Fachbereich Mathematik 
  UHH > Faculties > MIN-Faculty > Mathematics > Staff > Haibo Ruan > Research   Sitemap Suchen Hilfe there is no english version of this page  

Research Interest

Topological methods in nonlinear analysis, equivariant degree theory, equivariant bifurcation theory, pattern formation in dynamical systems, equivariant variational problems, coupled networks and synchronizations.

Papers

  • M. Aguiar and H. Ruan, Evolution of synchrony under combination of coupled cell networks, Nonlinearity 25 (2012) 3155-3187. pdf

  • H. Ruan, A degree theory for coupled cell systems with quotient symmetries, Nonlinearity 25 (2012) 2681-2716. pdf

  • M. Aguiar and H. Ruan, Interior symmetries and real multiple eigenvalues for homogeneous networks, SIAM J. Appl. Dyn. Syst. 11, 1231 (2012). pdf

  • H. Ruan, Fixed points in absolutely irreducible real representations, the Illinois Journal of Mathematics, to appear. pdf

  • N. Hirano, W. Krawcewicz and H. Ruan, Existence of nonstationary periodic solutions for Γ-symmetric Lotka-Volterra type systems, Discrete Contin. Dyn. Syst-A, 30, No. 3 (2011), 709 - 735. pdf

  • J. Fura, A. Golebiewska and H. Ruan, Existence of nonstationary periodic solutions for Γ-symmetric asymptotically linear autonomous Newtonian systems with degeneracy, Rocky Moun. J. Mat., 40, No.3 (2010), 873-911. pdf

  • Z. Balanov, W. Krawcewicz and H. Ruan, Periodic solutions to O(2)-symmetric variational problems: O(2)×S1-equivariant orthogonal degree approach, Contemporary Mathematics, 514 (2010), 45-84. pdf

  • H. Ruan and S. Rybicki, Applications of equivariant degree for gradient maps to symmetric Newtonian systems, Nonlinear Anal. TMA, 68 No.6 (2008) 1479-1516. pdf

  • Z. Balanov, W. Krawcewicz, and H. Ruan, G. E. Hutchinson's delay logistic system with symmetries and spatial diffusion, Nonlinear Anal. RWA 9 (2008) 154-182. pdf

  • Z. Balanov, W. Krawcewicz, and H. Ruan, Hopf bifurcation in a symmetric configuration of lossless transmission lines, Nonlinear Anal. RWA 8 (2007) 1144-1170. pdf

  • Z. Balanov, M. Farzamirad, W. Krawcewicz, and H. Ruan, Applied equivariant degree, part II: symmetric Hopf bifurcation for functional differential equations, Discrete Contin. Dyn. Syst. Ser. A 16 No. 4 (2006) 923-960. pdf

  • Z. Balanov, W. Krawcewicz and H. Ruan, Applied equivariant degree, part I: an axiomatic approach to primary degree, Discrete Contin. Dyn. Syst. Ser. A 15, No. 3 (2006) 983-1016. pdf

  • Z. Balanov, W. Krawcewicz, and H. Ruan, Applied equivariant degree, part III: Global symmetric Hopf bifurcation for functional differential equations, Proc. Latv. Acad. Sci. Sec B Nat. Exact Appl. Sci. 59 No.6 (641) (2005) 234-240. pdf


 
  Seitenanfang  Impress 2012-10-26, Haibo Ruan