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Abstract

In this paper we apply the equivariant degree method to a Hopf bifurcation problem in a symmetric system of delayed functional
parabolic partial differential equations. The equivariant spectral properties of the linearized system are instantaneously translated,
with the assistance of a specially developed Maple� package, into a bifurcation invariant providing symmetric classification of the
bifurcating branches. This procedure is applied to a symmetric Hutchinson model of an n species ecosystem in a heterogeneous
environment. Computational results, indicating the existence, multiplicity and symmetric classification of the solutions, are listed
in Tables 1–6.
© 2006 Published by Elsevier Ltd.
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1. Introduction

One can easily observe that almost every design (e.g. in architecture, networks, electronical devices) has certain
symmetries, which are expressions of our tendencies pursuing elegance and balance. But on the other hand, symmetries
in dynamical systems cause a multitude of various types of solutions exhibiting complicated symmetric properties. The
problem of “measuring” such impact of symmetries on the complexity of the dynamics constitutes a difficult task.

The main goal of the present paper is to propose the equivariant degree method as a tool providing a full topological
picture of local symmetric bifurcation phenomena. To be more specific, we study the existence, multiplicity and
symmetric properties of non-trivial periodic solutions, appearing as a result of a local Hopf bifurcation, in a symmetric
system of delayed functional parabolic partial differential equations (FPDEs) (see system (14)). Such systems arise
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naturally in population ecology, for example, they can be derived from the Hutchinson’s model (also known as the
delayed logistic equation),

u̇(t) = �u(t)

(
1 − u(t − �)

K

)
.

Especially, we are interested in investigating an ecosystem composed of n self-inhibiting interacting species (cf. [13])
in a spatially heterogeneous environment. It is also closely related to the differential-difference equation

f ′(x) = −�f (x − 1){1 + f (x)}
(see (44)–(45)), which has other interesting applications in number theory and control systems (cf. [16]).

The advantage of the equivariant degree method is based on the fact that it provides a rich topological information
about bifurcating branches and their symmetries, which can be easily computed only using the information extracted
from the characteristic equation and the symmetric properties of the linearized system. To this end, a computational
package of Maple�4 routines was developed for several types of finite symmetry groups, which takes in the equivariant
data and outputs the values of bifurcation invariants, in terms of a sequence of integers indexed by subgroups of the
whole symmetry group.

Let us briefly explain how to “decode” the information provided by our computational results (see Tables 1–6).
Consider a Hutchinson system modelling a population composed of 4 species (see (47)) with the dihedral group
D4 performing as its (spatial) symmetry group (see Section 5.2, Condition (A1) for precise formulations). Recall
that the dihedral group D4 consists of 4 rotations of the square: 1, r, r2, r3 and 4 reflections: �, �r , �r2, �r3. Let,
further, F be a “reasonable” space of R4-valued periodic functions, where periodic solutions to system (47) “live”
(cf. Section 4.3). The D4-action on R4 combined with the natural S1-action (induced by the shift of the t-argument)
gives rise to the G = D4 × S1-representation in F. Given a periodic solution u ∈ F, we will call a subgroup H :=
{h ∈ G : hu = u} a symmetry of u. It turns out that:

(i) using the isotypical decomposition of the D4-representation on R4 and spectral properties of the linearization of
(47), one can recognize isolated centers to (47) together with “limit frequencies” of the corresponding periodic
solutions bifurcating from the centers;

(ii) given an isolated center (�0, 0) and the corresponding limit frequency �0, one can associate with them the (local)
bifurcation invariant�(�0, �0, 0) containing a full topological symmetric information on bifurcating solutions (see
Section 5, where more “refined” notations are used).

Possible values of �(�0, �0, 0) in the considered case are listed in Table 2. As an example, consider one of these
values:

�(�0) := (−1)�+1
(
(Zt

4) − (Dd
2 ) + (D̃d

2 ) − (Z−
2 ) + (Dz

1) − (D̃z
1) + (D1) − (D̃1)

)
. (1)

The subgroups of D4 × S1 appearing in (1) are given by

Zt
4 = {(1, 1), (r, i), (r2, −1), (r3, −i)},

Dd
2 = {(1, 1), (r2, −1), (�, 1), (�r2, −1)},

D̃d
2 = {(1, 1), (r2, −1), (�r, 1), (�r3, −1)},

Dz
1 = {(1, 1), (�, −1)}, D1 = {(1, 1), (�, 1)},

D̃z
1 = {(1, 1), (�r, −1)}, D̃1 = {(1, 1), (�r, 1)},

Z−
2 = {(1, 1), (r2, −1)}.

4 The package is available at http://krawcewicz.net/degree.

http://krawcewicz.net/degree.
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These subgroups represent the minimal symmetries of the bifurcating branches. Moreover, for each of the subgroups
Zt

4, Dd
2 and D̃d

2 , we predict the existence of at least 2 branches having the above groups as their precise symmetries
(cf. Definition 4.4 and Remark 4.5, where an “exclusive” role of the groups in question is explained). Observe that
the advanced knowledge of symmetric properties of (periodic) solutions can be very useful in numerical analysis and
simulation of the model, since it provides a theoretical basis for prediction and confirmation of the existence and
multiplicities of solutions with special properties.

The paper is organized as follows. In Section 2, we summarize several important ingredients of the equivariant degree
method which were presented in details in [2–4]. In Section 3, we discuss a general functional setting for an abstract
equivariant coincidence problem related to a parameterized family of unbounded Fredholm operators. This setting is
specified in Section 4, where the symmetric Hopf bifurcation phenomenon is discussed for a system of functional
parabolic PDEs. A system of n coupled Hutchinson’s equations, modelling an interactive community ecosystem, is
studied in Section 5. In particular, for this system, we carry out a complete analysis of equivariant spectral properties
of the linearized system and clarify the important elements of the computational scheme. Moreover (see Section 6),
for several geometrically natural group symmetries, we use the Maple� package to establish quantitative results on the
associated local bifurcation invariants, minimal number of bifurcating branches of solutions and their symmetries.

2. Preliminaries

2.1. Definitions and notations

Hereafter, G=	×S1, where 	 is a finite group and S1 is the unit circle group. For a closed subgroup H of G, denote
by (H) the conjugacy class of H in G, N(H)—the normalizer of H in G, W(H) = N(H)/H—the Weyl group of H in
G and 
(G)—the set of all conjugacy classes in G (which admits a natural partial order: (K)�(H) if K is conjugate
to a subgroup of H).

Let V be an orthogonal (or isometric Banach) G-representation. For x ∈ V , denote by Gx = {g ∈ G : gx = x} the
isotropy group of x and call the conjugacy class (Gx) the orbit type of x in V. For a G-invariant subset X ⊂ V , put
XH := {x ∈ X : Gx ⊃ H } and call it the H-fixed-point subspace.

Let � be an open bounded G-invariant subset of R ⊕ V , where we will always assume the trivial G-action on R,
and let f : R ⊕ V → V be a continuous equivariant map in �, meaning f (gx) = gf (x) for all g ∈ G and x ∈ �.
The f is called �-admissible if f (x) 	= 0 for all x ∈ ��, and such a pair (f, �) will be called an admissible pair.
Similarly, a homotopy h : [0, 1] × R ⊕ V → V is called an �-admissible G-equivariant homotopy, if ht := h(t, ·) is
an �-admissible G-equivariant map for all t ∈ [0, 1].

2.2. Primary equivariant degree with one free parameter

Consider the set


1(G) := {(H) ∈ 
(G) : dim W(H) = 1}.
It is easy to check that the elements of 
1(G) are the conjugacy classes (H) of the so-called �-twisted l-folded subgroups
of 	 × S1 with l = 1, 2, 3, . . ., i.e.

H = K�,l := {(
, z) ∈ K × S1 : �(
) = zl},
where K is a subgroup of 	 and � : K → S1 is a homomorphism. In the case of a 1-folded �-twisted subgroup K�,1,
we will denote it by K� and call it simply a twisted subgroup of 	 × S1.

Denote by

A1(G) := Z[
1(G)]
the free Z-module generated by 
1(G), i.e. any element � ∈ A1(G) can be written as a finite sum � = nH1(H1) +
nH2(H2) + · · · + nHr (Hr), nHi

∈ Z.



Z. Balanov et al. / Nonlinear Analysis: Real World Applications 9 (2008) 154–182 157

The Z-module A1(G) is a range of values of the so-called primary equivariant degree G-Deg defined on admissible
pairs (f, �) (� ⊂ R ⊕ V with V being an orthogonal G-representation) and satisfying all the standard properties
required from a “reasonable” degree theory. Moreover, the primary equivariant degree theory admits an axiomatic
approach (see [2–4] for details). Being limited in size, we list below only those properties which are directly referred
to in the present paper.

• Existence: If G-Deg (f, �) =∑(H)nH (H) is such that nH0 	= 0 for some (H0) ∈ 
1(G), then there exists x0 ∈ �
with f (x0) = 0 and Gx0 ⊃ H0.

• Homotopy: Suppose that h : [0, 1] × R ⊕ V → V is an �-admissible G-equivariant homotopy. Then,
G-Deg (ht , �) = constant, where ht := h(t, ·).

• Multiplicativity: Let A(	) denote the Burnside ring of 	 (see [18,25]). There exists a multiplication · : A(	) ×
A1(G) → A1(G) such that for an orthogonal 	-representation V0 and a continuous equivariant map f0 : V0 → V0,
one has

G-Deg (f × f0, � × B) = 	-Deg (f0,B) · G-Deg (f, �),

where B ⊂ V0 is the unit ball, f0(x) 	= 0 for x ∈ �B and 	-Deg stands for the equivariant degree without free
parameters (see [18] for details).

Remark 2.1. (i) The so-called basic maps b : R⊕V → V, associated with orthogonal irreducible G-representations
V (with non-trivial S1-action), are the simplest homotopically non-trivial equivariant maps for which G-Deg can be
easily evaluated (cf. [1–5]). To be more specific, define O := {(t, v) ∈ R ⊕ V : −1 < t < 1, ‖v‖ < 2} and b : O → V
by

b(t, v) := (1 − ‖v‖ + it) · v, (t, v) ∈ R ⊕ V,

and call the primary degree

degV := G-Deg (b,O)

the basic degree associated with the irreducible G-representation V. The same notion can be applied to the case
without free parameter. Namely, we call degVo

:= 	-Deg (−Id,B) (where B ⊂ Vo is the unit ball) the basic degree
associated with the irreducible 	-representation Vo.

(ii) In a standard way, the concept of the primary equivariant degree can be extended to admissible pairs (f, �) with
� ⊂ R ⊕ W and f : R ⊕ W → W being a completely continuous vector field on the Banach G-representation R ⊕ W

(cf. [15,18]). We will use for it the same symbol.

3. Symmetric bifurcation in parameterized equivariant coincidence problems

The systems of our interest fall into a category of the so-called equivariant coincidence problems. Therefore, we start
with a brief discussion of an abstract functional setting for the equivariant coincidence problem.

It should be pointed out that the abstract setting and language chosen in this paper go beyond the scope of the
applications we are dealing with. This is motivated by the following reasons:

(a) Setting: In applied problems there are many kinds of (symmetric functional) parabolic differential equations
considered, mainly from the computational point of view, with a little attention given to the proper settings in functional
spaces (parameterized systems with fixed boundary, free boundary problems, reaction–diffusion with delay or evolving
boundary conditions, to mention a few). To be able to treat potential applications in the same way as it is done in this
paper, we need to enclose them in one setting, which is discussed in Section 4.3, and to describe a general procedure of
converting parameterized coincidence problems into fixed-point problems (for which the equivariant degree methods
are directly applied). Moreover, although in this paper we only study the local symmetric bifurcation phenomenon, our
setting is well-prepared for studying the global symmetric bifurcations as well.

(b) Language: As a matter of fact, the linearization of a parameterized parabolic system usually amounts to a family
of linear unbounded Fredholm operators depending continuously on a point in a parameter space, say, P. In order
to better search this continuity (as well as other properties which are important for the applicability of the degree
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Fig. 1. Commutative diagram related to the graph of L.

methods), it is convenient to consider the family in question as a (locally trivial) vector bundle over P (with a vector
fiber being the graph of the linear operator involved). It should be pointed out that the vector bundle structure is used
to study the properties of the linear operators rather than topological properties of the involved spaces. Therefore, the
reader should not be confused when we use the “bundle language” even in the case when P is contractible (meaning
that the corresponding fiber bundle is trivial). In fact, the triviality of the related vector bundle can be translated as the
equivalence of the corresponding parameterized system of parabolic equations to a system with a single elliptic operator
(which is independent of the parameter), that provides no practical hints whatsoever for a treatment of a concrete system.
On the other hand, (i) in the context relevant to our discussion, vector bundles appear in a very elementary connotation:
one can think of them as vector spaces changing continuously; (ii) the use of a vector bundle structure is enough to
construct the so-called equivariant resolvent for the considered family (a crucial step in converting the coincidence
problem to a fixed-point problem), which, in turn, is much more simple than any other attempt to find a concrete
trivialization of the bundle.

3.1. Functional setting for equivariant coincidence problems

Let E and F be real isometric Banach G-representations, where G = 	 × S1 with 	 being a finite group. Denote
by OpG := OpG(E ⊕ F) the set of all closed G-equivariant linear operators from E to F. Clearly, for L ∈ OpG, the
graph Gr(L) is a closed invariant subspace of E ⊕ F, where we assume that G acts diagonally on E ⊕ F. The situation
is illustrated in Fig. 1, where �1 : E ⊕ F → E (resp. �2 : E ⊕ F → F) are (continuous) equivariant projections on E

(resp. F).
The space Dom(L) can be equipped with the graph norm ‖ · ‖L defined by

‖v‖L := ‖v‖E + ‖Lv‖F, (2)

where ‖ · ‖E (resp. ‖ · ‖F) denotes the norm in E (resp. in F), i.e. the norm ‖v‖L is simply the norm of �−1
1 (v) in E ⊕ F.

Notice that the space Dom(L) equipped with ‖ ·‖L is a Banach G-representation, and in what follows it will be denoted
by EL. It is clear that L : EL → F is a continuous equivariant operator.

Equip OpG with the metric

dist (L1, L2) = d(Gr(L1), Gr(L2)), L1, L2 ∈ OpG,

where d(·, ·) is the Hausdorff metric on Sub(E ⊕ F) (see [18]). Let FG
0 be the set of all closed G-equivariant Fredholm

operators of index zero from E to F. It can be verified that FG
0 is an open subset of OpG.

Remark and Notation 3.1. Consider a Fredholm operator L : Dom (L) ⊂ E → F of index zero. A finite-dimensional
map K : E → F is called a (finite-dimensional) resolvent of L if the map L+K : Dom (L) → F is one-to-one. We will
denote by FR (L) the set of all resolvents of L. Since the operator L : EL → F is continuous and L + K : EL → F is
continuous and one-to-one, by the open mapping theorem, and the fact that a compact linear perturbation of a (bounded)
Fredholm operator does not change its index, we obtain that L + K is surjective and (L + K)−1 : F → EL is bounded.
Consequently, by applying the natural inclusion j : EL ↪→ E , the inverse (L + K)−1 : F → E is a bounded operator.
Moreover, if the natural inclusion is a compact operator, so is the inverse (L + K)−1.
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Throughout this section, we assume that P is a topological space equipped with the trivial G-action, and
{L�}�∈P ⊂ OpG is a continuous family of equivariant Fredholm operators of index zero, parameterized by P, i.e.
L� ∈ FG

0 for each � ∈ P, and the mapping � : P → OpG defined by �(�) = L� for � ∈ P, is continuous. Define
� : � → P as follows:

� := {(�, u, y) ∈ P × (E ⊕ F) : u ∈ Dom(L�), y = L�u},
�(�, u, y) = � for (�, u, y) ∈ �.

It has been shown in [10] that � : � → P determines a locally trivial G-vector bundle.
Let

E := {(�, u) ∈ P × E : u ∈ EL�} (3)

and let p1 : � → E be given by p1(�, u, y) = (�, u), for (�, u, y) ∈ �. Since, for every � ∈ P, the projection
pr1 : Gr(L�) → E� := EL� is an equivariant isometry, the mapping p1 : � → E gives us the natural identification of
the G-bundles � and E (we use the same symbol for a bundle and its total space).

Now, we can define the vector bundle morphism L : E → F, where F is viewed as a bundle over a one-point space,
by

L(�, u) = L�u, (�, u) ∈ E. (4)

Definition 3.2. Let X be a subset of P and let L be given by (3) and (4). An equivariant resolvent of L over X is a
G-vector bundle morphism K : X × E → F such that

(i) for every � ∈ X, K� : E → F is a finite-dimensional linear operator;
(ii) for every � ∈ X, L� + K� : E� → F is an isomorphism.

Denote by RG(L, X) the set of all equivariant resolvents of L over X.

Remark 3.3. (i) In contrast to the non-equivariant case, given �0 ∈ P, one may have RG(L, {�0}) = ∅.
(ii) Also, in general it might happen that RG(L, X) = ∅, while RG(L, {�0}) 	= ∅ for each �0 ∈ X.

In the light of Remark 3.3, the following result turns out to be useful.

Lemma 3.4 (cf. [17]). Let X ⊂ P be a compact contractible set containing a point �∗ such that RG(L, {�∗}) 	= ∅.
Then, RG(L, X) 	= ∅.

Assume the following condition to be satisfied:

(H1) There exists a compact subset X ⊂ P such that RG(L, X) 	= ∅.

Fix K ∈ RG(L, X) and put

R� := (L� + K�)
−1 (5)

(cf. Definition 3.2(ii)).
Given a completely continuous G-equivariant map F : E → F, consider the associated parameterized equivariant

coincidence problem (cf. [17]):

L�u = F(�, u), (�, u) ∈ E|X×Dom(L�). (6)

Using the resolvent K one can reduce (6) to the following fixed-point problem:

y = F(�, y), (�, y) ∈ X × F, (7)
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where

F(�, y) = F(�, R�y) + K�(R�y), (�, y) ∈ X × F.

By assumption (H1), X is compact, therefore, F is completely continuous.

3.2. Bifurcation invariant for the equivariant coincidence problem

Throughout this subsection, E, F stand for Banach G-representations, P = R × R+ and {L�}�∈P is a continuous
family of G-equivariant Fredholm G-equivariant operators of index zero satisfying condition (H1). Fix K ∈ RG(L, X)

with R�, � ∈ P, defined by (5).
Keeping in mind the setting relevant to the functional parabolic parameterized system discussed in the next section,

we will specify F from (6), assuming:
(H2) (i) There exists another real isometric Banach G-representation Ê and an injective G-vector bundle morphism

J : E → P × Ê such that J� := J (�, ·) is a compact linear operator for every � ∈ P.
(ii) There exists an equivariant C1-map F̂ : P × Ê → F.
Put

F := F̂ ◦ J . (8)

Obviously, F is G-equivariant and completely continuous.
Consider now the coincidence problem (6) with F defined by (8) (see also condition (H2)). Assume, in addition,

that there exists a two-dimensional submanifold M ⊂ P × EG (thought of as a “bifurcation surface”) satisfying the
following two conditions:

(H3) The M is a subset of the solution set to (6).
(H4) if (�0, u0) ∈ M , then there exist open neighborhoods U�0 of �0 in P and Uu0 of u0 in EG, and a C1-map

� : U�0 → EG such that

M ∩ (U�0 × Uu0) = Gr(�).

Bearing in mind condition (H3), call every (�, u) ∈ M a trivial solution to (6). All the other solutions to (6) are
called non-trivial. A point (�0, u0) ∈ M is called a bifurcation point if in each neighborhood of (�0, u0) there exists a
non-trivial solution to (6). In what follows we study the existence and multiplicity of branches of non-trivial solutions
bifurcating from M, and classify their symmetries.

Remark 3.5. (i) It is clear that (�, u) is a solution to system (6) if and only if (�, y) is a solution to system (7), where
y = (L� + K�)u. Moreover, the set of all trivial solutions to (7) can be represented as

M̃ := {(�, y) ∈ X × F : (�, R�(y)) ∈ M}.
Then, condition (H4) translates as:

(H4)′ If (�0, y0) ∈ M̃ , then there exist open neighborhoods U�0 of �0 in P and Uy0 of y0 in FG and a C1-map
�̃ : U�0 → FG such that

M̃ ∩ (U�0 × Uy0) = Gr(̃�).

(ii) Also, (�0, u0) ∈ M is a bifurcation point of (6) if and only if (�0, y0) ∈ M̃ is a bifurcation point of (7), where
y0 = (L�0 + K�0)u0.

Now, rewrite system (7) as

(� − F)(�, y) = 0, (�, y) ∈ X × F, (9)
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Fig. 2. Functional setting and auxiliary function for the bifurcation problem (9).

where � is the projection map on F, �(�, y)= y. Clearly, �−F is a G-equivariant completely continuous field of class
C1, and

Dy(� − F) = Id − (DuF(�, R�(y))R� + K�R�).

Thus, by assumption (H2) (see also (8)), Dy(�−F) is a bounded Fredholm operator of index zero. For (�, y) ∈ X×FG,
Dy(� − F)(�, y) is G-equivariant (so, in particular, it is also G-equivariant for (�, y) ∈ M̃). By implicit function
theorem, a necessary condition for (�0, y0) ∈ M̃ to be a bifurcation point is that the derivative Dy(� − F)(�0, y0) is
not an isomorphism of F. Such a point (�0, y0) ∈ M̃ is called L-singular. An L-singular point (�0, y0) is said to be
isolated, if it is the only L-singular point in some neighborhood of (�0, y0) in M̃ .

Finally, assume that:
(H5) There exists an isolated L-singular point (�0, y0) ∈ M̃ .
We are now in a position to associate a local bifurcation invariant �(�0, u0) ∈ A1(G) to system (6).
Take a neighborhood D�0 of (�0, y0) in M̃ such that (i) (�0, y0) is the only L-singular point in D�0 and (ii) D�0 ⊂

M̃ ∩ (U�0 × Uy0) (see (H4)′).
Choose a small number r > 0, define

U(r) := {(�, y) ∈ P × F : (�, �̃(�)) ∈ D�0 , ‖y − �̃(�)‖ < r}, (10)

and introduce a G-invariant auxiliary function � : U(r) → R satisfying the properties{
�(�, y) > 0 if ‖y − �̃(�)‖ = r,

�(�, y) < 0 if (�, y) ∈ D�0 .
(11)

Put

�U0 := {(�, y) ∈ U(r) : (�, �̃(�)) ∈ �D�0} ⊂ �U(r).

Then, by implicit function theorem, the above r > 0 can be chosen to be so small that

y − F(�, y) 	= 0 for (�, y) ∈ �U0\M̃
(see Fig. 2).

Define the map F� : U(r) → R ⊕ F by

F�(�, y) := (�(�, y), (� − F)(�, y)), (12)

which is clearly a U(r)-admissible G-equivariant completely continuous vector field. Therefore, the following local
bifurcation invariant:

�(�0, u0) := G-Deg (F�, U(r)) ∈ A1(G) (13)

is well-defined.
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Using the above scheme, one can prove the following G-symmetric (local) bifurcation result for the equivariant
coincidence problem (6).

Theorem 3.6 (Local bifurcation theorem). Suppose that assumptions (H1)–(H5) are satisfied, �(�0, u0) is given by
(13) (with F� defined by (12), U(r) by (10) and � satisfying (11)). If

�(�0, u0) =
∑
(H)

nH (H) 	= 0,

i.e. there is nH0 	= 0 for some orbit type (H0), then there exists a branch of non-trivial solutions (�, u) to the Eq. (6)
bifurcating from (�0, u0) such that Gu ⊃ H0.

Remark 3.7. Theorem 3.6 provides us with a sufficient condition for the occurrence of the (symmetric) bifurcation in
(6). However, this result does not allow us to obtain reasonable multiplicity results. To overcome this obstacle, in what
follows we will combine Theorem 3.6 with the concept of dominating orbit types (cf. Definition 4.4, Remark 4.5 and
Theorem 4.6).

4. Hopf bifurcation for functional parabolic differential equations with symmetries

Let V := Rn be an orthogonal 	-representation. Assume that � ⊂ Rm= : V ′ is an open bounded set such that ��
is C2-smooth. Clearly, the space L2(R × �; V ) is an isometric Banach 	-representation with the 	-action given by

(
u)(t, x) = 
(u(t, x)), 
 ∈ 	.

4.1. Statement of the problem

Consider a system of functional parabolic differential equations on R × �:⎧⎨⎩
�

�t
u(t, x) + P(�, x)u = f (�, ut )(x), (t, x) ∈ R × �,

B(�, x)u(t, x) = 0, (t, x) ∈ R × ��,

(14)

where u ∈ L2(R × �; V ) satisfies appropriate differentiability requirements,5 ut (�, x) := u(t + �, x) for � ∈ [−�, 0]
(� > 0 is a fixed constant), � ∈ R is a (bifurcation) parameter, f : R × C([−�, 0]; L2(�; V )) → L2(�; V ) is a map of
class C1, which is bounded on bounded sets, P(�, x) = [Pi(�, x)]ni=1 is a vector with components being second-order
uniformly elliptic operators, i.e.

Pi(�, x) = ∇TAi(�, x)∇ + ai(�, x),

with Ai(�, x) being a continuously differentiable (with respect to � and x) n × n symmetric positive definite matrix
satisfying the condition

∃c1, c2 > 0 ∀(�, x) ∈ R × � ∀y ∈ V ′ c1‖y‖�yTAi(�, x)y�c2‖y‖,

where ∇ stands for the gradient operator, and ai(�, x) is continuous. The boundary operator B(�, x) is defined by either
(Dirichlet conditions)

B(�, x)u(t, x) = u(t, x)

5 The u is weakly differentiable with respect to t and has weak derivatives of order 2 with respect to x ∈ �. More precisely, we assume here that
u is an element of the Sobolev space H 1,2(R × �; V ) of L2-integrable V-valued functions from R × � with weak L2-integrable derivative in R and
weak L2-integrable derivatives of order 2 in �.
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or (mixed Dirichlet/Neumann conditions)

B(�, x)u(t, x) = b(�, x)u(t, x) + �

�n
(�, x)u(t, x),

where b ∈ C1(R × ��; R), (�/�n)(�, x) = [�T(x)Ai(�, x)∇]ni=1 (�(x) is the outward normal vector to �� at x).
Assume that:

(C1) The operators P, B and the map f are 	-equivariant, i.e. for 
 ∈ 	,


P(�, x)u = P(�, x)
u, x ∈ �, � ∈ [−�, 0]

f (�, v(�, x)) = f (�, 
v(�, x)), x ∈ �, � ∈ [−�, 0]


B(�, x)u = B(�, x)
u, x ∈ ��.

In what follows, we use the standard identification S1 � R/2�Z and introduce the following notation:

H1,2
B(�) = {� ∈ H 1,2(S1 × �; V ) : B(�, x)� = 0}, (15)

where Hk,�(S1 × �; V ) stands for the Sobolev space of V-valued functions with weak (L2-integrable) derivatives of
order k in S1 and of order l in �. Put

E = F = L2(S1 × �; V ), P = R × R+, Ê = C(S1; L2(�; V )), (16)

where Ê is equipped with the usual supremum norm.

4.2. Normalization of the period

We are looking for p-periodic solutions to system (14) for an unknown period p > 0. For convenience, we translate
it into the equivalent 2�-periodic solution problem as follows.

Let � := 2�/p and

v(t, x) = u

(
1

�
t, x

)
,

then the original periodic problem is reduced to finding non-trivial solutions (�, �, v) for the system⎧⎪⎪⎨⎪⎪⎩
�

�t
v(t, x) + 1

�
P(�, x)v = 1

�
f (�, vt,�)(x), (t, x) ∈ R × �,

B(�, x)v(t, x) = 0, (t, x) ∈ R × ��,

v(t, x) = v(t + 2�, x), (t, x) ∈ R × �,

(17)

where

vt,�(�, x) := v(t + ��, x) for (�, x) ∈ [−�, 0] × �.

4.3. The 	 × S1-setting in functional spaces

Below we reformulate system (17) as an equivariant parameterized coincidence problem based on the general
discussion in Section 3.1.

For every � := (�, �) ∈ P, define the subspace

Dom(L�) := {u ∈ E : u ∈ H1,2
B(�)}

and the operator

L� : Dom(L�) ⊂ E → E
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(cf. (16)) by

L�v(t, x) := �

�t
v(t, x) + 1

�
P(�, x)v

(cf. (15), (16) and (17)).
Notice that E, H 1,2(S1 × �; V ) and Ê are isometric Banach G-representations, where S1 acts in a standard way by

shifting the time argument t. It is also clear (see [20]) that each (unbounded) linear operator L�, for � ∈ P, is a closed
G-equivariant Fredholm operator of index zero, and the orthogonal projection of the (finite-dimensional) kernel of L�
is a G-equivariant resolvent K of L�. Therefore, RG(L, {�}) 	= ∅ for any � ∈ P, and, by Lemma 3.4, condition (H1)
is satisfied for every compact subset X ⊂ P.

On the other hand, since (1/�)f (�, vt,�) ∈ L2(�; V ) for vt,� ∈ C([−�, 0]; L2(�; V )), we have the continuous map
Nf : P × Ê → L2(�, V ) with

Nf (�, �, v)(t) := 1

�
f (�, vt,�).

Define F̂ : P × Ê → F by

F̂ (�, v)(t, x) := i ◦ Nf (�, �, v)(t)(x) = 1

�
f (�, vt,�)(x), � = (�, �),

where i denotes the natural embedding Ê ↪→ F. The continuous differentiability of f implies that F̂ is continuously
differentiable. Since the following composition of the embeddings.

H 1,2(S1 × �; V ) ↪→ H 2/3,0(S1 × �; V ) ↪→ C(S1; L2(�; V )) = Ê

is compact (cf. [20]), we have the following embedding:

J : E −→ P × Ê,

where J� : E� → Ê is a compact operator for all � ∈ P. Thus, F̂ and J satisfy condition (H2) from Section 3. In
particular, F : E → F defined by F = F̂ ◦ J is a G-equivariant completely continuous map of class C1.

As a consequence, we obtain that finding a periodic solution v ∈ H 1,2(S1 × �; V ) for system (17) is equivalent to
solving the following parameterized coincidence problem (cf. (6)):

L�v = F(�, v), � ∈ X, (18)

where X is a given compact subset of P.

4.4. The 	-symmetric steady-state solutions to (14)

In order to describe a manifold of trivial solutions to (14) (cf. conditions (H3) and (H4) from Section 3.2), at which
we expect the occurrence of a Hopf bifurcation, observe that the functions u(t, x) from H 1,2(S1 ×�; V ), constant with
respect to the first variable, can be identified with functions from H 2(�; V ), where H 2(�; V ) denotes the Sobolev
space of V-valued functions with weak (L2-integrable) derivatives of order 2 in �. Clearly, for a function u(t, x),
constant with respect to t, we have ut (�, x) = u(�, x) for all t ∈ R.

With these preliminaries on hands, introduce the following

Definition 4.1. Let (�0, u0) be a solution to (14) satisfying the following conditions:

(i) u0 ∈ H 2(�, V );
(ii) 
u0 = u0 for all 
 ∈ 	;

(iii)

{
P(�0, x)u0 = f (�0, u0)(x) in �,

B(�0, x)u0 = 0 on ��.

Then, (�0, u0) is called a 	-symmetric steady-state solution to (14).
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Let us introduce the following spaces:

X�0 := {� ∈ H 2(�; V ) : B(�0, x)� = 0},
Xc

�0
:= {� ∈ H 2(�; V c) : B(�0, x)� = 0},

C := C([−�, 0]; L2(�; V )),

Cc := C([−�, 0]; L2(�; V c)),

where V c stands for the complexification of the 	-representation V. Identify L2(�; V ) with the subspace ofC consisting
of constant L2(�; V )-valued functions, and L2(�; V c) with the subspace ofCc consisting of constant L2(�; V c)-valued
functions. Denote by f̄ (�, ·) the restriction of f (�, ·) to L2(�; V ) and define

L�0 := P(�0, x) − df�0 : X�0 ⊂ L2(�; V ) → L2(�; V ), (19)

where df�0(�) := Duf̄ (�0, u0)� for � ∈ X�0 .
In what follows, we apply the same symbols to denote the complexified operators P(�, x), df�, and B(�0, x), i.e.

the operators:

P(�, x) : Xc
� ⊆ L2(�; V c) → L2(�; V c),

df� : Cc → L2(�; V c),

B(�0, x) : H 2(�; V c) → L2(��, V c).

Suppose that (�0, u0) is a 	-symmetric steady-state solution of (14) with �=�0. We say that (�0, u0) is non-singular
if 0 /∈ �(L�0), where �(L(�0)) denotes the spectrum of L�0 . Assume that:

(C2) The (�0, u0) is a non-singular 	-symmetric steady-state solution.

Then, by implicit function theorem, there exists a continuously differentiable function u(�) for � ∈ (�0 −�, �0 +�) (for
a sufficiently small � > 0) such that (�, u(�)) is a 	-symmetric steady-state solution to (14) for each � (the condition

u(�)=u(�) for all 
 ∈ 	 (cf. Definition 4.1(ii)) is provided by the 	-equivariance of L�). In what follows, assume that
{(�, u(�)) : � ∈ (�0−�, �0+�)} is a fixed family of steady-state 	-symmetric solutions near (�0, u0). Since (�, �, u(�)),
� ∈ (�0 − �, �0 + �) is clearly a solution to (14) belonging to P × EG, consider it as a trivial solution. Moreover,
define the map � : (�0 − �, �0 + �) × R+ → EG by �(�, �) = (�, �, u(�)). The set of (non-singular) 	-symmetric
steady-state solutions to (14) (cf. condition (C2)), gives rise to a manifold M ⊂ P × EG, M := {(�, �, u(�)) : � ∈
(�0 − �, �0 + �), � ∈ R+} (defined locally satisfying conditions (H3) and (H4).

4.5. Characteristic equation

Let (�, u(�)) be a non-singular 	-symmetric steady-state solution to (14). The linearization of (14) at (�, u(�)) leads
to the following characteristic equation (near (�0, u(�0))):

��;u(�)(�)w := �w + P(�, x)w − df�(e
�·w) = 0, � ∈ C, (20)

where the characteristic operator ��;u(�) : Xc
� → L2(�; V c) is defined (by (20)) using the standard complexifications

of P(�, x) and df�(�).
Observe that Xc

� equipped with the H 2-norm is a complex Hilbert space such that the embedding Xc
� ↪→ L2(�; V c)

is compact, P(�, x) is an elliptic self-adjoint operator (thus, it is a bounded Fredholm operator of index zero from
Xc

� to L2(�; V c)) and df�(e�··) is a bounded linear operator for all � ∈ C, therefore ��;u(�)(�) : Xc
� → L2(�; V c),

where Xc
� is equipped with the H 2-norm, is a bounded Fredholm operator of index zero.6 Consequently, ��;u(�)(�) is

a closed (unbounded) Fredholm operator of index zero from L2(�; V c) to itself.

6 The ��;u(�)(�) is a sum of the compact operator � Id − df�(e�··) : Xc
� → L2(�; V c) and the Fredholm operator P(�, x) of index zero.
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A number � ∈ C is called a characteristic root of system (14) at a 	-symmetric steady-state solution (�, u(�)) if
ker ��;u(�)(�) 	= {0}. It is clear that a 	-symmetric steady-state solution (�, u(�)) is non-singular if and only if 0 is
not a characteristic root of (14) at (�, u(�)). We say that a non-singular 	-symmetric steady-state solution (�0, u0),
u0 = u(�0), is a center if it has a purely imaginary characteristic root i�0, �0 > 0, i.e. ker ��0;u0(i�0) 	= {0}. A center
(�0, u0) is called isolated if it is the only center in some neighborhood of (�0, u0) in R ⊕ L2(�; V ).

For the purpose of studying the local Hopf bifurcation problem for (14), we assume:

(C3) There exists a 	-symmetric steady-state solution (�0, u0) ∈ R ⊕ L2(�; V ) which is an isolated center such that
i�0 (for �0 > 0) is a characteristic root of (14) for � = �0.

Thus, condition (H5) from Section 3.2 is satisfied. Also, notice that (C3) is the necessary condition for the occurrence
of the Hopf bifurcation at (�0, u0), while (C2) excludes the appearance of the “steady-state” bifurcation.

Apply the “eigenspace” reduction to describe the characteristic roots of system (14) at the 	-symmetric steady-
state solution (�, u(�)). Denote by �� ⊂ R the spectrum of the self-adjoint operator P(�, x) : Xc

� ⊆ L2(�; V c) →
L2(�; V c). Since P(�, x) is a uniformly elliptic differential operator, the spectrum �� is discrete and all the eigenvalues
��
k

are real of finite multiplicity and such that

��
0 < ��

1 < · · · < ��
k < · · · .

Using the fact that for every r > 0, the number ir is not in the spectrum �� of P(�, x), the (auxiliary) operator S :
L2(�; V c) → L2(�; V c) defined by

Sw = irw, w ∈ L2(�; V c)

is a 	-equivariant resolvent (cf. Remark and Notation 3.1 and Definition 3.2) of P(�, x), i.e. the (bounded) inverse
R̃�,r := [P(�, x) + S]−1 : L2(�; V c) → L2(�; V c) exists for all � ∈ R and is 	-equivariant. On the other hand,
since P(�, x) + S as a (bounded) operator from the space Xc

� (equipped with the Sobolev H 2-norm) is also invertible
and the embedding Xc

� ↪→ L2(�; V c) is compact, we obtain that the inverse R̃�,r : L2(�; V c) → L2(�; V c) (i.e.
R̃�,r is considered here as the inverse of the unbounded operator P(�, x) + S from L2(�; V c) into itself) is a compact
	-equivariant operator. Eq. (20) can be rewritten as

�̃r
�;u(�)(�)w := w − df�(e

�·R̃�,r (w)) + (� − ir)R̃�,r (w) = 0. (21)

It is clear that � ∈ C is a characteristic root of system (14) at the steady-state solution (�, u(�)) if and only if
ker �̃r

�;u(�)
(�) 	= {0}. Also, �̃r

�;u(�)
(�) is an analytic function in � (cf. [26]), hence all the characteristic roots �

are isolated. Moreover, �̃r
�;u(�)

(�) is a 	-equivariant completely continuous field, thus it is a bounded 	-equivariant
Fredholm operator of index zero.

Denote by E�
k

⊂ L2(�; V c) the eigenspace of P(�, x) corresponding to ��
k

∈ ��, and let p�
k

: L2(�; V c) → E�
k

be the orthogonal projection. Consequently, for every w ∈ L2(�; V c), we have w =∑∞
k=0 p

�
k
(w). By substituting

w =∑∞
k=0 p

�
k
(w) into (21), we obtain

∞∑
k=0

[
p�
k (w) − 1

��
k

+ ir
df�(e

�·p�
k (w)) + � − ir

��
k

+ ir
p�
k (w)

]
= 0. (22)

Denote by F �
k

the subspace ofC spanned by functions of the type t → �(t)w, where � ∈ C([−�, 0]; C) and w ∈ E�
k

.
We need the following hypothesis (cf. [17,23]):

(C4) The df�(F
�
k
) ⊂ E�

k
for all steady-state solutions (�, u(�)) and k= 0, 1, 2, . . . .

Remark 4.2. Condition (C4) is required mainly to simplify the computation of the characteristic roots through a
reduction to isotypical components of L2(�; V c) (see also [21,22]). One can check that the reaction–diffusion systems
with delay of the type considered in [7–9] satisfy (C4). In the case of a parabolic system of 	-symmetric PDEs (without
delay) or the reaction–diffusion logistic equation with delay (cf. [14]), (C4) is automatically satisfied.
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Under assumption (C4), Eq. (22) can be reduced to the following sequence of equations:

p�
k (w) − 1

��
k

+ ir
df�(e

�·p�
k (w)) + � − ir

��
k

+ ir
p�
k (w) = 0, k= 0, 1, . . . . (23)

Eq. (23) can be written in the equivalent form as

(��
k + �)p�

k (w) + df�(e
�·��

k (w)) = 0, k= 0, 1, . . . . (24)

4.6. Local bifurcation 	 × S1-invariant and its computation

Under assumptions (C1)–(C4), for any compact subset X ⊂ P, system (14) leads to a parameterized equivariant
coincidence problem of type (6) satisfying conditions (H1)–(H5) (cf. (18)). Hence, given an isolated center (�0, u0)

with the corresponding characteristic root i�0 (cf. Condition (C3)), and following the scheme outlined in Section 3 (cf.
(10)–(13)), one can associate to (�0, �0, u0) the local bifurcation invariant �(�0, u0) = �(�0, �0, u0) ∈ A1(	 × S1).

In order to obtain an effective computational formula for �(�0, �0, u0), we need to discuss the so-called negative
spectrum and crossing numbers.

4.6.1. Negative spectrum
Consider the real (resp. complex) 	-isotypical decomposition of V (resp. V c):

V = V0 ⊕ V1 ⊕ · · · ⊕ Vr, V c = U0 ⊕ U1 ⊕ · · · ⊕ Us , (25)

where the isotypical components Vj (resp. Uj ) are modelled on the real (resp. complex) 	-irreducible representations
Vj (resp. Uj ). For technical reasons, we assume that these decompositions correspond to a complete list of the
irreducible 	-representations:

real irreducible 	-representations: V0, V1, . . . , Vr , (26)

complex irreducible 	-representations: V0, V1, . . . , Vs , (27)

whereV0 andU0 denote the trivial 	-representations.We do not exclude that some of these 	-isotypical components are
trivial. Notice that it is possible that there is a different number of isotypical components in the isotypical decompositions
of V and V c (cf. [6]). In the case of specific groups 	, the lists (26) and (27), which are given in [1], will be used later
by the Maple� routines to create the tables of results (cf. Section 6, Tables 1–6).

Clearly, (25) induces the 	-isotypical decompositions

L2(�; V ) =
r⊕

i=0

Vi , L2(�; V c) =
s⊕

j=0

Uj , (28)

where Vi := L2(�;Vi ) and Uj := L2(�;Uj ).

Table 1
Equivariant classification of the Hopf bifurcation with D3 symmetries

j�0 �0, �1 �(��,m,k,��,m,k, 0)1 # Branches

0�0 00 (−1)�((D3)) 1
0�0 01 (−1)�((D3) − (Z3)) 1
0�0 10 (−1)�+1((D3)) 1
0�0 11 (−1)�+1((D3) − (Z3)) 1
1�1 00 (−1)�((Zz

3) + (Dz
1) + (D1) − (Z1)) 6

1�1 01 (−1)�((Zz
3) − (Dz

1) − (D1) + (Z1)) 6
1�1 10 (−1)�+1((Zz

3) + (Dz
1) + (D1) − (Z1)) 6

1�1 11 (−1)�+1((Zz
3) − (Dz

1) − (D1) + (Z1)) 6
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Table 2
Equivariant classification of the Hopf bifurcation with D4 symmetries

j�0 �0, �1, �2 �(��,m,k,��,m,k, 0)1 # Branches

0�0 000 (−1)�((D4)) 1
0�0 001 (−1)�((D4) − (D2)) 1
0�0 010 (−1)�((D4) − (D1) − (D̃1) + (Z1)) 1
0�0 011 (−1)�((D4) − (D2) + (D1) − (D̃1)) 1
0�0 100 (−1)�+1((D4)) 1
0�0 101 (−1)�+1((D4) − (D2)) 1
0�0 110 (−1)�+1((D4) − (D1) − (D̃1) + (Z1)) 1
0�0 111 (−1)�+1((D4) − (D2) + (D1) − (D̃1)) 1
1�1 000 (−1)�((Zt

4) + (Dd
2 ) + (D̃d

2 ) − (Z−
2 )) 6

1�1 001 (−1)�((Zt
4) − (Dd

2 ) + (D̃d
2 ) − (Z−

2 )) 6
1�1 010 (−1)�((Zt

4) + (Dd
2 ) + (D̃d

2 ) − (Z−
2 ) − (Dz

1) − (D̃z
1) − (D1) − (D̃1) + 2(Z1)) 6

1�1 011 (−1)�((Zt
4) − (Dd

2 ) − (D̃d
2 ) − (Z−

2 ) + (Dz
1) − (D̃z

1) + (D1) − (D̃1)) 6
1�1 100 (−1)�+1((Zt

4) + (Dd
2 ) + (D̃d

2 ) − (Z−
2 )) 6

1�1 101 (−1)�+1((Zt
4) − (Dd

2 ) + (D̃d
2 ) − (Z−

2 )) 6
1�1 110 (−1)�+1((Zt

4) + (Dd
2 ) + (D̃d

2 ) − (Z−
2 ) − (Dz

1) − (D̃z
1) − (D1) − (D̃1) + 2(Z1)) 6

1�1 111 (−1)�+1((Zt
4) − (Dd

2 ) + (D̃d
2 ) − (Z−

2 ) + (Dz
1) − (D̃z

1) + (D1) − (D̃1)) 6
3�2 000 (−1)�((Dd

4 )) 1
3�2 001 (−1)�((Dd

4 ) − (D2)) 2
3�2 010 (−1)�((Dd

4 ) − (Dz
1) − (D1) + (Z1)) 2

3�2 011 (−1)�((Dd
4 ) − (D2) − (D̃z

1) − (D1)) 2
3�2 100 (−1)�+1((Dd

4 )) 2
3�2 101 (−1)�+1((Dd

4 ) − (D2)) 2
3�2 110 (−1)�+1((Dd

4 ) − (D̃z
1) − (D1) + (Z1)) 2

3�2 111 (−1)�+1((Dd
4 ) − (D2) − (Dz

1) + (D1)) 2

Consider the operator P(�0, x) : X�0 ⊆ L2(�; V ) → L2(�; V ) and let K be the orthogonal projection on its kernel.
Then, K is a 	-equivariant resolvent of P(�0, x). Put R̃�0 := [P(�0, x) + K]−1 and define

A := Id − 1

�0
R̃�0 ◦ Duf̄ (�0, u0) − R̃�0K : L2(�; V ) → L2(�; V ), (29)

which is clearly a completely continuous field. Put Ai := A|Vi
: Vi → Vi and let �−(A) denote the set of all

negative eigenvalues of the operator A. Since A is a completely continuous field, thus it is a Fredholm operator of
index zero, the set �−(A) is finite and all the eigenvalues in �−(A) are of finite multiplicity. Thus, for � ∈ �−(A),
define

E(�) :=
∞⋃

k=1

ker[A − � Id]k ,

Ei(�) :=
∞⋃

k=1

ker[Ai − � Id|Vi
]k ,

mi(�) := dim Ei(�)/ dim Vi , (30)

where the subspace E(�) (resp. Ei(�)) is referred to as a generalized (resp. Vi-isotypical) eigenspace of the operator
A and the integer mi(�) will be called the Vi-multiplicity of �.

In all the examples considered in Section 5 the following condition is satisfied.
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Table 3
Equivariant classification of the Hopf bifurcation with D5 symmetries

j�0 �0, �1, �2 �(��,m,k,��,m,k, 0)1 # Branches

0�0 010 (−1)�((D5) − 2(D1) + (Z1)) 1
0�0 011 (−1)�((D5)) 1
0�0 101 (−1)�+1((D5) − 2(D1) + (Z1)) 1
0�0 110 (−1)�+1((D5) − 2(D1) + (Z1)) 1
0�0 111 (−1)�+1((D5)) 1
1�1 010 (−1)�((Zt1

5 ) − (Dz
1) − (D1) + (Z1)) 8

1�1 011 (−1)�((Zt1
5 ) + (Dz

1) + (D1) − (Z1)) 8
1�1 100 (−1)�+1((Zt1

5 ) + (Dz
1) + (D1) − (Z1)) 8

1�1 101 (−1)�+1((Zt1
5 ) − (Dz

1) − (D1) + (Z1)) 8
1�1 111 (−1)�+1((Zt1

5 ) + (Dz
1) + (D1) − (Z1)) 8

2�2 010 (−1)�((Zt2
5 ) − (Dz

1) − (D1) + (Z1)) 8
2�2 011 (−1)�((Zt2

5 ) + (Dz
1) + (D1) − (Z1)) 8

2�2 100 (−1)�+1((Zt2
5 ) + (Dz

1) + (D1) − (Z1)) 8
2�2 101 (−1)�+1((Zt2

5 ) − (Dz
1) − (D1) + (Z1)) 8

2�2 110 (−1)�+1((Zt2
5 ) − (Dz

1) − (D1) + (Z1)) 8
2�2 111 (−1)�+1((Zt2

5 ) + (Dz
1) + (D1) − (Z1)) 8

Table 4
Equivariant classification of the Hopf bifurcation with A4 symmetries

j�0 �0, �3 �(��,m,k,��,m,k, 0)1 # Branches

0�0 00 (−1)�((A4)) 1
0�0 01 (−1)�((A4) − 2(Z3) − (Z2) + (Z1)) 1
0�0 10 (−1)�+1((A4)) 1
0�0 11 (−1)�+1((A4) − 2(Z3) − (Z2) + (Z1)) 1
3�1 00 (−1)�((V −

4 ) + (Zt1
3 ) + (Zt2

3 ) + (Z3) − (Z1)) 12
3�1 01 (−1)�((V −

4 ) − (Zt1
3 ) − (Zt2

3 ) − (Z3) − (Z−
2 ) − (Z2) + 2(Z1)) 12

3�1 10 (−1)�+1((V −
4 ) + (Zt1

3 ) + (Zt2
3 ) + (Z3) − (Z1)) 12

3�1 11 (−1)�+1((V −
4 ) − (Zt1

3 ) − (Zt2
3 ) − (Z3) − (Z−

2 ) − (Z2) + 2(Z1)) 12

Condition (R): (i) Decomposition (25) contains isotypical components modelled only on irreducible representations
of real type (in particular, r = s).

(ii) For each � ∈ �−(A), there exists a single isotypical componentVi := Vi� in (28) which (completely) contains
the generalized eigenspace E(�).

Therefore, formula (30) of the Vi-multiplicity mi(�) reduces to

mi(�) =
{

dim E(�)/ dim Vi , i = i�,

0, i 	= i�.
(31)

4.6.2. Crossing numbers
Put �̃r

�;u(�),j
(�) := �̃r

�;u(�)
(�)|Uj

(cf. (21) and (25)). For a characteristic root � of system (14) at the 	-symmetric
steady-state solution (�0, u0), we use the following notations:

Ej(�) :=
∞⋃

k=1

ker[�̃r
�;u(�),j (�)]k ,

mj(�) := dim Ej(�)/ dim Uj , (32)
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Table 5
Equivariant classification of the Hopf bifurcation with S4 symmetries

j�0 �0, �1, �3, �4 �(��,m,k,��,m,k, 0)1 # Branches

0�0 0011 (−1)�((S4) − 2(D3) − (D2) − (Z4) + (Z3) + 2(D1) + (Z2) − (Z1)) 1
0�0 0100 (−1)�((S4) − 2(A4)) 1
0�0 0101 (−1)�((S4) − (A4) − (Z4) + (Z3) − (D1) + (Z1)) 1
0�0 0110 (−1)�((S4) − (A4) − 2(D3) − (D2) + 2(Z3) + 3(D1) + (Z2) − 2(Z1)) 1
0�0 0111 (−1)�((S4) − (A4) − 2(D3) − (D2) − (Z4) + (Z3) + 2(D1) + (Z2) − (Z1)) 1
0�0 1011 (−1)�+1((S4) − 2(D3) − (D2) − (Z4) + (Z3) + 2(D1) + (Z2) − (Z1)) 1
0�0 1100 (−1)�+1((S4) − (A4)) 1
0�0 1101 (−1)�+1((S4) − (A4) − (Z4) + (Z3) − (D1) + (Z2)) 1
0�0 1110 (−1)�+1((S4) − (A4) − 2(D3) − (D2) + 2(Z3) + 3(D1) + (Z2) − 2(Z1)) 1
0�0 1111 (−1)�+1((S4) − (A4) − 2(D3) − (D2) − (Z4) + (Z3) + 2(D1) + (Z2) − (Z1)) 1
1�1 0100 (−1)�((S−

4 ) − (A4)) 1
1�1 0101 (−1)�((S−

4 ) − (A4) − (Z−
4 ) + (Z3) − (Dz

1) + (Z2)) 1
1�1 0110 (−1)�((S−

4 ) − (A4) − 2(Dz
3) − (Dz

2) + 2(Z3) + 3(Dz
1) + (Z2) − 2(Z1)) 1

1�1 0111 (−1)�((S−
4 ) − (A4) − 2(Dz

3) − (Dz
2) − (Z−

4 ) + (Z3) + 2(Dz
1) + (Z2) − (Z1)) 1

1�1 1010 (−1)�+1((S−
4 ) − 2(Dz

3) − (Dz
2) + 3(Dz

1) − (Z1)) 1
1�1 1011 (−1)�+1((S−

4 ) − 2(Dz
3) − (Dz

2) − (Z−
4 ) + (Z3) + 2(Dz

1) + (Z2) − (Z1)) 1
1�1 1100 (−1)�+1((S−

4 ) − (A4)) 1
1�1 1101 (−1)�+1((S−

4 ) − (A4) − (Z−
4 ) + (Z3) − (Dz

1) + (Z2)) 1
1�1 1110 (−1)�+1((S−

4 ) − (A4) − 2(Dz
3) − (Dz

2) + 2(Z3) + 3(Dz
1) + (Z2) − 2(Z1)) 1

1�1 1111 (−1)�+1((S−
4 ) − (A4) − 2(Dz

3) − (Dz
2) − (Z−

4 ) + (Z3) + 2(Dz
1) + (Z2) − (Z1)) 1

3�2 0100 (−1)�((Dd
4 ) + (D3) + (Dd

2 ) + (Zc
4) − (V −

4 ) − (Zt
3) − (Z3) − (D1) − (Z−

2 ) + (Z1)) 24
3�2 0101 (−1)�((Dd

4 ) + (D3) + (Dd
2 ) − (Zc

4) − (Z−
4 ) − (V −

4 ) + (Zt
3) − (Dz

1) − 3(D1) + (Z−
2 ) + (Z2) + (Z1)) 24

3�2 0110 (−1)�((Dd
4 ) − (D3) − (Dd

2 ) − (D2) + (Zc
4) − (V −

4 ) + (Zt
3) + (Z3) + (Dz

1) + 3(D1) + (Z−
2 ) + (Z2) − 3(Z1)) 24

3�2 0111 (−1)�((Dd
4 ) − (D3) − (Dd

2 ) − (D2) − (Zc
4) − (Z−

4 ) − (V −
4 ) − (Zt

3) + (D1) + (Z−
2 ) + (Z2)) 24

3�2 1011 (−1)�(−(Dd
4 ) + (D3) + (Dd

2 ) + (D2) + (Zc
4) + (Z−

4 ) − (Zt
3) − (Z3) − (D1) − (Z−

2 ) − (Z2) + (Z1)) 24
3�2 1100 (−1)�(−(Dd

4 ) − (D3) − (Dd
2 ) − (Zc

4) + (Z−
4 ) + (Zt

3) + (Z3) + (D1) + (Z−
2 ) − (Z1)) 24

3�2 1101 (−1)�(−(Dd
4 ) − (D3) − (Dd

2 ) + (Zc
4) + (Z−

4 ) + (V −
4 ) − (Zt

3) + (Dz
1) + 3(D1) − (Z−

2 ) − (Z2) − (Z1)) 24
3�2 1110 (−1)�(−(Dd

4 ) + (D3) + (Dd
2 ) + (D2) − (Zc

4) + (V −
4 ) − (Zt

3) − (Z3) − (Dz
1) − 3(D1) − (Z−

2 ) − (Z2) + 3(Z1)) 24
3�2 1111 (−1)�(−(Dd

4 ) + (D3) + (Dd
2 ) + (Zc

4) + (Z−
4 ) + (V −

4 ) + (Zt
3) − (D1) − (Z−

2 ) − (Z2)) 24
4�3 0011 (−1)�((Dz

4) − (Dz
3) − (Dd

2 ) − (Dz
2) − (Zc

4) − (Z4) + (Zt
3) + (Z3) + (Dz

1) + (Z−
2 ) + (Z2) − (Z1)) 24

4�3 0100 (−1)�((Dz
4) + (Dz

3) + (Dd
2 ) + (Zc

4) − (V −
4 ) − (Zt

3) − (Z3) − (Dz
1) − (Z−

2 ) + (Z1)) 24
4�3 0110 (−1)�((Dz

4) − (Dz
3) − (Dd

2 ) − (Dz
2) + (Zc

4) − (V −
4 ) + (Zt

3) + (Z3) + 3(Dz
1) + (D1) + (Z−

2 ) + (Z2) − 3(Z1)) 24
4�3 0111 (−1)�((Dz

4) − (Dz
3) − (Dd

2 ) − (Dz
2) − (Zc

4) − (Z4) − (V −
4 ) − (Zt

3) + (Dz
1) + (Z−

2 ) + (Z2)) 24
4�3 1010 (−1)�(−(Dz

4) + (Dz
3) + (Dd

2 ) + (Dz
2) − (Zc

4) + (Zt
3) − 3(Dz

1) − (D1) + (Z−
2 ) + (Z1)) 24

4�3 1011 (−1)�(−(Dz
4) + (Dz

3) + (Dd
2 ) + (Dz

2) + (Zc
4) + (Z4) − (Zt

3) − (Z3) − (Dz
1) − (Z−

2 ) − (Z2) + (Z1)) 24
4�3 1100 (−1)�(−(Dz

4) − (Dz
3) − (Dd

2 ) − (Zc
4) + (V −

4 ) + (Zt
3) + (Z3) + (Dz

1) + (Z−
2 ) − (Z1)) 24

4�3 1110 (−1)�(−(Dz
4) + (Dz

3) + (Dd
2 ) + (Dz

2) − (Zc
4) + (V −

4 ) − (Zt
3) − (Z3) − 3(Dz

1) − (D1) − (Z−
2 ) − (Z2) + 3(Z1)) 24

4�3 1111 (−1)�(−(Dz
4) + (Dz

3) + (Dd
2 ) + (Dz

2) + (Zc
4) + (Z4) + (V −

4 ) + (Zt
3) − (Dz

1) − (Z−
2 ) − (Z2)) 24

where the subspace Ej(�) is referred to as a generalized kernel of the operator �̃r
�;u(�),j

(�) and the integer mj(�) will

be called the Uj -multiplicity of the characteristic root �. Notice that, since �̃r
�;u(�),j

(�) is a Fredholm operator of index
zero, mj(�) < ∞ for all characteristic roots �.

Let (�0, u0) ∈ R ⊕ L2(�; V ) be an isolated center with i�0 (�0 > 0) being the corresponding characteristic root as
described in condition (C3) from Section 4.5. Define the set

S = {� + i� : 0 < � < �, |� − �0| < �} ⊂ C,
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Table 6
Equivariant classification of the Hopf bifurcation with A5 symmetries

j�0 �0, �1, �2, �3 �(��,m,k,��,m,k, 0)1 # Branches

0�0 0000 (−1)�(A5) 1
0�0 0001 (−1)�((A5) − (Z5) − (Z3) − (Z2) + (Z1)) 1
0�0 0010 (−1)�((A5) − 2(D5) − 2(D3) + 3(Z2) − (Z1)) 1
0�0 0011 (−1)�((A5) − 2(D5) − 2(D3) + (Z5) + (Z3) + 4(Z2) − 2(Z1)) 1
0�0 0101 (−1)�((A5) − 2(A4) − 2(D3) − (Z5) + 2(Z3) + 2(Z2) − (Z1)) 1
0�0 1000 (−1)�+1(A5) 1
0�0 1001 (−1)�(−(A5) + (Z5) + (Z3) + (Z2) − (Z1)) 1
0�0 1010 (−1)�(−(A5) + 2(D5) + 2(D3) − 3(Z2) + (Z1)) 1
0�0 1011 (−1)�(−(A5) + 2(D5) + 2(D3) − (Z5) − (Z3) − 4(Z2) + 2(Z1)) 1
0�0 1111 (−1)�(−(A5) + 2(A4) + 2(D5) − (Z5) − 2(Z3) − 3(Z2) + 2(Z1)) 1
0�0 0000 (−1)�((A4) + (Dz

3) + (D3) + (Zt1
5 ) + (Zt2

5 ) + (V −
4 ) + (Zt

3) − (Z3) − (Z−
2 ) − (Z2)) 55

1�0 0001 (−1)�((A4) + (Dz
3) + (D3) − (Zt1

5 ) − (Zt2
5 ) + (V −

4 ) − (Zt
3) − 3(Z3) 55

−3(Z−
2 ) − 3(Z2) + 4(Z1))

1�0 0010 (−1)�((A4) − (Dz
3) − (D3) − (Zt1

5 ) − (Zt2
5 ) + (V −

4 ) − (Zt
3) − (Z3) − (Z−

2 ) − (Z2) + 2(Z1)) 55
1�0 0011 (−1)�((A4) − (Dz

3) − (D3) + (Zt1
5 ) + (Zt2

5 ) + (V −
4 ) + (Zt

3) + (Z3) 55
+(Z−

2 ) + (Z2) − 2(Z1))
1�0 0101 (−1)�(−(A4) − (Dz

3) − (D3) − (Zt1
5 ) − (Zt2

5 ) − (V −
4 ) − (Zt

3) + (Z3) + (Z−
2 ) + (Z2)) 55

1�0 1000 (−1)�(−(A4) − (Dz
3) − (D3) − (Zt1

5 ) − (Zt2
5 ) − (V −

4 ) − (Zt
3) + (Z3) 55

+(Z−
2 ) + (Z2))

1�0 1001 (−1)�(−(A4) − (Dz
3) − (D3) + (Zt1

5 ) + (Zt2
5 ) − (V −

4 ) + (Zt
3) + 3(Z3) + 3(Z−

2 ) + 3(Z2) − 4(Z1)) 55
1�0 1010 (−1)�(−(A4) + (Dz

3) + (D3) + (Zt1
5 ) + (Zt2

5 ) − (V −
4 ) + (Zt

3) + (Z3) 55
+(Z−

2 ) + (Z2) − 2(Z1))
1�0 1011 (−1)�(−(A4) + (Dz

3) + (D3) − (Zt1
5 ) − (Zt2

5 ) − (V −
4 ) − (Zt

3) − (Z3) 55
−(Z−

2 ) − (Z2) + 2(Z1))
1�0 1111 (−1)�((A4) − (Dz

3) − (D3) − (Zt1
5 ) − (Zt2

5 ) + (V −
4 ) − (Zt

3) − (Z3) 55
−(Z−

2 ) − (Z2) + 2(Z1))
2�0 0000 (−1)�((A

t1
4 ) + (A

t2
4 ) + (D5) + (D3) + (Zt1

5 ) + (Zt2
5 ) + (V −

4 ) − 2(Z2)) 50
2�0 0001 (−1)�((A

t1
4 ) + (A

t2
4 ) + (D5) + (D3) − (Zt1

5 ) − (Zt2
5 ) − (Z5) + (V −

4 ) 50
−4(Zt

3) − (Z3) − 2(Z−
2 ) − 5(Z2) + 5(Z1))

2�0 0010 (−1)�((A
t1
4 ) + (A

t2
4 ) − (D5) − (D3) − (Zt1

5 ) − (Zt2
5 ) + (V −

4 ) − 4(Zt
3) − 2(Z−

2 ) − (Z2) + 3(Z1)) 50
2�0 0011 (−1)�((A

t1
4 ) + (A

t2
4 ) − (D5) − (D3) + (Zt1

5 ) + (Zt2
5 ) + (Z5) + (V −

4 ) 50
+(Z3) + 2(Z2) − 2(Z1))

2�0 0101 (−1)�(−(A
t1
4 ) − (A

t2
4 ) + (D5) − (D3) − (Zt1

5 ) − (Zt2
5 ) − (Z5) − (V −

4 ) + (Z1)) 50
2�0 1000 (−1)�(−(A

t1
4 ) − (A

t2
4 ) − (D5) − (D3) − (Zt1

5 ) − (Zt2
5 ) − (V −

4 ) + 2(Z2)) 50
2�0 1001 (−1)�(−(A

t1
4 ) − (A

t2
4 ) − (D5) − (D3) + (Zt1

5 ) + (Zt2
5 ) + (Z5) − (V −

4 ) 50
+4(Zt

3) + (Z3) + 2(Z−
2 ) + 5(Z2) − 5(Z1))

2�0 1010 (−1)�(−(A
t1
4 ) − (A

t2
4 ) + (D5) + (D3) + (Zt1

5 ) + (Zt2
5 ) − (V −

4 ) + 4(Zt
3) 50

+2(Z−
2 ) + (Z2) − 3(Z1))

2�0 1011 (−1)�(−(A
t1
4 ) − (A

t2
4 ) + (D5) + (D3) − (Zt1

5 ) − (Zt2
5 ) − (Z5) − (V −

4 ) − (Z3) 50
−2(Z2) + 2(Z1))

2�0 1111 (−1)�((A
t1
4 ) + (A

t2
4 ) + (D5) − (D3) − (Zt1

5 ) − (Zt2
5 ) − (Z5) + (V −

4 ) − 4(Zt
3) 50

−2(Z−
2 ) − 3(Z2) + 4(Z1))

3�0 0000 (−1)�((Dz
5) + (Dz

3) + (Zt1
5 ) + (V −

4 ) + (Zt
3) − 2(Z−

2 )) 48
3�0 0001 (−1)�((Dz

5) + (Dz
3) − (Zt1

5 ) − (Z5) + (V −
4 ) − (Zt

3) − (Z3) − 4(Z−
2 ) − (Z2) + 3(Z1)) 48

3�0 0010 (−1)�(−(Dz
5) − (Dz

3) − (Zt1
5 ) + (V −

4 ) − (Zt
3) − (Z2) + (Z1)) 48

3�0 0011 (−1)�(−(Dz
5) − (Dz

3) + (Zt1
5 ) + (Z5) + (V −

4 ) + (Zt
3) + (Z3) + 2(Z−

2 ) − 2(Z2)) 48
3�0 0101 (−1)�((Dz

5) − (Dz
3) − (Zt1

5 ) − (V −
4 ) − (Zt

3) + (Z1)) 48
3�0 1000 (−1)�(−(Dz

5) − (Dz
3) − (Zt1

5 ) − (V −
4 ) − (Zt

3) + 2(Z−
2 )) 48

3�0 1001 (−1)�(−(Dz
5) − (Dz

3) + (Zt1
5 ) + (Z5) − (V −

4 ) + (Zt
3) + (Z3) + 4(Z−

2 ) + (Z2) − 3(Z1)) 48
3�0 1010 (−1)�((Dz

5) + (Dz
3) + (Zt1

5 ) − (V −
4 ) + (Zt

3) + (Z2) − (Z1)) 48
3�0 1011 (−1)�((Dz

5) + (Dz
3) − (Zt1

5 ) − (Z5) − (V −
4 ) − (Zt

3) − (Z3) − 2(Z−
2 ) + 2(Z1)) 48

3�0 1111 (−1)�((Dz
5) − (Dz

3) − (Zt1
5 ) − (Z5) + (V −

4 ) − (Zt
3) − 2(Z−

2 ) − (Z2) + 2(Z1)) 48
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where � > 0 and ε > 0 are so small numbers that for all �+ i� ∈ �S and � ∈ [�0 − �, �0 + �], ker ��;u(�)(�+ i�) 	= {0}
implies �= �0 and �+ i�= i�0. Put �± := �0 ± � and denote by s± the set of all characteristic roots � ∈ S for �= �±,
i.e.

s± := {� ∈ S : ker ��±;u(�±)(�) 	= {0}}.
Since ker ��±;u(�±)(�) = ker �̃r

�±;u(�±)
(�) and �̃r

�±;u(�±)
(�) is an analytic function in �, the sets s± are finite. Then,

for j = 0, 1, 2, . . . , s (corresponding to the complex 	-irreducible representations Uj ), put

t±j (�0, �0, u0) :=
∑
�∈s±

mj(�), (33)

(cf. (32)).

Definition 4.3. The Uj -isotypical crossing number of (�0, �0, u0) is defined as

tj,1(�0, �0, u0) := t−j (�0, �0, u0) − t+j (�0, �0, u0), (34)

where t±j (�0, �0, u0) are given by (33). In the case l�0 is also a characteristic root of (14) at (�0, u0) for some integer
l > 1, put (cf. [2])

tj,l(�0, �0, u0) := tj,1(�0, l�0, u0).

By applying the standard finite-dimensional reduction and using the arguments similar to those in [2], one can
establish

tj,l(�0, �0, u0) = −sign
d

d�
w(�)|�=�0mj(il�0), (35)

where w(�) stands for the real part of the characteristic root of (14) at (�, u(�)).
Under condition (R), each E(i�0) is completely contained in a single isotypical component Uj for some j = j�0

in
(28). Thus,

mj(i�0) =
{

dimC E(i�0)/dimC Uj , j = j�0
,

0, j 	= j�0
.

Therefore, by (35), for l = 1, we have

tj,1(�0, �0) =
{

−sign
d

d�
w(�)|�=�0 dimC E(i�0)/dimC Uj , j = j�0

,

0, j 	= j�0
.

(36)

Based on the homotopy and multiplicativity properties of the equivariant degree (cf. Section 2.2), one can establish
the following computational formula (for details and justification of the derivation, we refer to [2]):

�(�0, �0, u0) :=
⎛⎝ ∏

�∈�−(A)

r∏
i=0

((degVi
)mi(�))

⎞⎠ ·
∑
j,l

tj,l(�0, �0, u0) degVj,l
. (37)

4.7. Dominating orbit types and first coefficients

In order to take advantage of the information provided by the local bifurcation invariant �(�0, �0, u0), we need the
following important concept (cf. [2]).

Definition 4.4. An orbit type (H) in F is called dominating, if (H) is maximal (with respect to the usual order relation
(see Section 2.1)) in the class of all �-twisted 1-folded orbit types in F (in particular, H = K�).

In what follows, the dominating orbit types will be used to estimate the minimal number of different periodic solutions
to system (14) as well as their symmetries.



Z. Balanov et al. / Nonlinear Analysis: Real World Applications 9 (2008) 154–182 173

Remark 4.5. (i) Due to the maximality property of dominating orbit types and the fact that the isotropy groups increase
under projections, the dominating orbit types can be easily recognized from the isotropy lattices of the irreducible
subrepresentations of F.

(ii) Assume there is a solution u0 ∈ F to (17) (for � = �0 and some � > 0), for which one has Gu0 ⊃ H0. If (H0)

is a dominating orbit type in F with H0 = K� for some K ⊂ 	 and � : K → S1, then, by the maximality condition,
(Gu0) = (K�,l) with l�1, and the corresponding orbit G(u0) is composed of exactly |G/Gu0 |S1 different periodic
functions (where |Y |S1 denotes the number of S1-orbits in Y). It is easy to check that the number of S1-orbits in G/Gu0

is |	/K| (where |X| stands for the number of elements in X).
On the other hand, let x0 be a, say, p-periodic solution to (14) canonically corresponding to the above u0. It follows

from the definition of l-folding and 	×S1-action on F that x0 is also a p/l-periodic solution to (14). The pair (x0, p/l)

canonically determines an element u′
0 ∈ F being a solution to (17) (for � = �0 and some �′) satisfying the condition

Gu′
0
= H0. In this way we obtain that (14) has at least |	/K| different periodic solutions with the orbit type exactly

(H0) (considered in F).

Combining the concept of the dominating orbit types with Theorem 3.6 (see also Remark 4.5(ii)) and using the same
argument as in [2], one can easily establish:

Theorem 4.6. Suppose that system (14) satisfies assumptions (C1) and (C4), and suppose that (�0, u0) is a 	-symmetric
steady-state solution to (14) (cf. Definition 4.1) satisfying (C2)–(C3), �(�0, �0, u0) is given by (13) (with �0 = (�0, �0),
F� defined by (12), U(r) by (10) and � satisfying (11)). Assume (cf. (37)) �(�0, �0, u0) 	= 0, i.e.

�(�0, �0, u0) =
∑
(H)

nH (H) and nH0 	= 0 (38)

for some (H0) ∈ 
1(G).

(i) Then, there exists a branch of non-trivial solutions to (14) with symmetries at least H0 (considered in the space F

(cf. (16))) bifurcating from the point (�0, u0) (with the limit frequency l�0 for some l ∈ N).
(ii) If, in addition, (H0) is a dominating orbit type in F, then there exist at least |G/H0|S1 different branches of periodic

solutions to the Eq. (14) bifurcating from (�0, u0). Moreover, for each (�, �, u) belonging to these branches of
(non-trivial) solutions one has (Gu) = (H0) (considered in the space F).

Although the entire value of the invariant �(�0, �0, u0) should be considered to fully classify the symmetric Hopf
bifurcation branches for system (14), in order to simplify our exposition (by reducing the number of additional cases),
we restrict our computations to the coefficients nH0 = n

K
�,1
0

, which are called first coefficients, and we will denote the

corresponding part of the invariant �(�0, �0, u0) by �(�0, �0, u0)1. Thus, by (37),

�(�0, �0, u0)1 :=
⎛⎝ ∏

�∈�−(Ai )

r∏
i=0

(degVi
)mi(�)

⎞⎠ ·
∑
j

tj,1(�0, �0, u0) degVj,1
. (39)

The first coefficients turn out to be sufficient to detect the solutions corresponding to the dominating orbit types.

5. Symmetric system of Hutchinson model in population dynamics

5.1. A Hutchinson model of an n species ecosystem

We start with the standard model for the dynamics of a simple (single) population7 in terms of its density—the
Verhulst equation (cf. [13,12]):

v̇ = �v
(

1 − v

K

)
,

7 For population ecology background, we refer to [13,24,11].
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Fig. 3. System with dihedral symmetries.

which is based on the idea that the population grows exponentially at low densities and saturates towards the carrying
capacity K (of resources) at high densities. By taking into account a delayed response to the remaining resources, the
Hutchinson’s model (of a single species) is obtained:

v̇(t) = �v(t)

(
1 − v(t − �)

K

)
, (40)

where � > 0 is a presumed delay constant and � refers to the intrinsic growth rate.
Now, consider an ecosystem composed of n species interacting with each other (according to a certain symmetry)

by competing (or cooperating) over shared resources such as food and habitats, while maintaining a self-inhibiting
nature (meaning self-limiting in response to rare resources and self-reproducing to abundant resources).A mathematical
treatment for such a community model was developed by Levins in [19], where one attaches a loop diagram in order
to carry out a loop analysis for this community-type situation (Fig. 3).

Here, ajj describes the self-inhibiting nature of the jth species, and aij < 0 (resp. aij > 0) is the competing (resp.
cooperating) coefficient between species i and j. Also, observe that aij = aji .

Introduce

C =

⎡⎢⎢⎣
a11 a12 · · · a1n

a21 a22 · · · a2n
...

...
...

...

an1 an2 · · · ann

⎤⎥⎥⎦ (41)

and call it the community matrix. This community ecosystem can be described by the following equations:

v̇(t) = �Cv(t) ·
(

1 − v(t − �)

K

)
, (42)

where

v(t) =

⎡⎢⎢⎣
v1(t)

v2(t)
...

vn(t)

⎤⎥⎥⎦ , v(t) · u(t) =

⎡⎢⎢⎣
v1(t)u1(t)

v2(t)u2(t)
...

vn(t)un(t)

⎤⎥⎥⎦ . (43)

By applying the standard transformation

v(t) = K(1 + u(t)), (44)

to system (42), one obtains the equivalent system

u̇(t) = −�Cu(t − �) · [1 + u(t)], (45)

where u(t) = v(t)/K − 1 is, in fact, a population saturation index with respect to the available resources.
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Finally, to study system (45) in a heterogeneous environment, we add to (45) a spatial diffusion term, which leads
to the following reaction–diffusion equations:

�

�t
u(x, t) = d

�2

�x2 u(x, t) − �Cu(x, t − 1)[1 + u(x, t)], (46)

where d > 0 is a spatial diffusion coefficient.

5.2. A symmetric system of the Hutchinson model

Consider a symmetric system of n species Hutchinson model of form (46) (for t > 0 and x ∈ (0, �)):⎧⎪⎪⎨⎪⎪⎩
�

�t
u(x, t) = d

�2

�x2 u(x, t) − �Cu(x, t − 1) · [1 + u(x, t)],
�

�x
u(x, t) = 0, x = 0, �,

(47)

where u : [0, �] × R → Rn is a population saturation index (cf. (45)), ‘·’ is defined by (43), d > 0 is a spatial diffusion
coefficient, � 	= 0 is the intrinsic growth rate (cf. (40)), which will be considered as a bifurcation parameter, and C is a
(symmetric) community matrix describing the interaction among the species.

We will assume that:

(A1) The geometrical configuration described by system (47) has a (finite) symmetry group 	. The group 	 permutes
the vertices of the related polygon or polyhedron, which means it acts on Rn by permuting the coordinates of the
vectors x ∈ Rn. The (symmetric) matrix C commutes with this 	-action and 0 /∈ �(C).

For concrete examples of configurations such as regular n-gon, tetrahedron, octahedron, dodecahedron and related
matrices C, we refer to [1,2].

Under assumption (A1), the space V := Rn becomes an orthogonal 	-representation and condition (C1) from
Section 4.1 is satisfied by system (47).

5.3. Characteristic equation and isolated centers

At the 	-symmetric steady-state solution (�, 0) system (47) has the linearization⎧⎪⎨⎪⎩
�

�t
u(x, t) = d �2

�x2 u(x, t) − �C u(x, t − 1),

�

�x
u(x, t) = 0, x = 0, �.

(48)

Since the matrix C is symmetric, it is completely diagonalizable with respect to a basis composed of its eigenvectors.
Consider the spectrum �(C) = {�1, �2, . . . , �q} of the matrix C and denote by E(�k) ⊂ V the eigenspace of �k . Then,

L2([0, �]; V ) =
q⊕

k=1

L2([0, �];E(�k)), (49)

and w ∈ L2([0, �]; V ) can be represented as w(x) =∑kwk(x), where wk ∈ L2([0, �];E(�k)). In a similar way, one
also has

L2([0, �]; V c) =
q⊕

k=1

L2([0, �];Ec(�k)), (50)

where Ec(�k) denotes the complexification of the eigenspace E(�k).
Notice that (�, 0) is a 	-symmetric steady-state solution to (47) for all (non-zero) �. Thus, we can take the set

(�, �, 0), � 	= 0, for the manifold M ⊂ P × EG described in Section 3.2 (see also Section 4.4). Moreover, (�0, 0)
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is non-singular if 0 /∈ �(L�0), where L�0 := d�2/�x2 − �0C : H 2
0 ([0, �]; V ) → L2([0, �); V ] with H 2

0 ([0, �]; V )

being the subspace of H 2([0, �]; V ) consisting of functions u satisfying u(0) = u(�) = 0. One can easily verify that if

−�0�k

d
	= m2 for all k = 1, 2, . . . , q and m = 0, 1, 2, . . . ,

then (�0, 0) is a non-singular 	-symmetric steady-state solution, i.e. (�0, 0) satisfies condition (C2) from Section 4.4.
A number � ∈ C is a characteristic root of system (47) at a 	-symmetric steady-state solution (�, 0) if there exists a

non-zero function v ∈ L2([0, �]; V c) such that

$�(�)v(x) := �v(x) − d
�2

�x2 v(x) + � e−�C v(x) = 0, (51)

where we put $� := $�;0 (cf. (20)).
By using decomposition (50), v can be written as v(x) =∑q

k=1vk(x), for vk(x) ∈ E(�k).
Consequently, (51) yields

$�(�)v(x) =
∑

k

(
�vk(x) − d

�2

�x2 vk(x) + � e−��k vk(x)

)
= 0. (52)

Next, by using the point spectrum {�m := dm2}∞m=0 of the (scalar-valued) Laplace operator L := −d �2/�x2 and the
corresponding eigenspaces E(�m), we can write vk(x) =∑mvk,m(x), for vk,m ∈ E(�m), thus

$�(�)v(x) =
∑
k,m

(�vk,m(x) + dm2vk,m(x) + � e−��k vk,m(x)) = 0. (53)

Therefore, one obtains that � ∈ C is a characteristic root of (48) at the 	-symmetric steady-state solution (�, 0), if

� + dm2 + � �ke
−� = 0 for k = 1, . . . , q and m = 0, 1, . . . . (54)

5.4. Computations for the local bifurcation 	 × S1-invariant

In order to find the values �0 for which the condition (C3) from Section 4.5 holds, we need to find purely imaginary
roots � = i� (� > 0) of (54). Assume that (�, 0) is a non-singular steady-state solution to (47) (in particular, � 	= 0).

• Computation for purely imaginary roots � = i� (� > 0):
By substituting � = i� into (54),{

dm2 + ��k cos � = 0
� − ��k sin � = 0

for k = 1, . . . , q. (55)

In the case m = 0,⎧⎨⎩
� := ��,0,k = �

2
+ ��,

� := ��,0,k = (−1)�
�

�k

,

for k = 1, . . . , q and � = 0, 1, . . . . Consequently,

sign ��,0,k = (−1)� sign �k . (56)

In the case m 	= 0 (thus cos � 	= 0 by the first equation in (55)),

tan � = − �

dm2 , (57)

� = − dm2

�k cos �
, (58)
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Fig. 4. Purely imaginary roots of the characteristic equation.

Eq. (57) has infinitely many positive solutions, which are denoted by {��,m,k}∞�=1 (see Fig. 4). The corresponding
solution � of (58) is denoted by ��,m,k .

Also, notice that sign cos ��,m,k = (−1)�, thus by (58),

sign ��,m,k = (−1)�+1sign �k . (59)

• Computation for sign (d/d�)w(�)|�=��,m,k
: Put �0 := ��,m,k and �0 := ��,m,k . In order to determine the value of

the crossing number tj,1(�0, �0, 0), compute (d/d�)w(�)|�=�0 by implicit differentiation (cf. (36)).
By substituting � = w + iv into (54),{

w + dm2 + ��ke−w cos v = 0,

v − ��ke−w sin v = 0,
(60)

then, differentiating (60) with respect to �,⎧⎪⎨⎪⎩
dw

d�
− ��ke−w

(
dw

d�
cos v + dv

d�
sin v

)
= −�ke−w cos v,

dv

d�
+ ��ke−w

(
dw

d�
sin v − dv

d�
cos v

)
= �ke−w sin v,

(61)

which is equivalent to⎧⎨⎩
dw

d�
(��ke−w − cos v) + dv

d�
sin v = �ke−w,

dw

d�
sin v + dv

d�
(cos v − ��ke−w) = 0.

(62)

Thus,

dw

d�
= − �ke−w(cos v − ��ke−w)

�2�2
ke−2w − 2��ke−w cos v + 1

. (63)

By substituting � = �0, w = 0 and v = �0,

dw

d�

∣∣∣∣
�=�0

= − �k(cos �0 − �0�k)

�2
0�

2
k − 2�0�k cos �0 + 1

= − �k cos �0 − �0�
2
k

�2
0�

2
k − 2�0�k cos �0 + 1

.
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Replacing �k cos �0 with −dm2/�0 in the last equality (cf. (58)),

dw

d�

∣∣∣∣
�=�0

= 1

�0
· dm2 + �2

0�
2
k

�2
0�

2
k + 2dm2 + 1

.

Consequently,

sign
dw

d�

∣∣∣∣
�=�0

= sign �0.

Hence, by (56) and (59),

sign
dw

d�

∣∣∣∣
�=�0=��,m,k

=
{

(−1)� sign �k if m = 0,

(−1)�+1 sign �k if m = 1, 2, . . . .
(64)

Therefore, combining (64) with (36), we have for m 	= 08

tj,1(�0, �0) =
{

(−1)�sign �k dimC E(i�0)/dimC Uj , j = j�0
0, j 	= j�0

.
(65)

6. Usage of Maple� package and concrete results for selected symmetry groups

In this section, assuming conditions (C1)–(C4) to be satisfied by system (47), we will present quantitative results for
some specific symmetry group 	, where 	 takes values from the dihedral groups D3, D4, D5, the tetrahedral group
A4, the octahedral group S4 and the icosahedral group A5.

Below we will briefly summarize our discussions presented in Sections 5.3 and 5.4, and describe the input data to
the Maple� package used to compute �(�0, �0, 0)1.

Recall that, by (39),

�(�0, �0, 0)1 = �	 · �G,

where �	 = ∏�∈�−(A)

∏
i (degVi

)mi(�), �G = ∑j tj,1(�0, �0, 0) degVj,1
, and A is defined for (�0, �0, 0) =

(��,m,k, ��,m,k, 0) (by formula (29)).
By formula (31), we have

�	 =
r∏

i=0

(degVi
)
∑

�∈�−(A)mi(�). (66)

Since
(
degVi

)2 = (	) for i = 0, 1, . . . , r (cf. [2]), we can associate with �−(A) the sequence (�0, �1, . . . , �r ) defined
by

�i :=
∑

�∈�−(A)

mi(�) (mod 2), i = 0, 1, . . . , r .

Then, formula (66) can be reduced to

�	 =
r∏

i=0

(degVi
)�i .

Clearly, the sequence {�0, �1, . . . , �r} permits only possibly finitely many different values.

8 Throughout the rest of this section, we carry out the computation of the local 	 × S1-invariant �(�0, �0, 0)1 = �(��,m,k, ��,m,k, 0)1 for
m 	= 0. In the case m = 0, one only needs to change the formula for sign (dw/d�)|�=�0 according to (64).
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By formula (65),

�G = (−1)�dimC E(i��,m,k)/dimC Uj��,m,k
degVj��,m,k

,1
.

We will use the notation mj��,m,k
:= dimC Ec(i��,m,k)/dimC Uj��,m,k

, which stands for the Uj -multiplicity of i��,m,k .
Thus, mj��,m,k

also permits only possibly finitely many different values.
Therefore, we have the following formula for the first coefficients of the local bifurcation invariant:

�(��,m,k, ��,m,k, 0)1 = (−1)�
r∏

i=0

(degVi
)�i ·mj��,m,k

degVj��,m,k
,1

. (67)

The input data for the computation of the local invariant consists of two finite sequences:

{�0, �1, . . . , �r}, {m0,m1, . . . ,mr},
which are forwarded to the following command from the Maple� package:

�(��,m,k, ��,m,k, 0)1 := (−1)� showdegree [	](�0, �1, . . . , �r ,m0,m1, . . . ,mr ).

Remark and Notation 6.1. Given �0 ∈ �(C) and assuming condition (R) to be satisfied, in what follows we will use
the notation �i

0 to indicate thatE(�0) ⊂ Vi and j�0, whenEc(�0) ⊂ Uj (here we consider the matrix C acting on V c). In
such a case we also write j�i

0. Observe that if condition (R) is not satisfied, then it is possible that i 	= j (cf. (25)). Since
the value ofmj��,m,k

, by condition (R), is equal to theUj��,m,k
-multiplicity dimC (Ec(�k)∩Uj��,m,k

)/dimC Uj��,m,k
of the

eigenvalue j��,m,k �k of the complexified matrix C, and E(i��,m,k) ⊂ Uj��,m,k
, it is convenient to present our quantitative

results in the form of a matrix:
j�0 �i1 , �i2 , . . . , �il �(�0)1 # Branches

where we only list {�i1 , �i2 , . . . , �il } ⊂ {�0, �1, . . . , �r} for those �i� , which can realize the value 1.

Remark 6.2. Although we are dealing with infinitely many isolated centers

(�0, �0, 0) ∈ {(��,m,k, ��,m,k, 0)}�,m,k ,

only finitely many different values of �(�0, �0, 0)1 may occur, which is related to the fact that the value of �(�0, �0, 0)1
is determined by only possibly finitely many different choices of the values of the two sequences {�0, �1, . . . , �r} and
{m0,m1, . . . ,mr}.

The case 	 = D3: We assume here that the matrix C is of type

C =
[

c d d

d c d

d d c

]

with c = −3 and d = −1. In this case, �(C) = {0�0
0 = −5,1�1

1 = −2}, m(�0) = m(�1) = 1. The bifurcation invariants
�(��,m,k, ��,m,k, 0)1 in this case are listed in Table 1, which was established by using the Maple� routines for the
group 	 = D3, in the following way:

�(��,m,k, ��,m,k, 0)1 = (−1)� showdegree[D3](�0, �1, 0, m0(�k), m1(�k), 0).

The case 	 = D4: We assume here that the matrix C is of type

C =
⎡⎢⎣

c d 0 d

d c d 0
0 d c d

d 0 d c

⎤⎥⎦
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with c = −3 and d = −1. In this case, �(C) = {0�0
0 = −5,1�1

1 = −3,3�3
3 = −1}, m(�0) = m(�1) = m(�3) = 1. Some

selected bifurcation invariants �(��,m,k, ��,m,k, 0)1 in this case are listed in Table 2. The remaining results can be easily
established by using the Maple� routines for the group 	 = D4:

�(��,m,k, ��,m,k, 0)1

= (−1)� showdegree[D4](�0, �1, 0, �2, 0, m0(�k), m1(�k), 0, m2(�k), 0).

The case 	 = D5: We assume here that the matrix C is of type

C =

⎡⎢⎢⎢⎣
c d 0 0 d

d c d 0 0
0 d c d 0
0 0 d c d

d 0 0 d c

⎤⎥⎥⎥⎦
with c = −3 and d = −1. In this case, the eigenvalues of C are: �(C) = {0�0

0 = −5,1�1
1 = −3 + 2(

√
5 − 1)/4,2�2

2 =
−3 + 2(

√
5 + 1)/4}, m(�0

0) = m(�1) = m(�2) = 1. Some selected bifurcation invariants �(��,m,k, ��,m,k, 0)1 in this
case are listed in Table 3, which were computed by using the Maple� routines for the group 	 = D5:

�(��,m,k, ��,m,k, 0)1

= (−1)� showdegree[D5](�0, �1, �2, 0, m0(�k), m1(�k), m3(�k), 0).

The case 	 = A4: We assume here that the matrix C is of type

C =
⎡⎢⎣

c d d d

d c d d

d d c d

d d d c

⎤⎥⎦
with c = −4 and d = 1. Clearly, C is A4-equivariant. In this case, the eigenvalues of C are: �(C) = {−1, −5}. We
classify the eigenvalues of C as 0�0

0 = −1,3�3
1 = −5, and their multiplicities: m(�0) = m(�1) = 1. Sample invariants

�(��,m,k, ��,m,k, 0)1 in this case are listed in Table 4. To obtain the other invariants, use the Maple� routines for the
group 	 = A4:

�(��,m,k, ��,m,k, 0)1 = (−1)� showdegree[A4](�0, 0, �3, m0(�k), 0, 0, m3(�k)).

The case 	 = S4: We assume that the matrix C is of the type

C =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

c d 0 d 0 d 0 0
d c d 0 0 0 d 0
0 d c d 0 0 0 d

d 0 d c d 0 0 0
0 0 0 d c d 0 d

d 0 0 0 d c d 0
0 d 0 0 0 d c d

0 0 d 0 d 0 d c

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
with c = −6, and d = 1. In this case we have �(C) = {0�0

0 = −2,1�1
1 = −8,3�3

2 = −4,4�4
3 = −6}, m(�0) = m(�1) =

m(�2)=m(�3)= 1. Some selected bifurcation invariants �(��,m,k, ��,m,k, 0)1 in this case are listed in Table 5. Use the
Maple� routines for the group 	 = S4 to obtain the rest of invariants:

�(��,m,k, ��,m,k, 0)1

= (−1)� showdegree[S4](�0, �1, 0, �3, �4, m0(�k), m1(�k), 0, m3(�k), m4(�k)).
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The case 	 = A5: We assume that the matrix C is of the type

C =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

c d 0 0 d 0 0 d 0 0 0 0 0 0 0 0 0 0 0 0
d c d 0 0 0 0 0 0 d 0 0 0 0 0 0 0 0 0 0
0 d c d 0 0 0 0 0 0 0 d 0 0 0 0 0 0 0 0
0 0 d c d 0 0 0 0 0 0 0 0 d 0 0 0 0 0 0
d 0 0 d c d 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 d c d 0 0 0 0 0 0 0 d 0 0 0 0 0
0 0 0 0 0 d c d 0 0 0 0 0 0 0 0 d 0 0 0
d 0 0 0 0 0 d c d 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 d c d 0 0 0 0 0 0 0 d 0 0
0 d 0 0 0 0 0 0 d c d 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 d c d 0 0 0 0 0 0 d 0
0 0 d 0 0 0 0 0 0 0 d c d 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 d c d 0 0 0 0 0 d

0 0 0 d 0 0 0 0 0 0 0 0 d c d 0 0 0 0 0
0 0 0 0 0 d 0 0 0 0 0 0 0 d c d 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 d c d 0 0 d

0 0 0 0 0 0 d 0 0 0 0 0 0 0 0 d c d 0 0
0 0 0 0 0 0 0 0 d 0 0 0 0 0 0 0 d c d 0
0 0 0 0 0 0 0 0 0 0 d 0 0 0 0 0 0 d c d

0 0 0 0 0 0 0 0 0 0 0 0 d 0 0 d 0 0 d c

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
with c = −6, and d = 1. In this case,

�(C) := {0�0
0 = −3,1�1

1 = −6,1�1
2 = −4,2�2

3 = −5,3�3
4 = −6 − √

5,4�4
5 = −6 + √

5},
and m(�k) = 1, k = 0, 1, 2, 3, 4, 5. Some selected bifurcation invariants �(��,m,k, ��,m,k, 0)1 in this case are listed in
Table 6, which was established by using the Maple� routines for the group 	 = A5:

�(��,m,k, ��,m,k, 0)1

= (−1)� showdegree[A5](�0, �1, �2, �3, 0, m0(�k), m1(�k), m2(�k), m3(�k), 0).

The remaining invariants can be easily evaluated by using the Maple� package.

Remark 6.3. We refer to our previous paper [2] (and also [1]) for the interpretation of the presented tables including
the explanation of the symbols representing the subgroups in 	 × S1.
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