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Abstract. To study symmetric properties of solutions to equivariant varia-
tional problems, Kazimierz Gȩba introduced the so-called G-equivariant gradi-
ent degree taking its values in the Euler ring U(G). In this paper, we develop
several techniques to evaluate the multiplication structure of U(Γ×S1), where
Γ is a compact Lie group. In addition, some methods for the evaluation of the
Γ × S1-equivariant degree, based on its connections with other equivariant
degrees, are proposed. Finally, the obtained results are applied to a periodic-
Dirichlet mixed boundary value problem for an elliptic asymptotically linear
variational equation with O(2)-symmetries.

1. Introduction

Subject and Goal. Let W be a Hilbert representation of compact Lie group G
and f : W → R a smooth invariant function. The problem of classifying symmetric
properties of solutions to the equation

(1) ∇f(x) = 0, x ∈ Ω,

(Ω – an open bounded invariant set) has been attacked by many authors using
various methods: Lusternik-Schnirelman theory (cf. [27, 28]), equivariant Conley
index theory (cf. [3]), Morse-Floer techniques (cf. [2, 14]), to mention a few (see
also [6, 13, 20]). The degree-theoretic treatment of problem (1) (for G = S1)
was initiated in [8], where a rational-valued gradient S1-homotopy invariant was
introduced (see also [10], where a similar invariant was considered in the context
of systems with first integral). Recently, K. Gȩba (cf. [17]) suggested a method to
study the above problem using the so-called equivariant gradient degree (for more
information on the equivariant gradient degree, we refer to [33]). Under reason-
able conditions, the equivariant gradient degree turns out to be the full equivariant
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gradient homotopy invariant (cf. [9]). In particular, it contains the essential equi-
variant topological information on the solution set for (1), which may have a very
complicated structure related to a large number of different orbit types. Due to this
complexity, one cannot expect that the above invariant is a simple integer (or even
a rational). In fact, it takes its values in an algebraic object known as the Euler
ring of the group G (denoted by U(G)) introduced by T. tom Dieck (cf. [11, 12].

To be more specific, it is well-known that the Brouwer degree of a (non-
equivariant) gradient map, is an algebraic “count” of solutions satisfying the addi-
tivity and multiplicativity (with respect to the product map) properties. Moreover,
it can be expressed as the Euler characteristic of the cohomological Conley index
(or Morse-Floer complex), which takes its values in the ring Z = U(Z1). A passage
to the equivariant setting requires: (a) an algebraic “count” of orbits of solutions
rather than individual solutions, (b) a separate treatment of orbits of different
types, which should be (c) compatible with the “count” of orbits in products. For
a continuous compact Lie group, such a “count” can be achieved, in a parallel way
to the Brouwer degree, by using the Euler characteristic of the appropriate orbit
spaces. The Euler ring (see Definition 3.1), as well as the equivariant gradient de-
gree, constitute the formalization of the above stream of ideas. The main goal of
this paper is to present some ideas and methods allowing (i) effective computations
of U(G) in the case G = Γ × S1, where Γ is a compact Lie group (see [18, 12]
for the computations of U(SO(3)), and (ii) to establish computational techniques
for the Γ×S1-equivariant gradient degree by providing connections with the other
equivariant degrees (cf. [1, 22]).

As an example, we completely evaluate the ring structure of U(O(2)×S1) and
establish computational formulae for O(2)×S1-linear gradient maps. The obtained
results can be applied to various variational problems with symmetries (existence,
bifurcation (both, local and global), continuation, etc.) to classify symmetric prop-
erties of solutions (cf. [31, 32, 29, 22]).

Overview. After the Introduction, the paper is organized as follows. In Sec-
tion 2, we present several facts from equivariant topology and list the properties
of the Euler characteristic relevant to our discussion. In Section 3, after giving
the definition of the Euler ring, we explore its connections with Burnside ring and
(in the case G = Γ × S1) with the related modules (cf. [1, 22]). Some additional
partial results describing the multiplicative structure of the Euler ring are also pre-
sented. In Section 4, we discuss the Euler ring homomorphisms induced by Lie
group homomorphisms. The obtained results are applied in Section 5 to establish
the complete multiplication table for the Euler ring U(O(2) × S1). Section 6 is
devoted to several methods for computations of the equivariant gradient degree in
the case G = Γ × S1, which are applied to establish a computational database for
G = O(2)×S1. These results are applied in the last section to a periodic-Dirichlet
mixed boundary value problem for an elliptic asymptotically linear variational equa-
tion with O(2)-symmetries.

Acknowledgement. The authors are grateful to Slawek Rybicki for useful
discussions, in particular, for indicating a mistake in an earlier version of this paper.
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2. Equivariant Topology Preliminaries

2.1. G-actions. In what follows G always stands for a compact Lie group and
all subgroups of G are assumed to be closed.

For a subgroup H ⊂ G, denote by N(H) the normalizer of H in G, and by
W (H) = N(H)/H the Weyl group of H in G. In the case when we are dealing
with different Lie groups, we also write NG(H) (resp. WG(H)) instead of N(H)
(resp. W (H)). The following simple fact will be essentially used in what follows.

Lemma 2.1. (see [1], Lemma 2.55) Given subgroups L ⊂ H ⊂ G, one has

dim W (H) ≤ dim W (L).

Denote by (H) the conjugacy class of H in G. We also use the notations:

Φ(G) := {(H) : H is a subgroup of G},
Φn(G) := {(H) ∈ Φ(G) : dim W (H) = n}.

The set Φ(G) has a natural partial order defined by

(2) (H) ≤ (K) ⇐⇒ ∃g∈G gHg−1 ⊂ K.

A topological space X equipped with a left (resp. right) G-action is called a
G-space (resp. space-G) (if an action is not specified, it is assumed to be a left one).
For a G-space X and x ∈ X, put:

Gx := {g ∈ G : gx = x} – the isotropy of x;
(Gx) – the orbit type of x in X;
G(x) := {gx : g ∈ G} – the orbit of x.

Also, for a subgroup H ⊂ G, we adopt the following notations:
XH := {x ∈ X : Gx = H};
XH := {x ∈ X : Gx ⊃ H};
X(H) := {x ∈ X : (Gx) = (H)};
X(H) := {x ∈ X : (Gx) ≥ (H)}.
As is well-known (see, for instance, [12]), W (H) acts on XH and this action is

free on XH . All the above notions and notations can be reformulated for a space-G
in an obvious way.

The orbit space for a G-space X is denoted by X/G and for the space-G by
G\X.

Let G1 and G2 be compact Lie groups. Assume that X is a G1-space and
space-G2 simultaneously, and g1(xg2) = (g1x)g2 for all x ∈ X, gi ∈ Gi, i = 1, 2.
In this case, we use the notation G1-space-G2. Clearly, X/G1 is a space-G2 while
G2\X is a G1-space. For the double orbit spaces G2\(X/G1) and (G2\X)/G1, we
use the same notation G2\X/G1 (this is justified by the fact that both double orbit
spaces are homeomorphic).

In particular, assume X := G and H ⊂ G (resp. L ⊂ G) is a subgroup acting
on G by left (resp. right) translations. Then G is an H-space-L. Moreover, G/H
(resp. L\G) can be identified with the set of left cosets {Hg} (resp. right cosets
{gL}), L (resp. H) acts on G/H (resp. L\G) by the formula (Hg)l := H(gl), l ∈ L
(resp. h(gL) := (hg)L, (h ∈ H)). In addition, L\G/H can be identified with the
set of the corresponding double cosets. Similar observations can be applied to G
replaced by a G-invariant subset of G.

For the equivariant topology background frequently used in this paper, we refer
to [12, 23, 4, 1].



4 ZALMAN BALANOV, WIESLAW KRAWCEWICZ, AND HAIBO RUAN

2.2. The sets N(L,H), N(L,H)/H and N(L,H)/N(H). Take subgroups
L ⊂ H of G and put

(3) N(L,H) := {g ∈ G : gLg−1 ⊂ H}.
Lemma 2.2. Let L, H be as in Lemma 2.1. Then the space N(L,H) ⊂ G has

two natural actions: left N(H)-action and right N(L)-action. Thus, N(L,H) is an
N(H)-space-N(L).

Proof. Since G is an N(H)-space-N(L), it is enough to show that N(L, H) is
invariant with respect to these two actions. Suppose that l ∈ N(L) and
h ∈ N(H). Then, for g ∈ N(L, H), one has gLg−1 ⊂ H; thus hgL(hg)−1 ⊂
hHh−1 = H, and consequently hg ∈ N(L,H). Similarly, glLl−1g−1 = gLg−1 ⊂ H;
thus gl ∈ N(L,H). ¤

Next, take N(L,H)/H (which is correctly defined by Lemma 2.2). By the same
lemma and observations from Subsection 2.1, N(L,H)/H is a space-N(L) (in fact,
space-W (L)).

Lemma 2.3. (see [4, Corollary 5.7]) Let L, H be as in Lemma 2.1 and take a
G-space G/H. Then:

(i) (G/H)L is W (L)-equivariantly diffeomorphic to N(L,H)/H;
(ii) (G/H)L contains finitely many W (L)-orbits.

Using Lemma 2.3 and the same argument as in the proof of Proposition 2.52
from [1], one can easily establish the following

Lemma 2.4. Let L and H be as in Lemma 2.1 Then the set N(L, H)/H is
composed of connected components Mi, i = 1, 2, . . . , k, which are smooth manifolds
(possibly of different dimensions) such that dim W (H) ≤ dim Mi ≤ dim W (L).

Given subgroups L ⊂ H ⊂ G, let Mi, i = 1, 2, . . . , k, be the connected compo-
nents of N(L,H)/H (cf. Lemma 2.4). Put

Dim N(L,H)/H := max{dim Mi : i = 1, 2, . . . , k}.
Lemma 2.5. Assume that L′ ⊂ L ⊂ H are three subgroups of G. Then

DimN(L,H)/H ≤ Dim N(L′, H)/H.

Proof. Notice that N(L,H) ⊂ N(L′,H), therefore

N(L,H)
H

⊂ N(L′, H)
H

,

and the conclusion follows. ¤
Consider now the set N(L,H)/N(H) and put n(L,H) := |N(L, H)/N(H)|,

where the symbol |X| stands for the cardinality of X (cf. [21, 26]).

Lemma 2.6. (see [1], Proposition 2.52) Let L, H be as in Lemma 2.1 and
assume, in addition, that dim W (L) = dim W (H). Then n(L,H) is finite.

The numbers n(L, H), whenever they are finite, play an important role in the
computation of multiplication tables of Burnside rings and the corresponding mod-
ules (and, therefore, may be used to establish partial results on the multiplication
structure of the Euler ring U(G)). However, the main assumption providing the
finiteness of n(L,H) is not satisfied for arbitrary L ⊂ H ⊂ G. Below we introduce
a notion close in spirit to n(L,H).
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Definition 2.7. Given subgroups L ⊂ H ⊂ G, we say that L is N-finite in H
if the space N(L,H)/H is finite. For a given subgroup H, denote by N(H) the set
of all conjugacy classes (L) such that there exists L̃ ∈ (L) which is N-finite in H.
For (L) ∈ N(H) (L ⊂ H), put

m(L,H) :=
∣∣∣∣
N(L,H)

H

∣∣∣∣ ,

where |X| stands for the number of elements in the set X.

Remark 2.8. Let L, H be as in Lemma 2.1. (i) Take a subgroup L′ ⊂ L. If
L′ is N-finite in H, then L is N-finite in H (cf. Lemma 2.5).

(ii) It follows immediately from Lemma 2.3 that if W (L) is finite, then L is
N-finite.

(iii) Finally, if W (L) and W (H) are finite, then

m(L,H) = n(L,H) · |W (H)|.
We complete this subsection with the following simple but important observa-

tion.

Proposition 2.9. Let L, H be as in Lemma 2.1. Then G contains a finite
sequence of elements g1 = e (where e is the unit element in G), g2, g3, . . . , gn such
that

N(L,H) = N(H)g1N(L) tN(H)g2N(L) t · · · tN(H)gnN(L),

where N(H)gjN(L) denotes a double coset, for j = 1, 2, . . . , n, and t stands for
the disjoint union.

Proof. Since the N(H)-space-N(L) N(L,H)/H consists of a finite number
of N(L)-orbits (cf. Lemma 2.3), the space N(L,H)/N(H) also consists of a finite
number of N(L)-orbits. Consequently, the set N(L)\N(L,H)/N(H) is finite and
the result follows. ¤

2.3. Euler characteristic in the Alexander-Spanier cohomology ring.
For a topological space Y , denote by H∗

c (Y ) the ring of Alexander-Spanier coho-
mology with compact support (see [34]). If H∗

c (Y ) is finitely generated, then the
Euler characteristic χc(Y ) is correctly defined in a standard way. The following
well-known fact (see, for instance, [34, Chap. 6, Sect. 6, Lemma 11]) is a starting
point for our discussions.

Lemma 2.10. Let X be a compact CW -complex and A a closed subcomplex.
Then H∗

c (X\A)) ∼= H∗(X, A;R), where H∗(·) stands for a usual cellular cohomology
ring.

From Lemma 2.10 immediately follows

Lemma 2.11.

(i) Let X, A be as in Lemma 2.10. Then χc(X \A) is correctly defined and

χ(X) = χc(X \A) + χ(A) = χ(X, A) + χ(A).

(Here χ(·) stands for the Euler characteristic with respect to the cellular
cohomology groups.)
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(ii) Let X, A be as in Lemma 2.10, Y a compact CW -complex, B ⊂ Y a
closed subcomplex and p : X \A → Y \B a locally trivial fibre bundle with
path-connected base and the fibre F a compact manifold. Then (cf. [34,
Chap. 9, Sect. 3, Thm. 1]; [11, Statement 5.2.10]),

χc(X \A) = χ(F )χc(Y \B).

In what follows, we will use two facts on the Euler characteristic related to the
tori actions (cf. Lemma 2.12 and Corollary 2.15).

Lemma 2.12. (see [23, 24]) Let X be a compact G-ENR-space with G = Tn

an n-dimensional torus and n > 0. Then

χ(X) = χ(XG).

In particular, if XG = ∅, then χ(X) = 0.

Lemma 2.13. Suppose G is abelian, ∆ the diagonal in G × G and X, Y two
G-spaces. Then A := (G×G)/∆ acts on (X × Y )/∆ without A-fixed points iff

(p) for any x ∈ X and y ∈ Y, Gx ·Gy 6= G,

where “ Gx ·Gy” stands for a subgroup of G generated by Gx and Gy.

Proof. Notice that since G is abelian and Hausdorff, ∆ is a closed normal
subgroup in G×G. Thus, A = (G×G)/∆ ∼= G and A acts on (X × Y )/∆.

Observe that if ∆(x, y) ∈ (X×Y )/∆ is an A-fixed point, then for any g1, g2 ∈ G
(i.e., for any coset ∆(g1, g2) ∈ A), we have that ∆(g1x, g2y) = ∆(x, y), which is
equivalent to the existence of some go ∈ G such that (gog1x, gog2y) = (x, y). Put
to := gog1 and t := g−1

1 g2. Then, from above, we conclude that ((X × Y )/∆)A 6= ∅
iff for any t ∈ G, there exists to ∈ G such that (tox, toty) = (x, y) for some
(x, y) ∈ X × Y . In terms of isotropies of x, y, the latter requires for any t ∈ G,
we can write t ∈ t−1

o Gy for some to ∈ Gx, which is equivalent to G ⊂ G−1
x ·Gy for

some x ∈ X, y ∈ Y , i.e., Gx ·Gy = G. ¤
From Lemma 2.12 and Lemma 2.13 immediately follows

Corollary 2.14. Under the assumptions of Lemma 2.13, if X and Y
are compact G-ENR-spaces with G = Tn (n > 0), then condition (p) implies
χ((X × Y )/∆) = 0.

Corollary 2.15. Under the assumptions of Lemma 2.13, if X and Y are
compact G-ENR-spaces with G = Tn (n > 0) satisfying

(p1) dim Gx + dim Gy < dim G for any x ∈ X and y ∈ Y,

then χ((X × Y )/∆)) = 0. In particular, it holds for G = S1, XS1
= Y S1

= ∅.
Proof. Notice that (p1) implies condition (p) in Lemma 2.13. ¤

Remark 2.16. In what follows, given G-spaces X and Y , we assume X ×Y to
be a G-space equipped with the diagonal action (if not specified otherwise).

We complete this section with the standard fact on the Euler characteristic of
the space G/H.

Definition 2.17. A subgroup H ⊂ G is said to be of maximal rank if H
contains a maximal torus Tn ⊂ G.
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Proposition 2.18. Let H ⊂ G be a subgroup of G.

(i) If H is not of maximal rank, then χ(G/H) = 0.
(ii) If H is of maximal rank, then WH(Tn) is finite and

χ(G/H) = |WG(Tn)|/|WH(Tn)|.
In particular, χ(G/Tn) = |WG(Tn)|.

Proof. (i) If H is not of maximal rank, then G/H admits an action of a torus
T k (0 < k < n) without T k-fixed-points, and the result follows from Lemma 2.12.

(ii) Assume H is of maximal rank. Then, for the proof of the finiteness of
WH(T ), we refer to [5, Chap. IV, Thm. (1.5)]. Next, we have a fibre bun-
dle G/Tn → G/H with the fibre H/Tn. Then, by Lemma 2.11(ii), χ(G/Tn) =
χ(H/Tn) · χ(G/H). On the other hand, by Lemma 2.12 and Lemma 2.3(i),

(4) χ(H/Tn) = χ((H/Tn)T n

) = χ(NH(Tn)/Tn) = |WH(Tn)|,
from which the statement follows. ¤

3. Euler Ring, Burnside Ring, Twisted Subgroups
and Related Modules

3.1. Euler ring.

Definition 3.1. (cf. [12]) Consider the free Z-module generated by Φ(G)

U(G) := Z[Φ(G)].

Define a ring multiplication on generators (H), (K) ∈ Φ(G) as follows:

(5) (H) ∗ (K) =
∑

(L)∈Φ(G)

nL(L),

where

(6) nL := χc((G/H ×G/K)L/N(L))

for χc the Euler characteristic taken in Alexander-Spanier cohomology with com-
pact support (cf. [34]). The Z-module U(G) equipped with the multiplication (5),
(6) is called the Euler ring of the group G (cf. [12, 11]).

Proposition 3.2. (General Recurrence Formula) Given (H), (K) ∈
Φ(G), one has the following recurrence formula for the coefficients nL in (5)

(7) nL = χ((G/H ×G/K)L/N(L))−
∑

(eL)>(L)

neL χ((G/L̃)L/N(L)).

Proof. Let X := G/H × G/K. The projection X(eL) → X(eL)/G is a fibre

bundle with fibre G/L̃, which implies that XL
(eL)

/N(L) → X(eL)/G is a fibre bundle

with fibre ((G/L̃)L)/N(L). By Lemma 2.11 (ii),

χc(XL
(eL)

/N(L)) = χ((G/L̃)L/N(L)) · χc(X(eL)/G).
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Therefore (see Lemma 2.11(i)),

χ(XL/N(L)) =
∑

(eL)≥(L)

χc(XL
(eL)

/N(L))

=
∑

(eL)≥(L)

χ((G/L̃)L/N(L)) · χc(X(eL)/G)

=
∑

(eL)≥(L)

χ((G/L̃)L/N(L)) · χc(XeL/N(L̃))

=
∑

(eL)≥(L)

χ((G/L̃)L/N(L)) · neL
= nL +

∑

(eL)>(L)

χ((G/L̃)L/N(L)) · neL,

and the result follows. ¤

3.2. Burnside ring. The Z-module A(G) = A0(G) := Z[Φ0(G)] equipped
with a similar multiplication as in U(G) but restricted only to generators from
Φ0(G), is called a Burnside ring, i.e., for (H), (K) ∈ Φ0(G)

(H) · (K) =
∑

(L)

nL(L), (H), (K), (L) ∈ Φ0(G),

where nL := χ((G/H × G/K)L/N(L)) = |(G/H × G/K)L/N(L)| (here χ stands
for the usual Euler characteristic). In this case, formula (7) can be expressed as

nL =
n(L,K)|W (K)|n(L, H)|W (H)| −∑

(eL)>(L) n(L, L̃)neL|W (L̃)|
|W (L)| ,

where (H), (K), (L) and (L̃) are taken from Φ0(G).
Observe that since the ring A(G) is a Z-submodule of U(G), it may not be a

subring of U(G), in general. Indeed, consider the following

Example 3.3. Let G = O(2). Then (Dn) · (SO(2)) = 0 while (Dn)∗ (SO(2)) =
(Zn).

To see a connection between the rings U(G) and A(G), take the natural pro-
jection π0 : U(G) → A(G) defined on generators (H) ∈ Φ(G) by

(8) π0((H)) =

{
(H) if (H) ∈ Φ0(G),
0 otherwise.

Lemma 3.4. The map π0 defined by (8) is a ring homomorphism, i.e.,

π0((H) ∗ (K)) = π0((H)) · π0((K)), (H), (K) ∈ Φ(G).

Proof. Assume (H) 6∈ Φ0(G) and

(9) (H) ∗ (K) =
∑

(R)∈Φ(G)

mR(R).

Then, for any (R) occurring in (9), one has (R) ≤ (H), hence (see Lemma 2.1)
dim W (R) > 0, which means that π0((R)) = 0 and π0((H) ∗ (K)) = 0 = π0((H)) ·
π0((K)) = 0 · π0(K).
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Thus, without loss of generality, assume (H), (K) ∈ Φ0(G) and

(H) ∗ (K) =
∑

(L)∈Φ0(G)

nL(L) +
∑

(L̃)6∈Φ0(G)

mL̃(L̃).

Then
π0((H) ∗ (K)) =

∑

(L)∈Φ0(G)

nLπ0((L)) =
∑

(L)∈Φ0(G)

nL(L)

and
(H) · (K) =

∑

(L)∈Φ0(G)

n′L(L).

However,

nL = χc((G/H ×G/K))L/N(L)) = χ((G/H ×G/K))L/N(L))

= |(G/H ×G/K)L/N(L)| = n′L,(10)

and the result follows. ¤
On the other hand, the following result (its proof is an almost direct conse-

quence of Lemma 2.12) is well-known (cf. [12, Proposition 1.14, p. 231]).

Proposition 3.5. Let (H) ∈ Φn(G) with n > 0. Then (H) is a nilpotent
element in U(G), i.e., there is an integer k such that (H)k = 0 in U(G).

Combining Proposition 3.5 with Lemma 3.4 and the fact that the multiplication
table for A(G) contains only non-negative coefficients (cf. formula (10)), yields

Proposition 3.6. (cf. [18]) Let π0 be defined by (8). Then N = Ker π0 =
Z[Φ(G) \ Φ0(G)] is a maximal nilpotent ideal in U(G) and A(G) ∼= U(G)/N.

Summing up, the Burnside ring multiplication structure in A(G) can be used
to describe (partially) the Euler ring multiplication structure in U(G).

3.3. Twisted subgroups and related modules. In this subsection, we as-
sume that Γ is a compact Lie group and G = Γ×S1. In this case, there are exactly
two sorts of subgroups H ⊂ G, namely,

(a) H = K × S1 with K a subgroup of Γ;
(b) the so-called ϕ-twisted l-folded subgroups Kϕ,l (in short, twisted subgroups)

defined as follows: if K is a subgroup of Γ, ϕ : K → S1 a homomorphism and
l = 1, . . . , then

Kϕ,l := {(γ, z) ∈ K × S1 : ϕ(γ) = zl}.
Clearly, if a subgroup H ⊂ G is twisted, then any subgroup conjugate to H is

twisted as well. This allows us to speak about twisted conjugacy classes in Φ(G).

Proposition 3.7. Let G = Γ× S1, where Γ is a compact Lie group. Given a
twisted subgroup Kϕ,l ⊂ G, for some l ∈ N and a homomorphism ϕ : K → S1, the
following holds

(11) dim
(
NG(Kϕ,l)

)
= dim

(
NΓ(K) ∩NΓ(Ker ϕ)

)
+ 1.

Proof. For the homomorphism ϕ : K → S1, put L := Ker ϕ. Also, for simplic-
ity, write N(Kϕ,l) for NG(Kϕ,l), and N(K) (resp. N(L)) for NΓ(K) (resp. NΓ(L)).

Notice that N(Kϕ,l) = No × S1, where

No := {γ ∈ N(K) : ϕ(γkγ−1) = ϕ(k), ∀k ∈ K}.
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Hence, it is sufficient to show that dim No = dim
(
N(K) ∩ N(L)

)
. By direct

verification, No ⊂ N(K) ∩ N(L), hence dim No ≤ dim (N(K) ∩ N(L)). To prove
the opposite inequality, consider two cases.

Case 1. ϕ is surjective.
Since G is compact, without loss of generality one can assume that N(K)∩N(L)

is connected (otherwise, one can pass to the connected component of unit e ∈ G).
Fix an element γ ∈ N(K) ∩ N(L). Since γ ∈ N(K), formula hγ(k) := γkγ−1

defines an automorphism hγ : K → K. Since γ ∈ N(L), hγ induces a homomor-
phism on the factor group K/L, which will be denoted by h̄γ . Then we have the
commutative diagram shown in Figure 1.

K
ϕ−−−−→ K/L ' S1

yhγ

yh̄γ

K
ϕ−−−−→ K/L ' S1

Figure 1. Commutative diagram for surjective ϕ.

Take a path connecting γ ∈ N(L)∩N(K) to e. This path determines a homo-
topy of automorphisms hγ , he : K → K which, in turn, determines a homotopy be-
tween the induced automorphisms h̄γ , h̄e : S1 → S1. However, any automorphism
S1 → S1 is of the form z → zk. Since any two continuous maps of the circle z → zk

and z → zl are homotopic iff k = l, the automorphism h̄γ is of the form z → z1

which means that h̄γ ≡ Id . By the commutative diagram in Figure 1, this implies
ϕ(γkγ−1) = ϕ(k) for all k ∈ K, i.e., γ ∈ No, thus dim (N(K) ∩N(L)) ≤ dim No.

Case 2. ϕ is not surjective.
Take any element γ in the connected component of e ∈ N(K) ∩ N(L), and

denote by σγ a path from γ to e. Define ϕσ : [0, 1] × K → S1 by ϕσ(t, k) :=
ϕ
(
σγ(t)k(σγ(t))−1

)
. Since ϕ is not surjective, ϕσ has a discrete image in S1. Hence,

when restricted on a connected component, ϕσ is constant, so we have ϕ(γkγ−1) =
ϕ(k) for all k in the same connected component of K. In particular, for any element
γ in the connected component of e ∈ N(K), we have ϕ(γkγ−1) = ϕ(k) for all k ∈ K,
i.e., γ ∈ No, which implies dim N(K) ∩N(L) ≤ dim No. ¤

Lemma 3.8. Let Γ be a compact Lie group, G = Γ× S1 and H = Kϕ,l ⊂ G a
twisted subgroup. Then:

(i) 1 ≤ dim WG(H) ≤ 1 + dim WΓ(K);
(ii) any subgroup H̃ ⊂ H is twisted.

Proof. (i) By definition of twisted subgroup, dim K = dimKϕ,l. Hence, by
Proposition 3.7,

dim WG(Kϕ,l) = dim NG(Kϕ,l)− dim Kϕ,l = dim NG(Kϕ,l)− dim K

= dim (NΓ(K) ∩NΓ(Ker ϕ))− dim K + 1.(12)

Since K ⊂ NΓ(K) ∩NΓ(Ker ϕ) and dim (NΓ(K) ∩NΓ(Ker ϕ)) ≤ dim NΓ(K),

1 = dim K − dim K + 1 ≤ dim (NΓ(K) ∩NΓ(Ker ϕ))− dim K + 1

≤ dim NΓ(K)− dim K + 1 = dimWΓ(K) + 1.
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Therefore, by (12),
1 ≤ dim WG(H) ≤ dim WΓ(K) + 1.

(ii) It is obvious that H̃ is twisted by the same homomorphism ϕ. ¤
Lemma 3.8 immediately implies

Corollary 3.9. Let G and H be as in Lemma 3.8.
(a) If dim WΓ(K) = 0, then dim WG(H) = 1.
(b) Φ0(G) = {(Ĥ) : Ĥ ⊂ G, Ĥ = K̂×S1 with dim WΓ(K̂) = 0} which means

that

(13) A(G) ∼= A(Γ).

Proof. Statement (a) follows directly from Lemma 3.8(i). To show (b), ob-
serve that by Lemma 3.8(i), (H) /∈ Φ0(G), thus Φ0(G) is composed of conjugacy
classes of product subgroups Ĥ = K̂ × S1 only. Since dim WG(Ĥ) = 0 if and only
if dim WΓ(K̂) = 0, the statement (b) follows.

¤
The identification (13) will be systematically used in this paper.

Being motivated by Corollary 3.9(a), put

Φt
1(G) := {(H) ∈ Φ(G) : H = Kϕ,l for some K ⊂ Γ with dim WΓ(K) = 0}.

Corollary 3.10. Let G and H be as in Lemma 3.8. Assume (H) ∈ Φt
1(G).

Then, for every (H̃) ∈ Φ1(G) such that (H) < (H̃), (H̃) ∈ Φt
1(G).

Proof. Notice that H̃ cannot be a subgroup of type K̃×S1, since it would im-
ply dim WΓ(K̃) = 1 and (K) ≤ (K̃), which would be a contradiction to Lemma 2.1(a).
Thus, H̃ = K̃ψ,m, where ψ : K̃ → S1 is a homomorphism and K ⊂ K̃. Since
dim WΓ(K) = 0, then, by Lemma 2.1(a), dim WΓ(K̃) = 0, which implies
(H̃) ∈ Φt

1(G). ¤
Remark 3.11. Let G and H = Kϕ,l be as in Lemma 3.8 and dim WG(H) = 1.

In such a case, it is not clear in general if (H) ∈ Φt
1(G). However, if the homo-

morphism ϕ : K → S1 is not surjective, then dim WΓ(K) = 0, and consequently
(H) ∈ Φt

1(G). Indeed, by assumption, Kerϕ is a normal subgroup of K such
that Ker ϕ is a component (i.e., a union of connected components) of K, thus
dimKer ϕ = dim K. Since dim WΓ(Kerϕ) ≥ dim WΓ(K) (cf. Lemma 2.1), we
have that dim NΓ(Ker ϕ) ≥ dim NΓ(K). Denote by Mo the connected component
of e ∈ NΓ(K). Choose g ∈ Mo and let σ : [0, 1] → Mo be a path connecting
g with e. Put gt := σ(t). Since Ker ϕ is a component of K, then by the ho-
motopy argument, g−1

t Kerϕgt = Ker ϕ, which implies Mo ⊂ NΓ(Ker ϕ). Thus,
dim NΓ(K) = dim (NΓ(K) ∩NΓ(Ker ϕ)), and by Proposition 3.7,

1 = dim WG(H) = dim (NΓ(K) ∩NΓ(Ker ϕ))− dim Kϕ,l + 1

= dim NΓ(K)− dim K + 1 = dim WΓ(K) + 1.

Consequently, dim WΓ(K) = 0.

In the sequel, we use the following notations:

Φ∗1(G) := {(H) ∈ Φ1(G) : (H) /∈ Φt
1(G)},

Φ∗k(G) := {(H) ∈ Φ(G) : dim WG(H) = k}, k ≥ 2,
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and

At
1(G) := Z[Φt

1(G)], A∗k(G) := Z[Φ∗k(G)], k ≥ 1, A∗(G) :=
⊕

k≥1

A∗k(G).

Proposition 3.12. Let G := Γ× S1, where Γ is a compact Lie group. If (H),
(H̃) ∈ Φt

1(G) then

(14) (H) ∗ (H̃) =
∑

(L)∈Φ(G)

nL(L),

where nL = 0 for all (L) ∈ Φt
1(G).

Proof. Let (L) ∈ Φt
1(G). Since (H), (H̃) ∈ Φt

1(G), we have dim W (L) =
dim W (H) = dim W (H̃) = 1. By Lemma 2.4, N(L,H)/H and N(L, H̃)/H̃ are
one-dimensional manifolds. Consider the space

X :=
(
G/H ×G/H̃

)L

= (G/H)L ×
(
G/H̃

)L

' N(L,H)/H ×N(L, H̃)/H̃ (by Lemma 2.3(i)).

We claim that

(15) χ(X/N(L)) = χ

((
G/H ×G/H̃

)L

/N(L)
)

= 0.

Put G := N(L) = No × S1, where L = Kϕ,l. Notice that No ⊂ Γ is a closed
subgroup such that K ⊂ No ⊂ NΓ(K). Identify {e} × S1 with S1 and consider
the composition η : S1 ↪→ N(L) → W (L) which maps S1 onto the connected
component of e ∈ W (L). The homomorphism η induces S1-actions on (G/H)L

and (G/H̃)L, and consequently a T 2-action on X. By Lemma 2.3 (ii), the space
N(L,H)/H consists of finitely many N(L)-orbits (in fact, W (L)-orbits), namely
N(L,H)/H = W (L)(p1) ∪ · · · ∪ W (L)(pk), each of dimension one. Since (L) ∈
Φt

1(G), so dim S1 = dim W (L)(pi) = 1, hence the S1-isotropies in W (L)(pi) are
finite subgroups. Similarly, the S1-isotropies in each W (L)-orbit of N(L, H̃)/H̃ are
also finite. Therefore, all the isotropy groups in X, with respect to the T 2-action, are
finite, which implies that T 2-orbits in X are two-dimensional and clearly connected.

On the other hand, since dim X = 2, each connected component Xi of X is
a T 2-orbit. Let us show that all points in Xi have the same N(L)-isotropy (and,
therefore, W (L)-isotropy). Indeed, consider x = (Hg, H̃g̃) ∈ Xi, then T 2(x) = Xi.
Notice that for any twisted subgroup Ĥ, the conjugate g−1Ĥg is also twisted and
since z := (e, z) ∈ {e} × S1 ⊂ N(Ĥ), one has z−1Ĥz = Ĥ. Hence, for (z, z̃) ∈ T 2,

Gx = g−1Hg ∩ g̃−1H̃g̃ = z−1(g−1Hg)z ∩ z̃−1(g̃−1H̃g̃)z̃ = G(z,ez)x.

Therefore, Gx is the same for all x ∈ Xi, so N(L)(Xi)/N(L) is a one-dimensional
compact manifold of dimension 1. Consequently, so is X/N(L) = X/W (L), thus
χ(X/N(L)) = 0.

Consider the set Λ of all (L̃) ∈ Φt
1(G) which are the orbit types in G/H×G/H̃.

If (L̃) ∈ Λ is a maximal orbit type in G/H ×G/H̃, then
(
G/H ×G/H̃

)eL
=

(
G/H ×G/H̃

)eL
and
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neL = χc

((
G/H ×G/H̃

)eL /N(L̃)
)

= χ

( (
G/H ×G/H̃

)eL
/N(L̃)

)
= 0.(16)

However, if (L) ∈ Φt
1(G) is not a maximal orbit type in G/H ×G/H̃, then we can

assume for the induction that neL = 0 for all (L̃) ∈ Λ with (L̃) > (L). Then, by
applying the recurrence formula (7) and (15), one obtains nL = 0. ¤

Example 3.13. Let G := O(2)× S1. Then

Φ0(G) = {(O(2)× S1), (SO(2)× S1), (Dn × S1), n = 1, 2, . . . },
Φt

1(G) = {(O(2)× Zl), (SO(2)× Zl), (Dn × Zl, ),

(O(2)−,l), (SO(2)ϕk,l), (Dz,l
n ), (Dd,l

2n), n, l = 1, 2, . . . },
Φ1(G) = Φt

1(G) ∪ {(Zm × S1), m = 1, 2, . . . },
Φ2(G) = {(Zn × Zl), (Zϕk,l

n ), (Zd,l
2n), n, l = 1, 2, . . . }

(we refer to [1] for conventions).
(a) Consider (H), (H̃) ∈ Φt

1(G). By Proposition 3.12, we have that nL = 0 in
(14) for (L) ∈ Φt

1(G).
(b) Using the argument similar to the one used in the proof of Proposition 3.12,

one can show that if H and K are subgroups of G with dim W (H) ≥ 1 and
dim W (K) = 2, then

(H) ∗ (K) = 0.

Indeed, assume that for some (L) ∈ Φ(G) one has that the coefficient nL in (H)∗(K)
is different from zero. Then (L) ≤ (K) which, by assumption and Lemma 2.1,
implies dim W (L) = 2. In particular,

(17) N(L) ⊃ SO(2)× S1 = T 2.

Consider the space
(

G

H
× G

K

)L

=
(

G

H

)L

×
(

G

K

)L

=
N(L, K)

K
× N(L,H)

H
.

Combining (17) with Proposition 2.9 implies that N(L,H) and N(L,K) contain T 2.
Therefore, X := N(L,H)/H and Y := N(L,K)/K admit T 2-actions. Since for x =
Hg ∈ X the isotropy T 2

x = g−1Hg ∩ T 2, thus dim T 2
x ≤ dim H ≤ 1. Similarly, for

y = Kg ∈ Y , dim T 2
y ≤ dim g−1Kg = 0, thus dim T 2

x + dim T 2
y < dim T 2 = 2.

Consequently, by Corollary 2.15, χ((X × Y )/T 2) = 0. If N(L) = T 2, then
χ((X × Y )/N(L)) = 0. Another possibility for N(L) may be N(L) = O(2) × S1.
Then one can use the fibre bundle (X × Y )/T 2 → (X × Y )/N(L) to conclude that
χ((X × Y )/N(L)) = 0 as well. If (L) is a maximal orbit type in X × Y , then the
last equality implies nL = 0. If (L) is not maximal, one can use the same induction
argument as in the proof of Proposition 3.12 to show that nL = 0.

As it was established in [1, Theorem 6.6], there is a natural A(Γ)-module
structure on At

1(G). Namely,

Proposition 3.14. Let Γ be a compact Lie group and G = Γ×S1. Then there
exists a “multiplication function” ◦ : A(Γ)×At

1(G) → At
1(G) defined on generators
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(R) ∈ Φ0(Γ) and (Kϕ,l) ∈ Φt
1(G) as follows:

(R) ◦ (Kϕ,l) =
∑

(L)

nL(Lϕ,l),

where the summation is taken over all subgroups L such that W (L) is finite and
L = γ−1Rγ ∩H for some γ ∈ Γ, and

nL =

∣∣∣∣∣
(

G

R× S1
× G

Kϕ,l

)

(Lϕ,l)

/G

∣∣∣∣∣ .

One can use Corollary 3.9 to establish a relation between the A(Γ)-module
structure on At

1(G) provided by Proposition 3.14 and the ring structure in U(G).
To this end, consider the natural projection π1 : U(G) → At

1(G) defined by

π1(H) =

{
(H) if (H) ∈ Φt

1(G),
0 otherwise.

Then one immediately obtains

Proposition 3.15. Let G be as in Proposition 3.14. If (H̃) ∈ Φ0(G) with
H̃ = K × S1 and (H) ∈ Φt

1(G), then

π1((H̃) ∗ (H)) = (K) ◦ (H).

Remark 3.16. Propositions 3.15 and 3.12 indicate that the multiplication table
in the Z-module decomposition U(G) = A(G) ⊕ At

1(G) ⊕ A∗(G) can be described
by the following table:

∗ A(G) ∼= A(Γ) At
1(G) A∗(G)

A(G) ∼= A(Γ) A(G)-multip + T∗ A(Γ)-module multip +T∗ T∗
At

1(G) A(Γ)-module multip +T∗ T∗ T∗
A∗(G) T∗ T∗ T∗

where T∗ stands for an element from A∗(G).

3.4. The Euler ring U(Tn). In this subsection we present the computations
for the Euler ring U(Tn), where Tn is an n-dimensional torus. The following
statement was observed by S. Rybicki.

Proposition 3.17. If (H), (K) ∈ Φ(Tn), and L = H ∩K, then

(H) ∗ (K) =

{
(L) if dim H + dim K − dim L = dim Tn,

0 otherwise.

Proof. Put G := Tn. Since every compact abelian connected Lie group is a
torus and H and K are normal in G, the groups G/H and G/K are tori. Take
L = H ∩K. Since G is abelian, L is the only one isotropy in (G/H ×G/K)L with
respect to the N(L) = G-action. Hence,

(H) ∗ (K) = χ
(
(G/H ×G/K)L /

G
)

(L).

Next, N(L,H) = G, therefore

(G/H ×G/K)L /
G = (G/H ×G/K)

/
G.
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Put M := (G/H×G/K)
/
G. Observe that M is a compact connected G-manifold of

precisely one orbit type (L). Thus, it is of dimension N := dim G/H + dim G/K −
dim G + dim L = dim G − dim K − dim H + dim L. If N := 0, then χ(M) = 1,
and if N > 0, then there is an action of a torus on M without G-fixed-points, so
χ(M) = 0 (cf. Lemma 2.12). ¤

Example 3.18. As an example, describe the Euler ring structure in U(T 2).
Obviously,

(18) (T 2) ∗ (K) = (K), for all (K) ∈ U(T 2).

Next, it follows from Proposition 3.17 that if (H) ∗ (K) is non-trivial for some
(H), (K) 6= (T 2), then dim H = dim K = 1 and K 6= H.

For simplicity, identify T 2 with SO(2)× S1. Then dim H = 1 for (H) ∈ Φ(T 2)
implies H = Zn×S1, n = 1, 2, . . . or H is twisted. The twisted 1-folded subgroups
of SO(2) × S1 are: SO(2)ϕm , ϕm : SO(2) → S1, ϕm(z) = zm, m = 0,±1,±2, . . . ,
(notice SO(2)ϕ0 = SO(2)); Zϕm

n , m = 0, 1, 2, . . . , n − 1 (in the case n is even and
m = n

2 , we write Zd
n instead of Z

ϕ n
2

n and put Zn instead of Zϕ0
n ). Taking into

account (18), the full multiplication table for U(T 2) is presented in Table 1.

(Zm × S1) (SO(2)× Zl1) (Zm × Zl1) (SO(2)ϕm,l1) (Zϕk,l1
m )

(Zn × S1) 0 (Zn × Zl1) 0 (Zϕm,l1
n ) 0

(SO(2)× Zl2) (Zm × Zl2) 0 0 (Zm × Zl) 0
(Zn × Zl2) 0 0 0 0 0

(SO(2)ϕn,l2) (Zϕn,l2
m ) (Zn × Zl) 0 (Zϕn,l

m−n) 0
(SO(2)ϕ−m,l2) (Zm × Zl2) (Zm × Zl) 0 (Zd,l

2m) 0
(Zϕk′ ,l2

n ) 0 0 0 0 0

Table 1. Multiplication Table for the U(T 2)

4. Euler Ring Homomorphism

4.1. General case. Let ψ : G′ → G be a homomorphism between compact
Lie groups. Then the formula g′x := ψ(g′)x defines a (left) G′-action on G (a
similar procedure can be applied to right actions). In particular, for any subgroup
H ⊂ G, the map ψ induces the G′-action on G/H with

(19) G′gH = ψ−1(gHg−1).

In this way, ψ induces a map Ψ : U(G) → U(G′) defined on generators by

(20) Ψ((H)) :=
∑

(H̃)∈Φ(G′)

χc((G/H)(H̃)/G′)(H̃).

Lemma 4.1. The map Ψ defined by (20) is the Euler ring homomorphism.

Proof. Combining formulae (6), (20) and Lemma 2.11 one obtains (cf. also
[4, p. 88])
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Ψ((H) ∗ (K)) = Ψ(
∑

(L)

χc((G/H ×G/K)(L)/G) · (L))

=
∑

(L)

χc((G/H ×G/K)(L)/G) ·Ψ(L)

=
∑

(L)

χc((G/H ×G/K)(L)/G)
∑

(L′)

χc((G/L)(L′)/G′) · (L′)

=
∑

(L′)

∑

(L)

χc((G/H ×G/K)(L)/G)χc((G/L)(L′)/G′) · (L′).

On the other hand,
Ψ(H) ∗Ψ(K)

=
X
(H′)

χc((G/H)(H′)/G′) · (H ′) ∗
X
(K′)

χc((G/K)(K′)/G′) · (K′)

=
X

(H′),(K′)

χc((G/H)(H′)/G′)χc((G/K)(K′)/G′) · (H ′) ∗ (K′)

=
X

(H′),(K′)

χc((G/H)(H′)/G′)χc((G/K)(K′)/G′) ·
X
(L′)

χc((G
′/H ′ ×G′/K′)(L′)/G′) · (L′)

=
X
(L′)

X
(H′),(K′)

χc((G/H)(H′)/G′)χc((G/K)(K′)/G′)χc((G
′/H ′ ×G′/K′)(L′)/G′) · (L′).

Put

nL′ :=
∑

(L)

χc((G/H ×G/K)(L)/G)χc((G/L)(L′)/G′),

mL′ :=
∑

(H′),(K′)

χc((G/H)(H′)/G′)χc((G/K)(K′)/G′)χc((G′/H ′ ×G′/K ′)(L′)/G′).

We need to show that for all G′-orbit types (L′) in G/H ×G/K

(21) nL′ = mL′ .

Consider uL′ := χc((G/H × G/K)(L′)/G′) = χc((G/H × G/K)L′/N(L′)). If
(L′) is a maximal orbit type, then

uL′ = χc(G/H ×G/K)L′/N(L′) = χc(G/H ×G/K)L′/N(L′)

=
∑

(L)

χc(G/H ×G/K)L′
(L)/N(L′),

where the union is taken over all (L)-orbit types occuring in (G/H × G/K)L′

(considered as an N(ψ(L′))-space) (cf. (19)). Using the fibre bundle G/L ↪→
(G/H×G/K)(L) → (G/H×G/K)(L)/G, we obtain that (G/H×G/K)L′

(L)/N(L′) →
(G/H ×G/K)(L)/G is a fibre bundle with the fibre (G/LL′)/N(L′). Thus,
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uL′ = χ((G/H ×G/K)L′/N(L′)) =
∑

(L)

χc((G/H ×G/K)L′
(L)/N(L′))

=
∑

(L)

χc((G/H ×G/K)(L)/G)χ((G/LL′)/N(L′))

=
∑

(L)

χc((G/H ×G/K)(L)/G)χc(((G/L)L′)/N(L′)) = nL′ .

In the case (L′) is not a maximal orbit type, assume, by induction, that ueL′ =
neL′ for all (L̃′) > (L′). Then

uL′ = χc((G/H ×G/K)L′/N(L′))

= χ((G/H ×G/K)L′/N(L′))−
∑

(eL′)>(L′)

χc((G/H ×G/K)eL′/NL̃′)

= χ((G/H ×G/K)L′/N(L′))−
∑

(eL′)>(L′)

ueL′
=

∑

(L)

χc((G/H ×G/K)(L)/G)χ((G/LL′)/N(L′))−
∑

(eL′)>(L′)

ueL′
=

∑

(eL′)≥(L′)

∑

(L)

χc((G/H ×G/K)(L)/G)χ((G/LeL′)/NL̃′)−
∑

(eL′)>(L′)

ueL′
=

∑

(eL′)≥(L′)

neL′ − ∑

(eL′)>(L′)

ueL′ = nL′ +
∑

(eL′)>(L′)

(neL′ − ueL′) = nL′

On the other hand, in the case (L′) is a maximal orbit type,

(G/H ×G/K)L′/N(L′) = (G/H ×G/K)L′/N(L′)

=
⋃

(H′),(K′)

((G/H)(H′) × (G/K)(K′))L′/N(L′),

where the union is taken over all (H ′)-orbit types (resp. (K ′)-orbit types) occur-
ing in (G/H)L′ (resp. in (G/K)L′), considered as an N(L′)-space. By using the
fibre bundles G′/H ′ ↪→ (G/H)(H′) → (G/H)(H′)/G′ and G′/K ′ ↪→ (G/K)(K′) →
(G/K)(K′)/G′, we obtain the product bundle G′/H ′ × G′/K ′ ↪→ (G/H)(H′) ×
(G/K)(K′) → (G/H)(H′)/G′ × (G/K)(K′)/G′. Therefore,

((G/H)(H′) × (G/K)(K′))L′/N(L′) → (G/H)(H′)/G′ × (G/K)(K′)/G′

is a fibre bundle with the fibre (G′/H ′ ×G′/K ′)L′/N(L′). Consequently,
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uL′ = χ((G/H ×G/K)L′/N(L′)) =
∑

(H′),(K′)

χ(((G/H)(H′) × (G/K)(K′))L′/N(L′))

=
∑

(H′),(K′)

χc((G/H)(H′)/G′ × (G/K)(K′)/G′)χ((G′/H ′ ×G′/K ′)L′/N(L′))

=
∑

(H′),(K′)

χc((G/H)(H′)/G′ × (G/K)(K′)/G′)χ((G′/H ′ ×G′/K ′)L′/N(L′))

=
∑

(H′),(K′)

χc((G/H)(H′)/G′)χc((G/K)(K′)/G′)χ((G′/H ′ ×G′/K ′)L′/N(L′))

= mL′ .

In the case (L′) is not a maximal orbit type, by applying induction over the orbit
types in the same way as above,

χc((G/H ×G/K)L′/N(L′)) = χ((G/H ×G/K)L′/N(L′))−
X

(eL′)>(L′)

ueL′
=

X
(H′),(K′)

�
χc((G/H)(H′)/G′)χc((G/K)(K′)/G′)

· χ((G′/H ′ ×G′/K′)L′/N(L′))
�− X

(eL′)>(L′)

ueL′
=

X
(eL′)≥(L)

meL′ − X
(eL′)>(L′)

ueL′ = mL′ +
X

(eL′)>(L)

(meL′ − ueL′)
= mL′ .

Therefore, the statement follows. ¤

Remark 4.2. The result stated in Lemma 4.1 was obtained in [12], with a proof
containing several omissions. We present here an alternative proof for completeness.

Example 4.3. Consider the simplest example of Euler ring homomorphism.
Namely, assume that G is a compact Lie group and denote by Z1 the trivial sub-
group {e} ⊂ G. The inclusion ψo : Z1 ↪→ G induces the Euler ring homomorphism

Ψo : U(G) → U(Z1) ' Z.

By (20), we have that for (H) ∈ Φ(G),

Ψo(H) = χ(G/H)(Z1).

It follows from Proposition 2.18,

(22) Ψo(H) =

{
0, if (H) is not of maximal rank,

|WG(Tn)|/|WH(Tn)| · (Z1), if (H) is of maximal rank.

4.2. Euler ring homomorphism Ψ : U(G) → U(Tn). Below we specify
the homomorphism ψ : G̃ → G to the case G̃ = Tn – a maximal torus in G and
ψ : Tn → G – the natural embedding. Then the homomorphism Ψ takes the form

(23) Ψ(H) =
∑

(K)∈Φ(T n)

χc((G/H)(K)/Tn) · (K),
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with K = H ′ ∩ Tn, H ′ ∈ (H). Observe, by the way, that since all the maximal
tori in a compact Lie group are conjugate (see, for instance, [5, p. 159]), the
homomorphism (23) is independent of a choice of a maximal torus in G.

We will show that Ψ can be used to find additional coefficients for the multi-
plication formulae in U(G). To compute Ψ, we start with the following

Proposition 4.4. Let Tn be a maximal torus in G and the homomorphism Ψ
is defined by (23). Then

Ψ(Tn) = |W (Tn)|(Tn) +
∑

(T ′)

nT ′(T ′),

where T ′ = gTng−1 ∩ Tn for some g ∈ G and (T ′) 6= (Tn).

Proof. By Proposition 2.18, the Weyl group W (Tn) is finite and the coefficient
of Ψ(Tn) corresponding to (Tn) can be computed as follows (cf. (23)):

χc((G/Tn)(T n)/Tn) = χ((G/Tn)(T
n)/Tn) = χ((G/Tn)T n

/Tn)

= χ

((
G

Tn

)T n)
= χ

(
N(Tn, Tn)

Tn

)
= |W (Tn)|.

¤
Proposition 4.4 tells us what is precisely the coefficient of Ψ(Tn) related to Tn.

In general, to compute a coefficient related to an arbitrary (K) in (23), one can use
the following

Proposition 4.5. (Recurrence Formula) Let Tn be a maximal torus in
G, ψ : Tn → G a natural embedding, and Ψ : U(G) → U(Tn) the induced homo-
morphism of the Euler rings. For (H) ∈ Φ(G), put

Ψ(H) =
∑

(K)

nK(K),

where (K)’s stand for the orbit types in the Tn-space G/H, i.e., K = H ′ ∩Tn with
H ′ = gHg−1 for some g ∈ G. Then, for K = H ′ ∩ Tn,

(24) nK = χ

(
N(K,H ′)

H ′ /Tn

)
−

∑

( eK)>(K)

n eK .

Proof. Put X := G/H. Then

X(K)/Tn =
⋃

( eK)≥(K)

X( eK)/Tn,

which (since Tn is abelian) implies

χ(X(K)/Tn) =
∑

( eK)≥(K)

χc(X( eK)/Tn) =
∑

( eK)≥(K)

χc(X eK/Tn).

Therefore,
χc(XK/Tn) = χ(XK/Tn)−

∑

( eK)>(K)

χc(X eK/Tn).

To complete the proof, it remains to observe that XK/Tn = N(H′∩T n,H′)
H′ /Tn (see

Lemma 2.3(i)) from which (24) follows directly. ¤
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Example 4.6. Consider the natural embedding ψ : T 2 := SO(2)×S1 → O(2)×
S1, which induces the homomorphism of Euler rings Ψ : U(O(2) × S1) → U(T 2).
Using Proposition 4.5 one can verify by direct computations that:

Ψ(O(2)× S1) = (SO(2)× S1), Ψ(SO(2)× S1) = 2(SO(2)× S1)

Ψ(Dn × S1) = (Zn × S1), Ψ(Zm × S1) = 2(Zm × S1)

Ψ(O(2)× Zl) = (SO(2)× Zl), Ψ(SO(2)× Zl) = 2(SO(2)× Zl)

Ψ(Dn × Zl) = (Zn × Zl), Ψ(Zm × Zl) = 2(Zm × Zl),

Ψ(O(2)−,l) = (SO(2)× Zl), Ψ(SO(2)ϕm,l) = (SO(2)ϕm,l) + (SO(2)ϕ−m,l)

Ψ(Dz,l
n ) = (Zn × Zl), Ψ(Dd,l

2k ) = (Zd,l
2k )

Ψ(Zϕm,l
n ) = (Zϕm,l

n ) + (Zϕ−m,l
n ), Ψ(Zd,l

2k ) = 2(Zd,l
2k )

where all the symbols used follow the convention established in [1].

We conclude this section with a brief explanation of how to use the homomor-
phism Ψ : U(G) → U(Tn) to compute the multiplication structure in U(G).

The knowledge of the Burnside Ring A(G) (cf. Lemma 3.4 (see also [12], [1])),
the module At

1(G) (cf. Propositions 3.14 and 3.15, Remark 3.16 (see also [1])),
Proposition 3.12 as well as some ad hoc computations of certain coefficients in
the multiplication table for U(G) (cf. Example 3.13) may provide some partial
information on the structure of U(G). Thus, taking some (H), (K) ∈ Φ(G), one
can express (H) ∗ (K) as follows

(25) (H) ∗ (K) =
∑

(L)

nL(L) +
∑

(L′)

xL′(L′),

where nL are “known” coefficients while xL′ are “unknown”. On the other hand,
Proposition 3.17 allows in principle to completely evaluate the ring U(Tn) (cf. Ex-
ample 3.18). Since we also know the homomorphism Ψ (cf. Propositions 4.4–4.5),
one has that

(26) Ψ((H)) ∗Ψ((K)) =
∑

(L′′)

nL′′(L′′) ∈ U(Tn),

where all the coefficients nL′′ are “known”. Applying the homomorphism Ψ to (25)
and comparing the coefficients of the obtained expression with those obtained in
(26) (related to the same conjugacy classes) leads to a linear system over Z from
which, in principle, it is possible to determine some unknown coefficients in (25).
However, it might happen that the number of equations in the above linear system
is less than the number of unknowns. Summing up, the more partial information
on U(G) we have, there is a better chance to compute the remaining coefficients.
In the next section, we will illustrate the described strategy by computing the
multiplication table for U(O(2)× S1).

5. Euler Ring Structure for U(O(2)× S1)

As an example, we apply the above obtained results to the group G := O(2)×
S1, and using the Euler ring homomorphism Ψ : U(O(2)×S1) → U(T 2) (based on
the known structure of the Euler ring U(T 2), see Table 1), we compute the Euler
ring structure for U(O(2)× S1).
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(H) (SO(2)× S1) (Dm × S1) (Zm × S1)

(SO(2)× S1) 2(SO(2)× S1) (Zm × S1) 2(Zm × S1)

(Dn × S1) (Zn × S1)

(
2(Dk × S1)− (Zk × S1)

k = gcd(m, n)

(
(Zk × S1)

k = gcd(m, n)

(Zn × S1) 2(Zn × S1)

(
(Zk × S1)

k = gcd(m, n)
0

(O(2)× Zl) (SO(2)× Zl) (Dm)× Zl) (Zm × Zl)
(SO(2)× Zl) 2(SO(2)× Zl) (Zm × Zl) 2(Zm × Zl)

(Dn × Zl) (Zn × Zl)

(
2(Dk × Zl)− (Zk × Zl),

k = gcd(n, m)
0

(Zn × Zl) 2(Zn × Zl) 0 0

(O(2)−,l) (SO(2)× Zl (Dz,l
m ) (Zm × Zl)

(SO(2)ϕk,l) 2(SO(2)ϕk,l) (Zϕk,l
m ) 2(Zϕk,l

m )

(Dz,l
n ) (Zn × Zl)

(
2(Dz,l

k )− (Zk × Zl),

k = gcd(m, n)
08><>:(Dd,l

2n)

2k = gcd(m, 2n),

2k - n
(Zd,l

2k ) 2(Dd,l
2k )− (Zd,l

2k ) 08><>:(Dd,l
2n)

k = gcd(m, 2n),

k|n
(Zd,l

2k ) (Dk × Zl) + (Dz,l
k )− (Zk × Zl) 0

(Zϕk,l
n ) 2(Zϕk,l

n ) 0 0

(Zd,l
2n) 2(Zd,l

2n) 0 0

Table 2. Multiplication Table for U(O(2)× S1)

Let us illustrate the computations of the ring structure of U(O(2) × S1) with
two examples.

Example 5.1.
(i) Consider, for example, two orbit types (Dm × S1), (Dz,l

n ) ∈ Φ(O(2) × S1).
The O(2)× S1-space

O(2)× S1

Dm × S1
× O(2)× S1

Dz,l
n

is composed of two orbit types: (Dz,l
k ) and (Zk × Zl), where k = gcd(n,m). Since

(see [1, Table 6.13])
(Dm × S1) ◦ (Dz,l

n ) = 2(Dz,l
k ),

we know that (cf. Proposition 3.15)

(27) (Dm × S1) ∗ (Dz,l
n ) = 2(Dz,l

k ) + x(Zk × Zl),

where x is an unknown integer. Using the ring homomorphism Ψ : U(O(2)×S1) →
U(T 2), we obtain (see Example 4.6 and Table 1)

Ψ
(
(Dm × S1) ∗ (Dz,l

n )
)

= Ψ((Dm × S1)) ∗Ψ((Dz,l
n ))

= (Zm × S1) ∗ (Zn × Zl) = 0.

On the other hand, by applying Ψ to (27),

Ψ
(
(Dm × S1) ∗ (Dz,l

n )
)

= 2Ψ(Dz,l
k ) + xΨ(Zk × Zl) = 2(Zk × Zl) + 2x(Zk × Zl),
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which implies that x = −1, so

(Dm × S1) ∗ (Dz,l
n ) = 2(Dz,l

k )− (Zk × Zl).

(ii) Similarly, take (Dm×S1) and (Dd,l
2n) ∈ Φ(O(2)×S1) and consider the orbit

types occurring in the O(2)× S1-space

O(2)× S1

Dm × S1
× O(2)× S1

Dd,l
2n

.

We have two cases: (a) (Dd,l
2k ) and (Zd,l

2k ), where 2k = gcd(m, 2n) and 2k - n; (b)
(Dz,l

k ), (Dk × Zl) and (Zk × Zl), where k = gcd(m, 2n) and k|n. Notice that

(Dm × S1) ◦ (Dd,l
2n) =

{
2(Dd,l

2k ) if 2k = gcd(m, 2n), 2k - n,

(Dz,l
k ) + (Dk × Zl) if k = gcd(m, 2n), k|n,

thus

(Dm×S1)∗(Dd,l
2n) =

{
2(Dd,l

2k ) + x(Zd,l
2k ) if 2k = gcd(m, 2n), 2k - n

(Dz,l
2k ) + (Dk × Zl) + x(Zk × Zl) if k = gcd(m, 2n), k|n.

Then, in the case 2k = gcd(m, 2n), 2k - n, by applying the homomorphism Ψ, we
obtain

0 = (Zm × S1) ∗ (Zd,l
2n) = Ψ

(
(Dm × S1) ∗ (Dd,l

2n)
)

= 2Ψ(Dd,l
2k ) + xΨ(Zd,l

2k ) = 2(Zd,l
2k ) + 2x(Zd,l

2k ),

which implies again x = −1. Similarly, in the case k = gcd(m, 2m), k|n, we have

0 = (Zm × S1) ∗ (Zd,l
2n) = Ψ

(
(Dm × S1) ∗ (Dd,l

2n)
)

= Ψ(Dz,l
k ) + Ψ(Dk × Zl) + xΨ(Zk × Zl)

= (Zk × Zl) + (Zk × Zl) + 2x(Zk × Zl),

which implies x = −1 (here k = gcd(m, 2n)).

The multiplication table for U(O(2) × S1) is mainly presented in Table 2. In
addition, we have the following non-zero products

(SO(2)ϕn,l1) ∗ (O(2)× Zl2) = 2(Zn × Zl),

(SO(2)ϕn,l1) ∗ (SO(2)× Zl2) = 2(Zn × Zl),

(SO(2)ϕn,l1) ∗ (O(2)−,l) = 2(Zn × Zl),

(SO(2)ϕn,l1) ∗ (SO(2)ϕm,l2) = (Zϕn,l
n−m) + (Zϕm,l

n+m), n > m

(SO(2)ϕn,l1) ∗ (SO(2)ϕ−n,l2) = 2(Zd,l
2n),

where l = gcd(l1, l2). All other products (except for those containing (O(2)× S1),
which is the unit element in U(O(2)× S1)) are zero.

6. Equivariant Gradient Degree

Let V be an orthogonal G-representation, Ω ⊂ V a bounded invariant open
subset and f : V → V an Ω-admissible (i.e., f has no zeros on ∂Ω) G-gradient map).
In this setting, K. Gȩba assigned to f the so-called G-gradient degree (denoted
∇G-deg (f, Ω)) taking its values in the Euler ring U(G) (see [17]; cf. Definitions 6.1,
6.2 and formulae (28), (29)).
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This degree contains a complete topological information on the symmetric prop-
erties of zeros of f . However, the computation of ∇G-deg (f, Ω) is a complicated
task, in general. In this section, we establish several formulae useful for effective
computations of the equivariant gradient degree.

6.1. Construction of G-gradient degree and basic properties. Let us
recall the construction of the G-gradient degree (cf. [17]) and present some of its
properties.

Definition 6.1.
(i) A map f : V → V is called G-gradient if there exists a G-invariant C1-

function ϕ : V → R such that f = ∇ϕ. Similarly, one can define a G-gradient
homotopy.

(ii) Denote by τM the tangent bundle of M . Take x ∈ V and put H := Gx,
Wx := τxV(H)ªτxG(x). The orbit G(x) is called a regular zero orbit of f if f(x) = 0
and Kf(x) := Df(x)|Wx

is an isomorphism. Also, define the index of the regular
zero orbit G(x) by i(G(x)) := sign det Kf(x).

(iii) For an open G-invariant subset U of V(H) such that U ⊂ V(H), and a small
ε > 0, put

N (U, ε) := {y ∈ V : y = x + v, x ∈ U, v ⊥ τxV(H), ‖v‖ < ε},
and call it a tubular neighborhood of type (H). A G-gradient map f : V → V ,
f := ∇ϕ, is called (H)-normal, if there exists a tubular neighborhood N (U, ε) of
type (H) such that f−1(0) ∩ Ω(H) ⊂ N (U, ε) and for y ∈ N (U, ε), y = x + v,
x ∈ U, v ⊥ τxV(H),

ϕ(y) = ϕ(x) +
1
2
‖v‖2.

The following notion of ∇G-generic map plays an essential role in the construc-
tion of the G-gradient degree presented in [17].

Definition 6.2. A G-gradient Ω-admissible map f is called ∇G-generic in Ω
if there exists an open G-invariant subset Ωo ⊂ Ω such that (i) f |Ωo is of class C1;
(ii) f−1(0) ∩ Ω ⊂ Ωo; (iii) f−1(0) ∩ Ωo is composed of regular zero orbits; (iv) for
each (H) with f−1(0)∩Ω(H) 6= ∅, there exists a tubular neighborhood N (U, ε) such
that f is (H)-normal on N (U, ε).

As it was shown in [17], any G-gradient Ω-admissible map is G-gradiently
homotopic (by an Ω-admissible homotopy) to a map which is ∇G-generic in Ω.
Define a G-gradient degree for a G-gradient admissible map f by

(28) ∇G-deg (f, Ω) := ∇G-deg (fo,Ω) =
∑

(H)∈Φ(G)

nH · (H),

where fo is the ∇G-generic approximation of f and

(29) nH :=
∑

(Gxi
)=(H)

i(G(xi)),

with G(xi)’s being isolated orbits of type (H) in f−1
o (0) ∩ Ω.

We refer to [17] for the verification that ∇G-deg (f, Ω) is well-defined and sat-
isfies the standard properties expected from a degree: Existence, Additivity, Homo-
topy (G-Gradient) and Suspension (cf. [1]). In addition,
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(Multiplicativity) Let V and W be two orthogonal G-representations, f : V → V

(resp. f̃ : W → W ) a G-gradient Ω-admissible (resp. Ω̃-admissible) map, where
Ω ⊂ V and Ω̃ ⊂ W . Then

∇G-deg (f × f̃ , Ω× Ω̃) = ∇G-deg (f, Ω) ∗ ∇G-deg (f̃ , Ω̃),

where the multiplication ‘∗’ is taken in the Euler ring U(G).

(Functoriality) Let V be an orthogonal G-representation, f : V → V a G-
gradient Ω-admissible map, and ψ : Go → G a homomorphism of Lie groups. Then
ψ induces a Go-action on V such that f is an Ω-admissible Go-gradient map, and
the following equality holds

(30) Ψ[∇G-deg (f, Ω)] = ∇Go
-deg(f, Ω),

where Ψ : U(G) → U(Go) is the homomorphism of Euler rings induced by ψ.

Remark 6.3. Suppose that V := Rn is a Euclidean space and f : V → V
an Ω-admissible gradient map. Then one can consider V to be the representation
of the trivial group Z1. It is easy to notice that in such a case ∇Z1-deg(f, Ω) =
no(Z1) ∈ U(Z1) ' Z is exactly the Brouwer degree deg(f, Ω) = no.

Example 6.4. Let V be an orthogonal G-representation, f : V → V a G-
gradient Ω-admissible map. Consider the trivial homomorphism ψo : Z1 → G (see
Example 4.3). Then, by the Functoriality property,

Ψo[∇G-deg (f, Ω)] = deg(f, Ω),

where deg(f, Ω) stands for the usual Brouwer degree. Put

∇G-deg (f, Ω) =
∑

(H)

nH(H).

Then, by applying (22), we obtain that

(31) deg(f, Ω) =
∑

(H)∈Φm(G)

nH |WG(Tn)|/|WH(Tn)|,

where Φm(G) := {(H) ∈ Φ(G) : H of maximal rank} and Tn is a maximal torus
in G.

Remark 6.5.
(i) Formula (31) is nicely compatible with the corresponding result from [7],

where the case of an arbitrary equivariant continuous f (in general, non-gradient)
was considered (see also [33]; for the case of maps equivariant with respect to two
different actions, see [26]).

(ii) In a standard way, the notion of G-gradient degree can be extended to
compact G-equivariant gradient vector fields on Hilbert representations. In what
follows, we will use the same notation for this extended degree.

Remark 6.6. Suppose that G = S1 and consider an Ω-admissible G-gradient
map f : V → V . Then

∇S1-deg(f, Ω) = nG(S1) +
∞∑

k=1

nk(Zk)

where S1 is the only subgroup of maximal rank. Therefore, by (31), deg(f, Ω) =
nG. Thus, it is clear that the Brouwer degree ignores all the coefficients nk,
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k = 1, 2, . . . , containing the information about the solutions x ∈ Ω to f(x) = 0,
with the isotropies Gx 6= S1. For variational problems related to finding periodic
solutions to an autonomous differential equation, these isotropies correspond ex-
actly to non-constant periodic solutions. This justifies a commonly ‘well-known’
fact that the Leray-Schauder degree is “blind” to non-constant periodic solutions
in such systems.

We complete this subsection with the following

Lemma 6.7. Let V be an orthogonal G-representation, Ω ⊂ V an open bounded
G-invariant set and f : V → V a G-gradient Ω-admissible map. Then, for every
orbit type (L) in Ω, the map fL := f |V L : V L → V L is an ΩL-admissible W (L)-
equivariant gradient map. Moreover, if

∇G-deg (f, Ω) =
X

(K)∈Φ(G)

nK(K), and ∇W (L)-deg (fL, ΩL) =
X

(H)∈Φ(W (L))

mH(H),

then

(32) nL = mZ1 ,

where Z1 := {e} and “e” stands for the identity element in W (L).

Proof. By the homotopy property of G-gradient degree, without loss of gen-
erality, one can assume that f is ∇G-generic in Ω. Therefore, fL is ∇G-generic in
ΩL, and formula (32) follows from the construction of G-gradient degree. ¤

6.2. Equivariant gradient degree of linear maps. In several cases
(important from the application viewpoint), using the standard linearization tech-
niques, one can reduce the computation of ∇G-deg (f, Ω) to ∇G-deg (A,B), where
A : V → V is a G-equivariant linear symmetric isomorphism and B is the unit ball
in V . By suspension and the homotopy property,

∇G-deg (A,B) = ∇G-deg (−Id ,B−),

where B− stands for the unit ball in the negative eigenspace E− of A, i.e., we con-
sider the negative spectrum σ−(A) of A and put E− :=

⊕
µ∈σ−(A) E(µ), where E(µ)

is the eigenspace corresponding to µ. Consider the complete list of all irreducible
G-representations Pi, i = 0, 1, . . . , and let

V = V0 ⊕ V1 ⊕ · · · ⊕ Vr

be the G-isotypical decomposition of V , where the isotypical component Vi is
modeled on the irreducible G-representation Pi, i = 0, 1, . . . , r. Since for every
µ ∈ σ−(A) the eigenspace E(µ) is G-invariant,

E(µ) = E0(µ)⊕ E1(µ)⊕ · · · ⊕ Er(µ),

where Ei(µ) := E(µ) ∩ Vi, i = 0, 1, . . . , r. Put

(33) mi(µ) = dim Ei(µ)/dimPi, i = 0, 1, 2, . . . , r.

The number mi(µ) is called a Pi-multiplicity of the eigenvalue µ. By applying the
multiplicativity property, we obtain

∇G-deg (−Id ,B−) =
∏

µ∈σ−(A)

r∏

i=0

∇G-deg (−Id , Bi)mi(µ),

where Bi stands for the unit ball in Pi.
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The operator −Id on irreducible G-representations plays an important role in
computations of the equivariant gradient degree for linear maps, which motivates
the following

Definition 6.8. For an irreducible G-representation Pi, put

(34) DegPi
:= ∇G-deg (−Id , Bi),

and call DegPi
the Pi-basic gradient degree (or simply basic gradient degree).

Consequently, we obtain the following computational formula

(35) ∇G-deg (A,B) =
∏

µ∈σ−(A)

r∏

i=0

(DegPi
)mi(µ),

where DegPi
is defined by (34) and mi(µ) is defined by (33).

Observe, however, that for arbitrary G, the computation of DegPi
is still dif-

ficult. In this section, we develop a method for the computation of DegPi
in the

case G = Γ × S1, where Γ is a compact Lie group. The main ingredients of the
method are:

(i) for each (L) ∈ Φ(G), the nL-coefficient of DegPi
can be computed via the

W (L)-gradient degree of the restriction to V L (cf. Lemma 6.7);
(ii) if (L) ∈ Φt

1(G), then the computation of the related W (L)-gradient degree
can be done using a canonical passage to the so-called orthogonal degree (cf. for-
mulae (39)–(45));

(iii) the computation of basic gradient degree related to the maximal torus-
action usually is simple, therefore the remaining (non-twisted) coefficients nL can
be computed using the homomorphism Ψ : U(G) → U(Tn) and the information
obtained for the twisted orbit types.

6.3. Orthogonal degree for one-dimensional bi-orientable compact
Lie groups. In this subsection, G stands for a one-dimensional compact Lie group
which is bi-orientable (i.e., admitting an orientation which is invariant with respect
to both left and right translations), V denotes an orthogonal G-representation and
Ω ⊂ V stands for an open bounded invariant subset.

It turns out that one can associate to any G-gradient Ω-admissible map
f : V → V (in fact, more generally, to any orthogonal map (see Definition 6.9)) a
G-equivariant map f̃ : R⊕ V → V in such a way that the primary degree of f̃ (see
[1] for details) is intimately connected to ∇G-deg (f, Ω). Observe that in the case
G = Γ× S1 with Γ finite, a similar construction was suggested in [29, 1] (see also
[30]). Since our exposition is parallel to [29, 1], we only briefly sketch the main
points starting with the following

Definition 6.9. A G-equivariant map f : V → V is called G-orthogonal on Ω,
if f is continuous and for all v ∈ Ω, the vector f(v) is orthogonal to the orbit G(v)
at v. Similarly, one can define the notion of a G-orthogonal homotopy on Ω.

It is easy to see that any G-gradient map is orthogonal, however (see [1, Exam-
ple 8.4]), one can easily construct an orthogonal map which is not G-gradient(∗).

(∗) Observe that autonomous systems of ODEs admitting the first integral lead to S1-
orthogonal maps. An S1-equivariant degree with rational values was constructed for such sys-
tems by Dancer and Toland (cf. [10]). One can easily show that the values of this degree can be
obtained from the corresponding S1-orthogonal degree.
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To associate with an orthogonal map a G-equivariant map (and the correspond-
ing primary degree) some preliminaries (related to G-orbits) are needed.

Take the maximal torus T 1 of G (=the connected component of e ∈ G), choose
an orientation on T 1 invariant with respect to left and right translations and identify
T 1 with S1. The chosen orientation on T 1 = S1 can be extended invariantly on the
whole group G. We assume the orientation to be fixed throughout this subsection.

Next, take a vector v ∈ V and define the diffeomorphism

(36) µv : G/Gv → G(v), µv(gGv) := gv.

Take the decomposition

(37) V = V S1 ⊕ V ′, V ′ := (V S1
)⊥.

If v ∈ V S1
, then dim Gx = 1 so that the orbit G(x) ∼= G/Gx is finite and, therefore,

admits the “natural” orientation.
If v 6∈ V S1

, then Gv is a finite subgroup of G, and by bi-orientability of G, both
(left and right) actions of Gv preserve the fixed orientation of G. Therefore, G/Gv

has a natural orientation, induced from G. Consequently, the orientation obtained
by (36) (again by bi-orientability of Gu) does not depend on a choice of the point
v from the orbit G(v) (cf. [1], Remark 2.43).

Summing up, in both cases (v ∈ V S1
and v 6∈ V S1

), G(v) admits a “natural”
orientation, although exhibits different algebraic and topological properties. Hence,
given an orthogonal map f , the orbits of f−1(0) belonging to V S1

and those be-
longing to V \ V S1

contribute in equivariant homotopy properties of f in different
ways, and one needs to “separate” these contributions. To this end (as well as to
make the construction of the “orthogonal degree” compatible with the suspension
and other properties of the primary degree), we use the following concept.

Definition 6.10. Let f : V → V be G-orthogonal on Ω. Then f is called
S1-normal on Ω if

(38) ∃δ>0 ∀x∈ΩS1 ∀u⊥V S1 ‖u‖ < δ =⇒ f(x + u) = f(x) + u.

Similarly, one can define the notion of G-orthogonal S1-normal homotopy on Ω.

Literally following the proof of Theorem 8.7 from [1], one can establish

Proposition 6.11. Let f : V → V be a G-orthogonal Ω-admissible map. Then
there exists an Ω-admissible G-orthogonal S1-normal (on Ω) map fo : V → V
which is G-orthogonally homotopic to f (on Ω). In addition, a similar result for
G-orthogonal S1-normal homotopies is also true.

We are now in a position to define an orthogonal degree. Consider v ∈ V and
the map ϕv : G → G(v) given by

(39) ϕv(g) = gv, g ∈ G.

Clearly, ϕv is smooth and Dϕv(1) : τ1(G) = τ1(S1) → τv(G(v)). Since the total
space of the tangent bundle to S1 can be written as

τ(S1) = {(z, γ) ∈ C× S1 : z ⊥ γ} = {(itγ, γ) ∈ C× S1 : t ∈ R},
the vector

(40) τ(v) := Dϕv(1)(i) = lim
t→0

1
t

[
eitv − v

]
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is tangent to the orbit G(v) (here, eitv stands for the result of the action of eit ∈ S1

on v ∈ V ). In the case v /∈ V S1
, we have τ(v) 6= 0.

Next, take a G-orthogonal Ω-admissible map f : V → V . By Proposition 6.11,
there exists a map fo : V → V which is G-orthogonal S1-normal on Ω and G-
orthogonally homotopic to f . Consider decomposition (37). Since fo is S1-normal,
there exists δ > 0 such that for all x ∈ Ω ∩ V S1

and u ∈ V ′,

fo(x + u) = fo(x) + u, provided ‖u‖ < δ.

Take the set

(41) Uδ := {(t, v) ∈ (−1, 1)× Ω : v = x + u, x ∈ V S1
, u ∈ V ′, ‖u‖ > δ},

and define f̃o : R⊕ V → V by

(42) f̃o(t, v) := fo(v) + tτ(v), (t, v) ∈ R⊕ V,

where τ(v) is given by (40). It is clear that f̃o is G-equivariant and Uδ-admissible.
Set f̄o := fo|V S1 . Obviously, f̄o : V S1 → V S1

is G-equivariant (in fact, G/S1-
equivariant) and ΩS1

-admissible.
Put

A1(G) := Z[Φ1(G)], Φ+
1 (G) := {(H) ∈ Φ1(G) : W (H) is bi-orientable},

A+
1 (G) := Z[Φ+

1 (G)].

Define the orthogonal G-equivariant degree G-Deg o(f, Ω) of the map f to be
an element of A0(G)⊕A+

1 (G) ⊂ A0(G)⊕A1(G) =: U(G) given by

(43) G-Deg o(f, Ω) :=
(
Deg0

G(f, Ω), Deg1
G(f, Ω)

)
,

where Deg0
G(f, Ω) ∈ A0(G) is

(44) Deg0
G(f, Ω) := G-deg(f̄o, ΩS1

),

and Deg1
G(f, Ω) ∈ A1(G) is

(45) Deg1
G(f, Ω) := G-Deg (f̃o, Uδ).

Here (and everywhere below) “G-deg” stands for the G-equivariant degree without
free parameter while “G-Deg ” denotes the primary G-equivariant degree (cf. [1]).

One can show (cf. [1]) that formula (43) is independent of a choice of a G-
orthogonal S1-normal approximation fo. Moreover, the orthogonal degree defined
by (43) satisfies all the properties described in Theorem 8.8 from [1].

We complete this subsection with the following result connecting the orthogonal
and G-gradient degree in the case G is a compact one-dimensional bi-orientable Lie
group.

Proposition 6.12. Let f : V → V be a G-gradient Ω-admissible map. Then

∇G-deg (f, Ω) =
(
Deg0

G(f, Ω),−Deg1
G(f, Ω)

)
,

where Deg0
G(f, Ω) ∈ A0(G) is defined by (44) and Deg1

G(f, Ω) ∈ A+
1 (G) is defined

by (45).

Proof. The proof of this proposition follows the same scheme as the one of
Theorem 4.3.2 from [29] and, therefore, is omitted here. ¤
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6.4. Computations for Γ × S1-gradient degree. In this subsection, we
assume G = Γ × S1, where Γ is an arbitrary compact Lie group. Let V be an
orthogonal G-representation and Ω ⊂ V a bounded open invariant subset. Our
goal is to establish (by means of the results and constructions from Subsections 6.1
and 6.3) some formulae useful for the computations of G-gradient degree. As an
example, basic gradient degrees for G = O(2)×S1 are computed (cf. Definition 6.8
and formula (35)).

Take a G-gradient Ω-admissible map f : V → V . For every orbit type (L) ∈
Φt

1(G) in Ω, associate to ΩL and fL : V L → V L the set

(46) UL
δ := {(t, v) ∈ (−1, 1)× ΩL : v = x + u, x ∈ (V L)S1

, u ∈ V ′, ‖u‖ > δ},
and the one-parameter map f̃L

o : R⊕ V L → V L given by

(47) f̃L
o (t, v) := fL

o (v) + tτ(v), (t, v) ∈ R⊕ V L,

where fL
o is an S1-normal approximation of fL on ΩL (cf. Definition 6.10) and τ(v)

is the tangent vector to the orbit W (L)(v) given by formula (40) with V replaced
with V L. It is clear that f̃L

o is W (L)-equivariant and UL
δ -admissible. Combining

Lemma 6.7 and Proposition 6.12 with properties of twisted orbit types yields

Proposition 6.13. Let f : V → V be a G-gradient Ω-admissible map, (L) ∈
Φt

1(G) an orbit type in Ω and f̃L
o : R ⊕ V L → V L (resp. Uδ) be defined by (47)

(resp. (46)). Assume

∇G-deg (f, Ω) =
∑

(K)∈Φ(G)

nK(K),

and
−W (L)-Deg (f̃L

o , UL
δ ) =

∑

(H)∈Φ+
1 (W (L))

mH(H).

Then
nL = mZ1 ,

where Z1 := {e} and “e” stands for the identity element in W (L).

Next, we apply Proposition 6.13 to the case when f is the linear symmetric
isomorphism and Ω is the unit ball in V . In view of formula (35), it is enough to
consider basic gradient degrees (cf. (34)).

Following [1], we differ in {Pk}, k = 0, 1, 2, . . . , between two sorts of irreducible
Γ× S1-representations:

(i) those, where S1 acts trivially (denoted by Vi, i ≥ 0,) which can be identified
with irreducible Γ-representations;

(ii) those, where S1 acts non-trivially defined as follows: if {Uj}, j ≥ 0, is the
complete list of all complex irreducible Γ-representations, then, with each Uj and
l = 1, 2, . . . , associate the real irreducible G-representation Vj,l with the G-action
given by

(48) (γ, z)w = zl · (γw), (γ, z) ∈ Γ× S1, w ∈ Uj .

In the case (i), put

(49) degVi
:= G-deg(−Id , Bi),
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where Bi is the unit ball in Vi. In the case (ii), consider the set O ⊂ R⊕Vj,l given
by

(50) O =
{

(t, v) :
1
2

< ‖v‖ < 2, −1 < t < 1
}

,

and define b : O → Vj,l by

(51) b(t, v) = (1− ‖v‖+ it) · v, (t, v) ∈ O.

Put

(52) degVj,l
:= G-Deg t(b,O) ∈ At

1(G),

where “G-Deg t” stands for the so-called twisted degree (see [1]). We refer to [1],
where effective computational formulae for both degVi

and degVj,l
(as well as many

concrete examples) are presented.

Theorem 6.14. Let Γ be a compact Lie group, G = Γ× S1 and Vi (resp. Vj,l)
an irreducible orthogonal G-representation with the trivial S1-action (resp. the G-
action defined by (48)). Then

(a) Deg Vi
= degVi

+T∗;
(b) Deg Vj,l

= (G)− degVj,l
+T∗,

where degVi
(resp. degVj,l

) is given by (49) (resp. by (50)–(52)) and T∗ ∈ A∗(G)
(see Subsection 3.3).

Proof. (a) This formula follows directly from the construction of G-gradient
degree. Indeed, assume

Deg Vi
:= ∇G-deg(−Id , Bi) =

∑

(L)∈Φ(G)

nL (L) and degVi
=

∑

(K)∈Φ0(G)

mK (K).

Since every ∇G-generic approximation of −Id is regular normal (cf. [1]), one can
easily observe that for (K) ∈ Φ0(G), one has nK = mK .

(b) This statement is a consequence of Proposition 6.13. Indeed, let
(53)
degVj,l

=
∑

(R)∈Φt
1(G)

mR (R) and Deg Vj,l
:= ∇G-deg(−Id , Bj,l) =

∑

(L)∈Φ(G)

nL (L),

and put V := Vj,l. Since for (L) ∈ Φ0(G), V(L) = {0} if (L) = (G) and V(L) = ∅
otherwise,

(54) nL =

{
1 if (L) = (G),
0 for all (L) ∈ Φ0(G) such that (L) 6= (G).

To compute the nL-coefficients of Deg Vj,l
for (L) ∈ Φt

1(G), observe that the map
−Id is not S1-normal on V . Take the function ηδ : R→ R given by

(55) ηδ(ρ) :=





0 if ρ < δ,
ρ−δ

δ if δ ≤ ρ ≤ 2δ,

1 if ρ > 2δ,

where δ > 0 is chosen to be sufficiently small, and correct −Id to the S1-normal
map fo : V → V by

fo(v) := ηδ(‖v‖)(−v) + (1− ηδ(‖v‖))v = 1− 2ηδ(‖v‖)v, v ∈ V.
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Next, define the map f̃o : R⊕ V → V by formula (42). Combining a linear change
of variables on V with homotopy and excision property of the twisted degree yields

(56) degVj,l
= G-Deg t(f̃o, Uδ),

where Uδ is defined by (41).
Take (L) ∈ Φt

1(G) and put f̃L
o := f̃o|V L . Obviously, the primary degree

(57) W (L)-Deg (f̃L
o , UL

δ ) =
∑

(K)∈Φ+
1 (W (L))

m̂K (K)

is correctly defined (cf. (46)). Then (cf. (53) and (56)), Proposition 4.4 from [1]
yields

(58) mL = m̂Z1 ,

where Z1 := {e} and “e” stands for the identity element in W (L).
On the other hand, consider the W (L)-equivariant map −Id |V L . By identifying

S1 with the connected component of e in W (L), the above construction utilizing
(55) can be applied to the map −Id |V L , i.e., put

fL
∗ (v) := ηδ(‖v‖)(−v) + (1− ηδ(‖v‖))v = 1− 2ηδ(‖v‖)v, v ∈ V L,

and define f̃L
∗ : R⊕ V L → V L by

f̃L
∗ (t, v) := fL

∗ (v) + tτ(v) (v ∈ V L).

Then f̃L
o and f̃L

∗ are homotopic by a UL
δ -admissible homotopy and

W (L)-Deg (f̃L
o , UL

δ ) = W (L)-Deg (f̃L
∗ , UL

δ ).

Therefore, by Proposition 6.13, m̂Z1 = −nL and (see (58))

(59) mL = −nL.

By combining (54) and (59), the conclusion follows. ¤

Example 6.15. As the simplest example illustrating Theorem 6.14, we compute
the gradient basic degrees in the case of n-dimensional torus G = Tn (n ≥ 1). Take
an irreducible Tn-representation and denote it by Vo. If Vo is the trivial (one-
dimensional) representation, then Theorem 6.14(a) together with formula (5.15)
from [1] imply Deg Vo

= −(Tn). If Vo is non-trivial, then dimVo = 2 and there are
precisely two orbit types (Tn) and (H) = (Zk × Tn−1) in Vo (for some subgroup
Zk depending on Vo). Combining Theorem 6.14(b) and the Functoriality property
with formula (4.20) from [1] yields

Deg Vo
= (Tn)− (H).

Remark 6.16. The computations of G-gradient basic degrees can be effec-
tively completed by using the Functoriality property of the gradient degree for
the homomorphism Tn ↪→ G (i.e., the induced by it Euler ring homomorphism
Ψ : U(G) → U(Tn)), formula (35), Theorem 6.14, and the known basic gradient
degrees for irreducible Tn-representations, which are used to establish relations be-
tween the unknown coefficients and the values of the gradient basic degrees in a
form of simple linear equations.
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Example 6.17. Our next computations are related to basic gradient degrees
for G = O(2)× S1.

Following [1, Subsection 5.7.6], denote by V0 ' R the trivial representation of
O(2), by V 1

2
' R the one-dimensional irreducible real representation, where O(2)

acts on R through the homomorphism O(2) → O(2)/SO(2) ' Z2, and by Vm ' C,
m = 1, 2, . . . , the two-dimensional irreducible real representation of O(2), where
the action of O(2) is given by

(i) uz = um · z, for u ∈ SO(2) and z ∈ Vm (here “·” stands for complex
multiplication);

(ii) κ · z = z̄.
It is well-known that the above list of irreducible O(2)-representations is complete.
Observe that all the orbit types occurring in irreducible O(2)-representations belong
to Φ0(O(2)). Therefore, combining Theorem 6.14(a) with the results for degVi

obtained in [1, Subsection 5.7.6], yield:

Deg V0
= −(O(2)), Deg V 1

2

= (O(2))− (SO(2))

Deg Vi
= (O(2))− (Di), i = 1, 2, 3, . . . .

Observe that all the irreducible representations of O(2) are of real type. There-
fore, the irreducible representations of O(2) × S1 can be obtained by taking com-
plexifications of the representations Vi and applying formula (48) (see [1, Subsec-
tion 5.7.6], for details). We need to compute Deg Vj,l

, j = 0, 1
2 , 1, 2, 3, . . . , l ∈ N.

Clearly, V0,l (resp. V 1
2 ,l), contains precisely two orbit types: (O(2) × S1) and

(O(2)×Zl) (resp. (O(2)×S1) and (O(2)−,l). Combining Theorem 6.14(b) with the
corresponding results from [1, Subsection 5.7.6], yields

Deg V0,l
= (O(2)× S1)− (O(2)× Zl), Deg V 1

2 ,l
= (O(2)× S1)− (O(2)−,l).

Next, each Vj,l, j = 1, 2, . . . , l ∈ N, contains the following orbit types:
(O(2)× S1) ∈ Φ0(G); (SO(2)ϕj ,l), (Dd2j ,l) ∈ Φt

1(G); (Zd2j ,l) ∈ A∗(G). Combining
Theorem 6.14(b) with the corresponding results from [1, Subsection 5.7.6], yields

Deg Vj,l
= (O(2)× S1)− (SO(2)ϕj ,l)− (Dd,l

2j ) + k · (Zd,l
2j ).

To compute k, we use the ring homomorphism Ψ : U(O(2)× S1) → U(T 2).
The irreducible T 2-representations (T 2 = SO(2) × S1) are obtained from the

complex SO(2)-irreducible representations Uj , j = 0,±1,±2, . . . , by defining the
S1-action on Uj by l-folding. In order to avoid confusion, we denote these T 2-
irreducible representations by V(j,l), j = 0,±1,±2, . . . , l = 1, 2, . . . . It is easy to
compute the T 2-basic gradient degrees for these representations, namely,

DegV(j,l)
:= ∇T 2-deg(−Id , B(j,l)) = (T 2)− (SO(2)ϕj ,l),

where B(j,l) stands for the unit ball in V(j,l). Observe that Vj,l, considered as a
T 2-representation, is equivalent to the sum V(j,l) ⊕ V(−j,l) and (cf. Example 4.6)

Ψ(O(2)× S1) = (SO(2)× S1), Ψ(Dd,l
2j ) = (Zd,l

2j ),

Ψ(SO(2)ϕj ,l) = (SO(2)ϕj ,l) + (SO(2)ϕ−j ,l), Ψ(Zd,l
2j ) = 2(Zd,l

2j ).

By applying the Functoriality property and (35),

Ψ(DegVj,l
) = DegV(j,l)

∗DegV(−j,l)
,
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where

(60) Ψ(DegVj,l
) = (T 2)− (SO(2)ϕj ,l)− (SO(2)ϕ−j ,l)− (Zd,l

2j ) + 2k(Zd,l
2j )

and

(61) DegV(j,l)
∗DegV(−j,l)

= (T 2)− (SO(2)ϕj ,l)− (SO(2)ϕ−j ,l) + (Zd,l
2j ).

By combining (60) with (61), we obtain that k = 1, thus

(62) Deg Vj,l
= (O(2)× S1)− (SO(2)ϕj ,l)− (Dd,l

2j ) + (Zd,l
2j ).

7. Application: Periodic-Dirichlet Mixed Boundary Value Problem for
an Elliptic Asymptotically Linear Equation with O(2)-Symmetries

7.1. Statement of the problem. Suppose that O ⊂ R2 ' C is the unit disc
and take Ω := (0, 2π)×O. Consider the following elliptic periodic-Dirichlet BVP

(63)





−∂2u
∂t2 −4xu(t, x) = f(u(t, x)), (t, x) ∈ Ω,

u(t, x) = 0 a.e. for x ∈ ∂O, t ∈ (0, 2π),
u(0, x) = u(2π, x) a.e. for x ∈ O,
∂u
∂t (0, x) = ∂u

∂t (2π, x) a.e. for x ∈ O,

where (t, x) ∈ (0, 2π)×O, u ∈ H2(Ω;R). A solution to (63), which is not constant
with respect to the t-variable, will be called a non-stationary periodic solution
to (63).

We assume that f : R→ R is a C1-function satisfying the conditions:
(B1) f(0) = 0 and f ′(0) = a > 0;
(B2) f is asymptotically linear at infinity, i.e., there exists b ∈ R such that

(64) lim
|t|→∞

f(t)− bt

t
= 0;

(B3) there are 2 < p < 6 and α, β > 0 such that

(65) |f ′(t)| ≤ α + β|t|p−2, for all t ∈ R.

Put F (t) :=
∫ t

0
f(τ)dτ . Notice that under the assumptions (B2) and (B3), there

exist αi, βi > 0, i = 0, 1, 2, such that the function F : R→ R satisfies the conditions

|F (i)(t)| ≤ αi + βi|t|p−i, t ∈ R.(66)

Indeed, since f is asymptotically linear (cf. (B2)), we have that for some α′1 and
β′1 > 0, |F ′(t)| = |f(t)| ≤ α′1 + β′1|t| for all t ∈ R; thus clearly there exist α1 and β1

such that |f(t)| ≤ α1 + β1|t|p−1. On the other hand, there exist α0, β0 > 0 such
that

|F (t)| =
∣∣∣∣
∫ t

0

f(τ)dτ

∣∣∣∣ ≤ α′1|t|+
1
2
β′1|t|2 ≤ α0 + β0|t|p.

Consider the Laplace operator −4x on O with the Dirichlet boundary condi-
tion. Then the operator −4x has the spectrum

σ(−4x) := {µk,j : µk,j = z2
k,j , k = 1, 2, . . . , j = 0, 1, 2, . . . , Jj(zk,j) = 0},
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where zk,j denotes the k-th zero of the j-th Bessel function Jj . The corresponding
to µj,k eigenfunctions (expressed in polar coordinates) are

for j = 0, ϕk,0(r) := J0(
√

µk,0r),

for j > 0, ϕc
k,j(r, θ) := Jj(

√
µk,jr) cos(jθ), ϕs

k,j(r, θ) := Jj(
√

µk,jr) sin(jθ).

The space span{ϕc
k,j , ϕ

s
k,j} is equivalent to the j-th irreducible O(2)-representation

Vj (j > 0), and the space span{ϕk,0} is equivalent to the trivial irreducible O(2)-
representation V0. We need additional assumptions:

(B4) a, b /∈ {l2 + µk,l, µk,j ∈ σ(−4x), l = 0, 1, 2, . . . }.
(B5) The system

(67)

{
−4xu = f(u)
u|∂O = 0

has a unique solution u ≡ 0.

Remark 7.1. Condition (B1) assures the existence of the (stationary) zero
solution and (B2) reflects the asymptotically linear character of the problem in
question. Condition (B3) is the standard one required to assure that the associated
functional (68) on the Sobolev space is twice differentiable (see conditions (66),
cf. [28]). The non-resonance condition (B4) is imposed to simplify the computations
(see also [16, 15], where degenerate systems are discussed). Finally, condition (B5)
prevents the interaction between stationary and non-stationary periodic solutions,
allowing the equivariant gradient degree to detect the existence of non-stationary
periodic solutions. This condition is discussed in detail in Subsection 7.3.

7.2. Setting in functional spaces. By using the standard identification
R/2π ' S1, assume that Ω := S1 × O with ∂Ω = S1 × S1. Put W := H1

0 (Ω) :=
{u ∈ H1(Ω;R) : u|∂Ω ≡ 0}, which is a Hilbert G-representation for G = O(2)×S1,
with the inner product

〈u, v〉 :=
∫

Ω

∇u(y) • ∇v(y) dy.

Associate to the problem (63) the functional Ψ : W → R given by

(68) Ψ(u) :=
1
2

∫

Ω

|∇u(y)|2dy − J(u),

where J : W → R is given by

J(u) :=
∫

Ω

F (u(y))dy.

By conditions (66), J is of class C2 and for h ∈ W ,

DJ(u)h =
∫

Ω

f(u(y))h(y)dy.

Thus, Ψ is also C2-differentiable with respect to u and

DΨ(u)h =
∫

Ω

∇u(y)∇h(y)dy −DJ(u)h, h ∈ W.
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Consequently, by the standard argument, if DΨ(u) ≡ 0, then u is a solution to (63).
In particular,

∇Ψ(u) = 0 ⇐⇒ u is a solution to (63),
where

(69) ∇Ψ(u) = u−∇J(u).

Consider the following operators:

j : H1
0 (Ω) ↪→ Lp(Ω), j(u) = u,

Nf : Lp(Ω) → L
p

p−1 (Ω), Nf (u)(y) = f(u(y)),

where j is a compact operator. Then

∇J(u) = R ◦Nf ◦ j(u),

where R : L
p

p−1 (Ω) → H1
0 (Ω) is defined by R := ι ◦ τ with ι :

(
H1

0 (Ω)
)∗ →

H1
0 (Ω) which is the isomorphism given by the Riesz representation theorem, and

τ : L
p

p−1 (Ω) → (
H1

0 (Ω)
)∗ the (continuous) map defined by

τ(ψ)(v) :=
∫

Ω

ψ(x)v(x)dx, ψ ∈ L
p

p−1 (Ω), v ∈ H1
0 (Ω).

In other words, R is the inverse of the Laplacian −4. Therefore (cf. (69)),

F(u) := ∇Ψ(u) = u−R ◦Nf ◦ j(u), u ∈ W,

is a completely continuous O(2) × S1-equivariant gradient field on W , and the
problem (63) is equivalent to the equation

(70) F(u) = 0.

7.3. Example of a function f satisfying (B1)–(B5). It is very easy to
construct a function f satisfying (B1)-(B4). In order for f to satisfy (B5), we will
“play” with the constants a and b (see (B1) and (B2)). To this end, observe that
a functional setting similar to the one presented in Subsection 7.2, can also be
established for the boundary problem (67). Namely, we can reformulate it as the
equation

(71) Fx(u) = 0, u ∈ H1
0 (O),

where
Fx(u) := ∇Ψx(u) = u−Rx ◦Nf ◦ j(u),

with Rx the inverse of the Laplacian −4x. Suppose that
(B5′) 0 < a < b and [a, b] ∩ σ(−4x) = ∅.

Denote simply by µm, m = 1, 2, . . . , the elements of σ(−4x), µ1 < µ2 < . . . .
Assume, in addition, that

(B5′′) η := sup{|f ′(t)| : t ∈ R} <
1
2

inf
{

µmµ1

|µm − b| : m = 1, 2, . . .

}
.

Clearly, condition (B2) implies b ≤ η.

Proposition 7.2. Let f be a C1-function satisfying conditions (B1)–(B4),
(B5′) and (B5′′). Then the boundary value problem (67) has a unique solution
u ≡ 0.
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Proof. We claim that the derivative DFx(u) : H1
0 (O) → H1

0 (O) is an isomor-
phism for all u ∈ H1

0 (O), and DFx(u) can be connected by a continuous path to
DFx(∞) := Id − bRx ◦ j in GLc(H1

0 (O)). To this end, observe that

DFx(u)(v) = v − bRxj(v)−Rx[Nf ′(u)j(v)− bj(v)],

and put
A := Id − bRx ◦ j, B := Rx[Nf ′(u) · j − b · j].

Since |f ′(t)| is bounded, the Nemitsky operator Nf : L2(O) → L2(O) is Gâteaux
differentiable (cf. [25]) and its (Gâteaux) derivative is DNf (u)(v) = f ′(u) · v. Con-
sider the embedding j′ : H1

0 (O) ↪→ L2(O) and the inverse Laplacian R′x : L2(O) →
H1

0 (O). Then ‖j′‖ = 1√
µ1

, ‖R′x‖ = 1√
µ1

and ‖(f ′(u)− b) · Id ‖L2 ≤ 2η. Therefore,

‖Bv‖ ≤ ‖R′x‖‖(f ′(u)− b) · Id ‖L2‖j′‖‖v‖ ≤ 2η‖R′x‖‖j′‖‖v‖ =
2η

µ1
‖v‖.

Since (by (B5′)) A is invertible with ‖A−1‖ = sup{ |µm−b|
µm

: m = 1, 2, . . . } and, by
(B5′′),

‖A−1B‖ ≤ ‖A−1‖‖B‖ ≤ sup
{ |µm − b|

µm
: m = 1, 2, . . .

}
2η

µ1
< 1,

the linear operator

A− λB = A(Id − λA−1B), for all λ ∈ [0, 1]

is invertible. Consequently, DFx(u) = A−B is also invertible and by the homotopy
property of the Leray-Schauder degree, we obtain

(72) deg(DFx(u), B1(0)) = deg(A,B1(0)), for all u ∈ H1
0 (O),

where Br(0) stands for the open ball at 0 of radius r. Therefore, every solution
u ∈ H1

0 (O) to the problem (71) is a regular point of Fx. Consequently, each solution
to (71) is isolated. Since DFx(∞) : H1

0 (O) → H1
0 (O) is an isomorphism, there can

only be finitely many solutions to the equation (71), and for every solution u, the
Leray-Schauder degree deg(Fx, Bu) is well-defined. On an isolating neighborhood
Bu of u, by using the linearization of Fx on Bu and (72),

deg(Fx, Bu) = deg(DFx(0), B1(0)) = deg(DFx(∞), B1(0)) 6= 0.

However, this implies (by additivity property of the Leray-Schauder degree) that
there can be no solution u to (71) (and consequently to (67)) other than u ≡ 0. ¤

Remark 7.3. By choosing a and b to satisfy (B5′) and (B5′′), one can easily
verify that the function

f(u) = bu− (b− a)
u

1 + u2
, u ∈ R

satisfies conditions (B1)–(B5).

7.4. Equivariant invariant and the isotypical decomposition of W . By
conditions (B1), (B2) and (B4), there exist R, ε > 0 such that u = 0 is the only
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solution to equation (70) in Bε(0) ⊂ W , and (70) has no solutions u ∈ W such that
‖u‖ ≥ R. Define the equivariant invariant ω for the problem (63) by

(73) ω := deg0−deg∞,

where

deg0 := ∇O(2)×S1-deg (F, Bε(0)), deg∞ := ∇O(2)×S1 -deg (F, BR(0)).

The spectrum σ of −4 on Ω (with the boundary conditions listed in (63)) is

σ = {λk,j,l : λk,j,l := l2 + µk,j , µk,j ∈ σ(−4x), l = 0, 1, 2, . . . }.
Denote by Ek,j,l the eigenspace of −4 in W corresponding to the eigenvalue λk,j,l.
Observe that for j, l > 0,

Ek,j,l = span{cos lt · ϕc
k,l(x), cos lt · ϕs

k,j(x), sin lt · ϕc
k,j(x), sin lt · ϕs

k,j(x)},
and Ek,j,l is equivalent to the irreducible orthogonal O(2)×S1-representation Vj,l.
If j = 0 and l > 0, then

Ek,0,l = span{cos lt · ϕk,0(x), sin lt · ϕk,0(x)},
and it is equivalent to the irreducible orthogonal O(2)× S1-representation V0,l. If
j > 0 and l = 0,

Ek,j,0 = span{ϕc
k,j(x), ϕs

k,j(x)},
is equivalent to the j-th irreducible O(2)-representation Vj . For j = l = 0, we have
that

Ek,0,0 = span{ϕk,0(x)},
is equivalent to the trivial O(2)× S1-representation V0,0. The O(2)× S1-isotypical
components of the space W are

Wj,l :=
⊕

k

Ek,j,l, j, l = 0, 1, 2, . . .

7.5. Computation of the equivariant invariant. Assume, in addition to
conditions (B1)–(B5) that

(B6) 0 < a < b and there exists (ko, jo, lo), lo ≥ 1, such that

σ(−4) ∩ (a, b) = {λko,jo,lo}.
Put p = 0 or ∞ and denote by σ−p the negative spectrum of DF(p), i.e.,

σ−p := {λ ∈ σ(DF(p)) : λ < 0}.
By assumption (B6),

(74) σ−∞ = σ−0 ∪ {λo}, λo := λko,jo,lo

The linear operator DF(p) is G-homotopic (in the class of gradient maps) to

Ap = (−Id )× Id : Ep ⊕ E⊥
p → Ep ⊕ E⊥

p , Ep :=
⊕

λk,j,l∈σ−p

Ek,j,l,

and consequently (cf. (35) and (62)),

degp = ∇G-deg (Ap, B1(0)) =
∏

λk,j,l∈σ−p

∇G-deg (−Id , B1(Ek,j,l))

=
∏

λk,j,l∈σ−p

DegVj,l
.
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Therefore (by (74)),

ω = deg0− deg∞ =
∏

λk,j,l∈σ−0

DegVj,l
∗

(
(G)−DegVjo,lo

)

=
∏

λk,j,l∈σ−0

DegVj,l
∗

(
(SO(2)ϕjo ,lo) + (Dd,lo

2jo
)− (Zd,lo

2jo
)
)
.

Notice that the element a :=
∏

λk,j,l∈σ−0
DegVj,l

is invertible (cf. [19]), therefore
ω 6= 0. Moreover, by using the multiplication table for U(O(2) × S1) and the list
of basic gradient degrees for irreducible O(2) × S1-representations, one can easily
conclude that

a ∗ (SO(2)ϕjo ,lo) = (SO(2)ϕjo ,lo) + x∗, and a ∗ (Dd,lo
2jo

) = (Dd,lo
2jo

) + y∗,

where x∗ and y∗ denote the terms in U(G), which do not contain (SO(2)ϕjo ,lo) and
(Dd,lo

2jo
).

Consequently, we can formulate the following existence result.

Theorem 7.4. Under the assumptions (B1)–(B6), equation (63) has at least
two O(2) × S1-orbits of non-stationary periodic solutions with the orbit types at
least (SO(2)ϕjo ,lo) and (Dd,lo

2jo
), respectively.

Let us point out that the periodic solutions corresponding to the orbit types
(SO(2)j) are commonly called rotating waves or spiral vortices while those with
the orbit type (Dd

2j) are called ribbons or stationary waves. Therefore, it seems
appropriate to call the periodic solutions with the orbit type (SO(2)ϕjo ,lo) the lo-
folded rotating waves or spiral vortices and those with the orbit type (Dd,lo

2jo
) the

lo-folded ribbons or stationary waves.
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H. Poincaré Anal. Non Linéaire 2 (1985), 329–370.

[9] E.N. Dancer, K. Geba and S. Rybicki, Classification of homotopy classes of equivariant
gradient maps, Fundamenta Mathematicae 185 (2005), 1-18,

[10] E.N. Dancer and J.F. Toland, Degree theory for orbits of rescribed period of flows with a first
integral, Proc. London Math. Soc. 60 (1990), 549-580.

[11] T. tom Dieck, Transformation Groups and Representation Theory, Lecture Notes in Math.
766, Sringer, Berlin, 1979.



PERIODIC SOLUTIONS TO O(2)-SYMMETRIC VARIATIONAL PROBLEMS 39

[12] T. tom Dieck, Transformation Groups, Walter de Gruyter, Berlin, 1987.
[13] B. Fiedler, Global Bifurcation of Periodic Solutions with Symmetry, Lecture Notes in Math.

1309, Springer-Verlag, Berlin-Heidelberg-New York-London-Paris-Tokyo, 1988.
[14] A. Floer, Morse theory for Lagrangian intersections, J. Differential Geom. 28 (1988), 513–547.
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