Fachbereich Mathematik 
  UHH > Faculties > MIN-Faculty > Mathematics > Staff > Haibo Ruan > Research   STiNE |  KUS-Portal |  Sitemap Suchen Hilfe there is no english version of this page  

Research Interest

Network theory, dynamical systems, bifurcation theory, equivariant degree and equivariant bifurcations, topological classification and stability analysis, coupled cell networks and coupled cell systems, synchrony and synchrony patterns, system biology and system engineering.

Netzwerktheorie, Systemtheorie, Graphentheorie, Topologie, Dynamische Systeme, gekoppelte Netzwerke von Zellen, Abbidungsgrade, Synchronisation und Synchronmuster, Musterbildung und Selbsorganisation.

Papers

  • M. Aguiar, A. Dias and H. Ruan, Synchrony and elementary operations on coupled cell networks, SIAM J. Appl. Dyn. Syst., 15(1), 2016, 322337 pdf

  • F. Atay and H. Ruan, Symmetry analysis of coupled scalar systems under time delay, Nonlinearity 28 (2015) 795-824 pdf

  • M. Aguiar and H. Ruan, Evolution of synchrony under combination of coupled cell networks, Nonlinearity 25 (2012) 3155-3187. pdf

  • H. Ruan, A degree theory for coupled cell systems with quotient symmetries, Nonlinearity 25 (2012) 2681-2716. pdf

  • M. Aguiar and H. Ruan, Interior symmetries and real multiple eigenvalues for homogeneous networks, SIAM J. Appl. Dyn. Syst. 11, 1231-1269 (2012). pdf

  • H. Ruan, Fixed points in absolutely irreducible real representations, the Illinois Journal of Mathematics, Volume 55, Number 4, Winter 2011, 15511567. pdf

  • N. Hirano, W. Krawcewicz and H. Ruan, Existence of nonstationary periodic solutions for Γ-symmetric Lotka-Volterra type systems, Discrete Contin. Dyn. Syst-A, 30, No. 3 (2011), 709 - 735. pdf

  • J. Fura, A. Golebiewska and H. Ruan, Existence of nonstationary periodic solutions for Γ-symmetric asymptotically linear autonomous Newtonian systems with degeneracy, Rocky Moun. J. Mat., 40, No.3 (2010), 873-911. pdf

  • Z. Balanov, W. Krawcewicz and H. Ruan, Periodic solutions to O(2)-symmetric variational problems: O(2)×S1-equivariant orthogonal degree approach, Contemporary Mathematics, 514 (2010), 45-84. pdf

  • H. Ruan and S. Rybicki, Applications of equivariant degree for gradient maps to symmetric Newtonian systems, Nonlinear Anal. TMA, 68 No.6 (2008) 1479-1516. pdf

  • Z. Balanov, W. Krawcewicz, and H. Ruan, G. E. Hutchinson's delay logistic system with symmetries and spatial diffusion, Nonlinear Anal. RWA 9 (2008) 154-182. pdf

  • Z. Balanov, W. Krawcewicz, and H. Ruan, Hopf bifurcation in a symmetric configuration of lossless transmission lines, Nonlinear Anal. RWA 8 (2007) 1144-1170. pdf

  • Z. Balanov, M. Farzamirad, W. Krawcewicz, and H. Ruan, Applied equivariant degree, part II: symmetric Hopf bifurcation for functional differential equations, Discrete Contin. Dyn. Syst. Ser. A 16 No. 4 (2006) 923-960. pdf

  • Z. Balanov, W. Krawcewicz and H. Ruan, Applied equivariant degree, part I: an axiomatic approach to primary degree, Discrete Contin. Dyn. Syst. Ser. A 15, No. 3 (2006) 983-1016. pdf

  • Z. Balanov, W. Krawcewicz, and H. Ruan, Applied equivariant degree, part III: Global symmetric Hopf bifurcation for functional differential equations, Proc. Latv. Acad. Sci. Sec B Nat. Exact Appl. Sci. 59 No.6 (641) (2005) 234-240. pdf

Theses

  • Habiliation Thesis: An equivariant degree theory for networked dynamical systems. 2017 pdf

  • Doctoral Thesis: A recent development of the equivariant degree methods and their applications in symmetric dynamical systems. 2008 pdf


 
  Seitenanfang  Impress 2017-10-21, Haibo Ruan