stands for

‘topological’) if it is isomorphic to a subdivision of X . Similarly, a graph H

will be called an HX (here, ‘H’ comes from ‘homomorphism’) if its vertex set

admits a partition

V (H) =
⋃

{Vx | x ∈ V (X) }

into connected sets of vertices such that, for all x, y ∈ V (X), H contains a

Vx–Vy edge if and only if xy is an edge of X . The sets Vx are called the branch

sets of this HX , and the edges of H between different branch sets are its main

edges . The HX is called lean if

(i) for any adjacent x, y ∈ V (X) there is only one Vx–Vy edge in H ; and
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(ii) each branch set spans a tree in H such that every leaf and every ray in

this tree are incident with a main edge.

In a lean HX , the cardinality of a branch set Vx is either finite or equal to the

degree of x in X . Thus if X is infinite and H is a lean HX , then |H | = |X |. It

is easy to see that every HX contains a lean HX as a subgraph.

Note that every TKκ is also a lean HKκ. Conversely, it was shown by

Jung [ 12 ] that, for regular κ > ℵ0, every HKκ contains a TKκ. (This need

not be so for singular κ or κ = ℵ0.) Thus, for κ > ℵ0 regular, TKκ and HKκ

containment are equivalent:

(8.1) For κ > ℵ0 regular, G contains an HKκ if and only if it contains a TKκ.

As we observed earlier, any TKκ has cohesion κ. This is in fact true for

every HKκ:

(8.2) For every infinite cardinal κ, every lean HKκ has cohesion κ.

Indeed, let H be a lean HKκ. Since |H | = |Kκ| = κ, the cohesion of H cannot

be greater than κ. We thus have to show that H is κ′-cohesive for every infinite

cardinal κ′ 6 κ. Let S ⊆ V (H) have size λ < κ′. Then H has a branch set U

that avoids S; let C be the component of G−S containing this branch set. We

show that C contains all but λ of the vertices of H . (Here as below, if κ′ = ℵ0

then any occurrence of ‘λ’ is to be read as ‘finite’ or ‘finitely many’.)

Since every branch set of H contains a vertex adjacent to a vertex in U ,

any branch set not contained in C meets S. Hence, there are at most λ such

branch sets, and at most λ2 = λ main edges between them (because H is lean).

Let V be a branch set not contained in C, and let F be the subgraph of H

induced by V \V (C). Then F is a forest in which at most λ vertices are incident

with a main edge (again because H is lean), so |F | 6 λ. The union of all these

forests, which contains precisely the vertices of H\C, thus has at most (in fact,

exactly) λ vertices. This completes the proof of (8.2).

Robertson, Seymour and Thomas—see (2.3) in [ 14 ]—have shown the fol-

lowing.*

Theorem 8.3. If G is κ-cohesive with κ > ℵ0, then G contains an HKκ.

By (8.2) and Theorem 8.3, a graph has a κ-cohesive subgraph if and only

if it contains a (lean) HKκ. Lean HKκs (or TKκs, when κ is regular) are thus

the ‘canonical’ examples of κ-cohesive subgraphs.

* In their own terminology, Robertson, Seymour and Thomas show that any graph with
a ‘κ-haven’ (κ > ℵ0) has a Kκ-minor, i.e. contains an HKκ. It is clear that every κ-cohesive
graph has such a ‘κ-haven’.
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Note that (8.2) and Theorem 8.3 together extend Corollary 5.10 to arbi-

trary infinite κ (regular or singular): if G is λ-cohesive and κ < λ, then G has

a κ-cohesive subgraph.

We remark that for singular κ, the strengthening of Theorem 8.3 to TKκ

(rather than HKκ) is false. For example, consider the graph obtained from the

disjoint union of ω complete graphs Gn of size ℵn by joining all the vertices of

Gn to all the vertices of Gn+1 (for every n < ω). This graph is ℵω-cohesive

but has no vertex of degree ℵω, and hence contains no TKℵω
.

As a consequence of (8.2) and Theorem 8.3, we can now rephrase disper-

sion in terms of separation from a well-specified type of subgraph, just as in

the classical countable case:

Corollary 8.4. For every κ > ℵ0 and U ⊆ V (G), the following assertions are

equivalent.

(i) U is κ-dispersed in G;

(ii) any lean HK ⊆ G, where K is any complete graph, can be separated

from U in G by < κ vertices;

(iii) any lean HKκ ⊆ G can be separated from U in G by < κ vertices.

When κ is regular, ‘lean HKκ’ in (ii) and (iii) may be replaced with ‘TKκ’.

Proof. (i)→(ii) follows from (5.5) and (8.2). (ii)→(iii) is trivial. In order to

prove (i) from (iii), let H ⊆ G be κ-cohesive, find an HKκ in H (by Theo-

rem 8.3), and inside it a lean HKκ. Using (iii), let S ⊆ V (G) be a set of size

< κ that separates this HKκ from U . Since H is κ-cohesive, H − S has one

component that contains all but < κ of the vertices of H . Hence, our HKκ

meets this component, and so U does not. Therefore |U ∩ V (H)| < κ, and U

is κ-dispersed as claimed.

The proof of the TKκ version for κ regular is the same as above, with an

additional application of (8.1) in the proof of (iii)→(i). �

Corollary 8.4 allows us to generalize Corollary 5.9 to arbitrary κ:

Corollary 8.5. For every infinite cardinal κ, any κ-dispersed set U ⊆ V (G)

is also λ-dispersed for all λ > κ. �

Using Corollary 8.4, we may reformulate the uncountable case of Theo-

rem 6.1 as follows: for regular κ > ℵ0, G has a normal tree of height 6 κ if

and only if V (G) is the union of 6 κ sets each of which can be separated from

any lean HKκ ⊆ G (equivalently, from any TKκ) by < κ vertices. Is the same

true for κ = ℵ0? (Note that ‘only if’ follows from Proposition 5.2, applied

to the HKℵ0
, and (2.1), applied to the levels of T .) The ‘stronger’ version

of this, with TKℵ0
rather than HKℵ0

, would be particularly interesting: it

would strengthen and unify Jung’s theorem with Halin’s [ 11 ] result that every

connected graph not containing any TKℵ0
has a normal spanning tree.
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Our second theorem in this section describes the outward structure of the

cohesive graphs of size κ when κ is regular: their shape is ‘tall and narrow’,

given by a narrow κ-tree. In a sense, this result is dual to Proposition 5.7:

there, the dual notion of a κ-dispersed set is characterized as being ‘short and

(possibly) wide’ in a suitable normal tree.

Theorem 8.6. Assume that G has regular size κ. The following statements

are equivalent:

(i) G is cohesive;

(ii) G has a linked normal tree which is a narrow κ-tree;

(iii) G has a normal expansion tree which is a narrow κ-tree.

Proof. (i)→(ii) By Corollary 7.2, G has a linked normal tree T of height 6 κ.

Thus T = T<κ, which is a narrow κ-tree by Proposition 5.2.

(ii)→(i) Let T be a linked normal narrow κ-tree for G. To show that G

is κ-cohesive, let X ⊆ V (G) with |X | < κ. As κ is regular, there is an α < κ

such that X ⊆ T<α. Let t be the point on the central branch of T at level α.

Since T is linked, ⌊t⌋ spans a connected subgraph of G−X . Since T is narrow,

this subgraph contains all but < κ of the vertices of G.

(i)→(iii) By Corollary 6.5, G has a normal expansion tree T of height 6

κ. Thus T = T<κ, which is a narrow κ-tree by Proposition 5.2.

(iii)→(i) Let Ṫ be a normal partition tree for G with an expansion T as

in (iii). By (4.1), Ṫ is a narrow κ-tree, its central branch expanding to that

of T . To show that G is κ-cohesive, we proceed as in the proof of (ii)→(i).

Let X ⊆ V (G) with |X | < κ. As κ is regular, there is an α < κ such that

t(x) ∈ Ṫ<α for every x ∈ X . Let t be the point on the central branch of Ṫ at

level α. Since Ṫ is well linked and the partition sets Vt are connected in G,

the expansion of ⌊t⌋ induces a connected subgraph H of G−X . The minimal

vertex v of H satisfies t(v) = t, so v lies on the central branch of T . Since T is

narrow, H contains all but < κ of the vertices of G. �

By the same proof as above, the implications (i)→(ii) and (i)→(iii) in

Theorem 8.6 are valid for singular κ. Their converses, however, are easily seen

to be false.

As we saw earlier, every κ-cohesive graph contains a κ-cohesive graph of

size κ, namely, a lean HKκ or a ray. Thus, the κ-cohesive graphs of size κ

are the ‘essential’ ones, and it is the shape of these graphs that is decribed in

Theorem 8.6. This makes it desirable, however, to determine conditions under

which a subgraph H ⊆ G of size κ can be extended to a κ-cohesive subgraph

of G, still of size κ: the shape of this extension, and hence that of H , will then

be as in Theorem 8.6.

Let us call a set U ⊆ V (G) κ-cohesive in G if |U | > κ and, for every

X ⊆ V (G) with |X | < κ, the graph G−X has a component containing all but
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< κ of the vertices in U . This is a weakening of the statement that U induces

a κ-cohesive subgraph, in which case U is clearly κ-cohesive in G. Note that

with U all its subsets of size > κ are κ-cohesive in G, and U is κ-cohesive in G

as soon as all its subsets of size κ are.

A typical example of a κ-cohesive set is the set of ‘main’ vertices in a TKκ,

which is itself totally disconnected, but no small set can separate it in G into

two or more large subsets. More generally, it is clear (and will be used below)

that every set of > κ vertices in a κ-cohesive graph is κ-cohesive in that graph.

In fact, these are the canonical examples of ‘small’ κ-cohesive sets: as the

following proposition shows, every κ-cohesive set of size κ in G is contained

in some κ-cohesive subgraph (of the same size), even when G itself is not κ-

cohesive.

Proposition 8.7. Let κ be a regular cardinal, and suppose that U ⊆ V (G) is

a κ-cohesive set of size κ in G. Then U is contained in some cohesive subgraph

H ⊆ G of size κ.

Proof. As |U | = κ, U is trivially the union of at most κ κ-dispersed sets.

By (6.2), G has a normal expansion tree T such that U ⊆ T<κ. Exactly as in the

proof of Proposition 5.2, our assumption that U is κ-cohesive in G and the fact

that U ⊆ T<κ imply that ⌈U⌉ is a narrow κ-tree. Set W := {Vt(v) | v ∈ ⌈U⌉ }

(keeping the notation of Section 4); W is still a narrow κ-tree (in particular,

|W | = κ), and it contains U . Moreover, W is a normal expansion tree. Thus,

by Theorem 8.6 (iii)→(i), the subgraph H ⊆ G induced by W is cohesive and

has size κ. �

Corollary 8.8. Let κ be a regular cardinal. If G is κ-cohesive, then every

subgraph of size κ can be extended to a cohesive subgraph of the same size.

9. Bounding branch length: the tree structure of TKκ-free graphs

In this short section we shall kill two birds with one stone. Unlike in the last

section, where we looked at the tree structure of cohesive graphs, we shall now

determine the structure of the graphs not containing any κ-cohesive graph, for

regular κ > ℵ0. By (8.1) and Theorem 8.3, these are precisely the TKκ-free

graphs (those without a TKκ subgraph), so we will get a structure theorem for

those graphs for free.

On the other hand, our characterization of those graphs involves various

equivalent conditions, each asserting the existence of certain normal trees with

bounded branch lengths. The equivalence of these conditions, which involve our

various notions of linkedness, complements our results from Sections 6 and 7

(where the bound was on the overall tree height), and thus completes our list

of existence theorems for normal trees.
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Theorem 9.1. For every regular uncountable cardinal κ, the following asser-

tions are equivalent:

(i) G is TKκ-free;

(ii) G has no κ-cohesive subgraph;

(iii) every normal expansion tree for G has branch lengths < κ;

(iv) G has a normal expansion tree with branch lengths < κ;

(v) G has a linked normal tree with branch lengths < κ;

(vi) G has a normal tree with branch lengths < κ.

Proof. Assertions (i) and (ii) are equivalent by (8.1) and Theorem 8.3. We

show (ii)→(iii)→(iv)→(vi)→(ii) and (ii)→(v)→(vi).

(ii)→(iii) follows from (5.1). (iii)→(iv) follows from Theorem 4.2.

(iv)→(vi) and (v)→(vi) are trivial. (vi)→(ii) follows from (5.4).

It remains to prove (ii)→(v), so assume that (ii) holds. Then (vi) holds

as well (by the above), so by Theorem 7.1 G has a linked normal tree T of

height 6 κ. We claim that every branch of T has length < κ. So let B ⊆ T

be a branch. Then B is κ-cohesive in G. Indeed, if X ⊆ V (G) has size < κ,

there exists an α < κ with X ⊆ T<α (since κ is regular). Thus if t is the point

on B at level α, then X ∩⌊t⌋ = ∅. But ⌊t⌋ induces a connected subgraph in G

by (L2), completing the proof that B is κ-cohesive in G. By Proposition 8.7,

then, G has a κ-cohesive subgraph, which contradicts (ii). �

We remark that the equivalence of (i) and (vi) in Theorem 9.1, so easily ob-

tained here, is tantamount to the main result of [ 6 ]. Note also that the theo-

rem generalizes Halin’s [ 11 ] result that every connected TKℵ0
-free graph has

a normal spanning tree.

The implications (i)→(iii) and (ii)→(iii) in Theorem 9.1 do not extend

to singular κ. For example, it is easy to furnish a vertex sequence of singular

length κ with edges in such a way that it becomes a long ray in the arising graph

but this has no κ-cohesive subgraph. Moreover, we have seen that (i)→(ii) fails

for some singular cardinals κ, so (i)→(iv) and (i)→(vi) fail for these κ, too

(by (5.4)). We do not know, however, whether some or all of (ii), (iv), (v) and

(vi) are still equivalent for singular κ.

Note that, by our proof of (ii)→(v), the conditions in the theorem actually

imply that every linked normal tree for G of height 6 κ has branches all shorter

than κ. However, G may have linked normal trees of larger height, which then

have longer branches: for example, if G is obtained from κ disjoint rays by

adding two new vertices adjacent to every other vertex, then G is TKκ-free

but has a linked normal tree of height κ+1 consisting of a single branch.

Finally, there is a similar characterization to Theorem 9.1 of the TKℵ0
-free

graphs, to be found in [ 10 ]. On the other hand, we may obtain a structure

theorem for the rayless graphs from Theorem 9.1 if we replace κ with ω and

condition (i) with the condition that G is rayless (i.e. contains no infinite path);

the proof remains the same as above.
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Of course, the description in Theorem 9.1 of the TKκ-free graphs is but

one of its several facets. Another is the equivalence between its assertions (iv),

(v) and (vi), extending Corollary 6.4 and Theorem 7.1. Furthermore, we have

the following analogue to Corollaries 6.6 and 7.3:

Corollary 9.2. Let κ be a regular uncountable cardinal.

(i) If G has a normal expansion tree with branch lengths < κ, then so does

every connected subgraph of G.

(ii) If G has a linked normal tree with branch lengths < κ, then so does

every connected subgraph of G. �

Clearly, Corollary 9.2 remains true if we replace the words ‘subgraph’ with

‘topological minor’. (H is a topological minor of G if G contains a subdivision

of H .) In fact, Theorem 9.1 may be viewed as a Kuratowski-type characteriza-

tion of those connected graphs that admit a normal tree with all branches < κ

long: G has such a tree if and only if it does not contain a TKκ. Is there a sim-

ilar characterization when we replace the strict inequality “< κ” with “6 κ”?

In other words, is there a ‘forbidden topological minor’ characterization of the

graphs admitting a normal tree of height 6 κ?

Formally, the property of admitting a normal tree of height 6 κ (for any

infinite cardinal κ) lends itself to such a characterization: as an easy application

of Theorem 6.3, one can show that the property of admitting such normal trees

is closed under taking topological minors. In practice, however, it is not clear

whether there is a small set of forbidden topological minors characterizing this

property:

Problem. For κ an infinite cardinal, is there a small set of graphs such that G

admits a normal tree* of height 6 κ if and only if G has no subgraph isomorphic

to a subdivision of a graph in this set? In particular, is there a simple such

characterization of the connected graphs admitting a normal spanning tree in

Jung’s sense?

A possible candidate for such a set of forbidden topological minors might be

the graph indicated towards the end of Section 6 (generalized to arbitrary κ).

* equivalently, a normal expansion tree, or a linked normal tree; cf. Cor. 6.4 and Thm. 7.1
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10. Further remarks and open problems

We saw early in the paper that well linked normal trees, however desirable they

may be, do not generally exist for arbitrary connected graphs. We then went

on to consider various weakenings of well-linkedness, trying to secure general

existence while preserving as much of the strength of the original concept as

possible.

One weakening we did not consider is to allow our trees not to be well-

founded. In principle, this would make sense: normality can be defined as

usual, and (2.1) carries over. However, as the proof of Proposition 3.1 shows,

such a weakening will not result in a notion of a tree that exists for every

connected graph.

Still, what would be a reasonable definition of a not necessarily well-

founded well linked normal tree (nonewelflinot , for short)? One property

of ordinary well linked normal trees that might serve as the definition for a

nonewelflinot is that all intervals in the tree order induce connected subgraphs.

A slightly stronger requirement (equivalent in the well-founded case) is that for

any two points t < t′ in the tree there is an ascending t–t′ path in the graph, i.e.

a path t = x1 . . . xn = t′ such that xi < xi+1 for all i = 1, . . . , n− 1. Thus, the

tree order is precisely the transitive closure of the ‘directed’ adjacency relation

on the vertex set, each edge being directed upwards (say).

Such trees have been studied by the first author [ 1 ]. In [ 4 ], it was shown

that if G is |G|-connected, it contains a nonewelflinôt consisting of a single

branch. (There need not be a long ray on V (G) as defined in Section 2.)

Another result, from [ 1 ], may be worth quoting here—particularly as Propo-

sition 3.1 shows that not every graph has a nonewelflinot:

Theorem 10.1. [ 1 ] Let κ be an infinite cardinal.

(i) Every κ-connected graph with no independent vertex (sub)set of size κ

has a nonewelflinot.

(ii) It is consistent that every graph with no uncountable independent set of

vertices has a nonewelflinot.

Forbidding large independent sets can also help to secure the existence of

an ordinary (i.e. well-founded) well linked normal tree. It was shown in [ 2 ]

that any connected graph with no infinite independent set of vertices has a

well linked normal tree. The proof, moreover, implies the following bound on

the tree’s height:

Theorem 10.2. [ 2 ] If G has no infinite independent set and admits a normal

tree of height α, then G has a well linked normal tree of height at most |α|.

We conclude with a list of our main open problems. Let κ be an infinite

cardinal.
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Problems.

1. Which graphs admit a well linked normal tree?

2. Does every connected graph admit a normal tree whose branch tails all

induce connected subgraphs?

3. Is there a small set of graphs such that G admits a normal tree of

height 6 κ if and only if it has no subgraph isomorphic to a subdivision

of a graph in this set? In particular, is there a simple such characteriza-

tion of the connected graphs admitting a normal spanning tree in Jung’s

sense?

4. Does G have a normal spanning tree if its vertex set is the union of

countably many sets each separated from any TKℵ0
⊆ G by a finite set

(depending on the choice of the TKℵ0
)?

5. Characterize the graphs admitting a normal tree of height < κ.

6. Does every graph as in (5.) have a normal expansion tree of height < κ?

7. What do the graphs of cohesion κ look like?

8. Can normal trees be used to characterize the graphs without aKκ minor?

(See [ 14 ] for characterizations of these graphs in terms of tree-decom-

positions.)
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